RTSP basic authentication, patch originally by Philip Coombes
[ffmpeg-lucabe.git] / libavcodec / atrac3.c
blob2b956ec428bab2af5cf74637f34421b338a6f830
1 /*
2 * Atrac 3 compatible decoder
3 * Copyright (c) 2006-2008 Maxim Poliakovski
4 * Copyright (c) 2006-2008 Benjamin Larsson
6 * This file is part of FFmpeg.
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23 /**
24 * @file libavcodec/atrac3.c
25 * Atrac 3 compatible decoder.
26 * This decoder handles Sony's ATRAC3 data.
28 * Container formats used to store atrac 3 data:
29 * RealMedia (.rm), RIFF WAV (.wav, .at3), Sony OpenMG (.oma, .aa3).
31 * To use this decoder, a calling application must supply the extradata
32 * bytes provided in the containers above.
35 #include <math.h>
36 #include <stddef.h>
37 #include <stdio.h>
39 #include "avcodec.h"
40 #include "get_bits.h"
41 #include "dsputil.h"
42 #include "bytestream.h"
44 #include "atrac.h"
45 #include "atrac3data.h"
47 #define JOINT_STEREO 0x12
48 #define STEREO 0x2
51 /* These structures are needed to store the parsed gain control data. */
52 typedef struct {
53 int num_gain_data;
54 int levcode[8];
55 int loccode[8];
56 } gain_info;
58 typedef struct {
59 gain_info gBlock[4];
60 } gain_block;
62 typedef struct {
63 int pos;
64 int numCoefs;
65 float coef[8];
66 } tonal_component;
68 typedef struct {
69 int bandsCoded;
70 int numComponents;
71 tonal_component components[64];
72 float prevFrame[1024];
73 int gcBlkSwitch;
74 gain_block gainBlock[2];
76 DECLARE_ALIGNED_16(float, spectrum[1024]);
77 DECLARE_ALIGNED_16(float, IMDCT_buf[1024]);
79 float delayBuf1[46]; ///<qmf delay buffers
80 float delayBuf2[46];
81 float delayBuf3[46];
82 } channel_unit;
84 typedef struct {
85 GetBitContext gb;
86 //@{
87 /** stream data */
88 int channels;
89 int codingMode;
90 int bit_rate;
91 int sample_rate;
92 int samples_per_channel;
93 int samples_per_frame;
95 int bits_per_frame;
96 int bytes_per_frame;
97 int pBs;
98 channel_unit* pUnits;
99 //@}
100 //@{
101 /** joint-stereo related variables */
102 int matrix_coeff_index_prev[4];
103 int matrix_coeff_index_now[4];
104 int matrix_coeff_index_next[4];
105 int weighting_delay[6];
106 //@}
107 //@{
108 /** data buffers */
109 float outSamples[2048];
110 uint8_t* decoded_bytes_buffer;
111 float tempBuf[1070];
112 //@}
113 //@{
114 /** extradata */
115 int atrac3version;
116 int delay;
117 int scrambled_stream;
118 int frame_factor;
119 //@}
120 } ATRAC3Context;
122 static DECLARE_ALIGNED_16(float,mdct_window[512]);
123 static VLC spectral_coeff_tab[7];
124 static float gain_tab1[16];
125 static float gain_tab2[31];
126 static MDCTContext mdct_ctx;
127 static DSPContext dsp;
131 * Regular 512 points IMDCT without overlapping, with the exception of the swapping of odd bands
132 * caused by the reverse spectra of the QMF.
134 * @param pInput float input
135 * @param pOutput float output
136 * @param odd_band 1 if the band is an odd band
139 static void IMLT(float *pInput, float *pOutput, int odd_band)
141 int i;
143 if (odd_band) {
145 * Reverse the odd bands before IMDCT, this is an effect of the QMF transform
146 * or it gives better compression to do it this way.
147 * FIXME: It should be possible to handle this in ff_imdct_calc
148 * for that to happen a modification of the prerotation step of
149 * all SIMD code and C code is needed.
150 * Or fix the functions before so they generate a pre reversed spectrum.
153 for (i=0; i<128; i++)
154 FFSWAP(float, pInput[i], pInput[255-i]);
157 ff_imdct_calc(&mdct_ctx,pOutput,pInput);
159 /* Perform windowing on the output. */
160 dsp.vector_fmul(pOutput,mdct_window,512);
166 * Atrac 3 indata descrambling, only used for data coming from the rm container
168 * @param in pointer to 8 bit array of indata
169 * @param bits amount of bits
170 * @param out pointer to 8 bit array of outdata
173 static int decode_bytes(const uint8_t* inbuffer, uint8_t* out, int bytes){
174 int i, off;
175 uint32_t c;
176 const uint32_t* buf;
177 uint32_t* obuf = (uint32_t*) out;
179 off = (intptr_t)inbuffer & 3;
180 buf = (const uint32_t*) (inbuffer - off);
181 c = be2me_32((0x537F6103 >> (off*8)) | (0x537F6103 << (32-(off*8))));
182 bytes += 3 + off;
183 for (i = 0; i < bytes/4; i++)
184 obuf[i] = c ^ buf[i];
186 if (off)
187 av_log(NULL,AV_LOG_DEBUG,"Offset of %d not handled, post sample on ffmpeg-dev.\n",off);
189 return off;
193 static av_cold void init_atrac3_transforms(ATRAC3Context *q) {
194 float enc_window[256];
195 float s;
196 int i;
198 /* Generate the mdct window, for details see
199 * http://wiki.multimedia.cx/index.php?title=RealAudio_atrc#Windows */
200 for (i=0 ; i<256; i++)
201 enc_window[i] = (sin(((i + 0.5) / 256.0 - 0.5) * M_PI) + 1.0) * 0.5;
203 if (!mdct_window[0])
204 for (i=0 ; i<256; i++) {
205 mdct_window[i] = enc_window[i]/(enc_window[i]*enc_window[i] + enc_window[255-i]*enc_window[255-i]);
206 mdct_window[511-i] = mdct_window[i];
209 /* Initialize the MDCT transform. */
210 ff_mdct_init(&mdct_ctx, 9, 1, 1.0);
214 * Atrac3 uninit, free all allocated memory
217 static av_cold int atrac3_decode_close(AVCodecContext *avctx)
219 ATRAC3Context *q = avctx->priv_data;
221 av_free(q->pUnits);
222 av_free(q->decoded_bytes_buffer);
224 return 0;
228 / * Mantissa decoding
230 * @param gb the GetBit context
231 * @param selector what table is the output values coded with
232 * @param codingFlag constant length coding or variable length coding
233 * @param mantissas mantissa output table
234 * @param numCodes amount of values to get
237 static void readQuantSpectralCoeffs (GetBitContext *gb, int selector, int codingFlag, int* mantissas, int numCodes)
239 int numBits, cnt, code, huffSymb;
241 if (selector == 1)
242 numCodes /= 2;
244 if (codingFlag != 0) {
245 /* constant length coding (CLC) */
246 numBits = CLCLengthTab[selector];
248 if (selector > 1) {
249 for (cnt = 0; cnt < numCodes; cnt++) {
250 if (numBits)
251 code = get_sbits(gb, numBits);
252 else
253 code = 0;
254 mantissas[cnt] = code;
256 } else {
257 for (cnt = 0; cnt < numCodes; cnt++) {
258 if (numBits)
259 code = get_bits(gb, numBits); //numBits is always 4 in this case
260 else
261 code = 0;
262 mantissas[cnt*2] = seTab_0[code >> 2];
263 mantissas[cnt*2+1] = seTab_0[code & 3];
266 } else {
267 /* variable length coding (VLC) */
268 if (selector != 1) {
269 for (cnt = 0; cnt < numCodes; cnt++) {
270 huffSymb = get_vlc2(gb, spectral_coeff_tab[selector-1].table, spectral_coeff_tab[selector-1].bits, 3);
271 huffSymb += 1;
272 code = huffSymb >> 1;
273 if (huffSymb & 1)
274 code = -code;
275 mantissas[cnt] = code;
277 } else {
278 for (cnt = 0; cnt < numCodes; cnt++) {
279 huffSymb = get_vlc2(gb, spectral_coeff_tab[selector-1].table, spectral_coeff_tab[selector-1].bits, 3);
280 mantissas[cnt*2] = decTable1[huffSymb*2];
281 mantissas[cnt*2+1] = decTable1[huffSymb*2+1];
288 * Restore the quantized band spectrum coefficients
290 * @param gb the GetBit context
291 * @param pOut decoded band spectrum
292 * @return outSubbands subband counter, fix for broken specification/files
295 static int decodeSpectrum (GetBitContext *gb, float *pOut)
297 int numSubbands, codingMode, cnt, first, last, subbWidth, *pIn;
298 int subband_vlc_index[32], SF_idxs[32];
299 int mantissas[128];
300 float SF;
302 numSubbands = get_bits(gb, 5); // number of coded subbands
303 codingMode = get_bits1(gb); // coding Mode: 0 - VLC/ 1-CLC
305 /* Get the VLC selector table for the subbands, 0 means not coded. */
306 for (cnt = 0; cnt <= numSubbands; cnt++)
307 subband_vlc_index[cnt] = get_bits(gb, 3);
309 /* Read the scale factor indexes from the stream. */
310 for (cnt = 0; cnt <= numSubbands; cnt++) {
311 if (subband_vlc_index[cnt] != 0)
312 SF_idxs[cnt] = get_bits(gb, 6);
315 for (cnt = 0; cnt <= numSubbands; cnt++) {
316 first = subbandTab[cnt];
317 last = subbandTab[cnt+1];
319 subbWidth = last - first;
321 if (subband_vlc_index[cnt] != 0) {
322 /* Decode spectral coefficients for this subband. */
323 /* TODO: This can be done faster is several blocks share the
324 * same VLC selector (subband_vlc_index) */
325 readQuantSpectralCoeffs (gb, subband_vlc_index[cnt], codingMode, mantissas, subbWidth);
327 /* Decode the scale factor for this subband. */
328 SF = sf_table[SF_idxs[cnt]] * iMaxQuant[subband_vlc_index[cnt]];
330 /* Inverse quantize the coefficients. */
331 for (pIn=mantissas ; first<last; first++, pIn++)
332 pOut[first] = *pIn * SF;
333 } else {
334 /* This subband was not coded, so zero the entire subband. */
335 memset(pOut+first, 0, subbWidth*sizeof(float));
339 /* Clear the subbands that were not coded. */
340 first = subbandTab[cnt];
341 memset(pOut+first, 0, (1024 - first) * sizeof(float));
342 return numSubbands;
346 * Restore the quantized tonal components
348 * @param gb the GetBit context
349 * @param pComponent tone component
350 * @param numBands amount of coded bands
353 static int decodeTonalComponents (GetBitContext *gb, tonal_component *pComponent, int numBands)
355 int i,j,k,cnt;
356 int components, coding_mode_selector, coding_mode, coded_values_per_component;
357 int sfIndx, coded_values, max_coded_values, quant_step_index, coded_components;
358 int band_flags[4], mantissa[8];
359 float *pCoef;
360 float scalefactor;
361 int component_count = 0;
363 components = get_bits(gb,5);
365 /* no tonal components */
366 if (components == 0)
367 return 0;
369 coding_mode_selector = get_bits(gb,2);
370 if (coding_mode_selector == 2)
371 return -1;
373 coding_mode = coding_mode_selector & 1;
375 for (i = 0; i < components; i++) {
376 for (cnt = 0; cnt <= numBands; cnt++)
377 band_flags[cnt] = get_bits1(gb);
379 coded_values_per_component = get_bits(gb,3);
381 quant_step_index = get_bits(gb,3);
382 if (quant_step_index <= 1)
383 return -1;
385 if (coding_mode_selector == 3)
386 coding_mode = get_bits1(gb);
388 for (j = 0; j < (numBands + 1) * 4; j++) {
389 if (band_flags[j >> 2] == 0)
390 continue;
392 coded_components = get_bits(gb,3);
394 for (k=0; k<coded_components; k++) {
395 sfIndx = get_bits(gb,6);
396 pComponent[component_count].pos = j * 64 + (get_bits(gb,6));
397 max_coded_values = 1024 - pComponent[component_count].pos;
398 coded_values = coded_values_per_component + 1;
399 coded_values = FFMIN(max_coded_values,coded_values);
401 scalefactor = sf_table[sfIndx] * iMaxQuant[quant_step_index];
403 readQuantSpectralCoeffs(gb, quant_step_index, coding_mode, mantissa, coded_values);
405 pComponent[component_count].numCoefs = coded_values;
407 /* inverse quant */
408 pCoef = pComponent[component_count].coef;
409 for (cnt = 0; cnt < coded_values; cnt++)
410 pCoef[cnt] = mantissa[cnt] * scalefactor;
412 component_count++;
417 return component_count;
421 * Decode gain parameters for the coded bands
423 * @param gb the GetBit context
424 * @param pGb the gainblock for the current band
425 * @param numBands amount of coded bands
428 static int decodeGainControl (GetBitContext *gb, gain_block *pGb, int numBands)
430 int i, cf, numData;
431 int *pLevel, *pLoc;
433 gain_info *pGain = pGb->gBlock;
435 for (i=0 ; i<=numBands; i++)
437 numData = get_bits(gb,3);
438 pGain[i].num_gain_data = numData;
439 pLevel = pGain[i].levcode;
440 pLoc = pGain[i].loccode;
442 for (cf = 0; cf < numData; cf++){
443 pLevel[cf]= get_bits(gb,4);
444 pLoc [cf]= get_bits(gb,5);
445 if(cf && pLoc[cf] <= pLoc[cf-1])
446 return -1;
450 /* Clear the unused blocks. */
451 for (; i<4 ; i++)
452 pGain[i].num_gain_data = 0;
454 return 0;
458 * Apply gain parameters and perform the MDCT overlapping part
460 * @param pIn input float buffer
461 * @param pPrev previous float buffer to perform overlap against
462 * @param pOut output float buffer
463 * @param pGain1 current band gain info
464 * @param pGain2 next band gain info
467 static void gainCompensateAndOverlap (float *pIn, float *pPrev, float *pOut, gain_info *pGain1, gain_info *pGain2)
469 /* gain compensation function */
470 float gain1, gain2, gain_inc;
471 int cnt, numdata, nsample, startLoc, endLoc;
474 if (pGain2->num_gain_data == 0)
475 gain1 = 1.0;
476 else
477 gain1 = gain_tab1[pGain2->levcode[0]];
479 if (pGain1->num_gain_data == 0) {
480 for (cnt = 0; cnt < 256; cnt++)
481 pOut[cnt] = pIn[cnt] * gain1 + pPrev[cnt];
482 } else {
483 numdata = pGain1->num_gain_data;
484 pGain1->loccode[numdata] = 32;
485 pGain1->levcode[numdata] = 4;
487 nsample = 0; // current sample = 0
489 for (cnt = 0; cnt < numdata; cnt++) {
490 startLoc = pGain1->loccode[cnt] * 8;
491 endLoc = startLoc + 8;
493 gain2 = gain_tab1[pGain1->levcode[cnt]];
494 gain_inc = gain_tab2[(pGain1->levcode[cnt+1] - pGain1->levcode[cnt])+15];
496 /* interpolate */
497 for (; nsample < startLoc; nsample++)
498 pOut[nsample] = (pIn[nsample] * gain1 + pPrev[nsample]) * gain2;
500 /* interpolation is done over eight samples */
501 for (; nsample < endLoc; nsample++) {
502 pOut[nsample] = (pIn[nsample] * gain1 + pPrev[nsample]) * gain2;
503 gain2 *= gain_inc;
507 for (; nsample < 256; nsample++)
508 pOut[nsample] = (pIn[nsample] * gain1) + pPrev[nsample];
511 /* Delay for the overlapping part. */
512 memcpy(pPrev, &pIn[256], 256*sizeof(float));
516 * Combine the tonal band spectrum and regular band spectrum
517 * Return position of the last tonal coefficient
519 * @param pSpectrum output spectrum buffer
520 * @param numComponents amount of tonal components
521 * @param pComponent tonal components for this band
524 static int addTonalComponents (float *pSpectrum, int numComponents, tonal_component *pComponent)
526 int cnt, i, lastPos = -1;
527 float *pIn, *pOut;
529 for (cnt = 0; cnt < numComponents; cnt++){
530 lastPos = FFMAX(pComponent[cnt].pos + pComponent[cnt].numCoefs, lastPos);
531 pIn = pComponent[cnt].coef;
532 pOut = &(pSpectrum[pComponent[cnt].pos]);
534 for (i=0 ; i<pComponent[cnt].numCoefs ; i++)
535 pOut[i] += pIn[i];
538 return lastPos;
542 #define INTERPOLATE(old,new,nsample) ((old) + (nsample)*0.125*((new)-(old)))
544 static void reverseMatrixing(float *su1, float *su2, int *pPrevCode, int *pCurrCode)
546 int i, band, nsample, s1, s2;
547 float c1, c2;
548 float mc1_l, mc1_r, mc2_l, mc2_r;
550 for (i=0,band = 0; band < 4*256; band+=256,i++) {
551 s1 = pPrevCode[i];
552 s2 = pCurrCode[i];
553 nsample = 0;
555 if (s1 != s2) {
556 /* Selector value changed, interpolation needed. */
557 mc1_l = matrixCoeffs[s1*2];
558 mc1_r = matrixCoeffs[s1*2+1];
559 mc2_l = matrixCoeffs[s2*2];
560 mc2_r = matrixCoeffs[s2*2+1];
562 /* Interpolation is done over the first eight samples. */
563 for(; nsample < 8; nsample++) {
564 c1 = su1[band+nsample];
565 c2 = su2[band+nsample];
566 c2 = c1 * INTERPOLATE(mc1_l,mc2_l,nsample) + c2 * INTERPOLATE(mc1_r,mc2_r,nsample);
567 su1[band+nsample] = c2;
568 su2[band+nsample] = c1 * 2.0 - c2;
572 /* Apply the matrix without interpolation. */
573 switch (s2) {
574 case 0: /* M/S decoding */
575 for (; nsample < 256; nsample++) {
576 c1 = su1[band+nsample];
577 c2 = su2[band+nsample];
578 su1[band+nsample] = c2 * 2.0;
579 su2[band+nsample] = (c1 - c2) * 2.0;
581 break;
583 case 1:
584 for (; nsample < 256; nsample++) {
585 c1 = su1[band+nsample];
586 c2 = su2[band+nsample];
587 su1[band+nsample] = (c1 + c2) * 2.0;
588 su2[band+nsample] = c2 * -2.0;
590 break;
591 case 2:
592 case 3:
593 for (; nsample < 256; nsample++) {
594 c1 = su1[band+nsample];
595 c2 = su2[band+nsample];
596 su1[band+nsample] = c1 + c2;
597 su2[band+nsample] = c1 - c2;
599 break;
600 default:
601 assert(0);
606 static void getChannelWeights (int indx, int flag, float ch[2]){
608 if (indx == 7) {
609 ch[0] = 1.0;
610 ch[1] = 1.0;
611 } else {
612 ch[0] = (float)(indx & 7) / 7.0;
613 ch[1] = sqrt(2 - ch[0]*ch[0]);
614 if(flag)
615 FFSWAP(float, ch[0], ch[1]);
619 static void channelWeighting (float *su1, float *su2, int *p3)
621 int band, nsample;
622 /* w[x][y] y=0 is left y=1 is right */
623 float w[2][2];
625 if (p3[1] != 7 || p3[3] != 7){
626 getChannelWeights(p3[1], p3[0], w[0]);
627 getChannelWeights(p3[3], p3[2], w[1]);
629 for(band = 1; band < 4; band++) {
630 /* scale the channels by the weights */
631 for(nsample = 0; nsample < 8; nsample++) {
632 su1[band*256+nsample] *= INTERPOLATE(w[0][0], w[0][1], nsample);
633 su2[band*256+nsample] *= INTERPOLATE(w[1][0], w[1][1], nsample);
636 for(; nsample < 256; nsample++) {
637 su1[band*256+nsample] *= w[1][0];
638 su2[band*256+nsample] *= w[1][1];
646 * Decode a Sound Unit
648 * @param gb the GetBit context
649 * @param pSnd the channel unit to be used
650 * @param pOut the decoded samples before IQMF in float representation
651 * @param channelNum channel number
652 * @param codingMode the coding mode (JOINT_STEREO or regular stereo/mono)
656 static int decodeChannelSoundUnit (ATRAC3Context *q, GetBitContext *gb, channel_unit *pSnd, float *pOut, int channelNum, int codingMode)
658 int band, result=0, numSubbands, lastTonal, numBands;
660 if (codingMode == JOINT_STEREO && channelNum == 1) {
661 if (get_bits(gb,2) != 3) {
662 av_log(NULL,AV_LOG_ERROR,"JS mono Sound Unit id != 3.\n");
663 return -1;
665 } else {
666 if (get_bits(gb,6) != 0x28) {
667 av_log(NULL,AV_LOG_ERROR,"Sound Unit id != 0x28.\n");
668 return -1;
672 /* number of coded QMF bands */
673 pSnd->bandsCoded = get_bits(gb,2);
675 result = decodeGainControl (gb, &(pSnd->gainBlock[pSnd->gcBlkSwitch]), pSnd->bandsCoded);
676 if (result) return result;
678 pSnd->numComponents = decodeTonalComponents (gb, pSnd->components, pSnd->bandsCoded);
679 if (pSnd->numComponents == -1) return -1;
681 numSubbands = decodeSpectrum (gb, pSnd->spectrum);
683 /* Merge the decoded spectrum and tonal components. */
684 lastTonal = addTonalComponents (pSnd->spectrum, pSnd->numComponents, pSnd->components);
687 /* calculate number of used MLT/QMF bands according to the amount of coded spectral lines */
688 numBands = (subbandTab[numSubbands] - 1) >> 8;
689 if (lastTonal >= 0)
690 numBands = FFMAX((lastTonal + 256) >> 8, numBands);
693 /* Reconstruct time domain samples. */
694 for (band=0; band<4; band++) {
695 /* Perform the IMDCT step without overlapping. */
696 if (band <= numBands) {
697 IMLT(&(pSnd->spectrum[band*256]), pSnd->IMDCT_buf, band&1);
698 } else
699 memset(pSnd->IMDCT_buf, 0, 512 * sizeof(float));
701 /* gain compensation and overlapping */
702 gainCompensateAndOverlap (pSnd->IMDCT_buf, &(pSnd->prevFrame[band*256]), &(pOut[band*256]),
703 &((pSnd->gainBlock[1 - (pSnd->gcBlkSwitch)]).gBlock[band]),
704 &((pSnd->gainBlock[pSnd->gcBlkSwitch]).gBlock[band]));
707 /* Swap the gain control buffers for the next frame. */
708 pSnd->gcBlkSwitch ^= 1;
710 return 0;
714 * Frame handling
716 * @param q Atrac3 private context
717 * @param databuf the input data
720 static int decodeFrame(ATRAC3Context *q, const uint8_t* databuf)
722 int result, i;
723 float *p1, *p2, *p3, *p4;
724 uint8_t *ptr1;
726 if (q->codingMode == JOINT_STEREO) {
728 /* channel coupling mode */
729 /* decode Sound Unit 1 */
730 init_get_bits(&q->gb,databuf,q->bits_per_frame);
732 result = decodeChannelSoundUnit(q,&q->gb, q->pUnits, q->outSamples, 0, JOINT_STEREO);
733 if (result != 0)
734 return (result);
736 /* Framedata of the su2 in the joint-stereo mode is encoded in
737 * reverse byte order so we need to swap it first. */
738 if (databuf == q->decoded_bytes_buffer) {
739 uint8_t *ptr2 = q->decoded_bytes_buffer+q->bytes_per_frame-1;
740 ptr1 = q->decoded_bytes_buffer;
741 for (i = 0; i < (q->bytes_per_frame/2); i++, ptr1++, ptr2--) {
742 FFSWAP(uint8_t,*ptr1,*ptr2);
744 } else {
745 const uint8_t *ptr2 = databuf+q->bytes_per_frame-1;
746 for (i = 0; i < q->bytes_per_frame; i++)
747 q->decoded_bytes_buffer[i] = *ptr2--;
750 /* Skip the sync codes (0xF8). */
751 ptr1 = q->decoded_bytes_buffer;
752 for (i = 4; *ptr1 == 0xF8; i++, ptr1++) {
753 if (i >= q->bytes_per_frame)
754 return -1;
758 /* set the bitstream reader at the start of the second Sound Unit*/
759 init_get_bits(&q->gb,ptr1,q->bits_per_frame);
761 /* Fill the Weighting coeffs delay buffer */
762 memmove(q->weighting_delay,&(q->weighting_delay[2]),4*sizeof(int));
763 q->weighting_delay[4] = get_bits1(&q->gb);
764 q->weighting_delay[5] = get_bits(&q->gb,3);
766 for (i = 0; i < 4; i++) {
767 q->matrix_coeff_index_prev[i] = q->matrix_coeff_index_now[i];
768 q->matrix_coeff_index_now[i] = q->matrix_coeff_index_next[i];
769 q->matrix_coeff_index_next[i] = get_bits(&q->gb,2);
772 /* Decode Sound Unit 2. */
773 result = decodeChannelSoundUnit(q,&q->gb, &q->pUnits[1], &q->outSamples[1024], 1, JOINT_STEREO);
774 if (result != 0)
775 return (result);
777 /* Reconstruct the channel coefficients. */
778 reverseMatrixing(q->outSamples, &q->outSamples[1024], q->matrix_coeff_index_prev, q->matrix_coeff_index_now);
780 channelWeighting(q->outSamples, &q->outSamples[1024], q->weighting_delay);
782 } else {
783 /* normal stereo mode or mono */
784 /* Decode the channel sound units. */
785 for (i=0 ; i<q->channels ; i++) {
787 /* Set the bitstream reader at the start of a channel sound unit. */
788 init_get_bits(&q->gb, databuf+((i*q->bytes_per_frame)/q->channels), (q->bits_per_frame)/q->channels);
790 result = decodeChannelSoundUnit(q,&q->gb, &q->pUnits[i], &q->outSamples[i*1024], i, q->codingMode);
791 if (result != 0)
792 return (result);
796 /* Apply the iQMF synthesis filter. */
797 p1= q->outSamples;
798 for (i=0 ; i<q->channels ; i++) {
799 p2= p1+256;
800 p3= p2+256;
801 p4= p3+256;
802 atrac_iqmf (p1, p2, 256, p1, q->pUnits[i].delayBuf1, q->tempBuf);
803 atrac_iqmf (p4, p3, 256, p3, q->pUnits[i].delayBuf2, q->tempBuf);
804 atrac_iqmf (p1, p3, 512, p1, q->pUnits[i].delayBuf3, q->tempBuf);
805 p1 +=1024;
808 return 0;
813 * Atrac frame decoding
815 * @param avctx pointer to the AVCodecContext
818 static int atrac3_decode_frame(AVCodecContext *avctx,
819 void *data, int *data_size,
820 AVPacket *avpkt) {
821 const uint8_t *buf = avpkt->data;
822 int buf_size = avpkt->size;
823 ATRAC3Context *q = avctx->priv_data;
824 int result = 0, i;
825 const uint8_t* databuf;
826 int16_t* samples = data;
828 if (buf_size < avctx->block_align)
829 return buf_size;
831 /* Check if we need to descramble and what buffer to pass on. */
832 if (q->scrambled_stream) {
833 decode_bytes(buf, q->decoded_bytes_buffer, avctx->block_align);
834 databuf = q->decoded_bytes_buffer;
835 } else {
836 databuf = buf;
839 result = decodeFrame(q, databuf);
841 if (result != 0) {
842 av_log(NULL,AV_LOG_ERROR,"Frame decoding error!\n");
843 return -1;
846 if (q->channels == 1) {
847 /* mono */
848 for (i = 0; i<1024; i++)
849 samples[i] = av_clip_int16(round(q->outSamples[i]));
850 *data_size = 1024 * sizeof(int16_t);
851 } else {
852 /* stereo */
853 for (i = 0; i < 1024; i++) {
854 samples[i*2] = av_clip_int16(round(q->outSamples[i]));
855 samples[i*2+1] = av_clip_int16(round(q->outSamples[1024+i]));
857 *data_size = 2048 * sizeof(int16_t);
860 return avctx->block_align;
865 * Atrac3 initialization
867 * @param avctx pointer to the AVCodecContext
870 static av_cold int atrac3_decode_init(AVCodecContext *avctx)
872 int i;
873 const uint8_t *edata_ptr = avctx->extradata;
874 ATRAC3Context *q = avctx->priv_data;
875 static VLC_TYPE atrac3_vlc_table[4096][2];
876 static int vlcs_initialized = 0;
878 /* Take data from the AVCodecContext (RM container). */
879 q->sample_rate = avctx->sample_rate;
880 q->channels = avctx->channels;
881 q->bit_rate = avctx->bit_rate;
882 q->bits_per_frame = avctx->block_align * 8;
883 q->bytes_per_frame = avctx->block_align;
885 /* Take care of the codec-specific extradata. */
886 if (avctx->extradata_size == 14) {
887 /* Parse the extradata, WAV format */
888 av_log(avctx,AV_LOG_DEBUG,"[0-1] %d\n",bytestream_get_le16(&edata_ptr)); //Unknown value always 1
889 q->samples_per_channel = bytestream_get_le32(&edata_ptr);
890 q->codingMode = bytestream_get_le16(&edata_ptr);
891 av_log(avctx,AV_LOG_DEBUG,"[8-9] %d\n",bytestream_get_le16(&edata_ptr)); //Dupe of coding mode
892 q->frame_factor = bytestream_get_le16(&edata_ptr); //Unknown always 1
893 av_log(avctx,AV_LOG_DEBUG,"[12-13] %d\n",bytestream_get_le16(&edata_ptr)); //Unknown always 0
895 /* setup */
896 q->samples_per_frame = 1024 * q->channels;
897 q->atrac3version = 4;
898 q->delay = 0x88E;
899 if (q->codingMode)
900 q->codingMode = JOINT_STEREO;
901 else
902 q->codingMode = STEREO;
904 q->scrambled_stream = 0;
906 if ((q->bytes_per_frame == 96*q->channels*q->frame_factor) || (q->bytes_per_frame == 152*q->channels*q->frame_factor) || (q->bytes_per_frame == 192*q->channels*q->frame_factor)) {
907 } else {
908 av_log(avctx,AV_LOG_ERROR,"Unknown frame/channel/frame_factor configuration %d/%d/%d\n", q->bytes_per_frame, q->channels, q->frame_factor);
909 return -1;
912 } else if (avctx->extradata_size == 10) {
913 /* Parse the extradata, RM format. */
914 q->atrac3version = bytestream_get_be32(&edata_ptr);
915 q->samples_per_frame = bytestream_get_be16(&edata_ptr);
916 q->delay = bytestream_get_be16(&edata_ptr);
917 q->codingMode = bytestream_get_be16(&edata_ptr);
919 q->samples_per_channel = q->samples_per_frame / q->channels;
920 q->scrambled_stream = 1;
922 } else {
923 av_log(NULL,AV_LOG_ERROR,"Unknown extradata size %d.\n",avctx->extradata_size);
925 /* Check the extradata. */
927 if (q->atrac3version != 4) {
928 av_log(avctx,AV_LOG_ERROR,"Version %d != 4.\n",q->atrac3version);
929 return -1;
932 if (q->samples_per_frame != 1024 && q->samples_per_frame != 2048) {
933 av_log(avctx,AV_LOG_ERROR,"Unknown amount of samples per frame %d.\n",q->samples_per_frame);
934 return -1;
937 if (q->delay != 0x88E) {
938 av_log(avctx,AV_LOG_ERROR,"Unknown amount of delay %x != 0x88E.\n",q->delay);
939 return -1;
942 if (q->codingMode == STEREO) {
943 av_log(avctx,AV_LOG_DEBUG,"Normal stereo detected.\n");
944 } else if (q->codingMode == JOINT_STEREO) {
945 av_log(avctx,AV_LOG_DEBUG,"Joint stereo detected.\n");
946 } else {
947 av_log(avctx,AV_LOG_ERROR,"Unknown channel coding mode %x!\n",q->codingMode);
948 return -1;
951 if (avctx->channels <= 0 || avctx->channels > 2 /*|| ((avctx->channels * 1024) != q->samples_per_frame)*/) {
952 av_log(avctx,AV_LOG_ERROR,"Channel configuration error!\n");
953 return -1;
957 if(avctx->block_align >= UINT_MAX/2)
958 return -1;
960 /* Pad the data buffer with FF_INPUT_BUFFER_PADDING_SIZE,
961 * this is for the bitstream reader. */
962 if ((q->decoded_bytes_buffer = av_mallocz((avctx->block_align+(4-avctx->block_align%4) + FF_INPUT_BUFFER_PADDING_SIZE))) == NULL)
963 return AVERROR(ENOMEM);
966 /* Initialize the VLC tables. */
967 if (!vlcs_initialized) {
968 for (i=0 ; i<7 ; i++) {
969 spectral_coeff_tab[i].table = &atrac3_vlc_table[atrac3_vlc_offs[i]];
970 spectral_coeff_tab[i].table_allocated = atrac3_vlc_offs[i + 1] - atrac3_vlc_offs[i];
971 init_vlc (&spectral_coeff_tab[i], 9, huff_tab_sizes[i],
972 huff_bits[i], 1, 1,
973 huff_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
975 vlcs_initialized = 1;
978 init_atrac3_transforms(q);
980 atrac_generate_tables();
982 /* Generate gain tables. */
983 for (i=0 ; i<16 ; i++)
984 gain_tab1[i] = powf (2.0, (4 - i));
986 for (i=-15 ; i<16 ; i++)
987 gain_tab2[i+15] = powf (2.0, i * -0.125);
989 /* init the joint-stereo decoding data */
990 q->weighting_delay[0] = 0;
991 q->weighting_delay[1] = 7;
992 q->weighting_delay[2] = 0;
993 q->weighting_delay[3] = 7;
994 q->weighting_delay[4] = 0;
995 q->weighting_delay[5] = 7;
997 for (i=0; i<4; i++) {
998 q->matrix_coeff_index_prev[i] = 3;
999 q->matrix_coeff_index_now[i] = 3;
1000 q->matrix_coeff_index_next[i] = 3;
1003 dsputil_init(&dsp, avctx);
1005 q->pUnits = av_mallocz(sizeof(channel_unit)*q->channels);
1006 if (!q->pUnits) {
1007 av_free(q->decoded_bytes_buffer);
1008 return AVERROR(ENOMEM);
1011 avctx->sample_fmt = SAMPLE_FMT_S16;
1012 return 0;
1016 AVCodec atrac3_decoder =
1018 .name = "atrac3",
1019 .type = CODEC_TYPE_AUDIO,
1020 .id = CODEC_ID_ATRAC3,
1021 .priv_data_size = sizeof(ATRAC3Context),
1022 .init = atrac3_decode_init,
1023 .close = atrac3_decode_close,
1024 .decode = atrac3_decode_frame,
1025 .long_name = NULL_IF_CONFIG_SMALL("Atrac 3 (Adaptive TRansform Acoustic Coding 3)"),