Cosmetics: indentation
[ffmpeg-lucabe.git] / libavcodec / cook.c
blob37d1dffaa2cafa4ebba4acfbd14d4bcadb276194
1 /*
2 * COOK compatible decoder
3 * Copyright (c) 2003 Sascha Sommer
4 * Copyright (c) 2005 Benjamin Larsson
6 * This file is part of FFmpeg.
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23 /**
24 * @file cook.c
25 * Cook compatible decoder. Bastardization of the G.722.1 standard.
26 * This decoder handles RealNetworks, RealAudio G2 data.
27 * Cook is identified by the codec name cook in RM files.
29 * To use this decoder, a calling application must supply the extradata
30 * bytes provided from the RM container; 8+ bytes for mono streams and
31 * 16+ for stereo streams (maybe more).
33 * Codec technicalities (all this assume a buffer length of 1024):
34 * Cook works with several different techniques to achieve its compression.
35 * In the timedomain the buffer is divided into 8 pieces and quantized. If
36 * two neighboring pieces have different quantization index a smooth
37 * quantization curve is used to get a smooth overlap between the different
38 * pieces.
39 * To get to the transformdomain Cook uses a modulated lapped transform.
40 * The transform domain has 50 subbands with 20 elements each. This
41 * means only a maximum of 50*20=1000 coefficients are used out of the 1024
42 * available.
45 #include <math.h>
46 #include <stddef.h>
47 #include <stdio.h>
49 #include "libavutil/random.h"
50 #include "avcodec.h"
51 #include "bitstream.h"
52 #include "dsputil.h"
53 #include "bytestream.h"
55 #include "cookdata.h"
57 /* the different Cook versions */
58 #define MONO 0x1000001
59 #define STEREO 0x1000002
60 #define JOINT_STEREO 0x1000003
61 #define MC_COOK 0x2000000 //multichannel Cook, not supported
63 #define SUBBAND_SIZE 20
64 //#define COOKDEBUG
66 typedef struct {
67 int *now;
68 int *previous;
69 } cook_gains;
71 typedef struct cook {
73 * The following 5 functions provide the lowlevel arithmetic on
74 * the internal audio buffers.
76 void (* scalar_dequant)(struct cook *q, int index, int quant_index,
77 int* subband_coef_index, int* subband_coef_sign,
78 float* mlt_p);
80 void (* decouple) (struct cook *q,
81 int subband,
82 float f1, float f2,
83 float *decode_buffer,
84 float *mlt_buffer1, float *mlt_buffer2);
86 void (* imlt_window) (struct cook *q, float *buffer1,
87 cook_gains *gains_ptr, float *previous_buffer);
89 void (* interpolate) (struct cook *q, float* buffer,
90 int gain_index, int gain_index_next);
92 void (* saturate_output) (struct cook *q, int chan, int16_t *out);
94 GetBitContext gb;
95 /* stream data */
96 int nb_channels;
97 int joint_stereo;
98 int bit_rate;
99 int sample_rate;
100 int samples_per_channel;
101 int samples_per_frame;
102 int subbands;
103 int log2_numvector_size;
104 int numvector_size; //1 << log2_numvector_size;
105 int js_subband_start;
106 int total_subbands;
107 int num_vectors;
108 int bits_per_subpacket;
109 int cookversion;
110 /* states */
111 AVRandomState random_state;
113 /* transform data */
114 MDCTContext mdct_ctx;
115 DECLARE_ALIGNED_16(FFTSample, mdct_tmp[1024]); /* temporary storage for imlt */
116 float* mlt_window;
118 /* gain buffers */
119 cook_gains gains1;
120 cook_gains gains2;
121 int gain_1[9];
122 int gain_2[9];
123 int gain_3[9];
124 int gain_4[9];
126 /* VLC data */
127 int js_vlc_bits;
128 VLC envelope_quant_index[13];
129 VLC sqvh[7]; //scalar quantization
130 VLC ccpl; //channel coupling
132 /* generatable tables and related variables */
133 int gain_size_factor;
134 float gain_table[23];
135 float pow2tab[127];
136 float rootpow2tab[127];
138 /* data buffers */
140 uint8_t* decoded_bytes_buffer;
141 DECLARE_ALIGNED_16(float,mono_mdct_output[2048]);
142 float mono_previous_buffer1[1024];
143 float mono_previous_buffer2[1024];
144 float decode_buffer_1[1024];
145 float decode_buffer_2[1024];
146 float decode_buffer_0[1060]; /* static allocation for joint decode */
148 const float *cplscales[5];
149 } COOKContext;
151 /* debug functions */
153 #ifdef COOKDEBUG
154 static void dump_float_table(float* table, int size, int delimiter) {
155 int i=0;
156 av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
157 for (i=0 ; i<size ; i++) {
158 av_log(NULL, AV_LOG_ERROR, "%5.1f, ", table[i]);
159 if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
163 static void dump_int_table(int* table, int size, int delimiter) {
164 int i=0;
165 av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
166 for (i=0 ; i<size ; i++) {
167 av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
168 if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
172 static void dump_short_table(short* table, int size, int delimiter) {
173 int i=0;
174 av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
175 for (i=0 ; i<size ; i++) {
176 av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
177 if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
181 #endif
183 /*************** init functions ***************/
185 /* table generator */
186 static void init_pow2table(COOKContext *q){
187 int i;
188 q->pow2tab[63] = 1.0;
189 for (i=1 ; i<64 ; i++){
190 q->pow2tab[63+i]=(float)((uint64_t)1<<i);
191 q->pow2tab[63-i]=1.0/(float)((uint64_t)1<<i);
195 /* table generator */
196 static void init_rootpow2table(COOKContext *q){
197 int i;
198 q->rootpow2tab[63] = 1.0;
199 for (i=1 ; i<64 ; i++){
200 q->rootpow2tab[63+i]=sqrt((float)((uint64_t)1<<i));
201 q->rootpow2tab[63-i]=sqrt(1.0/(float)((uint64_t)1<<i));
205 /* table generator */
206 static void init_gain_table(COOKContext *q) {
207 int i;
208 q->gain_size_factor = q->samples_per_channel/8;
209 for (i=0 ; i<23 ; i++) {
210 q->gain_table[i] = pow((double)q->pow2tab[i+52] ,
211 (1.0/(double)q->gain_size_factor));
216 static int init_cook_vlc_tables(COOKContext *q) {
217 int i, result;
219 result = 0;
220 for (i=0 ; i<13 ; i++) {
221 result |= init_vlc (&q->envelope_quant_index[i], 9, 24,
222 envelope_quant_index_huffbits[i], 1, 1,
223 envelope_quant_index_huffcodes[i], 2, 2, 0);
225 av_log(NULL,AV_LOG_DEBUG,"sqvh VLC init\n");
226 for (i=0 ; i<7 ; i++) {
227 result |= init_vlc (&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
228 cvh_huffbits[i], 1, 1,
229 cvh_huffcodes[i], 2, 2, 0);
232 if (q->nb_channels==2 && q->joint_stereo==1){
233 result |= init_vlc (&q->ccpl, 6, (1<<q->js_vlc_bits)-1,
234 ccpl_huffbits[q->js_vlc_bits-2], 1, 1,
235 ccpl_huffcodes[q->js_vlc_bits-2], 2, 2, 0);
236 av_log(NULL,AV_LOG_DEBUG,"Joint-stereo VLC used.\n");
239 av_log(NULL,AV_LOG_DEBUG,"VLC tables initialized.\n");
240 return result;
243 static int init_cook_mlt(COOKContext *q) {
244 int j;
245 float alpha;
246 int mlt_size = q->samples_per_channel;
248 if ((q->mlt_window = av_malloc(sizeof(float)*mlt_size)) == 0)
249 return -1;
251 /* Initialize the MLT window: simple sine window. */
252 alpha = M_PI / (2.0 * (float)mlt_size);
253 for(j=0 ; j<mlt_size ; j++)
254 q->mlt_window[j] = sin((j + 0.5) * alpha) * sqrt(2.0 / q->samples_per_channel);
256 /* Initialize the MDCT. */
257 if (ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size)+1, 1)) {
258 av_free(q->mlt_window);
259 return -1;
261 av_log(NULL,AV_LOG_DEBUG,"MDCT initialized, order = %d.\n",
262 av_log2(mlt_size)+1);
264 return 0;
267 static const float *maybe_reformat_buffer32 (COOKContext *q, const float *ptr, int n)
269 if (1)
270 return ptr;
273 static void init_cplscales_table (COOKContext *q) {
274 int i;
275 for (i=0;i<5;i++)
276 q->cplscales[i] = maybe_reformat_buffer32 (q, cplscales[i], (1<<(i+2))-1);
279 /*************** init functions end ***********/
282 * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
283 * Why? No idea, some checksum/error detection method maybe.
285 * Out buffer size: extra bytes are needed to cope with
286 * padding/misalignment.
287 * Subpackets passed to the decoder can contain two, consecutive
288 * half-subpackets, of identical but arbitrary size.
289 * 1234 1234 1234 1234 extraA extraB
290 * Case 1: AAAA BBBB 0 0
291 * Case 2: AAAA ABBB BB-- 3 3
292 * Case 3: AAAA AABB BBBB 2 2
293 * Case 4: AAAA AAAB BBBB BB-- 1 5
295 * Nice way to waste CPU cycles.
297 * @param inbuffer pointer to byte array of indata
298 * @param out pointer to byte array of outdata
299 * @param bytes number of bytes
301 #define DECODE_BYTES_PAD1(bytes) (3 - ((bytes)+3) % 4)
302 #define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
304 static inline int decode_bytes(const uint8_t* inbuffer, uint8_t* out, int bytes){
305 int i, off;
306 uint32_t c;
307 const uint32_t* buf;
308 uint32_t* obuf = (uint32_t*) out;
309 /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
310 * I'm too lazy though, should be something like
311 * for(i=0 ; i<bitamount/64 ; i++)
312 * (int64_t)out[i] = 0x37c511f237c511f2^be2me_64(int64_t)in[i]);
313 * Buffer alignment needs to be checked. */
315 off = (int)((long)inbuffer & 3);
316 buf = (const uint32_t*) (inbuffer - off);
317 c = be2me_32((0x37c511f2 >> (off*8)) | (0x37c511f2 << (32-(off*8))));
318 bytes += 3 + off;
319 for (i = 0; i < bytes/4; i++)
320 obuf[i] = c ^ buf[i];
322 return off;
326 * Cook uninit
329 static int cook_decode_close(AVCodecContext *avctx)
331 int i;
332 COOKContext *q = avctx->priv_data;
333 av_log(avctx,AV_LOG_DEBUG, "Deallocating memory.\n");
335 /* Free allocated memory buffers. */
336 av_free(q->mlt_window);
337 av_free(q->decoded_bytes_buffer);
339 /* Free the transform. */
340 ff_mdct_end(&q->mdct_ctx);
342 /* Free the VLC tables. */
343 for (i=0 ; i<13 ; i++) {
344 free_vlc(&q->envelope_quant_index[i]);
346 for (i=0 ; i<7 ; i++) {
347 free_vlc(&q->sqvh[i]);
349 if(q->nb_channels==2 && q->joint_stereo==1 ){
350 free_vlc(&q->ccpl);
353 av_log(NULL,AV_LOG_DEBUG,"Memory deallocated.\n");
355 return 0;
359 * Fill the gain array for the timedomain quantization.
361 * @param q pointer to the COOKContext
362 * @param gaininfo[9] array of gain indices
365 static void decode_gain_info(GetBitContext *gb, int *gaininfo)
367 int i, n;
369 while (get_bits1(gb)) {}
370 n = get_bits_count(gb) - 1; //amount of elements*2 to update
372 i = 0;
373 while (n--) {
374 int index = get_bits(gb, 3);
375 int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1;
377 while (i <= index) gaininfo[i++] = gain;
379 while (i <= 8) gaininfo[i++] = 0;
383 * Create the quant index table needed for the envelope.
385 * @param q pointer to the COOKContext
386 * @param quant_index_table pointer to the array
389 static void decode_envelope(COOKContext *q, int* quant_index_table) {
390 int i,j, vlc_index;
392 quant_index_table[0]= get_bits(&q->gb,6) - 6; //This is used later in categorize
394 for (i=1 ; i < q->total_subbands ; i++){
395 vlc_index=i;
396 if (i >= q->js_subband_start * 2) {
397 vlc_index-=q->js_subband_start;
398 } else {
399 vlc_index/=2;
400 if(vlc_index < 1) vlc_index = 1;
402 if (vlc_index>13) vlc_index = 13; //the VLC tables >13 are identical to No. 13
404 j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index-1].table,
405 q->envelope_quant_index[vlc_index-1].bits,2);
406 quant_index_table[i] = quant_index_table[i-1] + j - 12; //differential encoding
411 * Calculate the category and category_index vector.
413 * @param q pointer to the COOKContext
414 * @param quant_index_table pointer to the array
415 * @param category pointer to the category array
416 * @param category_index pointer to the category_index array
419 static void categorize(COOKContext *q, int* quant_index_table,
420 int* category, int* category_index){
421 int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;
422 int exp_index2[102];
423 int exp_index1[102];
425 int tmp_categorize_array[128*2];
426 int tmp_categorize_array1_idx=q->numvector_size;
427 int tmp_categorize_array2_idx=q->numvector_size;
429 bits_left = q->bits_per_subpacket - get_bits_count(&q->gb);
431 if(bits_left > q->samples_per_channel) {
432 bits_left = q->samples_per_channel +
433 ((bits_left - q->samples_per_channel)*5)/8;
434 //av_log(NULL, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
437 memset(&exp_index1,0,102*sizeof(int));
438 memset(&exp_index2,0,102*sizeof(int));
439 memset(&tmp_categorize_array,0,128*2*sizeof(int));
441 bias=-32;
443 /* Estimate bias. */
444 for (i=32 ; i>0 ; i=i/2){
445 num_bits = 0;
446 index = 0;
447 for (j=q->total_subbands ; j>0 ; j--){
448 exp_idx = av_clip((i - quant_index_table[index] + bias) / 2, 0, 7);
449 index++;
450 num_bits+=expbits_tab[exp_idx];
452 if(num_bits >= bits_left - 32){
453 bias+=i;
457 /* Calculate total number of bits. */
458 num_bits=0;
459 for (i=0 ; i<q->total_subbands ; i++) {
460 exp_idx = av_clip((bias - quant_index_table[i]) / 2, 0, 7);
461 num_bits += expbits_tab[exp_idx];
462 exp_index1[i] = exp_idx;
463 exp_index2[i] = exp_idx;
465 tmpbias1 = tmpbias2 = num_bits;
467 for (j = 1 ; j < q->numvector_size ; j++) {
468 if (tmpbias1 + tmpbias2 > 2*bits_left) { /* ---> */
469 int max = -999999;
470 index=-1;
471 for (i=0 ; i<q->total_subbands ; i++){
472 if (exp_index1[i] < 7) {
473 v = (-2*exp_index1[i]) - quant_index_table[i] + bias;
474 if ( v >= max) {
475 max = v;
476 index = i;
480 if(index==-1)break;
481 tmp_categorize_array[tmp_categorize_array1_idx++] = index;
482 tmpbias1 -= expbits_tab[exp_index1[index]] -
483 expbits_tab[exp_index1[index]+1];
484 ++exp_index1[index];
485 } else { /* <--- */
486 int min = 999999;
487 index=-1;
488 for (i=0 ; i<q->total_subbands ; i++){
489 if(exp_index2[i] > 0){
490 v = (-2*exp_index2[i])-quant_index_table[i]+bias;
491 if ( v < min) {
492 min = v;
493 index = i;
497 if(index == -1)break;
498 tmp_categorize_array[--tmp_categorize_array2_idx] = index;
499 tmpbias2 -= expbits_tab[exp_index2[index]] -
500 expbits_tab[exp_index2[index]-1];
501 --exp_index2[index];
505 for(i=0 ; i<q->total_subbands ; i++)
506 category[i] = exp_index2[i];
508 for(i=0 ; i<q->numvector_size-1 ; i++)
509 category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++];
515 * Expand the category vector.
517 * @param q pointer to the COOKContext
518 * @param category pointer to the category array
519 * @param category_index pointer to the category_index array
522 static inline void expand_category(COOKContext *q, int* category,
523 int* category_index){
524 int i;
525 for(i=0 ; i<q->num_vectors ; i++){
526 ++category[category_index[i]];
531 * The real requantization of the mltcoefs
533 * @param q pointer to the COOKContext
534 * @param index index
535 * @param quant_index quantisation index
536 * @param subband_coef_index array of indexes to quant_centroid_tab
537 * @param subband_coef_sign signs of coefficients
538 * @param mlt_p pointer into the mlt buffer
541 static void scalar_dequant_float(COOKContext *q, int index, int quant_index,
542 int* subband_coef_index, int* subband_coef_sign,
543 float* mlt_p){
544 int i;
545 float f1;
547 for(i=0 ; i<SUBBAND_SIZE ; i++) {
548 if (subband_coef_index[i]) {
549 f1 = quant_centroid_tab[index][subband_coef_index[i]];
550 if (subband_coef_sign[i]) f1 = -f1;
551 } else {
552 /* noise coding if subband_coef_index[i] == 0 */
553 f1 = dither_tab[index];
554 if (av_random(&q->random_state) < 0x80000000) f1 = -f1;
556 mlt_p[i] = f1 * q->rootpow2tab[quant_index+63];
560 * Unpack the subband_coef_index and subband_coef_sign vectors.
562 * @param q pointer to the COOKContext
563 * @param category pointer to the category array
564 * @param subband_coef_index array of indexes to quant_centroid_tab
565 * @param subband_coef_sign signs of coefficients
568 static int unpack_SQVH(COOKContext *q, int category, int* subband_coef_index,
569 int* subband_coef_sign) {
570 int i,j;
571 int vlc, vd ,tmp, result;
573 vd = vd_tab[category];
574 result = 0;
575 for(i=0 ; i<vpr_tab[category] ; i++){
576 vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
577 if (q->bits_per_subpacket < get_bits_count(&q->gb)){
578 vlc = 0;
579 result = 1;
581 for(j=vd-1 ; j>=0 ; j--){
582 tmp = (vlc * invradix_tab[category])/0x100000;
583 subband_coef_index[vd*i+j] = vlc - tmp * (kmax_tab[category]+1);
584 vlc = tmp;
586 for(j=0 ; j<vd ; j++){
587 if (subband_coef_index[i*vd + j]) {
588 if(get_bits_count(&q->gb) < q->bits_per_subpacket){
589 subband_coef_sign[i*vd+j] = get_bits1(&q->gb);
590 } else {
591 result=1;
592 subband_coef_sign[i*vd+j]=0;
594 } else {
595 subband_coef_sign[i*vd+j]=0;
599 return result;
604 * Fill the mlt_buffer with mlt coefficients.
606 * @param q pointer to the COOKContext
607 * @param category pointer to the category array
608 * @param quant_index_table pointer to the array
609 * @param mlt_buffer pointer to mlt coefficients
613 static void decode_vectors(COOKContext* q, int* category,
614 int *quant_index_table, float* mlt_buffer){
615 /* A zero in this table means that the subband coefficient is
616 random noise coded. */
617 int subband_coef_index[SUBBAND_SIZE];
618 /* A zero in this table means that the subband coefficient is a
619 positive multiplicator. */
620 int subband_coef_sign[SUBBAND_SIZE];
621 int band, j;
622 int index=0;
624 for(band=0 ; band<q->total_subbands ; band++){
625 index = category[band];
626 if(category[band] < 7){
627 if(unpack_SQVH(q, category[band], subband_coef_index, subband_coef_sign)){
628 index=7;
629 for(j=0 ; j<q->total_subbands ; j++) category[band+j]=7;
632 if(index==7) {
633 memset(subband_coef_index, 0, sizeof(subband_coef_index));
634 memset(subband_coef_sign, 0, sizeof(subband_coef_sign));
636 q->scalar_dequant(q, index, quant_index_table[band],
637 subband_coef_index, subband_coef_sign,
638 &mlt_buffer[band * SUBBAND_SIZE]);
641 if(q->total_subbands*SUBBAND_SIZE >= q->samples_per_channel){
642 return;
643 } /* FIXME: should this be removed, or moved into loop above? */
648 * function for decoding mono data
650 * @param q pointer to the COOKContext
651 * @param mlt_buffer pointer to mlt coefficients
654 static void mono_decode(COOKContext *q, float* mlt_buffer) {
656 int category_index[128];
657 int quant_index_table[102];
658 int category[128];
660 memset(&category, 0, 128*sizeof(int));
661 memset(&category_index, 0, 128*sizeof(int));
663 decode_envelope(q, quant_index_table);
664 q->num_vectors = get_bits(&q->gb,q->log2_numvector_size);
665 categorize(q, quant_index_table, category, category_index);
666 expand_category(q, category, category_index);
667 decode_vectors(q, category, quant_index_table, mlt_buffer);
672 * the actual requantization of the timedomain samples
674 * @param q pointer to the COOKContext
675 * @param buffer pointer to the timedomain buffer
676 * @param gain_index index for the block multiplier
677 * @param gain_index_next index for the next block multiplier
680 static void interpolate_float(COOKContext *q, float* buffer,
681 int gain_index, int gain_index_next){
682 int i;
683 float fc1, fc2;
684 fc1 = q->pow2tab[gain_index+63];
686 if(gain_index == gain_index_next){ //static gain
687 for(i=0 ; i<q->gain_size_factor ; i++){
688 buffer[i]*=fc1;
690 return;
691 } else { //smooth gain
692 fc2 = q->gain_table[11 + (gain_index_next-gain_index)];
693 for(i=0 ; i<q->gain_size_factor ; i++){
694 buffer[i]*=fc1;
695 fc1*=fc2;
697 return;
702 * Apply transform window, overlap buffers.
704 * @param q pointer to the COOKContext
705 * @param inbuffer pointer to the mltcoefficients
706 * @param gains_ptr current and previous gains
707 * @param previous_buffer pointer to the previous buffer to be used for overlapping
710 static void imlt_window_float (COOKContext *q, float *buffer1,
711 cook_gains *gains_ptr, float *previous_buffer)
713 const float fc = q->pow2tab[gains_ptr->previous[0] + 63];
714 int i;
715 /* The weird thing here, is that the two halves of the time domain
716 * buffer are swapped. Also, the newest data, that we save away for
717 * next frame, has the wrong sign. Hence the subtraction below.
718 * Almost sounds like a complex conjugate/reverse data/FFT effect.
721 /* Apply window and overlap */
722 for(i = 0; i < q->samples_per_channel; i++){
723 buffer1[i] = buffer1[i] * fc * q->mlt_window[i] -
724 previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i];
729 * The modulated lapped transform, this takes transform coefficients
730 * and transforms them into timedomain samples.
731 * Apply transform window, overlap buffers, apply gain profile
732 * and buffer management.
734 * @param q pointer to the COOKContext
735 * @param inbuffer pointer to the mltcoefficients
736 * @param gains_ptr current and previous gains
737 * @param previous_buffer pointer to the previous buffer to be used for overlapping
740 static void imlt_gain(COOKContext *q, float *inbuffer,
741 cook_gains *gains_ptr, float* previous_buffer)
743 float *buffer0 = q->mono_mdct_output;
744 float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
745 int i;
747 /* Inverse modified discrete cosine transform */
748 q->mdct_ctx.fft.imdct_calc(&q->mdct_ctx, q->mono_mdct_output,
749 inbuffer, q->mdct_tmp);
751 q->imlt_window (q, buffer1, gains_ptr, previous_buffer);
753 /* Apply gain profile */
754 for (i = 0; i < 8; i++) {
755 if (gains_ptr->now[i] || gains_ptr->now[i + 1])
756 q->interpolate(q, &buffer1[q->gain_size_factor * i],
757 gains_ptr->now[i], gains_ptr->now[i + 1]);
760 /* Save away the current to be previous block. */
761 memcpy(previous_buffer, buffer0, sizeof(float)*q->samples_per_channel);
766 * function for getting the jointstereo coupling information
768 * @param q pointer to the COOKContext
769 * @param decouple_tab decoupling array
773 static void decouple_info(COOKContext *q, int* decouple_tab){
774 int length, i;
776 if(get_bits1(&q->gb)) {
777 if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
779 length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
780 for (i=0 ; i<length ; i++) {
781 decouple_tab[cplband[q->js_subband_start] + i] = get_vlc2(&q->gb, q->ccpl.table, q->ccpl.bits, 2);
783 return;
786 if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
788 length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
789 for (i=0 ; i<length ; i++) {
790 decouple_tab[cplband[q->js_subband_start] + i] = get_bits(&q->gb, q->js_vlc_bits);
792 return;
796 * function decouples a pair of signals from a single signal via multiplication.
798 * @param q pointer to the COOKContext
799 * @param subband index of the current subband
800 * @param f1 multiplier for channel 1 extraction
801 * @param f2 multiplier for channel 2 extraction
802 * @param decode_buffer input buffer
803 * @param mlt_buffer1 pointer to left channel mlt coefficients
804 * @param mlt_buffer2 pointer to right channel mlt coefficients
806 static void decouple_float (COOKContext *q,
807 int subband,
808 float f1, float f2,
809 float *decode_buffer,
810 float *mlt_buffer1, float *mlt_buffer2)
812 int j, tmp_idx;
813 for (j=0 ; j<SUBBAND_SIZE ; j++) {
814 tmp_idx = ((q->js_subband_start + subband)*SUBBAND_SIZE)+j;
815 mlt_buffer1[SUBBAND_SIZE*subband + j] = f1 * decode_buffer[tmp_idx];
816 mlt_buffer2[SUBBAND_SIZE*subband + j] = f2 * decode_buffer[tmp_idx];
821 * function for decoding joint stereo data
823 * @param q pointer to the COOKContext
824 * @param mlt_buffer1 pointer to left channel mlt coefficients
825 * @param mlt_buffer2 pointer to right channel mlt coefficients
828 static void joint_decode(COOKContext *q, float* mlt_buffer1,
829 float* mlt_buffer2) {
830 int i,j;
831 int decouple_tab[SUBBAND_SIZE];
832 float *decode_buffer = q->decode_buffer_0;
833 int idx, cpl_tmp;
834 float f1,f2;
835 const float* cplscale;
837 memset(decouple_tab, 0, sizeof(decouple_tab));
838 memset(decode_buffer, 0, sizeof(decode_buffer));
840 /* Make sure the buffers are zeroed out. */
841 memset(mlt_buffer1,0, 1024*sizeof(float));
842 memset(mlt_buffer2,0, 1024*sizeof(float));
843 decouple_info(q, decouple_tab);
844 mono_decode(q, decode_buffer);
846 /* The two channels are stored interleaved in decode_buffer. */
847 for (i=0 ; i<q->js_subband_start ; i++) {
848 for (j=0 ; j<SUBBAND_SIZE ; j++) {
849 mlt_buffer1[i*20+j] = decode_buffer[i*40+j];
850 mlt_buffer2[i*20+j] = decode_buffer[i*40+20+j];
854 /* When we reach js_subband_start (the higher frequencies)
855 the coefficients are stored in a coupling scheme. */
856 idx = (1 << q->js_vlc_bits) - 1;
857 for (i=q->js_subband_start ; i<q->subbands ; i++) {
858 cpl_tmp = cplband[i];
859 idx -=decouple_tab[cpl_tmp];
860 cplscale = q->cplscales[q->js_vlc_bits-2]; //choose decoupler table
861 f1 = cplscale[decouple_tab[cpl_tmp]];
862 f2 = cplscale[idx-1];
863 q->decouple (q, i, f1, f2, decode_buffer, mlt_buffer1, mlt_buffer2);
864 idx = (1 << q->js_vlc_bits) - 1;
869 * First part of subpacket decoding:
870 * decode raw stream bytes and read gain info.
872 * @param q pointer to the COOKContext
873 * @param inbuffer pointer to raw stream data
874 * @param gain_ptr array of current/prev gain pointers
877 static inline void
878 decode_bytes_and_gain(COOKContext *q, const uint8_t *inbuffer,
879 cook_gains *gains_ptr)
881 int offset;
883 offset = decode_bytes(inbuffer, q->decoded_bytes_buffer,
884 q->bits_per_subpacket/8);
885 init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
886 q->bits_per_subpacket);
887 decode_gain_info(&q->gb, gains_ptr->now);
889 /* Swap current and previous gains */
890 FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
894 * Saturate the output signal to signed 16bit integers.
896 * @param q pointer to the COOKContext
897 * @param chan channel to saturate
898 * @param out pointer to the output vector
900 static void
901 saturate_output_float (COOKContext *q, int chan, int16_t *out)
903 int j;
904 float *output = q->mono_mdct_output + q->samples_per_channel;
905 /* Clip and convert floats to 16 bits.
907 for (j = 0; j < q->samples_per_channel; j++) {
908 out[chan + q->nb_channels * j] =
909 av_clip_int16(lrintf(output[j]));
914 * Final part of subpacket decoding:
915 * Apply modulated lapped transform, gain compensation,
916 * clip and convert to integer.
918 * @param q pointer to the COOKContext
919 * @param decode_buffer pointer to the mlt coefficients
920 * @param gain_ptr array of current/prev gain pointers
921 * @param previous_buffer pointer to the previous buffer to be used for overlapping
922 * @param out pointer to the output buffer
923 * @param chan 0: left or single channel, 1: right channel
926 static inline void
927 mlt_compensate_output(COOKContext *q, float *decode_buffer,
928 cook_gains *gains, float *previous_buffer,
929 int16_t *out, int chan)
931 imlt_gain(q, decode_buffer, gains, previous_buffer);
932 q->saturate_output (q, chan, out);
937 * Cook subpacket decoding. This function returns one decoded subpacket,
938 * usually 1024 samples per channel.
940 * @param q pointer to the COOKContext
941 * @param inbuffer pointer to the inbuffer
942 * @param sub_packet_size subpacket size
943 * @param outbuffer pointer to the outbuffer
947 static int decode_subpacket(COOKContext *q, const uint8_t *inbuffer,
948 int sub_packet_size, int16_t *outbuffer) {
949 /* packet dump */
950 // for (i=0 ; i<sub_packet_size ; i++) {
951 // av_log(NULL, AV_LOG_ERROR, "%02x", inbuffer[i]);
952 // }
953 // av_log(NULL, AV_LOG_ERROR, "\n");
955 decode_bytes_and_gain(q, inbuffer, &q->gains1);
957 if (q->joint_stereo) {
958 joint_decode(q, q->decode_buffer_1, q->decode_buffer_2);
959 } else {
960 mono_decode(q, q->decode_buffer_1);
962 if (q->nb_channels == 2) {
963 decode_bytes_and_gain(q, inbuffer + sub_packet_size/2, &q->gains2);
964 mono_decode(q, q->decode_buffer_2);
968 mlt_compensate_output(q, q->decode_buffer_1, &q->gains1,
969 q->mono_previous_buffer1, outbuffer, 0);
971 if (q->nb_channels == 2) {
972 if (q->joint_stereo) {
973 mlt_compensate_output(q, q->decode_buffer_2, &q->gains1,
974 q->mono_previous_buffer2, outbuffer, 1);
975 } else {
976 mlt_compensate_output(q, q->decode_buffer_2, &q->gains2,
977 q->mono_previous_buffer2, outbuffer, 1);
980 return q->samples_per_frame * sizeof(int16_t);
985 * Cook frame decoding
987 * @param avctx pointer to the AVCodecContext
990 static int cook_decode_frame(AVCodecContext *avctx,
991 void *data, int *data_size,
992 const uint8_t *buf, int buf_size) {
993 COOKContext *q = avctx->priv_data;
995 if (buf_size < avctx->block_align)
996 return buf_size;
998 *data_size = decode_subpacket(q, buf, avctx->block_align, data);
1000 /* Discard the first two frames: no valid audio. */
1001 if (avctx->frame_number < 2) *data_size = 0;
1003 return avctx->block_align;
1006 #ifdef COOKDEBUG
1007 static void dump_cook_context(COOKContext *q)
1009 //int i=0;
1010 #define PRINT(a,b) av_log(NULL,AV_LOG_ERROR," %s = %d\n", a, b);
1011 av_log(NULL,AV_LOG_ERROR,"COOKextradata\n");
1012 av_log(NULL,AV_LOG_ERROR,"cookversion=%x\n",q->cookversion);
1013 if (q->cookversion > STEREO) {
1014 PRINT("js_subband_start",q->js_subband_start);
1015 PRINT("js_vlc_bits",q->js_vlc_bits);
1017 av_log(NULL,AV_LOG_ERROR,"COOKContext\n");
1018 PRINT("nb_channels",q->nb_channels);
1019 PRINT("bit_rate",q->bit_rate);
1020 PRINT("sample_rate",q->sample_rate);
1021 PRINT("samples_per_channel",q->samples_per_channel);
1022 PRINT("samples_per_frame",q->samples_per_frame);
1023 PRINT("subbands",q->subbands);
1024 PRINT("random_state",q->random_state);
1025 PRINT("js_subband_start",q->js_subband_start);
1026 PRINT("log2_numvector_size",q->log2_numvector_size);
1027 PRINT("numvector_size",q->numvector_size);
1028 PRINT("total_subbands",q->total_subbands);
1030 #endif
1033 * Cook initialization
1035 * @param avctx pointer to the AVCodecContext
1038 static int cook_decode_init(AVCodecContext *avctx)
1040 COOKContext *q = avctx->priv_data;
1041 const uint8_t *edata_ptr = avctx->extradata;
1043 /* Take care of the codec specific extradata. */
1044 if (avctx->extradata_size <= 0) {
1045 av_log(avctx,AV_LOG_ERROR,"Necessary extradata missing!\n");
1046 return -1;
1047 } else {
1048 /* 8 for mono, 16 for stereo, ? for multichannel
1049 Swap to right endianness so we don't need to care later on. */
1050 av_log(avctx,AV_LOG_DEBUG,"codecdata_length=%d\n",avctx->extradata_size);
1051 if (avctx->extradata_size >= 8){
1052 q->cookversion = bytestream_get_be32(&edata_ptr);
1053 q->samples_per_frame = bytestream_get_be16(&edata_ptr);
1054 q->subbands = bytestream_get_be16(&edata_ptr);
1056 if (avctx->extradata_size >= 16){
1057 bytestream_get_be32(&edata_ptr); //Unknown unused
1058 q->js_subband_start = bytestream_get_be16(&edata_ptr);
1059 q->js_vlc_bits = bytestream_get_be16(&edata_ptr);
1063 /* Take data from the AVCodecContext (RM container). */
1064 q->sample_rate = avctx->sample_rate;
1065 q->nb_channels = avctx->channels;
1066 q->bit_rate = avctx->bit_rate;
1068 /* Initialize RNG. */
1069 av_init_random(1, &q->random_state);
1071 /* Initialize extradata related variables. */
1072 q->samples_per_channel = q->samples_per_frame / q->nb_channels;
1073 q->bits_per_subpacket = avctx->block_align * 8;
1075 /* Initialize default data states. */
1076 q->log2_numvector_size = 5;
1077 q->total_subbands = q->subbands;
1079 /* Initialize version-dependent variables */
1080 av_log(NULL,AV_LOG_DEBUG,"q->cookversion=%x\n",q->cookversion);
1081 q->joint_stereo = 0;
1082 switch (q->cookversion) {
1083 case MONO:
1084 if (q->nb_channels != 1) {
1085 av_log(avctx,AV_LOG_ERROR,"Container channels != 1, report sample!\n");
1086 return -1;
1088 av_log(avctx,AV_LOG_DEBUG,"MONO\n");
1089 break;
1090 case STEREO:
1091 if (q->nb_channels != 1) {
1092 q->bits_per_subpacket = q->bits_per_subpacket/2;
1094 av_log(avctx,AV_LOG_DEBUG,"STEREO\n");
1095 break;
1096 case JOINT_STEREO:
1097 if (q->nb_channels != 2) {
1098 av_log(avctx,AV_LOG_ERROR,"Container channels != 2, report sample!\n");
1099 return -1;
1101 av_log(avctx,AV_LOG_DEBUG,"JOINT_STEREO\n");
1102 if (avctx->extradata_size >= 16){
1103 q->total_subbands = q->subbands + q->js_subband_start;
1104 q->joint_stereo = 1;
1106 if (q->samples_per_channel > 256) {
1107 q->log2_numvector_size = 6;
1109 if (q->samples_per_channel > 512) {
1110 q->log2_numvector_size = 7;
1112 break;
1113 case MC_COOK:
1114 av_log(avctx,AV_LOG_ERROR,"MC_COOK not supported!\n");
1115 return -1;
1116 break;
1117 default:
1118 av_log(avctx,AV_LOG_ERROR,"Unknown Cook version, report sample!\n");
1119 return -1;
1120 break;
1123 /* Initialize variable relations */
1124 q->numvector_size = (1 << q->log2_numvector_size);
1126 /* Generate tables */
1127 init_rootpow2table(q);
1128 init_pow2table(q);
1129 init_gain_table(q);
1130 init_cplscales_table(q);
1132 if (init_cook_vlc_tables(q) != 0)
1133 return -1;
1136 if(avctx->block_align >= UINT_MAX/2)
1137 return -1;
1139 /* Pad the databuffer with:
1140 DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
1141 FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
1142 if (q->nb_channels==2 && q->joint_stereo==0) {
1143 q->decoded_bytes_buffer =
1144 av_mallocz(avctx->block_align/2
1145 + DECODE_BYTES_PAD2(avctx->block_align/2)
1146 + FF_INPUT_BUFFER_PADDING_SIZE);
1147 } else {
1148 q->decoded_bytes_buffer =
1149 av_mallocz(avctx->block_align
1150 + DECODE_BYTES_PAD1(avctx->block_align)
1151 + FF_INPUT_BUFFER_PADDING_SIZE);
1153 if (q->decoded_bytes_buffer == NULL)
1154 return -1;
1156 q->gains1.now = q->gain_1;
1157 q->gains1.previous = q->gain_2;
1158 q->gains2.now = q->gain_3;
1159 q->gains2.previous = q->gain_4;
1161 /* Initialize transform. */
1162 if ( init_cook_mlt(q) != 0 )
1163 return -1;
1165 /* Initialize COOK signal arithmetic handling */
1166 if (1) {
1167 q->scalar_dequant = scalar_dequant_float;
1168 q->decouple = decouple_float;
1169 q->imlt_window = imlt_window_float;
1170 q->interpolate = interpolate_float;
1171 q->saturate_output = saturate_output_float;
1174 /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1175 if (q->total_subbands > 53) {
1176 av_log(avctx,AV_LOG_ERROR,"total_subbands > 53, report sample!\n");
1177 return -1;
1179 if (q->subbands > 50) {
1180 av_log(avctx,AV_LOG_ERROR,"subbands > 50, report sample!\n");
1181 return -1;
1183 if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512) || (q->samples_per_channel == 1024)) {
1184 } else {
1185 av_log(avctx,AV_LOG_ERROR,"unknown amount of samples_per_channel = %d, report sample!\n",q->samples_per_channel);
1186 return -1;
1188 if ((q->js_vlc_bits > 6) || (q->js_vlc_bits < 0)) {
1189 av_log(avctx,AV_LOG_ERROR,"q->js_vlc_bits = %d, only >= 0 and <= 6 allowed!\n",q->js_vlc_bits);
1190 return -1;
1193 #ifdef COOKDEBUG
1194 dump_cook_context(q);
1195 #endif
1196 return 0;
1200 AVCodec cook_decoder =
1202 .name = "cook",
1203 .type = CODEC_TYPE_AUDIO,
1204 .id = CODEC_ID_COOK,
1205 .priv_data_size = sizeof(COOKContext),
1206 .init = cook_decode_init,
1207 .close = cook_decode_close,
1208 .decode = cook_decode_frame,
1209 .long_name = "COOK",