simplify
[ffmpeg-lucabe.git] / libavcodec / ac3dec.c
blobe18d39564979b96ebf868dd403a26534e5aaff23
1 /*
2 * AC-3 Audio Decoder
3 * This code is developed as part of Google Summer of Code 2006 Program.
5 * Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com).
6 * Copyright (c) 2007 Justin Ruggles
8 * Portions of this code are derived from liba52
9 * http://liba52.sourceforge.net
10 * Copyright (C) 2000-2003 Michel Lespinasse <walken@zoy.org>
11 * Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
13 * This file is part of FFmpeg.
15 * FFmpeg is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public
17 * License as published by the Free Software Foundation; either
18 * version 2 of the License, or (at your option) any later version.
20 * FFmpeg is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 * General Public License for more details.
25 * You should have received a copy of the GNU General Public
26 * License along with FFmpeg; if not, write to the Free Software
27 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
30 #include <stdio.h>
31 #include <stddef.h>
32 #include <math.h>
33 #include <string.h>
35 #include "avcodec.h"
36 #include "ac3_parser.h"
37 #include "bitstream.h"
38 #include "dsputil.h"
39 #include "random.h"
41 /**
42 * Table of bin locations for rematrixing bands
43 * reference: Section 7.5.2 Rematrixing : Frequency Band Definitions
45 static const uint8_t rematrix_band_tab[5] = { 13, 25, 37, 61, 253 };
47 /**
48 * table for exponent to scale_factor mapping
49 * scale_factors[i] = 2 ^ -i
51 static float scale_factors[25];
53 /** table for grouping exponents */
54 static uint8_t exp_ungroup_tab[128][3];
57 /** tables for ungrouping mantissas */
58 static float b1_mantissas[32][3];
59 static float b2_mantissas[128][3];
60 static float b3_mantissas[8];
61 static float b4_mantissas[128][2];
62 static float b5_mantissas[16];
64 /**
65 * Quantization table: levels for symmetric. bits for asymmetric.
66 * reference: Table 7.18 Mapping of bap to Quantizer
68 static const uint8_t quantization_tab[16] = {
69 0, 3, 5, 7, 11, 15,
70 5, 6, 7, 8, 9, 10, 11, 12, 14, 16
73 /** dynamic range table. converts codes to scale factors. */
74 static float dynamic_range_tab[256];
76 /** Adjustments in dB gain */
77 #define LEVEL_MINUS_3DB 0.7071067811865476
78 #define LEVEL_MINUS_4POINT5DB 0.5946035575013605
79 #define LEVEL_MINUS_6DB 0.5000000000000000
80 #define LEVEL_MINUS_9DB 0.3535533905932738
81 #define LEVEL_ZERO 0.0000000000000000
82 #define LEVEL_ONE 1.0000000000000000
84 static const float gain_levels[6] = {
85 LEVEL_ZERO,
86 LEVEL_ONE,
87 LEVEL_MINUS_3DB,
88 LEVEL_MINUS_4POINT5DB,
89 LEVEL_MINUS_6DB,
90 LEVEL_MINUS_9DB
93 /**
94 * Table for center mix levels
95 * reference: Section 5.4.2.4 cmixlev
97 static const uint8_t center_levels[4] = { 2, 3, 4, 3 };
99 /**
100 * Table for surround mix levels
101 * reference: Section 5.4.2.5 surmixlev
103 static const uint8_t surround_levels[4] = { 2, 4, 0, 4 };
106 * Table for default stereo downmixing coefficients
107 * reference: Section 7.8.2 Downmixing Into Two Channels
109 static const uint8_t ac3_default_coeffs[8][5][2] = {
110 { { 1, 0 }, { 0, 1 }, },
111 { { 2, 2 }, },
112 { { 1, 0 }, { 0, 1 }, },
113 { { 1, 0 }, { 3, 3 }, { 0, 1 }, },
114 { { 1, 0 }, { 0, 1 }, { 4, 4 }, },
115 { { 1, 0 }, { 3, 3 }, { 0, 1 }, { 5, 5 }, },
116 { { 1, 0 }, { 0, 1 }, { 4, 0 }, { 0, 4 }, },
117 { { 1, 0 }, { 3, 3 }, { 0, 1 }, { 4, 0 }, { 0, 4 }, },
120 /* override ac3.h to include coupling channel */
121 #undef AC3_MAX_CHANNELS
122 #define AC3_MAX_CHANNELS 7
123 #define CPL_CH 0
125 #define AC3_OUTPUT_LFEON 8
127 typedef struct {
128 int channel_mode; ///< channel mode (acmod)
129 int block_switch[AC3_MAX_CHANNELS]; ///< block switch flags
130 int dither_flag[AC3_MAX_CHANNELS]; ///< dither flags
131 int dither_all; ///< true if all channels are dithered
132 int cpl_in_use; ///< coupling in use
133 int channel_in_cpl[AC3_MAX_CHANNELS]; ///< channel in coupling
134 int phase_flags_in_use; ///< phase flags in use
135 int cpl_band_struct[18]; ///< coupling band structure
136 int rematrixing_strategy; ///< rematrixing strategy
137 int num_rematrixing_bands; ///< number of rematrixing bands
138 int rematrixing_flags[4]; ///< rematrixing flags
139 int exp_strategy[AC3_MAX_CHANNELS]; ///< exponent strategies
140 int snr_offset[AC3_MAX_CHANNELS]; ///< signal-to-noise ratio offsets
141 int fast_gain[AC3_MAX_CHANNELS]; ///< fast gain values (signal-to-mask ratio)
142 int dba_mode[AC3_MAX_CHANNELS]; ///< delta bit allocation mode
143 int dba_nsegs[AC3_MAX_CHANNELS]; ///< number of delta segments
144 uint8_t dba_offsets[AC3_MAX_CHANNELS][8]; ///< delta segment offsets
145 uint8_t dba_lengths[AC3_MAX_CHANNELS][8]; ///< delta segment lengths
146 uint8_t dba_values[AC3_MAX_CHANNELS][8]; ///< delta values for each segment
148 int sample_rate; ///< sample frequency, in Hz
149 int bit_rate; ///< stream bit rate, in bits-per-second
150 int frame_size; ///< current frame size, in bytes
152 int channels; ///< number of total channels
153 int fbw_channels; ///< number of full-bandwidth channels
154 int lfe_on; ///< lfe channel in use
155 int lfe_ch; ///< index of LFE channel
156 int output_mode; ///< output channel configuration
157 int out_channels; ///< number of output channels
159 float downmix_coeffs[AC3_MAX_CHANNELS][2]; ///< stereo downmix coefficients
160 float dynamic_range[2]; ///< dynamic range
161 float cpl_coords[AC3_MAX_CHANNELS][18]; ///< coupling coordinates
162 int num_cpl_bands; ///< number of coupling bands
163 int num_cpl_subbands; ///< number of coupling sub bands
164 int start_freq[AC3_MAX_CHANNELS]; ///< start frequency bin
165 int end_freq[AC3_MAX_CHANNELS]; ///< end frequency bin
166 AC3BitAllocParameters bit_alloc_params; ///< bit allocation parameters
168 int8_t dexps[AC3_MAX_CHANNELS][256]; ///< decoded exponents
169 uint8_t bap[AC3_MAX_CHANNELS][256]; ///< bit allocation pointers
170 int16_t psd[AC3_MAX_CHANNELS][256]; ///< scaled exponents
171 int16_t band_psd[AC3_MAX_CHANNELS][50]; ///< interpolated exponents
172 int16_t mask[AC3_MAX_CHANNELS][50]; ///< masking curve values
174 DECLARE_ALIGNED_16(float, transform_coeffs[AC3_MAX_CHANNELS][256]); ///< transform coefficients
176 /* For IMDCT. */
177 MDCTContext imdct_512; ///< for 512 sample IMDCT
178 MDCTContext imdct_256; ///< for 256 sample IMDCT
179 DSPContext dsp; ///< for optimization
180 float add_bias; ///< offset for float_to_int16 conversion
181 float mul_bias; ///< scaling for float_to_int16 conversion
183 DECLARE_ALIGNED_16(float, output[AC3_MAX_CHANNELS-1][256]); ///< output after imdct transform and windowing
184 DECLARE_ALIGNED_16(short, int_output[AC3_MAX_CHANNELS-1][256]); ///< final 16-bit integer output
185 DECLARE_ALIGNED_16(float, delay[AC3_MAX_CHANNELS-1][256]); ///< delay - added to the next block
186 DECLARE_ALIGNED_16(float, tmp_imdct[256]); ///< temporary storage for imdct transform
187 DECLARE_ALIGNED_16(float, tmp_output[512]); ///< temporary storage for output before windowing
188 DECLARE_ALIGNED_16(float, window[256]); ///< window coefficients
190 /* Miscellaneous. */
191 GetBitContext gbc; ///< bitstream reader
192 AVRandomState dith_state; ///< for dither generation
193 AVCodecContext *avctx; ///< parent context
194 } AC3DecodeContext;
197 * Generate a Kaiser-Bessel Derived Window.
199 static void ac3_window_init(float *window)
201 int i, j;
202 double sum = 0.0, bessel, tmp;
203 double local_window[256];
204 double alpha2 = (5.0 * M_PI / 256.0) * (5.0 * M_PI / 256.0);
206 for (i = 0; i < 256; i++) {
207 tmp = i * (256 - i) * alpha2;
208 bessel = 1.0;
209 for (j = 100; j > 0; j--) /* default to 100 iterations */
210 bessel = bessel * tmp / (j * j) + 1;
211 sum += bessel;
212 local_window[i] = sum;
215 sum++;
216 for (i = 0; i < 256; i++)
217 window[i] = sqrt(local_window[i] / sum);
221 * Symmetrical Dequantization
222 * reference: Section 7.3.3 Expansion of Mantissas for Symmetrical Quantization
223 * Tables 7.19 to 7.23
225 static inline float
226 symmetric_dequant(int code, int levels)
228 return (code - (levels >> 1)) * (2.0f / levels);
232 * Initialize tables at runtime.
234 static void ac3_tables_init(void)
236 int i;
238 /* generate grouped mantissa tables
239 reference: Section 7.3.5 Ungrouping of Mantissas */
240 for(i=0; i<32; i++) {
241 /* bap=1 mantissas */
242 b1_mantissas[i][0] = symmetric_dequant( i / 9 , 3);
243 b1_mantissas[i][1] = symmetric_dequant((i % 9) / 3, 3);
244 b1_mantissas[i][2] = symmetric_dequant((i % 9) % 3, 3);
246 for(i=0; i<128; i++) {
247 /* bap=2 mantissas */
248 b2_mantissas[i][0] = symmetric_dequant( i / 25 , 5);
249 b2_mantissas[i][1] = symmetric_dequant((i % 25) / 5, 5);
250 b2_mantissas[i][2] = symmetric_dequant((i % 25) % 5, 5);
252 /* bap=4 mantissas */
253 b4_mantissas[i][0] = symmetric_dequant(i / 11, 11);
254 b4_mantissas[i][1] = symmetric_dequant(i % 11, 11);
256 /* generate ungrouped mantissa tables
257 reference: Tables 7.21 and 7.23 */
258 for(i=0; i<7; i++) {
259 /* bap=3 mantissas */
260 b3_mantissas[i] = symmetric_dequant(i, 7);
262 for(i=0; i<15; i++) {
263 /* bap=5 mantissas */
264 b5_mantissas[i] = symmetric_dequant(i, 15);
267 /* generate dynamic range table
268 reference: Section 7.7.1 Dynamic Range Control */
269 for(i=0; i<256; i++) {
270 int v = (i >> 5) - ((i >> 7) << 3) - 5;
271 dynamic_range_tab[i] = powf(2.0f, v) * ((i & 0x1F) | 0x20);
274 /* generate scale factors for exponents and asymmetrical dequantization
275 reference: Section 7.3.2 Expansion of Mantissas for Asymmetric Quantization */
276 for (i = 0; i < 25; i++)
277 scale_factors[i] = pow(2.0, -i);
279 /* generate exponent tables
280 reference: Section 7.1.3 Exponent Decoding */
281 for(i=0; i<128; i++) {
282 exp_ungroup_tab[i][0] = i / 25;
283 exp_ungroup_tab[i][1] = (i % 25) / 5;
284 exp_ungroup_tab[i][2] = (i % 25) % 5;
290 * AVCodec initialization
292 static int ac3_decode_init(AVCodecContext *avctx)
294 AC3DecodeContext *s = avctx->priv_data;
295 s->avctx = avctx;
297 ac3_common_init();
298 ac3_tables_init();
299 ff_mdct_init(&s->imdct_256, 8, 1);
300 ff_mdct_init(&s->imdct_512, 9, 1);
301 ac3_window_init(s->window);
302 dsputil_init(&s->dsp, avctx);
303 av_init_random(0, &s->dith_state);
305 /* set bias values for float to int16 conversion */
306 if(s->dsp.float_to_int16 == ff_float_to_int16_c) {
307 s->add_bias = 385.0f;
308 s->mul_bias = 1.0f;
309 } else {
310 s->add_bias = 0.0f;
311 s->mul_bias = 32767.0f;
314 return 0;
318 * Parse the 'sync info' and 'bit stream info' from the AC-3 bitstream.
319 * GetBitContext within AC3DecodeContext must point to
320 * start of the synchronized ac3 bitstream.
322 static int ac3_parse_header(AC3DecodeContext *s)
324 AC3HeaderInfo hdr;
325 GetBitContext *gbc = &s->gbc;
326 float center_mix_level, surround_mix_level;
327 int err, i;
329 err = ff_ac3_parse_header(gbc->buffer, &hdr);
330 if(err)
331 return err;
333 /* get decoding parameters from header info */
334 s->bit_alloc_params.sr_code = hdr.sr_code;
335 s->channel_mode = hdr.channel_mode;
336 center_mix_level = gain_levels[center_levels[hdr.center_mix_level]];
337 surround_mix_level = gain_levels[surround_levels[hdr.surround_mix_level]];
338 s->lfe_on = hdr.lfe_on;
339 s->bit_alloc_params.sr_shift = hdr.sr_shift;
340 s->sample_rate = hdr.sample_rate;
341 s->bit_rate = hdr.bit_rate;
342 s->channels = hdr.channels;
343 s->fbw_channels = s->channels - s->lfe_on;
344 s->lfe_ch = s->fbw_channels + 1;
345 s->frame_size = hdr.frame_size;
347 /* set default output to all source channels */
348 s->out_channels = s->channels;
349 s->output_mode = s->channel_mode;
350 if(s->lfe_on)
351 s->output_mode |= AC3_OUTPUT_LFEON;
353 /* skip over portion of header which has already been read */
354 skip_bits(gbc, 16); // skip the sync_word
355 skip_bits(gbc, 16); // skip crc1
356 skip_bits(gbc, 8); // skip fscod and frmsizecod
357 skip_bits(gbc, 11); // skip bsid, bsmod, and acmod
358 if(s->channel_mode == AC3_CHMODE_STEREO) {
359 skip_bits(gbc, 2); // skip dsurmod
360 } else {
361 if((s->channel_mode & 1) && s->channel_mode != AC3_CHMODE_MONO)
362 skip_bits(gbc, 2); // skip cmixlev
363 if(s->channel_mode & 4)
364 skip_bits(gbc, 2); // skip surmixlev
366 skip_bits1(gbc); // skip lfeon
368 /* read the rest of the bsi. read twice for dual mono mode. */
369 i = !(s->channel_mode);
370 do {
371 skip_bits(gbc, 5); // skip dialog normalization
372 if (get_bits1(gbc))
373 skip_bits(gbc, 8); //skip compression
374 if (get_bits1(gbc))
375 skip_bits(gbc, 8); //skip language code
376 if (get_bits1(gbc))
377 skip_bits(gbc, 7); //skip audio production information
378 } while (i--);
380 skip_bits(gbc, 2); //skip copyright bit and original bitstream bit
382 /* skip the timecodes (or extra bitstream information for Alternate Syntax)
383 TODO: read & use the xbsi1 downmix levels */
384 if (get_bits1(gbc))
385 skip_bits(gbc, 14); //skip timecode1 / xbsi1
386 if (get_bits1(gbc))
387 skip_bits(gbc, 14); //skip timecode2 / xbsi2
389 /* skip additional bitstream info */
390 if (get_bits1(gbc)) {
391 i = get_bits(gbc, 6);
392 do {
393 skip_bits(gbc, 8);
394 } while(i--);
397 /* set stereo downmixing coefficients
398 reference: Section 7.8.2 Downmixing Into Two Channels */
399 for(i=0; i<s->fbw_channels; i++) {
400 s->downmix_coeffs[i][0] = gain_levels[ac3_default_coeffs[s->channel_mode][i][0]];
401 s->downmix_coeffs[i][1] = gain_levels[ac3_default_coeffs[s->channel_mode][i][1]];
403 if(s->channel_mode > 1 && s->channel_mode & 1) {
404 s->downmix_coeffs[1][0] = s->downmix_coeffs[1][1] = center_mix_level;
406 if(s->channel_mode == AC3_CHMODE_2F1R || s->channel_mode == AC3_CHMODE_3F1R) {
407 int nf = s->channel_mode - 2;
408 s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf][1] = surround_mix_level * LEVEL_MINUS_3DB;
410 if(s->channel_mode == AC3_CHMODE_2F2R || s->channel_mode == AC3_CHMODE_3F2R) {
411 int nf = s->channel_mode - 4;
412 s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf+1][1] = surround_mix_level;
415 return 0;
419 * Decode the grouped exponents according to exponent strategy.
420 * reference: Section 7.1.3 Exponent Decoding
422 static void decode_exponents(GetBitContext *gbc, int exp_strategy, int ngrps,
423 uint8_t absexp, int8_t *dexps)
425 int i, j, grp, group_size;
426 int dexp[256];
427 int expacc, prevexp;
429 /* unpack groups */
430 group_size = exp_strategy + (exp_strategy == EXP_D45);
431 for(grp=0,i=0; grp<ngrps; grp++) {
432 expacc = get_bits(gbc, 7);
433 dexp[i++] = exp_ungroup_tab[expacc][0];
434 dexp[i++] = exp_ungroup_tab[expacc][1];
435 dexp[i++] = exp_ungroup_tab[expacc][2];
438 /* convert to absolute exps and expand groups */
439 prevexp = absexp;
440 for(i=0; i<ngrps*3; i++) {
441 prevexp = av_clip(prevexp + dexp[i]-2, 0, 24);
442 for(j=0; j<group_size; j++) {
443 dexps[(i*group_size)+j] = prevexp;
449 * Generate transform coefficients for each coupled channel in the coupling
450 * range using the coupling coefficients and coupling coordinates.
451 * reference: Section 7.4.3 Coupling Coordinate Format
453 static void uncouple_channels(AC3DecodeContext *s)
455 int i, j, ch, bnd, subbnd;
457 subbnd = -1;
458 i = s->start_freq[CPL_CH];
459 for(bnd=0; bnd<s->num_cpl_bands; bnd++) {
460 do {
461 subbnd++;
462 for(j=0; j<12; j++) {
463 for(ch=1; ch<=s->fbw_channels; ch++) {
464 if(s->channel_in_cpl[ch])
465 s->transform_coeffs[ch][i] = s->transform_coeffs[CPL_CH][i] * s->cpl_coords[ch][bnd] * 8.0f;
467 i++;
469 } while(s->cpl_band_struct[subbnd]);
474 * Grouped mantissas for 3-level 5-level and 11-level quantization
476 typedef struct {
477 float b1_mant[3];
478 float b2_mant[3];
479 float b4_mant[2];
480 int b1ptr;
481 int b2ptr;
482 int b4ptr;
483 } mant_groups;
486 * Get the transform coefficients for a particular channel
487 * reference: Section 7.3 Quantization and Decoding of Mantissas
489 static int get_transform_coeffs_ch(AC3DecodeContext *s, int ch_index, mant_groups *m)
491 GetBitContext *gbc = &s->gbc;
492 int i, gcode, tbap, start, end;
493 uint8_t *exps;
494 uint8_t *bap;
495 float *coeffs;
497 exps = s->dexps[ch_index];
498 bap = s->bap[ch_index];
499 coeffs = s->transform_coeffs[ch_index];
500 start = s->start_freq[ch_index];
501 end = s->end_freq[ch_index];
503 for (i = start; i < end; i++) {
504 tbap = bap[i];
505 switch (tbap) {
506 case 0:
507 coeffs[i] = ((av_random(&s->dith_state) & 0xFFFF) / 65535.0f) - 0.5f;
508 break;
510 case 1:
511 if(m->b1ptr > 2) {
512 gcode = get_bits(gbc, 5);
513 m->b1_mant[0] = b1_mantissas[gcode][0];
514 m->b1_mant[1] = b1_mantissas[gcode][1];
515 m->b1_mant[2] = b1_mantissas[gcode][2];
516 m->b1ptr = 0;
518 coeffs[i] = m->b1_mant[m->b1ptr++];
519 break;
521 case 2:
522 if(m->b2ptr > 2) {
523 gcode = get_bits(gbc, 7);
524 m->b2_mant[0] = b2_mantissas[gcode][0];
525 m->b2_mant[1] = b2_mantissas[gcode][1];
526 m->b2_mant[2] = b2_mantissas[gcode][2];
527 m->b2ptr = 0;
529 coeffs[i] = m->b2_mant[m->b2ptr++];
530 break;
532 case 3:
533 coeffs[i] = b3_mantissas[get_bits(gbc, 3)];
534 break;
536 case 4:
537 if(m->b4ptr > 1) {
538 gcode = get_bits(gbc, 7);
539 m->b4_mant[0] = b4_mantissas[gcode][0];
540 m->b4_mant[1] = b4_mantissas[gcode][1];
541 m->b4ptr = 0;
543 coeffs[i] = m->b4_mant[m->b4ptr++];
544 break;
546 case 5:
547 coeffs[i] = b5_mantissas[get_bits(gbc, 4)];
548 break;
550 default:
551 /* asymmetric dequantization */
552 coeffs[i] = get_sbits(gbc, quantization_tab[tbap]) * scale_factors[quantization_tab[tbap]-1];
553 break;
555 coeffs[i] *= scale_factors[exps[i]];
558 return 0;
562 * Remove random dithering from coefficients with zero-bit mantissas
563 * reference: Section 7.3.4 Dither for Zero Bit Mantissas (bap=0)
565 static void remove_dithering(AC3DecodeContext *s) {
566 int ch, i;
567 int end=0;
568 float *coeffs;
569 uint8_t *bap;
571 for(ch=1; ch<=s->fbw_channels; ch++) {
572 if(!s->dither_flag[ch]) {
573 coeffs = s->transform_coeffs[ch];
574 bap = s->bap[ch];
575 if(s->channel_in_cpl[ch])
576 end = s->start_freq[CPL_CH];
577 else
578 end = s->end_freq[ch];
579 for(i=0; i<end; i++) {
580 if(!bap[i])
581 coeffs[i] = 0.0f;
583 if(s->channel_in_cpl[ch]) {
584 bap = s->bap[CPL_CH];
585 for(; i<s->end_freq[CPL_CH]; i++) {
586 if(!bap[i])
587 coeffs[i] = 0.0f;
595 * Get the transform coefficients.
597 static int get_transform_coeffs(AC3DecodeContext *s)
599 int ch, end;
600 int got_cplchan = 0;
601 mant_groups m;
603 m.b1ptr = m.b2ptr = m.b4ptr = 3;
605 for (ch = 1; ch <= s->channels; ch++) {
606 /* transform coefficients for full-bandwidth channel */
607 if (get_transform_coeffs_ch(s, ch, &m))
608 return -1;
609 /* tranform coefficients for coupling channel come right after the
610 coefficients for the first coupled channel*/
611 if (s->channel_in_cpl[ch]) {
612 if (!got_cplchan) {
613 if (get_transform_coeffs_ch(s, CPL_CH, &m)) {
614 av_log(s->avctx, AV_LOG_ERROR, "error in decoupling channels\n");
615 return -1;
617 uncouple_channels(s);
618 got_cplchan = 1;
620 end = s->end_freq[CPL_CH];
621 } else {
622 end = s->end_freq[ch];
625 s->transform_coeffs[ch][end] = 0;
626 while(++end < 256);
629 /* if any channel doesn't use dithering, zero appropriate coefficients */
630 if(!s->dither_all)
631 remove_dithering(s);
633 return 0;
637 * Stereo rematrixing.
638 * reference: Section 7.5.4 Rematrixing : Decoding Technique
640 static void do_rematrixing(AC3DecodeContext *s)
642 int bnd, i;
643 int end, bndend;
644 float tmp0, tmp1;
646 end = FFMIN(s->end_freq[1], s->end_freq[2]);
648 for(bnd=0; bnd<s->num_rematrixing_bands; bnd++) {
649 if(s->rematrixing_flags[bnd]) {
650 bndend = FFMIN(end, rematrix_band_tab[bnd+1]);
651 for(i=rematrix_band_tab[bnd]; i<bndend; i++) {
652 tmp0 = s->transform_coeffs[1][i];
653 tmp1 = s->transform_coeffs[2][i];
654 s->transform_coeffs[1][i] = tmp0 + tmp1;
655 s->transform_coeffs[2][i] = tmp0 - tmp1;
662 * Perform the 256-point IMDCT
664 static void do_imdct_256(AC3DecodeContext *s, int chindex)
666 int i, k;
667 DECLARE_ALIGNED_16(float, x[128]);
668 FFTComplex z[2][64];
669 float *o_ptr = s->tmp_output;
671 for(i=0; i<2; i++) {
672 /* de-interleave coefficients */
673 for(k=0; k<128; k++) {
674 x[k] = s->transform_coeffs[chindex][2*k+i];
677 /* run standard IMDCT */
678 s->imdct_256.fft.imdct_calc(&s->imdct_256, o_ptr, x, s->tmp_imdct);
680 /* reverse the post-rotation & reordering from standard IMDCT */
681 for(k=0; k<32; k++) {
682 z[i][32+k].re = -o_ptr[128+2*k];
683 z[i][32+k].im = -o_ptr[2*k];
684 z[i][31-k].re = o_ptr[2*k+1];
685 z[i][31-k].im = o_ptr[128+2*k+1];
689 /* apply AC-3 post-rotation & reordering */
690 for(k=0; k<64; k++) {
691 o_ptr[ 2*k ] = -z[0][ k].im;
692 o_ptr[ 2*k+1] = z[0][63-k].re;
693 o_ptr[128+2*k ] = -z[0][ k].re;
694 o_ptr[128+2*k+1] = z[0][63-k].im;
695 o_ptr[256+2*k ] = -z[1][ k].re;
696 o_ptr[256+2*k+1] = z[1][63-k].im;
697 o_ptr[384+2*k ] = z[1][ k].im;
698 o_ptr[384+2*k+1] = -z[1][63-k].re;
703 * Inverse MDCT Transform.
704 * Convert frequency domain coefficients to time-domain audio samples.
705 * reference: Section 7.9.4 Transformation Equations
707 static inline void do_imdct(AC3DecodeContext *s)
709 int ch;
710 int channels;
712 /* Don't perform the IMDCT on the LFE channel unless it's used in the output */
713 channels = s->fbw_channels;
714 if(s->output_mode & AC3_OUTPUT_LFEON)
715 channels++;
717 for (ch=1; ch<=channels; ch++) {
718 if (s->block_switch[ch]) {
719 do_imdct_256(s, ch);
720 } else {
721 s->imdct_512.fft.imdct_calc(&s->imdct_512, s->tmp_output,
722 s->transform_coeffs[ch], s->tmp_imdct);
724 /* For the first half of the block, apply the window, add the delay
725 from the previous block, and send to output */
726 s->dsp.vector_fmul_add_add(s->output[ch-1], s->tmp_output,
727 s->window, s->delay[ch-1], 0, 256, 1);
728 /* For the second half of the block, apply the window and store the
729 samples to delay, to be combined with the next block */
730 s->dsp.vector_fmul_reverse(s->delay[ch-1], s->tmp_output+256,
731 s->window, 256);
736 * Downmix the output to mono or stereo.
738 static void ac3_downmix(AC3DecodeContext *s)
740 int i, j;
741 float v0, v1, s0, s1;
743 for(i=0; i<256; i++) {
744 v0 = v1 = s0 = s1 = 0.0f;
745 for(j=0; j<s->fbw_channels; j++) {
746 v0 += s->output[j][i] * s->downmix_coeffs[j][0];
747 v1 += s->output[j][i] * s->downmix_coeffs[j][1];
748 s0 += s->downmix_coeffs[j][0];
749 s1 += s->downmix_coeffs[j][1];
751 v0 /= s0;
752 v1 /= s1;
753 if(s->output_mode == AC3_CHMODE_MONO) {
754 s->output[0][i] = (v0 + v1) * LEVEL_MINUS_3DB;
755 } else if(s->output_mode == AC3_CHMODE_STEREO) {
756 s->output[0][i] = v0;
757 s->output[1][i] = v1;
763 * Parse an audio block from AC-3 bitstream.
765 static int ac3_parse_audio_block(AC3DecodeContext *s, int blk)
767 int fbw_channels = s->fbw_channels;
768 int channel_mode = s->channel_mode;
769 int i, bnd, seg, ch;
770 GetBitContext *gbc = &s->gbc;
771 uint8_t bit_alloc_stages[AC3_MAX_CHANNELS];
773 memset(bit_alloc_stages, 0, AC3_MAX_CHANNELS);
775 /* block switch flags */
776 for (ch = 1; ch <= fbw_channels; ch++)
777 s->block_switch[ch] = get_bits1(gbc);
779 /* dithering flags */
780 s->dither_all = 1;
781 for (ch = 1; ch <= fbw_channels; ch++) {
782 s->dither_flag[ch] = get_bits1(gbc);
783 if(!s->dither_flag[ch])
784 s->dither_all = 0;
787 /* dynamic range */
788 i = !(s->channel_mode);
789 do {
790 if(get_bits1(gbc)) {
791 s->dynamic_range[i] = ((dynamic_range_tab[get_bits(gbc, 8)]-1.0) *
792 s->avctx->drc_scale)+1.0;
793 } else if(blk == 0) {
794 s->dynamic_range[i] = 1.0f;
796 } while(i--);
798 /* coupling strategy */
799 if (get_bits1(gbc)) {
800 memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
801 s->cpl_in_use = get_bits1(gbc);
802 if (s->cpl_in_use) {
803 /* coupling in use */
804 int cpl_begin_freq, cpl_end_freq;
806 /* determine which channels are coupled */
807 for (ch = 1; ch <= fbw_channels; ch++)
808 s->channel_in_cpl[ch] = get_bits1(gbc);
810 /* phase flags in use */
811 if (channel_mode == AC3_CHMODE_STEREO)
812 s->phase_flags_in_use = get_bits1(gbc);
814 /* coupling frequency range and band structure */
815 cpl_begin_freq = get_bits(gbc, 4);
816 cpl_end_freq = get_bits(gbc, 4);
817 if (3 + cpl_end_freq - cpl_begin_freq < 0) {
818 av_log(s->avctx, AV_LOG_ERROR, "3+cplendf = %d < cplbegf = %d\n", 3+cpl_end_freq, cpl_begin_freq);
819 return -1;
821 s->num_cpl_bands = s->num_cpl_subbands = 3 + cpl_end_freq - cpl_begin_freq;
822 s->start_freq[CPL_CH] = cpl_begin_freq * 12 + 37;
823 s->end_freq[CPL_CH] = cpl_end_freq * 12 + 73;
824 for (bnd = 0; bnd < s->num_cpl_subbands - 1; bnd++) {
825 if (get_bits1(gbc)) {
826 s->cpl_band_struct[bnd] = 1;
827 s->num_cpl_bands--;
830 } else {
831 /* coupling not in use */
832 for (ch = 1; ch <= fbw_channels; ch++)
833 s->channel_in_cpl[ch] = 0;
837 /* coupling coordinates */
838 if (s->cpl_in_use) {
839 int cpl_coords_exist = 0;
841 for (ch = 1; ch <= fbw_channels; ch++) {
842 if (s->channel_in_cpl[ch]) {
843 if (get_bits1(gbc)) {
844 int master_cpl_coord, cpl_coord_exp, cpl_coord_mant;
845 cpl_coords_exist = 1;
846 master_cpl_coord = 3 * get_bits(gbc, 2);
847 for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
848 cpl_coord_exp = get_bits(gbc, 4);
849 cpl_coord_mant = get_bits(gbc, 4);
850 if (cpl_coord_exp == 15)
851 s->cpl_coords[ch][bnd] = cpl_coord_mant / 16.0f;
852 else
853 s->cpl_coords[ch][bnd] = (cpl_coord_mant + 16.0f) / 32.0f;
854 s->cpl_coords[ch][bnd] *= scale_factors[cpl_coord_exp + master_cpl_coord];
859 /* phase flags */
860 if (channel_mode == AC3_CHMODE_STEREO && s->phase_flags_in_use && cpl_coords_exist) {
861 for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
862 if (get_bits1(gbc))
863 s->cpl_coords[2][bnd] = -s->cpl_coords[2][bnd];
868 /* stereo rematrixing strategy and band structure */
869 if (channel_mode == AC3_CHMODE_STEREO) {
870 s->rematrixing_strategy = get_bits1(gbc);
871 if (s->rematrixing_strategy) {
872 s->num_rematrixing_bands = 4;
873 if(s->cpl_in_use && s->start_freq[CPL_CH] <= 61)
874 s->num_rematrixing_bands -= 1 + (s->start_freq[CPL_CH] == 37);
875 for(bnd=0; bnd<s->num_rematrixing_bands; bnd++)
876 s->rematrixing_flags[bnd] = get_bits1(gbc);
880 /* exponent strategies for each channel */
881 s->exp_strategy[CPL_CH] = EXP_REUSE;
882 s->exp_strategy[s->lfe_ch] = EXP_REUSE;
883 for (ch = !s->cpl_in_use; ch <= s->channels; ch++) {
884 if(ch == s->lfe_ch)
885 s->exp_strategy[ch] = get_bits(gbc, 1);
886 else
887 s->exp_strategy[ch] = get_bits(gbc, 2);
888 if(s->exp_strategy[ch] != EXP_REUSE)
889 bit_alloc_stages[ch] = 3;
892 /* channel bandwidth */
893 for (ch = 1; ch <= fbw_channels; ch++) {
894 s->start_freq[ch] = 0;
895 if (s->exp_strategy[ch] != EXP_REUSE) {
896 int prev = s->end_freq[ch];
897 if (s->channel_in_cpl[ch])
898 s->end_freq[ch] = s->start_freq[CPL_CH];
899 else {
900 int bandwidth_code = get_bits(gbc, 6);
901 if (bandwidth_code > 60) {
902 av_log(s->avctx, AV_LOG_ERROR, "bandwidth code = %d > 60", bandwidth_code);
903 return -1;
905 s->end_freq[ch] = bandwidth_code * 3 + 73;
907 if(blk > 0 && s->end_freq[ch] != prev)
908 memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
911 s->start_freq[s->lfe_ch] = 0;
912 s->end_freq[s->lfe_ch] = 7;
914 /* decode exponents for each channel */
915 for (ch = !s->cpl_in_use; ch <= s->channels; ch++) {
916 if (s->exp_strategy[ch] != EXP_REUSE) {
917 int group_size, num_groups;
918 group_size = 3 << (s->exp_strategy[ch] - 1);
919 if(ch == CPL_CH)
920 num_groups = (s->end_freq[ch] - s->start_freq[ch]) / group_size;
921 else if(ch == s->lfe_ch)
922 num_groups = 2;
923 else
924 num_groups = (s->end_freq[ch] + group_size - 4) / group_size;
925 s->dexps[ch][0] = get_bits(gbc, 4) << !ch;
926 decode_exponents(gbc, s->exp_strategy[ch], num_groups, s->dexps[ch][0],
927 &s->dexps[ch][s->start_freq[ch]+!!ch]);
928 if(ch != CPL_CH && ch != s->lfe_ch)
929 skip_bits(gbc, 2); /* skip gainrng */
933 /* bit allocation information */
934 if (get_bits1(gbc)) {
935 s->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
936 s->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
937 s->bit_alloc_params.slow_gain = ff_ac3_slow_gain_tab[get_bits(gbc, 2)];
938 s->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[get_bits(gbc, 2)];
939 s->bit_alloc_params.floor = ff_ac3_floor_tab[get_bits(gbc, 3)];
940 for(ch=!s->cpl_in_use; ch<=s->channels; ch++) {
941 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
945 /* signal-to-noise ratio offsets and fast gains (signal-to-mask ratios) */
946 if (get_bits1(gbc)) {
947 int csnr;
948 csnr = (get_bits(gbc, 6) - 15) << 4;
949 for (ch = !s->cpl_in_use; ch <= s->channels; ch++) { /* snr offset and fast gain */
950 s->snr_offset[ch] = (csnr + get_bits(gbc, 4)) << 2;
951 s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
953 memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
956 /* coupling leak information */
957 if (s->cpl_in_use && get_bits1(gbc)) {
958 s->bit_alloc_params.cpl_fast_leak = get_bits(gbc, 3);
959 s->bit_alloc_params.cpl_slow_leak = get_bits(gbc, 3);
960 bit_alloc_stages[CPL_CH] = FFMAX(bit_alloc_stages[CPL_CH], 2);
963 /* delta bit allocation information */
964 if (get_bits1(gbc)) {
965 /* delta bit allocation exists (strategy) */
966 for (ch = !s->cpl_in_use; ch <= fbw_channels; ch++) {
967 s->dba_mode[ch] = get_bits(gbc, 2);
968 if (s->dba_mode[ch] == DBA_RESERVED) {
969 av_log(s->avctx, AV_LOG_ERROR, "delta bit allocation strategy reserved\n");
970 return -1;
972 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
974 /* channel delta offset, len and bit allocation */
975 for (ch = !s->cpl_in_use; ch <= fbw_channels; ch++) {
976 if (s->dba_mode[ch] == DBA_NEW) {
977 s->dba_nsegs[ch] = get_bits(gbc, 3);
978 for (seg = 0; seg <= s->dba_nsegs[ch]; seg++) {
979 s->dba_offsets[ch][seg] = get_bits(gbc, 5);
980 s->dba_lengths[ch][seg] = get_bits(gbc, 4);
981 s->dba_values[ch][seg] = get_bits(gbc, 3);
985 } else if(blk == 0) {
986 for(ch=0; ch<=s->channels; ch++) {
987 s->dba_mode[ch] = DBA_NONE;
991 /* Bit allocation */
992 for(ch=!s->cpl_in_use; ch<=s->channels; ch++) {
993 if(bit_alloc_stages[ch] > 2) {
994 /* Exponent mapping into PSD and PSD integration */
995 ff_ac3_bit_alloc_calc_psd(s->dexps[ch],
996 s->start_freq[ch], s->end_freq[ch],
997 s->psd[ch], s->band_psd[ch]);
999 if(bit_alloc_stages[ch] > 1) {
1000 /* Compute excitation function, Compute masking curve, and
1001 Apply delta bit allocation */
1002 ff_ac3_bit_alloc_calc_mask(&s->bit_alloc_params, s->band_psd[ch],
1003 s->start_freq[ch], s->end_freq[ch],
1004 s->fast_gain[ch], (ch == s->lfe_ch),
1005 s->dba_mode[ch], s->dba_nsegs[ch],
1006 s->dba_offsets[ch], s->dba_lengths[ch],
1007 s->dba_values[ch], s->mask[ch]);
1009 if(bit_alloc_stages[ch] > 0) {
1010 /* Compute bit allocation */
1011 ff_ac3_bit_alloc_calc_bap(s->mask[ch], s->psd[ch],
1012 s->start_freq[ch], s->end_freq[ch],
1013 s->snr_offset[ch],
1014 s->bit_alloc_params.floor,
1015 s->bap[ch]);
1019 /* unused dummy data */
1020 if (get_bits1(gbc)) {
1021 int skipl = get_bits(gbc, 9);
1022 while(skipl--)
1023 skip_bits(gbc, 8);
1026 /* unpack the transform coefficients
1027 this also uncouples channels if coupling is in use. */
1028 if (get_transform_coeffs(s)) {
1029 av_log(s->avctx, AV_LOG_ERROR, "Error in routine get_transform_coeffs\n");
1030 return -1;
1033 /* recover coefficients if rematrixing is in use */
1034 if(s->channel_mode == AC3_CHMODE_STEREO)
1035 do_rematrixing(s);
1037 /* apply scaling to coefficients (headroom, dynrng) */
1038 for(ch=1; ch<=s->channels; ch++) {
1039 float gain = 2.0f * s->mul_bias;
1040 if(s->channel_mode == AC3_CHMODE_DUALMONO) {
1041 gain *= s->dynamic_range[ch-1];
1042 } else {
1043 gain *= s->dynamic_range[0];
1045 for(i=0; i<s->end_freq[ch]; i++) {
1046 s->transform_coeffs[ch][i] *= gain;
1050 do_imdct(s);
1052 /* downmix output if needed */
1053 if(s->channels != s->out_channels && !((s->output_mode & AC3_OUTPUT_LFEON) &&
1054 s->fbw_channels == s->out_channels)) {
1055 ac3_downmix(s);
1058 /* convert float to 16-bit integer */
1059 for(ch=0; ch<s->out_channels; ch++) {
1060 for(i=0; i<256; i++) {
1061 s->output[ch][i] += s->add_bias;
1063 s->dsp.float_to_int16(s->int_output[ch], s->output[ch], 256);
1066 return 0;
1070 * Decode a single AC-3 frame.
1072 static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size, uint8_t *buf, int buf_size)
1074 AC3DecodeContext *s = avctx->priv_data;
1075 int16_t *out_samples = (int16_t *)data;
1076 int i, blk, ch, err;
1078 /* initialize the GetBitContext with the start of valid AC-3 Frame */
1079 init_get_bits(&s->gbc, buf, buf_size * 8);
1081 /* parse the syncinfo */
1082 err = ac3_parse_header(s);
1083 if(err) {
1084 switch(err) {
1085 case AC3_PARSE_ERROR_SYNC:
1086 av_log(avctx, AV_LOG_ERROR, "frame sync error\n");
1087 break;
1088 case AC3_PARSE_ERROR_BSID:
1089 av_log(avctx, AV_LOG_ERROR, "invalid bitstream id\n");
1090 break;
1091 case AC3_PARSE_ERROR_SAMPLE_RATE:
1092 av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
1093 break;
1094 case AC3_PARSE_ERROR_FRAME_SIZE:
1095 av_log(avctx, AV_LOG_ERROR, "invalid frame size\n");
1096 break;
1097 default:
1098 av_log(avctx, AV_LOG_ERROR, "invalid header\n");
1099 break;
1101 return -1;
1104 avctx->sample_rate = s->sample_rate;
1105 avctx->bit_rate = s->bit_rate;
1107 /* check that reported frame size fits in input buffer */
1108 if(s->frame_size > buf_size) {
1109 av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
1110 return -1;
1113 /* channel config */
1114 s->out_channels = s->channels;
1115 if (avctx->request_channels > 0 && avctx->request_channels <= 2 &&
1116 avctx->request_channels < s->channels) {
1117 s->out_channels = avctx->request_channels;
1118 s->output_mode = avctx->request_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
1120 avctx->channels = s->out_channels;
1122 /* parse the audio blocks */
1123 for (blk = 0; blk < NB_BLOCKS; blk++) {
1124 if (ac3_parse_audio_block(s, blk)) {
1125 av_log(avctx, AV_LOG_ERROR, "error parsing the audio block\n");
1126 *data_size = 0;
1127 return s->frame_size;
1129 for (i = 0; i < 256; i++)
1130 for (ch = 0; ch < s->out_channels; ch++)
1131 *(out_samples++) = s->int_output[ch][i];
1133 *data_size = NB_BLOCKS * 256 * avctx->channels * sizeof (int16_t);
1134 return s->frame_size;
1138 * Uninitialize the AC-3 decoder.
1140 static int ac3_decode_end(AVCodecContext *avctx)
1142 AC3DecodeContext *s = avctx->priv_data;
1143 ff_mdct_end(&s->imdct_512);
1144 ff_mdct_end(&s->imdct_256);
1146 return 0;
1149 AVCodec ac3_decoder = {
1150 .name = "ac3",
1151 .type = CODEC_TYPE_AUDIO,
1152 .id = CODEC_ID_AC3,
1153 .priv_data_size = sizeof (AC3DecodeContext),
1154 .init = ac3_decode_init,
1155 .close = ac3_decode_end,
1156 .decode = ac3_decode_frame,