check for request_channels at codec init
[ffmpeg-lucabe.git] / libavcodec / fft.c
blob62a6a557619cd9b3527f23bfa9a0bd81d91feed8
1 /*
2 * FFT/IFFT transforms
3 * Copyright (c) 2002 Fabrice Bellard.
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 /**
23 * @file fft.c
24 * FFT/IFFT transforms.
27 #include "dsputil.h"
29 /**
30 * The size of the FFT is 2^nbits. If inverse is TRUE, inverse FFT is
31 * done
33 int ff_fft_init(FFTContext *s, int nbits, int inverse)
35 int i, j, m, n;
36 float alpha, c1, s1, s2;
38 s->nbits = nbits;
39 n = 1 << nbits;
41 s->exptab = av_malloc((n / 2) * sizeof(FFTComplex));
42 if (!s->exptab)
43 goto fail;
44 s->revtab = av_malloc(n * sizeof(uint16_t));
45 if (!s->revtab)
46 goto fail;
47 s->inverse = inverse;
49 s2 = inverse ? 1.0 : -1.0;
51 for(i=0;i<(n/2);i++) {
52 alpha = 2 * M_PI * (float)i / (float)n;
53 c1 = cos(alpha);
54 s1 = sin(alpha) * s2;
55 s->exptab[i].re = c1;
56 s->exptab[i].im = s1;
58 s->fft_calc = ff_fft_calc_c;
59 s->imdct_calc = ff_imdct_calc;
60 s->exptab1 = NULL;
62 /* compute constant table for HAVE_SSE version */
63 #if defined(HAVE_MMX) \
64 || (defined(HAVE_ALTIVEC) && !defined(ALTIVEC_USE_REFERENCE_C_CODE))
66 int has_vectors = mm_support();
68 if (has_vectors) {
69 #if defined(HAVE_MMX)
70 if (has_vectors & MM_3DNOWEXT) {
71 /* 3DNowEx for K7/K8 */
72 s->imdct_calc = ff_imdct_calc_3dn2;
73 s->fft_calc = ff_fft_calc_3dn2;
74 } else if (has_vectors & MM_3DNOW) {
75 /* 3DNow! for K6-2/3 */
76 s->fft_calc = ff_fft_calc_3dn;
77 } else if (has_vectors & MM_SSE) {
78 /* SSE for P3/P4 */
79 s->imdct_calc = ff_imdct_calc_sse;
80 s->fft_calc = ff_fft_calc_sse;
82 #else /* HAVE_MMX */
83 if (has_vectors & MM_ALTIVEC)
84 s->fft_calc = ff_fft_calc_altivec;
85 #endif
87 if (s->fft_calc != ff_fft_calc_c) {
88 int np, nblocks, np2, l;
89 FFTComplex *q;
91 np = 1 << nbits;
92 nblocks = np >> 3;
93 np2 = np >> 1;
94 s->exptab1 = av_malloc(np * 2 * sizeof(FFTComplex));
95 if (!s->exptab1)
96 goto fail;
97 q = s->exptab1;
98 do {
99 for(l = 0; l < np2; l += 2 * nblocks) {
100 *q++ = s->exptab[l];
101 *q++ = s->exptab[l + nblocks];
103 q->re = -s->exptab[l].im;
104 q->im = s->exptab[l].re;
105 q++;
106 q->re = -s->exptab[l + nblocks].im;
107 q->im = s->exptab[l + nblocks].re;
108 q++;
110 nblocks = nblocks >> 1;
111 } while (nblocks != 0);
112 av_freep(&s->exptab);
115 #endif
117 /* compute bit reverse table */
119 for(i=0;i<n;i++) {
120 m=0;
121 for(j=0;j<nbits;j++) {
122 m |= ((i >> j) & 1) << (nbits-j-1);
124 s->revtab[i]=m;
126 return 0;
127 fail:
128 av_freep(&s->revtab);
129 av_freep(&s->exptab);
130 av_freep(&s->exptab1);
131 return -1;
134 /* butter fly op */
135 #define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \
137 FFTSample ax, ay, bx, by;\
138 bx=pre1;\
139 by=pim1;\
140 ax=qre1;\
141 ay=qim1;\
142 pre = (bx + ax);\
143 pim = (by + ay);\
144 qre = (bx - ax);\
145 qim = (by - ay);\
148 #define MUL16(a,b) ((a) * (b))
150 #define CMUL(pre, pim, are, aim, bre, bim) \
152 pre = (MUL16(are, bre) - MUL16(aim, bim));\
153 pim = (MUL16(are, bim) + MUL16(bre, aim));\
157 * Do a complex FFT with the parameters defined in ff_fft_init(). The
158 * input data must be permuted before with s->revtab table. No
159 * 1.0/sqrt(n) normalization is done.
161 void ff_fft_calc_c(FFTContext *s, FFTComplex *z)
163 int ln = s->nbits;
164 int j, np, np2;
165 int nblocks, nloops;
166 register FFTComplex *p, *q;
167 FFTComplex *exptab = s->exptab;
168 int l;
169 FFTSample tmp_re, tmp_im;
171 np = 1 << ln;
173 /* pass 0 */
175 p=&z[0];
176 j=(np >> 1);
177 do {
178 BF(p[0].re, p[0].im, p[1].re, p[1].im,
179 p[0].re, p[0].im, p[1].re, p[1].im);
180 p+=2;
181 } while (--j != 0);
183 /* pass 1 */
186 p=&z[0];
187 j=np >> 2;
188 if (s->inverse) {
189 do {
190 BF(p[0].re, p[0].im, p[2].re, p[2].im,
191 p[0].re, p[0].im, p[2].re, p[2].im);
192 BF(p[1].re, p[1].im, p[3].re, p[3].im,
193 p[1].re, p[1].im, -p[3].im, p[3].re);
194 p+=4;
195 } while (--j != 0);
196 } else {
197 do {
198 BF(p[0].re, p[0].im, p[2].re, p[2].im,
199 p[0].re, p[0].im, p[2].re, p[2].im);
200 BF(p[1].re, p[1].im, p[3].re, p[3].im,
201 p[1].re, p[1].im, p[3].im, -p[3].re);
202 p+=4;
203 } while (--j != 0);
205 /* pass 2 .. ln-1 */
207 nblocks = np >> 3;
208 nloops = 1 << 2;
209 np2 = np >> 1;
210 do {
211 p = z;
212 q = z + nloops;
213 for (j = 0; j < nblocks; ++j) {
214 BF(p->re, p->im, q->re, q->im,
215 p->re, p->im, q->re, q->im);
217 p++;
218 q++;
219 for(l = nblocks; l < np2; l += nblocks) {
220 CMUL(tmp_re, tmp_im, exptab[l].re, exptab[l].im, q->re, q->im);
221 BF(p->re, p->im, q->re, q->im,
222 p->re, p->im, tmp_re, tmp_im);
223 p++;
224 q++;
227 p += nloops;
228 q += nloops;
230 nblocks = nblocks >> 1;
231 nloops = nloops << 1;
232 } while (nblocks != 0);
236 * Do the permutation needed BEFORE calling ff_fft_calc()
238 void ff_fft_permute(FFTContext *s, FFTComplex *z)
240 int j, k, np;
241 FFTComplex tmp;
242 const uint16_t *revtab = s->revtab;
244 /* reverse */
245 np = 1 << s->nbits;
246 for(j=0;j<np;j++) {
247 k = revtab[j];
248 if (k < j) {
249 tmp = z[k];
250 z[k] = z[j];
251 z[j] = tmp;
256 void ff_fft_end(FFTContext *s)
258 av_freep(&s->revtab);
259 av_freep(&s->exptab);
260 av_freep(&s->exptab1);