indeo3 decoder uses get_buffer, set CODEC_CAP_DR1
[ffmpeg-lucabe.git] / libavcodec / ac3dec.c
blob5feb1895199681e65a145a81d2b93e6ca47b0718
1 /*
2 * AC-3 Audio Decoder
3 * This code was developed as part of Google Summer of Code 2006.
4 * E-AC-3 support was added as part of Google Summer of Code 2007.
6 * Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com)
7 * Copyright (c) 2007-2008 Bartlomiej Wolowiec <bartek.wolowiec@gmail.com>
8 * Copyright (c) 2007 Justin Ruggles <justin.ruggles@gmail.com>
10 * This file is part of FFmpeg.
12 * FFmpeg is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU Lesser General Public
14 * License as published by the Free Software Foundation; either
15 * version 2.1 of the License, or (at your option) any later version.
17 * FFmpeg is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * Lesser General Public License for more details.
22 * You should have received a copy of the GNU Lesser General Public
23 * License along with FFmpeg; if not, write to the Free Software
24 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
27 #include <stdio.h>
28 #include <stddef.h>
29 #include <math.h>
30 #include <string.h>
32 #include "libavutil/crc.h"
33 #include "internal.h"
34 #include "aac_ac3_parser.h"
35 #include "ac3_parser.h"
36 #include "ac3dec.h"
37 #include "ac3dec_data.h"
39 /** Large enough for maximum possible frame size when the specification limit is ignored */
40 #define AC3_FRAME_BUFFER_SIZE 32768
42 /**
43 * table for ungrouping 3 values in 7 bits.
44 * used for exponents and bap=2 mantissas
46 static uint8_t ungroup_3_in_7_bits_tab[128][3];
49 /** tables for ungrouping mantissas */
50 static int b1_mantissas[32][3];
51 static int b2_mantissas[128][3];
52 static int b3_mantissas[8];
53 static int b4_mantissas[128][2];
54 static int b5_mantissas[16];
56 /**
57 * Quantization table: levels for symmetric. bits for asymmetric.
58 * reference: Table 7.18 Mapping of bap to Quantizer
60 static const uint8_t quantization_tab[16] = {
61 0, 3, 5, 7, 11, 15,
62 5, 6, 7, 8, 9, 10, 11, 12, 14, 16
65 /** dynamic range table. converts codes to scale factors. */
66 static float dynamic_range_tab[256];
68 /** Adjustments in dB gain */
69 #define LEVEL_PLUS_3DB 1.4142135623730950
70 #define LEVEL_PLUS_1POINT5DB 1.1892071150027209
71 #define LEVEL_MINUS_1POINT5DB 0.8408964152537145
72 #define LEVEL_MINUS_3DB 0.7071067811865476
73 #define LEVEL_MINUS_4POINT5DB 0.5946035575013605
74 #define LEVEL_MINUS_6DB 0.5000000000000000
75 #define LEVEL_MINUS_9DB 0.3535533905932738
76 #define LEVEL_ZERO 0.0000000000000000
77 #define LEVEL_ONE 1.0000000000000000
79 static const float gain_levels[9] = {
80 LEVEL_PLUS_3DB,
81 LEVEL_PLUS_1POINT5DB,
82 LEVEL_ONE,
83 LEVEL_MINUS_1POINT5DB,
84 LEVEL_MINUS_3DB,
85 LEVEL_MINUS_4POINT5DB,
86 LEVEL_MINUS_6DB,
87 LEVEL_ZERO,
88 LEVEL_MINUS_9DB
91 /**
92 * Table for center mix levels
93 * reference: Section 5.4.2.4 cmixlev
95 static const uint8_t center_levels[4] = { 4, 5, 6, 5 };
97 /**
98 * Table for surround mix levels
99 * reference: Section 5.4.2.5 surmixlev
101 static const uint8_t surround_levels[4] = { 4, 6, 7, 6 };
104 * Table for default stereo downmixing coefficients
105 * reference: Section 7.8.2 Downmixing Into Two Channels
107 static const uint8_t ac3_default_coeffs[8][5][2] = {
108 { { 2, 7 }, { 7, 2 }, },
109 { { 4, 4 }, },
110 { { 2, 7 }, { 7, 2 }, },
111 { { 2, 7 }, { 5, 5 }, { 7, 2 }, },
112 { { 2, 7 }, { 7, 2 }, { 6, 6 }, },
113 { { 2, 7 }, { 5, 5 }, { 7, 2 }, { 8, 8 }, },
114 { { 2, 7 }, { 7, 2 }, { 6, 7 }, { 7, 6 }, },
115 { { 2, 7 }, { 5, 5 }, { 7, 2 }, { 6, 7 }, { 7, 6 }, },
119 * Symmetrical Dequantization
120 * reference: Section 7.3.3 Expansion of Mantissas for Symmetrical Quantization
121 * Tables 7.19 to 7.23
123 static inline int
124 symmetric_dequant(int code, int levels)
126 return ((code - (levels >> 1)) << 24) / levels;
130 * Initialize tables at runtime.
132 static av_cold void ac3_tables_init(void)
134 int i;
136 /* generate table for ungrouping 3 values in 7 bits
137 reference: Section 7.1.3 Exponent Decoding */
138 for(i=0; i<128; i++) {
139 ungroup_3_in_7_bits_tab[i][0] = i / 25;
140 ungroup_3_in_7_bits_tab[i][1] = (i % 25) / 5;
141 ungroup_3_in_7_bits_tab[i][2] = (i % 25) % 5;
144 /* generate grouped mantissa tables
145 reference: Section 7.3.5 Ungrouping of Mantissas */
146 for(i=0; i<32; i++) {
147 /* bap=1 mantissas */
148 b1_mantissas[i][0] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][0], 3);
149 b1_mantissas[i][1] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][1], 3);
150 b1_mantissas[i][2] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][2], 3);
152 for(i=0; i<128; i++) {
153 /* bap=2 mantissas */
154 b2_mantissas[i][0] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][0], 5);
155 b2_mantissas[i][1] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][1], 5);
156 b2_mantissas[i][2] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][2], 5);
158 /* bap=4 mantissas */
159 b4_mantissas[i][0] = symmetric_dequant(i / 11, 11);
160 b4_mantissas[i][1] = symmetric_dequant(i % 11, 11);
162 /* generate ungrouped mantissa tables
163 reference: Tables 7.21 and 7.23 */
164 for(i=0; i<7; i++) {
165 /* bap=3 mantissas */
166 b3_mantissas[i] = symmetric_dequant(i, 7);
168 for(i=0; i<15; i++) {
169 /* bap=5 mantissas */
170 b5_mantissas[i] = symmetric_dequant(i, 15);
173 /* generate dynamic range table
174 reference: Section 7.7.1 Dynamic Range Control */
175 for(i=0; i<256; i++) {
176 int v = (i >> 5) - ((i >> 7) << 3) - 5;
177 dynamic_range_tab[i] = powf(2.0f, v) * ((i & 0x1F) | 0x20);
183 * AVCodec initialization
185 static av_cold int ac3_decode_init(AVCodecContext *avctx)
187 AC3DecodeContext *s = avctx->priv_data;
188 s->avctx = avctx;
190 ac3_common_init();
191 ac3_tables_init();
192 ff_mdct_init(&s->imdct_256, 8, 1, 1.0);
193 ff_mdct_init(&s->imdct_512, 9, 1, 1.0);
194 ff_kbd_window_init(s->window, 5.0, 256);
195 dsputil_init(&s->dsp, avctx);
196 av_lfg_init(&s->dith_state, 0);
198 /* set bias values for float to int16 conversion */
199 if(s->dsp.float_to_int16_interleave == ff_float_to_int16_interleave_c) {
200 s->add_bias = 385.0f;
201 s->mul_bias = 1.0f;
202 } else {
203 s->add_bias = 0.0f;
204 s->mul_bias = 32767.0f;
207 /* allow downmixing to stereo or mono */
208 if (avctx->channels > 0 && avctx->request_channels > 0 &&
209 avctx->request_channels < avctx->channels &&
210 avctx->request_channels <= 2) {
211 avctx->channels = avctx->request_channels;
213 s->downmixed = 1;
215 /* allocate context input buffer */
216 if (avctx->error_recognition >= FF_ER_CAREFUL) {
217 s->input_buffer = av_mallocz(AC3_FRAME_BUFFER_SIZE + FF_INPUT_BUFFER_PADDING_SIZE);
218 if (!s->input_buffer)
219 return AVERROR_NOMEM;
222 avctx->sample_fmt = SAMPLE_FMT_S16;
223 return 0;
227 * Parse the 'sync info' and 'bit stream info' from the AC-3 bitstream.
228 * GetBitContext within AC3DecodeContext must point to
229 * the start of the synchronized AC-3 bitstream.
231 static int ac3_parse_header(AC3DecodeContext *s)
233 GetBitContext *gbc = &s->gbc;
234 int i;
236 /* read the rest of the bsi. read twice for dual mono mode. */
237 i = !(s->channel_mode);
238 do {
239 skip_bits(gbc, 5); // skip dialog normalization
240 if (get_bits1(gbc))
241 skip_bits(gbc, 8); //skip compression
242 if (get_bits1(gbc))
243 skip_bits(gbc, 8); //skip language code
244 if (get_bits1(gbc))
245 skip_bits(gbc, 7); //skip audio production information
246 } while (i--);
248 skip_bits(gbc, 2); //skip copyright bit and original bitstream bit
250 /* skip the timecodes (or extra bitstream information for Alternate Syntax)
251 TODO: read & use the xbsi1 downmix levels */
252 if (get_bits1(gbc))
253 skip_bits(gbc, 14); //skip timecode1 / xbsi1
254 if (get_bits1(gbc))
255 skip_bits(gbc, 14); //skip timecode2 / xbsi2
257 /* skip additional bitstream info */
258 if (get_bits1(gbc)) {
259 i = get_bits(gbc, 6);
260 do {
261 skip_bits(gbc, 8);
262 } while(i--);
265 return 0;
269 * Common function to parse AC-3 or E-AC-3 frame header
271 static int parse_frame_header(AC3DecodeContext *s)
273 AC3HeaderInfo hdr;
274 int err;
276 err = ff_ac3_parse_header(&s->gbc, &hdr);
277 if(err)
278 return err;
280 /* get decoding parameters from header info */
281 s->bit_alloc_params.sr_code = hdr.sr_code;
282 s->channel_mode = hdr.channel_mode;
283 s->channel_layout = hdr.channel_layout;
284 s->lfe_on = hdr.lfe_on;
285 s->bit_alloc_params.sr_shift = hdr.sr_shift;
286 s->sample_rate = hdr.sample_rate;
287 s->bit_rate = hdr.bit_rate;
288 s->channels = hdr.channels;
289 s->fbw_channels = s->channels - s->lfe_on;
290 s->lfe_ch = s->fbw_channels + 1;
291 s->frame_size = hdr.frame_size;
292 s->center_mix_level = hdr.center_mix_level;
293 s->surround_mix_level = hdr.surround_mix_level;
294 s->num_blocks = hdr.num_blocks;
295 s->frame_type = hdr.frame_type;
296 s->substreamid = hdr.substreamid;
298 if(s->lfe_on) {
299 s->start_freq[s->lfe_ch] = 0;
300 s->end_freq[s->lfe_ch] = 7;
301 s->num_exp_groups[s->lfe_ch] = 2;
302 s->channel_in_cpl[s->lfe_ch] = 0;
305 if (hdr.bitstream_id <= 10) {
306 s->eac3 = 0;
307 s->snr_offset_strategy = 2;
308 s->block_switch_syntax = 1;
309 s->dither_flag_syntax = 1;
310 s->bit_allocation_syntax = 1;
311 s->fast_gain_syntax = 0;
312 s->first_cpl_leak = 0;
313 s->dba_syntax = 1;
314 s->skip_syntax = 1;
315 memset(s->channel_uses_aht, 0, sizeof(s->channel_uses_aht));
316 return ac3_parse_header(s);
317 } else {
318 s->eac3 = 1;
319 return ff_eac3_parse_header(s);
324 * Set stereo downmixing coefficients based on frame header info.
325 * reference: Section 7.8.2 Downmixing Into Two Channels
327 static void set_downmix_coeffs(AC3DecodeContext *s)
329 int i;
330 float cmix = gain_levels[center_levels[s->center_mix_level]];
331 float smix = gain_levels[surround_levels[s->surround_mix_level]];
332 float norm0, norm1;
334 for(i=0; i<s->fbw_channels; i++) {
335 s->downmix_coeffs[i][0] = gain_levels[ac3_default_coeffs[s->channel_mode][i][0]];
336 s->downmix_coeffs[i][1] = gain_levels[ac3_default_coeffs[s->channel_mode][i][1]];
338 if(s->channel_mode > 1 && s->channel_mode & 1) {
339 s->downmix_coeffs[1][0] = s->downmix_coeffs[1][1] = cmix;
341 if(s->channel_mode == AC3_CHMODE_2F1R || s->channel_mode == AC3_CHMODE_3F1R) {
342 int nf = s->channel_mode - 2;
343 s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf][1] = smix * LEVEL_MINUS_3DB;
345 if(s->channel_mode == AC3_CHMODE_2F2R || s->channel_mode == AC3_CHMODE_3F2R) {
346 int nf = s->channel_mode - 4;
347 s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf+1][1] = smix;
350 /* renormalize */
351 norm0 = norm1 = 0.0;
352 for(i=0; i<s->fbw_channels; i++) {
353 norm0 += s->downmix_coeffs[i][0];
354 norm1 += s->downmix_coeffs[i][1];
356 norm0 = 1.0f / norm0;
357 norm1 = 1.0f / norm1;
358 for(i=0; i<s->fbw_channels; i++) {
359 s->downmix_coeffs[i][0] *= norm0;
360 s->downmix_coeffs[i][1] *= norm1;
363 if(s->output_mode == AC3_CHMODE_MONO) {
364 for(i=0; i<s->fbw_channels; i++)
365 s->downmix_coeffs[i][0] = (s->downmix_coeffs[i][0] + s->downmix_coeffs[i][1]) * LEVEL_MINUS_3DB;
370 * Decode the grouped exponents according to exponent strategy.
371 * reference: Section 7.1.3 Exponent Decoding
373 static int decode_exponents(GetBitContext *gbc, int exp_strategy, int ngrps,
374 uint8_t absexp, int8_t *dexps)
376 int i, j, grp, group_size;
377 int dexp[256];
378 int expacc, prevexp;
380 /* unpack groups */
381 group_size = exp_strategy + (exp_strategy == EXP_D45);
382 for(grp=0,i=0; grp<ngrps; grp++) {
383 expacc = get_bits(gbc, 7);
384 dexp[i++] = ungroup_3_in_7_bits_tab[expacc][0];
385 dexp[i++] = ungroup_3_in_7_bits_tab[expacc][1];
386 dexp[i++] = ungroup_3_in_7_bits_tab[expacc][2];
389 /* convert to absolute exps and expand groups */
390 prevexp = absexp;
391 for(i=0,j=0; i<ngrps*3; i++) {
392 prevexp += dexp[i] - 2;
393 if (prevexp > 24U)
394 return -1;
395 switch (group_size) {
396 case 4: dexps[j++] = prevexp;
397 dexps[j++] = prevexp;
398 case 2: dexps[j++] = prevexp;
399 case 1: dexps[j++] = prevexp;
402 return 0;
406 * Generate transform coefficients for each coupled channel in the coupling
407 * range using the coupling coefficients and coupling coordinates.
408 * reference: Section 7.4.3 Coupling Coordinate Format
410 static void calc_transform_coeffs_cpl(AC3DecodeContext *s)
412 int i, j, ch, bnd, subbnd;
414 subbnd = -1;
415 i = s->start_freq[CPL_CH];
416 for(bnd=0; bnd<s->num_cpl_bands; bnd++) {
417 do {
418 subbnd++;
419 for(j=0; j<12; j++) {
420 for(ch=1; ch<=s->fbw_channels; ch++) {
421 if(s->channel_in_cpl[ch]) {
422 s->fixed_coeffs[ch][i] = ((int64_t)s->fixed_coeffs[CPL_CH][i] * (int64_t)s->cpl_coords[ch][bnd]) >> 23;
423 if (ch == 2 && s->phase_flags[bnd])
424 s->fixed_coeffs[ch][i] = -s->fixed_coeffs[ch][i];
427 i++;
429 } while(s->cpl_band_struct[subbnd]);
434 * Grouped mantissas for 3-level 5-level and 11-level quantization
436 typedef struct {
437 int b1_mant[2];
438 int b2_mant[2];
439 int b4_mant;
440 int b1;
441 int b2;
442 int b4;
443 } mant_groups;
446 * Decode the transform coefficients for a particular channel
447 * reference: Section 7.3 Quantization and Decoding of Mantissas
449 static void ac3_decode_transform_coeffs_ch(AC3DecodeContext *s, int ch_index, mant_groups *m)
451 int start_freq = s->start_freq[ch_index];
452 int end_freq = s->end_freq[ch_index];
453 uint8_t *baps = s->bap[ch_index];
454 int8_t *exps = s->dexps[ch_index];
455 int *coeffs = s->fixed_coeffs[ch_index];
456 GetBitContext *gbc = &s->gbc;
457 int freq;
459 for(freq = start_freq; freq < end_freq; freq++){
460 int bap = baps[freq];
461 int mantissa;
462 switch(bap){
463 case 0:
464 mantissa = (av_lfg_get(&s->dith_state) & 0x7FFFFF) - 0x400000;
465 break;
466 case 1:
467 if(m->b1){
468 m->b1--;
469 mantissa = m->b1_mant[m->b1];
471 else{
472 int bits = get_bits(gbc, 5);
473 mantissa = b1_mantissas[bits][0];
474 m->b1_mant[1] = b1_mantissas[bits][1];
475 m->b1_mant[0] = b1_mantissas[bits][2];
476 m->b1 = 2;
478 break;
479 case 2:
480 if(m->b2){
481 m->b2--;
482 mantissa = m->b2_mant[m->b2];
484 else{
485 int bits = get_bits(gbc, 7);
486 mantissa = b2_mantissas[bits][0];
487 m->b2_mant[1] = b2_mantissas[bits][1];
488 m->b2_mant[0] = b2_mantissas[bits][2];
489 m->b2 = 2;
491 break;
492 case 3:
493 mantissa = b3_mantissas[get_bits(gbc, 3)];
494 break;
495 case 4:
496 if(m->b4){
497 m->b4 = 0;
498 mantissa = m->b4_mant;
500 else{
501 int bits = get_bits(gbc, 7);
502 mantissa = b4_mantissas[bits][0];
503 m->b4_mant = b4_mantissas[bits][1];
504 m->b4 = 1;
506 break;
507 case 5:
508 mantissa = b5_mantissas[get_bits(gbc, 4)];
509 break;
510 default: /* 6 to 15 */
511 mantissa = get_bits(gbc, quantization_tab[bap]);
512 /* Shift mantissa and sign-extend it. */
513 mantissa = (mantissa << (32-quantization_tab[bap]))>>8;
514 break;
516 coeffs[freq] = mantissa >> exps[freq];
521 * Remove random dithering from coefficients with zero-bit mantissas
522 * reference: Section 7.3.4 Dither for Zero Bit Mantissas (bap=0)
524 static void remove_dithering(AC3DecodeContext *s) {
525 int ch, i;
526 int end=0;
527 int *coeffs;
528 uint8_t *bap;
530 for(ch=1; ch<=s->fbw_channels; ch++) {
531 if(!s->dither_flag[ch]) {
532 coeffs = s->fixed_coeffs[ch];
533 bap = s->bap[ch];
534 if(s->channel_in_cpl[ch])
535 end = s->start_freq[CPL_CH];
536 else
537 end = s->end_freq[ch];
538 for(i=0; i<end; i++) {
539 if(!bap[i])
540 coeffs[i] = 0;
542 if(s->channel_in_cpl[ch]) {
543 bap = s->bap[CPL_CH];
544 for(; i<s->end_freq[CPL_CH]; i++) {
545 if(!bap[i])
546 coeffs[i] = 0;
553 static void decode_transform_coeffs_ch(AC3DecodeContext *s, int blk, int ch,
554 mant_groups *m)
556 if (!s->channel_uses_aht[ch]) {
557 ac3_decode_transform_coeffs_ch(s, ch, m);
558 } else {
559 /* if AHT is used, mantissas for all blocks are encoded in the first
560 block of the frame. */
561 int bin;
562 if (!blk)
563 ff_eac3_decode_transform_coeffs_aht_ch(s, ch);
564 for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) {
565 s->fixed_coeffs[ch][bin] = s->pre_mantissa[ch][bin][blk] >> s->dexps[ch][bin];
571 * Decode the transform coefficients.
573 static void decode_transform_coeffs(AC3DecodeContext *s, int blk)
575 int ch, end;
576 int got_cplchan = 0;
577 mant_groups m;
579 m.b1 = m.b2 = m.b4 = 0;
581 for (ch = 1; ch <= s->channels; ch++) {
582 /* transform coefficients for full-bandwidth channel */
583 decode_transform_coeffs_ch(s, blk, ch, &m);
584 /* tranform coefficients for coupling channel come right after the
585 coefficients for the first coupled channel*/
586 if (s->channel_in_cpl[ch]) {
587 if (!got_cplchan) {
588 decode_transform_coeffs_ch(s, blk, CPL_CH, &m);
589 calc_transform_coeffs_cpl(s);
590 got_cplchan = 1;
592 end = s->end_freq[CPL_CH];
593 } else {
594 end = s->end_freq[ch];
597 s->fixed_coeffs[ch][end] = 0;
598 while(++end < 256);
601 /* zero the dithered coefficients for appropriate channels */
602 remove_dithering(s);
606 * Stereo rematrixing.
607 * reference: Section 7.5.4 Rematrixing : Decoding Technique
609 static void do_rematrixing(AC3DecodeContext *s)
611 int bnd, i;
612 int end, bndend;
613 int tmp0, tmp1;
615 end = FFMIN(s->end_freq[1], s->end_freq[2]);
617 for(bnd=0; bnd<s->num_rematrixing_bands; bnd++) {
618 if(s->rematrixing_flags[bnd]) {
619 bndend = FFMIN(end, ff_ac3_rematrix_band_tab[bnd+1]);
620 for(i=ff_ac3_rematrix_band_tab[bnd]; i<bndend; i++) {
621 tmp0 = s->fixed_coeffs[1][i];
622 tmp1 = s->fixed_coeffs[2][i];
623 s->fixed_coeffs[1][i] = tmp0 + tmp1;
624 s->fixed_coeffs[2][i] = tmp0 - tmp1;
631 * Inverse MDCT Transform.
632 * Convert frequency domain coefficients to time-domain audio samples.
633 * reference: Section 7.9.4 Transformation Equations
635 static inline void do_imdct(AC3DecodeContext *s, int channels)
637 int ch;
638 float add_bias = s->add_bias;
639 if(s->out_channels==1 && channels>1)
640 add_bias *= LEVEL_MINUS_3DB; // compensate for the gain in downmix
642 for (ch=1; ch<=channels; ch++) {
643 if (s->block_switch[ch]) {
644 int i;
645 float *x = s->tmp_output+128;
646 for(i=0; i<128; i++)
647 x[i] = s->transform_coeffs[ch][2*i];
648 ff_imdct_half(&s->imdct_256, s->tmp_output, x);
649 s->dsp.vector_fmul_window(s->output[ch-1], s->delay[ch-1], s->tmp_output, s->window, add_bias, 128);
650 for(i=0; i<128; i++)
651 x[i] = s->transform_coeffs[ch][2*i+1];
652 ff_imdct_half(&s->imdct_256, s->delay[ch-1], x);
653 } else {
654 ff_imdct_half(&s->imdct_512, s->tmp_output, s->transform_coeffs[ch]);
655 s->dsp.vector_fmul_window(s->output[ch-1], s->delay[ch-1], s->tmp_output, s->window, add_bias, 128);
656 memcpy(s->delay[ch-1], s->tmp_output+128, 128*sizeof(float));
662 * Downmix the output to mono or stereo.
664 void ff_ac3_downmix_c(float (*samples)[256], float (*matrix)[2], int out_ch, int in_ch, int len)
666 int i, j;
667 float v0, v1;
668 if(out_ch == 2) {
669 for(i=0; i<len; i++) {
670 v0 = v1 = 0.0f;
671 for(j=0; j<in_ch; j++) {
672 v0 += samples[j][i] * matrix[j][0];
673 v1 += samples[j][i] * matrix[j][1];
675 samples[0][i] = v0;
676 samples[1][i] = v1;
678 } else if(out_ch == 1) {
679 for(i=0; i<len; i++) {
680 v0 = 0.0f;
681 for(j=0; j<in_ch; j++)
682 v0 += samples[j][i] * matrix[j][0];
683 samples[0][i] = v0;
689 * Upmix delay samples from stereo to original channel layout.
691 static void ac3_upmix_delay(AC3DecodeContext *s)
693 int channel_data_size = sizeof(s->delay[0]);
694 switch(s->channel_mode) {
695 case AC3_CHMODE_DUALMONO:
696 case AC3_CHMODE_STEREO:
697 /* upmix mono to stereo */
698 memcpy(s->delay[1], s->delay[0], channel_data_size);
699 break;
700 case AC3_CHMODE_2F2R:
701 memset(s->delay[3], 0, channel_data_size);
702 case AC3_CHMODE_2F1R:
703 memset(s->delay[2], 0, channel_data_size);
704 break;
705 case AC3_CHMODE_3F2R:
706 memset(s->delay[4], 0, channel_data_size);
707 case AC3_CHMODE_3F1R:
708 memset(s->delay[3], 0, channel_data_size);
709 case AC3_CHMODE_3F:
710 memcpy(s->delay[2], s->delay[1], channel_data_size);
711 memset(s->delay[1], 0, channel_data_size);
712 break;
717 * Decode band structure for coupling, spectral extension, or enhanced coupling.
718 * @param[in] gbc bit reader context
719 * @param[in] blk block number
720 * @param[in] eac3 flag to indicate E-AC-3
721 * @param[in] ecpl flag to indicate enhanced coupling
722 * @param[in] start_subband subband number for start of range
723 * @param[in] end_subband subband number for end of range
724 * @param[in] default_band_struct default band structure table
725 * @param[out] band_struct decoded band structure
726 * @param[out] num_bands number of bands (optionally NULL)
727 * @param[out] band_sizes array containing the number of bins in each band (optionally NULL)
729 static void decode_band_structure(GetBitContext *gbc, int blk, int eac3,
730 int ecpl, int start_subband, int end_subband,
731 const uint8_t *default_band_struct,
732 uint8_t *band_struct, int *num_bands,
733 uint8_t *band_sizes)
735 int subbnd, bnd, n_subbands, n_bands=0;
736 uint8_t bnd_sz[22];
738 n_subbands = end_subband - start_subband;
740 /* decode band structure from bitstream or use default */
741 if (!eac3 || get_bits1(gbc)) {
742 for (subbnd = 0; subbnd < n_subbands - 1; subbnd++) {
743 band_struct[subbnd] = get_bits1(gbc);
745 } else if (!blk) {
746 memcpy(band_struct,
747 &default_band_struct[start_subband+1],
748 n_subbands-1);
750 band_struct[n_subbands-1] = 0;
752 /* calculate number of bands and band sizes based on band structure.
753 note that the first 4 subbands in enhanced coupling span only 6 bins
754 instead of 12. */
755 if (num_bands || band_sizes ) {
756 n_bands = n_subbands;
757 bnd_sz[0] = ecpl ? 6 : 12;
758 for (bnd = 0, subbnd = 1; subbnd < n_subbands; subbnd++) {
759 int subbnd_size = (ecpl && subbnd < 4) ? 6 : 12;
760 if (band_struct[subbnd-1]) {
761 n_bands--;
762 bnd_sz[bnd] += subbnd_size;
763 } else {
764 bnd_sz[++bnd] = subbnd_size;
769 /* set optional output params */
770 if (num_bands)
771 *num_bands = n_bands;
772 if (band_sizes)
773 memcpy(band_sizes, bnd_sz, n_bands);
777 * Decode a single audio block from the AC-3 bitstream.
779 static int decode_audio_block(AC3DecodeContext *s, int blk)
781 int fbw_channels = s->fbw_channels;
782 int channel_mode = s->channel_mode;
783 int i, bnd, seg, ch;
784 int different_transforms;
785 int downmix_output;
786 int cpl_in_use;
787 GetBitContext *gbc = &s->gbc;
788 uint8_t bit_alloc_stages[AC3_MAX_CHANNELS];
790 memset(bit_alloc_stages, 0, AC3_MAX_CHANNELS);
792 /* block switch flags */
793 different_transforms = 0;
794 if (s->block_switch_syntax) {
795 for (ch = 1; ch <= fbw_channels; ch++) {
796 s->block_switch[ch] = get_bits1(gbc);
797 if(ch > 1 && s->block_switch[ch] != s->block_switch[1])
798 different_transforms = 1;
802 /* dithering flags */
803 if (s->dither_flag_syntax) {
804 for (ch = 1; ch <= fbw_channels; ch++) {
805 s->dither_flag[ch] = get_bits1(gbc);
809 /* dynamic range */
810 i = !(s->channel_mode);
811 do {
812 if(get_bits1(gbc)) {
813 s->dynamic_range[i] = ((dynamic_range_tab[get_bits(gbc, 8)]-1.0) *
814 s->avctx->drc_scale)+1.0;
815 } else if(blk == 0) {
816 s->dynamic_range[i] = 1.0f;
818 } while(i--);
820 /* spectral extension strategy */
821 if (s->eac3 && (!blk || get_bits1(gbc))) {
822 if (get_bits1(gbc)) {
823 ff_log_missing_feature(s->avctx, "Spectral extension", 1);
824 return -1;
826 /* TODO: parse spectral extension strategy info */
829 /* TODO: spectral extension coordinates */
831 /* coupling strategy */
832 if (s->eac3 ? s->cpl_strategy_exists[blk] : get_bits1(gbc)) {
833 memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
834 if (!s->eac3)
835 s->cpl_in_use[blk] = get_bits1(gbc);
836 if (s->cpl_in_use[blk]) {
837 /* coupling in use */
838 int cpl_start_subband, cpl_end_subband;
840 if (channel_mode < AC3_CHMODE_STEREO) {
841 av_log(s->avctx, AV_LOG_ERROR, "coupling not allowed in mono or dual-mono\n");
842 return -1;
845 /* check for enhanced coupling */
846 if (s->eac3 && get_bits1(gbc)) {
847 /* TODO: parse enhanced coupling strategy info */
848 ff_log_missing_feature(s->avctx, "Enhanced coupling", 1);
849 return -1;
852 /* determine which channels are coupled */
853 if (s->eac3 && s->channel_mode == AC3_CHMODE_STEREO) {
854 s->channel_in_cpl[1] = 1;
855 s->channel_in_cpl[2] = 1;
856 } else {
857 for (ch = 1; ch <= fbw_channels; ch++)
858 s->channel_in_cpl[ch] = get_bits1(gbc);
861 /* phase flags in use */
862 if (channel_mode == AC3_CHMODE_STEREO)
863 s->phase_flags_in_use = get_bits1(gbc);
865 /* coupling frequency range */
866 /* TODO: modify coupling end freq if spectral extension is used */
867 cpl_start_subband = get_bits(gbc, 4);
868 cpl_end_subband = get_bits(gbc, 4) + 3;
869 if (cpl_start_subband >= cpl_end_subband) {
870 av_log(s->avctx, AV_LOG_ERROR, "invalid coupling range (%d >= %d)\n",
871 cpl_start_subband, cpl_end_subband);
872 return -1;
874 s->start_freq[CPL_CH] = cpl_start_subband * 12 + 37;
875 s->end_freq[CPL_CH] = cpl_end_subband * 12 + 37;
877 decode_band_structure(gbc, blk, s->eac3, 0, cpl_start_subband,
878 cpl_end_subband,
879 ff_eac3_default_cpl_band_struct,
880 s->cpl_band_struct, &s->num_cpl_bands, NULL);
881 } else {
882 /* coupling not in use */
883 for (ch = 1; ch <= fbw_channels; ch++) {
884 s->channel_in_cpl[ch] = 0;
885 s->first_cpl_coords[ch] = 1;
887 s->first_cpl_leak = s->eac3;
888 s->phase_flags_in_use = 0;
890 } else if (!s->eac3) {
891 if(!blk) {
892 av_log(s->avctx, AV_LOG_ERROR, "new coupling strategy must be present in block 0\n");
893 return -1;
894 } else {
895 s->cpl_in_use[blk] = s->cpl_in_use[blk-1];
898 cpl_in_use = s->cpl_in_use[blk];
900 /* coupling coordinates */
901 if (cpl_in_use) {
902 int cpl_coords_exist = 0;
904 for (ch = 1; ch <= fbw_channels; ch++) {
905 if (s->channel_in_cpl[ch]) {
906 if ((s->eac3 && s->first_cpl_coords[ch]) || get_bits1(gbc)) {
907 int master_cpl_coord, cpl_coord_exp, cpl_coord_mant;
908 s->first_cpl_coords[ch] = 0;
909 cpl_coords_exist = 1;
910 master_cpl_coord = 3 * get_bits(gbc, 2);
911 for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
912 cpl_coord_exp = get_bits(gbc, 4);
913 cpl_coord_mant = get_bits(gbc, 4);
914 if (cpl_coord_exp == 15)
915 s->cpl_coords[ch][bnd] = cpl_coord_mant << 22;
916 else
917 s->cpl_coords[ch][bnd] = (cpl_coord_mant + 16) << 21;
918 s->cpl_coords[ch][bnd] >>= (cpl_coord_exp + master_cpl_coord);
920 } else if (!blk) {
921 av_log(s->avctx, AV_LOG_ERROR, "new coupling coordinates must be present in block 0\n");
922 return -1;
924 } else {
925 /* channel not in coupling */
926 s->first_cpl_coords[ch] = 1;
929 /* phase flags */
930 if (channel_mode == AC3_CHMODE_STEREO && cpl_coords_exist) {
931 for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
932 s->phase_flags[bnd] = s->phase_flags_in_use? get_bits1(gbc) : 0;
937 /* stereo rematrixing strategy and band structure */
938 if (channel_mode == AC3_CHMODE_STEREO) {
939 if ((s->eac3 && !blk) || get_bits1(gbc)) {
940 s->num_rematrixing_bands = 4;
941 if(cpl_in_use && s->start_freq[CPL_CH] <= 61)
942 s->num_rematrixing_bands -= 1 + (s->start_freq[CPL_CH] == 37);
943 for(bnd=0; bnd<s->num_rematrixing_bands; bnd++)
944 s->rematrixing_flags[bnd] = get_bits1(gbc);
945 } else if (!blk) {
946 av_log(s->avctx, AV_LOG_ERROR, "new rematrixing strategy must be present in block 0\n");
947 return -1;
951 /* exponent strategies for each channel */
952 for (ch = !cpl_in_use; ch <= s->channels; ch++) {
953 if (!s->eac3)
954 s->exp_strategy[blk][ch] = get_bits(gbc, 2 - (ch == s->lfe_ch));
955 if(s->exp_strategy[blk][ch] != EXP_REUSE)
956 bit_alloc_stages[ch] = 3;
959 /* channel bandwidth */
960 for (ch = 1; ch <= fbw_channels; ch++) {
961 s->start_freq[ch] = 0;
962 if (s->exp_strategy[blk][ch] != EXP_REUSE) {
963 int group_size;
964 int prev = s->end_freq[ch];
965 if (s->channel_in_cpl[ch])
966 s->end_freq[ch] = s->start_freq[CPL_CH];
967 else {
968 int bandwidth_code = get_bits(gbc, 6);
969 if (bandwidth_code > 60) {
970 av_log(s->avctx, AV_LOG_ERROR, "bandwidth code = %d > 60\n", bandwidth_code);
971 return -1;
973 s->end_freq[ch] = bandwidth_code * 3 + 73;
975 group_size = 3 << (s->exp_strategy[blk][ch] - 1);
976 s->num_exp_groups[ch] = (s->end_freq[ch]+group_size-4) / group_size;
977 if(blk > 0 && s->end_freq[ch] != prev)
978 memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
981 if (cpl_in_use && s->exp_strategy[blk][CPL_CH] != EXP_REUSE) {
982 s->num_exp_groups[CPL_CH] = (s->end_freq[CPL_CH] - s->start_freq[CPL_CH]) /
983 (3 << (s->exp_strategy[blk][CPL_CH] - 1));
986 /* decode exponents for each channel */
987 for (ch = !cpl_in_use; ch <= s->channels; ch++) {
988 if (s->exp_strategy[blk][ch] != EXP_REUSE) {
989 s->dexps[ch][0] = get_bits(gbc, 4) << !ch;
990 if (decode_exponents(gbc, s->exp_strategy[blk][ch],
991 s->num_exp_groups[ch], s->dexps[ch][0],
992 &s->dexps[ch][s->start_freq[ch]+!!ch])) {
993 av_log(s->avctx, AV_LOG_ERROR, "exponent out-of-range\n");
994 return -1;
996 if(ch != CPL_CH && ch != s->lfe_ch)
997 skip_bits(gbc, 2); /* skip gainrng */
1001 /* bit allocation information */
1002 if (s->bit_allocation_syntax) {
1003 if (get_bits1(gbc)) {
1004 s->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
1005 s->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
1006 s->bit_alloc_params.slow_gain = ff_ac3_slow_gain_tab[get_bits(gbc, 2)];
1007 s->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[get_bits(gbc, 2)];
1008 s->bit_alloc_params.floor = ff_ac3_floor_tab[get_bits(gbc, 3)];
1009 for(ch=!cpl_in_use; ch<=s->channels; ch++)
1010 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
1011 } else if (!blk) {
1012 av_log(s->avctx, AV_LOG_ERROR, "new bit allocation info must be present in block 0\n");
1013 return -1;
1017 /* signal-to-noise ratio offsets and fast gains (signal-to-mask ratios) */
1018 if(!s->eac3 || !blk){
1019 if(s->snr_offset_strategy && get_bits1(gbc)) {
1020 int snr = 0;
1021 int csnr;
1022 csnr = (get_bits(gbc, 6) - 15) << 4;
1023 for (i = ch = !cpl_in_use; ch <= s->channels; ch++) {
1024 /* snr offset */
1025 if (ch == i || s->snr_offset_strategy == 2)
1026 snr = (csnr + get_bits(gbc, 4)) << 2;
1027 /* run at least last bit allocation stage if snr offset changes */
1028 if(blk && s->snr_offset[ch] != snr) {
1029 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 1);
1031 s->snr_offset[ch] = snr;
1033 /* fast gain (normal AC-3 only) */
1034 if (!s->eac3) {
1035 int prev = s->fast_gain[ch];
1036 s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
1037 /* run last 2 bit allocation stages if fast gain changes */
1038 if(blk && prev != s->fast_gain[ch])
1039 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
1042 } else if (!s->eac3 && !blk) {
1043 av_log(s->avctx, AV_LOG_ERROR, "new snr offsets must be present in block 0\n");
1044 return -1;
1048 /* fast gain (E-AC-3 only) */
1049 if (s->fast_gain_syntax && get_bits1(gbc)) {
1050 for (ch = !cpl_in_use; ch <= s->channels; ch++) {
1051 int prev = s->fast_gain[ch];
1052 s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
1053 /* run last 2 bit allocation stages if fast gain changes */
1054 if(blk && prev != s->fast_gain[ch])
1055 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
1057 } else if (s->eac3 && !blk) {
1058 for (ch = !cpl_in_use; ch <= s->channels; ch++)
1059 s->fast_gain[ch] = ff_ac3_fast_gain_tab[4];
1062 /* E-AC-3 to AC-3 converter SNR offset */
1063 if (s->frame_type == EAC3_FRAME_TYPE_INDEPENDENT && get_bits1(gbc)) {
1064 skip_bits(gbc, 10); // skip converter snr offset
1067 /* coupling leak information */
1068 if (cpl_in_use) {
1069 if (s->first_cpl_leak || get_bits1(gbc)) {
1070 int fl = get_bits(gbc, 3);
1071 int sl = get_bits(gbc, 3);
1072 /* run last 2 bit allocation stages for coupling channel if
1073 coupling leak changes */
1074 if(blk && (fl != s->bit_alloc_params.cpl_fast_leak ||
1075 sl != s->bit_alloc_params.cpl_slow_leak)) {
1076 bit_alloc_stages[CPL_CH] = FFMAX(bit_alloc_stages[CPL_CH], 2);
1078 s->bit_alloc_params.cpl_fast_leak = fl;
1079 s->bit_alloc_params.cpl_slow_leak = sl;
1080 } else if (!s->eac3 && !blk) {
1081 av_log(s->avctx, AV_LOG_ERROR, "new coupling leak info must be present in block 0\n");
1082 return -1;
1084 s->first_cpl_leak = 0;
1087 /* delta bit allocation information */
1088 if (s->dba_syntax && get_bits1(gbc)) {
1089 /* delta bit allocation exists (strategy) */
1090 for (ch = !cpl_in_use; ch <= fbw_channels; ch++) {
1091 s->dba_mode[ch] = get_bits(gbc, 2);
1092 if (s->dba_mode[ch] == DBA_RESERVED) {
1093 av_log(s->avctx, AV_LOG_ERROR, "delta bit allocation strategy reserved\n");
1094 return -1;
1096 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
1098 /* channel delta offset, len and bit allocation */
1099 for (ch = !cpl_in_use; ch <= fbw_channels; ch++) {
1100 if (s->dba_mode[ch] == DBA_NEW) {
1101 s->dba_nsegs[ch] = get_bits(gbc, 3);
1102 for (seg = 0; seg <= s->dba_nsegs[ch]; seg++) {
1103 s->dba_offsets[ch][seg] = get_bits(gbc, 5);
1104 s->dba_lengths[ch][seg] = get_bits(gbc, 4);
1105 s->dba_values[ch][seg] = get_bits(gbc, 3);
1107 /* run last 2 bit allocation stages if new dba values */
1108 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
1111 } else if(blk == 0) {
1112 for(ch=0; ch<=s->channels; ch++) {
1113 s->dba_mode[ch] = DBA_NONE;
1117 /* Bit allocation */
1118 for(ch=!cpl_in_use; ch<=s->channels; ch++) {
1119 if(bit_alloc_stages[ch] > 2) {
1120 /* Exponent mapping into PSD and PSD integration */
1121 ff_ac3_bit_alloc_calc_psd(s->dexps[ch],
1122 s->start_freq[ch], s->end_freq[ch],
1123 s->psd[ch], s->band_psd[ch]);
1125 if(bit_alloc_stages[ch] > 1) {
1126 /* Compute excitation function, Compute masking curve, and
1127 Apply delta bit allocation */
1128 if (ff_ac3_bit_alloc_calc_mask(&s->bit_alloc_params, s->band_psd[ch],
1129 s->start_freq[ch], s->end_freq[ch],
1130 s->fast_gain[ch], (ch == s->lfe_ch),
1131 s->dba_mode[ch], s->dba_nsegs[ch],
1132 s->dba_offsets[ch], s->dba_lengths[ch],
1133 s->dba_values[ch], s->mask[ch])) {
1134 av_log(s->avctx, AV_LOG_ERROR, "error in bit allocation\n");
1135 return -1;
1138 if(bit_alloc_stages[ch] > 0) {
1139 /* Compute bit allocation */
1140 const uint8_t *bap_tab = s->channel_uses_aht[ch] ?
1141 ff_eac3_hebap_tab : ff_ac3_bap_tab;
1142 ff_ac3_bit_alloc_calc_bap(s->mask[ch], s->psd[ch],
1143 s->start_freq[ch], s->end_freq[ch],
1144 s->snr_offset[ch],
1145 s->bit_alloc_params.floor,
1146 bap_tab, s->bap[ch]);
1150 /* unused dummy data */
1151 if (s->skip_syntax && get_bits1(gbc)) {
1152 int skipl = get_bits(gbc, 9);
1153 while(skipl--)
1154 skip_bits(gbc, 8);
1157 /* unpack the transform coefficients
1158 this also uncouples channels if coupling is in use. */
1159 decode_transform_coeffs(s, blk);
1161 /* TODO: generate enhanced coupling coordinates and uncouple */
1163 /* TODO: apply spectral extension */
1165 /* recover coefficients if rematrixing is in use */
1166 if(s->channel_mode == AC3_CHMODE_STEREO)
1167 do_rematrixing(s);
1169 /* apply scaling to coefficients (headroom, dynrng) */
1170 for(ch=1; ch<=s->channels; ch++) {
1171 float gain = s->mul_bias / 4194304.0f;
1172 if(s->channel_mode == AC3_CHMODE_DUALMONO) {
1173 gain *= s->dynamic_range[ch-1];
1174 } else {
1175 gain *= s->dynamic_range[0];
1177 s->dsp.int32_to_float_fmul_scalar(s->transform_coeffs[ch], s->fixed_coeffs[ch], gain, 256);
1180 /* downmix and MDCT. order depends on whether block switching is used for
1181 any channel in this block. this is because coefficients for the long
1182 and short transforms cannot be mixed. */
1183 downmix_output = s->channels != s->out_channels &&
1184 !((s->output_mode & AC3_OUTPUT_LFEON) &&
1185 s->fbw_channels == s->out_channels);
1186 if(different_transforms) {
1187 /* the delay samples have already been downmixed, so we upmix the delay
1188 samples in order to reconstruct all channels before downmixing. */
1189 if(s->downmixed) {
1190 s->downmixed = 0;
1191 ac3_upmix_delay(s);
1194 do_imdct(s, s->channels);
1196 if(downmix_output) {
1197 s->dsp.ac3_downmix(s->output, s->downmix_coeffs, s->out_channels, s->fbw_channels, 256);
1199 } else {
1200 if(downmix_output) {
1201 s->dsp.ac3_downmix(s->transform_coeffs+1, s->downmix_coeffs, s->out_channels, s->fbw_channels, 256);
1204 if(downmix_output && !s->downmixed) {
1205 s->downmixed = 1;
1206 s->dsp.ac3_downmix(s->delay, s->downmix_coeffs, s->out_channels, s->fbw_channels, 128);
1209 do_imdct(s, s->out_channels);
1212 return 0;
1216 * Decode a single AC-3 frame.
1218 static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size,
1219 AVPacket *avpkt)
1221 const uint8_t *buf = avpkt->data;
1222 int buf_size = avpkt->size;
1223 AC3DecodeContext *s = avctx->priv_data;
1224 int16_t *out_samples = (int16_t *)data;
1225 int blk, ch, err;
1226 const uint8_t *channel_map;
1227 const float *output[AC3_MAX_CHANNELS];
1229 /* initialize the GetBitContext with the start of valid AC-3 Frame */
1230 if (s->input_buffer) {
1231 /* copy input buffer to decoder context to avoid reading past the end
1232 of the buffer, which can be caused by a damaged input stream. */
1233 memcpy(s->input_buffer, buf, FFMIN(buf_size, AC3_FRAME_BUFFER_SIZE));
1234 init_get_bits(&s->gbc, s->input_buffer, buf_size * 8);
1235 } else {
1236 init_get_bits(&s->gbc, buf, buf_size * 8);
1239 /* parse the syncinfo */
1240 *data_size = 0;
1241 err = parse_frame_header(s);
1243 /* check that reported frame size fits in input buffer */
1244 if(s->frame_size > buf_size) {
1245 av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
1246 err = AAC_AC3_PARSE_ERROR_FRAME_SIZE;
1249 /* check for crc mismatch */
1250 if(err != AAC_AC3_PARSE_ERROR_FRAME_SIZE && avctx->error_recognition >= FF_ER_CAREFUL) {
1251 if(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0, &buf[2], s->frame_size-2)) {
1252 av_log(avctx, AV_LOG_ERROR, "frame CRC mismatch\n");
1253 err = AAC_AC3_PARSE_ERROR_CRC;
1257 if(err && err != AAC_AC3_PARSE_ERROR_CRC) {
1258 switch(err) {
1259 case AAC_AC3_PARSE_ERROR_SYNC:
1260 av_log(avctx, AV_LOG_ERROR, "frame sync error\n");
1261 return -1;
1262 case AAC_AC3_PARSE_ERROR_BSID:
1263 av_log(avctx, AV_LOG_ERROR, "invalid bitstream id\n");
1264 break;
1265 case AAC_AC3_PARSE_ERROR_SAMPLE_RATE:
1266 av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
1267 break;
1268 case AAC_AC3_PARSE_ERROR_FRAME_SIZE:
1269 av_log(avctx, AV_LOG_ERROR, "invalid frame size\n");
1270 break;
1271 case AAC_AC3_PARSE_ERROR_FRAME_TYPE:
1272 /* skip frame if CRC is ok. otherwise use error concealment. */
1273 /* TODO: add support for substreams and dependent frames */
1274 if(s->frame_type == EAC3_FRAME_TYPE_DEPENDENT || s->substreamid) {
1275 av_log(avctx, AV_LOG_ERROR, "unsupported frame type : skipping frame\n");
1276 return s->frame_size;
1277 } else {
1278 av_log(avctx, AV_LOG_ERROR, "invalid frame type\n");
1280 break;
1281 default:
1282 av_log(avctx, AV_LOG_ERROR, "invalid header\n");
1283 break;
1287 /* if frame is ok, set audio parameters */
1288 if (!err) {
1289 avctx->sample_rate = s->sample_rate;
1290 avctx->bit_rate = s->bit_rate;
1292 /* channel config */
1293 s->out_channels = s->channels;
1294 s->output_mode = s->channel_mode;
1295 if(s->lfe_on)
1296 s->output_mode |= AC3_OUTPUT_LFEON;
1297 if (avctx->request_channels > 0 && avctx->request_channels <= 2 &&
1298 avctx->request_channels < s->channels) {
1299 s->out_channels = avctx->request_channels;
1300 s->output_mode = avctx->request_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
1301 s->channel_layout = ff_ac3_channel_layout_tab[s->output_mode];
1303 avctx->channels = s->out_channels;
1304 avctx->channel_layout = s->channel_layout;
1306 /* set downmixing coefficients if needed */
1307 if(s->channels != s->out_channels && !((s->output_mode & AC3_OUTPUT_LFEON) &&
1308 s->fbw_channels == s->out_channels)) {
1309 set_downmix_coeffs(s);
1311 } else if (!s->out_channels) {
1312 s->out_channels = avctx->channels;
1313 if(s->out_channels < s->channels)
1314 s->output_mode = s->out_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
1317 /* decode the audio blocks */
1318 channel_map = ff_ac3_dec_channel_map[s->output_mode & ~AC3_OUTPUT_LFEON][s->lfe_on];
1319 for (ch = 0; ch < s->out_channels; ch++)
1320 output[ch] = s->output[channel_map[ch]];
1321 for (blk = 0; blk < s->num_blocks; blk++) {
1322 if (!err && decode_audio_block(s, blk)) {
1323 av_log(avctx, AV_LOG_ERROR, "error decoding the audio block\n");
1324 err = 1;
1326 s->dsp.float_to_int16_interleave(out_samples, output, 256, s->out_channels);
1327 out_samples += 256 * s->out_channels;
1329 *data_size = s->num_blocks * 256 * avctx->channels * sizeof (int16_t);
1330 return s->frame_size;
1334 * Uninitialize the AC-3 decoder.
1336 static av_cold int ac3_decode_end(AVCodecContext *avctx)
1338 AC3DecodeContext *s = avctx->priv_data;
1339 ff_mdct_end(&s->imdct_512);
1340 ff_mdct_end(&s->imdct_256);
1342 av_freep(&s->input_buffer);
1344 return 0;
1347 AVCodec ac3_decoder = {
1348 .name = "ac3",
1349 .type = CODEC_TYPE_AUDIO,
1350 .id = CODEC_ID_AC3,
1351 .priv_data_size = sizeof (AC3DecodeContext),
1352 .init = ac3_decode_init,
1353 .close = ac3_decode_end,
1354 .decode = ac3_decode_frame,
1355 .long_name = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"),
1358 AVCodec eac3_decoder = {
1359 .name = "eac3",
1360 .type = CODEC_TYPE_AUDIO,
1361 .id = CODEC_ID_EAC3,
1362 .priv_data_size = sizeof (AC3DecodeContext),
1363 .init = ac3_decode_init,
1364 .close = ac3_decode_end,
1365 .decode = ac3_decode_frame,
1366 .long_name = NULL_IF_CONFIG_SMALL("ATSC A/52B (AC-3, E-AC-3)"),