cosmetics: change "get" to "decode"
[ffmpeg-lucabe.git] / libavcodec / alac.c
blob1817161160817ace60fcf0bfd79cd0836b229fa4
1 /*
2 * ALAC (Apple Lossless Audio Codec) decoder
3 * Copyright (c) 2005 David Hammerton
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 /**
23 * @file alac.c
24 * ALAC (Apple Lossless Audio Codec) decoder
25 * @author 2005 David Hammerton
27 * For more information on the ALAC format, visit:
28 * http://crazney.net/programs/itunes/alac.html
30 * Note: This decoder expects a 36- (0x24-)byte QuickTime atom to be
31 * passed through the extradata[_size] fields. This atom is tacked onto
32 * the end of an 'alac' stsd atom and has the following format:
33 * bytes 0-3 atom size (0x24), big-endian
34 * bytes 4-7 atom type ('alac', not the 'alac' tag from start of stsd)
35 * bytes 8-35 data bytes needed by decoder
37 * Extradata:
38 * 32bit size
39 * 32bit tag (=alac)
40 * 32bit zero?
41 * 32bit max sample per frame
42 * 8bit ?? (zero?)
43 * 8bit sample size
44 * 8bit history mult
45 * 8bit initial history
46 * 8bit kmodifier
47 * 8bit channels?
48 * 16bit ??
49 * 32bit max coded frame size
50 * 32bit bitrate?
51 * 32bit samplerate
55 #include "avcodec.h"
56 #include "bitstream.h"
57 #include "bytestream.h"
58 #include "unary.h"
60 #define ALAC_EXTRADATA_SIZE 36
61 #define MAX_CHANNELS 2
63 typedef struct {
65 AVCodecContext *avctx;
66 GetBitContext gb;
67 /* init to 0; first frame decode should initialize from extradata and
68 * set this to 1 */
69 int context_initialized;
71 int numchannels;
72 int bytespersample;
74 /* buffers */
75 int32_t *predicterror_buffer[MAX_CHANNELS];
77 int32_t *outputsamples_buffer[MAX_CHANNELS];
79 /* stuff from setinfo */
80 uint32_t setinfo_max_samples_per_frame; /* 0x1000 = 4096 */ /* max samples per frame? */
81 uint8_t setinfo_sample_size; /* 0x10 */
82 uint8_t setinfo_rice_historymult; /* 0x28 */
83 uint8_t setinfo_rice_initialhistory; /* 0x0a */
84 uint8_t setinfo_rice_kmodifier; /* 0x0e */
85 /* end setinfo stuff */
87 } ALACContext;
89 static void allocate_buffers(ALACContext *alac)
91 int chan;
92 for (chan = 0; chan < MAX_CHANNELS; chan++) {
93 alac->predicterror_buffer[chan] =
94 av_malloc(alac->setinfo_max_samples_per_frame * 4);
96 alac->outputsamples_buffer[chan] =
97 av_malloc(alac->setinfo_max_samples_per_frame * 4);
101 static int alac_set_info(ALACContext *alac)
103 const unsigned char *ptr = alac->avctx->extradata;
105 ptr += 4; /* size */
106 ptr += 4; /* alac */
107 ptr += 4; /* 0 ? */
109 if(AV_RB32(ptr) >= UINT_MAX/4){
110 av_log(alac->avctx, AV_LOG_ERROR, "setinfo_max_samples_per_frame too large\n");
111 return -1;
114 /* buffer size / 2 ? */
115 alac->setinfo_max_samples_per_frame = bytestream_get_be32(&ptr);
116 ptr++; /* ??? */
117 alac->setinfo_sample_size = *ptr++;
118 if (alac->setinfo_sample_size > 32) {
119 av_log(alac->avctx, AV_LOG_ERROR, "setinfo_sample_size too large\n");
120 return -1;
122 alac->setinfo_rice_historymult = *ptr++;
123 alac->setinfo_rice_initialhistory = *ptr++;
124 alac->setinfo_rice_kmodifier = *ptr++;
125 ptr++; /* channels? */
126 bytestream_get_be16(&ptr); /* ??? */
127 bytestream_get_be32(&ptr); /* max coded frame size */
128 bytestream_get_be32(&ptr); /* bitrate ? */
129 bytestream_get_be32(&ptr); /* samplerate */
131 allocate_buffers(alac);
133 return 0;
136 static inline int decode_scalar(GetBitContext *gb, int k, int limit, int readsamplesize){
137 /* read x - number of 1s before 0 represent the rice */
138 int x = get_unary_0_9(gb);
140 if (x > 8) { /* RICE THRESHOLD */
141 /* use alternative encoding */
142 x = get_bits(gb, readsamplesize);
143 } else {
144 if (k >= limit)
145 k = limit;
147 if (k != 1) {
148 int extrabits = show_bits(gb, k);
150 /* multiply x by 2^k - 1, as part of their strange algorithm */
151 x = (x << k) - x;
153 if (extrabits > 1) {
154 x += extrabits - 1;
155 skip_bits(gb, k);
156 } else
157 skip_bits(gb, k - 1);
160 return x;
163 static void bastardized_rice_decompress(ALACContext *alac,
164 int32_t *output_buffer,
165 int output_size,
166 int readsamplesize, /* arg_10 */
167 int rice_initialhistory, /* arg424->b */
168 int rice_kmodifier, /* arg424->d */
169 int rice_historymult, /* arg424->c */
170 int rice_kmodifier_mask /* arg424->e */
173 int output_count;
174 unsigned int history = rice_initialhistory;
175 int sign_modifier = 0;
177 for (output_count = 0; output_count < output_size; output_count++) {
178 int32_t x;
179 int32_t x_modified;
180 int32_t final_val;
182 /* standard rice encoding */
183 int k; /* size of extra bits */
185 /* read k, that is bits as is */
186 k = av_log2((history >> 9) + 3);
187 x= decode_scalar(&alac->gb, k, rice_kmodifier, readsamplesize);
189 x_modified = sign_modifier + x;
190 final_val = (x_modified + 1) / 2;
191 if (x_modified & 1) final_val *= -1;
193 output_buffer[output_count] = final_val;
195 sign_modifier = 0;
197 /* now update the history */
198 history += x_modified * rice_historymult
199 - ((history * rice_historymult) >> 9);
201 if (x_modified > 0xffff)
202 history = 0xffff;
204 /* special case: there may be compressed blocks of 0 */
205 if ((history < 128) && (output_count+1 < output_size)) {
206 int k;
207 unsigned int block_size;
209 sign_modifier = 1;
211 k = 7 - av_log2(history) + ((history + 16) >> 6 /* / 64 */);
213 block_size= decode_scalar(&alac->gb, k, rice_kmodifier, 16);
215 if (block_size > 0) {
216 if(block_size >= output_size - output_count){
217 av_log(alac->avctx, AV_LOG_ERROR, "invalid zero block size of %d %d %d\n", block_size, output_size, output_count);
218 block_size= output_size - output_count - 1;
220 memset(&output_buffer[output_count+1], 0, block_size * 4);
221 output_count += block_size;
224 if (block_size > 0xffff)
225 sign_modifier = 0;
227 history = 0;
232 static inline int32_t extend_sign32(int32_t val, int bits)
234 return (val << (32 - bits)) >> (32 - bits);
237 static inline int sign_only(int v)
239 return v ? FFSIGN(v) : 0;
242 static void predictor_decompress_fir_adapt(int32_t *error_buffer,
243 int32_t *buffer_out,
244 int output_size,
245 int readsamplesize,
246 int16_t *predictor_coef_table,
247 int predictor_coef_num,
248 int predictor_quantitization)
250 int i;
252 /* first sample always copies */
253 *buffer_out = *error_buffer;
255 if (!predictor_coef_num) {
256 if (output_size <= 1)
257 return;
259 memcpy(buffer_out+1, error_buffer+1, (output_size-1) * 4);
260 return;
263 if (predictor_coef_num == 0x1f) { /* 11111 - max value of predictor_coef_num */
264 /* second-best case scenario for fir decompression,
265 * error describes a small difference from the previous sample only
267 if (output_size <= 1)
268 return;
269 for (i = 0; i < output_size - 1; i++) {
270 int32_t prev_value;
271 int32_t error_value;
273 prev_value = buffer_out[i];
274 error_value = error_buffer[i+1];
275 buffer_out[i+1] =
276 extend_sign32((prev_value + error_value), readsamplesize);
278 return;
281 /* read warm-up samples */
282 if (predictor_coef_num > 0)
283 for (i = 0; i < predictor_coef_num; i++) {
284 int32_t val;
286 val = buffer_out[i] + error_buffer[i+1];
287 val = extend_sign32(val, readsamplesize);
288 buffer_out[i+1] = val;
291 #if 0
292 /* 4 and 8 are very common cases (the only ones i've seen). these
293 * should be unrolled and optimized
295 if (predictor_coef_num == 4) {
296 /* FIXME: optimized general case */
297 return;
300 if (predictor_coef_table == 8) {
301 /* FIXME: optimized general case */
302 return;
304 #endif
306 /* general case */
307 if (predictor_coef_num > 0) {
308 for (i = predictor_coef_num + 1; i < output_size; i++) {
309 int j;
310 int sum = 0;
311 int outval;
312 int error_val = error_buffer[i];
314 for (j = 0; j < predictor_coef_num; j++) {
315 sum += (buffer_out[predictor_coef_num-j] - buffer_out[0]) *
316 predictor_coef_table[j];
319 outval = (1 << (predictor_quantitization-1)) + sum;
320 outval = outval >> predictor_quantitization;
321 outval = outval + buffer_out[0] + error_val;
322 outval = extend_sign32(outval, readsamplesize);
324 buffer_out[predictor_coef_num+1] = outval;
326 if (error_val > 0) {
327 int predictor_num = predictor_coef_num - 1;
329 while (predictor_num >= 0 && error_val > 0) {
330 int val = buffer_out[0] - buffer_out[predictor_coef_num - predictor_num];
331 int sign = sign_only(val);
333 predictor_coef_table[predictor_num] -= sign;
335 val *= sign; /* absolute value */
337 error_val -= ((val >> predictor_quantitization) *
338 (predictor_coef_num - predictor_num));
340 predictor_num--;
342 } else if (error_val < 0) {
343 int predictor_num = predictor_coef_num - 1;
345 while (predictor_num >= 0 && error_val < 0) {
346 int val = buffer_out[0] - buffer_out[predictor_coef_num - predictor_num];
347 int sign = - sign_only(val);
349 predictor_coef_table[predictor_num] -= sign;
351 val *= sign; /* neg value */
353 error_val -= ((val >> predictor_quantitization) *
354 (predictor_coef_num - predictor_num));
356 predictor_num--;
360 buffer_out++;
365 static void reconstruct_stereo_16(int32_t *buffer[MAX_CHANNELS],
366 int16_t *buffer_out,
367 int numchannels, int numsamples,
368 uint8_t interlacing_shift,
369 uint8_t interlacing_leftweight)
371 int i;
372 if (numsamples <= 0)
373 return;
375 /* weighted interlacing */
376 if (interlacing_leftweight) {
377 for (i = 0; i < numsamples; i++) {
378 int32_t a, b;
380 a = buffer[0][i];
381 b = buffer[1][i];
383 a -= (b * interlacing_leftweight) >> interlacing_shift;
384 b += a;
386 buffer_out[i*numchannels] = b;
387 buffer_out[i*numchannels + 1] = a;
390 return;
393 /* otherwise basic interlacing took place */
394 for (i = 0; i < numsamples; i++) {
395 int16_t left, right;
397 left = buffer[0][i];
398 right = buffer[1][i];
400 buffer_out[i*numchannels] = left;
401 buffer_out[i*numchannels + 1] = right;
405 static int alac_decode_frame(AVCodecContext *avctx,
406 void *outbuffer, int *outputsize,
407 const uint8_t *inbuffer, int input_buffer_size)
409 ALACContext *alac = avctx->priv_data;
411 int channels;
412 unsigned int outputsamples;
413 int hassize;
414 unsigned int readsamplesize;
415 int wasted_bytes;
416 int isnotcompressed;
417 uint8_t interlacing_shift;
418 uint8_t interlacing_leftweight;
420 /* short-circuit null buffers */
421 if (!inbuffer || !input_buffer_size)
422 return input_buffer_size;
424 /* initialize from the extradata */
425 if (!alac->context_initialized) {
426 if (alac->avctx->extradata_size != ALAC_EXTRADATA_SIZE) {
427 av_log(avctx, AV_LOG_ERROR, "alac: expected %d extradata bytes\n",
428 ALAC_EXTRADATA_SIZE);
429 return input_buffer_size;
431 if (alac_set_info(alac)) {
432 av_log(avctx, AV_LOG_ERROR, "alac: set_info failed\n");
433 return input_buffer_size;
435 alac->context_initialized = 1;
438 init_get_bits(&alac->gb, inbuffer, input_buffer_size * 8);
440 channels = get_bits(&alac->gb, 3) + 1;
441 if (channels > MAX_CHANNELS) {
442 av_log(avctx, AV_LOG_ERROR, "channels > %d not supported\n",
443 MAX_CHANNELS);
444 return input_buffer_size;
447 /* 2^result = something to do with output waiting.
448 * perhaps matters if we read > 1 frame in a pass?
450 skip_bits(&alac->gb, 4);
452 skip_bits(&alac->gb, 12); /* unknown, skip 12 bits */
454 /* the output sample size is stored soon */
455 hassize = get_bits1(&alac->gb);
457 wasted_bytes = get_bits(&alac->gb, 2); /* unknown ? */
459 /* whether the frame is compressed */
460 isnotcompressed = get_bits1(&alac->gb);
462 if (hassize) {
463 /* now read the number of samples as a 32bit integer */
464 outputsamples = get_bits_long(&alac->gb, 32);
465 if(outputsamples > alac->setinfo_max_samples_per_frame){
466 av_log(avctx, AV_LOG_ERROR, "outputsamples %d > %d\n", outputsamples, alac->setinfo_max_samples_per_frame);
467 return -1;
469 } else
470 outputsamples = alac->setinfo_max_samples_per_frame;
472 if(outputsamples > *outputsize / alac->bytespersample){
473 av_log(avctx, AV_LOG_ERROR, "sample buffer too small\n");
474 return -1;
477 *outputsize = outputsamples * alac->bytespersample;
478 readsamplesize = alac->setinfo_sample_size - (wasted_bytes * 8) + channels - 1;
479 if (readsamplesize > MIN_CACHE_BITS) {
480 av_log(avctx, AV_LOG_ERROR, "readsamplesize too big (%d)\n", readsamplesize);
481 return -1;
484 if (!isnotcompressed) {
485 /* so it is compressed */
486 int16_t predictor_coef_table[channels][32];
487 int predictor_coef_num[channels];
488 int prediction_type[channels];
489 int prediction_quantitization[channels];
490 int ricemodifier[channels];
491 int i, chan;
493 interlacing_shift = get_bits(&alac->gb, 8);
494 interlacing_leftweight = get_bits(&alac->gb, 8);
496 for (chan = 0; chan < channels; chan++) {
497 prediction_type[chan] = get_bits(&alac->gb, 4);
498 prediction_quantitization[chan] = get_bits(&alac->gb, 4);
500 ricemodifier[chan] = get_bits(&alac->gb, 3);
501 predictor_coef_num[chan] = get_bits(&alac->gb, 5);
503 /* read the predictor table */
504 for (i = 0; i < predictor_coef_num[chan]; i++)
505 predictor_coef_table[chan][i] = (int16_t)get_bits(&alac->gb, 16);
508 if (wasted_bytes)
509 av_log(avctx, AV_LOG_ERROR, "FIXME: unimplemented, unhandling of wasted_bytes\n");
511 for (chan = 0; chan < channels; chan++) {
512 bastardized_rice_decompress(alac,
513 alac->predicterror_buffer[chan],
514 outputsamples,
515 readsamplesize,
516 alac->setinfo_rice_initialhistory,
517 alac->setinfo_rice_kmodifier,
518 ricemodifier[chan] * alac->setinfo_rice_historymult / 4,
519 (1 << alac->setinfo_rice_kmodifier) - 1);
521 if (prediction_type[chan] == 0) {
522 /* adaptive fir */
523 predictor_decompress_fir_adapt(alac->predicterror_buffer[chan],
524 alac->outputsamples_buffer[chan],
525 outputsamples,
526 readsamplesize,
527 predictor_coef_table[chan],
528 predictor_coef_num[chan],
529 prediction_quantitization[chan]);
530 } else {
531 av_log(avctx, AV_LOG_ERROR, "FIXME: unhandled prediction type: %i\n", prediction_type[chan]);
532 /* I think the only other prediction type (or perhaps this is
533 * just a boolean?) runs adaptive fir twice.. like:
534 * predictor_decompress_fir_adapt(predictor_error, tempout, ...)
535 * predictor_decompress_fir_adapt(predictor_error, outputsamples ...)
536 * little strange..
540 } else {
541 /* not compressed, easy case */
542 int i, chan;
543 for (i = 0; i < outputsamples; i++)
544 for (chan = 0; chan < channels; chan++) {
545 int32_t audiobits;
547 audiobits = get_bits_long(&alac->gb, alac->setinfo_sample_size);
548 audiobits = extend_sign32(audiobits, alac->setinfo_sample_size);
550 alac->outputsamples_buffer[chan][i] = audiobits;
552 /* wasted_bytes = 0; */
553 interlacing_shift = 0;
554 interlacing_leftweight = 0;
556 if (get_bits(&alac->gb, 3) != 7)
557 av_log(avctx, AV_LOG_ERROR, "Error : Wrong End Of Frame\n");
559 switch(alac->setinfo_sample_size) {
560 case 16:
561 if (channels == 2) {
562 reconstruct_stereo_16(alac->outputsamples_buffer,
563 (int16_t*)outbuffer,
564 alac->numchannels,
565 outputsamples,
566 interlacing_shift,
567 interlacing_leftweight);
568 } else {
569 int i;
570 for (i = 0; i < outputsamples; i++) {
571 int16_t sample = alac->outputsamples_buffer[0][i];
572 ((int16_t*)outbuffer)[i * alac->numchannels] = sample;
575 break;
576 case 20:
577 case 24:
578 // It is not clear if there exist any encoder that creates 24 bit ALAC
579 // files. iTunes convert 24 bit raw files to 16 bit before encoding.
580 case 32:
581 av_log(avctx, AV_LOG_ERROR, "FIXME: unimplemented sample size %i\n", alac->setinfo_sample_size);
582 break;
583 default:
584 break;
587 if (input_buffer_size * 8 - get_bits_count(&alac->gb) > 8)
588 av_log(avctx, AV_LOG_ERROR, "Error : %d bits left\n", input_buffer_size * 8 - get_bits_count(&alac->gb));
590 return input_buffer_size;
593 static av_cold int alac_decode_init(AVCodecContext * avctx)
595 ALACContext *alac = avctx->priv_data;
596 alac->avctx = avctx;
597 alac->context_initialized = 0;
599 alac->numchannels = alac->avctx->channels;
600 alac->bytespersample = (avctx->bits_per_sample / 8) * alac->numchannels;
601 avctx->sample_fmt = SAMPLE_FMT_S16;
603 return 0;
606 static av_cold int alac_decode_close(AVCodecContext *avctx)
608 ALACContext *alac = avctx->priv_data;
610 int chan;
611 for (chan = 0; chan < MAX_CHANNELS; chan++) {
612 av_free(alac->predicterror_buffer[chan]);
613 av_free(alac->outputsamples_buffer[chan]);
616 return 0;
619 AVCodec alac_decoder = {
620 "alac",
621 CODEC_TYPE_AUDIO,
622 CODEC_ID_ALAC,
623 sizeof(ALACContext),
624 alac_decode_init,
625 NULL,
626 alac_decode_close,
627 alac_decode_frame,
628 .long_name = NULL_IF_CONFIG_SMALL("ALAC (Apple Lossless Audio Codec)"),