2 * Copyright (C) 2009 by Jonathan Woithe
4 * This file is part of FFADO
5 * FFADO = Free Firewire (pro-)audio drivers for linux
7 * FFADO is based upon FreeBoB.
9 * This program is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 2 of the License, or
12 * (at your option) version 3 of the License.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
24 /* This file implements miscellaneous lower-level hardware functions for the Fireface */
28 #include "libieee1394/configrom.h"
29 #include "libieee1394/ieee1394service.h"
31 #include "rme/rme_avdevice.h"
32 #include "rme/fireface_def.h"
34 #include "debugmodule/debugmodule.h"
39 Device::multiplier_of_freq(unsigned int freq
)
41 if (freq
> MIN_QUAD_SPEED
)
43 if (freq
> MIN_DOUBLE_SPEED
)
49 Device::config_lock(void) {
50 rme_shm_lock(dev_config
);
54 Device::config_unlock(void) {
55 rme_shm_unlock(dev_config
);
59 Device::init_hardware(void)
63 signed int n_channels
;
64 signed int have_mixer_settings
= 0;
66 switch (m_rme_model
) {
67 case RME_MODEL_FIREFACE400
: n_channels
= RME_FF400_MAX_CHANNELS
; break;
68 case RME_MODEL_FIREFACE800
: n_channels
= RME_FF800_MAX_CHANNELS
; break;
70 debugOutput(DEBUG_LEVEL_ERROR
, "unknown model %d\n", m_rme_model
);
74 // Initialises the device's settings structure to a known state and then
75 // sets the hardware to reflect this state.
79 // If the software state is not yet valid, attempt to obtain settings
80 // from the device flash. If that fails for some reason, initialise
81 // with a static setup.
82 if (dev_config
->settings_valid
== 0) {
83 dev_config
->settings_valid
= read_device_flash_settings(settings
) == 0;
84 // If valid settings were read, write them to the device so we can
85 // be sure that this mirrors how the device is currently configured.
86 // This is also needed so the "host" LED is extinguished on first
87 // use after power up. Also use the stored sample rate as the
89 if (dev_config
->settings_valid
) {
90 dev_config
->software_freq
= settings
->sample_rate
;
91 // dds_freq can be used to run the audio clock at a slightly
92 // different frequency to what the software requests (to allow
93 // for drop-frame rates for example). For the moment FFADO
94 // provides no explicit support for this, so dds_freq should
97 // If user access to dds_freq is implemented in future, it may
98 // or may not be desireable to set dds_freq from
99 // settings->sample_rate. This will probably be determined by
100 // the nature of the user interface to dds_freq.
102 // See also comments in getSamplingFrequency() and
103 // setDDSFrequency().
104 dev_config
->dds_freq
= 0;
105 set_hardware_params(settings
);
109 // If no valid flash settings, configure with a static setup.
110 if (dev_config
->settings_valid
== 0) {
111 debugOutput(DEBUG_LEVEL_VERBOSE
, "flash settings unavailable or invalid; using defaults\n");
112 memset(settings
, 0, sizeof(*settings
));
113 settings
->spdif_input_mode
= FF_SWPARAM_SPDIF_INPUT_COAX
;
114 settings
->spdif_output_mode
= FF_SWPARAM_SPDIF_OUTPUT_COAX
;
115 settings
->clock_mode
= FF_SWPARAM_CLOCK_MODE_MASTER
;
116 settings
->sync_ref
= FF_SWPARAM_SYNCREF_WORDCLOCK
;
117 settings
->input_level
= FF_SWPARAM_ILEVEL_LOGAIN
;
118 settings
->output_level
= FF_SWPARAM_OLEVEL_HIGAIN
;
119 settings
->phones_level
= FF_SWPARAM_PHONESLEVEL_HIGAIN
;
120 settings
->limit_bandwidth
= FF_SWPARAM_BWLIMIT_SEND_ALL_CHANNELS
;
122 // A default sampling rate. An explicit DDS frequency is not enabled
123 // by default (FFADO doesn't currently make explicit use of this - see
125 dev_config
->software_freq
= 44100;
126 dev_config
->dds_freq
= 0;
127 settings
->sample_rate
= dev_config
->software_freq
;
129 // TODO: set input amplifier gains to a value other than 0?
131 // TODO: store and manipulate channel mute/rec flags
133 // The FF800 needs the input source set via the input options.
134 // The device's default has the limiter enabled so we'll follow
136 if (m_rme_model
== RME_MODEL_FIREFACE800
) {
137 settings
->input_opt
[0] = settings
->input_opt
[1] =
138 settings
->input_opt
[2] = FF_SWPARAM_FF800_INPUT_OPT_FRONT
;
139 settings
->limiter
= 1;
142 // Configure the hardware to match the current software status.
143 // This is only done if the settings valid flag is 0; if it is 1 it
144 // indicates that something has already set the device up to match
145 // the software settings so there's no need to do it again.
147 if (set_hardware_params(settings
) != 0)
151 signed freq
= dev_config
->software_freq
;
152 if (dev_config
->dds_freq
> 0)
153 freq
= dev_config
->dds_freq
;
154 if (set_hardware_dds_freq(freq
) != 0)
158 if (m_rme_model
== RME_MODEL_FIREFACE400
) {
160 for (i
=FF400_AMPGAIN_MIC1
; i
<=FF400_AMPGAIN_INPUT4
; i
++) {
161 set_hardware_ampgain(i
, settings
->amp_gains
[i
]);
165 dev_config
->settings_valid
= 1;
168 have_mixer_settings
= read_device_mixer_settings(settings
) == 0;
170 // Matrix mixer settings
171 for (dest
=0; dest
<n_channels
; dest
++) {
172 for (src
=0; src
<n_channels
; src
++) {
173 if (!have_mixer_settings
)
174 settings
->input_faders
[getMixerGainIndex(src
, dest
)] = 0;
175 set_hardware_mixergain(RME_FF_MM_INPUT
, src
, dest
, settings
->input_faders
[getMixerGainIndex(src
, dest
)]);
177 for (src
=0; src
<n_channels
; src
++) {
178 if (!have_mixer_settings
)
179 settings
->playback_faders
[getMixerGainIndex(src
, dest
)] =
181 set_hardware_mixergain(RME_FF_MM_PLAYBACK
, src
, dest
,
182 settings
->playback_faders
[getMixerGainIndex(src
, dest
)]);
185 for (src
=0; src
<n_channels
; src
++) {
186 if (!have_mixer_settings
)
187 settings
->output_faders
[src
] = 0x8000;
188 set_hardware_mixergain(RME_FF_MM_OUTPUT
, src
, 0, settings
->output_faders
[src
]);
191 set_hardware_output_rec(0);
193 if (ret
==0 && m_rme_model
==RME_MODEL_FIREFACE400
) {
194 unsigned int node_id
= getConfigRom().getNodeId();
195 unsigned int midi_hi_addr
;
196 // For now we'll fix this since that's what's done under other
199 if (writeRegister(RME_FF400_MIDI_HIGH_ADDR
, (node_id
<<16) | midi_hi_addr
) != 0) {
200 debugOutput(DEBUG_LEVEL_ERROR
, "failed to write MIDI high address register\n");
205 // Also configure the TCO (Time Code Option) settings for those devices
207 if (ret
==0 && dev_config
->tco_settings_valid
==0) {
208 if (dev_config
->tco_present
) {
209 memset(tco_settings
, 0, sizeof(*tco_settings
));
210 if (write_tco_settings(tco_settings
) != 0) {
211 debugOutput(DEBUG_LEVEL_ERROR
, "failed to write TCO settings\n");
214 dev_config
->tco_settings_valid
= 1;
223 Device::get_hardware_status(unsigned int *stat0
, unsigned int *stat1
)
226 if (readBlock(RME_FF_STATUS_REG0
, buf
, 2) != 0)
234 Device::get_hardware_streaming_status(unsigned int *stat
, unsigned int n
)
236 // Get the hardware status as it applies to the streaming system. This
237 // involves a request of 4 quadlets from the status register. It
238 // appears that the first register's definition is slightly different in
239 // this situation compared to when only 2 quadlets are requested as is
240 // done in get_hardware_status().
242 // "n" is the size of the passed-in stat array. It must be >= 4.
245 if (readBlock(RME_FF_STATUS_REG0
, stat
, 4) != 0)
251 Device::get_hardware_state(FF_state_t
*state
)
253 // Retrieve the hardware status and deduce the device state. Return
254 // -1 on error, 0 on success. The given state structure will be
255 // cleared by this call.
256 static signed int call_count
= 0;
257 unsigned int stat0
, stat1
;
258 memset(state
, 0, sizeof(*state
));
259 if (get_hardware_status(&stat0
, &stat1
) != 0)
262 state
->is_streaming
= dev_config
->is_streaming
;
264 state
->clock_mode
= (settings
->clock_mode
== FF_SWPARAM_CLOCK_MODE_MASTER
)?FF_STATE_CLOCKMODE_MASTER
:FF_STATE_CLOCKMODE_AUTOSYNC
;
266 switch (stat0
& SR0_AUTOSYNC_SRC_MASK
) {
267 case SR0_AUTOSYNC_SRC_ADAT1
:
268 state
->autosync_source
= FF_STATE_AUTOSYNC_SRC_ADAT1
;
270 case SR0_AUTOSYNC_SRC_ADAT2
:
271 state
->autosync_source
= FF_STATE_AUTOSYNC_SRC_ADAT2
;
273 case SR0_AUTOSYNC_SRC_SPDIF
:
274 state
->autosync_source
= FF_STATE_AUTOSYNC_SRC_SPDIF
;
276 case SR0_AUTOSYNC_SRC_WCLK
:
277 state
->autosync_source
= FF_STATE_AUTOSYNC_SRC_WCLK
;
279 case SR0_AUTOSYNC_SRC_TCO
:
280 state
->autosync_source
= FF_STATE_AUTOSYNC_SRC_TCO
;
282 default: state
->autosync_source
= FF_STATE_AUTOSYNC_SRC_NOLOCK
;
285 switch (stat0
& SR0_AUTOSYNC_FREQ_MASK
) {
286 case SR0_AUTOSYNC_FREQ_32k
: state
->autosync_freq
= 32000; break;
287 case SR0_AUTOSYNC_FREQ_44k1
: state
->autosync_freq
= 44100; break;
288 case SR0_AUTOSYNC_FREQ_48k
: state
->autosync_freq
= 48000; break;
289 case SR0_AUTOSYNC_FREQ_64k
: state
->autosync_freq
= 64000; break;
290 case SR0_AUTOSYNC_FREQ_88k2
: state
->autosync_freq
= 88200; break;
291 case SR0_AUTOSYNC_FREQ_96k
: state
->autosync_freq
= 96000; break;
292 case SR0_AUTOSYNC_FREQ_128k
: state
->autosync_freq
= 128000; break;
293 case SR0_AUTOSYNC_FREQ_176k4
:state
->autosync_freq
= 176400; break;
294 case SR0_AUTOSYNC_FREQ_192k
: state
->autosync_freq
= 192000; break;
297 switch (stat0
& SR0_SPDIF_FREQ_MASK
) {
298 case SR0_SPDIF_FREQ_32k
: state
->spdif_freq
= 32000; break;
299 case SR0_SPDIF_FREQ_44k1
: state
->spdif_freq
= 41000; break;
300 case SR0_SPDIF_FREQ_48k
: state
->spdif_freq
= 48000; break;
301 case SR0_SPDIF_FREQ_64k
: state
->spdif_freq
= 64000; break;
302 case SR0_SPDIF_FREQ_88k2
: state
->spdif_freq
= 88200; break;
303 case SR0_SPDIF_FREQ_96k
: state
->spdif_freq
= 96000; break;
304 case SR0_SPDIF_FREQ_128k
: state
->spdif_freq
= 128000; break;
305 case SR0_SPDIF_FREQ_176k4
:state
->spdif_freq
= 176400; break;
306 case SR0_SPDIF_FREQ_192k
: state
->spdif_freq
= 192000; break;
309 switch (stat0
& SR0_ADAT1_STATUS_MASK
) {
310 case SR0_ADAT1_STATUS_NOLOCK
:
311 state
->adat1_sync_status
= FF_STATE_SYNC_NOLOCK
; break;
312 case SR0_ADAT1_STATUS_LOCK
:
313 state
->adat1_sync_status
= FF_STATE_SYNC_LOCKED
; break;
314 case SR0_ADAT1_STATUS_SYNC
:
315 state
->adat1_sync_status
= FF_STATE_SYNC_SYNCED
; break;
317 switch (stat0
& SR0_ADAT2_STATUS_MASK
) {
318 case SR0_ADAT2_STATUS_NOLOCK
:
319 state
->adat2_sync_status
= FF_STATE_SYNC_NOLOCK
; break;
320 case SR0_ADAT2_STATUS_LOCK
:
321 state
->adat2_sync_status
= FF_STATE_SYNC_LOCKED
; break;
322 case SR0_ADAT2_STATUS_SYNC
:
323 state
->adat2_sync_status
= FF_STATE_SYNC_SYNCED
; break;
325 switch (stat0
& SR0_SPDIF_STATUS_MASK
) {
326 case SR0_SPDIF_STATUS_NOLOCK
:
327 state
->spdif_sync_status
= FF_STATE_SYNC_NOLOCK
; break;
328 case SR0_SPDIF_STATUS_LOCK
:
329 state
->spdif_sync_status
= FF_STATE_SYNC_LOCKED
; break;
330 case SR0_SPDIF_STATUS_SYNC
:
331 state
->spdif_sync_status
= FF_STATE_SYNC_SYNCED
; break;
333 switch (stat0
& SR0_WCLK_STATUS_MASK
) {
334 case SR0_WCLK_STATUS_NOLOCK
:
335 state
->wclk_sync_status
= FF_STATE_SYNC_NOLOCK
; break;
336 case SR0_WCLK_STATUS_LOCK
:
337 state
->wclk_sync_status
= FF_STATE_SYNC_LOCKED
; break;
338 case SR0_WCLK_STATUS_SYNC
:
339 state
->wclk_sync_status
= FF_STATE_SYNC_SYNCED
; break;
341 switch (stat1
& SR1_TCO_STATUS_MASK
) {
342 case SR1_TCO_STATUS_NOLOCK
:
343 state
->tco_sync_status
= FF_STATE_SYNC_NOLOCK
; break;
344 case SR1_TCO_STATUS_LOCK
:
345 state
->tco_sync_status
= FF_STATE_SYNC_LOCKED
; break;
346 case SR1_TCO_STATUS_SYNC
:
347 state
->tco_sync_status
= FF_STATE_SYNC_SYNCED
; break;
350 // Report the state reported by the hardware if debug output is active.
351 // Only do this for the first few calls.
352 if (call_count
< 2) {
353 debugOutput(DEBUG_LEVEL_VERBOSE
, "State reported by hardware:\n");
354 debugOutput(DEBUG_LEVEL_VERBOSE
, " is_streaming: %d\n", state
->is_streaming
);
355 debugOutput(DEBUG_LEVEL_VERBOSE
, " clock_mode: %s\n", state
->clock_mode
==FF_STATE_CLOCKMODE_MASTER
?"master":"autosync/slave");
356 debugOutput(DEBUG_LEVEL_VERBOSE
, " autosync source: %d\n", state
->autosync_source
);
357 debugOutput(DEBUG_LEVEL_VERBOSE
, " autosync freq: %d\n", state
->autosync_freq
);
358 debugOutput(DEBUG_LEVEL_VERBOSE
, " spdif freq: %d\n", state
->spdif_freq
);
359 debugOutput(DEBUG_LEVEL_VERBOSE
, " ADAT 1/2 status: %x, %x\n", state
->adat1_sync_status
, state
->adat2_sync_status
);
360 debugOutput(DEBUG_LEVEL_VERBOSE
, " SDPIF status: %x\n", state
->spdif_sync_status
);
361 debugOutput(DEBUG_LEVEL_VERBOSE
, " Wclk/tco status: %x, %x\n", state
->wclk_sync_status
, state
->tco_sync_status
);
368 Device::set_hardware_params(FF_software_settings_t
*use_settings
)
370 // Initialises the hardware to the state defined by the supplied
371 // software settings structure (which will usually be the device's
372 // "settings" structure). This has the side effect of extinguishing the
373 // "Host" LED on the FF400 when done for the first time after the
374 // interface has been powered up.
376 // If use_settings is NULL, the device's current settings structure will
377 // be used to source the configuration information.
379 FF_software_settings_t
*sw_settings
;
380 quadlet_t data
[3] = {0, 0, 0};
381 unsigned int conf_reg
;
383 if (use_settings
== NULL
)
384 sw_settings
= settings
;
386 sw_settings
= use_settings
;
388 if (sw_settings
->mic_phantom
[0])
389 data
[0] |= CR0_PHANTOM_MIC0
;
390 if (sw_settings
->mic_phantom
[1])
391 data
[0] |= CR0_PHANTOM_MIC1
;
392 switch (m_rme_model
) {
393 case RME_MODEL_FIREFACE800
:
394 if (sw_settings
->mic_phantom
[2])
395 data
[0] |= CR0_FF800_PHANTOM_MIC9
;
396 if (sw_settings
->mic_phantom
[3])
397 data
[0] |= CR0_FF800_PHANTOM_MIC10
;
399 case RME_MODEL_FIREFACE400
:
400 if (sw_settings
->ff400_input_pad
[0])
401 data
[0] |= CR0_FF400_CH3_PAD
;
402 if (sw_settings
->ff400_input_pad
[1])
403 data
[0] |= CR0_FF400_CH4_PAD
;
410 if (m_rme_model
== RME_MODEL_FIREFACE400
) {
411 switch (sw_settings
->phones_level
) {
412 case FF_SWPARAM_PHONESLEVEL_HIGAIN
:
413 data
[0] |= CRO_PHLEVEL_HIGAIN
;
415 case FF_SWPARAM_PHONESLEVEL_4dBU
:
416 data
[0] |= CR0_PHLEVEL_4dBU
;
418 case FF_SWPARAM_PHONESLEVEL_m10dBV
:
419 data
[0] |= CRO_PHLEVEL_m10dBV
;
425 switch (sw_settings
->input_level
) {
426 case FF_SWPARAM_ILEVEL_LOGAIN
: // Low gain
427 data
[1] |= CR1_ILEVEL_CPLD_LOGAIN
; // CPLD
428 data
[0] |= CR0_ILEVEL_FPGA_LOGAIN
; // LED control (used on FF800 only)
430 case FF_SWPARAM_ILEVEL_4dBU
: // +4 dBu
431 data
[1] |= CR1_ILEVEL_CPLD_4dBU
;
432 data
[0] |= CR0_ILEVEL_FPGA_4dBU
;
434 case FF_SWPARAM_ILEVEL_m10dBV
: // -10 dBV
435 data
[1] |= CR1_ILEVEL_CPLD_m10dBV
;
436 data
[0] |= CR0_ILEVEL_FPGA_m10dBV
;
441 switch (sw_settings
->output_level
) {
442 case FF_SWPARAM_OLEVEL_HIGAIN
: // High gain
443 data
[1] |= CR1_OLEVEL_CPLD_HIGAIN
; // CPLD
444 data
[0] |= CR0_OLEVEL_FPGA_HIGAIN
; // LED control (used on FF800 only)
446 case FF_SWPARAM_OLEVEL_4dBU
: // +4 dBu
447 data
[1] |= CR1_OLEVEL_CPLD_4dBU
;
448 data
[0] |= CR0_OLEVEL_FPGA_4dBU
;
450 case FF_SWPARAM_OLEVEL_m10dBV
: // -10 dBV
451 data
[1] |= CR1_OLEVEL_CPLD_m10dBV
;
452 data
[0] |= CR0_OLEVEL_FPGA_m10dBV
;
456 /* Set input options. The meaning of the options differs between
457 * devices, so we use the generic identifiers here.
459 data
[1] |= (sw_settings
->input_opt
[1] & FF_SWPARAM_INPUT_OPT_A
) ? CR1_INPUT_OPT1_A
: 0;
460 data
[1] |= (sw_settings
->input_opt
[1] & FF_SWPARAM_INPUT_OPT_B
) ? CR1_INPUT_OPT1_B
: 0;
461 data
[1] |= (sw_settings
->input_opt
[2] & FF_SWPARAM_INPUT_OPT_A
) ? CR1_INPUT_OPT2_A
: 0;
462 data
[1] |= (sw_settings
->input_opt
[2] & FF_SWPARAM_INPUT_OPT_B
) ? CR1_INPUT_OPT2_B
: 0;
464 // Drive the speaker emulation / filter LED via FPGA in FF800. In FF400
465 // the same bit controls the channel 4 "instrument" option.
466 if (m_rme_model
== RME_MODEL_FIREFACE800
) {
467 data
[0] |= (sw_settings
->filter
) ? CR0_FF800_FILTER_FPGA
: 0;
469 if (m_rme_model
== RME_MODEL_FIREFACE400
) {
470 data
[0] |= (sw_settings
->ff400_instr_input
[1]) ? CR0_FF400_CH4_INSTR
: 0;
473 // Set the "rear" option for input 0 if selected
474 data
[1] |= (sw_settings
->input_opt
[0] & FF_SWPARAM_FF800_INPUT_OPT_REAR
) ? CR1_FF800_INPUT1_REAR
: 0;
476 // The input 0 "front" option is activated using one of two bits
477 // depending on whether the filter (aka "speaker emulation") setting is
479 if (sw_settings
->input_opt
[0] & FF_SWPARAM_FF800_INPUT_OPT_FRONT
) {
480 data
[1] |= (sw_settings
->filter
) ? CR1_FF800_INPUT1_FRONT_WITH_FILTER
: CR1_FF800_INPUT1_FRONT
;
483 data
[2] |= (sw_settings
->spdif_output_emphasis
==FF_SWPARAM_SPDIF_OUTPUT_EMPHASIS_ON
) ? CR2_SPDIF_OUT_EMP
: 0;
484 data
[2] |= (sw_settings
->spdif_output_pro
==FF_SWPARAM_SPDIF_OUTPUT_PRO_ON
) ? CR2_SPDIF_OUT_PRO
: 0;
485 data
[2] |= (sw_settings
->spdif_output_nonaudio
==FF_SWPARAM_SPDIF_OUTPUT_NONAUDIO_ON
) ? CR2_SPDIF_OUT_NONAUDIO
: 0;
486 data
[2] |= (sw_settings
->spdif_output_mode
==FF_SWPARAM_SPDIF_OUTPUT_OPTICAL
) ? CR2_SPDIF_OUT_ADAT2
: 0;
487 data
[2] |= (sw_settings
->clock_mode
==FF_SWPARAM_CLOCK_MODE_AUTOSYNC
) ? CR2_CLOCKMODE_AUTOSYNC
: CR2_CLOCKMODE_MASTER
;
488 data
[2] |= (sw_settings
->spdif_input_mode
==FF_SWPARAM_SPDIF_INPUT_COAX
) ? CR2_SPDIF_IN_COAX
: CR2_SPDIF_IN_ADAT2
;
489 data
[2] |= (sw_settings
->word_clock_single_speed
=FF_SWPARAM_WORD_CLOCK_1x
) ? CR2_WORD_CLOCK_1x
: 0;
491 /* TMS / TCO toggle bits in CR2 are not set by other drivers */
493 /* Drive / fuzz in FF800. In FF400, the CR0 bit used by "Drive" controls
494 * the channel 3 "instrument" option.
496 if (m_rme_model
== RME_MODEL_FIREFACE800
) {
497 if (sw_settings
->fuzz
)
498 data
[0] |= CR0_FF800_DRIVE_FPGA
; // FPGA LED control
500 data
[1] |= CR1_INSTR_DRIVE
; // CPLD
502 if (m_rme_model
== RME_MODEL_FIREFACE400
) {
503 data
[0] |= (sw_settings
->ff400_instr_input
[0]) ? CR0_FF400_CH3_INSTR
: 0;
506 /* Drop-and-stop is hardwired on in other drivers */
507 data
[2] |= CR2_DROP_AND_STOP
;
509 if (m_rme_model
== RME_MODEL_FIREFACE400
) {
510 data
[2] |= CR2_FF400_BIT
;
513 switch (sw_settings
->sync_ref
) {
514 case FF_SWPARAM_SYNCREF_WORDCLOCK
:
515 data
[2] |= CR2_SYNC_WORDCLOCK
;
517 case FF_SWPARAM_SYNCREF_ADAT1
:
518 data
[2] |= CR2_SYNC_ADAT1
;
520 case FF_SWPARAM_SYNCREF_ADAT2
:
521 data
[2] |= CR2_SYNC_ADAT2
;
523 case FF_SWPARAM_SYNCREF_SPDIF
:
524 data
[2] |= CR2_SYNC_SPDIF
;
526 case FF_SWPARAM_SYNCREC_TCO
:
527 data
[2] |= CR2_SYNC_TCO
;
531 // This is hardwired in other drivers
532 data
[2] |= (CR2_FREQ0
+ CR2_FREQ1
+ CR2_DSPEED
+ CR2_QSSPEED
);
534 // The FF800 limiter can only be disabled if the front panel instrument
535 // input is in use, so it only makes sense that it is disabled when that
537 data
[2] |= (sw_settings
->limiter
==0 &&
538 (sw_settings
->input_opt
[0]==FF_SWPARAM_FF800_INPUT_OPT_FRONT
)) ?
539 CR2_DISABLE_LIMITER
: 0;
541 //This is just for testing - it's a known consistent configuration
542 //data[0] = 0x00020810; // Phantom off
543 //data[0] = 0x00020811; // Phantom on
544 //data[1] = 0x0000031e;
545 //data[2] = 0xc400101f;
546 debugOutput(DEBUG_LEVEL_VERBOSE
, "set hardware registers: 0x%08x 0x%08x 0x%08x\n",
547 data
[0], data
[1], data
[2]);
549 switch (m_rme_model
) {
550 case RME_MODEL_FIREFACE800
: conf_reg
= RME_FF800_CONF_REG
; break;
551 case RME_MODEL_FIREFACE400
: conf_reg
= RME_FF400_CONF_REG
; break;
553 debugOutput(DEBUG_LEVEL_ERROR
, "unimplemented model %d\n", m_rme_model
);
556 if (writeBlock(conf_reg
, data
, 3) != 0) {
557 debugOutput(DEBUG_LEVEL_ERROR
, "failed to write device settings\n");
565 Device::read_tco(quadlet_t
*tco_data
, signed int size
)
567 // Read the TCO registers and return the respective values in *tco_data.
568 // Return value is 0 on success, or -1 if there is no TCO present.
569 // "size" is the size (in quadlets) of the array pointed to by tco_data.
570 // To obtain all TCO data "size" should be at least 4. If the caller
571 // doesn't care about the data returned by the TCO, tco_data can be
576 // Only the Fireface 800 can have the TCO fitted
577 if (m_rme_model
!= RME_MODEL_FIREFACE800
)
580 if (readBlock(RME_FF_TCO_READ_REG
, buf
, 4) != 0)
583 if (tco_data
!= NULL
) {
584 for (i
=0; i
<(size
<4)?size
:4; i
++)
585 tco_data
[i
] = buf
[i
];
588 if ( (buf
[0] & 0x80808080) == 0x80808080 &&
589 (buf
[1] & 0x80808080) == 0x80808080 &&
590 (buf
[2] & 0x80808080) == 0x80808080 &&
591 (buf
[3] & 0x8000FFFF) == 0x80008000) {
600 Device::write_tco(quadlet_t
*tco_data
, signed int size
)
602 // Writes data to the TCO. No check is made as to whether a TCO is
603 // present in the current device. Return value is 0 on success or -1 on
604 // error. "size" is the size (in quadlets) of the data pointed to by
605 // "tco_data". The first 4 quadlets of tco_data are significant; all
606 // others are ignored. If fewer than 4 quadlets are supplied (as
607 // indicated by the "size" parameter, -1 will be returned.
611 // Don't bother trying to write if the device is not a FF800 since the
612 // TCO can only be fitted to a FF800.
613 if (m_rme_model
!= RME_MODEL_FIREFACE800
)
616 if (writeBlock(RME_FF_TCO_WRITE_REG
, tco_data
, 4) != 0)
623 Device::hardware_is_streaming(void)
625 // Return 1 if the hardware is streaming, 0 if not.
626 return dev_config
->is_streaming
;
630 Device::read_tco_state(FF_TCO_state_t
*tco_state
)
632 // Reads the current TCO state into the supplied state structure
635 unsigned int PLL_phase
;
637 if (read_tco(tc
, 4) != 0)
640 // The timecode is stored in BCD (binary coded decimal) in register 0.
641 tco_state
->frames
= (tc
[0] & 0xf) + ((tc
[0] & 0x30) >> 4)*10;
642 tco_state
->seconds
= ((tc
[0] & 0xf00) >> 8) + ((tc
[0] & 0x7000) >> 12)*10;
643 tco_state
->minutes
= ((tc
[0] & 0xf0000) >> 16) + ((tc
[0] & 0x700000) >> 20)*10;
644 tco_state
->hours
= ((tc
[0] & 0xf000000) >> 24) + ((tc
[0] & 0x30000000) >> 28)*10;
646 tco_state
->locked
= (tc
[1] & FF_TCO1_TCO_lock
) != 0;
647 tco_state
->ltc_valid
= (tc
[1] & FF_TCO1_LTC_INPUT_VALID
) != 0;
649 switch (tc
[1] & FF_TCO1_LTC_FORMAT_MASK
) {
650 case FF_TC01_LTC_FORMAT_24fps
:
651 tco_state
->frame_rate
= FF_TCOSTATE_FRAMERATE_24fps
; break;
652 case FF_TCO1_LTC_FORMAT_25fps
:
653 tco_state
->frame_rate
= FF_TCOSTATE_FRAMERATE_25fps
; break;
654 case FF_TC01_LTC_FORMAT_29_97fps
:
655 tco_state
->frame_rate
= FF_TCOSTATE_FRAMERATE_29_97fps
; break;
656 case FF_TCO1_LTC_FORMAT_30fps
:
657 tco_state
->frame_rate
= FF_TCOSTATE_FRAMERATE_30fps
; break;
660 tco_state
->drop_frame
= (tc
[1] & FF_TCO1_SET_DROPFRAME
) != 0;
662 switch (tc
[1] & FF_TCO1_VIDEO_INPUT_MASK
) {
663 case FF_TCO1_VIDEO_INPUT_NTSC
:
664 tco_state
->video_input
= FF_TCOSTATE_VIDEO_NTSC
; break;
665 case FF_TCO1_VIDEO_INPUT_PAL
:
666 tco_state
->video_input
= FF_TCOSTATE_VIDEO_PAL
; break;
668 tco_state
->video_input
= FF_TCOSTATE_VIDEO_NONE
;
671 if ((tc
[1] & FF_TCO1_WORD_CLOCK_INPUT_VALID
) == 0) {
672 tco_state
->word_clock_state
= FF_TCOSTATE_WORDCLOCK_NONE
;
674 switch (tc
[1] & FF_TCO1_WORD_CLOCK_INPUT_MASK
) {
675 case FF_TCO1_WORD_CLOCK_INPUT_1x
:
676 tco_state
->word_clock_state
= FF_TCOSTATE_WORDCLOCK_1x
; break;
677 case FF_TCO1_WORD_CLOCK_INPUT_2x
:
678 tco_state
->word_clock_state
= FF_TCOSTATE_WORDCLOCK_2x
; break;
679 case FF_TCO1_WORD_CLOCK_INPUT_4x
:
680 tco_state
->word_clock_state
= FF_TCOSTATE_WORDCLOCK_4x
; break;
684 PLL_phase
= (tc
[2] & 0x7f) + ((tc
[2] & 0x7f00) >> 1);
685 tco_state
->sample_rate
= (25000000.0 * 16.0)/PLL_phase
;
691 Device::write_tco_settings(FF_TCO_settings_t
*tco_settings
)
693 // Writes the supplied application-level settings to the device's TCO
694 // (Time Code Option). Don't bother doing anything if the device doesn't
695 // have a TCO fitted. Returns 0 on success, -1 on error.
697 quadlet_t tc
[4] = {0, 0, 0, 0};
699 if (!dev_config
->tco_present
) {
703 if (tco_settings
->MTC
)
704 tc
[0] |= FF_TCO0_MTC
;
706 switch (tco_settings
->input
) {
707 case FF_TCOPARAM_INPUT_LTC
:
708 tc
[2] |= FF_TCO2_INPUT_LTC
; break;
709 case FF_TCOPARAM_INPUT_VIDEO
:
710 tc
[2] |= FF_TCO2_INPUT_VIDEO
; break;
711 case FF_TCOPARAM_INPUT_WCK
:
712 tc
[2] |= FF_TCO2_INPUT_WORD_CLOCK
; break;
715 switch (tco_settings
->frame_rate
) {
716 case FF_TCOPARAM_FRAMERATE_24fps
:
717 tc
[1] |= FF_TC01_LTC_FORMAT_24fps
; break;
718 case FF_TCOPARAM_FRAMERATE_25fps
:
719 tc
[1] |= FF_TCO1_LTC_FORMAT_25fps
; break;
720 case FF_TCOPARAM_FRAMERATE_29_97fps
:
721 tc
[1] |= FF_TC01_LTC_FORMAT_29_97fps
; break;
722 case FF_TCOPARAM_FRAMERATE_29_97dfps
:
723 tc
[1] |= FF_TCO1_LTC_FORMAT_29_97dpfs
; break;
724 case FF_TCOPARAM_FRAMERATE_30fps
:
725 tc
[1] |= FF_TCO1_LTC_FORMAT_30fps
; break;
726 case FF_TCOPARAM_FRAMERATE_30dfps
:
727 tc
[1] |= FF_TCO1_LTC_FORMAT_30dfps
; break;
730 switch (tco_settings
->word_clock
) {
731 case FF_TCOPARAM_WORD_CLOCK_CONV_1_1
:
732 tc
[2] |= FF_TCO2_WORD_CLOCK_CONV_1_1
; break;
733 case FF_TCOPARAM_WORD_CLOCK_CONV_44_48
:
734 tc
[2] |= FF_TCO2_WORD_CLOCK_CONV_44_48
; break;
735 case FF_TCOPARAM_WORD_CLOCK_CONV_48_44
:
736 tc
[2] |= FF_TCO2_WORD_CLOCK_CONV_48_44
; break;
739 switch (tco_settings
->sample_rate
) {
740 case FF_TCOPARAM_SRATE_44_1
:
741 tc
[2] |= FF_TCO2_SRATE_44_1
; break;
742 case FF_TCOPARAM_SRATE_48
:
743 tc
[2] |= FF_TCO2_SRATE_48
; break;
744 case FF_TCOPARAM_SRATE_FROM_APP
:
745 tc
[2] |= FF_TCO2_SRATE_FROM_APP
; break;
748 switch (tco_settings
->pull
) {
749 case FF_TCPPARAM_PULL_NONE
:
750 tc
[2] |= FF_TCO2_PULL_0
; break;
751 case FF_TCOPARAM_PULL_UP_01
:
752 tc
[2] |= FF_TCO2_PULL_UP_01
; break;
753 case FF_TCOPARAM_PULL_DOWN_01
:
754 tc
[2] |= FF_TCO2_PULL_DOWN_01
; break;
755 case FF_TCOPARAM_PULL_UP_40
:
756 tc
[2] |= FF_TCO2_PULL_UP_40
; break;
757 case FF_TCOPARAM_PULL_DOWN_40
:
758 tc
[2] |= FF_TCO2_PULL_DOWN_40
; break;
761 if (tco_settings
->termination
== FF_TCOPARAM_TERMINATION_ON
)
762 tc
[2] |= FF_TCO2_SET_TERMINATION
;
764 return write_tco(tc
, 4);
768 Device::set_hardware_dds_freq(signed int freq
)
770 // Set the device's DDS to the given frequency (which in turn determines
771 // the sampling frequency). Returns 0 on success, -1 on error.
773 unsigned int ret
= 0;
775 if (freq
< MIN_SPEED
|| freq
> MAX_SPEED
)
778 switch (m_rme_model
) {
779 case RME_MODEL_FIREFACE400
:
780 ret
= writeRegister(RME_FF400_STREAM_SRATE
, freq
); break;
781 case RME_MODEL_FIREFACE800
:
782 ret
= writeRegister(RME_FF800_STREAM_SRATE
, freq
); break;
784 debugOutput(DEBUG_LEVEL_ERROR
, "unimplemented model %d\n", m_rme_model
);
788 dev_config
->hardware_freq
= freq
;
790 debugOutput(DEBUG_LEVEL_ERROR
, "failed to write DDS register\n");
796 Device::hardware_init_streaming(unsigned int sample_rate
,
797 unsigned int tx_channel
)
799 // tx_channel is the ISO channel the PC will transmit on.
805 debugOutput(DEBUG_LEVEL_VERBOSE
, "*** stream init: %d, %d, %d\n",
806 sample_rate
, num_channels
, tx_channel
);
808 buf
[0] = sample_rate
;
809 buf
[1] = (num_channels
<< 11) + tx_channel
;
810 buf
[2] = num_channels
;
814 buf
[2] |= RME_FF800_STREAMING_SPEED_800
;
817 if (m_rme_model
== RME_MODEL_FIREFACE400
) {
818 addr
= RME_FF400_STREAM_INIT_REG
;
819 size
= RME_FF400_STREAM_INIT_SIZE
;
821 if (m_rme_model
== RME_MODEL_FIREFACE800
) {
822 addr
= RME_FF800_STREAM_INIT_REG
;
823 size
= RME_FF800_STREAM_INIT_SIZE
;
825 debugOutput(DEBUG_LEVEL_ERROR
, "unimplemented model %d\n", m_rme_model
);
829 ret
= writeBlock(addr
, buf
, size
);
831 debugOutput(DEBUG_LEVEL_ERROR
, "failed to write streaming parameters\n");
836 Device::hardware_start_streaming(unsigned int listen_channel
)
839 // Listen_channel is the ISO channel the PC will listen on for data sent
842 quadlet_t data
= num_channels
;
845 if (not(hardware_is_streaming())) {
846 debugOutput(DEBUG_LEVEL_VERBOSE
,"*** starting: listen=%d, num_ch=%d\n", listen_channel
, num_channels
);
847 if (m_rme_model
== RME_MODEL_FIREFACE400
) {
848 addr
= RME_FF400_STREAM_START_REG
;
849 data
|= (listen_channel
<< 5);
851 if (m_rme_model
== RME_MODEL_FIREFACE800
) {
852 addr
= RME_FF800_STREAM_START_REG
;
854 data
|= RME_FF800_STREAMING_SPEED_800
; // Flag 800 Mbps speed
856 debugOutput(DEBUG_LEVEL_ERROR
, "unimplemented model %d\n", m_rme_model
);
860 debugOutput(DEBUG_LEVEL_VERBOSE
, "start 0x%016"PRIx64
" data: %08x\n", addr
, data
);
861 ret
= writeRegister(addr
, data
);
862 debugOutput(DEBUG_LEVEL_VERBOSE
, " ret=%d\n", ret
);
864 dev_config
->is_streaming
= 1;
866 debugOutput(DEBUG_LEVEL_ERROR
, "failed to write for streaming start\n");
868 set_hardware_channel_mute(-1, 0);
878 Device::hardware_stop_streaming(void)
881 quadlet_t buf
[4] = {0, 0, 0, 1};
882 unsigned int size
, ret
= 0;
885 if (hardware_is_streaming()) {
886 if (m_rme_model
== RME_MODEL_FIREFACE400
) {
887 addr
= RME_FF400_STREAM_END_REG
;
888 size
= RME_FF400_STREAM_END_SIZE
;
890 if (m_rme_model
== RME_MODEL_FIREFACE800
) {
891 addr
= RME_FF800_STREAM_END_REG
;
892 size
= RME_FF800_STREAM_END_SIZE
;
894 debugOutput(DEBUG_LEVEL_ERROR
, "unimplemented model %d\n", m_rme_model
);
898 ret
= writeBlock(addr
, buf
, size
);
900 dev_config
->is_streaming
= 0;
902 debugOutput(DEBUG_LEVEL_ERROR
, "failed to write for streaming stop\n");
904 set_hardware_channel_mute(-1, 1);
914 Device::set_hardware_ampgain(unsigned int index
, signed int val
) {
915 // "index" indicates the hardware amplifier gain to set. Values of 0-3
916 // correspond to input amplifier gains. Values from 4 on relate to output
919 // "val" is in dB except for inputs 3/4 where it's in units of 0.5 dB. This
920 // function is responsible for converting to/from the scale used by the
923 // Only the FF400 has the hardware gain register which is controlled by this
925 quadlet_t regval
= 0;
926 signed int devval
= 0;
932 if (index
<= FF400_AMPGAIN_MIC2
) {
938 if (index
<= FF400_AMPGAIN_INPUT4
) {
943 devval
= 0x3f; // Mute
946 regval
|= (index
<< 16);
947 ret
= writeRegister(RME_FF400_GAIN_REG
, regval
);
949 debugOutput(DEBUG_LEVEL_ERROR
, "failed to write amp gains\n");
954 Device::set_hardware_mixergain(unsigned int ctype
, unsigned int src_channel
,
955 unsigned int dest_channel
, signed int val
) {
956 // Set the value of a matrix mixer control. ctype is one of the RME_FF_MM_*
958 // RME_FF_MM_INPUT: source is a physical input
959 // RME_FF_MM_PLAYBACK: source is playback from PC
960 // RME_FF_MM_OUTPUT: source is the physical output whose gain is to be
961 // changed, destination is ignored
962 // Val is the integer value sent to the device. The amount of gain (in dB)
963 // applied can be calculated using
964 // dB = 20.log10(val/32768)
965 // The maximum value of val is 0x10000, corresponding to +6dB of gain.
966 // The minimum is 0x00000 corresponding to mute.
968 unsigned int n_channels
;
969 signed int ram_output_block_size
;
970 unsigned int ram_addr
;
972 if (m_rme_model
== RME_MODEL_FIREFACE400
) {
973 n_channels
= RME_FF400_MAX_CHANNELS
;
974 ram_output_block_size
= 0x48;
976 if (m_rme_model
== RME_MODEL_FIREFACE800
) {
977 n_channels
= RME_FF800_MAX_CHANNELS
;
978 ram_output_block_size
= 0x80;
980 debugOutput(DEBUG_LEVEL_ERROR
, "unimplemented model %d\n", m_rme_model
);
984 if (src_channel
>n_channels
|| dest_channel
>n_channels
)
986 if (abs(val
)>0x10000)
989 ram_addr
= RME_FF_MIXER_RAM
;
991 case RME_FF_MM_INPUT
:
992 case RME_FF_MM_PLAYBACK
:
993 ram_addr
+= (dest_channel
*2*ram_output_block_size
) + 4*src_channel
;
994 if (ctype
== RME_FF_MM_PLAYBACK
)
995 ram_addr
+= ram_output_block_size
;
997 case RME_FF_MM_OUTPUT
:
998 if (m_rme_model
== RME_MODEL_FIREFACE400
)
1002 ram_addr
+= 4*src_channel
;
1006 if (writeRegister(ram_addr
, val
) != 0) {
1007 debugOutput(DEBUG_LEVEL_ERROR
, "failed to write mixer gain element\n");
1010 // If setting the output volume and the device is the FF400, keep
1011 // the separate gain register in sync.
1012 if (ctype
==RME_FF_MM_OUTPUT
&& m_rme_model
==RME_MODEL_FIREFACE400
) {
1019 dB
= roundl(20.0*log10(val
/32768.0));
1020 set_hardware_ampgain(FF400_AMPGAIN_OUTPUT1
+src_channel
, dB
);
1027 Device::set_hardware_channel_mute(signed int chan
, signed int mute
) {
1029 // Mute hardware channels as instructed. This mute probably relates to the
1030 // sampled input channels as delivered to the PC. If "chan" is -1 the
1031 // supplied "mute" status is applied to all channels. This is the only
1032 // supported "chan" value for now. Down the track, if there's a need,
1033 // this could be extended to allow individual channel control.
1036 signed int n_channels
;
1038 if (m_rme_model
== RME_MODEL_FIREFACE400
)
1039 n_channels
= RME_FF400_MAX_CHANNELS
;
1041 if (m_rme_model
== RME_MODEL_FIREFACE800
)
1042 n_channels
= RME_FF800_MAX_CHANNELS
;
1044 debugOutput(DEBUG_LEVEL_ERROR
, "unimplemented model %d\n", m_rme_model
);
1050 while (i
<n_channels
&& i
<28) {
1051 buf
[i
++] = (mute
!=0);
1058 buf
[i
++] = 0x00000001;
1061 // Write 28 quadlets even for FF400
1062 i
= writeBlock(RME_FF_CHANNEL_MUTE_MASK
, buf
, 28);
1064 debugOutput(DEBUG_LEVEL_ERROR
, "failed to write channel mute\n");
1069 Device::set_hardware_output_rec(signed int rec
) {
1070 // Explicitly record (mute!=1) outputs, or not.
1071 // TODO: fill the details in to allow individual outputs to be recorded as
1076 for (i
=0; i
<28; i
++)
1079 // Write 28 quadlets even for FF400
1080 i
= writeBlock(RME_FF_OUTPUT_REC_MASK
, buf
, 28);
1082 debugOutput(DEBUG_LEVEL_ERROR
, "failed to write output record flags\n");