1 ext4
: copy
mpage_readpage() and mpage_readpages() fs
/ext4
/readpage
.c
3 Move the functions which we need from fs
/mpage
.c into
4 fs
/ext4
/readpage
.c
. This will allow us to proceed with the
5 refactorization of these functions
and eventual merger with the
6 functions in fs
/ext4
/page_io
.c
.
8 Signed
-off
-by
: Theodore Ts
'o <tytso@mit.edu>
10 fs/ext4/readpage.c | 326 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++--
11 1 file changed, 320 insertions(+), 6 deletions(-)
13 diff --git a/fs/ext4/readpage.c b/fs/ext4/readpage.c
14 index b5249db..3b29da1 100644
15 --- a/fs/ext4/readpage.c
16 +++ b/fs/ext4/readpage.c
18 #include <linux/ratelimit.h>
19 #include <linux/aio.h>
20 #include <linux/bitops.h>
21 +#include <linux/cleancache.h>
23 #include "ext4_jbd2.h"
27 #include <trace/events/ext4.h>
29 -int ext4_readpage(struct file *file, struct page *page)
31 + * I/O completion handler for multipage BIOs.
33 + * The mpage code never puts partial pages into a BIO (except for end-of-file).
34 + * If a page does not map to a contiguous run of blocks then it simply falls
35 + * back to block_read_full_page().
37 + * Why is this? If a page's completion depends on a number of different BIOs
38 + * which can complete in any
order (or at the same time
) then determining the
39 + * status of that page is hard
. See
end_buffer_async_read() for the details
.
40 + * There is no point in duplicating all that complexity
.
42 +static void mpage_end_io(struct bio
*bio
, int err
)
47 + bio_for_each_segment_all(bv
, bio
, i
) {
48 + struct page
*page
= bv
->bv_page
;
49 + page_endio(page
, bio_data_dir(bio
), err
);
55 +static struct bio
*mpage_bio_submit(int rw
, struct bio
*bio
)
57 + bio
->bi_end_io
= mpage_end_io
;
58 + submit_bio(rw
, bio
);
63 +mpage_alloc(struct block_device
*bdev
,
64 + sector_t first_sector
, int nr_vecs
,
69 + bio
= bio_alloc(gfp_flags
, nr_vecs
);
71 + if (bio
== NULL
&& (current
->flags
& PF_MEMALLOC
)) {
72 + while (!bio
&& (nr_vecs
/= 2))
73 + bio
= bio_alloc(gfp_flags
, nr_vecs
);
77 + bio
->bi_bdev
= bdev
;
78 + bio
->bi_iter
.bi_sector
= first_sector
;
84 + * support function for mpage_readpages. The fs supplied get_block might
85 + * return an up to date buffer. This is used to map that buffer into
86 + * the page, which allows readpage to avoid triggering a duplicate call
89 + * The idea is to avoid adding buffers to pages that don't already have
90 + * them. So when the buffer is up to date and the page size == block size,
91 + * this marks the page up to date instead of adding new buffers.
94 +map_buffer_to_page(struct page
*page
, struct buffer_head
*bh
, int page_block
)
96 + struct inode
*inode
= page
->mapping
->host
;
97 + struct buffer_head
*page_bh
, *head
;
100 + if (!page_has_buffers(page
)) {
102 + * don't make any buffers if there is only one buffer on
103 + * the page and the page just needs to be set up to date
105 + if (inode
->i_blkbits
== PAGE_CACHE_SHIFT
&&
106 + buffer_uptodate(bh
)) {
107 + SetPageUptodate(page
);
110 + create_empty_buffers(page
, 1 << inode
->i_blkbits
, 0);
112 + head
= page_buffers(page
);
115 + if (block
== page_block
) {
116 + page_bh
->b_state
= bh
->b_state
;
117 + page_bh
->b_bdev
= bh
->b_bdev
;
118 + page_bh
->b_blocknr
= bh
->b_blocknr
;
121 + page_bh
= page_bh
->b_this_page
;
123 + } while (page_bh
!= head
);
127 + * This is the worker routine which does all the work of mapping the disk
128 + * blocks and constructs largest possible bios, submits them for IO if the
129 + * blocks are not contiguous on the disk.
131 + * We pass a buffer_head back and forth and use its buffer_mapped() flag to
132 + * represent the validity of its disk mapping and to decide when to do the next
133 + * get_block() call.
136 +do_mpage_readpage(struct bio
*bio
, struct page
*page
, unsigned nr_pages
,
137 + sector_t
*last_block_in_bio
, struct buffer_head
*map_bh
,
138 + unsigned long *first_logical_block
, get_block_t get_block
)
141 struct inode
*inode
= page
->mapping
->host
;
142 + const unsigned blkbits
= inode
->i_blkbits
;
143 + const unsigned blocks_per_page
= PAGE_CACHE_SIZE
>> blkbits
;
144 + const unsigned blocksize
= 1 << blkbits
;
145 + sector_t block_in_file
;
146 + sector_t last_block
;
147 + sector_t last_block_in_file
;
148 + sector_t blocks
[MAX_BUF_PER_PAGE
];
149 + unsigned page_block
;
150 + unsigned first_hole
= blocks_per_page
;
151 + struct block_device
*bdev
= NULL
;
153 + int fully_mapped
= 1;
155 + unsigned relative_block
;
157 + if (page_has_buffers(page
))
160 + block_in_file
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- blkbits
);
161 + last_block
= block_in_file
+ nr_pages
* blocks_per_page
;
162 + last_block_in_file
= (i_size_read(inode
) + blocksize
- 1) >> blkbits
;
163 + if (last_block
> last_block_in_file
)
164 + last_block
= last_block_in_file
;
168 + * Map blocks using the result from the previous get_blocks call first.
170 + nblocks
= map_bh
->b_size
>> blkbits
;
171 + if (buffer_mapped(map_bh
) && block_in_file
> *first_logical_block
&&
172 + block_in_file
< (*first_logical_block
+ nblocks
)) {
173 + unsigned map_offset
= block_in_file
- *first_logical_block
;
174 + unsigned last
= nblocks
- map_offset
;
176 + for (relative_block
= 0; ; relative_block
++) {
177 + if (relative_block
== last
) {
178 + clear_buffer_mapped(map_bh
);
181 + if (page_block
== blocks_per_page
)
183 + blocks
[page_block
] = map_bh
->b_blocknr
+ map_offset
+
188 + bdev
= map_bh
->b_bdev
;
192 + * Then do more get_blocks calls until we are done with this page.
194 + map_bh
->b_page
= page
;
195 + while (page_block
< blocks_per_page
) {
196 + map_bh
->b_state
= 0;
197 + map_bh
->b_size
= 0;
199 + if (block_in_file
< last_block
) {
200 + map_bh
->b_size
= (last_block
-block_in_file
) << blkbits
;
201 + if (get_block(inode
, block_in_file
, map_bh
, 0))
203 + *first_logical_block
= block_in_file
;
206 + if (!buffer_mapped(map_bh
)) {
208 + if (first_hole
== blocks_per_page
)
209 + first_hole
= page_block
;
215 + /* some filesystems will copy data into the page during
216 + * the get_block call, in which case we don't want to
217 + * read it again. map_buffer_to_page copies the data
218 + * we just collected from get_block into the page's buffers
219 + * so readpage doesn't have to repeat the get_block call
221 + if (buffer_uptodate(map_bh
)) {
222 + map_buffer_to_page(page
, map_bh
, page_block
);
226 + if (first_hole
!= blocks_per_page
)
227 + goto confused
; /* hole -> non-hole */
229 + /* Contiguous blocks? */
230 + if (page_block
&& blocks
[page_block
-1] != map_bh
->b_blocknr
-1)
232 + nblocks
= map_bh
->b_size
>> blkbits
;
233 + for (relative_block
= 0; ; relative_block
++) {
234 + if (relative_block
== nblocks
) {
235 + clear_buffer_mapped(map_bh
);
237 + } else if (page_block
== blocks_per_page
)
239 + blocks
[page_block
] = map_bh
->b_blocknr
+relative_block
;
243 + bdev
= map_bh
->b_bdev
;
246 + if (first_hole
!= blocks_per_page
) {
247 + zero_user_segment(page
, first_hole
<< blkbits
, PAGE_CACHE_SIZE
);
248 + if (first_hole
== 0) {
249 + SetPageUptodate(page
);
253 + } else if (fully_mapped
) {
254 + SetPageMappedToDisk(page
);
257 + if (fully_mapped
&& blocks_per_page
== 1 && !PageUptodate(page
) &&
258 + cleancache_get_page(page
) == 0) {
259 + SetPageUptodate(page
);
264 + * This page will go to BIO. Do we need to send this BIO off first?
266 + if (bio
&& (*last_block_in_bio
!= blocks
[0] - 1))
267 + bio
= mpage_bio_submit(READ
, bio
);
271 + if (first_hole
== blocks_per_page
) {
272 + if (!bdev_read_page(bdev
, blocks
[0] << (blkbits
- 9),
276 + bio
= mpage_alloc(bdev
, blocks
[0] << (blkbits
- 9),
277 + min_t(int, nr_pages
, bio_get_nr_vecs(bdev
)),
283 + length
= first_hole
<< blkbits
;
284 + if (bio_add_page(bio
, page
, length
, 0) < length
) {
285 + bio
= mpage_bio_submit(READ
, bio
);
289 + relative_block
= block_in_file
- *first_logical_block
;
290 + nblocks
= map_bh
->b_size
>> blkbits
;
291 + if ((buffer_boundary(map_bh
) && relative_block
== nblocks
) ||
292 + (first_hole
!= blocks_per_page
))
293 + bio
= mpage_bio_submit(READ
, bio
);
295 + *last_block_in_bio
= blocks
[blocks_per_page
- 1];
301 + bio
= mpage_bio_submit(READ
, bio
);
302 + if (!PageUptodate(page
))
303 + block_read_full_page(page
, get_block
);
309 +int ext4_readpage(struct file
*file
, struct page
*page
)
311 + unsigned long first_logical_block
= 0;
312 + struct buffer_head map_bh
;
313 + struct inode
*inode
= page
->mapping
->host
;
314 + struct bio
*bio
= NULL
;
315 + sector_t last_block_in_bio
= 0;
318 trace_ext4_readpage(page
);
320 if (ext4_has_inline_data(inode
))
321 ret
= ext4_readpage_inline(inode
, page
);
323 - if (ret
== -EAGAIN
)
324 - return mpage_readpage(page
, ext4_get_block
);
325 + if (ret
!= -EAGAIN
)
329 + map_bh
.b_state
= 0;
331 + bio
= do_mpage_readpage(bio
, page
, 1, &last_block_in_bio
,
332 + &map_bh
, &first_logical_block
, ext4_get_block
);
334 + mpage_bio_submit(READ
, bio
);
338 int ext4_readpages(struct file
*file
, struct address_space
*mapping
,
339 struct list_head
*pages
, unsigned nr_pages
)
341 struct inode
*inode
= mapping
->host
;
342 + struct bio
*bio
= NULL
;
344 + sector_t last_block_in_bio
= 0;
345 + struct buffer_head map_bh
;
346 + unsigned long first_logical_block
= 0;
348 /* If the file has inline data, no need to do readpages. */
349 if (ext4_has_inline_data(inode
))
352 - return mpage_readpages(mapping
, pages
, nr_pages
, ext4_get_block
);
353 + map_bh
.b_state
= 0;
355 + for (page_idx
= 0; page_idx
< nr_pages
; page_idx
++) {
356 + struct page
*page
= list_entry(pages
->prev
, struct page
, lru
);
358 + prefetchw(&page
->flags
);
359 + list_del(&page
->lru
);
360 + if (!add_to_page_cache_lru(page
, mapping
,
361 + page
->index
, GFP_KERNEL
)) {
362 + bio
= do_mpage_readpage(bio
, page
,
363 + nr_pages
- page_idx
,
364 + &last_block_in_bio
, &map_bh
,
365 + &first_logical_block
,
368 + page_cache_release(page
);
370 + BUG_ON(!list_empty(pages
));
372 + mpage_bio_submit(READ
, bio
);