exciting-0.9.218
[exciting.git] / src / BLAS / dspr.f
blob4ec524e0731c9052d76a73c1abd2477663013ac5
1 SUBROUTINE DSPR(UPLO,N,ALPHA,X,INCX,AP)
2 * .. Scalar Arguments ..
3 DOUBLE PRECISION ALPHA
4 INTEGER INCX,N
5 CHARACTER UPLO
6 * ..
7 * .. Array Arguments ..
8 DOUBLE PRECISION AP(*),X(*)
9 * ..
11 * Purpose
12 * =======
14 * DSPR performs the symmetric rank 1 operation
16 * A := alpha*x*x' + A,
18 * where alpha is a real scalar, x is an n element vector and A is an
19 * n by n symmetric matrix, supplied in packed form.
21 * Arguments
22 * ==========
24 * UPLO - CHARACTER*1.
25 * On entry, UPLO specifies whether the upper or lower
26 * triangular part of the matrix A is supplied in the packed
27 * array AP as follows:
29 * UPLO = 'U' or 'u' The upper triangular part of A is
30 * supplied in AP.
32 * UPLO = 'L' or 'l' The lower triangular part of A is
33 * supplied in AP.
35 * Unchanged on exit.
37 * N - INTEGER.
38 * On entry, N specifies the order of the matrix A.
39 * N must be at least zero.
40 * Unchanged on exit.
42 * ALPHA - DOUBLE PRECISION.
43 * On entry, ALPHA specifies the scalar alpha.
44 * Unchanged on exit.
46 * X - DOUBLE PRECISION array of dimension at least
47 * ( 1 + ( n - 1 )*abs( INCX ) ).
48 * Before entry, the incremented array X must contain the n
49 * element vector x.
50 * Unchanged on exit.
52 * INCX - INTEGER.
53 * On entry, INCX specifies the increment for the elements of
54 * X. INCX must not be zero.
55 * Unchanged on exit.
57 * AP - DOUBLE PRECISION array of DIMENSION at least
58 * ( ( n*( n + 1 ) )/2 ).
59 * Before entry with UPLO = 'U' or 'u', the array AP must
60 * contain the upper triangular part of the symmetric matrix
61 * packed sequentially, column by column, so that AP( 1 )
62 * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
63 * and a( 2, 2 ) respectively, and so on. On exit, the array
64 * AP is overwritten by the upper triangular part of the
65 * updated matrix.
66 * Before entry with UPLO = 'L' or 'l', the array AP must
67 * contain the lower triangular part of the symmetric matrix
68 * packed sequentially, column by column, so that AP( 1 )
69 * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
70 * and a( 3, 1 ) respectively, and so on. On exit, the array
71 * AP is overwritten by the lower triangular part of the
72 * updated matrix.
75 * Level 2 Blas routine.
77 * -- Written on 22-October-1986.
78 * Jack Dongarra, Argonne National Lab.
79 * Jeremy Du Croz, Nag Central Office.
80 * Sven Hammarling, Nag Central Office.
81 * Richard Hanson, Sandia National Labs.
84 * .. Parameters ..
85 DOUBLE PRECISION ZERO
86 PARAMETER (ZERO=0.0D+0)
87 * ..
88 * .. Local Scalars ..
89 DOUBLE PRECISION TEMP
90 INTEGER I,INFO,IX,J,JX,K,KK,KX
91 * ..
92 * .. External Functions ..
93 LOGICAL LSAME
94 EXTERNAL LSAME
95 * ..
96 * .. External Subroutines ..
97 EXTERNAL XERBLA
98 * ..
100 * Test the input parameters.
102 INFO = 0
103 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
104 INFO = 1
105 ELSE IF (N.LT.0) THEN
106 INFO = 2
107 ELSE IF (INCX.EQ.0) THEN
108 INFO = 5
109 END IF
110 IF (INFO.NE.0) THEN
111 CALL XERBLA('DSPR ',INFO)
112 RETURN
113 END IF
115 * Quick return if possible.
117 IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
119 * Set the start point in X if the increment is not unity.
121 IF (INCX.LE.0) THEN
122 KX = 1 - (N-1)*INCX
123 ELSE IF (INCX.NE.1) THEN
124 KX = 1
125 END IF
127 * Start the operations. In this version the elements of the array AP
128 * are accessed sequentially with one pass through AP.
130 KK = 1
131 IF (LSAME(UPLO,'U')) THEN
133 * Form A when upper triangle is stored in AP.
135 IF (INCX.EQ.1) THEN
136 DO 20 J = 1,N
137 IF (X(J).NE.ZERO) THEN
138 TEMP = ALPHA*X(J)
139 K = KK
140 DO 10 I = 1,J
141 AP(K) = AP(K) + X(I)*TEMP
142 K = K + 1
143 10 CONTINUE
144 END IF
145 KK = KK + J
146 20 CONTINUE
147 ELSE
148 JX = KX
149 DO 40 J = 1,N
150 IF (X(JX).NE.ZERO) THEN
151 TEMP = ALPHA*X(JX)
152 IX = KX
153 DO 30 K = KK,KK + J - 1
154 AP(K) = AP(K) + X(IX)*TEMP
155 IX = IX + INCX
156 30 CONTINUE
157 END IF
158 JX = JX + INCX
159 KK = KK + J
160 40 CONTINUE
161 END IF
162 ELSE
164 * Form A when lower triangle is stored in AP.
166 IF (INCX.EQ.1) THEN
167 DO 60 J = 1,N
168 IF (X(J).NE.ZERO) THEN
169 TEMP = ALPHA*X(J)
170 K = KK
171 DO 50 I = J,N
172 AP(K) = AP(K) + X(I)*TEMP
173 K = K + 1
174 50 CONTINUE
175 END IF
176 KK = KK + N - J + 1
177 60 CONTINUE
178 ELSE
179 JX = KX
180 DO 80 J = 1,N
181 IF (X(JX).NE.ZERO) THEN
182 TEMP = ALPHA*X(JX)
183 IX = JX
184 DO 70 K = KK,KK + N - J
185 AP(K) = AP(K) + X(IX)*TEMP
186 IX = IX + INCX
187 70 CONTINUE
188 END IF
189 JX = JX + INCX
190 KK = KK + N - J + 1
191 80 CONTINUE
192 END IF
193 END IF
195 RETURN
197 * End of DSPR .