* print.c (print_object): Fix off-by-one in last change.
[emacs.git] / lisp / calc / calc-cplx.el
blob83083cc893112953d2c05a89e3a7632624df1361
1 ;;; calc-cplx.el --- Complex number functions for Calc
3 ;; Copyright (C) 1990, 1991, 1992, 1993, 2001, 2002, 2003, 2004,
4 ;; 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
6 ;; Author: David Gillespie <daveg@synaptics.com>
7 ;; Maintainer: Jay Belanger <jay.p.belanger@gmail.com>
9 ;; This file is part of GNU Emacs.
11 ;; GNU Emacs is free software; you can redistribute it and/or modify
12 ;; it under the terms of the GNU General Public License as published by
13 ;; the Free Software Foundation; either version 3, or (at your option)
14 ;; any later version.
16 ;; GNU Emacs is distributed in the hope that it will be useful,
17 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
18 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 ;; GNU General Public License for more details.
21 ;; You should have received a copy of the GNU General Public License
22 ;; along with GNU Emacs; see the file COPYING. If not, write to the
23 ;; Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 ;; Boston, MA 02110-1301, USA.
26 ;;; Commentary:
28 ;;; Code:
30 ;; This file is autoloaded from calc-ext.el.
32 (require 'calc-ext)
33 (require 'calc-macs)
35 (defun calc-argument (arg)
36 (interactive "P")
37 (calc-slow-wrapper
38 (calc-unary-op "arg" 'calcFunc-arg arg)))
40 (defun calc-re (arg)
41 (interactive "P")
42 (calc-slow-wrapper
43 (calc-unary-op "re" 'calcFunc-re arg)))
45 (defun calc-im (arg)
46 (interactive "P")
47 (calc-slow-wrapper
48 (calc-unary-op "im" 'calcFunc-im arg)))
51 (defun calc-polar ()
52 (interactive)
53 (calc-slow-wrapper
54 (let ((arg (calc-top-n 1)))
55 (if (or (calc-is-inverse)
56 (eq (car-safe arg) 'polar))
57 (calc-enter-result 1 "p-r" (list 'calcFunc-rect arg))
58 (calc-enter-result 1 "r-p" (list 'calcFunc-polar arg))))))
63 (defun calc-complex-notation ()
64 (interactive)
65 (calc-wrapper
66 (calc-change-mode 'calc-complex-format nil t)
67 (message "Displaying complex numbers in (X,Y) format")))
69 (defun calc-i-notation ()
70 (interactive)
71 (calc-wrapper
72 (calc-change-mode 'calc-complex-format 'i t)
73 (message "Displaying complex numbers in X+Yi format")))
75 (defun calc-j-notation ()
76 (interactive)
77 (calc-wrapper
78 (calc-change-mode 'calc-complex-format 'j t)
79 (message "Displaying complex numbers in X+Yj format")))
82 (defun calc-polar-mode (n)
83 (interactive "P")
84 (calc-wrapper
85 (if (if n
86 (> (prefix-numeric-value n) 0)
87 (eq calc-complex-mode 'cplx))
88 (progn
89 (calc-change-mode 'calc-complex-mode 'polar)
90 (message "Preferred complex form is polar"))
91 (calc-change-mode 'calc-complex-mode 'cplx)
92 (message "Preferred complex form is rectangular"))))
95 ;;;; Complex numbers.
97 (defun math-normalize-polar (a)
98 (let ((r (math-normalize (nth 1 a)))
99 (th (math-normalize (nth 2 a))))
100 (cond ((math-zerop r)
101 '(polar 0 0))
102 ((or (math-zerop th))
104 ((and (not (eq calc-angle-mode 'rad))
105 (or (equal th '(float 18 1))
106 (equal th 180)))
107 (math-neg r))
108 ((math-negp r)
109 (math-neg (list 'polar (math-neg r) th)))
111 (list 'polar r th)))))
114 ;;; Coerce A to be complex (rectangular form). [c N]
115 (defun math-complex (a)
116 (cond ((eq (car-safe a) 'cplx) a)
117 ((eq (car-safe a) 'polar)
118 (if (math-zerop (nth 1 a))
119 (nth 1 a)
120 (let ((sc (calcFunc-sincos (nth 2 a))))
121 (list 'cplx
122 (math-mul (nth 1 a) (nth 1 sc))
123 (math-mul (nth 1 a) (nth 2 sc))))))
124 (t (list 'cplx a 0))))
126 ;;; Coerce A to be complex (polar form). [c N]
127 (defun math-polar (a)
128 (cond ((eq (car-safe a) 'polar) a)
129 ((math-zerop a) '(polar 0 0))
131 (list 'polar
132 (math-abs a)
133 (calcFunc-arg a)))))
135 ;;; Multiply A by the imaginary constant i. [N N] [Public]
136 (defun math-imaginary (a)
137 (if (and (or (Math-objvecp a) (math-infinitep a))
138 (not calc-symbolic-mode))
139 (math-mul a
140 (if (or (eq (car-safe a) 'polar)
141 (and (not (eq (car-safe a) 'cplx))
142 (eq calc-complex-mode 'polar)))
143 (list 'polar 1 (math-quarter-circle nil))
144 '(cplx 0 1)))
145 (math-mul a '(var i var-i))))
150 (defun math-want-polar (a b)
151 (cond ((eq (car-safe a) 'polar)
152 (if (eq (car-safe b) 'cplx)
153 (eq calc-complex-mode 'polar)
155 ((eq (car-safe a) 'cplx)
156 (if (eq (car-safe b) 'polar)
157 (eq calc-complex-mode 'polar)
158 nil))
159 ((eq (car-safe b) 'polar)
161 ((eq (car-safe b) 'cplx)
162 nil)
163 (t (eq calc-complex-mode 'polar))))
165 ;;; Force A to be in the (-pi,pi] or (-180,180] range.
166 (defun math-fix-circular (a &optional dir) ; [R R]
167 (cond ((eq (car-safe a) 'hms)
168 (cond ((and (Math-lessp 180 (nth 1 a)) (not (eq dir 1)))
169 (math-fix-circular (math-add a '(float -36 1)) -1))
170 ((or (Math-lessp -180 (nth 1 a)) (eq dir -1))
173 (math-fix-circular (math-add a '(float 36 1)) 1))))
174 ((eq calc-angle-mode 'rad)
175 (cond ((and (Math-lessp (math-pi) a) (not (eq dir 1)))
176 (math-fix-circular (math-sub a (math-two-pi)) -1))
177 ((or (Math-lessp (math-neg (math-pi)) a) (eq dir -1))
180 (math-fix-circular (math-add a (math-two-pi)) 1))))
182 (cond ((and (Math-lessp '(float 18 1) a) (not (eq dir 1)))
183 (math-fix-circular (math-add a '(float -36 1)) -1))
184 ((or (Math-lessp '(float -18 1) a) (eq dir -1))
187 (math-fix-circular (math-add a '(float 36 1)) 1))))))
190 ;;;; Complex numbers.
192 (defun calcFunc-polar (a) ; [C N] [Public]
193 (cond ((Math-vectorp a)
194 (math-map-vec 'calcFunc-polar a))
195 ((Math-realp a) a)
196 ((Math-numberp a)
197 (math-normalize (math-polar a)))
198 (t (list 'calcFunc-polar a))))
200 (defun calcFunc-rect (a) ; [N N] [Public]
201 (cond ((Math-vectorp a)
202 (math-map-vec 'calcFunc-rect a))
203 ((Math-realp a) a)
204 ((Math-numberp a)
205 (math-normalize (math-complex a)))
206 (t (list 'calcFunc-rect a))))
208 ;;; Compute the complex conjugate of A. [O O] [Public]
209 (defun calcFunc-conj (a)
210 (let (aa bb)
211 (cond ((Math-realp a)
213 ((eq (car a) 'cplx)
214 (list 'cplx (nth 1 a) (math-neg (nth 2 a))))
215 ((eq (car a) 'polar)
216 (list 'polar (nth 1 a) (math-neg (nth 2 a))))
217 ((eq (car a) 'vec)
218 (math-map-vec 'calcFunc-conj a))
219 ((eq (car a) 'calcFunc-conj)
220 (nth 1 a))
221 ((math-known-realp a)
223 ((and (equal a '(var i var-i))
224 (math-imaginary-i))
225 (math-neg a))
226 ((and (memq (car a) '(+ - * /))
227 (progn
228 (setq aa (calcFunc-conj (nth 1 a))
229 bb (calcFunc-conj (nth 2 a)))
230 (or (not (eq (car-safe aa) 'calcFunc-conj))
231 (not (eq (car-safe bb) 'calcFunc-conj)))))
232 (if (eq (car a) '+)
233 (math-add aa bb)
234 (if (eq (car a) '-)
235 (math-sub aa bb)
236 (if (eq (car a) '*)
237 (math-mul aa bb)
238 (math-div aa bb)))))
239 ((eq (car a) 'neg)
240 (math-neg (calcFunc-conj (nth 1 a))))
241 ((let ((inf (math-infinitep a)))
242 (and inf
243 (math-mul (calcFunc-conj (math-infinite-dir a inf)) inf))))
244 (t (calc-record-why 'numberp a)
245 (list 'calcFunc-conj a)))))
248 ;;; Compute the complex argument of A. [F N] [Public]
249 (defun calcFunc-arg (a)
250 (cond ((Math-anglep a)
251 (if (math-negp a) (math-half-circle nil) 0))
252 ((eq (car-safe a) 'cplx)
253 (calcFunc-arctan2 (nth 2 a) (nth 1 a)))
254 ((eq (car-safe a) 'polar)
255 (nth 2 a))
256 ((eq (car a) 'vec)
257 (math-map-vec 'calcFunc-arg a))
258 ((and (equal a '(var i var-i))
259 (math-imaginary-i))
260 (math-quarter-circle t))
261 ((and (equal a '(neg (var i var-i)))
262 (math-imaginary-i))
263 (math-neg (math-quarter-circle t)))
264 ((let ((signs (math-possible-signs a)))
265 (or (and (memq signs '(2 4 6)) 0)
266 (and (eq signs 1) (math-half-circle nil)))))
267 ((math-infinitep a)
268 (if (or (equal a '(var uinf var-uinf))
269 (equal a '(var nan var-nan)))
270 '(var nan var-nan)
271 (calcFunc-arg (math-infinite-dir a))))
272 (t (calc-record-why 'numvecp a)
273 (list 'calcFunc-arg a))))
275 (defun math-imaginary-i ()
276 (let ((val (calc-var-value 'var-i)))
277 (or (eq (car-safe val) 'special-const)
278 (equal val '(cplx 0 1))
279 (and (eq (car-safe val) 'polar)
280 (eq (nth 1 val) 0)
281 (Math-equal (nth 1 val) (math-quarter-circle nil))))))
283 ;;; Extract the real or complex part of a complex number. [R N] [Public]
284 ;;; Also extracts the real part of a modulo form.
285 (defun calcFunc-re (a)
286 (let (aa bb)
287 (cond ((Math-realp a) a)
288 ((memq (car a) '(mod cplx))
289 (nth 1 a))
290 ((eq (car a) 'polar)
291 (math-mul (nth 1 a) (calcFunc-cos (nth 2 a))))
292 ((eq (car a) 'vec)
293 (math-map-vec 'calcFunc-re a))
294 ((math-known-realp a) a)
295 ((eq (car a) 'calcFunc-conj)
296 (calcFunc-re (nth 1 a)))
297 ((and (equal a '(var i var-i))
298 (math-imaginary-i))
300 ((and (memq (car a) '(+ - *))
301 (progn
302 (setq aa (calcFunc-re (nth 1 a))
303 bb (calcFunc-re (nth 2 a)))
304 (or (not (eq (car-safe aa) 'calcFunc-re))
305 (not (eq (car-safe bb) 'calcFunc-re)))))
306 (if (eq (car a) '+)
307 (math-add aa bb)
308 (if (eq (car a) '-)
309 (math-sub aa bb)
310 (math-sub (math-mul aa bb)
311 (math-mul (calcFunc-im (nth 1 a))
312 (calcFunc-im (nth 2 a)))))))
313 ((and (eq (car a) '/)
314 (math-known-realp (nth 2 a)))
315 (math-div (calcFunc-re (nth 1 a)) (nth 2 a)))
316 ((eq (car a) 'neg)
317 (math-neg (calcFunc-re (nth 1 a))))
318 (t (calc-record-why 'numberp a)
319 (list 'calcFunc-re a)))))
321 (defun calcFunc-im (a)
322 (let (aa bb)
323 (cond ((Math-realp a)
324 (if (math-floatp a) '(float 0 0) 0))
325 ((eq (car a) 'cplx)
326 (nth 2 a))
327 ((eq (car a) 'polar)
328 (math-mul (nth 1 a) (calcFunc-sin (nth 2 a))))
329 ((eq (car a) 'vec)
330 (math-map-vec 'calcFunc-im a))
331 ((math-known-realp a)
333 ((eq (car a) 'calcFunc-conj)
334 (math-neg (calcFunc-im (nth 1 a))))
335 ((and (equal a '(var i var-i))
336 (math-imaginary-i))
338 ((and (memq (car a) '(+ - *))
339 (progn
340 (setq aa (calcFunc-im (nth 1 a))
341 bb (calcFunc-im (nth 2 a)))
342 (or (not (eq (car-safe aa) 'calcFunc-im))
343 (not (eq (car-safe bb) 'calcFunc-im)))))
344 (if (eq (car a) '+)
345 (math-add aa bb)
346 (if (eq (car a) '-)
347 (math-sub aa bb)
348 (math-add (math-mul (calcFunc-re (nth 1 a)) bb)
349 (math-mul aa (calcFunc-re (nth 2 a)))))))
350 ((and (eq (car a) '/)
351 (math-known-realp (nth 2 a)))
352 (math-div (calcFunc-im (nth 1 a)) (nth 2 a)))
353 ((eq (car a) 'neg)
354 (math-neg (calcFunc-im (nth 1 a))))
355 (t (calc-record-why 'numberp a)
356 (list 'calcFunc-im a)))))
358 (provide 'calc-cplx)
360 ;;; arch-tag: de73a331-941c-4507-ae76-46c76adc70dd
361 ;;; calc-cplx.el ends here