* lisp/files.el (dir-locals-read-from-file): Check file non-empty
[emacs.git] / doc / misc / calc.texi
blob2b198575bcb9c16586144e8c3ca565745da832bc
1 \input texinfo                  @c -*-texinfo-*-
2 @comment %**start of header (This is for running Texinfo on a region.)
3 @c smallbook
4 @setfilename ../../info/calc
5 @c [title]
6 @settitle GNU Emacs Calc Manual
7 @setchapternewpage odd
8 @comment %**end of header (This is for running Texinfo on a region.)
10 @include emacsver.texi
12 @c The following macros are used for conditional output for single lines.
13 @c @texline foo
14 @c    `foo' will appear only in TeX output
15 @c @infoline foo
16 @c    `foo' will appear only in non-TeX output
18 @c @expr{expr} will typeset an expression;
19 @c $x$ in TeX, @samp{x} otherwise.
21 @iftex
22 @macro texline
23 @end macro
24 @alias infoline=comment
25 @alias expr=math
26 @alias tfn=code
27 @alias mathit=expr
28 @alias summarykey=key
29 @macro cpi{}
30 @math{@pi{}}
31 @end macro
32 @macro cpiover{den}
33 @math{@pi/\den\}
34 @end macro
35 @end iftex
37 @ifnottex
38 @alias texline=comment
39 @macro infoline{stuff}
40 \stuff\
41 @end macro
42 @alias expr=samp
43 @alias tfn=t
44 @alias mathit=i
45 @macro summarykey{ky}
46 \ky\
47 @end macro
48 @macro cpi{}
49 @expr{pi}
50 @end macro
51 @macro cpiover{den}
52 @expr{pi/\den\}
53 @end macro
54 @end ifnottex
57 @tex
58 % Suggested by Karl Berry <karl@@freefriends.org>
59 \gdef\!{\mskip-\thinmuskip}
60 @end tex
62 @c Fix some other things specifically for this manual.
63 @iftex
64 @finalout
65 @mathcode`@:=`@:  @c Make Calc fractions come out right in math mode
66 @tex
67 \gdef\coloneq{\mathrel{\mathord:\mathord=}}
69 \gdef\beforedisplay{\vskip-10pt}
70 \gdef\afterdisplay{\vskip-5pt}
71 \gdef\beforedisplayh{\vskip-25pt}
72 \gdef\afterdisplayh{\vskip-10pt}
73 @end tex
74 @newdimen@kyvpos @kyvpos=0pt
75 @newdimen@kyhpos @kyhpos=0pt
76 @newcount@calcclubpenalty @calcclubpenalty=1000
77 @ignore
78 @newcount@calcpageno
79 @newtoks@calcoldeverypar @calcoldeverypar=@everypar
80 @everypar={@calceverypar@the@calcoldeverypar}
81 @ifx@ninett@undefinedzzz@font@ninett=cmtt9@fi
82 @catcode`@\=0 \catcode`\@=11
83 \r@ggedbottomtrue
84 \catcode`\@=0 @catcode`@\=@active
85 @end ignore
86 @end iftex
88 @copying
89 @ifinfo
90 This file documents Calc, the GNU Emacs calculator.
91 @end ifinfo
92 @ifnotinfo
93 This file documents Calc, the GNU Emacs calculator, included with
94 GNU Emacs @value{EMACSVER}.
95 @end ifnotinfo
97 Copyright @copyright{} 1990-1991, 2001-2012 Free Software Foundation, Inc.
99 @quotation
100 Permission is granted to copy, distribute and/or modify this document
101 under the terms of the GNU Free Documentation License, Version 1.3 or
102 any later version published by the Free Software Foundation; with the
103 Invariant Sections being just ``GNU GENERAL PUBLIC LICENSE'', with the
104 Front-Cover texts being ``A GNU Manual,'' and with the Back-Cover
105 Texts as in (a) below.  A copy of the license is included in the section
106 entitled ``GNU Free Documentation License.''
108 (a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
109 modify this GNU manual.  Buying copies from the FSF supports it in
110 developing GNU and promoting software freedom.''
111 @end quotation
112 @end copying
114 @dircategory Emacs misc features
115 @direntry
116 * Calc: (calc).                 Advanced desk calculator and mathematical tool.
117 @end direntry
119 @titlepage
120 @sp 6
121 @center @titlefont{Calc Manual}
122 @sp 4
123 @center GNU Emacs Calc
124 @c [volume]
125 @sp 5
126 @center Dave Gillespie
127 @center daveg@@synaptics.com
128 @page
130 @vskip 0pt plus 1filll
131 @insertcopying
132 @end titlepage
135 @summarycontents
137 @c [end]
139 @contents
141 @c [begin]
142 @ifnottex
143 @node Top, Getting Started, (dir), (dir)
144 @chapter The GNU Emacs Calculator
146 @noindent
147 @dfn{Calc} is an advanced desk calculator and mathematical tool
148 written by Dave Gillespie that runs as part of the GNU Emacs environment.
150 This manual, also written (mostly) by Dave Gillespie, is divided into
151 three major parts: ``Getting Started,'' the ``Calc Tutorial,'' and the
152 ``Calc Reference.''  The Tutorial introduces all the major aspects of
153 Calculator use in an easy, hands-on way.  The remainder of the manual is
154 a complete reference to the features of the Calculator.
155 @end ifnottex
157 @ifinfo
158 For help in the Emacs Info system (which you are using to read this
159 file), type @kbd{?}.  (You can also type @kbd{h} to run through a
160 longer Info tutorial.)
161 @end ifinfo
163 @insertcopying
165 @menu
166 * Getting Started::       General description and overview.
167 @ifinfo
168 * Interactive Tutorial::
169 @end ifinfo
170 * Tutorial::              A step-by-step introduction for beginners.
172 * Introduction::          Introduction to the Calc reference manual.
173 * Data Types::            Types of objects manipulated by Calc.
174 * Stack and Trail::       Manipulating the stack and trail buffers.
175 * Mode Settings::         Adjusting display format and other modes.
176 * Arithmetic::            Basic arithmetic functions.
177 * Scientific Functions::  Transcendentals and other scientific functions.
178 * Matrix Functions::      Operations on vectors and matrices.
179 * Algebra::               Manipulating expressions algebraically.
180 * Units::                 Operations on numbers with units.
181 * Store and Recall::      Storing and recalling variables.
182 * Graphics::              Commands for making graphs of data.
183 * Kill and Yank::         Moving data into and out of Calc.
184 * Keypad Mode::           Operating Calc from a keypad.
185 * Embedded Mode::         Working with formulas embedded in a file.
186 * Programming::           Calc as a programmable calculator.
188 * Copying::               How you can copy and share Calc.
189 * GNU Free Documentation License:: The license for this documentation.
190 * Customizing Calc::      Customizing Calc.
191 * Reporting Bugs::        How to report bugs and make suggestions.
193 * Summary::               Summary of Calc commands and functions.
195 * Key Index::             The standard Calc key sequences.
196 * Command Index::         The interactive Calc commands.
197 * Function Index::        Functions (in algebraic formulas).
198 * Concept Index::         General concepts.
199 * Variable Index::        Variables used by Calc (both user and internal).
200 * Lisp Function Index::   Internal Lisp math functions.
201 @end menu
203 @ifinfo
204 @node Getting Started, Interactive Tutorial, Top, Top
205 @end ifinfo
206 @ifnotinfo
207 @node Getting Started, Tutorial, Top, Top
208 @end ifnotinfo
209 @chapter Getting Started
210 @noindent
211 This chapter provides a general overview of Calc, the GNU Emacs
212 Calculator:  What it is, how to start it and how to exit from it,
213 and what are the various ways that it can be used.
215 @menu
216 * What is Calc::
217 * About This Manual::
218 * Notations Used in This Manual::
219 * Demonstration of Calc::
220 * Using Calc::
221 * History and Acknowledgments::
222 @end menu
224 @node What is Calc, About This Manual, Getting Started, Getting Started
225 @section What is Calc?
227 @noindent
228 @dfn{Calc} is an advanced calculator and mathematical tool that runs as
229 part of the GNU Emacs environment.  Very roughly based on the HP-28/48
230 series of calculators, its many features include:
232 @itemize @bullet
233 @item
234 Choice of algebraic or RPN (stack-based) entry of calculations.
236 @item
237 Arbitrary precision integers and floating-point numbers.
239 @item
240 Arithmetic on rational numbers, complex numbers (rectangular and polar),
241 error forms with standard deviations, open and closed intervals, vectors
242 and matrices, dates and times, infinities, sets, quantities with units,
243 and algebraic formulas.
245 @item
246 Mathematical operations such as logarithms and trigonometric functions.
248 @item
249 Programmer's features (bitwise operations, non-decimal numbers).
251 @item
252 Financial functions such as future value and internal rate of return.
254 @item
255 Number theoretical features such as prime factorization and arithmetic
256 modulo @var{m} for any @var{m}.
258 @item
259 Algebraic manipulation features, including symbolic calculus.
261 @item
262 Moving data to and from regular editing buffers.
264 @item
265 Embedded mode for manipulating Calc formulas and data directly
266 inside any editing buffer.
268 @item
269 Graphics using GNUPLOT, a versatile (and free) plotting program.
271 @item
272 Easy programming using keyboard macros, algebraic formulas,
273 algebraic rewrite rules, or extended Emacs Lisp.
274 @end itemize
276 Calc tries to include a little something for everyone; as a result it is
277 large and might be intimidating to the first-time user.  If you plan to
278 use Calc only as a traditional desk calculator, all you really need to
279 read is the ``Getting Started'' chapter of this manual and possibly the
280 first few sections of the tutorial.  As you become more comfortable with
281 the program you can learn its additional features.  Calc does not
282 have the scope and depth of a fully-functional symbolic math package,
283 but Calc has the advantages of convenience, portability, and freedom.
285 @node About This Manual, Notations Used in This Manual, What is Calc, Getting Started
286 @section About This Manual
288 @noindent
289 This document serves as a complete description of the GNU Emacs
290 Calculator.  It works both as an introduction for novices and as
291 a reference for experienced users.  While it helps to have some
292 experience with GNU Emacs in order to get the most out of Calc,
293 this manual ought to be readable even if you don't know or use Emacs
294 regularly.
296 This manual is divided into three major parts:@: the ``Getting
297 Started'' chapter you are reading now, the Calc tutorial, and the Calc
298 reference manual.
299 @c [when-split]
300 @c This manual has been printed in two volumes, the @dfn{Tutorial} and the
301 @c @dfn{Reference}.  Both volumes include a copy of the ``Getting Started''
302 @c chapter.
304 If you are in a hurry to use Calc, there is a brief ``demonstration''
305 below which illustrates the major features of Calc in just a couple of
306 pages.  If you don't have time to go through the full tutorial, this
307 will show you everything you need to know to begin.
308 @xref{Demonstration of Calc}.
310 The tutorial chapter walks you through the various parts of Calc
311 with lots of hands-on examples and explanations.  If you are new
312 to Calc and you have some time, try going through at least the
313 beginning of the tutorial.  The tutorial includes about 70 exercises
314 with answers.  These exercises give you some guided practice with
315 Calc, as well as pointing out some interesting and unusual ways
316 to use its features.
318 The reference section discusses Calc in complete depth.  You can read
319 the reference from start to finish if you want to learn every aspect
320 of Calc.  Or, you can look in the table of contents or the Concept
321 Index to find the parts of the manual that discuss the things you
322 need to know.
324 @c @cindex Marginal notes
325 Every Calc keyboard command is listed in the Calc Summary, and also
326 in the Key Index.  Algebraic functions, @kbd{M-x} commands, and
327 variables also have their own indices.
328 @c @texline Each
329 @c @infoline In the printed manual, each
330 @c paragraph that is referenced in the Key or Function Index is marked
331 @c in the margin with its index entry.
333 @c [fix-ref Help Commands]
334 You can access this manual on-line at any time within Calc by pressing
335 the @kbd{h i} key sequence.  Outside of the Calc window, you can press
336 @kbd{C-x * i} to read the manual on-line.  From within Calc the command
337 @kbd{h t} will jump directly to the Tutorial; from outside of Calc the
338 command @kbd{C-x * t} will jump to the Tutorial and start Calc if
339 necessary.  Pressing @kbd{h s} or @kbd{C-x * s} will take you directly
340 to the Calc Summary.  Within Calc, you can also go to the part of the
341 manual describing any Calc key, function, or variable using
342 @w{@kbd{h k}}, @kbd{h f}, or @kbd{h v}, respectively.  @xref{Help Commands}.
344 @ifnottex
345 The Calc manual can be printed, but because the manual is so large, you
346 should only make a printed copy if you really need it.  To print the
347 manual, you will need the @TeX{} typesetting program (this is a free
348 program by Donald Knuth at Stanford University) as well as the
349 @file{texindex} program and @file{texinfo.tex} file, both of which can
350 be obtained from the FSF as part of the @code{texinfo} package.
351 To print the Calc manual in one huge tome, you will need the
352 source code to this manual, @file{calc.texi}, available as part of the
353 Emacs source.  Once you have this file, type @kbd{texi2dvi calc.texi}.
354 Alternatively, change to the @file{man} subdirectory of the Emacs
355 source distribution, and type @kbd{make calc.dvi}. (Don't worry if you
356 get some ``overfull box'' warnings while @TeX{} runs.)
357 The result will be a device-independent output file called
358 @file{calc.dvi}, which you must print in whatever way is right
359 for your system.  On many systems, the command is
361 @example
362 lpr -d calc.dvi
363 @end example
365 @noindent
368 @example
369 dvips calc.dvi
370 @end example
371 @end ifnottex
372 @c Printed copies of this manual are also available from the Free Software
373 @c Foundation.
375 @node Notations Used in This Manual, Demonstration of Calc, About This Manual, Getting Started
376 @section Notations Used in This Manual
378 @noindent
379 This section describes the various notations that are used
380 throughout the Calc manual.
382 In keystroke sequences, uppercase letters mean you must hold down
383 the shift key while typing the letter.  Keys pressed with Control
384 held down are shown as @kbd{C-x}.  Keys pressed with Meta held down
385 are shown as @kbd{M-x}.  Other notations are @key{RET} for the
386 Return key, @key{SPC} for the space bar, @key{TAB} for the Tab key,
387 @key{DEL} for the Delete key, and @key{LFD} for the Line-Feed key.
388 The @key{DEL} key is called Backspace on some keyboards, it is
389 whatever key you would use to correct a simple typing error when
390 regularly using Emacs.
392 (If you don't have the @key{LFD} or @key{TAB} keys on your keyboard,
393 the @kbd{C-j} and @kbd{C-i} keys are equivalent to them, respectively.
394 If you don't have a Meta key, look for Alt or Extend Char.  You can
395 also press @key{ESC} or @kbd{C-[} first to get the same effect, so
396 that @kbd{M-x}, @kbd{@key{ESC} x}, and @kbd{C-[ x} are all equivalent.)
398 Sometimes the @key{RET} key is not shown when it is ``obvious''
399 that you must press @key{RET} to proceed.  For example, the @key{RET}
400 is usually omitted in key sequences like @kbd{M-x calc-keypad @key{RET}}.
402 Commands are generally shown like this:  @kbd{p} (@code{calc-precision})
403 or @kbd{C-x * k} (@code{calc-keypad}).  This means that the command is
404 normally used by pressing the @kbd{p} key or @kbd{C-x * k} key sequence,
405 but it also has the full-name equivalent shown, e.g., @kbd{M-x calc-precision}.
407 Commands that correspond to functions in algebraic notation
408 are written:  @kbd{C} (@code{calc-cos}) [@code{cos}].  This means
409 the @kbd{C} key is equivalent to @kbd{M-x calc-cos}, and that
410 the corresponding function in an algebraic-style formula would
411 be @samp{cos(@var{x})}.
413 A few commands don't have key equivalents:  @code{calc-sincos}
414 [@code{sincos}].
416 @node Demonstration of Calc, Using Calc, Notations Used in This Manual, Getting Started
417 @section A Demonstration of Calc
419 @noindent
420 @cindex Demonstration of Calc
421 This section will show some typical small problems being solved with
422 Calc.  The focus is more on demonstration than explanation, but
423 everything you see here will be covered more thoroughly in the
424 Tutorial.
426 To begin, start Emacs if necessary (usually the command @code{emacs}
427 does this), and type @kbd{C-x * c} to start the
428 Calculator.  (You can also use @kbd{M-x calc} if this doesn't work.
429 @xref{Starting Calc}, for various ways of starting the Calculator.)
431 Be sure to type all the sample input exactly, especially noting the
432 difference between lower-case and upper-case letters.  Remember,
433 @key{RET}, @key{TAB}, @key{DEL}, and @key{SPC} are the Return, Tab,
434 Delete, and Space keys.
436 @strong{RPN calculation.}  In RPN, you type the input number(s) first,
437 then the command to operate on the numbers.
439 @noindent
440 Type @kbd{2 @key{RET} 3 + Q} to compute
441 @texline @math{\sqrt{2+3} = 2.2360679775}.
442 @infoline the square root of 2+3, which is 2.2360679775.
444 @noindent
445 Type @kbd{P 2 ^} to compute
446 @texline @math{\pi^2 = 9.86960440109}.
447 @infoline the value of `pi' squared, 9.86960440109.
449 @noindent
450 Type @key{TAB} to exchange the order of these two results.
452 @noindent
453 Type @kbd{- I H S} to subtract these results and compute the Inverse
454 Hyperbolic sine of the difference, 2.72996136574.
456 @noindent
457 Type @key{DEL} to erase this result.
459 @strong{Algebraic calculation.}  You can also enter calculations using
460 conventional ``algebraic'' notation.  To enter an algebraic formula,
461 use the apostrophe key.
463 @noindent
464 Type @kbd{' sqrt(2+3) @key{RET}} to compute
465 @texline @math{\sqrt{2+3}}.
466 @infoline the square root of 2+3.
468 @noindent
469 Type @kbd{' pi^2 @key{RET}} to enter
470 @texline @math{\pi^2}.
471 @infoline `pi' squared.
472 To evaluate this symbolic formula as a number, type @kbd{=}.
474 @noindent
475 Type @kbd{' arcsinh($ - $$) @key{RET}} to subtract the second-most-recent
476 result from the most-recent and compute the Inverse Hyperbolic sine.
478 @strong{Keypad mode.}  If you are using the X window system, press
479 @w{@kbd{C-x * k}} to get Keypad mode.  (If you don't use X, skip to
480 the next section.)
482 @noindent
483 Click on the @key{2}, @key{ENTER}, @key{3}, @key{+}, and @key{SQRT}
484 ``buttons'' using your left mouse button.
486 @noindent
487 Click on @key{PI}, @key{2}, and @tfn{y^x}.
489 @noindent
490 Click on @key{INV}, then @key{ENTER} to swap the two results.
492 @noindent
493 Click on @key{-}, @key{INV}, @key{HYP}, and @key{SIN}.
495 @noindent
496 Click on @key{<-} to erase the result, then click @key{OFF} to turn
497 the Keypad Calculator off.
499 @strong{Grabbing data.}  Type @kbd{C-x * x} if necessary to exit Calc.
500 Now select the following numbers as an Emacs region:  ``Mark'' the
501 front of the list by typing @kbd{C-@key{SPC}} or @kbd{C-@@} there,
502 then move to the other end of the list.  (Either get this list from
503 the on-line copy of this manual, accessed by @w{@kbd{C-x * i}}, or just
504 type these numbers into a scratch file.)  Now type @kbd{C-x * g} to
505 ``grab'' these numbers into Calc.
507 @example
508 @group
509 1.23  1.97
510 1.6   2
511 1.19  1.08
512 @end group
513 @end example
515 @noindent
516 The result @samp{[1.23, 1.97, 1.6, 2, 1.19, 1.08]} is a Calc ``vector.''
517 Type @w{@kbd{V R +}} to compute the sum of these numbers.
519 @noindent
520 Type @kbd{U} to Undo this command, then type @kbd{V R *} to compute
521 the product of the numbers.
523 @noindent
524 You can also grab data as a rectangular matrix.  Place the cursor on
525 the upper-leftmost @samp{1} and set the mark, then move to just after
526 the lower-right @samp{8} and press @kbd{C-x * r}.
528 @noindent
529 Type @kbd{v t} to transpose this
530 @texline @math{3\times2}
531 @infoline 3x2
532 matrix into a
533 @texline @math{2\times3}
534 @infoline 2x3
535 matrix.  Type @w{@kbd{v u}} to unpack the rows into two separate
536 vectors.  Now type @w{@kbd{V R + @key{TAB} V R +}} to compute the sums
537 of the two original columns. (There is also a special
538 grab-and-sum-columns command, @kbd{C-x * :}.)
540 @strong{Units conversion.}  Units are entered algebraically.
541 Type @w{@kbd{' 43 mi/hr @key{RET}}} to enter the quantity 43 miles-per-hour.
542 Type @w{@kbd{u c km/hr @key{RET}}}.  Type @w{@kbd{u c m/s @key{RET}}}.
544 @strong{Date arithmetic.}  Type @kbd{t N} to get the current date and
545 time.  Type @kbd{90 +} to find the date 90 days from now.  Type
546 @kbd{' <25 dec 87> @key{RET}} to enter a date, then @kbd{- 7 /} to see how
547 many weeks have passed since then.
549 @strong{Algebra.}  Algebraic entries can also include formulas
550 or equations involving variables.  Type @kbd{@w{' [x + y} = a, x y = 1] @key{RET}}
551 to enter a pair of equations involving three variables.
552 (Note the leading apostrophe in this example; also, note that the space
553 in @samp{x y} is required.)  Type @w{@kbd{a S x,y @key{RET}}} to solve
554 these equations for the variables @expr{x} and @expr{y}.
556 @noindent
557 Type @kbd{d B} to view the solutions in more readable notation.
558 Type @w{@kbd{d C}} to view them in C language notation, @kbd{d T}
559 to view them in the notation for the @TeX{} typesetting system,
560 and @kbd{d L} to view them in the notation for the @LaTeX{} typesetting
561 system.  Type @kbd{d N} to return to normal notation.
563 @noindent
564 Type @kbd{7.5}, then @kbd{s l a @key{RET}} to let @expr{a = 7.5} in these formulas.
565 (That's the letter @kbd{l}, not the numeral @kbd{1}.)
567 @ifnotinfo
568 @strong{Help functions.}  You can read about any command in the on-line
569 manual.  Type @kbd{C-x * c} to return to Calc after each of these
570 commands: @kbd{h k t N} to read about the @kbd{t N} command,
571 @kbd{h f sqrt @key{RET}} to read about the @code{sqrt} function, and
572 @kbd{h s} to read the Calc summary.
573 @end ifnotinfo
574 @ifinfo
575 @strong{Help functions.}  You can read about any command in the on-line
576 manual.  Remember to type the letter @kbd{l}, then @kbd{C-x * c}, to
577 return here after each of these commands: @w{@kbd{h k t N}} to read
578 about the @w{@kbd{t N}} command, @kbd{h f sqrt @key{RET}} to read about the
579 @code{sqrt} function, and @kbd{h s} to read the Calc summary.
580 @end ifinfo
582 Press @key{DEL} repeatedly to remove any leftover results from the stack.
583 To exit from Calc, press @kbd{q} or @kbd{C-x * c} again.
585 @node Using Calc, History and Acknowledgments, Demonstration of Calc, Getting Started
586 @section Using Calc
588 @noindent
589 Calc has several user interfaces that are specialized for
590 different kinds of tasks.  As well as Calc's standard interface,
591 there are Quick mode, Keypad mode, and Embedded mode.
593 @menu
594 * Starting Calc::
595 * The Standard Interface::
596 * Quick Mode Overview::
597 * Keypad Mode Overview::
598 * Standalone Operation::
599 * Embedded Mode Overview::
600 * Other C-x * Commands::
601 @end menu
603 @node Starting Calc, The Standard Interface, Using Calc, Using Calc
604 @subsection Starting Calc
606 @noindent
607 On most systems, you can type @kbd{C-x *} to start the Calculator.
608 The key sequence @kbd{C-x *} is bound to the command @code{calc-dispatch},
609 which can be rebound if convenient (@pxref{Customizing Calc}).
611 When you press @kbd{C-x *}, Emacs waits for you to press a second key to
612 complete the command.  In this case, you will follow @kbd{C-x *} with a
613 letter (upper- or lower-case, it doesn't matter for @kbd{C-x *}) that says
614 which Calc interface you want to use.
616 To get Calc's standard interface, type @kbd{C-x * c}.  To get
617 Keypad mode, type @kbd{C-x * k}.  Type @kbd{C-x * ?} to get a brief
618 list of the available options, and type a second @kbd{?} to get
619 a complete list.
621 To ease typing, @kbd{C-x * *} also works to start Calc.  It starts the
622 same interface (either @kbd{C-x * c} or @w{@kbd{C-x * k}}) that you last
623 used, selecting the @kbd{C-x * c} interface by default.
625 If @kbd{C-x *} doesn't work for you, you can always type explicit
626 commands like @kbd{M-x calc} (for the standard user interface) or
627 @w{@kbd{M-x calc-keypad}} (for Keypad mode).  First type @kbd{M-x}
628 (that's Meta with the letter @kbd{x}), then, at the prompt,
629 type the full command (like @kbd{calc-keypad}) and press Return.
631 The same commands (like @kbd{C-x * c} or @kbd{C-x * *}) that start
632 the Calculator also turn it off if it is already on.
634 @node The Standard Interface, Quick Mode Overview, Starting Calc, Using Calc
635 @subsection The Standard Calc Interface
637 @noindent
638 @cindex Standard user interface
639 Calc's standard interface acts like a traditional RPN calculator,
640 operated by the normal Emacs keyboard.  When you type @kbd{C-x * c}
641 to start the Calculator, the Emacs screen splits into two windows
642 with the file you were editing on top and Calc on the bottom.
644 @smallexample
645 @group
648 --**-Emacs: myfile             (Fundamental)----All----------------------
649 --- Emacs Calculator Mode ---                   |Emacs Calculator Trail
650 2:  17.3                                        |    17.3
651 1:  -5                                          |    3
652     .                                           |    2
653                                                 |    4
654                                                 |  * 8
655                                                 |  ->-5
656                                                 |
657 --%*-Calc: 12 Deg       (Calculator)----All----- --%*- *Calc Trail*
658 @end group
659 @end smallexample
661 In this figure, the mode-line for @file{myfile} has moved up and the
662 ``Calculator'' window has appeared below it.  As you can see, Calc
663 actually makes two windows side-by-side.  The lefthand one is
664 called the @dfn{stack window} and the righthand one is called the
665 @dfn{trail window.}  The stack holds the numbers involved in the
666 calculation you are currently performing.  The trail holds a complete
667 record of all calculations you have done.  In a desk calculator with
668 a printer, the trail corresponds to the paper tape that records what
669 you do.
671 In this case, the trail shows that four numbers (17.3, 3, 2, and 4)
672 were first entered into the Calculator, then the 2 and 4 were
673 multiplied to get 8, then the 3 and 8 were subtracted to get @mathit{-5}.
674 (The @samp{>} symbol shows that this was the most recent calculation.)
675 The net result is the two numbers 17.3 and @mathit{-5} sitting on the stack.
677 Most Calculator commands deal explicitly with the stack only, but
678 there is a set of commands that allow you to search back through
679 the trail and retrieve any previous result.
681 Calc commands use the digits, letters, and punctuation keys.
682 Shifted (i.e., upper-case) letters are different from lowercase
683 letters.  Some letters are @dfn{prefix} keys that begin two-letter
684 commands.  For example, @kbd{e} means ``enter exponent'' and shifted
685 @kbd{E} means @expr{e^x}.  With the @kbd{d} (``display modes'') prefix
686 the letter ``e'' takes on very different meanings:  @kbd{d e} means
687 ``engineering notation'' and @kbd{d E} means ``@dfn{eqn} language mode.''
689 There is nothing stopping you from switching out of the Calc
690 window and back into your editing window, say by using the Emacs
691 @w{@kbd{C-x o}} (@code{other-window}) command.  When the cursor is
692 inside a regular window, Emacs acts just like normal.  When the
693 cursor is in the Calc stack or trail windows, keys are interpreted
694 as Calc commands.
696 When you quit by pressing @kbd{C-x * c} a second time, the Calculator
697 windows go away but the actual Stack and Trail are not gone, just
698 hidden.  When you press @kbd{C-x * c} once again you will get the
699 same stack and trail contents you had when you last used the
700 Calculator.
702 The Calculator does not remember its state between Emacs sessions.
703 Thus if you quit Emacs and start it again, @kbd{C-x * c} will give you
704 a fresh stack and trail.  There is a command (@kbd{m m}) that lets
705 you save your favorite mode settings between sessions, though.
706 One of the things it saves is which user interface (standard or
707 Keypad) you last used; otherwise, a freshly started Emacs will
708 always treat @kbd{C-x * *} the same as @kbd{C-x * c}.
710 The @kbd{q} key is another equivalent way to turn the Calculator off.
712 If you type @kbd{C-x * b} first and then @kbd{C-x * c}, you get a
713 full-screen version of Calc (@code{full-calc}) in which the stack and
714 trail windows are still side-by-side but are now as tall as the whole
715 Emacs screen.  When you press @kbd{q} or @kbd{C-x * c} again to quit,
716 the file you were editing before reappears.  The @kbd{C-x * b} key
717 switches back and forth between ``big'' full-screen mode and the
718 normal partial-screen mode.
720 Finally, @kbd{C-x * o} (@code{calc-other-window}) is like @kbd{C-x * c}
721 except that the Calc window is not selected.  The buffer you were
722 editing before remains selected instead.  If you are in a Calc window,
723 then @kbd{C-x * o} will switch you out of it, being careful not to
724 switch you to the Calc Trail window.  So @kbd{C-x * o} is a handy
725 way to switch out of Calc momentarily to edit your file; you can then
726 type @kbd{C-x * c} to switch back into Calc when you are done.
728 @node Quick Mode Overview, Keypad Mode Overview, The Standard Interface, Using Calc
729 @subsection Quick Mode (Overview)
731 @noindent
732 @dfn{Quick mode} is a quick way to use Calc when you don't need the
733 full complexity of the stack and trail.  To use it, type @kbd{C-x * q}
734 (@code{quick-calc}) in any regular editing buffer.
736 Quick mode is very simple:  It prompts you to type any formula in
737 standard algebraic notation (like @samp{4 - 2/3}) and then displays
738 the result at the bottom of the Emacs screen (@mathit{3.33333333333}
739 in this case).  You are then back in the same editing buffer you
740 were in before, ready to continue editing or to type @kbd{C-x * q}
741 again to do another quick calculation.  The result of the calculation
742 will also be in the Emacs ``kill ring'' so that a @kbd{C-y} command
743 at this point will yank the result into your editing buffer.
745 Calc mode settings affect Quick mode, too, though you will have to
746 go into regular Calc (with @kbd{C-x * c}) to change the mode settings.
748 @c [fix-ref Quick Calculator mode]
749 @xref{Quick Calculator}, for further information.
751 @node Keypad Mode Overview, Standalone Operation, Quick Mode Overview, Using Calc
752 @subsection Keypad Mode (Overview)
754 @noindent
755 @dfn{Keypad mode} is a mouse-based interface to the Calculator.
756 It is designed for use with terminals that support a mouse.  If you
757 don't have a mouse, you will have to operate Keypad mode with your
758 arrow keys (which is probably more trouble than it's worth).
760 Type @kbd{C-x * k} to turn Keypad mode on or off.  Once again you
761 get two new windows, this time on the righthand side of the screen
762 instead of at the bottom.  The upper window is the familiar Calc
763 Stack; the lower window is a picture of a typical calculator keypad.
765 @tex
766 \dimen0=\pagetotal%
767 \advance \dimen0 by 24\baselineskip%
768 \ifdim \dimen0>\pagegoal \vfill\eject \fi%
769 \medskip
770 @end tex
771 @smallexample
772 @group
773 |--- Emacs Calculator Mode ---
774 |2:  17.3
775 |1:  -5
776 |    .
777 |--%*-Calc: 12 Deg       (Calcul
778 |----+----+--Calc---+----+----1
779 |FLR |CEIL|RND |TRNC|CLN2|FLT |
780 |----+----+----+----+----+----|
781 | LN |EXP |    |ABS |IDIV|MOD |
782 |----+----+----+----+----+----|
783 |SIN |COS |TAN |SQRT|y^x |1/x |
784 |----+----+----+----+----+----|
785 |  ENTER  |+/- |EEX |UNDO| <- |
786 |-----+---+-+--+--+-+---++----|
787 | INV |  7  |  8  |  9  |  /  |
788 |-----+-----+-----+-----+-----|
789 | HYP |  4  |  5  |  6  |  *  |
790 |-----+-----+-----+-----+-----|
791 |EXEC |  1  |  2  |  3  |  -  |
792 |-----+-----+-----+-----+-----|
793 | OFF |  0  |  .  | PI  |  +  |
794 |-----+-----+-----+-----+-----+
795 @end group
796 @end smallexample
798 Keypad mode is much easier for beginners to learn, because there
799 is no need to memorize lots of obscure key sequences.  But not all
800 commands in regular Calc are available on the Keypad.  You can
801 always switch the cursor into the Calc stack window to use
802 standard Calc commands if you need.  Serious Calc users, though,
803 often find they prefer the standard interface over Keypad mode.
805 To operate the Calculator, just click on the ``buttons'' of the
806 keypad using your left mouse button.  To enter the two numbers
807 shown here you would click @w{@kbd{1 7 .@: 3 ENTER 5 +/- ENTER}}; to
808 add them together you would then click @kbd{+} (to get 12.3 on
809 the stack).
811 If you click the right mouse button, the top three rows of the
812 keypad change to show other sets of commands, such as advanced
813 math functions, vector operations, and operations on binary
814 numbers.
816 Because Keypad mode doesn't use the regular keyboard, Calc leaves
817 the cursor in your original editing buffer.  You can type in
818 this buffer in the usual way while also clicking on the Calculator
819 keypad.  One advantage of Keypad mode is that you don't need an
820 explicit command to switch between editing and calculating.
822 If you press @kbd{C-x * b} first, you get a full-screen Keypad mode
823 (@code{full-calc-keypad}) with three windows:  The keypad in the lower
824 left, the stack in the lower right, and the trail on top.
826 @c [fix-ref Keypad Mode]
827 @xref{Keypad Mode}, for further information.
829 @node Standalone Operation, Embedded Mode Overview, Keypad Mode Overview, Using Calc
830 @subsection Standalone Operation
832 @noindent
833 @cindex Standalone Operation
834 If you are not in Emacs at the moment but you wish to use Calc,
835 you must start Emacs first.  If all you want is to run Calc, you
836 can give the commands:
838 @example
839 emacs -f full-calc
840 @end example
842 @noindent
845 @example
846 emacs -f full-calc-keypad
847 @end example
849 @noindent
850 which run a full-screen Calculator (as if by @kbd{C-x * b C-x * c}) or
851 a full-screen X-based Calculator (as if by @kbd{C-x * b C-x * k}).
852 In standalone operation, quitting the Calculator (by pressing
853 @kbd{q} or clicking on the keypad @key{EXIT} button) quits Emacs
854 itself.
856 @node Embedded Mode Overview, Other C-x * Commands, Standalone Operation, Using Calc
857 @subsection Embedded Mode (Overview)
859 @noindent
860 @dfn{Embedded mode} is a way to use Calc directly from inside an
861 editing buffer.  Suppose you have a formula written as part of a
862 document like this:
864 @smallexample
865 @group
866 The derivative of
868                                    ln(ln(x))
871 @end group
872 @end smallexample
874 @noindent
875 and you wish to have Calc compute and format the derivative for
876 you and store this derivative in the buffer automatically.  To
877 do this with Embedded mode, first copy the formula down to where
878 you want the result to be, leaving a blank line before and after the
879 formula:
881 @smallexample
882 @group
883 The derivative of
885                                    ln(ln(x))
889                                    ln(ln(x))
890 @end group
891 @end smallexample
893 Now, move the cursor onto this new formula and press @kbd{C-x * e}.
894 Calc will read the formula (using the surrounding blank lines to tell
895 how much text to read), then push this formula (invisibly) onto the Calc
896 stack.  The cursor will stay on the formula in the editing buffer, but
897 the line with the formula will now appear as it would on the Calc stack
898 (in this case, it will be left-aligned) and the buffer's mode line will
899 change to look like the Calc mode line (with mode indicators like
900 @samp{12 Deg} and so on).  Even though you are still in your editing
901 buffer, the keyboard now acts like the Calc keyboard, and any new result
902 you get is copied from the stack back into the buffer.  To take the
903 derivative, you would type @kbd{a d x @key{RET}}.
905 @smallexample
906 @group
907 The derivative of
909                                    ln(ln(x))
913 1 / x ln(x)
914 @end group
915 @end smallexample
917 (Note that by default, Calc gives division lower precedence than multiplication,
918 so that @samp{1 / x ln(x)} is equivalent to @samp{1 / (x ln(x))}.)
920 To make this look nicer, you might want to press @kbd{d =} to center
921 the formula, and even @kbd{d B} to use Big display mode.
923 @smallexample
924 @group
925 The derivative of
927                                    ln(ln(x))
930 % [calc-mode: justify: center]
931 % [calc-mode: language: big]
933                                        1
934                                     -------
935                                     x ln(x)
936 @end group
937 @end smallexample
939 Calc has added annotations to the file to help it remember the modes
940 that were used for this formula.  They are formatted like comments
941 in the @TeX{} typesetting language, just in case you are using @TeX{} or
942 @LaTeX{}. (In this example @TeX{} is not being used, so you might want
943 to move these comments up to the top of the file or otherwise put them
944 out of the way.)
946 As an extra flourish, we can add an equation number using a
947 righthand label:  Type @kbd{d @} (1) @key{RET}}.
949 @smallexample
950 @group
951 % [calc-mode: justify: center]
952 % [calc-mode: language: big]
953 % [calc-mode: right-label: " (1)"]
955                                        1
956                                     -------                      (1)
957                                     ln(x) x
958 @end group
959 @end smallexample
961 To leave Embedded mode, type @kbd{C-x * e} again.  The mode line
962 and keyboard will revert to the way they were before.
964 The related command @kbd{C-x * w} operates on a single word, which
965 generally means a single number, inside text.  It searches for an
966 expression which ``looks'' like a number containing the point.
967 Here's an example of its use (before you try this, remove the Calc
968 annotations or use a new buffer so that the extra settings in the
969 annotations don't take effect):
971 @smallexample
972 A slope of one-third corresponds to an angle of 1 degrees.
973 @end smallexample
975 Place the cursor on the @samp{1}, then type @kbd{C-x * w} to enable
976 Embedded mode on that number.  Now type @kbd{3 /} (to get one-third),
977 and @kbd{I T} (the Inverse Tangent converts a slope into an angle),
978 then @w{@kbd{C-x * w}} again to exit Embedded mode.
980 @smallexample
981 A slope of one-third corresponds to an angle of 18.4349488229 degrees.
982 @end smallexample
984 @c [fix-ref Embedded Mode]
985 @xref{Embedded Mode}, for full details.
987 @node Other C-x * Commands,  , Embedded Mode Overview, Using Calc
988 @subsection Other @kbd{C-x *} Commands
990 @noindent
991 Two more Calc-related commands are @kbd{C-x * g} and @kbd{C-x * r},
992 which ``grab'' data from a selected region of a buffer into the
993 Calculator.  The region is defined in the usual Emacs way, by
994 a ``mark'' placed at one end of the region, and the Emacs
995 cursor or ``point'' placed at the other.
997 The @kbd{C-x * g} command reads the region in the usual left-to-right,
998 top-to-bottom order.  The result is packaged into a Calc vector
999 of numbers and placed on the stack.  Calc (in its standard
1000 user interface) is then started.  Type @kbd{v u} if you want
1001 to unpack this vector into separate numbers on the stack.  Also,
1002 @kbd{C-u C-x * g} interprets the region as a single number or
1003 formula.
1005 The @kbd{C-x * r} command reads a rectangle, with the point and
1006 mark defining opposite corners of the rectangle.  The result
1007 is a matrix of numbers on the Calculator stack.
1009 Complementary to these is @kbd{C-x * y}, which ``yanks'' the
1010 value at the top of the Calc stack back into an editing buffer.
1011 If you type @w{@kbd{C-x * y}} while in such a buffer, the value is
1012 yanked at the current position.  If you type @kbd{C-x * y} while
1013 in the Calc buffer, Calc makes an educated guess as to which
1014 editing buffer you want to use.  The Calc window does not have
1015 to be visible in order to use this command, as long as there
1016 is something on the Calc stack.
1018 Here, for reference, is the complete list of @kbd{C-x *} commands.
1019 The shift, control, and meta keys are ignored for the keystroke
1020 following @kbd{C-x *}.
1022 @noindent
1023 Commands for turning Calc on and off:
1025 @table @kbd
1026 @item *
1027 Turn Calc on or off, employing the same user interface as last time.
1029 @item =, +, -, /, \, &, #
1030 Alternatives for @kbd{*}.
1032 @item C
1033 Turn Calc on or off using its standard bottom-of-the-screen
1034 interface.  If Calc is already turned on but the cursor is not
1035 in the Calc window, move the cursor into the window.
1037 @item O
1038 Same as @kbd{C}, but don't select the new Calc window.  If
1039 Calc is already turned on and the cursor is in the Calc window,
1040 move it out of that window.
1042 @item B
1043 Control whether @kbd{C-x * c} and @kbd{C-x * k} use the full screen.
1045 @item Q
1046 Use Quick mode for a single short calculation.
1048 @item K
1049 Turn Calc Keypad mode on or off.
1051 @item E
1052 Turn Calc Embedded mode on or off at the current formula.
1054 @item J
1055 Turn Calc Embedded mode on or off, select the interesting part.
1057 @item W
1058 Turn Calc Embedded mode on or off at the current word (number).
1060 @item Z
1061 Turn Calc on in a user-defined way, as defined by a @kbd{Z I} command.
1063 @item X
1064 Quit Calc; turn off standard, Keypad, or Embedded mode if on.
1065 (This is like @kbd{q} or @key{OFF} inside of Calc.)
1066 @end table
1067 @iftex
1068 @sp 2
1069 @end iftex
1071 @noindent
1072 Commands for moving data into and out of the Calculator:
1074 @table @kbd
1075 @item G
1076 Grab the region into the Calculator as a vector.
1078 @item R
1079 Grab the rectangular region into the Calculator as a matrix.
1081 @item :
1082 Grab the rectangular region and compute the sums of its columns.
1084 @item _
1085 Grab the rectangular region and compute the sums of its rows.
1087 @item Y
1088 Yank a value from the Calculator into the current editing buffer.
1089 @end table
1090 @iftex
1091 @sp 2
1092 @end iftex
1094 @noindent
1095 Commands for use with Embedded mode:
1097 @table @kbd
1098 @item A
1099 ``Activate'' the current buffer.  Locate all formulas that
1100 contain @samp{:=} or @samp{=>} symbols and record their locations
1101 so that they can be updated automatically as variables are changed.
1103 @item D
1104 Duplicate the current formula immediately below and select
1105 the duplicate.
1107 @item F
1108 Insert a new formula at the current point.
1110 @item N
1111 Move the cursor to the next active formula in the buffer.
1113 @item P
1114 Move the cursor to the previous active formula in the buffer.
1116 @item U
1117 Update (i.e., as if by the @kbd{=} key) the formula at the current point.
1119 @item `
1120 Edit (as if by @code{calc-edit}) the formula at the current point.
1121 @end table
1122 @iftex
1123 @sp 2
1124 @end iftex
1126 @noindent
1127 Miscellaneous commands:
1129 @table @kbd
1130 @item I
1131 Run the Emacs Info system to read the Calc manual.
1132 (This is the same as @kbd{h i} inside of Calc.)
1134 @item T
1135 Run the Emacs Info system to read the Calc Tutorial.
1137 @item S
1138 Run the Emacs Info system to read the Calc Summary.
1140 @item L
1141 Load Calc entirely into memory.  (Normally the various parts
1142 are loaded only as they are needed.)
1144 @item M
1145 Read a region of written keystroke names (like @kbd{C-n a b c @key{RET}})
1146 and record them as the current keyboard macro.
1148 @item 0
1149 (This is the ``zero'' digit key.)  Reset the Calculator to
1150 its initial state:  Empty stack, and initial mode settings.
1151 @end table
1153 @node History and Acknowledgments,  , Using Calc, Getting Started
1154 @section History and Acknowledgments
1156 @noindent
1157 Calc was originally started as a two-week project to occupy a lull
1158 in the author's schedule.  Basically, a friend asked if I remembered
1159 the value of
1160 @texline @math{2^{32}}.
1161 @infoline @expr{2^32}.
1162 I didn't offhand, but I said, ``that's easy, just call up an
1163 @code{xcalc}.''  @code{Xcalc} duly reported that the answer to our
1164 question was @samp{4.294967e+09}---with no way to see the full ten
1165 digits even though we knew they were there in the program's memory!  I
1166 was so annoyed, I vowed to write a calculator of my own, once and for
1167 all.
1169 I chose Emacs Lisp, a) because I had always been curious about it
1170 and b) because, being only a text editor extension language after
1171 all, Emacs Lisp would surely reach its limits long before the project
1172 got too far out of hand.
1174 To make a long story short, Emacs Lisp turned out to be a distressingly
1175 solid implementation of Lisp, and the humble task of calculating
1176 turned out to be more open-ended than one might have expected.
1178 Emacs Lisp didn't have built-in floating point math (now it does), so
1179 this had to be simulated in software.  In fact, Emacs integers would
1180 only comfortably fit six decimal digits or so (at the time)---not
1181 enough for a decent calculator.  So I had to write my own
1182 high-precision integer code as well, and once I had this I figured
1183 that arbitrary-size integers were just as easy as large integers.
1184 Arbitrary floating-point precision was the logical next step.  Also,
1185 since the large integer arithmetic was there anyway it seemed only
1186 fair to give the user direct access to it, which in turn made it
1187 practical to support fractions as well as floats. All these features
1188 inspired me to look around for other data types that might be worth
1189 having. 
1191 Around this time, my friend Rick Koshi showed me his nifty new HP-28
1192 calculator.  It allowed the user to manipulate formulas as well as
1193 numerical quantities, and it could also operate on matrices.  I
1194 decided that these would be good for Calc to have, too.  And once
1195 things had gone this far, I figured I might as well take a look at
1196 serious algebra systems for further ideas.  Since these systems did
1197 far more than I could ever hope to implement, I decided to focus on
1198 rewrite rules and other programming features so that users could
1199 implement what they needed for themselves.
1201 Rick complained that matrices were hard to read, so I put in code to
1202 format them in a 2D style.  Once these routines were in place, Big mode
1203 was obligatory.  Gee, what other language modes would be useful?
1205 Scott Hemphill and Allen Knutson, two friends with a strong mathematical
1206 bent, contributed ideas and algorithms for a number of Calc features
1207 including modulo forms, primality testing, and float-to-fraction conversion.
1209 Units were added at the eager insistence of Mass Sivilotti.  Later,
1210 Ulrich Mueller at CERN and Przemek Klosowski at NIST provided invaluable
1211 expert assistance with the units table.  As far as I can remember, the
1212 idea of using algebraic formulas and variables to represent units dates
1213 back to an ancient article in Byte magazine about muMath, an early
1214 algebra system for microcomputers.
1216 Many people have contributed to Calc by reporting bugs and suggesting
1217 features, large and small.  A few deserve special mention:  Tim Peters,
1218 who helped develop the ideas that led to the selection commands, rewrite
1219 rules, and many other algebra features;
1220 @texline Fran\c{c}ois
1221 @infoline Francois
1222 Pinard, who contributed an early prototype of the Calc Summary appendix
1223 as well as providing valuable suggestions in many other areas of Calc;
1224 Carl Witty, whose eagle eyes discovered many typographical and factual
1225 errors in the Calc manual; Tim Kay, who drove the development of
1226 Embedded mode; Ove Ewerlid, who made many suggestions relating to the
1227 algebra commands and contributed some code for polynomial operations;
1228 Randal Schwartz, who suggested the @code{calc-eval} function; Juha
1229 Sarlin, who first worked out how to split Calc into quickly-loading
1230 parts; Bob Weiner, who helped immensely with the Lucid Emacs port; and
1231 Robert J. Chassell, who suggested the Calc Tutorial and exercises as
1232 well as many other things.
1234 @cindex Bibliography
1235 @cindex Knuth, Art of Computer Programming
1236 @cindex Numerical Recipes
1237 @c Should these be expanded into more complete references?
1238 Among the books used in the development of Calc were Knuth's @emph{Art
1239 of Computer Programming} (especially volume II, @emph{Seminumerical
1240 Algorithms}); @emph{Numerical Recipes} by Press, Flannery, Teukolsky,
1241 and Vetterling; Bevington's @emph{Data Reduction and Error Analysis
1242 for the Physical Sciences}; @emph{Concrete Mathematics} by Graham,
1243 Knuth, and Patashnik; Steele's @emph{Common Lisp, the Language}; the
1244 @emph{CRC Standard Math Tables} (William H. Beyer, ed.); and
1245 Abramowitz and Stegun's venerable @emph{Handbook of Mathematical
1246 Functions}.  Also, of course, Calc could not have been written without
1247 the excellent @emph{GNU Emacs Lisp Reference Manual}, by Bil Lewis and
1248 Dan LaLiberte.
1250 Final thanks go to Richard Stallman, without whose fine implementations
1251 of the Emacs editor, language, and environment, Calc would have been
1252 finished in two weeks.
1254 @c [tutorial]
1256 @ifinfo
1257 @c This node is accessed by the `C-x * t' command.
1258 @node Interactive Tutorial, Tutorial, Getting Started, Top
1259 @chapter Tutorial
1261 @noindent
1262 Some brief instructions on using the Emacs Info system for this tutorial:
1264 Press the space bar and Delete keys to go forward and backward in a
1265 section by screenfuls (or use the regular Emacs scrolling commands
1266 for this).
1268 Press @kbd{n} or @kbd{p} to go to the Next or Previous section.
1269 If the section has a @dfn{menu}, press a digit key like @kbd{1}
1270 or @kbd{2} to go to a sub-section from the menu.  Press @kbd{u} to
1271 go back up from a sub-section to the menu it is part of.
1273 Exercises in the tutorial all have cross-references to the
1274 appropriate page of the ``answers'' section.  Press @kbd{f}, then
1275 the exercise number, to see the answer to an exercise.  After
1276 you have followed a cross-reference, you can press the letter
1277 @kbd{l} to return to where you were before.
1279 You can press @kbd{?} at any time for a brief summary of Info commands.
1281 Press the number @kbd{1} now to enter the first section of the Tutorial.
1283 @menu
1284 * Tutorial::
1285 @end menu
1287 @node Tutorial, Introduction, Interactive Tutorial, Top
1288 @end ifinfo
1289 @ifnotinfo
1290 @node Tutorial, Introduction, Getting Started, Top
1291 @end ifnotinfo
1292 @chapter Tutorial
1294 @noindent
1295 This chapter explains how to use Calc and its many features, in
1296 a step-by-step, tutorial way.  You are encouraged to run Calc and
1297 work along with the examples as you read (@pxref{Starting Calc}).
1298 If you are already familiar with advanced calculators, you may wish
1299 @c [not-split]
1300 to skip on to the rest of this manual.
1301 @c [when-split]
1302 @c to skip on to volume II of this manual, the @dfn{Calc Reference}.
1304 @c [fix-ref Embedded Mode]
1305 This tutorial describes the standard user interface of Calc only.
1306 The Quick mode and Keypad mode interfaces are fairly
1307 self-explanatory.  @xref{Embedded Mode}, for a description of
1308 the Embedded mode interface.
1310 The easiest way to read this tutorial on-line is to have two windows on
1311 your Emacs screen, one with Calc and one with the Info system.  Press
1312 @kbd{C-x * t} to set this up; the on-line tutorial will be opened in the
1313 current window and Calc will be started in another window.  From the
1314 Info window, the command @kbd{C-x * c} can be used to switch to the Calc
1315 window and @kbd{C-x * o} can be used to switch back to the Info window.
1316 (If you have a printed copy of the manual you can use that instead; in
1317 that case you only need to press @kbd{C-x * c} to start Calc.)
1319 This tutorial is designed to be done in sequence.  But the rest of this
1320 manual does not assume you have gone through the tutorial.  The tutorial
1321 does not cover everything in the Calculator, but it touches on most
1322 general areas.
1324 @ifnottex
1325 You may wish to print out a copy of the Calc Summary and keep notes on
1326 it as you learn Calc.  @xref{About This Manual}, to see how to make a
1327 printed summary.  @xref{Summary}.
1328 @end ifnottex
1329 @iftex
1330 The Calc Summary at the end of the reference manual includes some blank
1331 space for your own use.  You may wish to keep notes there as you learn
1332 Calc.
1333 @end iftex
1335 @menu
1336 * Basic Tutorial::
1337 * Arithmetic Tutorial::
1338 * Vector/Matrix Tutorial::
1339 * Types Tutorial::
1340 * Algebra Tutorial::
1341 * Programming Tutorial::
1343 * Answers to Exercises::
1344 @end menu
1346 @node Basic Tutorial, Arithmetic Tutorial, Tutorial, Tutorial
1347 @section Basic Tutorial
1349 @noindent
1350 In this section, we learn how RPN and algebraic-style calculations
1351 work, how to undo and redo an operation done by mistake, and how
1352 to control various modes of the Calculator.
1354 @menu
1355 * RPN Tutorial::            Basic operations with the stack.
1356 * Algebraic Tutorial::      Algebraic entry; variables.
1357 * Undo Tutorial::           If you make a mistake: Undo and the trail.
1358 * Modes Tutorial::          Common mode-setting commands.
1359 @end menu
1361 @node RPN Tutorial, Algebraic Tutorial, Basic Tutorial, Basic Tutorial
1362 @subsection RPN Calculations and the Stack
1364 @cindex RPN notation
1365 @noindent
1366 @ifnottex
1367 Calc normally uses RPN notation.  You may be familiar with the RPN
1368 system from Hewlett-Packard calculators, FORTH, or PostScript.
1369 (Reverse Polish Notation, RPN, is named after the Polish mathematician
1370 Jan Lukasiewicz.)
1371 @end ifnottex
1372 @tex
1373 Calc normally uses RPN notation.  You may be familiar with the RPN
1374 system from Hewlett-Packard calculators, FORTH, or PostScript.
1375 (Reverse Polish Notation, RPN, is named after the Polish mathematician
1376 Jan \L ukasiewicz.)
1377 @end tex
1379 The central component of an RPN calculator is the @dfn{stack}.  A
1380 calculator stack is like a stack of dishes.  New dishes (numbers) are
1381 added at the top of the stack, and numbers are normally only removed
1382 from the top of the stack.
1384 @cindex Operators
1385 @cindex Operands
1386 In an operation like @expr{2+3}, the 2 and 3 are called the @dfn{operands}
1387 and the @expr{+} is the @dfn{operator}.  In an RPN calculator you always
1388 enter the operands first, then the operator.  Each time you type a
1389 number, Calc adds or @dfn{pushes} it onto the top of the Stack.
1390 When you press an operator key like @kbd{+}, Calc @dfn{pops} the appropriate
1391 number of operands from the stack and pushes back the result.
1393 Thus we could add the numbers 2 and 3 in an RPN calculator by typing:
1394 @kbd{2 @key{RET} 3 @key{RET} +}.  (The @key{RET} key, Return, corresponds to
1395 the @key{ENTER} key on traditional RPN calculators.)  Try this now if
1396 you wish; type @kbd{C-x * c} to switch into the Calc window (you can type
1397 @kbd{C-x * c} again or @kbd{C-x * o} to switch back to the Tutorial window).
1398 The first four keystrokes ``push'' the numbers 2 and 3 onto the stack.
1399 The @kbd{+} key ``pops'' the top two numbers from the stack, adds them,
1400 and pushes the result (5) back onto the stack.  Here's how the stack
1401 will look at various points throughout the calculation:
1403 @smallexample
1404 @group
1405     .          1:  2          2:  2          1:  5              .
1406                    .          1:  3              .
1407                                   .
1409   C-x * c          2 @key{RET}          3 @key{RET}            +             @key{DEL}
1410 @end group
1411 @end smallexample
1413 The @samp{.} symbol is a marker that represents the top of the stack.
1414 Note that the ``top'' of the stack is really shown at the bottom of
1415 the Stack window.  This may seem backwards, but it turns out to be
1416 less distracting in regular use.
1418 @cindex Stack levels
1419 @cindex Levels of stack
1420 The numbers @samp{1:} and @samp{2:} on the left are @dfn{stack level
1421 numbers}.  Old RPN calculators always had four stack levels called
1422 @expr{x}, @expr{y}, @expr{z}, and @expr{t}.  Calc's stack can grow
1423 as large as you like, so it uses numbers instead of letters.  Some
1424 stack-manipulation commands accept a numeric argument that says
1425 which stack level to work on.  Normal commands like @kbd{+} always
1426 work on the top few levels of the stack.
1428 @c [fix-ref Truncating the Stack]
1429 The Stack buffer is just an Emacs buffer, and you can move around in
1430 it using the regular Emacs motion commands.  But no matter where the
1431 cursor is, even if you have scrolled the @samp{.} marker out of
1432 view, most Calc commands always move the cursor back down to level 1
1433 before doing anything.  It is possible to move the @samp{.} marker
1434 upwards through the stack, temporarily ``hiding'' some numbers from
1435 commands like @kbd{+}.  This is called @dfn{stack truncation} and
1436 we will not cover it in this tutorial; @pxref{Truncating the Stack},
1437 if you are interested.
1439 You don't really need the second @key{RET} in @kbd{2 @key{RET} 3
1440 @key{RET} +}.  That's because if you type any operator name or
1441 other non-numeric key when you are entering a number, the Calculator
1442 automatically enters that number and then does the requested command.
1443 Thus @kbd{2 @key{RET} 3 +} will work just as well.
1445 Examples in this tutorial will often omit @key{RET} even when the
1446 stack displays shown would only happen if you did press @key{RET}:
1448 @smallexample
1449 @group
1450 1:  2          2:  2          1:  5
1451     .          1:  3              .
1452                    .
1454   2 @key{RET}            3              +
1455 @end group
1456 @end smallexample
1458 @noindent
1459 Here, after pressing @kbd{3} the stack would really show @samp{1:  2}
1460 with @samp{Calc:@: 3} in the minibuffer.  In these situations, you can
1461 press the optional @key{RET} to see the stack as the figure shows.
1463 (@bullet{}) @strong{Exercise 1.}  (This tutorial will include exercises
1464 at various points.  Try them if you wish.  Answers to all the exercises
1465 are located at the end of the Tutorial chapter.  Each exercise will
1466 include a cross-reference to its particular answer.  If you are
1467 reading with the Emacs Info system, press @kbd{f} and the
1468 exercise number to go to the answer, then the letter @kbd{l} to
1469 return to where you were.)
1471 @noindent
1472 Here's the first exercise:  What will the keystrokes @kbd{1 @key{RET} 2
1473 @key{RET} 3 @key{RET} 4 + * -} compute?  (@samp{*} is the symbol for
1474 multiplication.)  Figure it out by hand, then try it with Calc to see
1475 if you're right.  @xref{RPN Answer 1, 1}. (@bullet{})
1477 (@bullet{}) @strong{Exercise 2.}  Compute
1478 @texline @math{(2\times4) + (7\times9.5) + {5\over4}}
1479 @infoline @expr{2*4 + 7*9.5 + 5/4}
1480 using the stack.  @xref{RPN Answer 2, 2}. (@bullet{})
1482 The @key{DEL} key is called Backspace on some keyboards.  It is
1483 whatever key you would use to correct a simple typing error when
1484 regularly using Emacs.  The @key{DEL} key pops and throws away the
1485 top value on the stack.  (You can still get that value back from
1486 the Trail if you should need it later on.)  There are many places
1487 in this tutorial where we assume you have used @key{DEL} to erase the
1488 results of the previous example at the beginning of a new example.
1489 In the few places where it is really important to use @key{DEL} to
1490 clear away old results, the text will remind you to do so.
1492 (It won't hurt to let things accumulate on the stack, except that
1493 whenever you give a display-mode-changing command Calc will have to
1494 spend a long time reformatting such a large stack.)
1496 Since the @kbd{-} key is also an operator (it subtracts the top two
1497 stack elements), how does one enter a negative number?  Calc uses
1498 the @kbd{_} (underscore) key to act like the minus sign in a number.
1499 So, typing @kbd{-5 @key{RET}} won't work because the @kbd{-} key
1500 will try to do a subtraction, but @kbd{_5 @key{RET}} works just fine.
1502 You can also press @kbd{n}, which means ``change sign.''  It changes
1503 the number at the top of the stack (or the number being entered)
1504 from positive to negative or vice-versa:  @kbd{5 n @key{RET}}.
1506 @cindex Duplicating a stack entry
1507 If you press @key{RET} when you're not entering a number, the effect
1508 is to duplicate the top number on the stack.  Consider this calculation:
1510 @smallexample
1511 @group
1512 1:  3          2:  3          1:  9          2:  9          1:  81
1513     .          1:  3              .          1:  9              .
1514                    .                             .
1516   3 @key{RET}           @key{RET}             *             @key{RET}             *
1517 @end group
1518 @end smallexample
1520 @noindent
1521 (Of course, an easier way to do this would be @kbd{3 @key{RET} 4 ^},
1522 to raise 3 to the fourth power.)
1524 The space-bar key (denoted @key{SPC} here) performs the same function
1525 as @key{RET}; you could replace all three occurrences of @key{RET} in
1526 the above example with @key{SPC} and the effect would be the same.
1528 @cindex Exchanging stack entries
1529 Another stack manipulation key is @key{TAB}.  This exchanges the top
1530 two stack entries.  Suppose you have computed @kbd{2 @key{RET} 3 +}
1531 to get 5, and then you realize what you really wanted to compute
1532 was @expr{20 / (2+3)}.
1534 @smallexample
1535 @group
1536 1:  5          2:  5          2:  20         1:  4
1537     .          1:  20         1:  5              .
1538                    .              .
1540  2 @key{RET} 3 +         20            @key{TAB}             /
1541 @end group
1542 @end smallexample
1544 @noindent
1545 Planning ahead, the calculation would have gone like this:
1547 @smallexample
1548 @group
1549 1:  20         2:  20         3:  20         2:  20         1:  4
1550     .          1:  2          2:  2          1:  5              .
1551                    .          1:  3              .
1552                                   .
1554   20 @key{RET}         2 @key{RET}            3              +              /
1555 @end group
1556 @end smallexample
1558 A related stack command is @kbd{M-@key{TAB}} (hold @key{META} and type
1559 @key{TAB}).  It rotates the top three elements of the stack upward,
1560 bringing the object in level 3 to the top.
1562 @smallexample
1563 @group
1564 1:  10         2:  10         3:  10         3:  20         3:  30
1565     .          1:  20         2:  20         2:  30         2:  10
1566                    .          1:  30         1:  10         1:  20
1567                                   .              .              .
1569   10 @key{RET}         20 @key{RET}         30 @key{RET}         M-@key{TAB}          M-@key{TAB}
1570 @end group
1571 @end smallexample
1573 (@bullet{}) @strong{Exercise 3.} Suppose the numbers 10, 20, and 30 are
1574 on the stack.  Figure out how to add one to the number in level 2
1575 without affecting the rest of the stack.  Also figure out how to add
1576 one to the number in level 3.  @xref{RPN Answer 3, 3}. (@bullet{})
1578 Operations like @kbd{+}, @kbd{-}, @kbd{*}, @kbd{/}, and @kbd{^} pop two
1579 arguments from the stack and push a result.  Operations like @kbd{n} and
1580 @kbd{Q} (square root) pop a single number and push the result.  You can
1581 think of them as simply operating on the top element of the stack.
1583 @smallexample
1584 @group
1585 1:  3          1:  9          2:  9          1:  25         1:  5
1586     .              .          1:  16             .              .
1587                                   .
1589   3 @key{RET}          @key{RET} *        4 @key{RET} @key{RET} *        +              Q
1590 @end group
1591 @end smallexample
1593 @noindent
1594 (Note that capital @kbd{Q} means to hold down the Shift key while
1595 typing @kbd{q}.  Remember, plain unshifted @kbd{q} is the Quit command.)
1597 @cindex Pythagorean Theorem
1598 Here we've used the Pythagorean Theorem to determine the hypotenuse of a
1599 right triangle.  Calc actually has a built-in command for that called
1600 @kbd{f h}, but let's suppose we can't remember the necessary keystrokes.
1601 We can still enter it by its full name using @kbd{M-x} notation:
1603 @smallexample
1604 @group
1605 1:  3          2:  3          1:  5
1606     .          1:  4              .
1607                    .
1609   3 @key{RET}          4 @key{RET}      M-x calc-hypot
1610 @end group
1611 @end smallexample
1613 All Calculator commands begin with the word @samp{calc-}.  Since it
1614 gets tiring to type this, Calc provides an @kbd{x} key which is just
1615 like the regular Emacs @kbd{M-x} key except that it types the @samp{calc-}
1616 prefix for you:
1618 @smallexample
1619 @group
1620 1:  3          2:  3          1:  5
1621     .          1:  4              .
1622                    .
1624   3 @key{RET}          4 @key{RET}         x hypot
1625 @end group
1626 @end smallexample
1628 What happens if you take the square root of a negative number?
1630 @smallexample
1631 @group
1632 1:  4          1:  -4         1:  (0, 2)
1633     .              .              .
1635   4 @key{RET}            n              Q
1636 @end group
1637 @end smallexample
1639 @noindent
1640 The notation @expr{(a, b)} represents a complex number.
1641 Complex numbers are more traditionally written @expr{a + b i};
1642 Calc can display in this format, too, but for now we'll stick to the
1643 @expr{(a, b)} notation.
1645 If you don't know how complex numbers work, you can safely ignore this
1646 feature.  Complex numbers only arise from operations that would be
1647 errors in a calculator that didn't have complex numbers.  (For example,
1648 taking the square root or logarithm of a negative number produces a
1649 complex result.)
1651 Complex numbers are entered in the notation shown.  The @kbd{(} and
1652 @kbd{,} and @kbd{)} keys manipulate ``incomplete complex numbers.''
1654 @smallexample
1655 @group
1656 1:  ( ...      2:  ( ...      1:  (2, ...    1:  (2, ...    1:  (2, 3)
1657     .          1:  2              .              3              .
1658                    .                             .
1660     (              2              ,              3              )
1661 @end group
1662 @end smallexample
1664 You can perform calculations while entering parts of incomplete objects.
1665 However, an incomplete object cannot actually participate in a calculation:
1667 @smallexample
1668 @group
1669 1:  ( ...      2:  ( ...      3:  ( ...      1:  ( ...      1:  ( ...
1670     .          1:  2          2:  2              5              5
1671                    .          1:  3              .              .
1672                                   .
1673                                                              (error)
1674     (             2 @key{RET}           3              +              +
1675 @end group
1676 @end smallexample
1678 @noindent
1679 Adding 5 to an incomplete object makes no sense, so the last command
1680 produces an error message and leaves the stack the same.
1682 Incomplete objects can't participate in arithmetic, but they can be
1683 moved around by the regular stack commands.
1685 @smallexample
1686 @group
1687 2:  2          3:  2          3:  3          1:  ( ...      1:  (2, 3)
1688 1:  3          2:  3          2:  ( ...          2              .
1689     .          1:  ( ...      1:  2              3
1690                    .              .              .
1692 2 @key{RET} 3 @key{RET}        (            M-@key{TAB}          M-@key{TAB}            )
1693 @end group
1694 @end smallexample
1696 @noindent
1697 Note that the @kbd{,} (comma) key did not have to be used here.
1698 When you press @kbd{)} all the stack entries between the incomplete
1699 entry and the top are collected, so there's never really a reason
1700 to use the comma.  It's up to you.
1702 (@bullet{}) @strong{Exercise 4.}  To enter the complex number @expr{(2, 3)},
1703 your friend Joe typed @kbd{( 2 , @key{SPC} 3 )}.  What happened?
1704 (Joe thought of a clever way to correct his mistake in only two
1705 keystrokes, but it didn't quite work.  Try it to find out why.)
1706 @xref{RPN Answer 4, 4}. (@bullet{})
1708 Vectors are entered the same way as complex numbers, but with square
1709 brackets in place of parentheses.  We'll meet vectors again later in
1710 the tutorial.
1712 Any Emacs command can be given a @dfn{numeric prefix argument} by
1713 typing a series of @key{META}-digits beforehand.  If @key{META} is
1714 awkward for you, you can instead type @kbd{C-u} followed by the
1715 necessary digits.  Numeric prefix arguments can be negative, as in
1716 @kbd{M-- M-3 M-5} or @w{@kbd{C-u - 3 5}}.  Calc commands use numeric
1717 prefix arguments in a variety of ways.  For example, a numeric prefix
1718 on the @kbd{+} operator adds any number of stack entries at once:
1720 @smallexample
1721 @group
1722 1:  10         2:  10         3:  10         3:  10         1:  60
1723     .          1:  20         2:  20         2:  20             .
1724                    .          1:  30         1:  30
1725                                   .              .
1727   10 @key{RET}         20 @key{RET}         30 @key{RET}         C-u 3            +
1728 @end group
1729 @end smallexample
1731 For stack manipulation commands like @key{RET}, a positive numeric
1732 prefix argument operates on the top @var{n} stack entries at once.  A
1733 negative argument operates on the entry in level @var{n} only.  An
1734 argument of zero operates on the entire stack.  In this example, we copy
1735 the second-to-top element of the stack:
1737 @smallexample
1738 @group
1739 1:  10         2:  10         3:  10         3:  10         4:  10
1740     .          1:  20         2:  20         2:  20         3:  20
1741                    .          1:  30         1:  30         2:  30
1742                                   .              .          1:  20
1743                                                                 .
1745   10 @key{RET}         20 @key{RET}         30 @key{RET}         C-u -2          @key{RET}
1746 @end group
1747 @end smallexample
1749 @cindex Clearing the stack
1750 @cindex Emptying the stack
1751 Another common idiom is @kbd{M-0 @key{DEL}}, which clears the stack.
1752 (The @kbd{M-0} numeric prefix tells @key{DEL} to operate on the
1753 entire stack.)
1755 @node Algebraic Tutorial, Undo Tutorial, RPN Tutorial, Basic Tutorial
1756 @subsection Algebraic-Style Calculations
1758 @noindent
1759 If you are not used to RPN notation, you may prefer to operate the
1760 Calculator in Algebraic mode, which is closer to the way
1761 non-RPN calculators work.  In Algebraic mode, you enter formulas
1762 in traditional @expr{2+3} notation.
1764 @strong{Notice:} Calc gives @samp{/} lower precedence than @samp{*}, so
1765 that @samp{a/b*c} is interpreted as @samp{a/(b*c)}; this is not
1766 standard across all computer languages.  See below for details.
1768 You don't really need any special ``mode'' to enter algebraic formulas.
1769 You can enter a formula at any time by pressing the apostrophe (@kbd{'})
1770 key.  Answer the prompt with the desired formula, then press @key{RET}.
1771 The formula is evaluated and the result is pushed onto the RPN stack.
1772 If you don't want to think in RPN at all, you can enter your whole
1773 computation as a formula, read the result from the stack, then press
1774 @key{DEL} to delete it from the stack.
1776 Try pressing the apostrophe key, then @kbd{2+3+4}, then @key{RET}.
1777 The result should be the number 9.
1779 Algebraic formulas use the operators @samp{+}, @samp{-}, @samp{*},
1780 @samp{/}, and @samp{^}.  You can use parentheses to make the order
1781 of evaluation clear.  In the absence of parentheses, @samp{^} is
1782 evaluated first, then @samp{*}, then @samp{/}, then finally
1783 @samp{+} and @samp{-}.  For example, the expression
1785 @example
1786 2 + 3*4*5 / 6*7^8 - 9
1787 @end example
1789 @noindent
1790 is equivalent to
1792 @example
1793 2 + ((3*4*5) / (6*(7^8)) - 9
1794 @end example
1796 @noindent
1797 or, in large mathematical notation,
1799 @ifnottex
1800 @example
1801 @group
1802     3 * 4 * 5
1803 2 + --------- - 9
1804           8
1805      6 * 7
1806 @end group
1807 @end example
1808 @end ifnottex
1809 @tex
1810 \beforedisplay
1811 $$ 2 + { 3 \times 4 \times 5 \over 6 \times 7^8 } - 9 $$
1812 \afterdisplay
1813 @end tex
1815 @noindent
1816 The result of this expression will be the number @mathit{-6.99999826533}.
1818 Calc's order of evaluation is the same as for most computer languages,
1819 except that @samp{*} binds more strongly than @samp{/}, as the above
1820 example shows.  As in normal mathematical notation, the @samp{*} symbol
1821 can often be omitted:  @samp{2 a} is the same as @samp{2*a}.
1823 Operators at the same level are evaluated from left to right, except
1824 that @samp{^} is evaluated from right to left.  Thus, @samp{2-3-4} is
1825 equivalent to @samp{(2-3)-4} or @mathit{-5}, whereas @samp{2^3^4} is equivalent
1826 to @samp{2^(3^4)} (a very large integer; try it!).
1828 If you tire of typing the apostrophe all the time, there is
1829 Algebraic mode, where Calc automatically senses
1830 when you are about to type an algebraic expression.  To enter this
1831 mode, press the two letters @w{@kbd{m a}}.  (An @samp{Alg} indicator
1832 should appear in the Calc window's mode line.)
1834 Press @kbd{m a}, then @kbd{2+3+4} with no apostrophe, then @key{RET}.
1836 In Algebraic mode, when you press any key that would normally begin
1837 entering a number (such as a digit, a decimal point, or the @kbd{_}
1838 key), or if you press @kbd{(} or @kbd{[}, Calc automatically begins
1839 an algebraic entry.
1841 Functions which do not have operator symbols like @samp{+} and @samp{*}
1842 must be entered in formulas using function-call notation.  For example,
1843 the function name corresponding to the square-root key @kbd{Q} is
1844 @code{sqrt}.  To compute a square root in a formula, you would use
1845 the notation @samp{sqrt(@var{x})}.
1847 Press the apostrophe, then type @kbd{sqrt(5*2) - 3}.  The result should
1848 be @expr{0.16227766017}.
1850 Note that if the formula begins with a function name, you need to use
1851 the apostrophe even if you are in Algebraic mode.  If you type @kbd{arcsin}
1852 out of the blue, the @kbd{a r} will be taken as an Algebraic Rewrite
1853 command, and the @kbd{csin} will be taken as the name of the rewrite
1854 rule to use!
1856 Some people prefer to enter complex numbers and vectors in algebraic
1857 form because they find RPN entry with incomplete objects to be too
1858 distracting, even though they otherwise use Calc as an RPN calculator.
1860 Still in Algebraic mode, type:
1862 @smallexample
1863 @group
1864 1:  (2, 3)     2:  (2, 3)     1:  (8, -1)    2:  (8, -1)    1:  (9, -1)
1865     .          1:  (1, -2)        .          1:  1              .
1866                    .                             .
1868  (2,3) @key{RET}      (1,-2) @key{RET}        *              1 @key{RET}          +
1869 @end group
1870 @end smallexample
1872 Algebraic mode allows us to enter complex numbers without pressing
1873 an apostrophe first, but it also means we need to press @key{RET}
1874 after every entry, even for a simple number like @expr{1}.
1876 (You can type @kbd{C-u m a} to enable a special Incomplete Algebraic
1877 mode in which the @kbd{(} and @kbd{[} keys use algebraic entry even
1878 though regular numeric keys still use RPN numeric entry.  There is also
1879 Total Algebraic mode, started by typing @kbd{m t}, in which all
1880 normal keys begin algebraic entry.  You must then use the @key{META} key
1881 to type Calc commands:  @kbd{M-m t} to get back out of Total Algebraic
1882 mode, @kbd{M-q} to quit, etc.)
1884 If you're still in Algebraic mode, press @kbd{m a} again to turn it off.
1886 Actual non-RPN calculators use a mixture of algebraic and RPN styles.
1887 In general, operators of two numbers (like @kbd{+} and @kbd{*})
1888 use algebraic form, but operators of one number (like @kbd{n} and @kbd{Q})
1889 use RPN form.  Also, a non-RPN calculator allows you to see the
1890 intermediate results of a calculation as you go along.  You can
1891 accomplish this in Calc by performing your calculation as a series
1892 of algebraic entries, using the @kbd{$} sign to tie them together.
1893 In an algebraic formula, @kbd{$} represents the number on the top
1894 of the stack.  Here, we perform the calculation
1895 @texline @math{\sqrt{2\times4+1}},
1896 @infoline @expr{sqrt(2*4+1)},
1897 which on a traditional calculator would be done by pressing
1898 @kbd{2 * 4 + 1 =} and then the square-root key.
1900 @smallexample
1901 @group
1902 1:  8          1:  9          1:  3
1903     .              .              .
1905   ' 2*4 @key{RET}        $+1 @key{RET}        Q
1906 @end group
1907 @end smallexample
1909 @noindent
1910 Notice that we didn't need to press an apostrophe for the @kbd{$+1},
1911 because the dollar sign always begins an algebraic entry.
1913 (@bullet{}) @strong{Exercise 1.}  How could you get the same effect as
1914 pressing @kbd{Q} but using an algebraic entry instead?  How about
1915 if the @kbd{Q} key on your keyboard were broken?
1916 @xref{Algebraic Answer 1, 1}. (@bullet{})
1918 The notations @kbd{$$}, @kbd{$$$}, and so on stand for higher stack
1919 entries.  For example, @kbd{' $$+$ @key{RET}} is just like typing @kbd{+}.
1921 Algebraic formulas can include @dfn{variables}.  To store in a
1922 variable, press @kbd{s s}, then type the variable name, then press
1923 @key{RET}.  (There are actually two flavors of store command:
1924 @kbd{s s} stores a number in a variable but also leaves the number
1925 on the stack, while @w{@kbd{s t}} removes a number from the stack and
1926 stores it in the variable.)  A variable name should consist of one
1927 or more letters or digits, beginning with a letter.
1929 @smallexample
1930 @group
1931 1:  17             .          1:  a + a^2    1:  306
1932     .                             .              .
1934     17          s t a @key{RET}      ' a+a^2 @key{RET}       =
1935 @end group
1936 @end smallexample
1938 @noindent
1939 The @kbd{=} key @dfn{evaluates} a formula by replacing all its
1940 variables by the values that were stored in them.
1942 For RPN calculations, you can recall a variable's value on the
1943 stack either by entering its name as a formula and pressing @kbd{=},
1944 or by using the @kbd{s r} command.
1946 @smallexample
1947 @group
1948 1:  17         2:  17         3:  17         2:  17         1:  306
1949     .          1:  17         2:  17         1:  289            .
1950                    .          1:  2              .
1951                                   .
1953   s r a @key{RET}     ' a @key{RET} =         2              ^              +
1954 @end group
1955 @end smallexample
1957 If you press a single digit for a variable name (as in @kbd{s t 3}, you
1958 get one of ten @dfn{quick variables} @code{q0} through @code{q9}.
1959 They are ``quick'' simply because you don't have to type the letter
1960 @code{q} or the @key{RET} after their names.  In fact, you can type
1961 simply @kbd{s 3} as a shorthand for @kbd{s s 3}, and likewise for
1962 @kbd{t 3} and @w{@kbd{r 3}}.
1964 Any variables in an algebraic formula for which you have not stored
1965 values are left alone, even when you evaluate the formula.
1967 @smallexample
1968 @group
1969 1:  2 a + 2 b     1:  2 b + 34
1970     .                 .
1972  ' 2a+2b @key{RET}          =
1973 @end group
1974 @end smallexample
1976 Calls to function names which are undefined in Calc are also left
1977 alone, as are calls for which the value is undefined.
1979 @smallexample
1980 @group
1981 1:  log10(0) + log10(x) + log10(5, 6) + foo(3) + 2
1982     .
1984  ' log10(100) + log10(0) + log10(x) + log10(5,6) + foo(3) @key{RET}
1985 @end group
1986 @end smallexample
1988 @noindent
1989 In this example, the first call to @code{log10} works, but the other
1990 calls are not evaluated.  In the second call, the logarithm is
1991 undefined for that value of the argument; in the third, the argument
1992 is symbolic, and in the fourth, there are too many arguments.  In the
1993 fifth case, there is no function called @code{foo}.  You will see a
1994 ``Wrong number of arguments'' message referring to @samp{log10(5,6)}.
1995 Press the @kbd{w} (``why'') key to see any other messages that may
1996 have arisen from the last calculation.  In this case you will get
1997 ``logarithm of zero,'' then ``number expected: @code{x}''.  Calc
1998 automatically displays the first message only if the message is
1999 sufficiently important; for example, Calc considers ``wrong number
2000 of arguments'' and ``logarithm of zero'' to be important enough to
2001 report automatically, while a message like ``number expected: @code{x}''
2002 will only show up if you explicitly press the @kbd{w} key.
2004 (@bullet{}) @strong{Exercise 2.}  Joe entered the formula @samp{2 x y},
2005 stored 5 in @code{x}, pressed @kbd{=}, and got the expected result,
2006 @samp{10 y}.  He then tried the same for the formula @samp{2 x (1+y)},
2007 expecting @samp{10 (1+y)}, but it didn't work.  Why not?
2008 @xref{Algebraic Answer 2, 2}. (@bullet{})
2010 (@bullet{}) @strong{Exercise 3.}  What result would you expect
2011 @kbd{1 @key{RET} 0 /} to give?  What if you then type @kbd{0 *}?
2012 @xref{Algebraic Answer 3, 3}. (@bullet{})
2014 One interesting way to work with variables is to use the
2015 @dfn{evaluates-to} (@samp{=>}) operator.  It works like this:
2016 Enter a formula algebraically in the usual way, but follow
2017 the formula with an @samp{=>} symbol.  (There is also an @kbd{s =}
2018 command which builds an @samp{=>} formula using the stack.)  On
2019 the stack, you will see two copies of the formula with an @samp{=>}
2020 between them.  The lefthand formula is exactly like you typed it;
2021 the righthand formula has been evaluated as if by typing @kbd{=}.
2023 @smallexample
2024 @group
2025 2:  2 + 3 => 5                     2:  2 + 3 => 5
2026 1:  2 a + 2 b => 34 + 2 b          1:  2 a + 2 b => 20 + 2 b
2027     .                                  .
2029 ' 2+3 => @key{RET}  ' 2a+2b @key{RET} s =          10 s t a @key{RET}
2030 @end group
2031 @end smallexample
2033 @noindent
2034 Notice that the instant we stored a new value in @code{a}, all
2035 @samp{=>} operators already on the stack that referred to @expr{a}
2036 were updated to use the new value.  With @samp{=>}, you can push a
2037 set of formulas on the stack, then change the variables experimentally
2038 to see the effects on the formulas' values.
2040 You can also ``unstore'' a variable when you are through with it:
2042 @smallexample
2043 @group
2044 2:  2 + 5 => 5
2045 1:  2 a + 2 b => 2 a + 2 b
2046     .
2048     s u a @key{RET}
2049 @end group
2050 @end smallexample
2052 We will encounter formulas involving variables and functions again
2053 when we discuss the algebra and calculus features of the Calculator.
2055 @node Undo Tutorial, Modes Tutorial, Algebraic Tutorial, Basic Tutorial
2056 @subsection Undo and Redo
2058 @noindent
2059 If you make a mistake, you can usually correct it by pressing shift-@kbd{U},
2060 the ``undo'' command.  First, clear the stack (@kbd{M-0 @key{DEL}}) and exit
2061 and restart Calc (@kbd{C-x * * C-x * *}) to make sure things start off
2062 with a clean slate.  Now:
2064 @smallexample
2065 @group
2066 1:  2          2:  2          1:  8          2:  2          1:  6
2067     .          1:  3              .          1:  3              .
2068                    .                             .
2070    2 @key{RET}           3              ^              U              *
2071 @end group
2072 @end smallexample
2074 You can undo any number of times.  Calc keeps a complete record of
2075 all you have done since you last opened the Calc window.  After the
2076 above example, you could type:
2078 @smallexample
2079 @group
2080 1:  6          2:  2          1:  2              .              .
2081     .          1:  3              .
2082                    .
2083                                                              (error)
2084                    U              U              U              U
2085 @end group
2086 @end smallexample
2088 You can also type @kbd{D} to ``redo'' a command that you have undone
2089 mistakenly.
2091 @smallexample
2092 @group
2093     .          1:  2          2:  2          1:  6          1:  6
2094                    .          1:  3              .              .
2095                                   .
2096                                                              (error)
2097                    D              D              D              D
2098 @end group
2099 @end smallexample
2101 @noindent
2102 It was not possible to redo past the @expr{6}, since that was placed there
2103 by something other than an undo command.
2105 @cindex Time travel
2106 You can think of undo and redo as a sort of ``time machine.''  Press
2107 @kbd{U} to go backward in time, @kbd{D} to go forward.  If you go
2108 backward and do something (like @kbd{*}) then, as any science fiction
2109 reader knows, you have changed your future and you cannot go forward
2110 again.  Thus, the inability to redo past the @expr{6} even though there
2111 was an earlier undo command.
2113 You can always recall an earlier result using the Trail.  We've ignored
2114 the trail so far, but it has been faithfully recording everything we
2115 did since we loaded the Calculator.  If the Trail is not displayed,
2116 press @kbd{t d} now to turn it on.
2118 Let's try grabbing an earlier result.  The @expr{8} we computed was
2119 undone by a @kbd{U} command, and was lost even to Redo when we pressed
2120 @kbd{*}, but it's still there in the trail.  There should be a little
2121 @samp{>} arrow (the @dfn{trail pointer}) resting on the last trail
2122 entry.  If there isn't, press @kbd{t ]} to reset the trail pointer.
2123 Now, press @w{@kbd{t p}} to move the arrow onto the line containing
2124 @expr{8}, and press @w{@kbd{t y}} to ``yank'' that number back onto the
2125 stack.
2127 If you press @kbd{t ]} again, you will see that even our Yank command
2128 went into the trail.
2130 Let's go further back in time.  Earlier in the tutorial we computed
2131 a huge integer using the formula @samp{2^3^4}.  We don't remember
2132 what it was, but the first digits were ``241''.  Press @kbd{t r}
2133 (which stands for trail-search-reverse), then type @kbd{241}.
2134 The trail cursor will jump back to the next previous occurrence of
2135 the string ``241'' in the trail.  This is just a regular Emacs
2136 incremental search; you can now press @kbd{C-s} or @kbd{C-r} to
2137 continue the search forwards or backwards as you like.
2139 To finish the search, press @key{RET}.  This halts the incremental
2140 search and leaves the trail pointer at the thing we found.  Now we
2141 can type @kbd{t y} to yank that number onto the stack.  If we hadn't
2142 remembered the ``241'', we could simply have searched for @kbd{2^3^4},
2143 then pressed @kbd{@key{RET} t n} to halt and then move to the next item.
2145 You may have noticed that all the trail-related commands begin with
2146 the letter @kbd{t}.  (The store-and-recall commands, on the other hand,
2147 all began with @kbd{s}.)  Calc has so many commands that there aren't
2148 enough keys for all of them, so various commands are grouped into
2149 two-letter sequences where the first letter is called the @dfn{prefix}
2150 key.  If you type a prefix key by accident, you can press @kbd{C-g}
2151 to cancel it.  (In fact, you can press @kbd{C-g} to cancel almost
2152 anything in Emacs.)  To get help on a prefix key, press that key
2153 followed by @kbd{?}.  Some prefixes have several lines of help,
2154 so you need to press @kbd{?} repeatedly to see them all.
2155 You can also type @kbd{h h} to see all the help at once.
2157 Try pressing @kbd{t ?} now.  You will see a line of the form,
2159 @smallexample
2160 trail/time: Display; Fwd, Back; Next, Prev, Here, [, ]; Yank:  [MORE]  t-
2161 @end smallexample
2163 @noindent
2164 The word ``trail'' indicates that the @kbd{t} prefix key contains
2165 trail-related commands.  Each entry on the line shows one command,
2166 with a single capital letter showing which letter you press to get
2167 that command.  We have used @kbd{t n}, @kbd{t p}, @kbd{t ]}, and
2168 @kbd{t y} so far.  The @samp{[MORE]} means you can press @kbd{?}
2169 again to see more @kbd{t}-prefix commands.  Notice that the commands
2170 are roughly divided (by semicolons) into related groups.
2172 When you are in the help display for a prefix key, the prefix is
2173 still active.  If you press another key, like @kbd{y} for example,
2174 it will be interpreted as a @kbd{t y} command.  If all you wanted
2175 was to look at the help messages, press @kbd{C-g} afterwards to cancel
2176 the prefix.
2178 One more way to correct an error is by editing the stack entries.
2179 The actual Stack buffer is marked read-only and must not be edited
2180 directly, but you can press @kbd{`} (the backquote or accent grave)
2181 to edit a stack entry.
2183 Try entering @samp{3.141439} now.  If this is supposed to represent
2184 @cpi{}, it's got several errors.  Press @kbd{`} to edit this number.
2185 Now use the normal Emacs cursor motion and editing keys to change
2186 the second 4 to a 5, and to transpose the 3 and the 9.  When you
2187 press @key{RET}, the number on the stack will be replaced by your
2188 new number.  This works for formulas, vectors, and all other types
2189 of values you can put on the stack.  The @kbd{`} key also works
2190 during entry of a number or algebraic formula.
2192 @node Modes Tutorial,  , Undo Tutorial, Basic Tutorial
2193 @subsection Mode-Setting Commands
2195 @noindent
2196 Calc has many types of @dfn{modes} that affect the way it interprets
2197 your commands or the way it displays data.  We have already seen one
2198 mode, namely Algebraic mode.  There are many others, too; we'll
2199 try some of the most common ones here.
2201 Perhaps the most fundamental mode in Calc is the current @dfn{precision}.
2202 Notice the @samp{12} on the Calc window's mode line:
2204 @smallexample
2205 --%*-Calc: 12 Deg       (Calculator)----All------
2206 @end smallexample
2208 @noindent
2209 Most of the symbols there are Emacs things you don't need to worry
2210 about, but the @samp{12} and the @samp{Deg} are mode indicators.
2211 The @samp{12} means that calculations should always be carried to
2212 12 significant figures.  That is why, when we type @kbd{1 @key{RET} 7 /},
2213 we get @expr{0.142857142857} with exactly 12 digits, not counting
2214 leading and trailing zeros.
2216 You can set the precision to anything you like by pressing @kbd{p},
2217 then entering a suitable number.  Try pressing @kbd{p 30 @key{RET}},
2218 then doing @kbd{1 @key{RET} 7 /} again:
2220 @smallexample
2221 @group
2222 1:  0.142857142857
2223 2:  0.142857142857142857142857142857
2224     .
2225 @end group
2226 @end smallexample
2228 Although the precision can be set arbitrarily high, Calc always
2229 has to have @emph{some} value for the current precision.  After
2230 all, the true value @expr{1/7} is an infinitely repeating decimal;
2231 Calc has to stop somewhere.
2233 Of course, calculations are slower the more digits you request.
2234 Press @w{@kbd{p 12}} now to set the precision back down to the default.
2236 Calculations always use the current precision.  For example, even
2237 though we have a 30-digit value for @expr{1/7} on the stack, if
2238 we use it in a calculation in 12-digit mode it will be rounded
2239 down to 12 digits before it is used.  Try it; press @key{RET} to
2240 duplicate the number, then @w{@kbd{1 +}}.  Notice that the @key{RET}
2241 key didn't round the number, because it doesn't do any calculation.
2242 But the instant we pressed @kbd{+}, the number was rounded down.
2244 @smallexample
2245 @group
2246 1:  0.142857142857
2247 2:  0.142857142857142857142857142857
2248 3:  1.14285714286
2249     .
2250 @end group
2251 @end smallexample
2253 @noindent
2254 In fact, since we added a digit on the left, we had to lose one
2255 digit on the right from even the 12-digit value of @expr{1/7}.
2257 How did we get more than 12 digits when we computed @samp{2^3^4}?  The
2258 answer is that Calc makes a distinction between @dfn{integers} and
2259 @dfn{floating-point} numbers, or @dfn{floats}.  An integer is a number
2260 that does not contain a decimal point.  There is no such thing as an
2261 ``infinitely repeating fraction integer,'' so Calc doesn't have to limit
2262 itself.  If you asked for @samp{2^10000} (don't try this!), you would
2263 have to wait a long time but you would eventually get an exact answer.
2264 If you ask for @samp{2.^10000}, you will quickly get an answer which is
2265 correct only to 12 places.  The decimal point tells Calc that it should
2266 use floating-point arithmetic to get the answer, not exact integer
2267 arithmetic.
2269 You can use the @kbd{F} (@code{calc-floor}) command to convert a
2270 floating-point value to an integer, and @kbd{c f} (@code{calc-float})
2271 to convert an integer to floating-point form.
2273 Let's try entering that last calculation:
2275 @smallexample
2276 @group
2277 1:  2.         2:  2.         1:  1.99506311689e3010
2278     .          1:  10000          .
2279                    .
2281   2.0 @key{RET}          10000 @key{RET}      ^
2282 @end group
2283 @end smallexample
2285 @noindent
2286 @cindex Scientific notation, entry of
2287 Notice the letter @samp{e} in there.  It represents ``times ten to the
2288 power of,'' and is used by Calc automatically whenever writing the
2289 number out fully would introduce more extra zeros than you probably
2290 want to see.  You can enter numbers in this notation, too.
2292 @smallexample
2293 @group
2294 1:  2.         2:  2.         1:  1.99506311678e3010
2295     .          1:  10000.         .
2296                    .
2298   2.0 @key{RET}          1e4 @key{RET}        ^
2299 @end group
2300 @end smallexample
2302 @cindex Round-off errors
2303 @noindent
2304 Hey, the answer is different!  Look closely at the middle columns
2305 of the two examples.  In the first, the stack contained the
2306 exact integer @expr{10000}, but in the second it contained
2307 a floating-point value with a decimal point.  When you raise a
2308 number to an integer power, Calc uses repeated squaring and
2309 multiplication to get the answer.  When you use a floating-point
2310 power, Calc uses logarithms and exponentials.  As you can see,
2311 a slight error crept in during one of these methods.  Which
2312 one should we trust?  Let's raise the precision a bit and find
2313 out:
2315 @smallexample
2316 @group
2317     .          1:  2.         2:  2.         1:  1.995063116880828e3010
2318                    .          1:  10000.         .
2319                                   .
2321  p 16 @key{RET}        2. @key{RET}           1e4            ^    p 12 @key{RET}
2322 @end group
2323 @end smallexample
2325 @noindent
2326 @cindex Guard digits
2327 Presumably, it doesn't matter whether we do this higher-precision
2328 calculation using an integer or floating-point power, since we
2329 have added enough ``guard digits'' to trust the first 12 digits
2330 no matter what.  And the verdict is@dots{}  Integer powers were more
2331 accurate; in fact, the result was only off by one unit in the
2332 last place.
2334 @cindex Guard digits
2335 Calc does many of its internal calculations to a slightly higher
2336 precision, but it doesn't always bump the precision up enough.
2337 In each case, Calc added about two digits of precision during
2338 its calculation and then rounded back down to 12 digits
2339 afterward.  In one case, it was enough; in the other, it
2340 wasn't.  If you really need @var{x} digits of precision, it
2341 never hurts to do the calculation with a few extra guard digits.
2343 What if we want guard digits but don't want to look at them?
2344 We can set the @dfn{float format}.  Calc supports four major
2345 formats for floating-point numbers, called @dfn{normal},
2346 @dfn{fixed-point}, @dfn{scientific notation}, and @dfn{engineering
2347 notation}.  You get them by pressing @w{@kbd{d n}}, @kbd{d f},
2348 @kbd{d s}, and @kbd{d e}, respectively.  In each case, you can
2349 supply a numeric prefix argument which says how many digits
2350 should be displayed.  As an example, let's put a few numbers
2351 onto the stack and try some different display modes.  First,
2352 use @kbd{M-0 @key{DEL}} to clear the stack, then enter the four
2353 numbers shown here:
2355 @smallexample
2356 @group
2357 4:  12345      4:  12345      4:  12345      4:  12345      4:  12345
2358 3:  12345.     3:  12300.     3:  1.2345e4   3:  1.23e4     3:  12345.000
2359 2:  123.45     2:  123.       2:  1.2345e2   2:  1.23e2     2:  123.450
2360 1:  12.345     1:  12.3       1:  1.2345e1   1:  1.23e1     1:  12.345
2361     .              .              .              .              .
2363    d n          M-3 d n          d s          M-3 d s        M-3 d f
2364 @end group
2365 @end smallexample
2367 @noindent
2368 Notice that when we typed @kbd{M-3 d n}, the numbers were rounded down
2369 to three significant digits, but then when we typed @kbd{d s} all
2370 five significant figures reappeared.  The float format does not
2371 affect how numbers are stored, it only affects how they are
2372 displayed.  Only the current precision governs the actual rounding
2373 of numbers in the Calculator's memory.
2375 Engineering notation, not shown here, is like scientific notation
2376 except the exponent (the power-of-ten part) is always adjusted to be
2377 a multiple of three (as in ``kilo,'' ``micro,'' etc.).  As a result
2378 there will be one, two, or three digits before the decimal point.
2380 Whenever you change a display-related mode, Calc redraws everything
2381 in the stack.  This may be slow if there are many things on the stack,
2382 so Calc allows you to type shift-@kbd{H} before any mode command to
2383 prevent it from updating the stack.  Anything Calc displays after the
2384 mode-changing command will appear in the new format.
2386 @smallexample
2387 @group
2388 4:  12345      4:  12345      4:  12345      4:  12345      4:  12345
2389 3:  12345.000  3:  12345.000  3:  12345.000  3:  1.2345e4   3:  12345.
2390 2:  123.450    2:  123.450    2:  1.2345e1   2:  1.2345e1   2:  123.45
2391 1:  12.345     1:  1.2345e1   1:  1.2345e2   1:  1.2345e2   1:  12.345
2392     .              .              .              .              .
2394     H d s          @key{DEL} U          @key{TAB}            d @key{SPC}          d n
2395 @end group
2396 @end smallexample
2398 @noindent
2399 Here the @kbd{H d s} command changes to scientific notation but without
2400 updating the screen.  Deleting the top stack entry and undoing it back
2401 causes it to show up in the new format; swapping the top two stack
2402 entries reformats both entries.  The @kbd{d @key{SPC}} command refreshes the
2403 whole stack.  The @kbd{d n} command changes back to the normal float
2404 format; since it doesn't have an @kbd{H} prefix, it also updates all
2405 the stack entries to be in @kbd{d n} format.
2407 Notice that the integer @expr{12345} was not affected by any
2408 of the float formats.  Integers are integers, and are always
2409 displayed exactly.
2411 @cindex Large numbers, readability
2412 Large integers have their own problems.  Let's look back at
2413 the result of @kbd{2^3^4}.
2415 @example
2416 2417851639229258349412352
2417 @end example
2419 @noindent
2420 Quick---how many digits does this have?  Try typing @kbd{d g}:
2422 @example
2423 2,417,851,639,229,258,349,412,352
2424 @end example
2426 @noindent
2427 Now how many digits does this have?  It's much easier to tell!
2428 We can actually group digits into clumps of any size.  Some
2429 people prefer @kbd{M-5 d g}:
2431 @example
2432 24178,51639,22925,83494,12352
2433 @end example
2435 Let's see what happens to floating-point numbers when they are grouped.
2436 First, type @kbd{p 25 @key{RET}} to make sure we have enough precision
2437 to get ourselves into trouble.  Now, type @kbd{1e13 /}:
2439 @example
2440 24,17851,63922.9258349412352
2441 @end example
2443 @noindent
2444 The integer part is grouped but the fractional part isn't.  Now try
2445 @kbd{M-- M-5 d g} (that's meta-minus-sign, meta-five):
2447 @example
2448 24,17851,63922.92583,49412,352
2449 @end example
2451 If you find it hard to tell the decimal point from the commas, try
2452 changing the grouping character to a space with @kbd{d , @key{SPC}}:
2454 @example
2455 24 17851 63922.92583 49412 352
2456 @end example
2458 Type @kbd{d , ,} to restore the normal grouping character, then
2459 @kbd{d g} again to turn grouping off.  Also, press @kbd{p 12} to
2460 restore the default precision.
2462 Press @kbd{U} enough times to get the original big integer back.
2463 (Notice that @kbd{U} does not undo each mode-setting command; if
2464 you want to undo a mode-setting command, you have to do it yourself.)
2465 Now, type @kbd{d r 16 @key{RET}}:
2467 @example
2468 16#200000000000000000000
2469 @end example
2471 @noindent
2472 The number is now displayed in @dfn{hexadecimal}, or ``base-16'' form.
2473 Suddenly it looks pretty simple; this should be no surprise, since we
2474 got this number by computing a power of two, and 16 is a power of 2.
2475 In fact, we can use @w{@kbd{d r 2 @key{RET}}} to see it in actual binary
2476 form:
2478 @example
2479 2#1000000000000000000000000000000000000000000000000000000 @dots{}
2480 @end example
2482 @noindent
2483 We don't have enough space here to show all the zeros!  They won't
2484 fit on a typical screen, either, so you will have to use horizontal
2485 scrolling to see them all.  Press @kbd{<} and @kbd{>} to scroll the
2486 stack window left and right by half its width.  Another way to view
2487 something large is to press @kbd{`} (back-quote) to edit the top of
2488 stack in a separate window.  (Press @kbd{C-c C-c} when you are done.)
2490 You can enter non-decimal numbers using the @kbd{#} symbol, too.
2491 Let's see what the hexadecimal number @samp{5FE} looks like in
2492 binary.  Type @kbd{16#5FE} (the letters can be typed in upper or
2493 lower case; they will always appear in upper case).  It will also
2494 help to turn grouping on with @kbd{d g}:
2496 @example
2497 2#101,1111,1110
2498 @end example
2500 Notice that @kbd{d g} groups by fours by default if the display radix
2501 is binary or hexadecimal, but by threes if it is decimal, octal, or any
2502 other radix.
2504 Now let's see that number in decimal; type @kbd{d r 10}:
2506 @example
2507 1,534
2508 @end example
2510 Numbers are not @emph{stored} with any particular radix attached.  They're
2511 just numbers; they can be entered in any radix, and are always displayed
2512 in whatever radix you've chosen with @kbd{d r}.  The current radix applies
2513 to integers, fractions, and floats.
2515 @cindex Roundoff errors, in non-decimal numbers
2516 (@bullet{}) @strong{Exercise 1.}  Your friend Joe tried to enter one-third
2517 as @samp{3#0.1} in @kbd{d r 3} mode with a precision of 12.  He got
2518 @samp{3#0.0222222...} (with 25 2's) in the display.  When he multiplied
2519 that by three, he got @samp{3#0.222222...} instead of the expected
2520 @samp{3#1}.  Next, Joe entered @samp{3#0.2} and, to his great relief,
2521 saw @samp{3#0.2} on the screen.  But when he typed @kbd{2 /}, he got
2522 @samp{3#0.10000001} (some zeros omitted).  What's going on here?
2523 @xref{Modes Answer 1, 1}. (@bullet{})
2525 @cindex Scientific notation, in non-decimal numbers
2526 (@bullet{}) @strong{Exercise 2.}  Scientific notation works in non-decimal
2527 modes in the natural way (the exponent is a power of the radix instead of
2528 a power of ten, although the exponent itself is always written in decimal).
2529 Thus @samp{8#1.23e3 = 8#1230.0}.  Suppose we have the hexadecimal number
2530 @samp{f.e8f} times 16 to the 15th power:  We write @samp{16#f.e8fe15}.
2531 What is wrong with this picture?  What could we write instead that would
2532 work better?  @xref{Modes Answer 2, 2}. (@bullet{})
2534 The @kbd{m} prefix key has another set of modes, relating to the way
2535 Calc interprets your inputs and does computations.  Whereas @kbd{d}-prefix
2536 modes generally affect the way things look, @kbd{m}-prefix modes affect
2537 the way they are actually computed.
2539 The most popular @kbd{m}-prefix mode is the @dfn{angular mode}.  Notice
2540 the @samp{Deg} indicator in the mode line.  This means that if you use
2541 a command that interprets a number as an angle, it will assume the
2542 angle is measured in degrees.  For example,
2544 @smallexample
2545 @group
2546 1:  45         1:  0.707106781187   1:  0.500000000001    1:  0.5
2547     .              .                    .                     .
2549     45             S                    2 ^                   c 1
2550 @end group
2551 @end smallexample
2553 @noindent
2554 The shift-@kbd{S} command computes the sine of an angle.  The sine
2555 of 45 degrees is
2556 @texline @math{\sqrt{2}/2};
2557 @infoline @expr{sqrt(2)/2};
2558 squaring this yields @expr{2/4 = 0.5}.  However, there has been a slight
2559 roundoff error because the representation of
2560 @texline @math{\sqrt{2}/2}
2561 @infoline @expr{sqrt(2)/2}
2562 wasn't exact.  The @kbd{c 1} command is a handy way to clean up numbers
2563 in this case; it temporarily reduces the precision by one digit while it
2564 re-rounds the number on the top of the stack.
2566 @cindex Roundoff errors, examples
2567 (@bullet{}) @strong{Exercise 3.}  Your friend Joe computed the sine
2568 of 45 degrees as shown above, then, hoping to avoid an inexact
2569 result, he increased the precision to 16 digits before squaring.
2570 What happened?  @xref{Modes Answer 3, 3}. (@bullet{})
2572 To do this calculation in radians, we would type @kbd{m r} first.
2573 (The indicator changes to @samp{Rad}.)  45 degrees corresponds to
2574 @cpiover{4} radians.  To get @cpi{}, press the @kbd{P} key.  (Once
2575 again, this is a shifted capital @kbd{P}.  Remember, unshifted
2576 @kbd{p} sets the precision.)
2578 @smallexample
2579 @group
2580 1:  3.14159265359   1:  0.785398163398   1:  0.707106781187
2581     .                   .                .
2583     P                   4 /       m r    S
2584 @end group
2585 @end smallexample
2587 Likewise, inverse trigonometric functions generate results in
2588 either radians or degrees, depending on the current angular mode.
2590 @smallexample
2591 @group
2592 1:  0.707106781187   1:  0.785398163398   1:  45.
2593     .                    .                    .
2595     .5 Q        m r      I S        m d       U I S
2596 @end group
2597 @end smallexample
2599 @noindent
2600 Here we compute the Inverse Sine of
2601 @texline @math{\sqrt{0.5}},
2602 @infoline @expr{sqrt(0.5)},
2603 first in radians, then in degrees.
2605 Use @kbd{c d} and @kbd{c r} to convert a number from radians to degrees
2606 and vice-versa.
2608 @smallexample
2609 @group
2610 1:  45         1:  0.785398163397     1:  45.
2611     .              .                      .
2613     45             c r                    c d
2614 @end group
2615 @end smallexample
2617 Another interesting mode is @dfn{Fraction mode}.  Normally,
2618 dividing two integers produces a floating-point result if the
2619 quotient can't be expressed as an exact integer.  Fraction mode
2620 causes integer division to produce a fraction, i.e., a rational
2621 number, instead.
2623 @smallexample
2624 @group
2625 2:  12         1:  1.33333333333    1:  4:3
2626 1:  9              .                    .
2627     .
2629  12 @key{RET} 9          /          m f       U /      m f
2630 @end group
2631 @end smallexample
2633 @noindent
2634 In the first case, we get an approximate floating-point result.
2635 In the second case, we get an exact fractional result (four-thirds).
2637 You can enter a fraction at any time using @kbd{:} notation.
2638 (Calc uses @kbd{:} instead of @kbd{/} as the fraction separator
2639 because @kbd{/} is already used to divide the top two stack
2640 elements.)  Calculations involving fractions will always
2641 produce exact fractional results; Fraction mode only says
2642 what to do when dividing two integers.
2644 @cindex Fractions vs. floats
2645 @cindex Floats vs. fractions
2646 (@bullet{}) @strong{Exercise 4.}  If fractional arithmetic is exact,
2647 why would you ever use floating-point numbers instead?
2648 @xref{Modes Answer 4, 4}. (@bullet{})
2650 Typing @kbd{m f} doesn't change any existing values in the stack.
2651 In the above example, we had to Undo the division and do it over
2652 again when we changed to Fraction mode.  But if you use the
2653 evaluates-to operator you can get commands like @kbd{m f} to
2654 recompute for you.
2656 @smallexample
2657 @group
2658 1:  12 / 9 => 1.33333333333    1:  12 / 9 => 1.333    1:  12 / 9 => 4:3
2659     .                              .                      .
2661    ' 12/9 => @key{RET}                   p 4 @key{RET}                m f
2662 @end group
2663 @end smallexample
2665 @noindent
2666 In this example, the righthand side of the @samp{=>} operator
2667 on the stack is recomputed when we change the precision, then
2668 again when we change to Fraction mode.  All @samp{=>} expressions
2669 on the stack are recomputed every time you change any mode that
2670 might affect their values.
2672 @node Arithmetic Tutorial, Vector/Matrix Tutorial, Basic Tutorial, Tutorial
2673 @section Arithmetic Tutorial
2675 @noindent
2676 In this section, we explore the arithmetic and scientific functions
2677 available in the Calculator.
2679 The standard arithmetic commands are @kbd{+}, @kbd{-}, @kbd{*}, @kbd{/},
2680 and @kbd{^}.  Each normally takes two numbers from the top of the stack
2681 and pushes back a result.  The @kbd{n} and @kbd{&} keys perform
2682 change-sign and reciprocal operations, respectively.
2684 @smallexample
2685 @group
2686 1:  5          1:  0.2        1:  5.         1:  -5.        1:  5.
2687     .              .              .              .              .
2689     5              &              &              n              n
2690 @end group
2691 @end smallexample
2693 @cindex Binary operators
2694 You can apply a ``binary operator'' like @kbd{+} across any number of
2695 stack entries by giving it a numeric prefix.  You can also apply it
2696 pairwise to several stack elements along with the top one if you use
2697 a negative prefix.
2699 @smallexample
2700 @group
2701 3:  2          1:  9          3:  2          4:  2          3:  12
2702 2:  3              .          2:  3          3:  3          2:  13
2703 1:  4                         1:  4          2:  4          1:  14
2704     .                             .          1:  10             .
2705                                                  .
2707 2 @key{RET} 3 @key{RET} 4     M-3 +           U              10          M-- M-3 +
2708 @end group
2709 @end smallexample
2711 @cindex Unary operators
2712 You can apply a ``unary operator'' like @kbd{&} to the top @var{n}
2713 stack entries with a numeric prefix, too.
2715 @smallexample
2716 @group
2717 3:  2          3:  0.5                3:  0.5
2718 2:  3          2:  0.333333333333     2:  3.
2719 1:  4          1:  0.25               1:  4.
2720     .              .                      .
2722 2 @key{RET} 3 @key{RET} 4      M-3 &                  M-2 &
2723 @end group
2724 @end smallexample
2726 Notice that the results here are left in floating-point form.
2727 We can convert them back to integers by pressing @kbd{F}, the
2728 ``floor'' function.  This function rounds down to the next lower
2729 integer.  There is also @kbd{R}, which rounds to the nearest
2730 integer.
2732 @smallexample
2733 @group
2734 7:  2.         7:  2          7:  2
2735 6:  2.4        6:  2          6:  2
2736 5:  2.5        5:  2          5:  3
2737 4:  2.6        4:  2          4:  3
2738 3:  -2.        3:  -2         3:  -2
2739 2:  -2.4       2:  -3         2:  -2
2740 1:  -2.6       1:  -3         1:  -3
2741     .              .              .
2743                   M-7 F        U M-7 R
2744 @end group
2745 @end smallexample
2747 Since dividing-and-flooring (i.e., ``integer quotient'') is such a
2748 common operation, Calc provides a special command for that purpose, the
2749 backslash @kbd{\}.  Another common arithmetic operator is @kbd{%}, which
2750 computes the remainder that would arise from a @kbd{\} operation, i.e.,
2751 the ``modulo'' of two numbers.  For example,
2753 @smallexample
2754 @group
2755 2:  1234       1:  12         2:  1234       1:  34
2756 1:  100            .          1:  100            .
2757     .                             .
2759 1234 @key{RET} 100       \              U              %
2760 @end group
2761 @end smallexample
2763 These commands actually work for any real numbers, not just integers.
2765 @smallexample
2766 @group
2767 2:  3.1415     1:  3          2:  3.1415     1:  0.1415
2768 1:  1              .          1:  1              .
2769     .                             .
2771 3.1415 @key{RET} 1       \              U              %
2772 @end group
2773 @end smallexample
2775 (@bullet{}) @strong{Exercise 1.}  The @kbd{\} command would appear to be a
2776 frill, since you could always do the same thing with @kbd{/ F}.  Think
2777 of a situation where this is not true---@kbd{/ F} would be inadequate.
2778 Now think of a way you could get around the problem if Calc didn't
2779 provide a @kbd{\} command.  @xref{Arithmetic Answer 1, 1}. (@bullet{})
2781 We've already seen the @kbd{Q} (square root) and @kbd{S} (sine)
2782 commands.  Other commands along those lines are @kbd{C} (cosine),
2783 @kbd{T} (tangent), @kbd{E} (@expr{e^x}) and @kbd{L} (natural
2784 logarithm).  These can be modified by the @kbd{I} (inverse) and
2785 @kbd{H} (hyperbolic) prefix keys.
2787 Let's compute the sine and cosine of an angle, and verify the
2788 identity
2789 @texline @math{\sin^2x + \cos^2x = 1}.
2790 @infoline @expr{sin(x)^2 + cos(x)^2 = 1}.
2791 We'll arbitrarily pick @mathit{-64} degrees as a good value for @expr{x}.
2792 With the angular mode set to degrees (type @w{@kbd{m d}}), do:
2794 @smallexample
2795 @group
2796 2:  -64        2:  -64        2:  -0.89879   2:  -0.89879   1:  1.
2797 1:  -64        1:  -0.89879   1:  -64        1:  0.43837        .
2798     .              .              .              .
2800  64 n @key{RET} @key{RET}      S              @key{TAB}            C              f h
2801 @end group
2802 @end smallexample
2804 @noindent
2805 (For brevity, we're showing only five digits of the results here.
2806 You can of course do these calculations to any precision you like.)
2808 Remember, @kbd{f h} is the @code{calc-hypot}, or square-root of sum
2809 of squares, command.
2811 Another identity is
2812 @texline @math{\displaystyle\tan x = {\sin x \over \cos x}}.
2813 @infoline @expr{tan(x) = sin(x) / cos(x)}.
2814 @smallexample
2815 @group
2817 2:  -0.89879   1:  -2.0503    1:  -64.
2818 1:  0.43837        .              .
2819     .
2821     U              /              I T
2822 @end group
2823 @end smallexample
2825 A physical interpretation of this calculation is that if you move
2826 @expr{0.89879} units downward and @expr{0.43837} units to the right,
2827 your direction of motion is @mathit{-64} degrees from horizontal.  Suppose
2828 we move in the opposite direction, up and to the left:
2830 @smallexample
2831 @group
2832 2:  -0.89879   2:  0.89879    1:  -2.0503    1:  -64.
2833 1:  0.43837    1:  -0.43837       .              .
2834     .              .
2836     U U            M-2 n          /              I T
2837 @end group
2838 @end smallexample
2840 @noindent
2841 How can the angle be the same?  The answer is that the @kbd{/} operation
2842 loses information about the signs of its inputs.  Because the quotient
2843 is negative, we know exactly one of the inputs was negative, but we
2844 can't tell which one.  There is an @kbd{f T} [@code{arctan2}] function which
2845 computes the inverse tangent of the quotient of a pair of numbers.
2846 Since you feed it the two original numbers, it has enough information
2847 to give you a full 360-degree answer.
2849 @smallexample
2850 @group
2851 2:  0.89879    1:  116.       3:  116.       2:  116.       1:  180.
2852 1:  -0.43837       .          2:  -0.89879   1:  -64.           .
2853     .                         1:  0.43837        .
2854                                   .
2856     U U            f T         M-@key{RET} M-2 n       f T            -
2857 @end group
2858 @end smallexample
2860 @noindent
2861 The resulting angles differ by 180 degrees; in other words, they
2862 point in opposite directions, just as we would expect.
2864 The @key{META}-@key{RET} we used in the third step is the
2865 ``last-arguments'' command.  It is sort of like Undo, except that it
2866 restores the arguments of the last command to the stack without removing
2867 the command's result.  It is useful in situations like this one,
2868 where we need to do several operations on the same inputs.  We could
2869 have accomplished the same thing by using @kbd{M-2 @key{RET}} to duplicate
2870 the top two stack elements right after the @kbd{U U}, then a pair of
2871 @kbd{M-@key{TAB}} commands to cycle the 116 up around the duplicates.
2873 A similar identity is supposed to hold for hyperbolic sines and cosines,
2874 except that it is the @emph{difference}
2875 @texline @math{\cosh^2x - \sinh^2x}
2876 @infoline @expr{cosh(x)^2 - sinh(x)^2}
2877 that always equals one.  Let's try to verify this identity.
2879 @smallexample
2880 @group
2881 2:  -64        2:  -64        2:  -64        2:  9.7192e54  2:  9.7192e54
2882 1:  -64        1:  -3.1175e27 1:  9.7192e54  1:  -64        1:  9.7192e54
2883     .              .              .              .              .
2885  64 n @key{RET} @key{RET}      H C            2 ^            @key{TAB}            H S 2 ^
2886 @end group
2887 @end smallexample
2889 @noindent
2890 @cindex Roundoff errors, examples
2891 Something's obviously wrong, because when we subtract these numbers
2892 the answer will clearly be zero!  But if you think about it, if these
2893 numbers @emph{did} differ by one, it would be in the 55th decimal
2894 place.  The difference we seek has been lost entirely to roundoff
2895 error.
2897 We could verify this hypothesis by doing the actual calculation with,
2898 say, 60 decimal places of precision.  This will be slow, but not
2899 enormously so.  Try it if you wish; sure enough, the answer is
2900 0.99999, reasonably close to 1.
2902 Of course, a more reasonable way to verify the identity is to use
2903 a more reasonable value for @expr{x}!
2905 @cindex Common logarithm
2906 Some Calculator commands use the Hyperbolic prefix for other purposes.
2907 The logarithm and exponential functions, for example, work to the base
2908 @expr{e} normally but use base-10 instead if you use the Hyperbolic
2909 prefix.
2911 @smallexample
2912 @group
2913 1:  1000       1:  6.9077     1:  1000       1:  3
2914     .              .              .              .
2916     1000           L              U              H L
2917 @end group
2918 @end smallexample
2920 @noindent
2921 First, we mistakenly compute a natural logarithm.  Then we undo
2922 and compute a common logarithm instead.
2924 The @kbd{B} key computes a general base-@var{b} logarithm for any
2925 value of @var{b}.
2927 @smallexample
2928 @group
2929 2:  1000       1:  3          1:  1000.      2:  1000.      1:  6.9077
2930 1:  10             .              .          1:  2.71828        .
2931     .                                            .
2933  1000 @key{RET} 10       B              H E            H P            B
2934 @end group
2935 @end smallexample
2937 @noindent
2938 Here we first use @kbd{B} to compute the base-10 logarithm, then use
2939 the ``hyperbolic'' exponential as a cheap hack to recover the number
2940 1000, then use @kbd{B} again to compute the natural logarithm.  Note
2941 that @kbd{P} with the hyperbolic prefix pushes the constant @expr{e}
2942 onto the stack.
2944 You may have noticed that both times we took the base-10 logarithm
2945 of 1000, we got an exact integer result.  Calc always tries to give
2946 an exact rational result for calculations involving rational numbers
2947 where possible.  But when we used @kbd{H E}, the result was a
2948 floating-point number for no apparent reason.  In fact, if we had
2949 computed @kbd{10 @key{RET} 3 ^} we @emph{would} have gotten an
2950 exact integer 1000.  But the @kbd{H E} command is rigged to generate
2951 a floating-point result all of the time so that @kbd{1000 H E} will
2952 not waste time computing a thousand-digit integer when all you
2953 probably wanted was @samp{1e1000}.
2955 (@bullet{}) @strong{Exercise 2.}  Find a pair of integer inputs to
2956 the @kbd{B} command for which Calc could find an exact rational
2957 result but doesn't.  @xref{Arithmetic Answer 2, 2}. (@bullet{})
2959 The Calculator also has a set of functions relating to combinatorics
2960 and statistics.  You may be familiar with the @dfn{factorial} function,
2961 which computes the product of all the integers up to a given number.
2963 @smallexample
2964 @group
2965 1:  100        1:  93326215443...    1:  100.       1:  9.3326e157
2966     .              .                     .              .
2968     100            !                     U c f          !
2969 @end group
2970 @end smallexample
2972 @noindent
2973 Recall, the @kbd{c f} command converts the integer or fraction at the
2974 top of the stack to floating-point format.  If you take the factorial
2975 of a floating-point number, you get a floating-point result
2976 accurate to the current precision.  But if you give @kbd{!} an
2977 exact integer, you get an exact integer result (158 digits long
2978 in this case).
2980 If you take the factorial of a non-integer, Calc uses a generalized
2981 factorial function defined in terms of Euler's Gamma function
2982 @texline @math{\Gamma(n)}
2983 @infoline @expr{gamma(n)}
2984 (which is itself available as the @kbd{f g} command).
2986 @smallexample
2987 @group
2988 3:  4.         3:  24.               1:  5.5        1:  52.342777847
2989 2:  4.5        2:  52.3427777847         .              .
2990 1:  5.         1:  120.
2991     .              .
2993                    M-3 !              M-0 @key{DEL} 5.5       f g
2994 @end group
2995 @end smallexample
2997 @noindent
2998 Here we verify the identity
2999 @texline @math{n! = \Gamma(n+1)}.
3000 @infoline @expr{@var{n}!@: = gamma(@var{n}+1)}.
3002 The binomial coefficient @var{n}-choose-@var{m}
3003 @texline or @math{\displaystyle {n \choose m}}
3004 is defined by
3005 @texline @math{\displaystyle {n! \over m! \, (n-m)!}}
3006 @infoline @expr{n!@: / m!@: (n-m)!}
3007 for all reals @expr{n} and @expr{m}.  The intermediate results in this
3008 formula can become quite large even if the final result is small; the
3009 @kbd{k c} command computes a binomial coefficient in a way that avoids
3010 large intermediate values.
3012 The @kbd{k} prefix key defines several common functions out of
3013 combinatorics and number theory.  Here we compute the binomial
3014 coefficient 30-choose-20, then determine its prime factorization.
3016 @smallexample
3017 @group
3018 2:  30         1:  30045015   1:  [3, 3, 5, 7, 11, 13, 23, 29]
3019 1:  20             .              .
3020     .
3022  30 @key{RET} 20         k c            k f
3023 @end group
3024 @end smallexample
3026 @noindent
3027 You can verify these prime factors by using @kbd{V R *} to multiply
3028 together the elements of this vector.  The result is the original
3029 number, 30045015.
3031 @cindex Hash tables
3032 Suppose a program you are writing needs a hash table with at least
3033 10000 entries.  It's best to use a prime number as the actual size
3034 of a hash table.  Calc can compute the next prime number after 10000:
3036 @smallexample
3037 @group
3038 1:  10000      1:  10007      1:  9973
3039     .              .              .
3041     10000          k n            I k n
3042 @end group
3043 @end smallexample
3045 @noindent
3046 Just for kicks we've also computed the next prime @emph{less} than
3047 10000.
3049 @c [fix-ref Financial Functions]
3050 @xref{Financial Functions}, for a description of the Calculator
3051 commands that deal with business and financial calculations (functions
3052 like @code{pv}, @code{rate}, and @code{sln}).
3054 @c [fix-ref Binary Number Functions]
3055 @xref{Binary Functions}, to read about the commands for operating
3056 on binary numbers (like @code{and}, @code{xor}, and @code{lsh}).
3058 @node Vector/Matrix Tutorial, Types Tutorial, Arithmetic Tutorial, Tutorial
3059 @section Vector/Matrix Tutorial
3061 @noindent
3062 A @dfn{vector} is a list of numbers or other Calc data objects.
3063 Calc provides a large set of commands that operate on vectors.  Some
3064 are familiar operations from vector analysis.  Others simply treat
3065 a vector as a list of objects.
3067 @menu
3068 * Vector Analysis Tutorial::
3069 * Matrix Tutorial::
3070 * List Tutorial::
3071 @end menu
3073 @node Vector Analysis Tutorial, Matrix Tutorial, Vector/Matrix Tutorial, Vector/Matrix Tutorial
3074 @subsection Vector Analysis
3076 @noindent
3077 If you add two vectors, the result is a vector of the sums of the
3078 elements, taken pairwise.
3080 @smallexample
3081 @group
3082 1:  [1, 2, 3]     2:  [1, 2, 3]     1:  [8, 8, 3]
3083     .             1:  [7, 6, 0]         .
3084                       .
3086     [1,2,3]  s 1      [7 6 0]  s 2      +
3087 @end group
3088 @end smallexample
3090 @noindent
3091 Note that we can separate the vector elements with either commas or
3092 spaces.  This is true whether we are using incomplete vectors or
3093 algebraic entry.  The @kbd{s 1} and @kbd{s 2} commands save these
3094 vectors so we can easily reuse them later.
3096 If you multiply two vectors, the result is the sum of the products
3097 of the elements taken pairwise.  This is called the @dfn{dot product}
3098 of the vectors.
3100 @smallexample
3101 @group
3102 2:  [1, 2, 3]     1:  19
3103 1:  [7, 6, 0]         .
3104     .
3106     r 1 r 2           *
3107 @end group
3108 @end smallexample
3110 @cindex Dot product
3111 The dot product of two vectors is equal to the product of their
3112 lengths times the cosine of the angle between them.  (Here the vector
3113 is interpreted as a line from the origin @expr{(0,0,0)} to the
3114 specified point in three-dimensional space.)  The @kbd{A}
3115 (absolute value) command can be used to compute the length of a
3116 vector.
3118 @smallexample
3119 @group
3120 3:  19            3:  19          1:  0.550782    1:  56.579
3121 2:  [1, 2, 3]     2:  3.741657        .               .
3122 1:  [7, 6, 0]     1:  9.219544
3123     .                 .
3125     M-@key{RET}             M-2 A          * /             I C
3126 @end group
3127 @end smallexample
3129 @noindent
3130 First we recall the arguments to the dot product command, then
3131 we compute the absolute values of the top two stack entries to
3132 obtain the lengths of the vectors, then we divide the dot product
3133 by the product of the lengths to get the cosine of the angle.
3134 The inverse cosine finds that the angle between the vectors
3135 is about 56 degrees.
3137 @cindex Cross product
3138 @cindex Perpendicular vectors
3139 The @dfn{cross product} of two vectors is a vector whose length
3140 is the product of the lengths of the inputs times the sine of the
3141 angle between them, and whose direction is perpendicular to both
3142 input vectors.  Unlike the dot product, the cross product is
3143 defined only for three-dimensional vectors.  Let's double-check
3144 our computation of the angle using the cross product.
3146 @smallexample
3147 @group
3148 2:  [1, 2, 3]  3:  [-18, 21, -8]  1:  [-0.52, 0.61, -0.23]  1:  56.579
3149 1:  [7, 6, 0]  2:  [1, 2, 3]          .                         .
3150     .          1:  [7, 6, 0]
3151                    .
3153     r 1 r 2        V C  s 3  M-@key{RET}    M-2 A * /                 A I S
3154 @end group
3155 @end smallexample
3157 @noindent
3158 First we recall the original vectors and compute their cross product,
3159 which we also store for later reference.  Now we divide the vector
3160 by the product of the lengths of the original vectors.  The length of
3161 this vector should be the sine of the angle; sure enough, it is!
3163 @c [fix-ref General Mode Commands]
3164 Vector-related commands generally begin with the @kbd{v} prefix key.
3165 Some are uppercase letters and some are lowercase.  To make it easier
3166 to type these commands, the shift-@kbd{V} prefix key acts the same as
3167 the @kbd{v} key.  (@xref{General Mode Commands}, for a way to make all
3168 prefix keys have this property.)
3170 If we take the dot product of two perpendicular vectors we expect
3171 to get zero, since the cosine of 90 degrees is zero.  Let's check
3172 that the cross product is indeed perpendicular to both inputs:
3174 @smallexample
3175 @group
3176 2:  [1, 2, 3]      1:  0          2:  [7, 6, 0]      1:  0
3177 1:  [-18, 21, -8]      .          1:  [-18, 21, -8]      .
3178     .                                 .
3180     r 1 r 3            *          @key{DEL} r 2 r 3            *
3181 @end group
3182 @end smallexample
3184 @cindex Normalizing a vector
3185 @cindex Unit vectors
3186 (@bullet{}) @strong{Exercise 1.}  Given a vector on the top of the
3187 stack, what keystrokes would you use to @dfn{normalize} the
3188 vector, i.e., to reduce its length to one without changing its
3189 direction?  @xref{Vector Answer 1, 1}. (@bullet{})
3191 (@bullet{}) @strong{Exercise 2.}  Suppose a certain particle can be
3192 at any of several positions along a ruler.  You have a list of
3193 those positions in the form of a vector, and another list of the
3194 probabilities for the particle to be at the corresponding positions.
3195 Find the average position of the particle.
3196 @xref{Vector Answer 2, 2}. (@bullet{})
3198 @node Matrix Tutorial, List Tutorial, Vector Analysis Tutorial, Vector/Matrix Tutorial
3199 @subsection Matrices
3201 @noindent
3202 A @dfn{matrix} is just a vector of vectors, all the same length.
3203 This means you can enter a matrix using nested brackets.  You can
3204 also use the semicolon character to enter a matrix.  We'll show
3205 both methods here:
3207 @smallexample
3208 @group
3209 1:  [ [ 1, 2, 3 ]             1:  [ [ 1, 2, 3 ]
3210       [ 4, 5, 6 ] ]                 [ 4, 5, 6 ] ]
3211     .                             .
3213   [[1 2 3] [4 5 6]]             ' [1 2 3; 4 5 6] @key{RET}
3214 @end group
3215 @end smallexample
3217 @noindent
3218 We'll be using this matrix again, so type @kbd{s 4} to save it now.
3220 Note that semicolons work with incomplete vectors, but they work
3221 better in algebraic entry.  That's why we use the apostrophe in
3222 the second example.
3224 When two matrices are multiplied, the lefthand matrix must have
3225 the same number of columns as the righthand matrix has rows.
3226 Row @expr{i}, column @expr{j} of the result is effectively the
3227 dot product of row @expr{i} of the left matrix by column @expr{j}
3228 of the right matrix.
3230 If we try to duplicate this matrix and multiply it by itself,
3231 the dimensions are wrong and the multiplication cannot take place:
3233 @smallexample
3234 @group
3235 1:  [ [ 1, 2, 3 ]   * [ [ 1, 2, 3 ]
3236       [ 4, 5, 6 ] ]     [ 4, 5, 6 ] ]
3237     .
3239     @key{RET} *
3240 @end group
3241 @end smallexample
3243 @noindent
3244 Though rather hard to read, this is a formula which shows the product
3245 of two matrices.  The @samp{*} function, having invalid arguments, has
3246 been left in symbolic form.
3248 We can multiply the matrices if we @dfn{transpose} one of them first.
3250 @smallexample
3251 @group
3252 2:  [ [ 1, 2, 3 ]       1:  [ [ 14, 32 ]      1:  [ [ 17, 22, 27 ]
3253       [ 4, 5, 6 ] ]           [ 32, 77 ] ]          [ 22, 29, 36 ]
3254 1:  [ [ 1, 4 ]              .                       [ 27, 36, 45 ] ]
3255       [ 2, 5 ]                                    .
3256       [ 3, 6 ] ]
3257     .
3259     U v t                   *                     U @key{TAB} *
3260 @end group
3261 @end smallexample
3263 Matrix multiplication is not commutative; indeed, switching the
3264 order of the operands can even change the dimensions of the result
3265 matrix, as happened here!
3267 If you multiply a plain vector by a matrix, it is treated as a
3268 single row or column depending on which side of the matrix it is
3269 on.  The result is a plain vector which should also be interpreted
3270 as a row or column as appropriate.
3272 @smallexample
3273 @group
3274 2:  [ [ 1, 2, 3 ]      1:  [14, 32]
3275       [ 4, 5, 6 ] ]        .
3276 1:  [1, 2, 3]
3277     .
3279     r 4 r 1                *
3280 @end group
3281 @end smallexample
3283 Multiplying in the other order wouldn't work because the number of
3284 rows in the matrix is different from the number of elements in the
3285 vector.
3287 (@bullet{}) @strong{Exercise 1.}  Use @samp{*} to sum along the rows
3288 of the above
3289 @texline @math{2\times3}
3290 @infoline 2x3
3291 matrix to get @expr{[6, 15]}.  Now use @samp{*} to sum along the columns
3292 to get @expr{[5, 7, 9]}.
3293 @xref{Matrix Answer 1, 1}. (@bullet{})
3295 @cindex Identity matrix
3296 An @dfn{identity matrix} is a square matrix with ones along the
3297 diagonal and zeros elsewhere.  It has the property that multiplication
3298 by an identity matrix, on the left or on the right, always produces
3299 the original matrix.
3301 @smallexample
3302 @group
3303 1:  [ [ 1, 2, 3 ]      2:  [ [ 1, 2, 3 ]      1:  [ [ 1, 2, 3 ]
3304       [ 4, 5, 6 ] ]          [ 4, 5, 6 ] ]          [ 4, 5, 6 ] ]
3305     .                  1:  [ [ 1, 0, 0 ]          .
3306                              [ 0, 1, 0 ]
3307                              [ 0, 0, 1 ] ]
3308                            .
3310     r 4                    v i 3 @key{RET}              *
3311 @end group
3312 @end smallexample
3314 If a matrix is square, it is often possible to find its @dfn{inverse},
3315 that is, a matrix which, when multiplied by the original matrix, yields
3316 an identity matrix.  The @kbd{&} (reciprocal) key also computes the
3317 inverse of a matrix.
3319 @smallexample
3320 @group
3321 1:  [ [ 1, 2, 3 ]      1:  [ [   -2.4,     1.2,   -0.2 ]
3322       [ 4, 5, 6 ]            [    2.8,    -1.4,    0.4 ]
3323       [ 7, 6, 0 ] ]          [ -0.73333, 0.53333, -0.2 ] ]
3324     .                      .
3326     r 4 r 2 |  s 5         &
3327 @end group
3328 @end smallexample
3330 @noindent
3331 The vertical bar @kbd{|} @dfn{concatenates} numbers, vectors, and
3332 matrices together.  Here we have used it to add a new row onto
3333 our matrix to make it square.
3335 We can multiply these two matrices in either order to get an identity.
3337 @smallexample
3338 @group
3339 1:  [ [ 1., 0., 0. ]      1:  [ [ 1., 0., 0. ]
3340       [ 0., 1., 0. ]            [ 0., 1., 0. ]
3341       [ 0., 0., 1. ] ]          [ 0., 0., 1. ] ]
3342     .                         .
3344     M-@key{RET}  *                  U @key{TAB} *
3345 @end group
3346 @end smallexample
3348 @cindex Systems of linear equations
3349 @cindex Linear equations, systems of
3350 Matrix inverses are related to systems of linear equations in algebra.
3351 Suppose we had the following set of equations:
3353 @ifnottex
3354 @group
3355 @example
3356     a + 2b + 3c = 6
3357    4a + 5b + 6c = 2
3358    7a + 6b      = 3
3359 @end example
3360 @end group
3361 @end ifnottex
3362 @tex
3363 \beforedisplayh
3364 $$ \openup1\jot \tabskip=0pt plus1fil
3365 \halign to\displaywidth{\tabskip=0pt
3366    $\hfil#$&$\hfil{}#{}$&
3367    $\hfil#$&$\hfil{}#{}$&
3368    $\hfil#$&${}#\hfil$\tabskip=0pt plus1fil\cr
3369   a&+&2b&+&3c&=6 \cr
3370  4a&+&5b&+&6c&=2 \cr
3371  7a&+&6b& &  &=3 \cr}
3373 \afterdisplayh
3374 @end tex
3376 @noindent
3377 This can be cast into the matrix equation,
3379 @ifnottex
3380 @group
3381 @example
3382    [ [ 1, 2, 3 ]     [ [ a ]     [ [ 6 ]
3383      [ 4, 5, 6 ]   *   [ b ]   =   [ 2 ]
3384      [ 7, 6, 0 ] ]     [ c ] ]     [ 3 ] ]
3385 @end example
3386 @end group
3387 @end ifnottex
3388 @tex
3389 \beforedisplay
3390 $$ \pmatrix{ 1 & 2 & 3 \cr 4 & 5 & 6 \cr 7 & 6 & 0 }
3391    \times
3392    \pmatrix{ a \cr b \cr c } = \pmatrix{ 6 \cr 2 \cr 3 }
3394 \afterdisplay
3395 @end tex
3397 We can solve this system of equations by multiplying both sides by the
3398 inverse of the matrix.  Calc can do this all in one step:
3400 @smallexample
3401 @group
3402 2:  [6, 2, 3]          1:  [-12.6, 15.2, -3.93333]
3403 1:  [ [ 1, 2, 3 ]          .
3404       [ 4, 5, 6 ]
3405       [ 7, 6, 0 ] ]
3406     .
3408     [6,2,3] r 5            /
3409 @end group
3410 @end smallexample
3412 @noindent
3413 The result is the @expr{[a, b, c]} vector that solves the equations.
3414 (Dividing by a square matrix is equivalent to multiplying by its
3415 inverse.)
3417 Let's verify this solution:
3419 @smallexample
3420 @group
3421 2:  [ [ 1, 2, 3 ]                1:  [6., 2., 3.]
3422       [ 4, 5, 6 ]                    .
3423       [ 7, 6, 0 ] ]
3424 1:  [-12.6, 15.2, -3.93333]
3425     .
3427     r 5  @key{TAB}                         *
3428 @end group
3429 @end smallexample
3431 @noindent
3432 Note that we had to be careful about the order in which we multiplied
3433 the matrix and vector.  If we multiplied in the other order, Calc would
3434 assume the vector was a row vector in order to make the dimensions
3435 come out right, and the answer would be incorrect.  If you
3436 don't feel safe letting Calc take either interpretation of your
3437 vectors, use explicit
3438 @texline @math{N\times1}
3439 @infoline Nx1
3441 @texline @math{1\times N}
3442 @infoline 1xN
3443 matrices instead.  In this case, you would enter the original column
3444 vector as @samp{[[6], [2], [3]]} or @samp{[6; 2; 3]}.
3446 (@bullet{}) @strong{Exercise 2.}  Algebraic entry allows you to make
3447 vectors and matrices that include variables.  Solve the following
3448 system of equations to get expressions for @expr{x} and @expr{y}
3449 in terms of @expr{a} and @expr{b}.
3451 @ifnottex
3452 @group
3453 @example
3454    x + a y = 6
3455    x + b y = 10
3456 @end example
3457 @end group
3458 @end ifnottex
3459 @tex
3460 \beforedisplay
3461 $$ \eqalign{ x &+ a y = 6 \cr
3462              x &+ b y = 10}
3464 \afterdisplay
3465 @end tex
3467 @noindent
3468 @xref{Matrix Answer 2, 2}. (@bullet{})
3470 @cindex Least-squares for over-determined systems
3471 @cindex Over-determined systems of equations
3472 (@bullet{}) @strong{Exercise 3.}  A system of equations is ``over-determined''
3473 if it has more equations than variables.  It is often the case that
3474 there are no values for the variables that will satisfy all the
3475 equations at once, but it is still useful to find a set of values
3476 which ``nearly'' satisfy all the equations.  In terms of matrix equations,
3477 you can't solve @expr{A X = B} directly because the matrix @expr{A}
3478 is not square for an over-determined system.  Matrix inversion works
3479 only for square matrices.  One common trick is to multiply both sides
3480 on the left by the transpose of @expr{A}:
3481 @ifnottex
3482 @samp{trn(A)*A*X = trn(A)*B}.
3483 @end ifnottex
3484 @tex
3485 $A^T A \, X = A^T B$, where $A^T$ is the transpose \samp{trn(A)}.
3486 @end tex
3488 @texline @math{A^T A}
3489 @infoline @expr{trn(A)*A}
3490 is a square matrix so a solution is possible.  It turns out that the
3491 @expr{X} vector you compute in this way will be a ``least-squares''
3492 solution, which can be regarded as the ``closest'' solution to the set
3493 of equations.  Use Calc to solve the following over-determined
3494 system:
3496 @ifnottex
3497 @group
3498 @example
3499     a + 2b + 3c = 6
3500    4a + 5b + 6c = 2
3501    7a + 6b      = 3
3502    2a + 4b + 6c = 11
3503 @end example
3504 @end group
3505 @end ifnottex
3506 @tex
3507 \beforedisplayh
3508 $$ \openup1\jot \tabskip=0pt plus1fil
3509 \halign to\displaywidth{\tabskip=0pt
3510    $\hfil#$&$\hfil{}#{}$&
3511    $\hfil#$&$\hfil{}#{}$&
3512    $\hfil#$&${}#\hfil$\tabskip=0pt plus1fil\cr
3513   a&+&2b&+&3c&=6 \cr
3514  4a&+&5b&+&6c&=2 \cr
3515  7a&+&6b& &  &=3 \cr
3516  2a&+&4b&+&6c&=11 \cr}
3518 \afterdisplayh
3519 @end tex
3521 @noindent
3522 @xref{Matrix Answer 3, 3}. (@bullet{})
3524 @node List Tutorial,  , Matrix Tutorial, Vector/Matrix Tutorial
3525 @subsection Vectors as Lists
3527 @noindent
3528 @cindex Lists
3529 Although Calc has a number of features for manipulating vectors and
3530 matrices as mathematical objects, you can also treat vectors as
3531 simple lists of values.  For example, we saw that the @kbd{k f}
3532 command returns a vector which is a list of the prime factors of a
3533 number.
3535 You can pack and unpack stack entries into vectors:
3537 @smallexample
3538 @group
3539 3:  10         1:  [10, 20, 30]     3:  10
3540 2:  20             .                2:  20
3541 1:  30                              1:  30
3542     .                                   .
3544                    M-3 v p              v u
3545 @end group
3546 @end smallexample
3548 You can also build vectors out of consecutive integers, or out
3549 of many copies of a given value:
3551 @smallexample
3552 @group
3553 1:  [1, 2, 3, 4]    2:  [1, 2, 3, 4]    2:  [1, 2, 3, 4]
3554     .               1:  17              1:  [17, 17, 17, 17]
3555                         .                   .
3557     v x 4 @key{RET}           17                  v b 4 @key{RET}
3558 @end group
3559 @end smallexample
3561 You can apply an operator to every element of a vector using the
3562 @dfn{map} command.
3564 @smallexample
3565 @group
3566 1:  [17, 34, 51, 68]   1:  [289, 1156, 2601, 4624]  1:  [17, 34, 51, 68]
3567     .                      .                            .
3569     V M *                  2 V M ^                      V M Q
3570 @end group
3571 @end smallexample
3573 @noindent
3574 In the first step, we multiply the vector of integers by the vector
3575 of 17's elementwise.  In the second step, we raise each element to
3576 the power two.  (The general rule is that both operands must be
3577 vectors of the same length, or else one must be a vector and the
3578 other a plain number.)  In the final step, we take the square root
3579 of each element.
3581 (@bullet{}) @strong{Exercise 1.}  Compute a vector of powers of two
3582 from
3583 @texline @math{2^{-4}}
3584 @infoline @expr{2^-4}
3585 to @expr{2^4}.  @xref{List Answer 1, 1}. (@bullet{})
3587 You can also @dfn{reduce} a binary operator across a vector.
3588 For example, reducing @samp{*} computes the product of all the
3589 elements in the vector:
3591 @smallexample
3592 @group
3593 1:  123123     1:  [3, 7, 11, 13, 41]      1:  123123
3594     .              .                           .
3596     123123         k f                         V R *
3597 @end group
3598 @end smallexample
3600 @noindent
3601 In this example, we decompose 123123 into its prime factors, then
3602 multiply those factors together again to yield the original number.
3604 We could compute a dot product ``by hand'' using mapping and
3605 reduction:
3607 @smallexample
3608 @group
3609 2:  [1, 2, 3]     1:  [7, 12, 0]     1:  19
3610 1:  [7, 6, 0]         .                  .
3611     .
3613     r 1 r 2           V M *              V R +
3614 @end group
3615 @end smallexample
3617 @noindent
3618 Recalling two vectors from the previous section, we compute the
3619 sum of pairwise products of the elements to get the same answer
3620 for the dot product as before.
3622 A slight variant of vector reduction is the @dfn{accumulate} operation,
3623 @kbd{V U}.  This produces a vector of the intermediate results from
3624 a corresponding reduction.  Here we compute a table of factorials:
3626 @smallexample
3627 @group
3628 1:  [1, 2, 3, 4, 5, 6]    1:  [1, 2, 6, 24, 120, 720]
3629     .                         .
3631     v x 6 @key{RET}                 V U *
3632 @end group
3633 @end smallexample
3635 Calc allows vectors to grow as large as you like, although it gets
3636 rather slow if vectors have more than about a hundred elements.
3637 Actually, most of the time is spent formatting these large vectors
3638 for display, not calculating on them.  Try the following experiment
3639 (if your computer is very fast you may need to substitute a larger
3640 vector size).
3642 @smallexample
3643 @group
3644 1:  [1, 2, 3, 4, ...      1:  [2, 3, 4, 5, ...
3645     .                         .
3647     v x 500 @key{RET}               1 V M +
3648 @end group
3649 @end smallexample
3651 Now press @kbd{v .} (the letter @kbd{v}, then a period) and try the
3652 experiment again.  In @kbd{v .} mode, long vectors are displayed
3653 ``abbreviated'' like this:
3655 @smallexample
3656 @group
3657 1:  [1, 2, 3, ..., 500]   1:  [2, 3, 4, ..., 501]
3658     .                         .
3660     v x 500 @key{RET}               1 V M +
3661 @end group
3662 @end smallexample
3664 @noindent
3665 (where now the @samp{...} is actually part of the Calc display).
3666 You will find both operations are now much faster.  But notice that
3667 even in @w{@kbd{v .}} mode, the full vectors are still shown in the Trail.
3668 Type @w{@kbd{t .}} to cause the trail to abbreviate as well, and try the
3669 experiment one more time.  Operations on long vectors are now quite
3670 fast!  (But of course if you use @kbd{t .} you will lose the ability
3671 to get old vectors back using the @kbd{t y} command.)
3673 An easy way to view a full vector when @kbd{v .} mode is active is
3674 to press @kbd{`} (back-quote) to edit the vector; editing always works
3675 with the full, unabbreviated value.
3677 @cindex Least-squares for fitting a straight line
3678 @cindex Fitting data to a line
3679 @cindex Line, fitting data to
3680 @cindex Data, extracting from buffers
3681 @cindex Columns of data, extracting
3682 As a larger example, let's try to fit a straight line to some data,
3683 using the method of least squares.  (Calc has a built-in command for
3684 least-squares curve fitting, but we'll do it by hand here just to
3685 practice working with vectors.)  Suppose we have the following list
3686 of values in a file we have loaded into Emacs:
3688 @smallexample
3689   x        y
3690  ---      ---
3691  1.34    0.234
3692  1.41    0.298
3693  1.49    0.402
3694  1.56    0.412
3695  1.64    0.466
3696  1.73    0.473
3697  1.82    0.601
3698  1.91    0.519
3699  2.01    0.603
3700  2.11    0.637
3701  2.22    0.645
3702  2.33    0.705
3703  2.45    0.917
3704  2.58    1.009
3705  2.71    0.971
3706  2.85    1.062
3707  3.00    1.148
3708  3.15    1.157
3709  3.32    1.354
3710 @end smallexample
3712 @noindent
3713 If you are reading this tutorial in printed form, you will find it
3714 easiest to press @kbd{C-x * i} to enter the on-line Info version of
3715 the manual and find this table there.  (Press @kbd{g}, then type
3716 @kbd{List Tutorial}, to jump straight to this section.)
3718 Position the cursor at the upper-left corner of this table, just
3719 to the left of the @expr{1.34}.  Press @kbd{C-@@} to set the mark.
3720 (On your system this may be @kbd{C-2}, @kbd{C-@key{SPC}}, or @kbd{NUL}.)
3721 Now position the cursor to the lower-right, just after the @expr{1.354}.
3722 You have now defined this region as an Emacs ``rectangle.''  Still
3723 in the Info buffer, type @kbd{C-x * r}.  This command
3724 (@code{calc-grab-rectangle}) will pop you back into the Calculator, with
3725 the contents of the rectangle you specified in the form of a matrix.
3727 @smallexample
3728 @group
3729 1:  [ [ 1.34, 0.234 ]
3730       [ 1.41, 0.298 ]
3731       @dots{}
3732 @end group
3733 @end smallexample
3735 @noindent
3736 (You may wish to use @kbd{v .} mode to abbreviate the display of this
3737 large matrix.)
3739 We want to treat this as a pair of lists.  The first step is to
3740 transpose this matrix into a pair of rows.  Remember, a matrix is
3741 just a vector of vectors.  So we can unpack the matrix into a pair
3742 of row vectors on the stack.
3744 @smallexample
3745 @group
3746 1:  [ [ 1.34,  1.41,  1.49,  ... ]     2:  [1.34, 1.41, 1.49, ... ]
3747       [ 0.234, 0.298, 0.402, ... ] ]   1:  [0.234, 0.298, 0.402, ... ]
3748     .                                      .
3750     v t                                    v u
3751 @end group
3752 @end smallexample
3754 @noindent
3755 Let's store these in quick variables 1 and 2, respectively.
3757 @smallexample
3758 @group
3759 1:  [1.34, 1.41, 1.49, ... ]        .
3760     .
3762     t 2                             t 1
3763 @end group
3764 @end smallexample
3766 @noindent
3767 (Recall that @kbd{t 2} is a variant of @kbd{s 2} that removes the
3768 stored value from the stack.)
3770 In a least squares fit, the slope @expr{m} is given by the formula
3772 @ifnottex
3773 @example
3774 m = (N sum(x y) - sum(x) sum(y)) / (N sum(x^2) - sum(x)^2)
3775 @end example
3776 @end ifnottex
3777 @tex
3778 \beforedisplay
3779 $$ m = {N \sum x y - \sum x \sum y  \over
3780         N \sum x^2 - \left( \sum x \right)^2} $$
3781 \afterdisplay
3782 @end tex
3784 @noindent
3785 where
3786 @texline @math{\sum x}
3787 @infoline @expr{sum(x)}
3788 represents the sum of all the values of @expr{x}.  While there is an
3789 actual @code{sum} function in Calc, it's easier to sum a vector using a
3790 simple reduction.  First, let's compute the four different sums that
3791 this formula uses.
3793 @smallexample
3794 @group
3795 1:  41.63                 1:  98.0003
3796     .                         .
3798  r 1 V R +   t 3           r 1 2 V M ^ V R +   t 4
3800 @end group
3801 @end smallexample
3802 @noindent
3803 @smallexample
3804 @group
3805 1:  13.613                1:  33.36554
3806     .                         .
3808  r 2 V R +   t 5           r 1 r 2 V M * V R +   t 6
3809 @end group
3810 @end smallexample
3812 @ifnottex
3813 @noindent
3814 These are @samp{sum(x)}, @samp{sum(x^2)}, @samp{sum(y)}, and @samp{sum(x y)},
3815 respectively.  (We could have used @kbd{*} to compute @samp{sum(x^2)} and
3816 @samp{sum(x y)}.)
3817 @end ifnottex
3818 @tex
3819 These are $\sum x$, $\sum x^2$, $\sum y$, and $\sum x y$,
3820 respectively.  (We could have used \kbd{*} to compute $\sum x^2$ and
3821 $\sum x y$.)
3822 @end tex
3824 Finally, we also need @expr{N}, the number of data points.  This is just
3825 the length of either of our lists.
3827 @smallexample
3828 @group
3829 1:  19
3830     .
3832  r 1 v l   t 7
3833 @end group
3834 @end smallexample
3836 @noindent
3837 (That's @kbd{v} followed by a lower-case @kbd{l}.)
3839 Now we grind through the formula:
3841 @smallexample
3842 @group
3843 1:  633.94526  2:  633.94526  1:  67.23607
3844     .          1:  566.70919      .
3845                    .
3847  r 7 r 6 *      r 3 r 5 *         -
3849 @end group
3850 @end smallexample
3851 @noindent
3852 @smallexample
3853 @group
3854 2:  67.23607   3:  67.23607   2:  67.23607   1:  0.52141679
3855 1:  1862.0057  2:  1862.0057  1:  128.9488       .
3856     .          1:  1733.0569      .
3857                    .
3859  r 7 r 4 *      r 3 2 ^           -              /   t 8
3860 @end group
3861 @end smallexample
3863 That gives us the slope @expr{m}.  The y-intercept @expr{b} can now
3864 be found with the simple formula,
3866 @ifnottex
3867 @example
3868 b = (sum(y) - m sum(x)) / N
3869 @end example
3870 @end ifnottex
3871 @tex
3872 \beforedisplay
3873 $$ b = {\sum y - m \sum x \over N} $$
3874 \afterdisplay
3875 \vskip10pt
3876 @end tex
3878 @smallexample
3879 @group
3880 1:  13.613     2:  13.613     1:  -8.09358   1:  -0.425978
3881     .          1:  21.70658       .              .
3882                    .
3884    r 5            r 8 r 3 *       -              r 7 /   t 9
3885 @end group
3886 @end smallexample
3888 Let's ``plot'' this straight line approximation,
3889 @texline @math{y \approx m x + b},
3890 @infoline @expr{m x + b},
3891 and compare it with the original data.
3893 @smallexample
3894 @group
3895 1:  [0.699, 0.735, ... ]    1:  [0.273, 0.309, ... ]
3896     .                           .
3898     r 1 r 8 *                   r 9 +    s 0
3899 @end group
3900 @end smallexample
3902 @noindent
3903 Notice that multiplying a vector by a constant, and adding a constant
3904 to a vector, can be done without mapping commands since these are
3905 common operations from vector algebra.  As far as Calc is concerned,
3906 we've just been doing geometry in 19-dimensional space!
3908 We can subtract this vector from our original @expr{y} vector to get
3909 a feel for the error of our fit.  Let's find the maximum error:
3911 @smallexample
3912 @group
3913 1:  [0.0387, 0.0112, ... ]   1:  [0.0387, 0.0112, ... ]   1:  0.0897
3914     .                            .                            .
3916     r 2 -                        V M A                        V R X
3917 @end group
3918 @end smallexample
3920 @noindent
3921 First we compute a vector of differences, then we take the absolute
3922 values of these differences, then we reduce the @code{max} function
3923 across the vector.  (The @code{max} function is on the two-key sequence
3924 @kbd{f x}; because it is so common to use @code{max} in a vector
3925 operation, the letters @kbd{X} and @kbd{N} are also accepted for
3926 @code{max} and @code{min} in this context.  In general, you answer
3927 the @kbd{V M} or @kbd{V R} prompt with the actual key sequence that
3928 invokes the function you want.  You could have typed @kbd{V R f x} or
3929 even @kbd{V R x max @key{RET}} if you had preferred.)
3931 If your system has the GNUPLOT program, you can see graphs of your
3932 data and your straight line to see how well they match.  (If you have
3933 GNUPLOT 3.0 or higher, the following instructions will work regardless
3934 of the kind of display you have.  Some GNUPLOT 2.0, non-X-windows systems
3935 may require additional steps to view the graphs.)
3937 Let's start by plotting the original data.  Recall the ``@var{x}'' and ``@var{y}''
3938 vectors onto the stack and press @kbd{g f}.  This ``fast'' graphing
3939 command does everything you need to do for simple, straightforward
3940 plotting of data.
3942 @smallexample
3943 @group
3944 2:  [1.34, 1.41, 1.49, ... ]
3945 1:  [0.234, 0.298, 0.402, ... ]
3946     .
3948     r 1 r 2    g f
3949 @end group
3950 @end smallexample
3952 If all goes well, you will shortly get a new window containing a graph
3953 of the data.  (If not, contact your GNUPLOT or Calc installer to find
3954 out what went wrong.)  In the X window system, this will be a separate
3955 graphics window.  For other kinds of displays, the default is to
3956 display the graph in Emacs itself using rough character graphics.
3957 Press @kbd{q} when you are done viewing the character graphics.
3959 Next, let's add the line we got from our least-squares fit.
3960 @ifinfo
3961 (If you are reading this tutorial on-line while running Calc, typing
3962 @kbd{g a} may cause the tutorial to disappear from its window and be
3963 replaced by a buffer named @samp{*Gnuplot Commands*}.  The tutorial
3964 will reappear when you terminate GNUPLOT by typing @kbd{g q}.)
3965 @end ifinfo
3967 @smallexample
3968 @group
3969 2:  [1.34, 1.41, 1.49, ... ]
3970 1:  [0.273, 0.309, 0.351, ... ]
3971     .
3973     @key{DEL} r 0    g a  g p
3974 @end group
3975 @end smallexample
3977 It's not very useful to get symbols to mark the data points on this
3978 second curve; you can type @kbd{g S g p} to remove them.  Type @kbd{g q}
3979 when you are done to remove the X graphics window and terminate GNUPLOT.
3981 (@bullet{}) @strong{Exercise 2.}  An earlier exercise showed how to do
3982 least squares fitting to a general system of equations.  Our 19 data
3983 points are really 19 equations of the form @expr{y_i = m x_i + b} for
3984 different pairs of @expr{(x_i,y_i)}.  Use the matrix-transpose method
3985 to solve for @expr{m} and @expr{b}, duplicating the above result.
3986 @xref{List Answer 2, 2}. (@bullet{})
3988 @cindex Geometric mean
3989 (@bullet{}) @strong{Exercise 3.}  If the input data do not form a
3990 rectangle, you can use @w{@kbd{C-x * g}} (@code{calc-grab-region})
3991 to grab the data the way Emacs normally works with regions---it reads
3992 left-to-right, top-to-bottom, treating line breaks the same as spaces.
3993 Use this command to find the geometric mean of the following numbers.
3994 (The geometric mean is the @var{n}th root of the product of @var{n} numbers.)
3996 @example
3997 2.3  6  22  15.1  7
3998   15  14  7.5
3999   2.5
4000 @end example
4002 @noindent
4003 The @kbd{C-x * g} command accepts numbers separated by spaces or commas,
4004 with or without surrounding vector brackets.
4005 @xref{List Answer 3, 3}. (@bullet{})
4007 @ifnottex
4008 As another example, a theorem about binomial coefficients tells
4009 us that the alternating sum of binomial coefficients
4010 @var{n}-choose-0 minus @var{n}-choose-1 plus @var{n}-choose-2, and so
4011 on up to @var{n}-choose-@var{n},
4012 always comes out to zero.  Let's verify this
4013 for @expr{n=6}.
4014 @end ifnottex
4015 @tex
4016 As another example, a theorem about binomial coefficients tells
4017 us that the alternating sum of binomial coefficients
4018 ${n \choose 0} - {n \choose 1} + {n \choose 2} - \cdots \pm {n \choose n}$
4019 always comes out to zero.  Let's verify this
4020 for \cite{n=6}.
4021 @end tex
4023 @smallexample
4024 @group
4025 1:  [1, 2, 3, 4, 5, 6, 7]     1:  [0, 1, 2, 3, 4, 5, 6]
4026     .                             .
4028     v x 7 @key{RET}                     1 -
4030 @end group
4031 @end smallexample
4032 @noindent
4033 @smallexample
4034 @group
4035 1:  [1, -6, 15, -20, 15, -6, 1]          1:  0
4036     .                                        .
4038     V M ' (-1)^$ choose(6,$) @key{RET}             V R +
4039 @end group
4040 @end smallexample
4042 The @kbd{V M '} command prompts you to enter any algebraic expression
4043 to define the function to map over the vector.  The symbol @samp{$}
4044 inside this expression represents the argument to the function.
4045 The Calculator applies this formula to each element of the vector,
4046 substituting each element's value for the @samp{$} sign(s) in turn.
4048 To define a two-argument function, use @samp{$$} for the first
4049 argument and @samp{$} for the second:  @kbd{V M ' $$-$ @key{RET}} is
4050 equivalent to @kbd{V M -}.  This is analogous to regular algebraic
4051 entry, where @samp{$$} would refer to the next-to-top stack entry
4052 and @samp{$} would refer to the top stack entry, and @kbd{' $$-$ @key{RET}}
4053 would act exactly like @kbd{-}.
4055 Notice that the @kbd{V M '} command has recorded two things in the
4056 trail:  The result, as usual, and also a funny-looking thing marked
4057 @samp{oper} that represents the operator function you typed in.
4058 The function is enclosed in @samp{< >} brackets, and the argument is
4059 denoted by a @samp{#} sign.  If there were several arguments, they
4060 would be shown as @samp{#1}, @samp{#2}, and so on.  (For example,
4061 @kbd{V M ' $$-$} will put the function @samp{<#1 - #2>} on the
4062 trail.)  This object is a ``nameless function''; you can use nameless
4063 @w{@samp{< >}} notation to answer the @kbd{V M '} prompt if you like.
4064 Nameless function notation has the interesting, occasionally useful
4065 property that a nameless function is not actually evaluated until
4066 it is used.  For example, @kbd{V M ' $+random(2.0)} evaluates
4067 @samp{random(2.0)} once and adds that random number to all elements
4068 of the vector, but @kbd{V M ' <#+random(2.0)>} evaluates the
4069 @samp{random(2.0)} separately for each vector element.
4071 Another group of operators that are often useful with @kbd{V M} are
4072 the relational operators:  @kbd{a =}, for example, compares two numbers
4073 and gives the result 1 if they are equal, or 0 if not.  Similarly,
4074 @w{@kbd{a <}} checks for one number being less than another.
4076 Other useful vector operations include @kbd{v v}, to reverse a
4077 vector end-for-end; @kbd{V S}, to sort the elements of a vector
4078 into increasing order; and @kbd{v r} and @w{@kbd{v c}}, to extract
4079 one row or column of a matrix, or (in both cases) to extract one
4080 element of a plain vector.  With a negative argument, @kbd{v r}
4081 and @kbd{v c} instead delete one row, column, or vector element.
4083 @cindex Divisor functions
4084 (@bullet{}) @strong{Exercise 4.}  The @expr{k}th @dfn{divisor function}
4085 @tex
4086 $\sigma_k(n)$
4087 @end tex
4088 is the sum of the @expr{k}th powers of all the divisors of an
4089 integer @expr{n}.  Figure out a method for computing the divisor
4090 function for reasonably small values of @expr{n}.  As a test,
4091 the 0th and 1st divisor functions of 30 are 8 and 72, respectively.
4092 @xref{List Answer 4, 4}. (@bullet{})
4094 @cindex Square-free numbers
4095 @cindex Duplicate values in a list
4096 (@bullet{}) @strong{Exercise 5.}  The @kbd{k f} command produces a
4097 list of prime factors for a number.  Sometimes it is important to
4098 know that a number is @dfn{square-free}, i.e., that no prime occurs
4099 more than once in its list of prime factors.  Find a sequence of
4100 keystrokes to tell if a number is square-free; your method should
4101 leave 1 on the stack if it is, or 0 if it isn't.
4102 @xref{List Answer 5, 5}. (@bullet{})
4104 @cindex Triangular lists
4105 (@bullet{}) @strong{Exercise 6.}  Build a list of lists that looks
4106 like the following diagram.  (You may wish to use the @kbd{v /}
4107 command to enable multi-line display of vectors.)
4109 @smallexample
4110 @group
4111 1:  [ [1],
4112       [1, 2],
4113       [1, 2, 3],
4114       [1, 2, 3, 4],
4115       [1, 2, 3, 4, 5],
4116       [1, 2, 3, 4, 5, 6] ]
4117 @end group
4118 @end smallexample
4120 @noindent
4121 @xref{List Answer 6, 6}. (@bullet{})
4123 (@bullet{}) @strong{Exercise 7.}  Build the following list of lists.
4125 @smallexample
4126 @group
4127 1:  [ [0],
4128       [1, 2],
4129       [3, 4, 5],
4130       [6, 7, 8, 9],
4131       [10, 11, 12, 13, 14],
4132       [15, 16, 17, 18, 19, 20] ]
4133 @end group
4134 @end smallexample
4136 @noindent
4137 @xref{List Answer 7, 7}. (@bullet{})
4139 @cindex Maximizing a function over a list of values
4140 @c [fix-ref Numerical Solutions]
4141 (@bullet{}) @strong{Exercise 8.}  Compute a list of values of Bessel's
4142 @texline @math{J_1(x)}
4143 @infoline @expr{J1}
4144 function @samp{besJ(1,x)} for @expr{x} from 0 to 5 in steps of 0.25.
4145 Find the value of @expr{x} (from among the above set of values) for
4146 which @samp{besJ(1,x)} is a maximum.  Use an ``automatic'' method,
4147 i.e., just reading along the list by hand to find the largest value
4148 is not allowed!  (There is an @kbd{a X} command which does this kind
4149 of thing automatically; @pxref{Numerical Solutions}.)
4150 @xref{List Answer 8, 8}. (@bullet{})
4152 @cindex Digits, vectors of
4153 (@bullet{}) @strong{Exercise 9.}  You are given an integer in the range
4154 @texline @math{0 \le N < 10^m}
4155 @infoline @expr{0 <= N < 10^m}
4156 for @expr{m=12} (i.e., an integer of less than
4157 twelve digits).  Convert this integer into a vector of @expr{m}
4158 digits, each in the range from 0 to 9.  In vector-of-digits notation,
4159 add one to this integer to produce a vector of @expr{m+1} digits
4160 (since there could be a carry out of the most significant digit).
4161 Convert this vector back into a regular integer.  A good integer
4162 to try is 25129925999.  @xref{List Answer 9, 9}. (@bullet{})
4164 (@bullet{}) @strong{Exercise 10.}  Your friend Joe tried to use
4165 @kbd{V R a =} to test if all numbers in a list were equal.  What
4166 happened?  How would you do this test?  @xref{List Answer 10, 10}. (@bullet{})
4168 (@bullet{}) @strong{Exercise 11.}  The area of a circle of radius one
4169 is @cpi{}.  The area of the
4170 @texline @math{2\times2}
4171 @infoline 2x2
4172 square that encloses that circle is 4.  So if we throw @var{n} darts at
4173 random points in the square, about @cpiover{4} of them will land inside
4174 the circle.  This gives us an entertaining way to estimate the value of
4175 @cpi{}.  The @w{@kbd{k r}}
4176 command picks a random number between zero and the value on the stack.
4177 We could get a random floating-point number between @mathit{-1} and 1 by typing
4178 @w{@kbd{2.0 k r 1 -}}.  Build a vector of 100 random @expr{(x,y)} points in
4179 this square, then use vector mapping and reduction to count how many
4180 points lie inside the unit circle.  Hint:  Use the @kbd{v b} command.
4181 @xref{List Answer 11, 11}. (@bullet{})
4183 @cindex Matchstick problem
4184 (@bullet{}) @strong{Exercise 12.}  The @dfn{matchstick problem} provides
4185 another way to calculate @cpi{}.  Say you have an infinite field
4186 of vertical lines with a spacing of one inch.  Toss a one-inch matchstick
4187 onto the field.  The probability that the matchstick will land crossing
4188 a line turns out to be
4189 @texline @math{2/\pi}.
4190 @infoline @expr{2/pi}.
4191 Toss 100 matchsticks to estimate @cpi{}.  (If you want still more fun,
4192 the probability that the GCD (@w{@kbd{k g}}) of two large integers is
4193 one turns out to be
4194 @texline @math{6/\pi^2}.
4195 @infoline @expr{6/pi^2}.
4196 That provides yet another way to estimate @cpi{}.)
4197 @xref{List Answer 12, 12}. (@bullet{})
4199 (@bullet{}) @strong{Exercise 13.}  An algebraic entry of a string in
4200 double-quote marks, @samp{"hello"}, creates a vector of the numerical
4201 (ASCII) codes of the characters (here, @expr{[104, 101, 108, 108, 111]}).
4202 Sometimes it is convenient to compute a @dfn{hash code} of a string,
4203 which is just an integer that represents the value of that string.
4204 Two equal strings have the same hash code; two different strings
4205 @dfn{probably} have different hash codes.  (For example, Calc has
4206 over 400 function names, but Emacs can quickly find the definition for
4207 any given name because it has sorted the functions into ``buckets'' by
4208 their hash codes.  Sometimes a few names will hash into the same bucket,
4209 but it is easier to search among a few names than among all the names.)
4210 One popular hash function is computed as follows:  First set @expr{h = 0}.
4211 Then, for each character from the string in turn, set @expr{h = 3h + c_i}
4212 where @expr{c_i} is the character's ASCII code.  If we have 511 buckets,
4213 we then take the hash code modulo 511 to get the bucket number.  Develop a
4214 simple command or commands for converting string vectors into hash codes.
4215 The hash code for @samp{"Testing, 1, 2, 3"} is 1960915098, which modulo
4216 511 is 121.  @xref{List Answer 13, 13}. (@bullet{})
4218 (@bullet{}) @strong{Exercise 14.}  The @kbd{H V R} and @kbd{H V U}
4219 commands do nested function evaluations.  @kbd{H V U} takes a starting
4220 value and a number of steps @var{n} from the stack; it then applies the
4221 function you give to the starting value 0, 1, 2, up to @var{n} times
4222 and returns a vector of the results.  Use this command to create a
4223 ``random walk'' of 50 steps.  Start with the two-dimensional point
4224 @expr{(0,0)}; then take one step a random distance between @mathit{-1} and 1
4225 in both @expr{x} and @expr{y}; then take another step, and so on.  Use the
4226 @kbd{g f} command to display this random walk.  Now modify your random
4227 walk to walk a unit distance, but in a random direction, at each step.
4228 (Hint:  The @code{sincos} function returns a vector of the cosine and
4229 sine of an angle.)  @xref{List Answer 14, 14}. (@bullet{})
4231 @node Types Tutorial, Algebra Tutorial, Vector/Matrix Tutorial, Tutorial
4232 @section Types Tutorial
4234 @noindent
4235 Calc understands a variety of data types as well as simple numbers.
4236 In this section, we'll experiment with each of these types in turn.
4238 The numbers we've been using so far have mainly been either @dfn{integers}
4239 or @dfn{floats}.  We saw that floats are usually a good approximation to
4240 the mathematical concept of real numbers, but they are only approximations
4241 and are susceptible to roundoff error.  Calc also supports @dfn{fractions},
4242 which can exactly represent any rational number.
4244 @smallexample
4245 @group
4246 1:  3628800    2:  3628800    1:  518400:7   1:  518414:7   1:  7:518414
4247     .          1:  49             .              .              .
4248                    .
4250     10 !           49 @key{RET}         :              2 +            &
4251 @end group
4252 @end smallexample
4254 @noindent
4255 The @kbd{:} command divides two integers to get a fraction; @kbd{/}
4256 would normally divide integers to get a floating-point result.
4257 Notice we had to type @key{RET} between the @kbd{49} and the @kbd{:}
4258 since the @kbd{:} would otherwise be interpreted as part of a
4259 fraction beginning with 49.
4261 You can convert between floating-point and fractional format using
4262 @kbd{c f} and @kbd{c F}:
4264 @smallexample
4265 @group
4266 1:  1.35027217629e-5    1:  7:518414
4267     .                       .
4269     c f                     c F
4270 @end group
4271 @end smallexample
4273 The @kbd{c F} command replaces a floating-point number with the
4274 ``simplest'' fraction whose floating-point representation is the
4275 same, to within the current precision.
4277 @smallexample
4278 @group
4279 1:  3.14159265359   1:  1146408:364913   1:  3.1416   1:  355:113
4280     .                   .                    .            .
4282     P                   c F      @key{DEL}       p 5 @key{RET} P      c F
4283 @end group
4284 @end smallexample
4286 (@bullet{}) @strong{Exercise 1.}  A calculation has produced the
4287 result 1.26508260337.  You suspect it is the square root of the
4288 product of @cpi{} and some rational number.  Is it?  (Be sure
4289 to allow for roundoff error!)  @xref{Types Answer 1, 1}. (@bullet{})
4291 @dfn{Complex numbers} can be stored in both rectangular and polar form.
4293 @smallexample
4294 @group
4295 1:  -9     1:  (0, 3)    1:  (3; 90.)   1:  (6; 90.)   1:  (2.4495; 45.)
4296     .          .             .              .              .
4298     9 n        Q             c p            2 *            Q
4299 @end group
4300 @end smallexample
4302 @noindent
4303 The square root of @mathit{-9} is by default rendered in rectangular form
4304 (@w{@expr{0 + 3i}}), but we can convert it to polar form (3 with a
4305 phase angle of 90 degrees).  All the usual arithmetic and scientific
4306 operations are defined on both types of complex numbers.
4308 Another generalized kind of number is @dfn{infinity}.  Infinity
4309 isn't really a number, but it can sometimes be treated like one.
4310 Calc uses the symbol @code{inf} to represent positive infinity,
4311 i.e., a value greater than any real number.  Naturally, you can
4312 also write @samp{-inf} for minus infinity, a value less than any
4313 real number.  The word @code{inf} can only be input using
4314 algebraic entry.
4316 @smallexample
4317 @group
4318 2:  inf        2:  -inf       2:  -inf       2:  -inf       1:  nan
4319 1:  -17        1:  -inf       1:  -inf       1:  inf            .
4320     .              .              .              .
4322 ' inf @key{RET} 17 n     *  @key{RET}         72 +           A              +
4323 @end group
4324 @end smallexample
4326 @noindent
4327 Since infinity is infinitely large, multiplying it by any finite
4328 number (like @mathit{-17}) has no effect, except that since @mathit{-17}
4329 is negative, it changes a plus infinity to a minus infinity.
4330 (``A huge positive number, multiplied by @mathit{-17}, yields a huge
4331 negative number.'')  Adding any finite number to infinity also
4332 leaves it unchanged.  Taking an absolute value gives us plus
4333 infinity again.  Finally, we add this plus infinity to the minus
4334 infinity we had earlier.  If you work it out, you might expect
4335 the answer to be @mathit{-72} for this.  But the 72 has been completely
4336 lost next to the infinities; by the time we compute @w{@samp{inf - inf}}
4337 the finite difference between them, if any, is undetectable.
4338 So we say the result is @dfn{indeterminate}, which Calc writes
4339 with the symbol @code{nan} (for Not A Number).
4341 Dividing by zero is normally treated as an error, but you can get
4342 Calc to write an answer in terms of infinity by pressing @kbd{m i}
4343 to turn on Infinite mode.
4345 @smallexample
4346 @group
4347 3:  nan        2:  nan        2:  nan        2:  nan        1:  nan
4348 2:  1          1:  1 / 0      1:  uinf       1:  uinf           .
4349 1:  0              .              .              .
4350     .
4352   1 @key{RET} 0          /       m i    U /            17 n *         +
4353 @end group
4354 @end smallexample
4356 @noindent
4357 Dividing by zero normally is left unevaluated, but after @kbd{m i}
4358 it instead gives an infinite result.  The answer is actually
4359 @code{uinf}, ``undirected infinity.''  If you look at a graph of
4360 @expr{1 / x} around @w{@expr{x = 0}}, you'll see that it goes toward
4361 plus infinity as you approach zero from above, but toward minus
4362 infinity as you approach from below.  Since we said only @expr{1 / 0},
4363 Calc knows that the answer is infinite but not in which direction.
4364 That's what @code{uinf} means.  Notice that multiplying @code{uinf}
4365 by a negative number still leaves plain @code{uinf}; there's no
4366 point in saying @samp{-uinf} because the sign of @code{uinf} is
4367 unknown anyway.  Finally, we add @code{uinf} to our @code{nan},
4368 yielding @code{nan} again.  It's easy to see that, because
4369 @code{nan} means ``totally unknown'' while @code{uinf} means
4370 ``unknown sign but known to be infinite,'' the more mysterious
4371 @code{nan} wins out when it is combined with @code{uinf}, or, for
4372 that matter, with anything else.
4374 (@bullet{}) @strong{Exercise 2.}  Predict what Calc will answer
4375 for each of these formulas:  @samp{inf / inf}, @samp{exp(inf)},
4376 @samp{exp(-inf)}, @samp{sqrt(-inf)}, @samp{sqrt(uinf)},
4377 @samp{abs(uinf)}, @samp{ln(0)}.
4378 @xref{Types Answer 2, 2}. (@bullet{})
4380 (@bullet{}) @strong{Exercise 3.}  We saw that @samp{inf - inf = nan},
4381 which stands for an unknown value.  Can @code{nan} stand for
4382 a complex number?  Can it stand for infinity?
4383 @xref{Types Answer 3, 3}. (@bullet{})
4385 @dfn{HMS forms} represent a value in terms of hours, minutes, and
4386 seconds.
4388 @smallexample
4389 @group
4390 1:  2@@ 30' 0"     1:  3@@ 30' 0"     2:  3@@ 30' 0"     1:  2.
4391     .                 .             1:  1@@ 45' 0."        .
4392                                         .
4394   2@@ 30' @key{RET}          1 +               @key{RET} 2 /           /
4395 @end group
4396 @end smallexample
4398 HMS forms can also be used to hold angles in degrees, minutes, and
4399 seconds.
4401 @smallexample
4402 @group
4403 1:  0.5        1:  26.56505   1:  26@@ 33' 54.18"    1:  0.44721
4404     .              .              .                     .
4406     0.5            I T            c h                   S
4407 @end group
4408 @end smallexample
4410 @noindent
4411 First we convert the inverse tangent of 0.5 to degrees-minutes-seconds
4412 form, then we take the sine of that angle.  Note that the trigonometric
4413 functions will accept HMS forms directly as input.
4415 @cindex Beatles
4416 (@bullet{}) @strong{Exercise 4.}  The Beatles' @emph{Abbey Road} is
4417 47 minutes and 26 seconds long, and contains 17 songs.  What is the
4418 average length of a song on @emph{Abbey Road}?  If the Extended Disco
4419 Version of @emph{Abbey Road} added 20 seconds to the length of each
4420 song, how long would the album be?  @xref{Types Answer 4, 4}. (@bullet{})
4422 A @dfn{date form} represents a date, or a date and time.  Dates must
4423 be entered using algebraic entry.  Date forms are surrounded by
4424 @samp{< >} symbols; most standard formats for dates are recognized.
4426 @smallexample
4427 @group
4428 2:  <Sun Jan 13, 1991>                    1:  2.25
4429 1:  <6:00pm Thu Jan 10, 1991>                 .
4430     .
4432 ' <13 Jan 1991>, <1/10/91, 6pm> @key{RET}           -
4433 @end group
4434 @end smallexample
4436 @noindent
4437 In this example, we enter two dates, then subtract to find the
4438 number of days between them.  It is also possible to add an
4439 HMS form or a number (of days) to a date form to get another
4440 date form.
4442 @smallexample
4443 @group
4444 1:  <4:45:59pm Mon Jan 14, 1991>     1:  <2:50:59am Thu Jan 17, 1991>
4445     .                                    .
4447     t N                                  2 + 10@@ 5' +
4448 @end group
4449 @end smallexample
4451 @c [fix-ref Date Arithmetic]
4452 @noindent
4453 The @kbd{t N} (``now'') command pushes the current date and time on the
4454 stack; then we add two days, ten hours and five minutes to the date and
4455 time.  Other date-and-time related commands include @kbd{t J}, which
4456 does Julian day conversions, @kbd{t W}, which finds the beginning of
4457 the week in which a date form lies, and @kbd{t I}, which increments a
4458 date by one or several months.  @xref{Date Arithmetic}, for more.
4460 (@bullet{}) @strong{Exercise 5.}  How many days until the next
4461 Friday the 13th?  @xref{Types Answer 5, 5}. (@bullet{})
4463 (@bullet{}) @strong{Exercise 6.}  How many leap years will there be
4464 between now and the year 10001 A.D.?  @xref{Types Answer 6, 6}. (@bullet{})
4466 @cindex Slope and angle of a line
4467 @cindex Angle and slope of a line
4468 An @dfn{error form} represents a mean value with an attached standard
4469 deviation, or error estimate.  Suppose our measurements indicate that
4470 a certain telephone pole is about 30 meters away, with an estimated
4471 error of 1 meter, and 8 meters tall, with an estimated error of 0.2
4472 meters.  What is the slope of a line from here to the top of the
4473 pole, and what is the equivalent angle in degrees?
4475 @smallexample
4476 @group
4477 1:  8 +/- 0.2    2:  8 +/- 0.2   1:  0.266 +/- 0.011   1:  14.93 +/- 0.594
4478     .            1:  30 +/- 1        .                     .
4479                      .
4481     8 p .2 @key{RET}       30 p 1          /                     I T
4482 @end group
4483 @end smallexample
4485 @noindent
4486 This means that the angle is about 15 degrees, and, assuming our
4487 original error estimates were valid standard deviations, there is about
4488 a 60% chance that the result is correct within 0.59 degrees.
4490 @cindex Torus, volume of
4491 (@bullet{}) @strong{Exercise 7.}  The volume of a torus (a donut shape) is
4492 @texline @math{2 \pi^2 R r^2}
4493 @infoline @w{@expr{2 pi^2 R r^2}}
4494 where @expr{R} is the radius of the circle that
4495 defines the center of the tube and @expr{r} is the radius of the tube
4496 itself.  Suppose @expr{R} is 20 cm and @expr{r} is 4 cm, each known to
4497 within 5 percent.  What is the volume and the relative uncertainty of
4498 the volume?  @xref{Types Answer 7, 7}. (@bullet{})
4500 An @dfn{interval form} represents a range of values.  While an
4501 error form is best for making statistical estimates, intervals give
4502 you exact bounds on an answer.  Suppose we additionally know that
4503 our telephone pole is definitely between 28 and 31 meters away,
4504 and that it is between 7.7 and 8.1 meters tall.
4506 @smallexample
4507 @group
4508 1:  [7.7 .. 8.1]  2:  [7.7 .. 8.1]  1:  [0.24 .. 0.28]  1:  [13.9 .. 16.1]
4509     .             1:  [28 .. 31]        .                   .
4510                       .
4512   [ 7.7 .. 8.1 ]    [ 28 .. 31 ]        /                   I T
4513 @end group
4514 @end smallexample
4516 @noindent
4517 If our bounds were correct, then the angle to the top of the pole
4518 is sure to lie in the range shown.
4520 The square brackets around these intervals indicate that the endpoints
4521 themselves are allowable values.  In other words, the distance to the
4522 telephone pole is between 28 and 31, @emph{inclusive}.  You can also
4523 make an interval that is exclusive of its endpoints by writing
4524 parentheses instead of square brackets.  You can even make an interval
4525 which is inclusive (``closed'') on one end and exclusive (``open'') on
4526 the other.
4528 @smallexample
4529 @group
4530 1:  [1 .. 10)    1:  (0.1 .. 1]   2:  (0.1 .. 1]   1:  (0.2 .. 3)
4531     .                .            1:  [2 .. 3)         .
4532                                       .
4534   [ 1 .. 10 )        &              [ 2 .. 3 )         *
4535 @end group
4536 @end smallexample
4538 @noindent
4539 The Calculator automatically keeps track of which end values should
4540 be open and which should be closed.  You can also make infinite or
4541 semi-infinite intervals by using @samp{-inf} or @samp{inf} for one
4542 or both endpoints.
4544 (@bullet{}) @strong{Exercise 8.}  What answer would you expect from
4545 @samp{@w{1 /} @w{(0 .. 10)}}?  What about @samp{@w{1 /} @w{(-10 .. 0)}}?  What
4546 about @samp{@w{1 /} @w{[0 .. 10]}} (where the interval actually includes
4547 zero)?  What about @samp{@w{1 /} @w{(-10 .. 10)}}?
4548 @xref{Types Answer 8, 8}. (@bullet{})
4550 (@bullet{}) @strong{Exercise 9.}  Two easy ways of squaring a number
4551 are @kbd{@key{RET} *} and @w{@kbd{2 ^}}.  Normally these produce the same
4552 answer.  Would you expect this still to hold true for interval forms?
4553 If not, which of these will result in a larger interval?
4554 @xref{Types Answer 9, 9}. (@bullet{})
4556 A @dfn{modulo form} is used for performing arithmetic modulo @var{m}.
4557 For example, arithmetic involving time is generally done modulo 12
4558 or 24 hours.
4560 @smallexample
4561 @group
4562 1:  17 mod 24    1:  3 mod 24     1:  21 mod 24    1:  9 mod 24
4563     .                .                .                .
4565     17 M 24 @key{RET}      10 +             n                5 /
4566 @end group
4567 @end smallexample
4569 @noindent
4570 In this last step, Calc has divided by 5 modulo 24; i.e., it has found a
4571 new number which, when multiplied by 5 modulo 24, produces the original
4572 number, 21.  If @var{m} is prime and the divisor is not a multiple of
4573 @var{m}, it is always possible to find such a number.  For non-prime
4574 @var{m} like 24, it is only sometimes possible.
4576 @smallexample
4577 @group
4578 1:  10 mod 24    1:  16 mod 24    1:  1000000...   1:  16
4579     .                .                .                .
4581     10 M 24 @key{RET}      100 ^            10 @key{RET} 100 ^     24 %
4582 @end group
4583 @end smallexample
4585 @noindent
4586 These two calculations get the same answer, but the first one is
4587 much more efficient because it avoids the huge intermediate value
4588 that arises in the second one.
4590 @cindex Fermat, primality test of
4591 (@bullet{}) @strong{Exercise 10.}  A theorem of Pierre de Fermat
4592 says that
4593 @texline @math{x^{n-1} \bmod n = 1}
4594 @infoline @expr{x^(n-1) mod n = 1}
4595 if @expr{n} is a prime number and @expr{x} is an integer less than
4596 @expr{n}.  If @expr{n} is @emph{not} a prime number, this will
4597 @emph{not} be true for most values of @expr{x}.  Thus we can test
4598 informally if a number is prime by trying this formula for several
4599 values of @expr{x}.  Use this test to tell whether the following numbers
4600 are prime: 811749613, 15485863.  @xref{Types Answer 10, 10}. (@bullet{})
4602 It is possible to use HMS forms as parts of error forms, intervals,
4603 modulo forms, or as the phase part of a polar complex number.
4604 For example, the @code{calc-time} command pushes the current time
4605 of day on the stack as an HMS/modulo form.
4607 @smallexample
4608 @group
4609 1:  17@@ 34' 45" mod 24@@ 0' 0"     1:  6@@ 22' 15" mod 24@@ 0' 0"
4610     .                                 .
4612     x time @key{RET}                        n
4613 @end group
4614 @end smallexample
4616 @noindent
4617 This calculation tells me it is six hours and 22 minutes until midnight.
4619 (@bullet{}) @strong{Exercise 11.}  A rule of thumb is that one year
4620 is about
4621 @texline @math{\pi \times 10^7}
4622 @infoline @w{@expr{pi * 10^7}}
4623 seconds.  What time will it be that many seconds from right now?
4624 @xref{Types Answer 11, 11}. (@bullet{})
4626 (@bullet{}) @strong{Exercise 12.}  You are preparing to order packaging
4627 for the CD release of the Extended Disco Version of @emph{Abbey Road}.
4628 You are told that the songs will actually be anywhere from 20 to 60
4629 seconds longer than the originals.  One CD can hold about 75 minutes
4630 of music.  Should you order single or double packages?
4631 @xref{Types Answer 12, 12}. (@bullet{})
4633 Another kind of data the Calculator can manipulate is numbers with
4634 @dfn{units}.  This isn't strictly a new data type; it's simply an
4635 application of algebraic expressions, where we use variables with
4636 suggestive names like @samp{cm} and @samp{in} to represent units
4637 like centimeters and inches.
4639 @smallexample
4640 @group
4641 1:  2 in        1:  5.08 cm      1:  0.027778 fath   1:  0.0508 m
4642     .               .                .                   .
4644     ' 2in @key{RET}       u c cm @key{RET}       u c fath @key{RET}        u b
4645 @end group
4646 @end smallexample
4648 @noindent
4649 We enter the quantity ``2 inches'' (actually an algebraic expression
4650 which means two times the variable @samp{in}), then we convert it
4651 first to centimeters, then to fathoms, then finally to ``base'' units,
4652 which in this case means meters.
4654 @smallexample
4655 @group
4656 1:  9 acre     1:  3 sqrt(acre)   1:  190.84 m   1:  190.84 m + 30 cm
4657     .              .                  .              .
4659  ' 9 acre @key{RET}      Q                  u s            ' $+30 cm @key{RET}
4661 @end group
4662 @end smallexample
4663 @noindent
4664 @smallexample
4665 @group
4666 1:  191.14 m     1:  36536.3046 m^2    1:  365363046 cm^2
4667     .                .                     .
4669     u s              2 ^                   u c cgs
4670 @end group
4671 @end smallexample
4673 @noindent
4674 Since units expressions are really just formulas, taking the square
4675 root of @samp{acre} is undefined.  After all, @code{acre} might be an
4676 algebraic variable that you will someday assign a value.  We use the
4677 ``units-simplify'' command to simplify the expression with variables
4678 being interpreted as unit names.
4680 In the final step, we have converted not to a particular unit, but to a
4681 units system.  The ``cgs'' system uses centimeters instead of meters
4682 as its standard unit of length.
4684 There is a wide variety of units defined in the Calculator.
4686 @smallexample
4687 @group
4688 1:  55 mph     1:  88.5139 kph   1:   88.5139 km / hr   1:  8.201407e-8 c
4689     .              .                  .                     .
4691  ' 55 mph @key{RET}      u c kph @key{RET}        u c km/hr @key{RET}         u c c @key{RET}
4692 @end group
4693 @end smallexample
4695 @noindent
4696 We express a speed first in miles per hour, then in kilometers per
4697 hour, then again using a slightly more explicit notation, then
4698 finally in terms of fractions of the speed of light.
4700 Temperature conversions are a bit more tricky.  There are two ways to
4701 interpret ``20 degrees Fahrenheit''---it could mean an actual
4702 temperature, or it could mean a change in temperature.  For normal
4703 units there is no difference, but temperature units have an offset
4704 as well as a scale factor and so there must be two explicit commands
4705 for them.
4707 @smallexample
4708 @group
4709 1:  20 degF       1:  11.1111 degC     1:  -6.666 degC
4710     .                 .                    .                 .
4712   ' 20 degF @key{RET}       u c degC @key{RET}         U u t degC @key{RET}
4713 @end group
4714 @end smallexample
4716 @noindent
4717 First we convert a change of 20 degrees Fahrenheit into an equivalent
4718 change in degrees Celsius (or Centigrade).  Then, we convert the
4719 absolute temperature 20 degrees Fahrenheit into Celsius.
4721 For simple unit conversions, you can put a plain number on the stack.
4722 Then @kbd{u c} and @kbd{u t} will prompt for both old and new units.
4723 When you use this method, you're responsible for remembering which
4724 numbers are in which units:
4726 @smallexample
4727 @group
4728 1:  55         1:  88.5139              1:  8.201407e-8
4729     .              .                        .
4731     55             u c mph @key{RET} kph @key{RET}      u c km/hr @key{RET} c @key{RET}
4732 @end group
4733 @end smallexample
4735 To see a complete list of built-in units, type @kbd{u v}.  Press
4736 @w{@kbd{C-x * c}} again to re-enter the Calculator when you're done looking
4737 at the units table.
4739 (@bullet{}) @strong{Exercise 13.}  How many seconds are there really
4740 in a year?  @xref{Types Answer 13, 13}. (@bullet{})
4742 @cindex Speed of light
4743 (@bullet{}) @strong{Exercise 14.}  Supercomputer designs are limited by
4744 the speed of light (and of electricity, which is nearly as fast).
4745 Suppose a computer has a 4.1 ns (nanosecond) clock cycle, and its
4746 cabinet is one meter across.  Is speed of light going to be a
4747 significant factor in its design?  @xref{Types Answer 14, 14}. (@bullet{})
4749 (@bullet{}) @strong{Exercise 15.}  Sam the Slug normally travels about
4750 five yards in an hour.  He has obtained a supply of Power Pills; each
4751 Power Pill he eats doubles his speed.  How many Power Pills can he
4752 swallow and still travel legally on most US highways?
4753 @xref{Types Answer 15, 15}. (@bullet{})
4755 @node Algebra Tutorial, Programming Tutorial, Types Tutorial, Tutorial
4756 @section Algebra and Calculus Tutorial
4758 @noindent
4759 This section shows how to use Calc's algebra facilities to solve
4760 equations, do simple calculus problems, and manipulate algebraic
4761 formulas.
4763 @menu
4764 * Basic Algebra Tutorial::
4765 * Rewrites Tutorial::
4766 @end menu
4768 @node Basic Algebra Tutorial, Rewrites Tutorial, Algebra Tutorial, Algebra Tutorial
4769 @subsection Basic Algebra
4771 @noindent
4772 If you enter a formula in Algebraic mode that refers to variables,
4773 the formula itself is pushed onto the stack.  You can manipulate
4774 formulas as regular data objects.
4776 @smallexample
4777 @group
4778 1:  2 x^2 - 6       1:  6 - 2 x^2       1:  (3 x^2 + y) (6 - 2 x^2)
4779     .                   .                   .
4781     ' 2x^2-6 @key{RET}        n                   ' 3x^2+y @key{RET} *
4782 @end group
4783 @end smallexample
4785 (@bullet{}) @strong{Exercise 1.}  Do @kbd{' x @key{RET} Q 2 ^} and
4786 @kbd{' x @key{RET} 2 ^ Q} both wind up with the same result (@samp{x})?
4787 Why or why not?  @xref{Algebra Answer 1, 1}. (@bullet{})
4789 There are also commands for doing common algebraic operations on
4790 formulas.  Continuing with the formula from the last example,
4792 @smallexample
4793 @group
4794 1:  18 x^2 - 6 x^4 + 6 y - 2 y x^2    1:  (18 - 2 y) x^2 - 6 x^4 + 6 y
4795     .                                     .
4797     a x                                   a c x @key{RET}
4798 @end group
4799 @end smallexample
4801 @noindent
4802 First we ``expand'' using the distributive law, then we ``collect''
4803 terms involving like powers of @expr{x}.
4805 Let's find the value of this expression when @expr{x} is 2 and @expr{y}
4806 is one-half.
4808 @smallexample
4809 @group
4810 1:  17 x^2 - 6 x^4 + 3      1:  -25
4811     .                           .
4813     1:2 s l y @key{RET}               2 s l x @key{RET}
4814 @end group
4815 @end smallexample
4817 @noindent
4818 The @kbd{s l} command means ``let''; it takes a number from the top of
4819 the stack and temporarily assigns it as the value of the variable
4820 you specify.  It then evaluates (as if by the @kbd{=} key) the
4821 next expression on the stack.  After this command, the variable goes
4822 back to its original value, if any.
4824 (An earlier exercise in this tutorial involved storing a value in the
4825 variable @code{x}; if this value is still there, you will have to
4826 unstore it with @kbd{s u x @key{RET}} before the above example will work
4827 properly.)
4829 @cindex Maximum of a function using Calculus
4830 Let's find the maximum value of our original expression when @expr{y}
4831 is one-half and @expr{x} ranges over all possible values.  We can
4832 do this by taking the derivative with respect to @expr{x} and examining
4833 values of @expr{x} for which the derivative is zero.  If the second
4834 derivative of the function at that value of @expr{x} is negative,
4835 the function has a local maximum there.
4837 @smallexample
4838 @group
4839 1:  17 x^2 - 6 x^4 + 3      1:  34 x - 24 x^3
4840     .                           .
4842     U @key{DEL}  s 1                  a d x @key{RET}   s 2
4843 @end group
4844 @end smallexample
4846 @noindent
4847 Well, the derivative is clearly zero when @expr{x} is zero.  To find
4848 the other root(s), let's divide through by @expr{x} and then solve:
4850 @smallexample
4851 @group
4852 1:  (34 x - 24 x^3) / x    1:  34 - 24 x^2
4853     .                          .
4855     ' x @key{RET} /                  a x
4857 @end group
4858 @end smallexample
4859 @noindent
4860 @smallexample
4861 @group
4862 1:  0.70588 x^2 = 1        1:  x = 1.19023
4863     .                          .
4865     0 a =  s 3                 a S x @key{RET}
4866 @end group
4867 @end smallexample
4869 @noindent
4870 Now we compute the second derivative and plug in our values of @expr{x}:
4872 @smallexample
4873 @group
4874 1:  1.19023        2:  1.19023         2:  1.19023
4875     .              1:  34 x - 24 x^3   1:  34 - 72 x^2
4876                        .                   .
4878     a .                r 2                 a d x @key{RET} s 4
4879 @end group
4880 @end smallexample
4882 @noindent
4883 (The @kbd{a .} command extracts just the righthand side of an equation.
4884 Another method would have been to use @kbd{v u} to unpack the equation
4885 @w{@samp{x = 1.19}} to @samp{x} and @samp{1.19}, then use @kbd{M-- M-2 @key{DEL}}
4886 to delete the @samp{x}.)
4888 @smallexample
4889 @group
4890 2:  34 - 72 x^2   1:  -68.         2:  34 - 72 x^2     1:  34
4891 1:  1.19023           .            1:  0                   .
4892     .                                  .
4894     @key{TAB}               s l x @key{RET}        U @key{DEL} 0             s l x @key{RET}
4895 @end group
4896 @end smallexample
4898 @noindent
4899 The first of these second derivatives is negative, so we know the function
4900 has a maximum value at @expr{x = 1.19023}.  (The function also has a
4901 local @emph{minimum} at @expr{x = 0}.)
4903 When we solved for @expr{x}, we got only one value even though
4904 @expr{0.70588 x^2 = 1} is a quadratic equation that ought to have
4905 two solutions.  The reason is that @w{@kbd{a S}} normally returns a
4906 single ``principal'' solution.  If it needs to come up with an
4907 arbitrary sign (as occurs in the quadratic formula) it picks @expr{+}.
4908 If it needs an arbitrary integer, it picks zero.  We can get a full
4909 solution by pressing @kbd{H} (the Hyperbolic flag) before @kbd{a S}.
4911 @smallexample
4912 @group
4913 1:  0.70588 x^2 = 1    1:  x = 1.19023 s1      1:  x = -1.19023
4914     .                      .                       .
4916     r 3                    H a S x @key{RET}  s 5        1 n  s l s1 @key{RET}
4917 @end group
4918 @end smallexample
4920 @noindent
4921 Calc has invented the variable @samp{s1} to represent an unknown sign;
4922 it is supposed to be either @mathit{+1} or @mathit{-1}.  Here we have used
4923 the ``let'' command to evaluate the expression when the sign is negative.
4924 If we plugged this into our second derivative we would get the same,
4925 negative, answer, so @expr{x = -1.19023} is also a maximum.
4927 To find the actual maximum value, we must plug our two values of @expr{x}
4928 into the original formula.
4930 @smallexample
4931 @group
4932 2:  17 x^2 - 6 x^4 + 3    1:  24.08333 s1^2 - 12.04166 s1^4 + 3
4933 1:  x = 1.19023 s1            .
4934     .
4936     r 1 r 5                   s l @key{RET}
4937 @end group
4938 @end smallexample
4940 @noindent
4941 (Here we see another way to use @kbd{s l}; if its input is an equation
4942 with a variable on the lefthand side, then @kbd{s l} treats the equation
4943 like an assignment to that variable if you don't give a variable name.)
4945 It's clear that this will have the same value for either sign of
4946 @code{s1}, but let's work it out anyway, just for the exercise:
4948 @smallexample
4949 @group
4950 2:  [-1, 1]              1:  [15.04166, 15.04166]
4951 1:  24.08333 s1^2 ...        .
4952     .
4954   [ 1 n , 1 ] @key{TAB}            V M $ @key{RET}
4955 @end group
4956 @end smallexample
4958 @noindent
4959 Here we have used a vector mapping operation to evaluate the function
4960 at several values of @samp{s1} at once.  @kbd{V M $} is like @kbd{V M '}
4961 except that it takes the formula from the top of the stack.  The
4962 formula is interpreted as a function to apply across the vector at the
4963 next-to-top stack level.  Since a formula on the stack can't contain
4964 @samp{$} signs, Calc assumes the variables in the formula stand for
4965 different arguments.  It prompts you for an @dfn{argument list}, giving
4966 the list of all variables in the formula in alphabetical order as the
4967 default list.  In this case the default is @samp{(s1)}, which is just
4968 what we want so we simply press @key{RET} at the prompt.
4970 If there had been several different values, we could have used
4971 @w{@kbd{V R X}} to find the global maximum.
4973 Calc has a built-in @kbd{a P} command that solves an equation using
4974 @w{@kbd{H a S}} and returns a vector of all the solutions.  It simply
4975 automates the job we just did by hand.  Applied to our original
4976 cubic polynomial, it would produce the vector of solutions
4977 @expr{[1.19023, -1.19023, 0]}.  (There is also an @kbd{a X} command
4978 which finds a local maximum of a function.  It uses a numerical search
4979 method rather than examining the derivatives, and thus requires you
4980 to provide some kind of initial guess to show it where to look.)
4982 (@bullet{}) @strong{Exercise 2.}  Given a vector of the roots of a
4983 polynomial (such as the output of an @kbd{a P} command), what
4984 sequence of commands would you use to reconstruct the original
4985 polynomial?  (The answer will be unique to within a constant
4986 multiple; choose the solution where the leading coefficient is one.)
4987 @xref{Algebra Answer 2, 2}. (@bullet{})
4989 The @kbd{m s} command enables Symbolic mode, in which formulas
4990 like @samp{sqrt(5)} that can't be evaluated exactly are left in
4991 symbolic form rather than giving a floating-point approximate answer.
4992 Fraction mode (@kbd{m f}) is also useful when doing algebra.
4994 @smallexample
4995 @group
4996 2:  34 x - 24 x^3        2:  34 x - 24 x^3
4997 1:  34 x - 24 x^3        1:  [sqrt(51) / 6, sqrt(51) / -6, 0]
4998     .                        .
5000     r 2  @key{RET}     m s  m f    a P x @key{RET}
5001 @end group
5002 @end smallexample
5004 One more mode that makes reading formulas easier is Big mode.
5006 @smallexample
5007 @group
5008                3
5009 2:  34 x - 24 x
5011       ____   ____
5012      V 51   V 51
5013 1:  [-----, -----, 0]
5014        6     -6
5016     .
5018     d B
5019 @end group
5020 @end smallexample
5022 Here things like powers, square roots, and quotients and fractions
5023 are displayed in a two-dimensional pictorial form.  Calc has other
5024 language modes as well, such as C mode, FORTRAN mode, @TeX{} mode
5025 and @LaTeX{} mode.
5027 @smallexample
5028 @group
5029 2:  34*x - 24*pow(x, 3)               2:  34*x - 24*x**3
5030 1:  @{sqrt(51) / 6, sqrt(51) / -6, 0@}  1:  /sqrt(51) / 6, sqrt(51) / -6, 0/
5031     .                                     .
5033     d C                                   d F
5035 @end group
5036 @end smallexample
5037 @noindent
5038 @smallexample
5039 @group
5040 3:  34 x - 24 x^3
5041 2:  [@{\sqrt@{51@} \over 6@}, @{\sqrt@{51@} \over -6@}, 0]
5042 1:  @{2 \over 3@} \sqrt@{5@}
5043     .
5045     d T   ' 2 \sqrt@{5@} \over 3 @key{RET}
5046 @end group
5047 @end smallexample
5049 @noindent
5050 As you can see, language modes affect both entry and display of
5051 formulas.  They affect such things as the names used for built-in
5052 functions, the set of arithmetic operators and their precedences,
5053 and notations for vectors and matrices.
5055 Notice that @samp{sqrt(51)} may cause problems with older
5056 implementations of C and FORTRAN, which would require something more
5057 like @samp{sqrt(51.0)}.  It is always wise to check over the formulas
5058 produced by the various language modes to make sure they are fully
5059 correct.
5061 Type @kbd{m s}, @kbd{m f}, and @kbd{d N} to reset these modes.  (You
5062 may prefer to remain in Big mode, but all the examples in the tutorial
5063 are shown in normal mode.)
5065 @cindex Area under a curve
5066 What is the area under the portion of this curve from @expr{x = 1} to @expr{2}?
5067 This is simply the integral of the function:
5069 @smallexample
5070 @group
5071 1:  17 x^2 - 6 x^4 + 3     1:  5.6666 x^3 - 1.2 x^5 + 3 x
5072     .                          .
5074     r 1                        a i x
5075 @end group
5076 @end smallexample
5078 @noindent
5079 We want to evaluate this at our two values for @expr{x} and subtract.
5080 One way to do it is again with vector mapping and reduction:
5082 @smallexample
5083 @group
5084 2:  [2, 1]            1:  [12.93333, 7.46666]    1:  5.46666
5085 1:  5.6666 x^3 ...        .                          .
5087    [ 2 , 1 ] @key{TAB}          V M $ @key{RET}                  V R -
5088 @end group
5089 @end smallexample
5091 (@bullet{}) @strong{Exercise 3.}  Find the integral from 1 to @expr{y}
5093 @texline @math{x \sin \pi x}
5094 @infoline @w{@expr{x sin(pi x)}}
5095 (where the sine is calculated in radians).  Find the values of the
5096 integral for integers @expr{y} from 1 to 5.  @xref{Algebra Answer 3,
5097 3}. (@bullet{})
5099 Calc's integrator can do many simple integrals symbolically, but many
5100 others are beyond its capabilities.  Suppose we wish to find the area
5101 under the curve
5102 @texline @math{\sin x \ln x}
5103 @infoline @expr{sin(x) ln(x)}
5104 over the same range of @expr{x}.  If you entered this formula and typed
5105 @kbd{a i x @key{RET}} (don't bother to try this), Calc would work for a
5106 long time but would be unable to find a solution.  In fact, there is no
5107 closed-form solution to this integral.  Now what do we do?
5109 @cindex Integration, numerical
5110 @cindex Numerical integration
5111 One approach would be to do the integral numerically.  It is not hard
5112 to do this by hand using vector mapping and reduction.  It is rather
5113 slow, though, since the sine and logarithm functions take a long time.
5114 We can save some time by reducing the working precision.
5116 @smallexample
5117 @group
5118 3:  10                  1:  [1, 1.1, 1.2,  ...  , 1.8, 1.9]
5119 2:  1                       .
5120 1:  0.1
5121     .
5123  10 @key{RET} 1 @key{RET} .1 @key{RET}        C-u v x
5124 @end group
5125 @end smallexample
5127 @noindent
5128 (Note that we have used the extended version of @kbd{v x}; we could
5129 also have used plain @kbd{v x} as follows:  @kbd{v x 10 @key{RET} 9 + .1 *}.)
5131 @smallexample
5132 @group
5133 2:  [1, 1.1, ... ]              1:  [0., 0.084941, 0.16993, ... ]
5134 1:  ln(x) sin(x)                    .
5135     .
5137     ' sin(x) ln(x) @key{RET}  s 1    m r  p 5 @key{RET}   V M $ @key{RET}
5139 @end group
5140 @end smallexample
5141 @noindent
5142 @smallexample
5143 @group
5144 1:  3.4195     0.34195
5145     .          .
5147     V R +      0.1 *
5148 @end group
5149 @end smallexample
5151 @noindent
5152 (If you got wildly different results, did you remember to switch
5153 to Radians mode?)
5155 Here we have divided the curve into ten segments of equal width;
5156 approximating these segments as rectangular boxes (i.e., assuming
5157 the curve is nearly flat at that resolution), we compute the areas
5158 of the boxes (height times width), then sum the areas.  (It is
5159 faster to sum first, then multiply by the width, since the width
5160 is the same for every box.)
5162 The true value of this integral turns out to be about 0.374, so
5163 we're not doing too well.  Let's try another approach.
5165 @smallexample
5166 @group
5167 1:  ln(x) sin(x)    1:  0.84147 x + 0.11957 (x - 1)^2 - ...
5168     .                   .
5170     r 1                 a t x=1 @key{RET} 4 @key{RET}
5171 @end group
5172 @end smallexample
5174 @noindent
5175 Here we have computed the Taylor series expansion of the function
5176 about the point @expr{x=1}.  We can now integrate this polynomial
5177 approximation, since polynomials are easy to integrate.
5179 @smallexample
5180 @group
5181 1:  0.42074 x^2 + ...    1:  [-0.0446, -0.42073]      1:  0.3761
5182     .                        .                            .
5184     a i x @key{RET}            [ 2 , 1 ] @key{TAB}  V M $ @key{RET}         V R -
5185 @end group
5186 @end smallexample
5188 @noindent
5189 Better!  By increasing the precision and/or asking for more terms
5190 in the Taylor series, we can get a result as accurate as we like.
5191 (Taylor series converge better away from singularities in the
5192 function such as the one at @code{ln(0)}, so it would also help to
5193 expand the series about the points @expr{x=2} or @expr{x=1.5} instead
5194 of @expr{x=1}.)
5196 @cindex Simpson's rule
5197 @cindex Integration by Simpson's rule
5198 (@bullet{}) @strong{Exercise 4.}  Our first method approximated the
5199 curve by stairsteps of width 0.1; the total area was then the sum
5200 of the areas of the rectangles under these stairsteps.  Our second
5201 method approximated the function by a polynomial, which turned out
5202 to be a better approximation than stairsteps.  A third method is
5203 @dfn{Simpson's rule}, which is like the stairstep method except
5204 that the steps are not required to be flat.  Simpson's rule boils
5205 down to the formula,
5207 @ifnottex
5208 @example
5209 (h/3) * (f(a) + 4 f(a+h) + 2 f(a+2h) + 4 f(a+3h) + ...
5210               + 2 f(a+(n-2)*h) + 4 f(a+(n-1)*h) + f(a+n*h))
5211 @end example
5212 @end ifnottex
5213 @tex
5214 \beforedisplay
5215 $$ \displaylines{
5216       \qquad {h \over 3} (f(a) + 4 f(a+h) + 2 f(a+2h) + 4 f(a+3h) + \cdots
5217    \hfill \cr \hfill    {} + 2 f(a+(n-2)h) + 4 f(a+(n-1)h) + f(a+n h)) \qquad
5218 } $$
5219 \afterdisplay
5220 @end tex
5222 @noindent
5223 where @expr{n} (which must be even) is the number of slices and @expr{h}
5224 is the width of each slice.  These are 10 and 0.1 in our example.
5225 For reference, here is the corresponding formula for the stairstep
5226 method:
5228 @ifnottex
5229 @example
5230 h * (f(a) + f(a+h) + f(a+2h) + f(a+3h) + ...
5231           + f(a+(n-2)*h) + f(a+(n-1)*h))
5232 @end example
5233 @end ifnottex
5234 @tex
5235 \beforedisplay
5236 $$ h (f(a) + f(a+h) + f(a+2h) + f(a+3h) + \cdots
5237            + f(a+(n-2)h) + f(a+(n-1)h)) $$
5238 \afterdisplay
5239 @end tex
5241 Compute the integral from 1 to 2 of
5242 @texline @math{\sin x \ln x}
5243 @infoline @expr{sin(x) ln(x)}
5244 using Simpson's rule with 10 slices.
5245 @xref{Algebra Answer 4, 4}. (@bullet{})
5247 Calc has a built-in @kbd{a I} command for doing numerical integration.
5248 It uses @dfn{Romberg's method}, which is a more sophisticated cousin
5249 of Simpson's rule.  In particular, it knows how to keep refining the
5250 result until the current precision is satisfied.
5252 @c [fix-ref Selecting Sub-Formulas]
5253 Aside from the commands we've seen so far, Calc also provides a
5254 large set of commands for operating on parts of formulas.  You
5255 indicate the desired sub-formula by placing the cursor on any part
5256 of the formula before giving a @dfn{selection} command.  Selections won't
5257 be covered in the tutorial; @pxref{Selecting Subformulas}, for
5258 details and examples.
5260 @c hard exercise: simplify (2^(n r) - 2^(r*(n - 1))) / (2^r - 1) 2^(n - 1)
5261 @c                to 2^((n-1)*(r-1)).
5263 @node Rewrites Tutorial,  , Basic Algebra Tutorial, Algebra Tutorial
5264 @subsection Rewrite Rules
5266 @noindent
5267 No matter how many built-in commands Calc provided for doing algebra,
5268 there would always be something you wanted to do that Calc didn't have
5269 in its repertoire.  So Calc also provides a @dfn{rewrite rule} system
5270 that you can use to define your own algebraic manipulations.
5272 Suppose we want to simplify this trigonometric formula:
5274 @smallexample
5275 @group
5276 1:  2 sec(x)^2 / tan(x)^2 - 2 / tan(x)^2
5277     .
5279     ' 2sec(x)^2/tan(x)^2 - 2/tan(x)^2 @key{RET}   s 1
5280 @end group
5281 @end smallexample
5283 @noindent
5284 If we were simplifying this by hand, we'd probably combine over the common
5285 denominator.  The @kbd{a n} algebra command will do this, but we'll do
5286 it with a rewrite rule just for practice.
5288 Rewrite rules are written with the @samp{:=} symbol.
5290 @smallexample
5291 @group
5292 1:  (2 sec(x)^2 - 2) / tan(x)^2
5293     .
5295     a r a/x + b/x := (a+b)/x @key{RET}
5296 @end group
5297 @end smallexample
5299 @noindent
5300 (The ``assignment operator'' @samp{:=} has several uses in Calc.  All
5301 by itself the formula @samp{a/x + b/x := (a+b)/x} doesn't do anything,
5302 but when it is given to the @kbd{a r} command, that command interprets
5303 it as a rewrite rule.)
5305 The lefthand side, @samp{a/x + b/x}, is called the @dfn{pattern} of the
5306 rewrite rule.  Calc searches the formula on the stack for parts that
5307 match the pattern.  Variables in a rewrite pattern are called
5308 @dfn{meta-variables}, and when matching the pattern each meta-variable
5309 can match any sub-formula.  Here, the meta-variable @samp{a} matched
5310 the expression @samp{2 sec(x)^2}, the meta-variable @samp{b} matched
5311 the constant @samp{-2} and the meta-variable @samp{x} matched
5312 the expression @samp{tan(x)^2}.
5314 This rule points out several interesting features of rewrite patterns.
5315 First, if a meta-variable appears several times in a pattern, it must
5316 match the same thing everywhere.  This rule detects common denominators
5317 because the same meta-variable @samp{x} is used in both of the
5318 denominators.
5320 Second, meta-variable names are independent from variables in the
5321 target formula.  Notice that the meta-variable @samp{x} here matches
5322 the subformula @samp{tan(x)^2}; Calc never confuses the two meanings of
5323 @samp{x}.
5325 And third, rewrite patterns know a little bit about the algebraic
5326 properties of formulas.  The pattern called for a sum of two quotients;
5327 Calc was able to match a difference of two quotients by matching
5328 @samp{a = 2 sec(x)^2}, @samp{b = -2}, and @samp{x = tan(x)^2}.
5330 When the pattern part of a rewrite rule matches a part of the formula,
5331 that part is replaced by the righthand side with all the meta-variables
5332 substituted with the things they matched.  So the result is
5333 @samp{(2 sec(x)^2 - 2) / tan(x)^2}.
5335 @c [fix-ref Algebraic Properties of Rewrite Rules]
5336 We could just as easily have written @samp{a/x - b/x := (a-b)/x} for
5337 the rule.  It would have worked just the same in all cases.  (If we
5338 really wanted the rule to apply only to @samp{+} or only to @samp{-},
5339 we could have used the @code{plain} symbol.  @xref{Algebraic Properties
5340 of Rewrite Rules}, for some examples of this.)
5342 One more rewrite will complete the job.  We want to use the identity
5343 @samp{tan(x)^2 + 1 = sec(x)^2}, but of course we must first rearrange
5344 the identity in a way that matches our formula.  The obvious rule
5345 would be @samp{@w{2 sec(x)^2 - 2} := 2 tan(x)^2}, but a little thought shows
5346 that the rule @samp{sec(x)^2 := 1 + tan(x)^2} will also work.  The
5347 latter rule has a more general pattern so it will work in many other
5348 situations, too.
5350 @smallexample
5351 @group
5352 1:  2
5353     .
5355     a r sec(x)^2 := 1 + tan(x)^2 @key{RET}
5356 @end group
5357 @end smallexample
5359 You may ask, what's the point of using the most general rule if you
5360 have to type it in every time anyway?  The answer is that Calc allows
5361 you to store a rewrite rule in a variable, then give the variable
5362 name in the @kbd{a r} command.  In fact, this is the preferred way to
5363 use rewrites.  For one, if you need a rule once you'll most likely
5364 need it again later.  Also, if the rule doesn't work quite right you
5365 can simply Undo, edit the variable, and run the rule again without
5366 having to retype it.
5368 @smallexample
5369 @group
5370 ' a/x + b/x := (a+b)/x @key{RET}          s t merge @key{RET}
5371 ' sec(x)^2 := 1 + tan(x)^2 @key{RET}      s t secsqr @key{RET}
5373 1:  2 sec(x)^2 / tan(x)^2 - 2 / tan(x)^2    1:  2
5374     .                                  .
5376     r 1                  a r merge @key{RET}  a r secsqr @key{RET}
5377 @end group
5378 @end smallexample
5380 To edit a variable, type @kbd{s e} and the variable name, use regular
5381 Emacs editing commands as necessary, then type @kbd{C-c C-c} to store
5382 the edited value back into the variable.
5383 You can also use @w{@kbd{s e}} to create a new variable if you wish.
5385 Notice that the first time you use each rule, Calc puts up a ``compiling''
5386 message briefly.  The pattern matcher converts rules into a special
5387 optimized pattern-matching language rather than using them directly.
5388 This allows @kbd{a r} to apply even rather complicated rules very
5389 efficiently.  If the rule is stored in a variable, Calc compiles it
5390 only once and stores the compiled form along with the variable.  That's
5391 another good reason to store your rules in variables rather than
5392 entering them on the fly.
5394 (@bullet{}) @strong{Exercise 1.}  Type @kbd{m s} to get Symbolic
5395 mode, then enter the formula @samp{@w{(2 + sqrt(2))} / @w{(1 + sqrt(2))}}.
5396 Using a rewrite rule, simplify this formula by multiplying the top and
5397 bottom by the conjugate @w{@samp{1 - sqrt(2)}}.  The result will have
5398 to be expanded by the distributive law; do this with another
5399 rewrite.  @xref{Rewrites Answer 1, 1}. (@bullet{})
5401 The @kbd{a r} command can also accept a vector of rewrite rules, or
5402 a variable containing a vector of rules.
5404 @smallexample
5405 @group
5406 1:  [merge, secsqr]          1:  [a/x + b/x := (a + b)/x, ... ]
5407     .                                 .
5409     ' [merge,sinsqr] @key{RET}          =
5411 @end group
5412 @end smallexample
5413 @noindent
5414 @smallexample
5415 @group
5416 1:  2 sec(x)^2 / tan(x)^2 - 2 / tan(x)^2     1:  2
5417     .                                 .
5419     s t trig @key{RET}  r 1                  a r trig @key{RET}
5420 @end group
5421 @end smallexample
5423 @c [fix-ref Nested Formulas with Rewrite Rules]
5424 Calc tries all the rules you give against all parts of the formula,
5425 repeating until no further change is possible.  (The exact order in
5426 which things are tried is rather complex, but for simple rules like
5427 the ones we've used here the order doesn't really matter.
5428 @xref{Nested Formulas with Rewrite Rules}.)
5430 Calc actually repeats only up to 100 times, just in case your rule set
5431 has gotten into an infinite loop.  You can give a numeric prefix argument
5432 to @kbd{a r} to specify any limit.  In particular, @kbd{M-1 a r} does
5433 only one rewrite at a time.
5435 @smallexample
5436 @group
5437 1:  (2 sec(x)^2 - 2) / tan(x)^2         1:  2
5438     .                                       .
5440     r 1  M-1 a r trig @key{RET}                   M-1 a r trig @key{RET}
5441 @end group
5442 @end smallexample
5444 You can type @kbd{M-0 a r} if you want no limit at all on the number
5445 of rewrites that occur.
5447 Rewrite rules can also be @dfn{conditional}.  Simply follow the rule
5448 with a @samp{::} symbol and the desired condition.  For example,
5450 @smallexample
5451 @group
5452 1:  sin(x + 2 pi) + sin(x + 3 pi) + sin(x + 4 pi)
5453     .
5455     ' sin(x+2pi) + sin(x+3pi) + sin(x+4pi) @key{RET}
5457 @end group
5458 @end smallexample
5459 @noindent
5460 @smallexample
5461 @group
5462 1:  sin(x + 3 pi) + 2 sin(x)
5463     .
5465     a r sin(a + k pi) := sin(a) :: k % 2 = 0 @key{RET}
5466 @end group
5467 @end smallexample
5469 @noindent
5470 (Recall, @samp{k % 2} is the remainder from dividing @samp{k} by 2,
5471 which will be zero only when @samp{k} is an even integer.)
5473 An interesting point is that the variable @samp{pi} was matched
5474 literally rather than acting as a meta-variable.
5475 This is because it is a special-constant variable.  The special
5476 constants @samp{e}, @samp{i}, @samp{phi}, and so on also match literally.
5477 A common error with rewrite
5478 rules is to write, say, @samp{f(a,b,c,d,e) := g(a+b+c+d+e)}, expecting
5479 to match any @samp{f} with five arguments but in fact matching
5480 only when the fifth argument is literally @samp{e}!
5482 @cindex Fibonacci numbers
5483 @ignore
5484 @starindex
5485 @end ignore
5486 @tindex fib
5487 Rewrite rules provide an interesting way to define your own functions.
5488 Suppose we want to define @samp{fib(n)} to produce the @var{n}th
5489 Fibonacci number.  The first two Fibonacci numbers are each 1;
5490 later numbers are formed by summing the two preceding numbers in
5491 the sequence.  This is easy to express in a set of three rules:
5493 @smallexample
5494 @group
5495 ' [fib(1) := 1, fib(2) := 1, fib(n) := fib(n-1) + fib(n-2)] @key{RET}  s t fib
5497 1:  fib(7)               1:  13
5498     .                        .
5500     ' fib(7) @key{RET}             a r fib @key{RET}
5501 @end group
5502 @end smallexample
5504 One thing that is guaranteed about the order that rewrites are tried
5505 is that, for any given subformula, earlier rules in the rule set will
5506 be tried for that subformula before later ones.  So even though the
5507 first and third rules both match @samp{fib(1)}, we know the first will
5508 be used preferentially.
5510 This rule set has one dangerous bug:  Suppose we apply it to the
5511 formula @samp{fib(x)}?  (Don't actually try this.)  The third rule
5512 will match @samp{fib(x)} and replace it with @w{@samp{fib(x-1) + fib(x-2)}}.
5513 Each of these will then be replaced to get @samp{fib(x-2) + 2 fib(x-3) +
5514 fib(x-4)}, and so on, expanding forever.  What we really want is to apply
5515 the third rule only when @samp{n} is an integer greater than two.  Type
5516 @w{@kbd{s e fib @key{RET}}}, then edit the third rule to:
5518 @smallexample
5519 fib(n) := fib(n-1) + fib(n-2) :: integer(n) :: n > 2
5520 @end smallexample
5522 @noindent
5523 Now:
5525 @smallexample
5526 @group
5527 1:  fib(6) + fib(x) + fib(0)      1:  fib(x) + fib(0) + 8
5528     .                                 .
5530     ' fib(6)+fib(x)+fib(0) @key{RET}        a r fib @key{RET}
5531 @end group
5532 @end smallexample
5534 @noindent
5535 We've created a new function, @code{fib}, and a new command,
5536 @w{@kbd{a r fib @key{RET}}}, which means ``evaluate all @code{fib} calls in
5537 this formula.''  To make things easier still, we can tell Calc to
5538 apply these rules automatically by storing them in the special
5539 variable @code{EvalRules}.
5541 @smallexample
5542 @group
5543 1:  [fib(1) := ...]    .                1:  [8, 13]
5544     .                                       .
5546     s r fib @key{RET}        s t EvalRules @key{RET}    ' [fib(6), fib(7)] @key{RET}
5547 @end group
5548 @end smallexample
5550 It turns out that this rule set has the problem that it does far
5551 more work than it needs to when @samp{n} is large.  Consider the
5552 first few steps of the computation of @samp{fib(6)}:
5554 @smallexample
5555 @group
5556 fib(6) =
5557 fib(5)              +               fib(4) =
5558 fib(4)     +      fib(3)     +      fib(3)     +      fib(2) =
5559 fib(3) + fib(2) + fib(2) + fib(1) + fib(2) + fib(1) + 1 = ...
5560 @end group
5561 @end smallexample
5563 @noindent
5564 Note that @samp{fib(3)} appears three times here.  Unless Calc's
5565 algebraic simplifier notices the multiple @samp{fib(3)}s and combines
5566 them (and, as it happens, it doesn't), this rule set does lots of
5567 needless recomputation.  To cure the problem, type @code{s e EvalRules}
5568 to edit the rules (or just @kbd{s E}, a shorthand command for editing
5569 @code{EvalRules}) and add another condition:
5571 @smallexample
5572 fib(n) := fib(n-1) + fib(n-2) :: integer(n) :: n > 2 :: remember
5573 @end smallexample
5575 @noindent
5576 If a @samp{:: remember} condition appears anywhere in a rule, then if
5577 that rule succeeds Calc will add another rule that describes that match
5578 to the front of the rule set.  (Remembering works in any rule set, but
5579 for technical reasons it is most effective in @code{EvalRules}.)  For
5580 example, if the rule rewrites @samp{fib(7)} to something that evaluates
5581 to 13, then the rule @samp{fib(7) := 13} will be added to the rule set.
5583 Type @kbd{' fib(8) @key{RET}} to compute the eighth Fibonacci number, then
5584 type @kbd{s E} again to see what has happened to the rule set.
5586 With the @code{remember} feature, our rule set can now compute
5587 @samp{fib(@var{n})} in just @var{n} steps.  In the process it builds
5588 up a table of all Fibonacci numbers up to @var{n}.  After we have
5589 computed the result for a particular @var{n}, we can get it back
5590 (and the results for all smaller @var{n}) later in just one step.
5592 All Calc operations will run somewhat slower whenever @code{EvalRules}
5593 contains any rules.  You should type @kbd{s u EvalRules @key{RET}} now to
5594 un-store the variable.
5596 (@bullet{}) @strong{Exercise 2.}  Sometimes it is possible to reformulate
5597 a problem to reduce the amount of recursion necessary to solve it.
5598 Create a rule that, in about @var{n} simple steps and without recourse
5599 to the @code{remember} option, replaces @samp{fib(@var{n}, 1, 1)} with
5600 @samp{fib(1, @var{x}, @var{y})} where @var{x} and @var{y} are the
5601 @var{n}th and @var{n+1}st Fibonacci numbers, respectively.  This rule is
5602 rather clunky to use, so add a couple more rules to make the ``user
5603 interface'' the same as for our first version: enter @samp{fib(@var{n})},
5604 get back a plain number.  @xref{Rewrites Answer 2, 2}. (@bullet{})
5606 There are many more things that rewrites can do.  For example, there
5607 are @samp{&&&} and @samp{|||} pattern operators that create ``and''
5608 and ``or'' combinations of rules.  As one really simple example, we
5609 could combine our first two Fibonacci rules thusly:
5611 @example
5612 [fib(1 ||| 2) := 1, fib(n) := ... ]
5613 @end example
5615 @noindent
5616 That means ``@code{fib} of something matching either 1 or 2 rewrites
5617 to 1.''
5619 You can also make meta-variables optional by enclosing them in @code{opt}.
5620 For example, the pattern @samp{a + b x} matches @samp{2 + 3 x} but not
5621 @samp{2 + x} or @samp{3 x} or @samp{x}.  The pattern @samp{opt(a) + opt(b) x}
5622 matches all of these forms, filling in a default of zero for @samp{a}
5623 and one for @samp{b}.
5625 (@bullet{}) @strong{Exercise 3.}  Your friend Joe had @samp{2 + 3 x}
5626 on the stack and tried to use the rule
5627 @samp{opt(a) + opt(b) x := f(a, b, x)}.  What happened?
5628 @xref{Rewrites Answer 3, 3}. (@bullet{})
5630 (@bullet{}) @strong{Exercise 4.}  Starting with a positive integer @expr{a},
5631 divide @expr{a} by two if it is even, otherwise compute @expr{3 a + 1}.
5632 Now repeat this step over and over.  A famous unproved conjecture
5633 is that for any starting @expr{a}, the sequence always eventually
5634 reaches 1.  Given the formula @samp{seq(@var{a}, 0)}, write a set of
5635 rules that convert this into @samp{seq(1, @var{n})} where @var{n}
5636 is the number of steps it took the sequence to reach the value 1.
5637 Now enhance the rules to accept @samp{seq(@var{a})} as a starting
5638 configuration, and to stop with just the number @var{n} by itself.
5639 Now make the result be a vector of values in the sequence, from @var{a}
5640 to 1.  (The formula @samp{@var{x}|@var{y}} appends the vectors @var{x}
5641 and @var{y}.)  For example, rewriting @samp{seq(6)} should yield the
5642 vector @expr{[6, 3, 10, 5, 16, 8, 4, 2, 1]}.
5643 @xref{Rewrites Answer 4, 4}. (@bullet{})
5645 (@bullet{}) @strong{Exercise 5.}  Define, using rewrite rules, a function
5646 @samp{nterms(@var{x})} that returns the number of terms in the sum
5647 @var{x}, or 1 if @var{x} is not a sum.  (A @dfn{sum} for our purposes
5648 is one or more non-sum terms separated by @samp{+} or @samp{-} signs,
5649 so that @expr{2 - 3 (x + y) + x y} is a sum of three terms.)
5650 @xref{Rewrites Answer 5, 5}. (@bullet{})
5652 (@bullet{}) @strong{Exercise 6.}  A Taylor series for a function is an
5653 infinite series that exactly equals the value of that function at
5654 values of @expr{x} near zero.
5656 @ifnottex
5657 @example
5658 cos(x) = 1 - x^2 / 2! + x^4 / 4! - x^6 / 6! + ...
5659 @end example
5660 @end ifnottex
5661 @tex
5662 \beforedisplay
5663 $$ \cos x = 1 - {x^2 \over 2!} + {x^4 \over 4!} - {x^6 \over 6!} + \cdots $$
5664 \afterdisplay
5665 @end tex
5667 The @kbd{a t} command produces a @dfn{truncated Taylor series} which
5668 is obtained by dropping all the terms higher than, say, @expr{x^2}.
5669 Calc represents the truncated Taylor series as a polynomial in @expr{x}.
5670 Mathematicians often write a truncated series using a ``big-O'' notation
5671 that records what was the lowest term that was truncated.
5673 @ifnottex
5674 @example
5675 cos(x) = 1 - x^2 / 2! + O(x^3)
5676 @end example
5677 @end ifnottex
5678 @tex
5679 \beforedisplay
5680 $$ \cos x = 1 - {x^2 \over 2!} + O(x^3) $$
5681 \afterdisplay
5682 @end tex
5684 @noindent
5685 The meaning of @expr{O(x^3)} is ``a quantity which is negligibly small
5686 if @expr{x^3} is considered negligibly small as @expr{x} goes to zero.''
5688 The exercise is to create rewrite rules that simplify sums and products of
5689 power series represented as @samp{@var{polynomial} + O(@var{var}^@var{n})}.
5690 For example, given @samp{1 - x^2 / 2 + O(x^3)} and @samp{x - x^3 / 6 + O(x^4)}
5691 on the stack, we want to be able to type @kbd{*} and get the result
5692 @samp{x - 2:3 x^3 + O(x^4)}.  Don't worry if the terms of the sum are
5693 rearranged.  (This one is rather tricky; the solution at the end of
5694 this chapter uses 6 rewrite rules.  Hint:  The @samp{constant(x)}
5695 condition tests whether @samp{x} is a number.)  @xref{Rewrites Answer
5696 6, 6}. (@bullet{}) 
5698 Just for kicks, try adding the rule @code{2+3 := 6} to @code{EvalRules}.
5699 What happens?  (Be sure to remove this rule afterward, or you might get
5700 a nasty surprise when you use Calc to balance your checkbook!)
5702 @xref{Rewrite Rules}, for the whole story on rewrite rules.
5704 @node Programming Tutorial, Answers to Exercises, Algebra Tutorial, Tutorial
5705 @section Programming Tutorial
5707 @noindent
5708 The Calculator is written entirely in Emacs Lisp, a highly extensible
5709 language.  If you know Lisp, you can program the Calculator to do
5710 anything you like.  Rewrite rules also work as a powerful programming
5711 system.  But Lisp and rewrite rules take a while to master, and often
5712 all you want to do is define a new function or repeat a command a few
5713 times.  Calc has features that allow you to do these things easily.
5715 One very limited form of programming is defining your own functions.
5716 Calc's @kbd{Z F} command allows you to define a function name and
5717 key sequence to correspond to any formula.  Programming commands use
5718 the shift-@kbd{Z} prefix; the user commands they create use the lower
5719 case @kbd{z} prefix.
5721 @smallexample
5722 @group
5723 1:  x + x^2 / 2 + x^3 / 6 + 1         1:  x + x^2 / 2 + x^3 / 6 + 1
5724     .                                     .
5726     ' 1 + x + x^2/2! + x^3/3! @key{RET}         Z F e myexp @key{RET} @key{RET} @key{RET} y
5727 @end group
5728 @end smallexample
5730 This polynomial is a Taylor series approximation to @samp{exp(x)}.
5731 The @kbd{Z F} command asks a number of questions.  The above answers
5732 say that the key sequence for our function should be @kbd{z e}; the
5733 @kbd{M-x} equivalent should be @code{calc-myexp}; the name of the
5734 function in algebraic formulas should also be @code{myexp}; the
5735 default argument list @samp{(x)} is acceptable; and finally @kbd{y}
5736 answers the question ``leave it in symbolic form for non-constant
5737 arguments?''
5739 @smallexample
5740 @group
5741 1:  1.3495     2:  1.3495     3:  1.3495
5742     .          1:  1.34986    2:  1.34986
5743                    .          1:  myexp(a + 1)
5744                                   .
5746     .3 z e         .3 E           ' a+1 @key{RET} z e
5747 @end group
5748 @end smallexample
5750 @noindent
5751 First we call our new @code{exp} approximation with 0.3 as an
5752 argument, and compare it with the true @code{exp} function.  Then
5753 we note that, as requested, if we try to give @kbd{z e} an
5754 argument that isn't a plain number, it leaves the @code{myexp}
5755 function call in symbolic form.  If we had answered @kbd{n} to the
5756 final question, @samp{myexp(a + 1)} would have evaluated by plugging
5757 in @samp{a + 1} for @samp{x} in the defining formula.
5759 @cindex Sine integral Si(x)
5760 @ignore
5761 @starindex
5762 @end ignore
5763 @tindex Si
5764 (@bullet{}) @strong{Exercise 1.}  The ``sine integral'' function
5765 @texline @math{{\rm Si}(x)}
5766 @infoline @expr{Si(x)}
5767 is defined as the integral of @samp{sin(t)/t} for
5768 @expr{t = 0} to @expr{x} in radians.  (It was invented because this
5769 integral has no solution in terms of basic functions; if you give it
5770 to Calc's @kbd{a i} command, it will ponder it for a long time and then
5771 give up.)  We can use the numerical integration command, however,
5772 which in algebraic notation is written like @samp{ninteg(f(t), t, 0, x)}
5773 with any integrand @samp{f(t)}.  Define a @kbd{z s} command and
5774 @code{Si} function that implement this.  You will need to edit the
5775 default argument list a bit.  As a test, @samp{Si(1)} should return
5776 0.946083. (If you don't get this answer, you might want to check that
5777 Calc is in Radians mode.  Also, @code{ninteg} will run a lot faster if
5778 you reduce the precision to, say, six digits beforehand.)
5779 @xref{Programming Answer 1, 1}. (@bullet{})
5781 The simplest way to do real ``programming'' of Emacs is to define a
5782 @dfn{keyboard macro}.  A keyboard macro is simply a sequence of
5783 keystrokes which Emacs has stored away and can play back on demand.
5784 For example, if you find yourself typing @kbd{H a S x @key{RET}} often,
5785 you may wish to program a keyboard macro to type this for you.
5787 @smallexample
5788 @group
5789 1:  y = sqrt(x)          1:  x = y^2
5790     .                        .
5792     ' y=sqrt(x) @key{RET}       C-x ( H a S x @key{RET} C-x )
5794 1:  y = cos(x)           1:  x = s1 arccos(y) + 2 n1 pi
5795     .                        .
5797     ' y=cos(x) @key{RET}           X
5798 @end group
5799 @end smallexample
5801 @noindent
5802 When you type @kbd{C-x (}, Emacs begins recording.  But it is also
5803 still ready to execute your keystrokes, so you're really ``training''
5804 Emacs by walking it through the procedure once.  When you type
5805 @w{@kbd{C-x )}}, the macro is recorded.  You can now type @kbd{X} to
5806 re-execute the same keystrokes.
5808 You can give a name to your macro by typing @kbd{Z K}.
5810 @smallexample
5811 @group
5812 1:  .              1:  y = x^4         1:  x = s2 sqrt(s1 sqrt(y))
5813                        .                   .
5815   Z K x @key{RET}            ' y=x^4 @key{RET}         z x
5816 @end group
5817 @end smallexample
5819 @noindent
5820 Notice that we use shift-@kbd{Z} to define the command, and lower-case
5821 @kbd{z} to call it up.
5823 Keyboard macros can call other macros.
5825 @smallexample
5826 @group
5827 1:  abs(x)        1:  x = s1 y                1:  2 / x    1:  x = 2 / y
5828     .                 .                           .            .
5830  ' abs(x) @key{RET}   C-x ( ' y @key{RET} a = z x C-x )    ' 2/x @key{RET}       X
5831 @end group
5832 @end smallexample
5834 (@bullet{}) @strong{Exercise 2.}  Define a keyboard macro to negate
5835 the item in level 3 of the stack, without disturbing the rest of
5836 the stack.  @xref{Programming Answer 2, 2}. (@bullet{})
5838 (@bullet{}) @strong{Exercise 3.}  Define keyboard macros to compute
5839 the following functions:
5841 @enumerate
5842 @item
5843 Compute
5844 @texline @math{\displaystyle{\sin x \over x}},
5845 @infoline @expr{sin(x) / x},
5846 where @expr{x} is the number on the top of the stack.
5848 @item
5849 Compute the base-@expr{b} logarithm, just like the @kbd{B} key except
5850 the arguments are taken in the opposite order.
5852 @item
5853 Produce a vector of integers from 1 to the integer on the top of
5854 the stack.
5855 @end enumerate
5856 @noindent
5857 @xref{Programming Answer 3, 3}. (@bullet{})
5859 (@bullet{}) @strong{Exercise 4.}  Define a keyboard macro to compute
5860 the average (mean) value of a list of numbers.
5861 @xref{Programming Answer 4, 4}. (@bullet{})
5863 In many programs, some of the steps must execute several times.
5864 Calc has @dfn{looping} commands that allow this.  Loops are useful
5865 inside keyboard macros, but actually work at any time.
5867 @smallexample
5868 @group
5869 1:  x^6          2:  x^6        1: 360 x^2
5870     .            1:  4             .
5871                      .
5873   ' x^6 @key{RET}          4         Z < a d x @key{RET} Z >
5874 @end group
5875 @end smallexample
5877 @noindent
5878 Here we have computed the fourth derivative of @expr{x^6} by
5879 enclosing a derivative command in a ``repeat loop'' structure.
5880 This structure pops a repeat count from the stack, then
5881 executes the body of the loop that many times.
5883 If you make a mistake while entering the body of the loop,
5884 type @w{@kbd{Z C-g}} to cancel the loop command.
5886 @cindex Fibonacci numbers
5887 Here's another example:
5889 @smallexample
5890 @group
5891 3:  1               2:  10946
5892 2:  1               1:  17711
5893 1:  20                  .
5894     .
5896 1 @key{RET} @key{RET} 20       Z < @key{TAB} C-j + Z >
5897 @end group
5898 @end smallexample
5900 @noindent
5901 The numbers in levels 2 and 1 should be the 21st and 22nd Fibonacci
5902 numbers, respectively.  (To see what's going on, try a few repetitions
5903 of the loop body by hand; @kbd{C-j}, also on the Line-Feed or @key{LFD}
5904 key if you have one, makes a copy of the number in level 2.)
5906 @cindex Golden ratio
5907 @cindex Phi, golden ratio
5908 A fascinating property of the Fibonacci numbers is that the @expr{n}th
5909 Fibonacci number can be found directly by computing
5910 @texline @math{\phi^n / \sqrt{5}}
5911 @infoline @expr{phi^n / sqrt(5)}
5912 and then rounding to the nearest integer, where
5913 @texline @math{\phi} (``phi''),
5914 @infoline @expr{phi},
5915 the ``golden ratio,'' is
5916 @texline @math{(1 + \sqrt{5}) / 2}.
5917 @infoline @expr{(1 + sqrt(5)) / 2}.
5918 (For convenience, this constant is available from the @code{phi}
5919 variable, or the @kbd{I H P} command.)
5921 @smallexample
5922 @group
5923 1:  1.61803         1:  24476.0000409    1:  10945.9999817    1:  10946
5924     .                   .                    .                    .
5926     I H P               21 ^                 5 Q /                R
5927 @end group
5928 @end smallexample
5930 @cindex Continued fractions
5931 (@bullet{}) @strong{Exercise 5.}  The @dfn{continued fraction}
5932 representation of
5933 @texline @math{\phi}
5934 @infoline @expr{phi}
5936 @texline @math{1 + 1/(1 + 1/(1 + 1/( \ldots )))}.
5937 @infoline @expr{1 + 1/(1 + 1/(1 + 1/( ...@: )))}.
5938 We can compute an approximate value by carrying this however far
5939 and then replacing the innermost
5940 @texline @math{1/( \ldots )}
5941 @infoline @expr{1/( ...@: )}
5942 by 1.  Approximate
5943 @texline @math{\phi}
5944 @infoline @expr{phi}
5945 using a twenty-term continued fraction.
5946 @xref{Programming Answer 5, 5}. (@bullet{})
5948 (@bullet{}) @strong{Exercise 6.}  Linear recurrences like the one for
5949 Fibonacci numbers can be expressed in terms of matrices.  Given a
5950 vector @w{@expr{[a, b]}} determine a matrix which, when multiplied by this
5951 vector, produces the vector @expr{[b, c]}, where @expr{a}, @expr{b} and
5952 @expr{c} are three successive Fibonacci numbers.  Now write a program
5953 that, given an integer @expr{n}, computes the @expr{n}th Fibonacci number
5954 using matrix arithmetic.  @xref{Programming Answer 6, 6}. (@bullet{})
5956 @cindex Harmonic numbers
5957 A more sophisticated kind of loop is the @dfn{for} loop.  Suppose
5958 we wish to compute the 20th ``harmonic'' number, which is equal to
5959 the sum of the reciprocals of the integers from 1 to 20.
5961 @smallexample
5962 @group
5963 3:  0               1:  3.597739
5964 2:  1                   .
5965 1:  20
5966     .
5968 0 @key{RET} 1 @key{RET} 20         Z ( & + 1 Z )
5969 @end group
5970 @end smallexample
5972 @noindent
5973 The ``for'' loop pops two numbers, the lower and upper limits, then
5974 repeats the body of the loop as an internal counter increases from
5975 the lower limit to the upper one.  Just before executing the loop
5976 body, it pushes the current loop counter.  When the loop body
5977 finishes, it pops the ``step,'' i.e., the amount by which to
5978 increment the loop counter.  As you can see, our loop always
5979 uses a step of one.
5981 This harmonic number function uses the stack to hold the running
5982 total as well as for the various loop housekeeping functions.  If
5983 you find this disorienting, you can sum in a variable instead:
5985 @smallexample
5986 @group
5987 1:  0         2:  1                  .            1:  3.597739
5988     .         1:  20                                  .
5989                   .
5991     0 t 7       1 @key{RET} 20      Z ( & s + 7 1 Z )       r 7
5992 @end group
5993 @end smallexample
5995 @noindent
5996 The @kbd{s +} command adds the top-of-stack into the value in a
5997 variable (and removes that value from the stack).
5999 It's worth noting that many jobs that call for a ``for'' loop can
6000 also be done more easily by Calc's high-level operations.  Two
6001 other ways to compute harmonic numbers are to use vector mapping
6002 and reduction (@kbd{v x 20}, then @w{@kbd{V M &}}, then @kbd{V R +}),
6003 or to use the summation command @kbd{a +}.  Both of these are
6004 probably easier than using loops.  However, there are some
6005 situations where loops really are the way to go:
6007 (@bullet{}) @strong{Exercise 7.}  Use a ``for'' loop to find the first
6008 harmonic number which is greater than 4.0.
6009 @xref{Programming Answer 7, 7}. (@bullet{})
6011 Of course, if we're going to be using variables in our programs,
6012 we have to worry about the programs clobbering values that the
6013 caller was keeping in those same variables.  This is easy to
6014 fix, though:
6016 @smallexample
6017 @group
6018     .        1:  0.6667       1:  0.6667     3:  0.6667
6019                  .                .          2:  3.597739
6020                                              1:  0.6667
6021                                                  .
6023    Z `    p 4 @key{RET} 2 @key{RET} 3 /   s 7 s s a @key{RET}    Z '  r 7 s r a @key{RET}
6024 @end group
6025 @end smallexample
6027 @noindent
6028 When we type @kbd{Z `} (that's a back-quote character), Calc saves
6029 its mode settings and the contents of the ten ``quick variables''
6030 for later reference.  When we type @kbd{Z '} (that's an apostrophe
6031 now), Calc restores those saved values.  Thus the @kbd{p 4} and
6032 @kbd{s 7} commands have no effect outside this sequence.  Wrapping
6033 this around the body of a keyboard macro ensures that it doesn't
6034 interfere with what the user of the macro was doing.  Notice that
6035 the contents of the stack, and the values of named variables,
6036 survive past the @kbd{Z '} command.
6038 @cindex Bernoulli numbers, approximate
6039 The @dfn{Bernoulli numbers} are a sequence with the interesting
6040 property that all of the odd Bernoulli numbers are zero, and the
6041 even ones, while difficult to compute, can be roughly approximated
6042 by the formula
6043 @texline @math{\displaystyle{2 n! \over (2 \pi)^n}}.
6044 @infoline @expr{2 n!@: / (2 pi)^n}.
6045 Let's write a keyboard macro to compute (approximate) Bernoulli numbers.
6046 (Calc has a command, @kbd{k b}, to compute exact Bernoulli numbers, but
6047 this command is very slow for large @expr{n} since the higher Bernoulli
6048 numbers are very large fractions.)
6050 @smallexample
6051 @group
6052 1:  10               1:  0.0756823
6053     .                    .
6055     10     C-x ( @key{RET} 2 % Z [ @key{DEL} 0 Z : ' 2 $! / (2 pi)^$ @key{RET} = Z ] C-x )
6056 @end group
6057 @end smallexample
6059 @noindent
6060 You can read @kbd{Z [} as ``then,'' @kbd{Z :} as ``else,'' and
6061 @kbd{Z ]} as ``end-if.''  There is no need for an explicit ``if''
6062 command.  For the purposes of @w{@kbd{Z [}}, the condition is ``true''
6063 if the value it pops from the stack is a nonzero number, or ``false''
6064 if it pops zero or something that is not a number (like a formula).
6065 Here we take our integer argument modulo 2; this will be nonzero
6066 if we're asking for an odd Bernoulli number.
6068 The actual tenth Bernoulli number is @expr{5/66}.
6070 @smallexample
6071 @group
6072 3:  0.0756823    1:  0          1:  0.25305    1:  0          1:  1.16659
6073 2:  5:66             .              .              .              .
6074 1:  0.0757575
6075     .
6077 10 k b @key{RET} c f   M-0 @key{DEL} 11 X   @key{DEL} 12 X       @key{DEL} 13 X       @key{DEL} 14 X
6078 @end group
6079 @end smallexample
6081 Just to exercise loops a bit more, let's compute a table of even
6082 Bernoulli numbers.
6084 @smallexample
6085 @group
6086 3:  []             1:  [0.10132, 0.03079, 0.02340, 0.033197, ...]
6087 2:  2                  .
6088 1:  30
6089     .
6091  [ ] 2 @key{RET} 30          Z ( X | 2 Z )
6092 @end group
6093 @end smallexample
6095 @noindent
6096 The vertical-bar @kbd{|} is the vector-concatenation command.  When
6097 we execute it, the list we are building will be in stack level 2
6098 (initially this is an empty list), and the next Bernoulli number
6099 will be in level 1.  The effect is to append the Bernoulli number
6100 onto the end of the list.  (To create a table of exact fractional
6101 Bernoulli numbers, just replace @kbd{X} with @kbd{k b} in the above
6102 sequence of keystrokes.)
6104 With loops and conditionals, you can program essentially anything
6105 in Calc.  One other command that makes looping easier is @kbd{Z /},
6106 which takes a condition from the stack and breaks out of the enclosing
6107 loop if the condition is true (non-zero).  You can use this to make
6108 ``while'' and ``until'' style loops.
6110 If you make a mistake when entering a keyboard macro, you can edit
6111 it using @kbd{Z E}.  First, you must attach it to a key with @kbd{Z K}.
6112 One technique is to enter a throwaway dummy definition for the macro,
6113 then enter the real one in the edit command.
6115 @smallexample
6116 @group
6117 1:  3                   1:  3           Calc Macro Edit Mode.
6118     .                       .           Original keys: 1 <return> 2 +
6120                                         1                          ;; calc digits
6121                                         RET                        ;; calc-enter
6122                                         2                          ;; calc digits
6123                                         +                          ;; calc-plus
6125 C-x ( 1 @key{RET} 2 + C-x )    Z K h @key{RET}      Z E h
6126 @end group
6127 @end smallexample
6129 @noindent
6130 A keyboard macro is stored as a pure keystroke sequence.  The
6131 @file{edmacro} package (invoked by @kbd{Z E}) scans along the
6132 macro and tries to decode it back into human-readable steps.
6133 Descriptions of the keystrokes are given as comments, which begin with
6134 @samp{;;}, and which are ignored when the edited macro is saved.
6135 Spaces and line breaks are also ignored when the edited macro is saved.
6136 To enter a space into the macro, type @code{SPC}.  All the special
6137 characters @code{RET}, @code{LFD}, @code{TAB}, @code{SPC}, @code{DEL},
6138 and @code{NUL} must be written in all uppercase, as must the prefixes
6139 @code{C-} and @code{M-}.
6141 Let's edit in a new definition, for computing harmonic numbers.
6142 First, erase the four lines of the old definition.  Then, type
6143 in the new definition (or use Emacs @kbd{M-w} and @kbd{C-y} commands
6144 to copy it from this page of the Info file; you can of course skip
6145 typing the comments, which begin with @samp{;;}).
6147 @smallexample
6148 Z`                      ;; calc-kbd-push     (Save local values)
6149 0                       ;; calc digits       (Push a zero onto the stack)
6150 st                      ;; calc-store-into   (Store it in the following variable)
6151 1                       ;; calc quick variable  (Quick variable q1)
6152 1                       ;; calc digits       (Initial value for the loop)
6153 TAB                     ;; calc-roll-down    (Swap initial and final)
6154 Z(                      ;; calc-kbd-for      (Begin the "for" loop)
6155 &                       ;; calc-inv          (Take the reciprocal)
6156 s+                      ;; calc-store-plus   (Add to the following variable)
6157 1                       ;; calc quick variable  (Quick variable q1)
6158 1                       ;; calc digits       (The loop step is 1)
6159 Z)                      ;; calc-kbd-end-for  (End the "for" loop)
6160 sr                      ;; calc-recall       (Recall the final accumulated value)
6161 1                       ;; calc quick variable (Quick variable q1)
6162 Z'                      ;; calc-kbd-pop      (Restore values)
6163 @end smallexample
6165 @noindent
6166 Press @kbd{C-c C-c} to finish editing and return to the Calculator.
6168 @smallexample
6169 @group
6170 1:  20         1:  3.597739
6171     .              .
6173     20             z h
6174 @end group
6175 @end smallexample
6177 The @file{edmacro} package defines a handy @code{read-kbd-macro} command
6178 which reads the current region of the current buffer as a sequence of
6179 keystroke names, and defines that sequence on the @kbd{X}
6180 (and @kbd{C-x e}) key.  Because this is so useful, Calc puts this
6181 command on the @kbd{C-x * m} key.  Try reading in this macro in the
6182 following form:  Press @kbd{C-@@} (or @kbd{C-@key{SPC}}) at
6183 one end of the text below, then type @kbd{C-x * m} at the other.
6185 @example
6186 @group
6187 Z ` 0 t 1
6188     1 TAB
6189     Z (  & s + 1  1 Z )
6190     r 1
6191 Z '
6192 @end group
6193 @end example
6195 (@bullet{}) @strong{Exercise 8.}  A general algorithm for solving
6196 equations numerically is @dfn{Newton's Method}.  Given the equation
6197 @expr{f(x) = 0} for any function @expr{f}, and an initial guess
6198 @expr{x_0} which is reasonably close to the desired solution, apply
6199 this formula over and over:
6201 @ifnottex
6202 @example
6203 new_x = x - f(x)/f'(x)
6204 @end example
6205 @end ifnottex
6206 @tex
6207 \beforedisplay
6208 $$ x_{\rm new} = x - {f(x) \over f^{\prime}(x)} $$
6209 \afterdisplay
6210 @end tex
6212 @noindent
6213 where @expr{f'(x)} is the derivative of @expr{f}.  The @expr{x}
6214 values will quickly converge to a solution, i.e., eventually
6215 @texline @math{x_{\rm new}}
6216 @infoline @expr{new_x}
6217 and @expr{x} will be equal to within the limits
6218 of the current precision.  Write a program which takes a formula
6219 involving the variable @expr{x}, and an initial guess @expr{x_0},
6220 on the stack, and produces a value of @expr{x} for which the formula
6221 is zero.  Use it to find a solution of
6222 @texline @math{\sin(\cos x) = 0.5}
6223 @infoline @expr{sin(cos(x)) = 0.5}
6224 near @expr{x = 4.5}.  (Use angles measured in radians.)  Note that
6225 the built-in @w{@kbd{a R}} (@code{calc-find-root}) command uses Newton's
6226 method when it is able.  @xref{Programming Answer 8, 8}. (@bullet{})
6228 @cindex Digamma function
6229 @cindex Gamma constant, Euler's
6230 @cindex Euler's gamma constant
6231 (@bullet{}) @strong{Exercise 9.}  The @dfn{digamma} function
6232 @texline @math{\psi(z) (``psi'')}
6233 @infoline @expr{psi(z)}
6234 is defined as the derivative of
6235 @texline @math{\ln \Gamma(z)}.
6236 @infoline @expr{ln(gamma(z))}.
6237 For large values of @expr{z}, it can be approximated by the infinite sum
6239 @ifnottex
6240 @example
6241 psi(z) ~= ln(z) - 1/2z - sum(bern(2 n) / 2 n z^(2 n), n, 1, inf)
6242 @end example
6243 @end ifnottex
6244 @tex
6245 \beforedisplay
6246 $$ \psi(z) \approx \ln z - {1\over2z} -
6247    \sum_{n=1}^\infty {\code{bern}(2 n) \over 2 n z^{2n}}
6249 \afterdisplay
6250 @end tex
6252 @noindent
6253 where
6254 @texline @math{\sum}
6255 @infoline @expr{sum}
6256 represents the sum over @expr{n} from 1 to infinity
6257 (or to some limit high enough to give the desired accuracy), and
6258 the @code{bern} function produces (exact) Bernoulli numbers.
6259 While this sum is not guaranteed to converge, in practice it is safe.
6260 An interesting mathematical constant is Euler's gamma, which is equal
6261 to about 0.5772.  One way to compute it is by the formula,
6262 @texline @math{\gamma = -\psi(1)}.
6263 @infoline @expr{gamma = -psi(1)}.
6264 Unfortunately, 1 isn't a large enough argument
6265 for the above formula to work (5 is a much safer value for @expr{z}).
6266 Fortunately, we can compute
6267 @texline @math{\psi(1)}
6268 @infoline @expr{psi(1)}
6269 from
6270 @texline @math{\psi(5)}
6271 @infoline @expr{psi(5)}
6272 using the recurrence
6273 @texline @math{\psi(z+1) = \psi(z) + {1 \over z}}.
6274 @infoline @expr{psi(z+1) = psi(z) + 1/z}.
6275 Your task:  Develop a program to compute
6276 @texline @math{\psi(z)};
6277 @infoline @expr{psi(z)};
6278 it should ``pump up'' @expr{z}
6279 if necessary to be greater than 5, then use the above summation
6280 formula.  Use looping commands to compute the sum.  Use your function
6281 to compute
6282 @texline @math{\gamma}
6283 @infoline @expr{gamma}
6284 to twelve decimal places.  (Calc has a built-in command
6285 for Euler's constant, @kbd{I P}, which you can use to check your answer.)
6286 @xref{Programming Answer 9, 9}. (@bullet{})
6288 @cindex Polynomial, list of coefficients
6289 (@bullet{}) @strong{Exercise 10.}  Given a polynomial in @expr{x} and
6290 a number @expr{m} on the stack, where the polynomial is of degree
6291 @expr{m} or less (i.e., does not have any terms higher than @expr{x^m}),
6292 write a program to convert the polynomial into a list-of-coefficients
6293 notation.  For example, @expr{5 x^4 + (x + 1)^2} with @expr{m = 6}
6294 should produce the list @expr{[1, 2, 1, 0, 5, 0, 0]}.  Also develop
6295 a way to convert from this form back to the standard algebraic form.
6296 @xref{Programming Answer 10, 10}. (@bullet{})
6298 @cindex Recursion
6299 (@bullet{}) @strong{Exercise 11.}  The @dfn{Stirling numbers of the
6300 first kind} are defined by the recurrences,
6302 @ifnottex
6303 @example
6304 s(n,n) = 1   for n >= 0,
6305 s(n,0) = 0   for n > 0,
6306 s(n+1,m) = s(n,m-1) - n s(n,m)   for n >= m >= 1.
6307 @end example
6308 @end ifnottex
6309 @tex
6310 \beforedisplay
6311 $$ \eqalign{ s(n,n)   &= 1 \qquad \hbox{for } n \ge 0,  \cr
6312              s(n,0)   &= 0 \qquad \hbox{for } n > 0, \cr
6313              s(n+1,m) &= s(n,m-1) - n \, s(n,m) \qquad
6314                           \hbox{for } n \ge m \ge 1.}
6316 \afterdisplay
6317 \vskip5pt
6318 (These numbers are also sometimes written $\displaystyle{n \brack m}$.)
6319 @end tex
6321 This can be implemented using a @dfn{recursive} program in Calc; the
6322 program must invoke itself in order to calculate the two righthand
6323 terms in the general formula.  Since it always invokes itself with
6324 ``simpler'' arguments, it's easy to see that it must eventually finish
6325 the computation.  Recursion is a little difficult with Emacs keyboard
6326 macros since the macro is executed before its definition is complete.
6327 So here's the recommended strategy:  Create a ``dummy macro'' and assign
6328 it to a key with, e.g., @kbd{Z K s}.  Now enter the true definition,
6329 using the @kbd{z s} command to call itself recursively, then assign it
6330 to the same key with @kbd{Z K s}.  Now the @kbd{z s} command will run
6331 the complete recursive program.  (Another way is to use @w{@kbd{Z E}}
6332 or @kbd{C-x * m} (@code{read-kbd-macro}) to read the whole macro at once,
6333 thus avoiding the ``training'' phase.)  The task:  Write a program
6334 that computes Stirling numbers of the first kind, given @expr{n} and
6335 @expr{m} on the stack.  Test it with @emph{small} inputs like
6336 @expr{s(4,2)}.  (There is a built-in command for Stirling numbers,
6337 @kbd{k s}, which you can use to check your answers.)
6338 @xref{Programming Answer 11, 11}. (@bullet{})
6340 The programming commands we've seen in this part of the tutorial
6341 are low-level, general-purpose operations.  Often you will find
6342 that a higher-level function, such as vector mapping or rewrite
6343 rules, will do the job much more easily than a detailed, step-by-step
6344 program can:
6346 (@bullet{}) @strong{Exercise 12.}  Write another program for
6347 computing Stirling numbers of the first kind, this time using
6348 rewrite rules.  Once again, @expr{n} and @expr{m} should be taken
6349 from the stack.  @xref{Programming Answer 12, 12}. (@bullet{})
6351 @example
6353 @end example
6354 This ends the tutorial section of the Calc manual.  Now you know enough
6355 about Calc to use it effectively for many kinds of calculations.  But
6356 Calc has many features that were not even touched upon in this tutorial.
6357 @c [not-split]
6358 The rest of this manual tells the whole story.
6359 @c [when-split]
6360 @c Volume II of this manual, the @dfn{Calc Reference}, tells the whole story.
6362 @page
6363 @node Answers to Exercises,  , Programming Tutorial, Tutorial
6364 @section Answers to Exercises
6366 @noindent
6367 This section includes answers to all the exercises in the Calc tutorial.
6369 @menu
6370 * RPN Answer 1::           1 @key{RET} 2 @key{RET} 3 @key{RET} 4 + * -
6371 * RPN Answer 2::           2*4 + 7*9.5 + 5/4
6372 * RPN Answer 3::           Operating on levels 2 and 3
6373 * RPN Answer 4::           Joe's complex problems
6374 * Algebraic Answer 1::     Simulating Q command
6375 * Algebraic Answer 2::     Joe's algebraic woes
6376 * Algebraic Answer 3::     1 / 0
6377 * Modes Answer 1::         3#0.1 = 3#0.0222222?
6378 * Modes Answer 2::         16#f.e8fe15
6379 * Modes Answer 3::         Joe's rounding bug
6380 * Modes Answer 4::         Why floating point?
6381 * Arithmetic Answer 1::    Why the \ command?
6382 * Arithmetic Answer 2::    Tripping up the B command
6383 * Vector Answer 1::        Normalizing a vector
6384 * Vector Answer 2::        Average position
6385 * Matrix Answer 1::        Row and column sums
6386 * Matrix Answer 2::        Symbolic system of equations
6387 * Matrix Answer 3::        Over-determined system
6388 * List Answer 1::          Powers of two
6389 * List Answer 2::          Least-squares fit with matrices
6390 * List Answer 3::          Geometric mean
6391 * List Answer 4::          Divisor function
6392 * List Answer 5::          Duplicate factors
6393 * List Answer 6::          Triangular list
6394 * List Answer 7::          Another triangular list
6395 * List Answer 8::          Maximum of Bessel function
6396 * List Answer 9::          Integers the hard way
6397 * List Answer 10::         All elements equal
6398 * List Answer 11::         Estimating pi with darts
6399 * List Answer 12::         Estimating pi with matchsticks
6400 * List Answer 13::         Hash codes
6401 * List Answer 14::         Random walk
6402 * Types Answer 1::         Square root of pi times rational
6403 * Types Answer 2::         Infinities
6404 * Types Answer 3::         What can "nan" be?
6405 * Types Answer 4::         Abbey Road
6406 * Types Answer 5::         Friday the 13th
6407 * Types Answer 6::         Leap years
6408 * Types Answer 7::         Erroneous donut
6409 * Types Answer 8::         Dividing intervals
6410 * Types Answer 9::         Squaring intervals
6411 * Types Answer 10::        Fermat's primality test
6412 * Types Answer 11::        pi * 10^7 seconds
6413 * Types Answer 12::        Abbey Road on CD
6414 * Types Answer 13::        Not quite pi * 10^7 seconds
6415 * Types Answer 14::        Supercomputers and c
6416 * Types Answer 15::        Sam the Slug
6417 * Algebra Answer 1::       Squares and square roots
6418 * Algebra Answer 2::       Building polynomial from roots
6419 * Algebra Answer 3::       Integral of x sin(pi x)
6420 * Algebra Answer 4::       Simpson's rule
6421 * Rewrites Answer 1::      Multiplying by conjugate
6422 * Rewrites Answer 2::      Alternative fib rule
6423 * Rewrites Answer 3::      Rewriting opt(a) + opt(b) x
6424 * Rewrites Answer 4::      Sequence of integers
6425 * Rewrites Answer 5::      Number of terms in sum
6426 * Rewrites Answer 6::      Truncated Taylor series
6427 * Programming Answer 1::   Fresnel's C(x)
6428 * Programming Answer 2::   Negate third stack element
6429 * Programming Answer 3::   Compute sin(x) / x, etc.
6430 * Programming Answer 4::   Average value of a list
6431 * Programming Answer 5::   Continued fraction phi
6432 * Programming Answer 6::   Matrix Fibonacci numbers
6433 * Programming Answer 7::   Harmonic number greater than 4
6434 * Programming Answer 8::   Newton's method
6435 * Programming Answer 9::   Digamma function
6436 * Programming Answer 10::  Unpacking a polynomial
6437 * Programming Answer 11::  Recursive Stirling numbers
6438 * Programming Answer 12::  Stirling numbers with rewrites
6439 @end menu
6441 @c The following kludgery prevents the individual answers from
6442 @c being entered on the table of contents.
6443 @tex
6444 \global\let\oldwrite=\write
6445 \gdef\skipwrite#1#2{\let\write=\oldwrite}
6446 \global\let\oldchapternofonts=\chapternofonts
6447 \gdef\chapternofonts{\let\write=\skipwrite\oldchapternofonts}
6448 @end tex
6450 @node RPN Answer 1, RPN Answer 2, Answers to Exercises, Answers to Exercises
6451 @subsection RPN Tutorial Exercise 1
6453 @noindent
6454 @kbd{1 @key{RET} 2 @key{RET} 3 @key{RET} 4 + * -}
6456 The result is
6457 @texline @math{1 - (2 \times (3 + 4)) = -13}.
6458 @infoline @expr{1 - (2 * (3 + 4)) = -13}.
6460 @node RPN Answer 2, RPN Answer 3, RPN Answer 1, Answers to Exercises
6461 @subsection RPN Tutorial Exercise 2
6463 @noindent
6464 @texline @math{2\times4 + 7\times9.5 + {5\over4} = 75.75}
6465 @infoline @expr{2*4 + 7*9.5 + 5/4 = 75.75}
6467 After computing the intermediate term
6468 @texline @math{2\times4 = 8},
6469 @infoline @expr{2*4 = 8},
6470 you can leave that result on the stack while you compute the second
6471 term.  With both of these results waiting on the stack you can then
6472 compute the final term, then press @kbd{+ +} to add everything up.
6474 @smallexample
6475 @group
6476 2:  2          1:  8          3:  8          2:  8
6477 1:  4              .          2:  7          1:  66.5
6478     .                         1:  9.5            .
6479                                   .
6481   2 @key{RET} 4          *          7 @key{RET} 9.5          *
6483 @end group
6484 @end smallexample
6485 @noindent
6486 @smallexample
6487 @group
6488 4:  8          3:  8          2:  8          1:  75.75
6489 3:  66.5       2:  66.5       1:  67.75          .
6490 2:  5          1:  1.25           .
6491 1:  4              .
6492     .
6494   5 @key{RET} 4          /              +              +
6495 @end group
6496 @end smallexample
6498 Alternatively, you could add the first two terms before going on
6499 with the third term.
6501 @smallexample
6502 @group
6503 2:  8          1:  74.5       3:  74.5       2:  74.5       1:  75.75
6504 1:  66.5           .          2:  5          1:  1.25           .
6505     .                         1:  4              .
6506                                   .
6508    ...             +            5 @key{RET} 4          /              +
6509 @end group
6510 @end smallexample
6512 On an old-style RPN calculator this second method would have the
6513 advantage of using only three stack levels.  But since Calc's stack
6514 can grow arbitrarily large this isn't really an issue.  Which method
6515 you choose is purely a matter of taste.
6517 @node RPN Answer 3, RPN Answer 4, RPN Answer 2, Answers to Exercises
6518 @subsection RPN Tutorial Exercise 3
6520 @noindent
6521 The @key{TAB} key provides a way to operate on the number in level 2.
6523 @smallexample
6524 @group
6525 3:  10         3:  10         4:  10         3:  10         3:  10
6526 2:  20         2:  30         3:  30         2:  30         2:  21
6527 1:  30         1:  20         2:  20         1:  21         1:  30
6528     .              .          1:  1              .              .
6529                                   .
6531                   @key{TAB}             1              +             @key{TAB}
6532 @end group
6533 @end smallexample
6535 Similarly, @kbd{M-@key{TAB}} gives you access to the number in level 3.
6537 @smallexample
6538 @group
6539 3:  10         3:  21         3:  21         3:  30         3:  11
6540 2:  21         2:  30         2:  30         2:  11         2:  21
6541 1:  30         1:  10         1:  11         1:  21         1:  30
6542     .              .              .              .              .
6544                   M-@key{TAB}           1 +           M-@key{TAB}          M-@key{TAB}
6545 @end group
6546 @end smallexample
6548 @node RPN Answer 4, Algebraic Answer 1, RPN Answer 3, Answers to Exercises
6549 @subsection RPN Tutorial Exercise 4
6551 @noindent
6552 Either @kbd{( 2 , 3 )} or @kbd{( 2 @key{SPC} 3 )} would have worked,
6553 but using both the comma and the space at once yields:
6555 @smallexample
6556 @group
6557 1:  ( ...      2:  ( ...      1:  (2, ...    2:  (2, ...    2:  (2, ...
6558     .          1:  2              .          1:  (2, ...    1:  (2, 3)
6559                    .                             .              .
6561     (              2              ,             @key{SPC}            3 )
6562 @end group
6563 @end smallexample
6565 Joe probably tried to type @kbd{@key{TAB} @key{DEL}} to swap the
6566 extra incomplete object to the top of the stack and delete it.
6567 But a feature of Calc is that @key{DEL} on an incomplete object
6568 deletes just one component out of that object, so he had to press
6569 @key{DEL} twice to finish the job.
6571 @smallexample
6572 @group
6573 2:  (2, ...    2:  (2, 3)     2:  (2, 3)     1:  (2, 3)
6574 1:  (2, 3)     1:  (2, ...    1:  ( ...          .
6575     .              .              .
6577                   @key{TAB}            @key{DEL}            @key{DEL}
6578 @end group
6579 @end smallexample
6581 (As it turns out, deleting the second-to-top stack entry happens often
6582 enough that Calc provides a special key, @kbd{M-@key{DEL}}, to do just that.
6583 @kbd{M-@key{DEL}} is just like @kbd{@key{TAB} @key{DEL}}, except that it doesn't exhibit
6584 the ``feature'' that tripped poor Joe.)
6586 @node Algebraic Answer 1, Algebraic Answer 2, RPN Answer 4, Answers to Exercises
6587 @subsection Algebraic Entry Tutorial Exercise 1
6589 @noindent
6590 Type @kbd{' sqrt($) @key{RET}}.
6592 If the @kbd{Q} key is broken, you could use @kbd{' $^0.5 @key{RET}}.
6593 Or, RPN style, @kbd{0.5 ^}.
6595 (Actually, @samp{$^1:2}, using the fraction one-half as the power, is
6596 a closer equivalent, since @samp{9^0.5} yields @expr{3.0} whereas
6597 @samp{sqrt(9)} and @samp{9^1:2} yield the exact integer @expr{3}.)
6599 @node Algebraic Answer 2, Algebraic Answer 3, Algebraic Answer 1, Answers to Exercises
6600 @subsection Algebraic Entry Tutorial Exercise 2
6602 @noindent
6603 In the formula @samp{2 x (1+y)}, @samp{x} was interpreted as a function
6604 name with @samp{1+y} as its argument.  Assigning a value to a variable
6605 has no relation to a function by the same name.  Joe needed to use an
6606 explicit @samp{*} symbol here:  @samp{2 x*(1+y)}.
6608 @node Algebraic Answer 3, Modes Answer 1, Algebraic Answer 2, Answers to Exercises
6609 @subsection Algebraic Entry Tutorial Exercise 3
6611 @noindent
6612 The result from @kbd{1 @key{RET} 0 /} will be the formula @expr{1 / 0}.
6613 The ``function'' @samp{/} cannot be evaluated when its second argument
6614 is zero, so it is left in symbolic form.  When you now type @kbd{0 *},
6615 the result will be zero because Calc uses the general rule that ``zero
6616 times anything is zero.''
6618 @c [fix-ref Infinities]
6619 The @kbd{m i} command enables an @dfn{Infinite mode} in which @expr{1 / 0}
6620 results in a special symbol that represents ``infinity.''  If you
6621 multiply infinity by zero, Calc uses another special new symbol to
6622 show that the answer is ``indeterminate.''  @xref{Infinities}, for
6623 further discussion of infinite and indeterminate values.
6625 @node Modes Answer 1, Modes Answer 2, Algebraic Answer 3, Answers to Exercises
6626 @subsection Modes Tutorial Exercise 1
6628 @noindent
6629 Calc always stores its numbers in decimal, so even though one-third has
6630 an exact base-3 representation (@samp{3#0.1}), it is still stored as
6631 0.3333333 (chopped off after 12 or however many decimal digits) inside
6632 the calculator's memory.  When this inexact number is converted back
6633 to base 3 for display, it may still be slightly inexact.  When we
6634 multiply this number by 3, we get 0.999999, also an inexact value.
6636 When Calc displays a number in base 3, it has to decide how many digits
6637 to show.  If the current precision is 12 (decimal) digits, that corresponds
6638 to @samp{12 / log10(3) = 25.15} base-3 digits.  Because 25.15 is not an
6639 exact integer, Calc shows only 25 digits, with the result that stored
6640 numbers carry a little bit of extra information that may not show up on
6641 the screen.  When Joe entered @samp{3#0.2}, the stored number 0.666666
6642 happened to round to a pleasing value when it lost that last 0.15 of a
6643 digit, but it was still inexact in Calc's memory.  When he divided by 2,
6644 he still got the dreaded inexact value 0.333333.  (Actually, he divided
6645 0.666667 by 2 to get 0.333334, which is why he got something a little
6646 higher than @code{3#0.1} instead of a little lower.)
6648 If Joe didn't want to be bothered with all this, he could have typed
6649 @kbd{M-24 d n} to display with one less digit than the default.  (If
6650 you give @kbd{d n} a negative argument, it uses default-minus-that,
6651 so @kbd{M-- d n} would be an easier way to get the same effect.)  Those
6652 inexact results would still be lurking there, but they would now be
6653 rounded to nice, natural-looking values for display purposes.  (Remember,
6654 @samp{0.022222} in base 3 is like @samp{0.099999} in base 10; rounding
6655 off one digit will round the number up to @samp{0.1}.)  Depending on the
6656 nature of your work, this hiding of the inexactness may be a benefit or
6657 a danger.  With the @kbd{d n} command, Calc gives you the choice.
6659 Incidentally, another consequence of all this is that if you type
6660 @kbd{M-30 d n} to display more digits than are ``really there,''
6661 you'll see garbage digits at the end of the number.  (In decimal
6662 display mode, with decimally-stored numbers, these garbage digits are
6663 always zero so they vanish and you don't notice them.)  Because Calc
6664 rounds off that 0.15 digit, there is the danger that two numbers could
6665 be slightly different internally but still look the same.  If you feel
6666 uneasy about this, set the @kbd{d n} precision to be a little higher
6667 than normal; you'll get ugly garbage digits, but you'll always be able
6668 to tell two distinct numbers apart.
6670 An interesting side note is that most computers store their
6671 floating-point numbers in binary, and convert to decimal for display.
6672 Thus everyday programs have the same problem:  Decimal 0.1 cannot be
6673 represented exactly in binary (try it: @kbd{0.1 d 2}), so @samp{0.1 * 10}
6674 comes out as an inexact approximation to 1 on some machines (though
6675 they generally arrange to hide it from you by rounding off one digit as
6676 we did above).  Because Calc works in decimal instead of binary, you can
6677 be sure that numbers that look exact @emph{are} exact as long as you stay
6678 in decimal display mode.
6680 It's not hard to show that any number that can be represented exactly
6681 in binary, octal, or hexadecimal is also exact in decimal, so the kinds
6682 of problems we saw in this exercise are likely to be severe only when
6683 you use a relatively unusual radix like 3.
6685 @node Modes Answer 2, Modes Answer 3, Modes Answer 1, Answers to Exercises
6686 @subsection Modes Tutorial Exercise 2
6688 If the radix is 15 or higher, we can't use the letter @samp{e} to mark
6689 the exponent because @samp{e} is interpreted as a digit.  When Calc
6690 needs to display scientific notation in a high radix, it writes
6691 @samp{16#F.E8F*16.^15}.  You can enter a number like this as an
6692 algebraic entry.  Also, pressing @kbd{e} without any digits before it
6693 normally types @kbd{1e}, but in a high radix it types @kbd{16.^} and
6694 puts you in algebraic entry:  @kbd{16#f.e8f @key{RET} e 15 @key{RET} *} is another
6695 way to enter this number.
6697 The reason Calc puts a decimal point in the @samp{16.^} is to prevent
6698 huge integers from being generated if the exponent is large (consider
6699 @samp{16#1.23*16^1000}, where we compute @samp{16^1000} as a giant
6700 exact integer and then throw away most of the digits when we multiply
6701 it by the floating-point @samp{16#1.23}).  While this wouldn't normally
6702 matter for display purposes, it could give you a nasty surprise if you
6703 copied that number into a file and later moved it back into Calc.
6705 @node Modes Answer 3, Modes Answer 4, Modes Answer 2, Answers to Exercises
6706 @subsection Modes Tutorial Exercise 3
6708 @noindent
6709 The answer he got was @expr{0.5000000000006399}.
6711 The problem is not that the square operation is inexact, but that the
6712 sine of 45 that was already on the stack was accurate to only 12 places.
6713 Arbitrary-precision calculations still only give answers as good as
6714 their inputs.
6716 The real problem is that there is no 12-digit number which, when
6717 squared, comes out to 0.5 exactly.  The @kbd{f [} and @kbd{f ]}
6718 commands decrease or increase a number by one unit in the last
6719 place (according to the current precision).  They are useful for
6720 determining facts like this.
6722 @smallexample
6723 @group
6724 1:  0.707106781187      1:  0.500000000001
6725     .                       .
6727     45 S                    2 ^
6729 @end group
6730 @end smallexample
6731 @noindent
6732 @smallexample
6733 @group
6734 1:  0.707106781187      1:  0.707106781186      1:  0.499999999999
6735     .                       .                       .
6737     U  @key{DEL}                  f [                     2 ^
6738 @end group
6739 @end smallexample
6741 A high-precision calculation must be carried out in high precision
6742 all the way.  The only number in the original problem which was known
6743 exactly was the quantity 45 degrees, so the precision must be raised
6744 before anything is done after the number 45 has been entered in order
6745 for the higher precision to be meaningful.
6747 @node Modes Answer 4, Arithmetic Answer 1, Modes Answer 3, Answers to Exercises
6748 @subsection Modes Tutorial Exercise 4
6750 @noindent
6751 Many calculations involve real-world quantities, like the width and
6752 height of a piece of wood or the volume of a jar.  Such quantities
6753 can't be measured exactly anyway, and if the data that is input to
6754 a calculation is inexact, doing exact arithmetic on it is a waste
6755 of time.
6757 Fractions become unwieldy after too many calculations have been
6758 done with them.  For example, the sum of the reciprocals of the
6759 integers from 1 to 10 is 7381:2520.  The sum from 1 to 30 is
6760 9304682830147:2329089562800.  After a point it will take a long
6761 time to add even one more term to this sum, but a floating-point
6762 calculation of the sum will not have this problem.
6764 Also, rational numbers cannot express the results of all calculations.
6765 There is no fractional form for the square root of two, so if you type
6766 @w{@kbd{2 Q}}, Calc has no choice but to give you a floating-point answer.
6768 @node Arithmetic Answer 1, Arithmetic Answer 2, Modes Answer 4, Answers to Exercises
6769 @subsection Arithmetic Tutorial Exercise 1
6771 @noindent
6772 Dividing two integers that are larger than the current precision may
6773 give a floating-point result that is inaccurate even when rounded
6774 down to an integer.  Consider @expr{123456789 / 2} when the current
6775 precision is 6 digits.  The true answer is @expr{61728394.5}, but
6776 with a precision of 6 this will be rounded to
6777 @texline @math{12345700.0/2.0 = 61728500.0}.
6778 @infoline @expr{12345700.@: / 2.@: = 61728500.}.
6779 The result, when converted to an integer, will be off by 106.
6781 Here are two solutions:  Raise the precision enough that the
6782 floating-point round-off error is strictly to the right of the
6783 decimal point.  Or, convert to Fraction mode so that @expr{123456789 / 2}
6784 produces the exact fraction @expr{123456789:2}, which can be rounded
6785 down by the @kbd{F} command without ever switching to floating-point
6786 format.
6788 @node Arithmetic Answer 2, Vector Answer 1, Arithmetic Answer 1, Answers to Exercises
6789 @subsection Arithmetic Tutorial Exercise 2
6791 @noindent
6792 @kbd{27 @key{RET} 9 B} could give the exact result @expr{3:2}, but it
6793 does a floating-point calculation instead and produces @expr{1.5}.
6795 Calc will find an exact result for a logarithm if the result is an integer
6796 or (when in Fraction mode) the reciprocal of an integer.  But there is
6797 no efficient way to search the space of all possible rational numbers
6798 for an exact answer, so Calc doesn't try.
6800 @node Vector Answer 1, Vector Answer 2, Arithmetic Answer 2, Answers to Exercises
6801 @subsection Vector Tutorial Exercise 1
6803 @noindent
6804 Duplicate the vector, compute its length, then divide the vector
6805 by its length:  @kbd{@key{RET} A /}.
6807 @smallexample
6808 @group
6809 1:  [1, 2, 3]  2:  [1, 2, 3]      1:  [0.27, 0.53, 0.80]  1:  1.
6810     .          1:  3.74165738677      .                       .
6811                    .
6813     r 1            @key{RET} A              /                       A
6814 @end group
6815 @end smallexample
6817 The final @kbd{A} command shows that the normalized vector does
6818 indeed have unit length.
6820 @node Vector Answer 2, Matrix Answer 1, Vector Answer 1, Answers to Exercises
6821 @subsection Vector Tutorial Exercise 2
6823 @noindent
6824 The average position is equal to the sum of the products of the
6825 positions times their corresponding probabilities.  This is the
6826 definition of the dot product operation.  So all you need to do
6827 is to put the two vectors on the stack and press @kbd{*}.
6829 @node Matrix Answer 1, Matrix Answer 2, Vector Answer 2, Answers to Exercises
6830 @subsection Matrix Tutorial Exercise 1
6832 @noindent
6833 The trick is to multiply by a vector of ones.  Use @kbd{r 4 [1 1 1] *} to
6834 get the row sum.  Similarly, use @kbd{[1 1] r 4 *} to get the column sum.
6836 @node Matrix Answer 2, Matrix Answer 3, Matrix Answer 1, Answers to Exercises
6837 @subsection Matrix Tutorial Exercise 2
6839 @ifnottex
6840 @example
6841 @group
6842    x + a y = 6
6843    x + b y = 10
6844 @end group
6845 @end example
6846 @end ifnottex
6847 @tex
6848 \beforedisplay
6849 $$ \eqalign{ x &+ a y = 6 \cr
6850              x &+ b y = 10}
6852 \afterdisplay
6853 @end tex
6855 Just enter the righthand side vector, then divide by the lefthand side
6856 matrix as usual.
6858 @smallexample
6859 @group
6860 1:  [6, 10]    2:  [6, 10]         1:  [4 a / (a - b) + 6, 4 / (b - a) ]
6861     .          1:  [ [ 1, a ]          .
6862                      [ 1, b ] ]
6863                    .
6865 ' [6 10] @key{RET}     ' [1 a; 1 b] @key{RET}      /
6866 @end group
6867 @end smallexample
6869 This can be made more readable using @kbd{d B} to enable Big display
6870 mode:
6872 @smallexample
6873 @group
6874       4 a         4
6875 1:  [----- + 6, -----]
6876      a - b      b - a
6877 @end group
6878 @end smallexample
6880 Type @kbd{d N} to return to Normal display mode afterwards.
6882 @node Matrix Answer 3, List Answer 1, Matrix Answer 2, Answers to Exercises
6883 @subsection Matrix Tutorial Exercise 3
6885 @noindent
6886 To solve
6887 @texline @math{A^T A \, X = A^T B},
6888 @infoline @expr{trn(A) * A * X = trn(A) * B},
6889 first we compute
6890 @texline @math{A' = A^T A}
6891 @infoline @expr{A2 = trn(A) * A}
6893 @texline @math{B' = A^T B};
6894 @infoline @expr{B2 = trn(A) * B};
6895 now, we have a system
6896 @texline @math{A' X = B'}
6897 @infoline @expr{A2 * X = B2}
6898 which we can solve using Calc's @samp{/} command.
6900 @ifnottex
6901 @example
6902 @group
6903     a + 2b + 3c = 6
6904    4a + 5b + 6c = 2
6905    7a + 6b      = 3
6906    2a + 4b + 6c = 11
6907 @end group
6908 @end example
6909 @end ifnottex
6910 @tex
6911 \beforedisplayh
6912 $$ \openup1\jot \tabskip=0pt plus1fil
6913 \halign to\displaywidth{\tabskip=0pt
6914    $\hfil#$&$\hfil{}#{}$&
6915    $\hfil#$&$\hfil{}#{}$&
6916    $\hfil#$&${}#\hfil$\tabskip=0pt plus1fil\cr
6917   a&+&2b&+&3c&=6 \cr
6918  4a&+&5b&+&6c&=2 \cr
6919  7a&+&6b& &  &=3 \cr
6920  2a&+&4b&+&6c&=11 \cr}
6922 \afterdisplayh
6923 @end tex
6925 The first step is to enter the coefficient matrix.  We'll store it in
6926 quick variable number 7 for later reference.  Next, we compute the
6927 @texline @math{B'}
6928 @infoline @expr{B2}
6929 vector.
6931 @smallexample
6932 @group
6933 1:  [ [ 1, 2, 3 ]             2:  [ [ 1, 4, 7, 2 ]     1:  [57, 84, 96]
6934       [ 4, 5, 6 ]                   [ 2, 5, 6, 4 ]         .
6935       [ 7, 6, 0 ]                   [ 3, 6, 0, 6 ] ]
6936       [ 2, 4, 6 ] ]           1:  [6, 2, 3, 11]
6937     .                             .
6939 ' [1 2 3; 4 5 6; 7 6 0; 2 4 6] @key{RET}  s 7  v t  [6 2 3 11]   *
6940 @end group
6941 @end smallexample
6943 @noindent
6944 Now we compute the matrix
6945 @texline @math{A'}
6946 @infoline @expr{A2}
6947 and divide.
6949 @smallexample
6950 @group
6951 2:  [57, 84, 96]          1:  [-11.64, 14.08, -3.64]
6952 1:  [ [ 70, 72, 39 ]          .
6953       [ 72, 81, 60 ]
6954       [ 39, 60, 81 ] ]
6955     .
6957     r 7 v t r 7 *             /
6958 @end group
6959 @end smallexample
6961 @noindent
6962 (The actual computed answer will be slightly inexact due to
6963 round-off error.)
6965 Notice that the answers are similar to those for the
6966 @texline @math{3\times3}
6967 @infoline 3x3
6968 system solved in the text.  That's because the fourth equation that was
6969 added to the system is almost identical to the first one multiplied
6970 by two.  (If it were identical, we would have gotten the exact same
6971 answer since the
6972 @texline @math{4\times3}
6973 @infoline 4x3
6974 system would be equivalent to the original
6975 @texline @math{3\times3}
6976 @infoline 3x3
6977 system.)
6979 Since the first and fourth equations aren't quite equivalent, they
6980 can't both be satisfied at once.  Let's plug our answers back into
6981 the original system of equations to see how well they match.
6983 @smallexample
6984 @group
6985 2:  [-11.64, 14.08, -3.64]     1:  [5.6, 2., 3., 11.2]
6986 1:  [ [ 1, 2, 3 ]                  .
6987       [ 4, 5, 6 ]
6988       [ 7, 6, 0 ]
6989       [ 2, 4, 6 ] ]
6990     .
6992     r 7                            @key{TAB} *
6993 @end group
6994 @end smallexample
6996 @noindent
6997 This is reasonably close to our original @expr{B} vector,
6998 @expr{[6, 2, 3, 11]}.
7000 @node List Answer 1, List Answer 2, Matrix Answer 3, Answers to Exercises
7001 @subsection List Tutorial Exercise 1
7003 @noindent
7004 We can use @kbd{v x} to build a vector of integers.  This needs to be
7005 adjusted to get the range of integers we desire.  Mapping @samp{-}
7006 across the vector will accomplish this, although it turns out the
7007 plain @samp{-} key will work just as well.
7009 @smallexample
7010 @group
7011 2:  2                              2:  2
7012 1:  [1, 2, 3, 4, 5, 6, 7, 8, 9]    1:  [-4, -3, -2, -1, 0, 1, 2, 3, 4]
7013     .                                  .
7015     2  v x 9 @key{RET}                       5 V M -   or   5 -
7016 @end group
7017 @end smallexample
7019 @noindent
7020 Now we use @kbd{V M ^} to map the exponentiation operator across the
7021 vector.
7023 @smallexample
7024 @group
7025 1:  [0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16]
7026     .
7028     V M ^
7029 @end group
7030 @end smallexample
7032 @node List Answer 2, List Answer 3, List Answer 1, Answers to Exercises
7033 @subsection List Tutorial Exercise 2
7035 @noindent
7036 Given @expr{x} and @expr{y} vectors in quick variables 1 and 2 as before,
7037 the first job is to form the matrix that describes the problem.
7039 @ifnottex
7040 @example
7041    m*x + b*1 = y
7042 @end example
7043 @end ifnottex
7044 @tex
7045 \beforedisplay
7046 $$ m \times x + b \times 1 = y $$
7047 \afterdisplay
7048 @end tex
7050 Thus we want a
7051 @texline @math{19\times2}
7052 @infoline 19x2
7053 matrix with our @expr{x} vector as one column and
7054 ones as the other column.  So, first we build the column of ones, then
7055 we combine the two columns to form our @expr{A} matrix.
7057 @smallexample
7058 @group
7059 2:  [1.34, 1.41, 1.49, ... ]    1:  [ [ 1.34, 1 ]
7060 1:  [1, 1, 1, ...]                    [ 1.41, 1 ]
7061     .                                 [ 1.49, 1 ]
7062                                       @dots{}
7064     r 1 1 v b 19 @key{RET}                M-2 v p v t   s 3
7065 @end group
7066 @end smallexample
7068 @noindent
7069 Now we compute
7070 @texline @math{A^T y}
7071 @infoline @expr{trn(A) * y}
7073 @texline @math{A^T A}
7074 @infoline @expr{trn(A) * A}
7075 and divide.
7077 @smallexample
7078 @group
7079 1:  [33.36554, 13.613]    2:  [33.36554, 13.613]
7080     .                     1:  [ [ 98.0003, 41.63 ]
7081                                 [  41.63,   19   ] ]
7082                               .
7084  v t r 2 *                    r 3 v t r 3 *
7085 @end group
7086 @end smallexample
7088 @noindent
7089 (Hey, those numbers look familiar!)
7091 @smallexample
7092 @group
7093 1:  [0.52141679, -0.425978]
7094     .
7096     /
7097 @end group
7098 @end smallexample
7100 Since we were solving equations of the form
7101 @texline @math{m \times x + b \times 1 = y},
7102 @infoline @expr{m*x + b*1 = y},
7103 these numbers should be @expr{m} and @expr{b}, respectively.  Sure
7104 enough, they agree exactly with the result computed using @kbd{V M} and
7105 @kbd{V R}!
7107 The moral of this story:  @kbd{V M} and @kbd{V R} will probably solve
7108 your problem, but there is often an easier way using the higher-level
7109 arithmetic functions!
7111 @c [fix-ref Curve Fitting]
7112 In fact, there is a built-in @kbd{a F} command that does least-squares
7113 fits.  @xref{Curve Fitting}.
7115 @node List Answer 3, List Answer 4, List Answer 2, Answers to Exercises
7116 @subsection List Tutorial Exercise 3
7118 @noindent
7119 Move to one end of the list and press @kbd{C-@@} (or @kbd{C-@key{SPC}} or
7120 whatever) to set the mark, then move to the other end of the list
7121 and type @w{@kbd{C-x * g}}.
7123 @smallexample
7124 @group
7125 1:  [2.3, 6, 22, 15.1, 7, 15, 14, 7.5, 2.5]
7126     .
7127 @end group
7128 @end smallexample
7130 To make things interesting, let's assume we don't know at a glance
7131 how many numbers are in this list.  Then we could type:
7133 @smallexample
7134 @group
7135 2:  [2.3, 6, 22, ... ]     2:  [2.3, 6, 22, ... ]
7136 1:  [2.3, 6, 22, ... ]     1:  126356422.5
7137     .                          .
7139     @key{RET}                        V R *
7141 @end group
7142 @end smallexample
7143 @noindent
7144 @smallexample
7145 @group
7146 2:  126356422.5            2:  126356422.5     1:  7.94652913734
7147 1:  [2.3, 6, 22, ... ]     1:  9                   .
7148     .                          .
7150     @key{TAB}                        v l                 I ^
7151 @end group
7152 @end smallexample
7154 @noindent
7155 (The @kbd{I ^} command computes the @var{n}th root of a number.
7156 You could also type @kbd{& ^} to take the reciprocal of 9 and
7157 then raise the number to that power.)
7159 @node List Answer 4, List Answer 5, List Answer 3, Answers to Exercises
7160 @subsection List Tutorial Exercise 4
7162 @noindent
7163 A number @expr{j} is a divisor of @expr{n} if
7164 @texline @math{n \mathbin{\hbox{\code{\%}}} j = 0}.
7165 @infoline @samp{n % j = 0}.
7166 The first step is to get a vector that identifies the divisors.
7168 @smallexample
7169 @group
7170 2:  30                  2:  [0, 0, 0, 2, ...]    1:  [1, 1, 1, 0, ...]
7171 1:  [1, 2, 3, 4, ...]   1:  0                        .
7172     .                       .
7174  30 @key{RET} v x 30 @key{RET}   s 1    V M %  0                 V M a =  s 2
7175 @end group
7176 @end smallexample
7178 @noindent
7179 This vector has 1's marking divisors of 30 and 0's marking non-divisors.
7181 The zeroth divisor function is just the total number of divisors.
7182 The first divisor function is the sum of the divisors.
7184 @smallexample
7185 @group
7186 1:  8      3:  8                    2:  8                    2:  8
7187            2:  [1, 2, 3, 4, ...]    1:  [1, 2, 3, 0, ...]    1:  72
7188            1:  [1, 1, 1, 0, ...]        .                        .
7189                .
7191    V R +       r 1 r 2                  V M *                  V R +
7192 @end group
7193 @end smallexample
7195 @noindent
7196 Once again, the last two steps just compute a dot product for which
7197 a simple @kbd{*} would have worked equally well.
7199 @node List Answer 5, List Answer 6, List Answer 4, Answers to Exercises
7200 @subsection List Tutorial Exercise 5
7202 @noindent
7203 The obvious first step is to obtain the list of factors with @kbd{k f}.
7204 This list will always be in sorted order, so if there are duplicates
7205 they will be right next to each other.  A suitable method is to compare
7206 the list with a copy of itself shifted over by one.
7208 @smallexample
7209 @group
7210 1:  [3, 7, 7, 7, 19]   2:  [3, 7, 7, 7, 19]     2:  [3, 7, 7, 7, 19, 0]
7211     .                  1:  [3, 7, 7, 7, 19, 0]  1:  [0, 3, 7, 7, 7, 19]
7212                            .                        .
7214     19551 k f              @key{RET} 0 |                  @key{TAB} 0 @key{TAB} |
7216 @end group
7217 @end smallexample
7218 @noindent
7219 @smallexample
7220 @group
7221 1:  [0, 0, 1, 1, 0, 0]   1:  2          1:  0
7222     .                        .              .
7224     V M a =                  V R +          0 a =
7225 @end group
7226 @end smallexample
7228 @noindent
7229 Note that we have to arrange for both vectors to have the same length
7230 so that the mapping operation works; no prime factor will ever be
7231 zero, so adding zeros on the left and right is safe.  From then on
7232 the job is pretty straightforward.
7234 Incidentally, Calc provides the
7235 @texline @dfn{M@"obius} @math{\mu}
7236 @infoline @dfn{Moebius mu}
7237 function which is zero if and only if its argument is square-free.  It
7238 would be a much more convenient way to do the above test in practice.
7240 @node List Answer 6, List Answer 7, List Answer 5, Answers to Exercises
7241 @subsection List Tutorial Exercise 6
7243 @noindent
7244 First use @kbd{v x 6 @key{RET}} to get a list of integers, then @kbd{V M v x}
7245 to get a list of lists of integers!
7247 @node List Answer 7, List Answer 8, List Answer 6, Answers to Exercises
7248 @subsection List Tutorial Exercise 7
7250 @noindent
7251 Here's one solution.  First, compute the triangular list from the previous
7252 exercise and type @kbd{1 -} to subtract one from all the elements.
7254 @smallexample
7255 @group
7256 1:  [ [0],
7257       [0, 1],
7258       [0, 1, 2],
7259       @dots{}
7261     1 -
7262 @end group
7263 @end smallexample
7265 The numbers down the lefthand edge of the list we desire are called
7266 the ``triangular numbers'' (now you know why!).  The @expr{n}th
7267 triangular number is the sum of the integers from 1 to @expr{n}, and
7268 can be computed directly by the formula
7269 @texline @math{n (n+1) \over 2}.
7270 @infoline @expr{n * (n+1) / 2}.
7272 @smallexample
7273 @group
7274 2:  [ [0], [0, 1], ... ]    2:  [ [0], [0, 1], ... ]
7275 1:  [0, 1, 2, 3, 4, 5]      1:  [0, 1, 3, 6, 10, 15]
7276     .                           .
7278     v x 6 @key{RET} 1 -               V M ' $ ($+1)/2 @key{RET}
7279 @end group
7280 @end smallexample
7282 @noindent
7283 Adding this list to the above list of lists produces the desired
7284 result:
7286 @smallexample
7287 @group
7288 1:  [ [0],
7289       [1, 2],
7290       [3, 4, 5],
7291       [6, 7, 8, 9],
7292       [10, 11, 12, 13, 14],
7293       [15, 16, 17, 18, 19, 20] ]
7294       .
7296       V M +
7297 @end group
7298 @end smallexample
7300 If we did not know the formula for triangular numbers, we could have
7301 computed them using a @kbd{V U +} command.  We could also have
7302 gotten them the hard way by mapping a reduction across the original
7303 triangular list.
7305 @smallexample
7306 @group
7307 2:  [ [0], [0, 1], ... ]    2:  [ [0], [0, 1], ... ]
7308 1:  [ [0], [0, 1], ... ]    1:  [0, 1, 3, 6, 10, 15]
7309     .                           .
7311     @key{RET}                         V M V R +
7312 @end group
7313 @end smallexample
7315 @noindent
7316 (This means ``map a @kbd{V R +} command across the vector,'' and
7317 since each element of the main vector is itself a small vector,
7318 @kbd{V R +} computes the sum of its elements.)
7320 @node List Answer 8, List Answer 9, List Answer 7, Answers to Exercises
7321 @subsection List Tutorial Exercise 8
7323 @noindent
7324 The first step is to build a list of values of @expr{x}.
7326 @smallexample
7327 @group
7328 1:  [1, 2, 3, ..., 21]  1:  [0, 1, 2, ..., 20]  1:  [0, 0.25, 0.5, ..., 5]
7329     .                       .                       .
7331     v x 21 @key{RET}              1 -                     4 /  s 1
7332 @end group
7333 @end smallexample
7335 Next, we compute the Bessel function values.
7337 @smallexample
7338 @group
7339 1:  [0., 0.124, 0.242, ..., -0.328]
7340     .
7342     V M ' besJ(1,$) @key{RET}
7343 @end group
7344 @end smallexample
7346 @noindent
7347 (Another way to do this would be @kbd{1 @key{TAB} V M f j}.)
7349 A way to isolate the maximum value is to compute the maximum using
7350 @kbd{V R X}, then compare all the Bessel values with that maximum.
7352 @smallexample
7353 @group
7354 2:  [0., 0.124, 0.242, ... ]   1:  [0, 0, 0, ... ]    2:  [0, 0, 0, ... ]
7355 1:  0.5801562                      .                  1:  1
7356     .                                                     .
7358     @key{RET} V R X                      V M a =                @key{RET} V R +    @key{DEL}
7359 @end group
7360 @end smallexample
7362 @noindent
7363 It's a good idea to verify, as in the last step above, that only
7364 one value is equal to the maximum.  (After all, a plot of
7365 @texline @math{\sin x}
7366 @infoline @expr{sin(x)}
7367 might have many points all equal to the maximum value, 1.)
7369 The vector we have now has a single 1 in the position that indicates
7370 the maximum value of @expr{x}.  Now it is a simple matter to convert
7371 this back into the corresponding value itself.
7373 @smallexample
7374 @group
7375 2:  [0, 0, 0, ... ]         1:  [0, 0., 0., ... ]    1:  1.75
7376 1:  [0, 0.25, 0.5, ... ]        .                        .
7377     .
7379     r 1                         V M *                    V R +
7380 @end group
7381 @end smallexample
7383 If @kbd{a =} had produced more than one @expr{1} value, this method
7384 would have given the sum of all maximum @expr{x} values; not very
7385 useful!  In this case we could have used @kbd{v m} (@code{calc-mask-vector})
7386 instead.  This command deletes all elements of a ``data'' vector that
7387 correspond to zeros in a ``mask'' vector, leaving us with, in this
7388 example, a vector of maximum @expr{x} values.
7390 The built-in @kbd{a X} command maximizes a function using more
7391 efficient methods.  Just for illustration, let's use @kbd{a X}
7392 to maximize @samp{besJ(1,x)} over this same interval.
7394 @smallexample
7395 @group
7396 2:  besJ(1, x)                 1:  [1.84115, 0.581865]
7397 1:  [0 .. 5]                       .
7398     .
7400 ' besJ(1,x), [0..5] @key{RET}            a X x @key{RET}
7401 @end group
7402 @end smallexample
7404 @noindent
7405 The output from @kbd{a X} is a vector containing the value of @expr{x}
7406 that maximizes the function, and the function's value at that maximum.
7407 As you can see, our simple search got quite close to the right answer.
7409 @node List Answer 9, List Answer 10, List Answer 8, Answers to Exercises
7410 @subsection List Tutorial Exercise 9
7412 @noindent
7413 Step one is to convert our integer into vector notation.
7415 @smallexample
7416 @group
7417 1:  25129925999           3:  25129925999
7418     .                     2:  10
7419                           1:  [11, 10, 9, ..., 1, 0]
7420                               .
7422     25129925999 @key{RET}           10 @key{RET} 12 @key{RET} v x 12 @key{RET} -
7424 @end group
7425 @end smallexample
7426 @noindent
7427 @smallexample
7428 @group
7429 1:  25129925999              1:  [0, 2, 25, 251, 2512, ... ]
7430 2:  [100000000000, ... ]         .
7431     .
7433     V M ^   s 1                  V M \
7434 @end group
7435 @end smallexample
7437 @noindent
7438 (Recall, the @kbd{\} command computes an integer quotient.)
7440 @smallexample
7441 @group
7442 1:  [0, 2, 5, 1, 2, 9, 9, 2, 5, 9, 9, 9]
7443     .
7445     10 V M %   s 2
7446 @end group
7447 @end smallexample
7449 Next we must increment this number.  This involves adding one to
7450 the last digit, plus handling carries.  There is a carry to the
7451 left out of a digit if that digit is a nine and all the digits to
7452 the right of it are nines.
7454 @smallexample
7455 @group
7456 1:  [0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1]   1:  [1, 1, 1, 0, 0, 1, ... ]
7457     .                                          .
7459     9 V M a =                                  v v
7461 @end group
7462 @end smallexample
7463 @noindent
7464 @smallexample
7465 @group
7466 1:  [1, 1, 1, 0, 0, 0, ... ]   1:  [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1]
7467     .                              .
7469     V U *                          v v 1 |
7470 @end group
7471 @end smallexample
7473 @noindent
7474 Accumulating @kbd{*} across a vector of ones and zeros will preserve
7475 only the initial run of ones.  These are the carries into all digits
7476 except the rightmost digit.  Concatenating a one on the right takes
7477 care of aligning the carries properly, and also adding one to the
7478 rightmost digit.
7480 @smallexample
7481 @group
7482 2:  [0, 0, 0, 0, ... ]     1:  [0, 0, 2, 5, 1, 2, 9, 9, 2, 6, 0, 0, 0]
7483 1:  [0, 0, 2, 5, ... ]         .
7484     .
7486     0 r 2 |                    V M +  10 V M %
7487 @end group
7488 @end smallexample
7490 @noindent
7491 Here we have concatenated 0 to the @emph{left} of the original number;
7492 this takes care of shifting the carries by one with respect to the
7493 digits that generated them.
7495 Finally, we must convert this list back into an integer.
7497 @smallexample
7498 @group
7499 3:  [0, 0, 2, 5, ... ]        2:  [0, 0, 2, 5, ... ]
7500 2:  1000000000000             1:  [1000000000000, 100000000000, ... ]
7501 1:  [100000000000, ... ]          .
7502     .
7504     10 @key{RET} 12 ^  r 1              |
7506 @end group
7507 @end smallexample
7508 @noindent
7509 @smallexample
7510 @group
7511 1:  [0, 0, 20000000000, 5000000000, ... ]    1:  25129926000
7512     .                                            .
7514     V M *                                        V R +
7515 @end group
7516 @end smallexample
7518 @noindent
7519 Another way to do this final step would be to reduce the formula
7520 @w{@samp{10 $$ + $}} across the vector of digits.
7522 @smallexample
7523 @group
7524 1:  [0, 0, 2, 5, ... ]        1:  25129926000
7525     .                             .
7527                                   V R ' 10 $$ + $ @key{RET}
7528 @end group
7529 @end smallexample
7531 @node List Answer 10, List Answer 11, List Answer 9, Answers to Exercises
7532 @subsection List Tutorial Exercise 10
7534 @noindent
7535 For the list @expr{[a, b, c, d]}, the result is @expr{((a = b) = c) = d},
7536 which will compare @expr{a} and @expr{b} to produce a 1 or 0, which is
7537 then compared with @expr{c} to produce another 1 or 0, which is then
7538 compared with @expr{d}.  This is not at all what Joe wanted.
7540 Here's a more correct method:
7542 @smallexample
7543 @group
7544 1:  [7, 7, 7, 8, 7]      2:  [7, 7, 7, 8, 7]
7545     .                    1:  7
7546                              .
7548   ' [7,7,7,8,7] @key{RET}          @key{RET} v r 1 @key{RET}
7550 @end group
7551 @end smallexample
7552 @noindent
7553 @smallexample
7554 @group
7555 1:  [1, 1, 1, 0, 1]      1:  0
7556     .                        .
7558     V M a =                  V R *
7559 @end group
7560 @end smallexample
7562 @node List Answer 11, List Answer 12, List Answer 10, Answers to Exercises
7563 @subsection List Tutorial Exercise 11
7565 @noindent
7566 The circle of unit radius consists of those points @expr{(x,y)} for which
7567 @expr{x^2 + y^2 < 1}.  We start by generating a vector of @expr{x^2}
7568 and a vector of @expr{y^2}.
7570 We can make this go a bit faster by using the @kbd{v .} and @kbd{t .}
7571 commands.
7573 @smallexample
7574 @group
7575 2:  [2., 2., ..., 2.]          2:  [2., 2., ..., 2.]
7576 1:  [2., 2., ..., 2.]          1:  [1.16, 1.98, ..., 0.81]
7577     .                              .
7579  v . t .  2. v b 100 @key{RET} @key{RET}       V M k r
7581 @end group
7582 @end smallexample
7583 @noindent
7584 @smallexample
7585 @group
7586 2:  [2., 2., ..., 2.]          1:  [0.026, 0.96, ..., 0.036]
7587 1:  [0.026, 0.96, ..., 0.036]  2:  [0.53, 0.81, ..., 0.094]
7588     .                              .
7590     1 -  2 V M ^                   @key{TAB}  V M k r  1 -  2 V M ^
7591 @end group
7592 @end smallexample
7594 Now we sum the @expr{x^2} and @expr{y^2} values, compare with 1 to
7595 get a vector of 1/0 truth values, then sum the truth values.
7597 @smallexample
7598 @group
7599 1:  [0.56, 1.78, ..., 0.13]    1:  [1, 0, ..., 1]    1:  84
7600     .                              .                     .
7602     +                              1 V M a <             V R +
7603 @end group
7604 @end smallexample
7606 @noindent
7607 The ratio @expr{84/100} should approximate the ratio @cpiover{4}.
7609 @smallexample
7610 @group
7611 1:  0.84       1:  3.36       2:  3.36       1:  1.0695
7612     .              .          1:  3.14159        .
7614     100 /          4 *            P              /
7615 @end group
7616 @end smallexample
7618 @noindent
7619 Our estimate, 3.36, is off by about 7%.  We could get a better estimate
7620 by taking more points (say, 1000), but it's clear that this method is
7621 not very efficient!
7623 (Naturally, since this example uses random numbers your own answer
7624 will be slightly different from the one shown here!)
7626 If you typed @kbd{v .} and @kbd{t .} before, type them again to
7627 return to full-sized display of vectors.
7629 @node List Answer 12, List Answer 13, List Answer 11, Answers to Exercises
7630 @subsection List Tutorial Exercise 12
7632 @noindent
7633 This problem can be made a lot easier by taking advantage of some
7634 symmetries.  First of all, after some thought it's clear that the
7635 @expr{y} axis can be ignored altogether.  Just pick a random @expr{x}
7636 component for one end of the match, pick a random direction
7637 @texline @math{\theta},
7638 @infoline @expr{theta},
7639 and see if @expr{x} and
7640 @texline @math{x + \cos \theta}
7641 @infoline @expr{x + cos(theta)}
7642 (which is the @expr{x} coordinate of the other endpoint) cross a line.
7643 The lines are at integer coordinates, so this happens when the two
7644 numbers surround an integer.
7646 Since the two endpoints are equivalent, we may as well choose the leftmost
7647 of the two endpoints as @expr{x}.  Then @expr{theta} is an angle pointing
7648 to the right, in the range -90 to 90 degrees.  (We could use radians, but
7649 it would feel like cheating to refer to @cpiover{2} radians while trying
7650 to estimate @cpi{}!)
7652 In fact, since the field of lines is infinite we can choose the
7653 coordinates 0 and 1 for the lines on either side of the leftmost
7654 endpoint.  The rightmost endpoint will be between 0 and 1 if the
7655 match does not cross a line, or between 1 and 2 if it does.  So:
7656 Pick random @expr{x} and
7657 @texline @math{\theta},
7658 @infoline @expr{theta},
7659 compute
7660 @texline @math{x + \cos \theta},
7661 @infoline @expr{x + cos(theta)},
7662 and count how many of the results are greater than one.  Simple!
7664 We can make this go a bit faster by using the @kbd{v .} and @kbd{t .}
7665 commands.
7667 @smallexample
7668 @group
7669 1:  [0.52, 0.71, ..., 0.72]    2:  [0.52, 0.71, ..., 0.72]
7670     .                          1:  [78.4, 64.5, ..., -42.9]
7671                                    .
7673 v . t . 1. v b 100 @key{RET}  V M k r    180. v b 100 @key{RET}  V M k r  90 -
7674 @end group
7675 @end smallexample
7677 @noindent
7678 (The next step may be slow, depending on the speed of your computer.)
7680 @smallexample
7681 @group
7682 2:  [0.52, 0.71, ..., 0.72]    1:  [0.72, 1.14, ..., 1.45]
7683 1:  [0.20, 0.43, ..., 0.73]        .
7684     .
7686     m d  V M C                     +
7688 @end group
7689 @end smallexample
7690 @noindent
7691 @smallexample
7692 @group
7693 1:  [0, 1, ..., 1]       1:  0.64            1:  3.125
7694     .                        .                   .
7696     1 V M a >                V R + 100 /         2 @key{TAB} /
7697 @end group
7698 @end smallexample
7700 Let's try the third method, too.  We'll use random integers up to
7701 one million.  The @kbd{k r} command with an integer argument picks
7702 a random integer.
7704 @smallexample
7705 @group
7706 2:  [1000000, 1000000, ..., 1000000]   2:  [78489, 527587, ..., 814975]
7707 1:  [1000000, 1000000, ..., 1000000]   1:  [324014, 358783, ..., 955450]
7708     .                                      .
7710     1000000 v b 100 @key{RET} @key{RET}                V M k r  @key{TAB}  V M k r
7712 @end group
7713 @end smallexample
7714 @noindent
7715 @smallexample
7716 @group
7717 1:  [1, 1, ..., 25]      1:  [1, 1, ..., 0]     1:  0.56
7718     .                        .                      .
7720     V M k g                  1 V M a =              V R + 100 /
7722 @end group
7723 @end smallexample
7724 @noindent
7725 @smallexample
7726 @group
7727 1:  10.714        1:  3.273
7728     .                 .
7730     6 @key{TAB} /           Q
7731 @end group
7732 @end smallexample
7734 For a proof of this property of the GCD function, see section 4.5.2,
7735 exercise 10, of Knuth's @emph{Art of Computer Programming}, volume II.
7737 If you typed @kbd{v .} and @kbd{t .} before, type them again to
7738 return to full-sized display of vectors.
7740 @node List Answer 13, List Answer 14, List Answer 12, Answers to Exercises
7741 @subsection List Tutorial Exercise 13
7743 @noindent
7744 First, we put the string on the stack as a vector of ASCII codes.
7746 @smallexample
7747 @group
7748 1:  [84, 101, 115, ..., 51]
7749     .
7751     "Testing, 1, 2, 3 @key{RET}
7752 @end group
7753 @end smallexample
7755 @noindent
7756 Note that the @kbd{"} key, like @kbd{$}, initiates algebraic entry so
7757 there was no need to type an apostrophe.  Also, Calc didn't mind that
7758 we omitted the closing @kbd{"}.  (The same goes for all closing delimiters
7759 like @kbd{)} and @kbd{]} at the end of a formula.
7761 We'll show two different approaches here.  In the first, we note that
7762 if the input vector is @expr{[a, b, c, d]}, then the hash code is
7763 @expr{3 (3 (3a + b) + c) + d = 27a + 9b + 3c + d}.  In other words,
7764 it's a sum of descending powers of three times the ASCII codes.
7766 @smallexample
7767 @group
7768 2:  [84, 101, 115, ..., 51]    2:  [84, 101, 115, ..., 51]
7769 1:  16                         1:  [15, 14, 13, ..., 0]
7770     .                              .
7772     @key{RET} v l                        v x 16 @key{RET} -
7774 @end group
7775 @end smallexample
7776 @noindent
7777 @smallexample
7778 @group
7779 2:  [84, 101, 115, ..., 51]    1:  1960915098    1:  121
7780 1:  [14348907, ..., 1]             .                 .
7781     .
7783     3 @key{TAB} V M ^                    *                 511 %
7784 @end group
7785 @end smallexample
7787 @noindent
7788 Once again, @kbd{*} elegantly summarizes most of the computation.
7789 But there's an even more elegant approach:  Reduce the formula
7790 @kbd{3 $$ + $} across the vector.  Recall that this represents a
7791 function of two arguments that computes its first argument times three
7792 plus its second argument.
7794 @smallexample
7795 @group
7796 1:  [84, 101, 115, ..., 51]    1:  1960915098
7797     .                              .
7799     "Testing, 1, 2, 3 @key{RET}          V R ' 3$$+$ @key{RET}
7800 @end group
7801 @end smallexample
7803 @noindent
7804 If you did the decimal arithmetic exercise, this will be familiar.
7805 Basically, we're turning a base-3 vector of digits into an integer,
7806 except that our ``digits'' are much larger than real digits.
7808 Instead of typing @kbd{511 %} again to reduce the result, we can be
7809 cleverer still and notice that rather than computing a huge integer
7810 and taking the modulo at the end, we can take the modulo at each step
7811 without affecting the result.  While this means there are more
7812 arithmetic operations, the numbers we operate on remain small so
7813 the operations are faster.
7815 @smallexample
7816 @group
7817 1:  [84, 101, 115, ..., 51]    1:  121
7818     .                              .
7820     "Testing, 1, 2, 3 @key{RET}          V R ' (3$$+$)%511 @key{RET}
7821 @end group
7822 @end smallexample
7824 Why does this work?  Think about a two-step computation:
7825 @w{@expr{3 (3a + b) + c}}.  Taking a result modulo 511 basically means
7826 subtracting off enough 511's to put the result in the desired range.
7827 So the result when we take the modulo after every step is,
7829 @ifnottex
7830 @example
7831 3 (3 a + b - 511 m) + c - 511 n
7832 @end example
7833 @end ifnottex
7834 @tex
7835 \beforedisplay
7836 $$ 3 (3 a + b - 511 m) + c - 511 n $$
7837 \afterdisplay
7838 @end tex
7840 @noindent
7841 for some suitable integers @expr{m} and @expr{n}.  Expanding out by
7842 the distributive law yields
7844 @ifnottex
7845 @example
7846 9 a + 3 b + c - 511*3 m - 511 n
7847 @end example
7848 @end ifnottex
7849 @tex
7850 \beforedisplay
7851 $$ 9 a + 3 b + c - 511\times3 m - 511 n $$
7852 \afterdisplay
7853 @end tex
7855 @noindent
7856 The @expr{m} term in the latter formula is redundant because any
7857 contribution it makes could just as easily be made by the @expr{n}
7858 term.  So we can take it out to get an equivalent formula with
7859 @expr{n' = 3m + n},
7861 @ifnottex
7862 @example
7863 9 a + 3 b + c - 511 n'
7864 @end example
7865 @end ifnottex
7866 @tex
7867 \beforedisplay
7868 $$ 9 a + 3 b + c - 511 n^{\prime} $$
7869 \afterdisplay
7870 @end tex
7872 @noindent
7873 which is just the formula for taking the modulo only at the end of
7874 the calculation.  Therefore the two methods are essentially the same.
7876 Later in the tutorial we will encounter @dfn{modulo forms}, which
7877 basically automate the idea of reducing every intermediate result
7878 modulo some value @var{m}.
7880 @node List Answer 14, Types Answer 1, List Answer 13, Answers to Exercises
7881 @subsection List Tutorial Exercise 14
7883 We want to use @kbd{H V U} to nest a function which adds a random
7884 step to an @expr{(x,y)} coordinate.  The function is a bit long, but
7885 otherwise the problem is quite straightforward.
7887 @smallexample
7888 @group
7889 2:  [0, 0]     1:  [ [    0,       0    ]
7890 1:  50               [  0.4288, -0.1695 ]
7891     .                [ -0.4787, -0.9027 ]
7892                      ...
7894     [0,0] 50       H V U ' <# + [random(2.0)-1, random(2.0)-1]> @key{RET}
7895 @end group
7896 @end smallexample
7898 Just as the text recommended, we used @samp{< >} nameless function
7899 notation to keep the two @code{random} calls from being evaluated
7900 before nesting even begins.
7902 We now have a vector of @expr{[x, y]} sub-vectors, which by Calc's
7903 rules acts like a matrix.  We can transpose this matrix and unpack
7904 to get a pair of vectors, @expr{x} and @expr{y}, suitable for graphing.
7906 @smallexample
7907 @group
7908 2:  [ 0, 0.4288, -0.4787, ... ]
7909 1:  [ 0, -0.1696, -0.9027, ... ]
7910     .
7912     v t  v u  g f
7913 @end group
7914 @end smallexample
7916 Incidentally, because the @expr{x} and @expr{y} are completely
7917 independent in this case, we could have done two separate commands
7918 to create our @expr{x} and @expr{y} vectors of numbers directly.
7920 To make a random walk of unit steps, we note that @code{sincos} of
7921 a random direction exactly gives us an @expr{[x, y]} step of unit
7922 length; in fact, the new nesting function is even briefer, though
7923 we might want to lower the precision a bit for it.
7925 @smallexample
7926 @group
7927 2:  [0, 0]     1:  [ [    0,      0    ]
7928 1:  50               [  0.1318, 0.9912 ]
7929     .                [ -0.5965, 0.3061 ]
7930                      ...
7932     [0,0] 50   m d  p 6 @key{RET}   H V U ' <# + sincos(random(360.0))> @key{RET}
7933 @end group
7934 @end smallexample
7936 Another @kbd{v t v u g f} sequence will graph this new random walk.
7938 An interesting twist on these random walk functions would be to use
7939 complex numbers instead of 2-vectors to represent points on the plane.
7940 In the first example, we'd use something like @samp{random + random*(0,1)},
7941 and in the second we could use polar complex numbers with random phase
7942 angles.  (This exercise was first suggested in this form by Randal
7943 Schwartz.)
7945 @node Types Answer 1, Types Answer 2, List Answer 14, Answers to Exercises
7946 @subsection Types Tutorial Exercise 1
7948 @noindent
7949 If the number is the square root of @cpi{} times a rational number,
7950 then its square, divided by @cpi{}, should be a rational number.
7952 @smallexample
7953 @group
7954 1:  1.26508260337    1:  0.509433962268   1:  2486645810:4881193627
7955     .                    .                    .
7957                          2 ^ P /              c F
7958 @end group
7959 @end smallexample
7961 @noindent
7962 Technically speaking this is a rational number, but not one that is
7963 likely to have arisen in the original problem.  More likely, it just
7964 happens to be the fraction which most closely represents some
7965 irrational number to within 12 digits.
7967 But perhaps our result was not quite exact.  Let's reduce the
7968 precision slightly and try again:
7970 @smallexample
7971 @group
7972 1:  0.509433962268     1:  27:53
7973     .                      .
7975     U p 10 @key{RET}             c F
7976 @end group
7977 @end smallexample
7979 @noindent
7980 Aha!  It's unlikely that an irrational number would equal a fraction
7981 this simple to within ten digits, so our original number was probably
7982 @texline @math{\sqrt{27 \pi / 53}}.
7983 @infoline @expr{sqrt(27 pi / 53)}.
7985 Notice that we didn't need to re-round the number when we reduced the
7986 precision.  Remember, arithmetic operations always round their inputs
7987 to the current precision before they begin.
7989 @node Types Answer 2, Types Answer 3, Types Answer 1, Answers to Exercises
7990 @subsection Types Tutorial Exercise 2
7992 @noindent
7993 @samp{inf / inf = nan}.  Perhaps @samp{1} is the ``obvious'' answer.
7994 But if @w{@samp{17 inf = inf}}, then @samp{17 inf / inf = inf / inf = 17}, too.
7996 @samp{exp(inf) = inf}.  It's tempting to say that the exponential
7997 of infinity must be ``bigger'' than ``regular'' infinity, but as
7998 far as Calc is concerned all infinities are the same size.
7999 In other words, as @expr{x} goes to infinity, @expr{e^x} also goes
8000 to infinity, but the fact the @expr{e^x} grows much faster than
8001 @expr{x} is not relevant here.
8003 @samp{exp(-inf) = 0}.  Here we have a finite answer even though
8004 the input is infinite.
8006 @samp{sqrt(-inf) = (0, 1) inf}.  Remember that @expr{(0, 1)}
8007 represents the imaginary number @expr{i}.  Here's a derivation:
8008 @samp{sqrt(-inf) = @w{sqrt((-1) * inf)} = sqrt(-1) * sqrt(inf)}.
8009 The first part is, by definition, @expr{i}; the second is @code{inf}
8010 because, once again, all infinities are the same size.
8012 @samp{sqrt(uinf) = uinf}.  In fact, we do know something about the
8013 direction because @code{sqrt} is defined to return a value in the
8014 right half of the complex plane.  But Calc has no notation for this,
8015 so it settles for the conservative answer @code{uinf}.
8017 @samp{abs(uinf) = inf}.  No matter which direction @expr{x} points,
8018 @samp{abs(x)} always points along the positive real axis.
8020 @samp{ln(0) = -inf}.  Here we have an infinite answer to a finite
8021 input.  As in the @expr{1 / 0} case, Calc will only use infinities
8022 here if you have turned on Infinite mode.  Otherwise, it will
8023 treat @samp{ln(0)} as an error.
8025 @node Types Answer 3, Types Answer 4, Types Answer 2, Answers to Exercises
8026 @subsection Types Tutorial Exercise 3
8028 @noindent
8029 We can make @samp{inf - inf} be any real number we like, say,
8030 @expr{a}, just by claiming that we added @expr{a} to the first
8031 infinity but not to the second.  This is just as true for complex
8032 values of @expr{a}, so @code{nan} can stand for a complex number.
8033 (And, similarly, @code{uinf} can stand for an infinity that points
8034 in any direction in the complex plane, such as @samp{(0, 1) inf}).
8036 In fact, we can multiply the first @code{inf} by two.  Surely
8037 @w{@samp{2 inf - inf = inf}}, but also @samp{2 inf - inf = inf - inf = nan}.
8038 So @code{nan} can even stand for infinity.  Obviously it's just
8039 as easy to make it stand for minus infinity as for plus infinity.
8041 The moral of this story is that ``infinity'' is a slippery fish
8042 indeed, and Calc tries to handle it by having a very simple model
8043 for infinities (only the direction counts, not the ``size''); but
8044 Calc is careful to write @code{nan} any time this simple model is
8045 unable to tell what the true answer is.
8047 @node Types Answer 4, Types Answer 5, Types Answer 3, Answers to Exercises
8048 @subsection Types Tutorial Exercise 4
8050 @smallexample
8051 @group
8052 2:  0@@ 47' 26"              1:  0@@ 2' 47.411765"
8053 1:  17                          .
8054     .
8056     0@@ 47' 26" @key{RET} 17           /
8057 @end group
8058 @end smallexample
8060 @noindent
8061 The average song length is two minutes and 47.4 seconds.
8063 @smallexample
8064 @group
8065 2:  0@@ 2' 47.411765"     1:  0@@ 3' 7.411765"    1:  0@@ 53' 6.000005"
8066 1:  0@@ 0' 20"                .                      .
8067     .
8069     20"                      +                      17 *
8070 @end group
8071 @end smallexample
8073 @noindent
8074 The album would be 53 minutes and 6 seconds long.
8076 @node Types Answer 5, Types Answer 6, Types Answer 4, Answers to Exercises
8077 @subsection Types Tutorial Exercise 5
8079 @noindent
8080 Let's suppose it's January 14, 1991.  The easiest thing to do is
8081 to keep trying 13ths of months until Calc reports a Friday.
8082 We can do this by manually entering dates, or by using @kbd{t I}:
8084 @smallexample
8085 @group
8086 1:  <Wed Feb 13, 1991>    1:  <Wed Mar 13, 1991>   1:  <Sat Apr 13, 1991>
8087     .                         .                        .
8089     ' <2/13> @key{RET}       @key{DEL}    ' <3/13> @key{RET}             t I
8090 @end group
8091 @end smallexample
8093 @noindent
8094 (Calc assumes the current year if you don't say otherwise.)
8096 This is getting tedious---we can keep advancing the date by typing
8097 @kbd{t I} over and over again, but let's automate the job by using
8098 vector mapping.  The @kbd{t I} command actually takes a second
8099 ``how-many-months'' argument, which defaults to one.  This
8100 argument is exactly what we want to map over:
8102 @smallexample
8103 @group
8104 2:  <Sat Apr 13, 1991>     1:  [<Mon May 13, 1991>, <Thu Jun 13, 1991>,
8105 1:  [1, 2, 3, 4, 5, 6]          <Sat Jul 13, 1991>, <Tue Aug 13, 1991>,
8106     .                           <Fri Sep 13, 1991>, <Sun Oct 13, 1991>]
8107                                .
8109     v x 6 @key{RET}                  V M t I
8110 @end group
8111 @end smallexample
8113 @noindent
8114 Et voil@`a, September 13, 1991 is a Friday.
8116 @smallexample
8117 @group
8118 1:  242
8119     .
8121 ' <sep 13> - <jan 14> @key{RET}
8122 @end group
8123 @end smallexample
8125 @noindent
8126 And the answer to our original question:  242 days to go.
8128 @node Types Answer 6, Types Answer 7, Types Answer 5, Answers to Exercises
8129 @subsection Types Tutorial Exercise 6
8131 @noindent
8132 The full rule for leap years is that they occur in every year divisible
8133 by four, except that they don't occur in years divisible by 100, except
8134 that they @emph{do} in years divisible by 400.  We could work out the
8135 answer by carefully counting the years divisible by four and the
8136 exceptions, but there is a much simpler way that works even if we
8137 don't know the leap year rule.
8139 Let's assume the present year is 1991.  Years have 365 days, except
8140 that leap years (whenever they occur) have 366 days.  So let's count
8141 the number of days between now and then, and compare that to the
8142 number of years times 365.  The number of extra days we find must be
8143 equal to the number of leap years there were.
8145 @smallexample
8146 @group
8147 1:  <Mon Jan 1, 10001>     2:  <Mon Jan 1, 10001>     1:  2925593
8148     .                      1:  <Tue Jan 1, 1991>          .
8149                                .
8151   ' <jan 1 10001> @key{RET}         ' <jan 1 1991> @key{RET}          -
8153 @end group
8154 @end smallexample
8155 @noindent
8156 @smallexample
8157 @group
8158 3:  2925593       2:  2925593     2:  2925593     1:  1943
8159 2:  10001         1:  8010        1:  2923650         .
8160 1:  1991              .               .
8161     .
8163   10001 @key{RET} 1991      -               365 *           -
8164 @end group
8165 @end smallexample
8167 @c [fix-ref Date Forms]
8168 @noindent
8169 There will be 1943 leap years before the year 10001.  (Assuming,
8170 of course, that the algorithm for computing leap years remains
8171 unchanged for that long.  @xref{Date Forms}, for some interesting
8172 background information in that regard.)
8174 @node Types Answer 7, Types Answer 8, Types Answer 6, Answers to Exercises
8175 @subsection Types Tutorial Exercise 7
8177 @noindent
8178 The relative errors must be converted to absolute errors so that
8179 @samp{+/-} notation may be used.
8181 @smallexample
8182 @group
8183 1:  1.              2:  1.
8184     .               1:  0.2
8185                         .
8187     20 @key{RET} .05 *        4 @key{RET} .05 *
8188 @end group
8189 @end smallexample
8191 Now we simply chug through the formula.
8193 @smallexample
8194 @group
8195 1:  19.7392088022    1:  394.78 +/- 19.739    1:  6316.5 +/- 706.21
8196     .                    .                        .
8198     2 P 2 ^ *            20 p 1 *                 4 p .2 @key{RET} 2 ^ *
8199 @end group
8200 @end smallexample
8202 It turns out the @kbd{v u} command will unpack an error form as
8203 well as a vector.  This saves us some retyping of numbers.
8205 @smallexample
8206 @group
8207 3:  6316.5 +/- 706.21     2:  6316.5 +/- 706.21
8208 2:  6316.5                1:  0.1118
8209 1:  706.21                    .
8210     .
8212     @key{RET} v u                   @key{TAB} /
8213 @end group
8214 @end smallexample
8216 @noindent
8217 Thus the volume is 6316 cubic centimeters, within about 11 percent.
8219 @node Types Answer 8, Types Answer 9, Types Answer 7, Answers to Exercises
8220 @subsection Types Tutorial Exercise 8
8222 @noindent
8223 The first answer is pretty simple:  @samp{1 / (0 .. 10) = (0.1 .. inf)}.
8224 Since a number in the interval @samp{(0 .. 10)} can get arbitrarily
8225 close to zero, its reciprocal can get arbitrarily large, so the answer
8226 is an interval that effectively means, ``any number greater than 0.1''
8227 but with no upper bound.
8229 The second answer, similarly, is @samp{1 / (-10 .. 0) = (-inf .. -0.1)}.
8231 Calc normally treats division by zero as an error, so that the formula
8232 @w{@samp{1 / 0}} is left unsimplified.  Our third problem,
8233 @w{@samp{1 / [0 .. 10]}}, also (potentially) divides by zero because zero
8234 is now a member of the interval.  So Calc leaves this one unevaluated, too.
8236 If you turn on Infinite mode by pressing @kbd{m i}, you will
8237 instead get the answer @samp{[0.1 .. inf]}, which includes infinity
8238 as a possible value.
8240 The fourth calculation, @samp{1 / (-10 .. 10)}, has the same problem.
8241 Zero is buried inside the interval, but it's still a possible value.
8242 It's not hard to see that the actual result of @samp{1 / (-10 .. 10)}
8243 will be either greater than @mathit{0.1}, or less than @mathit{-0.1}.  Thus
8244 the interval goes from minus infinity to plus infinity, with a ``hole''
8245 in it from @mathit{-0.1} to @mathit{0.1}.  Calc doesn't have any way to
8246 represent this, so it just reports @samp{[-inf .. inf]} as the answer.
8247 It may be disappointing to hear ``the answer lies somewhere between
8248 minus infinity and plus infinity, inclusive,'' but that's the best
8249 that interval arithmetic can do in this case.
8251 @node Types Answer 9, Types Answer 10, Types Answer 8, Answers to Exercises
8252 @subsection Types Tutorial Exercise 9
8254 @smallexample
8255 @group
8256 1:  [-3 .. 3]       2:  [-3 .. 3]     2:  [0 .. 9]
8257     .               1:  [0 .. 9]      1:  [-9 .. 9]
8258                         .                 .
8260     [ 3 n .. 3 ]        @key{RET} 2 ^           @key{TAB} @key{RET} *
8261 @end group
8262 @end smallexample
8264 @noindent
8265 In the first case the result says, ``if a number is between @mathit{-3} and
8266 3, its square is between 0 and 9.''  The second case says, ``the product
8267 of two numbers each between @mathit{-3} and 3 is between @mathit{-9} and 9.''
8269 An interval form is not a number; it is a symbol that can stand for
8270 many different numbers.  Two identical-looking interval forms can stand
8271 for different numbers.
8273 The same issue arises when you try to square an error form.
8275 @node Types Answer 10, Types Answer 11, Types Answer 9, Answers to Exercises
8276 @subsection Types Tutorial Exercise 10
8278 @noindent
8279 Testing the first number, we might arbitrarily choose 17 for @expr{x}.
8281 @smallexample
8282 @group
8283 1:  17 mod 811749613   2:  17 mod 811749613   1:  533694123 mod 811749613
8284     .                      811749612              .
8285                            .
8287     17 M 811749613 @key{RET}     811749612              ^
8288 @end group
8289 @end smallexample
8291 @noindent
8292 Since 533694123 is (considerably) different from 1, the number 811749613
8293 must not be prime.
8295 It's awkward to type the number in twice as we did above.  There are
8296 various ways to avoid this, and algebraic entry is one.  In fact, using
8297 a vector mapping operation we can perform several tests at once.  Let's
8298 use this method to test the second number.
8300 @smallexample
8301 @group
8302 2:  [17, 42, 100000]               1:  [1 mod 15485863, 1 mod ... ]
8303 1:  15485863                           .
8304     .
8306  [17 42 100000] 15485863 @key{RET}           V M ' ($$ mod $)^($-1) @key{RET}
8307 @end group
8308 @end smallexample
8310 @noindent
8311 The result is three ones (modulo @expr{n}), so it's very probable that
8312 15485863 is prime.  (In fact, this number is the millionth prime.)
8314 Note that the functions @samp{($$^($-1)) mod $} or @samp{$$^($-1) % $}
8315 would have been hopelessly inefficient, since they would have calculated
8316 the power using full integer arithmetic.
8318 Calc has a @kbd{k p} command that does primality testing.  For small
8319 numbers it does an exact test; for large numbers it uses a variant
8320 of the Fermat test we used here.  You can use @kbd{k p} repeatedly
8321 to prove that a large integer is prime with any desired probability.
8323 @node Types Answer 11, Types Answer 12, Types Answer 10, Answers to Exercises
8324 @subsection Types Tutorial Exercise 11
8326 @noindent
8327 There are several ways to insert a calculated number into an HMS form.
8328 One way to convert a number of seconds to an HMS form is simply to
8329 multiply the number by an HMS form representing one second:
8331 @smallexample
8332 @group
8333 1:  31415926.5359     2:  31415926.5359     1:  8726@@ 38' 46.5359"
8334     .                 1:  0@@ 0' 1"              .
8335                           .
8337     P 1e7 *               0@@ 0' 1"              *
8339 @end group
8340 @end smallexample
8341 @noindent
8342 @smallexample
8343 @group
8344 2:  8726@@ 38' 46.5359"             1:  6@@ 6' 2.5359" mod 24@@ 0' 0"
8345 1:  15@@ 27' 16" mod 24@@ 0' 0"          .
8346     .
8348     x time @key{RET}                         +
8349 @end group
8350 @end smallexample
8352 @noindent
8353 It will be just after six in the morning.
8355 The algebraic @code{hms} function can also be used to build an
8356 HMS form:
8358 @smallexample
8359 @group
8360 1:  hms(0, 0, 10000000. pi)       1:  8726@@ 38' 46.5359"
8361     .                                 .
8363   ' hms(0, 0, 1e7 pi) @key{RET}             =
8364 @end group
8365 @end smallexample
8367 @noindent
8368 The @kbd{=} key is necessary to evaluate the symbol @samp{pi} to
8369 the actual number 3.14159...
8371 @node Types Answer 12, Types Answer 13, Types Answer 11, Answers to Exercises
8372 @subsection Types Tutorial Exercise 12
8374 @noindent
8375 As we recall, there are 17 songs of about 2 minutes and 47 seconds
8376 each.
8378 @smallexample
8379 @group
8380 2:  0@@ 2' 47"                    1:  [0@@ 3' 7" .. 0@@ 3' 47"]
8381 1:  [0@@ 0' 20" .. 0@@ 1' 0"]          .
8382     .
8384     [ 0@@ 20" .. 0@@ 1' ]              +
8386 @end group
8387 @end smallexample
8388 @noindent
8389 @smallexample
8390 @group
8391 1:  [0@@ 52' 59." .. 1@@ 4' 19."]
8392     .
8394     17 *
8395 @end group
8396 @end smallexample
8398 @noindent
8399 No matter how long it is, the album will fit nicely on one CD.
8401 @node Types Answer 13, Types Answer 14, Types Answer 12, Answers to Exercises
8402 @subsection Types Tutorial Exercise 13
8404 @noindent
8405 Type @kbd{' 1 yr @key{RET} u c s @key{RET}}.  The answer is 31557600 seconds.
8407 @node Types Answer 14, Types Answer 15, Types Answer 13, Answers to Exercises
8408 @subsection Types Tutorial Exercise 14
8410 @noindent
8411 How long will it take for a signal to get from one end of the computer
8412 to the other?
8414 @smallexample
8415 @group
8416 1:  m / c         1:  3.3356 ns
8417     .                 .
8419  ' 1 m / c @key{RET}        u c ns @key{RET}
8420 @end group
8421 @end smallexample
8423 @noindent
8424 (Recall, @samp{c} is a ``unit'' corresponding to the speed of light.)
8426 @smallexample
8427 @group
8428 1:  3.3356 ns     1:  0.81356
8429 2:  4.1 ns            .
8430     .
8432   ' 4.1 ns @key{RET}        /
8433 @end group
8434 @end smallexample
8436 @noindent
8437 Thus a signal could take up to 81 percent of a clock cycle just to
8438 go from one place to another inside the computer, assuming the signal
8439 could actually attain the full speed of light.  Pretty tight!
8441 @node Types Answer 15, Algebra Answer 1, Types Answer 14, Answers to Exercises
8442 @subsection Types Tutorial Exercise 15
8444 @noindent
8445 The speed limit is 55 miles per hour on most highways.  We want to
8446 find the ratio of Sam's speed to the US speed limit.
8448 @smallexample
8449 @group
8450 1:  55 mph         2:  55 mph           3:  11 hr mph / yd
8451     .              1:  5 yd / hr            .
8452                        .
8454   ' 55 mph @key{RET}       ' 5 yd/hr @key{RET}          /
8455 @end group
8456 @end smallexample
8458 The @kbd{u s} command cancels out these units to get a plain
8459 number.  Now we take the logarithm base two to find the final
8460 answer, assuming that each successive pill doubles his speed.
8462 @smallexample
8463 @group
8464 1:  19360.       2:  19360.       1:  14.24
8465     .            1:  2                .
8466                      .
8468     u s              2                B
8469 @end group
8470 @end smallexample
8472 @noindent
8473 Thus Sam can take up to 14 pills without a worry.
8475 @node Algebra Answer 1, Algebra Answer 2, Types Answer 15, Answers to Exercises
8476 @subsection Algebra Tutorial Exercise 1
8478 @noindent
8479 @c [fix-ref Declarations]
8480 The result @samp{sqrt(x)^2} is simplified back to @expr{x} by the
8481 Calculator, but @samp{sqrt(x^2)} is not.  (Consider what happens
8482 if @w{@expr{x = -4}}.)  If @expr{x} is real, this formula could be
8483 simplified to @samp{abs(x)}, but for general complex arguments even
8484 that is not safe.  (@xref{Declarations}, for a way to tell Calc
8485 that @expr{x} is known to be real.)
8487 @node Algebra Answer 2, Algebra Answer 3, Algebra Answer 1, Answers to Exercises
8488 @subsection Algebra Tutorial Exercise 2
8490 @noindent
8491 Suppose our roots are @expr{[a, b, c]}.  We want a polynomial which
8492 is zero when @expr{x} is any of these values.  The trivial polynomial
8493 @expr{x-a} is zero when @expr{x=a}, so the product @expr{(x-a)(x-b)(x-c)}
8494 will do the job.  We can use @kbd{a c x} to write this in a more
8495 familiar form.
8497 @smallexample
8498 @group
8499 1:  34 x - 24 x^3          1:  [1.19023, -1.19023, 0]
8500     .                          .
8502     r 2                        a P x @key{RET}
8504 @end group
8505 @end smallexample
8506 @noindent
8507 @smallexample
8508 @group
8509 1:  [x - 1.19023, x + 1.19023, x]     1:  x*(x + 1.19023) (x - 1.19023)
8510     .                                     .
8512     V M ' x-$ @key{RET}                         V R *
8514 @end group
8515 @end smallexample
8516 @noindent
8517 @smallexample
8518 @group
8519 1:  x^3 - 1.41666 x        1:  34 x - 24 x^3
8520     .                          .
8522     a c x @key{RET}                  24 n *  a x
8523 @end group
8524 @end smallexample
8526 @noindent
8527 Sure enough, our answer (multiplied by a suitable constant) is the
8528 same as the original polynomial.
8530 @node Algebra Answer 3, Algebra Answer 4, Algebra Answer 2, Answers to Exercises
8531 @subsection Algebra Tutorial Exercise 3
8533 @smallexample
8534 @group
8535 1:  x sin(pi x)         1:  sin(pi x) / pi^2 - x cos(pi x) / pi
8536     .                       .
8538   ' x sin(pi x) @key{RET}   m r   a i x @key{RET}
8540 @end group
8541 @end smallexample
8542 @noindent
8543 @smallexample
8544 @group
8545 1:  [y, 1]
8546 2:  sin(pi x) / pi^2 - x cos(pi x) / pi
8547     .
8549   ' [y,1] @key{RET} @key{TAB}
8551 @end group
8552 @end smallexample
8553 @noindent
8554 @smallexample
8555 @group
8556 1:  [sin(pi y) / pi^2 - y cos(pi y) / pi, 1 / pi]
8557     .
8559     V M $ @key{RET}
8561 @end group
8562 @end smallexample
8563 @noindent
8564 @smallexample
8565 @group
8566 1:  sin(pi y) / pi^2 - y cos(pi y) / pi - 1 / pi
8567     .
8569     V R -
8571 @end group
8572 @end smallexample
8573 @noindent
8574 @smallexample
8575 @group
8576 1:  sin(3.14159 y) / 9.8696 - y cos(3.14159 y) / 3.14159 - 0.3183
8577     .
8579     =
8581 @end group
8582 @end smallexample
8583 @noindent
8584 @smallexample
8585 @group
8586 1:  [0., -0.95493, 0.63662, -1.5915, 1.2732]
8587     .
8589     v x 5 @key{RET}  @key{TAB}  V M $ @key{RET}
8590 @end group
8591 @end smallexample
8593 @node Algebra Answer 4, Rewrites Answer 1, Algebra Answer 3, Answers to Exercises
8594 @subsection Algebra Tutorial Exercise 4
8596 @noindent
8597 The hard part is that @kbd{V R +} is no longer sufficient to add up all
8598 the contributions from the slices, since the slices have varying
8599 coefficients.  So first we must come up with a vector of these
8600 coefficients.  Here's one way:
8602 @smallexample
8603 @group
8604 2:  -1                 2:  3                    1:  [4, 2, ..., 4]
8605 1:  [1, 2, ..., 9]     1:  [-1, 1, ..., -1]         .
8606     .                      .
8608     1 n v x 9 @key{RET}          V M ^  3 @key{TAB}             -
8610 @end group
8611 @end smallexample
8612 @noindent
8613 @smallexample
8614 @group
8615 1:  [4, 2, ..., 4, 1]      1:  [1, 4, 2, ..., 4, 1]
8616     .                          .
8618     1 |                        1 @key{TAB} |
8619 @end group
8620 @end smallexample
8622 @noindent
8623 Now we compute the function values.  Note that for this method we need
8624 eleven values, including both endpoints of the desired interval.
8626 @smallexample
8627 @group
8628 2:  [1, 4, 2, ..., 4, 1]
8629 1:  [1, 1.1, 1.2,  ...  , 1.8, 1.9, 2.]
8630     .
8632  11 @key{RET} 1 @key{RET} .1 @key{RET}  C-u v x
8634 @end group
8635 @end smallexample
8636 @noindent
8637 @smallexample
8638 @group
8639 2:  [1, 4, 2, ..., 4, 1]
8640 1:  [0., 0.084941, 0.16993, ... ]
8641     .
8643     ' sin(x) ln(x) @key{RET}   m r  p 5 @key{RET}   V M $ @key{RET}
8644 @end group
8645 @end smallexample
8647 @noindent
8648 Once again this calls for @kbd{V M * V R +}; a simple @kbd{*} does the
8649 same thing.
8651 @smallexample
8652 @group
8653 1:  11.22      1:  1.122      1:  0.374
8654     .              .              .
8656     *              .1 *           3 /
8657 @end group
8658 @end smallexample
8660 @noindent
8661 Wow!  That's even better than the result from the Taylor series method.
8663 @node Rewrites Answer 1, Rewrites Answer 2, Algebra Answer 4, Answers to Exercises
8664 @subsection Rewrites Tutorial Exercise 1
8666 @noindent
8667 We'll use Big mode to make the formulas more readable.
8669 @smallexample
8670 @group
8671                                            ___
8672                                           V 2  + 2
8673 1:  (2 + sqrt(2)) / (1 + sqrt(2))     1:  ---------
8674     .                                      ___
8675                                           V 2  + 1
8677                                           .
8679   ' (2+sqrt(2)) / (1+sqrt(2)) @key{RET}         d B
8680 @end group
8681 @end smallexample
8683 @noindent
8684 Multiplying by the conjugate helps because @expr{(a+b) (a-b) = a^2 - b^2}.
8686 @smallexample
8687 @group
8688           ___    ___
8689 1:  (2 + V 2 ) (V 2  - 1)
8690     .
8692   a r a/(b+c) := a*(b-c) / (b^2-c^2) @key{RET}
8694 @end group
8695 @end smallexample
8696 @noindent
8697 @smallexample
8698 @group
8699      ___
8700 1:  V 2 
8701     .
8703   a r a*(b+c) := a*b + a*c
8704 @end group
8705 @end smallexample
8707 @noindent
8708 (We could have used @kbd{a x} instead of a rewrite rule for the
8709 second step.)
8711 The multiply-by-conjugate rule turns out to be useful in many
8712 different circumstances, such as when the denominator involves
8713 sines and cosines or the imaginary constant @code{i}.
8715 @node Rewrites Answer 2, Rewrites Answer 3, Rewrites Answer 1, Answers to Exercises
8716 @subsection Rewrites Tutorial Exercise 2
8718 @noindent
8719 Here is the rule set:
8721 @smallexample
8722 @group
8723 [ fib(n) := fib(n, 1, 1) :: integer(n) :: n >= 1,
8724   fib(1, x, y) := x,
8725   fib(n, x, y) := fib(n-1, y, x+y) ]
8726 @end group
8727 @end smallexample
8729 @noindent
8730 The first rule turns a one-argument @code{fib} that people like to write
8731 into a three-argument @code{fib} that makes computation easier.  The
8732 second rule converts back from three-argument form once the computation
8733 is done.  The third rule does the computation itself.  It basically
8734 says that if @expr{x} and @expr{y} are two consecutive Fibonacci numbers,
8735 then @expr{y} and @expr{x+y} are the next (overlapping) pair of Fibonacci
8736 numbers.
8738 Notice that because the number @expr{n} was ``validated'' by the
8739 conditions on the first rule, there is no need to put conditions on
8740 the other rules because the rule set would never get that far unless
8741 the input were valid.  That further speeds computation, since no
8742 extra conditions need to be checked at every step.
8744 Actually, a user with a nasty sense of humor could enter a bad
8745 three-argument @code{fib} call directly, say, @samp{fib(0, 1, 1)},
8746 which would get the rules into an infinite loop.  One thing that would
8747 help keep this from happening by accident would be to use something like
8748 @samp{ZzFib} instead of @code{fib} as the name of the three-argument
8749 function.
8751 @node Rewrites Answer 3, Rewrites Answer 4, Rewrites Answer 2, Answers to Exercises
8752 @subsection Rewrites Tutorial Exercise 3
8754 @noindent
8755 He got an infinite loop.  First, Calc did as expected and rewrote
8756 @w{@samp{2 + 3 x}} to @samp{f(2, 3, x)}.  Then it looked for ways to
8757 apply the rule again, and found that @samp{f(2, 3, x)} looks like
8758 @samp{a + b x} with @w{@samp{a = 0}} and @samp{b = 1}, so it rewrote to
8759 @samp{f(0, 1, f(2, 3, x))}.  It then wrapped another @samp{f(0, 1, ...)}
8760 around that, and so on, ad infinitum.  Joe should have used @kbd{M-1 a r}
8761 to make sure the rule applied only once.
8763 (Actually, even the first step didn't work as he expected.  What Calc
8764 really gives for @kbd{M-1 a r} in this situation is @samp{f(3 x, 1, 2)},
8765 treating 2 as the ``variable,'' and @samp{3 x} as a constant being added
8766 to it.  While this may seem odd, it's just as valid a solution as the
8767 ``obvious'' one.  One way to fix this would be to add the condition
8768 @samp{:: variable(x)} to the rule, to make sure the thing that matches
8769 @samp{x} is indeed a variable, or to change @samp{x} to @samp{quote(x)}
8770 on the lefthand side, so that the rule matches the actual variable
8771 @samp{x} rather than letting @samp{x} stand for something else.)
8773 @node Rewrites Answer 4, Rewrites Answer 5, Rewrites Answer 3, Answers to Exercises
8774 @subsection Rewrites Tutorial Exercise 4
8776 @noindent
8777 @ignore
8778 @starindex
8779 @end ignore
8780 @tindex seq
8781 Here is a suitable set of rules to solve the first part of the problem:
8783 @smallexample
8784 @group
8785 [ seq(n, c) := seq(n/2,  c+1) :: n%2 = 0,
8786   seq(n, c) := seq(3n+1, c+1) :: n%2 = 1 :: n > 1 ]
8787 @end group
8788 @end smallexample
8790 Given the initial formula @samp{seq(6, 0)}, application of these
8791 rules produces the following sequence of formulas:
8793 @example
8794 seq( 3, 1)
8795 seq(10, 2)
8796 seq( 5, 3)
8797 seq(16, 4)
8798 seq( 8, 5)
8799 seq( 4, 6)
8800 seq( 2, 7)
8801 seq( 1, 8)
8802 @end example
8804 @noindent
8805 whereupon neither of the rules match, and rewriting stops.
8807 We can pretty this up a bit with a couple more rules:
8809 @smallexample
8810 @group
8811 [ seq(n) := seq(n, 0),
8812   seq(1, c) := c,
8813   ... ]
8814 @end group
8815 @end smallexample
8817 @noindent
8818 Now, given @samp{seq(6)} as the starting configuration, we get 8
8819 as the result.
8821 The change to return a vector is quite simple:
8823 @smallexample
8824 @group
8825 [ seq(n) := seq(n, []) :: integer(n) :: n > 0,
8826   seq(1, v) := v | 1,
8827   seq(n, v) := seq(n/2,  v | n) :: n%2 = 0,
8828   seq(n, v) := seq(3n+1, v | n) :: n%2 = 1 ]
8829 @end group
8830 @end smallexample
8832 @noindent
8833 Given @samp{seq(6)}, the result is @samp{[6, 3, 10, 5, 16, 8, 4, 2, 1]}.
8835 Notice that the @expr{n > 1} guard is no longer necessary on the last
8836 rule since the @expr{n = 1} case is now detected by another rule.
8837 But a guard has been added to the initial rule to make sure the
8838 initial value is suitable before the computation begins.
8840 While still a good idea, this guard is not as vitally important as it
8841 was for the @code{fib} function, since calling, say, @samp{seq(x, [])}
8842 will not get into an infinite loop.  Calc will not be able to prove
8843 the symbol @samp{x} is either even or odd, so none of the rules will
8844 apply and the rewrites will stop right away.
8846 @node Rewrites Answer 5, Rewrites Answer 6, Rewrites Answer 4, Answers to Exercises
8847 @subsection Rewrites Tutorial Exercise 5
8849 @noindent
8850 @ignore
8851 @starindex
8852 @end ignore
8853 @tindex nterms
8854 If @expr{x} is the sum @expr{a + b}, then `@tfn{nterms(}@var{x}@tfn{)}' must
8855 be `@tfn{nterms(}@var{a}@tfn{)}' plus `@tfn{nterms(}@var{b}@tfn{)}'.  If @expr{x}
8856 is not a sum, then `@tfn{nterms(}@var{x}@tfn{)}' = 1.
8858 @smallexample
8859 @group
8860 [ nterms(a + b) := nterms(a) + nterms(b),
8861   nterms(x)     := 1 ]
8862 @end group
8863 @end smallexample
8865 @noindent
8866 Here we have taken advantage of the fact that earlier rules always
8867 match before later rules; @samp{nterms(x)} will only be tried if we
8868 already know that @samp{x} is not a sum.
8870 @node Rewrites Answer 6, Programming Answer 1, Rewrites Answer 5, Answers to Exercises
8871 @subsection Rewrites Tutorial Exercise 6
8873 @noindent
8874 Here is a rule set that will do the job:
8876 @smallexample
8877 @group
8878 [ a*(b + c) := a*b + a*c,
8879   opt(a) O(x^n) + opt(b) O(x^m) := O(x^n) :: n <= m
8880      :: constant(a) :: constant(b),
8881   opt(a) O(x^n) + opt(b) x^m := O(x^n) :: n <= m
8882      :: constant(a) :: constant(b),
8883   a O(x^n) := O(x^n) :: constant(a),
8884   x^opt(m) O(x^n) := O(x^(n+m)),
8885   O(x^n) O(x^m) := O(x^(n+m)) ]
8886 @end group
8887 @end smallexample
8889 If we really want the @kbd{+} and @kbd{*} keys to operate naturally
8890 on power series, we should put these rules in @code{EvalRules}.  For
8891 testing purposes, it is better to put them in a different variable,
8892 say, @code{O}, first.
8894 The first rule just expands products of sums so that the rest of the
8895 rules can assume they have an expanded-out polynomial to work with.
8896 Note that this rule does not mention @samp{O} at all, so it will
8897 apply to any product-of-sum it encounters---this rule may surprise
8898 you if you put it into @code{EvalRules}!
8900 In the second rule, the sum of two O's is changed to the smaller O.
8901 The optional constant coefficients are there mostly so that
8902 @samp{O(x^2) - O(x^3)} and @samp{O(x^3) - O(x^2)} are handled
8903 as well as @samp{O(x^2) + O(x^3)}.
8905 The third rule absorbs higher powers of @samp{x} into O's.
8907 The fourth rule says that a constant times a negligible quantity
8908 is still negligible.  (This rule will also match @samp{O(x^3) / 4},
8909 with @samp{a = 1/4}.)
8911 The fifth rule rewrites, for example, @samp{x^2 O(x^3)} to @samp{O(x^5)}.
8912 (It is easy to see that if one of these forms is negligible, the other
8913 is, too.)  Notice the @samp{x^opt(m)} to pick up terms like
8914 @w{@samp{x O(x^3)}}.  Optional powers will match @samp{x} as @samp{x^1}
8915 but not 1 as @samp{x^0}.  This turns out to be exactly what we want here.
8917 The sixth rule is the corresponding rule for products of two O's.
8919 Another way to solve this problem would be to create a new ``data type''
8920 that represents truncated power series.  We might represent these as
8921 function calls @samp{series(@var{coefs}, @var{x})} where @var{coefs} is
8922 a vector of coefficients for @expr{x^0}, @expr{x^1}, @expr{x^2}, and so
8923 on.  Rules would exist for sums and products of such @code{series}
8924 objects, and as an optional convenience could also know how to combine a
8925 @code{series} object with a normal polynomial.  (With this, and with a
8926 rule that rewrites @samp{O(x^n)} to the equivalent @code{series} form,
8927 you could still enter power series in exactly the same notation as
8928 before.)  Operations on such objects would probably be more efficient,
8929 although the objects would be a bit harder to read.
8931 @c [fix-ref Compositions]
8932 Some other symbolic math programs provide a power series data type
8933 similar to this.  Mathematica, for example, has an object that looks
8934 like @samp{PowerSeries[@var{x}, @var{x0}, @var{coefs}, @var{nmin},
8935 @var{nmax}, @var{den}]}, where @var{x0} is the point about which the
8936 power series is taken (we've been assuming this was always zero),
8937 and @var{nmin}, @var{nmax}, and @var{den} allow pseudo-power-series
8938 with fractional or negative powers.  Also, the @code{PowerSeries}
8939 objects have a special display format that makes them look like
8940 @samp{2 x^2 + O(x^4)} when they are printed out.  (@xref{Compositions},
8941 for a way to do this in Calc, although for something as involved as
8942 this it would probably be better to write the formatting routine
8943 in Lisp.)
8945 @node Programming Answer 1, Programming Answer 2, Rewrites Answer 6, Answers to Exercises
8946 @subsection Programming Tutorial Exercise 1
8948 @noindent
8949 Just enter the formula @samp{ninteg(sin(t)/t, t, 0, x)}, type
8950 @kbd{Z F}, and answer the questions.  Since this formula contains two
8951 variables, the default argument list will be @samp{(t x)}.  We want to
8952 change this to @samp{(x)} since @expr{t} is really a dummy variable
8953 to be used within @code{ninteg}.
8955 The exact keystrokes are @kbd{Z F s Si @key{RET} @key{RET} C-b C-b @key{DEL} @key{DEL} @key{RET} y}.
8956 (The @kbd{C-b C-b @key{DEL} @key{DEL}} are what fix the argument list.)
8958 @node Programming Answer 2, Programming Answer 3, Programming Answer 1, Answers to Exercises
8959 @subsection Programming Tutorial Exercise 2
8961 @noindent
8962 One way is to move the number to the top of the stack, operate on
8963 it, then move it back:  @kbd{C-x ( M-@key{TAB} n M-@key{TAB} M-@key{TAB} C-x )}.
8965 Another way is to negate the top three stack entries, then negate
8966 again the top two stack entries:  @kbd{C-x ( M-3 n M-2 n C-x )}.
8968 Finally, it turns out that a negative prefix argument causes a
8969 command like @kbd{n} to operate on the specified stack entry only,
8970 which is just what we want:  @kbd{C-x ( M-- 3 n C-x )}.
8972 Just for kicks, let's also do it algebraically:
8973 @w{@kbd{C-x ( ' -$$$, $$, $ @key{RET} C-x )}}.
8975 @node Programming Answer 3, Programming Answer 4, Programming Answer 2, Answers to Exercises
8976 @subsection Programming Tutorial Exercise 3
8978 @noindent
8979 Each of these functions can be computed using the stack, or using
8980 algebraic entry, whichever way you prefer:
8982 @noindent
8983 Computing
8984 @texline @math{\displaystyle{\sin x \over x}}:
8985 @infoline @expr{sin(x) / x}:
8987 Using the stack:  @kbd{C-x (  @key{RET} S @key{TAB} /  C-x )}.
8989 Using algebraic entry:  @kbd{C-x (  ' sin($)/$ @key{RET}  C-x )}.
8991 @noindent
8992 Computing the logarithm:
8994 Using the stack:  @kbd{C-x (  @key{TAB} B  C-x )}
8996 Using algebraic entry:  @kbd{C-x (  ' log($,$$) @key{RET}  C-x )}.
8998 @noindent
8999 Computing the vector of integers:
9001 Using the stack:  @kbd{C-x (  1 @key{RET} 1  C-u v x  C-x )}.  (Recall that
9002 @kbd{C-u v x} takes the vector size, starting value, and increment
9003 from the stack.)
9005 Alternatively:  @kbd{C-x (  ~ v x  C-x )}.  (The @kbd{~} key pops a
9006 number from the stack and uses it as the prefix argument for the
9007 next command.)
9009 Using algebraic entry:  @kbd{C-x (  ' index($) @key{RET}  C-x )}.
9011 @node Programming Answer 4, Programming Answer 5, Programming Answer 3, Answers to Exercises
9012 @subsection Programming Tutorial Exercise 4
9014 @noindent
9015 Here's one way:  @kbd{C-x ( @key{RET} V R + @key{TAB} v l / C-x )}.
9017 @node Programming Answer 5, Programming Answer 6, Programming Answer 4, Answers to Exercises
9018 @subsection Programming Tutorial Exercise 5
9020 @smallexample
9021 @group
9022 2:  1              1:  1.61803398502         2:  1.61803398502
9023 1:  20                 .                     1:  1.61803398875
9024     .                                            .
9026    1 @key{RET} 20         Z < & 1 + Z >                I H P
9027 @end group
9028 @end smallexample
9030 @noindent
9031 This answer is quite accurate.
9033 @node Programming Answer 6, Programming Answer 7, Programming Answer 5, Answers to Exercises
9034 @subsection Programming Tutorial Exercise 6
9036 @noindent
9037 Here is the matrix:
9039 @example
9040 [ [ 0, 1 ]   * [a, b] = [b, a + b]
9041   [ 1, 1 ] ]
9042 @end example
9044 @noindent
9045 Thus @samp{[0, 1; 1, 1]^n * [1, 1]} computes Fibonacci numbers @expr{n+1}
9046 and @expr{n+2}.  Here's one program that does the job:
9048 @example
9049 C-x ( ' [0, 1; 1, 1] ^ ($-1) * [1, 1] @key{RET} v u @key{DEL} C-x )
9050 @end example
9052 @noindent
9053 This program is quite efficient because Calc knows how to raise a
9054 matrix (or other value) to the power @expr{n} in only
9055 @texline @math{\log_2 n}
9056 @infoline @expr{log(n,2)}
9057 steps.  For example, this program can compute the 1000th Fibonacci
9058 number (a 209-digit integer!) in about 10 steps; even though the
9059 @kbd{Z < ... Z >} solution had much simpler steps, it would have
9060 required so many steps that it would not have been practical.
9062 @node Programming Answer 7, Programming Answer 8, Programming Answer 6, Answers to Exercises
9063 @subsection Programming Tutorial Exercise 7
9065 @noindent
9066 The trick here is to compute the harmonic numbers differently, so that
9067 the loop counter itself accumulates the sum of reciprocals.  We use
9068 a separate variable to hold the integer counter.
9070 @smallexample
9071 @group
9072 1:  1          2:  1       1:  .
9073     .          1:  4
9074                    .
9076     1 t 1       1 @key{RET} 4      Z ( t 2 r 1 1 + s 1 & Z )
9077 @end group
9078 @end smallexample
9080 @noindent
9081 The body of the loop goes as follows:  First save the harmonic sum
9082 so far in variable 2.  Then delete it from the stack; the for loop
9083 itself will take care of remembering it for us.  Next, recall the
9084 count from variable 1, add one to it, and feed its reciprocal to
9085 the for loop to use as the step value.  The for loop will increase
9086 the ``loop counter'' by that amount and keep going until the
9087 loop counter exceeds 4.
9089 @smallexample
9090 @group
9091 2:  31                  3:  31
9092 1:  3.99498713092       2:  3.99498713092
9093     .                   1:  4.02724519544
9094                             .
9096     r 1 r 2                 @key{RET} 31 & +
9097 @end group
9098 @end smallexample
9100 Thus we find that the 30th harmonic number is 3.99, and the 31st
9101 harmonic number is 4.02.
9103 @node Programming Answer 8, Programming Answer 9, Programming Answer 7, Answers to Exercises
9104 @subsection Programming Tutorial Exercise 8
9106 @noindent
9107 The first step is to compute the derivative @expr{f'(x)} and thus
9108 the formula
9109 @texline @math{\displaystyle{x - {f(x) \over f'(x)}}}.
9110 @infoline @expr{x - f(x)/f'(x)}.
9112 (Because this definition is long, it will be repeated in concise form
9113 below.  You can use @w{@kbd{C-x * m}} to load it from there.  While you are
9114 entering a @kbd{Z ` Z '} body in a macro, Calc simply collects
9115 keystrokes without executing them.  In the following diagrams we'll
9116 pretend Calc actually executed the keystrokes as you typed them,
9117 just for purposes of illustration.)
9119 @smallexample
9120 @group
9121 2:  sin(cos(x)) - 0.5            3:  4.5
9122 1:  4.5                          2:  sin(cos(x)) - 0.5
9123     .                            1:  -(sin(x) cos(cos(x)))
9124                                      .
9126 ' sin(cos(x))-0.5 @key{RET} 4.5  m r  C-x ( Z `  @key{TAB} @key{RET} a d x @key{RET}
9128 @end group
9129 @end smallexample
9130 @noindent
9131 @smallexample
9132 @group
9133 2:  4.5
9134 1:  x + (sin(cos(x)) - 0.5) / sin(x) cos(cos(x))
9135     .
9137     /  ' x @key{RET} @key{TAB} -   t 1
9138 @end group
9139 @end smallexample
9141 Now, we enter the loop.  We'll use a repeat loop with a 20-repetition
9142 limit just in case the method fails to converge for some reason.
9143 (Normally, the @w{@kbd{Z /}} command will stop the loop before all 20
9144 repetitions are done.)
9146 @smallexample
9147 @group
9148 1:  4.5         3:  4.5                     2:  4.5
9149     .           2:  x + (sin(cos(x)) ...    1:  5.24196456928
9150                 1:  4.5                         .
9151                     .
9153   20 Z <          @key{RET} r 1 @key{TAB}                 s l x @key{RET}
9154 @end group
9155 @end smallexample
9157 This is the new guess for @expr{x}.  Now we compare it with the
9158 old one to see if we've converged.
9160 @smallexample
9161 @group
9162 3:  5.24196     2:  5.24196     1:  5.24196     1:  5.26345856348
9163 2:  5.24196     1:  0               .               .
9164 1:  4.5             .
9165     .
9167   @key{RET} M-@key{TAB}         a =             Z /             Z > Z ' C-x )
9168 @end group
9169 @end smallexample
9171 The loop converges in just a few steps to this value.  To check
9172 the result, we can simply substitute it back into the equation.
9174 @smallexample
9175 @group
9176 2:  5.26345856348
9177 1:  0.499999999997
9178     .
9180  @key{RET} ' sin(cos($)) @key{RET}
9181 @end group
9182 @end smallexample
9184 Let's test the new definition again:
9186 @smallexample
9187 @group
9188 2:  x^2 - 9           1:  3.
9189 1:  1                     .
9190     .
9192   ' x^2-9 @key{RET} 1           X
9193 @end group
9194 @end smallexample
9196 Once again, here's the full Newton's Method definition:
9198 @example
9199 @group
9200 C-x ( Z `  @key{TAB} @key{RET} a d x @key{RET}  /  ' x @key{RET} @key{TAB} -  t 1
9201            20 Z <  @key{RET} r 1 @key{TAB}  s l x @key{RET}
9202                    @key{RET} M-@key{TAB}  a =  Z /
9203               Z >
9204       Z '
9205 C-x )
9206 @end group
9207 @end example
9209 @c [fix-ref Nesting and Fixed Points]
9210 It turns out that Calc has a built-in command for applying a formula
9211 repeatedly until it converges to a number.  @xref{Nesting and Fixed Points},
9212 to see how to use it.
9214 @c [fix-ref Root Finding]
9215 Also, of course, @kbd{a R} is a built-in command that uses Newton's
9216 method (among others) to look for numerical solutions to any equation.
9217 @xref{Root Finding}.
9219 @node Programming Answer 9, Programming Answer 10, Programming Answer 8, Answers to Exercises
9220 @subsection Programming Tutorial Exercise 9
9222 @noindent
9223 The first step is to adjust @expr{z} to be greater than 5.  A simple
9224 ``for'' loop will do the job here.  If @expr{z} is less than 5, we
9225 reduce the problem using
9226 @texline @math{\psi(z) = \psi(z+1) - 1/z}.
9227 @infoline @expr{psi(z) = psi(z+1) - 1/z}.  We go
9228 on to compute
9229 @texline @math{\psi(z+1)},
9230 @infoline @expr{psi(z+1)},
9231 and remember to add back a factor of @expr{-1/z} when we're done.  This
9232 step is repeated until @expr{z > 5}.
9234 (Because this definition is long, it will be repeated in concise form
9235 below.  You can use @w{@kbd{C-x * m}} to load it from there.  While you are
9236 entering a @kbd{Z ` Z '} body in a macro, Calc simply collects
9237 keystrokes without executing them.  In the following diagrams we'll
9238 pretend Calc actually executed the keystrokes as you typed them,
9239 just for purposes of illustration.)
9241 @smallexample
9242 @group
9243 1:  1.             1:  1.
9244     .                  .
9246  1.0 @key{RET}       C-x ( Z `  s 1  0 t 2
9247 @end group
9248 @end smallexample
9250 Here, variable 1 holds @expr{z} and variable 2 holds the adjustment
9251 factor.  If @expr{z < 5}, we use a loop to increase it.
9253 (By the way, we started with @samp{1.0} instead of the integer 1 because
9254 otherwise the calculation below will try to do exact fractional arithmetic,
9255 and will never converge because fractions compare equal only if they
9256 are exactly equal, not just equal to within the current precision.)
9258 @smallexample
9259 @group
9260 3:  1.      2:  1.       1:  6.
9261 2:  1.      1:  1            .
9262 1:  5           .
9263     .
9265   @key{RET} 5        a <    Z [  5 Z (  & s + 2  1 s + 1  1 Z ) r 1  Z ]
9266 @end group
9267 @end smallexample
9269 Now we compute the initial part of the sum:
9270 @texline @math{\ln z - {1 \over 2z}}
9271 @infoline @expr{ln(z) - 1/2z}
9272 minus the adjustment factor.
9274 @smallexample
9275 @group
9276 2:  1.79175946923      2:  1.7084261359      1:  -0.57490719743
9277 1:  0.0833333333333    1:  2.28333333333         .
9278     .                      .
9280     L  r 1 2 * &           -  r 2                -
9281 @end group
9282 @end smallexample
9284 Now we evaluate the series.  We'll use another ``for'' loop counting
9285 up the value of @expr{2 n}.  (Calc does have a summation command,
9286 @kbd{a +}, but we'll use loops just to get more practice with them.)
9288 @smallexample
9289 @group
9290 3:  -0.5749       3:  -0.5749        4:  -0.5749      2:  -0.5749
9291 2:  2             2:  1:6            3:  1:6          1:  2.3148e-3
9292 1:  40            1:  2              2:  2                .
9293     .                 .              1:  36.
9294                                          .
9296    2 @key{RET} 40        Z ( @key{RET} k b @key{TAB}     @key{RET} r 1 @key{TAB} ^      * /
9298 @end group
9299 @end smallexample
9300 @noindent
9301 @smallexample
9302 @group
9303 3:  -0.5749       3:  -0.5772      2:  -0.5772     1:  -0.577215664892
9304 2:  -0.5749       2:  -0.5772      1:  0               .
9305 1:  2.3148e-3     1:  -0.5749          .
9306     .                 .
9308   @key{TAB} @key{RET} M-@key{TAB}       - @key{RET} M-@key{TAB}      a =     Z /    2  Z )  Z ' C-x )
9309 @end group
9310 @end smallexample
9312 This is the value of
9313 @texline @math{-\gamma},
9314 @infoline @expr{- gamma},
9315 with a slight bit of roundoff error.  To get a full 12 digits, let's use
9316 a higher precision:
9318 @smallexample
9319 @group
9320 2:  -0.577215664892      2:  -0.577215664892
9321 1:  1.                   1:  -0.577215664901532
9323     1. @key{RET}                   p 16 @key{RET} X
9324 @end group
9325 @end smallexample
9327 Here's the complete sequence of keystrokes:
9329 @example
9330 @group
9331 C-x ( Z `  s 1  0 t 2
9332            @key{RET} 5 a <  Z [  5 Z (  & s + 2  1 s + 1  1 Z ) r 1  Z ]
9333            L r 1 2 * & - r 2 -
9334            2 @key{RET} 40  Z (  @key{RET} k b @key{TAB} @key{RET} r 1 @key{TAB} ^ * /
9335                           @key{TAB} @key{RET} M-@key{TAB} - @key{RET} M-@key{TAB} a = Z /
9336                   2  Z )
9337       Z '
9338 C-x )
9339 @end group
9340 @end example
9342 @node Programming Answer 10, Programming Answer 11, Programming Answer 9, Answers to Exercises
9343 @subsection Programming Tutorial Exercise 10
9345 @noindent
9346 Taking the derivative of a term of the form @expr{x^n} will produce
9347 a term like
9348 @texline @math{n x^{n-1}}.
9349 @infoline @expr{n x^(n-1)}.
9350 Taking the derivative of a constant
9351 produces zero.  From this it is easy to see that the @expr{n}th
9352 derivative of a polynomial, evaluated at @expr{x = 0}, will equal the
9353 coefficient on the @expr{x^n} term times @expr{n!}.
9355 (Because this definition is long, it will be repeated in concise form
9356 below.  You can use @w{@kbd{C-x * m}} to load it from there.  While you are
9357 entering a @kbd{Z ` Z '} body in a macro, Calc simply collects
9358 keystrokes without executing them.  In the following diagrams we'll
9359 pretend Calc actually executed the keystrokes as you typed them,
9360 just for purposes of illustration.)
9362 @smallexample
9363 @group
9364 2:  5 x^4 + (x + 1)^2          3:  5 x^4 + (x + 1)^2
9365 1:  6                          2:  0
9366     .                          1:  6
9367                                    .
9369   ' 5 x^4 + (x+1)^2 @key{RET} 6        C-x ( Z `  [ ] t 1  0 @key{TAB}
9370 @end group
9371 @end smallexample
9373 @noindent
9374 Variable 1 will accumulate the vector of coefficients.
9376 @smallexample
9377 @group
9378 2:  0              3:  0                  2:  5 x^4 + ...
9379 1:  5 x^4 + ...    2:  5 x^4 + ...        1:  1
9380     .              1:  1                      .
9381                        .
9383    Z ( @key{TAB}         @key{RET} 0 s l x @key{RET}            M-@key{TAB} ! /  s | 1
9384 @end group
9385 @end smallexample
9387 @noindent
9388 Note that @kbd{s | 1} appends the top-of-stack value to the vector
9389 in a variable; it is completely analogous to @kbd{s + 1}.  We could
9390 have written instead, @kbd{r 1 @key{TAB} | t 1}.
9392 @smallexample
9393 @group
9394 1:  20 x^3 + 2 x + 2      1:  0         1:  [1, 2, 1, 0, 5, 0, 0]
9395     .                         .             .
9397     a d x @key{RET}                 1 Z )         @key{DEL} r 1  Z ' C-x )
9398 @end group
9399 @end smallexample
9401 To convert back, a simple method is just to map the coefficients
9402 against a table of powers of @expr{x}.
9404 @smallexample
9405 @group
9406 2:  [1, 2, 1, 0, 5, 0, 0]    2:  [1, 2, 1, 0, 5, 0, 0]
9407 1:  6                        1:  [0, 1, 2, 3, 4, 5, 6]
9408     .                            .
9410     6 @key{RET}                        1 + 0 @key{RET} 1 C-u v x
9412 @end group
9413 @end smallexample
9414 @noindent
9415 @smallexample
9416 @group
9417 2:  [1, 2, 1, 0, 5, 0, 0]    2:  1 + 2 x + x^2 + 5 x^4
9418 1:  [1, x, x^2, x^3, ... ]       .
9419     .
9421     ' x @key{RET} @key{TAB} V M ^            *
9422 @end group
9423 @end smallexample
9425 Once again, here are the whole polynomial to/from vector programs:
9427 @example
9428 @group
9429 C-x ( Z `  [ ] t 1  0 @key{TAB}
9430            Z (  @key{TAB} @key{RET} 0 s l x @key{RET} M-@key{TAB} ! /  s | 1
9431                 a d x @key{RET}
9432          1 Z ) r 1
9433       Z '
9434 C-x )
9436 C-x (  1 + 0 @key{RET} 1 C-u v x ' x @key{RET} @key{TAB} V M ^ *  C-x )
9437 @end group
9438 @end example
9440 @node Programming Answer 11, Programming Answer 12, Programming Answer 10, Answers to Exercises
9441 @subsection Programming Tutorial Exercise 11
9443 @noindent
9444 First we define a dummy program to go on the @kbd{z s} key.  The true
9445 @w{@kbd{z s}} key is supposed to take two numbers from the stack and
9446 return one number, so @key{DEL} as a dummy definition will make
9447 sure the stack comes out right.
9449 @smallexample
9450 @group
9451 2:  4          1:  4                         2:  4
9452 1:  2              .                         1:  2
9453     .                                            .
9455   4 @key{RET} 2       C-x ( @key{DEL} C-x )  Z K s @key{RET}       2
9456 @end group
9457 @end smallexample
9459 The last step replaces the 2 that was eaten during the creation
9460 of the dummy @kbd{z s} command.  Now we move on to the real
9461 definition.  The recurrence needs to be rewritten slightly,
9462 to the form @expr{s(n,m) = s(n-1,m-1) - (n-1) s(n-1,m)}.
9464 (Because this definition is long, it will be repeated in concise form
9465 below.  You can use @kbd{C-x * m} to load it from there.)
9467 @smallexample
9468 @group
9469 2:  4        4:  4       3:  4       2:  4
9470 1:  2        3:  2       2:  2       1:  2
9471     .        2:  4       1:  0           .
9472              1:  2           .
9473                  .
9475   C-x (       M-2 @key{RET}        a =         Z [  @key{DEL} @key{DEL} 1  Z :
9477 @end group
9478 @end smallexample
9479 @noindent
9480 @smallexample
9481 @group
9482 4:  4       2:  4                     2:  3      4:  3    4:  3    3:  3
9483 3:  2       1:  2                     1:  2      3:  2    3:  2    2:  2
9484 2:  2           .                         .      2:  3    2:  3    1:  3
9485 1:  0                                            1:  2    1:  1        .
9486     .                                                .        .
9488   @key{RET} 0   a = Z [  @key{DEL} @key{DEL} 0  Z :  @key{TAB} 1 - @key{TAB}   M-2 @key{RET}     1 -      z s
9489 @end group
9490 @end smallexample
9492 @noindent
9493 (Note that the value 3 that our dummy @kbd{z s} produces is not correct;
9494 it is merely a placeholder that will do just as well for now.)
9496 @smallexample
9497 @group
9498 3:  3               4:  3           3:  3       2:  3      1:  -6
9499 2:  3               3:  3           2:  3       1:  9          .
9500 1:  2               2:  3           1:  3           .
9501     .               1:  2               .
9502                         .
9504  M-@key{TAB} M-@key{TAB}     @key{TAB} @key{RET} M-@key{TAB}         z s          *          -
9506 @end group
9507 @end smallexample
9508 @noindent
9509 @smallexample
9510 @group
9511 1:  -6                          2:  4          1:  11      2:  11
9512     .                           1:  2              .       1:  11
9513                                     .                          .
9515   Z ] Z ] C-x )   Z K s @key{RET}      @key{DEL} 4 @key{RET} 2       z s      M-@key{RET} k s
9516 @end group
9517 @end smallexample
9519 Even though the result that we got during the definition was highly
9520 bogus, once the definition is complete the @kbd{z s} command gets
9521 the right answers.
9523 Here's the full program once again:
9525 @example
9526 @group
9527 C-x (  M-2 @key{RET} a =
9528        Z [  @key{DEL} @key{DEL} 1
9529        Z :  @key{RET} 0 a =
9530             Z [  @key{DEL} @key{DEL} 0
9531             Z :  @key{TAB} 1 - @key{TAB} M-2 @key{RET} 1 - z s
9532                  M-@key{TAB} M-@key{TAB} @key{TAB} @key{RET} M-@key{TAB} z s * -
9533             Z ]
9534        Z ]
9535 C-x )
9536 @end group
9537 @end example
9539 You can read this definition using @kbd{C-x * m} (@code{read-kbd-macro})
9540 followed by @kbd{Z K s}, without having to make a dummy definition
9541 first, because @code{read-kbd-macro} doesn't need to execute the
9542 definition as it reads it in.  For this reason, @code{C-x * m} is often
9543 the easiest way to create recursive programs in Calc.
9545 @node Programming Answer 12,  , Programming Answer 11, Answers to Exercises
9546 @subsection Programming Tutorial Exercise 12
9548 @noindent
9549 This turns out to be a much easier way to solve the problem.  Let's
9550 denote Stirling numbers as calls of the function @samp{s}.
9552 First, we store the rewrite rules corresponding to the definition of
9553 Stirling numbers in a convenient variable:
9555 @smallexample
9556 s e StirlingRules @key{RET}
9557 [ s(n,n) := 1  :: n >= 0,
9558   s(n,0) := 0  :: n > 0,
9559   s(n,m) := s(n-1,m-1) - (n-1) s(n-1,m) :: n >= m :: m >= 1 ]
9560 C-c C-c
9561 @end smallexample
9563 Now, it's just a matter of applying the rules:
9565 @smallexample
9566 @group
9567 2:  4          1:  s(4, 2)              1:  11
9568 1:  2              .                        .
9569     .
9571   4 @key{RET} 2       C-x (  ' s($$,$) @key{RET}     a r StirlingRules @key{RET}  C-x )
9572 @end group
9573 @end smallexample
9575 As in the case of the @code{fib} rules, it would be useful to put these
9576 rules in @code{EvalRules} and to add a @samp{:: remember} condition to
9577 the last rule.
9579 @c This ends the table-of-contents kludge from above:
9580 @tex
9581 \global\let\chapternofonts=\oldchapternofonts
9582 @end tex
9584 @c [reference]
9586 @node Introduction, Data Types, Tutorial, Top
9587 @chapter Introduction
9589 @noindent
9590 This chapter is the beginning of the Calc reference manual.
9591 It covers basic concepts such as the stack, algebraic and
9592 numeric entry, undo, numeric prefix arguments, etc.
9594 @c [when-split]
9595 @c (Chapter 2, the Tutorial, has been printed in a separate volume.)
9597 @menu
9598 * Basic Commands::
9599 * Help Commands::
9600 * Stack Basics::
9601 * Numeric Entry::
9602 * Algebraic Entry::
9603 * Quick Calculator::
9604 * Prefix Arguments::
9605 * Undo::
9606 * Error Messages::
9607 * Multiple Calculators::
9608 * Troubleshooting Commands::
9609 @end menu
9611 @node Basic Commands, Help Commands, Introduction, Introduction
9612 @section Basic Commands
9614 @noindent
9615 @pindex calc
9616 @pindex calc-mode
9617 @cindex Starting the Calculator
9618 @cindex Running the Calculator
9619 To start the Calculator in its standard interface, type @kbd{M-x calc}.
9620 By default this creates a pair of small windows, @samp{*Calculator*}
9621 and @samp{*Calc Trail*}.  The former displays the contents of the
9622 Calculator stack and is manipulated exclusively through Calc commands.
9623 It is possible (though not usually necessary) to create several Calc
9624 mode buffers each of which has an independent stack, undo list, and
9625 mode settings.  There is exactly one Calc Trail buffer; it records a
9626 list of the results of all calculations that have been done.  The
9627 Calc Trail buffer uses a variant of Calc mode, so Calculator commands
9628 still work when the trail buffer's window is selected.  It is possible
9629 to turn the trail window off, but the @samp{*Calc Trail*} buffer itself
9630 still exists and is updated silently.  @xref{Trail Commands}.
9632 @kindex C-x * c
9633 @kindex C-x * *
9634 @ignore
9635 @mindex @null
9636 @end ignore
9637 In most installations, the @kbd{C-x * c} key sequence is a more
9638 convenient way to start the Calculator.  Also, @kbd{C-x * *}
9639 is a synonym for @kbd{C-x * c} unless you last used Calc
9640 in its Keypad mode.
9642 @kindex x
9643 @kindex M-x
9644 @pindex calc-execute-extended-command
9645 Most Calc commands use one or two keystrokes.  Lower- and upper-case
9646 letters are distinct.  Commands may also be entered in full @kbd{M-x} form;
9647 for some commands this is the only form.  As a convenience, the @kbd{x}
9648 key (@code{calc-execute-extended-command})
9649 is like @kbd{M-x} except that it enters the initial string @samp{calc-}
9650 for you.  For example, the following key sequences are equivalent:
9651 @kbd{S}, @kbd{M-x calc-sin @key{RET}}, @kbd{x sin @key{RET}}.
9653 Although Calc is designed to be used from the keyboard, some of
9654 Calc's more common commands are available from a menu.  In the menu, the
9655 arguments to the functions are given by referring to their stack level
9656 numbers.
9658 @cindex Extensions module
9659 @cindex @file{calc-ext} module
9660 The Calculator exists in many parts.  When you type @kbd{C-x * c}, the
9661 Emacs ``auto-load'' mechanism will bring in only the first part, which
9662 contains the basic arithmetic functions.  The other parts will be
9663 auto-loaded the first time you use the more advanced commands like trig
9664 functions or matrix operations.  This is done to improve the response time
9665 of the Calculator in the common case when all you need to do is a
9666 little arithmetic.  If for some reason the Calculator fails to load an
9667 extension module automatically, you can force it to load all the
9668 extensions by using the @kbd{C-x * L} (@code{calc-load-everything})
9669 command.  @xref{Mode Settings}.
9671 If you type @kbd{M-x calc} or @kbd{C-x * c} with any numeric prefix argument,
9672 the Calculator is loaded if necessary, but it is not actually started.
9673 If the argument is positive, the @file{calc-ext} extensions are also
9674 loaded if necessary.  User-written Lisp code that wishes to make use
9675 of Calc's arithmetic routines can use @samp{(calc 0)} or @samp{(calc 1)}
9676 to auto-load the Calculator.
9678 @kindex C-x * b
9679 @pindex full-calc
9680 If you type @kbd{C-x * b}, then next time you use @kbd{C-x * c} you
9681 will get a Calculator that uses the full height of the Emacs screen.
9682 When full-screen mode is on, @kbd{C-x * c} runs the @code{full-calc}
9683 command instead of @code{calc}.  From the Unix shell you can type
9684 @samp{emacs -f full-calc} to start a new Emacs specifically for use
9685 as a calculator.  When Calc is started from the Emacs command line
9686 like this, Calc's normal ``quit'' commands actually quit Emacs itself.
9688 @kindex C-x * o
9689 @pindex calc-other-window
9690 The @kbd{C-x * o} command is like @kbd{C-x * c} except that the Calc
9691 window is not actually selected.  If you are already in the Calc
9692 window, @kbd{C-x * o} switches you out of it.  (The regular Emacs
9693 @kbd{C-x o} command would also work for this, but it has a
9694 tendency to drop you into the Calc Trail window instead, which
9695 @kbd{C-x * o} takes care not to do.)
9697 @ignore
9698 @mindex C-x * q
9699 @end ignore
9700 For one quick calculation, you can type @kbd{C-x * q} (@code{quick-calc})
9701 which prompts you for a formula (like @samp{2+3/4}).  The result is
9702 displayed at the bottom of the Emacs screen without ever creating
9703 any special Calculator windows.  @xref{Quick Calculator}.
9705 @ignore
9706 @mindex C-x * k
9707 @end ignore
9708 Finally, if you are using the X window system you may want to try
9709 @kbd{C-x * k} (@code{calc-keypad}) which runs Calc with a
9710 ``calculator keypad'' picture as well as a stack display.  Click on
9711 the keys with the mouse to operate the calculator.  @xref{Keypad Mode}.
9713 @kindex q
9714 @pindex calc-quit
9715 @cindex Quitting the Calculator
9716 @cindex Exiting the Calculator
9717 The @kbd{q} key (@code{calc-quit}) exits Calc mode and closes the
9718 Calculator's window(s).  It does not delete the Calculator buffers.
9719 If you type @kbd{M-x calc} again, the Calculator will reappear with the
9720 contents of the stack intact.  Typing @kbd{C-x * c} or @kbd{C-x * *}
9721 again from inside the Calculator buffer is equivalent to executing
9722 @code{calc-quit}; you can think of @kbd{C-x * *} as toggling the
9723 Calculator on and off.
9725 @kindex C-x * x
9726 The @kbd{C-x * x} command also turns the Calculator off, no matter which
9727 user interface (standard, Keypad, or Embedded) is currently active.
9728 It also cancels @code{calc-edit} mode if used from there.
9730 @kindex d @key{SPC}
9731 @pindex calc-refresh
9732 @cindex Refreshing a garbled display
9733 @cindex Garbled displays, refreshing
9734 The @kbd{d @key{SPC}} key sequence (@code{calc-refresh}) redraws the contents
9735 of the Calculator buffer from memory.  Use this if the contents of the
9736 buffer have been damaged somehow.
9738 @ignore
9739 @mindex o
9740 @end ignore
9741 The @kbd{o} key (@code{calc-realign}) moves the cursor back to its
9742 ``home'' position at the bottom of the Calculator buffer.
9744 @kindex <
9745 @kindex >
9746 @pindex calc-scroll-left
9747 @pindex calc-scroll-right
9748 @cindex Horizontal scrolling
9749 @cindex Scrolling
9750 @cindex Wide text, scrolling
9751 The @kbd{<} and @kbd{>} keys are bound to @code{calc-scroll-left} and
9752 @code{calc-scroll-right}.  These are just like the normal horizontal
9753 scrolling commands except that they scroll one half-screen at a time by
9754 default.  (Calc formats its output to fit within the bounds of the
9755 window whenever it can.)
9757 @kindex @{
9758 @kindex @}
9759 @pindex calc-scroll-down
9760 @pindex calc-scroll-up
9761 @cindex Vertical scrolling
9762 The @kbd{@{} and @kbd{@}} keys are bound to @code{calc-scroll-down}
9763 and @code{calc-scroll-up}.  They scroll up or down by one-half the
9764 height of the Calc window.
9766 @kindex C-x * 0
9767 @pindex calc-reset
9768 The @kbd{C-x * 0} command (@code{calc-reset}; that's @kbd{C-x *} followed
9769 by a zero) resets the Calculator to its initial state.  This clears
9770 the stack, resets all the modes to their initial values (the values
9771 that were saved with @kbd{m m} (@code{calc-save-modes})), clears the
9772 caches (@pxref{Caches}), and so on.  (It does @emph{not} erase the
9773 values of any variables.) With an argument of 0, Calc will be reset to
9774 its default state; namely, the modes will be given their default values.
9775 With a positive prefix argument, @kbd{C-x * 0} preserves the contents of
9776 the stack but resets everything else to its initial state; with a
9777 negative prefix argument, @kbd{C-x * 0} preserves the contents of the
9778 stack but resets everything else to its default state.
9780 @node Help Commands, Stack Basics, Basic Commands, Introduction
9781 @section Help Commands
9783 @noindent
9784 @cindex Help commands
9785 @kindex ?
9786 @kindex a ?
9787 @kindex b ?
9788 @kindex c ?
9789 @kindex d ?
9790 @kindex f ?
9791 @kindex g ?
9792 @kindex j ?
9793 @kindex k ?
9794 @kindex m ?
9795 @kindex r ?
9796 @kindex s ?
9797 @kindex t ?
9798 @kindex u ?
9799 @kindex v ?
9800 @kindex V ?
9801 @kindex z ?
9802 @kindex Z ?
9803 @pindex calc-help
9804 The @kbd{?} key (@code{calc-help}) displays a series of brief help messages.
9805 Some keys (such as @kbd{b} and @kbd{d}) are prefix keys, like Emacs's
9806 @key{ESC} and @kbd{C-x} prefixes.  You can type
9807 @kbd{?} after a prefix to see a list of commands beginning with that
9808 prefix.  (If the message includes @samp{[MORE]}, press @kbd{?} again
9809 to see additional commands for that prefix.)
9811 @kindex h h
9812 @pindex calc-full-help
9813 The @kbd{h h} (@code{calc-full-help}) command displays all the @kbd{?}
9814 responses at once.  When printed, this makes a nice, compact (three pages)
9815 summary of Calc keystrokes.
9817 In general, the @kbd{h} key prefix introduces various commands that
9818 provide help within Calc.  Many of the @kbd{h} key functions are
9819 Calc-specific analogues to the @kbd{C-h} functions for Emacs help.
9821 @kindex h i
9822 @kindex C-x * i
9823 @kindex i
9824 @pindex calc-info
9825 The @kbd{h i} (@code{calc-info}) command runs the Emacs Info system
9826 to read this manual on-line.  This is basically the same as typing
9827 @kbd{C-h i} (the regular way to run the Info system), then, if Info
9828 is not already in the Calc manual, selecting the beginning of the
9829 manual.  The @kbd{C-x * i} command is another way to read the Calc
9830 manual; it is different from @kbd{h i} in that it works any time,
9831 not just inside Calc.  The plain @kbd{i} key is also equivalent to
9832 @kbd{h i}, though this key is obsolete and may be replaced with a
9833 different command in a future version of Calc.
9835 @kindex h t
9836 @kindex C-x * t
9837 @pindex calc-tutorial
9838 The @kbd{h t} (@code{calc-tutorial}) command runs the Info system on
9839 the Tutorial section of the Calc manual.  It is like @kbd{h i},
9840 except that it selects the starting node of the tutorial rather
9841 than the beginning of the whole manual.  (It actually selects the
9842 node ``Interactive Tutorial'' which tells a few things about
9843 using the Info system before going on to the actual tutorial.)
9844 The @kbd{C-x * t} key is equivalent to @kbd{h t} (but it works at
9845 all times).
9847 @kindex h s
9848 @kindex C-x * s
9849 @pindex calc-info-summary
9850 The @kbd{h s} (@code{calc-info-summary}) command runs the Info system
9851 on the Summary node of the Calc manual.  @xref{Summary}.  The @kbd{C-x * s}
9852 key is equivalent to @kbd{h s}.
9854 @kindex h k
9855 @pindex calc-describe-key
9856 The @kbd{h k} (@code{calc-describe-key}) command looks up a key
9857 sequence in the Calc manual.  For example, @kbd{h k H a S} looks
9858 up the documentation on the @kbd{H a S} (@code{calc-solve-for})
9859 command.  This works by looking up the textual description of
9860 the key(s) in the Key Index of the manual, then jumping to the
9861 node indicated by the index.
9863 Most Calc commands do not have traditional Emacs documentation
9864 strings, since the @kbd{h k} command is both more convenient and
9865 more instructive.  This means the regular Emacs @kbd{C-h k}
9866 (@code{describe-key}) command will not be useful for Calc keystrokes.
9868 @kindex h c
9869 @pindex calc-describe-key-briefly
9870 The @kbd{h c} (@code{calc-describe-key-briefly}) command reads a
9871 key sequence and displays a brief one-line description of it at
9872 the bottom of the screen.  It looks for the key sequence in the
9873 Summary node of the Calc manual; if it doesn't find the sequence
9874 there, it acts just like its regular Emacs counterpart @kbd{C-h c}
9875 (@code{describe-key-briefly}).  For example, @kbd{h c H a S}
9876 gives the description:
9878 @smallexample
9879 H a S runs calc-solve-for:  a `H a S' v  => fsolve(a,v)  (?=notes)
9880 @end smallexample
9882 @noindent
9883 which means the command @kbd{H a S} or @kbd{H M-x calc-solve-for}
9884 takes a value @expr{a} from the stack, prompts for a value @expr{v},
9885 then applies the algebraic function @code{fsolve} to these values.
9886 The @samp{?=notes} message means you can now type @kbd{?} to see
9887 additional notes from the summary that apply to this command.
9889 @kindex h f
9890 @pindex calc-describe-function
9891 The @kbd{h f} (@code{calc-describe-function}) command looks up an
9892 algebraic function or a command name in the Calc manual.  Enter an
9893 algebraic function name to look up that function in the Function
9894 Index or enter a command name beginning with @samp{calc-} to look it
9895 up in the Command Index.  This command will also look up operator
9896 symbols that can appear in algebraic formulas, like @samp{%} and
9897 @samp{=>}.
9899 @kindex h v
9900 @pindex calc-describe-variable
9901 The @kbd{h v} (@code{calc-describe-variable}) command looks up a
9902 variable in the Calc manual.  Enter a variable name like @code{pi} or
9903 @code{PlotRejects}.
9905 @kindex h b
9906 @pindex describe-bindings
9907 The @kbd{h b} (@code{calc-describe-bindings}) command is just like
9908 @kbd{C-h b}, except that only local (Calc-related) key bindings are
9909 listed.
9911 @kindex h n
9912 The @kbd{h n} or @kbd{h C-n} (@code{calc-view-news}) command displays
9913 the ``news'' or change history of Calc.  This is kept in the file
9914 @file{README}, which Calc looks for in the same directory as the Calc
9915 source files.
9917 @kindex h C-c
9918 @kindex h C-d
9919 @kindex h C-w
9920 The @kbd{h C-c}, @kbd{h C-d}, and @kbd{h C-w} keys display copying,
9921 distribution, and warranty information about Calc.  These work by
9922 pulling up the appropriate parts of the ``Copying'' or ``Reporting
9923 Bugs'' sections of the manual.
9925 @node Stack Basics, Numeric Entry, Help Commands, Introduction
9926 @section Stack Basics
9928 @noindent
9929 @cindex Stack basics
9930 @c [fix-tut RPN Calculations and the Stack]
9931 Calc uses RPN notation.  If you are not familiar with RPN, @pxref{RPN
9932 Tutorial}.
9934 To add the numbers 1 and 2 in Calc you would type the keys:
9935 @kbd{1 @key{RET} 2 +}.
9936 (@key{RET} corresponds to the @key{ENTER} key on most calculators.)
9937 The first three keystrokes ``push'' the numbers 1 and 2 onto the stack.  The
9938 @kbd{+} key always ``pops'' the top two numbers from the stack, adds them,
9939 and pushes the result (3) back onto the stack.  This number is ready for
9940 further calculations:  @kbd{5 -} pushes 5 onto the stack, then pops the
9941 3 and 5, subtracts them, and pushes the result (@mathit{-2}).
9943 Note that the ``top'' of the stack actually appears at the @emph{bottom}
9944 of the buffer.  A line containing a single @samp{.} character signifies
9945 the end of the buffer; Calculator commands operate on the number(s)
9946 directly above this line.  The @kbd{d t} (@code{calc-truncate-stack})
9947 command allows you to move the @samp{.} marker up and down in the stack;
9948 @pxref{Truncating the Stack}.
9950 @kindex d l
9951 @pindex calc-line-numbering
9952 Stack elements are numbered consecutively, with number 1 being the top of
9953 the stack.  These line numbers are ordinarily displayed on the lefthand side
9954 of the window.  The @kbd{d l} (@code{calc-line-numbering}) command controls
9955 whether these numbers appear.  (Line numbers may be turned off since they
9956 slow the Calculator down a bit and also clutter the display.)
9958 @kindex o
9959 @pindex calc-realign
9960 The unshifted letter @kbd{o} (@code{calc-realign}) command repositions
9961 the cursor to its top-of-stack ``home'' position.  It also undoes any
9962 horizontal scrolling in the window.  If you give it a numeric prefix
9963 argument, it instead moves the cursor to the specified stack element.
9965 The @key{RET} (or equivalent @key{SPC}) key is only required to separate
9966 two consecutive numbers.
9967 (After all, if you typed @kbd{1 2} by themselves the Calculator
9968 would enter the number 12.)  If you press @key{RET} or @key{SPC} @emph{not}
9969 right after typing a number, the key duplicates the number on the top of
9970 the stack.  @kbd{@key{RET} *} is thus a handy way to square a number.
9972 The @key{DEL} key pops and throws away the top number on the stack.
9973 The @key{TAB} key swaps the top two objects on the stack.
9974 @xref{Stack and Trail}, for descriptions of these and other stack-related
9975 commands.
9977 @node Numeric Entry, Algebraic Entry, Stack Basics, Introduction
9978 @section Numeric Entry
9980 @noindent
9981 @kindex 0-9
9982 @kindex .
9983 @kindex e
9984 @cindex Numeric entry
9985 @cindex Entering numbers
9986 Pressing a digit or other numeric key begins numeric entry using the
9987 minibuffer.  The number is pushed on the stack when you press the @key{RET}
9988 or @key{SPC} keys.  If you press any other non-numeric key, the number is
9989 pushed onto the stack and the appropriate operation is performed.  If
9990 you press a numeric key which is not valid, the key is ignored.
9992 @cindex Minus signs
9993 @cindex Negative numbers, entering
9994 @kindex _
9995 There are three different concepts corresponding to the word ``minus,''
9996 typified by @expr{a-b} (subtraction), @expr{-x}
9997 (change-sign), and @expr{-5} (negative number).  Calc uses three
9998 different keys for these operations, respectively:
9999 @kbd{-}, @kbd{n}, and @kbd{_} (the underscore).  The @kbd{-} key subtracts
10000 the two numbers on the top of the stack.  The @kbd{n} key changes the sign
10001 of the number on the top of the stack or the number currently being entered.
10002 The @kbd{_} key begins entry of a negative number or changes the sign of
10003 the number currently being entered.  The following sequences all enter the
10004 number @mathit{-5} onto the stack:  @kbd{0 @key{RET} 5 -}, @kbd{5 n @key{RET}},
10005 @kbd{5 @key{RET} n}, @kbd{_ 5 @key{RET}}, @kbd{5 _ @key{RET}}.
10007 Some other keys are active during numeric entry, such as @kbd{#} for
10008 non-decimal numbers, @kbd{:} for fractions, and @kbd{@@} for HMS forms.
10009 These notations are described later in this manual with the corresponding
10010 data types.  @xref{Data Types}.
10012 During numeric entry, the only editing key available is @key{DEL}.
10014 @node Algebraic Entry, Quick Calculator, Numeric Entry, Introduction
10015 @section Algebraic Entry
10017 @noindent
10018 @kindex '
10019 @pindex calc-algebraic-entry
10020 @cindex Algebraic notation
10021 @cindex Formulas, entering
10022 The @kbd{'} (@code{calc-algebraic-entry}) command can be used to enter
10023 calculations in algebraic form.  This is accomplished by typing the
10024 apostrophe key, ', followed by the expression in standard format:
10026 @example
10027 ' 2+3*4 @key{RET}.
10028 @end example
10030 @noindent
10031 This will compute
10032 @texline @math{2+(3\times4) = 14}
10033 @infoline @expr{2+(3*4) = 14}
10034 and push it on the stack.  If you wish you can
10035 ignore the RPN aspect of Calc altogether and simply enter algebraic
10036 expressions in this way.  You may want to use @key{DEL} every so often to
10037 clear previous results off the stack.
10039 You can press the apostrophe key during normal numeric entry to switch
10040 the half-entered number into Algebraic entry mode.  One reason to do
10041 this would be to fix a typo, as the full Emacs cursor motion and editing
10042 keys are available during algebraic entry but not during numeric entry.
10044 In the same vein, during either numeric or algebraic entry you can
10045 press @kbd{`} (backquote) to switch to @code{calc-edit} mode, where
10046 you complete your half-finished entry in a separate buffer.
10047 @xref{Editing Stack Entries}.
10049 @kindex m a
10050 @pindex calc-algebraic-mode
10051 @cindex Algebraic Mode
10052 If you prefer algebraic entry, you can use the command @kbd{m a}
10053 (@code{calc-algebraic-mode}) to set Algebraic mode.  In this mode,
10054 digits and other keys that would normally start numeric entry instead
10055 start full algebraic entry; as long as your formula begins with a digit
10056 you can omit the apostrophe.  Open parentheses and square brackets also
10057 begin algebraic entry.  You can still do RPN calculations in this mode,
10058 but you will have to press @key{RET} to terminate every number:
10059 @kbd{2 @key{RET} 3 @key{RET} * 4 @key{RET} +} would accomplish the same
10060 thing as @kbd{2*3+4 @key{RET}}.
10062 @cindex Incomplete Algebraic Mode
10063 If you give a numeric prefix argument like @kbd{C-u} to the @kbd{m a}
10064 command, it enables Incomplete Algebraic mode; this is like regular
10065 Algebraic mode except that it applies to the @kbd{(} and @kbd{[} keys
10066 only.  Numeric keys still begin a numeric entry in this mode.
10068 @kindex m t
10069 @pindex calc-total-algebraic-mode
10070 @cindex Total Algebraic Mode
10071 The @kbd{m t} (@code{calc-total-algebraic-mode}) gives you an even
10072 stronger algebraic-entry mode, in which @emph{all} regular letter and
10073 punctuation keys begin algebraic entry.  Use this if you prefer typing
10074 @w{@kbd{sqrt( )}} instead of @kbd{Q}, @w{@kbd{factor( )}} instead of
10075 @kbd{a f}, and so on.  To type regular Calc commands when you are in
10076 Total Algebraic mode, hold down the @key{META} key.  Thus @kbd{M-q}
10077 is the command to quit Calc, @kbd{M-p} sets the precision, and
10078 @kbd{M-m t} (or @kbd{M-m M-t}, if you prefer) turns Total Algebraic
10079 mode back off again.  Meta keys also terminate algebraic entry, so
10080 that @kbd{2+3 M-S} is equivalent to @kbd{2+3 @key{RET} M-S}.  The symbol
10081 @samp{Alg*} will appear in the mode line whenever you are in this mode.
10083 Pressing @kbd{'} (the apostrophe) a second time re-enters the previous
10084 algebraic formula.  You can then use the normal Emacs editing keys to
10085 modify this formula to your liking before pressing @key{RET}.
10087 @kindex $
10088 @cindex Formulas, referring to stack
10089 Within a formula entered from the keyboard, the symbol @kbd{$}
10090 represents the number on the top of the stack.  If an entered formula
10091 contains any @kbd{$} characters, the Calculator replaces the top of
10092 stack with that formula rather than simply pushing the formula onto the
10093 stack.  Thus, @kbd{' 1+2 @key{RET}} pushes 3 on the stack, and @kbd{$*2
10094 @key{RET}} replaces it with 6.  Note that the @kbd{$} key always
10095 initiates algebraic entry; the @kbd{'} is unnecessary if @kbd{$} is the
10096 first character in the new formula.
10098 Higher stack elements can be accessed from an entered formula with the
10099 symbols @kbd{$$}, @kbd{$$$}, and so on.  The number of stack elements
10100 removed (to be replaced by the entered values) equals the number of dollar
10101 signs in the longest such symbol in the formula.  For example, @samp{$$+$$$}
10102 adds the second and third stack elements, replacing the top three elements
10103 with the answer.  (All information about the top stack element is thus lost
10104 since no single @samp{$} appears in this formula.)
10106 A slightly different way to refer to stack elements is with a dollar
10107 sign followed by a number:  @samp{$1}, @samp{$2}, and so on are much
10108 like @samp{$}, @samp{$$}, etc., except that stack entries referred
10109 to numerically are not replaced by the algebraic entry.  That is, while
10110 @samp{$+1} replaces 5 on the stack with 6, @samp{$1+1} leaves the 5
10111 on the stack and pushes an additional 6.
10113 If a sequence of formulas are entered separated by commas, each formula
10114 is pushed onto the stack in turn.  For example, @samp{1,2,3} pushes
10115 those three numbers onto the stack (leaving the 3 at the top), and
10116 @samp{$+1,$-1} replaces a 5 on the stack with 4 followed by 6.  Also,
10117 @samp{$,$$} exchanges the top two elements of the stack, just like the
10118 @key{TAB} key.
10120 You can finish an algebraic entry with @kbd{M-=} or @kbd{M-@key{RET}} instead
10121 of @key{RET}.  This uses @kbd{=} to evaluate the variables in each
10122 formula that goes onto the stack.  (Thus @kbd{' pi @key{RET}} pushes
10123 the variable @samp{pi}, but @kbd{' pi M-@key{RET}} pushes 3.1415.)
10125 If you finish your algebraic entry by pressing @key{LFD} (or @kbd{C-j})
10126 instead of @key{RET}, Calc disables simplification
10127 (as if by @kbd{m O}; @pxref{Simplification Modes}) while the entry
10128 is being pushed on the stack.  Thus @kbd{' 1+2 @key{RET}} pushes 3
10129 on the stack, but @kbd{' 1+2 @key{LFD}} pushes the formula @expr{1+2};
10130 you might then press @kbd{=} when it is time to evaluate this formula.
10132 @node Quick Calculator, Prefix Arguments, Algebraic Entry, Introduction
10133 @section ``Quick Calculator'' Mode
10135 @noindent
10136 @kindex C-x * q
10137 @pindex quick-calc
10138 @cindex Quick Calculator
10139 There is another way to invoke the Calculator if all you need to do
10140 is make one or two quick calculations.  Type @kbd{C-x * q} (or
10141 @kbd{M-x quick-calc}), then type any formula as an algebraic entry.
10142 The Calculator will compute the result and display it in the echo
10143 area, without ever actually putting up a Calc window.
10145 You can use the @kbd{$} character in a Quick Calculator formula to
10146 refer to the previous Quick Calculator result.  Older results are
10147 not retained; the Quick Calculator has no effect on the full
10148 Calculator's stack or trail.  If you compute a result and then
10149 forget what it was, just run @code{C-x * q} again and enter
10150 @samp{$} as the formula.
10152 If this is the first time you have used the Calculator in this Emacs
10153 session, the @kbd{C-x * q} command will create the @code{*Calculator*}
10154 buffer and perform all the usual initializations; it simply will
10155 refrain from putting that buffer up in a new window.  The Quick
10156 Calculator refers to the @code{*Calculator*} buffer for all mode
10157 settings.  Thus, for example, to set the precision that the Quick
10158 Calculator uses, simply run the full Calculator momentarily and use
10159 the regular @kbd{p} command.
10161 If you use @code{C-x * q} from inside the Calculator buffer, the
10162 effect is the same as pressing the apostrophe key (algebraic entry).
10164 The result of a Quick calculation is placed in the Emacs ``kill ring''
10165 as well as being displayed.  A subsequent @kbd{C-y} command will
10166 yank the result into the editing buffer.  You can also use this
10167 to yank the result into the next @kbd{C-x * q} input line as a more
10168 explicit alternative to @kbd{$} notation, or to yank the result
10169 into the Calculator stack after typing @kbd{C-x * c}.
10171 If you finish your formula by typing @key{LFD} (or @kbd{C-j}) instead
10172 of @key{RET}, the result is inserted immediately into the current
10173 buffer rather than going into the kill ring.
10175 Quick Calculator results are actually evaluated as if by the @kbd{=}
10176 key (which replaces variable names by their stored values, if any).
10177 If the formula you enter is an assignment to a variable using the
10178 @samp{:=} operator, say, @samp{foo := 2 + 3} or @samp{foo := foo + 1},
10179 then the result of the evaluation is stored in that Calc variable.
10180 @xref{Store and Recall}.
10182 If the result is an integer and the current display radix is decimal,
10183 the number will also be displayed in hex, octal and binary formats.  If
10184 the integer is in the range from 1 to 126, it will also be displayed as
10185 an ASCII character.
10187 For example, the quoted character @samp{"x"} produces the vector
10188 result @samp{[120]} (because 120 is the ASCII code of the lower-case
10189 `x'; @pxref{Strings}).  Since this is a vector, not an integer, it
10190 is displayed only according to the current mode settings.  But
10191 running Quick Calc again and entering @samp{120} will produce the
10192 result @samp{120 (16#78, 8#170, x)} which shows the number in its
10193 decimal, hexadecimal, octal, and ASCII forms.
10195 Please note that the Quick Calculator is not any faster at loading
10196 or computing the answer than the full Calculator; the name ``quick''
10197 merely refers to the fact that it's much less hassle to use for
10198 small calculations.
10200 @node Prefix Arguments, Undo, Quick Calculator, Introduction
10201 @section Numeric Prefix Arguments
10203 @noindent
10204 Many Calculator commands use numeric prefix arguments.  Some, such as
10205 @kbd{d s} (@code{calc-sci-notation}), set a parameter to the value of
10206 the prefix argument or use a default if you don't use a prefix.
10207 Others (like @kbd{d f} (@code{calc-fix-notation})) require an argument
10208 and prompt for a number if you don't give one as a prefix.
10210 As a rule, stack-manipulation commands accept a numeric prefix argument
10211 which is interpreted as an index into the stack.  A positive argument
10212 operates on the top @var{n} stack entries; a negative argument operates
10213 on the @var{n}th stack entry in isolation; and a zero argument operates
10214 on the entire stack.
10216 Most commands that perform computations (such as the arithmetic and
10217 scientific functions) accept a numeric prefix argument that allows the
10218 operation to be applied across many stack elements.  For unary operations
10219 (that is, functions of one argument like absolute value or complex
10220 conjugate), a positive prefix argument applies that function to the top
10221 @var{n} stack entries simultaneously, and a negative argument applies it
10222 to the @var{n}th stack entry only.  For binary operations (functions of
10223 two arguments like addition, GCD, and vector concatenation), a positive
10224 prefix argument ``reduces'' the function across the top @var{n}
10225 stack elements (for example, @kbd{C-u 5 +} sums the top 5 stack entries;
10226 @pxref{Reducing and Mapping}), and a negative argument maps the next-to-top
10227 @var{n} stack elements with the top stack element as a second argument
10228 (for example, @kbd{7 c-u -5 +} adds 7 to the top 5 stack elements).
10229 This feature is not available for operations which use the numeric prefix
10230 argument for some other purpose.
10232 Numeric prefixes are specified the same way as always in Emacs:  Press
10233 a sequence of @key{META}-digits, or press @key{ESC} followed by digits,
10234 or press @kbd{C-u} followed by digits.  Some commands treat plain
10235 @kbd{C-u} (without any actual digits) specially.
10237 @kindex ~
10238 @pindex calc-num-prefix
10239 You can type @kbd{~} (@code{calc-num-prefix}) to pop an integer from the
10240 top of the stack and enter it as the numeric prefix for the next command.
10241 For example, @kbd{C-u 16 p} sets the precision to 16 digits; an alternate
10242 (silly) way to do this would be @kbd{2 @key{RET} 4 ^ ~ p}, i.e., compute 2
10243 to the fourth power and set the precision to that value.
10245 Conversely, if you have typed a numeric prefix argument the @kbd{~} key
10246 pushes it onto the stack in the form of an integer.
10248 @node Undo, Error Messages, Prefix Arguments, Introduction
10249 @section Undoing Mistakes
10251 @noindent
10252 @kindex U
10253 @kindex C-_
10254 @pindex calc-undo
10255 @cindex Mistakes, undoing
10256 @cindex Undoing mistakes
10257 @cindex Errors, undoing
10258 The shift-@kbd{U} key (@code{calc-undo}) undoes the most recent operation.
10259 If that operation added or dropped objects from the stack, those objects
10260 are removed or restored.  If it was a ``store'' operation, you are
10261 queried whether or not to restore the variable to its original value.
10262 The @kbd{U} key may be pressed any number of times to undo successively
10263 farther back in time; with a numeric prefix argument it undoes a
10264 specified number of operations.  When the Calculator is quit, as with
10265 the @kbd{q} (@code{calc-quit}) command, the undo history will be
10266 truncated to the length of the customizable variable
10267 @code{calc-undo-length} (@pxref{Customizing Calc}), which by default
10268 is @expr{100}. (Recall that @kbd{C-x * c} is synonymous with
10269 @code{calc-quit} while inside the Calculator; this also truncates the
10270 undo history.)
10272 Currently the mode-setting commands (like @code{calc-precision}) are not
10273 undoable.  You can undo past a point where you changed a mode, but you
10274 will need to reset the mode yourself.
10276 @kindex D
10277 @pindex calc-redo
10278 @cindex Redoing after an Undo
10279 The shift-@kbd{D} key (@code{calc-redo}) redoes an operation that was
10280 mistakenly undone.  Pressing @kbd{U} with a negative prefix argument is
10281 equivalent to executing @code{calc-redo}.  You can redo any number of
10282 times, up to the number of recent consecutive undo commands.  Redo
10283 information is cleared whenever you give any command that adds new undo
10284 information, i.e., if you undo, then enter a number on the stack or make
10285 any other change, then it will be too late to redo.
10287 @kindex M-@key{RET}
10288 @pindex calc-last-args
10289 @cindex Last-arguments feature
10290 @cindex Arguments, restoring
10291 The @kbd{M-@key{RET}} key (@code{calc-last-args}) is like undo in that
10292 it restores the arguments of the most recent command onto the stack;
10293 however, it does not remove the result of that command.  Given a numeric
10294 prefix argument, this command applies to the @expr{n}th most recent
10295 command which removed items from the stack; it pushes those items back
10296 onto the stack.
10298 The @kbd{K} (@code{calc-keep-args}) command provides a related function
10299 to @kbd{M-@key{RET}}.  @xref{Stack and Trail}.
10301 It is also possible to recall previous results or inputs using the trail.
10302 @xref{Trail Commands}.
10304 The standard Emacs @kbd{C-_} undo key is recognized as a synonym for @kbd{U}.
10306 @node Error Messages, Multiple Calculators, Undo, Introduction
10307 @section Error Messages
10309 @noindent
10310 @kindex w
10311 @pindex calc-why
10312 @cindex Errors, messages
10313 @cindex Why did an error occur?
10314 Many situations that would produce an error message in other calculators
10315 simply create unsimplified formulas in the Emacs Calculator.  For example,
10316 @kbd{1 @key{RET} 0 /} pushes the formula @expr{1 / 0}; @w{@kbd{0 L}} pushes
10317 the formula @samp{ln(0)}.  Floating-point overflow and underflow are also
10318 reasons for this to happen.
10320 When a function call must be left in symbolic form, Calc usually
10321 produces a message explaining why.  Messages that are probably
10322 surprising or indicative of user errors are displayed automatically.
10323 Other messages are simply kept in Calc's memory and are displayed only
10324 if you type @kbd{w} (@code{calc-why}).  You can also press @kbd{w} if
10325 the same computation results in several messages.  (The first message
10326 will end with @samp{[w=more]} in this case.)
10328 @kindex d w
10329 @pindex calc-auto-why
10330 The @kbd{d w} (@code{calc-auto-why}) command controls when error messages
10331 are displayed automatically.  (Calc effectively presses @kbd{w} for you
10332 after your computation finishes.)  By default, this occurs only for
10333 ``important'' messages.  The other possible modes are to report
10334 @emph{all} messages automatically, or to report none automatically (so
10335 that you must always press @kbd{w} yourself to see the messages).
10337 @node Multiple Calculators, Troubleshooting Commands, Error Messages, Introduction
10338 @section Multiple Calculators
10340 @noindent
10341 @pindex another-calc
10342 It is possible to have any number of Calc mode buffers at once.
10343 Usually this is done by executing @kbd{M-x another-calc}, which
10344 is similar to @kbd{C-x * c} except that if a @samp{*Calculator*}
10345 buffer already exists, a new, independent one with a name of the
10346 form @samp{*Calculator*<@var{n}>} is created.  You can also use the
10347 command @code{calc-mode} to put any buffer into Calculator mode, but
10348 this would ordinarily never be done.
10350 The @kbd{q} (@code{calc-quit}) command does not destroy a Calculator buffer;
10351 it only closes its window.  Use @kbd{M-x kill-buffer} to destroy a
10352 Calculator buffer.
10354 Each Calculator buffer keeps its own stack, undo list, and mode settings
10355 such as precision, angular mode, and display formats.  In Emacs terms,
10356 variables such as @code{calc-stack} are buffer-local variables.  The
10357 global default values of these variables are used only when a new
10358 Calculator buffer is created.  The @code{calc-quit} command saves
10359 the stack and mode settings of the buffer being quit as the new defaults.
10361 There is only one trail buffer, @samp{*Calc Trail*}, used by all
10362 Calculator buffers.
10364 @node Troubleshooting Commands,  , Multiple Calculators, Introduction
10365 @section Troubleshooting Commands
10367 @noindent
10368 This section describes commands you can use in case a computation
10369 incorrectly fails or gives the wrong answer.
10371 @xref{Reporting Bugs}, if you find a problem that appears to be due
10372 to a bug or deficiency in Calc.
10374 @menu
10375 * Autoloading Problems::
10376 * Recursion Depth::
10377 * Caches::
10378 * Debugging Calc::
10379 @end menu
10381 @node Autoloading Problems, Recursion Depth, Troubleshooting Commands, Troubleshooting Commands
10382 @subsection Autoloading Problems
10384 @noindent
10385 The Calc program is split into many component files; components are
10386 loaded automatically as you use various commands that require them.
10387 Occasionally Calc may lose track of when a certain component is
10388 necessary; typically this means you will type a command and it won't
10389 work because some function you've never heard of was undefined.
10391 @kindex C-x * L
10392 @pindex calc-load-everything
10393 If this happens, the easiest workaround is to type @kbd{C-x * L}
10394 (@code{calc-load-everything}) to force all the parts of Calc to be
10395 loaded right away.  This will cause Emacs to take up a lot more
10396 memory than it would otherwise, but it's guaranteed to fix the problem.
10398 @node Recursion Depth, Caches, Autoloading Problems, Troubleshooting Commands
10399 @subsection Recursion Depth
10401 @noindent
10402 @kindex M
10403 @kindex I M
10404 @pindex calc-more-recursion-depth
10405 @pindex calc-less-recursion-depth
10406 @cindex Recursion depth
10407 @cindex ``Computation got stuck'' message
10408 @cindex @code{max-lisp-eval-depth}
10409 @cindex @code{max-specpdl-size}
10410 Calc uses recursion in many of its calculations.  Emacs Lisp keeps a
10411 variable @code{max-lisp-eval-depth} which limits the amount of recursion
10412 possible in an attempt to recover from program bugs.  If a calculation
10413 ever halts incorrectly with the message ``Computation got stuck or
10414 ran too long,'' use the @kbd{M} command (@code{calc-more-recursion-depth})
10415 to increase this limit.  (Of course, this will not help if the
10416 calculation really did get stuck due to some problem inside Calc.)
10418 The limit is always increased (multiplied) by a factor of two.  There
10419 is also an @kbd{I M} (@code{calc-less-recursion-depth}) command which
10420 decreases this limit by a factor of two, down to a minimum value of 200.
10421 The default value is 1000.
10423 These commands also double or halve @code{max-specpdl-size}, another
10424 internal Lisp recursion limit.  The minimum value for this limit is 600.
10426 @node Caches, Debugging Calc, Recursion Depth, Troubleshooting Commands
10427 @subsection Caches
10429 @noindent
10430 @cindex Caches
10431 @cindex Flushing caches
10432 Calc saves certain values after they have been computed once.  For
10433 example, the @kbd{P} (@code{calc-pi}) command initially ``knows'' the
10434 constant @cpi{} to about 20 decimal places; if the current precision
10435 is greater than this, it will recompute @cpi{} using a series
10436 approximation.  This value will not need to be recomputed ever again
10437 unless you raise the precision still further.  Many operations such as
10438 logarithms and sines make use of similarly cached values such as
10439 @cpiover{4} and
10440 @texline @math{\ln 2}.
10441 @infoline @expr{ln(2)}.
10442 The visible effect of caching is that
10443 high-precision computations may seem to do extra work the first time.
10444 Other things cached include powers of two (for the binary arithmetic
10445 functions), matrix inverses and determinants, symbolic integrals, and
10446 data points computed by the graphing commands.
10448 @pindex calc-flush-caches
10449 If you suspect a Calculator cache has become corrupt, you can use the
10450 @code{calc-flush-caches} command to reset all caches to the empty state.
10451 (This should only be necessary in the event of bugs in the Calculator.)
10452 The @kbd{C-x * 0} (with the zero key) command also resets caches along
10453 with all other aspects of the Calculator's state.
10455 @node Debugging Calc,  , Caches, Troubleshooting Commands
10456 @subsection Debugging Calc
10458 @noindent
10459 A few commands exist to help in the debugging of Calc commands.
10460 @xref{Programming}, to see the various ways that you can write
10461 your own Calc commands.
10463 @kindex Z T
10464 @pindex calc-timing
10465 The @kbd{Z T} (@code{calc-timing}) command turns on and off a mode
10466 in which the timing of slow commands is reported in the Trail.
10467 Any Calc command that takes two seconds or longer writes a line
10468 to the Trail showing how many seconds it took.  This value is
10469 accurate only to within one second.
10471 All steps of executing a command are included; in particular, time
10472 taken to format the result for display in the stack and trail is
10473 counted.  Some prompts also count time taken waiting for them to
10474 be answered, while others do not; this depends on the exact
10475 implementation of the command.  For best results, if you are timing
10476 a sequence that includes prompts or multiple commands, define a
10477 keyboard macro to run the whole sequence at once.  Calc's @kbd{X}
10478 command (@pxref{Keyboard Macros}) will then report the time taken
10479 to execute the whole macro.
10481 Another advantage of the @kbd{X} command is that while it is
10482 executing, the stack and trail are not updated from step to step.
10483 So if you expect the output of your test sequence to leave a result
10484 that may take a long time to format and you don't wish to count
10485 this formatting time, end your sequence with a @key{DEL} keystroke
10486 to clear the result from the stack.  When you run the sequence with
10487 @kbd{X}, Calc will never bother to format the large result.
10489 Another thing @kbd{Z T} does is to increase the Emacs variable
10490 @code{gc-cons-threshold} to a much higher value (two million; the
10491 usual default in Calc is 250,000) for the duration of each command.
10492 This generally prevents garbage collection during the timing of
10493 the command, though it may cause your Emacs process to grow
10494 abnormally large.  (Garbage collection time is a major unpredictable
10495 factor in the timing of Emacs operations.)
10497 Another command that is useful when debugging your own Lisp
10498 extensions to Calc is @kbd{M-x calc-pass-errors}, which disables
10499 the error handler that changes the ``@code{max-lisp-eval-depth}
10500 exceeded'' message to the much more friendly ``Computation got
10501 stuck or ran too long.''  This handler interferes with the Emacs
10502 Lisp debugger's @code{debug-on-error} mode.  Errors are reported
10503 in the handler itself rather than at the true location of the
10504 error.  After you have executed @code{calc-pass-errors}, Lisp
10505 errors will be reported correctly but the user-friendly message
10506 will be lost.
10508 @node Data Types, Stack and Trail, Introduction, Top
10509 @chapter Data Types
10511 @noindent
10512 This chapter discusses the various types of objects that can be placed
10513 on the Calculator stack, how they are displayed, and how they are
10514 entered.  (@xref{Data Type Formats}, for information on how these data
10515 types are represented as underlying Lisp objects.)
10517 Integers, fractions, and floats are various ways of describing real
10518 numbers.  HMS forms also for many purposes act as real numbers.  These
10519 types can be combined to form complex numbers, modulo forms, error forms,
10520 or interval forms.  (But these last four types cannot be combined
10521 arbitrarily:@: error forms may not contain modulo forms, for example.)
10522 Finally, all these types of numbers may be combined into vectors,
10523 matrices, or algebraic formulas.
10525 @menu
10526 * Integers::                The most basic data type.
10527 * Fractions::               This and above are called @dfn{rationals}.
10528 * Floats::                  This and above are called @dfn{reals}.
10529 * Complex Numbers::         This and above are called @dfn{numbers}.
10530 * Infinities::
10531 * Vectors and Matrices::
10532 * Strings::
10533 * HMS Forms::
10534 * Date Forms::
10535 * Modulo Forms::
10536 * Error Forms::
10537 * Interval Forms::
10538 * Incomplete Objects::
10539 * Variables::
10540 * Formulas::
10541 @end menu
10543 @node Integers, Fractions, Data Types, Data Types
10544 @section Integers
10546 @noindent
10547 @cindex Integers
10548 The Calculator stores integers to arbitrary precision.  Addition,
10549 subtraction, and multiplication of integers always yields an exact
10550 integer result.  (If the result of a division or exponentiation of
10551 integers is not an integer, it is expressed in fractional or
10552 floating-point form according to the current Fraction mode.
10553 @xref{Fraction Mode}.)
10555 A decimal integer is represented as an optional sign followed by a
10556 sequence of digits.  Grouping (@pxref{Grouping Digits}) can be used to
10557 insert a comma at every third digit for display purposes, but you
10558 must not type commas during the entry of numbers.
10560 @kindex #
10561 A non-decimal integer is represented as an optional sign, a radix
10562 between 2 and 36, a @samp{#} symbol, and one or more digits.  For radix 11
10563 and above, the letters A through Z (upper- or lower-case) count as
10564 digits and do not terminate numeric entry mode.  @xref{Radix Modes}, for how
10565 to set the default radix for display of integers.  Numbers of any radix
10566 may be entered at any time.  If you press @kbd{#} at the beginning of a
10567 number, the current display radix is used.
10569 @node Fractions, Floats, Integers, Data Types
10570 @section Fractions
10572 @noindent
10573 @cindex Fractions
10574 A @dfn{fraction} is a ratio of two integers.  Fractions are traditionally
10575 written ``2/3'' but Calc uses the notation @samp{2:3}.  (The @kbd{/} key
10576 performs RPN division; the following two sequences push the number
10577 @samp{2:3} on the stack:  @kbd{2 :@: 3 @key{RET}}, or @kbd{2 @key{RET} 3 /}
10578 assuming Fraction mode has been enabled.)
10579 When the Calculator produces a fractional result it always reduces it to
10580 simplest form, which may in fact be an integer.
10582 Fractions may also be entered in a three-part form, where @samp{2:3:4}
10583 represents two-and-three-quarters.  @xref{Fraction Formats}, for fraction
10584 display formats.
10586 Non-decimal fractions are entered and displayed as
10587 @samp{@var{radix}#@var{num}:@var{denom}} (or in the analogous three-part
10588 form).  The numerator and denominator always use the same radix.
10590 @node Floats, Complex Numbers, Fractions, Data Types
10591 @section Floats
10593 @noindent
10594 @cindex Floating-point numbers
10595 A floating-point number or @dfn{float} is a number stored in scientific
10596 notation.  The number of significant digits in the fractional part is
10597 governed by the current floating precision (@pxref{Precision}).  The
10598 range of acceptable values is from
10599 @texline @math{10^{-3999999}}
10600 @infoline @expr{10^-3999999}
10601 (inclusive) to
10602 @texline @math{10^{4000000}}
10603 @infoline @expr{10^4000000}
10604 (exclusive), plus the corresponding negative values and zero.
10606 Calculations that would exceed the allowable range of values (such
10607 as @samp{exp(exp(20))}) are left in symbolic form by Calc.  The
10608 messages ``floating-point overflow'' or ``floating-point underflow''
10609 indicate that during the calculation a number would have been produced
10610 that was too large or too close to zero, respectively, to be represented
10611 by Calc.  This does not necessarily mean the final result would have
10612 overflowed, just that an overflow occurred while computing the result.
10613 (In fact, it could report an underflow even though the final result
10614 would have overflowed!)
10616 If a rational number and a float are mixed in a calculation, the result
10617 will in general be expressed as a float.  Commands that require an integer
10618 value (such as @kbd{k g} [@code{gcd}]) will also accept integer-valued
10619 floats, i.e., floating-point numbers with nothing after the decimal point.
10621 Floats are identified by the presence of a decimal point and/or an
10622 exponent.  In general a float consists of an optional sign, digits
10623 including an optional decimal point, and an optional exponent consisting
10624 of an @samp{e}, an optional sign, and up to seven exponent digits.
10625 For example, @samp{23.5e-2} is 23.5 times ten to the minus-second power,
10626 or 0.235.
10628 Floating-point numbers are normally displayed in decimal notation with
10629 all significant figures shown.  Exceedingly large or small numbers are
10630 displayed in scientific notation.  Various other display options are
10631 available.  @xref{Float Formats}.
10633 @cindex Accuracy of calculations
10634 Floating-point numbers are stored in decimal, not binary.  The result
10635 of each operation is rounded to the nearest value representable in the
10636 number of significant digits specified by the current precision,
10637 rounding away from zero in the case of a tie.  Thus (in the default
10638 display mode) what you see is exactly what you get.  Some operations such
10639 as square roots and transcendental functions are performed with several
10640 digits of extra precision and then rounded down, in an effort to make the
10641 final result accurate to the full requested precision.  However,
10642 accuracy is not rigorously guaranteed.  If you suspect the validity of a
10643 result, try doing the same calculation in a higher precision.  The
10644 Calculator's arithmetic is not intended to be IEEE-conformant in any
10645 way.
10647 While floats are always @emph{stored} in decimal, they can be entered
10648 and displayed in any radix just like integers and fractions.  Since a
10649 float that is entered in a radix other that 10 will be converted to
10650 decimal, the number that Calc stores may not be exactly the number that
10651 was entered, it will be the closest decimal approximation given the
10652 current precision.  The notation @samp{@var{radix}#@var{ddd}.@var{ddd}}
10653 is a floating-point number whose digits are in the specified radix.
10654 Note that the @samp{.}  is more aptly referred to as a ``radix point''
10655 than as a decimal point in this case.  The number @samp{8#123.4567} is
10656 defined as @samp{8#1234567 * 8^-4}.  If the radix is 14 or less, you can
10657 use @samp{e} notation to write a non-decimal number in scientific
10658 notation.  The exponent is written in decimal, and is considered to be a
10659 power of the radix: @samp{8#1234567e-4}.  If the radix is 15 or above,
10660 the letter @samp{e} is a digit, so scientific notation must be written
10661 out, e.g., @samp{16#123.4567*16^2}.  The first two exercises of the
10662 Modes Tutorial explore some of the properties of non-decimal floats.
10664 @node Complex Numbers, Infinities, Floats, Data Types
10665 @section Complex Numbers
10667 @noindent
10668 @cindex Complex numbers
10669 There are two supported formats for complex numbers: rectangular and
10670 polar.  The default format is rectangular, displayed in the form
10671 @samp{(@var{real},@var{imag})} where @var{real} is the real part and
10672 @var{imag} is the imaginary part, each of which may be any real number.
10673 Rectangular complex numbers can also be displayed in @samp{@var{a}+@var{b}i}
10674 notation; @pxref{Complex Formats}.
10676 Polar complex numbers are displayed in the form
10677 @texline `@tfn{(}@var{r}@tfn{;}@math{\theta}@tfn{)}'
10678 @infoline `@tfn{(}@var{r}@tfn{;}@var{theta}@tfn{)}'
10679 where @var{r} is the nonnegative magnitude and
10680 @texline @math{\theta}
10681 @infoline @var{theta}
10682 is the argument or phase angle.  The range of
10683 @texline @math{\theta}
10684 @infoline @var{theta}
10685 depends on the current angular mode (@pxref{Angular Modes}); it is
10686 generally between @mathit{-180} and @mathit{+180} degrees or the equivalent range
10687 in radians.
10689 Complex numbers are entered in stages using incomplete objects.
10690 @xref{Incomplete Objects}.
10692 Operations on rectangular complex numbers yield rectangular complex
10693 results, and similarly for polar complex numbers.  Where the two types
10694 are mixed, or where new complex numbers arise (as for the square root of
10695 a negative real), the current @dfn{Polar mode} is used to determine the
10696 type.  @xref{Polar Mode}.
10698 A complex result in which the imaginary part is zero (or the phase angle
10699 is 0 or 180 degrees or @cpi{} radians) is automatically converted to a real
10700 number.
10702 @node Infinities, Vectors and Matrices, Complex Numbers, Data Types
10703 @section Infinities
10705 @noindent
10706 @cindex Infinity
10707 @cindex @code{inf} variable
10708 @cindex @code{uinf} variable
10709 @cindex @code{nan} variable
10710 @vindex inf
10711 @vindex uinf
10712 @vindex nan
10713 The word @code{inf} represents the mathematical concept of @dfn{infinity}.
10714 Calc actually has three slightly different infinity-like values:
10715 @code{inf}, @code{uinf}, and @code{nan}.  These are just regular
10716 variable names (@pxref{Variables}); you should avoid using these
10717 names for your own variables because Calc gives them special
10718 treatment.  Infinities, like all variable names, are normally
10719 entered using algebraic entry.
10721 Mathematically speaking, it is not rigorously correct to treat
10722 ``infinity'' as if it were a number, but mathematicians often do
10723 so informally.  When they say that @samp{1 / inf = 0}, what they
10724 really mean is that @expr{1 / x}, as @expr{x} becomes larger and
10725 larger, becomes arbitrarily close to zero.  So you can imagine
10726 that if @expr{x} got ``all the way to infinity,'' then @expr{1 / x}
10727 would go all the way to zero.  Similarly, when they say that
10728 @samp{exp(inf) = inf}, they mean that
10729 @texline @math{e^x}
10730 @infoline @expr{exp(x)}
10731 grows without bound as @expr{x} grows.  The symbol @samp{-inf} likewise
10732 stands for an infinitely negative real value; for example, we say that
10733 @samp{exp(-inf) = 0}.  You can have an infinity pointing in any
10734 direction on the complex plane:  @samp{sqrt(-inf) = i inf}.
10736 The same concept of limits can be used to define @expr{1 / 0}.  We
10737 really want the value that @expr{1 / x} approaches as @expr{x}
10738 approaches zero.  But if all we have is @expr{1 / 0}, we can't
10739 tell which direction @expr{x} was coming from.  If @expr{x} was
10740 positive and decreasing toward zero, then we should say that
10741 @samp{1 / 0 = inf}.  But if @expr{x} was negative and increasing
10742 toward zero, the answer is @samp{1 / 0 = -inf}.  In fact, @expr{x}
10743 could be an imaginary number, giving the answer @samp{i inf} or
10744 @samp{-i inf}.  Calc uses the special symbol @samp{uinf} to mean
10745 @dfn{undirected infinity}, i.e., a value which is infinitely
10746 large but with an unknown sign (or direction on the complex plane).
10748 Calc actually has three modes that say how infinities are handled.
10749 Normally, infinities never arise from calculations that didn't
10750 already have them.  Thus, @expr{1 / 0} is treated simply as an
10751 error and left unevaluated.  The @kbd{m i} (@code{calc-infinite-mode})
10752 command (@pxref{Infinite Mode}) enables a mode in which
10753 @expr{1 / 0} evaluates to @code{uinf} instead.  There is also
10754 an alternative type of infinite mode which says to treat zeros
10755 as if they were positive, so that @samp{1 / 0 = inf}.  While this
10756 is less mathematically correct, it may be the answer you want in
10757 some cases.
10759 Since all infinities are ``as large'' as all others, Calc simplifies,
10760 e.g., @samp{5 inf} to @samp{inf}.  Another example is
10761 @samp{5 - inf = -inf}, where the @samp{-inf} is so large that
10762 adding a finite number like five to it does not affect it.
10763 Note that @samp{a - inf} also results in @samp{-inf}; Calc assumes
10764 that variables like @code{a} always stand for finite quantities.
10765 Just to show that infinities really are all the same size,
10766 note that @samp{sqrt(inf) = inf^2 = exp(inf) = inf} in Calc's
10767 notation.
10769 It's not so easy to define certain formulas like @samp{0 * inf} and
10770 @samp{inf / inf}.  Depending on where these zeros and infinities
10771 came from, the answer could be literally anything.  The latter
10772 formula could be the limit of @expr{x / x} (giving a result of one),
10773 or @expr{2 x / x} (giving two), or @expr{x^2 / x} (giving @code{inf}),
10774 or @expr{x / x^2} (giving zero).  Calc uses the symbol @code{nan}
10775 to represent such an @dfn{indeterminate} value.  (The name ``nan''
10776 comes from analogy with the ``NAN'' concept of IEEE standard
10777 arithmetic; it stands for ``Not A Number.''  This is somewhat of a
10778 misnomer, since @code{nan} @emph{does} stand for some number or
10779 infinity, it's just that @emph{which} number it stands for
10780 cannot be determined.)  In Calc's notation, @samp{0 * inf = nan}
10781 and @samp{inf / inf = nan}.  A few other common indeterminate
10782 expressions are @samp{inf - inf} and @samp{inf ^ 0}.  Also,
10783 @samp{0 / 0 = nan} if you have turned on Infinite mode
10784 (as described above).
10786 Infinities are especially useful as parts of @dfn{intervals}.
10787 @xref{Interval Forms}.
10789 @node Vectors and Matrices, Strings, Infinities, Data Types
10790 @section Vectors and Matrices
10792 @noindent
10793 @cindex Vectors
10794 @cindex Plain vectors
10795 @cindex Matrices
10796 The @dfn{vector} data type is flexible and general.  A vector is simply a
10797 list of zero or more data objects.  When these objects are numbers, the
10798 whole is a vector in the mathematical sense.  When these objects are
10799 themselves vectors of equal (nonzero) length, the whole is a @dfn{matrix}.
10800 A vector which is not a matrix is referred to here as a @dfn{plain vector}.
10802 A vector is displayed as a list of values separated by commas and enclosed
10803 in square brackets:  @samp{[1, 2, 3]}.  Thus the following is a 2 row by
10804 3 column matrix:  @samp{[[1, 2, 3], [4, 5, 6]]}.  Vectors, like complex
10805 numbers, are entered as incomplete objects.  @xref{Incomplete Objects}.
10806 During algebraic entry, vectors are entered all at once in the usual
10807 brackets-and-commas form.  Matrices may be entered algebraically as nested
10808 vectors, or using the shortcut notation @w{@samp{[1, 2, 3; 4, 5, 6]}},
10809 with rows separated by semicolons.  The commas may usually be omitted
10810 when entering vectors:  @samp{[1 2 3]}.  Curly braces may be used in
10811 place of brackets: @samp{@{1, 2, 3@}}, but the commas are required in
10812 this case.
10814 Traditional vector and matrix arithmetic is also supported;
10815 @pxref{Basic Arithmetic} and @pxref{Matrix Functions}.
10816 Many other operations are applied to vectors element-wise.  For example,
10817 the complex conjugate of a vector is a vector of the complex conjugates
10818 of its elements.
10820 @ignore
10821 @starindex
10822 @end ignore
10823 @tindex vec
10824 Algebraic functions for building vectors include @samp{vec(a, b, c)}
10825 to build @samp{[a, b, c]}, @samp{cvec(a, n, m)} to build an
10826 @texline @math{n\times m}
10827 @infoline @var{n}x@var{m}
10828 matrix of @samp{a}s, and @samp{index(n)} to build a vector of integers
10829 from 1 to @samp{n}.
10831 @node Strings, HMS Forms, Vectors and Matrices, Data Types
10832 @section Strings
10834 @noindent
10835 @kindex "
10836 @cindex Strings
10837 @cindex Character strings
10838 Character strings are not a special data type in the Calculator.
10839 Rather, a string is represented simply as a vector all of whose
10840 elements are integers in the range 0 to 255 (ASCII codes).  You can
10841 enter a string at any time by pressing the @kbd{"} key.  Quotation
10842 marks and backslashes are written @samp{\"} and @samp{\\}, respectively,
10843 inside strings.  Other notations introduced by backslashes are:
10845 @example
10846 @group
10847 \a     7          \^@@    0
10848 \b     8          \^a-z  1-26
10849 \e     27         \^[    27
10850 \f     12         \^\\   28
10851 \n     10         \^]    29
10852 \r     13         \^^    30
10853 \t     9          \^_    31
10854                   \^?    127
10855 @end group
10856 @end example
10858 @noindent
10859 Finally, a backslash followed by three octal digits produces any
10860 character from its ASCII code.
10862 @kindex d "
10863 @pindex calc-display-strings
10864 Strings are normally displayed in vector-of-integers form.  The
10865 @w{@kbd{d "}} (@code{calc-display-strings}) command toggles a mode in
10866 which any vectors of small integers are displayed as quoted strings
10867 instead.
10869 The backslash notations shown above are also used for displaying
10870 strings.  Characters 128 and above are not translated by Calc; unless
10871 you have an Emacs modified for 8-bit fonts, these will show up in
10872 backslash-octal-digits notation.  For characters below 32, and
10873 for character 127, Calc uses the backslash-letter combination if
10874 there is one, or otherwise uses a @samp{\^} sequence.
10876 The only Calc feature that uses strings is @dfn{compositions};
10877 @pxref{Compositions}.  Strings also provide a convenient
10878 way to do conversions between ASCII characters and integers.
10880 @ignore
10881 @starindex
10882 @end ignore
10883 @tindex string
10884 There is a @code{string} function which provides a different display
10885 format for strings.  Basically, @samp{string(@var{s})}, where @var{s}
10886 is a vector of integers in the proper range, is displayed as the
10887 corresponding string of characters with no surrounding quotation
10888 marks or other modifications.  Thus @samp{string("ABC")} (or
10889 @samp{string([65 66 67])}) will look like @samp{ABC} on the stack.
10890 This happens regardless of whether @w{@kbd{d "}} has been used.  The
10891 only way to turn it off is to use @kbd{d U} (unformatted language
10892 mode) which will display @samp{string("ABC")} instead.
10894 Control characters are displayed somewhat differently by @code{string}.
10895 Characters below 32, and character 127, are shown using @samp{^} notation
10896 (same as shown above, but without the backslash).  The quote and
10897 backslash characters are left alone, as are characters 128 and above.
10899 @ignore
10900 @starindex
10901 @end ignore
10902 @tindex bstring
10903 The @code{bstring} function is just like @code{string} except that
10904 the resulting string is breakable across multiple lines if it doesn't
10905 fit all on one line.  Potential break points occur at every space
10906 character in the string.
10908 @node HMS Forms, Date Forms, Strings, Data Types
10909 @section HMS Forms
10911 @noindent
10912 @cindex Hours-minutes-seconds forms
10913 @cindex Degrees-minutes-seconds forms
10914 @dfn{HMS} stands for Hours-Minutes-Seconds; when used as an angular
10915 argument, the interpretation is Degrees-Minutes-Seconds.  All functions
10916 that operate on angles accept HMS forms.  These are interpreted as
10917 degrees regardless of the current angular mode.  It is also possible to
10918 use HMS as the angular mode so that calculated angles are expressed in
10919 degrees, minutes, and seconds.
10921 @kindex @@
10922 @ignore
10923 @mindex @null
10924 @end ignore
10925 @kindex ' (HMS forms)
10926 @ignore
10927 @mindex @null
10928 @end ignore
10929 @kindex " (HMS forms)
10930 @ignore
10931 @mindex @null
10932 @end ignore
10933 @kindex h (HMS forms)
10934 @ignore
10935 @mindex @null
10936 @end ignore
10937 @kindex o (HMS forms)
10938 @ignore
10939 @mindex @null
10940 @end ignore
10941 @kindex m (HMS forms)
10942 @ignore
10943 @mindex @null
10944 @end ignore
10945 @kindex s (HMS forms)
10946 The default format for HMS values is
10947 @samp{@var{hours}@@ @var{mins}' @var{secs}"}.  During entry, the letters
10948 @samp{h} (for ``hours'') or
10949 @samp{o} (approximating the ``degrees'' symbol) are accepted as well as
10950 @samp{@@}, @samp{m} is accepted in place of @samp{'}, and @samp{s} is
10951 accepted in place of @samp{"}.
10952 The @var{hours} value is an integer (or integer-valued float).
10953 The @var{mins} value is an integer or integer-valued float between 0 and 59.
10954 The @var{secs} value is a real number between 0 (inclusive) and 60
10955 (exclusive).  A positive HMS form is interpreted as @var{hours} +
10956 @var{mins}/60 + @var{secs}/3600.  A negative HMS form is interpreted
10957 as @mathit{- @var{hours}} @mathit{-} @var{mins}/60 @mathit{-} @var{secs}/3600.
10958 Display format for HMS forms is quite flexible.  @xref{HMS Formats}.
10960 HMS forms can be added and subtracted.  When they are added to numbers,
10961 the numbers are interpreted according to the current angular mode.  HMS
10962 forms can also be multiplied and divided by real numbers.  Dividing
10963 two HMS forms produces a real-valued ratio of the two angles.
10965 @pindex calc-time
10966 @cindex Time of day
10967 Just for kicks, @kbd{M-x calc-time} pushes the current time of day on
10968 the stack as an HMS form.
10970 @node Date Forms, Modulo Forms, HMS Forms, Data Types
10971 @section Date Forms
10973 @noindent
10974 @cindex Date forms
10975 A @dfn{date form} represents a date and possibly an associated time.
10976 Simple date arithmetic is supported:  Adding a number to a date
10977 produces a new date shifted by that many days; adding an HMS form to
10978 a date shifts it by that many hours.  Subtracting two date forms
10979 computes the number of days between them (represented as a simple
10980 number).  Many other operations, such as multiplying two date forms,
10981 are nonsensical and are not allowed by Calc.
10983 Date forms are entered and displayed enclosed in @samp{< >} brackets.
10984 The default format is, e.g., @samp{<Wed Jan 9, 1991>} for dates,
10985 or @samp{<3:32:20pm Wed Jan 9, 1991>} for dates with times.
10986 Input is flexible; date forms can be entered in any of the usual
10987 notations for dates and times.  @xref{Date Formats}.
10989 Date forms are stored internally as numbers, specifically the number
10990 of days since midnight on the morning of January 1 of the year 1 AD.
10991 If the internal number is an integer, the form represents a date only;
10992 if the internal number is a fraction or float, the form represents
10993 a date and time.  For example, @samp{<6:00am Wed Jan 9, 1991>}
10994 is represented by the number 726842.25.  The standard precision of
10995 12 decimal digits is enough to ensure that a (reasonable) date and
10996 time can be stored without roundoff error.
10998 If the current precision is greater than 12, date forms will keep
10999 additional digits in the seconds position.  For example, if the
11000 precision is 15, the seconds will keep three digits after the
11001 decimal point.  Decreasing the precision below 12 may cause the
11002 time part of a date form to become inaccurate.  This can also happen
11003 if astronomically high years are used, though this will not be an
11004 issue in everyday (or even everymillennium) use.  Note that date
11005 forms without times are stored as exact integers, so roundoff is
11006 never an issue for them.
11008 You can use the @kbd{v p} (@code{calc-pack}) and @kbd{v u}
11009 (@code{calc-unpack}) commands to get at the numerical representation
11010 of a date form.  @xref{Packing and Unpacking}.
11012 Date forms can go arbitrarily far into the future or past.  Negative
11013 year numbers represent years BC.  Calc uses a combination of the
11014 Gregorian and Julian calendars, following the history of Great
11015 Britain and the British colonies.  This is the same calendar that
11016 is used by the @code{cal} program in most Unix implementations.
11018 @cindex Julian calendar
11019 @cindex Gregorian calendar
11020 Some historical background:  The Julian calendar was created by
11021 Julius Caesar in the year 46 BC as an attempt to fix the gradual
11022 drift caused by the lack of leap years in the calendar used
11023 until that time.  The Julian calendar introduced an extra day in
11024 all years divisible by four.  After some initial confusion, the
11025 calendar was adopted around the year we call 8 AD.  Some centuries
11026 later it became apparent that the Julian year of 365.25 days was
11027 itself not quite right.  In 1582 Pope Gregory XIII introduced the
11028 Gregorian calendar, which added the new rule that years divisible
11029 by 100, but not by 400, were not to be considered leap years
11030 despite being divisible by four.  Many countries delayed adoption
11031 of the Gregorian calendar because of religious differences;
11032 in Britain it was put off until the year 1752, by which time
11033 the Julian calendar had fallen eleven days behind the true
11034 seasons.  So the switch to the Gregorian calendar in early
11035 September 1752 introduced a discontinuity:  The day after
11036 Sep 2, 1752 is Sep 14, 1752.  Calc follows this convention.
11037 To take another example, Russia waited until 1918 before
11038 adopting the new calendar, and thus needed to remove thirteen
11039 days (between Feb 1, 1918 and Feb 14, 1918).  This means that
11040 Calc's reckoning will be inconsistent with Russian history between
11041 1752 and 1918, and similarly for various other countries.
11043 Today's timekeepers introduce an occasional ``leap second'' as
11044 well, but Calc does not take these minor effects into account.
11045 (If it did, it would have to report a non-integer number of days
11046 between, say, @samp{<12:00am Mon Jan 1, 1900>} and
11047 @samp{<12:00am Sat Jan 1, 2000>}.)
11049 Calc uses the Julian calendar for all dates before the year 1752,
11050 including dates BC when the Julian calendar technically had not
11051 yet been invented.  Thus the claim that day number @mathit{-10000} is
11052 called ``August 16, 28 BC'' should be taken with a grain of salt.
11054 Please note that there is no ``year 0''; the day before
11055 @samp{<Sat Jan 1, +1>} is @samp{<Fri Dec 31, -1>}.  These are
11056 days 0 and @mathit{-1} respectively in Calc's internal numbering scheme.
11058 @cindex Julian day counting
11059 Another day counting system in common use is, confusingly, also called
11060 ``Julian.''  The Julian day number is the numbers of days since
11061 12:00 noon (GMT) on Jan 1, 4713 BC, which in Calc's scheme (in GMT)
11062 is @mathit{-1721423.5} (recall that Calc starts at midnight instead
11063 of noon).  Thus to convert a Calc date code obtained by unpacking a
11064 date form into a Julian day number, simply add 1721423.5 after
11065 compensating for the time zone difference.  The built-in @kbd{t J}
11066 command performs this conversion for you.
11068 The Julian day number is based on the Julian cycle, which was invented
11069 in 1583 by Joseph Justus Scaliger.  Scaliger named it the Julian cycle
11070 since it involves the Julian calendar, but some have suggested that
11071 Scaliger named it in honor of his father, Julius Caesar Scaliger.  The
11072 Julian cycle is based on three other cycles: the indiction cycle, the
11073 Metonic cycle, and the solar cycle.  The indiction cycle is a 15 year
11074 cycle originally used by the Romans for tax purposes but later used to
11075 date medieval documents.  The Metonic cycle is a 19 year cycle; 19
11076 years is close to being a common multiple of a solar year and a lunar
11077 month, and so every 19 years the phases of the moon will occur on the
11078 same days of the year.  The solar cycle is a 28 year cycle; the Julian
11079 calendar repeats itself every 28 years.  The smallest time period
11080 which contains multiples of all three cycles is the least common
11081 multiple of 15 years, 19 years and 28 years, which (since they're
11082 pairwise relatively prime) is
11083 @texline @math{15\times 19\times 28 = 7980} years.
11084 @infoline 15*19*28 = 7980 years.
11085 This is the length of a Julian cycle.  Working backwards, the previous
11086 year in which all three cycles began was 4713 BC, and so Scaliger
11087 chose that year as the beginning of a Julian cycle.  Since at the time
11088 there were no historical records from before 4713 BC, using this year
11089 as a starting point had the advantage of avoiding negative year
11090 numbers.  In 1849, the astronomer John Herschel (son of William
11091 Herschel) suggested using the number of days since the beginning of
11092 the Julian cycle as an astronomical dating system; this idea was taken
11093 up by other astronomers.  (At the time, noon was the start of the
11094 astronomical day.  Herschel originally suggested counting the days
11095 since Jan 1, 4713 BC at noon Alexandria time; this was later amended to
11096 noon GMT.)  Julian day numbering is largely used in astronomy.
11098 @cindex Unix time format
11099 The Unix operating system measures time as an integer number of
11100 seconds since midnight, Jan 1, 1970.  To convert a Calc date
11101 value into a Unix time stamp, first subtract 719164 (the code
11102 for @samp{<Jan 1, 1970>}), then multiply by 86400 (the number of
11103 seconds in a day) and press @kbd{R} to round to the nearest
11104 integer.  If you have a date form, you can simply subtract the
11105 day @samp{<Jan 1, 1970>} instead of unpacking and subtracting
11106 719164.  Likewise, divide by 86400 and add @samp{<Jan 1, 1970>}
11107 to convert from Unix time to a Calc date form.  (Note that
11108 Unix normally maintains the time in the GMT time zone; you may
11109 need to subtract five hours to get New York time, or eight hours
11110 for California time.  The same is usually true of Julian day
11111 counts.)  The built-in @kbd{t U} command performs these
11112 conversions.
11114 @node Modulo Forms, Error Forms, Date Forms, Data Types
11115 @section Modulo Forms
11117 @noindent
11118 @cindex Modulo forms
11119 A @dfn{modulo form} is a real number which is taken modulo (i.e., within
11120 an integer multiple of) some value @var{M}.  Arithmetic modulo @var{M}
11121 often arises in number theory.  Modulo forms are written
11122 `@var{a} @tfn{mod} @var{M}',
11123 where @var{a} and @var{M} are real numbers or HMS forms, and
11124 @texline @math{0 \le a < M}.
11125 @infoline @expr{0 <= a < @var{M}}.
11126 In many applications @expr{a} and @expr{M} will be
11127 integers but this is not required.
11129 @ignore
11130 @mindex M
11131 @end ignore
11132 @kindex M (modulo forms)
11133 @ignore
11134 @mindex mod
11135 @end ignore
11136 @tindex mod (operator)
11137 To create a modulo form during numeric entry, press the shift-@kbd{M}
11138 key to enter the word @samp{mod}.  As a special convenience, pressing
11139 shift-@kbd{M} a second time automatically enters the value of @expr{M}
11140 that was most recently used before.  During algebraic entry, either
11141 type @samp{mod} by hand or press @kbd{M-m} (that's @kbd{@key{META}-m}).
11142 Once again, pressing this a second time enters the current modulo.
11144 Modulo forms are not to be confused with the modulo operator @samp{%}.
11145 The expression @samp{27 % 10} means to compute 27 modulo 10 to produce
11146 the result 7.  Further computations treat this 7 as just a regular integer.
11147 The expression @samp{27 mod 10} produces the result @samp{7 mod 10};
11148 further computations with this value are again reduced modulo 10 so that
11149 the result always lies in the desired range.
11151 When two modulo forms with identical @expr{M}'s are added or multiplied,
11152 the Calculator simply adds or multiplies the values, then reduces modulo
11153 @expr{M}.  If one argument is a modulo form and the other a plain number,
11154 the plain number is treated like a compatible modulo form.  It is also
11155 possible to raise modulo forms to powers; the result is the value raised
11156 to the power, then reduced modulo @expr{M}.  (When all values involved
11157 are integers, this calculation is done much more efficiently than
11158 actually computing the power and then reducing.)
11160 @cindex Modulo division
11161 Two modulo forms `@var{a} @tfn{mod} @var{M}' and `@var{b} @tfn{mod} @var{M}'
11162 can be divided if @expr{a}, @expr{b}, and @expr{M} are all
11163 integers.  The result is the modulo form which, when multiplied by
11164 `@var{b} @tfn{mod} @var{M}', produces `@var{a} @tfn{mod} @var{M}'.  If
11165 there is no solution to this equation (which can happen only when
11166 @expr{M} is non-prime), or if any of the arguments are non-integers, the
11167 division is left in symbolic form.  Other operations, such as square
11168 roots, are not yet supported for modulo forms.  (Note that, although
11169 @w{`@tfn{(}@var{a} @tfn{mod} @var{M}@tfn{)^.5}'} will compute a ``modulo square root''
11170 in the sense of reducing
11171 @texline @math{\sqrt a}
11172 @infoline @expr{sqrt(a)}
11173 modulo @expr{M}, this is not a useful definition from the
11174 number-theoretical point of view.)
11176 It is possible to mix HMS forms and modulo forms.  For example, an
11177 HMS form modulo 24 could be used to manipulate clock times; an HMS
11178 form modulo 360 would be suitable for angles.  Making the modulo @expr{M}
11179 also be an HMS form eliminates troubles that would arise if the angular
11180 mode were inadvertently set to Radians, in which case
11181 @w{@samp{2@@ 0' 0" mod 24}} would be interpreted as two degrees modulo
11182 24 radians!
11184 Modulo forms cannot have variables or formulas for components.  If you
11185 enter the formula @samp{(x + 2) mod 5}, Calc propagates the modulus
11186 to each of the coefficients:  @samp{(1 mod 5) x + (2 mod 5)}.
11188 You can use @kbd{v p} and @kbd{%} to modify modulo forms.
11189 @xref{Packing and Unpacking}.  @xref{Basic Arithmetic}.
11191 @ignore
11192 @starindex
11193 @end ignore
11194 @tindex makemod
11195 The algebraic function @samp{makemod(a, m)} builds the modulo form
11196 @w{@samp{a mod m}}.
11198 @node Error Forms, Interval Forms, Modulo Forms, Data Types
11199 @section Error Forms
11201 @noindent
11202 @cindex Error forms
11203 @cindex Standard deviations
11204 An @dfn{error form} is a number with an associated standard
11205 deviation, as in @samp{2.3 +/- 0.12}.  The notation
11206 @texline `@var{x} @tfn{+/-} @math{\sigma}'
11207 @infoline `@var{x} @tfn{+/-} sigma'
11208 stands for an uncertain value which follows
11209 a normal or Gaussian distribution of mean @expr{x} and standard
11210 deviation or ``error''
11211 @texline @math{\sigma}.
11212 @infoline @expr{sigma}.
11213 Both the mean and the error can be either numbers or
11214 formulas.  Generally these are real numbers but the mean may also be
11215 complex.  If the error is negative or complex, it is changed to its
11216 absolute value.  An error form with zero error is converted to a
11217 regular number by the Calculator.
11219 All arithmetic and transcendental functions accept error forms as input.
11220 Operations on the mean-value part work just like operations on regular
11221 numbers.  The error part for any function @expr{f(x)} (such as
11222 @texline @math{\sin x}
11223 @infoline @expr{sin(x)})
11224 is defined by the error of @expr{x} times the derivative of @expr{f}
11225 evaluated at the mean value of @expr{x}.  For a two-argument function
11226 @expr{f(x,y)} (such as addition) the error is the square root of the sum
11227 of the squares of the errors due to @expr{x} and @expr{y}.
11228 @tex
11229 $$ \eqalign{
11230   f(x \hbox{\code{ +/- }} \sigma)
11231     &= f(x) \hbox{\code{ +/- }} \sigma \left| {df(x) \over dx} \right| \cr
11232   f(x \hbox{\code{ +/- }} \sigma_x, y \hbox{\code{ +/- }} \sigma_y)
11233     &= f(x,y) \hbox{\code{ +/- }}
11234         \sqrt{\left(\sigma_x \left| {\partial f(x,y) \over \partial x}
11235                              \right| \right)^2
11236              +\left(\sigma_y \left| {\partial f(x,y) \over \partial y}
11237                              \right| \right)^2 } \cr
11238 } $$
11239 @end tex
11240 Note that this
11241 definition assumes the errors in @expr{x} and @expr{y} are uncorrelated.
11242 A side effect of this definition is that @samp{(2 +/- 1) * (2 +/- 1)}
11243 is not the same as @samp{(2 +/- 1)^2}; the former represents the product
11244 of two independent values which happen to have the same probability
11245 distributions, and the latter is the product of one random value with itself.
11246 The former will produce an answer with less error, since on the average
11247 the two independent errors can be expected to cancel out.
11249 Consult a good text on error analysis for a discussion of the proper use
11250 of standard deviations.  Actual errors often are neither Gaussian-distributed
11251 nor uncorrelated, and the above formulas are valid only when errors
11252 are small.  As an example, the error arising from
11253 @texline `@tfn{sin(}@var{x} @tfn{+/-} @math{\sigma}@tfn{)}'
11254 @infoline `@tfn{sin(}@var{x} @tfn{+/-} @var{sigma}@tfn{)}'
11256 @texline `@math{\sigma} @tfn{abs(cos(}@var{x}@tfn{))}'.
11257 @infoline `@var{sigma} @tfn{abs(cos(}@var{x}@tfn{))}'.
11258 When @expr{x} is close to zero,
11259 @texline @math{\cos x}
11260 @infoline @expr{cos(x)}
11261 is close to one so the error in the sine is close to
11262 @texline @math{\sigma};
11263 @infoline @expr{sigma};
11264 this makes sense, since
11265 @texline @math{\sin x}
11266 @infoline @expr{sin(x)}
11267 is approximately @expr{x} near zero, so a given error in @expr{x} will
11268 produce about the same error in the sine.  Likewise, near 90 degrees
11269 @texline @math{\cos x}
11270 @infoline @expr{cos(x)}
11271 is nearly zero and so the computed error is
11272 small:  The sine curve is nearly flat in that region, so an error in @expr{x}
11273 has relatively little effect on the value of
11274 @texline @math{\sin x}.
11275 @infoline @expr{sin(x)}.
11276 However, consider @samp{sin(90 +/- 1000)}.  The cosine of 90 is zero, so
11277 Calc will report zero error!  We get an obviously wrong result because
11278 we have violated the small-error approximation underlying the error
11279 analysis.  If the error in @expr{x} had been small, the error in
11280 @texline @math{\sin x}
11281 @infoline @expr{sin(x)}
11282 would indeed have been negligible.
11284 @ignore
11285 @mindex p
11286 @end ignore
11287 @kindex p (error forms)
11288 @tindex +/-
11289 To enter an error form during regular numeric entry, use the @kbd{p}
11290 (``plus-or-minus'') key to type the @samp{+/-} symbol.  (If you try actually
11291 typing @samp{+/-} the @kbd{+} key will be interpreted as the Calculator's
11292 @kbd{+} command!)  Within an algebraic formula, you can press @kbd{M-+} to
11293 type the @samp{+/-} symbol, or type it out by hand.
11295 Error forms and complex numbers can be mixed; the formulas shown above
11296 are used for complex numbers, too; note that if the error part evaluates
11297 to a complex number its absolute value (or the square root of the sum of
11298 the squares of the absolute values of the two error contributions) is
11299 used.  Mathematically, this corresponds to a radially symmetric Gaussian
11300 distribution of numbers on the complex plane.  However, note that Calc
11301 considers an error form with real components to represent a real number,
11302 not a complex distribution around a real mean.
11304 Error forms may also be composed of HMS forms.  For best results, both
11305 the mean and the error should be HMS forms if either one is.
11307 @ignore
11308 @starindex
11309 @end ignore
11310 @tindex sdev
11311 The algebraic function @samp{sdev(a, b)} builds the error form @samp{a +/- b}.
11313 @node Interval Forms, Incomplete Objects, Error Forms, Data Types
11314 @section Interval Forms
11316 @noindent
11317 @cindex Interval forms
11318 An @dfn{interval} is a subset of consecutive real numbers.  For example,
11319 the interval @samp{[2 ..@: 4]} represents all the numbers from 2 to 4,
11320 inclusive.  If you multiply it by the interval @samp{[0.5 ..@: 2]} you
11321 obtain @samp{[1 ..@: 8]}.  This calculation represents the fact that if
11322 you multiply some number in the range @samp{[2 ..@: 4]} by some other
11323 number in the range @samp{[0.5 ..@: 2]}, your result will lie in the range
11324 from 1 to 8.  Interval arithmetic is used to get a worst-case estimate
11325 of the possible range of values a computation will produce, given the
11326 set of possible values of the input.
11328 @ifnottex
11329 Calc supports several varieties of intervals, including @dfn{closed}
11330 intervals of the type shown above, @dfn{open} intervals such as
11331 @samp{(2 ..@: 4)}, which represents the range of numbers from 2 to 4
11332 @emph{exclusive}, and @dfn{semi-open} intervals in which one end
11333 uses a round parenthesis and the other a square bracket.  In mathematical
11334 terms,
11335 @samp{[2 ..@: 4]} means @expr{2 <= x <= 4}, whereas
11336 @samp{[2 ..@: 4)} represents @expr{2 <= x < 4},
11337 @samp{(2 ..@: 4]} represents @expr{2 < x <= 4}, and
11338 @samp{(2 ..@: 4)} represents @expr{2 < x < 4}.
11339 @end ifnottex
11340 @tex
11341 Calc supports several varieties of intervals, including \dfn{closed}
11342 intervals of the type shown above, \dfn{open} intervals such as
11343 \samp{(2 ..\: 4)}, which represents the range of numbers from 2 to 4
11344 \emph{exclusive}, and \dfn{semi-open} intervals in which one end
11345 uses a round parenthesis and the other a square bracket.  In mathematical
11346 terms,
11347 $$ \eqalign{
11348    [2 \hbox{\cite{..}} 4]  &\quad\hbox{means}\quad  2 \le x \le 4  \cr
11349    [2 \hbox{\cite{..}} 4)  &\quad\hbox{means}\quad  2 \le x  <  4  \cr
11350    (2 \hbox{\cite{..}} 4]  &\quad\hbox{means}\quad  2  <  x \le 4  \cr
11351    (2 \hbox{\cite{..}} 4)  &\quad\hbox{means}\quad  2  <  x  <  4  \cr
11352 } $$
11353 @end tex
11355 The lower and upper limits of an interval must be either real numbers
11356 (or HMS or date forms), or symbolic expressions which are assumed to be
11357 real-valued, or @samp{-inf} and @samp{inf}.  In general the lower limit
11358 must be less than the upper limit.  A closed interval containing only
11359 one value, @samp{[3 ..@: 3]}, is converted to a plain number (3)
11360 automatically.  An interval containing no values at all (such as
11361 @samp{[3 ..@: 2]} or @samp{[2 ..@: 2)}) can be represented but is not
11362 guaranteed to behave well when used in arithmetic.  Note that the
11363 interval @samp{[3 .. inf)} represents all real numbers greater than
11364 or equal to 3, and @samp{(-inf .. inf)} represents all real numbers.
11365 In fact, @samp{[-inf .. inf]} represents all real numbers including
11366 the real infinities.
11368 Intervals are entered in the notation shown here, either as algebraic
11369 formulas, or using incomplete forms.  (@xref{Incomplete Objects}.)
11370 In algebraic formulas, multiple periods in a row are collected from
11371 left to right, so that @samp{1...1e2} is interpreted as @samp{1.0 ..@: 1e2}
11372 rather than @samp{1 ..@: 0.1e2}.  Add spaces or zeros if you want to
11373 get the other interpretation.  If you omit the lower or upper limit,
11374 a default of @samp{-inf} or @samp{inf} (respectively) is furnished.
11376 Infinite mode also affects operations on intervals
11377 (@pxref{Infinities}).  Calc will always introduce an open infinity,
11378 as in @samp{1 / (0 .. 2] = [0.5 .. inf)}.  But closed infinities,
11379 @w{@samp{1 / [0 .. 2] = [0.5 .. inf]}}, arise only in Infinite mode;
11380 otherwise they are left unevaluated.  Note that the ``direction'' of
11381 a zero is not an issue in this case since the zero is always assumed
11382 to be continuous with the rest of the interval.  For intervals that
11383 contain zero inside them Calc is forced to give the result,
11384 @samp{1 / (-2 .. 2) = [-inf .. inf]}.
11386 While it may seem that intervals and error forms are similar, they are
11387 based on entirely different concepts of inexact quantities.  An error
11388 form
11389 @texline `@var{x} @tfn{+/-} @math{\sigma}'
11390 @infoline `@var{x} @tfn{+/-} @var{sigma}'
11391 means a variable is random, and its value could
11392 be anything but is ``probably'' within one
11393 @texline @math{\sigma}
11394 @infoline @var{sigma}
11395 of the mean value @expr{x}. An interval
11396 `@tfn{[}@var{a} @tfn{..@:} @var{b}@tfn{]}' means a
11397 variable's value is unknown, but guaranteed to lie in the specified
11398 range.  Error forms are statistical or ``average case'' approximations;
11399 interval arithmetic tends to produce ``worst case'' bounds on an
11400 answer.
11402 Intervals may not contain complex numbers, but they may contain
11403 HMS forms or date forms.
11405 @xref{Set Operations}, for commands that interpret interval forms
11406 as subsets of the set of real numbers.
11408 @ignore
11409 @starindex
11410 @end ignore
11411 @tindex intv
11412 The algebraic function @samp{intv(n, a, b)} builds an interval form
11413 from @samp{a} to @samp{b}; @samp{n} is an integer code which must
11414 be 0 for @samp{(..)}, 1 for @samp{(..]}, 2 for @samp{[..)}, or
11415 3 for @samp{[..]}.
11417 Please note that in fully rigorous interval arithmetic, care would be
11418 taken to make sure that the computation of the lower bound rounds toward
11419 minus infinity, while upper bound computations round toward plus
11420 infinity.  Calc's arithmetic always uses a round-to-nearest mode,
11421 which means that roundoff errors could creep into an interval
11422 calculation to produce intervals slightly smaller than they ought to
11423 be.  For example, entering @samp{[1..2]} and pressing @kbd{Q 2 ^}
11424 should yield the interval @samp{[1..2]} again, but in fact it yields the
11425 (slightly too small) interval @samp{[1..1.9999999]} due to roundoff
11426 error.
11428 @node Incomplete Objects, Variables, Interval Forms, Data Types
11429 @section Incomplete Objects
11431 @noindent
11432 @ignore
11433 @mindex [ ]
11434 @end ignore
11435 @kindex [
11436 @ignore
11437 @mindex ( )
11438 @end ignore
11439 @kindex (
11440 @kindex ,
11441 @ignore
11442 @mindex @null
11443 @end ignore
11444 @kindex ]
11445 @ignore
11446 @mindex @null
11447 @end ignore
11448 @kindex )
11449 @cindex Incomplete vectors
11450 @cindex Incomplete complex numbers
11451 @cindex Incomplete interval forms
11452 When @kbd{(} or @kbd{[} is typed to begin entering a complex number or
11453 vector, respectively, the effect is to push an @dfn{incomplete} complex
11454 number or vector onto the stack.  The @kbd{,} key adds the value(s) at
11455 the top of the stack onto the current incomplete object.  The @kbd{)}
11456 and @kbd{]} keys ``close'' the incomplete object after adding any values
11457 on the top of the stack in front of the incomplete object.
11459 As a result, the sequence of keystrokes @kbd{[ 2 , 3 @key{RET} 2 * , 9 ]}
11460 pushes the vector @samp{[2, 6, 9]} onto the stack.  Likewise, @kbd{( 1 , 2 Q )}
11461 pushes the complex number @samp{(1, 1.414)} (approximately).
11463 If several values lie on the stack in front of the incomplete object,
11464 all are collected and appended to the object.  Thus the @kbd{,} key
11465 is redundant:  @kbd{[ 2 @key{RET} 3 @key{RET} 2 * 9 ]}.  Some people
11466 prefer the equivalent @key{SPC} key to @key{RET}.
11468 As a special case, typing @kbd{,} immediately after @kbd{(}, @kbd{[}, or
11469 @kbd{,} adds a zero or duplicates the preceding value in the list being
11470 formed.  Typing @key{DEL} during incomplete entry removes the last item
11471 from the list.
11473 @kindex ;
11474 The @kbd{;} key is used in the same way as @kbd{,} to create polar complex
11475 numbers:  @kbd{( 1 ; 2 )}.  When entering a vector, @kbd{;} is useful for
11476 creating a matrix.  In particular, @kbd{[ [ 1 , 2 ; 3 , 4 ; 5 , 6 ] ]} is
11477 equivalent to @kbd{[ [ 1 , 2 ] , [ 3 , 4 ] , [ 5 , 6 ] ]}.
11479 @kindex ..
11480 @pindex calc-dots
11481 Incomplete entry is also used to enter intervals.  For example,
11482 @kbd{[ 2 ..@: 4 )} enters a semi-open interval.  Note that when you type
11483 the first period, it will be interpreted as a decimal point, but when
11484 you type a second period immediately afterward, it is re-interpreted as
11485 part of the interval symbol.  Typing @kbd{..} corresponds to executing
11486 the @code{calc-dots} command.
11488 If you find incomplete entry distracting, you may wish to enter vectors
11489 and complex numbers as algebraic formulas by pressing the apostrophe key.
11491 @node Variables, Formulas, Incomplete Objects, Data Types
11492 @section Variables
11494 @noindent
11495 @cindex Variables, in formulas
11496 A @dfn{variable} is somewhere between a storage register on a conventional
11497 calculator, and a variable in a programming language.  (In fact, a Calc
11498 variable is really just an Emacs Lisp variable that contains a Calc number
11499 or formula.)  A variable's name is normally composed of letters and digits.
11500 Calc also allows apostrophes and @code{#} signs in variable names.
11501 (The Calc variable @code{foo} corresponds to the Emacs Lisp variable
11502 @code{var-foo}, but unless you access the variable from within Emacs
11503 Lisp, you don't need to worry about it.  Variable names in algebraic
11504 formulas implicitly have @samp{var-} prefixed to their names.  The
11505 @samp{#} character in variable names used in algebraic formulas
11506 corresponds to a dash @samp{-} in the Lisp variable name.  If the name
11507 contains any dashes, the prefix @samp{var-} is @emph{not} automatically
11508 added.  Thus the two formulas @samp{foo + 1} and @samp{var#foo + 1} both
11509 refer to the same variable.)
11511 In a command that takes a variable name, you can either type the full
11512 name of a variable, or type a single digit to use one of the special
11513 convenience variables @code{q0} through @code{q9}.  For example,
11514 @kbd{3 s s 2} stores the number 3 in variable @code{q2}, and
11515 @w{@kbd{3 s s foo @key{RET}}} stores that number in variable
11516 @code{foo}.
11518 To push a variable itself (as opposed to the variable's value) on the
11519 stack, enter its name as an algebraic expression using the apostrophe
11520 (@key{'}) key.
11522 @kindex =
11523 @pindex calc-evaluate
11524 @cindex Evaluation of variables in a formula
11525 @cindex Variables, evaluation
11526 @cindex Formulas, evaluation
11527 The @kbd{=} (@code{calc-evaluate}) key ``evaluates'' a formula by
11528 replacing all variables in the formula which have been given values by a
11529 @code{calc-store} or @code{calc-let} command by their stored values.
11530 Other variables are left alone.  Thus a variable that has not been
11531 stored acts like an abstract variable in algebra; a variable that has
11532 been stored acts more like a register in a traditional calculator.
11533 With a positive numeric prefix argument, @kbd{=} evaluates the top
11534 @var{n} stack entries; with a negative argument, @kbd{=} evaluates
11535 the @var{n}th stack entry.
11537 @cindex @code{e} variable
11538 @cindex @code{pi} variable
11539 @cindex @code{i} variable
11540 @cindex @code{phi} variable
11541 @cindex @code{gamma} variable
11542 @vindex e
11543 @vindex pi
11544 @vindex i
11545 @vindex phi
11546 @vindex gamma
11547 A few variables are called @dfn{special constants}.  Their names are
11548 @samp{e}, @samp{pi}, @samp{i}, @samp{phi}, and @samp{gamma}.
11549 (@xref{Scientific Functions}.)  When they are evaluated with @kbd{=},
11550 their values are calculated if necessary according to the current precision
11551 or complex polar mode.  If you wish to use these symbols for other purposes,
11552 simply undefine or redefine them using @code{calc-store}.
11554 The variables @samp{inf}, @samp{uinf}, and @samp{nan} stand for
11555 infinite or indeterminate values.  It's best not to use them as
11556 regular variables, since Calc uses special algebraic rules when
11557 it manipulates them.  Calc displays a warning message if you store
11558 a value into any of these special variables.
11560 @xref{Store and Recall}, for a discussion of commands dealing with variables.
11562 @node Formulas,  , Variables, Data Types
11563 @section Formulas
11565 @noindent
11566 @cindex Formulas
11567 @cindex Expressions
11568 @cindex Operators in formulas
11569 @cindex Precedence of operators
11570 When you press the apostrophe key you may enter any expression or formula
11571 in algebraic form.  (Calc uses the terms ``expression'' and ``formula''
11572 interchangeably.)  An expression is built up of numbers, variable names,
11573 and function calls, combined with various arithmetic operators.
11574 Parentheses may
11575 be used to indicate grouping.  Spaces are ignored within formulas, except
11576 that spaces are not permitted within variable names or numbers.
11577 Arithmetic operators, in order from highest to lowest precedence, and
11578 with their equivalent function names, are:
11580 @samp{_} [@code{subscr}] (subscripts);
11582 postfix @samp{%} [@code{percent}] (as in @samp{25% = 0.25});
11584 prefix @samp{!} [@code{lnot}] (logical ``not,'' as in @samp{!x});
11586 @samp{+/-} [@code{sdev}] (the standard deviation symbol) and
11587 @samp{mod} [@code{makemod}] (the symbol for modulo forms);
11589 postfix @samp{!} [@code{fact}] (factorial, as in @samp{n!})
11590 and postfix @samp{!!} [@code{dfact}] (double factorial);
11592 @samp{^} [@code{pow}] (raised-to-the-power-of);
11594 prefix @samp{+} and @samp{-} [@code{neg}] (as in @samp{-x});
11596 @samp{*} [@code{mul}];
11598 @samp{/} [@code{div}], @samp{%} [@code{mod}] (modulo), and
11599 @samp{\} [@code{idiv}] (integer division);
11601 infix @samp{+} [@code{add}] and @samp{-} [@code{sub}] (as in @samp{x-y});
11603 @samp{|} [@code{vconcat}] (vector concatenation);
11605 relations @samp{=} [@code{eq}], @samp{!=} [@code{neq}], @samp{<} [@code{lt}],
11606 @samp{>} [@code{gt}], @samp{<=} [@code{leq}], and @samp{>=} [@code{geq}];
11608 @samp{&&} [@code{land}] (logical ``and'');
11610 @samp{||} [@code{lor}] (logical ``or'');
11612 the C-style ``if'' operator @samp{a?b:c} [@code{if}];
11614 @samp{!!!} [@code{pnot}] (rewrite pattern ``not'');
11616 @samp{&&&} [@code{pand}] (rewrite pattern ``and'');
11618 @samp{|||} [@code{por}] (rewrite pattern ``or'');
11620 @samp{:=} [@code{assign}] (for assignments and rewrite rules);
11622 @samp{::} [@code{condition}] (rewrite pattern condition);
11624 @samp{=>} [@code{evalto}].
11626 Note that, unlike in usual computer notation, multiplication binds more
11627 strongly than division:  @samp{a*b/c*d} is equivalent to
11628 @texline @math{a b \over c d}.
11629 @infoline @expr{(a*b)/(c*d)}.
11631 @cindex Multiplication, implicit
11632 @cindex Implicit multiplication
11633 The multiplication sign @samp{*} may be omitted in many cases.  In particular,
11634 if the righthand side is a number, variable name, or parenthesized
11635 expression, the @samp{*} may be omitted.  Implicit multiplication has the
11636 same precedence as the explicit @samp{*} operator.  The one exception to
11637 the rule is that a variable name followed by a parenthesized expression,
11638 as in @samp{f(x)},
11639 is interpreted as a function call, not an implicit @samp{*}.  In many
11640 cases you must use a space if you omit the @samp{*}:  @samp{2a} is the
11641 same as @samp{2*a}, and @samp{a b} is the same as @samp{a*b}, but @samp{ab}
11642 is a variable called @code{ab}, @emph{not} the product of @samp{a} and
11643 @samp{b}!  Also note that @samp{f (x)} is still a function call.
11645 @cindex Implicit comma in vectors
11646 The rules are slightly different for vectors written with square brackets.
11647 In vectors, the space character is interpreted (like the comma) as a
11648 separator of elements of the vector.  Thus @w{@samp{[ 2a b+c d ]}} is
11649 equivalent to @samp{[2*a, b+c, d]}, whereas @samp{2a b+c d} is equivalent
11650 to @samp{2*a*b + c*d}.
11651 Note that spaces around the brackets, and around explicit commas, are
11652 ignored.  To force spaces to be interpreted as multiplication you can
11653 enclose a formula in parentheses as in @samp{[(a b) 2(c d)]}, which is
11654 interpreted as @samp{[a*b, 2*c*d]}.  An implicit comma is also inserted
11655 between @samp{][}, as in the matrix @samp{[[1 2][3 4]]}.
11657 Vectors that contain commas (not embedded within nested parentheses or
11658 brackets) do not treat spaces specially:  @samp{[a b, 2 c d]} is a vector
11659 of two elements.  Also, if it would be an error to treat spaces as
11660 separators, but not otherwise, then Calc will ignore spaces:
11661 @w{@samp{[a - b]}} is a vector of one element, but @w{@samp{[a -b]}} is
11662 a vector of two elements.  Finally, vectors entered with curly braces
11663 instead of square brackets do not give spaces any special treatment.
11664 When Calc displays a vector that does not contain any commas, it will
11665 insert parentheses if necessary to make the meaning clear:
11666 @w{@samp{[(a b)]}}.
11668 The expression @samp{5%-2} is ambiguous; is this five-percent minus two,
11669 or five modulo minus-two?  Calc always interprets the leftmost symbol as
11670 an infix operator preferentially (modulo, in this case), so you would
11671 need to write @samp{(5%)-2} to get the former interpretation.
11673 @cindex Function call notation
11674 A function call is, e.g., @samp{sin(1+x)}.  (The Calc algebraic function
11675 @code{foo} corresponds to the Emacs Lisp function @code{calcFunc-foo},
11676 but unless you access the function from within Emacs Lisp, you don't
11677 need to worry about it.)  Most mathematical Calculator commands like
11678 @code{calc-sin} have function equivalents like @code{sin}.
11679 If no Lisp function is defined for a function called by a formula, the
11680 call is left as it is during algebraic manipulation: @samp{f(x+y)} is
11681 left alone.  Beware that many innocent-looking short names like @code{in}
11682 and @code{re} have predefined meanings which could surprise you; however,
11683 single letters or single letters followed by digits are always safe to
11684 use for your own function names.  @xref{Function Index}.
11686 In the documentation for particular commands, the notation @kbd{H S}
11687 (@code{calc-sinh}) [@code{sinh}] means that the key sequence @kbd{H S}, the
11688 command @kbd{M-x calc-sinh}, and the algebraic function @code{sinh(x)} all
11689 represent the same operation.
11691 Commands that interpret (``parse'') text as algebraic formulas include
11692 algebraic entry (@kbd{'}), editing commands like @kbd{`} which parse
11693 the contents of the editing buffer when you finish, the @kbd{C-x * g}
11694 and @w{@kbd{C-x * r}} commands, the @kbd{C-y} command, the X window system
11695 ``paste'' mouse operation, and Embedded mode.  All of these operations
11696 use the same rules for parsing formulas; in particular, language modes
11697 (@pxref{Language Modes}) affect them all in the same way.
11699 When you read a large amount of text into the Calculator (say a vector
11700 which represents a big set of rewrite rules; @pxref{Rewrite Rules}),
11701 you may wish to include comments in the text.  Calc's formula parser
11702 ignores the symbol @samp{%%} and anything following it on a line:
11704 @example
11705 [ a + b,   %% the sum of "a" and "b"
11706   c + d,
11707   %% last line is coming up:
11708   e + f ]
11709 @end example
11711 @noindent
11712 This is parsed exactly the same as @samp{[ a + b, c + d, e + f ]}.
11714 @xref{Syntax Tables}, for a way to create your own operators and other
11715 input notations.  @xref{Compositions}, for a way to create new display
11716 formats.
11718 @xref{Algebra}, for commands for manipulating formulas symbolically.
11720 @node Stack and Trail, Mode Settings, Data Types, Top
11721 @chapter Stack and Trail Commands
11723 @noindent
11724 This chapter describes the Calc commands for manipulating objects on the
11725 stack and in the trail buffer.  (These commands operate on objects of any
11726 type, such as numbers, vectors, formulas, and incomplete objects.)
11728 @menu
11729 * Stack Manipulation::
11730 * Editing Stack Entries::
11731 * Trail Commands::
11732 * Keep Arguments::
11733 @end menu
11735 @node Stack Manipulation, Editing Stack Entries, Stack and Trail, Stack and Trail
11736 @section Stack Manipulation Commands
11738 @noindent
11739 @kindex @key{RET}
11740 @kindex @key{SPC}
11741 @pindex calc-enter
11742 @cindex Duplicating stack entries
11743 To duplicate the top object on the stack, press @key{RET} or @key{SPC}
11744 (two equivalent keys for the @code{calc-enter} command).
11745 Given a positive numeric prefix argument, these commands duplicate
11746 several elements at the top of the stack.
11747 Given a negative argument,
11748 these commands duplicate the specified element of the stack.
11749 Given an argument of zero, they duplicate the entire stack.
11750 For example, with @samp{10 20 30} on the stack,
11751 @key{RET} creates @samp{10 20 30 30},
11752 @kbd{C-u 2 @key{RET}} creates @samp{10 20 30 20 30},
11753 @kbd{C-u - 2 @key{RET}} creates @samp{10 20 30 20}, and
11754 @kbd{C-u 0 @key{RET}} creates @samp{10 20 30 10 20 30}.
11756 @kindex @key{LFD}
11757 @pindex calc-over
11758 The @key{LFD} (@code{calc-over}) command (on a key marked Line-Feed if you
11759 have it, else on @kbd{C-j}) is like @code{calc-enter}
11760 except that the sign of the numeric prefix argument is interpreted
11761 oppositely.  Also, with no prefix argument the default argument is 2.
11762 Thus with @samp{10 20 30} on the stack, @key{LFD} and @kbd{C-u 2 @key{LFD}}
11763 are both equivalent to @kbd{C-u - 2 @key{RET}}, producing
11764 @samp{10 20 30 20}.
11766 @kindex @key{DEL}
11767 @kindex C-d
11768 @pindex calc-pop
11769 @cindex Removing stack entries
11770 @cindex Deleting stack entries
11771 To remove the top element from the stack, press @key{DEL} (@code{calc-pop}).
11772 The @kbd{C-d} key is a synonym for @key{DEL}.
11773 (If the top element is an incomplete object with at least one element, the
11774 last element is removed from it.)  Given a positive numeric prefix argument,
11775 several elements are removed.  Given a negative argument, the specified
11776 element of the stack is deleted.  Given an argument of zero, the entire
11777 stack is emptied.
11778 For example, with @samp{10 20 30} on the stack,
11779 @key{DEL} leaves @samp{10 20},
11780 @kbd{C-u 2 @key{DEL}} leaves @samp{10},
11781 @kbd{C-u - 2 @key{DEL}} leaves @samp{10 30}, and
11782 @kbd{C-u 0 @key{DEL}} leaves an empty stack.
11784 @kindex M-@key{DEL}
11785 @pindex calc-pop-above
11786 The @kbd{M-@key{DEL}} (@code{calc-pop-above}) command is to @key{DEL} what
11787 @key{LFD} is to @key{RET}:  It interprets the sign of the numeric
11788 prefix argument in the opposite way, and the default argument is 2.
11789 Thus @kbd{M-@key{DEL}} by itself removes the second-from-top stack element,
11790 leaving the first, third, fourth, and so on; @kbd{M-3 M-@key{DEL}} deletes
11791 the third stack element.
11793 @kindex @key{TAB}
11794 @pindex calc-roll-down
11795 To exchange the top two elements of the stack, press @key{TAB}
11796 (@code{calc-roll-down}).  Given a positive numeric prefix argument, the
11797 specified number of elements at the top of the stack are rotated downward.
11798 Given a negative argument, the entire stack is rotated downward the specified
11799 number of times.  Given an argument of zero, the entire stack is reversed
11800 top-for-bottom.
11801 For example, with @samp{10 20 30 40 50} on the stack,
11802 @key{TAB} creates @samp{10 20 30 50 40},
11803 @kbd{C-u 3 @key{TAB}} creates @samp{10 20 50 30 40},
11804 @kbd{C-u - 2 @key{TAB}} creates @samp{40 50 10 20 30}, and
11805 @kbd{C-u 0 @key{TAB}} creates @samp{50 40 30 20 10}.
11807 @kindex M-@key{TAB}
11808 @pindex calc-roll-up
11809 The command @kbd{M-@key{TAB}} (@code{calc-roll-up}) is analogous to @key{TAB}
11810 except that it rotates upward instead of downward.  Also, the default
11811 with no prefix argument is to rotate the top 3 elements.
11812 For example, with @samp{10 20 30 40 50} on the stack,
11813 @kbd{M-@key{TAB}} creates @samp{10 20 40 50 30},
11814 @kbd{C-u 4 M-@key{TAB}} creates @samp{10 30 40 50 20},
11815 @kbd{C-u - 2 M-@key{TAB}} creates @samp{30 40 50 10 20}, and
11816 @kbd{C-u 0 M-@key{TAB}} creates @samp{50 40 30 20 10}.
11818 A good way to view the operation of @key{TAB} and @kbd{M-@key{TAB}} is in
11819 terms of moving a particular element to a new position in the stack.
11820 With a positive argument @var{n}, @key{TAB} moves the top stack
11821 element down to level @var{n}, making room for it by pulling all the
11822 intervening stack elements toward the top.  @kbd{M-@key{TAB}} moves the
11823 element at level @var{n} up to the top.  (Compare with @key{LFD},
11824 which copies instead of moving the element in level @var{n}.)
11826 With a negative argument @mathit{-@var{n}}, @key{TAB} rotates the stack
11827 to move the object in level @var{n} to the deepest place in the
11828 stack, and the object in level @mathit{@var{n}+1} to the top.  @kbd{M-@key{TAB}}
11829 rotates the deepest stack element to be in level @var{n}, also
11830 putting the top stack element in level @mathit{@var{n}+1}.
11832 @xref{Selecting Subformulas}, for a way to apply these commands to
11833 any portion of a vector or formula on the stack.
11835 @kindex C-xC-t
11836 @pindex calc-transpose-lines
11837 @cindex Moving stack entries
11838 The command @kbd{C-x C-t} (@code{calc-transpose-lines}) will transpose
11839 the stack object determined by the point with the stack object at the
11840 next higher level. For example, with @samp{10 20 30 40 50} on the
11841 stack and the point on the line containing @samp{30}, @kbd{C-x C-t}
11842 creates @samp{10 20 40 30 50}.  More generally, @kbd{C-x C-t} acts on
11843 the stack objects determined by the current point (and mark) similar
11844 to how the text-mode command @code{transpose-lines} acts on
11845 lines.  With argument @var{n}, @kbd{C-x C-t} will move the stack object
11846 at the level above the current point and move it past N other objects;
11847 for example, with @samp{10 20 30 40 50} on the stack and the point on
11848 the line containing @samp{30}, @kbd{C-u 2 C-x C-t} creates
11849 @samp{10 40 20 30 50}. With an argument of 0, @kbd{C-x C-t} will switch
11850 the stack objects at the levels determined by the point and the mark.
11852 @node Editing Stack Entries, Trail Commands, Stack Manipulation, Stack and Trail
11853 @section Editing Stack Entries
11855 @noindent
11856 @kindex `
11857 @pindex calc-edit
11858 @pindex calc-edit-finish
11859 @cindex Editing the stack with Emacs
11860 The @kbd{`} (@code{calc-edit}) command creates a temporary buffer
11861 (@samp{*Calc Edit*}) for editing the top-of-stack value using regular
11862 Emacs commands.  Note that @kbd{`} is a backquote, not a quote. With a
11863 numeric prefix argument, it edits the specified number of stack entries
11864 at once.  (An argument of zero edits the entire stack; a negative
11865 argument edits one specific stack entry.)
11867 When you are done editing, press @kbd{C-c C-c} to finish and return
11868 to Calc.  The @key{RET} and @key{LFD} keys also work to finish most
11869 sorts of editing, though in some cases Calc leaves @key{RET} with its
11870 usual meaning (``insert a newline'') if it's a situation where you
11871 might want to insert new lines into the editing buffer.
11873 When you finish editing, the Calculator parses the lines of text in
11874 the @samp{*Calc Edit*} buffer as numbers or formulas, replaces the
11875 original stack elements in the original buffer with these new values,
11876 then kills the @samp{*Calc Edit*} buffer.  The original Calculator buffer
11877 continues to exist during editing, but for best results you should be
11878 careful not to change it until you have finished the edit.  You can
11879 also cancel the edit by killing the buffer with @kbd{C-x k}.
11881 The formula is normally reevaluated as it is put onto the stack.
11882 For example, editing @samp{a + 2} to @samp{3 + 2} and pressing
11883 @kbd{C-c C-c} will push 5 on the stack.  If you use @key{LFD} to
11884 finish, Calc will put the result on the stack without evaluating it.
11886 If you give a prefix argument to @kbd{C-c C-c},
11887 Calc will not kill the @samp{*Calc Edit*} buffer.  You can switch
11888 back to that buffer and continue editing if you wish.  However, you
11889 should understand that if you initiated the edit with @kbd{`}, the
11890 @kbd{C-c C-c} operation will be programmed to replace the top of the
11891 stack with the new edited value, and it will do this even if you have
11892 rearranged the stack in the meanwhile.  This is not so much of a problem
11893 with other editing commands, though, such as @kbd{s e}
11894 (@code{calc-edit-variable}; @pxref{Operations on Variables}).
11896 If the @code{calc-edit} command involves more than one stack entry,
11897 each line of the @samp{*Calc Edit*} buffer is interpreted as a
11898 separate formula.  Otherwise, the entire buffer is interpreted as
11899 one formula, with line breaks ignored.  (You can use @kbd{C-o} or
11900 @kbd{C-q C-j} to insert a newline in the buffer without pressing @key{RET}.)
11902 The @kbd{`} key also works during numeric or algebraic entry.  The
11903 text entered so far is moved to the @code{*Calc Edit*} buffer for
11904 more extensive editing than is convenient in the minibuffer.
11906 @node Trail Commands, Keep Arguments, Editing Stack Entries, Stack and Trail
11907 @section Trail Commands
11909 @noindent
11910 @cindex Trail buffer
11911 The commands for manipulating the Calc Trail buffer are two-key sequences
11912 beginning with the @kbd{t} prefix.
11914 @kindex t d
11915 @pindex calc-trail-display
11916 The @kbd{t d} (@code{calc-trail-display}) command turns display of the
11917 trail on and off.  Normally the trail display is toggled on if it was off,
11918 off if it was on.  With a numeric prefix of zero, this command always
11919 turns the trail off; with a prefix of one, it always turns the trail on.
11920 The other trail-manipulation commands described here automatically turn
11921 the trail on.  Note that when the trail is off values are still recorded
11922 there; they are simply not displayed.  To set Emacs to turn the trail
11923 off by default, type @kbd{t d} and then save the mode settings with
11924 @kbd{m m} (@code{calc-save-modes}).
11926 @kindex t i
11927 @pindex calc-trail-in
11928 @kindex t o
11929 @pindex calc-trail-out
11930 The @kbd{t i} (@code{calc-trail-in}) and @kbd{t o}
11931 (@code{calc-trail-out}) commands switch the cursor into and out of the
11932 Calc Trail window.  In practice they are rarely used, since the commands
11933 shown below are a more convenient way to move around in the
11934 trail, and they work ``by remote control'' when the cursor is still
11935 in the Calculator window.
11937 @cindex Trail pointer
11938 There is a @dfn{trail pointer} which selects some entry of the trail at
11939 any given time.  The trail pointer looks like a @samp{>} symbol right
11940 before the selected number.  The following commands operate on the
11941 trail pointer in various ways.
11943 @kindex t y
11944 @pindex calc-trail-yank
11945 @cindex Retrieving previous results
11946 The @kbd{t y} (@code{calc-trail-yank}) command reads the selected value in
11947 the trail and pushes it onto the Calculator stack.  It allows you to
11948 re-use any previously computed value without retyping.  With a numeric
11949 prefix argument @var{n}, it yanks the value @var{n} lines above the current
11950 trail pointer.
11952 @kindex t <
11953 @pindex calc-trail-scroll-left
11954 @kindex t >
11955 @pindex calc-trail-scroll-right
11956 The @kbd{t <} (@code{calc-trail-scroll-left}) and @kbd{t >}
11957 (@code{calc-trail-scroll-right}) commands horizontally scroll the trail
11958 window left or right by one half of its width.
11960 @kindex t n
11961 @pindex calc-trail-next
11962 @kindex t p
11963 @pindex calc-trail-previous
11964 @kindex t f
11965 @pindex calc-trail-forward
11966 @kindex t b
11967 @pindex calc-trail-backward
11968 The @kbd{t n} (@code{calc-trail-next}) and @kbd{t p}
11969 (@code{calc-trail-previous)} commands move the trail pointer down or up
11970 one line.  The @kbd{t f} (@code{calc-trail-forward}) and @kbd{t b}
11971 (@code{calc-trail-backward}) commands move the trail pointer down or up
11972 one screenful at a time.  All of these commands accept numeric prefix
11973 arguments to move several lines or screenfuls at a time.
11975 @kindex t [
11976 @pindex calc-trail-first
11977 @kindex t ]
11978 @pindex calc-trail-last
11979 @kindex t h
11980 @pindex calc-trail-here
11981 The @kbd{t [} (@code{calc-trail-first}) and @kbd{t ]}
11982 (@code{calc-trail-last}) commands move the trail pointer to the first or
11983 last line of the trail.  The @kbd{t h} (@code{calc-trail-here}) command
11984 moves the trail pointer to the cursor position; unlike the other trail
11985 commands, @kbd{t h} works only when Calc Trail is the selected window.
11987 @kindex t s
11988 @pindex calc-trail-isearch-forward
11989 @kindex t r
11990 @pindex calc-trail-isearch-backward
11991 @ifnottex
11992 The @kbd{t s} (@code{calc-trail-isearch-forward}) and @kbd{t r}
11993 (@code{calc-trail-isearch-backward}) commands perform an incremental
11994 search forward or backward through the trail.  You can press @key{RET}
11995 to terminate the search; the trail pointer moves to the current line.
11996 If you cancel the search with @kbd{C-g}, the trail pointer stays where
11997 it was when the search began.
11998 @end ifnottex
11999 @tex
12000 The @kbd{t s} (@code{calc-trail-isearch-forward}) and @kbd{t r}
12001 (@code{calc-trail-isearch-backward}) com\-mands perform an incremental
12002 search forward or backward through the trail.  You can press @key{RET}
12003 to terminate the search; the trail pointer moves to the current line.
12004 If you cancel the search with @kbd{C-g}, the trail pointer stays where
12005 it was when the search began.
12006 @end tex
12008 @kindex t m
12009 @pindex calc-trail-marker
12010 The @kbd{t m} (@code{calc-trail-marker}) command allows you to enter a
12011 line of text of your own choosing into the trail.  The text is inserted
12012 after the line containing the trail pointer; this usually means it is
12013 added to the end of the trail.  Trail markers are useful mainly as the
12014 targets for later incremental searches in the trail.
12016 @kindex t k
12017 @pindex calc-trail-kill
12018 The @kbd{t k} (@code{calc-trail-kill}) command removes the selected line
12019 from the trail.  The line is saved in the Emacs kill ring suitable for
12020 yanking into another buffer, but it is not easy to yank the text back
12021 into the trail buffer.  With a numeric prefix argument, this command
12022 kills the @var{n} lines below or above the selected one.
12024 The @kbd{t .} (@code{calc-full-trail-vectors}) command is described
12025 elsewhere; @pxref{Vector and Matrix Formats}.
12027 @node Keep Arguments,  , Trail Commands, Stack and Trail
12028 @section Keep Arguments
12030 @noindent
12031 @kindex K
12032 @pindex calc-keep-args
12033 The @kbd{K} (@code{calc-keep-args}) command acts like a prefix for
12034 the following command.  It prevents that command from removing its
12035 arguments from the stack.  For example, after @kbd{2 @key{RET} 3 +},
12036 the stack contains the sole number 5, but after @kbd{2 @key{RET} 3 K +},
12037 the stack contains the arguments and the result: @samp{2 3 5}.
12039 With the exception of keyboard macros, this works for all commands that
12040 take arguments off the stack. (To avoid potentially unpleasant behavior,
12041 a @kbd{K} prefix before a keyboard macro will be ignored.  A @kbd{K}
12042 prefix called @emph{within} the keyboard macro will still take effect.)
12043 As another example, @kbd{K a s} simplifies a formula, pushing the
12044 simplified version of the formula onto the stack after the original
12045 formula (rather than replacing the original formula).  Note that you
12046 could get the same effect by typing @kbd{@key{RET} a s}, copying the
12047 formula and then simplifying the copy. One difference is that for a very
12048 large formula the time taken to format the intermediate copy in
12049 @kbd{@key{RET} a s} could be noticeable; @kbd{K a s} would avoid this
12050 extra work.
12052 Even stack manipulation commands are affected.  @key{TAB} works by
12053 popping two values and pushing them back in the opposite order,
12054 so @kbd{2 @key{RET} 3 K @key{TAB}} produces @samp{2 3 3 2}.
12056 A few Calc commands provide other ways of doing the same thing.
12057 For example, @kbd{' sin($)} replaces the number on the stack with
12058 its sine using algebraic entry; to push the sine and keep the
12059 original argument you could use either @kbd{' sin($1)} or
12060 @kbd{K ' sin($)}.  @xref{Algebraic Entry}.  Also, the @kbd{s s}
12061 command is effectively the same as @kbd{K s t}.  @xref{Storing Variables}.
12063 If you execute a command and then decide you really wanted to keep
12064 the argument, you can press @kbd{M-@key{RET}} (@code{calc-last-args}).
12065 This command pushes the last arguments that were popped by any command
12066 onto the stack.  Note that the order of things on the stack will be
12067 different than with @kbd{K}:  @kbd{2 @key{RET} 3 + M-@key{RET}} leaves
12068 @samp{5 2 3} on the stack instead of @samp{2 3 5}.  @xref{Undo}.
12070 @node Mode Settings, Arithmetic, Stack and Trail, Top
12071 @chapter Mode Settings
12073 @noindent
12074 This chapter describes commands that set modes in the Calculator.
12075 They do not affect the contents of the stack, although they may change
12076 the @emph{appearance} or @emph{interpretation} of the stack's contents.
12078 @menu
12079 * General Mode Commands::
12080 * Precision::
12081 * Inverse and Hyperbolic::
12082 * Calculation Modes::
12083 * Simplification Modes::
12084 * Declarations::
12085 * Display Modes::
12086 * Language Modes::
12087 * Modes Variable::
12088 * Calc Mode Line::
12089 @end menu
12091 @node General Mode Commands, Precision, Mode Settings, Mode Settings
12092 @section General Mode Commands
12094 @noindent
12095 @kindex m m
12096 @pindex calc-save-modes
12097 @cindex Continuous memory
12098 @cindex Saving mode settings
12099 @cindex Permanent mode settings
12100 @cindex Calc init file, mode settings
12101 You can save all of the current mode settings in your Calc init file
12102 (the file given by the variable @code{calc-settings-file}, typically
12103 @file{~/.emacs.d/calc.el}) with the @kbd{m m} (@code{calc-save-modes})
12104 command.  This will cause Emacs to reestablish these modes each time
12105 it starts up.  The modes saved in the file include everything
12106 controlled by the @kbd{m} and @kbd{d} prefix keys, the current
12107 precision and binary word size, whether or not the trail is displayed,
12108 the current height of the Calc window, and more.  The current
12109 interface (used when you type @kbd{C-x * *}) is also saved.  If there
12110 were already saved mode settings in the file, they are replaced.
12111 Otherwise, the new mode information is appended to the end of the
12112 file.
12114 @kindex m R
12115 @pindex calc-mode-record-mode
12116 The @kbd{m R} (@code{calc-mode-record-mode}) command tells Calc to
12117 record all the mode settings (as if by pressing @kbd{m m}) every
12118 time a mode setting changes.  If the modes are saved this way, then this
12119 ``automatic mode recording'' mode is also saved.
12120 Type @kbd{m R} again to disable this method of recording the mode
12121 settings.  To turn it off permanently, the @kbd{m m} command will also be
12122 necessary.   (If Embedded mode is enabled, other options for recording
12123 the modes are available; @pxref{Mode Settings in Embedded Mode}.)
12125 @kindex m F
12126 @pindex calc-settings-file-name
12127 The @kbd{m F} (@code{calc-settings-file-name}) command allows you to
12128 choose a different file than the current value of @code{calc-settings-file}
12129 for @kbd{m m}, @kbd{Z P}, and similar commands to save permanent information.
12130 You are prompted for a file name.  All Calc modes are then reset to
12131 their default values, then settings from the file you named are loaded
12132 if this file exists, and this file becomes the one that Calc will
12133 use in the future for commands like @kbd{m m}.  The default settings
12134 file name is @file{~/.emacs.d/calc.el}.  You can see the current file name by
12135 giving a blank response to the @kbd{m F} prompt.  See also the
12136 discussion of the @code{calc-settings-file} variable; @pxref{Customizing Calc}.
12138 If the file name you give is your user init file (typically
12139 @file{~/.emacs}), @kbd{m F} will not automatically load the new file.  This
12140 is because your user init file may contain other things you don't want
12141 to reread.  You can give
12142 a numeric prefix argument of 1 to @kbd{m F} to force it to read the
12143 file no matter what.  Conversely, an argument of @mathit{-1} tells
12144 @kbd{m F} @emph{not} to read the new file.  An argument of 2 or @mathit{-2}
12145 tells @kbd{m F} not to reset the modes to their defaults beforehand,
12146 which is useful if you intend your new file to have a variant of the
12147 modes present in the file you were using before.
12149 @kindex m x
12150 @pindex calc-always-load-extensions
12151 The @kbd{m x} (@code{calc-always-load-extensions}) command enables a mode
12152 in which the first use of Calc loads the entire program, including all
12153 extensions modules.  Otherwise, the extensions modules will not be loaded
12154 until the various advanced Calc features are used.  Since this mode only
12155 has effect when Calc is first loaded, @kbd{m x} is usually followed by
12156 @kbd{m m} to make the mode-setting permanent.  To load all of Calc just
12157 once, rather than always in the future, you can press @kbd{C-x * L}.
12159 @kindex m S
12160 @pindex calc-shift-prefix
12161 The @kbd{m S} (@code{calc-shift-prefix}) command enables a mode in which
12162 all of Calc's letter prefix keys may be typed shifted as well as unshifted.
12163 If you are typing, say, @kbd{a S} (@code{calc-solve-for}) quite often
12164 you might find it easier to turn this mode on so that you can type
12165 @kbd{A S} instead.  When this mode is enabled, the commands that used to
12166 be on those single shifted letters (e.g., @kbd{A} (@code{calc-abs})) can
12167 now be invoked by pressing the shifted letter twice: @kbd{A A}.  Note
12168 that the @kbd{v} prefix key always works both shifted and unshifted, and
12169 the @kbd{z} and @kbd{Z} prefix keys are always distinct.  Also, the @kbd{h}
12170 prefix is not affected by this mode.  Press @kbd{m S} again to disable
12171 shifted-prefix mode.
12173 @node Precision, Inverse and Hyperbolic, General Mode Commands, Mode Settings
12174 @section Precision
12176 @noindent
12177 @kindex p
12178 @pindex calc-precision
12179 @cindex Precision of calculations
12180 The @kbd{p} (@code{calc-precision}) command controls the precision to
12181 which floating-point calculations are carried.  The precision must be
12182 at least 3 digits and may be arbitrarily high, within the limits of
12183 memory and time.  This affects only floats:  Integer and rational
12184 calculations are always carried out with as many digits as necessary.
12186 The @kbd{p} key prompts for the current precision.  If you wish you
12187 can instead give the precision as a numeric prefix argument.
12189 Many internal calculations are carried to one or two digits higher
12190 precision than normal.  Results are rounded down afterward to the
12191 current precision.  Unless a special display mode has been selected,
12192 floats are always displayed with their full stored precision, i.e.,
12193 what you see is what you get.  Reducing the current precision does not
12194 round values already on the stack, but those values will be rounded
12195 down before being used in any calculation.  The @kbd{c 0} through
12196 @kbd{c 9} commands (@pxref{Conversions}) can be used to round an
12197 existing value to a new precision.
12199 @cindex Accuracy of calculations
12200 It is important to distinguish the concepts of @dfn{precision} and
12201 @dfn{accuracy}.  In the normal usage of these words, the number
12202 123.4567 has a precision of 7 digits but an accuracy of 4 digits.
12203 The precision is the total number of digits not counting leading
12204 or trailing zeros (regardless of the position of the decimal point).
12205 The accuracy is simply the number of digits after the decimal point
12206 (again not counting trailing zeros).  In Calc you control the precision,
12207 not the accuracy of computations.  If you were to set the accuracy
12208 instead, then calculations like @samp{exp(100)} would generate many
12209 more digits than you would typically need, while @samp{exp(-100)} would
12210 probably round to zero!  In Calc, both these computations give you
12211 exactly 12 (or the requested number of) significant digits.
12213 The only Calc features that deal with accuracy instead of precision
12214 are fixed-point display mode for floats (@kbd{d f}; @pxref{Float Formats}),
12215 and the rounding functions like @code{floor} and @code{round}
12216 (@pxref{Integer Truncation}).  Also, @kbd{c 0} through @kbd{c 9}
12217 deal with both precision and accuracy depending on the magnitudes
12218 of the numbers involved.
12220 If you need to work with a particular fixed accuracy (say, dollars and
12221 cents with two digits after the decimal point), one solution is to work
12222 with integers and an ``implied'' decimal point.  For example, $8.99
12223 divided by 6 would be entered @kbd{899 @key{RET} 6 /}, yielding 149.833
12224 (actually $1.49833 with our implied decimal point); pressing @kbd{R}
12225 would round this to 150 cents, i.e., $1.50.
12227 @xref{Floats}, for still more on floating-point precision and related
12228 issues.
12230 @node Inverse and Hyperbolic, Calculation Modes, Precision, Mode Settings
12231 @section Inverse and Hyperbolic Flags
12233 @noindent
12234 @kindex I
12235 @pindex calc-inverse
12236 There is no single-key equivalent to the @code{calc-arcsin} function.
12237 Instead, you must first press @kbd{I} (@code{calc-inverse}) to set
12238 the @dfn{Inverse Flag}, then press @kbd{S} (@code{calc-sin}).
12239 The @kbd{I} key actually toggles the Inverse Flag.  When this flag
12240 is set, the word @samp{Inv} appears in the mode line.
12242 @kindex H
12243 @pindex calc-hyperbolic
12244 Likewise, the @kbd{H} key (@code{calc-hyperbolic}) sets or clears the
12245 Hyperbolic Flag, which transforms @code{calc-sin} into @code{calc-sinh}.
12246 If both of these flags are set at once, the effect will be
12247 @code{calc-arcsinh}.  (The Hyperbolic flag is also used by some
12248 non-trigonometric commands; for example @kbd{H L} computes a base-10,
12249 instead of base-@mathit{e}, logarithm.)
12251 Command names like @code{calc-arcsin} are provided for completeness, and
12252 may be executed with @kbd{x} or @kbd{M-x}.  Their effect is simply to
12253 toggle the Inverse and/or Hyperbolic flags and then execute the
12254 corresponding base command (@code{calc-sin} in this case).
12256 @kindex O
12257 @pindex calc-option
12258 The @kbd{O} key (@code{calc-option}) sets another flag, the
12259 @dfn{Option Flag}, which also can alter the subsequent Calc command in
12260 various ways.
12262 The Inverse, Hyperbolic and Option flags apply only to the next
12263 Calculator command, after which they are automatically cleared.  (They
12264 are also cleared if the next keystroke is not a Calc command.)  Digits
12265 you type after @kbd{I}, @kbd{H} or @kbd{O} (or @kbd{K}) are treated as
12266 prefix arguments for the next command, not as numeric entries.  The
12267 same is true of @kbd{C-u}, but not of the minus sign (@kbd{K -} means
12268 to subtract and keep arguments).
12270 Another Calc prefix flag, @kbd{K} (keep-arguments), is discussed
12271 elsewhere.  @xref{Keep Arguments}.
12273 @node Calculation Modes, Simplification Modes, Inverse and Hyperbolic, Mode Settings
12274 @section Calculation Modes
12276 @noindent
12277 The commands in this section are two-key sequences beginning with
12278 the @kbd{m} prefix.  (That's the letter @kbd{m}, not the @key{META} key.)
12279 The @samp{m a} (@code{calc-algebraic-mode}) command is described elsewhere
12280 (@pxref{Algebraic Entry}).
12282 @menu
12283 * Angular Modes::
12284 * Polar Mode::
12285 * Fraction Mode::
12286 * Infinite Mode::
12287 * Symbolic Mode::
12288 * Matrix Mode::
12289 * Automatic Recomputation::
12290 * Working Message::
12291 @end menu
12293 @node Angular Modes, Polar Mode, Calculation Modes, Calculation Modes
12294 @subsection Angular Modes
12296 @noindent
12297 @cindex Angular mode
12298 The Calculator supports three notations for angles: radians, degrees,
12299 and degrees-minutes-seconds.  When a number is presented to a function
12300 like @code{sin} that requires an angle, the current angular mode is
12301 used to interpret the number as either radians or degrees.  If an HMS
12302 form is presented to @code{sin}, it is always interpreted as
12303 degrees-minutes-seconds.
12305 Functions that compute angles produce a number in radians, a number in
12306 degrees, or an HMS form depending on the current angular mode.  If the
12307 result is a complex number and the current mode is HMS, the number is
12308 instead expressed in degrees.  (Complex-number calculations would
12309 normally be done in Radians mode, though.  Complex numbers are converted
12310 to degrees by calculating the complex result in radians and then
12311 multiplying by 180 over @cpi{}.)
12313 @kindex m r
12314 @pindex calc-radians-mode
12315 @kindex m d
12316 @pindex calc-degrees-mode
12317 @kindex m h
12318 @pindex calc-hms-mode
12319 The @kbd{m r} (@code{calc-radians-mode}), @kbd{m d} (@code{calc-degrees-mode}),
12320 and @kbd{m h} (@code{calc-hms-mode}) commands control the angular mode.
12321 The current angular mode is displayed on the Emacs mode line.
12322 The default angular mode is Degrees.
12324 @node Polar Mode, Fraction Mode, Angular Modes, Calculation Modes
12325 @subsection Polar Mode
12327 @noindent
12328 @cindex Polar mode
12329 The Calculator normally ``prefers'' rectangular complex numbers in the
12330 sense that rectangular form is used when the proper form can not be
12331 decided from the input.  This might happen by multiplying a rectangular
12332 number by a polar one, by taking the square root of a negative real
12333 number, or by entering @kbd{( 2 @key{SPC} 3 )}.
12335 @kindex m p
12336 @pindex calc-polar-mode
12337 The @kbd{m p} (@code{calc-polar-mode}) command toggles complex-number
12338 preference between rectangular and polar forms.  In Polar mode, all
12339 of the above example situations would produce polar complex numbers.
12341 @node Fraction Mode, Infinite Mode, Polar Mode, Calculation Modes
12342 @subsection Fraction Mode
12344 @noindent
12345 @cindex Fraction mode
12346 @cindex Division of integers
12347 Division of two integers normally yields a floating-point number if the
12348 result cannot be expressed as an integer.  In some cases you would
12349 rather get an exact fractional answer.  One way to accomplish this is
12350 to use the @kbd{:} (@code{calc-fdiv}) [@code{fdiv}] command, which
12351 divides the two integers on the top of the stack to produce a fraction:
12352 @kbd{6 @key{RET} 4 :} produces @expr{3:2} even though
12353 @kbd{6 @key{RET} 4 /} produces @expr{1.5}.
12355 @kindex m f
12356 @pindex calc-frac-mode
12357 To set the Calculator to produce fractional results for normal integer
12358 divisions, use the @kbd{m f} (@code{calc-frac-mode}) command.
12359 For example, @expr{8/4} produces @expr{2} in either mode,
12360 but @expr{6/4} produces @expr{3:2} in Fraction mode, @expr{1.5} in
12361 Float mode.
12363 At any time you can use @kbd{c f} (@code{calc-float}) to convert a
12364 fraction to a float, or @kbd{c F} (@code{calc-fraction}) to convert a
12365 float to a fraction.  @xref{Conversions}.
12367 @node Infinite Mode, Symbolic Mode, Fraction Mode, Calculation Modes
12368 @subsection Infinite Mode
12370 @noindent
12371 @cindex Infinite mode
12372 The Calculator normally treats results like @expr{1 / 0} as errors;
12373 formulas like this are left in unsimplified form.  But Calc can be
12374 put into a mode where such calculations instead produce ``infinite''
12375 results.
12377 @kindex m i
12378 @pindex calc-infinite-mode
12379 The @kbd{m i} (@code{calc-infinite-mode}) command turns this mode
12380 on and off.  When the mode is off, infinities do not arise except
12381 in calculations that already had infinities as inputs.  (One exception
12382 is that infinite open intervals like @samp{[0 .. inf)} can be
12383 generated; however, intervals closed at infinity (@samp{[0 .. inf]})
12384 will not be generated when Infinite mode is off.)
12386 With Infinite mode turned on, @samp{1 / 0} will generate @code{uinf},
12387 an undirected infinity.  @xref{Infinities}, for a discussion of the
12388 difference between @code{inf} and @code{uinf}.  Also, @expr{0 / 0}
12389 evaluates to @code{nan}, the ``indeterminate'' symbol.  Various other
12390 functions can also return infinities in this mode; for example,
12391 @samp{ln(0) = -inf}, and @samp{gamma(-7) = uinf}.  Once again,
12392 note that @samp{exp(inf) = inf} regardless of Infinite mode because
12393 this calculation has infinity as an input.
12395 @cindex Positive Infinite mode
12396 The @kbd{m i} command with a numeric prefix argument of zero,
12397 i.e., @kbd{C-u 0 m i}, turns on a Positive Infinite mode in
12398 which zero is treated as positive instead of being directionless.
12399 Thus, @samp{1 / 0 = inf} and @samp{-1 / 0 = -inf} in this mode.
12400 Note that zero never actually has a sign in Calc; there are no
12401 separate representations for @mathit{+0} and @mathit{-0}.  Positive
12402 Infinite mode merely changes the interpretation given to the
12403 single symbol, @samp{0}.  One consequence of this is that, while
12404 you might expect @samp{1 / -0 = -inf}, actually @samp{1 / -0}
12405 is equivalent to @samp{1 / 0}, which is equal to positive @code{inf}.
12407 @node Symbolic Mode, Matrix Mode, Infinite Mode, Calculation Modes
12408 @subsection Symbolic Mode
12410 @noindent
12411 @cindex Symbolic mode
12412 @cindex Inexact results
12413 Calculations are normally performed numerically wherever possible.
12414 For example, the @code{calc-sqrt} command, or @code{sqrt} function in an
12415 algebraic expression, produces a numeric answer if the argument is a
12416 number or a symbolic expression if the argument is an expression:
12417 @kbd{2 Q} pushes 1.4142 but @kbd{@key{'} x+1 @key{RET} Q} pushes @samp{sqrt(x+1)}.
12419 @kindex m s
12420 @pindex calc-symbolic-mode
12421 In @dfn{Symbolic mode}, controlled by the @kbd{m s} (@code{calc-symbolic-mode})
12422 command, functions which would produce inexact, irrational results are
12423 left in symbolic form.  Thus @kbd{16 Q} pushes 4, but @kbd{2 Q} pushes
12424 @samp{sqrt(2)}.
12426 @kindex N
12427 @pindex calc-eval-num
12428 The shift-@kbd{N} (@code{calc-eval-num}) command evaluates numerically
12429 the expression at the top of the stack, by temporarily disabling
12430 @code{calc-symbolic-mode} and executing @kbd{=} (@code{calc-evaluate}).
12431 Given a numeric prefix argument, it also
12432 sets the floating-point precision to the specified value for the duration
12433 of the command.
12435 To evaluate a formula numerically without expanding the variables it
12436 contains, you can use the key sequence @kbd{m s a v m s} (this uses
12437 @code{calc-alg-evaluate}, which resimplifies but doesn't evaluate
12438 variables.)
12440 @node Matrix Mode, Automatic Recomputation, Symbolic Mode, Calculation Modes
12441 @subsection Matrix and Scalar Modes
12443 @noindent
12444 @cindex Matrix mode
12445 @cindex Scalar mode
12446 Calc sometimes makes assumptions during algebraic manipulation that
12447 are awkward or incorrect when vectors and matrices are involved.
12448 Calc has two modes, @dfn{Matrix mode} and @dfn{Scalar mode}, which
12449 modify its behavior around vectors in useful ways.
12451 @kindex m v
12452 @pindex calc-matrix-mode
12453 Press @kbd{m v} (@code{calc-matrix-mode}) once to enter Matrix mode.
12454 In this mode, all objects are assumed to be matrices unless provably
12455 otherwise.  One major effect is that Calc will no longer consider
12456 multiplication to be commutative.  (Recall that in matrix arithmetic,
12457 @samp{A*B} is not the same as @samp{B*A}.)  This assumption affects
12458 rewrite rules and algebraic simplification.  Another effect of this
12459 mode is that calculations that would normally produce constants like
12460 0 and 1 (e.g., @expr{a - a} and @expr{a / a}, respectively) will now
12461 produce function calls that represent ``generic'' zero or identity
12462 matrices: @samp{idn(0)}, @samp{idn(1)}.  The @code{idn} function
12463 @samp{idn(@var{a},@var{n})} returns @var{a} times an @var{n}x@var{n}
12464 identity matrix; if @var{n} is omitted, it doesn't know what
12465 dimension to use and so the @code{idn} call remains in symbolic
12466 form.  However, if this generic identity matrix is later combined
12467 with a matrix whose size is known, it will be converted into
12468 a true identity matrix of the appropriate size.  On the other hand,
12469 if it is combined with a scalar (as in @samp{idn(1) + 2}), Calc
12470 will assume it really was a scalar after all and produce, e.g., 3.
12472 Press @kbd{m v} a second time to get Scalar mode.  Here, objects are
12473 assumed @emph{not} to be vectors or matrices unless provably so.
12474 For example, normally adding a variable to a vector, as in
12475 @samp{[x, y, z] + a}, will leave the sum in symbolic form because
12476 as far as Calc knows, @samp{a} could represent either a number or
12477 another 3-vector.  In Scalar mode, @samp{a} is assumed to be a
12478 non-vector, and the addition is evaluated to @samp{[x+a, y+a, z+a]}.
12480 Press @kbd{m v} a third time to return to the normal mode of operation.
12482 If you press @kbd{m v} with a numeric prefix argument @var{n}, you
12483 get a special ``dimensioned'' Matrix mode in which matrices of
12484 unknown size are assumed to be @var{n}x@var{n} square matrices.
12485 Then, the function call @samp{idn(1)} will expand into an actual
12486 matrix rather than representing a ``generic'' matrix.  Simply typing
12487 @kbd{C-u m v} will get you a square Matrix mode, in which matrices of
12488 unknown size are assumed to be square matrices of unspecified size.
12490 @cindex Declaring scalar variables
12491 Of course these modes are approximations to the true state of
12492 affairs, which is probably that some quantities will be matrices
12493 and others will be scalars.  One solution is to ``declare''
12494 certain variables or functions to be scalar-valued.
12495 @xref{Declarations}, to see how to make declarations in Calc.
12497 There is nothing stopping you from declaring a variable to be
12498 scalar and then storing a matrix in it; however, if you do, the
12499 results you get from Calc may not be valid.  Suppose you let Calc
12500 get the result @samp{[x+a, y+a, z+a]} shown above, and then stored
12501 @samp{[1, 2, 3]} in @samp{a}.  The result would not be the same as
12502 for @samp{[x, y, z] + [1, 2, 3]}, but that's because you have broken
12503 your earlier promise to Calc that @samp{a} would be scalar.
12505 Another way to mix scalars and matrices is to use selections
12506 (@pxref{Selecting Subformulas}).  Use Matrix mode when operating on
12507 your formula normally; then, to apply Scalar mode to a certain part
12508 of the formula without affecting the rest just select that part,
12509 change into Scalar mode and press @kbd{=} to resimplify the part
12510 under this mode, then change back to Matrix mode before deselecting.
12512 @node Automatic Recomputation, Working Message, Matrix Mode, Calculation Modes
12513 @subsection Automatic Recomputation
12515 @noindent
12516 The @dfn{evaluates-to} operator, @samp{=>}, has the special
12517 property that any @samp{=>} formulas on the stack are recomputed
12518 whenever variable values or mode settings that might affect them
12519 are changed.  @xref{Evaluates-To Operator}.
12521 @kindex m C
12522 @pindex calc-auto-recompute
12523 The @kbd{m C} (@code{calc-auto-recompute}) command turns this
12524 automatic recomputation on and off.  If you turn it off, Calc will
12525 not update @samp{=>} operators on the stack (nor those in the
12526 attached Embedded mode buffer, if there is one).  They will not
12527 be updated unless you explicitly do so by pressing @kbd{=} or until
12528 you press @kbd{m C} to turn recomputation back on.  (While automatic
12529 recomputation is off, you can think of @kbd{m C m C} as a command
12530 to update all @samp{=>} operators while leaving recomputation off.)
12532 To update @samp{=>} operators in an Embedded buffer while
12533 automatic recomputation is off, use @w{@kbd{C-x * u}}.
12534 @xref{Embedded Mode}.
12536 @node Working Message,  , Automatic Recomputation, Calculation Modes
12537 @subsection Working Messages
12539 @noindent
12540 @cindex Performance
12541 @cindex Working messages
12542 Since the Calculator is written entirely in Emacs Lisp, which is not
12543 designed for heavy numerical work, many operations are quite slow.
12544 The Calculator normally displays the message @samp{Working...} in the
12545 echo area during any command that may be slow.  In addition, iterative
12546 operations such as square roots and trigonometric functions display the
12547 intermediate result at each step.  Both of these types of messages can
12548 be disabled if you find them distracting.
12550 @kindex m w
12551 @pindex calc-working
12552 Type @kbd{m w} (@code{calc-working}) with a numeric prefix of 0 to
12553 disable all ``working'' messages.  Use a numeric prefix of 1 to enable
12554 only the plain @samp{Working...} message.  Use a numeric prefix of 2 to
12555 see intermediate results as well.  With no numeric prefix this displays
12556 the current mode.
12558 While it may seem that the ``working'' messages will slow Calc down
12559 considerably, experiments have shown that their impact is actually
12560 quite small.  But if your terminal is slow you may find that it helps
12561 to turn the messages off.
12563 @node Simplification Modes, Declarations, Calculation Modes, Mode Settings
12564 @section Simplification Modes
12566 @noindent
12567 The current @dfn{simplification mode} controls how numbers and formulas
12568 are ``normalized'' when being taken from or pushed onto the stack.
12569 Some normalizations are unavoidable, such as rounding floating-point
12570 results to the current precision, and reducing fractions to simplest
12571 form.  Others, such as simplifying a formula like @expr{a+a} (or @expr{2+3}),
12572 are done automatically but can be turned off when necessary.
12574 When you press a key like @kbd{+} when @expr{2} and @expr{3} are on the
12575 stack, Calc pops these numbers, normalizes them, creates the formula
12576 @expr{2+3}, normalizes it, and pushes the result.  Of course the standard
12577 rules for normalizing @expr{2+3} will produce the result @expr{5}.
12579 Simplification mode commands consist of the lower-case @kbd{m} prefix key
12580 followed by a shifted letter.
12582 @kindex m O
12583 @pindex calc-no-simplify-mode
12584 The @kbd{m O} (@code{calc-no-simplify-mode}) command turns off all optional
12585 simplifications.  These would leave a formula like @expr{2+3} alone.  In
12586 fact, nothing except simple numbers are ever affected by normalization
12587 in this mode.  Explicit simplification commands, such as @kbd{=} or
12588 @kbd{a s}, can still be given to simplify any formulas.
12589 @xref{Algebraic Definitions}, for a sample use of
12590 No-Simplification mode.
12593 @kindex m N
12594 @pindex calc-num-simplify-mode
12595 The @kbd{m N} (@code{calc-num-simplify-mode}) command turns off simplification
12596 of any formulas except those for which all arguments are constants.  For
12597 example, @expr{1+2} is simplified to @expr{3}, and @expr{a+(2-2)} is
12598 simplified to @expr{a+0} but no further, since one argument of the sum
12599 is not a constant.  Unfortunately, @expr{(a+2)-2} is @emph{not} simplified
12600 because the top-level @samp{-} operator's arguments are not both
12601 constant numbers (one of them is the formula @expr{a+2}).
12602 A constant is a number or other numeric object (such as a constant
12603 error form or modulo form), or a vector all of whose
12604 elements are constant.
12606 @kindex m I
12607 @pindex calc-basic-simplify-mode
12608 The @kbd{m I} (@code{calc-basic-simplify-mode}) command does some basic
12609 simplifications for all formulas.  This includes many easy and
12610 fast algebraic simplifications such as @expr{a+0} to @expr{a}, and
12611 @expr{a + 2 a} to @expr{3 a}, as well as evaluating functions like
12612 @expr{@tfn{deriv}(x^2, x)} to @expr{2 x}.
12614 @kindex m B
12615 @pindex calc-bin-simplify-mode
12616 The @kbd{m B} (@code{calc-bin-simplify-mode}) mode applies the basic
12617 simplifications to a result and then, if the result is an integer,
12618 uses the @kbd{b c} (@code{calc-clip}) command to clip the integer according
12619 to the current binary word size.  @xref{Binary Functions}.  Real numbers
12620 are rounded to the nearest integer and then clipped; other kinds of
12621 results (after the basic simplifications) are left alone.
12623 @kindex m A
12624 @pindex calc-alg-simplify-mode
12625 The @kbd{m A} (@code{calc-alg-simplify-mode}) mode does standard
12626 algebraic simplifications.  @xref{Algebraic Simplifications}.
12628 @kindex m E
12629 @pindex calc-ext-simplify-mode
12630 The @kbd{m E} (@code{calc-ext-simplify-mode}) mode does ``extended'', or
12631 ``unsafe'', algebraic simplification.  @xref{Unsafe Simplifications}.
12633 @kindex m U
12634 @pindex calc-units-simplify-mode
12635 The @kbd{m U} (@code{calc-units-simplify-mode}) mode does units
12636 simplification.  @xref{Simplification of Units}.  These include the
12637 algebraic simplifications, plus variable names which
12638 are identifiable as unit names (like @samp{mm} for ``millimeters'')
12639 are simplified with their unit definitions in mind.
12641 A common technique is to set the simplification mode down to the lowest
12642 amount of simplification you will allow to be applied automatically, then
12643 use manual commands like @kbd{a s} and @kbd{c c} (@code{calc-clean}) to
12644 perform higher types of simplifications on demand.  
12645 @node Declarations, Display Modes, Simplification Modes, Mode Settings
12646 @section Declarations
12648 @noindent
12649 A @dfn{declaration} is a statement you make that promises you will
12650 use a certain variable or function in a restricted way.  This may
12651 give Calc the freedom to do things that it couldn't do if it had to
12652 take the fully general situation into account.
12654 @menu
12655 * Declaration Basics::
12656 * Kinds of Declarations::
12657 * Functions for Declarations::
12658 @end menu
12660 @node Declaration Basics, Kinds of Declarations, Declarations, Declarations
12661 @subsection Declaration Basics
12663 @noindent
12664 @kindex s d
12665 @pindex calc-declare-variable
12666 The @kbd{s d} (@code{calc-declare-variable}) command is the easiest
12667 way to make a declaration for a variable.  This command prompts for
12668 the variable name, then prompts for the declaration.  The default
12669 at the declaration prompt is the previous declaration, if any.
12670 You can edit this declaration, or press @kbd{C-k} to erase it and
12671 type a new declaration.  (Or, erase it and press @key{RET} to clear
12672 the declaration, effectively ``undeclaring'' the variable.)
12674 A declaration is in general a vector of @dfn{type symbols} and
12675 @dfn{range} values.  If there is only one type symbol or range value,
12676 you can write it directly rather than enclosing it in a vector.
12677 For example, @kbd{s d foo @key{RET} real @key{RET}} declares @code{foo} to
12678 be a real number, and @kbd{s d bar @key{RET} [int, const, [1..6]] @key{RET}}
12679 declares @code{bar} to be a constant integer between 1 and 6.
12680 (Actually, you can omit the outermost brackets and Calc will
12681 provide them for you: @kbd{s d bar @key{RET} int, const, [1..6] @key{RET}}.)
12683 @cindex @code{Decls} variable
12684 @vindex Decls
12685 Declarations in Calc are kept in a special variable called @code{Decls}.
12686 This variable encodes the set of all outstanding declarations in
12687 the form of a matrix.  Each row has two elements:  A variable or
12688 vector of variables declared by that row, and the declaration
12689 specifier as described above.  You can use the @kbd{s D} command to
12690 edit this variable if you wish to see all the declarations at once.
12691 @xref{Operations on Variables}, for a description of this command
12692 and the @kbd{s p} command that allows you to save your declarations
12693 permanently if you wish.
12695 Items being declared can also be function calls.  The arguments in
12696 the call are ignored; the effect is to say that this function returns
12697 values of the declared type for any valid arguments.  The @kbd{s d}
12698 command declares only variables, so if you wish to make a function
12699 declaration you will have to edit the @code{Decls} matrix yourself.
12701 For example, the declaration matrix
12703 @smallexample
12704 @group
12705 [ [ foo,       real       ]
12706   [ [j, k, n], int        ]
12707   [ f(1,2,3),  [0 .. inf) ] ]
12708 @end group
12709 @end smallexample
12711 @noindent
12712 declares that @code{foo} represents a real number, @code{j}, @code{k}
12713 and @code{n} represent integers, and the function @code{f} always
12714 returns a real number in the interval shown.
12716 @vindex All
12717 If there is a declaration for the variable @code{All}, then that
12718 declaration applies to all variables that are not otherwise declared.
12719 It does not apply to function names.  For example, using the row
12720 @samp{[All, real]} says that all your variables are real unless they
12721 are explicitly declared without @code{real} in some other row.
12722 The @kbd{s d} command declares @code{All} if you give a blank
12723 response to the variable-name prompt.
12725 @node Kinds of Declarations, Functions for Declarations, Declaration Basics, Declarations
12726 @subsection Kinds of Declarations
12728 @noindent
12729 The type-specifier part of a declaration (that is, the second prompt
12730 in the @kbd{s d} command) can be a type symbol, an interval, or a
12731 vector consisting of zero or more type symbols followed by zero or
12732 more intervals or numbers that represent the set of possible values
12733 for the variable.
12735 @smallexample
12736 @group
12737 [ [ a, [1, 2, 3, 4, 5] ]
12738   [ b, [1 .. 5]        ]
12739   [ c, [int, 1 .. 5]   ] ]
12740 @end group
12741 @end smallexample
12743 Here @code{a} is declared to contain one of the five integers shown;
12744 @code{b} is any number in the interval from 1 to 5 (any real number
12745 since we haven't specified), and @code{c} is any integer in that
12746 interval.  Thus the declarations for @code{a} and @code{c} are
12747 nearly equivalent (see below).
12749 The type-specifier can be the empty vector @samp{[]} to say that
12750 nothing is known about a given variable's value.  This is the same
12751 as not declaring the variable at all except that it overrides any
12752 @code{All} declaration which would otherwise apply.
12754 The initial value of @code{Decls} is the empty vector @samp{[]}.
12755 If @code{Decls} has no stored value or if the value stored in it
12756 is not valid, it is ignored and there are no declarations as far
12757 as Calc is concerned.  (The @kbd{s d} command will replace such a
12758 malformed value with a fresh empty matrix, @samp{[]}, before recording
12759 the new declaration.)  Unrecognized type symbols are ignored.
12761 The following type symbols describe what sorts of numbers will be
12762 stored in a variable:
12764 @table @code
12765 @item int
12766 Integers.
12767 @item numint
12768 Numerical integers.  (Integers or integer-valued floats.)
12769 @item frac
12770 Fractions.  (Rational numbers which are not integers.)
12771 @item rat
12772 Rational numbers.  (Either integers or fractions.)
12773 @item float
12774 Floating-point numbers.
12775 @item real
12776 Real numbers.  (Integers, fractions, or floats.  Actually,
12777 intervals and error forms with real components also count as
12778 reals here.)
12779 @item pos
12780 Positive real numbers.  (Strictly greater than zero.)
12781 @item nonneg
12782 Nonnegative real numbers.  (Greater than or equal to zero.)
12783 @item number
12784 Numbers.  (Real or complex.)
12785 @end table
12787 Calc uses this information to determine when certain simplifications
12788 of formulas are safe.  For example, @samp{(x^y)^z} cannot be
12789 simplified to @samp{x^(y z)} in general; for example,
12790 @samp{((-3)^2)^1:2} is 3, but @samp{(-3)^(2*1:2) = (-3)^1} is @mathit{-3}.
12791 However, this simplification @emph{is} safe if @code{z} is known
12792 to be an integer, or if @code{x} is known to be a nonnegative
12793 real number.  If you have given declarations that allow Calc to
12794 deduce either of these facts, Calc will perform this simplification
12795 of the formula.
12797 Calc can apply a certain amount of logic when using declarations.
12798 For example, @samp{(x^y)^(2n+1)} will be simplified if @code{n}
12799 has been declared @code{int}; Calc knows that an integer times an
12800 integer, plus an integer, must always be an integer.  (In fact,
12801 Calc would simplify @samp{(-x)^(2n+1)} to @samp{-(x^(2n+1))} since
12802 it is able to determine that @samp{2n+1} must be an odd integer.)
12804 Similarly, @samp{(abs(x)^y)^z} will be simplified to @samp{abs(x)^(y z)}
12805 because Calc knows that the @code{abs} function always returns a
12806 nonnegative real.  If you had a @code{myabs} function that also had
12807 this property, you could get Calc to recognize it by adding the row
12808 @samp{[myabs(), nonneg]} to the @code{Decls} matrix.
12810 One instance of this simplification is @samp{sqrt(x^2)} (since the
12811 @code{sqrt} function is effectively a one-half power).  Normally
12812 Calc leaves this formula alone.  After the command
12813 @kbd{s d x @key{RET} real @key{RET}}, however, it can simplify the formula to
12814 @samp{abs(x)}.  And after @kbd{s d x @key{RET} nonneg @key{RET}}, Calc can
12815 simplify this formula all the way to @samp{x}.
12817 If there are any intervals or real numbers in the type specifier,
12818 they comprise the set of possible values that the variable or
12819 function being declared can have.  In particular, the type symbol
12820 @code{real} is effectively the same as the range @samp{[-inf .. inf]}
12821 (note that infinity is included in the range of possible values);
12822 @code{pos} is the same as @samp{(0 .. inf]}, and @code{nonneg} is
12823 the same as @samp{[0 .. inf]}.  Saying @samp{[real, [-5 .. 5]]} is
12824 redundant because the fact that the variable is real can be
12825 deduced just from the interval, but @samp{[int, [-5 .. 5]]} and
12826 @samp{[rat, [-5 .. 5]]} are useful combinations.
12828 Note that the vector of intervals or numbers is in the same format
12829 used by Calc's set-manipulation commands.  @xref{Set Operations}.
12831 The type specifier @samp{[1, 2, 3]} is equivalent to
12832 @samp{[numint, 1, 2, 3]}, @emph{not} to @samp{[int, 1, 2, 3]}.
12833 In other words, the range of possible values means only that
12834 the variable's value must be numerically equal to a number in
12835 that range, but not that it must be equal in type as well.
12836 Calc's set operations act the same way; @samp{in(2, [1., 2., 3.])}
12837 and @samp{in(1.5, [1:2, 3:2, 5:2])} both report ``true.''
12839 If you use a conflicting combination of type specifiers, the
12840 results are unpredictable.  An example is @samp{[pos, [0 .. 5]]},
12841 where the interval does not lie in the range described by the
12842 type symbol.
12844 ``Real'' declarations mostly affect simplifications involving powers
12845 like the one described above.  Another case where they are used
12846 is in the @kbd{a P} command which returns a list of all roots of a
12847 polynomial; if the variable has been declared real, only the real
12848 roots (if any) will be included in the list.
12850 ``Integer'' declarations are used for simplifications which are valid
12851 only when certain values are integers (such as @samp{(x^y)^z}
12852 shown above).
12854 Calc's algebraic simplifications also make use of declarations when
12855 simplifying equations and inequalities.  They will cancel @code{x}
12856 from both sides of @samp{a x = b x} only if it is sure @code{x}
12857 is non-zero, say, because it has a @code{pos} declaration.
12858 To declare specifically that @code{x} is real and non-zero,
12859 use @samp{[[-inf .. 0), (0 .. inf]]}.  (There is no way in the
12860 current notation to say that @code{x} is nonzero but not necessarily
12861 real.)  The @kbd{a e} command does ``unsafe'' simplifications,
12862 including canceling @samp{x} from the equation when @samp{x} is
12863 not known to be nonzero.
12865 Another set of type symbols distinguish between scalars and vectors.
12867 @table @code
12868 @item scalar
12869 The value is not a vector.
12870 @item vector
12871 The value is a vector.
12872 @item matrix
12873 The value is a matrix (a rectangular vector of vectors).
12874 @item sqmatrix
12875 The value is a square matrix.
12876 @end table
12878 These type symbols can be combined with the other type symbols
12879 described above; @samp{[int, matrix]} describes an object which
12880 is a matrix of integers.
12882 Scalar/vector declarations are used to determine whether certain
12883 algebraic operations are safe.  For example, @samp{[a, b, c] + x}
12884 is normally not simplified to @samp{[a + x, b + x, c + x]}, but
12885 it will be if @code{x} has been declared @code{scalar}.  On the
12886 other hand, multiplication is usually assumed to be commutative,
12887 but the terms in @samp{x y} will never be exchanged if both @code{x}
12888 and @code{y} are known to be vectors or matrices.  (Calc currently
12889 never distinguishes between @code{vector} and @code{matrix}
12890 declarations.)
12892 @xref{Matrix Mode}, for a discussion of Matrix mode and
12893 Scalar mode, which are similar to declaring @samp{[All, matrix]}
12894 or @samp{[All, scalar]} but much more convenient.
12896 One more type symbol that is recognized is used with the @kbd{H a d}
12897 command for taking total derivatives of a formula.  @xref{Calculus}.
12899 @table @code
12900 @item const
12901 The value is a constant with respect to other variables.
12902 @end table
12904 Calc does not check the declarations for a variable when you store
12905 a value in it.  However, storing @mathit{-3.5} in a variable that has
12906 been declared @code{pos}, @code{int}, or @code{matrix} may have
12907 unexpected effects; Calc may evaluate @samp{sqrt(x^2)} to @expr{3.5}
12908 if it substitutes the value first, or to @expr{-3.5} if @code{x}
12909 was declared @code{pos} and the formula @samp{sqrt(x^2)} is
12910 simplified to @samp{x} before the value is substituted.  Before
12911 using a variable for a new purpose, it is best to use @kbd{s d}
12912 or @kbd{s D} to check to make sure you don't still have an old
12913 declaration for the variable that will conflict with its new meaning.
12915 @node Functions for Declarations,  , Kinds of Declarations, Declarations
12916 @subsection Functions for Declarations
12918 @noindent
12919 Calc has a set of functions for accessing the current declarations
12920 in a convenient manner.  These functions return 1 if the argument
12921 can be shown to have the specified property, or 0 if the argument
12922 can be shown @emph{not} to have that property; otherwise they are
12923 left unevaluated.  These functions are suitable for use with rewrite
12924 rules (@pxref{Conditional Rewrite Rules}) or programming constructs
12925 (@pxref{Conditionals in Macros}).  They can be entered only using
12926 algebraic notation.  @xref{Logical Operations}, for functions
12927 that perform other tests not related to declarations.
12929 For example, @samp{dint(17)} returns 1 because 17 is an integer, as
12930 do @samp{dint(n)} and @samp{dint(2 n - 3)} if @code{n} has been declared
12931 @code{int}, but @samp{dint(2.5)} and @samp{dint(n + 0.5)} return 0.
12932 Calc consults knowledge of its own built-in functions as well as your
12933 own declarations: @samp{dint(floor(x))} returns 1.
12935 @ignore
12936 @starindex
12937 @end ignore
12938 @tindex dint
12939 @ignore
12940 @starindex
12941 @end ignore
12942 @tindex dnumint
12943 @ignore
12944 @starindex
12945 @end ignore
12946 @tindex dnatnum
12947 The @code{dint} function checks if its argument is an integer.
12948 The @code{dnatnum} function checks if its argument is a natural
12949 number, i.e., a nonnegative integer.  The @code{dnumint} function
12950 checks if its argument is numerically an integer, i.e., either an
12951 integer or an integer-valued float.  Note that these and the other
12952 data type functions also accept vectors or matrices composed of
12953 suitable elements, and that real infinities @samp{inf} and @samp{-inf}
12954 are considered to be integers for the purposes of these functions.
12956 @ignore
12957 @starindex
12958 @end ignore
12959 @tindex drat
12960 The @code{drat} function checks if its argument is rational, i.e.,
12961 an integer or fraction.  Infinities count as rational, but intervals
12962 and error forms do not.
12964 @ignore
12965 @starindex
12966 @end ignore
12967 @tindex dreal
12968 The @code{dreal} function checks if its argument is real.  This
12969 includes integers, fractions, floats, real error forms, and intervals.
12971 @ignore
12972 @starindex
12973 @end ignore
12974 @tindex dimag
12975 The @code{dimag} function checks if its argument is imaginary,
12976 i.e., is mathematically equal to a real number times @expr{i}.
12978 @ignore
12979 @starindex
12980 @end ignore
12981 @tindex dpos
12982 @ignore
12983 @starindex
12984 @end ignore
12985 @tindex dneg
12986 @ignore
12987 @starindex
12988 @end ignore
12989 @tindex dnonneg
12990 The @code{dpos} function checks for positive (but nonzero) reals.
12991 The @code{dneg} function checks for negative reals.  The @code{dnonneg}
12992 function checks for nonnegative reals, i.e., reals greater than or
12993 equal to zero.  Note that Calc's algebraic simplifications, which are
12994 effectively applied to all conditions in rewrite rules, can simplify
12995 an expression like @expr{x > 0} to 1 or 0 using @code{dpos}.  
12996 So the actual functions @code{dpos}, @code{dneg}, and @code{dnonneg}
12997 are rarely necessary.
12999 @ignore
13000 @starindex
13001 @end ignore
13002 @tindex dnonzero
13003 The @code{dnonzero} function checks that its argument is nonzero.
13004 This includes all nonzero real or complex numbers, all intervals that
13005 do not include zero, all nonzero modulo forms, vectors all of whose
13006 elements are nonzero, and variables or formulas whose values can be
13007 deduced to be nonzero.  It does not include error forms, since they
13008 represent values which could be anything including zero.  (This is
13009 also the set of objects considered ``true'' in conditional contexts.)
13011 @ignore
13012 @starindex
13013 @end ignore
13014 @tindex deven
13015 @ignore
13016 @starindex
13017 @end ignore
13018 @tindex dodd
13019 The @code{deven} function returns 1 if its argument is known to be
13020 an even integer (or integer-valued float); it returns 0 if its argument
13021 is known not to be even (because it is known to be odd or a non-integer).
13022 Calc's algebraic simplifications use this to simplify a test of the form
13023 @samp{x % 2 = 0}.  There is also an analogous @code{dodd} function.
13025 @ignore
13026 @starindex
13027 @end ignore
13028 @tindex drange
13029 The @code{drange} function returns a set (an interval or a vector
13030 of intervals and/or numbers; @pxref{Set Operations}) that describes
13031 the set of possible values of its argument.  If the argument is
13032 a variable or a function with a declaration, the range is copied
13033 from the declaration.  Otherwise, the possible signs of the
13034 expression are determined using a method similar to @code{dpos},
13035 etc., and a suitable set like @samp{[0 .. inf]} is returned.  If
13036 the expression is not provably real, the @code{drange} function
13037 remains unevaluated.
13039 @ignore
13040 @starindex
13041 @end ignore
13042 @tindex dscalar
13043 The @code{dscalar} function returns 1 if its argument is provably
13044 scalar, or 0 if its argument is provably non-scalar.  It is left
13045 unevaluated if this cannot be determined.  (If Matrix mode or Scalar
13046 mode is in effect, this function returns 1 or 0, respectively,
13047 if it has no other information.)  When Calc interprets a condition
13048 (say, in a rewrite rule) it considers an unevaluated formula to be
13049 ``false.''  Thus, @samp{dscalar(a)} is ``true'' only if @code{a} is
13050 provably scalar, and @samp{!dscalar(a)} is ``true'' only if @code{a}
13051 is provably non-scalar; both are ``false'' if there is insufficient
13052 information to tell.
13054 @node Display Modes, Language Modes, Declarations, Mode Settings
13055 @section Display Modes
13057 @noindent
13058 The commands in this section are two-key sequences beginning with the
13059 @kbd{d} prefix.  The @kbd{d l} (@code{calc-line-numbering}) and @kbd{d b}
13060 (@code{calc-line-breaking}) commands are described elsewhere;
13061 @pxref{Stack Basics} and @pxref{Normal Language Modes}, respectively.
13062 Display formats for vectors and matrices are also covered elsewhere;
13063 @pxref{Vector and Matrix Formats}.
13065 One thing all display modes have in common is their treatment of the
13066 @kbd{H} prefix.  This prefix causes any mode command that would normally
13067 refresh the stack to leave the stack display alone.  The word ``Dirty''
13068 will appear in the mode line when Calc thinks the stack display may not
13069 reflect the latest mode settings.
13071 @kindex d @key{RET}
13072 @pindex calc-refresh-top
13073 The @kbd{d @key{RET}} (@code{calc-refresh-top}) command reformats the
13074 top stack entry according to all the current modes.  Positive prefix
13075 arguments reformat the top @var{n} entries; negative prefix arguments
13076 reformat the specified entry, and a prefix of zero is equivalent to
13077 @kbd{d @key{SPC}} (@code{calc-refresh}), which reformats the entire stack.
13078 For example, @kbd{H d s M-2 d @key{RET}} changes to scientific notation
13079 but reformats only the top two stack entries in the new mode.
13081 The @kbd{I} prefix has another effect on the display modes.  The mode
13082 is set only temporarily; the top stack entry is reformatted according
13083 to that mode, then the original mode setting is restored.  In other
13084 words, @kbd{I d s} is equivalent to @kbd{H d s d @key{RET} H d (@var{old mode})}.
13086 @menu
13087 * Radix Modes::
13088 * Grouping Digits::
13089 * Float Formats::
13090 * Complex Formats::
13091 * Fraction Formats::
13092 * HMS Formats::
13093 * Date Formats::
13094 * Truncating the Stack::
13095 * Justification::
13096 * Labels::
13097 @end menu
13099 @node Radix Modes, Grouping Digits, Display Modes, Display Modes
13100 @subsection Radix Modes
13102 @noindent
13103 @cindex Radix display
13104 @cindex Non-decimal numbers
13105 @cindex Decimal and non-decimal numbers
13106 Calc normally displays numbers in decimal (@dfn{base-10} or @dfn{radix-10})
13107 notation.  Calc can actually display in any radix from two (binary) to 36.
13108 When the radix is above 10, the letters @code{A} to @code{Z} are used as
13109 digits.  When entering such a number, letter keys are interpreted as
13110 potential digits rather than terminating numeric entry mode.
13112 @kindex d 2
13113 @kindex d 8
13114 @kindex d 6
13115 @kindex d 0
13116 @cindex Hexadecimal integers
13117 @cindex Octal integers
13118 The key sequences @kbd{d 2}, @kbd{d 8}, @kbd{d 6}, and @kbd{d 0} select
13119 binary, octal, hexadecimal, and decimal as the current display radix,
13120 respectively.  Numbers can always be entered in any radix, though the
13121 current radix is used as a default if you press @kbd{#} without any initial
13122 digits.  A number entered without a @kbd{#} is @emph{always} interpreted
13123 as decimal.
13125 @kindex d r
13126 @pindex calc-radix
13127 To set the radix generally, use @kbd{d r} (@code{calc-radix}) and enter
13128 an integer from 2 to 36.  You can specify the radix as a numeric prefix
13129 argument; otherwise you will be prompted for it.
13131 @kindex d z
13132 @pindex calc-leading-zeros
13133 @cindex Leading zeros
13134 Integers normally are displayed with however many digits are necessary to
13135 represent the integer and no more.  The @kbd{d z} (@code{calc-leading-zeros})
13136 command causes integers to be padded out with leading zeros according to the
13137 current binary word size.  (@xref{Binary Functions}, for a discussion of
13138 word size.)  If the absolute value of the word size is @expr{w}, all integers
13139 are displayed with at least enough digits to represent
13140 @texline @math{2^w-1}
13141 @infoline @expr{(2^w)-1}
13142 in the current radix.  (Larger integers will still be displayed in their
13143 entirety.)
13145 @cindex Two's complements
13146 Calc can display @expr{w}-bit integers using two's complement
13147 notation, although this is most useful with the binary, octal and
13148 hexadecimal display modes.  This option is selected by using the
13149 @kbd{O} option prefix before setting the display radix, and a negative word
13150 size might be appropriate (@pxref{Binary Functions}). In two's
13151 complement notation, the integers in the (nearly) symmetric interval
13152 from
13153 @texline @math{-2^{w-1}}
13154 @infoline @expr{-2^(w-1)}
13156 @texline @math{2^{w-1}-1}
13157 @infoline @expr{2^(w-1)-1}
13158 are represented by the integers from @expr{0} to @expr{2^w-1}:
13159 the integers from @expr{0} to
13160 @texline @math{2^{w-1}-1}
13161 @infoline @expr{2^(w-1)-1}
13162 are represented by themselves and the integers from
13163 @texline @math{-2^{w-1}}
13164 @infoline @expr{-2^(w-1)}
13165 to @expr{-1} are represented by the integers from
13166 @texline @math{2^{w-1}}
13167 @infoline @expr{2^(w-1)}
13168 to @expr{2^w-1} (the integer @expr{k} is represented by @expr{k+2^w}).
13169 Calc will display a two's complement integer by the radix (either
13170 @expr{2}, @expr{8} or @expr{16}), two @kbd{#} symbols, and then its
13171 representation (including any leading zeros necessary to include all
13172 @expr{w} bits).  In a two's complement display mode, numbers that
13173 are not displayed in two's complement notation (i.e., that aren't
13174 integers from
13175 @texline @math{-2^{w-1}}
13176 @infoline @expr{-2^(w-1)}
13178 @c (
13179 @texline @math{2^{w-1}-1})
13180 @infoline @expr{2^(w-1)-1})
13181 will be represented using Calc's usual notation (in the appropriate
13182 radix).
13184 @node Grouping Digits, Float Formats, Radix Modes, Display Modes
13185 @subsection Grouping Digits
13187 @noindent
13188 @kindex d g
13189 @pindex calc-group-digits
13190 @cindex Grouping digits
13191 @cindex Digit grouping
13192 Long numbers can be hard to read if they have too many digits.  For
13193 example, the factorial of 30 is 33 digits long!  Press @kbd{d g}
13194 (@code{calc-group-digits}) to enable @dfn{Grouping} mode, in which digits
13195 are displayed in clumps of 3 or 4 (depending on the current radix)
13196 separated by commas.
13198 The @kbd{d g} command toggles grouping on and off.
13199 With a numeric prefix of 0, this command displays the current state of
13200 the grouping flag; with an argument of minus one it disables grouping;
13201 with a positive argument @expr{N} it enables grouping on every @expr{N}
13202 digits.  For floating-point numbers, grouping normally occurs only
13203 before the decimal point.  A negative prefix argument @expr{-N} enables
13204 grouping every @expr{N} digits both before and after the decimal point.
13206 @kindex d ,
13207 @pindex calc-group-char
13208 The @kbd{d ,} (@code{calc-group-char}) command allows you to choose any
13209 character as the grouping separator.  The default is the comma character.
13210 If you find it difficult to read vectors of large integers grouped with
13211 commas, you may wish to use spaces or some other character instead.
13212 This command takes the next character you type, whatever it is, and
13213 uses it as the digit separator.  As a special case, @kbd{d , \} selects
13214 @samp{\,} (@TeX{}'s thin-space symbol) as the digit separator.
13216 Please note that grouped numbers will not generally be parsed correctly
13217 if re-read in textual form, say by the use of @kbd{C-x * y} and @kbd{C-x * g}.
13218 (@xref{Kill and Yank}, for details on these commands.)  One exception is
13219 the @samp{\,} separator, which doesn't interfere with parsing because it
13220 is ignored by @TeX{} language mode.
13222 @node Float Formats, Complex Formats, Grouping Digits, Display Modes
13223 @subsection Float Formats
13225 @noindent
13226 Floating-point quantities are normally displayed in standard decimal
13227 form, with scientific notation used if the exponent is especially high
13228 or low.  All significant digits are normally displayed.  The commands
13229 in this section allow you to choose among several alternative display
13230 formats for floats.
13232 @kindex d n
13233 @pindex calc-normal-notation
13234 The @kbd{d n} (@code{calc-normal-notation}) command selects the normal
13235 display format.  All significant figures in a number are displayed.
13236 With a positive numeric prefix, numbers are rounded if necessary to
13237 that number of significant digits.  With a negative numerix prefix,
13238 the specified number of significant digits less than the current
13239 precision is used.  (Thus @kbd{C-u -2 d n} displays 10 digits if the
13240 current precision is 12.)
13242 @kindex d f
13243 @pindex calc-fix-notation
13244 The @kbd{d f} (@code{calc-fix-notation}) command selects fixed-point
13245 notation.  The numeric argument is the number of digits after the
13246 decimal point, zero or more.  This format will relax into scientific
13247 notation if a nonzero number would otherwise have been rounded all the
13248 way to zero.  Specifying a negative number of digits is the same as
13249 for a positive number, except that small nonzero numbers will be rounded
13250 to zero rather than switching to scientific notation.
13252 @kindex d s
13253 @pindex calc-sci-notation
13254 @cindex Scientific notation, display of
13255 The @kbd{d s} (@code{calc-sci-notation}) command selects scientific
13256 notation.  A positive argument sets the number of significant figures
13257 displayed, of which one will be before and the rest after the decimal
13258 point.  A negative argument works the same as for @kbd{d n} format.
13259 The default is to display all significant digits.
13261 @kindex d e
13262 @pindex calc-eng-notation
13263 @cindex Engineering notation, display of
13264 The @kbd{d e} (@code{calc-eng-notation}) command selects engineering
13265 notation.  This is similar to scientific notation except that the
13266 exponent is rounded down to a multiple of three, with from one to three
13267 digits before the decimal point.  An optional numeric prefix sets the
13268 number of significant digits to display, as for @kbd{d s}.
13270 It is important to distinguish between the current @emph{precision} and
13271 the current @emph{display format}.  After the commands @kbd{C-u 10 p}
13272 and @kbd{C-u 6 d n} the Calculator computes all results to ten
13273 significant figures but displays only six.  (In fact, intermediate
13274 calculations are often carried to one or two more significant figures,
13275 but values placed on the stack will be rounded down to ten figures.)
13276 Numbers are never actually rounded to the display precision for storage,
13277 except by commands like @kbd{C-k} and @kbd{C-x * y} which operate on the
13278 actual displayed text in the Calculator buffer.
13280 @kindex d .
13281 @pindex calc-point-char
13282 The @kbd{d .} (@code{calc-point-char}) command selects the character used
13283 as a decimal point.  Normally this is a period; users in some countries
13284 may wish to change this to a comma.  Note that this is only a display
13285 style; on entry, periods must always be used to denote floating-point
13286 numbers, and commas to separate elements in a list.
13288 @node Complex Formats, Fraction Formats, Float Formats, Display Modes
13289 @subsection Complex Formats
13291 @noindent
13292 @kindex d c
13293 @pindex calc-complex-notation
13294 There are three supported notations for complex numbers in rectangular
13295 form.  The default is as a pair of real numbers enclosed in parentheses
13296 and separated by a comma: @samp{(a,b)}.  The @kbd{d c}
13297 (@code{calc-complex-notation}) command selects this style.
13299 @kindex d i
13300 @pindex calc-i-notation
13301 @kindex d j
13302 @pindex calc-j-notation
13303 The other notations are @kbd{d i} (@code{calc-i-notation}), in which
13304 numbers are displayed in @samp{a+bi} form, and @kbd{d j}
13305 (@code{calc-j-notation}) which displays the form @samp{a+bj} preferred
13306 in some disciplines.
13308 @cindex @code{i} variable
13309 @vindex i
13310 Complex numbers are normally entered in @samp{(a,b)} format.
13311 If you enter @samp{2+3i} as an algebraic formula, it will be stored as
13312 the formula @samp{2 + 3 * i}.  However, if you use @kbd{=} to evaluate
13313 this formula and you have not changed the variable @samp{i}, the @samp{i}
13314 will be interpreted as @samp{(0,1)} and the formula will be simplified
13315 to @samp{(2,3)}.  Other commands (like @code{calc-sin}) will @emph{not}
13316 interpret the formula @samp{2 + 3 * i} as a complex number.
13317 @xref{Variables}, under ``special constants.''
13319 @node Fraction Formats, HMS Formats, Complex Formats, Display Modes
13320 @subsection Fraction Formats
13322 @noindent
13323 @kindex d o
13324 @pindex calc-over-notation
13325 Display of fractional numbers is controlled by the @kbd{d o}
13326 (@code{calc-over-notation}) command.  By default, a number like
13327 eight thirds is displayed in the form @samp{8:3}.  The @kbd{d o} command
13328 prompts for a one- or two-character format.  If you give one character,
13329 that character is used as the fraction separator.  Common separators are
13330 @samp{:} and @samp{/}.  (During input of numbers, the @kbd{:} key must be
13331 used regardless of the display format; in particular, the @kbd{/} is used
13332 for RPN-style division, @emph{not} for entering fractions.)
13334 If you give two characters, fractions use ``integer-plus-fractional-part''
13335 notation.  For example, the format @samp{+/} would display eight thirds
13336 as @samp{2+2/3}.  If two colons are present in a number being entered,
13337 the number is interpreted in this form (so that the entries @kbd{2:2:3}
13338 and @kbd{8:3} are equivalent).
13340 It is also possible to follow the one- or two-character format with
13341 a number.  For example:  @samp{:10} or @samp{+/3}.  In this case,
13342 Calc adjusts all fractions that are displayed to have the specified
13343 denominator, if possible.  Otherwise it adjusts the denominator to
13344 be a multiple of the specified value.  For example, in @samp{:6} mode
13345 the fraction @expr{1:6} will be unaffected, but @expr{2:3} will be
13346 displayed as @expr{4:6}, @expr{1:2} will be displayed as @expr{3:6},
13347 and @expr{1:8} will be displayed as @expr{3:24}.  Integers are also
13348 affected by this mode:  3 is displayed as @expr{18:6}.  Note that the
13349 format @samp{:1} writes fractions the same as @samp{:}, but it writes
13350 integers as @expr{n:1}.
13352 The fraction format does not affect the way fractions or integers are
13353 stored, only the way they appear on the screen.  The fraction format
13354 never affects floats.
13356 @node HMS Formats, Date Formats, Fraction Formats, Display Modes
13357 @subsection HMS Formats
13359 @noindent
13360 @kindex d h
13361 @pindex calc-hms-notation
13362 The @kbd{d h} (@code{calc-hms-notation}) command controls the display of
13363 HMS (hours-minutes-seconds) forms.  It prompts for a string which
13364 consists basically of an ``hours'' marker, optional punctuation, a
13365 ``minutes'' marker, more optional punctuation, and a ``seconds'' marker.
13366 Punctuation is zero or more spaces, commas, or semicolons.  The hours
13367 marker is one or more non-punctuation characters.  The minutes and
13368 seconds markers must be single non-punctuation characters.
13370 The default HMS format is @samp{@@ ' "}, producing HMS values of the form
13371 @samp{23@@ 30' 15.75"}.  The format @samp{deg, ms} would display this same
13372 value as @samp{23deg, 30m15.75s}.  During numeric entry, the @kbd{h} or @kbd{o}
13373 keys are recognized as synonyms for @kbd{@@} regardless of display format.
13374 The @kbd{m} and @kbd{s} keys are recognized as synonyms for @kbd{'} and
13375 @kbd{"}, respectively, but only if an @kbd{@@} (or @kbd{h} or @kbd{o}) has
13376 already been typed; otherwise, they have their usual meanings
13377 (@kbd{m-} prefix and @kbd{s-} prefix).  Thus, @kbd{5 "}, @kbd{0 @@ 5 "}, and
13378 @kbd{0 h 5 s} are some of the ways to enter the quantity ``five seconds.''
13379 The @kbd{'} key is recognized as ``minutes'' only if @kbd{@@} (or @kbd{h} or
13380 @kbd{o}) has already been pressed; otherwise it means to switch to algebraic
13381 entry.
13383 @node Date Formats, Truncating the Stack, HMS Formats, Display Modes
13384 @subsection Date Formats
13386 @noindent
13387 @kindex d d
13388 @pindex calc-date-notation
13389 The @kbd{d d} (@code{calc-date-notation}) command controls the display
13390 of date forms (@pxref{Date Forms}).  It prompts for a string which
13391 contains letters that represent the various parts of a date and time.
13392 To show which parts should be omitted when the form represents a pure
13393 date with no time, parts of the string can be enclosed in @samp{< >}
13394 marks.  If you don't include @samp{< >} markers in the format, Calc
13395 guesses at which parts, if any, should be omitted when formatting
13396 pure dates.
13398 The default format is:  @samp{<H:mm:SSpp >Www Mmm D, YYYY}.
13399 An example string in this format is @samp{3:32pm Wed Jan 9, 1991}.
13400 If you enter a blank format string, this default format is
13401 reestablished.
13403 Calc uses @samp{< >} notation for nameless functions as well as for
13404 dates.  @xref{Specifying Operators}.  To avoid confusion with nameless
13405 functions, your date formats should avoid using the @samp{#} character.
13407 @menu
13408 * Date Formatting Codes::
13409 * Free-Form Dates::
13410 * Standard Date Formats::
13411 @end menu
13413 @node Date Formatting Codes, Free-Form Dates, Date Formats, Date Formats
13414 @subsubsection Date Formatting Codes
13416 @noindent
13417 When displaying a date, the current date format is used.  All
13418 characters except for letters and @samp{<} and @samp{>} are
13419 copied literally when dates are formatted.  The portion between
13420 @samp{< >} markers is omitted for pure dates, or included for
13421 date/time forms.  Letters are interpreted according to the table
13422 below.
13424 When dates are read in during algebraic entry, Calc first tries to
13425 match the input string to the current format either with or without
13426 the time part.  The punctuation characters (including spaces) must
13427 match exactly; letter fields must correspond to suitable text in
13428 the input.  If this doesn't work, Calc checks if the input is a
13429 simple number; if so, the number is interpreted as a number of days
13430 since Jan 1, 1 AD.  Otherwise, Calc tries a much more relaxed and
13431 flexible algorithm which is described in the next section.
13433 Weekday names are ignored during reading.
13435 Two-digit year numbers are interpreted as lying in the range
13436 from 1941 to 2039.  Years outside that range are always
13437 entered and displayed in full.  Year numbers with a leading
13438 @samp{+} sign are always interpreted exactly, allowing the
13439 entry and display of the years 1 through 99 AD.
13441 Here is a complete list of the formatting codes for dates:
13443 @table @asis
13444 @item Y
13445 Year:  ``91'' for 1991, ``7'' for 2007, ``+23'' for 23 AD.
13446 @item YY
13447 Year:  ``91'' for 1991, ``07'' for 2007, ``+23'' for 23 AD.
13448 @item BY
13449 Year:  ``91'' for 1991, `` 7'' for 2007, ``+23'' for 23 AD.
13450 @item YYY
13451 Year:  ``1991'' for 1991, ``23'' for 23 AD.
13452 @item YYYY
13453 Year:  ``1991'' for 1991, ``+23'' for 23 AD.
13454 @item aa
13455 Year:  ``ad'' or blank.
13456 @item AA
13457 Year:  ``AD'' or blank.
13458 @item aaa
13459 Year:  ``ad '' or blank.  (Note trailing space.)
13460 @item AAA
13461 Year:  ``AD '' or blank.
13462 @item aaaa
13463 Year:  ``a.d.'' or blank.
13464 @item AAAA
13465 Year:  ``A.D.'' or blank.
13466 @item bb
13467 Year:  ``bc'' or blank.
13468 @item BB
13469 Year:  ``BC'' or blank.
13470 @item bbb
13471 Year:  `` bc'' or blank.  (Note leading space.)
13472 @item BBB
13473 Year:  `` BC'' or blank.
13474 @item bbbb
13475 Year:  ``b.c.'' or blank.
13476 @item BBBB
13477 Year:  ``B.C.'' or blank.
13478 @item M
13479 Month:  ``8'' for August.
13480 @item MM
13481 Month:  ``08'' for August.
13482 @item BM
13483 Month:  `` 8'' for August.
13484 @item MMM
13485 Month:  ``AUG'' for August.
13486 @item Mmm
13487 Month:  ``Aug'' for August.
13488 @item mmm
13489 Month:  ``aug'' for August.
13490 @item MMMM
13491 Month:  ``AUGUST'' for August.
13492 @item Mmmm
13493 Month:  ``August'' for August.
13494 @item D
13495 Day:  ``7'' for 7th day of month.
13496 @item DD
13497 Day:  ``07'' for 7th day of month.
13498 @item BD
13499 Day:  `` 7'' for 7th day of month.
13500 @item W
13501 Weekday:  ``0'' for Sunday, ``6'' for Saturday.
13502 @item WWW
13503 Weekday:  ``SUN'' for Sunday.
13504 @item Www
13505 Weekday:  ``Sun'' for Sunday.
13506 @item www
13507 Weekday:  ``sun'' for Sunday.
13508 @item WWWW
13509 Weekday:  ``SUNDAY'' for Sunday.
13510 @item Wwww
13511 Weekday:  ``Sunday'' for Sunday.
13512 @item d
13513 Day of year:  ``34'' for Feb. 3.
13514 @item ddd
13515 Day of year:  ``034'' for Feb. 3.
13516 @item bdd
13517 Day of year:  `` 34'' for Feb. 3.
13518 @item h
13519 Hour:  ``5'' for 5 AM; ``17'' for 5 PM.
13520 @item hh
13521 Hour:  ``05'' for 5 AM; ``17'' for 5 PM.
13522 @item bh
13523 Hour:  `` 5'' for 5 AM; ``17'' for 5 PM.
13524 @item H
13525 Hour:  ``5'' for 5 AM and 5 PM.
13526 @item HH
13527 Hour:  ``05'' for 5 AM and 5 PM.
13528 @item BH
13529 Hour:  `` 5'' for 5 AM and 5 PM.
13530 @item p
13531 AM/PM:  ``a'' or ``p''.
13532 @item P
13533 AM/PM:  ``A'' or ``P''.
13534 @item pp
13535 AM/PM:  ``am'' or ``pm''.
13536 @item PP
13537 AM/PM:  ``AM'' or ``PM''.
13538 @item pppp
13539 AM/PM:  ``a.m.'' or ``p.m.''.
13540 @item PPPP
13541 AM/PM:  ``A.M.'' or ``P.M.''.
13542 @item m
13543 Minutes:  ``7'' for 7.
13544 @item mm
13545 Minutes:  ``07'' for 7.
13546 @item bm
13547 Minutes:  `` 7'' for 7.
13548 @item s
13549 Seconds:  ``7'' for 7;  ``7.23'' for 7.23.
13550 @item ss
13551 Seconds:  ``07'' for 7;  ``07.23'' for 7.23.
13552 @item bs
13553 Seconds:  `` 7'' for 7;  `` 7.23'' for 7.23.
13554 @item SS
13555 Optional seconds:  ``07'' for 7;  blank for 0.
13556 @item BS
13557 Optional seconds:  `` 7'' for 7;  blank for 0.
13558 @item N
13559 Numeric date/time:  ``726842.25'' for 6:00am Wed Jan 9, 1991.
13560 @item n
13561 Numeric date:  ``726842'' for any time on Wed Jan 9, 1991.
13562 @item J
13563 Julian date/time:  ``2448265.75'' for 6:00am Wed Jan 9, 1991.
13564 @item j
13565 Julian date:  ``2448266'' for any time on Wed Jan 9, 1991.
13566 @item U
13567 Unix time:  ``663400800'' for 6:00am Wed Jan 9, 1991.
13568 @item X
13569 Brackets suppression.  An ``X'' at the front of the format
13570 causes the surrounding @w{@samp{< >}} delimiters to be omitted
13571 when formatting dates.  Note that the brackets are still
13572 required for algebraic entry.
13573 @end table
13575 If ``SS'' or ``BS'' (optional seconds) is preceded by a colon, the
13576 colon is also omitted if the seconds part is zero.
13578 If ``bb,'' ``bbb'' or ``bbbb'' or their upper-case equivalents
13579 appear in the format, then negative year numbers are displayed
13580 without a minus sign.  Note that ``aa'' and ``bb'' are mutually
13581 exclusive.  Some typical usages would be @samp{YYYY AABB};
13582 @samp{AAAYYYYBBB}; @samp{YYYYBBB}.
13584 The formats ``YY,'' ``YYYY,'' ``MM,'' ``DD,'' ``ddd,'' ``hh,'' ``HH,''
13585 ``mm,'' ``ss,'' and ``SS'' actually match any number of digits during
13586 reading unless several of these codes are strung together with no
13587 punctuation in between, in which case the input must have exactly as
13588 many digits as there are letters in the format.
13590 The ``j,'' ``J,'' and ``U'' formats do not make any time zone
13591 adjustment.  They effectively use @samp{julian(x,0)} and
13592 @samp{unixtime(x,0)} to make the conversion; @pxref{Date Arithmetic}.
13594 @node Free-Form Dates, Standard Date Formats, Date Formatting Codes, Date Formats
13595 @subsubsection Free-Form Dates
13597 @noindent
13598 When reading a date form during algebraic entry, Calc falls back
13599 on the algorithm described here if the input does not exactly
13600 match the current date format.  This algorithm generally
13601 ``does the right thing'' and you don't have to worry about it,
13602 but it is described here in full detail for the curious.
13604 Calc does not distinguish between upper- and lower-case letters
13605 while interpreting dates.
13607 First, the time portion, if present, is located somewhere in the
13608 text and then removed.  The remaining text is then interpreted as
13609 the date.
13611 A time is of the form @samp{hh:mm:ss}, possibly with the seconds
13612 part omitted and possibly with an AM/PM indicator added to indicate
13613 12-hour time.  If the AM/PM is present, the minutes may also be
13614 omitted.  The AM/PM part may be any of the words @samp{am},
13615 @samp{pm}, @samp{noon}, or @samp{midnight}; each of these may be
13616 abbreviated to one letter, and the alternate forms @samp{a.m.},
13617 @samp{p.m.}, and @samp{mid} are also understood.  Obviously
13618 @samp{noon} and @samp{midnight} are allowed only on 12:00:00.
13619 The words @samp{noon}, @samp{mid}, and @samp{midnight} are also
13620 recognized with no number attached.
13622 If there is no AM/PM indicator, the time is interpreted in 24-hour
13623 format.
13625 To read the date portion, all words and numbers are isolated
13626 from the string; other characters are ignored.  All words must
13627 be either month names or day-of-week names (the latter of which
13628 are ignored).  Names can be written in full or as three-letter
13629 abbreviations.
13631 Large numbers, or numbers with @samp{+} or @samp{-} signs,
13632 are interpreted as years.  If one of the other numbers is
13633 greater than 12, then that must be the day and the remaining
13634 number in the input is therefore the month.  Otherwise, Calc
13635 assumes the month, day and year are in the same order that they
13636 appear in the current date format.  If the year is omitted, the
13637 current year is taken from the system clock.
13639 If there are too many or too few numbers, or any unrecognizable
13640 words, then the input is rejected.
13642 If there are any large numbers (of five digits or more) other than
13643 the year, they are ignored on the assumption that they are something
13644 like Julian dates that were included along with the traditional
13645 date components when the date was formatted.
13647 One of the words @samp{ad}, @samp{a.d.}, @samp{bc}, or @samp{b.c.}
13648 may optionally be used; the latter two are equivalent to a
13649 minus sign on the year value.
13651 If you always enter a four-digit year, and use a name instead
13652 of a number for the month, there is no danger of ambiguity.
13654 @node Standard Date Formats,  , Free-Form Dates, Date Formats
13655 @subsubsection Standard Date Formats
13657 @noindent
13658 There are actually ten standard date formats, numbered 0 through 9.
13659 Entering a blank line at the @kbd{d d} command's prompt gives
13660 you format number 1, Calc's usual format.  You can enter any digit
13661 to select the other formats.
13663 To create your own standard date formats, give a numeric prefix
13664 argument from 0 to 9 to the @w{@kbd{d d}} command.  The format you
13665 enter will be recorded as the new standard format of that
13666 number, as well as becoming the new current date format.
13667 You can save your formats permanently with the @w{@kbd{m m}}
13668 command (@pxref{Mode Settings}).
13670 @table @asis
13671 @item 0
13672 @samp{N}  (Numerical format)
13673 @item 1
13674 @samp{<H:mm:SSpp >Www Mmm D, YYYY}  (American format)
13675 @item 2
13676 @samp{D Mmm YYYY<, h:mm:SS>}  (European format)
13677 @item 3
13678 @samp{Www Mmm BD< hh:mm:ss> YYYY}  (Unix written date format)
13679 @item 4
13680 @samp{M/D/Y< H:mm:SSpp>}  (American slashed format)
13681 @item 5
13682 @samp{D.M.Y< h:mm:SS>}  (European dotted format)
13683 @item 6
13684 @samp{M-D-Y< H:mm:SSpp>}  (American dashed format)
13685 @item 7
13686 @samp{D-M-Y< h:mm:SS>}  (European dashed format)
13687 @item 8
13688 @samp{j<, h:mm:ss>}  (Julian day plus time)
13689 @item 9
13690 @samp{YYddd< hh:mm:ss>}  (Year-day format)
13691 @end table
13693 @node Truncating the Stack, Justification, Date Formats, Display Modes
13694 @subsection Truncating the Stack
13696 @noindent
13697 @kindex d t
13698 @pindex calc-truncate-stack
13699 @cindex Truncating the stack
13700 @cindex Narrowing the stack
13701 The @kbd{d t} (@code{calc-truncate-stack}) command moves the @samp{.}@:
13702 line that marks the top-of-stack up or down in the Calculator buffer.
13703 The number right above that line is considered to the be at the top of
13704 the stack.  Any numbers below that line are ``hidden'' from all stack
13705 operations (although still visible to the user).  This is similar to the
13706 Emacs ``narrowing'' feature, except that the values below the @samp{.}
13707 are @emph{visible}, just temporarily frozen.  This feature allows you to
13708 keep several independent calculations running at once in different parts
13709 of the stack, or to apply a certain command to an element buried deep in
13710 the stack.
13712 Pressing @kbd{d t} by itself moves the @samp{.} to the line the cursor
13713 is on.  Thus, this line and all those below it become hidden.  To un-hide
13714 these lines, move down to the end of the buffer and press @w{@kbd{d t}}.
13715 With a positive numeric prefix argument @expr{n}, @kbd{d t} hides the
13716 bottom @expr{n} values in the buffer.  With a negative argument, it hides
13717 all but the top @expr{n} values.  With an argument of zero, it hides zero
13718 values, i.e., moves the @samp{.} all the way down to the bottom.
13720 @kindex d [
13721 @pindex calc-truncate-up
13722 @kindex d ]
13723 @pindex calc-truncate-down
13724 The @kbd{d [} (@code{calc-truncate-up}) and @kbd{d ]}
13725 (@code{calc-truncate-down}) commands move the @samp{.} up or down one
13726 line at a time (or several lines with a prefix argument).
13728 @node Justification, Labels, Truncating the Stack, Display Modes
13729 @subsection Justification
13731 @noindent
13732 @kindex d <
13733 @pindex calc-left-justify
13734 @kindex d =
13735 @pindex calc-center-justify
13736 @kindex d >
13737 @pindex calc-right-justify
13738 Values on the stack are normally left-justified in the window.  You can
13739 control this arrangement by typing @kbd{d <} (@code{calc-left-justify}),
13740 @kbd{d >} (@code{calc-right-justify}), or @kbd{d =}
13741 (@code{calc-center-justify}).  For example, in Right-Justification mode,
13742 stack entries are displayed flush-right against the right edge of the
13743 window.
13745 If you change the width of the Calculator window you may have to type
13746 @kbd{d @key{SPC}} (@code{calc-refresh}) to re-align right-justified or centered
13747 text.
13749 Right-justification is especially useful together with fixed-point
13750 notation (see @code{d f}; @code{calc-fix-notation}).  With these modes
13751 together, the decimal points on numbers will always line up.
13753 With a numeric prefix argument, the justification commands give you
13754 a little extra control over the display.  The argument specifies the
13755 horizontal ``origin'' of a display line.  It is also possible to
13756 specify a maximum line width using the @kbd{d b} command (@pxref{Normal
13757 Language Modes}).  For reference, the precise rules for formatting and
13758 breaking lines are given below.  Notice that the interaction between
13759 origin and line width is slightly different in each justification
13760 mode.
13762 In Left-Justified mode, the line is indented by a number of spaces
13763 given by the origin (default zero).  If the result is longer than the
13764 maximum line width, if given, or too wide to fit in the Calc window
13765 otherwise, then it is broken into lines which will fit; each broken
13766 line is indented to the origin.
13768 In Right-Justified mode, lines are shifted right so that the rightmost
13769 character is just before the origin, or just before the current
13770 window width if no origin was specified.  If the line is too long
13771 for this, then it is broken; the current line width is used, if
13772 specified, or else the origin is used as a width if that is
13773 specified, or else the line is broken to fit in the window.
13775 In Centering mode, the origin is the column number of the center of
13776 each stack entry.  If a line width is specified, lines will not be
13777 allowed to go past that width; Calc will either indent less or
13778 break the lines if necessary.  If no origin is specified, half the
13779 line width or Calc window width is used.
13781 Note that, in each case, if line numbering is enabled the display
13782 is indented an additional four spaces to make room for the line
13783 number.  The width of the line number is taken into account when
13784 positioning according to the current Calc window width, but not
13785 when positioning by explicit origins and widths.  In the latter
13786 case, the display is formatted as specified, and then uniformly
13787 shifted over four spaces to fit the line numbers.
13789 @node Labels,  , Justification, Display Modes
13790 @subsection Labels
13792 @noindent
13793 @kindex d @{
13794 @pindex calc-left-label
13795 The @kbd{d @{} (@code{calc-left-label}) command prompts for a string,
13796 then displays that string to the left of every stack entry.  If the
13797 entries are left-justified (@pxref{Justification}), then they will
13798 appear immediately after the label (unless you specified an origin
13799 greater than the length of the label).  If the entries are centered
13800 or right-justified, the label appears on the far left and does not
13801 affect the horizontal position of the stack entry.
13803 Give a blank string (with @kbd{d @{ @key{RET}}) to turn the label off.
13805 @kindex d @}
13806 @pindex calc-right-label
13807 The @kbd{d @}} (@code{calc-right-label}) command similarly adds a
13808 label on the righthand side.  It does not affect positioning of
13809 the stack entries unless they are right-justified.  Also, if both
13810 a line width and an origin are given in Right-Justified mode, the
13811 stack entry is justified to the origin and the righthand label is
13812 justified to the line width.
13814 One application of labels would be to add equation numbers to
13815 formulas you are manipulating in Calc and then copying into a
13816 document (possibly using Embedded mode).  The equations would
13817 typically be centered, and the equation numbers would be on the
13818 left or right as you prefer.
13820 @node Language Modes, Modes Variable, Display Modes, Mode Settings
13821 @section Language Modes
13823 @noindent
13824 The commands in this section change Calc to use a different notation for
13825 entry and display of formulas, corresponding to the conventions of some
13826 other common language such as Pascal or @LaTeX{}.  Objects displayed on the
13827 stack or yanked from the Calculator to an editing buffer will be formatted
13828 in the current language; objects entered in algebraic entry or yanked from
13829 another buffer will be interpreted according to the current language.
13831 The current language has no effect on things written to or read from the
13832 trail buffer, nor does it affect numeric entry.  Only algebraic entry is
13833 affected.  You can make even algebraic entry ignore the current language
13834 and use the standard notation by giving a numeric prefix, e.g., @kbd{C-u '}.
13836 For example, suppose the formula @samp{2*a[1] + atan(a[2])} occurs in a C
13837 program; elsewhere in the program you need the derivatives of this formula
13838 with respect to @samp{a[1]} and @samp{a[2]}.  First, type @kbd{d C}
13839 to switch to C notation.  Now use @code{C-u C-x * g} to grab the formula
13840 into the Calculator, @kbd{a d a[1] @key{RET}} to differentiate with respect
13841 to the first variable, and @kbd{C-x * y} to yank the formula for the derivative
13842 back into your C program.  Press @kbd{U} to undo the differentiation and
13843 repeat with @kbd{a d a[2] @key{RET}} for the other derivative.
13845 Without being switched into C mode first, Calc would have misinterpreted
13846 the brackets in @samp{a[1]} and @samp{a[2]}, would not have known that
13847 @code{atan} was equivalent to Calc's built-in @code{arctan} function,
13848 and would have written the formula back with notations (like implicit
13849 multiplication) which would not have been valid for a C program.
13851 As another example, suppose you are maintaining a C program and a @LaTeX{}
13852 document, each of which needs a copy of the same formula.  You can grab the
13853 formula from the program in C mode, switch to @LaTeX{} mode, and yank the
13854 formula into the document in @LaTeX{} math-mode format.
13856 Language modes are selected by typing the letter @kbd{d} followed by a
13857 shifted letter key.
13859 @menu
13860 * Normal Language Modes::
13861 * C FORTRAN Pascal::
13862 * TeX and LaTeX Language Modes::
13863 * Eqn Language Mode::
13864 * Yacas Language Mode::
13865 * Maxima Language Mode::
13866 * Giac Language Mode::
13867 * Mathematica Language Mode::
13868 * Maple Language Mode::
13869 * Compositions::
13870 * Syntax Tables::
13871 @end menu
13873 @node Normal Language Modes, C FORTRAN Pascal, Language Modes, Language Modes
13874 @subsection Normal Language Modes
13876 @noindent
13877 @kindex d N
13878 @pindex calc-normal-language
13879 The @kbd{d N} (@code{calc-normal-language}) command selects the usual
13880 notation for Calc formulas, as described in the rest of this manual.
13881 Matrices are displayed in a multi-line tabular format, but all other
13882 objects are written in linear form, as they would be typed from the
13883 keyboard.
13885 @kindex d O
13886 @pindex calc-flat-language
13887 @cindex Matrix display
13888 The @kbd{d O} (@code{calc-flat-language}) command selects a language
13889 identical with the normal one, except that matrices are written in
13890 one-line form along with everything else.  In some applications this
13891 form may be more suitable for yanking data into other buffers.
13893 @kindex d b
13894 @pindex calc-line-breaking
13895 @cindex Line breaking
13896 @cindex Breaking up long lines
13897 Even in one-line mode, long formulas or vectors will still be split
13898 across multiple lines if they exceed the width of the Calculator window.
13899 The @kbd{d b} (@code{calc-line-breaking}) command turns this line-breaking
13900 feature on and off.  (It works independently of the current language.)
13901 If you give a numeric prefix argument of five or greater to the @kbd{d b}
13902 command, that argument will specify the line width used when breaking
13903 long lines.
13905 @kindex d B
13906 @pindex calc-big-language
13907 The @kbd{d B} (@code{calc-big-language}) command selects a language
13908 which uses textual approximations to various mathematical notations,
13909 such as powers, quotients, and square roots:
13911 @example
13912   ____________
13913  | a + 1    2
13914  | ----- + c
13915 \|   b
13916 @end example
13918 @noindent
13919 in place of @samp{sqrt((a+1)/b + c^2)}.
13921 Subscripts like @samp{a_i} are displayed as actual subscripts in Big
13922 mode.  Double subscripts, @samp{a_i_j} (@samp{subscr(subscr(a, i), j)})
13923 are displayed as @samp{a} with subscripts separated by commas:
13924 @samp{i, j}.  They must still be entered in the usual underscore
13925 notation.
13927 One slight ambiguity of Big notation is that
13929 @example
13930   3
13931 - -
13932   4
13933 @end example
13935 @noindent
13936 can represent either the negative rational number @expr{-3:4}, or the
13937 actual expression @samp{-(3/4)}; but the latter formula would normally
13938 never be displayed because it would immediately be evaluated to
13939 @expr{-3:4} or @expr{-0.75}, so this ambiguity is not a problem in
13940 typical use.
13942 Non-decimal numbers are displayed with subscripts.  Thus there is no
13943 way to tell the difference between @samp{16#C2} and @samp{C2_16},
13944 though generally you will know which interpretation is correct.
13945 Logarithms @samp{log(x,b)} and @samp{log10(x)} also use subscripts
13946 in Big mode.
13948 In Big mode, stack entries often take up several lines.  To aid
13949 readability, stack entries are separated by a blank line in this mode.
13950 You may find it useful to expand the Calc window's height using
13951 @kbd{C-x ^} (@code{enlarge-window}) or to make the Calc window the only
13952 one on the screen with @kbd{C-x 1} (@code{delete-other-windows}).
13954 Long lines are currently not rearranged to fit the window width in
13955 Big mode, so you may need to use the @kbd{<} and @kbd{>} keys
13956 to scroll across a wide formula.  For really big formulas, you may
13957 even need to use @kbd{@{} and @kbd{@}} to scroll up and down.
13959 @kindex d U
13960 @pindex calc-unformatted-language
13961 The @kbd{d U} (@code{calc-unformatted-language}) command altogether disables
13962 the use of operator notation in formulas.  In this mode, the formula
13963 shown above would be displayed:
13965 @example
13966 sqrt(add(div(add(a, 1), b), pow(c, 2)))
13967 @end example
13969 These four modes differ only in display format, not in the format
13970 expected for algebraic entry.  The standard Calc operators work in
13971 all four modes, and unformatted notation works in any language mode
13972 (except that Mathematica mode expects square brackets instead of
13973 parentheses).
13975 @node C FORTRAN Pascal, TeX and LaTeX Language Modes, Normal Language Modes, Language Modes
13976 @subsection C, FORTRAN, and Pascal Modes
13978 @noindent
13979 @kindex d C
13980 @pindex calc-c-language
13981 @cindex C language
13982 The @kbd{d C} (@code{calc-c-language}) command selects the conventions
13983 of the C language for display and entry of formulas.  This differs from
13984 the normal language mode in a variety of (mostly minor) ways.  In
13985 particular, C language operators and operator precedences are used in
13986 place of Calc's usual ones.  For example, @samp{a^b} means @samp{xor(a,b)}
13987 in C mode; a value raised to a power is written as a function call,
13988 @samp{pow(a,b)}.
13990 In C mode, vectors and matrices use curly braces instead of brackets.
13991 Octal and hexadecimal values are written with leading @samp{0} or @samp{0x}
13992 rather than using the @samp{#} symbol.  Array subscripting is
13993 translated into @code{subscr} calls, so that @samp{a[i]} in C
13994 mode is the same as @samp{a_i} in Normal mode.  Assignments
13995 turn into the @code{assign} function, which Calc normally displays
13996 using the @samp{:=} symbol.
13998 The variables @code{pi} and @code{e} would be displayed @samp{pi}
13999 and @samp{e} in Normal mode, but in C mode they are displayed as
14000 @samp{M_PI} and @samp{M_E}, corresponding to the names of constants
14001 typically provided in the @file{<math.h>} header.  Functions whose
14002 names are different in C are translated automatically for entry and
14003 display purposes.  For example, entering @samp{asin(x)} will push the
14004 formula @samp{arcsin(x)} onto the stack; this formula will be displayed
14005 as @samp{asin(x)} as long as C mode is in effect.
14007 @kindex d P
14008 @pindex calc-pascal-language
14009 @cindex Pascal language
14010 The @kbd{d P} (@code{calc-pascal-language}) command selects Pascal
14011 conventions.  Like C mode, Pascal mode interprets array brackets and uses
14012 a different table of operators.  Hexadecimal numbers are entered and
14013 displayed with a preceding dollar sign.  (Thus the regular meaning of
14014 @kbd{$2} during algebraic entry does not work in Pascal mode, though
14015 @kbd{$} (and @kbd{$$}, etc.) not followed by digits works the same as
14016 always.)  No special provisions are made for other non-decimal numbers,
14017 vectors, and so on, since there is no universally accepted standard way
14018 of handling these in Pascal.
14020 @kindex d F
14021 @pindex calc-fortran-language
14022 @cindex FORTRAN language
14023 The @kbd{d F} (@code{calc-fortran-language}) command selects FORTRAN
14024 conventions.  Various function names are transformed into FORTRAN
14025 equivalents.  Vectors are written as @samp{/1, 2, 3/}, and may be
14026 entered this way or using square brackets.  Since FORTRAN uses round
14027 parentheses for both function calls and array subscripts, Calc displays
14028 both in the same way; @samp{a(i)} is interpreted as a function call
14029 upon reading, and subscripts must be entered as @samp{subscr(a, i)}.
14030 If the variable @code{a} has been declared to have type
14031 @code{vector} or @code{matrix}, however,  then @samp{a(i)} will be
14032 parsed as a subscript.  (@xref{Declarations}.)  Usually it doesn't
14033 matter, though; if you enter the subscript expression @samp{a(i)} and
14034 Calc interprets it as a function call, you'll never know the difference
14035 unless you switch to another language mode or replace @code{a} with an
14036 actual vector (or unless @code{a} happens to be the name of a built-in
14037 function!).
14039 Underscores are allowed in variable and function names in all of these
14040 language modes.  The underscore here is equivalent to the @samp{#} in
14041 Normal mode, or to hyphens in the underlying Emacs Lisp variable names.
14043 FORTRAN and Pascal modes normally do not adjust the case of letters in
14044 formulas.  Most built-in Calc names use lower-case letters.  If you use a
14045 positive numeric prefix argument with @kbd{d P} or @kbd{d F}, these
14046 modes will use upper-case letters exclusively for display, and will
14047 convert to lower-case on input.  With a negative prefix, these modes
14048 convert to lower-case for display and input.
14050 @node TeX and LaTeX Language Modes, Eqn Language Mode, C FORTRAN Pascal, Language Modes
14051 @subsection @TeX{} and @LaTeX{} Language Modes
14053 @noindent
14054 @kindex d T
14055 @pindex calc-tex-language
14056 @cindex TeX language
14057 @kindex d L
14058 @pindex calc-latex-language
14059 @cindex LaTeX language
14060 The @kbd{d T} (@code{calc-tex-language}) command selects the conventions
14061 of ``math mode'' in Donald Knuth's @TeX{} typesetting language,
14062 and the @kbd{d L} (@code{calc-latex-language}) command selects the
14063 conventions of ``math mode'' in @LaTeX{}, a typesetting language that
14064 uses @TeX{} as its formatting engine.  Calc's @LaTeX{} language mode can
14065 read any formula that the @TeX{} language mode can, although @LaTeX{}
14066 mode may display it differently.
14068 Formulas are entered and displayed in the appropriate notation;
14069 @texline @math{\sin(a/b)}
14070 @infoline @expr{sin(a/b)}
14071 will appear as @samp{\sin\left( @{a \over b@} \right)} in @TeX{} mode and
14072 @samp{\sin\left(\frac@{a@}@{b@}\right)} in @LaTeX{} mode.
14073 Math formulas are often enclosed by @samp{$ $} signs in @TeX{} and
14074 @LaTeX{}; these should be omitted when interfacing with Calc.  To Calc,
14075 the @samp{$} sign has the same meaning it always does in algebraic
14076 formulas (a reference to an existing entry on the stack).
14078 Complex numbers are displayed as in @samp{3 + 4i}.  Fractions and
14079 quotients are written using @code{\over} in @TeX{} mode (as in
14080 @code{@{a \over b@}}) and @code{\frac} in @LaTeX{} mode (as in
14081 @code{\frac@{a@}@{b@}});  binomial coefficients are written with
14082 @code{\choose} in @TeX{} mode (as in @code{@{a \choose b@}}) and
14083 @code{\binom} in @LaTeX{} mode (as in @code{\binom@{a@}@{b@}}).
14084 Interval forms are written with @code{\ldots}, and error forms are
14085 written with @code{\pm}. Absolute values are written as in
14086 @samp{|x + 1|}, and the floor and ceiling functions are written with
14087 @code{\lfloor}, @code{\rfloor}, etc. The words @code{\left} and
14088 @code{\right} are ignored when reading formulas in @TeX{} and @LaTeX{}
14089 modes.  Both @code{inf} and @code{uinf} are written as @code{\infty};
14090 when read, @code{\infty} always translates to @code{inf}.
14092 Function calls are written the usual way, with the function name followed
14093 by the arguments in parentheses.  However, functions for which @TeX{}
14094 and @LaTeX{} have special names (like @code{\sin}) will use curly braces
14095 instead of parentheses for very simple arguments.  During input, curly
14096 braces and parentheses work equally well for grouping, but when the
14097 document is formatted the curly braces will be invisible.  Thus the
14098 printed result is
14099 @texline @math{\sin{2 x}}
14100 @infoline @expr{sin 2x}
14102 @texline @math{\sin(2 + x)}.
14103 @infoline @expr{sin(2 + x)}.
14105 The @TeX{} specific unit names (@pxref{Predefined Units}) will not use
14106 the @samp{tex} prefix;  the unit name for a @TeX{} point will be
14107 @samp{pt} instead of @samp{texpt}, for example.
14109 Function and variable names not treated specially by @TeX{} and @LaTeX{}
14110 are simply written out as-is, which will cause them to come out in
14111 italic letters in the printed document.  If you invoke @kbd{d T} or
14112 @kbd{d L} with a positive numeric prefix argument, names of more than
14113 one character will instead be enclosed in a protective commands that
14114 will prevent them from being typeset in the math italics; they will be
14115 written @samp{\hbox@{@var{name}@}} in @TeX{} mode and
14116 @samp{\text@{@var{name}@}} in @LaTeX{} mode.  The
14117 @samp{\hbox@{ @}} and @samp{\text@{ @}} notations are ignored during
14118 reading.  If you use a negative prefix argument, such function names are
14119 written @samp{\@var{name}}, and function names that begin with @code{\} during
14120 reading have the @code{\} removed.  (Note that in this mode, long
14121 variable names are still written with @code{\hbox} or @code{\text}.
14122 However, you can always make an actual variable name like @code{\bar} in
14123 any @TeX{} mode.)
14125 During reading, text of the form @samp{\matrix@{ ...@: @}} is replaced
14126 by @samp{[ ...@: ]}.  The same also applies to @code{\pmatrix} and
14127 @code{\bmatrix}.  In @LaTeX{} mode this also applies to
14128 @samp{\begin@{matrix@} ... \end@{matrix@}},
14129 @samp{\begin@{bmatrix@} ... \end@{bmatrix@}},
14130 @samp{\begin@{pmatrix@} ... \end@{pmatrix@}}, as well as
14131 @samp{\begin@{smallmatrix@} ... \end@{smallmatrix@}}.
14132 The symbol @samp{&} is interpreted as a comma,
14133 and the symbols @samp{\cr} and @samp{\\} are interpreted as semicolons.
14134 During output, matrices are displayed in @samp{\matrix@{ a & b \\ c & d@}}
14135 format in @TeX{} mode and in
14136 @samp{\begin@{pmatrix@} a & b \\ c & d \end@{pmatrix@}} format in
14137 @LaTeX{} mode; you may need to edit this afterwards to change to your
14138 preferred matrix form.  If you invoke @kbd{d T} or @kbd{d L} with an
14139 argument of 2 or -2, then matrices will be displayed in two-dimensional
14140 form, such as
14142 @example
14143 \begin@{pmatrix@}
14144 a & b \\
14145 c & d
14146 \end@{pmatrix@}
14147 @end example
14149 @noindent
14150 This may be convenient for isolated matrices, but could lead to
14151 expressions being displayed like
14153 @example
14154 \begin@{pmatrix@} \times x
14155 a & b \\
14156 c & d
14157 \end@{pmatrix@}
14158 @end example
14160 @noindent
14161 While this wouldn't bother Calc, it is incorrect @LaTeX{}.
14162 (Similarly for @TeX{}.)
14164 Accents like @code{\tilde} and @code{\bar} translate into function
14165 calls internally (@samp{tilde(x)}, @samp{bar(x)}).  The @code{\underline}
14166 sequence is treated as an accent.  The @code{\vec} accent corresponds
14167 to the function name @code{Vec}, because @code{vec} is the name of
14168 a built-in Calc function.  The following table shows the accents
14169 in Calc, @TeX{}, @LaTeX{} and @dfn{eqn} (described in the next section):
14171 @ignore
14172 @iftex
14173 @begingroup
14174 @let@calcindexershow=@calcindexernoshow  @c Suppress marginal notes
14175 @let@calcindexersh=@calcindexernoshow
14176 @end iftex
14177 @starindex
14178 @end ignore
14179 @tindex acute
14180 @ignore
14181 @starindex
14182 @end ignore
14183 @tindex Acute
14184 @ignore
14185 @starindex
14186 @end ignore
14187 @tindex bar
14188 @ignore
14189 @starindex
14190 @end ignore
14191 @tindex Bar
14192 @ignore
14193 @starindex
14194 @end ignore
14195 @tindex breve
14196 @ignore
14197 @starindex
14198 @end ignore
14199 @tindex Breve
14200 @ignore
14201 @starindex
14202 @end ignore
14203 @tindex check
14204 @ignore
14205 @starindex
14206 @end ignore
14207 @tindex Check
14208 @ignore
14209 @starindex
14210 @end ignore
14211 @tindex dddot
14212 @ignore
14213 @starindex
14214 @end ignore
14215 @tindex ddddot
14216 @ignore
14217 @starindex
14218 @end ignore
14219 @tindex dot
14220 @ignore
14221 @starindex
14222 @end ignore
14223 @tindex Dot
14224 @ignore
14225 @starindex
14226 @end ignore
14227 @tindex dotdot
14228 @ignore
14229 @starindex
14230 @end ignore
14231 @tindex DotDot
14232 @ignore
14233 @starindex
14234 @end ignore
14235 @tindex dyad
14236 @ignore
14237 @starindex
14238 @end ignore
14239 @tindex grave
14240 @ignore
14241 @starindex
14242 @end ignore
14243 @tindex Grave
14244 @ignore
14245 @starindex
14246 @end ignore
14247 @tindex hat
14248 @ignore
14249 @starindex
14250 @end ignore
14251 @tindex Hat
14252 @ignore
14253 @starindex
14254 @end ignore
14255 @tindex Prime
14256 @ignore
14257 @starindex
14258 @end ignore
14259 @tindex tilde
14260 @ignore
14261 @starindex
14262 @end ignore
14263 @tindex Tilde
14264 @ignore
14265 @starindex
14266 @end ignore
14267 @tindex under
14268 @ignore
14269 @starindex
14270 @end ignore
14271 @tindex Vec
14272 @ignore
14273 @starindex
14274 @end ignore
14275 @tindex VEC
14276 @ignore
14277 @iftex
14278 @endgroup
14279 @end iftex
14280 @end ignore
14281 @example
14282 Calc      TeX           LaTeX         eqn
14283 ----      ---           -----         ---
14284 acute     \acute        \acute
14285 Acute                   \Acute
14286 bar       \bar          \bar          bar
14287 Bar                     \Bar
14288 breve     \breve        \breve
14289 Breve                   \Breve
14290 check     \check        \check
14291 Check                   \Check
14292 dddot                   \dddot
14293 ddddot                  \ddddot
14294 dot       \dot          \dot          dot
14295 Dot                     \Dot
14296 dotdot    \ddot         \ddot         dotdot
14297 DotDot                  \Ddot
14298 dyad                                  dyad
14299 grave     \grave        \grave
14300 Grave                   \Grave
14301 hat       \hat          \hat          hat
14302 Hat                     \Hat
14303 Prime                                 prime
14304 tilde     \tilde        \tilde        tilde
14305 Tilde                   \Tilde
14306 under     \underline    \underline    under
14307 Vec       \vec          \vec          vec
14308 VEC                     \Vec
14309 @end example
14311 The @samp{=>} (evaluates-to) operator appears as a @code{\to} symbol:
14312 @samp{@{@var{a} \to @var{b}@}}.  @TeX{} defines @code{\to} as an
14313 alias for @code{\rightarrow}.  However, if the @samp{=>} is the
14314 top-level expression being formatted, a slightly different notation
14315 is used:  @samp{\evalto @var{a} \to @var{b}}.  The @code{\evalto}
14316 word is ignored by Calc's input routines, and is undefined in @TeX{}.
14317 You will typically want to include one of the following definitions
14318 at the top of a @TeX{} file that uses @code{\evalto}:
14320 @example
14321 \def\evalto@{@}
14322 \def\evalto#1\to@{@}
14323 @end example
14325 The first definition formats evaluates-to operators in the usual
14326 way.  The second causes only the @var{b} part to appear in the
14327 printed document; the @var{a} part and the arrow are hidden.
14328 Another definition you may wish to use is @samp{\let\to=\Rightarrow}
14329 which causes @code{\to} to appear more like Calc's @samp{=>} symbol.
14330 @xref{Evaluates-To Operator}, for a discussion of @code{evalto}.
14332 The complete set of @TeX{} control sequences that are ignored during
14333 reading is:
14335 @example
14336 \hbox  \mbox  \text  \left  \right
14337 \,  \>  \:  \;  \!  \quad  \qquad  \hfil  \hfill
14338 \displaystyle  \textstyle  \dsize  \tsize
14339 \scriptstyle  \scriptscriptstyle  \ssize  \ssize
14340 \rm  \bf  \it  \sl  \roman  \bold  \italic  \slanted
14341 \cal  \mit  \Cal  \Bbb  \frak  \goth
14342 \evalto
14343 @end example
14345 Note that, because these symbols are ignored, reading a @TeX{} or
14346 @LaTeX{} formula into Calc and writing it back out may lose spacing and
14347 font information.
14349 Also, the ``discretionary multiplication sign'' @samp{\*} is read
14350 the same as @samp{*}.
14352 @ifnottex
14353 The @TeX{} version of this manual includes some printed examples at the
14354 end of this section.
14355 @end ifnottex
14356 @iftex
14357 Here are some examples of how various Calc formulas are formatted in @TeX{}:
14359 @example
14360 @group
14361 sin(a^2 / b_i)
14362 \sin\left( {a^2 \over b_i} \right)
14363 @end group
14364 @end example
14365 @tex
14366 $$ \sin\left( a^2 \over b_i \right) $$
14367 @end tex
14368 @sp 1
14370 @example
14371 @group
14372 [(3, 4), 3:4, 3 +/- 4, [3 .. inf)]
14373 [3 + 4i, @{3 \over 4@}, 3 \pm 4, [3 \ldots \infty)]
14374 @end group
14375 @end example
14376 @tex
14377 $$ [3 + 4i, {3 \over 4}, 3 \pm 4, [ 3 \ldots \infty)] $$
14378 @end tex
14379 @sp 1
14381 @example
14382 @group
14383 [abs(a), abs(a / b), floor(a), ceil(a / b)]
14384 [|a|, \left| a \over b \right|,
14385  \lfloor a \rfloor, \left\lceil a \over b \right\rceil]
14386 @end group
14387 @end example
14388 @tex
14389 $$ [|a|, \left| a \over b \right|,
14390     \lfloor a \rfloor, \left\lceil a \over b \right\rceil] $$
14391 @end tex
14392 @sp 1
14394 @example
14395 @group
14396 [sin(a), sin(2 a), sin(2 + a), sin(a / b)]
14397 [\sin@{a@}, \sin@{2 a@}, \sin(2 + a),
14398  \sin\left( @{a \over b@} \right)]
14399 @end group
14400 @end example
14401 @tex
14402 $$ [\sin{a}, \sin{2 a}, \sin(2 + a), \sin\left( {a \over b} \right)] $$
14403 @end tex
14404 @sp 2
14406 First with plain @kbd{d T}, then with @kbd{C-u d T}, then finally with
14407 @kbd{C-u - d T} (using the example definition
14408 @samp{\def\foo#1@{\tilde F(#1)@}}:
14410 @example
14411 @group
14412 [f(a), foo(bar), sin(pi)]
14413 [f(a), foo(bar), \sin{\pi}]
14414 [f(a), \hbox@{foo@}(\hbox@{bar@}), \sin@{\pi@}]
14415 [f(a), \foo@{\hbox@{bar@}@}, \sin@{\pi@}]
14416 @end group
14417 @end example
14418 @tex
14419 $$ [f(a), foo(bar), \sin{\pi}] $$
14420 $$ [f(a), \hbox{foo}(\hbox{bar}), \sin{\pi}] $$
14421 $$ [f(a), \tilde F(\hbox{bar}), \sin{\pi}] $$
14422 @end tex
14423 @sp 2
14425 First with @samp{\def\evalto@{@}}, then with @samp{\def\evalto#1\to@{@}}:
14427 @example
14428 @group
14429 2 + 3 => 5
14430 \evalto 2 + 3 \to 5
14431 @end group
14432 @end example
14433 @tex
14434 $$ 2 + 3 \to 5 $$
14435 $$ 5 $$
14436 @end tex
14437 @sp 2
14439 First with standard @code{\to}, then with @samp{\let\to\Rightarrow}:
14441 @example
14442 @group
14443 [2 + 3 => 5, a / 2 => (b + c) / 2]
14444 [@{2 + 3 \to 5@}, @{@{a \over 2@} \to @{b + c \over 2@}@}]
14445 @end group
14446 @end example
14447 @tex
14448 $$ [{2 + 3 \to 5}, {{a \over 2} \to {b + c \over 2}}] $$
14449 {\let\to\Rightarrow
14450 $$ [{2 + 3 \to 5}, {{a \over 2} \to {b + c \over 2}}] $$}
14451 @end tex
14452 @sp 2
14454 Matrices normally, then changing @code{\matrix} to @code{\pmatrix}:
14456 @example
14457 @group
14458 [ [ a / b, 0 ], [ 0, 2^(x + 1) ] ]
14459 \matrix@{ @{a \over b@} & 0 \\ 0 & 2^@{(x + 1)@} @}
14460 \pmatrix@{ @{a \over b@} & 0 \\ 0 & 2^@{(x + 1)@} @}
14461 @end group
14462 @end example
14463 @tex
14464 $$ \matrix{ {a \over b} & 0 \cr 0 & 2^{(x + 1)} } $$
14465 $$ \pmatrix{ {a \over b} & 0 \cr 0 & 2^{(x + 1)} } $$
14466 @end tex
14467 @sp 2
14468 @end iftex
14470 @node Eqn Language Mode, Yacas Language Mode, TeX and LaTeX Language Modes, Language Modes
14471 @subsection Eqn Language Mode
14473 @noindent
14474 @kindex d E
14475 @pindex calc-eqn-language
14476 @dfn{Eqn} is another popular formatter for math formulas.  It is
14477 designed for use with the TROFF text formatter, and comes standard
14478 with many versions of Unix.  The @kbd{d E} (@code{calc-eqn-language})
14479 command selects @dfn{eqn} notation.
14481 The @dfn{eqn} language's main idiosyncrasy is that whitespace plays
14482 a significant part in the parsing of the language.  For example,
14483 @samp{sqrt x+1 + y} treats @samp{x+1} as the argument of the
14484 @code{sqrt} operator.  @dfn{Eqn} also understands more conventional
14485 grouping using curly braces:  @samp{sqrt@{x+1@} + y}.  Braces are
14486 required only when the argument contains spaces.
14488 In Calc's @dfn{eqn} mode, however, curly braces are required to
14489 delimit arguments of operators like @code{sqrt}.  The first of the
14490 above examples would treat only the @samp{x} as the argument of
14491 @code{sqrt}, and in fact @samp{sin x+1} would be interpreted as
14492 @samp{sin * x + 1}, because @code{sin} is not a special operator
14493 in the @dfn{eqn} language.  If you always surround the argument
14494 with curly braces, Calc will never misunderstand.
14496 Calc also understands parentheses as grouping characters.  Another
14497 peculiarity of @dfn{eqn}'s syntax makes it advisable to separate
14498 words with spaces from any surrounding characters that aren't curly
14499 braces, so Calc writes @samp{sin ( x + y )} in @dfn{eqn} mode.
14500 (The spaces around @code{sin} are important to make @dfn{eqn}
14501 recognize that @code{sin} should be typeset in a roman font, and
14502 the spaces around @code{x} and @code{y} are a good idea just in
14503 case the @dfn{eqn} document has defined special meanings for these
14504 names, too.)
14506 Powers and subscripts are written with the @code{sub} and @code{sup}
14507 operators, respectively.  Note that the caret symbol @samp{^} is
14508 treated the same as a space in @dfn{eqn} mode, as is the @samp{~}
14509 symbol (these are used to introduce spaces of various widths into
14510 the typeset output of @dfn{eqn}).
14512 As in @LaTeX{} mode, Calc's formatter omits parentheses around the
14513 arguments of functions like @code{ln} and @code{sin} if they are
14514 ``simple-looking''; in this case Calc surrounds the argument with
14515 braces, separated by a @samp{~} from the function name: @samp{sin~@{x@}}.
14517 Font change codes (like @samp{roman @var{x}}) and positioning codes
14518 (like @samp{~} and @samp{down @var{n} @var{x}}) are ignored by the
14519 @dfn{eqn} reader.  Also ignored are the words @code{left}, @code{right},
14520 @code{mark}, and @code{lineup}.  Quotation marks in @dfn{eqn} mode input
14521 are treated the same as curly braces: @samp{sqrt "1+x"} is equivalent to
14522 @samp{sqrt @{1+x@}}; this is only an approximation to the true meaning
14523 of quotes in @dfn{eqn}, but it is good enough for most uses.
14525 Accent codes (@samp{@var{x} dot}) are handled by treating them as
14526 function calls (@samp{dot(@var{x})}) internally.
14527 @xref{TeX and LaTeX Language Modes}, for a table of these accent
14528 functions.  The @code{prime} accent is treated specially if it occurs on
14529 a variable or function name: @samp{f prime prime @w{( x prime )}} is
14530 stored internally as @samp{f'@w{'}(x')}.  For example, taking the
14531 derivative of @samp{f(2 x)} with @kbd{a d x} will produce @samp{2 f'(2
14532 x)}, which @dfn{eqn} mode will display as @samp{2 f prime ( 2 x )}.
14534 Assignments are written with the @samp{<-} (left-arrow) symbol,
14535 and @code{evalto} operators are written with @samp{->} or
14536 @samp{evalto ... ->} (@pxref{TeX and LaTeX Language Modes}, for a discussion
14537 of this).  The regular Calc symbols @samp{:=} and @samp{=>} are also
14538 recognized for these operators during reading.
14540 Vectors in @dfn{eqn} mode use regular Calc square brackets, but
14541 matrices are formatted as @samp{matrix @{ ccol @{ a above b @} ... @}}.
14542 The words @code{lcol} and @code{rcol} are recognized as synonyms
14543 for @code{ccol} during input, and are generated instead of @code{ccol}
14544 if the matrix justification mode so specifies.
14546 @node Yacas Language Mode, Maxima Language Mode, Eqn Language Mode, Language Modes
14547 @subsection Yacas Language Mode
14549 @noindent
14550 @kindex d Y
14551 @pindex calc-yacas-language
14552 @cindex Yacas language
14553 The @kbd{d Y} (@code{calc-yacas-language}) command selects the
14554 conventions of Yacas, a free computer algebra system.  While the
14555 operators and functions in Yacas are similar to those of Calc, the names
14556 of built-in functions in Yacas are capitalized.  The Calc formula
14557 @samp{sin(2 x)}, for example, is entered and displayed @samp{Sin(2 x)}
14558 in Yacas mode,  and `@samp{arcsin(x^2)} is @samp{ArcSin(x^2)} in Yacas
14559 mode.  Complex numbers are written  are written @samp{3 + 4 I}.
14560 The standard special constants are written @code{Pi}, @code{E},
14561 @code{I}, @code{GoldenRatio} and @code{Gamma}.  @code{Infinity}
14562 represents both @code{inf} and @code{uinf}, and @code{Undefined}
14563 represents @code{nan}.
14565 Certain operators on functions, such as @code{D} for differentiation
14566 and @code{Integrate} for integration, take a prefix form in Yacas.  For
14567 example, the derivative of @w{@samp{e^x sin(x)}} can be computed with
14568 @w{@samp{D(x) Exp(x)*Sin(x)}}.
14570 Other notable differences between Yacas and standard Calc expressions
14571 are that vectors and matrices use curly braces in Yacas, and subscripts
14572 use square brackets.  If, for example, @samp{A} represents the list
14573 @samp{@{a,2,c,4@}}, then @samp{A[3]} would equal @samp{c}.
14576 @node Maxima Language Mode, Giac Language Mode, Yacas Language Mode, Language Modes
14577 @subsection Maxima Language Mode
14579 @noindent
14580 @kindex d X
14581 @pindex calc-maxima-language
14582 @cindex Maxima language
14583 The @kbd{d X} (@code{calc-maxima-language}) command selects the
14584 conventions of Maxima, another free computer algebra system.  The
14585 function names in Maxima are similar, but not always identical, to Calc.
14586 For example, instead of @samp{arcsin(x)}, Maxima will use
14587 @samp{asin(x)}.  Complex numbers are written @samp{3 + 4 %i}.  The
14588 standard special constants are written @code{%pi},  @code{%e},
14589 @code{%i}, @code{%phi} and @code{%gamma}.  In Maxima,  @code{inf} means
14590 the same as in Calc, but @code{infinity} represents Calc's @code{uinf}.
14592 Underscores as well as percent signs are allowed in function and
14593 variable names in Maxima mode.  The underscore again is equivalent to
14594 the @samp{#} in Normal mode, and the percent sign is equivalent to
14595 @samp{o'o}.
14597 Maxima uses square brackets for lists and vectors, and matrices are
14598 written as calls to the function @code{matrix}, given the row vectors of
14599 the matrix as arguments.  Square brackets are also used as subscripts.
14601 @node Giac Language Mode, Mathematica Language Mode, Maxima Language Mode, Language Modes
14602 @subsection Giac Language Mode
14604 @noindent
14605 @kindex d A
14606 @pindex calc-giac-language
14607 @cindex Giac language
14608 The @kbd{d A} (@code{calc-giac-language}) command selects the
14609 conventions of Giac, another free computer algebra system.  The function
14610 names in Giac are similar to Maxima.  Complex numbers are written
14611 @samp{3 + 4 i}.  The standard special constants in Giac are the same as
14612 in Calc, except that @code{infinity} represents both Calc's @code{inf}
14613 and @code{uinf}.
14615 Underscores are allowed in function and variable names in Giac mode.
14616 Brackets are used for subscripts.  In Giac, indexing of lists begins at
14617 0, instead of 1 as in Calc.  So if  @samp{A} represents the list
14618 @samp{[a,2,c,4]}, then @samp{A[2]} would equal @samp{c}.  In general,
14619 @samp{A[n]} in Giac mode corresponds to @samp{A_(n+1)} in Normal mode.
14621 The Giac interval notation @samp{2 .. 3} has no surrounding brackets;
14622 Calc reads @samp{2 .. 3} as the closed interval @samp{[2 .. 3]} and
14623 writes any kind of interval as @samp{2 .. 3}.  This means you cannot see
14624 the difference between an open and a closed interval while in Giac mode.
14626 @node Mathematica Language Mode, Maple Language Mode, Giac Language Mode, Language Modes
14627 @subsection Mathematica Language Mode
14629 @noindent
14630 @kindex d M
14631 @pindex calc-mathematica-language
14632 @cindex Mathematica language
14633 The @kbd{d M} (@code{calc-mathematica-language}) command selects the
14634 conventions of Mathematica.  Notable differences in Mathematica mode
14635 are that the names of built-in functions are capitalized, and function
14636 calls use square brackets instead of parentheses.  Thus the Calc
14637 formula @samp{sin(2 x)} is entered and displayed @w{@samp{Sin[2 x]}} in
14638 Mathematica mode.
14640 Vectors and matrices use curly braces in Mathematica.  Complex numbers
14641 are written @samp{3 + 4 I}.  The standard special constants in Calc are
14642 written @code{Pi}, @code{E}, @code{I}, @code{GoldenRatio}, @code{EulerGamma},
14643 @code{Infinity}, @code{ComplexInfinity}, and @code{Indeterminate} in
14644 Mathematica mode.
14645 Non-decimal numbers are written, e.g., @samp{16^^7fff}.  Floating-point
14646 numbers in scientific notation are written @samp{1.23*10.^3}.
14647 Subscripts use double square brackets: @samp{a[[i]]}.
14649 @node Maple Language Mode, Compositions, Mathematica Language Mode, Language Modes
14650 @subsection Maple Language Mode
14652 @noindent
14653 @kindex d W
14654 @pindex calc-maple-language
14655 @cindex Maple language
14656 The @kbd{d W} (@code{calc-maple-language}) command selects the
14657 conventions of Maple.
14659 Maple's language is much like C.  Underscores are allowed in symbol
14660 names; square brackets are used for subscripts; explicit @samp{*}s for
14661 multiplications are required.  Use either @samp{^} or @samp{**} to
14662 denote powers.
14664 Maple uses square brackets for lists and curly braces for sets.  Calc
14665 interprets both notations as vectors, and displays vectors with square
14666 brackets.  This means Maple sets will be converted to lists when they
14667 pass through Calc.  As a special case, matrices are written as calls
14668 to the function @code{matrix}, given a list of lists as the argument,
14669 and can be read in this form or with all-capitals @code{MATRIX}.
14671 The Maple interval notation @samp{2 .. 3} is like Giac's interval
14672 notation, and is handled the same by Calc.
14674 Maple writes complex numbers as @samp{3 + 4*I}.  Its special constants
14675 are @code{Pi}, @code{E}, @code{I}, and @code{infinity} (all three of
14676 @code{inf}, @code{uinf}, and @code{nan} display as @code{infinity}).
14677 Floating-point numbers are written @samp{1.23*10.^3}.
14679 Among things not currently handled by Calc's Maple mode are the
14680 various quote symbols, procedures and functional operators, and
14681 inert (@samp{&}) operators.
14683 @node Compositions, Syntax Tables, Maple Language Mode, Language Modes
14684 @subsection Compositions
14686 @noindent
14687 @cindex Compositions
14688 There are several @dfn{composition functions} which allow you to get
14689 displays in a variety of formats similar to those in Big language
14690 mode.  Most of these functions do not evaluate to anything; they are
14691 placeholders which are left in symbolic form by Calc's evaluator but
14692 are recognized by Calc's display formatting routines.
14694 Two of these, @code{string} and @code{bstring}, are described elsewhere.
14695 @xref{Strings}.  For example, @samp{string("ABC")} is displayed as
14696 @samp{ABC}.  When viewed on the stack it will be indistinguishable from
14697 the variable @code{ABC}, but internally it will be stored as
14698 @samp{string([65, 66, 67])} and can still be manipulated this way; for
14699 example, the selection and vector commands @kbd{j 1 v v j u} would
14700 select the vector portion of this object and reverse the elements, then
14701 deselect to reveal a string whose characters had been reversed.
14703 The composition functions do the same thing in all language modes
14704 (although their components will of course be formatted in the current
14705 language mode).  The one exception is Unformatted mode (@kbd{d U}),
14706 which does not give the composition functions any special treatment.
14707 The functions are discussed here because of their relationship to
14708 the language modes.
14710 @menu
14711 * Composition Basics::
14712 * Horizontal Compositions::
14713 * Vertical Compositions::
14714 * Other Compositions::
14715 * Information about Compositions::
14716 * User-Defined Compositions::
14717 @end menu
14719 @node Composition Basics, Horizontal Compositions, Compositions, Compositions
14720 @subsubsection Composition Basics
14722 @noindent
14723 Compositions are generally formed by stacking formulas together
14724 horizontally or vertically in various ways.  Those formulas are
14725 themselves compositions.  @TeX{} users will find this analogous
14726 to @TeX{}'s ``boxes.''  Each multi-line composition has a
14727 @dfn{baseline}; horizontal compositions use the baselines to
14728 decide how formulas should be positioned relative to one another.
14729 For example, in the Big mode formula
14731 @example
14732 @group
14733           2
14734      a + b
14735 17 + ------
14736        c
14737 @end group
14738 @end example
14740 @noindent
14741 the second term of the sum is four lines tall and has line three as
14742 its baseline.  Thus when the term is combined with 17, line three
14743 is placed on the same level as the baseline of 17.
14745 @tex
14746 \bigskip
14747 @end tex
14749 Another important composition concept is @dfn{precedence}.  This is
14750 an integer that represents the binding strength of various operators.
14751 For example, @samp{*} has higher precedence (195) than @samp{+} (180),
14752 which means that @samp{(a * b) + c} will be formatted without the
14753 parentheses, but @samp{a * (b + c)} will keep the parentheses.
14755 The operator table used by normal and Big language modes has the
14756 following precedences:
14758 @example
14759 _     1200    @r{(subscripts)}
14760 %     1100    @r{(as in n}%@r{)}
14761 !     1000    @r{(as in }!@r{n)}
14762 mod    400
14763 +/-    300
14764 !!     210    @r{(as in n}!!@r{)}
14765 !      210    @r{(as in n}!@r{)}
14766 ^      200
14767 -      197    @r{(as in }-@r{n)}
14768 *      195    @r{(or implicit multiplication)}
14769 / % \  190
14770 + -    180    @r{(as in a}+@r{b)}
14771 |      170
14772 < =    160    @r{(and other relations)}
14773 &&     110
14774 ||     100
14775 ? :     90
14776 !!!     85
14777 &&&     80
14778 |||     75
14779 :=      50
14780 ::      45
14781 =>      40
14782 @end example
14784 The general rule is that if an operator with precedence @expr{n}
14785 occurs as an argument to an operator with precedence @expr{m}, then
14786 the argument is enclosed in parentheses if @expr{n < m}.  Top-level
14787 expressions and expressions which are function arguments, vector
14788 components, etc., are formatted with precedence zero (so that they
14789 normally never get additional parentheses).
14791 For binary left-associative operators like @samp{+}, the righthand
14792 argument is actually formatted with one-higher precedence than shown
14793 in the table.  This makes sure @samp{(a + b) + c} omits the parentheses,
14794 but the unnatural form @samp{a + (b + c)} keeps its parentheses.
14795 Right-associative operators like @samp{^} format the lefthand argument
14796 with one-higher precedence.
14798 @ignore
14799 @starindex
14800 @end ignore
14801 @tindex cprec
14802 The @code{cprec} function formats an expression with an arbitrary
14803 precedence.  For example, @samp{cprec(abc, 185)} will combine into
14804 sums and products as follows:  @samp{7 + abc}, @samp{7 (abc)} (because
14805 this @code{cprec} form has higher precedence than addition, but lower
14806 precedence than multiplication).
14808 @tex
14809 \bigskip
14810 @end tex
14812 A final composition issue is @dfn{line breaking}.  Calc uses two
14813 different strategies for ``flat'' and ``non-flat'' compositions.
14814 A non-flat composition is anything that appears on multiple lines
14815 (not counting line breaking).  Examples would be matrices and Big
14816 mode powers and quotients.  Non-flat compositions are displayed
14817 exactly as specified.  If they come out wider than the current
14818 window, you must use horizontal scrolling (@kbd{<} and @kbd{>}) to
14819 view them.
14821 Flat compositions, on the other hand, will be broken across several
14822 lines if they are too wide to fit the window.  Certain points in a
14823 composition are noted internally as @dfn{break points}.  Calc's
14824 general strategy is to fill each line as much as possible, then to
14825 move down to the next line starting at the first break point that
14826 didn't fit.  However, the line breaker understands the hierarchical
14827 structure of formulas.  It will not break an ``inner'' formula if
14828 it can use an earlier break point from an ``outer'' formula instead.
14829 For example, a vector of sums might be formatted as:
14831 @example
14832 @group
14833 [ a + b + c, d + e + f,
14834   g + h + i, j + k + l, m ]
14835 @end group
14836 @end example
14838 @noindent
14839 If the @samp{m} can fit, then so, it seems, could the @samp{g}.
14840 But Calc prefers to break at the comma since the comma is part
14841 of a ``more outer'' formula.  Calc would break at a plus sign
14842 only if it had to, say, if the very first sum in the vector had
14843 itself been too large to fit.
14845 Of the composition functions described below, only @code{choriz}
14846 generates break points.  The @code{bstring} function (@pxref{Strings})
14847 also generates breakable items:  A break point is added after every
14848 space (or group of spaces) except for spaces at the very beginning or
14849 end of the string.
14851 Composition functions themselves count as levels in the formula
14852 hierarchy, so a @code{choriz} that is a component of a larger
14853 @code{choriz} will be less likely to be broken.  As a special case,
14854 if a @code{bstring} occurs as a component of a @code{choriz} or
14855 @code{choriz}-like object (such as a vector or a list of arguments
14856 in a function call), then the break points in that @code{bstring}
14857 will be on the same level as the break points of the surrounding
14858 object.
14860 @node Horizontal Compositions, Vertical Compositions, Composition Basics, Compositions
14861 @subsubsection Horizontal Compositions
14863 @noindent
14864 @ignore
14865 @starindex
14866 @end ignore
14867 @tindex choriz
14868 The @code{choriz} function takes a vector of objects and composes
14869 them horizontally.  For example, @samp{choriz([17, a b/c, d])} formats
14870 as @w{@samp{17a b / cd}} in Normal language mode, or as
14872 @example
14873 @group
14874   a b
14875 17---d
14876    c
14877 @end group
14878 @end example
14880 @noindent
14881 in Big language mode.  This is actually one case of the general
14882 function @samp{choriz(@var{vec}, @var{sep}, @var{prec})}, where
14883 either or both of @var{sep} and @var{prec} may be omitted.
14884 @var{Prec} gives the @dfn{precedence} to use when formatting
14885 each of the components of @var{vec}.  The default precedence is
14886 the precedence from the surrounding environment.
14888 @var{Sep} is a string (i.e., a vector of character codes as might
14889 be entered with @code{" "} notation) which should separate components
14890 of the composition.  Also, if @var{sep} is given, the line breaker
14891 will allow lines to be broken after each occurrence of @var{sep}.
14892 If @var{sep} is omitted, the composition will not be breakable
14893 (unless any of its component compositions are breakable).
14895 For example, @samp{2 choriz([a, b c, d = e], " + ", 180)} is
14896 formatted as @samp{2 a + b c + (d = e)}.  To get the @code{choriz}
14897 to have precedence 180 ``outwards'' as well as ``inwards,''
14898 enclose it in a @code{cprec} form:  @samp{2 cprec(choriz(...), 180)}
14899 formats as @samp{2 (a + b c + (d = e))}.
14901 The baseline of a horizontal composition is the same as the
14902 baselines of the component compositions, which are all aligned.
14904 @node Vertical Compositions, Other Compositions, Horizontal Compositions, Compositions
14905 @subsubsection Vertical Compositions
14907 @noindent
14908 @ignore
14909 @starindex
14910 @end ignore
14911 @tindex cvert
14912 The @code{cvert} function makes a vertical composition.  Each
14913 component of the vector is centered in a column.  The baseline of
14914 the result is by default the top line of the resulting composition.
14915 For example, @samp{f(cvert([a, bb, ccc]), cvert([a^2 + 1, b^2]))}
14916 formats in Big mode as
14918 @example
14919 @group
14920 f( a ,  2    )
14921   bb   a  + 1
14922   ccc     2
14923          b
14924 @end group
14925 @end example
14927 @ignore
14928 @starindex
14929 @end ignore
14930 @tindex cbase
14931 There are several special composition functions that work only as
14932 components of a vertical composition.  The @code{cbase} function
14933 controls the baseline of the vertical composition; the baseline
14934 will be the same as the baseline of whatever component is enclosed
14935 in @code{cbase}.  Thus @samp{f(cvert([a, cbase(bb), ccc]),
14936 cvert([a^2 + 1, cbase(b^2)]))} displays as
14938 @example
14939 @group
14940         2
14941        a  + 1
14942    a      2
14943 f(bb ,   b   )
14944   ccc
14945 @end group
14946 @end example
14948 @ignore
14949 @starindex
14950 @end ignore
14951 @tindex ctbase
14952 @ignore
14953 @starindex
14954 @end ignore
14955 @tindex cbbase
14956 There are also @code{ctbase} and @code{cbbase} functions which
14957 make the baseline of the vertical composition equal to the top
14958 or bottom line (rather than the baseline) of that component.
14959 Thus @samp{cvert([cbase(a / b)]) + cvert([ctbase(a / b)]) +
14960 cvert([cbbase(a / b)])} gives
14962 @example
14963 @group
14964         a
14965 a       -
14966 - + a + b
14967 b   -
14968     b
14969 @end group
14970 @end example
14972 There should be only one @code{cbase}, @code{ctbase}, or @code{cbbase}
14973 function in a given vertical composition.  These functions can also
14974 be written with no arguments:  @samp{ctbase()} is a zero-height object
14975 which means the baseline is the top line of the following item, and
14976 @samp{cbbase()} means the baseline is the bottom line of the preceding
14977 item.
14979 @ignore
14980 @starindex
14981 @end ignore
14982 @tindex crule
14983 The @code{crule} function builds a ``rule,'' or horizontal line,
14984 across a vertical composition.  By itself @samp{crule()} uses @samp{-}
14985 characters to build the rule.  You can specify any other character,
14986 e.g., @samp{crule("=")}.  The argument must be a character code or
14987 vector of exactly one character code.  It is repeated to match the
14988 width of the widest item in the stack.  For example, a quotient
14989 with a thick line is @samp{cvert([a + 1, cbase(crule("=")), b^2])}:
14991 @example
14992 @group
14993 a + 1
14994 =====
14995   2
14997 @end group
14998 @end example
15000 @ignore
15001 @starindex
15002 @end ignore
15003 @tindex clvert
15004 @ignore
15005 @starindex
15006 @end ignore
15007 @tindex crvert
15008 Finally, the functions @code{clvert} and @code{crvert} act exactly
15009 like @code{cvert} except that the items are left- or right-justified
15010 in the stack.  Thus @samp{clvert([a, bb, ccc]) + crvert([a, bb, ccc])}
15011 gives:
15013 @example
15014 @group
15015 a   +   a
15016 bb     bb
15017 ccc   ccc
15018 @end group
15019 @end example
15021 Like @code{choriz}, the vertical compositions accept a second argument
15022 which gives the precedence to use when formatting the components.
15023 Vertical compositions do not support separator strings.
15025 @node Other Compositions, Information about Compositions, Vertical Compositions, Compositions
15026 @subsubsection Other Compositions
15028 @noindent
15029 @ignore
15030 @starindex
15031 @end ignore
15032 @tindex csup
15033 The @code{csup} function builds a superscripted expression.  For
15034 example, @samp{csup(a, b)} looks the same as @samp{a^b} does in Big
15035 language mode.  This is essentially a horizontal composition of
15036 @samp{a} and @samp{b}, where @samp{b} is shifted up so that its
15037 bottom line is one above the baseline.
15039 @ignore
15040 @starindex
15041 @end ignore
15042 @tindex csub
15043 Likewise, the @code{csub} function builds a subscripted expression.
15044 This shifts @samp{b} down so that its top line is one below the
15045 bottom line of @samp{a} (note that this is not quite analogous to
15046 @code{csup}).  Other arrangements can be obtained by using
15047 @code{choriz} and @code{cvert} directly.
15049 @ignore
15050 @starindex
15051 @end ignore
15052 @tindex cflat
15053 The @code{cflat} function formats its argument in ``flat'' mode,
15054 as obtained by @samp{d O}, if the current language mode is normal
15055 or Big.  It has no effect in other language modes.  For example,
15056 @samp{a^(b/c)} is formatted by Big mode like @samp{csup(a, cflat(b/c))}
15057 to improve its readability.
15059 @ignore
15060 @starindex
15061 @end ignore
15062 @tindex cspace
15063 The @code{cspace} function creates horizontal space.  For example,
15064 @samp{cspace(4)} is effectively the same as @samp{string("    ")}.
15065 A second string (i.e., vector of characters) argument is repeated
15066 instead of the space character.  For example, @samp{cspace(4, "ab")}
15067 looks like @samp{abababab}.  If the second argument is not a string,
15068 it is formatted in the normal way and then several copies of that
15069 are composed together:  @samp{cspace(4, a^2)} yields
15071 @example
15072 @group
15073  2 2 2 2
15074 a a a a
15075 @end group
15076 @end example
15078 @noindent
15079 If the number argument is zero, this is a zero-width object.
15081 @ignore
15082 @starindex
15083 @end ignore
15084 @tindex cvspace
15085 The @code{cvspace} function creates vertical space, or a vertical
15086 stack of copies of a certain string or formatted object.  The
15087 baseline is the center line of the resulting stack.  A numerical
15088 argument of zero will produce an object which contributes zero
15089 height if used in a vertical composition.
15091 @ignore
15092 @starindex
15093 @end ignore
15094 @tindex ctspace
15095 @ignore
15096 @starindex
15097 @end ignore
15098 @tindex cbspace
15099 There are also @code{ctspace} and @code{cbspace} functions which
15100 create vertical space with the baseline the same as the baseline
15101 of the top or bottom copy, respectively, of the second argument.
15102 Thus @samp{cvspace(2, a/b) + ctspace(2, a/b) + cbspace(2, a/b)}
15103 displays as:
15105 @example
15106 @group
15107         a
15108         -
15109 a       b
15110 -   a   a
15111 b + - + -
15112 a   b   b
15113 -   a
15114 b   -
15115     b
15116 @end group
15117 @end example
15119 @node Information about Compositions, User-Defined Compositions, Other Compositions, Compositions
15120 @subsubsection Information about Compositions
15122 @noindent
15123 The functions in this section are actual functions; they compose their
15124 arguments according to the current language and other display modes,
15125 then return a certain measurement of the composition as an integer.
15127 @ignore
15128 @starindex
15129 @end ignore
15130 @tindex cwidth
15131 The @code{cwidth} function measures the width, in characters, of a
15132 composition.  For example, @samp{cwidth(a + b)} is 5, and
15133 @samp{cwidth(a / b)} is 5 in Normal mode, 1 in Big mode, and 11 in
15134 @TeX{} mode (for @samp{@{a \over b@}}).  The argument may involve
15135 the composition functions described in this section.
15137 @ignore
15138 @starindex
15139 @end ignore
15140 @tindex cheight
15141 The @code{cheight} function measures the height of a composition.
15142 This is the total number of lines in the argument's printed form.
15144 @ignore
15145 @starindex
15146 @end ignore
15147 @tindex cascent
15148 @ignore
15149 @starindex
15150 @end ignore
15151 @tindex cdescent
15152 The functions @code{cascent} and @code{cdescent} measure the amount
15153 of the height that is above (and including) the baseline, or below
15154 the baseline, respectively.  Thus @samp{cascent(@var{x}) + cdescent(@var{x})}
15155 always equals @samp{cheight(@var{x})}.  For a one-line formula like
15156 @samp{a + b}, @code{cascent} returns 1 and @code{cdescent} returns 0.
15157 For @samp{a / b} in Big mode, @code{cascent} returns 2 and @code{cdescent}
15158 returns 1.  The only formula for which @code{cascent} will return zero
15159 is @samp{cvspace(0)} or equivalents.
15161 @node User-Defined Compositions,  , Information about Compositions, Compositions
15162 @subsubsection User-Defined Compositions
15164 @noindent
15165 @kindex Z C
15166 @pindex calc-user-define-composition
15167 The @kbd{Z C} (@code{calc-user-define-composition}) command lets you
15168 define the display format for any algebraic function.  You provide a
15169 formula containing a certain number of argument variables on the stack.
15170 Any time Calc formats a call to the specified function in the current
15171 language mode and with that number of arguments, Calc effectively
15172 replaces the function call with that formula with the arguments
15173 replaced.
15175 Calc builds the default argument list by sorting all the variable names
15176 that appear in the formula into alphabetical order.  You can edit this
15177 argument list before pressing @key{RET} if you wish.  Any variables in
15178 the formula that do not appear in the argument list will be displayed
15179 literally; any arguments that do not appear in the formula will not
15180 affect the display at all.
15182 You can define formats for built-in functions, for functions you have
15183 defined with @kbd{Z F} (@pxref{Algebraic Definitions}), or for functions
15184 which have no definitions but are being used as purely syntactic objects.
15185 You can define different formats for each language mode, and for each
15186 number of arguments, using a succession of @kbd{Z C} commands.  When
15187 Calc formats a function call, it first searches for a format defined
15188 for the current language mode (and number of arguments); if there is
15189 none, it uses the format defined for the Normal language mode.  If
15190 neither format exists, Calc uses its built-in standard format for that
15191 function (usually just @samp{@var{func}(@var{args})}).
15193 If you execute @kbd{Z C} with the number 0 on the stack instead of a
15194 formula, any defined formats for the function in the current language
15195 mode will be removed.  The function will revert to its standard format.
15197 For example, the default format for the binomial coefficient function
15198 @samp{choose(n, m)} in the Big language mode is
15200 @example
15201 @group
15203 ( )
15205 @end group
15206 @end example
15208 @noindent
15209 You might prefer the notation,
15211 @example
15212 @group
15214 n m
15215 @end group
15216 @end example
15218 @noindent
15219 To define this notation, first make sure you are in Big mode,
15220 then put the formula
15222 @smallexample
15223 choriz([cvert([cvspace(1), n]), C, cvert([cvspace(1), m])])
15224 @end smallexample
15226 @noindent
15227 on the stack and type @kbd{Z C}.  Answer the first prompt with
15228 @code{choose}.  The second prompt will be the default argument list
15229 of @samp{(C m n)}.  Edit this list to be @samp{(n m)} and press
15230 @key{RET}.  Now, try it out:  For example, turn simplification
15231 off with @kbd{m O} and enter @samp{choose(a,b) + choose(7,3)}
15232 as an algebraic entry.
15234 @example
15235 @group
15236  C  +  C
15237 a b   7 3
15238 @end group
15239 @end example
15241 As another example, let's define the usual notation for Stirling
15242 numbers of the first kind, @samp{stir1(n, m)}.  This is just like
15243 the regular format for binomial coefficients but with square brackets
15244 instead of parentheses.
15246 @smallexample
15247 choriz([string("["), cvert([n, cbase(cvspace(1)), m]), string("]")])
15248 @end smallexample
15250 Now type @kbd{Z C stir1 @key{RET}}, edit the argument list to
15251 @samp{(n m)}, and type @key{RET}.
15253 The formula provided to @kbd{Z C} usually will involve composition
15254 functions, but it doesn't have to.  Putting the formula @samp{a + b + c}
15255 onto the stack and typing @kbd{Z C foo @key{RET} @key{RET}} would define
15256 the function @samp{foo(x,y,z)} to display like @samp{x + y + z}.
15257 This ``sum'' will act exactly like a real sum for all formatting
15258 purposes (it will be parenthesized the same, and so on).  However
15259 it will be computationally unrelated to a sum.  For example, the
15260 formula @samp{2 * foo(1, 2, 3)} will display as @samp{2 (1 + 2 + 3)}.
15261 Operator precedences have caused the ``sum'' to be written in
15262 parentheses, but the arguments have not actually been summed.
15263 (Generally a display format like this would be undesirable, since
15264 it can easily be confused with a real sum.)
15266 The special function @code{eval} can be used inside a @kbd{Z C}
15267 composition formula to cause all or part of the formula to be
15268 evaluated at display time.  For example, if the formula is
15269 @samp{a + eval(b + c)}, then @samp{foo(1, 2, 3)} will be displayed
15270 as @samp{1 + 5}.  Evaluation will use the default simplifications,
15271 regardless of the current simplification mode.  There are also
15272 @code{evalsimp} and @code{evalextsimp} which simplify as if by
15273 @kbd{a s} and @kbd{a e} (respectively).  Note that these ``functions''
15274 operate only in the context of composition formulas (and also in
15275 rewrite rules, where they serve a similar purpose; @pxref{Rewrite
15276 Rules}).  On the stack, a call to @code{eval} will be left in
15277 symbolic form.
15279 It is not a good idea to use @code{eval} except as a last resort.
15280 It can cause the display of formulas to be extremely slow.  For
15281 example, while @samp{eval(a + b)} might seem quite fast and simple,
15282 there are several situations where it could be slow.  For example,
15283 @samp{a} and/or @samp{b} could be polar complex numbers, in which
15284 case doing the sum requires trigonometry.  Or, @samp{a} could be
15285 the factorial @samp{fact(100)} which is unevaluated because you
15286 have typed @kbd{m O}; @code{eval} will evaluate it anyway to
15287 produce a large, unwieldy integer.
15289 You can save your display formats permanently using the @kbd{Z P}
15290 command (@pxref{Creating User Keys}).
15292 @node Syntax Tables,  , Compositions, Language Modes
15293 @subsection Syntax Tables
15295 @noindent
15296 @cindex Syntax tables
15297 @cindex Parsing formulas, customized
15298 Syntax tables do for input what compositions do for output:  They
15299 allow you to teach custom notations to Calc's formula parser.
15300 Calc keeps a separate syntax table for each language mode.
15302 (Note that the Calc ``syntax tables'' discussed here are completely
15303 unrelated to the syntax tables described in the Emacs manual.)
15305 @kindex Z S
15306 @pindex calc-edit-user-syntax
15307 The @kbd{Z S} (@code{calc-edit-user-syntax}) command edits the
15308 syntax table for the current language mode.  If you want your
15309 syntax to work in any language, define it in the Normal language
15310 mode.  Type @kbd{C-c C-c} to finish editing the syntax table, or
15311 @kbd{C-x k} to cancel the edit.  The @kbd{m m} command saves all
15312 the syntax tables along with the other mode settings;
15313 @pxref{General Mode Commands}.
15315 @menu
15316 * Syntax Table Basics::
15317 * Precedence in Syntax Tables::
15318 * Advanced Syntax Patterns::
15319 * Conditional Syntax Rules::
15320 @end menu
15322 @node Syntax Table Basics, Precedence in Syntax Tables, Syntax Tables, Syntax Tables
15323 @subsubsection Syntax Table Basics
15325 @noindent
15326 @dfn{Parsing} is the process of converting a raw string of characters,
15327 such as you would type in during algebraic entry, into a Calc formula.
15328 Calc's parser works in two stages.  First, the input is broken down
15329 into @dfn{tokens}, such as words, numbers, and punctuation symbols
15330 like @samp{+}, @samp{:=}, and @samp{+/-}.  Space between tokens is
15331 ignored (except when it serves to separate adjacent words).  Next,
15332 the parser matches this string of tokens against various built-in
15333 syntactic patterns, such as ``an expression followed by @samp{+}
15334 followed by another expression'' or ``a name followed by @samp{(},
15335 zero or more expressions separated by commas, and @samp{)}.''
15337 A @dfn{syntax table} is a list of user-defined @dfn{syntax rules},
15338 which allow you to specify new patterns to define your own
15339 favorite input notations.  Calc's parser always checks the syntax
15340 table for the current language mode, then the table for the Normal
15341 language mode, before it uses its built-in rules to parse an
15342 algebraic formula you have entered.  Each syntax rule should go on
15343 its own line; it consists of a @dfn{pattern}, a @samp{:=} symbol,
15344 and a Calc formula with an optional @dfn{condition}.  (Syntax rules
15345 resemble algebraic rewrite rules, but the notation for patterns is
15346 completely different.)
15348 A syntax pattern is a list of tokens, separated by spaces.
15349 Except for a few special symbols, tokens in syntax patterns are
15350 matched literally, from left to right.  For example, the rule,
15352 @example
15353 foo ( ) := 2+3
15354 @end example
15356 @noindent
15357 would cause Calc to parse the formula @samp{4+foo()*5} as if it
15358 were @samp{4+(2+3)*5}.  Notice that the parentheses were written
15359 as two separate tokens in the rule.  As a result, the rule works
15360 for both @samp{foo()} and @w{@samp{foo (  )}}.  If we had written
15361 the rule as @samp{foo () := 2+3}, then Calc would treat @samp{()}
15362 as a single, indivisible token, so that @w{@samp{foo( )}} would
15363 not be recognized by the rule.  (It would be parsed as a regular
15364 zero-argument function call instead.)  In fact, this rule would
15365 also make trouble for the rest of Calc's parser:  An unrelated
15366 formula like @samp{bar()} would now be tokenized into @samp{bar ()}
15367 instead of @samp{bar ( )}, so that the standard parser for function
15368 calls would no longer recognize it!
15370 While it is possible to make a token with a mixture of letters
15371 and punctuation symbols, this is not recommended.  It is better to
15372 break it into several tokens, as we did with @samp{foo()} above.
15374 The symbol @samp{#} in a syntax pattern matches any Calc expression.
15375 On the righthand side, the things that matched the @samp{#}s can
15376 be referred to as @samp{#1}, @samp{#2}, and so on (where @samp{#1}
15377 matches the leftmost @samp{#} in the pattern).  For example, these
15378 rules match a user-defined function, prefix operator, infix operator,
15379 and postfix operator, respectively:
15381 @example
15382 foo ( # ) := myfunc(#1)
15383 foo # := myprefix(#1)
15384 # foo # := myinfix(#1,#2)
15385 # foo := mypostfix(#1)
15386 @end example
15388 Thus @samp{foo(3)} will parse as @samp{myfunc(3)}, and @samp{2+3 foo}
15389 will parse as @samp{mypostfix(2+3)}.
15391 It is important to write the first two rules in the order shown,
15392 because Calc tries rules in order from first to last.  If the
15393 pattern @samp{foo #} came first, it would match anything that could
15394 match the @samp{foo ( # )} rule, since an expression in parentheses
15395 is itself a valid expression.  Thus the @w{@samp{foo ( # )}} rule would
15396 never get to match anything.  Likewise, the last two rules must be
15397 written in the order shown or else @samp{3 foo 4} will be parsed as
15398 @samp{mypostfix(3) * 4}.  (Of course, the best way to avoid these
15399 ambiguities is not to use the same symbol in more than one way at
15400 the same time!  In case you're not convinced, try the following
15401 exercise:  How will the above rules parse the input @samp{foo(3,4)},
15402 if at all?  Work it out for yourself, then try it in Calc and see.)
15404 Calc is quite flexible about what sorts of patterns are allowed.
15405 The only rule is that every pattern must begin with a literal
15406 token (like @samp{foo} in the first two patterns above), or with
15407 a @samp{#} followed by a literal token (as in the last two
15408 patterns).  After that, any mixture is allowed, although putting
15409 two @samp{#}s in a row will not be very useful since two
15410 expressions with nothing between them will be parsed as one
15411 expression that uses implicit multiplication.
15413 As a more practical example, Maple uses the notation
15414 @samp{sum(a(i), i=1..10)} for sums, which Calc's Maple mode doesn't
15415 recognize at present.  To handle this syntax, we simply add the
15416 rule,
15418 @example
15419 sum ( # , # = # .. # ) := sum(#1,#2,#3,#4)
15420 @end example
15422 @noindent
15423 to the Maple mode syntax table.  As another example, C mode can't
15424 read assignment operators like @samp{++} and @samp{*=}.  We can
15425 define these operators quite easily:
15427 @example
15428 # *= # := muleq(#1,#2)
15429 # ++ := postinc(#1)
15430 ++ # := preinc(#1)
15431 @end example
15433 @noindent
15434 To complete the job, we would use corresponding composition functions
15435 and @kbd{Z C} to cause these functions to display in their respective
15436 Maple and C notations.  (Note that the C example ignores issues of
15437 operator precedence, which are discussed in the next section.)
15439 You can enclose any token in quotes to prevent its usual
15440 interpretation in syntax patterns:
15442 @example
15443 # ":=" # := becomes(#1,#2)
15444 @end example
15446 Quotes also allow you to include spaces in a token, although once
15447 again it is generally better to use two tokens than one token with
15448 an embedded space.  To include an actual quotation mark in a quoted
15449 token, precede it with a backslash.  (This also works to include
15450 backslashes in tokens.)
15452 @example
15453 # "bad token" # "/\"\\" # := silly(#1,#2,#3)
15454 @end example
15456 @noindent
15457 This will parse @samp{3 bad token 4 /"\ 5} to @samp{silly(3,4,5)}.
15459 The token @kbd{#} has a predefined meaning in Calc's formula parser;
15460 it is not valid to use @samp{"#"} in a syntax rule.  However, longer
15461 tokens that include the @samp{#} character are allowed.  Also, while
15462 @samp{"$"} and @samp{"\""} are allowed as tokens, their presence in
15463 the syntax table will prevent those characters from working in their
15464 usual ways (referring to stack entries and quoting strings,
15465 respectively).
15467 Finally, the notation @samp{%%} anywhere in a syntax table causes
15468 the rest of the line to be ignored as a comment.
15470 @node Precedence in Syntax Tables, Advanced Syntax Patterns, Syntax Table Basics, Syntax Tables
15471 @subsubsection Precedence
15473 @noindent
15474 Different operators are generally assigned different @dfn{precedences}.
15475 By default, an operator defined by a rule like
15477 @example
15478 # foo # := foo(#1,#2)
15479 @end example
15481 @noindent
15482 will have an extremely low precedence, so that @samp{2*3+4 foo 5 == 6}
15483 will be parsed as @samp{(2*3+4) foo (5 == 6)}.  To change the
15484 precedence of an operator, use the notation @samp{#/@var{p}} in
15485 place of @samp{#}, where @var{p} is an integer precedence level.
15486 For example, 185 lies between the precedences for @samp{+} and
15487 @samp{*}, so if we change this rule to
15489 @example
15490 #/185 foo #/186 := foo(#1,#2)
15491 @end example
15493 @noindent
15494 then @samp{2+3 foo 4*5} will be parsed as @samp{2+(3 foo (4*5))}.
15495 Also, because we've given the righthand expression slightly higher
15496 precedence, our new operator will be left-associative:
15497 @samp{1 foo 2 foo 3} will be parsed as @samp{(1 foo 2) foo 3}.
15498 By raising the precedence of the lefthand expression instead, we
15499 can create a right-associative operator.
15501 @xref{Composition Basics}, for a table of precedences of the
15502 standard Calc operators.  For the precedences of operators in other
15503 language modes, look in the Calc source file @file{calc-lang.el}.
15505 @node Advanced Syntax Patterns, Conditional Syntax Rules, Precedence in Syntax Tables, Syntax Tables
15506 @subsubsection Advanced Syntax Patterns
15508 @noindent
15509 To match a function with a variable number of arguments, you could
15510 write
15512 @example
15513 foo ( # ) := myfunc(#1)
15514 foo ( # , # ) := myfunc(#1,#2)
15515 foo ( # , # , # ) := myfunc(#1,#2,#3)
15516 @end example
15518 @noindent
15519 but this isn't very elegant.  To match variable numbers of items,
15520 Calc uses some notations inspired regular expressions and the
15521 ``extended BNF'' style used by some language designers.
15523 @example
15524 foo ( @{ # @}*, ) := apply(myfunc,#1)
15525 @end example
15527 The token @samp{@{} introduces a repeated or optional portion.
15528 One of the three tokens @samp{@}*}, @samp{@}+}, or @samp{@}?}
15529 ends the portion.  These will match zero or more, one or more,
15530 or zero or one copies of the enclosed pattern, respectively.
15531 In addition, @samp{@}*} and @samp{@}+} can be followed by a
15532 separator token (with no space in between, as shown above).
15533 Thus @samp{@{ # @}*,} matches nothing, or one expression, or
15534 several expressions separated by commas.
15536 A complete @samp{@{ ... @}} item matches as a vector of the
15537 items that matched inside it.  For example, the above rule will
15538 match @samp{foo(1,2,3)} to get @samp{apply(myfunc,[1,2,3])}.
15539 The Calc @code{apply} function takes a function name and a vector
15540 of arguments and builds a call to the function with those
15541 arguments, so the net result is the formula @samp{myfunc(1,2,3)}.
15543 If the body of a @samp{@{ ... @}} contains several @samp{#}s
15544 (or nested @samp{@{ ... @}} constructs), then the items will be
15545 strung together into the resulting vector.  If the body
15546 does not contain anything but literal tokens, the result will
15547 always be an empty vector.
15549 @example
15550 foo ( @{ # , # @}+, ) := bar(#1)
15551 foo ( @{ @{ # @}*, @}*; ) := matrix(#1)
15552 @end example
15554 @noindent
15555 will parse @samp{foo(1, 2, 3, 4)} as @samp{bar([1, 2, 3, 4])}, and
15556 @samp{foo(1, 2; 3, 4)} as @samp{matrix([[1, 2], [3, 4]])}.  Also, after
15557 some thought it's easy to see how this pair of rules will parse
15558 @samp{foo(1, 2, 3)} as @samp{matrix([[1, 2, 3]])}, since the first
15559 rule will only match an even number of arguments.  The rule
15561 @example
15562 foo ( # @{ , # , # @}? ) := bar(#1,#2)
15563 @end example
15565 @noindent
15566 will parse @samp{foo(2,3,4)} as @samp{bar(2,[3,4])}, and
15567 @samp{foo(2)} as @samp{bar(2,[])}.
15569 The notation @samp{@{ ... @}?.} (note the trailing period) works
15570 just the same as regular @samp{@{ ... @}?}, except that it does not
15571 count as an argument; the following two rules are equivalent:
15573 @example
15574 foo ( # , @{ also @}? # ) := bar(#1,#3)
15575 foo ( # , @{ also @}?. # ) := bar(#1,#2)
15576 @end example
15578 @noindent
15579 Note that in the first case the optional text counts as @samp{#2},
15580 which will always be an empty vector, but in the second case no
15581 empty vector is produced.
15583 Another variant is @samp{@{ ... @}?$}, which means the body is
15584 optional only at the end of the input formula.  All built-in syntax
15585 rules in Calc use this for closing delimiters, so that during
15586 algebraic entry you can type @kbd{[sqrt(2), sqrt(3 @key{RET}}, omitting
15587 the closing parenthesis and bracket.  Calc does this automatically
15588 for trailing @samp{)}, @samp{]}, and @samp{>} tokens in syntax
15589 rules, but you can use @samp{@{ ... @}?$} explicitly to get
15590 this effect with any token (such as @samp{"@}"} or @samp{end}).
15591 Like @samp{@{ ... @}?.}, this notation does not count as an
15592 argument.  Conversely, you can use quotes, as in @samp{")"}, to
15593 prevent a closing-delimiter token from being automatically treated
15594 as optional.
15596 Calc's parser does not have full backtracking, which means some
15597 patterns will not work as you might expect:
15599 @example
15600 foo ( @{ # , @}? # , # ) := bar(#1,#2,#3)
15601 @end example
15603 @noindent
15604 Here we are trying to make the first argument optional, so that
15605 @samp{foo(2,3)} parses as @samp{bar([],2,3)}.  Unfortunately, Calc
15606 first tries to match @samp{2,} against the optional part of the
15607 pattern, finds a match, and so goes ahead to match the rest of the
15608 pattern.  Later on it will fail to match the second comma, but it
15609 doesn't know how to go back and try the other alternative at that
15610 point.  One way to get around this would be to use two rules:
15612 @example
15613 foo ( # , # , # ) := bar([#1],#2,#3)
15614 foo ( # , # ) := bar([],#1,#2)
15615 @end example
15617 More precisely, when Calc wants to match an optional or repeated
15618 part of a pattern, it scans forward attempting to match that part.
15619 If it reaches the end of the optional part without failing, it
15620 ``finalizes'' its choice and proceeds.  If it fails, though, it
15621 backs up and tries the other alternative.  Thus Calc has ``partial''
15622 backtracking.  A fully backtracking parser would go on to make sure
15623 the rest of the pattern matched before finalizing the choice.
15625 @node Conditional Syntax Rules,  , Advanced Syntax Patterns, Syntax Tables
15626 @subsubsection Conditional Syntax Rules
15628 @noindent
15629 It is possible to attach a @dfn{condition} to a syntax rule.  For
15630 example, the rules
15632 @example
15633 foo ( # ) := ifoo(#1) :: integer(#1)
15634 foo ( # ) := gfoo(#1)
15635 @end example
15637 @noindent
15638 will parse @samp{foo(3)} as @samp{ifoo(3)}, but will parse
15639 @samp{foo(3.5)} and @samp{foo(x)} as calls to @code{gfoo}.  Any
15640 number of conditions may be attached; all must be true for the
15641 rule to succeed.  A condition is ``true'' if it evaluates to a
15642 nonzero number.  @xref{Logical Operations}, for a list of Calc
15643 functions like @code{integer} that perform logical tests.
15645 The exact sequence of events is as follows:  When Calc tries a
15646 rule, it first matches the pattern as usual.  It then substitutes
15647 @samp{#1}, @samp{#2}, etc., in the conditions, if any.  Next, the
15648 conditions are simplified and evaluated in order from left to right,
15649 using the algebraic simplifications (@pxref{Simplifying Formulas}).
15650 Each result is true if it is a nonzero number, or an expression
15651 that can be proven to be nonzero (@pxref{Declarations}).  If the
15652 results of all conditions are true, the expression (such as
15653 @samp{ifoo(#1)}) has its @samp{#}s substituted, and that is the
15654 result of the parse.  If the result of any condition is false, Calc
15655 goes on to try the next rule in the syntax table.
15657 Syntax rules also support @code{let} conditions, which operate in
15658 exactly the same way as they do in algebraic rewrite rules.
15659 @xref{Other Features of Rewrite Rules}, for details.  A @code{let}
15660 condition is always true, but as a side effect it defines a
15661 variable which can be used in later conditions, and also in the
15662 expression after the @samp{:=} sign:
15664 @example
15665 foo ( # ) := hifoo(x) :: let(x := #1 + 0.5) :: dnumint(x)
15666 @end example
15668 @noindent
15669 The @code{dnumint} function tests if a value is numerically an
15670 integer, i.e., either a true integer or an integer-valued float.
15671 This rule will parse @code{foo} with a half-integer argument,
15672 like @samp{foo(3.5)}, to a call like @samp{hifoo(4.)}.
15674 The lefthand side of a syntax rule @code{let} must be a simple
15675 variable, not the arbitrary pattern that is allowed in rewrite
15676 rules.
15678 The @code{matches} function is also treated specially in syntax
15679 rule conditions (again, in the same way as in rewrite rules).
15680 @xref{Matching Commands}.  If the matching pattern contains
15681 meta-variables, then those meta-variables may be used in later
15682 conditions and in the result expression.  The arguments to
15683 @code{matches} are not evaluated in this situation.
15685 @example
15686 sum ( # , # ) := sum(#1,a,b,c) :: matches(#2, a=[b..c])
15687 @end example
15689 @noindent
15690 This is another way to implement the Maple mode @code{sum} notation.
15691 In this approach, we allow @samp{#2} to equal the whole expression
15692 @samp{i=1..10}.  Then, we use @code{matches} to break it apart into
15693 its components.  If the expression turns out not to match the pattern,
15694 the syntax rule will fail.  Note that @kbd{Z S} always uses Calc's
15695 Normal language mode for editing expressions in syntax rules, so we
15696 must use regular Calc notation for the interval @samp{[b..c]} that
15697 will correspond to the Maple mode interval @samp{1..10}.
15699 @node Modes Variable, Calc Mode Line, Language Modes, Mode Settings
15700 @section The @code{Modes} Variable
15702 @noindent
15703 @kindex m g
15704 @pindex calc-get-modes
15705 The @kbd{m g} (@code{calc-get-modes}) command pushes onto the stack
15706 a vector of numbers that describes the various mode settings that
15707 are in effect.  With a numeric prefix argument, it pushes only the
15708 @var{n}th mode, i.e., the @var{n}th element of this vector.  Keyboard
15709 macros can use the @kbd{m g} command to modify their behavior based
15710 on the current mode settings.
15712 @cindex @code{Modes} variable
15713 @vindex Modes
15714 The modes vector is also available in the special variable
15715 @code{Modes}.  In other words, @kbd{m g} is like @kbd{s r Modes @key{RET}}.
15716 It will not work to store into this variable; in fact, if you do,
15717 @code{Modes} will cease to track the current modes.  (The @kbd{m g}
15718 command will continue to work, however.)
15720 In general, each number in this vector is suitable as a numeric
15721 prefix argument to the associated mode-setting command.  (Recall
15722 that the @kbd{~} key takes a number from the stack and gives it as
15723 a numeric prefix to the next command.)
15725 The elements of the modes vector are as follows:
15727 @enumerate
15728 @item
15729 Current precision.  Default is 12; associated command is @kbd{p}.
15731 @item
15732 Binary word size.  Default is 32; associated command is @kbd{b w}.
15734 @item
15735 Stack size (not counting the value about to be pushed by @kbd{m g}).
15736 This is zero if @kbd{m g} is executed with an empty stack.
15738 @item
15739 Number radix.  Default is 10; command is @kbd{d r}.
15741 @item
15742 Floating-point format.  This is the number of digits, plus the
15743 constant 0 for normal notation, 10000 for scientific notation,
15744 20000 for engineering notation, or 30000 for fixed-point notation.
15745 These codes are acceptable as prefix arguments to the @kbd{d n}
15746 command, but note that this may lose information:  For example,
15747 @kbd{d s} and @kbd{C-u 12 d s} have similar (but not quite
15748 identical) effects if the current precision is 12, but they both
15749 produce a code of 10012, which will be treated by @kbd{d n} as
15750 @kbd{C-u 12 d s}.  If the precision then changes, the float format
15751 will still be frozen at 12 significant figures.
15753 @item
15754 Angular mode.  Default is 1 (degrees).  Other values are 2 (radians)
15755 and 3 (HMS).  The @kbd{m d} command accepts these prefixes.
15757 @item
15758 Symbolic mode.  Value is 0 or 1; default is 0.  Command is @kbd{m s}.
15760 @item
15761 Fraction mode.  Value is 0 or 1; default is 0.  Command is @kbd{m f}.
15763 @item
15764 Polar mode.  Value is 0 (rectangular) or 1 (polar); default is 0.
15765 Command is @kbd{m p}.
15767 @item
15768 Matrix/Scalar mode.  Default value is @mathit{-1}.  Value is 0 for Scalar
15769 mode, @mathit{-2} for Matrix mode, @mathit{-3} for square Matrix mode,
15770 or @var{N} for
15771 @texline @math{N\times N}
15772 @infoline @var{N}x@var{N}
15773 Matrix mode.  Command is @kbd{m v}.
15775 @item
15776 Simplification mode.  Default is 1.  Value is @mathit{-1} for off (@kbd{m O}),
15777 0 for @kbd{m N}, 2 for @kbd{m B}, 3 for @kbd{m A}, 4 for @kbd{m E},
15778 or 5 for @w{@kbd{m U}}.  The @kbd{m D} command accepts these prefixes.
15780 @item
15781 Infinite mode.  Default is @mathit{-1} (off).  Value is 1 if the mode is on,
15782 or 0 if the mode is on with positive zeros.  Command is @kbd{m i}.
15783 @end enumerate
15785 For example, the sequence @kbd{M-1 m g @key{RET} 2 + ~ p} increases the
15786 precision by two, leaving a copy of the old precision on the stack.
15787 Later, @kbd{~ p} will restore the original precision using that
15788 stack value.  (This sequence might be especially useful inside a
15789 keyboard macro.)
15791 As another example, @kbd{M-3 m g 1 - ~ @key{DEL}} deletes all but the
15792 oldest (bottommost) stack entry.
15794 Yet another example:  The HP-48 ``round'' command rounds a number
15795 to the current displayed precision.  You could roughly emulate this
15796 in Calc with the sequence @kbd{M-5 m g 10000 % ~ c c}.  (This
15797 would not work for fixed-point mode, but it wouldn't be hard to
15798 do a full emulation with the help of the @kbd{Z [} and @kbd{Z ]}
15799 programming commands.  @xref{Conditionals in Macros}.)
15801 @node Calc Mode Line,  , Modes Variable, Mode Settings
15802 @section The Calc Mode Line
15804 @noindent
15805 @cindex Mode line indicators
15806 This section is a summary of all symbols that can appear on the
15807 Calc mode line, the highlighted bar that appears under the Calc
15808 stack window (or under an editing window in Embedded mode).
15810 The basic mode line format is:
15812 @example
15813 --%*-Calc: 12 Deg @var{other modes}       (Calculator)
15814 @end example
15816 The @samp{%*} indicates that the buffer is ``read-only''; it shows that
15817 regular Emacs commands are not allowed to edit the stack buffer
15818 as if it were text.
15820 The word @samp{Calc:} changes to @samp{CalcEmbed:} if Embedded mode
15821 is enabled.  The words after this describe the various Calc modes
15822 that are in effect.
15824 The first mode is always the current precision, an integer.
15825 The second mode is always the angular mode, either @code{Deg},
15826 @code{Rad}, or @code{Hms}.
15828 Here is a complete list of the remaining symbols that can appear
15829 on the mode line:
15831 @table @code
15832 @item Alg
15833 Algebraic mode (@kbd{m a}; @pxref{Algebraic Entry}).
15835 @item Alg[(
15836 Incomplete algebraic mode (@kbd{C-u m a}).
15838 @item Alg*
15839 Total algebraic mode (@kbd{m t}).
15841 @item Symb
15842 Symbolic mode (@kbd{m s}; @pxref{Symbolic Mode}).
15844 @item Matrix
15845 Matrix mode (@kbd{m v}; @pxref{Matrix Mode}).
15847 @item Matrix@var{n}
15848 Dimensioned Matrix mode (@kbd{C-u @var{n} m v}; @pxref{Matrix Mode}).
15850 @item SqMatrix
15851 Square Matrix mode (@kbd{C-u m v}; @pxref{Matrix Mode}).
15853 @item Scalar
15854 Scalar mode (@kbd{m v}; @pxref{Matrix Mode}).
15856 @item Polar
15857 Polar complex mode (@kbd{m p}; @pxref{Polar Mode}).
15859 @item Frac
15860 Fraction mode (@kbd{m f}; @pxref{Fraction Mode}).
15862 @item Inf
15863 Infinite mode (@kbd{m i}; @pxref{Infinite Mode}).
15865 @item +Inf
15866 Positive Infinite mode (@kbd{C-u 0 m i}).
15868 @item NoSimp
15869 Default simplifications off (@kbd{m O}; @pxref{Simplification Modes}).
15871 @item NumSimp
15872 Default simplifications for numeric arguments only (@kbd{m N}).
15874 @item BinSimp@var{w}
15875 Binary-integer simplification mode; word size @var{w} (@kbd{m B}, @kbd{b w}).
15877 @item BasicSimp
15878 Basic simplification mode (@kbd{m I}).
15880 @item ExtSimp
15881 Extended algebraic simplification mode (@kbd{m E}).
15883 @item UnitSimp
15884 Units simplification mode (@kbd{m U}).
15886 @item Bin
15887 Current radix is 2 (@kbd{d 2}; @pxref{Radix Modes}).
15889 @item Oct
15890 Current radix is 8 (@kbd{d 8}).
15892 @item Hex
15893 Current radix is 16 (@kbd{d 6}).
15895 @item Radix@var{n}
15896 Current radix is @var{n} (@kbd{d r}).
15898 @item Zero
15899 Leading zeros (@kbd{d z}; @pxref{Radix Modes}).
15901 @item Big
15902 Big language mode (@kbd{d B}; @pxref{Normal Language Modes}).
15904 @item Flat
15905 One-line normal language mode (@kbd{d O}).
15907 @item Unform
15908 Unformatted language mode (@kbd{d U}).
15910 @item C
15911 C language mode (@kbd{d C}; @pxref{C FORTRAN Pascal}).
15913 @item Pascal
15914 Pascal language mode (@kbd{d P}).
15916 @item Fortran
15917 FORTRAN language mode (@kbd{d F}).
15919 @item TeX
15920 @TeX{} language mode (@kbd{d T}; @pxref{TeX and LaTeX Language Modes}).
15922 @item LaTeX
15923 @LaTeX{} language mode (@kbd{d L}; @pxref{TeX and LaTeX Language Modes}).
15925 @item Eqn
15926 @dfn{Eqn} language mode (@kbd{d E}; @pxref{Eqn Language Mode}).
15928 @item Math
15929 Mathematica language mode (@kbd{d M}; @pxref{Mathematica Language Mode}).
15931 @item Maple
15932 Maple language mode (@kbd{d W}; @pxref{Maple Language Mode}).
15934 @item Norm@var{n}
15935 Normal float mode with @var{n} digits (@kbd{d n}; @pxref{Float Formats}).
15937 @item Fix@var{n}
15938 Fixed point mode with @var{n} digits after the point (@kbd{d f}).
15940 @item Sci
15941 Scientific notation mode (@kbd{d s}).
15943 @item Sci@var{n}
15944 Scientific notation with @var{n} digits (@kbd{d s}).
15946 @item Eng
15947 Engineering notation mode (@kbd{d e}).
15949 @item Eng@var{n}
15950 Engineering notation with @var{n} digits (@kbd{d e}).
15952 @item Left@var{n}
15953 Left-justified display indented by @var{n} (@kbd{d <}; @pxref{Justification}).
15955 @item Right
15956 Right-justified display (@kbd{d >}).
15958 @item Right@var{n}
15959 Right-justified display with width @var{n} (@kbd{d >}).
15961 @item Center
15962 Centered display (@kbd{d =}).
15964 @item Center@var{n}
15965 Centered display with center column @var{n} (@kbd{d =}).
15967 @item Wid@var{n}
15968 Line breaking with width @var{n} (@kbd{d b}; @pxref{Normal Language Modes}).
15970 @item Wide
15971 No line breaking (@kbd{d b}).
15973 @item Break
15974 Selections show deep structure (@kbd{j b}; @pxref{Making Selections}).
15976 @item Save
15977 Record modes in @file{~/.emacs.d/calc.el} (@kbd{m R}; @pxref{General Mode Commands}).
15979 @item Local
15980 Record modes in Embedded buffer (@kbd{m R}).
15982 @item LocEdit
15983 Record modes as editing-only in Embedded buffer (@kbd{m R}).
15985 @item LocPerm
15986 Record modes as permanent-only in Embedded buffer (@kbd{m R}).
15988 @item Global
15989 Record modes as global in Embedded buffer (@kbd{m R}).
15991 @item Manual
15992 Automatic recomputation turned off (@kbd{m C}; @pxref{Automatic
15993 Recomputation}).
15995 @item Graph
15996 GNUPLOT process is alive in background (@pxref{Graphics}).
15998 @item Sel
15999 Top-of-stack has a selection (Embedded only; @pxref{Making Selections}).
16001 @item Dirty
16002 The stack display may not be up-to-date (@pxref{Display Modes}).
16004 @item Inv
16005 ``Inverse'' prefix was pressed (@kbd{I}; @pxref{Inverse and Hyperbolic}).
16007 @item Hyp
16008 ``Hyperbolic'' prefix was pressed (@kbd{H}).
16010 @item Keep
16011 ``Keep-arguments'' prefix was pressed (@kbd{K}).
16013 @item Narrow
16014 Stack is truncated (@kbd{d t}; @pxref{Truncating the Stack}).
16015 @end table
16017 In addition, the symbols @code{Active} and @code{~Active} can appear
16018 as minor modes on an Embedded buffer's mode line.  @xref{Embedded Mode}.
16020 @node Arithmetic, Scientific Functions, Mode Settings, Top
16021 @chapter Arithmetic Functions
16023 @noindent
16024 This chapter describes the Calc commands for doing simple calculations
16025 on numbers, such as addition, absolute value, and square roots.  These
16026 commands work by removing the top one or two values from the stack,
16027 performing the desired operation, and pushing the result back onto the
16028 stack.  If the operation cannot be performed, the result pushed is a
16029 formula instead of a number, such as @samp{2/0} (because division by zero
16030 is invalid) or @samp{sqrt(x)} (because the argument @samp{x} is a formula).
16032 Most of the commands described here can be invoked by a single keystroke.
16033 Some of the more obscure ones are two-letter sequences beginning with
16034 the @kbd{f} (``functions'') prefix key.
16036 @xref{Prefix Arguments}, for a discussion of the effect of numeric
16037 prefix arguments on commands in this chapter which do not otherwise
16038 interpret a prefix argument.
16040 @menu
16041 * Basic Arithmetic::
16042 * Integer Truncation::
16043 * Complex Number Functions::
16044 * Conversions::
16045 * Date Arithmetic::
16046 * Financial Functions::
16047 * Binary Functions::
16048 @end menu
16050 @node Basic Arithmetic, Integer Truncation, Arithmetic, Arithmetic
16051 @section Basic Arithmetic
16053 @noindent
16054 @kindex +
16055 @pindex calc-plus
16056 @ignore
16057 @mindex @null
16058 @end ignore
16059 @tindex +
16060 The @kbd{+} (@code{calc-plus}) command adds two numbers.  The numbers may
16061 be any of the standard Calc data types.  The resulting sum is pushed back
16062 onto the stack.
16064 If both arguments of @kbd{+} are vectors or matrices (of matching dimensions),
16065 the result is a vector or matrix sum.  If one argument is a vector and the
16066 other a scalar (i.e., a non-vector), the scalar is added to each of the
16067 elements of the vector to form a new vector.  If the scalar is not a
16068 number, the operation is left in symbolic form:  Suppose you added @samp{x}
16069 to the vector @samp{[1,2]}.  You may want the result @samp{[1+x,2+x]}, or
16070 you may plan to substitute a 2-vector for @samp{x} in the future.  Since
16071 the Calculator can't tell which interpretation you want, it makes the
16072 safest assumption.  @xref{Reducing and Mapping}, for a way to add @samp{x}
16073 to every element of a vector.
16075 If either argument of @kbd{+} is a complex number, the result will in general
16076 be complex.  If one argument is in rectangular form and the other polar,
16077 the current Polar mode determines the form of the result.  If Symbolic
16078 mode is enabled, the sum may be left as a formula if the necessary
16079 conversions for polar addition are non-trivial.
16081 If both arguments of @kbd{+} are HMS forms, the forms are added according to
16082 the usual conventions of hours-minutes-seconds notation.  If one argument
16083 is an HMS form and the other is a number, that number is converted from
16084 degrees or radians (depending on the current Angular mode) to HMS format
16085 and then the two HMS forms are added.
16087 If one argument of @kbd{+} is a date form, the other can be either a
16088 real number, which advances the date by a certain number of days, or
16089 an HMS form, which advances the date by a certain amount of time.
16090 Subtracting two date forms yields the number of days between them.
16091 Adding two date forms is meaningless, but Calc interprets it as the
16092 subtraction of one date form and the negative of the other.  (The
16093 negative of a date form can be understood by remembering that dates
16094 are stored as the number of days before or after Jan 1, 1 AD.)
16096 If both arguments of @kbd{+} are error forms, the result is an error form
16097 with an appropriately computed standard deviation.  If one argument is an
16098 error form and the other is a number, the number is taken to have zero error.
16099 Error forms may have symbolic formulas as their mean and/or error parts;
16100 adding these will produce a symbolic error form result.  However, adding an
16101 error form to a plain symbolic formula (as in @samp{(a +/- b) + c}) will not
16102 work, for the same reasons just mentioned for vectors.  Instead you must
16103 write @samp{(a +/- b) + (c +/- 0)}.
16105 If both arguments of @kbd{+} are modulo forms with equal values of @expr{M},
16106 or if one argument is a modulo form and the other a plain number, the
16107 result is a modulo form which represents the sum, modulo @expr{M}, of
16108 the two values.
16110 If both arguments of @kbd{+} are intervals, the result is an interval
16111 which describes all possible sums of the possible input values.  If
16112 one argument is a plain number, it is treated as the interval
16113 @w{@samp{[x ..@: x]}}.
16115 If one argument of @kbd{+} is an infinity and the other is not, the
16116 result is that same infinity.  If both arguments are infinite and in
16117 the same direction, the result is the same infinity, but if they are
16118 infinite in different directions the result is @code{nan}.
16120 @kindex -
16121 @pindex calc-minus
16122 @ignore
16123 @mindex @null
16124 @end ignore
16125 @tindex -
16126 The @kbd{-} (@code{calc-minus}) command subtracts two values.  The top
16127 number on the stack is subtracted from the one behind it, so that the
16128 computation @kbd{5 @key{RET} 2 -} produces 3, not @mathit{-3}.  All options
16129 available for @kbd{+} are available for @kbd{-} as well.
16131 @kindex *
16132 @pindex calc-times
16133 @ignore
16134 @mindex @null
16135 @end ignore
16136 @tindex *
16137 The @kbd{*} (@code{calc-times}) command multiplies two numbers.  If one
16138 argument is a vector and the other a scalar, the scalar is multiplied by
16139 the elements of the vector to produce a new vector.  If both arguments
16140 are vectors, the interpretation depends on the dimensions of the
16141 vectors:  If both arguments are matrices, a matrix multiplication is
16142 done.  If one argument is a matrix and the other a plain vector, the
16143 vector is interpreted as a row vector or column vector, whichever is
16144 dimensionally correct.  If both arguments are plain vectors, the result
16145 is a single scalar number which is the dot product of the two vectors.
16147 If one argument of @kbd{*} is an HMS form and the other a number, the
16148 HMS form is multiplied by that amount.  It is an error to multiply two
16149 HMS forms together, or to attempt any multiplication involving date
16150 forms.  Error forms, modulo forms, and intervals can be multiplied;
16151 see the comments for addition of those forms.  When two error forms
16152 or intervals are multiplied they are considered to be statistically
16153 independent; thus, @samp{[-2 ..@: 3] * [-2 ..@: 3]} is @samp{[-6 ..@: 9]},
16154 whereas @w{@samp{[-2 ..@: 3] ^ 2}} is @samp{[0 ..@: 9]}.
16156 @kindex /
16157 @pindex calc-divide
16158 @ignore
16159 @mindex @null
16160 @end ignore
16161 @tindex /
16162 The @kbd{/} (@code{calc-divide}) command divides two numbers.
16164 When combining multiplication and division in an algebraic formula, it
16165 is good style to use parentheses to distinguish between possible
16166 interpretations; the expression @samp{a/b*c} should be written
16167 @samp{(a/b)*c} or @samp{a/(b*c)}, as appropriate.  Without the
16168 parentheses, Calc will interpret @samp{a/b*c} as @samp{a/(b*c)}, since
16169 in algebraic entry Calc gives division a lower precedence than
16170 multiplication. (This is not standard across all computer languages, and
16171 Calc may change the precedence depending on the language mode being used.
16172 @xref{Language Modes}.)  This default ordering can be changed by setting
16173 the customizable variable @code{calc-multiplication-has-precedence} to
16174 @code{nil} (@pxref{Customizing Calc}); this will give multiplication and
16175 division equal precedences.  Note that Calc's default choice of
16176 precedence allows @samp{a b / c d} to be used as a shortcut for
16177 @smallexample
16178 @group
16179 a b
16180 ---.
16181 c d
16182 @end group
16183 @end smallexample
16185 When dividing a scalar @expr{B} by a square matrix @expr{A}, the
16186 computation performed is @expr{B} times the inverse of @expr{A}.  This
16187 also occurs if @expr{B} is itself a vector or matrix, in which case the
16188 effect is to solve the set of linear equations represented by @expr{B}.
16189 If @expr{B} is a matrix with the same number of rows as @expr{A}, or a
16190 plain vector (which is interpreted here as a column vector), then the
16191 equation @expr{A X = B} is solved for the vector or matrix @expr{X}.
16192 Otherwise, if @expr{B} is a non-square matrix with the same number of
16193 @emph{columns} as @expr{A}, the equation @expr{X A = B} is solved.  If
16194 you wish a vector @expr{B} to be interpreted as a row vector to be
16195 solved as @expr{X A = B}, make it into a one-row matrix with @kbd{C-u 1
16196 v p} first.  To force a left-handed solution with a square matrix
16197 @expr{B}, transpose @expr{A} and @expr{B} before dividing, then
16198 transpose the result.
16200 HMS forms can be divided by real numbers or by other HMS forms.  Error
16201 forms can be divided in any combination of ways.  Modulo forms where both
16202 values and the modulo are integers can be divided to get an integer modulo
16203 form result.  Intervals can be divided; dividing by an interval that
16204 encompasses zero or has zero as a limit will result in an infinite
16205 interval.
16207 @kindex ^
16208 @pindex calc-power
16209 @ignore
16210 @mindex @null
16211 @end ignore
16212 @tindex ^
16213 The @kbd{^} (@code{calc-power}) command raises a number to a power.  If
16214 the power is an integer, an exact result is computed using repeated
16215 multiplications.  For non-integer powers, Calc uses Newton's method or
16216 logarithms and exponentials.  Square matrices can be raised to integer
16217 powers.  If either argument is an error (or interval or modulo) form,
16218 the result is also an error (or interval or modulo) form.
16220 @kindex I ^
16221 @tindex nroot
16222 If you press the @kbd{I} (inverse) key first, the @kbd{I ^} command
16223 computes an Nth root:  @kbd{125 @key{RET} 3 I ^} computes the number 5.
16224 (This is entirely equivalent to @kbd{125 @key{RET} 1:3 ^}.)
16226 @kindex \
16227 @pindex calc-idiv
16228 @tindex idiv
16229 @ignore
16230 @mindex @null
16231 @end ignore
16232 @tindex \
16233 The @kbd{\} (@code{calc-idiv}) command divides two numbers on the stack
16234 to produce an integer result.  It is equivalent to dividing with
16235 @key{/}, then rounding down with @kbd{F} (@code{calc-floor}), only a bit
16236 more convenient and efficient.  Also, since it is an all-integer
16237 operation when the arguments are integers, it avoids problems that
16238 @kbd{/ F} would have with floating-point roundoff.
16240 @kindex %
16241 @pindex calc-mod
16242 @ignore
16243 @mindex @null
16244 @end ignore
16245 @tindex %
16246 The @kbd{%} (@code{calc-mod}) command performs a ``modulo'' (or ``remainder'')
16247 operation.  Mathematically, @samp{a%b = a - (a\b)*b}, and is defined
16248 for all real numbers @expr{a} and @expr{b} (except @expr{b=0}).  For
16249 positive @expr{b}, the result will always be between 0 (inclusive) and
16250 @expr{b} (exclusive).  Modulo does not work for HMS forms and error forms.
16251 If @expr{a} is a modulo form, its modulo is changed to @expr{b}, which
16252 must be positive real number.
16254 @kindex :
16255 @pindex calc-fdiv
16256 @tindex fdiv
16257 The @kbd{:} (@code{calc-fdiv}) [@code{fdiv}] command
16258 divides the two integers on the top of the stack to produce a fractional
16259 result.  This is a convenient shorthand for enabling Fraction mode (with
16260 @kbd{m f}) temporarily and using @samp{/}.  Note that during numeric entry
16261 the @kbd{:} key is interpreted as a fraction separator, so to divide 8 by 6
16262 you would have to type @kbd{8 @key{RET} 6 @key{RET} :}.  (Of course, in
16263 this case, it would be much easier simply to enter the fraction directly
16264 as @kbd{8:6 @key{RET}}!)
16266 @kindex n
16267 @pindex calc-change-sign
16268 The @kbd{n} (@code{calc-change-sign}) command negates the number on the top
16269 of the stack.  It works on numbers, vectors and matrices, HMS forms, date
16270 forms, error forms, intervals, and modulo forms.
16272 @kindex A
16273 @pindex calc-abs
16274 @tindex abs
16275 The @kbd{A} (@code{calc-abs}) [@code{abs}] command computes the absolute
16276 value of a number.  The result of @code{abs} is always a nonnegative
16277 real number:  With a complex argument, it computes the complex magnitude.
16278 With a vector or matrix argument, it computes the Frobenius norm, i.e.,
16279 the square root of the sum of the squares of the absolute values of the
16280 elements.  The absolute value of an error form is defined by replacing
16281 the mean part with its absolute value and leaving the error part the same.
16282 The absolute value of a modulo form is undefined.  The absolute value of
16283 an interval is defined in the obvious way.
16285 @kindex f A
16286 @pindex calc-abssqr
16287 @tindex abssqr
16288 The @kbd{f A} (@code{calc-abssqr}) [@code{abssqr}] command computes the
16289 absolute value squared of a number, vector or matrix, or error form.
16291 @kindex f s
16292 @pindex calc-sign
16293 @tindex sign
16294 The @kbd{f s} (@code{calc-sign}) [@code{sign}] command returns 1 if its
16295 argument is positive, @mathit{-1} if its argument is negative, or 0 if its
16296 argument is zero.  In algebraic form, you can also write @samp{sign(a,x)}
16297 which evaluates to @samp{x * sign(a)}, i.e., either @samp{x}, @samp{-x}, or
16298 zero depending on the sign of @samp{a}.
16300 @kindex &
16301 @pindex calc-inv
16302 @tindex inv
16303 @cindex Reciprocal
16304 The @kbd{&} (@code{calc-inv}) [@code{inv}] command computes the
16305 reciprocal of a number, i.e., @expr{1 / x}.  Operating on a square
16306 matrix, it computes the inverse of that matrix.
16308 @kindex Q
16309 @pindex calc-sqrt
16310 @tindex sqrt
16311 The @kbd{Q} (@code{calc-sqrt}) [@code{sqrt}] command computes the square
16312 root of a number.  For a negative real argument, the result will be a
16313 complex number whose form is determined by the current Polar mode.
16315 @kindex f h
16316 @pindex calc-hypot
16317 @tindex hypot
16318 The @kbd{f h} (@code{calc-hypot}) [@code{hypot}] command computes the square
16319 root of the sum of the squares of two numbers.  That is, @samp{hypot(a,b)}
16320 is the length of the hypotenuse of a right triangle with sides @expr{a}
16321 and @expr{b}.  If the arguments are complex numbers, their squared
16322 magnitudes are used.
16324 @kindex f Q
16325 @pindex calc-isqrt
16326 @tindex isqrt
16327 The @kbd{f Q} (@code{calc-isqrt}) [@code{isqrt}] command computes the
16328 integer square root of an integer.  This is the true square root of the
16329 number, rounded down to an integer.  For example, @samp{isqrt(10)}
16330 produces 3.  Note that, like @kbd{\} [@code{idiv}], this uses exact
16331 integer arithmetic throughout to avoid roundoff problems.  If the input
16332 is a floating-point number or other non-integer value, this is exactly
16333 the same as @samp{floor(sqrt(x))}.
16335 @kindex f n
16336 @kindex f x
16337 @pindex calc-min
16338 @tindex min
16339 @pindex calc-max
16340 @tindex max
16341 The @kbd{f n} (@code{calc-min}) [@code{min}] and @kbd{f x} (@code{calc-max})
16342 [@code{max}] commands take the minimum or maximum of two real numbers,
16343 respectively.  These commands also work on HMS forms, date forms,
16344 intervals, and infinities.  (In algebraic expressions, these functions
16345 take any number of arguments and return the maximum or minimum among
16346 all the arguments.)
16348 @kindex f M
16349 @kindex f X
16350 @pindex calc-mant-part
16351 @tindex mant
16352 @pindex calc-xpon-part
16353 @tindex xpon
16354 The @kbd{f M} (@code{calc-mant-part}) [@code{mant}] function extracts
16355 the ``mantissa'' part @expr{m} of its floating-point argument; @kbd{f X}
16356 (@code{calc-xpon-part}) [@code{xpon}] extracts the ``exponent'' part
16357 @expr{e}.  The original number is equal to
16358 @texline @math{m \times 10^e},
16359 @infoline @expr{m * 10^e},
16360 where @expr{m} is in the interval @samp{[1.0 ..@: 10.0)} except that
16361 @expr{m=e=0} if the original number is zero.  For integers
16362 and fractions, @code{mant} returns the number unchanged and @code{xpon}
16363 returns zero.  The @kbd{v u} (@code{calc-unpack}) command can also be
16364 used to ``unpack'' a floating-point number; this produces an integer
16365 mantissa and exponent, with the constraint that the mantissa is not
16366 a multiple of ten (again except for the @expr{m=e=0} case).
16368 @kindex f S
16369 @pindex calc-scale-float
16370 @tindex scf
16371 The @kbd{f S} (@code{calc-scale-float}) [@code{scf}] function scales a number
16372 by a given power of ten.  Thus, @samp{scf(mant(x), xpon(x)) = x} for any
16373 real @samp{x}.  The second argument must be an integer, but the first
16374 may actually be any numeric value.  For example, @samp{scf(5,-2) = 0.05}
16375 or @samp{1:20} depending on the current Fraction mode.
16377 @kindex f [
16378 @kindex f ]
16379 @pindex calc-decrement
16380 @pindex calc-increment
16381 @tindex decr
16382 @tindex incr
16383 The @kbd{f [} (@code{calc-decrement}) [@code{decr}] and @kbd{f ]}
16384 (@code{calc-increment}) [@code{incr}] functions decrease or increase
16385 a number by one unit.  For integers, the effect is obvious.  For
16386 floating-point numbers, the change is by one unit in the last place.
16387 For example, incrementing @samp{12.3456} when the current precision
16388 is 6 digits yields @samp{12.3457}.  If the current precision had been
16389 8 digits, the result would have been @samp{12.345601}.  Incrementing
16390 @samp{0.0} produces
16391 @texline @math{10^{-p}},
16392 @infoline @expr{10^-p},
16393 where @expr{p} is the current
16394 precision.  These operations are defined only on integers and floats.
16395 With numeric prefix arguments, they change the number by @expr{n} units.
16397 Note that incrementing followed by decrementing, or vice-versa, will
16398 almost but not quite always cancel out.  Suppose the precision is
16399 6 digits and the number @samp{9.99999} is on the stack.  Incrementing
16400 will produce @samp{10.0000}; decrementing will produce @samp{9.9999}.
16401 One digit has been dropped.  This is an unavoidable consequence of the
16402 way floating-point numbers work.
16404 Incrementing a date/time form adjusts it by a certain number of seconds.
16405 Incrementing a pure date form adjusts it by a certain number of days.
16407 @node Integer Truncation, Complex Number Functions, Basic Arithmetic, Arithmetic
16408 @section Integer Truncation
16410 @noindent
16411 There are four commands for truncating a real number to an integer,
16412 differing mainly in their treatment of negative numbers.  All of these
16413 commands have the property that if the argument is an integer, the result
16414 is the same integer.  An integer-valued floating-point argument is converted
16415 to integer form.
16417 If you press @kbd{H} (@code{calc-hyperbolic}) first, the result will be
16418 expressed as an integer-valued floating-point number.
16420 @cindex Integer part of a number
16421 @kindex F
16422 @pindex calc-floor
16423 @tindex floor
16424 @tindex ffloor
16425 @ignore
16426 @mindex @null
16427 @end ignore
16428 @kindex H F
16429 The @kbd{F} (@code{calc-floor}) [@code{floor} or @code{ffloor}] command
16430 truncates a real number to the next lower integer, i.e., toward minus
16431 infinity.  Thus @kbd{3.6 F} produces 3, but @kbd{_3.6 F} produces
16432 @mathit{-4}.
16434 @kindex I F
16435 @pindex calc-ceiling
16436 @tindex ceil
16437 @tindex fceil
16438 @ignore
16439 @mindex @null
16440 @end ignore
16441 @kindex H I F
16442 The @kbd{I F} (@code{calc-ceiling}) [@code{ceil} or @code{fceil}]
16443 command truncates toward positive infinity.  Thus @kbd{3.6 I F} produces
16444 4, and @kbd{_3.6 I F} produces @mathit{-3}.
16446 @kindex R
16447 @pindex calc-round
16448 @tindex round
16449 @tindex fround
16450 @ignore
16451 @mindex @null
16452 @end ignore
16453 @kindex H R
16454 The @kbd{R} (@code{calc-round}) [@code{round} or @code{fround}] command
16455 rounds to the nearest integer.  When the fractional part is .5 exactly,
16456 this command rounds away from zero.  (All other rounding in the
16457 Calculator uses this convention as well.)  Thus @kbd{3.5 R} produces 4
16458 but @kbd{3.4 R} produces 3; @kbd{_3.5 R} produces @mathit{-4}.
16460 @kindex I R
16461 @pindex calc-trunc
16462 @tindex trunc
16463 @tindex ftrunc
16464 @ignore
16465 @mindex @null
16466 @end ignore
16467 @kindex H I R
16468 The @kbd{I R} (@code{calc-trunc}) [@code{trunc} or @code{ftrunc}]
16469 command truncates toward zero.  In other words, it ``chops off''
16470 everything after the decimal point.  Thus @kbd{3.6 I R} produces 3 and
16471 @kbd{_3.6 I R} produces @mathit{-3}.
16473 These functions may not be applied meaningfully to error forms, but they
16474 do work for intervals.  As a convenience, applying @code{floor} to a
16475 modulo form floors the value part of the form.  Applied to a vector,
16476 these functions operate on all elements of the vector one by one.
16477 Applied to a date form, they operate on the internal numerical
16478 representation of dates, converting a date/time form into a pure date.
16480 @ignore
16481 @starindex
16482 @end ignore
16483 @tindex rounde
16484 @ignore
16485 @starindex
16486 @end ignore
16487 @tindex roundu
16488 @ignore
16489 @starindex
16490 @end ignore
16491 @tindex frounde
16492 @ignore
16493 @starindex
16494 @end ignore
16495 @tindex froundu
16496 There are two more rounding functions which can only be entered in
16497 algebraic notation.  The @code{roundu} function is like @code{round}
16498 except that it rounds up, toward plus infinity, when the fractional
16499 part is .5.  This distinction matters only for negative arguments.
16500 Also, @code{rounde} rounds to an even number in the case of a tie,
16501 rounding up or down as necessary.  For example, @samp{rounde(3.5)} and
16502 @samp{rounde(4.5)} both return 4, but @samp{rounde(5.5)} returns 6.
16503 The advantage of round-to-even is that the net error due to rounding
16504 after a long calculation tends to cancel out to zero.  An important
16505 subtle point here is that the number being fed to @code{rounde} will
16506 already have been rounded to the current precision before @code{rounde}
16507 begins.  For example, @samp{rounde(2.500001)} with a current precision
16508 of 6 will incorrectly, or at least surprisingly, yield 2 because the
16509 argument will first have been rounded down to @expr{2.5} (which
16510 @code{rounde} sees as an exact tie between 2 and 3).
16512 Each of these functions, when written in algebraic formulas, allows
16513 a second argument which specifies the number of digits after the
16514 decimal point to keep.  For example, @samp{round(123.4567, 2)} will
16515 produce the answer 123.46, and @samp{round(123.4567, -1)} will
16516 produce 120 (i.e., the cutoff is one digit to the @emph{left} of
16517 the decimal point).  A second argument of zero is equivalent to
16518 no second argument at all.
16520 @cindex Fractional part of a number
16521 To compute the fractional part of a number (i.e., the amount which, when
16522 added to `@tfn{floor(}@var{n}@tfn{)}', will produce @var{n}) just take @var{n}
16523 modulo 1 using the @code{%} command.
16525 Note also the @kbd{\} (integer quotient), @kbd{f I} (integer logarithm),
16526 and @kbd{f Q} (integer square root) commands, which are analogous to
16527 @kbd{/}, @kbd{B}, and @kbd{Q}, respectively, except that they take integer
16528 arguments and return the result rounded down to an integer.
16530 @node Complex Number Functions, Conversions, Integer Truncation, Arithmetic
16531 @section Complex Number Functions
16533 @noindent
16534 @kindex J
16535 @pindex calc-conj
16536 @tindex conj
16537 The @kbd{J} (@code{calc-conj}) [@code{conj}] command computes the
16538 complex conjugate of a number.  For complex number @expr{a+bi}, the
16539 complex conjugate is @expr{a-bi}.  If the argument is a real number,
16540 this command leaves it the same.  If the argument is a vector or matrix,
16541 this command replaces each element by its complex conjugate.
16543 @kindex G
16544 @pindex calc-argument
16545 @tindex arg
16546 The @kbd{G} (@code{calc-argument}) [@code{arg}] command computes the
16547 ``argument'' or polar angle of a complex number.  For a number in polar
16548 notation, this is simply the second component of the pair
16549 @texline `@tfn{(}@var{r}@tfn{;}@math{\theta}@tfn{)}'.
16550 @infoline `@tfn{(}@var{r}@tfn{;}@var{theta}@tfn{)}'.
16551 The result is expressed according to the current angular mode and will
16552 be in the range @mathit{-180} degrees (exclusive) to @mathit{+180} degrees
16553 (inclusive), or the equivalent range in radians.
16555 @pindex calc-imaginary
16556 The @code{calc-imaginary} command multiplies the number on the
16557 top of the stack by the imaginary number @expr{i = (0,1)}.  This
16558 command is not normally bound to a key in Calc, but it is available
16559 on the @key{IMAG} button in Keypad mode.
16561 @kindex f r
16562 @pindex calc-re
16563 @tindex re
16564 The @kbd{f r} (@code{calc-re}) [@code{re}] command replaces a complex number
16565 by its real part.  This command has no effect on real numbers.  (As an
16566 added convenience, @code{re} applied to a modulo form extracts
16567 the value part.)
16569 @kindex f i
16570 @pindex calc-im
16571 @tindex im
16572 The @kbd{f i} (@code{calc-im}) [@code{im}] command replaces a complex number
16573 by its imaginary part; real numbers are converted to zero.  With a vector
16574 or matrix argument, these functions operate element-wise.
16576 @ignore
16577 @mindex v p
16578 @end ignore
16579 @kindex v p (complex)
16580 @kindex V p (complex)
16581 @pindex calc-pack
16582 The @kbd{v p} (@code{calc-pack}) command can pack the top two numbers on
16583 the stack into a composite object such as a complex number.  With
16584 a prefix argument of @mathit{-1}, it produces a rectangular complex number;
16585 with an argument of @mathit{-2}, it produces a polar complex number.
16586 (Also, @pxref{Building Vectors}.)
16588 @ignore
16589 @mindex v u
16590 @end ignore
16591 @kindex v u (complex)
16592 @kindex V u (complex)
16593 @pindex calc-unpack
16594 The @kbd{v u} (@code{calc-unpack}) command takes the complex number
16595 (or other composite object) on the top of the stack and unpacks it
16596 into its separate components.
16598 @node Conversions, Date Arithmetic, Complex Number Functions, Arithmetic
16599 @section Conversions
16601 @noindent
16602 The commands described in this section convert numbers from one form
16603 to another; they are two-key sequences beginning with the letter @kbd{c}.
16605 @kindex c f
16606 @pindex calc-float
16607 @tindex pfloat
16608 The @kbd{c f} (@code{calc-float}) [@code{pfloat}] command converts the
16609 number on the top of the stack to floating-point form.  For example,
16610 @expr{23} is converted to @expr{23.0}, @expr{3:2} is converted to
16611 @expr{1.5}, and @expr{2.3} is left the same.  If the value is a composite
16612 object such as a complex number or vector, each of the components is
16613 converted to floating-point.  If the value is a formula, all numbers
16614 in the formula are converted to floating-point.  Note that depending
16615 on the current floating-point precision, conversion to floating-point
16616 format may lose information.
16618 As a special exception, integers which appear as powers or subscripts
16619 are not floated by @kbd{c f}.  If you really want to float a power,
16620 you can use a @kbd{j s} command to select the power followed by @kbd{c f}.
16621 Because @kbd{c f} cannot examine the formula outside of the selection,
16622 it does not notice that the thing being floated is a power.
16623 @xref{Selecting Subformulas}.
16625 The normal @kbd{c f} command is ``pervasive'' in the sense that it
16626 applies to all numbers throughout the formula.  The @code{pfloat}
16627 algebraic function never stays around in a formula; @samp{pfloat(a + 1)}
16628 changes to @samp{a + 1.0} as soon as it is evaluated.
16630 @kindex H c f
16631 @tindex float
16632 With the Hyperbolic flag, @kbd{H c f} [@code{float}] operates
16633 only on the number or vector of numbers at the top level of its
16634 argument.  Thus, @samp{float(1)} is 1.0, but @samp{float(a + 1)}
16635 is left unevaluated because its argument is not a number.
16637 You should use @kbd{H c f} if you wish to guarantee that the final
16638 value, once all the variables have been assigned, is a float; you
16639 would use @kbd{c f} if you wish to do the conversion on the numbers
16640 that appear right now.
16642 @kindex c F
16643 @pindex calc-fraction
16644 @tindex pfrac
16645 The @kbd{c F} (@code{calc-fraction}) [@code{pfrac}] command converts a
16646 floating-point number into a fractional approximation.  By default, it
16647 produces a fraction whose decimal representation is the same as the
16648 input number, to within the current precision.  You can also give a
16649 numeric prefix argument to specify a tolerance, either directly, or,
16650 if the prefix argument is zero, by using the number on top of the stack
16651 as the tolerance.  If the tolerance is a positive integer, the fraction
16652 is correct to within that many significant figures.  If the tolerance is
16653 a non-positive integer, it specifies how many digits fewer than the current
16654 precision to use.  If the tolerance is a floating-point number, the
16655 fraction is correct to within that absolute amount.
16657 @kindex H c F
16658 @tindex frac
16659 The @code{pfrac} function is pervasive, like @code{pfloat}.
16660 There is also a non-pervasive version, @kbd{H c F} [@code{frac}],
16661 which is analogous to @kbd{H c f} discussed above.
16663 @kindex c d
16664 @pindex calc-to-degrees
16665 @tindex deg
16666 The @kbd{c d} (@code{calc-to-degrees}) [@code{deg}] command converts a
16667 number into degrees form.  The value on the top of the stack may be an
16668 HMS form (interpreted as degrees-minutes-seconds), or a real number which
16669 will be interpreted in radians regardless of the current angular mode.
16671 @kindex c r
16672 @pindex calc-to-radians
16673 @tindex rad
16674 The @kbd{c r} (@code{calc-to-radians}) [@code{rad}] command converts an
16675 HMS form or angle in degrees into an angle in radians.
16677 @kindex c h
16678 @pindex calc-to-hms
16679 @tindex hms
16680 The @kbd{c h} (@code{calc-to-hms}) [@code{hms}] command converts a real
16681 number, interpreted according to the current angular mode, to an HMS
16682 form describing the same angle.  In algebraic notation, the @code{hms}
16683 function also accepts three arguments: @samp{hms(@var{h}, @var{m}, @var{s})}.
16684 (The three-argument version is independent of the current angular mode.)
16686 @pindex calc-from-hms
16687 The @code{calc-from-hms} command converts the HMS form on the top of the
16688 stack into a real number according to the current angular mode.
16690 @kindex c p
16691 @kindex I c p
16692 @pindex calc-polar
16693 @tindex polar
16694 @tindex rect
16695 The @kbd{c p} (@code{calc-polar}) command converts the complex number on
16696 the top of the stack from polar to rectangular form, or from rectangular
16697 to polar form, whichever is appropriate.  Real numbers are left the same.
16698 This command is equivalent to the @code{rect} or @code{polar}
16699 functions in algebraic formulas, depending on the direction of
16700 conversion.  (It uses @code{polar}, except that if the argument is
16701 already a polar complex number, it uses @code{rect} instead.  The
16702 @kbd{I c p} command always uses @code{rect}.)
16704 @kindex c c
16705 @pindex calc-clean
16706 @tindex pclean
16707 The @kbd{c c} (@code{calc-clean}) [@code{pclean}] command ``cleans'' the
16708 number on the top of the stack.  Floating point numbers are re-rounded
16709 according to the current precision.  Polar numbers whose angular
16710 components have strayed from the @mathit{-180} to @mathit{+180} degree range
16711 are normalized.  (Note that results will be undesirable if the current
16712 angular mode is different from the one under which the number was
16713 produced!)  Integers and fractions are generally unaffected by this
16714 operation.  Vectors and formulas are cleaned by cleaning each component
16715 number (i.e., pervasively).
16717 If the simplification mode is set below basic simplification, it is raised
16718 for the purposes of this command.  Thus, @kbd{c c} applies the basic
16719 simplifications even if their automatic application is disabled.
16720 @xref{Simplification Modes}. 
16722 @cindex Roundoff errors, correcting
16723 A numeric prefix argument to @kbd{c c} sets the floating-point precision
16724 to that value for the duration of the command.  A positive prefix (of at
16725 least 3) sets the precision to the specified value; a negative or zero
16726 prefix decreases the precision by the specified amount.
16728 @kindex c 0-9
16729 @pindex calc-clean-num
16730 The keystroke sequences @kbd{c 0} through @kbd{c 9} are equivalent
16731 to @kbd{c c} with the corresponding negative prefix argument.  If roundoff
16732 errors have changed 2.0 into 1.999999, typing @kbd{c 1} to clip off one
16733 decimal place often conveniently does the trick.
16735 The @kbd{c c} command with a numeric prefix argument, and the @kbd{c 0}
16736 through @kbd{c 9} commands, also ``clip'' very small floating-point
16737 numbers to zero.  If the exponent is less than or equal to the negative
16738 of the specified precision, the number is changed to 0.0.  For example,
16739 if the current precision is 12, then @kbd{c 2} changes the vector
16740 @samp{[1e-8, 1e-9, 1e-10, 1e-11]} to @samp{[1e-8, 1e-9, 0, 0]}.
16741 Numbers this small generally arise from roundoff noise.
16743 If the numbers you are using really are legitimately this small,
16744 you should avoid using the @kbd{c 0} through @kbd{c 9} commands.
16745 (The plain @kbd{c c} command rounds to the current precision but
16746 does not clip small numbers.)
16748 One more property of @kbd{c 0} through @kbd{c 9}, and of @kbd{c c} with
16749 a prefix argument, is that integer-valued floats are converted to
16750 plain integers, so that @kbd{c 1} on @samp{[1., 1.5, 2., 2.5, 3.]}
16751 produces @samp{[1, 1.5, 2, 2.5, 3]}.  This is not done for huge
16752 numbers (@samp{1e100} is technically an integer-valued float, but
16753 you wouldn't want it automatically converted to a 100-digit integer).
16755 @kindex H c 0-9
16756 @kindex H c c
16757 @tindex clean
16758 With the Hyperbolic flag, @kbd{H c c} and @kbd{H c 0} through @kbd{H c 9}
16759 operate non-pervasively [@code{clean}].
16761 @node Date Arithmetic, Financial Functions, Conversions, Arithmetic
16762 @section Date Arithmetic
16764 @noindent
16765 @cindex Date arithmetic, additional functions
16766 The commands described in this section perform various conversions
16767 and calculations involving date forms (@pxref{Date Forms}).  They
16768 use the @kbd{t} (for time/date) prefix key followed by shifted
16769 letters.
16771 The simplest date arithmetic is done using the regular @kbd{+} and @kbd{-}
16772 commands.  In particular, adding a number to a date form advances the
16773 date form by a certain number of days; adding an HMS form to a date
16774 form advances the date by a certain amount of time; and subtracting two
16775 date forms produces a difference measured in days.  The commands
16776 described here provide additional, more specialized operations on dates.
16778 Many of these commands accept a numeric prefix argument; if you give
16779 plain @kbd{C-u} as the prefix, these commands will instead take the
16780 additional argument from the top of the stack.
16782 @menu
16783 * Date Conversions::
16784 * Date Functions::
16785 * Time Zones::
16786 * Business Days::
16787 @end menu
16789 @node Date Conversions, Date Functions, Date Arithmetic, Date Arithmetic
16790 @subsection Date Conversions
16792 @noindent
16793 @kindex t D
16794 @pindex calc-date
16795 @tindex date
16796 The @kbd{t D} (@code{calc-date}) [@code{date}] command converts a
16797 date form into a number, measured in days since Jan 1, 1 AD.  The
16798 result will be an integer if @var{date} is a pure date form, or a
16799 fraction or float if @var{date} is a date/time form.  Or, if its
16800 argument is a number, it converts this number into a date form.
16802 With a numeric prefix argument, @kbd{t D} takes that many objects
16803 (up to six) from the top of the stack and interprets them in one
16804 of the following ways:
16806 The @samp{date(@var{year}, @var{month}, @var{day})} function
16807 builds a pure date form out of the specified year, month, and
16808 day, which must all be integers.  @var{Year} is a year number,
16809 such as 1991 (@emph{not} the same as 91!).  @var{Month} must be
16810 an integer in the range 1 to 12; @var{day} must be in the range
16811 1 to 31.  If the specified month has fewer than 31 days and
16812 @var{day} is too large, the equivalent day in the following
16813 month will be used.
16815 The @samp{date(@var{month}, @var{day})} function builds a
16816 pure date form using the current year, as determined by the
16817 real-time clock.
16819 The @samp{date(@var{year}, @var{month}, @var{day}, @var{hms})}
16820 function builds a date/time form using an @var{hms} form.
16822 The @samp{date(@var{year}, @var{month}, @var{day}, @var{hour},
16823 @var{minute}, @var{second})} function builds a date/time form.
16824 @var{hour} should be an integer in the range 0 to 23;
16825 @var{minute} should be an integer in the range 0 to 59;
16826 @var{second} should be any real number in the range @samp{[0 .. 60)}.
16827 The last two arguments default to zero if omitted.
16829 @kindex t J
16830 @pindex calc-julian
16831 @tindex julian
16832 @cindex Julian day counts, conversions
16833 The @kbd{t J} (@code{calc-julian}) [@code{julian}] command converts
16834 a date form into a Julian day count, which is the number of days
16835 since noon (GMT) on Jan 1, 4713 BC.  A pure date is converted to an
16836 integer Julian count representing noon of that day.  A date/time form
16837 is converted to an exact floating-point Julian count, adjusted to
16838 interpret the date form in the current time zone but the Julian
16839 day count in Greenwich Mean Time.  A numeric prefix argument allows
16840 you to specify the time zone; @pxref{Time Zones}.  Use a prefix of
16841 zero to suppress the time zone adjustment.  Note that pure date forms
16842 are never time-zone adjusted.
16844 This command can also do the opposite conversion, from a Julian day
16845 count (either an integer day, or a floating-point day and time in
16846 the GMT zone), into a pure date form or a date/time form in the
16847 current or specified time zone.
16849 @kindex t U
16850 @pindex calc-unix-time
16851 @tindex unixtime
16852 @cindex Unix time format, conversions
16853 The @kbd{t U} (@code{calc-unix-time}) [@code{unixtime}] command
16854 converts a date form into a Unix time value, which is the number of
16855 seconds since midnight on Jan 1, 1970, or vice-versa.  The numeric result
16856 will be an integer if the current precision is 12 or less; for higher
16857 precision, the result may be a float with (@var{precision}@minus{}12)
16858 digits after the decimal.  Just as for @kbd{t J}, the numeric time
16859 is interpreted in the GMT time zone and the date form is interpreted
16860 in the current or specified zone.  Some systems use Unix-like
16861 numbering but with the local time zone; give a prefix of zero to
16862 suppress the adjustment if so.
16864 @kindex t C
16865 @pindex calc-convert-time-zones
16866 @tindex tzconv
16867 @cindex Time Zones, converting between
16868 The @kbd{t C} (@code{calc-convert-time-zones}) [@code{tzconv}]
16869 command converts a date form from one time zone to another.  You
16870 are prompted for each time zone name in turn; you can answer with
16871 any suitable Calc time zone expression (@pxref{Time Zones}).
16872 If you answer either prompt with a blank line, the local time
16873 zone is used for that prompt.  You can also answer the first
16874 prompt with @kbd{$} to take the two time zone names from the
16875 stack (and the date to be converted from the third stack level).
16877 @node Date Functions, Business Days, Date Conversions, Date Arithmetic
16878 @subsection Date Functions
16880 @noindent
16881 @kindex t N
16882 @pindex calc-now
16883 @tindex now
16884 The @kbd{t N} (@code{calc-now}) [@code{now}] command pushes the
16885 current date and time on the stack as a date form.  The time is
16886 reported in terms of the specified time zone; with no numeric prefix
16887 argument, @kbd{t N} reports for the current time zone.
16889 @kindex t P
16890 @pindex calc-date-part
16891 The @kbd{t P} (@code{calc-date-part}) command extracts one part
16892 of a date form.  The prefix argument specifies the part; with no
16893 argument, this command prompts for a part code from 1 to 9.
16894 The various part codes are described in the following paragraphs.
16896 @tindex year
16897 The @kbd{M-1 t P} [@code{year}] function extracts the year number
16898 from a date form as an integer, e.g., 1991.  This and the
16899 following functions will also accept a real number for an
16900 argument, which is interpreted as a standard Calc day number.
16901 Note that this function will never return zero, since the year
16902 1 BC immediately precedes the year 1 AD.
16904 @tindex month
16905 The @kbd{M-2 t P} [@code{month}] function extracts the month number
16906 from a date form as an integer in the range 1 to 12.
16908 @tindex day
16909 The @kbd{M-3 t P} [@code{day}] function extracts the day number
16910 from a date form as an integer in the range 1 to 31.
16912 @tindex hour
16913 The @kbd{M-4 t P} [@code{hour}] function extracts the hour from
16914 a date form as an integer in the range 0 (midnight) to 23.  Note
16915 that 24-hour time is always used.  This returns zero for a pure
16916 date form.  This function (and the following two) also accept
16917 HMS forms as input.
16919 @tindex minute
16920 The @kbd{M-5 t P} [@code{minute}] function extracts the minute
16921 from a date form as an integer in the range 0 to 59.
16923 @tindex second
16924 The @kbd{M-6 t P} [@code{second}] function extracts the second
16925 from a date form.  If the current precision is 12 or less,
16926 the result is an integer in the range 0 to 59.  For higher
16927 precision, the result may instead be a floating-point number.
16929 @tindex weekday
16930 The @kbd{M-7 t P} [@code{weekday}] function extracts the weekday
16931 number from a date form as an integer in the range 0 (Sunday)
16932 to 6 (Saturday).
16934 @tindex yearday
16935 The @kbd{M-8 t P} [@code{yearday}] function extracts the day-of-year
16936 number from a date form as an integer in the range 1 (January 1)
16937 to 366 (December 31 of a leap year).
16939 @tindex time
16940 The @kbd{M-9 t P} [@code{time}] function extracts the time portion
16941 of a date form as an HMS form.  This returns @samp{0@@ 0' 0"}
16942 for a pure date form.
16944 @kindex t M
16945 @pindex calc-new-month
16946 @tindex newmonth
16947 The @kbd{t M} (@code{calc-new-month}) [@code{newmonth}] command
16948 computes a new date form that represents the first day of the month
16949 specified by the input date.  The result is always a pure date
16950 form; only the year and month numbers of the input are retained.
16951 With a numeric prefix argument @var{n} in the range from 1 to 31,
16952 @kbd{t M} computes the @var{n}th day of the month.  (If @var{n}
16953 is greater than the actual number of days in the month, or if
16954 @var{n} is zero, the last day of the month is used.)
16956 @kindex t Y
16957 @pindex calc-new-year
16958 @tindex newyear
16959 The @kbd{t Y} (@code{calc-new-year}) [@code{newyear}] command
16960 computes a new pure date form that represents the first day of
16961 the year specified by the input.  The month, day, and time
16962 of the input date form are lost.  With a numeric prefix argument
16963 @var{n} in the range from 1 to 366, @kbd{t Y} computes the
16964 @var{n}th day of the year (366 is treated as 365 in non-leap
16965 years).  A prefix argument of 0 computes the last day of the
16966 year (December 31).  A negative prefix argument from @mathit{-1} to
16967 @mathit{-12} computes the first day of the @var{n}th month of the year.
16969 @kindex t W
16970 @pindex calc-new-week
16971 @tindex newweek
16972 The @kbd{t W} (@code{calc-new-week}) [@code{newweek}] command
16973 computes a new pure date form that represents the Sunday on or before
16974 the input date.  With a numeric prefix argument, it can be made to
16975 use any day of the week as the starting day; the argument must be in
16976 the range from 0 (Sunday) to 6 (Saturday).  This function always
16977 subtracts between 0 and 6 days from the input date.
16979 Here's an example use of @code{newweek}:  Find the date of the next
16980 Wednesday after a given date.  Using @kbd{M-3 t W} or @samp{newweek(d, 3)}
16981 will give you the @emph{preceding} Wednesday, so @samp{newweek(d+7, 3)}
16982 will give you the following Wednesday.  A further look at the definition
16983 of @code{newweek} shows that if the input date is itself a Wednesday,
16984 this formula will return the Wednesday one week in the future.  An
16985 exercise for the reader is to modify this formula to yield the same day
16986 if the input is already a Wednesday.  Another interesting exercise is
16987 to preserve the time-of-day portion of the input (@code{newweek} resets
16988 the time to midnight; hint:@: how can @code{newweek} be defined in terms
16989 of the @code{weekday} function?).
16991 @ignore
16992 @starindex
16993 @end ignore
16994 @tindex pwday
16995 The @samp{pwday(@var{date})} function (not on any key) computes the
16996 day-of-month number of the Sunday on or before @var{date}.  With
16997 two arguments, @samp{pwday(@var{date}, @var{day})} computes the day
16998 number of the Sunday on or before day number @var{day} of the month
16999 specified by @var{date}.  The @var{day} must be in the range from
17000 7 to 31; if the day number is greater than the actual number of days
17001 in the month, the true number of days is used instead.  Thus
17002 @samp{pwday(@var{date}, 7)} finds the first Sunday of the month, and
17003 @samp{pwday(@var{date}, 31)} finds the last Sunday of the month.
17004 With a third @var{weekday} argument, @code{pwday} can be made to look
17005 for any day of the week instead of Sunday.
17007 @kindex t I
17008 @pindex calc-inc-month
17009 @tindex incmonth
17010 The @kbd{t I} (@code{calc-inc-month}) [@code{incmonth}] command
17011 increases a date form by one month, or by an arbitrary number of
17012 months specified by a numeric prefix argument.  The time portion,
17013 if any, of the date form stays the same.  The day also stays the
17014 same, except that if the new month has fewer days the day
17015 number may be reduced to lie in the valid range.  For example,
17016 @samp{incmonth(<Jan 31, 1991>)} produces @samp{<Feb 28, 1991>}.
17017 Because of this, @kbd{t I t I} and @kbd{M-2 t I} do not always give
17018 the same results (@samp{<Mar 28, 1991>} versus @samp{<Mar 31, 1991>}
17019 in this case).
17021 @ignore
17022 @starindex
17023 @end ignore
17024 @tindex incyear
17025 The @samp{incyear(@var{date}, @var{step})} function increases
17026 a date form by the specified number of years, which may be
17027 any positive or negative integer.  Note that @samp{incyear(d, n)}
17028 is equivalent to @w{@samp{incmonth(d, 12*n)}}, but these do not have
17029 simple equivalents in terms of day arithmetic because
17030 months and years have varying lengths.  If the @var{step}
17031 argument is omitted, 1 year is assumed.  There is no keyboard
17032 command for this function; use @kbd{C-u 12 t I} instead.
17034 There is no @code{newday} function at all because @kbd{F} [@code{floor}]
17035 serves this purpose.  Similarly, instead of @code{incday} and
17036 @code{incweek} simply use @expr{d + n} or @expr{d + 7 n}.
17038 @xref{Basic Arithmetic}, for the @kbd{f ]} [@code{incr}] command
17039 which can adjust a date/time form by a certain number of seconds.
17041 @node Business Days, Time Zones, Date Functions, Date Arithmetic
17042 @subsection Business Days
17044 @noindent
17045 Often time is measured in ``business days'' or ``working days,''
17046 where weekends and holidays are skipped.  Calc's normal date
17047 arithmetic functions use calendar days, so that subtracting two
17048 consecutive Mondays will yield a difference of 7 days.  By contrast,
17049 subtracting two consecutive Mondays would yield 5 business days
17050 (assuming two-day weekends and the absence of holidays).
17052 @kindex t +
17053 @kindex t -
17054 @tindex badd
17055 @tindex bsub
17056 @pindex calc-business-days-plus
17057 @pindex calc-business-days-minus
17058 The @kbd{t +} (@code{calc-business-days-plus}) [@code{badd}]
17059 and @kbd{t -} (@code{calc-business-days-minus}) [@code{bsub}]
17060 commands perform arithmetic using business days.  For @kbd{t +},
17061 one argument must be a date form and the other must be a real
17062 number (positive or negative).  If the number is not an integer,
17063 then a certain amount of time is added as well as a number of
17064 days; for example, adding 0.5 business days to a time in Friday
17065 evening will produce a time in Monday morning.  It is also
17066 possible to add an HMS form; adding @samp{12@@ 0' 0"} also adds
17067 half a business day.  For @kbd{t -}, the arguments are either a
17068 date form and a number or HMS form, or two date forms, in which
17069 case the result is the number of business days between the two
17070 dates.
17072 @cindex @code{Holidays} variable
17073 @vindex Holidays
17074 By default, Calc considers any day that is not a Saturday or
17075 Sunday to be a business day.  You can define any number of
17076 additional holidays by editing the variable @code{Holidays}.
17077 (There is an @w{@kbd{s H}} convenience command for editing this
17078 variable.)  Initially, @code{Holidays} contains the vector
17079 @samp{[sat, sun]}.  Entries in the @code{Holidays} vector may
17080 be any of the following kinds of objects:
17082 @itemize @bullet
17083 @item
17084 Date forms (pure dates, not date/time forms).  These specify
17085 particular days which are to be treated as holidays.
17087 @item
17088 Intervals of date forms.  These specify a range of days, all of
17089 which are holidays (e.g., Christmas week).  @xref{Interval Forms}.
17091 @item
17092 Nested vectors of date forms.  Each date form in the vector is
17093 considered to be a holiday.
17095 @item
17096 Any Calc formula which evaluates to one of the above three things.
17097 If the formula involves the variable @expr{y}, it stands for a
17098 yearly repeating holiday; @expr{y} will take on various year
17099 numbers like 1992.  For example, @samp{date(y, 12, 25)} specifies
17100 Christmas day, and @samp{newweek(date(y, 11, 7), 4) + 21} specifies
17101 Thanksgiving (which is held on the fourth Thursday of November).
17102 If the formula involves the variable @expr{m}, that variable
17103 takes on month numbers from 1 to 12:  @samp{date(y, m, 15)} is
17104 a holiday that takes place on the 15th of every month.
17106 @item
17107 A weekday name, such as @code{sat} or @code{sun}.  This is really
17108 a variable whose name is a three-letter, lower-case day name.
17110 @item
17111 An interval of year numbers (integers).  This specifies the span of
17112 years over which this holiday list is to be considered valid.  Any
17113 business-day arithmetic that goes outside this range will result
17114 in an error message.  Use this if you are including an explicit
17115 list of holidays, rather than a formula to generate them, and you
17116 want to make sure you don't accidentally go beyond the last point
17117 where the holidays you entered are complete.  If there is no
17118 limiting interval in the @code{Holidays} vector, the default
17119 @samp{[1 .. 2737]} is used.  (This is the absolute range of years
17120 for which Calc's business-day algorithms will operate.)
17122 @item
17123 An interval of HMS forms.  This specifies the span of hours that
17124 are to be considered one business day.  For example, if this
17125 range is @samp{[9@@ 0' 0" .. 17@@ 0' 0"]} (i.e., 9am to 5pm), then
17126 the business day is only eight hours long, so that @kbd{1.5 t +}
17127 on @samp{<4:00pm Fri Dec 13, 1991>} will add one business day and
17128 four business hours to produce @samp{<12:00pm Tue Dec 17, 1991>}.
17129 Likewise, @kbd{t -} will now express differences in time as
17130 fractions of an eight-hour day.  Times before 9am will be treated
17131 as 9am by business date arithmetic, and times at or after 5pm will
17132 be treated as 4:59:59pm.  If there is no HMS interval in @code{Holidays},
17133 the full 24-hour day @samp{[0@ 0' 0" .. 24@ 0' 0"]} is assumed.
17134 (Regardless of the type of bounds you specify, the interval is
17135 treated as inclusive on the low end and exclusive on the high end,
17136 so that the work day goes from 9am up to, but not including, 5pm.)
17137 @end itemize
17139 If the @code{Holidays} vector is empty, then @kbd{t +} and
17140 @kbd{t -} will act just like @kbd{+} and @kbd{-} because there will
17141 then be no difference between business days and calendar days.
17143 Calc expands the intervals and formulas you give into a complete
17144 list of holidays for internal use.  This is done mainly to make
17145 sure it can detect multiple holidays.  (For example,
17146 @samp{<Jan 1, 1989>} is both New Year's Day and a Sunday, but
17147 Calc's algorithms take care to count it only once when figuring
17148 the number of holidays between two dates.)
17150 Since the complete list of holidays for all the years from 1 to
17151 2737 would be huge, Calc actually computes only the part of the
17152 list between the smallest and largest years that have been involved
17153 in business-day calculations so far.  Normally, you won't have to
17154 worry about this.  Keep in mind, however, that if you do one
17155 calculation for 1992, and another for 1792, even if both involve
17156 only a small range of years, Calc will still work out all the
17157 holidays that fall in that 200-year span.
17159 If you add a (positive) number of days to a date form that falls on a
17160 weekend or holiday, the date form is treated as if it were the most
17161 recent business day.  (Thus adding one business day to a Friday,
17162 Saturday, or Sunday will all yield the following Monday.)  If you
17163 subtract a number of days from a weekend or holiday, the date is
17164 effectively on the following business day.  (So subtracting one business
17165 day from Saturday, Sunday, or Monday yields the preceding Friday.)  The
17166 difference between two dates one or both of which fall on holidays
17167 equals the number of actual business days between them.  These
17168 conventions are consistent in the sense that, if you add @var{n}
17169 business days to any date, the difference between the result and the
17170 original date will come out to @var{n} business days.  (It can't be
17171 completely consistent though; a subtraction followed by an addition
17172 might come out a bit differently, since @kbd{t +} is incapable of
17173 producing a date that falls on a weekend or holiday.)
17175 @ignore
17176 @starindex
17177 @end ignore
17178 @tindex holiday
17179 There is a @code{holiday} function, not on any keys, that takes
17180 any date form and returns 1 if that date falls on a weekend or
17181 holiday, as defined in @code{Holidays}, or 0 if the date is a
17182 business day.
17184 @node Time Zones,  , Business Days, Date Arithmetic
17185 @subsection Time Zones
17187 @noindent
17188 @cindex Time zones
17189 @cindex Daylight saving time
17190 Time zones and daylight saving time are a complicated business.
17191 The conversions to and from Julian and Unix-style dates automatically
17192 compute the correct time zone and daylight saving adjustment to use,
17193 provided they can figure out this information.  This section describes
17194 Calc's time zone adjustment algorithm in detail, in case you want to
17195 do conversions in different time zones or in case Calc's algorithms
17196 can't determine the right correction to use.
17198 Adjustments for time zones and daylight saving time are done by
17199 @kbd{t U}, @kbd{t J}, @kbd{t N}, and @kbd{t C}, but not by any other
17200 commands.  In particular, @samp{<may 1 1991> - <apr 1 1991>} evaluates
17201 to exactly 30 days even though there is a daylight-saving
17202 transition in between.  This is also true for Julian pure dates:
17203 @samp{julian(<may 1 1991>) - julian(<apr 1 1991>)}.  But Julian
17204 and Unix date/times will adjust for daylight saving time:  using Calc's
17205 default daylight saving time rule (see the explanation below),
17206 @samp{julian(<12am may 1 1991>) - julian(<12am apr 1 1991>)}
17207 evaluates to @samp{29.95833} (that's 29 days and 23 hours)
17208 because one hour was lost when daylight saving commenced on
17209 April 7, 1991.
17211 In brief, the idiom @samp{julian(@var{date1}) - julian(@var{date2})}
17212 computes the actual number of 24-hour periods between two dates, whereas
17213 @samp{@var{date1} - @var{date2}} computes the number of calendar
17214 days between two dates without taking daylight saving into account.
17216 @pindex calc-time-zone
17217 @ignore
17218 @starindex
17219 @end ignore
17220 @tindex tzone
17221 The @code{calc-time-zone} [@code{tzone}] command converts the time
17222 zone specified by its numeric prefix argument into a number of
17223 seconds difference from Greenwich mean time (GMT).  If the argument
17224 is a number, the result is simply that value multiplied by 3600.
17225 Typical arguments for North America are 5 (Eastern) or 8 (Pacific).  If
17226 Daylight Saving time is in effect, one hour should be subtracted from
17227 the normal difference.
17229 If you give a prefix of plain @kbd{C-u}, @code{calc-time-zone} (like other
17230 date arithmetic commands that include a time zone argument) takes the
17231 zone argument from the top of the stack.  (In the case of @kbd{t J}
17232 and @kbd{t U}, the normal argument is then taken from the second-to-top
17233 stack position.)  This allows you to give a non-integer time zone
17234 adjustment.  The time-zone argument can also be an HMS form, or
17235 it can be a variable which is a time zone name in upper- or lower-case.
17236 For example @samp{tzone(PST) = tzone(8)} and @samp{tzone(pdt) = tzone(7)}
17237 (for Pacific standard and daylight saving times, respectively).
17239 North American and European time zone names are defined as follows;
17240 note that for each time zone there is one name for standard time,
17241 another for daylight saving time, and a third for ``generalized'' time
17242 in which the daylight saving adjustment is computed from context.
17244 @smallexample
17245 @group
17246 YST  PST  MST  CST  EST  AST    NST    GMT   WET     MET    MEZ
17247  9    8    7    6    5    4     3.5     0     -1      -2     -2
17249 YDT  PDT  MDT  CDT  EDT  ADT    NDT    BST  WETDST  METDST  MESZ
17250  8    7    6    5    4    3     2.5     -1    -2      -3     -3
17252 YGT  PGT  MGT  CGT  EGT  AGT    NGT    BGT   WEGT    MEGT   MEGZ
17253 9/8  8/7  7/6  6/5  5/4  4/3  3.5/2.5  0/-1 -1/-2   -2/-3  -2/-3
17254 @end group
17255 @end smallexample
17257 @vindex math-tzone-names
17258 To define time zone names that do not appear in the above table,
17259 you must modify the Lisp variable @code{math-tzone-names}.  This
17260 is a list of lists describing the different time zone names; its
17261 structure is best explained by an example.  The three entries for
17262 Pacific Time look like this:
17264 @smallexample
17265 @group
17266 ( ( "PST" 8 0 )    ; Name as an upper-case string, then standard
17267   ( "PDT" 8 -1 )   ; adjustment, then daylight saving adjustment.
17268   ( "PGT" 8 "PST" "PDT" ) )   ; Generalized time zone.
17269 @end group
17270 @end smallexample
17272 @cindex @code{TimeZone} variable
17273 @vindex TimeZone
17274 With no arguments, @code{calc-time-zone} or @samp{tzone()} will by
17275 default get the time zone and daylight saving information from the
17276 calendar (@pxref{Daylight Saving,Calendar/Diary,The Calendar and the Diary,
17277 emacs,The GNU Emacs Manual}).  To use a different time zone, or if the
17278 calendar does not give the desired result, you can set the Calc variable
17279 @code{TimeZone} (which is by default @code{nil}) to an appropriate
17280 time zone name.  (The easiest way to do this is to edit the
17281 @code{TimeZone} variable using Calc's @kbd{s T} command, then use the
17282 @kbd{s p} (@code{calc-permanent-variable}) command to save the value of
17283 @code{TimeZone} permanently.)
17284 If the time zone given by @code{TimeZone} is a generalized time zone,
17285 e.g., @code{EGT}, Calc examines the date being converted to tell whether
17286 to use standard or daylight saving time.  But if the current time zone
17287 is explicit, e.g., @code{EST} or @code{EDT}, then that adjustment is
17288 used exactly and Calc's daylight saving algorithm is not consulted.
17289 The special time zone name @code{local}
17290 is equivalent to no argument; i.e., it uses the information obtained
17291 from the calendar.
17293 The @kbd{t J} and @code{t U} commands with no numeric prefix
17294 arguments do the same thing as @samp{tzone()}; namely, use the
17295 information from the calendar if @code{TimeZone} is @code{nil},
17296 otherwise use the time zone given by @code{TimeZone}.
17298 @vindex math-daylight-savings-hook
17299 @findex math-std-daylight-savings
17300 When Calc computes the daylight saving information itself (i.e., when
17301 the @code{TimeZone} variable is set), it will by default consider
17302 daylight saving time to begin at 2 a.m.@: on the second Sunday of March
17303 (for years from 2007 on) or on the last Sunday in April (for years
17304 before 2007), and to end at 2 a.m.@: on the first Sunday of
17305 November. (for years from 2007 on) or the last Sunday in October (for
17306 years before 2007).  These are the rules that have been in effect in
17307 much of North America since 1966 and take into account the rule change
17308 that began in 2007.  If you are in a country that uses different rules
17309 for computing daylight saving time, you have two choices: Write your own
17310 daylight saving hook, or control time zones explicitly by setting the
17311 @code{TimeZone} variable and/or always giving a time-zone argument for
17312 the conversion functions.
17314 The Lisp variable @code{math-daylight-savings-hook} holds the
17315 name of a function that is used to compute the daylight saving
17316 adjustment for a given date.  The default is
17317 @code{math-std-daylight-savings}, which computes an adjustment
17318 (either 0 or @mathit{-1}) using the North American rules given above.
17320 The daylight saving hook function is called with four arguments:
17321 The date, as a floating-point number in standard Calc format;
17322 a six-element list of the date decomposed into year, month, day,
17323 hour, minute, and second, respectively; a string which contains
17324 the generalized time zone name in upper-case, e.g., @code{"WEGT"};
17325 and a special adjustment to be applied to the hour value when
17326 converting into a generalized time zone (see below).
17328 @findex math-prev-weekday-in-month
17329 The Lisp function @code{math-prev-weekday-in-month} is useful for
17330 daylight saving computations.  This is an internal version of
17331 the user-level @code{pwday} function described in the previous
17332 section. It takes four arguments:  The floating-point date value,
17333 the corresponding six-element date list, the day-of-month number,
17334 and the weekday number (0-6).
17336 The default daylight saving hook ignores the time zone name, but a
17337 more sophisticated hook could use different algorithms for different
17338 time zones.  It would also be possible to use different algorithms
17339 depending on the year number, but the default hook always uses the
17340 algorithm for 1987 and later.  Here is a listing of the default
17341 daylight saving hook:
17343 @smallexample
17344 (defun math-std-daylight-savings (date dt zone bump)
17345   (cond ((< (nth 1 dt) 4) 0)
17346         ((= (nth 1 dt) 4)
17347          (let ((sunday (math-prev-weekday-in-month date dt 7 0)))
17348            (cond ((< (nth 2 dt) sunday) 0)
17349                  ((= (nth 2 dt) sunday)
17350                   (if (>= (nth 3 dt) (+ 3 bump)) -1 0))
17351                  (t -1))))
17352         ((< (nth 1 dt) 10) -1)
17353         ((= (nth 1 dt) 10)
17354          (let ((sunday (math-prev-weekday-in-month date dt 31 0)))
17355            (cond ((< (nth 2 dt) sunday) -1)
17356                  ((= (nth 2 dt) sunday)
17357                   (if (>= (nth 3 dt) (+ 2 bump)) 0 -1))
17358                  (t 0))))
17359         (t 0))
17361 @end smallexample
17363 @noindent
17364 The @code{bump} parameter is equal to zero when Calc is converting
17365 from a date form in a generalized time zone into a GMT date value.
17366 It is @mathit{-1} when Calc is converting in the other direction.  The
17367 adjustments shown above ensure that the conversion behaves correctly
17368 and reasonably around the 2 a.m.@: transition in each direction.
17370 There is a ``missing'' hour between 2 a.m.@: and 3 a.m.@: at the
17371 beginning of daylight saving time; converting a date/time form that
17372 falls in this hour results in a time value for the following hour,
17373 from 3 a.m.@: to 4 a.m.  At the end of daylight saving time, the
17374 hour from 1 a.m.@: to 2 a.m.@: repeats itself; converting a date/time
17375 form that falls in this hour results in a time value for the first
17376 manifestation of that time (@emph{not} the one that occurs one hour
17377 later).
17379 If @code{math-daylight-savings-hook} is @code{nil}, then the
17380 daylight saving adjustment is always taken to be zero.
17382 In algebraic formulas, @samp{tzone(@var{zone}, @var{date})}
17383 computes the time zone adjustment for a given zone name at a
17384 given date.  The @var{date} is ignored unless @var{zone} is a
17385 generalized time zone.  If @var{date} is a date form, the
17386 daylight saving computation is applied to it as it appears.
17387 If @var{date} is a numeric date value, it is adjusted for the
17388 daylight-saving version of @var{zone} before being given to
17389 the daylight saving hook.  This odd-sounding rule ensures
17390 that the daylight-saving computation is always done in
17391 local time, not in the GMT time that a numeric @var{date}
17392 is typically represented in.
17394 @ignore
17395 @starindex
17396 @end ignore
17397 @tindex dsadj
17398 The @samp{dsadj(@var{date}, @var{zone})} function computes the
17399 daylight saving adjustment that is appropriate for @var{date} in
17400 time zone @var{zone}.  If @var{zone} is explicitly in or not in
17401 daylight saving time (e.g., @code{PDT} or @code{PST}) the
17402 @var{date} is ignored.  If @var{zone} is a generalized time zone,
17403 the algorithms described above are used.  If @var{zone} is omitted,
17404 the computation is done for the current time zone.
17406 @node Financial Functions, Binary Functions, Date Arithmetic, Arithmetic
17407 @section Financial Functions
17409 @noindent
17410 Calc's financial or business functions use the @kbd{b} prefix
17411 key followed by a shifted letter.  (The @kbd{b} prefix followed by
17412 a lower-case letter is used for operations on binary numbers.)
17414 Note that the rate and the number of intervals given to these
17415 functions must be on the same time scale, e.g., both months or
17416 both years.  Mixing an annual interest rate with a time expressed
17417 in months will give you very wrong answers!
17419 It is wise to compute these functions to a higher precision than
17420 you really need, just to make sure your answer is correct to the
17421 last penny; also, you may wish to check the definitions at the end
17422 of this section to make sure the functions have the meaning you expect.
17424 @menu
17425 * Percentages::
17426 * Future Value::
17427 * Present Value::
17428 * Related Financial Functions::
17429 * Depreciation Functions::
17430 * Definitions of Financial Functions::
17431 @end menu
17433 @node Percentages, Future Value, Financial Functions, Financial Functions
17434 @subsection Percentages
17436 @kindex M-%
17437 @pindex calc-percent
17438 @tindex %
17439 @tindex percent
17440 The @kbd{M-%} (@code{calc-percent}) command takes a percentage value,
17441 say 5.4, and converts it to an equivalent actual number.  For example,
17442 @kbd{5.4 M-%} enters 0.054 on the stack.  (That's the @key{META} or
17443 @key{ESC} key combined with @kbd{%}.)
17445 Actually, @kbd{M-%} creates a formula of the form @samp{5.4%}.
17446 You can enter @samp{5.4%} yourself during algebraic entry.  The
17447 @samp{%} operator simply means, ``the preceding value divided by
17448 100.''  The @samp{%} operator has very high precedence, so that
17449 @samp{1+8%} is interpreted as @samp{1+(8%)}, not as @samp{(1+8)%}.
17450 (The @samp{%} operator is just a postfix notation for the
17451 @code{percent} function, just like @samp{20!} is the notation for
17452 @samp{fact(20)}, or twenty-factorial.)
17454 The formula @samp{5.4%} would normally evaluate immediately to
17455 0.054, but the @kbd{M-%} command suppresses evaluation as it puts
17456 the formula onto the stack.  However, the next Calc command that
17457 uses the formula @samp{5.4%} will evaluate it as its first step.
17458 The net effect is that you get to look at @samp{5.4%} on the stack,
17459 but Calc commands see it as @samp{0.054}, which is what they expect.
17461 In particular, @samp{5.4%} and @samp{0.054} are suitable values
17462 for the @var{rate} arguments of the various financial functions,
17463 but the number @samp{5.4} is probably @emph{not} suitable---it
17464 represents a rate of 540 percent!
17466 The key sequence @kbd{M-% *} effectively means ``percent-of.''
17467 For example, @kbd{68 @key{RET} 25 M-% *} computes 17, which is 25% of
17468 68 (and also 68% of 25, which comes out to the same thing).
17470 @kindex c %
17471 @pindex calc-convert-percent
17472 The @kbd{c %} (@code{calc-convert-percent}) command converts the
17473 value on the top of the stack from numeric to percentage form.
17474 For example, if 0.08 is on the stack, @kbd{c %} converts it to
17475 @samp{8%}.  The quantity is the same, it's just represented
17476 differently.  (Contrast this with @kbd{M-%}, which would convert
17477 this number to @samp{0.08%}.)  The @kbd{=} key is a convenient way
17478 to convert a formula like @samp{8%} back to numeric form, 0.08.
17480 To compute what percentage one quantity is of another quantity,
17481 use @kbd{/ c %}.  For example, @w{@kbd{17 @key{RET} 68 / c %}} displays
17482 @samp{25%}.
17484 @kindex b %
17485 @pindex calc-percent-change
17486 @tindex relch
17487 The @kbd{b %} (@code{calc-percent-change}) [@code{relch}] command
17488 calculates the percentage change from one number to another.
17489 For example, @kbd{40 @key{RET} 50 b %} produces the answer @samp{25%},
17490 since 50 is 25% larger than 40.  A negative result represents a
17491 decrease:  @kbd{50 @key{RET} 40 b %} produces @samp{-20%}, since 40 is
17492 20% smaller than 50.  (The answers are different in magnitude
17493 because, in the first case, we're increasing by 25% of 40, but
17494 in the second case, we're decreasing by 20% of 50.)  The effect
17495 of @kbd{40 @key{RET} 50 b %} is to compute @expr{(50-40)/40}, converting
17496 the answer to percentage form as if by @kbd{c %}.
17498 @node Future Value, Present Value, Percentages, Financial Functions
17499 @subsection Future Value
17501 @noindent
17502 @kindex b F
17503 @pindex calc-fin-fv
17504 @tindex fv
17505 The @kbd{b F} (@code{calc-fin-fv}) [@code{fv}] command computes
17506 the future value of an investment.  It takes three arguments
17507 from the stack:  @samp{fv(@var{rate}, @var{n}, @var{payment})}.
17508 If you give payments of @var{payment} every year for @var{n}
17509 years, and the money you have paid earns interest at @var{rate} per
17510 year, then this function tells you what your investment would be
17511 worth at the end of the period.  (The actual interval doesn't
17512 have to be years, as long as @var{n} and @var{rate} are expressed
17513 in terms of the same intervals.)  This function assumes payments
17514 occur at the @emph{end} of each interval.
17516 @kindex I b F
17517 @tindex fvb
17518 The @kbd{I b F} [@code{fvb}] command does the same computation,
17519 but assuming your payments are at the beginning of each interval.
17520 Suppose you plan to deposit $1000 per year in a savings account
17521 earning 5.4% interest, starting right now.  How much will be
17522 in the account after five years?  @code{fvb(5.4%, 5, 1000) = 5870.73}.
17523 Thus you will have earned $870 worth of interest over the years.
17524 Using the stack, this calculation would have been
17525 @kbd{5.4 M-% 5 @key{RET} 1000 I b F}.  Note that the rate is expressed
17526 as a number between 0 and 1, @emph{not} as a percentage.
17528 @kindex H b F
17529 @tindex fvl
17530 The @kbd{H b F} [@code{fvl}] command computes the future value
17531 of an initial lump sum investment.  Suppose you could deposit
17532 those five thousand dollars in the bank right now; how much would
17533 they be worth in five years?  @code{fvl(5.4%, 5, 5000) = 6503.89}.
17535 The algebraic functions @code{fv} and @code{fvb} accept an optional
17536 fourth argument, which is used as an initial lump sum in the sense
17537 of @code{fvl}.  In other words, @code{fv(@var{rate}, @var{n},
17538 @var{payment}, @var{initial}) = fv(@var{rate}, @var{n}, @var{payment})
17539 + fvl(@var{rate}, @var{n}, @var{initial})}.
17541 To illustrate the relationships between these functions, we could
17542 do the @code{fvb} calculation ``by hand'' using @code{fvl}.  The
17543 final balance will be the sum of the contributions of our five
17544 deposits at various times.  The first deposit earns interest for
17545 five years:  @code{fvl(5.4%, 5, 1000) = 1300.78}.  The second
17546 deposit only earns interest for four years:  @code{fvl(5.4%, 4, 1000) =
17547 1234.13}.  And so on down to the last deposit, which earns one
17548 year's interest:  @code{fvl(5.4%, 1, 1000) = 1054.00}.  The sum of
17549 these five values is, sure enough, $5870.73, just as was computed
17550 by @code{fvb} directly.
17552 What does @code{fv(5.4%, 5, 1000) = 5569.96} mean?  The payments
17553 are now at the ends of the periods.  The end of one year is the same
17554 as the beginning of the next, so what this really means is that we've
17555 lost the payment at year zero (which contributed $1300.78), but we're
17556 now counting the payment at year five (which, since it didn't have
17557 a chance to earn interest, counts as $1000).  Indeed, @expr{5569.96 =
17558 5870.73 - 1300.78 + 1000} (give or take a bit of roundoff error).
17560 @node Present Value, Related Financial Functions, Future Value, Financial Functions
17561 @subsection Present Value
17563 @noindent
17564 @kindex b P
17565 @pindex calc-fin-pv
17566 @tindex pv
17567 The @kbd{b P} (@code{calc-fin-pv}) [@code{pv}] command computes
17568 the present value of an investment.  Like @code{fv}, it takes
17569 three arguments:  @code{pv(@var{rate}, @var{n}, @var{payment})}.
17570 It computes the present value of a series of regular payments.
17571 Suppose you have the chance to make an investment that will
17572 pay $2000 per year over the next four years; as you receive
17573 these payments you can put them in the bank at 9% interest.
17574 You want to know whether it is better to make the investment, or
17575 to keep the money in the bank where it earns 9% interest right
17576 from the start.  The calculation @code{pv(9%, 4, 2000)} gives the
17577 result 6479.44.  If your initial investment must be less than this,
17578 say, $6000, then the investment is worthwhile.  But if you had to
17579 put up $7000, then it would be better just to leave it in the bank.
17581 Here is the interpretation of the result of @code{pv}:  You are
17582 trying to compare the return from the investment you are
17583 considering, which is @code{fv(9%, 4, 2000) = 9146.26}, with
17584 the return from leaving the money in the bank, which is
17585 @code{fvl(9%, 4, @var{x})} where @var{x} is the amount of money
17586 you would have to put up in advance.  The @code{pv} function
17587 finds the break-even point, @expr{x = 6479.44}, at which
17588 @code{fvl(9%, 4, 6479.44)} is also equal to 9146.26.  This is
17589 the largest amount you should be willing to invest.
17591 @kindex I b P
17592 @tindex pvb
17593 The @kbd{I b P} [@code{pvb}] command solves the same problem,
17594 but with payments occurring at the beginning of each interval.
17595 It has the same relationship to @code{fvb} as @code{pv} has
17596 to @code{fv}.  For example @code{pvb(9%, 4, 2000) = 7062.59},
17597 a larger number than @code{pv} produced because we get to start
17598 earning interest on the return from our investment sooner.
17600 @kindex H b P
17601 @tindex pvl
17602 The @kbd{H b P} [@code{pvl}] command computes the present value of
17603 an investment that will pay off in one lump sum at the end of the
17604 period.  For example, if we get our $8000 all at the end of the
17605 four years, @code{pvl(9%, 4, 8000) = 5667.40}.  This is much
17606 less than @code{pv} reported, because we don't earn any interest
17607 on the return from this investment.  Note that @code{pvl} and
17608 @code{fvl} are simple inverses:  @code{fvl(9%, 4, 5667.40) = 8000}.
17610 You can give an optional fourth lump-sum argument to @code{pv}
17611 and @code{pvb}; this is handled in exactly the same way as the
17612 fourth argument for @code{fv} and @code{fvb}.
17614 @kindex b N
17615 @pindex calc-fin-npv
17616 @tindex npv
17617 The @kbd{b N} (@code{calc-fin-npv}) [@code{npv}] command computes
17618 the net present value of a series of irregular investments.
17619 The first argument is the interest rate.  The second argument is
17620 a vector which represents the expected return from the investment
17621 at the end of each interval.  For example, if the rate represents
17622 a yearly interest rate, then the vector elements are the return
17623 from the first year, second year, and so on.
17625 Thus, @code{npv(9%, [2000,2000,2000,2000]) = pv(9%, 4, 2000) = 6479.44}.
17626 Obviously this function is more interesting when the payments are
17627 not all the same!
17629 The @code{npv} function can actually have two or more arguments.
17630 Multiple arguments are interpreted in the same way as for the
17631 vector statistical functions like @code{vsum}.
17632 @xref{Single-Variable Statistics}.  Basically, if there are several
17633 payment arguments, each either a vector or a plain number, all these
17634 values are collected left-to-right into the complete list of payments.
17635 A numeric prefix argument on the @kbd{b N} command says how many
17636 payment values or vectors to take from the stack.
17638 @kindex I b N
17639 @tindex npvb
17640 The @kbd{I b N} [@code{npvb}] command computes the net present
17641 value where payments occur at the beginning of each interval
17642 rather than at the end.
17644 @node Related Financial Functions, Depreciation Functions, Present Value, Financial Functions
17645 @subsection Related Financial Functions
17647 @noindent
17648 The functions in this section are basically inverses of the
17649 present value functions with respect to the various arguments.
17651 @kindex b M
17652 @pindex calc-fin-pmt
17653 @tindex pmt
17654 The @kbd{b M} (@code{calc-fin-pmt}) [@code{pmt}] command computes
17655 the amount of periodic payment necessary to amortize a loan.
17656 Thus @code{pmt(@var{rate}, @var{n}, @var{amount})} equals the
17657 value of @var{payment} such that @code{pv(@var{rate}, @var{n},
17658 @var{payment}) = @var{amount}}.
17660 @kindex I b M
17661 @tindex pmtb
17662 The @kbd{I b M} [@code{pmtb}] command does the same computation
17663 but using @code{pvb} instead of @code{pv}.  Like @code{pv} and
17664 @code{pvb}, these functions can also take a fourth argument which
17665 represents an initial lump-sum investment.
17667 @kindex H b M
17668 The @kbd{H b M} key just invokes the @code{fvl} function, which is
17669 the inverse of @code{pvl}.  There is no explicit @code{pmtl} function.
17671 @kindex b #
17672 @pindex calc-fin-nper
17673 @tindex nper
17674 The @kbd{b #} (@code{calc-fin-nper}) [@code{nper}] command computes
17675 the number of regular payments necessary to amortize a loan.
17676 Thus @code{nper(@var{rate}, @var{payment}, @var{amount})} equals
17677 the value of @var{n} such that @code{pv(@var{rate}, @var{n},
17678 @var{payment}) = @var{amount}}.  If @var{payment} is too small
17679 ever to amortize a loan for @var{amount} at interest rate @var{rate},
17680 the @code{nper} function is left in symbolic form.
17682 @kindex I b #
17683 @tindex nperb
17684 The @kbd{I b #} [@code{nperb}] command does the same computation
17685 but using @code{pvb} instead of @code{pv}.  You can give a fourth
17686 lump-sum argument to these functions, but the computation will be
17687 rather slow in the four-argument case.
17689 @kindex H b #
17690 @tindex nperl
17691 The @kbd{H b #} [@code{nperl}] command does the same computation
17692 using @code{pvl}.  By exchanging @var{payment} and @var{amount} you
17693 can also get the solution for @code{fvl}.  For example,
17694 @code{nperl(8%, 2000, 1000) = 9.006}, so if you place $1000 in a
17695 bank account earning 8%, it will take nine years to grow to $2000.
17697 @kindex b T
17698 @pindex calc-fin-rate
17699 @tindex rate
17700 The @kbd{b T} (@code{calc-fin-rate}) [@code{rate}] command computes
17701 the rate of return on an investment.  This is also an inverse of @code{pv}:
17702 @code{rate(@var{n}, @var{payment}, @var{amount})} computes the value of
17703 @var{rate} such that @code{pv(@var{rate}, @var{n}, @var{payment}) =
17704 @var{amount}}.  The result is expressed as a formula like @samp{6.3%}.
17706 @kindex I b T
17707 @kindex H b T
17708 @tindex rateb
17709 @tindex ratel
17710 The @kbd{I b T} [@code{rateb}] and @kbd{H b T} [@code{ratel}]
17711 commands solve the analogous equations with @code{pvb} or @code{pvl}
17712 in place of @code{pv}.  Also, @code{rate} and @code{rateb} can
17713 accept an optional fourth argument just like @code{pv} and @code{pvb}.
17714 To redo the above example from a different perspective,
17715 @code{ratel(9, 2000, 1000) = 8.00597%}, which says you will need an
17716 interest rate of 8% in order to double your account in nine years.
17718 @kindex b I
17719 @pindex calc-fin-irr
17720 @tindex irr
17721 The @kbd{b I} (@code{calc-fin-irr}) [@code{irr}] command is the
17722 analogous function to @code{rate} but for net present value.
17723 Its argument is a vector of payments.  Thus @code{irr(@var{payments})}
17724 computes the @var{rate} such that @code{npv(@var{rate}, @var{payments}) = 0};
17725 this rate is known as the @dfn{internal rate of return}.
17727 @kindex I b I
17728 @tindex irrb
17729 The @kbd{I b I} [@code{irrb}] command computes the internal rate of
17730 return assuming payments occur at the beginning of each period.
17732 @node Depreciation Functions, Definitions of Financial Functions, Related Financial Functions, Financial Functions
17733 @subsection Depreciation Functions
17735 @noindent
17736 The functions in this section calculate @dfn{depreciation}, which is
17737 the amount of value that a possession loses over time.  These functions
17738 are characterized by three parameters:  @var{cost}, the original cost
17739 of the asset; @var{salvage}, the value the asset will have at the end
17740 of its expected ``useful life''; and @var{life}, the number of years
17741 (or other periods) of the expected useful life.
17743 There are several methods for calculating depreciation that differ in
17744 the way they spread the depreciation over the lifetime of the asset.
17746 @kindex b S
17747 @pindex calc-fin-sln
17748 @tindex sln
17749 The @kbd{b S} (@code{calc-fin-sln}) [@code{sln}] command computes the
17750 ``straight-line'' depreciation.  In this method, the asset depreciates
17751 by the same amount every year (or period).  For example,
17752 @samp{sln(12000, 2000, 5)} returns 2000.  The asset costs $12000
17753 initially and will be worth $2000 after five years; it loses $2000
17754 per year.
17756 @kindex b Y
17757 @pindex calc-fin-syd
17758 @tindex syd
17759 The @kbd{b Y} (@code{calc-fin-syd}) [@code{syd}] command computes the
17760 accelerated ``sum-of-years'-digits'' depreciation.  Here the depreciation
17761 is higher during the early years of the asset's life.  Since the
17762 depreciation is different each year, @kbd{b Y} takes a fourth @var{period}
17763 parameter which specifies which year is requested, from 1 to @var{life}.
17764 If @var{period} is outside this range, the @code{syd} function will
17765 return zero.
17767 @kindex b D
17768 @pindex calc-fin-ddb
17769 @tindex ddb
17770 The @kbd{b D} (@code{calc-fin-ddb}) [@code{ddb}] command computes an
17771 accelerated depreciation using the double-declining balance method.
17772 It also takes a fourth @var{period} parameter.
17774 For symmetry, the @code{sln} function will accept a @var{period}
17775 parameter as well, although it will ignore its value except that the
17776 return value will as usual be zero if @var{period} is out of range.
17778 For example, pushing the vector @expr{[1,2,3,4,5]} (perhaps with @kbd{v x 5})
17779 and then mapping @kbd{V M ' [sln(12000,2000,5,$), syd(12000,2000,5,$),
17780 ddb(12000,2000,5,$)] @key{RET}} produces a matrix that allows us to compare
17781 the three depreciation methods:
17783 @example
17784 @group
17785 [ [ 2000, 3333, 4800 ]
17786   [ 2000, 2667, 2880 ]
17787   [ 2000, 2000, 1728 ]
17788   [ 2000, 1333,  592 ]
17789   [ 2000,  667,   0  ] ]
17790 @end group
17791 @end example
17793 @noindent
17794 (Values have been rounded to nearest integers in this figure.)
17795 We see that @code{sln} depreciates by the same amount each year,
17796 @kbd{syd} depreciates more at the beginning and less at the end,
17797 and @kbd{ddb} weights the depreciation even more toward the beginning.
17799 Summing columns with @kbd{V R : +} yields @expr{[10000, 10000, 10000]};
17800 the total depreciation in any method is (by definition) the
17801 difference between the cost and the salvage value.
17803 @node Definitions of Financial Functions,  , Depreciation Functions, Financial Functions
17804 @subsection Definitions
17806 @noindent
17807 For your reference, here are the actual formulas used to compute
17808 Calc's financial functions.
17810 Calc will not evaluate a financial function unless the @var{rate} or
17811 @var{n} argument is known.  However, @var{payment} or @var{amount} can
17812 be a variable.  Calc expands these functions according to the
17813 formulas below for symbolic arguments only when you use the @kbd{a "}
17814 (@code{calc-expand-formula}) command, or when taking derivatives or
17815 integrals or solving equations involving the functions.
17817 @ifnottex
17818 These formulas are shown using the conventions of Big display
17819 mode (@kbd{d B}); for example, the formula for @code{fv} written
17820 linearly is @samp{pmt * ((1 + rate)^n) - 1) / rate}.
17822 @example
17823                                         n
17824                               (1 + rate)  - 1
17825 fv(rate, n, pmt) =      pmt * ---------------
17826                                    rate
17828                                          n
17829                               ((1 + rate)  - 1) (1 + rate)
17830 fvb(rate, n, pmt) =     pmt * ----------------------------
17831                                          rate
17833                                         n
17834 fvl(rate, n, pmt) =     pmt * (1 + rate)
17836                                             -n
17837                               1 - (1 + rate)
17838 pv(rate, n, pmt) =      pmt * ----------------
17839                                     rate
17841                                              -n
17842                               (1 - (1 + rate)  ) (1 + rate)
17843 pvb(rate, n, pmt) =     pmt * -----------------------------
17844                                          rate
17846                                         -n
17847 pvl(rate, n, pmt) =     pmt * (1 + rate)
17849                                     -1               -2               -3
17850 npv(rate, [a, b, c]) =  a*(1 + rate)   + b*(1 + rate)   + c*(1 + rate)
17852                                         -1               -2
17853 npvb(rate, [a, b, c]) = a + b*(1 + rate)   + c*(1 + rate)
17855                                              -n
17856                         (amt - x * (1 + rate)  ) * rate
17857 pmt(rate, n, amt, x) =  -------------------------------
17858                                              -n
17859                                1 - (1 + rate)
17861                                              -n
17862                         (amt - x * (1 + rate)  ) * rate
17863 pmtb(rate, n, amt, x) = -------------------------------
17864                                         -n
17865                          (1 - (1 + rate)  ) (1 + rate)
17867                                    amt * rate
17868 nper(rate, pmt, amt) =  - log(1 - ------------, 1 + rate)
17869                                       pmt
17871                                     amt * rate
17872 nperb(rate, pmt, amt) = - log(1 - ---------------, 1 + rate)
17873                                   pmt * (1 + rate)
17875                               amt
17876 nperl(rate, pmt, amt) = - log(---, 1 + rate)
17877                               pmt
17879                            1/n
17880                         pmt
17881 ratel(n, pmt, amt) =    ------ - 1
17882                            1/n
17883                         amt
17885                         cost - salv
17886 sln(cost, salv, life) = -----------
17887                            life
17889                              (cost - salv) * (life - per + 1)
17890 syd(cost, salv, life, per) = --------------------------------
17891                                   life * (life + 1) / 2
17893                              book * 2
17894 ddb(cost, salv, life, per) = --------,  book = cost - depreciation so far
17895                                life
17896 @end example
17897 @end ifnottex
17898 @tex
17899 $$ \code{fv}(r, n, p) = p { (1 + r)^n - 1 \over r } $$
17900 $$ \code{fvb}(r, n, p) = p { ((1 + r)^n - 1) (1 + r) \over r } $$
17901 $$ \code{fvl}(r, n, p) = p (1 + r)^n $$
17902 $$ \code{pv}(r, n, p) = p { 1 - (1 + r)^{-n} \over r } $$
17903 $$ \code{pvb}(r, n, p) = p { (1 - (1 + r)^{-n}) (1 + r) \over r } $$
17904 $$ \code{pvl}(r, n, p) = p (1 + r)^{-n} $$
17905 $$ \code{npv}(r, [a,b,c]) = a (1 + r)^{-1} + b (1 + r)^{-2} + c (1 + r)^{-3} $$
17906 $$ \code{npvb}(r, [a,b,c]) = a + b (1 + r)^{-1} + c (1 + r)^{-2} $$
17907 $$ \code{pmt}(r, n, a, x) = { (a - x (1 + r)^{-n}) r \over 1 - (1 + r)^{-n} }$$
17908 $$ \code{pmtb}(r, n, a, x) = { (a - x (1 + r)^{-n}) r \over
17909                                (1 - (1 + r)^{-n}) (1 + r) } $$
17910 $$ \code{nper}(r, p, a) = -\code{log}(1 - { a r \over p }, 1 + r) $$
17911 $$ \code{nperb}(r, p, a) = -\code{log}(1 - { a r \over p (1 + r) }, 1 + r) $$
17912 $$ \code{nperl}(r, p, a) = -\code{log}({a \over p}, 1 + r) $$
17913 $$ \code{ratel}(n, p, a) = { p^{1/n} \over a^{1/n} } - 1 $$
17914 $$ \code{sln}(c, s, l) = { c - s \over l } $$
17915 $$ \code{syd}(c, s, l, p) = { (c - s) (l - p + 1) \over l (l+1) / 2 } $$
17916 $$ \code{ddb}(c, s, l, p) = { 2 (c - \hbox{depreciation so far}) \over l } $$
17917 @end tex
17919 @noindent
17920 In @code{pmt} and @code{pmtb}, @expr{x=0} if omitted.
17922 These functions accept any numeric objects, including error forms,
17923 intervals, and even (though not very usefully) complex numbers.  The
17924 above formulas specify exactly the behavior of these functions with
17925 all sorts of inputs.
17927 Note that if the first argument to the @code{log} in @code{nper} is
17928 negative, @code{nper} leaves itself in symbolic form rather than
17929 returning a (financially meaningless) complex number.
17931 @samp{rate(num, pmt, amt)} solves the equation
17932 @samp{pv(rate, num, pmt) = amt} for @samp{rate} using @kbd{H a R}
17933 (@code{calc-find-root}), with the interval @samp{[.01% .. 100%]}
17934 for an initial guess.  The @code{rateb} function is the same except
17935 that it uses @code{pvb}.  Note that @code{ratel} can be solved
17936 directly; its formula is shown in the above list.
17938 Similarly, @samp{irr(pmts)} solves the equation @samp{npv(rate, pmts) = 0}
17939 for @samp{rate}.
17941 If you give a fourth argument to @code{nper} or @code{nperb}, Calc
17942 will also use @kbd{H a R} to solve the equation using an initial
17943 guess interval of @samp{[0 .. 100]}.
17945 A fourth argument to @code{fv} simply sums the two components
17946 calculated from the above formulas for @code{fv} and @code{fvl}.
17947 The same is true of @code{fvb}, @code{pv}, and @code{pvb}.
17949 The @kbd{ddb} function is computed iteratively; the ``book'' value
17950 starts out equal to @var{cost}, and decreases according to the above
17951 formula for the specified number of periods.  If the book value
17952 would decrease below @var{salvage}, it only decreases to @var{salvage}
17953 and the depreciation is zero for all subsequent periods.  The @code{ddb}
17954 function returns the amount the book value decreased in the specified
17955 period.
17957 @node Binary Functions,  , Financial Functions, Arithmetic
17958 @section Binary Number Functions
17960 @noindent
17961 The commands in this chapter all use two-letter sequences beginning with
17962 the @kbd{b} prefix.
17964 @cindex Binary numbers
17965 The ``binary'' operations actually work regardless of the currently
17966 displayed radix, although their results make the most sense in a radix
17967 like 2, 8, or 16 (as obtained by the @kbd{d 2}, @kbd{d 8}, or @w{@kbd{d 6}}
17968 commands, respectively).  You may also wish to enable display of leading
17969 zeros with @kbd{d z}.  @xref{Radix Modes}.
17971 @cindex Word size for binary operations
17972 The Calculator maintains a current @dfn{word size} @expr{w}, an
17973 arbitrary positive or negative integer.  For a positive word size, all
17974 of the binary operations described here operate modulo @expr{2^w}.  In
17975 particular, negative arguments are converted to positive integers modulo
17976 @expr{2^w} by all binary functions.
17978 If the word size is negative, binary operations produce twos-complement
17979 integers from
17980 @texline @math{-2^{-w-1}}
17981 @infoline @expr{-(2^(-w-1))}
17983 @texline @math{2^{-w-1}-1}
17984 @infoline @expr{2^(-w-1)-1}
17985 inclusive.  Either mode accepts inputs in any range; the sign of
17986 @expr{w} affects only the results produced.
17988 @kindex b c
17989 @pindex calc-clip
17990 @tindex clip
17991 The @kbd{b c} (@code{calc-clip})
17992 [@code{clip}] command can be used to clip a number by reducing it modulo
17993 @expr{2^w}.  The commands described in this chapter automatically clip
17994 their results to the current word size.  Note that other operations like
17995 addition do not use the current word size, since integer addition
17996 generally is not ``binary.''  (However, @pxref{Simplification Modes},
17997 @code{calc-bin-simplify-mode}.)  For example, with a word size of 8
17998 bits @kbd{b c} converts a number to the range 0 to 255; with a word
17999 size of @mathit{-8} @kbd{b c} converts to the range @mathit{-128} to 127.
18001 @kindex b w
18002 @pindex calc-word-size
18003 The default word size is 32 bits.  All operations except the shifts and
18004 rotates allow you to specify a different word size for that one
18005 operation by giving a numeric prefix argument:  @kbd{C-u 8 b c} clips the
18006 top of stack to the range 0 to 255 regardless of the current word size.
18007 To set the word size permanently, use @kbd{b w} (@code{calc-word-size}).
18008 This command displays a prompt with the current word size; press @key{RET}
18009 immediately to keep this word size, or type a new word size at the prompt.
18011 When the binary operations are written in symbolic form, they take an
18012 optional second (or third) word-size parameter.  When a formula like
18013 @samp{and(a,b)} is finally evaluated, the word size current at that time
18014 will be used, but when @samp{and(a,b,-8)} is evaluated, a word size of
18015 @mathit{-8} will always be used.  A symbolic binary function will be left
18016 in symbolic form unless the all of its argument(s) are integers or
18017 integer-valued floats.
18019 If either or both arguments are modulo forms for which @expr{M} is a
18020 power of two, that power of two is taken as the word size unless a
18021 numeric prefix argument overrides it.  The current word size is never
18022 consulted when modulo-power-of-two forms are involved.
18024 @kindex b a
18025 @pindex calc-and
18026 @tindex and
18027 The @kbd{b a} (@code{calc-and}) [@code{and}] command computes the bitwise
18028 AND of the two numbers on the top of the stack.  In other words, for each
18029 of the @expr{w} binary digits of the two numbers (pairwise), the corresponding
18030 bit of the result is 1 if and only if both input bits are 1:
18031 @samp{and(2#1100, 2#1010) = 2#1000}.
18033 @kindex b o
18034 @pindex calc-or
18035 @tindex or
18036 The @kbd{b o} (@code{calc-or}) [@code{or}] command computes the bitwise
18037 inclusive OR of two numbers.  A bit is 1 if either of the input bits, or
18038 both, are 1:  @samp{or(2#1100, 2#1010) = 2#1110}.
18040 @kindex b x
18041 @pindex calc-xor
18042 @tindex xor
18043 The @kbd{b x} (@code{calc-xor}) [@code{xor}] command computes the bitwise
18044 exclusive OR of two numbers.  A bit is 1 if exactly one of the input bits
18045 is 1:  @samp{xor(2#1100, 2#1010) = 2#0110}.
18047 @kindex b d
18048 @pindex calc-diff
18049 @tindex diff
18050 The @kbd{b d} (@code{calc-diff}) [@code{diff}] command computes the bitwise
18051 difference of two numbers; this is defined by @samp{diff(a,b) = and(a,not(b))},
18052 so that @samp{diff(2#1100, 2#1010) = 2#0100}.
18054 @kindex b n
18055 @pindex calc-not
18056 @tindex not
18057 The @kbd{b n} (@code{calc-not}) [@code{not}] command computes the bitwise
18058 NOT of a number.  A bit is 1 if the input bit is 0 and vice-versa.
18060 @kindex b l
18061 @pindex calc-lshift-binary
18062 @tindex lsh
18063 The @kbd{b l} (@code{calc-lshift-binary}) [@code{lsh}] command shifts a
18064 number left by one bit, or by the number of bits specified in the numeric
18065 prefix argument.  A negative prefix argument performs a logical right shift,
18066 in which zeros are shifted in on the left.  In symbolic form, @samp{lsh(a)}
18067 is short for @samp{lsh(a,1)}, which in turn is short for @samp{lsh(a,n,w)}.
18068 Bits shifted ``off the end,'' according to the current word size, are lost.
18070 @kindex H b l
18071 @kindex H b r
18072 @ignore
18073 @mindex @idots
18074 @end ignore
18075 @kindex H b L
18076 @ignore
18077 @mindex @null
18078 @end ignore
18079 @kindex H b R
18080 @ignore
18081 @mindex @null
18082 @end ignore
18083 @kindex H b t
18084 The @kbd{H b l} command also does a left shift, but it takes two arguments
18085 from the stack (the value to shift, and, at top-of-stack, the number of
18086 bits to shift).  This version interprets the prefix argument just like
18087 the regular binary operations, i.e., as a word size.  The Hyperbolic flag
18088 has a similar effect on the rest of the binary shift and rotate commands.
18090 @kindex b r
18091 @pindex calc-rshift-binary
18092 @tindex rsh
18093 The @kbd{b r} (@code{calc-rshift-binary}) [@code{rsh}] command shifts a
18094 number right by one bit, or by the number of bits specified in the numeric
18095 prefix argument:  @samp{rsh(a,n) = lsh(a,-n)}.
18097 @kindex b L
18098 @pindex calc-lshift-arith
18099 @tindex ash
18100 The @kbd{b L} (@code{calc-lshift-arith}) [@code{ash}] command shifts a
18101 number left.  It is analogous to @code{lsh}, except that if the shift
18102 is rightward (the prefix argument is negative), an arithmetic shift
18103 is performed as described below.
18105 @kindex b R
18106 @pindex calc-rshift-arith
18107 @tindex rash
18108 The @kbd{b R} (@code{calc-rshift-arith}) [@code{rash}] command performs
18109 an ``arithmetic'' shift to the right, in which the leftmost bit (according
18110 to the current word size) is duplicated rather than shifting in zeros.
18111 This corresponds to dividing by a power of two where the input is interpreted
18112 as a signed, twos-complement number.  (The distinction between the @samp{rsh}
18113 and @samp{rash} operations is totally independent from whether the word
18114 size is positive or negative.)  With a negative prefix argument, this
18115 performs a standard left shift.
18117 @kindex b t
18118 @pindex calc-rotate-binary
18119 @tindex rot
18120 The @kbd{b t} (@code{calc-rotate-binary}) [@code{rot}] command rotates a
18121 number one bit to the left.  The leftmost bit (according to the current
18122 word size) is dropped off the left and shifted in on the right.  With a
18123 numeric prefix argument, the number is rotated that many bits to the left
18124 or right.
18126 @xref{Set Operations}, for the @kbd{b p} and @kbd{b u} commands that
18127 pack and unpack binary integers into sets.  (For example, @kbd{b u}
18128 unpacks the number @samp{2#11001} to the set of bit-numbers
18129 @samp{[0, 3, 4]}.)  Type @kbd{b u V #} to count the number of ``1''
18130 bits in a binary integer.
18132 Another interesting use of the set representation of binary integers
18133 is to reverse the bits in, say, a 32-bit integer.  Type @kbd{b u} to
18134 unpack; type @kbd{31 @key{TAB} -} to replace each bit-number in the set
18135 with 31 minus that bit-number; type @kbd{b p} to pack the set back
18136 into a binary integer.
18138 @node Scientific Functions, Matrix Functions, Arithmetic, Top
18139 @chapter Scientific Functions
18141 @noindent
18142 The functions described here perform trigonometric and other transcendental
18143 calculations.  They generally produce floating-point answers correct to the
18144 full current precision.  The @kbd{H} (Hyperbolic) and @kbd{I} (Inverse)
18145 flag keys must be used to get some of these functions from the keyboard.
18147 @kindex P
18148 @pindex calc-pi
18149 @cindex @code{pi} variable
18150 @vindex pi
18151 @kindex H P
18152 @cindex @code{e} variable
18153 @vindex e
18154 @kindex I P
18155 @cindex @code{gamma} variable
18156 @vindex gamma
18157 @cindex Gamma constant, Euler's
18158 @cindex Euler's gamma constant
18159 @kindex H I P
18160 @cindex @code{phi} variable
18161 @cindex Phi, golden ratio
18162 @cindex Golden ratio
18163 One miscellaneous command is shift-@kbd{P} (@code{calc-pi}), which pushes
18164 the value of @cpi{} (at the current precision) onto the stack.  With the
18165 Hyperbolic flag, it pushes the value @expr{e}, the base of natural logarithms.
18166 With the Inverse flag, it pushes Euler's constant
18167 @texline @math{\gamma}
18168 @infoline @expr{gamma}
18169 (about 0.5772).  With both Inverse and Hyperbolic, it
18170 pushes the ``golden ratio''
18171 @texline @math{\phi}
18172 @infoline @expr{phi}
18173 (about 1.618).  (At present, Euler's constant is not available
18174 to unlimited precision; Calc knows only the first 100 digits.)
18175 In Symbolic mode, these commands push the
18176 actual variables @samp{pi}, @samp{e}, @samp{gamma}, and @samp{phi},
18177 respectively, instead of their values; @pxref{Symbolic Mode}.
18179 @ignore
18180 @mindex Q
18181 @end ignore
18182 @ignore
18183 @mindex I Q
18184 @end ignore
18185 @kindex I Q
18186 @tindex sqr
18187 The @kbd{Q} (@code{calc-sqrt}) [@code{sqrt}] function is described elsewhere;
18188 @pxref{Basic Arithmetic}.  With the Inverse flag [@code{sqr}], this command
18189 computes the square of the argument.
18191 @xref{Prefix Arguments}, for a discussion of the effect of numeric
18192 prefix arguments on commands in this chapter which do not otherwise
18193 interpret a prefix argument.
18195 @menu
18196 * Logarithmic Functions::
18197 * Trigonometric and Hyperbolic Functions::
18198 * Advanced Math Functions::
18199 * Branch Cuts::
18200 * Random Numbers::
18201 * Combinatorial Functions::
18202 * Probability Distribution Functions::
18203 @end menu
18205 @node Logarithmic Functions, Trigonometric and Hyperbolic Functions, Scientific Functions, Scientific Functions
18206 @section Logarithmic Functions
18208 @noindent
18209 @kindex L
18210 @pindex calc-ln
18211 @tindex ln
18212 @ignore
18213 @mindex @null
18214 @end ignore
18215 @kindex I E
18216 The shift-@kbd{L} (@code{calc-ln}) [@code{ln}] command computes the natural
18217 logarithm of the real or complex number on the top of the stack.  With
18218 the Inverse flag it computes the exponential function instead, although
18219 this is redundant with the @kbd{E} command.
18221 @kindex E
18222 @pindex calc-exp
18223 @tindex exp
18224 @ignore
18225 @mindex @null
18226 @end ignore
18227 @kindex I L
18228 The shift-@kbd{E} (@code{calc-exp}) [@code{exp}] command computes the
18229 exponential, i.e., @expr{e} raised to the power of the number on the stack.
18230 The meanings of the Inverse and Hyperbolic flags follow from those for
18231 the @code{calc-ln} command.
18233 @kindex H L
18234 @kindex H E
18235 @pindex calc-log10
18236 @tindex log10
18237 @tindex exp10
18238 @ignore
18239 @mindex @null
18240 @end ignore
18241 @kindex H I L
18242 @ignore
18243 @mindex @null
18244 @end ignore
18245 @kindex H I E
18246 The @kbd{H L} (@code{calc-log10}) [@code{log10}] command computes the common
18247 (base-10) logarithm of a number.  (With the Inverse flag [@code{exp10}],
18248 it raises ten to a given power.)  Note that the common logarithm of a
18249 complex number is computed by taking the natural logarithm and dividing
18251 @texline @math{\ln10}.
18252 @infoline @expr{ln(10)}.
18254 @kindex B
18255 @kindex I B
18256 @pindex calc-log
18257 @tindex log
18258 @tindex alog
18259 The @kbd{B} (@code{calc-log}) [@code{log}] command computes a logarithm
18260 to any base.  For example, @kbd{1024 @key{RET} 2 B} produces 10, since
18261 @texline @math{2^{10} = 1024}.
18262 @infoline @expr{2^10 = 1024}.
18263 In certain cases like @samp{log(3,9)}, the result
18264 will be either @expr{1:2} or @expr{0.5} depending on the current Fraction
18265 mode setting.  With the Inverse flag [@code{alog}], this command is
18266 similar to @kbd{^} except that the order of the arguments is reversed.
18268 @kindex f I
18269 @pindex calc-ilog
18270 @tindex ilog
18271 The @kbd{f I} (@code{calc-ilog}) [@code{ilog}] command computes the
18272 integer logarithm of a number to any base.  The number and the base must
18273 themselves be positive integers.  This is the true logarithm, rounded
18274 down to an integer.  Thus @kbd{ilog(x,10)} is 3 for all @expr{x} in the
18275 range from 1000 to 9999.  If both arguments are positive integers, exact
18276 integer arithmetic is used; otherwise, this is equivalent to
18277 @samp{floor(log(x,b))}.
18279 @kindex f E
18280 @pindex calc-expm1
18281 @tindex expm1
18282 The @kbd{f E} (@code{calc-expm1}) [@code{expm1}] command computes
18283 @texline @math{e^x - 1},
18284 @infoline @expr{exp(x)-1},
18285 but using an algorithm that produces a more accurate
18286 answer when the result is close to zero, i.e., when
18287 @texline @math{e^x}
18288 @infoline @expr{exp(x)}
18289 is close to one.
18291 @kindex f L
18292 @pindex calc-lnp1
18293 @tindex lnp1
18294 The @kbd{f L} (@code{calc-lnp1}) [@code{lnp1}] command computes
18295 @texline @math{\ln(x+1)},
18296 @infoline @expr{ln(x+1)},
18297 producing a more accurate answer when @expr{x} is close to zero.
18299 @node Trigonometric and Hyperbolic Functions, Advanced Math Functions, Logarithmic Functions, Scientific Functions
18300 @section Trigonometric/Hyperbolic Functions
18302 @noindent
18303 @kindex S
18304 @pindex calc-sin
18305 @tindex sin
18306 The shift-@kbd{S} (@code{calc-sin}) [@code{sin}] command computes the sine
18307 of an angle or complex number.  If the input is an HMS form, it is interpreted
18308 as degrees-minutes-seconds; otherwise, the input is interpreted according
18309 to the current angular mode.  It is best to use Radians mode when operating
18310 on complex numbers.
18312 Calc's ``units'' mechanism includes angular units like @code{deg},
18313 @code{rad}, and @code{grad}.  While @samp{sin(45 deg)} is not evaluated
18314 all the time, the @kbd{u s} (@code{calc-simplify-units}) command will
18315 simplify @samp{sin(45 deg)} by taking the sine of 45 degrees, regardless
18316 of the current angular mode.  @xref{Basic Operations on Units}.
18318 Also, the symbolic variable @code{pi} is not ordinarily recognized in
18319 arguments to trigonometric functions, as in @samp{sin(3 pi / 4)}, but
18320 the default algebraic simplifications recognize many such
18321 formulas when the current angular mode is Radians @emph{and} Symbolic
18322 mode is enabled; this example would be replaced by @samp{sqrt(2) / 2}.
18323 @xref{Symbolic Mode}.  Beware, this simplification occurs even if you
18324 have stored a different value in the variable @samp{pi}; this is one
18325 reason why changing built-in variables is a bad idea.  Arguments of
18326 the form @expr{x} plus a multiple of @cpiover{2} are also simplified.
18327 Calc includes similar formulas for @code{cos} and @code{tan}.
18329 Calc's algebraic simplifications know all angles which are integer multiples of
18330 @cpiover{12}, @cpiover{10}, or @cpiover{8} radians.  In Degrees mode,
18331 analogous simplifications occur for integer multiples of 15 or 18
18332 degrees, and for arguments plus multiples of 90 degrees.
18334 @kindex I S
18335 @pindex calc-arcsin
18336 @tindex arcsin
18337 With the Inverse flag, @code{calc-sin} computes an arcsine.  This is also
18338 available as the @code{calc-arcsin} command or @code{arcsin} algebraic
18339 function.  The returned argument is converted to degrees, radians, or HMS
18340 notation depending on the current angular mode.
18342 @kindex H S
18343 @pindex calc-sinh
18344 @tindex sinh
18345 @kindex H I S
18346 @pindex calc-arcsinh
18347 @tindex arcsinh
18348 With the Hyperbolic flag, @code{calc-sin} computes the hyperbolic
18349 sine, also available as @code{calc-sinh} [@code{sinh}].  With the
18350 Hyperbolic and Inverse flags, it computes the hyperbolic arcsine
18351 (@code{calc-arcsinh}) [@code{arcsinh}].
18353 @kindex C
18354 @pindex calc-cos
18355 @tindex cos
18356 @ignore
18357 @mindex @idots
18358 @end ignore
18359 @kindex I C
18360 @pindex calc-arccos
18361 @ignore
18362 @mindex @null
18363 @end ignore
18364 @tindex arccos
18365 @ignore
18366 @mindex @null
18367 @end ignore
18368 @kindex H C
18369 @pindex calc-cosh
18370 @ignore
18371 @mindex @null
18372 @end ignore
18373 @tindex cosh
18374 @ignore
18375 @mindex @null
18376 @end ignore
18377 @kindex H I C
18378 @pindex calc-arccosh
18379 @ignore
18380 @mindex @null
18381 @end ignore
18382 @tindex arccosh
18383 @ignore
18384 @mindex @null
18385 @end ignore
18386 @kindex T
18387 @pindex calc-tan
18388 @ignore
18389 @mindex @null
18390 @end ignore
18391 @tindex tan
18392 @ignore
18393 @mindex @null
18394 @end ignore
18395 @kindex I T
18396 @pindex calc-arctan
18397 @ignore
18398 @mindex @null
18399 @end ignore
18400 @tindex arctan
18401 @ignore
18402 @mindex @null
18403 @end ignore
18404 @kindex H T
18405 @pindex calc-tanh
18406 @ignore
18407 @mindex @null
18408 @end ignore
18409 @tindex tanh
18410 @ignore
18411 @mindex @null
18412 @end ignore
18413 @kindex H I T
18414 @pindex calc-arctanh
18415 @ignore
18416 @mindex @null
18417 @end ignore
18418 @tindex arctanh
18419 The shift-@kbd{C} (@code{calc-cos}) [@code{cos}] command computes the cosine
18420 of an angle or complex number, and shift-@kbd{T} (@code{calc-tan}) [@code{tan}]
18421 computes the tangent, along with all the various inverse and hyperbolic
18422 variants of these functions.
18424 @kindex f T
18425 @pindex calc-arctan2
18426 @tindex arctan2
18427 The @kbd{f T} (@code{calc-arctan2}) [@code{arctan2}] command takes two
18428 numbers from the stack and computes the arc tangent of their ratio.  The
18429 result is in the full range from @mathit{-180} (exclusive) to @mathit{+180}
18430 (inclusive) degrees, or the analogous range in radians.  A similar
18431 result would be obtained with @kbd{/} followed by @kbd{I T}, but the
18432 value would only be in the range from @mathit{-90} to @mathit{+90} degrees
18433 since the division loses information about the signs of the two
18434 components, and an error might result from an explicit division by zero
18435 which @code{arctan2} would avoid.  By (arbitrary) definition,
18436 @samp{arctan2(0,0)=0}.
18438 @pindex calc-sincos
18439 @ignore
18440 @starindex
18441 @end ignore
18442 @tindex sincos
18443 @ignore
18444 @starindex
18445 @end ignore
18446 @ignore
18447 @mindex arc@idots
18448 @end ignore
18449 @tindex arcsincos
18450 The @code{calc-sincos} [@code{sincos}] command computes the sine and
18451 cosine of a number, returning them as a vector of the form
18452 @samp{[@var{cos}, @var{sin}]}.
18453 With the Inverse flag [@code{arcsincos}], this command takes a two-element
18454 vector as an argument and computes @code{arctan2} of the elements.
18455 (This command does not accept the Hyperbolic flag.)
18457 @pindex calc-sec
18458 @tindex sec
18459 @pindex calc-csc
18460 @tindex csc
18461 @pindex calc-cot
18462 @tindex cot
18463 @pindex calc-sech
18464 @tindex sech
18465 @pindex calc-csch
18466 @tindex csch
18467 @pindex calc-coth
18468 @tindex coth
18469 The remaining trigonometric functions, @code{calc-sec} [@code{sec}],
18470 @code{calc-csc} [@code{csc}] and @code{calc-cot} [@code{cot}], are also
18471 available.  With the Hyperbolic flag, these compute their hyperbolic
18472 counterparts, which are also available separately as @code{calc-sech}
18473 [@code{sech}], @code{calc-csch} [@code{csch}] and @code{calc-coth}
18474 [@code{coth}].  (These commands do not accept the Inverse flag.)
18476 @node Advanced Math Functions, Branch Cuts, Trigonometric and Hyperbolic Functions, Scientific Functions
18477 @section Advanced Mathematical Functions
18479 @noindent
18480 Calc can compute a variety of less common functions that arise in
18481 various branches of mathematics.  All of the functions described in
18482 this section allow arbitrary complex arguments and, except as noted,
18483 will work to arbitrarily large precision.  They can not at present
18484 handle error forms or intervals as arguments.
18486 NOTE:  These functions are still experimental.  In particular, their
18487 accuracy is not guaranteed in all domains.  It is advisable to set the
18488 current precision comfortably higher than you actually need when
18489 using these functions.  Also, these functions may be impractically
18490 slow for some values of the arguments.
18492 @kindex f g
18493 @pindex calc-gamma
18494 @tindex gamma
18495 The @kbd{f g} (@code{calc-gamma}) [@code{gamma}] command computes the Euler
18496 gamma function.  For positive integer arguments, this is related to the
18497 factorial function:  @samp{gamma(n+1) = fact(n)}.  For general complex
18498 arguments the gamma function can be defined by the following definite
18499 integral:
18500 @texline @math{\Gamma(a) = \int_0^\infty t^{a-1} e^t dt}.
18501 @infoline @expr{gamma(a) = integ(t^(a-1) exp(t), t, 0, inf)}.
18502 (The actual implementation uses far more efficient computational methods.)
18504 @kindex f G
18505 @tindex gammaP
18506 @ignore
18507 @mindex @idots
18508 @end ignore
18509 @kindex I f G
18510 @ignore
18511 @mindex @null
18512 @end ignore
18513 @kindex H f G
18514 @ignore
18515 @mindex @null
18516 @end ignore
18517 @kindex H I f G
18518 @pindex calc-inc-gamma
18519 @ignore
18520 @mindex @null
18521 @end ignore
18522 @tindex gammaQ
18523 @ignore
18524 @mindex @null
18525 @end ignore
18526 @tindex gammag
18527 @ignore
18528 @mindex @null
18529 @end ignore
18530 @tindex gammaG
18531 The @kbd{f G} (@code{calc-inc-gamma}) [@code{gammaP}] command computes
18532 the incomplete gamma function, denoted @samp{P(a,x)}.  This is defined by
18533 the integral,
18534 @texline @math{P(a,x) = \left( \int_0^x t^{a-1} e^t dt \right) / \Gamma(a)}.
18535 @infoline @expr{gammaP(a,x) = integ(t^(a-1) exp(t), t, 0, x) / gamma(a)}.
18536 This implies that @samp{gammaP(a,inf) = 1} for any @expr{a} (see the
18537 definition of the normal gamma function).
18539 Several other varieties of incomplete gamma function are defined.
18540 The complement of @expr{P(a,x)}, called @expr{Q(a,x) = 1-P(a,x)} by
18541 some authors, is computed by the @kbd{I f G} [@code{gammaQ}] command.
18542 You can think of this as taking the other half of the integral, from
18543 @expr{x} to infinity.
18545 @ifnottex
18546 The functions corresponding to the integrals that define @expr{P(a,x)}
18547 and @expr{Q(a,x)} but without the normalizing @expr{1/gamma(a)}
18548 factor are called @expr{g(a,x)} and @expr{G(a,x)}, respectively
18549 (where @expr{g} and @expr{G} represent the lower- and upper-case Greek
18550 letter gamma).  You can obtain these using the @kbd{H f G} [@code{gammag}]
18551 and @kbd{H I f G} [@code{gammaG}] commands.
18552 @end ifnottex
18553 @tex
18554 The functions corresponding to the integrals that define $P(a,x)$
18555 and $Q(a,x)$ but without the normalizing $1/\Gamma(a)$
18556 factor are called $\gamma(a,x)$ and $\Gamma(a,x)$, respectively.
18557 You can obtain these using the \kbd{H f G} [\code{gammag}] and
18558 \kbd{I H f G} [\code{gammaG}] commands.
18559 @end tex
18561 @kindex f b
18562 @pindex calc-beta
18563 @tindex beta
18564 The @kbd{f b} (@code{calc-beta}) [@code{beta}] command computes the
18565 Euler beta function, which is defined in terms of the gamma function as
18566 @texline @math{B(a,b) = \Gamma(a) \Gamma(b) / \Gamma(a+b)},
18567 @infoline @expr{beta(a,b) = gamma(a) gamma(b) / gamma(a+b)},
18568 or by
18569 @texline @math{B(a,b) = \int_0^1 t^{a-1} (1-t)^{b-1} dt}.
18570 @infoline @expr{beta(a,b) = integ(t^(a-1) (1-t)^(b-1), t, 0, 1)}.
18572 @kindex f B
18573 @kindex H f B
18574 @pindex calc-inc-beta
18575 @tindex betaI
18576 @tindex betaB
18577 The @kbd{f B} (@code{calc-inc-beta}) [@code{betaI}] command computes
18578 the incomplete beta function @expr{I(x,a,b)}.  It is defined by
18579 @texline @math{I(x,a,b) = \left( \int_0^x t^{a-1} (1-t)^{b-1} dt \right) / B(a,b)}.
18580 @infoline @expr{betaI(x,a,b) = integ(t^(a-1) (1-t)^(b-1), t, 0, x) / beta(a,b)}.
18581 Once again, the @kbd{H} (hyperbolic) prefix gives the corresponding
18582 un-normalized version [@code{betaB}].
18584 @kindex f e
18585 @kindex I f e
18586 @pindex calc-erf
18587 @tindex erf
18588 @tindex erfc
18589 The @kbd{f e} (@code{calc-erf}) [@code{erf}] command computes the
18590 error function
18591 @texline @math{\hbox{erf}(x) = {2 \over \sqrt{\pi}} \int_0^x e^{-t^2} dt}.
18592 @infoline @expr{erf(x) = 2 integ(exp(-(t^2)), t, 0, x) / sqrt(pi)}.
18593 The complementary error function @kbd{I f e} (@code{calc-erfc}) [@code{erfc}]
18594 is the corresponding integral from @samp{x} to infinity; the sum
18595 @texline @math{\hbox{erf}(x) + \hbox{erfc}(x) = 1}.
18596 @infoline @expr{erf(x) + erfc(x) = 1}.
18598 @kindex f j
18599 @kindex f y
18600 @pindex calc-bessel-J
18601 @pindex calc-bessel-Y
18602 @tindex besJ
18603 @tindex besY
18604 The @kbd{f j} (@code{calc-bessel-J}) [@code{besJ}] and @kbd{f y}
18605 (@code{calc-bessel-Y}) [@code{besY}] commands compute the Bessel
18606 functions of the first and second kinds, respectively.
18607 In @samp{besJ(n,x)} and @samp{besY(n,x)} the ``order'' parameter
18608 @expr{n} is often an integer, but is not required to be one.
18609 Calc's implementation of the Bessel functions currently limits the
18610 precision to 8 digits, and may not be exact even to that precision.
18611 Use with care!
18613 @node Branch Cuts, Random Numbers, Advanced Math Functions, Scientific Functions
18614 @section Branch Cuts and Principal Values
18616 @noindent
18617 @cindex Branch cuts
18618 @cindex Principal values
18619 All of the logarithmic, trigonometric, and other scientific functions are
18620 defined for complex numbers as well as for reals.
18621 This section describes the values
18622 returned in cases where the general result is a family of possible values.
18623 Calc follows section 12.5.3 of Steele's @dfn{Common Lisp, the Language},
18624 second edition, in these matters.  This section will describe each
18625 function briefly; for a more detailed discussion (including some nifty
18626 diagrams), consult Steele's book.
18628 Note that the branch cuts for @code{arctan} and @code{arctanh} were
18629 changed between the first and second editions of Steele.  Recent
18630 versions of Calc follow the second edition.
18632 The new branch cuts exactly match those of the HP-28/48 calculators.
18633 They also match those of Mathematica 1.2, except that Mathematica's
18634 @code{arctan} cut is always in the right half of the complex plane,
18635 and its @code{arctanh} cut is always in the top half of the plane.
18636 Calc's cuts are continuous with quadrants I and III for @code{arctan},
18637 or II and IV for @code{arctanh}.
18639 Note:  The current implementations of these functions with complex arguments
18640 are designed with proper behavior around the branch cuts in mind, @emph{not}
18641 efficiency or accuracy.  You may need to increase the floating precision
18642 and wait a while to get suitable answers from them.
18644 For @samp{sqrt(a+bi)}:  When @expr{a<0} and @expr{b} is small but positive
18645 or zero, the result is close to the @expr{+i} axis.  For @expr{b} small and
18646 negative, the result is close to the @expr{-i} axis.  The result always lies
18647 in the right half of the complex plane.
18649 For @samp{ln(a+bi)}:  The real part is defined as @samp{ln(abs(a+bi))}.
18650 The imaginary part is defined as @samp{arg(a+bi) = arctan2(b,a)}.
18651 Thus the branch cuts for @code{sqrt} and @code{ln} both lie on the
18652 negative real axis.
18654 The following table describes these branch cuts in another way.
18655 If the real and imaginary parts of @expr{z} are as shown, then
18656 the real and imaginary parts of @expr{f(z)} will be as shown.
18657 Here @code{eps} stands for a small positive value; each
18658 occurrence of @code{eps} may stand for a different small value.
18660 @smallexample
18661      z           sqrt(z)       ln(z)
18662 ----------------------------------------
18663    +,   0         +,  0       any, 0
18664    -,   0         0,  +       any, pi
18665    -, +eps      +eps, +      +eps, +
18666    -, -eps      +eps, -      +eps, -
18667 @end smallexample
18669 For @samp{z1^z2}:  This is defined by @samp{exp(ln(z1)*z2)}.
18670 One interesting consequence of this is that @samp{(-8)^1:3} does
18671 not evaluate to @mathit{-2} as you might expect, but to the complex
18672 number @expr{(1., 1.732)}.  Both of these are valid cube roots
18673 of @mathit{-8} (as is @expr{(1., -1.732)}); Calc chooses a perhaps
18674 less-obvious root for the sake of mathematical consistency.
18676 For @samp{arcsin(z)}:  This is defined by @samp{-i*ln(i*z + sqrt(1-z^2))}.
18677 The branch cuts are on the real axis, less than @mathit{-1} and greater than 1.
18679 For @samp{arccos(z)}:  This is defined by @samp{-i*ln(z + i*sqrt(1-z^2))},
18680 or equivalently by @samp{pi/2 - arcsin(z)}.  The branch cuts are on
18681 the real axis, less than @mathit{-1} and greater than 1.
18683 For @samp{arctan(z)}:  This is defined by
18684 @samp{(ln(1+i*z) - ln(1-i*z)) / (2*i)}.  The branch cuts are on the
18685 imaginary axis, below @expr{-i} and above @expr{i}.
18687 For @samp{arcsinh(z)}:  This is defined by @samp{ln(z + sqrt(1+z^2))}.
18688 The branch cuts are on the imaginary axis, below @expr{-i} and
18689 above @expr{i}.
18691 For @samp{arccosh(z)}:  This is defined by
18692 @samp{ln(z + (z+1)*sqrt((z-1)/(z+1)))}.  The branch cut is on the
18693 real axis less than 1.
18695 For @samp{arctanh(z)}:  This is defined by @samp{(ln(1+z) - ln(1-z)) / 2}.
18696 The branch cuts are on the real axis, less than @mathit{-1} and greater than 1.
18698 The following tables for @code{arcsin}, @code{arccos}, and
18699 @code{arctan} assume the current angular mode is Radians.  The
18700 hyperbolic functions operate independently of the angular mode.
18702 @smallexample
18703        z             arcsin(z)            arccos(z)
18704 -------------------------------------------------------
18705  (-1..1),  0      (-pi/2..pi/2), 0       (0..pi), 0
18706  (-1..1), +eps    (-pi/2..pi/2), +eps    (0..pi), -eps
18707  (-1..1), -eps    (-pi/2..pi/2), -eps    (0..pi), +eps
18708    <-1,    0          -pi/2,     +         pi,    -
18709    <-1,  +eps      -pi/2 + eps,  +      pi - eps, -
18710    <-1,  -eps      -pi/2 + eps,  -      pi - eps, +
18711     >1,    0           pi/2,     -          0,    +
18712     >1,  +eps       pi/2 - eps,  +        +eps,   -
18713     >1,  -eps       pi/2 - eps,  -        +eps,   +
18714 @end smallexample
18716 @smallexample
18717        z            arccosh(z)         arctanh(z)
18718 -----------------------------------------------------
18719  (-1..1),  0        0,  (0..pi)       any,     0
18720  (-1..1), +eps    +eps, (0..pi)       any,    +eps
18721  (-1..1), -eps    +eps, (-pi..0)      any,    -eps
18722    <-1,    0        +,    pi           -,     pi/2
18723    <-1,  +eps       +,  pi - eps       -,  pi/2 - eps
18724    <-1,  -eps       +, -pi + eps       -, -pi/2 + eps
18725     >1,    0        +,     0           +,    -pi/2
18726     >1,  +eps       +,   +eps          +,  pi/2 - eps
18727     >1,  -eps       +,   -eps          +, -pi/2 + eps
18728 @end smallexample
18730 @smallexample
18731        z           arcsinh(z)           arctan(z)
18732 -----------------------------------------------------
18733    0, (-1..1)    0, (-pi/2..pi/2)         0,     any
18734    0,   <-1      -,    -pi/2            -pi/2,    -
18735  +eps,  <-1      +, -pi/2 + eps       pi/2 - eps, -
18736  -eps,  <-1      -, -pi/2 + eps      -pi/2 + eps, -
18737    0,    >1      +,     pi/2             pi/2,    +
18738  +eps,   >1      +,  pi/2 - eps       pi/2 - eps, +
18739  -eps,   >1      -,  pi/2 - eps      -pi/2 + eps, +
18740 @end smallexample
18742 Finally, the following identities help to illustrate the relationship
18743 between the complex trigonometric and hyperbolic functions.  They
18744 are valid everywhere, including on the branch cuts.
18746 @smallexample
18747 sin(i*z)  = i*sinh(z)       arcsin(i*z)  = i*arcsinh(z)
18748 cos(i*z)  =   cosh(z)       arcsinh(i*z) = i*arcsin(z)
18749 tan(i*z)  = i*tanh(z)       arctan(i*z)  = i*arctanh(z)
18750 sinh(i*z) = i*sin(z)        cosh(i*z)    =   cos(z)
18751 @end smallexample
18753 The ``advanced math'' functions (gamma, Bessel, etc.@:) are also defined
18754 for general complex arguments, but their branch cuts and principal values
18755 are not rigorously specified at present.
18757 @node Random Numbers, Combinatorial Functions, Branch Cuts, Scientific Functions
18758 @section Random Numbers
18760 @noindent
18761 @kindex k r
18762 @pindex calc-random
18763 @tindex random
18764 The @kbd{k r} (@code{calc-random}) [@code{random}] command produces
18765 random numbers of various sorts.
18767 Given a positive numeric prefix argument @expr{M}, it produces a random
18768 integer @expr{N} in the range
18769 @texline @math{0 \le N < M}.
18770 @infoline @expr{0 <= N < M}.
18771 Each possible value @expr{N} appears with equal probability.
18773 With no numeric prefix argument, the @kbd{k r} command takes its argument
18774 from the stack instead.  Once again, if this is a positive integer @expr{M}
18775 the result is a random integer less than @expr{M}.  However, note that
18776 while numeric prefix arguments are limited to six digits or so, an @expr{M}
18777 taken from the stack can be arbitrarily large.  If @expr{M} is negative,
18778 the result is a random integer in the range
18779 @texline @math{M < N \le 0}.
18780 @infoline @expr{M < N <= 0}.
18782 If the value on the stack is a floating-point number @expr{M}, the result
18783 is a random floating-point number @expr{N} in the range
18784 @texline @math{0 \le N < M}
18785 @infoline @expr{0 <= N < M}
18787 @texline @math{M < N \le 0},
18788 @infoline @expr{M < N <= 0},
18789 according to the sign of @expr{M}.
18791 If @expr{M} is zero, the result is a Gaussian-distributed random real
18792 number; the distribution has a mean of zero and a standard deviation
18793 of one.  The algorithm used generates random numbers in pairs; thus,
18794 every other call to this function will be especially fast.
18796 If @expr{M} is an error form
18797 @texline @math{m} @code{+/-} @math{\sigma}
18798 @infoline @samp{m +/- s}
18799 where @var{m} and
18800 @texline @math{\sigma}
18801 @infoline @var{s}
18802 are both real numbers, the result uses a Gaussian distribution with mean
18803 @var{m} and standard deviation
18804 @texline @math{\sigma}.
18805 @infoline @var{s}.
18807 If @expr{M} is an interval form, the lower and upper bounds specify the
18808 acceptable limits of the random numbers.  If both bounds are integers,
18809 the result is a random integer in the specified range.  If either bound
18810 is floating-point, the result is a random real number in the specified
18811 range.  If the interval is open at either end, the result will be sure
18812 not to equal that end value.  (This makes a big difference for integer
18813 intervals, but for floating-point intervals it's relatively minor:
18814 with a precision of 6, @samp{random([1.0..2.0))} will return any of one
18815 million numbers from 1.00000 to 1.99999; @samp{random([1.0..2.0])} may
18816 additionally return 2.00000, but the probability of this happening is
18817 extremely small.)
18819 If @expr{M} is a vector, the result is one element taken at random from
18820 the vector.  All elements of the vector are given equal probabilities.
18822 @vindex RandSeed
18823 The sequence of numbers produced by @kbd{k r} is completely random by
18824 default, i.e., the sequence is seeded each time you start Calc using
18825 the current time and other information.  You can get a reproducible
18826 sequence by storing a particular ``seed value'' in the Calc variable
18827 @code{RandSeed}.  Any integer will do for a seed; integers of from 1
18828 to 12 digits are good.  If you later store a different integer into
18829 @code{RandSeed}, Calc will switch to a different pseudo-random
18830 sequence.  If you ``unstore'' @code{RandSeed}, Calc will re-seed itself
18831 from the current time.  If you store the same integer that you used
18832 before back into @code{RandSeed}, you will get the exact same sequence
18833 of random numbers as before.
18835 @pindex calc-rrandom
18836 The @code{calc-rrandom} command (not on any key) produces a random real
18837 number between zero and one.  It is equivalent to @samp{random(1.0)}.
18839 @kindex k a
18840 @pindex calc-random-again
18841 The @kbd{k a} (@code{calc-random-again}) command produces another random
18842 number, re-using the most recent value of @expr{M}.  With a numeric
18843 prefix argument @var{n}, it produces @var{n} more random numbers using
18844 that value of @expr{M}.
18846 @kindex k h
18847 @pindex calc-shuffle
18848 @tindex shuffle
18849 The @kbd{k h} (@code{calc-shuffle}) command produces a vector of several
18850 random values with no duplicates.  The value on the top of the stack
18851 specifies the set from which the random values are drawn, and may be any
18852 of the @expr{M} formats described above.  The numeric prefix argument
18853 gives the length of the desired list.  (If you do not provide a numeric
18854 prefix argument, the length of the list is taken from the top of the
18855 stack, and @expr{M} from second-to-top.)
18857 If @expr{M} is a floating-point number, zero, or an error form (so
18858 that the random values are being drawn from the set of real numbers)
18859 there is little practical difference between using @kbd{k h} and using
18860 @kbd{k r} several times.  But if the set of possible values consists
18861 of just a few integers, or the elements of a vector, then there is
18862 a very real chance that multiple @kbd{k r}'s will produce the same
18863 number more than once.  The @kbd{k h} command produces a vector whose
18864 elements are always distinct.  (Actually, there is a slight exception:
18865 If @expr{M} is a vector, no given vector element will be drawn more
18866 than once, but if several elements of @expr{M} are equal, they may
18867 each make it into the result vector.)
18869 One use of @kbd{k h} is to rearrange a list at random.  This happens
18870 if the prefix argument is equal to the number of values in the list:
18871 @kbd{[1, 1.5, 2, 2.5, 3] 5 k h} might produce the permuted list
18872 @samp{[2.5, 1, 1.5, 3, 2]}.  As a convenient feature, if the argument
18873 @var{n} is negative it is replaced by the size of the set represented
18874 by @expr{M}.  Naturally, this is allowed only when @expr{M} specifies
18875 a small discrete set of possibilities.
18877 To do the equivalent of @kbd{k h} but with duplications allowed,
18878 given @expr{M} on the stack and with @var{n} just entered as a numeric
18879 prefix, use @kbd{v b} to build a vector of copies of @expr{M}, then use
18880 @kbd{V M k r} to ``map'' the normal @kbd{k r} function over the
18881 elements of this vector.  @xref{Matrix Functions}.
18883 @menu
18884 * Random Number Generator::     (Complete description of Calc's algorithm)
18885 @end menu
18887 @node Random Number Generator,  , Random Numbers, Random Numbers
18888 @subsection Random Number Generator
18890 Calc's random number generator uses several methods to ensure that
18891 the numbers it produces are highly random.  Knuth's @emph{Art of
18892 Computer Programming}, Volume II, contains a thorough description
18893 of the theory of random number generators and their measurement and
18894 characterization.
18896 If @code{RandSeed} has no stored value, Calc calls Emacs's built-in
18897 @code{random} function to get a stream of random numbers, which it
18898 then treats in various ways to avoid problems inherent in the simple
18899 random number generators that many systems use to implement @code{random}.
18901 When Calc's random number generator is first invoked, it ``seeds''
18902 the low-level random sequence using the time of day, so that the
18903 random number sequence will be different every time you use Calc.
18905 Since Emacs Lisp doesn't specify the range of values that will be
18906 returned by its @code{random} function, Calc exercises the function
18907 several times to estimate the range.  When Calc subsequently uses
18908 the @code{random} function, it takes only 10 bits of the result
18909 near the most-significant end.  (It avoids at least the bottom
18910 four bits, preferably more, and also tries to avoid the top two
18911 bits.)  This strategy works well with the linear congruential
18912 generators that are typically used to implement @code{random}.
18914 If @code{RandSeed} contains an integer, Calc uses this integer to
18915 seed an ``additive congruential'' method (Knuth's algorithm 3.2.2A,
18916 computing
18917 @texline @math{X_{n-55} - X_{n-24}}.
18918 @infoline @expr{X_n-55 - X_n-24}).
18919 This method expands the seed
18920 value into a large table which is maintained internally; the variable
18921 @code{RandSeed} is changed from, e.g., 42 to the vector @expr{[42]}
18922 to indicate that the seed has been absorbed into this table.  When
18923 @code{RandSeed} contains a vector, @kbd{k r} and related commands
18924 continue to use the same internal table as last time.  There is no
18925 way to extract the complete state of the random number generator
18926 so that you can restart it from any point; you can only restart it
18927 from the same initial seed value.  A simple way to restart from the
18928 same seed is to type @kbd{s r RandSeed} to get the seed vector,
18929 @kbd{v u} to unpack it back into a number, then @kbd{s t RandSeed}
18930 to reseed the generator with that number.
18932 Calc uses a ``shuffling'' method as described in algorithm 3.2.2B
18933 of Knuth.  It fills a table with 13 random 10-bit numbers.  Then,
18934 to generate a new random number, it uses the previous number to
18935 index into the table, picks the value it finds there as the new
18936 random number, then replaces that table entry with a new value
18937 obtained from a call to the base random number generator (either
18938 the additive congruential generator or the @code{random} function
18939 supplied by the system).  If there are any flaws in the base
18940 generator, shuffling will tend to even them out.  But if the system
18941 provides an excellent @code{random} function, shuffling will not
18942 damage its randomness.
18944 To create a random integer of a certain number of digits, Calc
18945 builds the integer three decimal digits at a time.  For each group
18946 of three digits, Calc calls its 10-bit shuffling random number generator
18947 (which returns a value from 0 to 1023); if the random value is 1000
18948 or more, Calc throws it out and tries again until it gets a suitable
18949 value.
18951 To create a random floating-point number with precision @var{p}, Calc
18952 simply creates a random @var{p}-digit integer and multiplies by
18953 @texline @math{10^{-p}}.
18954 @infoline @expr{10^-p}.
18955 The resulting random numbers should be very clean, but note
18956 that relatively small numbers will have few significant random digits.
18957 In other words, with a precision of 12, you will occasionally get
18958 numbers on the order of
18959 @texline @math{10^{-9}}
18960 @infoline @expr{10^-9}
18962 @texline @math{10^{-10}},
18963 @infoline @expr{10^-10},
18964 but those numbers will only have two or three random digits since they
18965 correspond to small integers times
18966 @texline @math{10^{-12}}.
18967 @infoline @expr{10^-12}.
18969 To create a random integer in the interval @samp{[0 .. @var{m})}, Calc
18970 counts the digits in @var{m}, creates a random integer with three
18971 additional digits, then reduces modulo @var{m}.  Unless @var{m} is a
18972 power of ten the resulting values will be very slightly biased toward
18973 the lower numbers, but this bias will be less than 0.1%.  (For example,
18974 if @var{m} is 42, Calc will reduce a random integer less than 100000
18975 modulo 42 to get a result less than 42.  It is easy to show that the
18976 numbers 40 and 41 will be only 2380/2381 as likely to result from this
18977 modulo operation as numbers 39 and below.)  If @var{m} is a power of
18978 ten, however, the numbers should be completely unbiased.
18980 The Gaussian random numbers generated by @samp{random(0.0)} use the
18981 ``polar'' method described in Knuth section 3.4.1C.  This method
18982 generates a pair of Gaussian random numbers at a time, so only every
18983 other call to @samp{random(0.0)} will require significant calculations.
18985 @node Combinatorial Functions, Probability Distribution Functions, Random Numbers, Scientific Functions
18986 @section Combinatorial Functions
18988 @noindent
18989 Commands relating to combinatorics and number theory begin with the
18990 @kbd{k} key prefix.
18992 @kindex k g
18993 @pindex calc-gcd
18994 @tindex gcd
18995 The @kbd{k g} (@code{calc-gcd}) [@code{gcd}] command computes the
18996 Greatest Common Divisor of two integers.  It also accepts fractions;
18997 the GCD of two fractions is defined by taking the GCD of the
18998 numerators, and the LCM of the denominators.  This definition is
18999 consistent with the idea that @samp{a / gcd(a,x)} should yield an
19000 integer for any @samp{a} and @samp{x}.  For other types of arguments,
19001 the operation is left in symbolic form.
19003 @kindex k l
19004 @pindex calc-lcm
19005 @tindex lcm
19006 The @kbd{k l} (@code{calc-lcm}) [@code{lcm}] command computes the
19007 Least Common Multiple of two integers or fractions.  The product of
19008 the LCM and GCD of two numbers is equal to the product of the
19009 numbers.
19011 @kindex k E
19012 @pindex calc-extended-gcd
19013 @tindex egcd
19014 The @kbd{k E} (@code{calc-extended-gcd}) [@code{egcd}] command computes
19015 the GCD of two integers @expr{x} and @expr{y} and returns a vector
19016 @expr{[g, a, b]} where
19017 @texline @math{g = \gcd(x,y) = a x + b y}.
19018 @infoline @expr{g = gcd(x,y) = a x + b y}.
19020 @kindex !
19021 @pindex calc-factorial
19022 @tindex fact
19023 @ignore
19024 @mindex @null
19025 @end ignore
19026 @tindex !
19027 The @kbd{!} (@code{calc-factorial}) [@code{fact}] command computes the
19028 factorial of the number at the top of the stack.  If the number is an
19029 integer, the result is an exact integer.  If the number is an
19030 integer-valued float, the result is a floating-point approximation.  If
19031 the number is a non-integral real number, the generalized factorial is used,
19032 as defined by the Euler Gamma function.  Please note that computation of
19033 large factorials can be slow; using floating-point format will help
19034 since fewer digits must be maintained.  The same is true of many of
19035 the commands in this section.
19037 @kindex k d
19038 @pindex calc-double-factorial
19039 @tindex dfact
19040 @ignore
19041 @mindex @null
19042 @end ignore
19043 @tindex !!
19044 The @kbd{k d} (@code{calc-double-factorial}) [@code{dfact}] command
19045 computes the ``double factorial'' of an integer.  For an even integer,
19046 this is the product of even integers from 2 to @expr{N}.  For an odd
19047 integer, this is the product of odd integers from 3 to @expr{N}.  If
19048 the argument is an integer-valued float, the result is a floating-point
19049 approximation.  This function is undefined for negative even integers.
19050 The notation @expr{N!!} is also recognized for double factorials.
19052 @kindex k c
19053 @pindex calc-choose
19054 @tindex choose
19055 The @kbd{k c} (@code{calc-choose}) [@code{choose}] command computes the
19056 binomial coefficient @expr{N}-choose-@expr{M}, where @expr{M} is the number
19057 on the top of the stack and @expr{N} is second-to-top.  If both arguments
19058 are integers, the result is an exact integer.  Otherwise, the result is a
19059 floating-point approximation.  The binomial coefficient is defined for all
19060 real numbers by
19061 @texline @math{N! \over M! (N-M)!\,}.
19062 @infoline @expr{N! / M! (N-M)!}.
19064 @kindex H k c
19065 @pindex calc-perm
19066 @tindex perm
19067 @ifnottex
19068 The @kbd{H k c} (@code{calc-perm}) [@code{perm}] command computes the
19069 number-of-permutations function @expr{N! / (N-M)!}.
19070 @end ifnottex
19071 @tex
19072 The \kbd{H k c} (\code{calc-perm}) [\code{perm}] command computes the
19073 number-of-perm\-utations function $N! \over (N-M)!\,$.
19074 @end tex
19076 @kindex k b
19077 @kindex H k b
19078 @pindex calc-bernoulli-number
19079 @tindex bern
19080 The @kbd{k b} (@code{calc-bernoulli-number}) [@code{bern}] command
19081 computes a given Bernoulli number.  The value at the top of the stack
19082 is a nonnegative integer @expr{n} that specifies which Bernoulli number
19083 is desired.  The @kbd{H k b} command computes a Bernoulli polynomial,
19084 taking @expr{n} from the second-to-top position and @expr{x} from the
19085 top of the stack.  If @expr{x} is a variable or formula the result is
19086 a polynomial in @expr{x}; if @expr{x} is a number the result is a number.
19088 @kindex k e
19089 @kindex H k e
19090 @pindex calc-euler-number
19091 @tindex euler
19092 The @kbd{k e} (@code{calc-euler-number}) [@code{euler}] command similarly
19093 computes an Euler number, and @w{@kbd{H k e}} computes an Euler polynomial.
19094 Bernoulli and Euler numbers occur in the Taylor expansions of several
19095 functions.
19097 @kindex k s
19098 @kindex H k s
19099 @pindex calc-stirling-number
19100 @tindex stir1
19101 @tindex stir2
19102 The @kbd{k s} (@code{calc-stirling-number}) [@code{stir1}] command
19103 computes a Stirling number of the first
19104 @texline kind@tie{}@math{n \brack m},
19105 @infoline kind,
19106 given two integers @expr{n} and @expr{m} on the stack.  The @kbd{H k s}
19107 [@code{stir2}] command computes a Stirling number of the second
19108 @texline kind@tie{}@math{n \brace m}.
19109 @infoline kind.
19110 These are the number of @expr{m}-cycle permutations of @expr{n} objects,
19111 and the number of ways to partition @expr{n} objects into @expr{m}
19112 non-empty sets, respectively.
19114 @kindex k p
19115 @pindex calc-prime-test
19116 @cindex Primes
19117 The @kbd{k p} (@code{calc-prime-test}) command checks if the integer on
19118 the top of the stack is prime.  For integers less than eight million, the
19119 answer is always exact and reasonably fast.  For larger integers, a
19120 probabilistic method is used (see Knuth vol. II, section 4.5.4, algorithm P).
19121 The number is first checked against small prime factors (up to 13).  Then,
19122 any number of iterations of the algorithm are performed.  Each step either
19123 discovers that the number is non-prime, or substantially increases the
19124 certainty that the number is prime.  After a few steps, the chance that
19125 a number was mistakenly described as prime will be less than one percent.
19126 (Indeed, this is a worst-case estimate of the probability; in practice
19127 even a single iteration is quite reliable.)  After the @kbd{k p} command,
19128 the number will be reported as definitely prime or non-prime if possible,
19129 or otherwise ``probably'' prime with a certain probability of error.
19131 @ignore
19132 @starindex
19133 @end ignore
19134 @tindex prime
19135 The normal @kbd{k p} command performs one iteration of the primality
19136 test.  Pressing @kbd{k p} repeatedly for the same integer will perform
19137 additional iterations.  Also, @kbd{k p} with a numeric prefix performs
19138 the specified number of iterations.  There is also an algebraic function
19139 @samp{prime(n)} or @samp{prime(n,iters)} which returns 1 if @expr{n}
19140 is (probably) prime and 0 if not.
19142 @kindex k f
19143 @pindex calc-prime-factors
19144 @tindex prfac
19145 The @kbd{k f} (@code{calc-prime-factors}) [@code{prfac}] command
19146 attempts to decompose an integer into its prime factors.  For numbers up
19147 to 25 million, the answer is exact although it may take some time.  The
19148 result is a vector of the prime factors in increasing order.  For larger
19149 inputs, prime factors above 5000 may not be found, in which case the
19150 last number in the vector will be an unfactored integer greater than 25
19151 million (with a warning message).  For negative integers, the first
19152 element of the list will be @mathit{-1}.  For inputs @mathit{-1}, @mathit{0}, and
19153 @mathit{1}, the result is a list of the same number.
19155 @kindex k n
19156 @pindex calc-next-prime
19157 @ignore
19158 @mindex nextpr@idots
19159 @end ignore
19160 @tindex nextprime
19161 The @kbd{k n} (@code{calc-next-prime}) [@code{nextprime}] command finds
19162 the next prime above a given number.  Essentially, it searches by calling
19163 @code{calc-prime-test} on successive integers until it finds one that
19164 passes the test.  This is quite fast for integers less than eight million,
19165 but once the probabilistic test comes into play the search may be rather
19166 slow.  Ordinarily this command stops for any prime that passes one iteration
19167 of the primality test.  With a numeric prefix argument, a number must pass
19168 the specified number of iterations before the search stops.  (This only
19169 matters when searching above eight million.)  You can always use additional
19170 @kbd{k p} commands to increase your certainty that the number is indeed
19171 prime.
19173 @kindex I k n
19174 @pindex calc-prev-prime
19175 @ignore
19176 @mindex prevpr@idots
19177 @end ignore
19178 @tindex prevprime
19179 The @kbd{I k n} (@code{calc-prev-prime}) [@code{prevprime}] command
19180 analogously finds the next prime less than a given number.
19182 @kindex k t
19183 @pindex calc-totient
19184 @tindex totient
19185 The @kbd{k t} (@code{calc-totient}) [@code{totient}] command computes the
19186 Euler ``totient''
19187 @texline function@tie{}@math{\phi(n)},
19188 @infoline function,
19189 the number of integers less than @expr{n} which
19190 are relatively prime to @expr{n}.
19192 @kindex k m
19193 @pindex calc-moebius
19194 @tindex moebius
19195 The @kbd{k m} (@code{calc-moebius}) [@code{moebius}] command computes the
19196 @texline M@"obius @math{\mu}
19197 @infoline Moebius ``mu''
19198 function.  If the input number is a product of @expr{k}
19199 distinct factors, this is @expr{(-1)^k}.  If the input number has any
19200 duplicate factors (i.e., can be divided by the same prime more than once),
19201 the result is zero.
19203 @node Probability Distribution Functions,  , Combinatorial Functions, Scientific Functions
19204 @section Probability Distribution Functions
19206 @noindent
19207 The functions in this section compute various probability distributions.
19208 For continuous distributions, this is the integral of the probability
19209 density function from @expr{x} to infinity.  (These are the ``upper
19210 tail'' distribution functions; there are also corresponding ``lower
19211 tail'' functions which integrate from minus infinity to @expr{x}.)
19212 For discrete distributions, the upper tail function gives the sum
19213 from @expr{x} to infinity; the lower tail function gives the sum
19214 from minus infinity up to, but not including,@w{ }@expr{x}.
19216 To integrate from @expr{x} to @expr{y}, just use the distribution
19217 function twice and subtract.  For example, the probability that a
19218 Gaussian random variable with mean 2 and standard deviation 1 will
19219 lie in the range from 2.5 to 2.8 is @samp{utpn(2.5,2,1) - utpn(2.8,2,1)}
19220 (``the probability that it is greater than 2.5, but not greater than 2.8''),
19221 or equivalently @samp{ltpn(2.8,2,1) - ltpn(2.5,2,1)}.
19223 @kindex k B
19224 @kindex I k B
19225 @pindex calc-utpb
19226 @tindex utpb
19227 @tindex ltpb
19228 The @kbd{k B} (@code{calc-utpb}) [@code{utpb}] function uses the
19229 binomial distribution.  Push the parameters @var{n}, @var{p}, and
19230 then @var{x} onto the stack; the result (@samp{utpb(x,n,p)}) is the
19231 probability that an event will occur @var{x} or more times out
19232 of @var{n} trials, if its probability of occurring in any given
19233 trial is @var{p}.  The @kbd{I k B} [@code{ltpb}] function is
19234 the probability that the event will occur fewer than @var{x} times.
19236 The other probability distribution functions similarly take the
19237 form @kbd{k @var{X}} (@code{calc-utp@var{x}}) [@code{utp@var{x}}]
19238 and @kbd{I k @var{X}} [@code{ltp@var{x}}], for various letters
19239 @var{x}.  The arguments to the algebraic functions are the value of
19240 the random variable first, then whatever other parameters define the
19241 distribution.  Note these are among the few Calc functions where the
19242 order of the arguments in algebraic form differs from the order of
19243 arguments as found on the stack.  (The random variable comes last on
19244 the stack, so that you can type, e.g., @kbd{2 @key{RET} 1 @key{RET} 2.5
19245 k N M-@key{RET} @key{DEL} 2.8 k N -}, using @kbd{M-@key{RET} @key{DEL}} to
19246 recover the original arguments but substitute a new value for @expr{x}.)
19248 @kindex k C
19249 @pindex calc-utpc
19250 @tindex utpc
19251 @ignore
19252 @mindex @idots
19253 @end ignore
19254 @kindex I k C
19255 @ignore
19256 @mindex @null
19257 @end ignore
19258 @tindex ltpc
19259 The @samp{utpc(x,v)} function uses the chi-square distribution with
19260 @texline @math{\nu}
19261 @infoline @expr{v}
19262 degrees of freedom.  It is the probability that a model is
19263 correct if its chi-square statistic is @expr{x}.
19265 @kindex k F
19266 @pindex calc-utpf
19267 @tindex utpf
19268 @ignore
19269 @mindex @idots
19270 @end ignore
19271 @kindex I k F
19272 @ignore
19273 @mindex @null
19274 @end ignore
19275 @tindex ltpf
19276 The @samp{utpf(F,v1,v2)} function uses the F distribution, used in
19277 various statistical tests.  The parameters
19278 @texline @math{\nu_1}
19279 @infoline @expr{v1}
19281 @texline @math{\nu_2}
19282 @infoline @expr{v2}
19283 are the degrees of freedom in the numerator and denominator,
19284 respectively, used in computing the statistic @expr{F}.
19286 @kindex k N
19287 @pindex calc-utpn
19288 @tindex utpn
19289 @ignore
19290 @mindex @idots
19291 @end ignore
19292 @kindex I k N
19293 @ignore
19294 @mindex @null
19295 @end ignore
19296 @tindex ltpn
19297 The @samp{utpn(x,m,s)} function uses a normal (Gaussian) distribution
19298 with mean @expr{m} and standard deviation
19299 @texline @math{\sigma}.
19300 @infoline @expr{s}.
19301 It is the probability that such a normal-distributed random variable
19302 would exceed @expr{x}.
19304 @kindex k P
19305 @pindex calc-utpp
19306 @tindex utpp
19307 @ignore
19308 @mindex @idots
19309 @end ignore
19310 @kindex I k P
19311 @ignore
19312 @mindex @null
19313 @end ignore
19314 @tindex ltpp
19315 The @samp{utpp(n,x)} function uses a Poisson distribution with
19316 mean @expr{x}.  It is the probability that @expr{n} or more such
19317 Poisson random events will occur.
19319 @kindex k T
19320 @pindex calc-ltpt
19321 @tindex utpt
19322 @ignore
19323 @mindex @idots
19324 @end ignore
19325 @kindex I k T
19326 @ignore
19327 @mindex @null
19328 @end ignore
19329 @tindex ltpt
19330 The @samp{utpt(t,v)} function uses the Student's ``t'' distribution
19331 with
19332 @texline @math{\nu}
19333 @infoline @expr{v}
19334 degrees of freedom.  It is the probability that a
19335 t-distributed random variable will be greater than @expr{t}.
19336 (Note:  This computes the distribution function
19337 @texline @math{A(t|\nu)}
19338 @infoline @expr{A(t|v)}
19339 where
19340 @texline @math{A(0|\nu) = 1}
19341 @infoline @expr{A(0|v) = 1}
19343 @texline @math{A(\infty|\nu) \to 0}.
19344 @infoline @expr{A(inf|v) -> 0}.
19345 The @code{UTPT} operation on the HP-48 uses a different definition which
19346 returns half of Calc's value:  @samp{UTPT(t,v) = .5*utpt(t,v)}.)
19348 While Calc does not provide inverses of the probability distribution
19349 functions, the @kbd{a R} command can be used to solve for the inverse.
19350 Since the distribution functions are monotonic, @kbd{a R} is guaranteed
19351 to be able to find a solution given any initial guess.
19352 @xref{Numerical Solutions}.
19354 @node Matrix Functions, Algebra, Scientific Functions, Top
19355 @chapter Vector/Matrix Functions
19357 @noindent
19358 Many of the commands described here begin with the @kbd{v} prefix.
19359 (For convenience, the shift-@kbd{V} prefix is equivalent to @kbd{v}.)
19360 The commands usually apply to both plain vectors and matrices; some
19361 apply only to matrices or only to square matrices.  If the argument
19362 has the wrong dimensions the operation is left in symbolic form.
19364 Vectors are entered and displayed using @samp{[a,b,c]} notation.
19365 Matrices are vectors of which all elements are vectors of equal length.
19366 (Though none of the standard Calc commands use this concept, a
19367 three-dimensional matrix or rank-3 tensor could be defined as a
19368 vector of matrices, and so on.)
19370 @menu
19371 * Packing and Unpacking::
19372 * Building Vectors::
19373 * Extracting Elements::
19374 * Manipulating Vectors::
19375 * Vector and Matrix Arithmetic::
19376 * Set Operations::
19377 * Statistical Operations::
19378 * Reducing and Mapping::
19379 * Vector and Matrix Formats::
19380 @end menu
19382 @node Packing and Unpacking, Building Vectors, Matrix Functions, Matrix Functions
19383 @section Packing and Unpacking
19385 @noindent
19386 Calc's ``pack'' and ``unpack'' commands collect stack entries to build
19387 composite objects such as vectors and complex numbers.  They are
19388 described in this chapter because they are most often used to build
19389 vectors.
19391 @kindex v p
19392 @kindex V p
19393 @pindex calc-pack
19394 The @kbd{v p} (@code{calc-pack}) [@code{pack}] command collects several
19395 elements from the stack into a matrix, complex number, HMS form, error
19396 form, etc.  It uses a numeric prefix argument to specify the kind of
19397 object to be built; this argument is referred to as the ``packing mode.''
19398 If the packing mode is a nonnegative integer, a vector of that
19399 length is created.  For example, @kbd{C-u 5 v p} will pop the top
19400 five stack elements and push back a single vector of those five
19401 elements.  (@kbd{C-u 0 v p} simply creates an empty vector.)
19403 The same effect can be had by pressing @kbd{[} to push an incomplete
19404 vector on the stack, using @key{TAB} (@code{calc-roll-down}) to sneak
19405 the incomplete object up past a certain number of elements, and
19406 then pressing @kbd{]} to complete the vector.
19408 Negative packing modes create other kinds of composite objects:
19410 @table @cite
19411 @item -1
19412 Two values are collected to build a complex number.  For example,
19413 @kbd{5 @key{RET} 7 C-u -1 v p} creates the complex number
19414 @expr{(5, 7)}.  The result is always a rectangular complex
19415 number.  The two input values must both be real numbers,
19416 i.e., integers, fractions, or floats.  If they are not, Calc
19417 will instead build a formula like @samp{a + (0, 1) b}.  (The
19418 other packing modes also create a symbolic answer if the
19419 components are not suitable.)
19421 @item -2
19422 Two values are collected to build a polar complex number.
19423 The first is the magnitude; the second is the phase expressed
19424 in either degrees or radians according to the current angular
19425 mode.
19427 @item -3
19428 Three values are collected into an HMS form.  The first
19429 two values (hours and minutes) must be integers or
19430 integer-valued floats.  The third value may be any real
19431 number.
19433 @item -4
19434 Two values are collected into an error form.  The inputs
19435 may be real numbers or formulas.
19437 @item -5
19438 Two values are collected into a modulo form.  The inputs
19439 must be real numbers.
19441 @item -6
19442 Two values are collected into the interval @samp{[a .. b]}.
19443 The inputs may be real numbers, HMS or date forms, or formulas.
19445 @item -7
19446 Two values are collected into the interval @samp{[a .. b)}.
19448 @item -8
19449 Two values are collected into the interval @samp{(a .. b]}.
19451 @item -9
19452 Two values are collected into the interval @samp{(a .. b)}.
19454 @item -10
19455 Two integer values are collected into a fraction.
19457 @item -11
19458 Two values are collected into a floating-point number.
19459 The first is the mantissa; the second, which must be an
19460 integer, is the exponent.  The result is the mantissa
19461 times ten to the power of the exponent.
19463 @item -12
19464 This is treated the same as @mathit{-11} by the @kbd{v p} command.
19465 When unpacking, @mathit{-12} specifies that a floating-point mantissa
19466 is desired.
19468 @item -13
19469 A real number is converted into a date form.
19471 @item -14
19472 Three numbers (year, month, day) are packed into a pure date form.
19474 @item -15
19475 Six numbers are packed into a date/time form.
19476 @end table
19478 With any of the two-input negative packing modes, either or both
19479 of the inputs may be vectors.  If both are vectors of the same
19480 length, the result is another vector made by packing corresponding
19481 elements of the input vectors.  If one input is a vector and the
19482 other is a plain number, the number is packed along with each vector
19483 element to produce a new vector.  For example, @kbd{C-u -4 v p}
19484 could be used to convert a vector of numbers and a vector of errors
19485 into a single vector of error forms; @kbd{C-u -5 v p} could convert
19486 a vector of numbers and a single number @var{M} into a vector of
19487 numbers modulo @var{M}.
19489 If you don't give a prefix argument to @kbd{v p}, it takes
19490 the packing mode from the top of the stack.  The elements to
19491 be packed then begin at stack level 2.  Thus
19492 @kbd{1 @key{RET} 2 @key{RET} 4 n v p} is another way to
19493 enter the error form @samp{1 +/- 2}.
19495 If the packing mode taken from the stack is a vector, the result is a
19496 matrix with the dimensions specified by the elements of the vector,
19497 which must each be integers.  For example, if the packing mode is
19498 @samp{[2, 3]}, then six numbers will be taken from the stack and
19499 returned in the form @samp{[@w{[a, b, c]}, [d, e, f]]}.
19501 If any elements of the vector are negative, other kinds of
19502 packing are done at that level as described above.  For
19503 example, @samp{[2, 3, -4]} takes 12 objects and creates a
19504 @texline @math{2\times3}
19505 @infoline 2x3
19506 matrix of error forms: @samp{[[a +/- b, c +/- d ... ]]}.
19507 Also, @samp{[-4, -10]} will convert four integers into an
19508 error form consisting of two fractions:  @samp{a:b +/- c:d}.
19510 @ignore
19511 @starindex
19512 @end ignore
19513 @tindex pack
19514 There is an equivalent algebraic function,
19515 @samp{pack(@var{mode}, @var{items})} where @var{mode} is a
19516 packing mode (an integer or a vector of integers) and @var{items}
19517 is a vector of objects to be packed (re-packed, really) according
19518 to that mode.  For example, @samp{pack([3, -4], [a,b,c,d,e,f])}
19519 yields @samp{[a +/- b, @w{c +/- d}, e +/- f]}.  The function is
19520 left in symbolic form if the packing mode is invalid, or if the
19521 number of data items does not match the number of items required
19522 by the mode.
19524 @kindex v u
19525 @kindex V u
19526 @pindex calc-unpack
19527 The @kbd{v u} (@code{calc-unpack}) command takes the vector, complex
19528 number, HMS form, or other composite object on the top of the stack and
19529 ``unpacks'' it, pushing each of its elements onto the stack as separate
19530 objects.  Thus, it is the ``inverse'' of @kbd{v p}.  If the value
19531 at the top of the stack is a formula, @kbd{v u} unpacks it by pushing
19532 each of the arguments of the top-level operator onto the stack.
19534 You can optionally give a numeric prefix argument to @kbd{v u}
19535 to specify an explicit (un)packing mode.  If the packing mode is
19536 negative and the input is actually a vector or matrix, the result
19537 will be two or more similar vectors or matrices of the elements.
19538 For example, given the vector @samp{[@w{a +/- b}, c^2, d +/- 7]},
19539 the result of @kbd{C-u -4 v u} will be the two vectors
19540 @samp{[a, c^2, d]} and @w{@samp{[b, 0, 7]}}.
19542 Note that the prefix argument can have an effect even when the input is
19543 not a vector.  For example, if the input is the number @mathit{-5}, then
19544 @kbd{c-u -1 v u} yields @mathit{-5} and 0 (the components of @mathit{-5}
19545 when viewed as a rectangular complex number); @kbd{C-u -2 v u} yields 5
19546 and 180 (assuming Degrees mode); and @kbd{C-u -10 v u} yields @mathit{-5}
19547 and 1 (the numerator and denominator of @mathit{-5}, viewed as a rational
19548 number).  Plain @kbd{v u} with this input would complain that the input
19549 is not a composite object.
19551 Unpacking mode @mathit{-11} converts a float into an integer mantissa and
19552 an integer exponent, where the mantissa is not divisible by 10
19553 (except that 0.0 is represented by a mantissa and exponent of 0).
19554 Unpacking mode @mathit{-12} converts a float into a floating-point mantissa
19555 and integer exponent, where the mantissa (for non-zero numbers)
19556 is guaranteed to lie in the range [1 .. 10).  In both cases,
19557 the mantissa is shifted left or right (and the exponent adjusted
19558 to compensate) in order to satisfy these constraints.
19560 Positive unpacking modes are treated differently than for @kbd{v p}.
19561 A mode of 1 is much like plain @kbd{v u} with no prefix argument,
19562 except that in addition to the components of the input object,
19563 a suitable packing mode to re-pack the object is also pushed.
19564 Thus, @kbd{C-u 1 v u} followed by @kbd{v p} will re-build the
19565 original object.
19567 A mode of 2 unpacks two levels of the object; the resulting
19568 re-packing mode will be a vector of length 2.  This might be used
19569 to unpack a matrix, say, or a vector of error forms.  Higher
19570 unpacking modes unpack the input even more deeply.
19572 @ignore
19573 @starindex
19574 @end ignore
19575 @tindex unpack
19576 There are two algebraic functions analogous to @kbd{v u}.
19577 The @samp{unpack(@var{mode}, @var{item})} function unpacks the
19578 @var{item} using the given @var{mode}, returning the result as
19579 a vector of components.  Here the @var{mode} must be an
19580 integer, not a vector.  For example, @samp{unpack(-4, a +/- b)}
19581 returns @samp{[a, b]}, as does @samp{unpack(1, a +/- b)}.
19583 @ignore
19584 @starindex
19585 @end ignore
19586 @tindex unpackt
19587 The @code{unpackt} function is like @code{unpack} but instead
19588 of returning a simple vector of items, it returns a vector of
19589 two things:  The mode, and the vector of items.  For example,
19590 @samp{unpackt(1, 2:3 +/- 1:4)} returns @samp{[-4, [2:3, 1:4]]},
19591 and @samp{unpackt(2, 2:3 +/- 1:4)} returns @samp{[[-4, -10], [2, 3, 1, 4]]}.
19592 The identity for re-building the original object is
19593 @samp{apply(pack, unpackt(@var{n}, @var{x})) = @var{x}}.  (The
19594 @code{apply} function builds a function call given the function
19595 name and a vector of arguments.)
19597 @cindex Numerator of a fraction, extracting
19598 Subscript notation is a useful way to extract a particular part
19599 of an object.  For example, to get the numerator of a rational
19600 number, you can use @samp{unpack(-10, @var{x})_1}.
19602 @node Building Vectors, Extracting Elements, Packing and Unpacking, Matrix Functions
19603 @section Building Vectors
19605 @noindent
19606 Vectors and matrices can be added,
19607 subtracted, multiplied, and divided; @pxref{Basic Arithmetic}.
19609 @kindex |
19610 @pindex calc-concat
19611 @ignore
19612 @mindex @null
19613 @end ignore
19614 @tindex |
19615 The @kbd{|} (@code{calc-concat}) [@code{vconcat}] command ``concatenates'' two vectors
19616 into one.  For example, after @kbd{@w{[ 1 , 2 ]} [ 3 , 4 ] |}, the stack
19617 will contain the single vector @samp{[1, 2, 3, 4]}.  If the arguments
19618 are matrices, the rows of the first matrix are concatenated with the
19619 rows of the second.  (In other words, two matrices are just two vectors
19620 of row-vectors as far as @kbd{|} is concerned.)
19622 If either argument to @kbd{|} is a scalar (a non-vector), it is treated
19623 like a one-element vector for purposes of concatenation:  @kbd{1 [ 2 , 3 ] |}
19624 produces the vector @samp{[1, 2, 3]}.  Likewise, if one argument is a
19625 matrix and the other is a plain vector, the vector is treated as a
19626 one-row matrix.
19628 @kindex H |
19629 @tindex append
19630 The @kbd{H |} (@code{calc-append}) [@code{append}] command concatenates
19631 two vectors without any special cases.  Both inputs must be vectors.
19632 Whether or not they are matrices is not taken into account.  If either
19633 argument is a scalar, the @code{append} function is left in symbolic form.
19634 See also @code{cons} and @code{rcons} below.
19636 @kindex I |
19637 @kindex H I |
19638 The @kbd{I |} and @kbd{H I |} commands are similar, but they use their
19639 two stack arguments in the opposite order.  Thus @kbd{I |} is equivalent
19640 to @kbd{@key{TAB} |}, but possibly more convenient and also a bit faster.
19642 @kindex v d
19643 @kindex V d
19644 @pindex calc-diag
19645 @tindex diag
19646 The @kbd{v d} (@code{calc-diag}) [@code{diag}] function builds a diagonal
19647 square matrix.  The optional numeric prefix gives the number of rows
19648 and columns in the matrix.  If the value at the top of the stack is a
19649 vector, the elements of the vector are used as the diagonal elements; the
19650 prefix, if specified, must match the size of the vector.  If the value on
19651 the stack is a scalar, it is used for each element on the diagonal, and
19652 the prefix argument is required.
19654 To build a constant square matrix, e.g., a
19655 @texline @math{3\times3}
19656 @infoline 3x3
19657 matrix filled with ones, use @kbd{0 M-3 v d 1 +}, i.e., build a zero
19658 matrix first and then add a constant value to that matrix.  (Another
19659 alternative would be to use @kbd{v b} and @kbd{v a}; see below.)
19661 @kindex v i
19662 @kindex V i
19663 @pindex calc-ident
19664 @tindex idn
19665 The @kbd{v i} (@code{calc-ident}) [@code{idn}] function builds an identity
19666 matrix of the specified size.  It is a convenient form of @kbd{v d}
19667 where the diagonal element is always one.  If no prefix argument is given,
19668 this command prompts for one.
19670 In algebraic notation, @samp{idn(a,n)} acts much like @samp{diag(a,n)},
19671 except that @expr{a} is required to be a scalar (non-vector) quantity.
19672 If @expr{n} is omitted, @samp{idn(a)} represents @expr{a} times an
19673 identity matrix of unknown size.  Calc can operate algebraically on
19674 such generic identity matrices, and if one is combined with a matrix
19675 whose size is known, it is converted automatically to an identity
19676 matrix of a suitable matching size.  The @kbd{v i} command with an
19677 argument of zero creates a generic identity matrix, @samp{idn(1)}.
19678 Note that in dimensioned Matrix mode (@pxref{Matrix Mode}), generic
19679 identity matrices are immediately expanded to the current default
19680 dimensions.
19682 @kindex v x
19683 @kindex V x
19684 @pindex calc-index
19685 @tindex index
19686 The @kbd{v x} (@code{calc-index}) [@code{index}] function builds a vector
19687 of consecutive integers from 1 to @var{n}, where @var{n} is the numeric
19688 prefix argument.  If you do not provide a prefix argument, you will be
19689 prompted to enter a suitable number.  If @var{n} is negative, the result
19690 is a vector of negative integers from @var{n} to @mathit{-1}.
19692 With a prefix argument of just @kbd{C-u}, the @kbd{v x} command takes
19693 three values from the stack: @var{n}, @var{start}, and @var{incr} (with
19694 @var{incr} at top-of-stack).  Counting starts at @var{start} and increases
19695 by @var{incr} for successive vector elements.  If @var{start} or @var{n}
19696 is in floating-point format, the resulting vector elements will also be
19697 floats.  Note that @var{start} and @var{incr} may in fact be any kind
19698 of numbers or formulas.
19700 When @var{start} and @var{incr} are specified, a negative @var{n} has a
19701 different interpretation:  It causes a geometric instead of arithmetic
19702 sequence to be generated.  For example, @samp{index(-3, a, b)} produces
19703 @samp{[a, a b, a b^2]}.  If you omit @var{incr} in the algebraic form,
19704 @samp{index(@var{n}, @var{start})}, the default value for @var{incr}
19705 is one for positive @var{n} or two for negative @var{n}.
19707 @kindex v b
19708 @kindex V b
19709 @pindex calc-build-vector
19710 @tindex cvec
19711 The @kbd{v b} (@code{calc-build-vector}) [@code{cvec}] function builds a
19712 vector of @var{n} copies of the value on the top of the stack, where @var{n}
19713 is the numeric prefix argument.  In algebraic formulas, @samp{cvec(x,n,m)}
19714 can also be used to build an @var{n}-by-@var{m} matrix of copies of @var{x}.
19715 (Interactively, just use @kbd{v b} twice: once to build a row, then again
19716 to build a matrix of copies of that row.)
19718 @kindex v h
19719 @kindex V h
19720 @kindex I v h
19721 @kindex I V h
19722 @pindex calc-head
19723 @pindex calc-tail
19724 @tindex head
19725 @tindex tail
19726 The @kbd{v h} (@code{calc-head}) [@code{head}] function returns the first
19727 element of a vector.  The @kbd{I v h} (@code{calc-tail}) [@code{tail}]
19728 function returns the vector with its first element removed.  In both
19729 cases, the argument must be a non-empty vector.
19731 @kindex v k
19732 @kindex V k
19733 @pindex calc-cons
19734 @tindex cons
19735 The @kbd{v k} (@code{calc-cons}) [@code{cons}] function takes a value @var{h}
19736 and a vector @var{t} from the stack, and produces the vector whose head is
19737 @var{h} and whose tail is @var{t}.  This is similar to @kbd{|}, except
19738 if @var{h} is itself a vector, @kbd{|} will concatenate the two vectors
19739 whereas @code{cons} will insert @var{h} at the front of the vector @var{t}.
19741 @kindex H v h
19742 @kindex H V h
19743 @tindex rhead
19744 @ignore
19745 @mindex @idots
19746 @end ignore
19747 @kindex H I v h
19748 @kindex H I V h
19749 @ignore
19750 @mindex @null
19751 @end ignore
19752 @kindex H v k
19753 @kindex H V k
19754 @ignore
19755 @mindex @null
19756 @end ignore
19757 @tindex rtail
19758 @ignore
19759 @mindex @null
19760 @end ignore
19761 @tindex rcons
19762 Each of these three functions also accepts the Hyperbolic flag [@code{rhead},
19763 @code{rtail}, @code{rcons}] in which case @var{t} instead represents
19764 the @emph{last} single element of the vector, with @var{h}
19765 representing the remainder of the vector.  Thus the vector
19766 @samp{[a, b, c, d] = cons(a, [b, c, d]) = rcons([a, b, c], d)}.
19767 Also, @samp{head([a, b, c, d]) = a}, @samp{tail([a, b, c, d]) = [b, c, d]},
19768 @samp{rhead([a, b, c, d]) = [a, b, c]}, and @samp{rtail([a, b, c, d]) = d}.
19770 @node Extracting Elements, Manipulating Vectors, Building Vectors, Matrix Functions
19771 @section Extracting Vector Elements
19773 @noindent
19774 @kindex v r
19775 @kindex V r
19776 @pindex calc-mrow
19777 @tindex mrow
19778 The @kbd{v r} (@code{calc-mrow}) [@code{mrow}] command extracts one row of
19779 the matrix on the top of the stack, or one element of the plain vector on
19780 the top of the stack.  The row or element is specified by the numeric
19781 prefix argument; the default is to prompt for the row or element number.
19782 The matrix or vector is replaced by the specified row or element in the
19783 form of a vector or scalar, respectively.
19785 @cindex Permutations, applying
19786 With a prefix argument of @kbd{C-u} only, @kbd{v r} takes the index of
19787 the element or row from the top of the stack, and the vector or matrix
19788 from the second-to-top position.  If the index is itself a vector of
19789 integers, the result is a vector of the corresponding elements of the
19790 input vector, or a matrix of the corresponding rows of the input matrix.
19791 This command can be used to obtain any permutation of a vector.
19793 With @kbd{C-u}, if the index is an interval form with integer components,
19794 it is interpreted as a range of indices and the corresponding subvector or
19795 submatrix is returned.
19797 @cindex Subscript notation
19798 @kindex a _
19799 @pindex calc-subscript
19800 @tindex subscr
19801 @tindex _
19802 Subscript notation in algebraic formulas (@samp{a_b}) stands for the
19803 Calc function @code{subscr}, which is synonymous with @code{mrow}.
19804 Thus, @samp{[x, y, z]_k} produces @expr{x}, @expr{y}, or @expr{z} if
19805 @expr{k} is one, two, or three, respectively.  A double subscript
19806 (@samp{M_i_j}, equivalent to @samp{subscr(subscr(M, i), j)}) will
19807 access the element at row @expr{i}, column @expr{j} of a matrix.
19808 The @kbd{a _} (@code{calc-subscript}) command creates a subscript
19809 formula @samp{a_b} out of two stack entries.  (It is on the @kbd{a}
19810 ``algebra'' prefix because subscripted variables are often used
19811 purely as an algebraic notation.)
19813 @tindex mrrow
19814 Given a negative prefix argument, @kbd{v r} instead deletes one row or
19815 element from the matrix or vector on the top of the stack.  Thus
19816 @kbd{C-u 2 v r} replaces a matrix with its second row, but @kbd{C-u -2 v r}
19817 replaces the matrix with the same matrix with its second row removed.
19818 In algebraic form this function is called @code{mrrow}.
19820 @tindex getdiag
19821 Given a prefix argument of zero, @kbd{v r} extracts the diagonal elements
19822 of a square matrix in the form of a vector.  In algebraic form this
19823 function is called @code{getdiag}.
19825 @kindex v c
19826 @kindex V c
19827 @pindex calc-mcol
19828 @tindex mcol
19829 @tindex mrcol
19830 The @kbd{v c} (@code{calc-mcol}) [@code{mcol} or @code{mrcol}] command is
19831 the analogous operation on columns of a matrix.  Given a plain vector
19832 it extracts (or removes) one element, just like @kbd{v r}.  If the
19833 index in @kbd{C-u v c} is an interval or vector and the argument is a
19834 matrix, the result is a submatrix with only the specified columns
19835 retained (and possibly permuted in the case of a vector index).
19837 To extract a matrix element at a given row and column, use @kbd{v r} to
19838 extract the row as a vector, then @kbd{v c} to extract the column element
19839 from that vector.  In algebraic formulas, it is often more convenient to
19840 use subscript notation:  @samp{m_i_j} gives row @expr{i}, column @expr{j}
19841 of matrix @expr{m}.
19843 @kindex v s
19844 @kindex V s
19845 @pindex calc-subvector
19846 @tindex subvec
19847 The @kbd{v s} (@code{calc-subvector}) [@code{subvec}] command extracts
19848 a subvector of a vector.  The arguments are the vector, the starting
19849 index, and the ending index, with the ending index in the top-of-stack
19850 position.  The starting index indicates the first element of the vector
19851 to take.  The ending index indicates the first element @emph{past} the
19852 range to be taken.  Thus, @samp{subvec([a, b, c, d, e], 2, 4)} produces
19853 the subvector @samp{[b, c]}.  You could get the same result using
19854 @samp{mrow([a, b, c, d, e], @w{[2 .. 4)})}.
19856 If either the start or the end index is zero or negative, it is
19857 interpreted as relative to the end of the vector.  Thus
19858 @samp{subvec([a, b, c, d, e], 2, -2)} also produces @samp{[b, c]}.  In
19859 the algebraic form, the end index can be omitted in which case it
19860 is taken as zero, i.e., elements from the starting element to the
19861 end of the vector are used.  The infinity symbol, @code{inf}, also
19862 has this effect when used as the ending index.
19864 @kindex I v s
19865 @kindex I V s
19866 @tindex rsubvec
19867 With the Inverse flag, @kbd{I v s} [@code{rsubvec}] removes a subvector
19868 from a vector.  The arguments are interpreted the same as for the
19869 normal @kbd{v s} command.  Thus, @samp{rsubvec([a, b, c, d, e], 2, 4)}
19870 produces @samp{[a, d, e]}.  It is always true that @code{subvec} and
19871 @code{rsubvec} return complementary parts of the input vector.
19873 @xref{Selecting Subformulas}, for an alternative way to operate on
19874 vectors one element at a time.
19876 @node Manipulating Vectors, Vector and Matrix Arithmetic, Extracting Elements, Matrix Functions
19877 @section Manipulating Vectors
19879 @noindent
19880 @kindex v l
19881 @kindex V l
19882 @pindex calc-vlength
19883 @tindex vlen
19884 The @kbd{v l} (@code{calc-vlength}) [@code{vlen}] command computes the
19885 length of a vector.  The length of a non-vector is considered to be zero.
19886 Note that matrices are just vectors of vectors for the purposes of this
19887 command.
19889 @kindex H v l
19890 @kindex H V l
19891 @tindex mdims
19892 With the Hyperbolic flag, @kbd{H v l} [@code{mdims}] computes a vector
19893 of the dimensions of a vector, matrix, or higher-order object.  For
19894 example, @samp{mdims([[a,b,c],[d,e,f]])} returns @samp{[2, 3]} since
19895 its argument is a
19896 @texline @math{2\times3}
19897 @infoline 2x3
19898 matrix.
19900 @kindex v f
19901 @kindex V f
19902 @pindex calc-vector-find
19903 @tindex find
19904 The @kbd{v f} (@code{calc-vector-find}) [@code{find}] command searches
19905 along a vector for the first element equal to a given target.  The target
19906 is on the top of the stack; the vector is in the second-to-top position.
19907 If a match is found, the result is the index of the matching element.
19908 Otherwise, the result is zero.  The numeric prefix argument, if given,
19909 allows you to select any starting index for the search.
19911 @kindex v a
19912 @kindex V a
19913 @pindex calc-arrange-vector
19914 @tindex arrange
19915 @cindex Arranging a matrix
19916 @cindex Reshaping a matrix
19917 @cindex Flattening a matrix
19918 The @kbd{v a} (@code{calc-arrange-vector}) [@code{arrange}] command
19919 rearranges a vector to have a certain number of columns and rows.  The
19920 numeric prefix argument specifies the number of columns; if you do not
19921 provide an argument, you will be prompted for the number of columns.
19922 The vector or matrix on the top of the stack is @dfn{flattened} into a
19923 plain vector.  If the number of columns is nonzero, this vector is
19924 then formed into a matrix by taking successive groups of @var{n} elements.
19925 If the number of columns does not evenly divide the number of elements
19926 in the vector, the last row will be short and the result will not be
19927 suitable for use as a matrix.  For example, with the matrix
19928 @samp{[[1, 2], @w{[3, 4]}]} on the stack, @kbd{v a 4} produces
19929 @samp{[[1, 2, 3, 4]]} (a
19930 @texline @math{1\times4}
19931 @infoline 1x4
19932 matrix), @kbd{v a 1} produces @samp{[[1], [2], [3], [4]]} (a
19933 @texline @math{4\times1}
19934 @infoline 4x1
19935 matrix), @kbd{v a 2} produces @samp{[[1, 2], [3, 4]]} (the original
19936 @texline @math{2\times2}
19937 @infoline 2x2
19938 matrix), @w{@kbd{v a 3}} produces @samp{[[1, 2, 3], [4]]} (not a
19939 matrix), and @kbd{v a 0} produces the flattened list
19940 @samp{[1, 2, @w{3, 4}]}.
19942 @cindex Sorting data
19943 @kindex v S
19944 @kindex V S
19945 @kindex I v S
19946 @kindex I V S
19947 @pindex calc-sort
19948 @tindex sort
19949 @tindex rsort
19950 The @kbd{V S} (@code{calc-sort}) [@code{sort}] command sorts the elements of
19951 a vector into increasing order.  Real numbers, real infinities, and
19952 constant interval forms come first in this ordering; next come other
19953 kinds of numbers, then variables (in alphabetical order), then finally
19954 come formulas and other kinds of objects; these are sorted according
19955 to a kind of lexicographic ordering with the useful property that
19956 one vector is less or greater than another if the first corresponding
19957 unequal elements are less or greater, respectively.  Since quoted strings
19958 are stored by Calc internally as vectors of ASCII character codes
19959 (@pxref{Strings}), this means vectors of strings are also sorted into
19960 alphabetical order by this command.
19962 The @kbd{I V S} [@code{rsort}] command sorts a vector into decreasing order.
19964 @cindex Permutation, inverse of
19965 @cindex Inverse of permutation
19966 @cindex Index tables
19967 @cindex Rank tables
19968 @kindex v G
19969 @kindex V G
19970 @kindex I v G
19971 @kindex I V G
19972 @pindex calc-grade
19973 @tindex grade
19974 @tindex rgrade
19975 The @kbd{V G} (@code{calc-grade}) [@code{grade}, @code{rgrade}] command
19976 produces an index table or permutation vector which, if applied to the
19977 input vector (as the index of @kbd{C-u v r}, say), would sort the vector.
19978 A permutation vector is just a vector of integers from 1 to @var{n}, where
19979 each integer occurs exactly once.  One application of this is to sort a
19980 matrix of data rows using one column as the sort key; extract that column,
19981 grade it with @kbd{V G}, then use the result to reorder the original matrix
19982 with @kbd{C-u v r}.  Another interesting property of the @code{V G} command
19983 is that, if the input is itself a permutation vector, the result will
19984 be the inverse of the permutation.  The inverse of an index table is
19985 a rank table, whose @var{k}th element says where the @var{k}th original
19986 vector element will rest when the vector is sorted.  To get a rank
19987 table, just use @kbd{V G V G}.
19989 With the Inverse flag, @kbd{I V G} produces an index table that would
19990 sort the input into decreasing order.  Note that @kbd{V S} and @kbd{V G}
19991 use a ``stable'' sorting algorithm, i.e., any two elements which are equal
19992 will not be moved out of their original order.  Generally there is no way
19993 to tell with @kbd{V S}, since two elements which are equal look the same,
19994 but with @kbd{V G} this can be an important issue.  In the matrix-of-rows
19995 example, suppose you have names and telephone numbers as two columns and
19996 you wish to sort by phone number primarily, and by name when the numbers
19997 are equal.  You can sort the data matrix by names first, and then again
19998 by phone numbers.  Because the sort is stable, any two rows with equal
19999 phone numbers will remain sorted by name even after the second sort.
20001 @cindex Histograms
20002 @kindex v H
20003 @kindex V H
20004 @pindex calc-histogram
20005 @ignore
20006 @mindex histo@idots
20007 @end ignore
20008 @tindex histogram
20009 The @kbd{V H} (@code{calc-histogram}) [@code{histogram}] command builds a
20010 histogram of a vector of numbers.  Vector elements are assumed to be
20011 integers or real numbers in the range [0..@var{n}) for some ``number of
20012 bins'' @var{n}, which is the numeric prefix argument given to the
20013 command.  The result is a vector of @var{n} counts of how many times
20014 each value appeared in the original vector.  Non-integers in the input
20015 are rounded down to integers.  Any vector elements outside the specified
20016 range are ignored.  (You can tell if elements have been ignored by noting
20017 that the counts in the result vector don't add up to the length of the
20018 input vector.)
20020 If no prefix is given, then you will be prompted for a vector which
20021 will be used to determine the bins. (If a positive integer is given at
20022 this prompt, it will be still treated as if it were given as a
20023 prefix.)  Each bin will consist of the interval of numbers closest to
20024 the corresponding number of this new vector; if the vector
20025 @expr{[a, b, c, ...]} is entered at the prompt, the bins will be
20026 @expr{(-inf, (a+b)/2]}, @expr{((a+b)/2, (b+c)/2]}, etc.  The result of
20027 this command will be a vector counting how many elements of the
20028 original vector are in each bin.
20030 The result will then be a vector with the same length as this new vector;
20031 each element of the new vector will be replaced by the number of
20032 elements of the original vector which are closest to it.
20034 @kindex H v H
20035 @kindex H V H
20036 With the Hyperbolic flag, @kbd{H V H} pulls two vectors from the stack.
20037 The second-to-top vector is the list of numbers as before.  The top
20038 vector is an equal-sized list of ``weights'' to attach to the elements
20039 of the data vector.  For example, if the first data element is 4.2 and
20040 the first weight is 10, then 10 will be added to bin 4 of the result
20041 vector.  Without the hyperbolic flag, every element has a weight of one.
20043 @kindex v t
20044 @kindex V t
20045 @pindex calc-transpose
20046 @tindex trn
20047 The @kbd{v t} (@code{calc-transpose}) [@code{trn}] command computes
20048 the transpose of the matrix at the top of the stack.  If the argument
20049 is a plain vector, it is treated as a row vector and transposed into
20050 a one-column matrix.
20052 @kindex v v
20053 @kindex V v
20054 @pindex calc-reverse-vector
20055 @tindex rev
20056 The @kbd{v v} (@code{calc-reverse-vector}) [@code{rev}] command reverses
20057 a vector end-for-end.  Given a matrix, it reverses the order of the rows.
20058 (To reverse the columns instead, just use @kbd{v t v v v t}.  The same
20059 principle can be used to apply other vector commands to the columns of
20060 a matrix.)
20062 @kindex v m
20063 @kindex V m
20064 @pindex calc-mask-vector
20065 @tindex vmask
20066 The @kbd{v m} (@code{calc-mask-vector}) [@code{vmask}] command uses
20067 one vector as a mask to extract elements of another vector.  The mask
20068 is in the second-to-top position; the target vector is on the top of
20069 the stack.  These vectors must have the same length.  The result is
20070 the same as the target vector, but with all elements which correspond
20071 to zeros in the mask vector deleted.  Thus, for example,
20072 @samp{vmask([1, 0, 1, 0, 1], [a, b, c, d, e])} produces @samp{[a, c, e]}.
20073 @xref{Logical Operations}.
20075 @kindex v e
20076 @kindex V e
20077 @pindex calc-expand-vector
20078 @tindex vexp
20079 The @kbd{v e} (@code{calc-expand-vector}) [@code{vexp}] command
20080 expands a vector according to another mask vector.  The result is a
20081 vector the same length as the mask, but with nonzero elements replaced
20082 by successive elements from the target vector.  The length of the target
20083 vector is normally the number of nonzero elements in the mask.  If the
20084 target vector is longer, its last few elements are lost.  If the target
20085 vector is shorter, the last few nonzero mask elements are left
20086 unreplaced in the result.  Thus @samp{vexp([2, 0, 3, 0, 7], [a, b])}
20087 produces @samp{[a, 0, b, 0, 7]}.
20089 @kindex H v e
20090 @kindex H V e
20091 With the Hyperbolic flag, @kbd{H v e} takes a filler value from the
20092 top of the stack; the mask and target vectors come from the third and
20093 second elements of the stack.  This filler is used where the mask is
20094 zero:  @samp{vexp([2, 0, 3, 0, 7], [a, b], z)} produces
20095 @samp{[a, z, c, z, 7]}.  If the filler value is itself a vector,
20096 then successive values are taken from it, so that the effect is to
20097 interleave two vectors according to the mask:
20098 @samp{vexp([2, 0, 3, 7, 0, 0], [a, b], [x, y])} produces
20099 @samp{[a, x, b, 7, y, 0]}.
20101 Another variation on the masking idea is to combine @samp{[a, b, c, d, e]}
20102 with the mask @samp{[1, 0, 1, 0, 1]} to produce @samp{[a, 0, c, 0, e]}.
20103 You can accomplish this with @kbd{V M a &}, mapping the logical ``and''
20104 operation across the two vectors.  @xref{Logical Operations}.  Note that
20105 the @code{? :} operation also discussed there allows other types of
20106 masking using vectors.
20108 @node Vector and Matrix Arithmetic, Set Operations, Manipulating Vectors, Matrix Functions
20109 @section Vector and Matrix Arithmetic
20111 @noindent
20112 Basic arithmetic operations like addition and multiplication are defined
20113 for vectors and matrices as well as for numbers.  Division of matrices, in
20114 the sense of multiplying by the inverse, is supported.  (Division by a
20115 matrix actually uses LU-decomposition for greater accuracy and speed.)
20116 @xref{Basic Arithmetic}.
20118 The following functions are applied element-wise if their arguments are
20119 vectors or matrices: @code{change-sign}, @code{conj}, @code{arg},
20120 @code{re}, @code{im}, @code{polar}, @code{rect}, @code{clean},
20121 @code{float}, @code{frac}.  @xref{Function Index}.
20123 @kindex v J
20124 @kindex V J
20125 @pindex calc-conj-transpose
20126 @tindex ctrn
20127 The @kbd{V J} (@code{calc-conj-transpose}) [@code{ctrn}] command computes
20128 the conjugate transpose of its argument, i.e., @samp{conj(trn(x))}.
20130 @ignore
20131 @mindex A
20132 @end ignore
20133 @kindex A (vectors)
20134 @pindex calc-abs (vectors)
20135 @ignore
20136 @mindex abs
20137 @end ignore
20138 @tindex abs (vectors)
20139 The @kbd{A} (@code{calc-abs}) [@code{abs}] command computes the
20140 Frobenius norm of a vector or matrix argument.  This is the square
20141 root of the sum of the squares of the absolute values of the
20142 elements of the vector or matrix.  If the vector is interpreted as
20143 a point in two- or three-dimensional space, this is the distance
20144 from that point to the origin.
20146 @kindex v n
20147 @kindex V n
20148 @pindex calc-rnorm
20149 @tindex rnorm
20150 The @kbd{v n} (@code{calc-rnorm}) [@code{rnorm}] command computes the
20151 infinity-norm of a vector, or the row norm of a matrix.  For a plain
20152 vector, this is the maximum of the absolute values of the elements.  For
20153 a matrix, this is the maximum of the row-absolute-value-sums, i.e., of
20154 the sums of the absolute values of the elements along the various rows.
20156 @kindex v N
20157 @kindex V N
20158 @pindex calc-cnorm
20159 @tindex cnorm
20160 The @kbd{V N} (@code{calc-cnorm}) [@code{cnorm}] command computes
20161 the one-norm of a vector, or column norm of a matrix.  For a plain
20162 vector, this is the sum of the absolute values of the elements.
20163 For a matrix, this is the maximum of the column-absolute-value-sums.
20164 General @expr{k}-norms for @expr{k} other than one or infinity are
20165 not provided.  However, the 2-norm (or Frobenius norm) is provided for
20166 vectors by the @kbd{A} (@code{calc-abs}) command.
20168 @kindex v C
20169 @kindex V C
20170 @pindex calc-cross
20171 @tindex cross
20172 The @kbd{V C} (@code{calc-cross}) [@code{cross}] command computes the
20173 right-handed cross product of two vectors, each of which must have
20174 exactly three elements.
20176 @ignore
20177 @mindex &
20178 @end ignore
20179 @kindex & (matrices)
20180 @pindex calc-inv (matrices)
20181 @ignore
20182 @mindex inv
20183 @end ignore
20184 @tindex inv (matrices)
20185 The @kbd{&} (@code{calc-inv}) [@code{inv}] command computes the
20186 inverse of a square matrix.  If the matrix is singular, the inverse
20187 operation is left in symbolic form.  Matrix inverses are recorded so
20188 that once an inverse (or determinant) of a particular matrix has been
20189 computed, the inverse and determinant of the matrix can be recomputed
20190 quickly in the future.
20192 If the argument to @kbd{&} is a plain number @expr{x}, this
20193 command simply computes @expr{1/x}.  This is okay, because the
20194 @samp{/} operator also does a matrix inversion when dividing one
20195 by a matrix.
20197 @kindex v D
20198 @kindex V D
20199 @pindex calc-mdet
20200 @tindex det
20201 The @kbd{V D} (@code{calc-mdet}) [@code{det}] command computes the
20202 determinant of a square matrix.
20204 @kindex v L
20205 @kindex V L
20206 @pindex calc-mlud
20207 @tindex lud
20208 The @kbd{V L} (@code{calc-mlud}) [@code{lud}] command computes the
20209 LU decomposition of a matrix.  The result is a list of three matrices
20210 which, when multiplied together left-to-right, form the original matrix.
20211 The first is a permutation matrix that arises from pivoting in the
20212 algorithm, the second is lower-triangular with ones on the diagonal,
20213 and the third is upper-triangular.
20215 @kindex v T
20216 @kindex V T
20217 @pindex calc-mtrace
20218 @tindex tr
20219 The @kbd{V T} (@code{calc-mtrace}) [@code{tr}] command computes the
20220 trace of a square matrix.  This is defined as the sum of the diagonal
20221 elements of the matrix.
20223 @kindex v K
20224 @kindex V K
20225 @pindex calc-kron
20226 @tindex kron
20227 The @kbd{V K} (@code{calc-kron}) [@code{kron}] command computes
20228 the Kronecker product of two matrices.
20230 @node Set Operations, Statistical Operations, Vector and Matrix Arithmetic, Matrix Functions
20231 @section Set Operations using Vectors
20233 @noindent
20234 @cindex Sets, as vectors
20235 Calc includes several commands which interpret vectors as @dfn{sets} of
20236 objects.  A set is a collection of objects; any given object can appear
20237 only once in the set.  Calc stores sets as vectors of objects in
20238 sorted order.  Objects in a Calc set can be any of the usual things,
20239 such as numbers, variables, or formulas.  Two set elements are considered
20240 equal if they are identical, except that numerically equal numbers like
20241 the integer 4 and the float 4.0 are considered equal even though they
20242 are not ``identical.''  Variables are treated like plain symbols without
20243 attached values by the set operations; subtracting the set @samp{[b]}
20244 from @samp{[a, b]} always yields the set @samp{[a]} even though if
20245 the variables @samp{a} and @samp{b} both equaled 17, you might
20246 expect the answer @samp{[]}.
20248 If a set contains interval forms, then it is assumed to be a set of
20249 real numbers.  In this case, all set operations require the elements
20250 of the set to be only things that are allowed in intervals:  Real
20251 numbers, plus and minus infinity, HMS forms, and date forms.  If
20252 there are variables or other non-real objects present in a real set,
20253 all set operations on it will be left in unevaluated form.
20255 If the input to a set operation is a plain number or interval form
20256 @var{a}, it is treated like the one-element vector @samp{[@var{a}]}.
20257 The result is always a vector, except that if the set consists of a
20258 single interval, the interval itself is returned instead.
20260 @xref{Logical Operations}, for the @code{in} function which tests if
20261 a certain value is a member of a given set.  To test if the set @expr{A}
20262 is a subset of the set @expr{B}, use @samp{vdiff(A, B) = []}.
20264 @kindex v +
20265 @kindex V +
20266 @pindex calc-remove-duplicates
20267 @tindex rdup
20268 The @kbd{V +} (@code{calc-remove-duplicates}) [@code{rdup}] command
20269 converts an arbitrary vector into set notation.  It works by sorting
20270 the vector as if by @kbd{V S}, then removing duplicates.  (For example,
20271 @kbd{[a, 5, 4, a, 4.0]} is sorted to @samp{[4, 4.0, 5, a, a]} and then
20272 reduced to @samp{[4, 5, a]}).  Overlapping intervals are merged as
20273 necessary.  You rarely need to use @kbd{V +} explicitly, since all the
20274 other set-based commands apply @kbd{V +} to their inputs before using
20275 them.
20277 @kindex v V
20278 @kindex V V
20279 @pindex calc-set-union
20280 @tindex vunion
20281 The @kbd{V V} (@code{calc-set-union}) [@code{vunion}] command computes
20282 the union of two sets.  An object is in the union of two sets if and
20283 only if it is in either (or both) of the input sets.  (You could
20284 accomplish the same thing by concatenating the sets with @kbd{|},
20285 then using @kbd{V +}.)
20287 @kindex v ^
20288 @kindex V ^
20289 @pindex calc-set-intersect
20290 @tindex vint
20291 The @kbd{V ^} (@code{calc-set-intersect}) [@code{vint}] command computes
20292 the intersection of two sets.  An object is in the intersection if
20293 and only if it is in both of the input sets.  Thus if the input
20294 sets are disjoint, i.e., if they share no common elements, the result
20295 will be the empty vector @samp{[]}.  Note that the characters @kbd{V}
20296 and @kbd{^} were chosen to be close to the conventional mathematical
20297 notation for set
20298 @texline union@tie{}(@math{A \cup B})
20299 @infoline union
20301 @texline intersection@tie{}(@math{A \cap B}).
20302 @infoline intersection.
20304 @kindex v -
20305 @kindex V -
20306 @pindex calc-set-difference
20307 @tindex vdiff
20308 The @kbd{V -} (@code{calc-set-difference}) [@code{vdiff}] command computes
20309 the difference between two sets.  An object is in the difference
20310 @expr{A - B} if and only if it is in @expr{A} but not in @expr{B}.
20311 Thus subtracting @samp{[y,z]} from a set will remove the elements
20312 @samp{y} and @samp{z} if they are present.  You can also think of this
20313 as a general @dfn{set complement} operator; if @expr{A} is the set of
20314 all possible values, then @expr{A - B} is the ``complement'' of @expr{B}.
20315 Obviously this is only practical if the set of all possible values in
20316 your problem is small enough to list in a Calc vector (or simple
20317 enough to express in a few intervals).
20319 @kindex v X
20320 @kindex V X
20321 @pindex calc-set-xor
20322 @tindex vxor
20323 The @kbd{V X} (@code{calc-set-xor}) [@code{vxor}] command computes
20324 the ``exclusive-or,'' or ``symmetric difference'' of two sets.
20325 An object is in the symmetric difference of two sets if and only
20326 if it is in one, but @emph{not} both, of the sets.  Objects that
20327 occur in both sets ``cancel out.''
20329 @kindex v ~
20330 @kindex V ~
20331 @pindex calc-set-complement
20332 @tindex vcompl
20333 The @kbd{V ~} (@code{calc-set-complement}) [@code{vcompl}] command
20334 computes the complement of a set with respect to the real numbers.
20335 Thus @samp{vcompl(x)} is equivalent to @samp{vdiff([-inf .. inf], x)}.
20336 For example, @samp{vcompl([2, (3 .. 4]])} evaluates to
20337 @samp{[[-inf .. 2), (2 .. 3], (4 .. inf]]}.
20339 @kindex v F
20340 @kindex V F
20341 @pindex calc-set-floor
20342 @tindex vfloor
20343 The @kbd{V F} (@code{calc-set-floor}) [@code{vfloor}] command
20344 reinterprets a set as a set of integers.  Any non-integer values,
20345 and intervals that do not enclose any integers, are removed.  Open
20346 intervals are converted to equivalent closed intervals.  Successive
20347 integers are converted into intervals of integers.  For example, the
20348 complement of the set @samp{[2, 6, 7, 8]} is messy, but if you wanted
20349 the complement with respect to the set of integers you could type
20350 @kbd{V ~ V F} to get @samp{[[-inf .. 1], [3 .. 5], [9 .. inf]]}.
20352 @kindex v E
20353 @kindex V E
20354 @pindex calc-set-enumerate
20355 @tindex venum
20356 The @kbd{V E} (@code{calc-set-enumerate}) [@code{venum}] command
20357 converts a set of integers into an explicit vector.  Intervals in
20358 the set are expanded out to lists of all integers encompassed by
20359 the intervals.  This only works for finite sets (i.e., sets which
20360 do not involve @samp{-inf} or @samp{inf}).
20362 @kindex v :
20363 @kindex V :
20364 @pindex calc-set-span
20365 @tindex vspan
20366 The @kbd{V :} (@code{calc-set-span}) [@code{vspan}] command converts any
20367 set of reals into an interval form that encompasses all its elements.
20368 The lower limit will be the smallest element in the set; the upper
20369 limit will be the largest element.  For an empty set, @samp{vspan([])}
20370 returns the empty interval @w{@samp{[0 .. 0)}}.
20372 @kindex v #
20373 @kindex V #
20374 @pindex calc-set-cardinality
20375 @tindex vcard
20376 The @kbd{V #} (@code{calc-set-cardinality}) [@code{vcard}] command counts
20377 the number of integers in a set.  The result is the length of the vector
20378 that would be produced by @kbd{V E}, although the computation is much
20379 more efficient than actually producing that vector.
20381 @cindex Sets, as binary numbers
20382 Another representation for sets that may be more appropriate in some
20383 cases is binary numbers.  If you are dealing with sets of integers
20384 in the range 0 to 49, you can use a 50-bit binary number where a
20385 particular bit is 1 if the corresponding element is in the set.
20386 @xref{Binary Functions}, for a list of commands that operate on
20387 binary numbers.  Note that many of the above set operations have
20388 direct equivalents in binary arithmetic:  @kbd{b o} (@code{calc-or}),
20389 @kbd{b a} (@code{calc-and}), @kbd{b d} (@code{calc-diff}),
20390 @kbd{b x} (@code{calc-xor}), and @kbd{b n} (@code{calc-not}),
20391 respectively.  You can use whatever representation for sets is most
20392 convenient to you.
20394 @kindex b p
20395 @kindex b u
20396 @pindex calc-pack-bits
20397 @pindex calc-unpack-bits
20398 @tindex vpack
20399 @tindex vunpack
20400 The @kbd{b u} (@code{calc-unpack-bits}) [@code{vunpack}] command
20401 converts an integer that represents a set in binary into a set
20402 in vector/interval notation.  For example, @samp{vunpack(67)}
20403 returns @samp{[[0 .. 1], 6]}.  If the input is negative, the set
20404 it represents is semi-infinite: @samp{vunpack(-4) = [2 .. inf)}.
20405 Use @kbd{V E} afterwards to expand intervals to individual
20406 values if you wish.  Note that this command uses the @kbd{b}
20407 (binary) prefix key.
20409 The @kbd{b p} (@code{calc-pack-bits}) [@code{vpack}] command
20410 converts the other way, from a vector or interval representing
20411 a set of nonnegative integers into a binary integer describing
20412 the same set.  The set may include positive infinity, but must
20413 not include any negative numbers.  The input is interpreted as a
20414 set of integers in the sense of @kbd{V F} (@code{vfloor}).  Beware
20415 that a simple input like @samp{[100]} can result in a huge integer
20416 representation
20417 @texline (@math{2^{100}}, a 31-digit integer, in this case).
20418 @infoline (@expr{2^100}, a 31-digit integer, in this case).
20420 @node Statistical Operations, Reducing and Mapping, Set Operations, Matrix Functions
20421 @section Statistical Operations on Vectors
20423 @noindent
20424 @cindex Statistical functions
20425 The commands in this section take vectors as arguments and compute
20426 various statistical measures on the data stored in the vectors.  The
20427 references used in the definitions of these functions are Bevington's
20428 @emph{Data Reduction and Error Analysis for the Physical Sciences},
20429 and @emph{Numerical Recipes} by Press, Flannery, Teukolsky and
20430 Vetterling.
20432 The statistical commands use the @kbd{u} prefix key followed by
20433 a shifted letter or other character.
20435 @xref{Manipulating Vectors}, for a description of @kbd{V H}
20436 (@code{calc-histogram}).
20438 @xref{Curve Fitting}, for the @kbd{a F} command for doing
20439 least-squares fits to statistical data.
20441 @xref{Probability Distribution Functions}, for several common
20442 probability distribution functions.
20444 @menu
20445 * Single-Variable Statistics::
20446 * Paired-Sample Statistics::
20447 @end menu
20449 @node Single-Variable Statistics, Paired-Sample Statistics, Statistical Operations, Statistical Operations
20450 @subsection Single-Variable Statistics
20452 @noindent
20453 These functions do various statistical computations on single
20454 vectors.  Given a numeric prefix argument, they actually pop
20455 @var{n} objects from the stack and combine them into a data
20456 vector.  Each object may be either a number or a vector; if a
20457 vector, any sub-vectors inside it are ``flattened'' as if by
20458 @kbd{v a 0}; @pxref{Manipulating Vectors}.  By default one object
20459 is popped, which (in order to be useful) is usually a vector.
20461 If an argument is a variable name, and the value stored in that
20462 variable is a vector, then the stored vector is used.  This method
20463 has the advantage that if your data vector is large, you can avoid
20464 the slow process of manipulating it directly on the stack.
20466 These functions are left in symbolic form if any of their arguments
20467 are not numbers or vectors, e.g., if an argument is a formula, or
20468 a non-vector variable.  However, formulas embedded within vector
20469 arguments are accepted; the result is a symbolic representation
20470 of the computation, based on the assumption that the formula does
20471 not itself represent a vector.  All varieties of numbers such as
20472 error forms and interval forms are acceptable.
20474 Some of the functions in this section also accept a single error form
20475 or interval as an argument.  They then describe a property of the
20476 normal or uniform (respectively) statistical distribution described
20477 by the argument.  The arguments are interpreted in the same way as
20478 the @var{M} argument of the random number function @kbd{k r}.  In
20479 particular, an interval with integer limits is considered an integer
20480 distribution, so that @samp{[2 .. 6)} is the same as @samp{[2 .. 5]}.
20481 An interval with at least one floating-point limit is a continuous
20482 distribution:  @samp{[2.0 .. 6.0)} is @emph{not} the same as
20483 @samp{[2.0 .. 5.0]}!
20485 @kindex u #
20486 @pindex calc-vector-count
20487 @tindex vcount
20488 The @kbd{u #} (@code{calc-vector-count}) [@code{vcount}] command
20489 computes the number of data values represented by the inputs.
20490 For example, @samp{vcount(1, [2, 3], [[4, 5], [], x, y])} returns 7.
20491 If the argument is a single vector with no sub-vectors, this
20492 simply computes the length of the vector.
20494 @kindex u +
20495 @kindex u *
20496 @pindex calc-vector-sum
20497 @pindex calc-vector-prod
20498 @tindex vsum
20499 @tindex vprod
20500 @cindex Summations (statistical)
20501 The @kbd{u +} (@code{calc-vector-sum}) [@code{vsum}] command
20502 computes the sum of the data values.  The @kbd{u *}
20503 (@code{calc-vector-prod}) [@code{vprod}] command computes the
20504 product of the data values.  If the input is a single flat vector,
20505 these are the same as @kbd{V R +} and @kbd{V R *}
20506 (@pxref{Reducing and Mapping}).
20508 @kindex u X
20509 @kindex u N
20510 @pindex calc-vector-max
20511 @pindex calc-vector-min
20512 @tindex vmax
20513 @tindex vmin
20514 The @kbd{u X} (@code{calc-vector-max}) [@code{vmax}] command
20515 computes the maximum of the data values, and the @kbd{u N}
20516 (@code{calc-vector-min}) [@code{vmin}] command computes the minimum.
20517 If the argument is an interval, this finds the minimum or maximum
20518 value in the interval.  (Note that @samp{vmax([2..6)) = 5} as
20519 described above.)  If the argument is an error form, this returns
20520 plus or minus infinity.
20522 @kindex u M
20523 @pindex calc-vector-mean
20524 @tindex vmean
20525 @cindex Mean of data values
20526 The @kbd{u M} (@code{calc-vector-mean}) [@code{vmean}] command
20527 computes the average (arithmetic mean) of the data values.
20528 If the inputs are error forms
20529 @texline @math{x \pm \sigma},
20530 @infoline @samp{x +/- s},
20531 this is the weighted mean of the @expr{x} values with weights
20532 @texline @math{1 /\sigma^2}.
20533 @infoline @expr{1 / s^2}.
20534 @tex
20535 $$ \mu = { \displaystyle \sum { x_i \over \sigma_i^2 } \over
20536            \displaystyle \sum { 1 \over \sigma_i^2 } } $$
20537 @end tex
20538 If the inputs are not error forms, this is simply the sum of the
20539 values divided by the count of the values.
20541 Note that a plain number can be considered an error form with
20542 error
20543 @texline @math{\sigma = 0}.
20544 @infoline @expr{s = 0}.
20545 If the input to @kbd{u M} is a mixture of
20546 plain numbers and error forms, the result is the mean of the
20547 plain numbers, ignoring all values with non-zero errors.  (By the
20548 above definitions it's clear that a plain number effectively
20549 has an infinite weight, next to which an error form with a finite
20550 weight is completely negligible.)
20552 This function also works for distributions (error forms or
20553 intervals).  The mean of an error form `@var{a} @tfn{+/-} @var{b}' is simply
20554 @expr{a}.  The mean of an interval is the mean of the minimum
20555 and maximum values of the interval.
20557 @kindex I u M
20558 @pindex calc-vector-mean-error
20559 @tindex vmeane
20560 The @kbd{I u M} (@code{calc-vector-mean-error}) [@code{vmeane}]
20561 command computes the mean of the data points expressed as an
20562 error form.  This includes the estimated error associated with
20563 the mean.  If the inputs are error forms, the error is the square
20564 root of the reciprocal of the sum of the reciprocals of the squares
20565 of the input errors.  (I.e., the variance is the reciprocal of the
20566 sum of the reciprocals of the variances.)
20567 @tex
20568 $$ \sigma_\mu^2 = {1 \over \displaystyle \sum {1 \over \sigma_i^2}} $$
20569 @end tex
20570 If the inputs are plain
20571 numbers, the error is equal to the standard deviation of the values
20572 divided by the square root of the number of values.  (This works
20573 out to be equivalent to calculating the standard deviation and
20574 then assuming each value's error is equal to this standard
20575 deviation.)
20576 @tex
20577 $$ \sigma_\mu^2 = {\sigma^2 \over N} $$
20578 @end tex
20580 @kindex H u M
20581 @pindex calc-vector-median
20582 @tindex vmedian
20583 @cindex Median of data values
20584 The @kbd{H u M} (@code{calc-vector-median}) [@code{vmedian}]
20585 command computes the median of the data values.  The values are
20586 first sorted into numerical order; the median is the middle
20587 value after sorting.  (If the number of data values is even,
20588 the median is taken to be the average of the two middle values.)
20589 The median function is different from the other functions in
20590 this section in that the arguments must all be real numbers;
20591 variables are not accepted even when nested inside vectors.
20592 (Otherwise it is not possible to sort the data values.)  If
20593 any of the input values are error forms, their error parts are
20594 ignored.
20596 The median function also accepts distributions.  For both normal
20597 (error form) and uniform (interval) distributions, the median is
20598 the same as the mean.
20600 @kindex H I u M
20601 @pindex calc-vector-harmonic-mean
20602 @tindex vhmean
20603 @cindex Harmonic mean
20604 The @kbd{H I u M} (@code{calc-vector-harmonic-mean}) [@code{vhmean}]
20605 command computes the harmonic mean of the data values.  This is
20606 defined as the reciprocal of the arithmetic mean of the reciprocals
20607 of the values.
20608 @tex
20609 $$ { N \over \displaystyle \sum {1 \over x_i} } $$
20610 @end tex
20612 @kindex u G
20613 @pindex calc-vector-geometric-mean
20614 @tindex vgmean
20615 @cindex Geometric mean
20616 The @kbd{u G} (@code{calc-vector-geometric-mean}) [@code{vgmean}]
20617 command computes the geometric mean of the data values.  This
20618 is the @var{n}th root of the product of the values.  This is also
20619 equal to the @code{exp} of the arithmetic mean of the logarithms
20620 of the data values.
20621 @tex
20622 $$ \exp \left ( \sum { \ln x_i } \right ) =
20623    \left ( \prod { x_i } \right)^{1 / N} $$
20624 @end tex
20626 @kindex H u G
20627 @tindex agmean
20628 The @kbd{H u G} [@code{agmean}] command computes the ``arithmetic-geometric
20629 mean'' of two numbers taken from the stack.  This is computed by
20630 replacing the two numbers with their arithmetic mean and geometric
20631 mean, then repeating until the two values converge.
20632 @tex
20633 $$ a_{i+1} = { a_i + b_i \over 2 } , \qquad b_{i+1} = \sqrt{a_i b_i} $$
20634 @end tex
20636 @cindex Root-mean-square
20637 Another commonly used mean, the RMS (root-mean-square), can be computed
20638 for a vector of numbers simply by using the @kbd{A} command.
20640 @kindex u S
20641 @pindex calc-vector-sdev
20642 @tindex vsdev
20643 @cindex Standard deviation
20644 @cindex Sample statistics
20645 The @kbd{u S} (@code{calc-vector-sdev}) [@code{vsdev}] command
20646 computes the standard
20647 @texline deviation@tie{}@math{\sigma}
20648 @infoline deviation
20649 of the data values.  If the values are error forms, the errors are used
20650 as weights just as for @kbd{u M}.  This is the @emph{sample} standard
20651 deviation, whose value is the square root of the sum of the squares of
20652 the differences between the values and the mean of the @expr{N} values,
20653 divided by @expr{N-1}.
20654 @tex
20655 $$ \sigma^2 = {1 \over N - 1} \sum (x_i - \mu)^2 $$
20656 @end tex
20658 This function also applies to distributions.  The standard deviation
20659 of a single error form is simply the error part.  The standard deviation
20660 of a continuous interval happens to equal the difference between the
20661 limits, divided by
20662 @texline @math{\sqrt{12}}.
20663 @infoline @expr{sqrt(12)}.
20664 The standard deviation of an integer interval is the same as the
20665 standard deviation of a vector of those integers.
20667 @kindex I u S
20668 @pindex calc-vector-pop-sdev
20669 @tindex vpsdev
20670 @cindex Population statistics
20671 The @kbd{I u S} (@code{calc-vector-pop-sdev}) [@code{vpsdev}]
20672 command computes the @emph{population} standard deviation.
20673 It is defined by the same formula as above but dividing
20674 by @expr{N} instead of by @expr{N-1}.  The population standard
20675 deviation is used when the input represents the entire set of
20676 data values in the distribution; the sample standard deviation
20677 is used when the input represents a sample of the set of all
20678 data values, so that the mean computed from the input is itself
20679 only an estimate of the true mean.
20680 @tex
20681 $$ \sigma^2 = {1 \over N} \sum (x_i - \mu)^2 $$
20682 @end tex
20684 For error forms and continuous intervals, @code{vpsdev} works
20685 exactly like @code{vsdev}.  For integer intervals, it computes the
20686 population standard deviation of the equivalent vector of integers.
20688 @kindex H u S
20689 @kindex H I u S
20690 @pindex calc-vector-variance
20691 @pindex calc-vector-pop-variance
20692 @tindex vvar
20693 @tindex vpvar
20694 @cindex Variance of data values
20695 The @kbd{H u S} (@code{calc-vector-variance}) [@code{vvar}] and
20696 @kbd{H I u S} (@code{calc-vector-pop-variance}) [@code{vpvar}]
20697 commands compute the variance of the data values.  The variance
20698 is the
20699 @texline square@tie{}@math{\sigma^2}
20700 @infoline square
20701 of the standard deviation, i.e., the sum of the
20702 squares of the deviations of the data values from the mean.
20703 (This definition also applies when the argument is a distribution.)
20705 @ignore
20706 @starindex
20707 @end ignore
20708 @tindex vflat
20709 The @code{vflat} algebraic function returns a vector of its
20710 arguments, interpreted in the same way as the other functions
20711 in this section.  For example, @samp{vflat(1, [2, [3, 4]], 5)}
20712 returns @samp{[1, 2, 3, 4, 5]}.
20714 @node Paired-Sample Statistics,  , Single-Variable Statistics, Statistical Operations
20715 @subsection Paired-Sample Statistics
20717 @noindent
20718 The functions in this section take two arguments, which must be
20719 vectors of equal size.  The vectors are each flattened in the same
20720 way as by the single-variable statistical functions.  Given a numeric
20721 prefix argument of 1, these functions instead take one object from
20722 the stack, which must be an
20723 @texline @math{N\times2}
20724 @infoline Nx2
20725 matrix of data values.  Once again, variable names can be used in place
20726 of actual vectors and matrices.
20728 @kindex u C
20729 @pindex calc-vector-covariance
20730 @tindex vcov
20731 @cindex Covariance
20732 The @kbd{u C} (@code{calc-vector-covariance}) [@code{vcov}] command
20733 computes the sample covariance of two vectors.  The covariance
20734 of vectors @var{x} and @var{y} is the sum of the products of the
20735 differences between the elements of @var{x} and the mean of @var{x}
20736 times the differences between the corresponding elements of @var{y}
20737 and the mean of @var{y}, all divided by @expr{N-1}.  Note that
20738 the variance of a vector is just the covariance of the vector
20739 with itself.  Once again, if the inputs are error forms the
20740 errors are used as weight factors.  If both @var{x} and @var{y}
20741 are composed of error forms, the error for a given data point
20742 is taken as the square root of the sum of the squares of the two
20743 input errors.
20744 @tex
20745 $$ \sigma_{x\!y}^2 = {1 \over N-1} \sum (x_i - \mu_x) (y_i - \mu_y) $$
20746 $$ \sigma_{x\!y}^2 =
20747     {\displaystyle {1 \over N-1}
20748                    \sum {(x_i - \mu_x) (y_i - \mu_y) \over \sigma_i^2}
20749      \over \displaystyle {1 \over N} \sum {1 \over \sigma_i^2}}
20751 @end tex
20753 @kindex I u C
20754 @pindex calc-vector-pop-covariance
20755 @tindex vpcov
20756 The @kbd{I u C} (@code{calc-vector-pop-covariance}) [@code{vpcov}]
20757 command computes the population covariance, which is the same as the
20758 sample covariance computed by @kbd{u C} except dividing by @expr{N}
20759 instead of @expr{N-1}.
20761 @kindex H u C
20762 @pindex calc-vector-correlation
20763 @tindex vcorr
20764 @cindex Correlation coefficient
20765 @cindex Linear correlation
20766 The @kbd{H u C} (@code{calc-vector-correlation}) [@code{vcorr}]
20767 command computes the linear correlation coefficient of two vectors.
20768 This is defined by the covariance of the vectors divided by the
20769 product of their standard deviations.  (There is no difference
20770 between sample or population statistics here.)
20771 @tex
20772 $$ r_{x\!y} = { \sigma_{x\!y}^2 \over \sigma_x^2 \sigma_y^2 } $$
20773 @end tex
20775 @node Reducing and Mapping, Vector and Matrix Formats, Statistical Operations, Matrix Functions
20776 @section Reducing and Mapping Vectors
20778 @noindent
20779 The commands in this section allow for more general operations on the
20780 elements of vectors.
20782 @kindex v A
20783 @kindex V A
20784 @pindex calc-apply
20785 @tindex apply
20786 The simplest of these operations is @kbd{V A} (@code{calc-apply})
20787 [@code{apply}], which applies a given operator to the elements of a vector.
20788 For example, applying the hypothetical function @code{f} to the vector
20789 @w{@samp{[1, 2, 3]}} would produce the function call @samp{f(1, 2, 3)}.
20790 Applying the @code{+} function to the vector @samp{[a, b]} gives
20791 @samp{a + b}.  Applying @code{+} to the vector @samp{[a, b, c]} is an
20792 error, since the @code{+} function expects exactly two arguments.
20794 While @kbd{V A} is useful in some cases, you will usually find that either
20795 @kbd{V R} or @kbd{V M}, described below, is closer to what you want.
20797 @menu
20798 * Specifying Operators::
20799 * Mapping::
20800 * Reducing::
20801 * Nesting and Fixed Points::
20802 * Generalized Products::
20803 @end menu
20805 @node Specifying Operators, Mapping, Reducing and Mapping, Reducing and Mapping
20806 @subsection Specifying Operators
20808 @noindent
20809 Commands in this section (like @kbd{V A}) prompt you to press the key
20810 corresponding to the desired operator.  Press @kbd{?} for a partial
20811 list of the available operators.  Generally, an operator is any key or
20812 sequence of keys that would normally take one or more arguments from
20813 the stack and replace them with a result.  For example, @kbd{V A H C}
20814 uses the hyperbolic cosine operator, @code{cosh}.  (Since @code{cosh}
20815 expects one argument, @kbd{V A H C} requires a vector with a single
20816 element as its argument.)
20818 You can press @kbd{x} at the operator prompt to select any algebraic
20819 function by name to use as the operator.  This includes functions you
20820 have defined yourself using the @kbd{Z F} command.  (@xref{Algebraic
20821 Definitions}.)  If you give a name for which no function has been
20822 defined, the result is left in symbolic form, as in @samp{f(1, 2, 3)}.
20823 Calc will prompt for the number of arguments the function takes if it
20824 can't figure it out on its own (say, because you named a function that
20825 is currently undefined).  It is also possible to type a digit key before
20826 the function name to specify the number of arguments, e.g.,
20827 @kbd{V M 3 x f @key{RET}} calls @code{f} with three arguments even if it
20828 looks like it ought to have only two.  This technique may be necessary
20829 if the function allows a variable number of arguments.  For example,
20830 the @kbd{v e} [@code{vexp}] function accepts two or three arguments;
20831 if you want to map with the three-argument version, you will have to
20832 type @kbd{V M 3 v e}.
20834 It is also possible to apply any formula to a vector by treating that
20835 formula as a function.  When prompted for the operator to use, press
20836 @kbd{'} (the apostrophe) and type your formula as an algebraic entry.
20837 You will then be prompted for the argument list, which defaults to a
20838 list of all variables that appear in the formula, sorted into alphabetic
20839 order.  For example, suppose you enter the formula @w{@samp{x + 2y^x}}.
20840 The default argument list would be @samp{(x y)}, which means that if
20841 this function is applied to the arguments @samp{[3, 10]} the result will
20842 be @samp{3 + 2*10^3}.  (If you plan to use a certain formula in this
20843 way often, you might consider defining it as a function with @kbd{Z F}.)
20845 Another way to specify the arguments to the formula you enter is with
20846 @kbd{$}, @kbd{$$}, and so on.  For example, @kbd{V A ' $$ + 2$^$$}
20847 has the same effect as the previous example.  The argument list is
20848 automatically taken to be @samp{($$ $)}.  (The order of the arguments
20849 may seem backwards, but it is analogous to the way normal algebraic
20850 entry interacts with the stack.)
20852 If you press @kbd{$} at the operator prompt, the effect is similar to
20853 the apostrophe except that the relevant formula is taken from top-of-stack
20854 instead.  The actual vector arguments of the @kbd{V A $} or related command
20855 then start at the second-to-top stack position.  You will still be
20856 prompted for an argument list.
20858 @cindex Nameless functions
20859 @cindex Generic functions
20860 A function can be written without a name using the notation @samp{<#1 - #2>},
20861 which means ``a function of two arguments that computes the first
20862 argument minus the second argument.''  The symbols @samp{#1} and @samp{#2}
20863 are placeholders for the arguments.  You can use any names for these
20864 placeholders if you wish, by including an argument list followed by a
20865 colon:  @samp{<x, y : x - y>}.  When you type @kbd{V A ' $$ + 2$^$$ @key{RET}},
20866 Calc builds the nameless function @samp{<#1 + 2 #2^#1>} as the function
20867 to map across the vectors.  When you type @kbd{V A ' x + 2y^x @key{RET} @key{RET}},
20868 Calc builds the nameless function @w{@samp{<x, y : x + 2 y^x>}}.  In both
20869 cases, Calc also writes the nameless function to the Trail so that you
20870 can get it back later if you wish.
20872 If there is only one argument, you can write @samp{#} in place of @samp{#1}.
20873 (Note that @samp{< >} notation is also used for date forms.  Calc tells
20874 that @samp{<@var{stuff}>} is a nameless function by the presence of
20875 @samp{#} signs inside @var{stuff}, or by the fact that @var{stuff}
20876 begins with a list of variables followed by a colon.)
20878 You can type a nameless function directly to @kbd{V A '}, or put one on
20879 the stack and use it with @w{@kbd{V A $}}.  Calc will not prompt for an
20880 argument list in this case, since the nameless function specifies the
20881 argument list as well as the function itself.  In @kbd{V A '}, you can
20882 omit the @samp{< >} marks if you use @samp{#} notation for the arguments,
20883 so that @kbd{V A ' #1+#2 @key{RET}} is the same as @kbd{V A ' <#1+#2> @key{RET}},
20884 which in turn is the same as @kbd{V A ' $$+$ @key{RET}}.
20886 @cindex Lambda expressions
20887 @ignore
20888 @starindex
20889 @end ignore
20890 @tindex lambda
20891 The internal format for @samp{<x, y : x + y>} is @samp{lambda(x, y, x + y)}.
20892 (The word @code{lambda} derives from Lisp notation and the theory of
20893 functions.)  The internal format for @samp{<#1 + #2>} is @samp{lambda(ArgA,
20894 ArgB, ArgA + ArgB)}.  Note that there is no actual Calc function called
20895 @code{lambda}; the whole point is that the @code{lambda} expression is
20896 used in its symbolic form, not evaluated for an answer until it is applied
20897 to specific arguments by a command like @kbd{V A} or @kbd{V M}.
20899 (Actually, @code{lambda} does have one special property:  Its arguments
20900 are never evaluated; for example, putting @samp{<(2/3) #>} on the stack
20901 will not simplify the @samp{2/3} until the nameless function is actually
20902 called.)
20904 @tindex add
20905 @tindex sub
20906 @ignore
20907 @mindex @idots
20908 @end ignore
20909 @tindex mul
20910 @ignore
20911 @mindex @null
20912 @end ignore
20913 @tindex div
20914 @ignore
20915 @mindex @null
20916 @end ignore
20917 @tindex pow
20918 @ignore
20919 @mindex @null
20920 @end ignore
20921 @tindex neg
20922 @ignore
20923 @mindex @null
20924 @end ignore
20925 @tindex mod
20926 @ignore
20927 @mindex @null
20928 @end ignore
20929 @tindex vconcat
20930 As usual, commands like @kbd{V A} have algebraic function name equivalents.
20931 For example, @kbd{V A k g} with an argument of @samp{v} is equivalent to
20932 @samp{apply(gcd, v)}.  The first argument specifies the operator name,
20933 and is either a variable whose name is the same as the function name,
20934 or a nameless function like @samp{<#^3+1>}.  Operators that are normally
20935 written as algebraic symbols have the names @code{add}, @code{sub},
20936 @code{mul}, @code{div}, @code{pow}, @code{neg}, @code{mod}, and
20937 @code{vconcat}.
20939 @ignore
20940 @starindex
20941 @end ignore
20942 @tindex call
20943 The @code{call} function builds a function call out of several arguments:
20944 @samp{call(gcd, x, y)} is the same as @samp{apply(gcd, [x, y])}, which
20945 in turn is the same as @samp{gcd(x, y)}.  The first argument of @code{call},
20946 like the other functions described here, may be either a variable naming a
20947 function, or a nameless function (@samp{call(<#1+2#2>, x, y)} is the same
20948 as @samp{x + 2y}).
20950 (Experts will notice that it's not quite proper to use a variable to name
20951 a function, since the name @code{gcd} corresponds to the Lisp variable
20952 @code{var-gcd} but to the Lisp function @code{calcFunc-gcd}.  Calc
20953 automatically makes this translation, so you don't have to worry
20954 about it.)
20956 @node Mapping, Reducing, Specifying Operators, Reducing and Mapping
20957 @subsection Mapping
20959 @noindent
20960 @kindex v M
20961 @kindex V M
20962 @pindex calc-map
20963 @tindex map
20964 The @kbd{V M} (@code{calc-map}) [@code{map}] command applies a given
20965 operator elementwise to one or more vectors.  For example, mapping
20966 @code{A} [@code{abs}] produces a vector of the absolute values of the
20967 elements in the input vector.  Mapping @code{+} pops two vectors from
20968 the stack, which must be of equal length, and produces a vector of the
20969 pairwise sums of the elements.  If either argument is a non-vector, it
20970 is duplicated for each element of the other vector.  For example,
20971 @kbd{[1,2,3] 2 V M ^} squares the elements of the specified vector.
20972 With the 2 listed first, it would have computed a vector of powers of
20973 two.  Mapping a user-defined function pops as many arguments from the
20974 stack as the function requires.  If you give an undefined name, you will
20975 be prompted for the number of arguments to use.
20977 If any argument to @kbd{V M} is a matrix, the operator is normally mapped
20978 across all elements of the matrix.  For example, given the matrix
20979 @expr{[[1, -2, 3], [-4, 5, -6]]}, @kbd{V M A} takes six absolute values to
20980 produce another
20981 @texline @math{3\times2}
20982 @infoline 3x2
20983 matrix, @expr{[[1, 2, 3], [4, 5, 6]]}.
20985 @tindex mapr
20986 The command @kbd{V M _} [@code{mapr}] (i.e., type an underscore at the
20987 operator prompt) maps by rows instead.  For example, @kbd{V M _ A} views
20988 the above matrix as a vector of two 3-element row vectors.  It produces
20989 a new vector which contains the absolute values of those row vectors,
20990 namely @expr{[3.74, 8.77]}.  (Recall, the absolute value of a vector is
20991 defined as the square root of the sum of the squares of the elements.)
20992 Some operators accept vectors and return new vectors; for example,
20993 @kbd{v v} reverses a vector, so @kbd{V M _ v v} would reverse each row
20994 of the matrix to get a new matrix, @expr{[[3, -2, 1], [-6, 5, -4]]}.
20996 Sometimes a vector of vectors (representing, say, strings, sets, or lists)
20997 happens to look like a matrix.  If so, remember to use @kbd{V M _} if you
20998 want to map a function across the whole strings or sets rather than across
20999 their individual elements.
21001 @tindex mapc
21002 The command @kbd{V M :} [@code{mapc}] maps by columns.  Basically, it
21003 transposes the input matrix, maps by rows, and then, if the result is a
21004 matrix, transposes again.  For example, @kbd{V M : A} takes the absolute
21005 values of the three columns of the matrix, treating each as a 2-vector,
21006 and @kbd{V M : v v} reverses the columns to get the matrix
21007 @expr{[[-4, 5, -6], [1, -2, 3]]}.
21009 (The symbols @kbd{_} and @kbd{:} were chosen because they had row-like
21010 and column-like appearances, and were not already taken by useful
21011 operators.  Also, they appear shifted on most keyboards so they are easy
21012 to type after @kbd{V M}.)
21014 The @kbd{_} and @kbd{:} modifiers have no effect on arguments that are
21015 not matrices (so if none of the arguments are matrices, they have no
21016 effect at all).  If some of the arguments are matrices and others are
21017 plain numbers, the plain numbers are held constant for all rows of the
21018 matrix (so that @kbd{2 V M _ ^} squares every row of a matrix; squaring
21019 a vector takes a dot product of the vector with itself).
21021 If some of the arguments are vectors with the same lengths as the
21022 rows (for @kbd{V M _}) or columns (for @kbd{V M :}) of the matrix
21023 arguments, those vectors are also held constant for every row or
21024 column.
21026 Sometimes it is useful to specify another mapping command as the operator
21027 to use with @kbd{V M}.  For example, @kbd{V M _ V A +} applies @kbd{V A +}
21028 to each row of the input matrix, which in turn adds the two values on that
21029 row.  If you give another vector-operator command as the operator for
21030 @kbd{V M}, it automatically uses map-by-rows mode if you don't specify
21031 otherwise; thus @kbd{V M V A +} is equivalent to @kbd{V M _ V A +}.  (If
21032 you really want to map-by-elements another mapping command, you can use
21033 a triple-nested mapping command:  @kbd{V M V M V A +} means to map
21034 @kbd{V M V A +} over the rows of the matrix; in turn, @kbd{V A +} is
21035 mapped over the elements of each row.)
21037 @tindex mapa
21038 @tindex mapd
21039 Previous versions of Calc had ``map across'' and ``map down'' modes
21040 that are now considered obsolete; the old ``map across'' is now simply
21041 @kbd{V M V A}, and ``map down'' is now @kbd{V M : V A}.  The algebraic
21042 functions @code{mapa} and @code{mapd} are still supported, though.
21043 Note also that, while the old mapping modes were persistent (once you
21044 set the mode, it would apply to later mapping commands until you reset
21045 it), the new @kbd{:} and @kbd{_} modifiers apply only to the current
21046 mapping command.  The default @kbd{V M} always means map-by-elements.
21048 @xref{Algebraic Manipulation}, for the @kbd{a M} command, which is like
21049 @kbd{V M} but for equations and inequalities instead of vectors.
21050 @xref{Storing Variables}, for the @kbd{s m} command which modifies a
21051 variable's stored value using a @kbd{V M}-like operator.
21053 @node Reducing, Nesting and Fixed Points, Mapping, Reducing and Mapping
21054 @subsection Reducing
21056 @noindent
21057 @kindex v R
21058 @kindex V R
21059 @pindex calc-reduce
21060 @tindex reduce
21061 The @kbd{V R} (@code{calc-reduce}) [@code{reduce}] command applies a given
21062 binary operator across all the elements of a vector.  A binary operator is
21063 a function such as @code{+} or @code{max} which takes two arguments.  For
21064 example, reducing @code{+} over a vector computes the sum of the elements
21065 of the vector.  Reducing @code{-} computes the first element minus each of
21066 the remaining elements.  Reducing @code{max} computes the maximum element
21067 and so on.  In general, reducing @code{f} over the vector @samp{[a, b, c, d]}
21068 produces @samp{f(f(f(a, b), c), d)}.
21070 @kindex I v R
21071 @kindex I V R
21072 @tindex rreduce
21073 The @kbd{I V R} [@code{rreduce}] command is similar to @kbd{V R} except
21074 that works from right to left through the vector.  For example, plain
21075 @kbd{V R -} on the vector @samp{[a, b, c, d]} produces @samp{a - b - c - d}
21076 but @kbd{I V R -} on the same vector produces @samp{a - (b - (c - d))},
21077 or @samp{a - b + c - d}.  This ``alternating sum'' occurs frequently
21078 in power series expansions.
21080 @kindex v U
21081 @kindex V U
21082 @tindex accum
21083 The @kbd{V U} (@code{calc-accumulate}) [@code{accum}] command does an
21084 accumulation operation.  Here Calc does the corresponding reduction
21085 operation, but instead of producing only the final result, it produces
21086 a vector of all the intermediate results.  Accumulating @code{+} over
21087 the vector @samp{[a, b, c, d]} produces the vector
21088 @samp{[a, a + b, a + b + c, a + b + c + d]}.
21090 @kindex I v U
21091 @kindex I V U
21092 @tindex raccum
21093 The @kbd{I V U} [@code{raccum}] command does a right-to-left accumulation.
21094 For example, @kbd{I V U -} on the vector @samp{[a, b, c, d]} produces the
21095 vector @samp{[a - b + c - d, b - c + d, c - d, d]}.
21097 @tindex reducea
21098 @tindex rreducea
21099 @tindex reduced
21100 @tindex rreduced
21101 As for @kbd{V M}, @kbd{V R} normally reduces a matrix elementwise.  For
21102 example, given the matrix @expr{[[a, b, c], [d, e, f]]}, @kbd{V R +} will
21103 compute @expr{a + b + c + d + e + f}.  You can type @kbd{V R _} or
21104 @kbd{V R :} to modify this behavior.  The @kbd{V R _} [@code{reducea}]
21105 command reduces ``across'' the matrix; it reduces each row of the matrix
21106 as a vector, then collects the results.  Thus @kbd{V R _ +} of this
21107 matrix would produce @expr{[a + b + c, d + e + f]}.  Similarly, @kbd{V R :}
21108 [@code{reduced}] reduces down; @kbd{V R : +} would produce @expr{[a + d,
21109 b + e, c + f]}.
21111 @tindex reducer
21112 @tindex rreducer
21113 There is a third ``by rows'' mode for reduction that is occasionally
21114 useful; @kbd{V R =} [@code{reducer}] simply reduces the operator over
21115 the rows of the matrix themselves.  Thus @kbd{V R = +} on the above
21116 matrix would get the same result as @kbd{V R : +}, since adding two
21117 row vectors is equivalent to adding their elements.  But @kbd{V R = *}
21118 would multiply the two rows (to get a single number, their dot product),
21119 while @kbd{V R : *} would produce a vector of the products of the columns.
21121 These three matrix reduction modes work with @kbd{V R} and @kbd{I V R},
21122 but they are not currently supported with @kbd{V U} or @kbd{I V U}.
21124 @tindex reducec
21125 @tindex rreducec
21126 The obsolete reduce-by-columns function, @code{reducec}, is still
21127 supported but there is no way to get it through the @kbd{V R} command.
21129 The commands @kbd{C-x * :} and @kbd{C-x * _} are equivalent to typing
21130 @kbd{C-x * r} to grab a rectangle of data into Calc, and then typing
21131 @kbd{V R : +} or @kbd{V R _ +}, respectively, to sum the columns or
21132 rows of the matrix.  @xref{Grabbing From Buffers}.
21134 @node Nesting and Fixed Points, Generalized Products, Reducing, Reducing and Mapping
21135 @subsection Nesting and Fixed Points
21137 @noindent
21138 @kindex H v R
21139 @kindex H V R
21140 @tindex nest
21141 The @kbd{H V R} [@code{nest}] command applies a function to a given
21142 argument repeatedly.  It takes two values, @samp{a} and @samp{n}, from
21143 the stack, where @samp{n} must be an integer.  It then applies the
21144 function nested @samp{n} times; if the function is @samp{f} and @samp{n}
21145 is 3, the result is @samp{f(f(f(a)))}.  The number @samp{n} may be
21146 negative if Calc knows an inverse for the function @samp{f}; for
21147 example, @samp{nest(sin, a, -2)} returns @samp{arcsin(arcsin(a))}.
21149 @kindex H v U
21150 @kindex H V U
21151 @tindex anest
21152 The @kbd{H V U} [@code{anest}] command is an accumulating version of
21153 @code{nest}:  It returns a vector of @samp{n+1} values, e.g.,
21154 @samp{[a, f(a), f(f(a)), f(f(f(a)))]}.  If @samp{n} is negative and
21155 @samp{F} is the inverse of @samp{f}, then the result is of the
21156 form @samp{[a, F(a), F(F(a)), F(F(F(a)))]}.
21158 @kindex H I v R
21159 @kindex H I V R
21160 @tindex fixp
21161 @cindex Fixed points
21162 The @kbd{H I V R} [@code{fixp}] command is like @kbd{H V R}, except
21163 that it takes only an @samp{a} value from the stack; the function is
21164 applied until it reaches a ``fixed point,'' i.e., until the result
21165 no longer changes.
21167 @kindex H I v U
21168 @kindex H I V U
21169 @tindex afixp
21170 The @kbd{H I V U} [@code{afixp}] command is an accumulating @code{fixp}.
21171 The first element of the return vector will be the initial value @samp{a};
21172 the last element will be the final result that would have been returned
21173 by @code{fixp}.
21175 For example, 0.739085 is a fixed point of the cosine function (in radians):
21176 @samp{cos(0.739085) = 0.739085}.  You can find this value by putting, say,
21177 1.0 on the stack and typing @kbd{H I V U C}.  (We use the accumulating
21178 version so we can see the intermediate results:  @samp{[1, 0.540302, 0.857553,
21179 0.65329, ...]}.  With a precision of six, this command will take 36 steps
21180 to converge to 0.739085.)
21182 Newton's method for finding roots is a classic example of iteration
21183 to a fixed point.  To find the square root of five starting with an
21184 initial guess, Newton's method would look for a fixed point of the
21185 function @samp{(x + 5/x) / 2}.  Putting a guess of 1 on the stack
21186 and typing @kbd{H I V R ' ($ + 5/$)/2 @key{RET}} quickly yields the result
21187 2.23607.  This is equivalent to using the @kbd{a R} (@code{calc-find-root})
21188 command to find a root of the equation @samp{x^2 = 5}.
21190 These examples used numbers for @samp{a} values.  Calc keeps applying
21191 the function until two successive results are equal to within the
21192 current precision.  For complex numbers, both the real parts and the
21193 imaginary parts must be equal to within the current precision.  If
21194 @samp{a} is a formula (say, a variable name), then the function is
21195 applied until two successive results are exactly the same formula.
21196 It is up to you to ensure that the function will eventually converge;
21197 if it doesn't, you may have to press @kbd{C-g} to stop the Calculator.
21199 The algebraic @code{fixp} function takes two optional arguments, @samp{n}
21200 and @samp{tol}.  The first is the maximum number of steps to be allowed,
21201 and must be either an integer or the symbol @samp{inf} (infinity, the
21202 default).  The second is a convergence tolerance.  If a tolerance is
21203 specified, all results during the calculation must be numbers, not
21204 formulas, and the iteration stops when the magnitude of the difference
21205 between two successive results is less than or equal to the tolerance.
21206 (This implies that a tolerance of zero iterates until the results are
21207 exactly equal.)
21209 Putting it all together, @samp{fixp(<(# + A/#)/2>, B, 20, 1e-10)}
21210 computes the square root of @samp{A} given the initial guess @samp{B},
21211 stopping when the result is correct within the specified tolerance, or
21212 when 20 steps have been taken, whichever is sooner.
21214 @node Generalized Products,  , Nesting and Fixed Points, Reducing and Mapping
21215 @subsection Generalized Products
21217 @kindex v O
21218 @kindex V O
21219 @pindex calc-outer-product
21220 @tindex outer
21221 The @kbd{V O} (@code{calc-outer-product}) [@code{outer}] command applies
21222 a given binary operator to all possible pairs of elements from two
21223 vectors, to produce a matrix.  For example, @kbd{V O *} with @samp{[a, b]}
21224 and @samp{[x, y, z]} on the stack produces a multiplication table:
21225 @samp{[[a x, a y, a z], [b x, b y, b z]]}.  Element @var{r},@var{c} of
21226 the result matrix is obtained by applying the operator to element @var{r}
21227 of the lefthand vector and element @var{c} of the righthand vector.
21229 @kindex v I
21230 @kindex V I
21231 @pindex calc-inner-product
21232 @tindex inner
21233 The @kbd{V I} (@code{calc-inner-product}) [@code{inner}] command computes
21234 the generalized inner product of two vectors or matrices, given a
21235 ``multiplicative'' operator and an ``additive'' operator.  These can each
21236 actually be any binary operators; if they are @samp{*} and @samp{+},
21237 respectively, the result is a standard matrix multiplication.  Element
21238 @var{r},@var{c} of the result matrix is obtained by mapping the
21239 multiplicative operator across row @var{r} of the lefthand matrix and
21240 column @var{c} of the righthand matrix, and then reducing with the additive
21241 operator.  Just as for the standard @kbd{*} command, this can also do a
21242 vector-matrix or matrix-vector inner product, or a vector-vector
21243 generalized dot product.
21245 Since @kbd{V I} requires two operators, it prompts twice.  In each case,
21246 you can use any of the usual methods for entering the operator.  If you
21247 use @kbd{$} twice to take both operator formulas from the stack, the
21248 first (multiplicative) operator is taken from the top of the stack
21249 and the second (additive) operator is taken from second-to-top.
21251 @node Vector and Matrix Formats,  , Reducing and Mapping, Matrix Functions
21252 @section Vector and Matrix Display Formats
21254 @noindent
21255 Commands for controlling vector and matrix display use the @kbd{v} prefix
21256 instead of the usual @kbd{d} prefix.  But they are display modes; in
21257 particular, they are influenced by the @kbd{I} and @kbd{H} prefix keys
21258 in the same way (@pxref{Display Modes}).  Matrix display is also
21259 influenced by the @kbd{d O} (@code{calc-flat-language}) mode;
21260 @pxref{Normal Language Modes}.
21262 @kindex v <
21263 @kindex V <
21264 @pindex calc-matrix-left-justify
21265 @kindex v =
21266 @kindex V =
21267 @pindex calc-matrix-center-justify
21268 @kindex v >
21269 @kindex V >
21270 @pindex calc-matrix-right-justify
21271 The commands @kbd{v <} (@code{calc-matrix-left-justify}), @kbd{v >}
21272 (@code{calc-matrix-right-justify}), and @w{@kbd{v =}}
21273 (@code{calc-matrix-center-justify}) control whether matrix elements
21274 are justified to the left, right, or center of their columns.
21276 @kindex v [
21277 @kindex V [
21278 @pindex calc-vector-brackets
21279 @kindex v @{
21280 @kindex V @{
21281 @pindex calc-vector-braces
21282 @kindex v (
21283 @kindex V (
21284 @pindex calc-vector-parens
21285 The @kbd{v [} (@code{calc-vector-brackets}) command turns the square
21286 brackets that surround vectors and matrices displayed in the stack on
21287 and off.  The @kbd{v @{} (@code{calc-vector-braces}) and @kbd{v (}
21288 (@code{calc-vector-parens}) commands use curly braces or parentheses,
21289 respectively, instead of square brackets.  For example, @kbd{v @{} might
21290 be used in preparation for yanking a matrix into a buffer running
21291 Mathematica.  (In fact, the Mathematica language mode uses this mode;
21292 @pxref{Mathematica Language Mode}.)  Note that, regardless of the
21293 display mode, either brackets or braces may be used to enter vectors,
21294 and parentheses may never be used for this purpose.
21296 @kindex V ]
21297 @kindex v ]
21298 @kindex V )
21299 @kindex v )
21300 @kindex V @}
21301 @kindex v @}
21302 @pindex calc-matrix-brackets
21303 The @kbd{v ]} (@code{calc-matrix-brackets}) command controls the
21304 ``big'' style display of matrices, for matrices which have more than
21305 one row.  It prompts for a string of code letters; currently
21306 implemented letters are @code{R}, which enables brackets on each row
21307 of the matrix; @code{O}, which enables outer brackets in opposite
21308 corners of the matrix; and @code{C}, which enables commas or
21309 semicolons at the ends of all rows but the last.  The default format
21310 is @samp{RO}.  (Before Calc 2.00, the format was fixed at @samp{ROC}.)
21311 Here are some example matrices:
21313 @example
21314 @group
21315 [ [ 123,  0,   0  ]       [ [ 123,  0,   0  ],
21316   [  0,  123,  0  ]         [  0,  123,  0  ],
21317   [  0,   0,  123 ] ]       [  0,   0,  123 ] ]
21319          RO                        ROC
21321 @end group
21322 @end example
21323 @noindent
21324 @example
21325 @group
21326   [ 123,  0,   0            [ 123,  0,   0 ;
21327      0,  123,  0               0,  123,  0 ;
21328      0,   0,  123 ]            0,   0,  123 ]
21330           O                        OC
21332 @end group
21333 @end example
21334 @noindent
21335 @example
21336 @group
21337   [ 123,  0,   0  ]           123,  0,   0
21338   [  0,  123,  0  ]            0,  123,  0
21339   [  0,   0,  123 ]            0,   0,  123
21341           R                       @r{blank}
21342 @end group
21343 @end example
21345 @noindent
21346 Note that of the formats shown here, @samp{RO}, @samp{ROC}, and
21347 @samp{OC} are all recognized as matrices during reading, while
21348 the others are useful for display only.
21350 @kindex v ,
21351 @kindex V ,
21352 @pindex calc-vector-commas
21353 The @kbd{v ,} (@code{calc-vector-commas}) command turns commas on and
21354 off in vector and matrix display.
21356 In vectors of length one, and in all vectors when commas have been
21357 turned off, Calc adds extra parentheses around formulas that might
21358 otherwise be ambiguous.  For example, @samp{[a b]} could be a vector
21359 of the one formula @samp{a b}, or it could be a vector of two
21360 variables with commas turned off.  Calc will display the former
21361 case as @samp{[(a b)]}.  You can disable these extra parentheses
21362 (to make the output less cluttered at the expense of allowing some
21363 ambiguity) by adding the letter @code{P} to the control string you
21364 give to @kbd{v ]} (as described above).
21366 @kindex v .
21367 @kindex V .
21368 @pindex calc-full-vectors
21369 The @kbd{v .} (@code{calc-full-vectors}) command turns abbreviated
21370 display of long vectors on and off.  In this mode, vectors of six
21371 or more elements, or matrices of six or more rows or columns, will
21372 be displayed in an abbreviated form that displays only the first
21373 three elements and the last element:  @samp{[a, b, c, ..., z]}.
21374 When very large vectors are involved this will substantially
21375 improve Calc's display speed.
21377 @kindex t .
21378 @pindex calc-full-trail-vectors
21379 The @kbd{t .} (@code{calc-full-trail-vectors}) command controls a
21380 similar mode for recording vectors in the Trail.  If you turn on
21381 this mode, vectors of six or more elements and matrices of six or
21382 more rows or columns will be abbreviated when they are put in the
21383 Trail.  The @kbd{t y} (@code{calc-trail-yank}) command will be
21384 unable to recover those vectors.  If you are working with very
21385 large vectors, this mode will improve the speed of all operations
21386 that involve the trail.
21388 @kindex v /
21389 @kindex V /
21390 @pindex calc-break-vectors
21391 The @kbd{v /} (@code{calc-break-vectors}) command turns multi-line
21392 vector display on and off.  Normally, matrices are displayed with one
21393 row per line but all other types of vectors are displayed in a single
21394 line.  This mode causes all vectors, whether matrices or not, to be
21395 displayed with a single element per line.  Sub-vectors within the
21396 vectors will still use the normal linear form.
21398 @node Algebra, Units, Matrix Functions, Top
21399 @chapter Algebra
21401 @noindent
21402 This section covers the Calc features that help you work with
21403 algebraic formulas.  First, the general sub-formula selection
21404 mechanism is described; this works in conjunction with any Calc
21405 commands.  Then, commands for specific algebraic operations are
21406 described.  Finally, the flexible @dfn{rewrite rule} mechanism
21407 is discussed.
21409 The algebraic commands use the @kbd{a} key prefix; selection
21410 commands use the @kbd{j} (for ``just a letter that wasn't used
21411 for anything else'') prefix.
21413 @xref{Editing Stack Entries}, to see how to manipulate formulas
21414 using regular Emacs editing commands.
21416 When doing algebraic work, you may find several of the Calculator's
21417 modes to be helpful, including Algebraic Simplification mode (@kbd{m A})
21418 or No-Simplification mode (@kbd{m O}),
21419 Algebraic entry mode (@kbd{m a}), Fraction mode (@kbd{m f}), and
21420 Symbolic mode (@kbd{m s}).  @xref{Mode Settings}, for discussions
21421 of these modes.  You may also wish to select Big display mode (@kbd{d B}).
21422 @xref{Normal Language Modes}.
21424 @menu
21425 * Selecting Subformulas::
21426 * Algebraic Manipulation::
21427 * Simplifying Formulas::
21428 * Polynomials::
21429 * Calculus::
21430 * Solving Equations::
21431 * Numerical Solutions::
21432 * Curve Fitting::
21433 * Summations::
21434 * Logical Operations::
21435 * Rewrite Rules::
21436 @end menu
21438 @node Selecting Subformulas, Algebraic Manipulation, Algebra, Algebra
21439 @section Selecting Sub-Formulas
21441 @noindent
21442 @cindex Selections
21443 @cindex Sub-formulas
21444 @cindex Parts of formulas
21445 When working with an algebraic formula it is often necessary to
21446 manipulate a portion of the formula rather than the formula as a
21447 whole.  Calc allows you to ``select'' a portion of any formula on
21448 the stack.  Commands which would normally operate on that stack
21449 entry will now operate only on the sub-formula, leaving the
21450 surrounding part of the stack entry alone.
21452 One common non-algebraic use for selection involves vectors.  To work
21453 on one element of a vector in-place, simply select that element as a
21454 ``sub-formula'' of the vector.
21456 @menu
21457 * Making Selections::
21458 * Changing Selections::
21459 * Displaying Selections::
21460 * Operating on Selections::
21461 * Rearranging with Selections::
21462 @end menu
21464 @node Making Selections, Changing Selections, Selecting Subformulas, Selecting Subformulas
21465 @subsection Making Selections
21467 @noindent
21468 @kindex j s
21469 @pindex calc-select-here
21470 To select a sub-formula, move the Emacs cursor to any character in that
21471 sub-formula, and press @w{@kbd{j s}} (@code{calc-select-here}).  Calc will
21472 highlight the smallest portion of the formula that contains that
21473 character.  By default the sub-formula is highlighted by blanking out
21474 all of the rest of the formula with dots.  Selection works in any
21475 display mode but is perhaps easiest in Big mode (@kbd{d B}).
21476 Suppose you enter the following formula:
21478 @smallexample
21479 @group
21480            3    ___
21481     (a + b)  + V c
21482 1:  ---------------
21483         2 x + 1
21484 @end group
21485 @end smallexample
21487 @noindent
21488 (by typing @kbd{' ((a+b)^3 + sqrt(c)) / (2x+1)}).  If you move the
21489 cursor to the letter @samp{b} and press @w{@kbd{j s}}, the display changes
21492 @smallexample
21493 @group
21494            .    ...
21495     .. . b.  . . .
21496 1*  ...............
21497         . . . .
21498 @end group
21499 @end smallexample
21501 @noindent
21502 Every character not part of the sub-formula @samp{b} has been changed
21503 to a dot. (If the customizable variable
21504 @code{calc-highlight-selections-with-faces} is non-nil, then the characters
21505 not part of the sub-formula are de-emphasized by using a less
21506 noticeable face instead of using dots. @pxref{Displaying Selections}.)
21507 The @samp{*} next to the line number is to remind you that
21508 the formula has a portion of it selected.  (In this case, it's very
21509 obvious, but it might not always be.  If Embedded mode is enabled,
21510 the word @samp{Sel} also appears in the mode line because the stack
21511 may not be visible.  @pxref{Embedded Mode}.)
21513 If you had instead placed the cursor on the parenthesis immediately to
21514 the right of the @samp{b}, the selection would have been:
21516 @smallexample
21517 @group
21518            .    ...
21519     (a + b)  . . .
21520 1*  ...............
21521         . . . .
21522 @end group
21523 @end smallexample
21525 @noindent
21526 The portion selected is always large enough to be considered a complete
21527 formula all by itself, so selecting the parenthesis selects the whole
21528 formula that it encloses.  Putting the cursor on the @samp{+} sign
21529 would have had the same effect.
21531 (Strictly speaking, the Emacs cursor is really the manifestation of
21532 the Emacs ``point,'' which is a position @emph{between} two characters
21533 in the buffer.  So purists would say that Calc selects the smallest
21534 sub-formula which contains the character to the right of ``point.'')
21536 If you supply a numeric prefix argument @var{n}, the selection is
21537 expanded to the @var{n}th enclosing sub-formula.  Thus, positioning
21538 the cursor on the @samp{b} and typing @kbd{C-u 1 j s} will select
21539 @samp{a + b}; typing @kbd{C-u 2 j s} will select @samp{(a + b)^3},
21540 and so on.
21542 If the cursor is not on any part of the formula, or if you give a
21543 numeric prefix that is too large, the entire formula is selected.
21545 If the cursor is on the @samp{.} line that marks the top of the stack
21546 (i.e., its normal ``rest position''), this command selects the entire
21547 formula at stack level 1.  Most selection commands similarly operate
21548 on the formula at the top of the stack if you haven't positioned the
21549 cursor on any stack entry.
21551 @kindex j a
21552 @pindex calc-select-additional
21553 The @kbd{j a} (@code{calc-select-additional}) command enlarges the
21554 current selection to encompass the cursor.  To select the smallest
21555 sub-formula defined by two different points, move to the first and
21556 press @kbd{j s}, then move to the other and press @kbd{j a}.  This
21557 is roughly analogous to using @kbd{C-@@} (@code{set-mark-command}) to
21558 select the two ends of a region of text during normal Emacs editing.
21560 @kindex j o
21561 @pindex calc-select-once
21562 The @kbd{j o} (@code{calc-select-once}) command selects a formula in
21563 exactly the same way as @kbd{j s}, except that the selection will
21564 last only as long as the next command that uses it.  For example,
21565 @kbd{j o 1 +} is a handy way to add one to the sub-formula indicated
21566 by the cursor.
21568 (A somewhat more precise definition: The @kbd{j o} command sets a flag
21569 such that the next command involving selected stack entries will clear
21570 the selections on those stack entries afterwards.  All other selection
21571 commands except @kbd{j a} and @kbd{j O} clear this flag.)
21573 @kindex j S
21574 @kindex j O
21575 @pindex calc-select-here-maybe
21576 @pindex calc-select-once-maybe
21577 The @kbd{j S} (@code{calc-select-here-maybe}) and @kbd{j O}
21578 (@code{calc-select-once-maybe}) commands are equivalent to @kbd{j s}
21579 and @kbd{j o}, respectively, except that if the formula already
21580 has a selection they have no effect.  This is analogous to the
21581 behavior of some commands such as @kbd{j r} (@code{calc-rewrite-selection};
21582 @pxref{Selections with Rewrite Rules}) and is mainly intended to be
21583 used in keyboard macros that implement your own selection-oriented
21584 commands.
21586 Selection of sub-formulas normally treats associative terms like
21587 @samp{a + b - c + d} and @samp{x * y * z} as single levels of the formula.
21588 If you place the cursor anywhere inside @samp{a + b - c + d} except
21589 on one of the variable names and use @kbd{j s}, you will select the
21590 entire four-term sum.
21592 @kindex j b
21593 @pindex calc-break-selections
21594 The @kbd{j b} (@code{calc-break-selections}) command controls a mode
21595 in which the ``deep structure'' of these associative formulas shows
21596 through.  Calc actually stores the above formulas as
21597 @samp{((a + b) - c) + d} and @samp{x * (y * z)}.  (Note that for certain
21598 obscure reasons, by default Calc treats multiplication as
21599 right-associative.)  Once you have enabled @kbd{j b} mode, selecting
21600 with the cursor on the @samp{-} sign would only select the @samp{a + b -
21601 c} portion, which makes sense when the deep structure of the sum is
21602 considered.  There is no way to select the @samp{b - c + d} portion;
21603 although this might initially look like just as legitimate a sub-formula
21604 as @samp{a + b - c}, the deep structure shows that it isn't.  The @kbd{d
21605 U} command can be used to view the deep structure of any formula
21606 (@pxref{Normal Language Modes}).
21608 When @kbd{j b} mode has not been enabled, the deep structure is
21609 generally hidden by the selection commands---what you see is what
21610 you get.
21612 @kindex j u
21613 @pindex calc-unselect
21614 The @kbd{j u} (@code{calc-unselect}) command unselects the formula
21615 that the cursor is on.  If there was no selection in the formula,
21616 this command has no effect.  With a numeric prefix argument, it
21617 unselects the @var{n}th stack element rather than using the cursor
21618 position.
21620 @kindex j c
21621 @pindex calc-clear-selections
21622 The @kbd{j c} (@code{calc-clear-selections}) command unselects all
21623 stack elements.
21625 @node Changing Selections, Displaying Selections, Making Selections, Selecting Subformulas
21626 @subsection Changing Selections
21628 @noindent
21629 @kindex j m
21630 @pindex calc-select-more
21631 Once you have selected a sub-formula, you can expand it using the
21632 @w{@kbd{j m}} (@code{calc-select-more}) command.  If @samp{a + b} is
21633 selected, pressing @w{@kbd{j m}} repeatedly works as follows:
21635 @smallexample
21636 @group
21637            3    ...                3    ___                3    ___
21638     (a + b)  . . .          (a + b)  + V c          (a + b)  + V c
21639 1*  ...............     1*  ...............     1*  ---------------
21640         . . . .                 . . . .                 2 x + 1
21641 @end group
21642 @end smallexample
21644 @noindent
21645 In the last example, the entire formula is selected.  This is roughly
21646 the same as having no selection at all, but because there are subtle
21647 differences the @samp{*} character is still there on the line number.
21649 With a numeric prefix argument @var{n}, @kbd{j m} expands @var{n}
21650 times (or until the entire formula is selected).  Note that @kbd{j s}
21651 with argument @var{n} is equivalent to plain @kbd{j s} followed by
21652 @kbd{j m} with argument @var{n}.  If @w{@kbd{j m}} is used when there
21653 is no current selection, it is equivalent to @w{@kbd{j s}}.
21655 Even though @kbd{j m} does not explicitly use the location of the
21656 cursor within the formula, it nevertheless uses the cursor to determine
21657 which stack element to operate on.  As usual, @kbd{j m} when the cursor
21658 is not on any stack element operates on the top stack element.
21660 @kindex j l
21661 @pindex calc-select-less
21662 The @kbd{j l} (@code{calc-select-less}) command reduces the current
21663 selection around the cursor position.  That is, it selects the
21664 immediate sub-formula of the current selection which contains the
21665 cursor, the opposite of @kbd{j m}.  If the cursor is not inside the
21666 current selection, the command de-selects the formula.
21668 @kindex j 1-9
21669 @pindex calc-select-part
21670 The @kbd{j 1} through @kbd{j 9} (@code{calc-select-part}) commands
21671 select the @var{n}th sub-formula of the current selection.  They are
21672 like @kbd{j l} (@code{calc-select-less}) except they use counting
21673 rather than the cursor position to decide which sub-formula to select.
21674 For example, if the current selection is @kbd{a + b + c} or
21675 @kbd{f(a, b, c)} or @kbd{[a, b, c]}, then @kbd{j 1} selects @samp{a},
21676 @kbd{j 2} selects @samp{b}, and @kbd{j 3} selects @samp{c}; in each of
21677 these cases, @kbd{j 4} through @kbd{j 9} would be errors.
21679 If there is no current selection, @kbd{j 1} through @kbd{j 9} select
21680 the @var{n}th top-level sub-formula.  (In other words, they act as if
21681 the entire stack entry were selected first.)  To select the @var{n}th
21682 sub-formula where @var{n} is greater than nine, you must instead invoke
21683 @w{@kbd{j 1}} with @var{n} as a numeric prefix argument.
21685 @kindex j n
21686 @kindex j p
21687 @pindex calc-select-next
21688 @pindex calc-select-previous
21689 The @kbd{j n} (@code{calc-select-next}) and @kbd{j p}
21690 (@code{calc-select-previous}) commands change the current selection
21691 to the next or previous sub-formula at the same level.  For example,
21692 if @samp{b} is selected in @w{@samp{2 + a*b*c + x}}, then @kbd{j n}
21693 selects @samp{c}.  Further @kbd{j n} commands would be in error because,
21694 even though there is something to the right of @samp{c} (namely, @samp{x}),
21695 it is not at the same level; in this case, it is not a term of the
21696 same product as @samp{b} and @samp{c}.  However, @kbd{j m} (to select
21697 the whole product @samp{a*b*c} as a term of the sum) followed by
21698 @w{@kbd{j n}} would successfully select the @samp{x}.
21700 Similarly, @kbd{j p} moves the selection from the @samp{b} in this
21701 sample formula to the @samp{a}.  Both commands accept numeric prefix
21702 arguments to move several steps at a time.
21704 It is interesting to compare Calc's selection commands with the
21705 Emacs Info system's commands for navigating through hierarchically
21706 organized documentation.  Calc's @kbd{j n} command is completely
21707 analogous to Info's @kbd{n} command.  Likewise, @kbd{j p} maps to
21708 @kbd{p}, @kbd{j 2} maps to @kbd{2}, and Info's @kbd{u} is like @kbd{j m}.
21709 (Note that @kbd{j u} stands for @code{calc-unselect}, not ``up''.)
21710 The Info @kbd{m} command is somewhat similar to Calc's @kbd{j s} and
21711 @kbd{j l}; in each case, you can jump directly to a sub-component
21712 of the hierarchy simply by pointing to it with the cursor.
21714 @node Displaying Selections, Operating on Selections, Changing Selections, Selecting Subformulas
21715 @subsection Displaying Selections
21717 @noindent
21718 @kindex j d
21719 @pindex calc-show-selections
21720 @vindex calc-highlight-selections-with-faces
21721 @vindex calc-selected-face
21722 @vindex calc-nonselected-face
21723 The @kbd{j d} (@code{calc-show-selections}) command controls how
21724 selected sub-formulas are displayed.  One of the alternatives is
21725 illustrated in the above examples; if we press @kbd{j d} we switch
21726 to the other style in which the selected portion itself is obscured
21727 by @samp{#} signs:
21729 @smallexample
21730 @group
21731            3    ...                  #    ___
21732     (a + b)  . . .            ## # ##  + V c
21733 1*  ...............       1*  ---------------
21734         . . . .                   2 x + 1
21735 @end group
21736 @end smallexample
21737 If the customizable variable
21738 @code{calc-highlight-selections-with-faces} is non-nil, then the
21739 non-selected portion of the formula will be de-emphasized by using a
21740 less noticeable face (@code{calc-nonselected-face}) instead of dots
21741 and the selected sub-formula will be highlighted by using a more
21742 noticeable face (@code{calc-selected-face}) instead of @samp{#}
21743 signs. (@pxref{Customizing Calc}.)
21745 @node Operating on Selections, Rearranging with Selections, Displaying Selections, Selecting Subformulas
21746 @subsection Operating on Selections
21748 @noindent
21749 Once a selection is made, all Calc commands that manipulate items
21750 on the stack will operate on the selected portions of the items
21751 instead.  (Note that several stack elements may have selections
21752 at once, though there can be only one selection at a time in any
21753 given stack element.)
21755 @kindex j e
21756 @pindex calc-enable-selections
21757 The @kbd{j e} (@code{calc-enable-selections}) command disables the
21758 effect that selections have on Calc commands.  The current selections
21759 still exist, but Calc commands operate on whole stack elements anyway.
21760 This mode can be identified by the fact that the @samp{*} markers on
21761 the line numbers are gone, even though selections are visible.  To
21762 reactivate the selections, press @kbd{j e} again.
21764 To extract a sub-formula as a new formula, simply select the
21765 sub-formula and press @key{RET}.  This normally duplicates the top
21766 stack element; here it duplicates only the selected portion of that
21767 element.
21769 To replace a sub-formula with something different, you can enter the
21770 new value onto the stack and press @key{TAB}.  This normally exchanges
21771 the top two stack elements; here it swaps the value you entered into
21772 the selected portion of the formula, returning the old selected
21773 portion to the top of the stack.
21775 @smallexample
21776 @group
21777            3    ...                    ...                    ___
21778     (a + b)  . . .           17 x y . . .           17 x y + V c
21779 2*  ...............      2*  .............      2:  -------------
21780         . . . .                 . . . .                2 x + 1
21782                                     3                      3
21783 1:  17 x y               1:  (a + b)            1:  (a + b)
21784 @end group
21785 @end smallexample
21787 In this example we select a sub-formula of our original example,
21788 enter a new formula, @key{TAB} it into place, then deselect to see
21789 the complete, edited formula.
21791 If you want to swap whole formulas around even though they contain
21792 selections, just use @kbd{j e} before and after.
21794 @kindex j '
21795 @pindex calc-enter-selection
21796 The @kbd{j '} (@code{calc-enter-selection}) command is another way
21797 to replace a selected sub-formula.  This command does an algebraic
21798 entry just like the regular @kbd{'} key.  When you press @key{RET},
21799 the formula you type replaces the original selection.  You can use
21800 the @samp{$} symbol in the formula to refer to the original
21801 selection.  If there is no selection in the formula under the cursor,
21802 the cursor is used to make a temporary selection for the purposes of
21803 the command.  Thus, to change a term of a formula, all you have to
21804 do is move the Emacs cursor to that term and press @kbd{j '}.
21806 @kindex j `
21807 @pindex calc-edit-selection
21808 The @kbd{j `} (@code{calc-edit-selection}) command is a similar
21809 analogue of the @kbd{`} (@code{calc-edit}) command.  It edits the
21810 selected sub-formula in a separate buffer.  If there is no
21811 selection, it edits the sub-formula indicated by the cursor.
21813 To delete a sub-formula, press @key{DEL}.  This generally replaces
21814 the sub-formula with the constant zero, but in a few suitable contexts
21815 it uses the constant one instead.  The @key{DEL} key automatically
21816 deselects and re-simplifies the entire formula afterwards.  Thus:
21818 @smallexample
21819 @group
21820               ###
21821     17 x y + # #          17 x y         17 # y          17 y
21822 1*  -------------     1:  -------    1*  -------    1:  -------
21823        2 x + 1            2 x + 1        2 x + 1        2 x + 1
21824 @end group
21825 @end smallexample
21827 In this example, we first delete the @samp{sqrt(c)} term; Calc
21828 accomplishes this by replacing @samp{sqrt(c)} with zero and
21829 resimplifying.  We then delete the @kbd{x} in the numerator;
21830 since this is part of a product, Calc replaces it with @samp{1}
21831 and resimplifies.
21833 If you select an element of a vector and press @key{DEL}, that
21834 element is deleted from the vector.  If you delete one side of
21835 an equation or inequality, only the opposite side remains.
21837 @kindex j @key{DEL}
21838 @pindex calc-del-selection
21839 The @kbd{j @key{DEL}} (@code{calc-del-selection}) command is like
21840 @key{DEL} but with the auto-selecting behavior of @kbd{j '} and
21841 @kbd{j `}.  It deletes the selected portion of the formula
21842 indicated by the cursor, or, in the absence of a selection, it
21843 deletes the sub-formula indicated by the cursor position.
21845 @kindex j @key{RET}
21846 @pindex calc-grab-selection
21847 (There is also an auto-selecting @kbd{j @key{RET}} (@code{calc-copy-selection})
21848 command.)
21850 Normal arithmetic operations also apply to sub-formulas.  Here we
21851 select the denominator, press @kbd{5 -} to subtract five from the
21852 denominator, press @kbd{n} to negate the denominator, then
21853 press @kbd{Q} to take the square root.
21855 @smallexample
21856 @group
21857      .. .           .. .           .. .             .. .
21858 1*  .......    1*  .......    1*  .......    1*  ..........
21859     2 x + 1        2 x - 4        4 - 2 x         _________
21860                                                  V 4 - 2 x
21861 @end group
21862 @end smallexample
21864 Certain types of operations on selections are not allowed.  For
21865 example, for an arithmetic function like @kbd{-} no more than one of
21866 the arguments may be a selected sub-formula.  (As the above example
21867 shows, the result of the subtraction is spliced back into the argument
21868 which had the selection; if there were more than one selection involved,
21869 this would not be well-defined.)  If you try to subtract two selections,
21870 the command will abort with an error message.
21872 Operations on sub-formulas sometimes leave the formula as a whole
21873 in an ``un-natural'' state.  Consider negating the @samp{2 x} term
21874 of our sample formula by selecting it and pressing @kbd{n}
21875 (@code{calc-change-sign}).
21877 @smallexample
21878 @group
21879        .. .                .. .
21880 1*  ..........      1*  ...........
21881      .........           ..........
21882     . . . 2 x           . . . -2 x
21883 @end group
21884 @end smallexample
21886 Unselecting the sub-formula reveals that the minus sign, which would
21887 normally have canceled out with the subtraction automatically, has
21888 not been able to do so because the subtraction was not part of the
21889 selected portion.  Pressing @kbd{=} (@code{calc-evaluate}) or doing
21890 any other mathematical operation on the whole formula will cause it
21891 to be simplified.
21893 @smallexample
21894 @group
21895        17 y                17 y
21896 1:  -----------     1:  ----------
21897      __________          _________
21898     V 4 - -2 x          V 4 + 2 x
21899 @end group
21900 @end smallexample
21902 @node Rearranging with Selections,  , Operating on Selections, Selecting Subformulas
21903 @subsection Rearranging Formulas using Selections
21905 @noindent
21906 @kindex j R
21907 @pindex calc-commute-right
21908 The @kbd{j R} (@code{calc-commute-right}) command moves the selected
21909 sub-formula to the right in its surrounding formula.  Generally the
21910 selection is one term of a sum or product; the sum or product is
21911 rearranged according to the commutative laws of algebra.
21913 As with @kbd{j '} and @kbd{j @key{DEL}}, the term under the cursor is used
21914 if there is no selection in the current formula.  All commands described
21915 in this section share this property.  In this example, we place the
21916 cursor on the @samp{a} and type @kbd{j R}, then repeat.
21918 @smallexample
21919 1:  a + b - c          1:  b + a - c          1:  b - c + a
21920 @end smallexample
21922 @noindent
21923 Note that in the final step above, the @samp{a} is switched with
21924 the @samp{c} but the signs are adjusted accordingly.  When moving
21925 terms of sums and products, @kbd{j R} will never change the
21926 mathematical meaning of the formula.
21928 The selected term may also be an element of a vector or an argument
21929 of a function.  The term is exchanged with the one to its right.
21930 In this case, the ``meaning'' of the vector or function may of
21931 course be drastically changed.
21933 @smallexample
21934 1:  [a, b, c]          1:  [b, a, c]          1:  [b, c, a]
21936 1:  f(a, b, c)         1:  f(b, a, c)         1:  f(b, c, a)
21937 @end smallexample
21939 @kindex j L
21940 @pindex calc-commute-left
21941 The @kbd{j L} (@code{calc-commute-left}) command is like @kbd{j R}
21942 except that it swaps the selected term with the one to its left.
21944 With numeric prefix arguments, these commands move the selected
21945 term several steps at a time.  It is an error to try to move a
21946 term left or right past the end of its enclosing formula.
21947 With numeric prefix arguments of zero, these commands move the
21948 selected term as far as possible in the given direction.
21950 @kindex j D
21951 @pindex calc-sel-distribute
21952 The @kbd{j D} (@code{calc-sel-distribute}) command mixes the selected
21953 sum or product into the surrounding formula using the distributive
21954 law.  For example, in @samp{a * (b - c)} with the @samp{b - c}
21955 selected, the result is @samp{a b - a c}.  This also distributes
21956 products or quotients into surrounding powers, and can also do
21957 transformations like @samp{exp(a + b)} to @samp{exp(a) exp(b)},
21958 where @samp{a + b} is the selected term, and @samp{ln(a ^ b)}
21959 to @samp{ln(a) b}, where @samp{a ^ b} is the selected term.
21961 For multiple-term sums or products, @kbd{j D} takes off one term
21962 at a time:  @samp{a * (b + c - d)} goes to @samp{a * (c - d) + a b}
21963 with the @samp{c - d} selected so that you can type @kbd{j D}
21964 repeatedly to expand completely.  The @kbd{j D} command allows a
21965 numeric prefix argument which specifies the maximum number of
21966 times to expand at once; the default is one time only.
21968 @vindex DistribRules
21969 The @kbd{j D} command is implemented using rewrite rules.
21970 @xref{Selections with Rewrite Rules}.  The rules are stored in
21971 the Calc variable @code{DistribRules}.  A convenient way to view
21972 these rules is to use @kbd{s e} (@code{calc-edit-variable}) which
21973 displays and edits the stored value of a variable.  Press @kbd{C-c C-c}
21974 to return from editing mode; be careful not to make any actual changes
21975 or else you will affect the behavior of future @kbd{j D} commands!
21977 To extend @kbd{j D} to handle new cases, just edit @code{DistribRules}
21978 as described above.  You can then use the @kbd{s p} command to save
21979 this variable's value permanently for future Calc sessions.
21980 @xref{Operations on Variables}.
21982 @kindex j M
21983 @pindex calc-sel-merge
21984 @vindex MergeRules
21985 The @kbd{j M} (@code{calc-sel-merge}) command is the complement
21986 of @kbd{j D}; given @samp{a b - a c} with either @samp{a b} or
21987 @samp{a c} selected, the result is @samp{a * (b - c)}.  Once
21988 again, @kbd{j M} can also merge calls to functions like @code{exp}
21989 and @code{ln}; examine the variable @code{MergeRules} to see all
21990 the relevant rules.
21992 @kindex j C
21993 @pindex calc-sel-commute
21994 @vindex CommuteRules
21995 The @kbd{j C} (@code{calc-sel-commute}) command swaps the arguments
21996 of the selected sum, product, or equation.  It always behaves as
21997 if @kbd{j b} mode were in effect, i.e., the sum @samp{a + b + c} is
21998 treated as the nested sums @samp{(a + b) + c} by this command.
21999 If you put the cursor on the first @samp{+}, the result is
22000 @samp{(b + a) + c}; if you put the cursor on the second @samp{+}, the
22001 result is @samp{c + (a + b)} (which the default simplifications
22002 will rearrange to @samp{(c + a) + b}).  The relevant rules are stored
22003 in the variable @code{CommuteRules}.
22005 You may need to turn default simplifications off (with the @kbd{m O}
22006 command) in order to get the full benefit of @kbd{j C}.  For example,
22007 commuting @samp{a - b} produces @samp{-b + a}, but the default
22008 simplifications will ``simplify'' this right back to @samp{a - b} if
22009 you don't turn them off.  The same is true of some of the other
22010 manipulations described in this section.
22012 @kindex j N
22013 @pindex calc-sel-negate
22014 @vindex NegateRules
22015 The @kbd{j N} (@code{calc-sel-negate}) command replaces the selected
22016 term with the negative of that term, then adjusts the surrounding
22017 formula in order to preserve the meaning.  For example, given
22018 @samp{exp(a - b)} where @samp{a - b} is selected, the result is
22019 @samp{1 / exp(b - a)}.  By contrast, selecting a term and using the
22020 regular @kbd{n} (@code{calc-change-sign}) command negates the
22021 term without adjusting the surroundings, thus changing the meaning
22022 of the formula as a whole.  The rules variable is @code{NegateRules}.
22024 @kindex j &
22025 @pindex calc-sel-invert
22026 @vindex InvertRules
22027 The @kbd{j &} (@code{calc-sel-invert}) command is similar to @kbd{j N}
22028 except it takes the reciprocal of the selected term.  For example,
22029 given @samp{a - ln(b)} with @samp{b} selected, the result is
22030 @samp{a + ln(1/b)}.  The rules variable is @code{InvertRules}.
22032 @kindex j E
22033 @pindex calc-sel-jump-equals
22034 @vindex JumpRules
22035 The @kbd{j E} (@code{calc-sel-jump-equals}) command moves the
22036 selected term from one side of an equation to the other.  Given
22037 @samp{a + b = c + d} with @samp{c} selected, the result is
22038 @samp{a + b - c = d}.  This command also works if the selected
22039 term is part of a @samp{*}, @samp{/}, or @samp{^} formula.  The
22040 relevant rules variable is @code{JumpRules}.
22042 @kindex j I
22043 @kindex H j I
22044 @pindex calc-sel-isolate
22045 The @kbd{j I} (@code{calc-sel-isolate}) command isolates the
22046 selected term on its side of an equation.  It uses the @kbd{a S}
22047 (@code{calc-solve-for}) command to solve the equation, and the
22048 Hyperbolic flag affects it in the same way.  @xref{Solving Equations}.
22049 When it applies, @kbd{j I} is often easier to use than @kbd{j E}.
22050 It understands more rules of algebra, and works for inequalities
22051 as well as equations.
22053 @kindex j *
22054 @kindex j /
22055 @pindex calc-sel-mult-both-sides
22056 @pindex calc-sel-div-both-sides
22057 The @kbd{j *} (@code{calc-sel-mult-both-sides}) command prompts for a
22058 formula using algebraic entry, then multiplies both sides of the
22059 selected quotient or equation by that formula.  It performs the
22060 default algebraic simplifications  before re-forming the
22061 quotient or equation.  You can suppress this simplification by
22062 providing a prefix argument: @kbd{C-u j *}.  There is also a @kbd{j /}
22063 (@code{calc-sel-div-both-sides}) which is similar to @kbd{j *} but
22064 dividing instead of multiplying by the factor you enter.
22066 If the selection is a quotient with numerator 1, then Calc's default
22067 simplifications would normally cancel the new factors.  To prevent
22068 this, when the @kbd{j *} command is used on a selection whose numerator is
22069 1 or -1, the denominator is expanded at the top level using the
22070 distributive law (as if using the @kbd{C-u 1 a x} command).  Suppose the
22071 formula on the stack is @samp{1 / (a + 1)} and you wish to multiplying the
22072 top and bottom by @samp{a - 1}.  Calc's default simplifications would
22073 normally change the result @samp{(a - 1) /(a + 1) (a - 1)} back
22074 to the original form by cancellation; when @kbd{j *} is used, Calc
22075 expands the denominator to  @samp{a (a - 1) + a - 1} to prevent this.
22077 If you wish the @kbd{j *} command to completely expand the denominator
22078 of a quotient you can call it with a zero prefix: @kbd{C-u 0 j *}.  For
22079 example, if the formula on the stack is @samp{1 / (sqrt(a) + 1)}, you may
22080 wish to eliminate the square root in the denominator by multiplying
22081 the top and bottom by @samp{sqrt(a) - 1}.  If you did this simply by using
22082 a simple @kbd{j *} command, you would get
22083 @samp{(sqrt(a)-1)/ (sqrt(a) (sqrt(a) - 1) + sqrt(a) - 1)}.  Instead,
22084 you would probably want to use @kbd{C-u 0 j *}, which would expand the
22085 bottom and give you the desired result @samp{(sqrt(a)-1)/(a-1)}.  More
22086 generally, if @kbd{j *} is called with an argument of a positive
22087 integer @var{n}, then the denominator of the expression will be
22088 expanded @var{n} times (as if with the @kbd{C-u @var{n} a x} command).
22090 If the selection is an inequality, @kbd{j *} and @kbd{j /} will
22091 accept any factor, but will warn unless they can prove the factor
22092 is either positive or negative.  (In the latter case the direction
22093 of the inequality will be switched appropriately.)  @xref{Declarations},
22094 for ways to inform Calc that a given variable is positive or
22095 negative.  If Calc can't tell for sure what the sign of the factor
22096 will be, it will assume it is positive and display a warning
22097 message.
22099 For selections that are not quotients, equations, or inequalities,
22100 these commands pull out a multiplicative factor:  They divide (or
22101 multiply) by the entered formula, simplify, then multiply (or divide)
22102 back by the formula.
22104 @kindex j +
22105 @kindex j -
22106 @pindex calc-sel-add-both-sides
22107 @pindex calc-sel-sub-both-sides
22108 The @kbd{j +} (@code{calc-sel-add-both-sides}) and @kbd{j -}
22109 (@code{calc-sel-sub-both-sides}) commands analogously add to or
22110 subtract from both sides of an equation or inequality.  For other
22111 types of selections, they extract an additive factor.  A numeric
22112 prefix argument suppresses simplification of the intermediate
22113 results.
22115 @kindex j U
22116 @pindex calc-sel-unpack
22117 The @kbd{j U} (@code{calc-sel-unpack}) command replaces the
22118 selected function call with its argument.  For example, given
22119 @samp{a + sin(x^2)} with @samp{sin(x^2)} selected, the result
22120 is @samp{a + x^2}.  (The @samp{x^2} will remain selected; if you
22121 wanted to change the @code{sin} to @code{cos}, just press @kbd{C}
22122 now to take the cosine of the selected part.)
22124 @kindex j v
22125 @pindex calc-sel-evaluate
22126 The @kbd{j v} (@code{calc-sel-evaluate}) command performs the
22127 basic simplifications on the selected sub-formula.
22128 These simplifications would normally be done automatically
22129 on all results, but may have been partially inhibited by
22130 previous selection-related operations, or turned off altogether
22131 by the @kbd{m O} command.  This command is just an auto-selecting
22132 version of the @w{@kbd{a v}} command (@pxref{Algebraic Manipulation}).
22134 With a numeric prefix argument of 2, @kbd{C-u 2 j v} applies
22135 the default algebraic simplifications to the selected
22136 sub-formula.  With a prefix argument of 3 or more, e.g., @kbd{C-u j v}
22137 applies the @kbd{a e} (@code{calc-simplify-extended}) command.
22138 @xref{Simplifying Formulas}.  With a negative prefix argument
22139 it simplifies at the top level only, just as with @kbd{a v}.
22140 Here the ``top'' level refers to the top level of the selected
22141 sub-formula.
22143 @kindex j "
22144 @pindex calc-sel-expand-formula
22145 The @kbd{j "} (@code{calc-sel-expand-formula}) command is to @kbd{a "}
22146 (@pxref{Algebraic Manipulation}) what @kbd{j v} is to @kbd{a v}.
22148 You can use the @kbd{j r} (@code{calc-rewrite-selection}) command
22149 to define other algebraic operations on sub-formulas.  @xref{Rewrite Rules}.
22151 @node Algebraic Manipulation, Simplifying Formulas, Selecting Subformulas, Algebra
22152 @section Algebraic Manipulation
22154 @noindent
22155 The commands in this section perform general-purpose algebraic
22156 manipulations.  They work on the whole formula at the top of the
22157 stack (unless, of course, you have made a selection in that
22158 formula).
22160 Many algebra commands prompt for a variable name or formula.  If you
22161 answer the prompt with a blank line, the variable or formula is taken
22162 from top-of-stack, and the normal argument for the command is taken
22163 from the second-to-top stack level.
22165 @kindex a v
22166 @pindex calc-alg-evaluate
22167 The @kbd{a v} (@code{calc-alg-evaluate}) command performs the normal
22168 default simplifications on a formula; for example, @samp{a - -b} is
22169 changed to @samp{a + b}.  These simplifications are normally done
22170 automatically on all Calc results, so this command is useful only if
22171 you have turned default simplifications off with an @kbd{m O}
22172 command.  @xref{Simplification Modes}.
22174 It is often more convenient to type @kbd{=}, which is like @kbd{a v}
22175 but which also substitutes stored values for variables in the formula.
22176 Use @kbd{a v} if you want the variables to ignore their stored values.
22178 If you give a numeric prefix argument of 2 to @kbd{a v}, it simplifies
22179 using Calc's algebraic simplifications; @pxref{Simplifying Formulas}.
22180 If you give a numeric prefix of 3 or more, it uses Extended
22181 Simplification mode (@kbd{a e}). 
22183 If you give a negative prefix argument @mathit{-1}, @mathit{-2}, or @mathit{-3},
22184 it simplifies in the corresponding mode but only works on the top-level
22185 function call of the formula.  For example, @samp{(2 + 3) * (2 + 3)} will
22186 simplify to @samp{(2 + 3)^2}, without simplifying the sub-formulas
22187 @samp{2 + 3}.  As another example, typing @kbd{V R +} to sum the vector
22188 @samp{[1, 2, 3, 4]} produces the formula @samp{reduce(add, [1, 2, 3, 4])}
22189 in No-Simplify mode.  Using @kbd{a v} will evaluate this all the way to
22190 10; using @kbd{C-u - a v} will evaluate it only to @samp{1 + 2 + 3 + 4}.
22191 (@xref{Reducing and Mapping}.)
22193 @tindex evalv
22194 @tindex evalvn
22195 The @kbd{=} command corresponds to the @code{evalv} function, and
22196 the related @kbd{N} command, which is like @kbd{=} but temporarily
22197 disables Symbolic mode (@kbd{m s}) during the evaluation, corresponds
22198 to the @code{evalvn} function.  (These commands interpret their prefix
22199 arguments differently than @kbd{a v}; @kbd{=} treats the prefix as
22200 the number of stack elements to evaluate at once, and @kbd{N} treats
22201 it as a temporary different working precision.)
22203 The @code{evalvn} function can take an alternate working precision
22204 as an optional second argument.  This argument can be either an
22205 integer, to set the precision absolutely, or a vector containing
22206 a single integer, to adjust the precision relative to the current
22207 precision.  Note that @code{evalvn} with a larger than current
22208 precision will do the calculation at this higher precision, but the
22209 result will as usual be rounded back down to the current precision
22210 afterward.  For example, @samp{evalvn(pi - 3.1415)} at a precision
22211 of 12 will return @samp{9.265359e-5}; @samp{evalvn(pi - 3.1415, 30)}
22212 will return @samp{9.26535897932e-5} (computing a 25-digit result which
22213 is then rounded down to 12); and @samp{evalvn(pi - 3.1415, [-2])}
22214 will return @samp{9.2654e-5}.
22216 @kindex a "
22217 @pindex calc-expand-formula
22218 The @kbd{a "} (@code{calc-expand-formula}) command expands functions
22219 into their defining formulas wherever possible.  For example,
22220 @samp{deg(x^2)} is changed to @samp{180 x^2 / pi}.  Most functions,
22221 like @code{sin} and @code{gcd}, are not defined by simple formulas
22222 and so are unaffected by this command.  One important class of
22223 functions which @emph{can} be expanded is the user-defined functions
22224 created by the @kbd{Z F} command.  @xref{Algebraic Definitions}.
22225 Other functions which @kbd{a "} can expand include the probability
22226 distribution functions, most of the financial functions, and the
22227 hyperbolic and inverse hyperbolic functions.  A numeric prefix argument
22228 affects @kbd{a "} in the same way as it does @kbd{a v}:  A positive
22229 argument expands all functions in the formula and then simplifies in
22230 various ways; a negative argument expands and simplifies only the
22231 top-level function call.
22233 @kindex a M
22234 @pindex calc-map-equation
22235 @tindex mapeq
22236 The @kbd{a M} (@code{calc-map-equation}) [@code{mapeq}] command applies
22237 a given function or operator to one or more equations.  It is analogous
22238 to @kbd{V M}, which operates on vectors instead of equations.
22239 @pxref{Reducing and Mapping}.  For example, @kbd{a M S} changes
22240 @samp{x = y+1} to @samp{sin(x) = sin(y+1)}, and @kbd{a M +} with
22241 @samp{x = y+1} and @expr{6} on the stack produces @samp{x+6 = y+7}.
22242 With two equations on the stack, @kbd{a M +} would add the lefthand
22243 sides together and the righthand sides together to get the two
22244 respective sides of a new equation.
22246 Mapping also works on inequalities.  Mapping two similar inequalities
22247 produces another inequality of the same type.  Mapping an inequality
22248 with an equation produces an inequality of the same type.  Mapping a
22249 @samp{<=} with a @samp{<} or @samp{!=} (not-equal) produces a @samp{<}.
22250 If inequalities with opposite direction (e.g., @samp{<} and @samp{>})
22251 are mapped, the direction of the second inequality is reversed to
22252 match the first:  Using @kbd{a M +} on @samp{a < b} and @samp{a > 2}
22253 reverses the latter to get @samp{2 < a}, which then allows the
22254 combination @samp{a + 2 < b + a}, which the algebraic simplifications 
22255 can reduce to @samp{2 < b}.
22257 Using @kbd{a M *}, @kbd{a M /}, @kbd{a M n}, or @kbd{a M &} to negate
22258 or invert an inequality will reverse the direction of the inequality.
22259 Other adjustments to inequalities are @emph{not} done automatically;
22260 @kbd{a M S} will change @w{@samp{x < y}} to @samp{sin(x) < sin(y)} even
22261 though this is not true for all values of the variables.
22263 @kindex H a M
22264 @tindex mapeqp
22265 With the Hyperbolic flag, @kbd{H a M} [@code{mapeqp}] does a plain
22266 mapping operation without reversing the direction of any inequalities.
22267 Thus, @kbd{H a M &} would change @kbd{x > 2} to @kbd{1/x > 0.5}.
22268 (This change is mathematically incorrect, but perhaps you were
22269 fixing an inequality which was already incorrect.)
22271 @kindex I a M
22272 @tindex mapeqr
22273 With the Inverse flag, @kbd{I a M} [@code{mapeqr}] always reverses
22274 the direction of the inequality.  You might use @kbd{I a M C} to
22275 change @samp{x < y} to @samp{cos(x) > cos(y)} if you know you are
22276 working with small positive angles.
22278 @kindex a b
22279 @pindex calc-substitute
22280 @tindex subst
22281 The @kbd{a b} (@code{calc-substitute}) [@code{subst}] command substitutes
22282 all occurrences
22283 of some variable or sub-expression of an expression with a new
22284 sub-expression.  For example, substituting @samp{sin(x)} with @samp{cos(y)}
22285 in @samp{2 sin(x)^2 + x sin(x) + sin(2 x)} produces
22286 @samp{2 cos(y)^2 + x cos(y) + @w{sin(2 x)}}.
22287 Note that this is a purely structural substitution; the lone @samp{x} and
22288 the @samp{sin(2 x)} stayed the same because they did not look like
22289 @samp{sin(x)}.  @xref{Rewrite Rules}, for a more general method for
22290 doing substitutions.
22292 The @kbd{a b} command normally prompts for two formulas, the old
22293 one and the new one.  If you enter a blank line for the first
22294 prompt, all three arguments are taken from the stack (new, then old,
22295 then target expression).  If you type an old formula but then enter a
22296 blank line for the new one, the new formula is taken from top-of-stack
22297 and the target from second-to-top.  If you answer both prompts, the
22298 target is taken from top-of-stack as usual.
22300 Note that @kbd{a b} has no understanding of commutativity or
22301 associativity.  The pattern @samp{x+y} will not match the formula
22302 @samp{y+x}.  Also, @samp{y+z} will not match inside the formula @samp{x+y+z}
22303 because the @samp{+} operator is left-associative, so the ``deep
22304 structure'' of that formula is @samp{(x+y) + z}.  Use @kbd{d U}
22305 (@code{calc-unformatted-language}) mode to see the true structure of
22306 a formula.  The rewrite rule mechanism, discussed later, does not have
22307 these limitations.
22309 As an algebraic function, @code{subst} takes three arguments:
22310 Target expression, old, new.  Note that @code{subst} is always
22311 evaluated immediately, even if its arguments are variables, so if
22312 you wish to put a call to @code{subst} onto the stack you must
22313 turn the default simplifications off first (with @kbd{m O}).
22315 @node Simplifying Formulas, Polynomials, Algebraic Manipulation, Algebra
22316 @section Simplifying Formulas
22318 @noindent
22319 @kindex a s
22320 @kindex I a s
22321 @kindex H a s
22322 @pindex calc-simplify
22323 @tindex simplify
22325 The sections below describe all the various kinds of
22326 simplifications Calc provides in full detail.  None of Calc's
22327 simplification commands are designed to pull rabbits out of hats;
22328 they simply apply certain specific rules to put formulas into
22329 less redundant or more pleasing forms.  Serious algebra in Calc
22330 must be done manually, usually with a combination of selections
22331 and rewrite rules.  @xref{Rearranging with Selections}.
22332 @xref{Rewrite Rules}.
22334 @xref{Simplification Modes}, for commands to control what level of
22335 simplification occurs automatically.  Normally the algebraic
22336 simplifications described below occur.  If you have turned on a
22337 simplification mode which does not do these algebraic simplifications,
22338 you can still apply them to a formula with the @kbd{a s}
22339 (@code{calc-simplify}) [@code{simplify}] command.
22341 There are some simplifications that, while sometimes useful, are never
22342 done automatically.  For example, the @kbd{I} prefix can be given to
22343 @kbd{a s}; the @kbd{I a s} command will change any trigonometric
22344 function to the appropriate combination of @samp{sin}s and @samp{cos}s
22345 before simplifying.  This can be useful in simplifying even mildly
22346 complicated trigonometric expressions.  For example, while the algebraic
22347 simplifications can reduce @samp{sin(x) csc(x)} to @samp{1}, they will not
22348 simplify @samp{sin(x)^2 csc(x)}.  The command @kbd{I a s} can be used to
22349 simplify this latter expression; it will transform @samp{sin(x)^2
22350 csc(x)} into @samp{sin(x)}.  However, @kbd{I a s} will also perform
22351 some ``simplifications'' which may not be desired; for example, it
22352 will transform @samp{tan(x)^2} into @samp{sin(x)^2 / cos(x)^2}.  The
22353 Hyperbolic prefix @kbd{H} can be used similarly; the @kbd{H a s} will
22354 replace any hyperbolic functions in the formula with the appropriate
22355 combinations of @samp{sinh}s and @samp{cosh}s before simplifying.
22358 @menu
22359 * Basic Simplifications::
22360 * Algebraic Simplifications::
22361 * Unsafe Simplifications::
22362 * Simplification of Units::
22363 @end menu
22365 @node Basic Simplifications, Algebraic Simplifications, Simplifying Formulas, Simplifying Formulas
22366 @subsection Basic Simplifications
22368 @noindent
22369 @cindex Basic simplifications
22370 This section describes basic simplifications which Calc performs in many
22371 situations.  For example, both binary simplifications and algebraic
22372 simplifications begin by performing these basic simplifications.  You
22373 can type @kbd{m I} to restrict the simplifications done on the stack to
22374 these simplifications.
22376 The most basic simplification is the evaluation of functions.
22377 For example, @expr{2 + 3} is evaluated to @expr{5}, and @expr{@tfn{sqrt}(9)}
22378 is evaluated to @expr{3}.  Evaluation does not occur if the arguments
22379 to a function are somehow of the wrong type @expr{@tfn{tan}([2,3,4])}),
22380 range (@expr{@tfn{tan}(90)}), or number (@expr{@tfn{tan}(3,5)}),
22381 or if the function name is not recognized (@expr{@tfn{f}(5)}), or if
22382 Symbolic mode (@pxref{Symbolic Mode}) prevents evaluation
22383 (@expr{@tfn{sqrt}(2)}).
22385 Calc simplifies (evaluates) the arguments to a function before it
22386 simplifies the function itself.  Thus @expr{@tfn{sqrt}(5+4)} is
22387 simplified to @expr{@tfn{sqrt}(9)} before the @code{sqrt} function
22388 itself is applied.  There are very few exceptions to this rule:
22389 @code{quote}, @code{lambda}, and @code{condition} (the @code{::}
22390 operator) do not evaluate their arguments, @code{if} (the @code{? :}
22391 operator) does not evaluate all of its arguments, and @code{evalto}
22392 does not evaluate its lefthand argument.
22394 Most commands apply at least these basic simplifications to all
22395 arguments they take from the stack, perform a particular operation,
22396 then simplify the result before pushing it back on the stack.  In the
22397 common special case of regular arithmetic commands like @kbd{+} and
22398 @kbd{Q} [@code{sqrt}], the arguments are simply popped from the stack
22399 and collected into a suitable function call, which is then simplified
22400 (the arguments being simplified first as part of the process, as
22401 described above). 
22403 Even the basic set of simplifications are too numerous to describe
22404 completely here, but this section will describe the ones that apply to the
22405 major arithmetic operators.  This list will be rather technical in
22406 nature, and will probably be interesting to you only if you are
22407 a serious user of Calc's algebra facilities.
22409 @tex
22410 \bigskip
22411 @end tex
22413 As well as the simplifications described here, if you have stored
22414 any rewrite rules in the variable @code{EvalRules} then these rules
22415 will also be applied before any of the basic simplifications.
22416 @xref{Automatic Rewrites}, for details.
22418 @tex
22419 \bigskip
22420 @end tex
22422 And now, on with the basic simplifications:
22424 Arithmetic operators like @kbd{+} and @kbd{*} always take two
22425 arguments in Calc's internal form.  Sums and products of three or
22426 more terms are arranged by the associative law of algebra into
22427 a left-associative form for sums, @expr{((a + b) + c) + d}, and
22428 (by default) a right-associative form for products,
22429 @expr{a * (b * (c * d))}.  Formulas like @expr{(a + b) + (c + d)} are
22430 rearranged to left-associative form, though this rarely matters since
22431 Calc's algebra commands are designed to hide the inner structure of sums
22432 and products as much as possible.  Sums and products in their proper
22433 associative form will be written without parentheses in the examples
22434 below.
22436 Sums and products are @emph{not} rearranged according to the
22437 commutative law (@expr{a + b} to @expr{b + a}) except in a few
22438 special cases described below.  Some algebra programs always
22439 rearrange terms into a canonical order, which enables them to
22440 see that @expr{a b + b a} can be simplified to @expr{2 a b}.
22441 If you are using Basic Simplification mode, Calc assumes you have put
22442 the terms into the order you want and generally leaves that order alone,
22443 with the consequence that formulas like the above will only be
22444 simplified if you explicitly give the @kbd{a s} command.
22445 @xref{Algebraic Simplifications}.
22447 Differences @expr{a - b} are treated like sums @expr{a + (-b)}
22448 for purposes of simplification; one of the default simplifications
22449 is to rewrite @expr{a + (-b)} or @expr{(-b) + a}, where @expr{-b}
22450 represents a ``negative-looking'' term, into @expr{a - b} form.
22451 ``Negative-looking'' means negative numbers, negated formulas like
22452 @expr{-x}, and products or quotients in which either term is
22453 negative-looking.
22455 Other simplifications involving negation are @expr{-(-x)} to @expr{x};
22456 @expr{-(a b)} or @expr{-(a/b)} where either @expr{a} or @expr{b} is
22457 negative-looking, simplified by negating that term, or else where
22458 @expr{a} or @expr{b} is any number, by negating that number;
22459 @expr{-(a + b)} to @expr{-a - b}, and @expr{-(b - a)} to @expr{a - b}.
22460 (This, and rewriting @expr{(-b) + a} to @expr{a - b}, are the only
22461 cases where the order of terms in a sum is changed by the default
22462 simplifications.)
22464 The distributive law is used to simplify sums in some cases:
22465 @expr{a x + b x} to @expr{(a + b) x}, where @expr{a} represents
22466 a number or an implicit 1 or @mathit{-1} (as in @expr{x} or @expr{-x})
22467 and similarly for @expr{b}.  Use the @kbd{a c}, @w{@kbd{a f}}, or
22468 @kbd{j M} commands to merge sums with non-numeric coefficients
22469 using the distributive law.
22471 The distributive law is only used for sums of two terms, or
22472 for adjacent terms in a larger sum.  Thus @expr{a + b + b + c}
22473 is simplified to @expr{a + 2 b + c}, but @expr{a + b + c + b}
22474 is not simplified.  The reason is that comparing all terms of a
22475 sum with one another would require time proportional to the
22476 square of the number of terms; Calc omits potentially slow
22477 operations like this in basic simplification mode.
22479 Finally, @expr{a + 0} and @expr{0 + a} are simplified to @expr{a}.
22480 A consequence of the above rules is that @expr{0 - a} is simplified
22481 to @expr{-a}.
22483 @tex
22484 \bigskip
22485 @end tex
22487 The products @expr{1 a} and @expr{a 1} are simplified to @expr{a};
22488 @expr{(-1) a} and @expr{a (-1)} are simplified to @expr{-a};
22489 @expr{0 a} and @expr{a 0} are simplified to @expr{0}, except that
22490 in Matrix mode where @expr{a} is not provably scalar the result
22491 is the generic zero matrix @samp{idn(0)}, and that if @expr{a} is
22492 infinite the result is @samp{nan}.
22494 Also, @expr{(-a) b} and @expr{a (-b)} are simplified to @expr{-(a b)},
22495 where this occurs for negated formulas but not for regular negative
22496 numbers.
22498 Products are commuted only to move numbers to the front:
22499 @expr{a b 2} is commuted to @expr{2 a b}.
22501 The product @expr{a (b + c)} is distributed over the sum only if
22502 @expr{a} and at least one of @expr{b} and @expr{c} are numbers:
22503 @expr{2 (x + 3)} goes to @expr{2 x + 6}.  The formula
22504 @expr{(-a) (b - c)}, where @expr{-a} is a negative number, is
22505 rewritten to @expr{a (c - b)}.
22507 The distributive law of products and powers is used for adjacent
22508 terms of the product: @expr{x^a x^b} goes to
22509 @texline @math{x^{a+b}}
22510 @infoline @expr{x^(a+b)}
22511 where @expr{a} is a number, or an implicit 1 (as in @expr{x}),
22512 or the implicit one-half of @expr{@tfn{sqrt}(x)}, and similarly for
22513 @expr{b}.  The result is written using @samp{sqrt} or @samp{1/sqrt}
22514 if the sum of the powers is @expr{1/2} or @expr{-1/2}, respectively.
22515 If the sum of the powers is zero, the product is simplified to
22516 @expr{1} or to @samp{idn(1)} if Matrix mode is enabled.
22518 The product of a negative power times anything but another negative
22519 power is changed to use division:
22520 @texline @math{x^{-2} y}
22521 @infoline @expr{x^(-2) y}
22522 goes to @expr{y / x^2} unless Matrix mode is
22523 in effect and neither @expr{x} nor @expr{y} are scalar (in which
22524 case it is considered unsafe to rearrange the order of the terms).
22526 Finally, @expr{a (b/c)} is rewritten to @expr{(a b)/c}, and also
22527 @expr{(a/b) c} is changed to @expr{(a c)/b} unless in Matrix mode.
22529 @tex
22530 \bigskip
22531 @end tex
22533 Simplifications for quotients are analogous to those for products.
22534 The quotient @expr{0 / x} is simplified to @expr{0}, with the same
22535 exceptions that were noted for @expr{0 x}.  Likewise, @expr{x / 1}
22536 and @expr{x / (-1)} are simplified to @expr{x} and @expr{-x},
22537 respectively.
22539 The quotient @expr{x / 0} is left unsimplified or changed to an
22540 infinite quantity, as directed by the current infinite mode.
22541 @xref{Infinite Mode}.
22543 The expression
22544 @texline @math{a / b^{-c}}
22545 @infoline @expr{a / b^(-c)}
22546 is changed to @expr{a b^c}, where @expr{-c} is any negative-looking
22547 power.  Also, @expr{1 / b^c} is changed to
22548 @texline @math{b^{-c}}
22549 @infoline @expr{b^(-c)}
22550 for any power @expr{c}.
22552 Also, @expr{(-a) / b} and @expr{a / (-b)} go to @expr{-(a/b)};
22553 @expr{(a/b) / c} goes to @expr{a / (b c)}; and @expr{a / (b/c)}
22554 goes to @expr{(a c) / b} unless Matrix mode prevents this
22555 rearrangement.  Similarly, @expr{a / (b:c)} is simplified to
22556 @expr{(c:b) a} for any fraction @expr{b:c}.
22558 The distributive law is applied to @expr{(a + b) / c} only if
22559 @expr{c} and at least one of @expr{a} and @expr{b} are numbers.
22560 Quotients of powers and square roots are distributed just as
22561 described for multiplication.
22563 Quotients of products cancel only in the leading terms of the
22564 numerator and denominator.  In other words, @expr{a x b / a y b}
22565 is canceled to @expr{x b / y b} but not to @expr{x / y}.  Once
22566 again this is because full cancellation can be slow; use @kbd{a s}
22567 to cancel all terms of the quotient.
22569 Quotients of negative-looking values are simplified according
22570 to @expr{(-a) / (-b)} to @expr{a / b}, @expr{(-a) / (b - c)}
22571 to @expr{a / (c - b)}, and @expr{(a - b) / (-c)} to @expr{(b - a) / c}.
22573 @tex
22574 \bigskip
22575 @end tex
22577 The formula @expr{x^0} is simplified to @expr{1}, or to @samp{idn(1)}
22578 in Matrix mode.  The formula @expr{0^x} is simplified to @expr{0}
22579 unless @expr{x} is a negative number, complex number or zero.
22580 If @expr{x} is negative, complex or @expr{0.0}, @expr{0^x} is an
22581 infinity or an unsimplified formula according to the current infinite
22582 mode.  The expression @expr{0^0} is simplified to @expr{1}.
22584 Powers of products or quotients @expr{(a b)^c}, @expr{(a/b)^c}
22585 are distributed to @expr{a^c b^c}, @expr{a^c / b^c} only if @expr{c}
22586 is an integer, or if either @expr{a} or @expr{b} are nonnegative
22587 real numbers.  Powers of powers @expr{(a^b)^c} are simplified to
22588 @texline @math{a^{b c}}
22589 @infoline @expr{a^(b c)}
22590 only when @expr{c} is an integer and @expr{b c} also
22591 evaluates to an integer.  Without these restrictions these simplifications
22592 would not be safe because of problems with principal values.
22593 (In other words,
22594 @texline @math{((-3)^{1/2})^2}
22595 @infoline @expr{((-3)^1:2)^2}
22596 is safe to simplify, but
22597 @texline @math{((-3)^2)^{1/2}}
22598 @infoline @expr{((-3)^2)^1:2}
22599 is not.)  @xref{Declarations}, for ways to inform Calc that your
22600 variables satisfy these requirements.
22602 As a special case of this rule, @expr{@tfn{sqrt}(x)^n} is simplified to
22603 @texline @math{x^{n/2}}
22604 @infoline @expr{x^(n/2)}
22605 only for even integers @expr{n}.
22607 If @expr{a} is known to be real, @expr{b} is an even integer, and
22608 @expr{c} is a half- or quarter-integer, then @expr{(a^b)^c} is
22609 simplified to @expr{@tfn{abs}(a^(b c))}.
22611 Also, @expr{(-a)^b} is simplified to @expr{a^b} if @expr{b} is an
22612 even integer, or to @expr{-(a^b)} if @expr{b} is an odd integer,
22613 for any negative-looking expression @expr{-a}.
22615 Square roots @expr{@tfn{sqrt}(x)} generally act like one-half powers
22616 @texline @math{x^{1:2}}
22617 @infoline @expr{x^1:2}
22618 for the purposes of the above-listed simplifications.
22620 Also, note that
22621 @texline @math{1 / x^{1:2}}
22622 @infoline @expr{1 / x^1:2}
22623 is changed to
22624 @texline @math{x^{-1:2}},
22625 @infoline @expr{x^(-1:2)},
22626 but @expr{1 / @tfn{sqrt}(x)} is left alone.
22628 @tex
22629 \bigskip
22630 @end tex
22632 Generic identity matrices (@pxref{Matrix Mode}) are simplified by the
22633 following rules:  @expr{@tfn{idn}(a) + b} to @expr{a + b} if @expr{b}
22634 is provably scalar, or expanded out if @expr{b} is a matrix;
22635 @expr{@tfn{idn}(a) + @tfn{idn}(b)} to @expr{@tfn{idn}(a + b)};
22636 @expr{-@tfn{idn}(a)} to @expr{@tfn{idn}(-a)}; @expr{a @tfn{idn}(b)} to
22637 @expr{@tfn{idn}(a b)} if @expr{a} is provably scalar, or to @expr{a b}
22638 if @expr{a} is provably non-scalar;  @expr{@tfn{idn}(a) @tfn{idn}(b)} to
22639 @expr{@tfn{idn}(a b)}; analogous simplifications for quotients involving
22640 @code{idn}; and @expr{@tfn{idn}(a)^n} to @expr{@tfn{idn}(a^n)} where
22641 @expr{n} is an integer.
22643 @tex
22644 \bigskip
22645 @end tex
22647 The @code{floor} function and other integer truncation functions
22648 vanish if the argument is provably integer-valued, so that
22649 @expr{@tfn{floor}(@tfn{round}(x))} simplifies to @expr{@tfn{round}(x)}.
22650 Also, combinations of @code{float}, @code{floor} and its friends,
22651 and @code{ffloor} and its friends, are simplified in appropriate
22652 ways.  @xref{Integer Truncation}.
22654 The expression @expr{@tfn{abs}(-x)} changes to @expr{@tfn{abs}(x)}.
22655 The expression @expr{@tfn{abs}(@tfn{abs}(x))} changes to
22656 @expr{@tfn{abs}(x)};  in fact, @expr{@tfn{abs}(x)} changes to @expr{x} or
22657 @expr{-x} if @expr{x} is provably nonnegative or nonpositive
22658 (@pxref{Declarations}).
22660 While most functions do not recognize the variable @code{i} as an
22661 imaginary number, the @code{arg} function does handle the two cases
22662 @expr{@tfn{arg}(@tfn{i})} and @expr{@tfn{arg}(-@tfn{i})} just for convenience.
22664 The expression @expr{@tfn{conj}(@tfn{conj}(x))} simplifies to @expr{x}.
22665 Various other expressions involving @code{conj}, @code{re}, and
22666 @code{im} are simplified, especially if some of the arguments are
22667 provably real or involve the constant @code{i}.  For example,
22668 @expr{@tfn{conj}(a + b i)} is changed to
22669 @expr{@tfn{conj}(a) - @tfn{conj}(b) i},  or to @expr{a - b i} if @expr{a}
22670 and @expr{b} are known to be real.
22672 Functions like @code{sin} and @code{arctan} generally don't have
22673 any default simplifications beyond simply evaluating the functions
22674 for suitable numeric arguments and infinity.  The algebraic
22675 simplifications described in the next section do provide some
22676 simplifications for these functions, though.
22678 One important simplification that does occur is that
22679 @expr{@tfn{ln}(@tfn{e})} is simplified to 1, and @expr{@tfn{ln}(@tfn{e}^x)} is
22680 simplified to @expr{x} for any @expr{x}.  This occurs even if you have
22681 stored a different value in the Calc variable @samp{e}; but this would
22682 be a bad idea in any case if you were also using natural logarithms!
22684 Among the logical functions, @tfn{!(@var{a} <= @var{b})} changes to
22685 @tfn{@var{a} > @var{b}} and so on.  Equations and inequalities where both sides
22686 are either negative-looking or zero are simplified by negating both sides
22687 and reversing the inequality.  While it might seem reasonable to simplify
22688 @expr{!!x} to @expr{x}, this would not be valid in general because
22689 @expr{!!2} is 1, not 2.
22691 Most other Calc functions have few if any basic simplifications
22692 defined, aside of course from evaluation when the arguments are
22693 suitable numbers.
22695 @node Algebraic Simplifications, Unsafe Simplifications, Basic Simplifications, Simplifying Formulas
22696 @subsection Algebraic Simplifications
22698 @noindent
22699 @cindex Algebraic simplifications
22700 @kindex a s
22701 @kindex m A
22702 This section describes all simplifications that are performed by
22703 the algebraic simplification mode, which is the default simplification
22704 mode.  If you have switched to a different simplification mode, you can
22705 switch back with the @kbd{m A} command. Even in other simplification
22706 modes, the @kbd{a s} command will use these algebraic simplifications to
22707 simplify the formula. 
22709 There is a variable, @code{AlgSimpRules}, in which you can put rewrites
22710 to be applied. Its use is analogous to @code{EvalRules},
22711 but without the special restrictions.  Basically, the simplifier does
22712 @samp{@w{a r} AlgSimpRules} with an infinite repeat count on the whole
22713 expression being simplified, then it traverses the expression applying
22714 the built-in rules described below.  If the result is different from
22715 the original expression, the process repeats with the basic
22716 simplifications (including @code{EvalRules}), then @code{AlgSimpRules},
22717 then the built-in simplifications, and so on.
22719 @tex
22720 \bigskip
22721 @end tex
22723 Sums are simplified in two ways.  Constant terms are commuted to the
22724 end of the sum, so that @expr{a + 2 + b} changes to @expr{a + b + 2}.
22725 The only exception is that a constant will not be commuted away
22726 from the first position of a difference, i.e., @expr{2 - x} is not
22727 commuted to @expr{-x + 2}.
22729 Also, terms of sums are combined by the distributive law, as in
22730 @expr{x + y + 2 x} to @expr{y + 3 x}.  This always occurs for
22731 adjacent terms, but Calc's algebraic simplifications compare all pairs
22732 of terms including non-adjacent ones.
22734 @tex
22735 \bigskip
22736 @end tex
22738 Products are sorted into a canonical order using the commutative
22739 law.  For example, @expr{b c a} is commuted to @expr{a b c}.
22740 This allows easier comparison of products; for example, the basic
22741 simplifications will not change @expr{x y + y x} to @expr{2 x y},
22742 but the algebraic simplifications; it first rewrites the sum to
22743 @expr{x y + x y} which can then be recognized as a sum of identical
22744 terms. 
22746 The canonical ordering used to sort terms of products has the
22747 property that real-valued numbers, interval forms and infinities
22748 come first, and are sorted into increasing order.  The @kbd{V S}
22749 command uses the same ordering when sorting a vector.
22751 Sorting of terms of products is inhibited when Matrix mode is
22752 turned on; in this case, Calc will never exchange the order of
22753 two terms unless it knows at least one of the terms is a scalar.
22755 Products of powers are distributed by comparing all pairs of
22756 terms, using the same method that the default simplifications
22757 use for adjacent terms of products.
22759 Even though sums are not sorted, the commutative law is still
22760 taken into account when terms of a product are being compared.
22761 Thus @expr{(x + y) (y + x)} will be simplified to @expr{(x + y)^2}.
22762 A subtle point is that @expr{(x - y) (y - x)} will @emph{not}
22763 be simplified to @expr{-(x - y)^2}; Calc does not notice that
22764 one term can be written as a constant times the other, even if
22765 that constant is @mathit{-1}.
22767 A fraction times any expression, @expr{(a:b) x}, is changed to
22768 a quotient involving integers:  @expr{a x / b}.  This is not
22769 done for floating-point numbers like @expr{0.5}, however.  This
22770 is one reason why you may find it convenient to turn Fraction mode
22771 on while doing algebra; @pxref{Fraction Mode}.
22773 @tex
22774 \bigskip
22775 @end tex
22777 Quotients are simplified by comparing all terms in the numerator
22778 with all terms in the denominator for possible cancellation using
22779 the distributive law.  For example, @expr{a x^2 b / c x^3 d} will
22780 cancel @expr{x^2} from the top and bottom to get @expr{a b / c x d}.
22781 (The terms in the denominator will then be rearranged to @expr{c d x}
22782 as described above.)  If there is any common integer or fractional
22783 factor in the numerator and denominator, it is canceled out;
22784 for example, @expr{(4 x + 6) / 8 x} simplifies to @expr{(2 x + 3) / 4 x}.
22786 Non-constant common factors are not found even by algebraic
22787 simplifications.  To cancel the factor @expr{a} in 
22788 @expr{(a x + a) / a^2} you could first use @kbd{j M} on the product
22789 @expr{a x} to Merge the numerator to @expr{a (1+x)}, which can then be
22790 simplified successfully. 
22792 @tex
22793 \bigskip
22794 @end tex
22796 Integer powers of the variable @code{i} are simplified according
22797 to the identity @expr{i^2 = -1}.  If you store a new value other
22798 than the complex number @expr{(0,1)} in @code{i}, this simplification
22799 will no longer occur.  This is not done by the basic
22800 simplifications; in case someone (unwisely) wants to use the name
22801 @code{i} for a variable unrelated to complex numbers, they can use
22802 basic simplification mode.
22804 Square roots of integer or rational arguments are simplified in
22805 several ways.  (Note that these will be left unevaluated only in
22806 Symbolic mode.)  First, square integer or rational factors are
22807 pulled out so that @expr{@tfn{sqrt}(8)} is rewritten as
22808 @texline @math{2\,@tfn{sqrt}(2)}.
22809 @infoline @expr{2 sqrt(2)}.
22810 Conceptually speaking this implies factoring the argument into primes
22811 and moving pairs of primes out of the square root, but for reasons of
22812 efficiency Calc only looks for primes up to 29.
22814 Square roots in the denominator of a quotient are moved to the
22815 numerator:  @expr{1 / @tfn{sqrt}(3)} changes to @expr{@tfn{sqrt}(3) / 3}.
22816 The same effect occurs for the square root of a fraction:
22817 @expr{@tfn{sqrt}(2:3)} changes to @expr{@tfn{sqrt}(6) / 3}.
22819 @tex
22820 \bigskip
22821 @end tex
22823 The @code{%} (modulo) operator is simplified in several ways
22824 when the modulus @expr{M} is a positive real number.  First, if
22825 the argument is of the form @expr{x + n} for some real number
22826 @expr{n}, then @expr{n} is itself reduced modulo @expr{M}.  For
22827 example, @samp{(x - 23) % 10} is simplified to @samp{(x + 7) % 10}.
22829 If the argument is multiplied by a constant, and this constant
22830 has a common integer divisor with the modulus, then this factor is
22831 canceled out.  For example, @samp{12 x % 15} is changed to
22832 @samp{3 (4 x % 5)} by factoring out 3.  Also, @samp{(12 x + 1) % 15}
22833 is changed to @samp{3 ((4 x + 1:3) % 5)}.  While these forms may
22834 not seem ``simpler,'' they allow Calc to discover useful information
22835 about modulo forms in the presence of declarations.
22837 If the modulus is 1, then Calc can use @code{int} declarations to
22838 evaluate the expression.  For example, the idiom @samp{x % 2} is
22839 often used to check whether a number is odd or even.  As described
22840 above, @w{@samp{2 n % 2}} and @samp{(2 n + 1) % 2} are simplified to
22841 @samp{2 (n % 1)} and @samp{2 ((n + 1:2) % 1)}, respectively; Calc
22842 can simplify these to 0 and 1 (respectively) if @code{n} has been
22843 declared to be an integer.
22845 @tex
22846 \bigskip
22847 @end tex
22849 Trigonometric functions are simplified in several ways.  Whenever a
22850 products of two trigonometric functions can be replaced by a single
22851 function, the replacement is made; for example,
22852 @expr{@tfn{tan}(x) @tfn{cos}(x)} is simplified to @expr{@tfn{sin}(x)}.
22853 Reciprocals of trigonometric functions are replaced by their reciprocal
22854 function; for example, @expr{1/@tfn{sec}(x)} is simplified to
22855 @expr{@tfn{cos}(x)}.  The corresponding simplifications for the
22856 hyperbolic functions are also handled.
22858 Trigonometric functions of their inverse functions are
22859 simplified. The expression @expr{@tfn{sin}(@tfn{arcsin}(x))} is
22860 simplified to @expr{x}, and similarly for @code{cos} and @code{tan}.
22861 Trigonometric functions of inverses of different trigonometric
22862 functions can also be simplified, as in @expr{@tfn{sin}(@tfn{arccos}(x))}
22863 to @expr{@tfn{sqrt}(1 - x^2)}.
22865 If the argument to @code{sin} is negative-looking, it is simplified to
22866 @expr{-@tfn{sin}(x)}, and similarly for @code{cos} and @code{tan}.
22867 Finally, certain special values of the argument are recognized;
22868 @pxref{Trigonometric and Hyperbolic Functions}.
22870 Hyperbolic functions of their inverses and of negative-looking
22871 arguments are also handled, as are exponentials of inverse
22872 hyperbolic functions.
22874 No simplifications for inverse trigonometric and hyperbolic
22875 functions are known, except for negative arguments of @code{arcsin},
22876 @code{arctan}, @code{arcsinh}, and @code{arctanh}.  Note that
22877 @expr{@tfn{arcsin}(@tfn{sin}(x))} can @emph{not} safely change to
22878 @expr{x}, since this only correct within an integer multiple of
22879 @texline @math{2 \pi}
22880 @infoline @expr{2 pi}
22881 radians or 360 degrees.  However, @expr{@tfn{arcsinh}(@tfn{sinh}(x))} is
22882 simplified to @expr{x} if @expr{x} is known to be real.
22884 Several simplifications that apply to logarithms and exponentials
22885 are that @expr{@tfn{exp}(@tfn{ln}(x))},
22886 @texline @tfn{e}@math{^{\ln(x)}},
22887 @infoline @expr{e^@tfn{ln}(x)},
22889 @texline @math{10^{{\rm log10}(x)}}
22890 @infoline @expr{10^@tfn{log10}(x)}
22891 all reduce to @expr{x}.  Also, @expr{@tfn{ln}(@tfn{exp}(x))}, etc., can
22892 reduce to @expr{x} if @expr{x} is provably real.  The form
22893 @expr{@tfn{exp}(x)^y} is simplified to @expr{@tfn{exp}(x y)}.  If @expr{x}
22894 is a suitable multiple of
22895 @texline @math{\pi i}
22896 @infoline @expr{pi i}
22897 (as described above for the trigonometric functions), then
22898 @expr{@tfn{exp}(x)} or @expr{e^x} will be expanded.  Finally,
22899 @expr{@tfn{ln}(x)} is simplified to a form involving @code{pi} and
22900 @code{i} where @expr{x} is provably negative, positive imaginary, or
22901 negative imaginary.
22903 The error functions @code{erf} and @code{erfc} are simplified when
22904 their arguments are negative-looking or are calls to the @code{conj}
22905 function.
22907 @tex
22908 \bigskip
22909 @end tex
22911 Equations and inequalities are simplified by canceling factors
22912 of products, quotients, or sums on both sides.  Inequalities
22913 change sign if a negative multiplicative factor is canceled.
22914 Non-constant multiplicative factors as in @expr{a b = a c} are
22915 canceled from equations only if they are provably nonzero (generally
22916 because they were declared so; @pxref{Declarations}).  Factors
22917 are canceled from inequalities only if they are nonzero and their
22918 sign is known.
22920 Simplification also replaces an equation or inequality with
22921 1 or 0 (``true'' or ``false'') if it can through the use of
22922 declarations.  If @expr{x} is declared to be an integer greater
22923 than 5, then @expr{x < 3}, @expr{x = 3}, and @expr{x = 7.5} are
22924 all simplified to 0, but @expr{x > 3} is simplified to 1.
22925 By a similar analysis, @expr{abs(x) >= 0} is simplified to 1,
22926 as is @expr{x^2 >= 0} if @expr{x} is known to be real.
22928 @node Unsafe Simplifications, Simplification of Units, Algebraic Simplifications, Simplifying Formulas
22929 @subsection ``Unsafe'' Simplifications
22931 @noindent
22932 @cindex Unsafe simplifications
22933 @cindex Extended simplification
22934 @kindex a e
22935 @kindex m E
22936 @pindex calc-simplify-extended
22937 @ignore
22938 @mindex esimpl@idots
22939 @end ignore
22940 @tindex esimplify
22941 Calc is capable of performing some simplifications which may sometimes
22942 be desired but which are not ``safe'' in all cases.  The @kbd{a e}
22943 (@code{calc-simplify-extended}) [@code{esimplify}] command 
22944 applies the algebraic simplifications as well as these extended, or
22945 ``unsafe'', simplifications.  Use this only if you know the values in
22946 your formula lie in the restricted ranges for which these
22947 simplifications are valid.  You can use Extended Simplification mode
22948 (@kbd{m E}) to have these simplifications done automatically.
22950 The symbolic integrator uses these extended simplifications; one effect
22951 of this is that the integrator's results must be used with caution.
22952 Where an integral table will often attach conditions like ``for positive
22953 @expr{a} only,'' Calc (like most other symbolic integration programs)
22954 will simply produce an unqualified result.
22956 Because @kbd{a e}'s simplifications are unsafe, it is sometimes better
22957 to type @kbd{C-u -3 a v}, which does extended simplification only
22958 on the top level of the formula without affecting the sub-formulas.
22959 In fact, @kbd{C-u -3 j v} allows you to target extended simplification
22960 to any specific part of a formula.
22962 The variable @code{ExtSimpRules} contains rewrites to be applied when
22963 the extended simplifications are used.  These are applied in addition to
22964 @code{EvalRules} and @code{AlgSimpRules}.  (The @kbd{a r AlgSimpRules}
22965 step described above is simply followed by an @kbd{a r ExtSimpRules} step.)
22967 Following is a complete list of the ``unsafe'' simplifications.
22969 @tex
22970 \bigskip
22971 @end tex
22973 Inverse trigonometric or hyperbolic functions, called with their
22974 corresponding non-inverse functions as arguments, are simplified.
22975 For example, @expr{@tfn{arcsin}(@tfn{sin}(x))} changes
22976 to @expr{x}.  Also, @expr{@tfn{arcsin}(@tfn{cos}(x))} and
22977 @expr{@tfn{arccos}(@tfn{sin}(x))} both change to @expr{@tfn{pi}/2 - x}.
22978 These simplifications are unsafe because they are valid only for
22979 values of @expr{x} in a certain range; outside that range, values
22980 are folded down to the 360-degree range that the inverse trigonometric
22981 functions always produce.
22983 Powers of powers @expr{(x^a)^b} are simplified to
22984 @texline @math{x^{a b}}
22985 @infoline @expr{x^(a b)}
22986 for all @expr{a} and @expr{b}.  These results will be valid only
22987 in a restricted range of @expr{x}; for example, in
22988 @texline @math{(x^2)^{1:2}}
22989 @infoline @expr{(x^2)^1:2}
22990 the powers cancel to get @expr{x}, which is valid for positive values
22991 of @expr{x} but not for negative or complex values.
22993 Similarly, @expr{@tfn{sqrt}(x^a)} and @expr{@tfn{sqrt}(x)^a} are both
22994 simplified (possibly unsafely) to
22995 @texline @math{x^{a/2}}.
22996 @infoline @expr{x^(a/2)}.
22998 Forms like @expr{@tfn{sqrt}(1 - sin(x)^2)} are simplified to, e.g.,
22999 @expr{@tfn{cos}(x)}.  Calc has identities of this sort for @code{sin},
23000 @code{cos}, @code{tan}, @code{sinh}, and @code{cosh}.
23002 Arguments of square roots are partially factored to look for
23003 squared terms that can be extracted.  For example,
23004 @expr{@tfn{sqrt}(a^2 b^3 + a^3 b^2)} simplifies to
23005 @expr{a b @tfn{sqrt}(a+b)}.
23007 The simplifications of @expr{@tfn{ln}(@tfn{exp}(x))},
23008 @expr{@tfn{ln}(@tfn{e}^x)}, and @expr{@tfn{log10}(10^x)} to @expr{x} are also
23009 unsafe because of problems with principal values (although these
23010 simplifications are safe if @expr{x} is known to be real).
23012 Common factors are canceled from products on both sides of an
23013 equation, even if those factors may be zero:  @expr{a x / b x}
23014 to @expr{a / b}.  Such factors are never canceled from
23015 inequalities:  Even the extended simplifications are not bold enough to
23016 reduce @expr{a x < b x} to @expr{a < b} (or @expr{a > b}, depending
23017 on whether you believe @expr{x} is positive or negative).
23018 The @kbd{a M /} command can be used to divide a factor out of
23019 both sides of an inequality.
23021 @node Simplification of Units,  , Unsafe Simplifications, Simplifying Formulas
23022 @subsection Simplification of Units
23024 @noindent
23025 The simplifications described in this section (as well as the algebraic
23026 simplifications) are applied when units need to be simplified.  They can
23027 be applied using the @kbd{u s} (@code{calc-simplify-units}) command, or
23028 will be done automatically in Units Simplification mode (@kbd{m U}).
23029 @xref{Basic Operations on Units}.
23031 The variable @code{UnitSimpRules} contains rewrites to be applied by
23032 units simplifications.  These are applied in addition to @code{EvalRules}
23033 and @code{AlgSimpRules}.
23035 Scalar mode is automatically put into effect when simplifying units.
23036 @xref{Matrix Mode}.
23038 Sums @expr{a + b} involving units are simplified by extracting the
23039 units of @expr{a} as if by the @kbd{u x} command (call the result
23040 @expr{u_a}), then simplifying the expression @expr{b / u_a}
23041 using @kbd{u b} and @kbd{u s}.  If the result has units then the sum
23042 is inconsistent and is left alone.  Otherwise, it is rewritten
23043 in terms of the units @expr{u_a}.
23045 If units auto-ranging mode is enabled, products or quotients in
23046 which the first argument is a number which is out of range for the
23047 leading unit are modified accordingly.
23049 When canceling and combining units in products and quotients,
23050 Calc accounts for unit names that differ only in the prefix letter.
23051 For example, @samp{2 km m} is simplified to @samp{2000 m^2}.
23052 However, compatible but different units like @code{ft} and @code{in}
23053 are not combined in this way.
23055 Quotients @expr{a / b} are simplified in three additional ways.  First,
23056 if @expr{b} is a number or a product beginning with a number, Calc
23057 computes the reciprocal of this number and moves it to the numerator.
23059 Second, for each pair of unit names from the numerator and denominator
23060 of a quotient, if the units are compatible (e.g., they are both
23061 units of area) then they are replaced by the ratio between those
23062 units.  For example, in @samp{3 s in N / kg cm} the units
23063 @samp{in / cm} will be replaced by @expr{2.54}.
23065 Third, if the units in the quotient exactly cancel out, so that
23066 a @kbd{u b} command on the quotient would produce a dimensionless
23067 number for an answer, then the quotient simplifies to that number.
23069 For powers and square roots, the ``unsafe'' simplifications
23070 @expr{(a b)^c} to @expr{a^c b^c}, @expr{(a/b)^c} to @expr{a^c / b^c},
23071 and @expr{(a^b)^c} to
23072 @texline @math{a^{b c}}
23073 @infoline @expr{a^(b c)}
23074 are done if the powers are real numbers.  (These are safe in the context
23075 of units because all numbers involved can reasonably be assumed to be
23076 real.)
23078 Also, if a unit name is raised to a fractional power, and the
23079 base units in that unit name all occur to powers which are a
23080 multiple of the denominator of the power, then the unit name
23081 is expanded out into its base units, which can then be simplified
23082 according to the previous paragraph.  For example, @samp{acre^1.5}
23083 is simplified by noting that @expr{1.5 = 3:2}, that @samp{acre}
23084 is defined in terms of @samp{m^2}, and that the 2 in the power of
23085 @code{m} is a multiple of 2 in @expr{3:2}.  Thus, @code{acre^1.5} is
23086 replaced by approximately
23087 @texline @math{(4046 m^2)^{1.5}}
23088 @infoline @expr{(4046 m^2)^1.5},
23089 which is then changed to
23090 @texline @math{4046^{1.5} \, (m^2)^{1.5}},
23091 @infoline @expr{4046^1.5 (m^2)^1.5},
23092 then to @expr{257440 m^3}.
23094 The functions @code{float}, @code{frac}, @code{clean}, @code{abs},
23095 as well as @code{floor} and the other integer truncation functions,
23096 applied to unit names or products or quotients involving units, are
23097 simplified.  For example, @samp{round(1.6 in)} is changed to
23098 @samp{round(1.6) round(in)}; the lefthand term evaluates to 2,
23099 and the righthand term simplifies to @code{in}.
23101 The functions @code{sin}, @code{cos}, and @code{tan} with arguments
23102 that have angular units like @code{rad} or @code{arcmin} are
23103 simplified by converting to base units (radians), then evaluating
23104 with the angular mode temporarily set to radians.
23106 @node Polynomials, Calculus, Simplifying Formulas, Algebra
23107 @section Polynomials
23109 A @dfn{polynomial} is a sum of terms which are coefficients times
23110 various powers of a ``base'' variable.  For example, @expr{2 x^2 + 3 x - 4}
23111 is a polynomial in @expr{x}.  Some formulas can be considered
23112 polynomials in several different variables:  @expr{1 + 2 x + 3 y + 4 x y^2}
23113 is a polynomial in both @expr{x} and @expr{y}.  Polynomial coefficients
23114 are often numbers, but they may in general be any formulas not
23115 involving the base variable.
23117 @kindex a f
23118 @pindex calc-factor
23119 @tindex factor
23120 The @kbd{a f} (@code{calc-factor}) [@code{factor}] command factors a
23121 polynomial into a product of terms.  For example, the polynomial
23122 @expr{x^3 + 2 x^2 + x} is factored into @samp{x*(x+1)^2}.  As another
23123 example, @expr{a c + b d + b c + a d} is factored into the product
23124 @expr{(a + b) (c + d)}.
23126 Calc currently has three algorithms for factoring.  Formulas which are
23127 linear in several variables, such as the second example above, are
23128 merged according to the distributive law.  Formulas which are
23129 polynomials in a single variable, with constant integer or fractional
23130 coefficients, are factored into irreducible linear and/or quadratic
23131 terms.  The first example above factors into three linear terms
23132 (@expr{x}, @expr{x+1}, and @expr{x+1} again).  Finally, formulas
23133 which do not fit the above criteria are handled by the algebraic
23134 rewrite mechanism.
23136 Calc's polynomial factorization algorithm works by using the general
23137 root-finding command (@w{@kbd{a P}}) to solve for the roots of the
23138 polynomial.  It then looks for roots which are rational numbers
23139 or complex-conjugate pairs, and converts these into linear and
23140 quadratic terms, respectively.  Because it uses floating-point
23141 arithmetic, it may be unable to find terms that involve large
23142 integers (whose number of digits approaches the current precision).
23143 Also, irreducible factors of degree higher than quadratic are not
23144 found, and polynomials in more than one variable are not treated.
23145 (A more robust factorization algorithm may be included in a future
23146 version of Calc.)
23148 @vindex FactorRules
23149 @ignore
23150 @starindex
23151 @end ignore
23152 @tindex thecoefs
23153 @ignore
23154 @starindex
23155 @end ignore
23156 @ignore
23157 @mindex @idots
23158 @end ignore
23159 @tindex thefactors
23160 The rewrite-based factorization method uses rules stored in the variable
23161 @code{FactorRules}.  @xref{Rewrite Rules}, for a discussion of the
23162 operation of rewrite rules.  The default @code{FactorRules} are able
23163 to factor quadratic forms symbolically into two linear terms,
23164 @expr{(a x + b) (c x + d)}.  You can edit these rules to include other
23165 cases if you wish.  To use the rules, Calc builds the formula
23166 @samp{thecoefs(x, [a, b, c, ...])} where @code{x} is the polynomial
23167 base variable and @code{a}, @code{b}, etc., are polynomial coefficients
23168 (which may be numbers or formulas).  The constant term is written first,
23169 i.e., in the @code{a} position.  When the rules complete, they should have
23170 changed the formula into the form @samp{thefactors(x, [f1, f2, f3, ...])}
23171 where each @code{fi} should be a factored term, e.g., @samp{x - ai}.
23172 Calc then multiplies these terms together to get the complete
23173 factored form of the polynomial.  If the rules do not change the
23174 @code{thecoefs} call to a @code{thefactors} call, @kbd{a f} leaves the
23175 polynomial alone on the assumption that it is unfactorable.  (Note that
23176 the function names @code{thecoefs} and @code{thefactors} are used only
23177 as placeholders; there are no actual Calc functions by those names.)
23179 @kindex H a f
23180 @tindex factors
23181 The @kbd{H a f} [@code{factors}] command also factors a polynomial,
23182 but it returns a list of factors instead of an expression which is the
23183 product of the factors.  Each factor is represented by a sub-vector
23184 of the factor, and the power with which it appears.  For example,
23185 @expr{x^5 + x^4 - 33 x^3 + 63 x^2} factors to @expr{(x + 7) x^2 (x - 3)^2}
23186 in @kbd{a f}, or to @expr{[ [x, 2], [x+7, 1], [x-3, 2] ]} in @kbd{H a f}.
23187 If there is an overall numeric factor, it always comes first in the list.
23188 The functions @code{factor} and @code{factors} allow a second argument
23189 when written in algebraic form; @samp{factor(x,v)} factors @expr{x} with
23190 respect to the specific variable @expr{v}.  The default is to factor with
23191 respect to all the variables that appear in @expr{x}.
23193 @kindex a c
23194 @pindex calc-collect
23195 @tindex collect
23196 The @kbd{a c} (@code{calc-collect}) [@code{collect}] command rearranges a
23197 formula as a
23198 polynomial in a given variable, ordered in decreasing powers of that
23199 variable.  For example, given @expr{1 + 2 x + 3 y + 4 x y^2} on
23200 the stack, @kbd{a c x} would produce @expr{(2 + 4 y^2) x + (1 + 3 y)},
23201 and @kbd{a c y} would produce @expr{(4 x) y^2 + 3 y + (1 + 2 x)}.
23202 The polynomial will be expanded out using the distributive law as
23203 necessary:  Collecting @expr{x} in @expr{(x - 1)^3} produces
23204 @expr{x^3 - 3 x^2 + 3 x - 1}.  Terms not involving @expr{x} will
23205 not be expanded.
23207 The ``variable'' you specify at the prompt can actually be any
23208 expression: @kbd{a c ln(x+1)} will collect together all terms multiplied
23209 by @samp{ln(x+1)} or integer powers thereof.  If @samp{x} also appears
23210 in the formula in a context other than @samp{ln(x+1)}, @kbd{a c} will
23211 treat those occurrences as unrelated to @samp{ln(x+1)}, i.e., as constants.
23213 @kindex a x
23214 @pindex calc-expand
23215 @tindex expand
23216 The @kbd{a x} (@code{calc-expand}) [@code{expand}] command expands an
23217 expression by applying the distributive law everywhere.  It applies to
23218 products, quotients, and powers involving sums.  By default, it fully
23219 distributes all parts of the expression.  With a numeric prefix argument,
23220 the distributive law is applied only the specified number of times, then
23221 the partially expanded expression is left on the stack.
23223 The @kbd{a x} and @kbd{j D} commands are somewhat redundant.  Use
23224 @kbd{a x} if you want to expand all products of sums in your formula.
23225 Use @kbd{j D} if you want to expand a particular specified term of
23226 the formula.  There is an exactly analogous correspondence between
23227 @kbd{a f} and @kbd{j M}.  (The @kbd{j D} and @kbd{j M} commands
23228 also know many other kinds of expansions, such as
23229 @samp{exp(a + b) = exp(a) exp(b)}, which @kbd{a x} and @kbd{a f}
23230 do not do.)
23232 Calc's automatic simplifications will sometimes reverse a partial
23233 expansion.  For example, the first step in expanding @expr{(x+1)^3} is
23234 to write @expr{(x+1) (x+1)^2}.  If @kbd{a x} stops there and tries
23235 to put this formula onto the stack, though, Calc will automatically
23236 simplify it back to @expr{(x+1)^3} form.  The solution is to turn
23237 simplification off first (@pxref{Simplification Modes}), or to run
23238 @kbd{a x} without a numeric prefix argument so that it expands all
23239 the way in one step.
23241 @kindex a a
23242 @pindex calc-apart
23243 @tindex apart
23244 The @kbd{a a} (@code{calc-apart}) [@code{apart}] command expands a
23245 rational function by partial fractions.  A rational function is the
23246 quotient of two polynomials; @code{apart} pulls this apart into a
23247 sum of rational functions with simple denominators.  In algebraic
23248 notation, the @code{apart} function allows a second argument that
23249 specifies which variable to use as the ``base''; by default, Calc
23250 chooses the base variable automatically.
23252 @kindex a n
23253 @pindex calc-normalize-rat
23254 @tindex nrat
23255 The @kbd{a n} (@code{calc-normalize-rat}) [@code{nrat}] command
23256 attempts to arrange a formula into a quotient of two polynomials.
23257 For example, given @expr{1 + (a + b/c) / d}, the result would be
23258 @expr{(b + a c + c d) / c d}.  The quotient is reduced, so that
23259 @kbd{a n} will simplify @expr{(x^2 + 2x + 1) / (x^2 - 1)} by dividing
23260 out the common factor @expr{x + 1}, yielding @expr{(x + 1) / (x - 1)}.
23262 @kindex a \
23263 @pindex calc-poly-div
23264 @tindex pdiv
23265 The @kbd{a \} (@code{calc-poly-div}) [@code{pdiv}] command divides
23266 two polynomials @expr{u} and @expr{v}, yielding a new polynomial
23267 @expr{q}.  If several variables occur in the inputs, the inputs are
23268 considered multivariate polynomials.  (Calc divides by the variable
23269 with the largest power in @expr{u} first, or, in the case of equal
23270 powers, chooses the variables in alphabetical order.)  For example,
23271 dividing @expr{x^2 + 3 x + 2} by @expr{x + 2} yields @expr{x + 1}.
23272 The remainder from the division, if any, is reported at the bottom
23273 of the screen and is also placed in the Trail along with the quotient.
23275 Using @code{pdiv} in algebraic notation, you can specify the particular
23276 variable to be used as the base: @code{pdiv(@var{a},@var{b},@var{x})}.
23277 If @code{pdiv} is given only two arguments (as is always the case with
23278 the @kbd{a \} command), then it does a multivariate division as outlined
23279 above.
23281 @kindex a %
23282 @pindex calc-poly-rem
23283 @tindex prem
23284 The @kbd{a %} (@code{calc-poly-rem}) [@code{prem}] command divides
23285 two polynomials and keeps the remainder @expr{r}.  The quotient
23286 @expr{q} is discarded.  For any formulas @expr{a} and @expr{b}, the
23287 results of @kbd{a \} and @kbd{a %} satisfy @expr{a = q b + r}.
23288 (This is analogous to plain @kbd{\} and @kbd{%}, which compute the
23289 integer quotient and remainder from dividing two numbers.)
23291 @kindex a /
23292 @kindex H a /
23293 @pindex calc-poly-div-rem
23294 @tindex pdivrem
23295 @tindex pdivide
23296 The @kbd{a /} (@code{calc-poly-div-rem}) [@code{pdivrem}] command
23297 divides two polynomials and reports both the quotient and the
23298 remainder as a vector @expr{[q, r]}.  The @kbd{H a /} [@code{pdivide}]
23299 command divides two polynomials and constructs the formula
23300 @expr{q + r/b} on the stack.  (Naturally if the remainder is zero,
23301 this will immediately simplify to @expr{q}.)
23303 @kindex a g
23304 @pindex calc-poly-gcd
23305 @tindex pgcd
23306 The @kbd{a g} (@code{calc-poly-gcd}) [@code{pgcd}] command computes
23307 the greatest common divisor of two polynomials.  (The GCD actually
23308 is unique only to within a constant multiplier; Calc attempts to
23309 choose a GCD which will be unsurprising.)  For example, the @kbd{a n}
23310 command uses @kbd{a g} to take the GCD of the numerator and denominator
23311 of a quotient, then divides each by the result using @kbd{a \}.  (The
23312 definition of GCD ensures that this division can take place without
23313 leaving a remainder.)
23315 While the polynomials used in operations like @kbd{a /} and @kbd{a g}
23316 often have integer coefficients, this is not required.  Calc can also
23317 deal with polynomials over the rationals or floating-point reals.
23318 Polynomials with modulo-form coefficients are also useful in many
23319 applications; if you enter @samp{(x^2 + 3 x - 1) mod 5}, Calc
23320 automatically transforms this into a polynomial over the field of
23321 integers mod 5:  @samp{(1 mod 5) x^2 + (3 mod 5) x + (4 mod 5)}.
23323 Congratulations and thanks go to Ove Ewerlid
23324 (@code{ewerlid@@mizar.DoCS.UU.SE}), who contributed many of the
23325 polynomial routines used in the above commands.
23327 @xref{Decomposing Polynomials}, for several useful functions for
23328 extracting the individual coefficients of a polynomial.
23330 @node Calculus, Solving Equations, Polynomials, Algebra
23331 @section Calculus
23333 @noindent
23334 The following calculus commands do not automatically simplify their
23335 inputs or outputs using @code{calc-simplify}.  You may find it helps
23336 to do this by hand by typing @kbd{a s} or @kbd{a e}.  It may also help
23337 to use @kbd{a x} and/or @kbd{a c} to arrange a result in the most
23338 readable way.
23340 @menu
23341 * Differentiation::
23342 * Integration::
23343 * Customizing the Integrator::
23344 * Numerical Integration::
23345 * Taylor Series::
23346 @end menu
23348 @node Differentiation, Integration, Calculus, Calculus
23349 @subsection Differentiation
23351 @noindent
23352 @kindex a d
23353 @kindex H a d
23354 @pindex calc-derivative
23355 @tindex deriv
23356 @tindex tderiv
23357 The @kbd{a d} (@code{calc-derivative}) [@code{deriv}] command computes
23358 the derivative of the expression on the top of the stack with respect to
23359 some variable, which it will prompt you to enter.  Normally, variables
23360 in the formula other than the specified differentiation variable are
23361 considered constant, i.e., @samp{deriv(y,x)} is reduced to zero.  With
23362 the Hyperbolic flag, the @code{tderiv} (total derivative) operation is used
23363 instead, in which derivatives of variables are not reduced to zero
23364 unless those variables are known to be ``constant,'' i.e., independent
23365 of any other variables.  (The built-in special variables like @code{pi}
23366 are considered constant, as are variables that have been declared
23367 @code{const}; @pxref{Declarations}.)
23369 With a numeric prefix argument @var{n}, this command computes the
23370 @var{n}th derivative.
23372 When working with trigonometric functions, it is best to switch to
23373 Radians mode first (with @w{@kbd{m r}}).  The derivative of @samp{sin(x)}
23374 in degrees is @samp{(pi/180) cos(x)}, probably not the expected
23375 answer!
23377 If you use the @code{deriv} function directly in an algebraic formula,
23378 you can write @samp{deriv(f,x,x0)} which represents the derivative
23379 of @expr{f} with respect to @expr{x}, evaluated at the point
23380 @texline @math{x=x_0}.
23381 @infoline @expr{x=x0}.
23383 If the formula being differentiated contains functions which Calc does
23384 not know, the derivatives of those functions are produced by adding
23385 primes (apostrophe characters).  For example, @samp{deriv(f(2x), x)}
23386 produces @samp{2 f'(2 x)}, where the function @code{f'} represents the
23387 derivative of @code{f}.
23389 For functions you have defined with the @kbd{Z F} command, Calc expands
23390 the functions according to their defining formulas unless you have
23391 also defined @code{f'} suitably.  For example, suppose we define
23392 @samp{sinc(x) = sin(x)/x} using @kbd{Z F}.  If we then differentiate
23393 the formula @samp{sinc(2 x)}, the formula will be expanded to
23394 @samp{sin(2 x) / (2 x)} and differentiated.  However, if we also
23395 define @samp{sinc'(x) = dsinc(x)}, say, then Calc will write the
23396 result as @samp{2 dsinc(2 x)}.  @xref{Algebraic Definitions}.
23398 For multi-argument functions @samp{f(x,y,z)}, the derivative with respect
23399 to the first argument is written @samp{f'(x,y,z)}; derivatives with
23400 respect to the other arguments are @samp{f'2(x,y,z)} and @samp{f'3(x,y,z)}.
23401 Various higher-order derivatives can be formed in the obvious way, e.g.,
23402 @samp{f'@var{}'(x)} (the second derivative of @code{f}) or
23403 @samp{f'@var{}'2'3(x,y,z)} (@code{f} differentiated with respect to each
23404 argument once).
23406 @node Integration, Customizing the Integrator, Differentiation, Calculus
23407 @subsection Integration
23409 @noindent
23410 @kindex a i
23411 @pindex calc-integral
23412 @tindex integ
23413 The @kbd{a i} (@code{calc-integral}) [@code{integ}] command computes the
23414 indefinite integral of the expression on the top of the stack with
23415 respect to a prompted-for variable.  The integrator is not guaranteed to
23416 work for all integrable functions, but it is able to integrate several
23417 large classes of formulas.  In particular, any polynomial or rational
23418 function (a polynomial divided by a polynomial) is acceptable.
23419 (Rational functions don't have to be in explicit quotient form, however;
23420 @texline @math{x/(1+x^{-2})}
23421 @infoline @expr{x/(1+x^-2)}
23422 is not strictly a quotient of polynomials, but it is equivalent to
23423 @expr{x^3/(x^2+1)}, which is.)  Also, square roots of terms involving
23424 @expr{x} and @expr{x^2} may appear in rational functions being
23425 integrated.  Finally, rational functions involving trigonometric or
23426 hyperbolic functions can be integrated.
23428 With an argument (@kbd{C-u a i}), this command will compute the definite
23429 integral of the expression on top of the stack.  In this case, the
23430 command will again prompt for an integration variable, then prompt for a
23431 lower limit and an upper limit.
23433 @ifnottex
23434 If you use the @code{integ} function directly in an algebraic formula,
23435 you can also write @samp{integ(f,x,v)} which expresses the resulting
23436 indefinite integral in terms of variable @code{v} instead of @code{x}.
23437 With four arguments, @samp{integ(f(x),x,a,b)} represents a definite
23438 integral from @code{a} to @code{b}.
23439 @end ifnottex
23440 @tex
23441 If you use the @code{integ} function directly in an algebraic formula,
23442 you can also write @samp{integ(f,x,v)} which expresses the resulting
23443 indefinite integral in terms of variable @code{v} instead of @code{x}.
23444 With four arguments, @samp{integ(f(x),x,a,b)} represents a definite
23445 integral $\int_a^b f(x) \, dx$.
23446 @end tex
23448 Please note that the current implementation of Calc's integrator sometimes
23449 produces results that are significantly more complex than they need to
23450 be.  For example, the integral Calc finds for
23451 @texline @math{1/(x+\sqrt{x^2+1})}
23452 @infoline @expr{1/(x+sqrt(x^2+1))}
23453 is several times more complicated than the answer Mathematica
23454 returns for the same input, although the two forms are numerically
23455 equivalent.  Also, any indefinite integral should be considered to have
23456 an arbitrary constant of integration added to it, although Calc does not
23457 write an explicit constant of integration in its result.  For example,
23458 Calc's solution for
23459 @texline @math{1/(1+\tan x)}
23460 @infoline @expr{1/(1+tan(x))}
23461 differs from the solution given in the @emph{CRC Math Tables} by a
23462 constant factor of
23463 @texline @math{\pi i / 2}
23464 @infoline @expr{pi i / 2},
23465 due to a different choice of constant of integration.
23467 The Calculator remembers all the integrals it has done.  If conditions
23468 change in a way that would invalidate the old integrals, say, a switch
23469 from Degrees to Radians mode, then they will be thrown out.  If you
23470 suspect this is not happening when it should, use the
23471 @code{calc-flush-caches} command; @pxref{Caches}.
23473 @vindex IntegLimit
23474 Calc normally will pursue integration by substitution or integration by
23475 parts up to 3 nested times before abandoning an approach as fruitless.
23476 If the integrator is taking too long, you can lower this limit by storing
23477 a number (like 2) in the variable @code{IntegLimit}.  (The @kbd{s I}
23478 command is a convenient way to edit @code{IntegLimit}.)  If this variable
23479 has no stored value or does not contain a nonnegative integer, a limit
23480 of 3 is used.  The lower this limit is, the greater the chance that Calc
23481 will be unable to integrate a function it could otherwise handle.  Raising
23482 this limit allows the Calculator to solve more integrals, though the time
23483 it takes may grow exponentially.  You can monitor the integrator's actions
23484 by creating an Emacs buffer called @code{*Trace*}.  If such a buffer
23485 exists, the @kbd{a i} command will write a log of its actions there.
23487 If you want to manipulate integrals in a purely symbolic way, you can
23488 set the integration nesting limit to 0 to prevent all but fast
23489 table-lookup solutions of integrals.  You might then wish to define
23490 rewrite rules for integration by parts, various kinds of substitutions,
23491 and so on.  @xref{Rewrite Rules}.
23493 @node Customizing the Integrator, Numerical Integration, Integration, Calculus
23494 @subsection Customizing the Integrator
23496 @noindent
23497 @vindex IntegRules
23498 Calc has two built-in rewrite rules called @code{IntegRules} and
23499 @code{IntegAfterRules} which you can edit to define new integration
23500 methods.  @xref{Rewrite Rules}.  At each step of the integration process,
23501 Calc wraps the current integrand in a call to the fictitious function
23502 @samp{integtry(@var{expr},@var{var})}, where @var{expr} is the
23503 integrand and @var{var} is the integration variable.  If your rules
23504 rewrite this to be a plain formula (not a call to @code{integtry}), then
23505 Calc will use this formula as the integral of @var{expr}.  For example,
23506 the rule @samp{integtry(mysin(x),x) := -mycos(x)} would define a rule to
23507 integrate a function @code{mysin} that acts like the sine function.
23508 Then, putting @samp{4 mysin(2y+1)} on the stack and typing @kbd{a i y}
23509 will produce the integral @samp{-2 mycos(2y+1)}.  Note that Calc has
23510 automatically made various transformations on the integral to allow it
23511 to use your rule; integral tables generally give rules for
23512 @samp{mysin(a x + b)}, but you don't need to use this much generality
23513 in your @code{IntegRules}.
23515 @cindex Exponential integral Ei(x)
23516 @ignore
23517 @starindex
23518 @end ignore
23519 @tindex Ei
23520 As a more serious example, the expression @samp{exp(x)/x} cannot be
23521 integrated in terms of the standard functions, so the ``exponential
23522 integral'' function
23523 @texline @math{{\rm Ei}(x)}
23524 @infoline @expr{Ei(x)}
23525 was invented to describe it.
23526 We can get Calc to do this integral in terms of a made-up @code{Ei}
23527 function by adding the rule @samp{[integtry(exp(x)/x, x) := Ei(x)]}
23528 to @code{IntegRules}.  Now entering @samp{exp(2x)/x} on the stack
23529 and typing @kbd{a i x} yields @samp{Ei(2 x)}.  This new rule will
23530 work with Calc's various built-in integration methods (such as
23531 integration by substitution) to solve a variety of other problems
23532 involving @code{Ei}:  For example, now Calc will also be able to
23533 integrate @samp{exp(exp(x))} and @samp{ln(ln(x))} (to get @samp{Ei(exp(x))}
23534 and @samp{x ln(ln(x)) - Ei(ln(x))}, respectively).
23536 Your rule may do further integration by calling @code{integ}.  For
23537 example, @samp{integtry(twice(u),x) := twice(integ(u))} allows Calc
23538 to integrate @samp{twice(sin(x))} to get @samp{twice(-cos(x))}.
23539 Note that @code{integ} was called with only one argument.  This notation
23540 is allowed only within @code{IntegRules}; it means ``integrate this
23541 with respect to the same integration variable.''  If Calc is unable
23542 to integrate @code{u}, the integration that invoked @code{IntegRules}
23543 also fails.  Thus integrating @samp{twice(f(x))} fails, returning the
23544 unevaluated integral @samp{integ(twice(f(x)), x)}.  It is still valid
23545 to call @code{integ} with two or more arguments, however; in this case,
23546 if @code{u} is not integrable, @code{twice} itself will still be
23547 integrated:  If the above rule is changed to @samp{... := twice(integ(u,x))},
23548 then integrating @samp{twice(f(x))} will yield @samp{twice(integ(f(x),x))}.
23550 If a rule instead produces the formula @samp{integsubst(@var{sexpr},
23551 @var{svar})}, either replacing the top-level @code{integtry} call or
23552 nested anywhere inside the expression, then Calc will apply the
23553 substitution @samp{@var{u} = @var{sexpr}(@var{svar})} to try to
23554 integrate the original @var{expr}.  For example, the rule
23555 @samp{sqrt(a) := integsubst(sqrt(x),x)} says that if Calc ever finds
23556 a square root in the integrand, it should attempt the substitution
23557 @samp{u = sqrt(x)}.  (This particular rule is unnecessary because
23558 Calc always tries ``obvious'' substitutions where @var{sexpr} actually
23559 appears in the integrand.)  The variable @var{svar} may be the same
23560 as the @var{var} that appeared in the call to @code{integtry}, but
23561 it need not be.
23563 When integrating according to an @code{integsubst}, Calc uses the
23564 equation solver to find the inverse of @var{sexpr} (if the integrand
23565 refers to @var{var} anywhere except in subexpressions that exactly
23566 match @var{sexpr}).  It uses the differentiator to find the derivative
23567 of @var{sexpr} and/or its inverse (it has two methods that use one
23568 derivative or the other).  You can also specify these items by adding
23569 extra arguments to the @code{integsubst} your rules construct; the
23570 general form is @samp{integsubst(@var{sexpr}, @var{svar}, @var{sinv},
23571 @var{sprime})}, where @var{sinv} is the inverse of @var{sexpr} (still
23572 written as a function of @var{svar}), and @var{sprime} is the
23573 derivative of @var{sexpr} with respect to @var{svar}.  If you don't
23574 specify these things, and Calc is not able to work them out on its
23575 own with the information it knows, then your substitution rule will
23576 work only in very specific, simple cases.
23578 Calc applies @code{IntegRules} as if by @kbd{C-u 1 a r IntegRules};
23579 in other words, Calc stops rewriting as soon as any rule in your rule
23580 set succeeds.  (If it weren't for this, the @samp{integsubst(sqrt(x),x)}
23581 example above would keep on adding layers of @code{integsubst} calls
23582 forever!)
23584 @vindex IntegSimpRules
23585 Another set of rules, stored in @code{IntegSimpRules}, are applied
23586 every time the integrator uses algebraic simplifications to simplify an
23587 intermediate result.  For example, putting the rule 
23588 @samp{twice(x) := 2 x} into  @code{IntegSimpRules} would tell Calc to
23589 convert the @code{twice} function into a form it knows whenever
23590 integration is attempted. 
23592 One more way to influence the integrator is to define a function with
23593 the @kbd{Z F} command (@pxref{Algebraic Definitions}).  Calc's
23594 integrator automatically expands such functions according to their
23595 defining formulas, even if you originally asked for the function to
23596 be left unevaluated for symbolic arguments.  (Certain other Calc
23597 systems, such as the differentiator and the equation solver, also
23598 do this.)
23600 @vindex IntegAfterRules
23601 Sometimes Calc is able to find a solution to your integral, but it
23602 expresses the result in a way that is unnecessarily complicated.  If
23603 this happens, you can either use @code{integsubst} as described
23604 above to try to hint at a more direct path to the desired result, or
23605 you can use @code{IntegAfterRules}.  This is an extra rule set that
23606 runs after the main integrator returns its result; basically, Calc does
23607 an @kbd{a r IntegAfterRules} on the result before showing it to you.
23608 (It also does algebraic simplifications, without @code{IntegSimpRules},
23609 after that to further simplify the result.)  For example, Calc's integrator
23610 sometimes produces expressions of the form @samp{ln(1+x) - ln(1-x)};
23611 the default @code{IntegAfterRules} rewrite this into the more readable
23612 form @samp{2 arctanh(x)}.  Note that, unlike @code{IntegRules},
23613 @code{IntegSimpRules} and @code{IntegAfterRules} are applied any number
23614 of times until no further changes are possible.  Rewriting by
23615 @code{IntegAfterRules} occurs only after the main integrator has
23616 finished, not at every step as for @code{IntegRules} and
23617 @code{IntegSimpRules}.
23619 @node Numerical Integration, Taylor Series, Customizing the Integrator, Calculus
23620 @subsection Numerical Integration
23622 @noindent
23623 @kindex a I
23624 @pindex calc-num-integral
23625 @tindex ninteg
23626 If you want a purely numerical answer to an integration problem, you can
23627 use the @kbd{a I} (@code{calc-num-integral}) [@code{ninteg}] command.  This
23628 command prompts for an integration variable, a lower limit, and an
23629 upper limit.  Except for the integration variable, all other variables
23630 that appear in the integrand formula must have stored values.  (A stored
23631 value, if any, for the integration variable itself is ignored.)
23633 Numerical integration works by evaluating your formula at many points in
23634 the specified interval.  Calc uses an ``open Romberg'' method; this means
23635 that it does not evaluate the formula actually at the endpoints (so that
23636 it is safe to integrate @samp{sin(x)/x} from zero, for example).  Also,
23637 the Romberg method works especially well when the function being
23638 integrated is fairly smooth.  If the function is not smooth, Calc will
23639 have to evaluate it at quite a few points before it can accurately
23640 determine the value of the integral.
23642 Integration is much faster when the current precision is small.  It is
23643 best to set the precision to the smallest acceptable number of digits
23644 before you use @kbd{a I}.  If Calc appears to be taking too long, press
23645 @kbd{C-g} to halt it and try a lower precision.  If Calc still appears
23646 to need hundreds of evaluations, check to make sure your function is
23647 well-behaved in the specified interval.
23649 It is possible for the lower integration limit to be @samp{-inf} (minus
23650 infinity).  Likewise, the upper limit may be plus infinity.  Calc
23651 internally transforms the integral into an equivalent one with finite
23652 limits.  However, integration to or across singularities is not supported:
23653 The integral of @samp{1/sqrt(x)} from 0 to 1 exists (it can be found
23654 by Calc's symbolic integrator, for example), but @kbd{a I} will fail
23655 because the integrand goes to infinity at one of the endpoints.
23657 @node Taylor Series,  , Numerical Integration, Calculus
23658 @subsection Taylor Series
23660 @noindent
23661 @kindex a t
23662 @pindex calc-taylor
23663 @tindex taylor
23664 The @kbd{a t} (@code{calc-taylor}) [@code{taylor}] command computes a
23665 power series expansion or Taylor series of a function.  You specify the
23666 variable and the desired number of terms.  You may give an expression of
23667 the form @samp{@var{var} = @var{a}} or @samp{@var{var} - @var{a}} instead
23668 of just a variable to produce a Taylor expansion about the point @var{a}.
23669 You may specify the number of terms with a numeric prefix argument;
23670 otherwise the command will prompt you for the number of terms.  Note that
23671 many series expansions have coefficients of zero for some terms, so you
23672 may appear to get fewer terms than you asked for.
23674 If the @kbd{a i} command is unable to find a symbolic integral for a
23675 function, you can get an approximation by integrating the function's
23676 Taylor series.
23678 @node Solving Equations, Numerical Solutions, Calculus, Algebra
23679 @section Solving Equations
23681 @noindent
23682 @kindex a S
23683 @pindex calc-solve-for
23684 @tindex solve
23685 @cindex Equations, solving
23686 @cindex Solving equations
23687 The @kbd{a S} (@code{calc-solve-for}) [@code{solve}] command rearranges
23688 an equation to solve for a specific variable.  An equation is an
23689 expression of the form @expr{L = R}.  For example, the command @kbd{a S x}
23690 will rearrange @expr{y = 3x + 6} to the form, @expr{x = y/3 - 2}.  If the
23691 input is not an equation, it is treated like an equation of the
23692 form @expr{X = 0}.
23694 This command also works for inequalities, as in @expr{y < 3x + 6}.
23695 Some inequalities cannot be solved where the analogous equation could
23696 be; for example, solving
23697 @texline @math{a < b \, c}
23698 @infoline @expr{a < b c}
23699 for @expr{b} is impossible
23700 without knowing the sign of @expr{c}.  In this case, @kbd{a S} will
23701 produce the result
23702 @texline @math{b \mathbin{\hbox{\code{!=}}} a/c}
23703 @infoline @expr{b != a/c}
23704 (using the not-equal-to operator) to signify that the direction of the
23705 inequality is now unknown.  The inequality
23706 @texline @math{a \le b \, c}
23707 @infoline @expr{a <= b c}
23708 is not even partially solved.  @xref{Declarations}, for a way to tell
23709 Calc that the signs of the variables in a formula are in fact known.
23711 Two useful commands for working with the result of @kbd{a S} are
23712 @kbd{a .} (@pxref{Logical Operations}), which converts @expr{x = y/3 - 2}
23713 to @expr{y/3 - 2}, and @kbd{s l} (@pxref{Let Command}) which evaluates
23714 another formula with @expr{x} set equal to @expr{y/3 - 2}.
23716 @menu
23717 * Multiple Solutions::
23718 * Solving Systems of Equations::
23719 * Decomposing Polynomials::
23720 @end menu
23722 @node Multiple Solutions, Solving Systems of Equations, Solving Equations, Solving Equations
23723 @subsection Multiple Solutions
23725 @noindent
23726 @kindex H a S
23727 @tindex fsolve
23728 Some equations have more than one solution.  The Hyperbolic flag
23729 (@code{H a S}) [@code{fsolve}] tells the solver to report the fully
23730 general family of solutions.  It will invent variables @code{n1},
23731 @code{n2}, @dots{}, which represent independent arbitrary integers, and
23732 @code{s1}, @code{s2}, @dots{}, which represent independent arbitrary
23733 signs (either @mathit{+1} or @mathit{-1}).  If you don't use the Hyperbolic
23734 flag, Calc will use zero in place of all arbitrary integers, and plus
23735 one in place of all arbitrary signs.  Note that variables like @code{n1}
23736 and @code{s1} are not given any special interpretation in Calc except by
23737 the equation solver itself.  As usual, you can use the @w{@kbd{s l}}
23738 (@code{calc-let}) command to obtain solutions for various actual values
23739 of these variables.
23741 For example, @kbd{' x^2 = y @key{RET} H a S x @key{RET}} solves to
23742 get @samp{x = s1 sqrt(y)}, indicating that the two solutions to the
23743 equation are @samp{sqrt(y)} and @samp{-sqrt(y)}.  Another way to
23744 think about it is that the square-root operation is really a
23745 two-valued function; since every Calc function must return a
23746 single result, @code{sqrt} chooses to return the positive result.
23747 Then @kbd{H a S} doctors this result using @code{s1} to indicate
23748 the full set of possible values of the mathematical square-root.
23750 There is a similar phenomenon going the other direction:  Suppose
23751 we solve @samp{sqrt(y) = x} for @code{y}.  Calc squares both sides
23752 to get @samp{y = x^2}.  This is correct, except that it introduces
23753 some dubious solutions.  Consider solving @samp{sqrt(y) = -3}:
23754 Calc will report @expr{y = 9} as a valid solution, which is true
23755 in the mathematical sense of square-root, but false (there is no
23756 solution) for the actual Calc positive-valued @code{sqrt}.  This
23757 happens for both @kbd{a S} and @kbd{H a S}.
23759 @cindex @code{GenCount} variable
23760 @vindex GenCount
23761 @ignore
23762 @starindex
23763 @end ignore
23764 @tindex an
23765 @ignore
23766 @starindex
23767 @end ignore
23768 @tindex as
23769 If you store a positive integer in the Calc variable @code{GenCount},
23770 then Calc will generate formulas of the form @samp{as(@var{n})} for
23771 arbitrary signs, and @samp{an(@var{n})} for arbitrary integers,
23772 where @var{n} represents successive values taken by incrementing
23773 @code{GenCount} by one.  While the normal arbitrary sign and
23774 integer symbols start over at @code{s1} and @code{n1} with each
23775 new Calc command, the @code{GenCount} approach will give each
23776 arbitrary value a name that is unique throughout the entire Calc
23777 session.  Also, the arbitrary values are function calls instead
23778 of variables, which is advantageous in some cases.  For example,
23779 you can make a rewrite rule that recognizes all arbitrary signs
23780 using a pattern like @samp{as(n)}.  The @kbd{s l} command only works
23781 on variables, but you can use the @kbd{a b} (@code{calc-substitute})
23782 command to substitute actual values for function calls like @samp{as(3)}.
23784 The @kbd{s G} (@code{calc-edit-GenCount}) command is a convenient
23785 way to create or edit this variable.  Press @kbd{C-c C-c} to finish.
23787 If you have not stored a value in @code{GenCount}, or if the value
23788 in that variable is not a positive integer, the regular
23789 @code{s1}/@code{n1} notation is used.
23791 @kindex I a S
23792 @kindex H I a S
23793 @tindex finv
23794 @tindex ffinv
23795 With the Inverse flag, @kbd{I a S} [@code{finv}] treats the expression
23796 on top of the stack as a function of the specified variable and solves
23797 to find the inverse function, written in terms of the same variable.
23798 For example, @kbd{I a S x} inverts @expr{2x + 6} to @expr{x/2 - 3}.
23799 You can use both Inverse and Hyperbolic [@code{ffinv}] to obtain a
23800 fully general inverse, as described above.
23802 @kindex a P
23803 @pindex calc-poly-roots
23804 @tindex roots
23805 Some equations, specifically polynomials, have a known, finite number
23806 of solutions.  The @kbd{a P} (@code{calc-poly-roots}) [@code{roots}]
23807 command uses @kbd{H a S} to solve an equation in general form, then, for
23808 all arbitrary-sign variables like @code{s1}, and all arbitrary-integer
23809 variables like @code{n1} for which @code{n1} only usefully varies over
23810 a finite range, it expands these variables out to all their possible
23811 values.  The results are collected into a vector, which is returned.
23812 For example, @samp{roots(x^4 = 1, x)} returns the four solutions
23813 @samp{[1, -1, (0, 1), (0, -1)]}.  Generally an @var{n}th degree
23814 polynomial will always have @var{n} roots on the complex plane.
23815 (If you have given a @code{real} declaration for the solution
23816 variable, then only the real-valued solutions, if any, will be
23817 reported; @pxref{Declarations}.)
23819 Note that because @kbd{a P} uses @kbd{H a S}, it is able to deliver
23820 symbolic solutions if the polynomial has symbolic coefficients.  Also
23821 note that Calc's solver is not able to get exact symbolic solutions
23822 to all polynomials.  Polynomials containing powers up to @expr{x^4}
23823 can always be solved exactly; polynomials of higher degree sometimes
23824 can be:  @expr{x^6 + x^3 + 1} is converted to @expr{(x^3)^2 + (x^3) + 1},
23825 which can be solved for @expr{x^3} using the quadratic equation, and then
23826 for @expr{x} by taking cube roots.  But in many cases, like
23827 @expr{x^6 + x + 1}, Calc does not know how to rewrite the polynomial
23828 into a form it can solve.  The @kbd{a P} command can still deliver a
23829 list of numerical roots, however, provided that Symbolic mode (@kbd{m s})
23830 is not turned on.  (If you work with Symbolic mode on, recall that the
23831 @kbd{N} (@code{calc-eval-num}) key is a handy way to reevaluate the
23832 formula on the stack with Symbolic mode temporarily off.)  Naturally,
23833 @kbd{a P} can only provide numerical roots if the polynomial coefficients
23834 are all numbers (real or complex).
23836 @node Solving Systems of Equations, Decomposing Polynomials, Multiple Solutions, Solving Equations
23837 @subsection Solving Systems of Equations
23839 @noindent
23840 @cindex Systems of equations, symbolic
23841 You can also use the commands described above to solve systems of
23842 simultaneous equations.  Just create a vector of equations, then
23843 specify a vector of variables for which to solve.  (You can omit
23844 the surrounding brackets when entering the vector of variables
23845 at the prompt.)
23847 For example, putting @samp{[x + y = a, x - y = b]} on the stack
23848 and typing @kbd{a S x,y @key{RET}} produces the vector of solutions
23849 @samp{[x = a - (a-b)/2, y = (a-b)/2]}.  The result vector will
23850 have the same length as the variables vector, and the variables
23851 will be listed in the same order there.  Note that the solutions
23852 are not always simplified as far as possible; the solution for
23853 @expr{x} here could be improved by an application of the @kbd{a n}
23854 command.
23856 Calc's algorithm works by trying to eliminate one variable at a
23857 time by solving one of the equations for that variable and then
23858 substituting into the other equations.  Calc will try all the
23859 possibilities, but you can speed things up by noting that Calc
23860 first tries to eliminate the first variable with the first
23861 equation, then the second variable with the second equation,
23862 and so on.  It also helps to put the simpler (e.g., more linear)
23863 equations toward the front of the list.  Calc's algorithm will
23864 solve any system of linear equations, and also many kinds of
23865 nonlinear systems.
23867 @ignore
23868 @starindex
23869 @end ignore
23870 @tindex elim
23871 Normally there will be as many variables as equations.  If you
23872 give fewer variables than equations (an ``over-determined'' system
23873 of equations), Calc will find a partial solution.  For example,
23874 typing @kbd{a S y @key{RET}} with the above system of equations
23875 would produce @samp{[y = a - x]}.  There are now several ways to
23876 express this solution in terms of the original variables; Calc uses
23877 the first one that it finds.  You can control the choice by adding
23878 variable specifiers of the form @samp{elim(@var{v})} to the
23879 variables list.  This says that @var{v} should be eliminated from
23880 the equations; the variable will not appear at all in the solution.
23881 For example, typing @kbd{a S y,elim(x)} would yield
23882 @samp{[y = a - (b+a)/2]}.
23884 If the variables list contains only @code{elim} specifiers,
23885 Calc simply eliminates those variables from the equations
23886 and then returns the resulting set of equations.  For example,
23887 @kbd{a S elim(x)} produces @samp{[a - 2 y = b]}.  Every variable
23888 eliminated will reduce the number of equations in the system
23889 by one.
23891 Again, @kbd{a S} gives you one solution to the system of
23892 equations.  If there are several solutions, you can use @kbd{H a S}
23893 to get a general family of solutions, or, if there is a finite
23894 number of solutions, you can use @kbd{a P} to get a list.  (In
23895 the latter case, the result will take the form of a matrix where
23896 the rows are different solutions and the columns correspond to the
23897 variables you requested.)
23899 Another way to deal with certain kinds of overdetermined systems of
23900 equations is the @kbd{a F} command, which does least-squares fitting
23901 to satisfy the equations.  @xref{Curve Fitting}.
23903 @node Decomposing Polynomials,  , Solving Systems of Equations, Solving Equations
23904 @subsection Decomposing Polynomials
23906 @noindent
23907 @ignore
23908 @starindex
23909 @end ignore
23910 @tindex poly
23911 The @code{poly} function takes a polynomial and a variable as
23912 arguments, and returns a vector of polynomial coefficients (constant
23913 coefficient first).  For example, @samp{poly(x^3 + 2 x, x)} returns
23914 @expr{[0, 2, 0, 1]}.  If the input is not a polynomial in @expr{x},
23915 the call to @code{poly} is left in symbolic form.  If the input does
23916 not involve the variable @expr{x}, the input is returned in a list
23917 of length one, representing a polynomial with only a constant
23918 coefficient.  The call @samp{poly(x, x)} returns the vector @expr{[0, 1]}.
23919 The last element of the returned vector is guaranteed to be nonzero;
23920 note that @samp{poly(0, x)} returns the empty vector @expr{[]}.
23921 Note also that @expr{x} may actually be any formula; for example,
23922 @samp{poly(sin(x)^2 - sin(x) + 3, sin(x))} returns @expr{[3, -1, 1]}.
23924 @cindex Coefficients of polynomial
23925 @cindex Degree of polynomial
23926 To get the @expr{x^k} coefficient of polynomial @expr{p}, use
23927 @samp{poly(p, x)_(k+1)}.  To get the degree of polynomial @expr{p},
23928 use @samp{vlen(poly(p, x)) - 1}.  For example, @samp{poly((x+1)^4, x)}
23929 returns @samp{[1, 4, 6, 4, 1]}, so @samp{poly((x+1)^4, x)_(2+1)}
23930 gives the @expr{x^2} coefficient of this polynomial, 6.
23932 @ignore
23933 @starindex
23934 @end ignore
23935 @tindex gpoly
23936 One important feature of the solver is its ability to recognize
23937 formulas which are ``essentially'' polynomials.  This ability is
23938 made available to the user through the @code{gpoly} function, which
23939 is used just like @code{poly}:  @samp{gpoly(@var{expr}, @var{var})}.
23940 If @var{expr} is a polynomial in some term which includes @var{var}, then
23941 this function will return a vector @samp{[@var{x}, @var{c}, @var{a}]}
23942 where @var{x} is the term that depends on @var{var}, @var{c} is a
23943 vector of polynomial coefficients (like the one returned by @code{poly}),
23944 and @var{a} is a multiplier which is usually 1.  Basically,
23945 @samp{@var{expr} = @var{a}*(@var{c}_1 + @var{c}_2 @var{x} +
23946 @var{c}_3 @var{x}^2 + ...)}.  The last element of @var{c} is
23947 guaranteed to be non-zero, and @var{c} will not equal @samp{[1]}
23948 (i.e., the trivial decomposition @var{expr} = @var{x} is not
23949 considered a polynomial).  One side effect is that @samp{gpoly(x, x)}
23950 and @samp{gpoly(6, x)}, both of which might be expected to recognize
23951 their arguments as polynomials, will not because the decomposition
23952 is considered trivial.
23954 For example, @samp{gpoly((x-2)^2, x)} returns @samp{[x, [4, -4, 1], 1]},
23955 since the expanded form of this polynomial is @expr{4 - 4 x + x^2}.
23957 The term @var{x} may itself be a polynomial in @var{var}.  This is
23958 done to reduce the size of the @var{c} vector.  For example,
23959 @samp{gpoly(x^4 + x^2 - 1, x)} returns @samp{[x^2, [-1, 1, 1], 1]},
23960 since a quadratic polynomial in @expr{x^2} is easier to solve than
23961 a quartic polynomial in @expr{x}.
23963 A few more examples of the kinds of polynomials @code{gpoly} can
23964 discover:
23966 @smallexample
23967 sin(x) - 1               [sin(x), [-1, 1], 1]
23968 x + 1/x - 1              [x, [1, -1, 1], 1/x]
23969 x + 1/x                  [x^2, [1, 1], 1/x]
23970 x^3 + 2 x                [x^2, [2, 1], x]
23971 x + x^2:3 + sqrt(x)      [x^1:6, [1, 1, 0, 1], x^1:2]
23972 x^(2a) + 2 x^a + 5       [x^a, [5, 2, 1], 1]
23973 (exp(-x) + exp(x)) / 2   [e^(2 x), [0.5, 0.5], e^-x]
23974 @end smallexample
23976 The @code{poly} and @code{gpoly} functions accept a third integer argument
23977 which specifies the largest degree of polynomial that is acceptable.
23978 If this is @expr{n}, then only @var{c} vectors of length @expr{n+1}
23979 or less will be returned.  Otherwise, the @code{poly} or @code{gpoly}
23980 call will remain in symbolic form.  For example, the equation solver
23981 can handle quartics and smaller polynomials, so it calls
23982 @samp{gpoly(@var{expr}, @var{var}, 4)} to discover whether @var{expr}
23983 can be treated by its linear, quadratic, cubic, or quartic formulas.
23985 @ignore
23986 @starindex
23987 @end ignore
23988 @tindex pdeg
23989 The @code{pdeg} function computes the degree of a polynomial;
23990 @samp{pdeg(p,x)} is the highest power of @code{x} that appears in
23991 @code{p}.  This is the same as @samp{vlen(poly(p,x))-1}, but is
23992 much more efficient.  If @code{p} is constant with respect to @code{x},
23993 then @samp{pdeg(p,x) = 0}.  If @code{p} is not a polynomial in @code{x}
23994 (e.g., @samp{pdeg(2 cos(x), x)}, the function remains unevaluated.
23995 It is possible to omit the second argument @code{x}, in which case
23996 @samp{pdeg(p)} returns the highest total degree of any term of the
23997 polynomial, counting all variables that appear in @code{p}.  Note
23998 that @code{pdeg(c) = pdeg(c,x) = 0} for any nonzero constant @code{c};
23999 the degree of the constant zero is considered to be @code{-inf}
24000 (minus infinity).
24002 @ignore
24003 @starindex
24004 @end ignore
24005 @tindex plead
24006 The @code{plead} function finds the leading term of a polynomial.
24007 Thus @samp{plead(p,x)} is equivalent to @samp{poly(p,x)_vlen(poly(p,x))},
24008 though again more efficient.  In particular, @samp{plead((2x+1)^10, x)}
24009 returns 1024 without expanding out the list of coefficients.  The
24010 value of @code{plead(p,x)} will be zero only if @expr{p = 0}.
24012 @ignore
24013 @starindex
24014 @end ignore
24015 @tindex pcont
24016 The @code{pcont} function finds the @dfn{content} of a polynomial.  This
24017 is the greatest common divisor of all the coefficients of the polynomial.
24018 With two arguments, @code{pcont(p,x)} effectively uses @samp{poly(p,x)}
24019 to get a list of coefficients, then uses @code{pgcd} (the polynomial
24020 GCD function) to combine these into an answer.  For example,
24021 @samp{pcont(4 x y^2 + 6 x^2 y, x)} is @samp{2 y}.  The content is
24022 basically the ``biggest'' polynomial that can be divided into @code{p}
24023 exactly.  The sign of the content is the same as the sign of the leading
24024 coefficient.
24026 With only one argument, @samp{pcont(p)} computes the numerical
24027 content of the polynomial, i.e., the @code{gcd} of the numerical
24028 coefficients of all the terms in the formula.  Note that @code{gcd}
24029 is defined on rational numbers as well as integers; it computes
24030 the @code{gcd} of the numerators and the @code{lcm} of the
24031 denominators.  Thus @samp{pcont(4:3 x y^2 + 6 x^2 y)} returns 2:3.
24032 Dividing the polynomial by this number will clear all the
24033 denominators, as well as dividing by any common content in the
24034 numerators.  The numerical content of a polynomial is negative only
24035 if all the coefficients in the polynomial are negative.
24037 @ignore
24038 @starindex
24039 @end ignore
24040 @tindex pprim
24041 The @code{pprim} function finds the @dfn{primitive part} of a
24042 polynomial, which is simply the polynomial divided (using @code{pdiv}
24043 if necessary) by its content.  If the input polynomial has rational
24044 coefficients, the result will have integer coefficients in simplest
24045 terms.
24047 @node Numerical Solutions, Curve Fitting, Solving Equations, Algebra
24048 @section Numerical Solutions
24050 @noindent
24051 Not all equations can be solved symbolically.  The commands in this
24052 section use numerical algorithms that can find a solution to a specific
24053 instance of an equation to any desired accuracy.  Note that the
24054 numerical commands are slower than their algebraic cousins; it is a
24055 good idea to try @kbd{a S} before resorting to these commands.
24057 (@xref{Curve Fitting}, for some other, more specialized, operations
24058 on numerical data.)
24060 @menu
24061 * Root Finding::
24062 * Minimization::
24063 * Numerical Systems of Equations::
24064 @end menu
24066 @node Root Finding, Minimization, Numerical Solutions, Numerical Solutions
24067 @subsection Root Finding
24069 @noindent
24070 @kindex a R
24071 @pindex calc-find-root
24072 @tindex root
24073 @cindex Newton's method
24074 @cindex Roots of equations
24075 @cindex Numerical root-finding
24076 The @kbd{a R} (@code{calc-find-root}) [@code{root}] command finds a
24077 numerical solution (or @dfn{root}) of an equation.  (This command treats
24078 inequalities the same as equations.  If the input is any other kind
24079 of formula, it is interpreted as an equation of the form @expr{X = 0}.)
24081 The @kbd{a R} command requires an initial guess on the top of the
24082 stack, and a formula in the second-to-top position.  It prompts for a
24083 solution variable, which must appear in the formula.  All other variables
24084 that appear in the formula must have assigned values, i.e., when
24085 a value is assigned to the solution variable and the formula is
24086 evaluated with @kbd{=}, it should evaluate to a number.  Any assigned
24087 value for the solution variable itself is ignored and unaffected by
24088 this command.
24090 When the command completes, the initial guess is replaced on the stack
24091 by a vector of two numbers:  The value of the solution variable that
24092 solves the equation, and the difference between the lefthand and
24093 righthand sides of the equation at that value.  Ordinarily, the second
24094 number will be zero or very nearly zero.  (Note that Calc uses a
24095 slightly higher precision while finding the root, and thus the second
24096 number may be slightly different from the value you would compute from
24097 the equation yourself.)
24099 The @kbd{v h} (@code{calc-head}) command is a handy way to extract
24100 the first element of the result vector, discarding the error term.
24102 The initial guess can be a real number, in which case Calc searches
24103 for a real solution near that number, or a complex number, in which
24104 case Calc searches the whole complex plane near that number for a
24105 solution, or it can be an interval form which restricts the search
24106 to real numbers inside that interval.
24108 Calc tries to use @kbd{a d} to take the derivative of the equation.
24109 If this succeeds, it uses Newton's method.  If the equation is not
24110 differentiable Calc uses a bisection method.  (If Newton's method
24111 appears to be going astray, Calc switches over to bisection if it
24112 can, or otherwise gives up.  In this case it may help to try again
24113 with a slightly different initial guess.)  If the initial guess is a
24114 complex number, the function must be differentiable.
24116 If the formula (or the difference between the sides of an equation)
24117 is negative at one end of the interval you specify and positive at
24118 the other end, the root finder is guaranteed to find a root.
24119 Otherwise, Calc subdivides the interval into small parts looking for
24120 positive and negative values to bracket the root.  When your guess is
24121 an interval, Calc will not look outside that interval for a root.
24123 @kindex H a R
24124 @tindex wroot
24125 The @kbd{H a R} [@code{wroot}] command is similar to @kbd{a R}, except
24126 that if the initial guess is an interval for which the function has
24127 the same sign at both ends, then rather than subdividing the interval
24128 Calc attempts to widen it to enclose a root.  Use this mode if
24129 you are not sure if the function has a root in your interval.
24131 If the function is not differentiable, and you give a simple number
24132 instead of an interval as your initial guess, Calc uses this widening
24133 process even if you did not type the Hyperbolic flag.  (If the function
24134 @emph{is} differentiable, Calc uses Newton's method which does not
24135 require a bounding interval in order to work.)
24137 If Calc leaves the @code{root} or @code{wroot} function in symbolic
24138 form on the stack, it will normally display an explanation for why
24139 no root was found.  If you miss this explanation, press @kbd{w}
24140 (@code{calc-why}) to get it back.
24142 @node Minimization, Numerical Systems of Equations, Root Finding, Numerical Solutions
24143 @subsection Minimization
24145 @noindent
24146 @kindex a N
24147 @kindex H a N
24148 @kindex a X
24149 @kindex H a X
24150 @pindex calc-find-minimum
24151 @pindex calc-find-maximum
24152 @tindex minimize
24153 @tindex maximize
24154 @cindex Minimization, numerical
24155 The @kbd{a N} (@code{calc-find-minimum}) [@code{minimize}] command
24156 finds a minimum value for a formula.  It is very similar in operation
24157 to @kbd{a R} (@code{calc-find-root}):  You give the formula and an initial
24158 guess on the stack, and are prompted for the name of a variable.  The guess
24159 may be either a number near the desired minimum, or an interval enclosing
24160 the desired minimum.  The function returns a vector containing the
24161 value of the variable which minimizes the formula's value, along
24162 with the minimum value itself.
24164 Note that this command looks for a @emph{local} minimum.  Many functions
24165 have more than one minimum; some, like
24166 @texline @math{x \sin x},
24167 @infoline @expr{x sin(x)},
24168 have infinitely many.  In fact, there is no easy way to define the
24169 ``global'' minimum of
24170 @texline @math{x \sin x}
24171 @infoline @expr{x sin(x)}
24172 but Calc can still locate any particular local minimum
24173 for you.  Calc basically goes downhill from the initial guess until it
24174 finds a point at which the function's value is greater both to the left
24175 and to the right.  Calc does not use derivatives when minimizing a function.
24177 If your initial guess is an interval and it looks like the minimum
24178 occurs at one or the other endpoint of the interval, Calc will return
24179 that endpoint only if that endpoint is closed; thus, minimizing @expr{17 x}
24180 over @expr{[2..3]} will return @expr{[2, 38]}, but minimizing over
24181 @expr{(2..3]} would report no minimum found.  In general, you should
24182 use closed intervals to find literally the minimum value in that
24183 range of @expr{x}, or open intervals to find the local minimum, if
24184 any, that happens to lie in that range.
24186 Most functions are smooth and flat near their minimum values.  Because
24187 of this flatness, if the current precision is, say, 12 digits, the
24188 variable can only be determined meaningfully to about six digits.  Thus
24189 you should set the precision to twice as many digits as you need in your
24190 answer.
24192 @ignore
24193 @mindex wmin@idots
24194 @end ignore
24195 @tindex wminimize
24196 @ignore
24197 @mindex wmax@idots
24198 @end ignore
24199 @tindex wmaximize
24200 The @kbd{H a N} [@code{wminimize}] command, analogously to @kbd{H a R},
24201 expands the guess interval to enclose a minimum rather than requiring
24202 that the minimum lie inside the interval you supply.
24204 The @kbd{a X} (@code{calc-find-maximum}) [@code{maximize}] and
24205 @kbd{H a X} [@code{wmaximize}] commands effectively minimize the
24206 negative of the formula you supply.
24208 The formula must evaluate to a real number at all points inside the
24209 interval (or near the initial guess if the guess is a number).  If
24210 the initial guess is a complex number the variable will be minimized
24211 over the complex numbers; if it is real or an interval it will
24212 be minimized over the reals.
24214 @node Numerical Systems of Equations,  , Minimization, Numerical Solutions
24215 @subsection Systems of Equations
24217 @noindent
24218 @cindex Systems of equations, numerical
24219 The @kbd{a R} command can also solve systems of equations.  In this
24220 case, the equation should instead be a vector of equations, the
24221 guess should instead be a vector of numbers (intervals are not
24222 supported), and the variable should be a vector of variables.  You
24223 can omit the brackets while entering the list of variables.  Each
24224 equation must be differentiable by each variable for this mode to
24225 work.  The result will be a vector of two vectors:  The variable
24226 values that solved the system of equations, and the differences
24227 between the sides of the equations with those variable values.
24228 There must be the same number of equations as variables.  Since
24229 only plain numbers are allowed as guesses, the Hyperbolic flag has
24230 no effect when solving a system of equations.
24232 It is also possible to minimize over many variables with @kbd{a N}
24233 (or maximize with @kbd{a X}).  Once again the variable name should
24234 be replaced by a vector of variables, and the initial guess should
24235 be an equal-sized vector of initial guesses.  But, unlike the case of
24236 multidimensional @kbd{a R}, the formula being minimized should
24237 still be a single formula, @emph{not} a vector.  Beware that
24238 multidimensional minimization is currently @emph{very} slow.
24240 @node Curve Fitting, Summations, Numerical Solutions, Algebra
24241 @section Curve Fitting
24243 @noindent
24244 The @kbd{a F} command fits a set of data to a @dfn{model formula},
24245 such as @expr{y = m x + b} where @expr{m} and @expr{b} are parameters
24246 to be determined.  For a typical set of measured data there will be
24247 no single @expr{m} and @expr{b} that exactly fit the data; in this
24248 case, Calc chooses values of the parameters that provide the closest
24249 possible fit.  The model formula can be entered in various ways after
24250 the key sequence @kbd{a F} is pressed.
24252 If the letter @kbd{P} is pressed after @kbd{a F} but before the model
24253 description is entered, the data as well as the model formula will be
24254 plotted after the formula is determined.  This will be indicated by a
24255 ``P'' in the minibuffer after the help message.
24257 @menu
24258 * Linear Fits::
24259 * Polynomial and Multilinear Fits::
24260 * Error Estimates for Fits::
24261 * Standard Nonlinear Models::
24262 * Curve Fitting Details::
24263 * Interpolation::
24264 @end menu
24266 @node Linear Fits, Polynomial and Multilinear Fits, Curve Fitting, Curve Fitting
24267 @subsection Linear Fits
24269 @noindent
24270 @kindex a F
24271 @pindex calc-curve-fit
24272 @tindex fit
24273 @cindex Linear regression
24274 @cindex Least-squares fits
24275 The @kbd{a F} (@code{calc-curve-fit}) [@code{fit}] command attempts
24276 to fit a set of data (@expr{x} and @expr{y} vectors of numbers) to a
24277 straight line, polynomial, or other function of @expr{x}.  For the
24278 moment we will consider only the case of fitting to a line, and we
24279 will ignore the issue of whether or not the model was in fact a good
24280 fit for the data.
24282 In a standard linear least-squares fit, we have a set of @expr{(x,y)}
24283 data points that we wish to fit to the model @expr{y = m x + b}
24284 by adjusting the parameters @expr{m} and @expr{b} to make the @expr{y}
24285 values calculated from the formula be as close as possible to the actual
24286 @expr{y} values in the data set.  (In a polynomial fit, the model is
24287 instead, say, @expr{y = a x^3 + b x^2 + c x + d}.  In a multilinear fit,
24288 we have data points of the form @expr{(x_1,x_2,x_3,y)} and our model is
24289 @expr{y = a x_1 + b x_2 + c x_3 + d}.  These will be discussed later.)
24291 In the model formula, variables like @expr{x} and @expr{x_2} are called
24292 the @dfn{independent variables}, and @expr{y} is the @dfn{dependent
24293 variable}.  Variables like @expr{m}, @expr{a}, and @expr{b} are called
24294 the @dfn{parameters} of the model.
24296 The @kbd{a F} command takes the data set to be fitted from the stack.
24297 By default, it expects the data in the form of a matrix.  For example,
24298 for a linear or polynomial fit, this would be a
24299 @texline @math{2\times N}
24300 @infoline 2xN
24301 matrix where the first row is a list of @expr{x} values and the second
24302 row has the corresponding @expr{y} values.  For the multilinear fit
24303 shown above, the matrix would have four rows (@expr{x_1}, @expr{x_2},
24304 @expr{x_3}, and @expr{y}, respectively).
24306 If you happen to have an
24307 @texline @math{N\times2}
24308 @infoline Nx2
24309 matrix instead of a
24310 @texline @math{2\times N}
24311 @infoline 2xN
24312 matrix, just press @kbd{v t} first to transpose the matrix.
24314 After you type @kbd{a F}, Calc prompts you to select a model.  For a
24315 linear fit, press the digit @kbd{1}.
24317 Calc then prompts for you to name the variables.  By default it chooses
24318 high letters like @expr{x} and @expr{y} for independent variables and
24319 low letters like @expr{a} and @expr{b} for parameters.  (The dependent
24320 variable doesn't need a name.)  The two kinds of variables are separated
24321 by a semicolon.  Since you generally care more about the names of the
24322 independent variables than of the parameters, Calc also allows you to
24323 name only those and let the parameters use default names.
24325 For example, suppose the data matrix
24327 @ifnottex
24328 @example
24329 @group
24330 [ [ 1, 2, 3, 4,  5  ]
24331   [ 5, 7, 9, 11, 13 ] ]
24332 @end group
24333 @end example
24334 @end ifnottex
24335 @tex
24336 \beforedisplay
24337 $$ \pmatrix{ 1 & 2 & 3 & 4  & 5  \cr
24338              5 & 7 & 9 & 11 & 13 }
24340 \afterdisplay
24341 @end tex
24343 @noindent
24344 is on the stack and we wish to do a simple linear fit.  Type
24345 @kbd{a F}, then @kbd{1} for the model, then @key{RET} to use
24346 the default names.  The result will be the formula @expr{3. + 2. x}
24347 on the stack.  Calc has created the model expression @kbd{a + b x},
24348 then found the optimal values of @expr{a} and @expr{b} to fit the
24349 data.  (In this case, it was able to find an exact fit.)  Calc then
24350 substituted those values for @expr{a} and @expr{b} in the model
24351 formula.
24353 The @kbd{a F} command puts two entries in the trail.  One is, as
24354 always, a copy of the result that went to the stack; the other is
24355 a vector of the actual parameter values, written as equations:
24356 @expr{[a = 3, b = 2]}, in case you'd rather read them in a list
24357 than pick them out of the formula.  (You can type @kbd{t y}
24358 to move this vector to the stack; see @ref{Trail Commands}.
24360 Specifying a different independent variable name will affect the
24361 resulting formula: @kbd{a F 1 k @key{RET}} produces @kbd{3 + 2 k}.
24362 Changing the parameter names (say, @kbd{a F 1 k;b,m @key{RET}}) will affect
24363 the equations that go into the trail.
24365 @tex
24366 \bigskip
24367 @end tex
24369 To see what happens when the fit is not exact, we could change
24370 the number 13 in the data matrix to 14 and try the fit again.
24371 The result is:
24373 @example
24374 2.6 + 2.2 x
24375 @end example
24377 Evaluating this formula, say with @kbd{v x 5 @key{RET} @key{TAB} V M $ @key{RET}}, shows
24378 a reasonably close match to the y-values in the data.
24380 @example
24381 [4.8, 7., 9.2, 11.4, 13.6]
24382 @end example
24384 Since there is no line which passes through all the @var{n} data points,
24385 Calc has chosen a line that best approximates the data points using
24386 the method of least squares.  The idea is to define the @dfn{chi-square}
24387 error measure
24389 @ifnottex
24390 @example
24391 chi^2 = sum((y_i - (a + b x_i))^2, i, 1, N)
24392 @end example
24393 @end ifnottex
24394 @tex
24395 \beforedisplay
24396 $$ \chi^2 = \sum_{i=1}^N (y_i - (a + b x_i))^2 $$
24397 \afterdisplay
24398 @end tex
24400 @noindent
24401 which is clearly zero if @expr{a + b x} exactly fits all data points,
24402 and increases as various @expr{a + b x_i} values fail to match the
24403 corresponding @expr{y_i} values.  There are several reasons why the
24404 summand is squared, one of them being to ensure that
24405 @texline @math{\chi^2 \ge 0}.
24406 @infoline @expr{chi^2 >= 0}.
24407 Least-squares fitting simply chooses the values of @expr{a} and @expr{b}
24408 for which the error
24409 @texline @math{\chi^2}
24410 @infoline @expr{chi^2}
24411 is as small as possible.
24413 Other kinds of models do the same thing but with a different model
24414 formula in place of @expr{a + b x_i}.
24416 @tex
24417 \bigskip
24418 @end tex
24420 A numeric prefix argument causes the @kbd{a F} command to take the
24421 data in some other form than one big matrix.  A positive argument @var{n}
24422 will take @var{N} items from the stack, corresponding to the @var{n} rows
24423 of a data matrix.  In the linear case, @var{n} must be 2 since there
24424 is always one independent variable and one dependent variable.
24426 A prefix of zero or plain @kbd{C-u} is a compromise; Calc takes two
24427 items from the stack, an @var{n}-row matrix of @expr{x} values, and a
24428 vector of @expr{y} values.  If there is only one independent variable,
24429 the @expr{x} values can be either a one-row matrix or a plain vector,
24430 in which case the @kbd{C-u} prefix is the same as a @w{@kbd{C-u 2}} prefix.
24432 @node Polynomial and Multilinear Fits, Error Estimates for Fits, Linear Fits, Curve Fitting
24433 @subsection Polynomial and Multilinear Fits
24435 @noindent
24436 To fit the data to higher-order polynomials, just type one of the
24437 digits @kbd{2} through @kbd{9} when prompted for a model.  For example,
24438 we could fit the original data matrix from the previous section
24439 (with 13, not 14) to a parabola instead of a line by typing
24440 @kbd{a F 2 @key{RET}}.
24442 @example
24443 2.00000000001 x - 1.5e-12 x^2 + 2.99999999999
24444 @end example
24446 Note that since the constant and linear terms are enough to fit the
24447 data exactly, it's no surprise that Calc chose a tiny contribution
24448 for @expr{x^2}.  (The fact that it's not exactly zero is due only
24449 to roundoff error.  Since our data are exact integers, we could get
24450 an exact answer by typing @kbd{m f} first to get Fraction mode.
24451 Then the @expr{x^2} term would vanish altogether.  Usually, though,
24452 the data being fitted will be approximate floats so Fraction mode
24453 won't help.)
24455 Doing the @kbd{a F 2} fit on the data set with 14 instead of 13
24456 gives a much larger @expr{x^2} contribution, as Calc bends the
24457 line slightly to improve the fit.
24459 @example
24460 0.142857142855 x^2 + 1.34285714287 x + 3.59999999998
24461 @end example
24463 An important result from the theory of polynomial fitting is that it
24464 is always possible to fit @var{n} data points exactly using a polynomial
24465 of degree @mathit{@var{n}-1}, sometimes called an @dfn{interpolating polynomial}.
24466 Using the modified (14) data matrix, a model number of 4 gives
24467 a polynomial that exactly matches all five data points:
24469 @example
24470 0.04167 x^4 - 0.4167 x^3 + 1.458 x^2 - 0.08333 x + 4.
24471 @end example
24473 The actual coefficients we get with a precision of 12, like
24474 @expr{0.0416666663588}, clearly suffer from loss of precision.
24475 It is a good idea to increase the working precision to several
24476 digits beyond what you need when you do a fitting operation.
24477 Or, if your data are exact, use Fraction mode to get exact
24478 results.
24480 You can type @kbd{i} instead of a digit at the model prompt to fit
24481 the data exactly to a polynomial.  This just counts the number of
24482 columns of the data matrix to choose the degree of the polynomial
24483 automatically.
24485 Fitting data ``exactly'' to high-degree polynomials is not always
24486 a good idea, though.  High-degree polynomials have a tendency to
24487 wiggle uncontrollably in between the fitting data points.  Also,
24488 if the exact-fit polynomial is going to be used to interpolate or
24489 extrapolate the data, it is numerically better to use the @kbd{a p}
24490 command described below.  @xref{Interpolation}.
24492 @tex
24493 \bigskip
24494 @end tex
24496 Another generalization of the linear model is to assume the
24497 @expr{y} values are a sum of linear contributions from several
24498 @expr{x} values.  This is a @dfn{multilinear} fit, and it is also
24499 selected by the @kbd{1} digit key.  (Calc decides whether the fit
24500 is linear or multilinear by counting the rows in the data matrix.)
24502 Given the data matrix,
24504 @example
24505 @group
24506 [ [  1,   2,   3,    4,   5  ]
24507   [  7,   2,   3,    5,   2  ]
24508   [ 14.5, 15, 18.5, 22.5, 24 ] ]
24509 @end group
24510 @end example
24512 @noindent
24513 the command @kbd{a F 1 @key{RET}} will call the first row @expr{x} and the
24514 second row @expr{y}, and will fit the values in the third row to the
24515 model @expr{a + b x + c y}.
24517 @example
24518 8. + 3. x + 0.5 y
24519 @end example
24521 Calc can do multilinear fits with any number of independent variables
24522 (i.e., with any number of data rows).
24524 @tex
24525 \bigskip
24526 @end tex
24528 Yet another variation is @dfn{homogeneous} linear models, in which
24529 the constant term is known to be zero.  In the linear case, this
24530 means the model formula is simply @expr{a x}; in the multilinear
24531 case, the model might be @expr{a x + b y + c z}; and in the polynomial
24532 case, the model could be @expr{a x + b x^2 + c x^3}.  You can get
24533 a homogeneous linear or multilinear model by pressing the letter
24534 @kbd{h} followed by a regular model key, like @kbd{1} or @kbd{2}.
24535 This will be indicated by an ``h'' in the minibuffer after the help
24536 message.
24538 It is certainly possible to have other constrained linear models,
24539 like @expr{2.3 + a x} or @expr{a - 4 x}.  While there is no single
24540 key to select models like these, a later section shows how to enter
24541 any desired model by hand.  In the first case, for example, you
24542 would enter @kbd{a F ' 2.3 + a x}.
24544 Another class of models that will work but must be entered by hand
24545 are multinomial fits, e.g., @expr{a + b x + c y + d x^2 + e y^2 + f x y}.
24547 @node Error Estimates for Fits, Standard Nonlinear Models, Polynomial and Multilinear Fits, Curve Fitting
24548 @subsection Error Estimates for Fits
24550 @noindent
24551 @kindex H a F
24552 @tindex efit
24553 With the Hyperbolic flag, @kbd{H a F} [@code{efit}] performs the same
24554 fitting operation as @kbd{a F}, but reports the coefficients as error
24555 forms instead of plain numbers.  Fitting our two data matrices (first
24556 with 13, then with 14) to a line with @kbd{H a F} gives the results,
24558 @example
24559 3. + 2. x
24560 2.6 +/- 0.382970843103 + 2.2 +/- 0.115470053838 x
24561 @end example
24563 In the first case the estimated errors are zero because the linear
24564 fit is perfect.  In the second case, the errors are nonzero but
24565 moderately small, because the data are still very close to linear.
24567 It is also possible for the @emph{input} to a fitting operation to
24568 contain error forms.  The data values must either all include errors
24569 or all be plain numbers.  Error forms can go anywhere but generally
24570 go on the numbers in the last row of the data matrix.  If the last
24571 row contains error forms
24572 @texline `@var{y_i}@w{ @tfn{+/-} }@math{\sigma_i}',
24573 @infoline `@var{y_i}@w{ @tfn{+/-} }@var{sigma_i}',
24574 then the
24575 @texline @math{\chi^2}
24576 @infoline @expr{chi^2}
24577 statistic is now,
24579 @ifnottex
24580 @example
24581 chi^2 = sum(((y_i - (a + b x_i)) / sigma_i)^2, i, 1, N)
24582 @end example
24583 @end ifnottex
24584 @tex
24585 \beforedisplay
24586 $$ \chi^2 = \sum_{i=1}^N \left(y_i - (a + b x_i) \over \sigma_i\right)^2 $$
24587 \afterdisplay
24588 @end tex
24590 @noindent
24591 so that data points with larger error estimates contribute less to
24592 the fitting operation.
24594 If there are error forms on other rows of the data matrix, all the
24595 errors for a given data point are combined; the square root of the
24596 sum of the squares of the errors forms the
24597 @texline @math{\sigma_i}
24598 @infoline @expr{sigma_i}
24599 used for the data point.
24601 Both @kbd{a F} and @kbd{H a F} can accept error forms in the input
24602 matrix, although if you are concerned about error analysis you will
24603 probably use @kbd{H a F} so that the output also contains error
24604 estimates.
24606 If the input contains error forms but all the
24607 @texline @math{\sigma_i}
24608 @infoline @expr{sigma_i}
24609 values are the same, it is easy to see that the resulting fitted model
24610 will be the same as if the input did not have error forms at all
24611 @texline (@math{\chi^2}
24612 @infoline (@expr{chi^2}
24613 is simply scaled uniformly by
24614 @texline @math{1 / \sigma^2},
24615 @infoline @expr{1 / sigma^2},
24616 which doesn't affect where it has a minimum).  But there @emph{will} be
24617 a difference in the estimated errors of the coefficients reported by
24618 @kbd{H a F}.
24620 Consult any text on statistical modeling of data for a discussion
24621 of where these error estimates come from and how they should be
24622 interpreted.
24624 @tex
24625 \bigskip
24626 @end tex
24628 @kindex I a F
24629 @tindex xfit
24630 With the Inverse flag, @kbd{I a F} [@code{xfit}] produces even more
24631 information.  The result is a vector of six items:
24633 @enumerate
24634 @item
24635 The model formula with error forms for its coefficients or
24636 parameters.  This is the result that @kbd{H a F} would have
24637 produced.
24639 @item
24640 A vector of ``raw'' parameter values for the model.  These are the
24641 polynomial coefficients or other parameters as plain numbers, in the
24642 same order as the parameters appeared in the final prompt of the
24643 @kbd{I a F} command.  For polynomials of degree @expr{d}, this vector
24644 will have length @expr{M = d+1} with the constant term first.
24646 @item
24647 The covariance matrix @expr{C} computed from the fit.  This is
24648 an @var{m}x@var{m} symmetric matrix; the diagonal elements
24649 @texline @math{C_{jj}}
24650 @infoline @expr{C_j_j}
24651 are the variances
24652 @texline @math{\sigma_j^2}
24653 @infoline @expr{sigma_j^2}
24654 of the parameters.  The other elements are covariances
24655 @texline @math{\sigma_{ij}^2}
24656 @infoline @expr{sigma_i_j^2}
24657 that describe the correlation between pairs of parameters.  (A related
24658 set of numbers, the @dfn{linear correlation coefficients}
24659 @texline @math{r_{ij}},
24660 @infoline @expr{r_i_j},
24661 are defined as
24662 @texline @math{\sigma_{ij}^2 / \sigma_i \, \sigma_j}.)
24663 @infoline @expr{sigma_i_j^2 / sigma_i sigma_j}.)
24665 @item
24666 A vector of @expr{M} ``parameter filter'' functions whose
24667 meanings are described below.  If no filters are necessary this
24668 will instead be an empty vector; this is always the case for the
24669 polynomial and multilinear fits described so far.
24671 @item
24672 The value of
24673 @texline @math{\chi^2}
24674 @infoline @expr{chi^2}
24675 for the fit, calculated by the formulas shown above.  This gives a
24676 measure of the quality of the fit; statisticians consider
24677 @texline @math{\chi^2 \approx N - M}
24678 @infoline @expr{chi^2 = N - M}
24679 to indicate a moderately good fit (where again @expr{N} is the number of
24680 data points and @expr{M} is the number of parameters).
24682 @item
24683 A measure of goodness of fit expressed as a probability @expr{Q}.
24684 This is computed from the @code{utpc} probability distribution
24685 function using
24686 @texline @math{\chi^2}
24687 @infoline @expr{chi^2}
24688 with @expr{N - M} degrees of freedom.  A
24689 value of 0.5 implies a good fit; some texts recommend that often
24690 @expr{Q = 0.1} or even 0.001 can signify an acceptable fit.  In
24691 particular,
24692 @texline @math{\chi^2}
24693 @infoline @expr{chi^2}
24694 statistics assume the errors in your inputs
24695 follow a normal (Gaussian) distribution; if they don't, you may
24696 have to accept smaller values of @expr{Q}.
24698 The @expr{Q} value is computed only if the input included error
24699 estimates.  Otherwise, Calc will report the symbol @code{nan}
24700 for @expr{Q}.  The reason is that in this case the
24701 @texline @math{\chi^2}
24702 @infoline @expr{chi^2}
24703 value has effectively been used to estimate the original errors
24704 in the input, and thus there is no redundant information left
24705 over to use for a confidence test.
24706 @end enumerate
24708 @node Standard Nonlinear Models, Curve Fitting Details, Error Estimates for Fits, Curve Fitting
24709 @subsection Standard Nonlinear Models
24711 @noindent
24712 The @kbd{a F} command also accepts other kinds of models besides
24713 lines and polynomials.  Some common models have quick single-key
24714 abbreviations; others must be entered by hand as algebraic formulas.
24716 Here is a complete list of the standard models recognized by @kbd{a F}:
24718 @table @kbd
24719 @item 1
24720 Linear or multilinear.  @mathit{a + b x + c y + d z}.
24721 @item 2-9
24722 Polynomials.  @mathit{a + b x + c x^2 + d x^3}.
24723 @item e
24724 Exponential.  @mathit{a} @tfn{exp}@mathit{(b x)} @tfn{exp}@mathit{(c y)}.
24725 @item E
24726 Base-10 exponential.  @mathit{a} @tfn{10^}@mathit{(b x)} @tfn{10^}@mathit{(c y)}.
24727 @item x
24728 Exponential (alternate notation).  @tfn{exp}@mathit{(a + b x + c y)}.
24729 @item X
24730 Base-10 exponential (alternate).  @tfn{10^}@mathit{(a + b x + c y)}.
24731 @item l
24732 Logarithmic.  @mathit{a + b} @tfn{ln}@mathit{(x) + c} @tfn{ln}@mathit{(y)}.
24733 @item L
24734 Base-10 logarithmic.  @mathit{a + b} @tfn{log10}@mathit{(x) + c} @tfn{log10}@mathit{(y)}.
24735 @item ^
24736 General exponential.  @mathit{a b^x c^y}.
24737 @item p
24738 Power law.  @mathit{a x^b y^c}.
24739 @item q
24740 Quadratic.  @mathit{a + b (x-c)^2 + d (x-e)^2}.
24741 @item g
24742 Gaussian.
24743 @texline @math{{a \over b \sqrt{2 \pi}} \exp\left( -{1 \over 2} \left( x - c \over b \right)^2 \right)}.
24744 @infoline @mathit{(a / b sqrt(2 pi)) exp(-0.5*((x-c)/b)^2)}.
24745 @item s
24746 Logistic @emph{s} curve.
24747 @texline @math{a/(1+e^{b(x-c)})}.
24748 @infoline @mathit{a/(1 + exp(b (x - c)))}.
24749 @item b
24750 Logistic bell curve.
24751 @texline @math{ae^{b(x-c)}/(1+e^{b(x-c)})^2}.
24752 @infoline @mathit{a exp(b (x - c))/(1 + exp(b (x - c)))^2}.
24753 @item o
24754 Hubbert linearization.
24755 @texline @math{{y \over x} = a(1-x/b)}.
24756 @infoline @mathit{(y/x) = a (1 - x/b)}.
24757 @end table
24759 All of these models are used in the usual way; just press the appropriate
24760 letter at the model prompt, and choose variable names if you wish.  The
24761 result will be a formula as shown in the above table, with the best-fit
24762 values of the parameters substituted.  (You may find it easier to read
24763 the parameter values from the vector that is placed in the trail.)
24765 All models except Gaussian, logistics, Hubbert and polynomials can
24766 generalize as shown to any number of independent variables.  Also, all
24767 the built-in models except for the logistic and Hubbert curves have an
24768 additive or multiplicative parameter shown as @expr{a} in the above table
24769 which can be replaced by zero or one, as appropriate, by typing @kbd{h}
24770 before the model key.
24772 Note that many of these models are essentially equivalent, but express
24773 the parameters slightly differently.  For example, @expr{a b^x} and
24774 the other two exponential models are all algebraic rearrangements of
24775 each other.  Also, the ``quadratic'' model is just a degree-2 polynomial
24776 with the parameters expressed differently.  Use whichever form best
24777 matches the problem.
24779 The HP-28/48 calculators support four different models for curve
24780 fitting, called @code{LIN}, @code{LOG}, @code{EXP}, and @code{PWR}.
24781 These correspond to Calc models @samp{a + b x}, @samp{a + b ln(x)},
24782 @samp{a exp(b x)}, and @samp{a x^b}, respectively.  In each case,
24783 @expr{a} is what the HP-48 identifies as the ``intercept,'' and
24784 @expr{b} is what it calls the ``slope.''
24786 @tex
24787 \bigskip
24788 @end tex
24790 If the model you want doesn't appear on this list, press @kbd{'}
24791 (the apostrophe key) at the model prompt to enter any algebraic
24792 formula, such as @kbd{m x - b}, as the model.  (Not all models
24793 will work, though---see the next section for details.)
24795 The model can also be an equation like @expr{y = m x + b}.
24796 In this case, Calc thinks of all the rows of the data matrix on
24797 equal terms; this model effectively has two parameters
24798 (@expr{m} and @expr{b}) and two independent variables (@expr{x}
24799 and @expr{y}), with no ``dependent'' variables.  Model equations
24800 do not need to take this @expr{y =} form.  For example, the
24801 implicit line equation @expr{a x + b y = 1} works fine as a
24802 model.
24804 When you enter a model, Calc makes an alphabetical list of all
24805 the variables that appear in the model.  These are used for the
24806 default parameters, independent variables, and dependent variable
24807 (in that order).  If you enter a plain formula (not an equation),
24808 Calc assumes the dependent variable does not appear in the formula
24809 and thus does not need a name.
24811 For example, if the model formula has the variables @expr{a,mu,sigma,t,x},
24812 and the data matrix has three rows (meaning two independent variables),
24813 Calc will use @expr{a,mu,sigma} as the default parameters, and the
24814 data rows will be named @expr{t} and @expr{x}, respectively.  If you
24815 enter an equation instead of a plain formula, Calc will use @expr{a,mu}
24816 as the parameters, and @expr{sigma,t,x} as the three independent
24817 variables.
24819 You can, of course, override these choices by entering something
24820 different at the prompt.  If you leave some variables out of the list,
24821 those variables must have stored values and those stored values will
24822 be used as constants in the model.  (Stored values for the parameters
24823 and independent variables are ignored by the @kbd{a F} command.)
24824 If you list only independent variables, all the remaining variables
24825 in the model formula will become parameters.
24827 If there are @kbd{$} signs in the model you type, they will stand
24828 for parameters and all other variables (in alphabetical order)
24829 will be independent.  Use @kbd{$} for one parameter, @kbd{$$} for
24830 another, and so on.  Thus @kbd{$ x + $$} is another way to describe
24831 a linear model.
24833 If you type a @kbd{$} instead of @kbd{'} at the model prompt itself,
24834 Calc will take the model formula from the stack.  (The data must then
24835 appear at the second stack level.)  The same conventions are used to
24836 choose which variables in the formula are independent by default and
24837 which are parameters.
24839 Models taken from the stack can also be expressed as vectors of
24840 two or three elements, @expr{[@var{model}, @var{vars}]} or
24841 @expr{[@var{model}, @var{vars}, @var{params}]}.  Each of @var{vars}
24842 and @var{params} may be either a variable or a vector of variables.
24843 (If @var{params} is omitted, all variables in @var{model} except
24844 those listed as @var{vars} are parameters.)
24846 When you enter a model manually with @kbd{'}, Calc puts a 3-vector
24847 describing the model in the trail so you can get it back if you wish.
24849 @tex
24850 \bigskip
24851 @end tex
24853 @vindex Model1
24854 @vindex Model2
24855 Finally, you can store a model in one of the Calc variables
24856 @code{Model1} or @code{Model2}, then use this model by typing
24857 @kbd{a F u} or @kbd{a F U} (respectively).  The value stored in
24858 the variable can be any of the formats that @kbd{a F $} would
24859 accept for a model on the stack.
24861 @tex
24862 \bigskip
24863 @end tex
24865 Calc uses the principal values of inverse functions like @code{ln}
24866 and @code{arcsin} when doing fits.  For example, when you enter
24867 the model @samp{y = sin(a t + b)} Calc actually uses the easier
24868 form @samp{arcsin(y) = a t + b}.  The @code{arcsin} function always
24869 returns results in the range from @mathit{-90} to 90 degrees (or the
24870 equivalent range in radians).  Suppose you had data that you
24871 believed to represent roughly three oscillations of a sine wave,
24872 so that the argument of the sine might go from zero to
24873 @texline @math{3\times360}
24874 @infoline @mathit{3*360}
24875 degrees.
24876 The above model would appear to be a good way to determine the
24877 true frequency and phase of the sine wave, but in practice it
24878 would fail utterly.  The righthand side of the actual model
24879 @samp{arcsin(y) = a t + b} will grow smoothly with @expr{t}, but
24880 the lefthand side will bounce back and forth between @mathit{-90} and 90.
24881 No values of @expr{a} and @expr{b} can make the two sides match,
24882 even approximately.
24884 There is no good solution to this problem at present.  You could
24885 restrict your data to small enough ranges so that the above problem
24886 doesn't occur (i.e., not straddling any peaks in the sine wave).
24887 Or, in this case, you could use a totally different method such as
24888 Fourier analysis, which is beyond the scope of the @kbd{a F} command.
24889 (Unfortunately, Calc does not currently have any facilities for
24890 taking Fourier and related transforms.)
24892 @node Curve Fitting Details, Interpolation, Standard Nonlinear Models, Curve Fitting
24893 @subsection Curve Fitting Details
24895 @noindent
24896 Calc's internal least-squares fitter can only handle multilinear
24897 models.  More precisely, it can handle any model of the form
24898 @expr{a f(x,y,z) + b g(x,y,z) + c h(x,y,z)}, where @expr{a,b,c}
24899 are the parameters and @expr{x,y,z} are the independent variables
24900 (of course there can be any number of each, not just three).
24902 In a simple multilinear or polynomial fit, it is easy to see how
24903 to convert the model into this form.  For example, if the model
24904 is @expr{a + b x + c x^2}, then @expr{f(x) = 1}, @expr{g(x) = x},
24905 and @expr{h(x) = x^2} are suitable functions.
24907 For most other models, Calc uses a variety of algebraic manipulations
24908 to try to put the problem into the form
24910 @smallexample
24911 Y(x,y,z) = A(a,b,c) F(x,y,z) + B(a,b,c) G(x,y,z) + C(a,b,c) H(x,y,z)
24912 @end smallexample
24914 @noindent
24915 where @expr{Y,A,B,C,F,G,H} are arbitrary functions.  It computes
24916 @expr{Y}, @expr{F}, @expr{G}, and @expr{H} for all the data points,
24917 does a standard linear fit to find the values of @expr{A}, @expr{B},
24918 and @expr{C}, then uses the equation solver to solve for @expr{a,b,c}
24919 in terms of @expr{A,B,C}.
24921 A remarkable number of models can be cast into this general form.
24922 We'll look at two examples here to see how it works.  The power-law
24923 model @expr{y = a x^b} with two independent variables and two parameters
24924 can be rewritten as follows:
24926 @example
24927 y = a x^b
24928 y = a exp(b ln(x))
24929 y = exp(ln(a) + b ln(x))
24930 ln(y) = ln(a) + b ln(x)
24931 @end example
24933 @noindent
24934 which matches the desired form with
24935 @texline @math{Y = \ln(y)},
24936 @infoline @expr{Y = ln(y)},
24937 @texline @math{A = \ln(a)},
24938 @infoline @expr{A = ln(a)},
24939 @expr{F = 1}, @expr{B = b}, and
24940 @texline @math{G = \ln(x)}.
24941 @infoline @expr{G = ln(x)}.
24942 Calc thus computes the logarithms of your @expr{y} and @expr{x} values,
24943 does a linear fit for @expr{A} and @expr{B}, then solves to get
24944 @texline @math{a = \exp(A)}
24945 @infoline @expr{a = exp(A)}
24946 and @expr{b = B}.
24948 Another interesting example is the ``quadratic'' model, which can
24949 be handled by expanding according to the distributive law.
24951 @example
24952 y = a + b*(x - c)^2
24953 y = a + b c^2 - 2 b c x + b x^2
24954 @end example
24956 @noindent
24957 which matches with @expr{Y = y}, @expr{A = a + b c^2}, @expr{F = 1},
24958 @expr{B = -2 b c}, @expr{G = x} (the @mathit{-2} factor could just as easily
24959 have been put into @expr{G} instead of @expr{B}), @expr{C = b}, and
24960 @expr{H = x^2}.
24962 The Gaussian model looks quite complicated, but a closer examination
24963 shows that it's actually similar to the quadratic model but with an
24964 exponential that can be brought to the top and moved into @expr{Y}.
24966 The logistic models cannot be put into general linear form.  For these
24967 models, and the Hubbert linearization, Calc computes a rough
24968 approximation for the parameters, then uses the Levenberg-Marquardt
24969 iterative method to refine the approximations.
24971 Another model that cannot be put into general linear
24972 form is a Gaussian with a constant background added on, i.e.,
24973 @expr{d} + the regular Gaussian formula.  If you have a model like
24974 this, your best bet is to replace enough of your parameters with
24975 constants to make the model linearizable, then adjust the constants
24976 manually by doing a series of fits.  You can compare the fits by
24977 graphing them, by examining the goodness-of-fit measures returned by
24978 @kbd{I a F}, or by some other method suitable to your application.
24979 Note that some models can be linearized in several ways.  The
24980 Gaussian-plus-@var{d} model can be linearized by setting @expr{d}
24981 (the background) to a constant, or by setting @expr{b} (the standard
24982 deviation) and @expr{c} (the mean) to constants.
24984 To fit a model with constants substituted for some parameters, just
24985 store suitable values in those parameter variables, then omit them
24986 from the list of parameters when you answer the variables prompt.
24988 @tex
24989 \bigskip
24990 @end tex
24992 A last desperate step would be to use the general-purpose
24993 @code{minimize} function rather than @code{fit}.  After all, both
24994 functions solve the problem of minimizing an expression (the
24995 @texline @math{\chi^2}
24996 @infoline @expr{chi^2}
24997 sum) by adjusting certain parameters in the expression.  The @kbd{a F}
24998 command is able to use a vastly more efficient algorithm due to its
24999 special knowledge about linear chi-square sums, but the @kbd{a N}
25000 command can do the same thing by brute force.
25002 A compromise would be to pick out a few parameters without which the
25003 fit is linearizable, and use @code{minimize} on a call to @code{fit}
25004 which efficiently takes care of the rest of the parameters.  The thing
25005 to be minimized would be the value of
25006 @texline @math{\chi^2}
25007 @infoline @expr{chi^2}
25008 returned as the fifth result of the @code{xfit} function:
25010 @smallexample
25011 minimize(xfit(gaus(a,b,c,d,x), x, [a,b,c], data)_5, d, guess)
25012 @end smallexample
25014 @noindent
25015 where @code{gaus} represents the Gaussian model with background,
25016 @code{data} represents the data matrix, and @code{guess} represents
25017 the initial guess for @expr{d} that @code{minimize} requires.
25018 This operation will only be, shall we say, extraordinarily slow
25019 rather than astronomically slow (as would be the case if @code{minimize}
25020 were used by itself to solve the problem).
25022 @tex
25023 \bigskip
25024 @end tex
25026 The @kbd{I a F} [@code{xfit}] command is somewhat trickier when
25027 nonlinear models are used.  The second item in the result is the
25028 vector of ``raw'' parameters @expr{A}, @expr{B}, @expr{C}.  The
25029 covariance matrix is written in terms of those raw parameters.
25030 The fifth item is a vector of @dfn{filter} expressions.  This
25031 is the empty vector @samp{[]} if the raw parameters were the same
25032 as the requested parameters, i.e., if @expr{A = a}, @expr{B = b},
25033 and so on (which is always true if the model is already linear
25034 in the parameters as written, e.g., for polynomial fits).  If the
25035 parameters had to be rearranged, the fifth item is instead a vector
25036 of one formula per parameter in the original model.  The raw
25037 parameters are expressed in these ``filter'' formulas as
25038 @samp{fitdummy(1)} for @expr{A}, @samp{fitdummy(2)} for @expr{B},
25039 and so on.
25041 When Calc needs to modify the model to return the result, it replaces
25042 @samp{fitdummy(1)} in all the filters with the first item in the raw
25043 parameters list, and so on for the other raw parameters, then
25044 evaluates the resulting filter formulas to get the actual parameter
25045 values to be substituted into the original model.  In the case of
25046 @kbd{H a F} and @kbd{I a F} where the parameters must be error forms,
25047 Calc uses the square roots of the diagonal entries of the covariance
25048 matrix as error values for the raw parameters, then lets Calc's
25049 standard error-form arithmetic take it from there.
25051 If you use @kbd{I a F} with a nonlinear model, be sure to remember
25052 that the covariance matrix is in terms of the raw parameters,
25053 @emph{not} the actual requested parameters.  It's up to you to
25054 figure out how to interpret the covariances in the presence of
25055 nontrivial filter functions.
25057 Things are also complicated when the input contains error forms.
25058 Suppose there are three independent and dependent variables, @expr{x},
25059 @expr{y}, and @expr{z}, one or more of which are error forms in the
25060 data.  Calc combines all the error values by taking the square root
25061 of the sum of the squares of the errors.  It then changes @expr{x}
25062 and @expr{y} to be plain numbers, and makes @expr{z} into an error
25063 form with this combined error.  The @expr{Y(x,y,z)} part of the
25064 linearized model is evaluated, and the result should be an error
25065 form.  The error part of that result is used for
25066 @texline @math{\sigma_i}
25067 @infoline @expr{sigma_i}
25068 for the data point.  If for some reason @expr{Y(x,y,z)} does not return
25069 an error form, the combined error from @expr{z} is used directly for
25070 @texline @math{\sigma_i}.
25071 @infoline @expr{sigma_i}.
25072 Finally, @expr{z} is also stripped of its error
25073 for use in computing @expr{F(x,y,z)}, @expr{G(x,y,z)} and so on;
25074 the righthand side of the linearized model is computed in regular
25075 arithmetic with no error forms.
25077 (While these rules may seem complicated, they are designed to do
25078 the most reasonable thing in the typical case that @expr{Y(x,y,z)}
25079 depends only on the dependent variable @expr{z}, and in fact is
25080 often simply equal to @expr{z}.  For common cases like polynomials
25081 and multilinear models, the combined error is simply used as the
25082 @texline @math{\sigma}
25083 @infoline @expr{sigma}
25084 for the data point with no further ado.)
25086 @tex
25087 \bigskip
25088 @end tex
25090 @vindex FitRules
25091 It may be the case that the model you wish to use is linearizable,
25092 but Calc's built-in rules are unable to figure it out.  Calc uses
25093 its algebraic rewrite mechanism to linearize a model.  The rewrite
25094 rules are kept in the variable @code{FitRules}.  You can edit this
25095 variable using the @kbd{s e FitRules} command; in fact, there is
25096 a special @kbd{s F} command just for editing @code{FitRules}.
25097 @xref{Operations on Variables}.
25099 @xref{Rewrite Rules}, for a discussion of rewrite rules.
25101 @ignore
25102 @starindex
25103 @end ignore
25104 @tindex fitvar
25105 @ignore
25106 @starindex
25107 @end ignore
25108 @ignore
25109 @mindex @idots
25110 @end ignore
25111 @tindex fitparam
25112 @ignore
25113 @starindex
25114 @end ignore
25115 @ignore
25116 @mindex @null
25117 @end ignore
25118 @tindex fitmodel
25119 @ignore
25120 @starindex
25121 @end ignore
25122 @ignore
25123 @mindex @null
25124 @end ignore
25125 @tindex fitsystem
25126 @ignore
25127 @starindex
25128 @end ignore
25129 @ignore
25130 @mindex @null
25131 @end ignore
25132 @tindex fitdummy
25133 Calc uses @code{FitRules} as follows.  First, it converts the model
25134 to an equation if necessary and encloses the model equation in a
25135 call to the function @code{fitmodel} (which is not actually a defined
25136 function in Calc; it is only used as a placeholder by the rewrite rules).
25137 Parameter variables are renamed to function calls @samp{fitparam(1)},
25138 @samp{fitparam(2)}, and so on, and independent variables are renamed
25139 to @samp{fitvar(1)}, @samp{fitvar(2)}, etc.  The dependent variable
25140 is the highest-numbered @code{fitvar}.  For example, the power law
25141 model @expr{a x^b} is converted to @expr{y = a x^b}, then to
25143 @smallexample
25144 @group
25145 fitmodel(fitvar(2) = fitparam(1) fitvar(1)^fitparam(2))
25146 @end group
25147 @end smallexample
25149 Calc then applies the rewrites as if by @samp{C-u 0 a r FitRules}.
25150 (The zero prefix means that rewriting should continue until no further
25151 changes are possible.)
25153 When rewriting is complete, the @code{fitmodel} call should have
25154 been replaced by a @code{fitsystem} call that looks like this:
25156 @example
25157 fitsystem(@var{Y}, @var{FGH}, @var{abc})
25158 @end example
25160 @noindent
25161 where @var{Y} is a formula that describes the function @expr{Y(x,y,z)},
25162 @var{FGH} is the vector of formulas @expr{[F(x,y,z), G(x,y,z), H(x,y,z)]},
25163 and @var{abc} is the vector of parameter filters which refer to the
25164 raw parameters as @samp{fitdummy(1)} for @expr{A}, @samp{fitdummy(2)}
25165 for @expr{B}, etc.  While the number of raw parameters (the length of
25166 the @var{FGH} vector) is usually the same as the number of original
25167 parameters (the length of the @var{abc} vector), this is not required.
25169 The power law model eventually boils down to
25171 @smallexample
25172 @group
25173 fitsystem(ln(fitvar(2)),
25174           [1, ln(fitvar(1))],
25175           [exp(fitdummy(1)), fitdummy(2)])
25176 @end group
25177 @end smallexample
25179 The actual implementation of @code{FitRules} is complicated; it
25180 proceeds in four phases.  First, common rearrangements are done
25181 to try to bring linear terms together and to isolate functions like
25182 @code{exp} and @code{ln} either all the way ``out'' (so that they
25183 can be put into @var{Y}) or all the way ``in'' (so that they can
25184 be put into @var{abc} or @var{FGH}).  In particular, all
25185 non-constant powers are converted to logs-and-exponentials form,
25186 and the distributive law is used to expand products of sums.
25187 Quotients are rewritten to use the @samp{fitinv} function, where
25188 @samp{fitinv(x)} represents @expr{1/x} while the @code{FitRules}
25189 are operating.  (The use of @code{fitinv} makes recognition of
25190 linear-looking forms easier.)  If you modify @code{FitRules}, you
25191 will probably only need to modify the rules for this phase.
25193 Phase two, whose rules can actually also apply during phases one
25194 and three, first rewrites @code{fitmodel} to a two-argument
25195 form @samp{fitmodel(@var{Y}, @var{model})}, where @var{Y} is
25196 initially zero and @var{model} has been changed from @expr{a=b}
25197 to @expr{a-b} form.  It then tries to peel off invertible functions
25198 from the outside of @var{model} and put them into @var{Y} instead,
25199 calling the equation solver to invert the functions.  Finally, when
25200 this is no longer possible, the @code{fitmodel} is changed to a
25201 four-argument @code{fitsystem}, where the fourth argument is
25202 @var{model} and the @var{FGH} and @var{abc} vectors are initially
25203 empty.  (The last vector is really @var{ABC}, corresponding to
25204 raw parameters, for now.)
25206 Phase three converts a sum of items in the @var{model} to a sum
25207 of @samp{fitpart(@var{a}, @var{b}, @var{c})} terms which represent
25208 terms @samp{@var{a}*@var{b}*@var{c}} of the sum, where @var{a}
25209 is all factors that do not involve any variables, @var{b} is all
25210 factors that involve only parameters, and @var{c} is the factors
25211 that involve only independent variables.  (If this decomposition
25212 is not possible, the rule set will not complete and Calc will
25213 complain that the model is too complex.)  Then @code{fitpart}s
25214 with equal @var{b} or @var{c} components are merged back together
25215 using the distributive law in order to minimize the number of
25216 raw parameters needed.
25218 Phase four moves the @code{fitpart} terms into the @var{FGH} and
25219 @var{ABC} vectors.  Also, some of the algebraic expansions that
25220 were done in phase 1 are undone now to make the formulas more
25221 computationally efficient.  Finally, it calls the solver one more
25222 time to convert the @var{ABC} vector to an @var{abc} vector, and
25223 removes the fourth @var{model} argument (which by now will be zero)
25224 to obtain the three-argument @code{fitsystem} that the linear
25225 least-squares solver wants to see.
25227 @ignore
25228 @starindex
25229 @end ignore
25230 @ignore
25231 @mindex hasfit@idots
25232 @end ignore
25233 @tindex hasfitparams
25234 @ignore
25235 @starindex
25236 @end ignore
25237 @ignore
25238 @mindex @null
25239 @end ignore
25240 @tindex hasfitvars
25241 Two functions which are useful in connection with @code{FitRules}
25242 are @samp{hasfitparams(x)} and @samp{hasfitvars(x)}, which check
25243 whether @expr{x} refers to any parameters or independent variables,
25244 respectively.  Specifically, these functions return ``true'' if the
25245 argument contains any @code{fitparam} (or @code{fitvar}) function
25246 calls, and ``false'' otherwise.  (Recall that ``true'' means a
25247 nonzero number, and ``false'' means zero.  The actual nonzero number
25248 returned is the largest @var{n} from all the @samp{fitparam(@var{n})}s
25249 or @samp{fitvar(@var{n})}s, respectively, that appear in the formula.)
25251 @tex
25252 \bigskip
25253 @end tex
25255 The @code{fit} function in algebraic notation normally takes four
25256 arguments, @samp{fit(@var{model}, @var{vars}, @var{params}, @var{data})},
25257 where @var{model} is the model formula as it would be typed after
25258 @kbd{a F '}, @var{vars} is the independent variable or a vector of
25259 independent variables, @var{params} likewise gives the parameter(s),
25260 and @var{data} is the data matrix.  Note that the length of @var{vars}
25261 must be equal to the number of rows in @var{data} if @var{model} is
25262 an equation, or one less than the number of rows if @var{model} is
25263 a plain formula.  (Actually, a name for the dependent variable is
25264 allowed but will be ignored in the plain-formula case.)
25266 If @var{params} is omitted, the parameters are all variables in
25267 @var{model} except those that appear in @var{vars}.  If @var{vars}
25268 is also omitted, Calc sorts all the variables that appear in
25269 @var{model} alphabetically and uses the higher ones for @var{vars}
25270 and the lower ones for @var{params}.
25272 Alternatively, @samp{fit(@var{modelvec}, @var{data})} is allowed
25273 where @var{modelvec} is a 2- or 3-vector describing the model
25274 and variables, as discussed previously.
25276 If Calc is unable to do the fit, the @code{fit} function is left
25277 in symbolic form, ordinarily with an explanatory message.  The
25278 message will be ``Model expression is too complex'' if the
25279 linearizer was unable to put the model into the required form.
25281 The @code{efit} (corresponding to @kbd{H a F}) and @code{xfit}
25282 (for @kbd{I a F}) functions are completely analogous.
25284 @node Interpolation,  , Curve Fitting Details, Curve Fitting
25285 @subsection Polynomial Interpolation
25287 @kindex a p
25288 @pindex calc-poly-interp
25289 @tindex polint
25290 The @kbd{a p} (@code{calc-poly-interp}) [@code{polint}] command does
25291 a polynomial interpolation at a particular @expr{x} value.  It takes
25292 two arguments from the stack:  A data matrix of the sort used by
25293 @kbd{a F}, and a single number which represents the desired @expr{x}
25294 value.  Calc effectively does an exact polynomial fit as if by @kbd{a F i},
25295 then substitutes the @expr{x} value into the result in order to get an
25296 approximate @expr{y} value based on the fit.  (Calc does not actually
25297 use @kbd{a F i}, however; it uses a direct method which is both more
25298 efficient and more numerically stable.)
25300 The result of @kbd{a p} is actually a vector of two values:  The @expr{y}
25301 value approximation, and an error measure @expr{dy} that reflects Calc's
25302 estimation of the probable error of the approximation at that value of
25303 @expr{x}.  If the input @expr{x} is equal to any of the @expr{x} values
25304 in the data matrix, the output @expr{y} will be the corresponding @expr{y}
25305 value from the matrix, and the output @expr{dy} will be exactly zero.
25307 A prefix argument of 2 causes @kbd{a p} to take separate x- and
25308 y-vectors from the stack instead of one data matrix.
25310 If @expr{x} is a vector of numbers, @kbd{a p} will return a matrix of
25311 interpolated results for each of those @expr{x} values.  (The matrix will
25312 have two columns, the @expr{y} values and the @expr{dy} values.)
25313 If @expr{x} is a formula instead of a number, the @code{polint} function
25314 remains in symbolic form; use the @kbd{a "} command to expand it out to
25315 a formula that describes the fit in symbolic terms.
25317 In all cases, the @kbd{a p} command leaves the data vectors or matrix
25318 on the stack.  Only the @expr{x} value is replaced by the result.
25320 @kindex H a p
25321 @tindex ratint
25322 The @kbd{H a p} [@code{ratint}] command does a rational function
25323 interpolation.  It is used exactly like @kbd{a p}, except that it
25324 uses as its model the quotient of two polynomials.  If there are
25325 @expr{N} data points, the numerator and denominator polynomials will
25326 each have degree @expr{N/2} (if @expr{N} is odd, the denominator will
25327 have degree one higher than the numerator).
25329 Rational approximations have the advantage that they can accurately
25330 describe functions that have poles (points at which the function's value
25331 goes to infinity, so that the denominator polynomial of the approximation
25332 goes to zero).  If @expr{x} corresponds to a pole of the fitted rational
25333 function, then the result will be a division by zero.  If Infinite mode
25334 is enabled, the result will be @samp{[uinf, uinf]}.
25336 There is no way to get the actual coefficients of the rational function
25337 used by @kbd{H a p}.  (The algorithm never generates these coefficients
25338 explicitly, and quotients of polynomials are beyond @w{@kbd{a F}}'s
25339 capabilities to fit.)
25341 @node Summations, Logical Operations, Curve Fitting, Algebra
25342 @section Summations
25344 @noindent
25345 @cindex Summation of a series
25346 @kindex a +
25347 @pindex calc-summation
25348 @tindex sum
25349 The @kbd{a +} (@code{calc-summation}) [@code{sum}] command computes
25350 the sum of a formula over a certain range of index values.  The formula
25351 is taken from the top of the stack; the command prompts for the
25352 name of the summation index variable, the lower limit of the
25353 sum (any formula), and the upper limit of the sum.  If you
25354 enter a blank line at any of these prompts, that prompt and
25355 any later ones are answered by reading additional elements from
25356 the stack.  Thus, @kbd{' k^2 @key{RET} ' k @key{RET} 1 @key{RET} 5 @key{RET} a + @key{RET}}
25357 produces the result 55.
25358 @tex
25359 $$ \sum_{k=1}^5 k^2 = 55 $$
25360 @end tex
25362 The choice of index variable is arbitrary, but it's best not to
25363 use a variable with a stored value.  In particular, while
25364 @code{i} is often a favorite index variable, it should be avoided
25365 in Calc because @code{i} has the imaginary constant @expr{(0, 1)}
25366 as a value.  If you pressed @kbd{=} on a sum over @code{i}, it would
25367 be changed to a nonsensical sum over the ``variable'' @expr{(0, 1)}!
25368 If you really want to use @code{i} as an index variable, use
25369 @w{@kbd{s u i @key{RET}}} first to ``unstore'' this variable.
25370 (@xref{Storing Variables}.)
25372 A numeric prefix argument steps the index by that amount rather
25373 than by one.  Thus @kbd{' a_k @key{RET} C-u -2 a + k @key{RET} 10 @key{RET} 0 @key{RET}}
25374 yields @samp{a_10 + a_8 + a_6 + a_4 + a_2 + a_0}.  A prefix
25375 argument of plain @kbd{C-u} causes @kbd{a +} to prompt for the
25376 step value, in which case you can enter any formula or enter
25377 a blank line to take the step value from the stack.  With the
25378 @kbd{C-u} prefix, @kbd{a +} can take up to five arguments from
25379 the stack:  The formula, the variable, the lower limit, the
25380 upper limit, and (at the top of the stack), the step value.
25382 Calc knows how to do certain sums in closed form.  For example,
25383 @samp{sum(6 k^2, k, 1, n) = @w{2 n^3} + 3 n^2 + n}.  In particular,
25384 this is possible if the formula being summed is polynomial or
25385 exponential in the index variable.  Sums of logarithms are
25386 transformed into logarithms of products.  Sums of trigonometric
25387 and hyperbolic functions are transformed to sums of exponentials
25388 and then done in closed form.  Also, of course, sums in which the
25389 lower and upper limits are both numbers can always be evaluated
25390 just by grinding them out, although Calc will use closed forms
25391 whenever it can for the sake of efficiency.
25393 The notation for sums in algebraic formulas is
25394 @samp{sum(@var{expr}, @var{var}, @var{low}, @var{high}, @var{step})}.
25395 If @var{step} is omitted, it defaults to one.  If @var{high} is
25396 omitted, @var{low} is actually the upper limit and the lower limit
25397 is one.  If @var{low} is also omitted, the limits are @samp{-inf}
25398 and @samp{inf}, respectively.
25400 Infinite sums can sometimes be evaluated:  @samp{sum(.5^k, k, 1, inf)}
25401 returns @expr{1}.  This is done by evaluating the sum in closed
25402 form (to @samp{1. - 0.5^n} in this case), then evaluating this
25403 formula with @code{n} set to @code{inf}.  Calc's usual rules
25404 for ``infinite'' arithmetic can find the answer from there.  If
25405 infinite arithmetic yields a @samp{nan}, or if the sum cannot be
25406 solved in closed form, Calc leaves the @code{sum} function in
25407 symbolic form.  @xref{Infinities}.
25409 As a special feature, if the limits are infinite (or omitted, as
25410 described above) but the formula includes vectors subscripted by
25411 expressions that involve the iteration variable, Calc narrows
25412 the limits to include only the range of integers which result in
25413 valid subscripts for the vector.  For example, the sum
25414 @samp{sum(k [a,b,c,d,e,f,g]_(2k),k)} evaluates to @samp{b + 2 d + 3 f}.
25416 The limits of a sum do not need to be integers.  For example,
25417 @samp{sum(a_k, k, 0, 2 n, n)} produces @samp{a_0 + a_n + a_(2 n)}.
25418 Calc computes the number of iterations using the formula
25419 @samp{1 + (@var{high} - @var{low}) / @var{step}}, which must,
25420 after algebraic simplification, evaluate to an integer.
25422 If the number of iterations according to the above formula does
25423 not come out to an integer, the sum is invalid and will be left
25424 in symbolic form.  However, closed forms are still supplied, and
25425 you are on your honor not to misuse the resulting formulas by
25426 substituting mismatched bounds into them.  For example,
25427 @samp{sum(k, k, 1, 10, 2)} is invalid, but Calc will go ahead and
25428 evaluate the closed form solution for the limits 1 and 10 to get
25429 the rather dubious answer, 29.25.
25431 If the lower limit is greater than the upper limit (assuming a
25432 positive step size), the result is generally zero.  However,
25433 Calc only guarantees a zero result when the upper limit is
25434 exactly one step less than the lower limit, i.e., if the number
25435 of iterations is @mathit{-1}.  Thus @samp{sum(f(k), k, n, n-1)} is zero
25436 but the sum from @samp{n} to @samp{n-2} may report a nonzero value
25437 if Calc used a closed form solution.
25439 Calc's logical predicates like @expr{a < b} return 1 for ``true''
25440 and 0 for ``false.''  @xref{Logical Operations}.  This can be
25441 used to advantage for building conditional sums.  For example,
25442 @samp{sum(prime(k)*k^2, k, 1, 20)} is the sum of the squares of all
25443 prime numbers from 1 to 20; the @code{prime} predicate returns 1 if
25444 its argument is prime and 0 otherwise.  You can read this expression
25445 as ``the sum of @expr{k^2}, where @expr{k} is prime.''  Indeed,
25446 @samp{sum(prime(k)*k^2, k)} would represent the sum of @emph{all} primes
25447 squared, since the limits default to plus and minus infinity, but
25448 there are no such sums that Calc's built-in rules can do in
25449 closed form.
25451 As another example, @samp{sum((k != k_0) * f(k), k, 1, n)} is the
25452 sum of @expr{f(k)} for all @expr{k} from 1 to @expr{n}, excluding
25453 one value @expr{k_0}.  Slightly more tricky is the summand
25454 @samp{(k != k_0) / (k - k_0)}, which is an attempt to describe
25455 the sum of all @expr{1/(k-k_0)} except at @expr{k = k_0}, where
25456 this would be a division by zero.  But at @expr{k = k_0}, this
25457 formula works out to the indeterminate form @expr{0 / 0}, which
25458 Calc will not assume is zero.  Better would be to use
25459 @samp{(k != k_0) ? 1/(k-k_0) : 0}; the @samp{? :} operator does
25460 an ``if-then-else'' test:  This expression says, ``if
25461 @texline @math{k \ne k_0},
25462 @infoline @expr{k != k_0},
25463 then @expr{1/(k-k_0)}, else zero.''  Now the formula @expr{1/(k-k_0)}
25464 will not even be evaluated by Calc when @expr{k = k_0}.
25466 @cindex Alternating sums
25467 @kindex a -
25468 @pindex calc-alt-summation
25469 @tindex asum
25470 The @kbd{a -} (@code{calc-alt-summation}) [@code{asum}] command
25471 computes an alternating sum.  Successive terms of the sequence
25472 are given alternating signs, with the first term (corresponding
25473 to the lower index value) being positive.  Alternating sums
25474 are converted to normal sums with an extra term of the form
25475 @samp{(-1)^(k-@var{low})}.  This formula is adjusted appropriately
25476 if the step value is other than one.  For example, the Taylor
25477 series for the sine function is @samp{asum(x^k / k!, k, 1, inf, 2)}.
25478 (Calc cannot evaluate this infinite series, but it can approximate
25479 it if you replace @code{inf} with any particular odd number.)
25480 Calc converts this series to a regular sum with a step of one,
25481 namely @samp{sum((-1)^k x^(2k+1) / (2k+1)!, k, 0, inf)}.
25483 @cindex Product of a sequence
25484 @kindex a *
25485 @pindex calc-product
25486 @tindex prod
25487 The @kbd{a *} (@code{calc-product}) [@code{prod}] command is
25488 the analogous way to take a product of many terms.  Calc also knows
25489 some closed forms for products, such as @samp{prod(k, k, 1, n) = n!}.
25490 Conditional products can be written @samp{prod(k^prime(k), k, 1, n)}
25491 or @samp{prod(prime(k) ? k : 1, k, 1, n)}.
25493 @kindex a T
25494 @pindex calc-tabulate
25495 @tindex table
25496 The @kbd{a T} (@code{calc-tabulate}) [@code{table}] command
25497 evaluates a formula at a series of iterated index values, just
25498 like @code{sum} and @code{prod}, but its result is simply a
25499 vector of the results.  For example, @samp{table(a_i, i, 1, 7, 2)}
25500 produces @samp{[a_1, a_3, a_5, a_7]}.
25502 @node Logical Operations, Rewrite Rules, Summations, Algebra
25503 @section Logical Operations
25505 @noindent
25506 The following commands and algebraic functions return true/false values,
25507 where 1 represents ``true'' and 0 represents ``false.''  In cases where
25508 a truth value is required (such as for the condition part of a rewrite
25509 rule, or as the condition for a @w{@kbd{Z [ Z ]}} control structure), any
25510 nonzero value is accepted to mean ``true.''  (Specifically, anything
25511 for which @code{dnonzero} returns 1 is ``true,'' and anything for
25512 which @code{dnonzero} returns 0 or cannot decide is assumed ``false.''
25513 Note that this means that @w{@kbd{Z [ Z ]}} will execute the ``then''
25514 portion if its condition is provably true, but it will execute the
25515 ``else'' portion for any condition like @expr{a = b} that is not
25516 provably true, even if it might be true.  Algebraic functions that
25517 have conditions as arguments, like @code{? :} and @code{&&}, remain
25518 unevaluated if the condition is neither provably true nor provably
25519 false.  @xref{Declarations}.)
25521 @kindex a =
25522 @pindex calc-equal-to
25523 @tindex eq
25524 @tindex =
25525 @tindex ==
25526 The @kbd{a =} (@code{calc-equal-to}) command, or @samp{eq(a,b)} function
25527 (which can also be written @samp{a = b} or @samp{a == b} in an algebraic
25528 formula) is true if @expr{a} and @expr{b} are equal, either because they
25529 are identical expressions, or because they are numbers which are
25530 numerically equal.  (Thus the integer 1 is considered equal to the float
25531 1.0.)  If the equality of @expr{a} and @expr{b} cannot be determined,
25532 the comparison is left in symbolic form.  Note that as a command, this
25533 operation pops two values from the stack and pushes back either a 1 or
25534 a 0, or a formula @samp{a = b} if the values' equality cannot be determined.
25536 Many Calc commands use @samp{=} formulas to represent @dfn{equations}.
25537 For example, the @kbd{a S} (@code{calc-solve-for}) command rearranges
25538 an equation to solve for a given variable.  The @kbd{a M}
25539 (@code{calc-map-equation}) command can be used to apply any
25540 function to both sides of an equation; for example, @kbd{2 a M *}
25541 multiplies both sides of the equation by two.  Note that just
25542 @kbd{2 *} would not do the same thing; it would produce the formula
25543 @samp{2 (a = b)} which represents 2 if the equality is true or
25544 zero if not.
25546 The @code{eq} function with more than two arguments (e.g., @kbd{C-u 3 a =}
25547 or @samp{a = b = c}) tests if all of its arguments are equal.  In
25548 algebraic notation, the @samp{=} operator is unusual in that it is
25549 neither left- nor right-associative:  @samp{a = b = c} is not the
25550 same as @samp{(a = b) = c} or @samp{a = (b = c)} (which each compare
25551 one variable with the 1 or 0 that results from comparing two other
25552 variables).
25554 @kindex a #
25555 @pindex calc-not-equal-to
25556 @tindex neq
25557 @tindex !=
25558 The @kbd{a #} (@code{calc-not-equal-to}) command, or @samp{neq(a,b)} or
25559 @samp{a != b} function, is true if @expr{a} and @expr{b} are not equal.
25560 This also works with more than two arguments; @samp{a != b != c != d}
25561 tests that all four of @expr{a}, @expr{b}, @expr{c}, and @expr{d} are
25562 distinct numbers.
25564 @kindex a <
25565 @tindex lt
25566 @ignore
25567 @mindex @idots
25568 @end ignore
25569 @kindex a >
25570 @ignore
25571 @mindex @null
25572 @end ignore
25573 @kindex a [
25574 @ignore
25575 @mindex @null
25576 @end ignore
25577 @kindex a ]
25578 @pindex calc-less-than
25579 @pindex calc-greater-than
25580 @pindex calc-less-equal
25581 @pindex calc-greater-equal
25582 @ignore
25583 @mindex @null
25584 @end ignore
25585 @tindex gt
25586 @ignore
25587 @mindex @null
25588 @end ignore
25589 @tindex leq
25590 @ignore
25591 @mindex @null
25592 @end ignore
25593 @tindex geq
25594 @ignore
25595 @mindex @null
25596 @end ignore
25597 @tindex <
25598 @ignore
25599 @mindex @null
25600 @end ignore
25601 @tindex >
25602 @ignore
25603 @mindex @null
25604 @end ignore
25605 @tindex <=
25606 @ignore
25607 @mindex @null
25608 @end ignore
25609 @tindex >=
25610 The @kbd{a <} (@code{calc-less-than}) [@samp{lt(a,b)} or @samp{a < b}]
25611 operation is true if @expr{a} is less than @expr{b}.  Similar functions
25612 are @kbd{a >} (@code{calc-greater-than}) [@samp{gt(a,b)} or @samp{a > b}],
25613 @kbd{a [} (@code{calc-less-equal}) [@samp{leq(a,b)} or @samp{a <= b}], and
25614 @kbd{a ]} (@code{calc-greater-equal}) [@samp{geq(a,b)} or @samp{a >= b}].
25616 While the inequality functions like @code{lt} do not accept more
25617 than two arguments, the syntax @w{@samp{a <= b < c}} is translated to an
25618 equivalent expression involving intervals: @samp{b in [a .. c)}.
25619 (See the description of @code{in} below.)  All four combinations
25620 of @samp{<} and @samp{<=} are allowed, or any of the four combinations
25621 of @samp{>} and @samp{>=}.  Four-argument constructions like
25622 @samp{a < b < c < d}, and mixtures like @w{@samp{a < b = c}} that
25623 involve both equations and inequalities, are not allowed.
25625 @kindex a .
25626 @pindex calc-remove-equal
25627 @tindex rmeq
25628 The @kbd{a .} (@code{calc-remove-equal}) [@code{rmeq}] command extracts
25629 the righthand side of the equation or inequality on the top of the
25630 stack.  It also works elementwise on vectors.  For example, if
25631 @samp{[x = 2.34, y = z / 2]} is on the stack, then @kbd{a .} produces
25632 @samp{[2.34, z / 2]}.  As a special case, if the righthand side is a
25633 variable and the lefthand side is a number (as in @samp{2.34 = x}), then
25634 Calc keeps the lefthand side instead.  Finally, this command works with
25635 assignments @samp{x := 2.34} as well as equations, always taking the
25636 righthand side, and for @samp{=>} (evaluates-to) operators, always
25637 taking the lefthand side.
25639 @kindex a &
25640 @pindex calc-logical-and
25641 @tindex land
25642 @tindex &&
25643 The @kbd{a &} (@code{calc-logical-and}) [@samp{land(a,b)} or @samp{a && b}]
25644 function is true if both of its arguments are true, i.e., are
25645 non-zero numbers.  In this case, the result will be either @expr{a} or
25646 @expr{b}, chosen arbitrarily.  If either argument is zero, the result is
25647 zero.  Otherwise, the formula is left in symbolic form.
25649 @kindex a |
25650 @pindex calc-logical-or
25651 @tindex lor
25652 @tindex ||
25653 The @kbd{a |} (@code{calc-logical-or}) [@samp{lor(a,b)} or @samp{a || b}]
25654 function is true if either or both of its arguments are true (nonzero).
25655 The result is whichever argument was nonzero, choosing arbitrarily if both
25656 are nonzero.  If both @expr{a} and @expr{b} are zero, the result is
25657 zero.
25659 @kindex a !
25660 @pindex calc-logical-not
25661 @tindex lnot
25662 @tindex !
25663 The @kbd{a !} (@code{calc-logical-not}) [@samp{lnot(a)} or @samp{!@: a}]
25664 function is true if @expr{a} is false (zero), or false if @expr{a} is
25665 true (nonzero).  It is left in symbolic form if @expr{a} is not a
25666 number.
25668 @kindex a :
25669 @pindex calc-logical-if
25670 @tindex if
25671 @ignore
25672 @mindex ? :
25673 @end ignore
25674 @tindex ?
25675 @ignore
25676 @mindex @null
25677 @end ignore
25678 @tindex :
25679 @cindex Arguments, not evaluated
25680 The @kbd{a :} (@code{calc-logical-if}) [@samp{if(a,b,c)} or @samp{a ? b :@: c}]
25681 function is equal to either @expr{b} or @expr{c} if @expr{a} is a nonzero
25682 number or zero, respectively.  If @expr{a} is not a number, the test is
25683 left in symbolic form and neither @expr{b} nor @expr{c} is evaluated in
25684 any way.  In algebraic formulas, this is one of the few Calc functions
25685 whose arguments are not automatically evaluated when the function itself
25686 is evaluated.  The others are @code{lambda}, @code{quote}, and
25687 @code{condition}.
25689 One minor surprise to watch out for is that the formula @samp{a?3:4}
25690 will not work because the @samp{3:4} is parsed as a fraction instead of
25691 as three separate symbols.  Type something like @samp{a ? 3 : 4} or
25692 @samp{a?(3):4} instead.
25694 As a special case, if @expr{a} evaluates to a vector, then both @expr{b}
25695 and @expr{c} are evaluated; the result is a vector of the same length
25696 as @expr{a} whose elements are chosen from corresponding elements of
25697 @expr{b} and @expr{c} according to whether each element of @expr{a}
25698 is zero or nonzero.  Each of @expr{b} and @expr{c} must be either a
25699 vector of the same length as @expr{a}, or a non-vector which is matched
25700 with all elements of @expr{a}.
25702 @kindex a @{
25703 @pindex calc-in-set
25704 @tindex in
25705 The @kbd{a @{} (@code{calc-in-set}) [@samp{in(a,b)}] function is true if
25706 the number @expr{a} is in the set of numbers represented by @expr{b}.
25707 If @expr{b} is an interval form, @expr{a} must be one of the values
25708 encompassed by the interval.  If @expr{b} is a vector, @expr{a} must be
25709 equal to one of the elements of the vector.  (If any vector elements are
25710 intervals, @expr{a} must be in any of the intervals.)  If @expr{b} is a
25711 plain number, @expr{a} must be numerically equal to @expr{b}.
25712 @xref{Set Operations}, for a group of commands that manipulate sets
25713 of this sort.
25715 @ignore
25716 @starindex
25717 @end ignore
25718 @tindex typeof
25719 The @samp{typeof(a)} function produces an integer or variable which
25720 characterizes @expr{a}.  If @expr{a} is a number, vector, or variable,
25721 the result will be one of the following numbers:
25723 @example
25724  1   Integer
25725  2   Fraction
25726  3   Floating-point number
25727  4   HMS form
25728  5   Rectangular complex number
25729  6   Polar complex number
25730  7   Error form
25731  8   Interval form
25732  9   Modulo form
25733 10   Date-only form
25734 11   Date/time form
25735 12   Infinity (inf, uinf, or nan)
25736 100  Variable
25737 101  Vector (but not a matrix)
25738 102  Matrix
25739 @end example
25741 Otherwise, @expr{a} is a formula, and the result is a variable which
25742 represents the name of the top-level function call.
25744 @ignore
25745 @starindex
25746 @end ignore
25747 @tindex integer
25748 @ignore
25749 @starindex
25750 @end ignore
25751 @tindex real
25752 @ignore
25753 @starindex
25754 @end ignore
25755 @tindex constant
25756 The @samp{integer(a)} function returns true if @expr{a} is an integer.
25757 The @samp{real(a)} function
25758 is true if @expr{a} is a real number, either integer, fraction, or
25759 float.  The @samp{constant(a)} function returns true if @expr{a} is
25760 any of the objects for which @code{typeof} would produce an integer
25761 code result except for variables, and provided that the components of
25762 an object like a vector or error form are themselves constant.
25763 Note that infinities do not satisfy any of these tests, nor do
25764 special constants like @code{pi} and @code{e}.
25766 @xref{Declarations}, for a set of similar functions that recognize
25767 formulas as well as actual numbers.  For example, @samp{dint(floor(x))}
25768 is true because @samp{floor(x)} is provably integer-valued, but
25769 @samp{integer(floor(x))} does not because @samp{floor(x)} is not
25770 literally an integer constant.
25772 @ignore
25773 @starindex
25774 @end ignore
25775 @tindex refers
25776 The @samp{refers(a,b)} function is true if the variable (or sub-expression)
25777 @expr{b} appears in @expr{a}, or false otherwise.  Unlike the other
25778 tests described here, this function returns a definite ``no'' answer
25779 even if its arguments are still in symbolic form.  The only case where
25780 @code{refers} will be left unevaluated is if @expr{a} is a plain
25781 variable (different from @expr{b}).
25783 @ignore
25784 @starindex
25785 @end ignore
25786 @tindex negative
25787 The @samp{negative(a)} function returns true if @expr{a} ``looks'' negative,
25788 because it is a negative number, because it is of the form @expr{-x},
25789 or because it is a product or quotient with a term that looks negative.
25790 This is most useful in rewrite rules.  Beware that @samp{negative(a)}
25791 evaluates to 1 or 0 for @emph{any} argument @expr{a}, so it can only
25792 be stored in a formula if the default simplifications are turned off
25793 first with @kbd{m O} (or if it appears in an unevaluated context such
25794 as a rewrite rule condition).
25796 @ignore
25797 @starindex
25798 @end ignore
25799 @tindex variable
25800 The @samp{variable(a)} function is true if @expr{a} is a variable,
25801 or false if not.  If @expr{a} is a function call, this test is left
25802 in symbolic form.  Built-in variables like @code{pi} and @code{inf}
25803 are considered variables like any others by this test.
25805 @ignore
25806 @starindex
25807 @end ignore
25808 @tindex nonvar
25809 The @samp{nonvar(a)} function is true if @expr{a} is a non-variable.
25810 If its argument is a variable it is left unsimplified; it never
25811 actually returns zero.  However, since Calc's condition-testing
25812 commands consider ``false'' anything not provably true, this is
25813 often good enough.
25815 @ignore
25816 @starindex
25817 @end ignore
25818 @tindex lin
25819 @ignore
25820 @starindex
25821 @end ignore
25822 @tindex linnt
25823 @ignore
25824 @starindex
25825 @end ignore
25826 @tindex islin
25827 @ignore
25828 @starindex
25829 @end ignore
25830 @tindex islinnt
25831 @cindex Linearity testing
25832 The functions @code{lin}, @code{linnt}, @code{islin}, and @code{islinnt}
25833 check if an expression is ``linear,'' i.e., can be written in the form
25834 @expr{a + b x} for some constants @expr{a} and @expr{b}, and some
25835 variable or subformula @expr{x}.  The function @samp{islin(f,x)} checks
25836 if formula @expr{f} is linear in @expr{x}, returning 1 if so.  For
25837 example, @samp{islin(x,x)}, @samp{islin(-x,x)}, @samp{islin(3,x)}, and
25838 @samp{islin(x y / 3 - 2, x)} all return 1.  The @samp{lin(f,x)} function
25839 is similar, except that instead of returning 1 it returns the vector
25840 @expr{[a, b, x]}.  For the above examples, this vector would be
25841 @expr{[0, 1, x]}, @expr{[0, -1, x]}, @expr{[3, 0, x]}, and
25842 @expr{[-2, y/3, x]}, respectively.  Both @code{lin} and @code{islin}
25843 generally remain unevaluated for expressions which are not linear,
25844 e.g., @samp{lin(2 x^2, x)} and @samp{lin(sin(x), x)}.  The second
25845 argument can also be a formula; @samp{islin(2 + 3 sin(x), sin(x))}
25846 returns true.
25848 The @code{linnt} and @code{islinnt} functions perform a similar check,
25849 but require a ``non-trivial'' linear form, which means that the
25850 @expr{b} coefficient must be non-zero.  For example, @samp{lin(2,x)}
25851 returns @expr{[2, 0, x]} and @samp{lin(y,x)} returns @expr{[y, 0, x]},
25852 but @samp{linnt(2,x)} and @samp{linnt(y,x)} are left unevaluated
25853 (in other words, these formulas are considered to be only ``trivially''
25854 linear in @expr{x}).
25856 All four linearity-testing functions allow you to omit the second
25857 argument, in which case the input may be linear in any non-constant
25858 formula.  Here, the @expr{a=0}, @expr{b=1} case is also considered
25859 trivial, and only constant values for @expr{a} and @expr{b} are
25860 recognized.  Thus, @samp{lin(2 x y)} returns @expr{[0, 2, x y]},
25861 @samp{lin(2 - x y)} returns @expr{[2, -1, x y]}, and @samp{lin(x y)}
25862 returns @expr{[0, 1, x y]}.  The @code{linnt} function would allow the
25863 first two cases but not the third.  Also, neither @code{lin} nor
25864 @code{linnt} accept plain constants as linear in the one-argument
25865 case: @samp{islin(2,x)} is true, but @samp{islin(2)} is false.
25867 @ignore
25868 @starindex
25869 @end ignore
25870 @tindex istrue
25871 The @samp{istrue(a)} function returns 1 if @expr{a} is a nonzero
25872 number or provably nonzero formula, or 0 if @expr{a} is anything else.
25873 Calls to @code{istrue} can only be manipulated if @kbd{m O} mode is
25874 used to make sure they are not evaluated prematurely.  (Note that
25875 declarations are used when deciding whether a formula is true;
25876 @code{istrue} returns 1 when @code{dnonzero} would return 1, and
25877 it returns 0 when @code{dnonzero} would return 0 or leave itself
25878 in symbolic form.)
25880 @node Rewrite Rules,  , Logical Operations, Algebra
25881 @section Rewrite Rules
25883 @noindent
25884 @cindex Rewrite rules
25885 @cindex Transformations
25886 @cindex Pattern matching
25887 @kindex a r
25888 @pindex calc-rewrite
25889 @tindex rewrite
25890 The @kbd{a r} (@code{calc-rewrite}) [@code{rewrite}] command makes
25891 substitutions in a formula according to a specified pattern or patterns
25892 known as @dfn{rewrite rules}.  Whereas @kbd{a b} (@code{calc-substitute})
25893 matches literally, so that substituting @samp{sin(x)} with @samp{cos(x)}
25894 matches only the @code{sin} function applied to the variable @code{x},
25895 rewrite rules match general kinds of formulas; rewriting using the rule
25896 @samp{sin(x) := cos(x)} matches @code{sin} of any argument and replaces
25897 it with @code{cos} of that same argument.  The only significance of the
25898 name @code{x} is that the same name is used on both sides of the rule.
25900 Rewrite rules rearrange formulas already in Calc's memory.
25901 @xref{Syntax Tables}, to read about @dfn{syntax rules}, which are
25902 similar to algebraic rewrite rules but operate when new algebraic
25903 entries are being parsed, converting strings of characters into
25904 Calc formulas.
25906 @menu
25907 * Entering Rewrite Rules::
25908 * Basic Rewrite Rules::
25909 * Conditional Rewrite Rules::
25910 * Algebraic Properties of Rewrite Rules::
25911 * Other Features of Rewrite Rules::
25912 * Composing Patterns in Rewrite Rules::
25913 * Nested Formulas with Rewrite Rules::
25914 * Multi-Phase Rewrite Rules::
25915 * Selections with Rewrite Rules::
25916 * Matching Commands::
25917 * Automatic Rewrites::
25918 * Debugging Rewrites::
25919 * Examples of Rewrite Rules::
25920 @end menu
25922 @node Entering Rewrite Rules, Basic Rewrite Rules, Rewrite Rules, Rewrite Rules
25923 @subsection Entering Rewrite Rules
25925 @noindent
25926 Rewrite rules normally use the ``assignment'' operator
25927 @samp{@var{old} := @var{new}}.
25928 This operator is equivalent to the function call @samp{assign(old, new)}.
25929 The @code{assign} function is undefined by itself in Calc, so an
25930 assignment formula such as a rewrite rule will be left alone by ordinary
25931 Calc commands.  But certain commands, like the rewrite system, interpret
25932 assignments in special ways.
25934 For example, the rule @samp{sin(x)^2 := 1-cos(x)^2} says to replace
25935 every occurrence of the sine of something, squared, with one minus the
25936 square of the cosine of that same thing.  All by itself as a formula
25937 on the stack it does nothing, but when given to the @kbd{a r} command
25938 it turns that command into a sine-squared-to-cosine-squared converter.
25940 To specify a set of rules to be applied all at once, make a vector of
25941 rules.
25943 When @kbd{a r} prompts you to enter the rewrite rules, you can answer
25944 in several ways:
25946 @enumerate
25947 @item
25948 With a rule:  @kbd{f(x) := g(x) @key{RET}}.
25949 @item
25950 With a vector of rules:  @kbd{[f1(x) := g1(x), f2(x) := g2(x)] @key{RET}}.
25951 (You can omit the enclosing square brackets if you wish.)
25952 @item
25953 With the name of a variable that contains the rule or rules vector:
25954 @kbd{myrules @key{RET}}.
25955 @item
25956 With any formula except a rule, a vector, or a variable name; this
25957 will be interpreted as the @var{old} half of a rewrite rule,
25958 and you will be prompted a second time for the @var{new} half:
25959 @kbd{f(x) @key{RET} g(x) @key{RET}}.
25960 @item
25961 With a blank line, in which case the rule, rules vector, or variable
25962 will be taken from the top of the stack (and the formula to be
25963 rewritten will come from the second-to-top position).
25964 @end enumerate
25966 If you enter the rules directly (as opposed to using rules stored
25967 in a variable), those rules will be put into the Trail so that you
25968 can retrieve them later.  @xref{Trail Commands}.
25970 It is most convenient to store rules you use often in a variable and
25971 invoke them by giving the variable name.  The @kbd{s e}
25972 (@code{calc-edit-variable}) command is an easy way to create or edit a
25973 rule set stored in a variable.  You may also wish to use @kbd{s p}
25974 (@code{calc-permanent-variable}) to save your rules permanently;
25975 @pxref{Operations on Variables}.
25977 Rewrite rules are compiled into a special internal form for faster
25978 matching.  If you enter a rule set directly it must be recompiled
25979 every time.  If you store the rules in a variable and refer to them
25980 through that variable, they will be compiled once and saved away
25981 along with the variable for later reference.  This is another good
25982 reason to store your rules in a variable.
25984 Calc also accepts an obsolete notation for rules, as vectors
25985 @samp{[@var{old}, @var{new}]}.  But because it is easily confused with a
25986 vector of two rules, the use of this notation is no longer recommended.
25988 @node Basic Rewrite Rules, Conditional Rewrite Rules, Entering Rewrite Rules, Rewrite Rules
25989 @subsection Basic Rewrite Rules
25991 @noindent
25992 To match a particular formula @expr{x} with a particular rewrite rule
25993 @samp{@var{old} := @var{new}}, Calc compares the structure of @expr{x} with
25994 the structure of @var{old}.  Variables that appear in @var{old} are
25995 treated as @dfn{meta-variables}; the corresponding positions in @expr{x}
25996 may contain any sub-formulas.  For example, the pattern @samp{f(x,y)}
25997 would match the expression @samp{f(12, a+1)} with the meta-variable
25998 @samp{x} corresponding to 12 and with @samp{y} corresponding to
25999 @samp{a+1}.  However, this pattern would not match @samp{f(12)} or
26000 @samp{g(12, a+1)}, since there is no assignment of the meta-variables
26001 that will make the pattern match these expressions.  Notice that if
26002 the pattern is a single meta-variable, it will match any expression.
26004 If a given meta-variable appears more than once in @var{old}, the
26005 corresponding sub-formulas of @expr{x} must be identical.  Thus
26006 the pattern @samp{f(x,x)} would match @samp{f(12, 12)} and
26007 @samp{f(a+1, a+1)} but not @samp{f(12, a+1)} or @samp{f(a+b, b+a)}.
26008 (@xref{Conditional Rewrite Rules}, for a way to match the latter.)
26010 Things other than variables must match exactly between the pattern
26011 and the target formula.  To match a particular variable exactly, use
26012 the pseudo-function @samp{quote(v)} in the pattern.  For example, the
26013 pattern @samp{x+quote(y)} matches @samp{x+y}, @samp{2+y}, or
26014 @samp{sin(a)+y}.
26016 The special variable names @samp{e}, @samp{pi}, @samp{i}, @samp{phi},
26017 @samp{gamma}, @samp{inf}, @samp{uinf}, and @samp{nan} always match
26018 literally.  Thus the pattern @samp{sin(d + e + f)} acts exactly like
26019 @samp{sin(d + quote(e) + f)}.
26021 If the @var{old} pattern is found to match a given formula, that
26022 formula is replaced by @var{new}, where any occurrences in @var{new}
26023 of meta-variables from the pattern are replaced with the sub-formulas
26024 that they matched.  Thus, applying the rule @samp{f(x,y) := g(y+x,x)}
26025 to @samp{f(12, a+1)} would produce @samp{g(a+13, 12)}.
26027 The normal @kbd{a r} command applies rewrite rules over and over
26028 throughout the target formula until no further changes are possible
26029 (up to a limit of 100 times).  Use @kbd{C-u 1 a r} to make only one
26030 change at a time.
26032 @node Conditional Rewrite Rules, Algebraic Properties of Rewrite Rules, Basic Rewrite Rules, Rewrite Rules
26033 @subsection Conditional Rewrite Rules
26035 @noindent
26036 A rewrite rule can also be @dfn{conditional}, written in the form
26037 @samp{@var{old} := @var{new} :: @var{cond}}.  (There is also the obsolete
26038 form @samp{[@var{old}, @var{new}, @var{cond}]}.)  If a @var{cond} part
26039 is present in the
26040 rule, this is an additional condition that must be satisfied before
26041 the rule is accepted.  Once @var{old} has been successfully matched
26042 to the target expression, @var{cond} is evaluated (with all the
26043 meta-variables substituted for the values they matched) and simplified
26044 with Calc's algebraic simplifications.  If the result is a nonzero
26045 number or any other object known to be nonzero (@pxref{Declarations}),
26046 the rule is accepted.  If the result is zero or if it is a symbolic
26047 formula that is not known to be nonzero, the rule is rejected.
26048 @xref{Logical Operations}, for a number of functions that return
26049 1 or 0 according to the results of various tests.
26051 For example, the formula @samp{n > 0} simplifies to 1 or 0 if @expr{n}
26052 is replaced by a positive or nonpositive number, respectively (or if
26053 @expr{n} has been declared to be positive or nonpositive).  Thus,
26054 the rule @samp{f(x,y) := g(y+x,x) :: x+y > 0} would apply to
26055 @samp{f(0, 4)} but not to @samp{f(-3, 2)} or @samp{f(12, a+1)}
26056 (assuming no outstanding declarations for @expr{a}).  In the case of
26057 @samp{f(-3, 2)}, the condition can be shown not to be satisfied; in
26058 the case of @samp{f(12, a+1)}, the condition merely cannot be shown
26059 to be satisfied, but that is enough to reject the rule.
26061 While Calc will use declarations to reason about variables in the
26062 formula being rewritten, declarations do not apply to meta-variables.
26063 For example, the rule @samp{f(a) := g(a+1)} will match for any values
26064 of @samp{a}, such as complex numbers, vectors, or formulas, even if
26065 @samp{a} has been declared to be real or scalar.  If you want the
26066 meta-variable @samp{a} to match only literal real numbers, use
26067 @samp{f(a) := g(a+1) :: real(a)}.  If you want @samp{a} to match only
26068 reals and formulas which are provably real, use @samp{dreal(a)} as
26069 the condition.
26071 The @samp{::} operator is a shorthand for the @code{condition}
26072 function; @samp{@var{old} := @var{new} :: @var{cond}} is equivalent to
26073 the formula @samp{condition(assign(@var{old}, @var{new}), @var{cond})}.
26075 If you have several conditions, you can use @samp{... :: c1 :: c2 :: c3}
26076 or @samp{... :: c1 && c2 && c3}.  The two are entirely equivalent.
26078 It is also possible to embed conditions inside the pattern:
26079 @samp{f(x :: x>0, y) := g(y+x, x)}.  This is purely a notational
26080 convenience, though; where a condition appears in a rule has no
26081 effect on when it is tested.  The rewrite-rule compiler automatically
26082 decides when it is best to test each condition while a rule is being
26083 matched.
26085 Certain conditions are handled as special cases by the rewrite rule
26086 system and are tested very efficiently:  Where @expr{x} is any
26087 meta-variable, these conditions are @samp{integer(x)}, @samp{real(x)},
26088 @samp{constant(x)}, @samp{negative(x)}, @samp{x >= y} where @expr{y}
26089 is either a constant or another meta-variable and @samp{>=} may be
26090 replaced by any of the six relational operators, and @samp{x % a = b}
26091 where @expr{a} and @expr{b} are constants.  Other conditions, like
26092 @samp{x >= y+1} or @samp{dreal(x)}, will be less efficient to check
26093 since Calc must bring the whole evaluator and simplifier into play.
26095 An interesting property of @samp{::} is that neither of its arguments
26096 will be touched by Calc's default simplifications.  This is important
26097 because conditions often are expressions that cannot safely be
26098 evaluated early.  For example, the @code{typeof} function never
26099 remains in symbolic form; entering @samp{typeof(a)} will put the
26100 number 100 (the type code for variables like @samp{a}) on the stack.
26101 But putting the condition @samp{... :: typeof(a) = 6} on the stack
26102 is safe since @samp{::} prevents the @code{typeof} from being
26103 evaluated until the condition is actually used by the rewrite system.
26105 Since @samp{::} protects its lefthand side, too, you can use a dummy
26106 condition to protect a rule that must itself not evaluate early.
26107 For example, it's not safe to put @samp{a(f,x) := apply(f, [x])} on
26108 the stack because it will immediately evaluate to @samp{a(f,x) := f(x)},
26109 where the meta-variable-ness of @code{f} on the righthand side has been
26110 lost.  But @samp{a(f,x) := apply(f, [x]) :: 1} is safe, and of course
26111 the condition @samp{1} is always true (nonzero) so it has no effect on
26112 the functioning of the rule.  (The rewrite compiler will ensure that
26113 it doesn't even impact the speed of matching the rule.)
26115 @node Algebraic Properties of Rewrite Rules, Other Features of Rewrite Rules, Conditional Rewrite Rules, Rewrite Rules
26116 @subsection Algebraic Properties of Rewrite Rules
26118 @noindent
26119 The rewrite mechanism understands the algebraic properties of functions
26120 like @samp{+} and @samp{*}.  In particular, pattern matching takes
26121 the associativity and commutativity of the following functions into
26122 account:
26124 @smallexample
26125 + - *  = !=  && ||  and or xor  vint vunion vxor  gcd lcm  max min  beta
26126 @end smallexample
26128 For example, the rewrite rule:
26130 @example
26131 a x + b x  :=  (a + b) x
26132 @end example
26134 @noindent
26135 will match formulas of the form,
26137 @example
26138 a x + b x,  x a + x b,  a x + x b,  x a + b x
26139 @end example
26141 Rewrites also understand the relationship between the @samp{+} and @samp{-}
26142 operators.  The above rewrite rule will also match the formulas,
26144 @example
26145 a x - b x,  x a - x b,  a x - x b,  x a - b x
26146 @end example
26148 @noindent
26149 by matching @samp{b} in the pattern to @samp{-b} from the formula.
26151 Applied to a sum of many terms like @samp{r + a x + s + b x + t}, this
26152 pattern will check all pairs of terms for possible matches.  The rewrite
26153 will take whichever suitable pair it discovers first.
26155 In general, a pattern using an associative operator like @samp{a + b}
26156 will try @var{2 n} different ways to match a sum of @var{n} terms
26157 like @samp{x + y + z - w}.  First, @samp{a} is matched against each
26158 of @samp{x}, @samp{y}, @samp{z}, and @samp{-w} in turn, with @samp{b}
26159 being matched to the remainders @samp{y + z - w}, @samp{x + z - w}, etc.
26160 If none of these succeed, then @samp{b} is matched against each of the
26161 four terms with @samp{a} matching the remainder.  Half-and-half matches,
26162 like @samp{(x + y) + (z - w)}, are not tried.
26164 Note that @samp{*} is not commutative when applied to matrices, but
26165 rewrite rules pretend that it is.  If you type @kbd{m v} to enable
26166 Matrix mode (@pxref{Matrix Mode}), rewrite rules will match @samp{*}
26167 literally, ignoring its usual commutativity property.  (In the
26168 current implementation, the associativity also vanishes---it is as
26169 if the pattern had been enclosed in a @code{plain} marker; see below.)
26170 If you are applying rewrites to formulas with matrices, it's best to
26171 enable Matrix mode first to prevent algebraically incorrect rewrites
26172 from occurring.
26174 The pattern @samp{-x} will actually match any expression.  For example,
26175 the rule
26177 @example
26178 f(-x)  :=  -f(x)
26179 @end example
26181 @noindent
26182 will rewrite @samp{f(a)} to @samp{-f(-a)}.  To avoid this, either use
26183 a @code{plain} marker as described below, or add a @samp{negative(x)}
26184 condition.  The @code{negative} function is true if its argument
26185 ``looks'' negative, for example, because it is a negative number or
26186 because it is a formula like @samp{-x}.  The new rule using this
26187 condition is:
26189 @example
26190 f(x)  :=  -f(-x)  :: negative(x)    @r{or, equivalently,}
26191 f(-x)  :=  -f(x)  :: negative(-x)
26192 @end example
26194 In the same way, the pattern @samp{x - y} will match the sum @samp{a + b}
26195 by matching @samp{y} to @samp{-b}.
26197 The pattern @samp{a b} will also match the formula @samp{x/y} if
26198 @samp{y} is a number.  Thus the rule @samp{a x + @w{b x} := (a+b) x}
26199 will also convert @samp{a x + x / 2} to @samp{(a + 0.5) x} (or
26200 @samp{(a + 1:2) x}, depending on the current fraction mode).
26202 Calc will @emph{not} take other liberties with @samp{*}, @samp{/}, and
26203 @samp{^}.  For example, the pattern @samp{f(a b)} will not match
26204 @samp{f(x^2)}, and @samp{f(a + b)} will not match @samp{f(2 x)}, even
26205 though conceivably these patterns could match with @samp{a = b = x}.
26206 Nor will @samp{f(a b)} match @samp{f(x / y)} if @samp{y} is not a
26207 constant, even though it could be considered to match with @samp{a = x}
26208 and @samp{b = 1/y}.  The reasons are partly for efficiency, and partly
26209 because while few mathematical operations are substantively different
26210 for addition and subtraction, often it is preferable to treat the cases
26211 of multiplication, division, and integer powers separately.
26213 Even more subtle is the rule set
26215 @example
26216 [ f(a) + f(b) := f(a + b),  -f(a) := f(-a) ]
26217 @end example
26219 @noindent
26220 attempting to match @samp{f(x) - f(y)}.  You might think that Calc
26221 will view this subtraction as @samp{f(x) + (-f(y))} and then apply
26222 the above two rules in turn, but actually this will not work because
26223 Calc only does this when considering rules for @samp{+} (like the
26224 first rule in this set).  So it will see first that @samp{f(x) + (-f(y))}
26225 does not match @samp{f(a) + f(b)} for any assignments of the
26226 meta-variables, and then it will see that @samp{f(x) - f(y)} does
26227 not match @samp{-f(a)} for any assignment of @samp{a}.  Because Calc
26228 tries only one rule at a time, it will not be able to rewrite
26229 @samp{f(x) - f(y)} with this rule set.  An explicit @samp{f(a) - f(b)}
26230 rule will have to be added.
26232 Another thing patterns will @emph{not} do is break up complex numbers.
26233 The pattern @samp{myconj(a + @w{b i)} := a - b i} will work for formulas
26234 involving the special constant @samp{i} (such as @samp{3 - 4 i}), but
26235 it will not match actual complex numbers like @samp{(3, -4)}.  A version
26236 of the above rule for complex numbers would be
26238 @example
26239 myconj(a)  :=  re(a) - im(a) (0,1)  :: im(a) != 0
26240 @end example
26242 @noindent
26243 (Because the @code{re} and @code{im} functions understand the properties
26244 of the special constant @samp{i}, this rule will also work for
26245 @samp{3 - 4 i}.  In fact, this particular rule would probably be better
26246 without the @samp{im(a) != 0} condition, since if @samp{im(a) = 0} the
26247 righthand side of the rule will still give the correct answer for the
26248 conjugate of a real number.)
26250 It is also possible to specify optional arguments in patterns.  The rule
26252 @example
26253 opt(a) x + opt(b) (x^opt(c) + opt(d))  :=  f(a, b, c, d)
26254 @end example
26256 @noindent
26257 will match the formula
26259 @example
26260 5 (x^2 - 4) + 3 x
26261 @end example
26263 @noindent
26264 in a fairly straightforward manner, but it will also match reduced
26265 formulas like
26267 @example
26268 x + x^2,    2(x + 1) - x,    x + x
26269 @end example
26271 @noindent
26272 producing, respectively,
26274 @example
26275 f(1, 1, 2, 0),   f(-1, 2, 1, 1),   f(1, 1, 1, 0)
26276 @end example
26278 (The latter two formulas can be entered only if default simplifications
26279 have been turned off with @kbd{m O}.)
26281 The default value for a term of a sum is zero.  The default value
26282 for a part of a product, for a power, or for the denominator of a
26283 quotient, is one.  Also, @samp{-x} matches the pattern @samp{opt(a) b}
26284 with @samp{a = -1}.
26286 In particular, the distributive-law rule can be refined to
26288 @example
26289 opt(a) x + opt(b) x  :=  (a + b) x
26290 @end example
26292 @noindent
26293 so that it will convert, e.g., @samp{a x - x}, to @samp{(a - 1) x}.
26295 The pattern @samp{opt(a) + opt(b) x} matches almost any formulas which
26296 are linear in @samp{x}.  You can also use the @code{lin} and @code{islin}
26297 functions with rewrite conditions to test for this; @pxref{Logical
26298 Operations}.  These functions are not as convenient to use in rewrite
26299 rules, but they recognize more kinds of formulas as linear:
26300 @samp{x/z} is considered linear with @expr{b = 1/z} by @code{lin},
26301 but it will not match the above pattern because that pattern calls
26302 for a multiplication, not a division.
26304 As another example, the obvious rule to replace @samp{sin(x)^2 + cos(x)^2}
26305 by 1,
26307 @example
26308 sin(x)^2 + cos(x)^2  :=  1
26309 @end example
26311 @noindent
26312 misses many cases because the sine and cosine may both be multiplied by
26313 an equal factor.  Here's a more successful rule:
26315 @example
26316 opt(a) sin(x)^2 + opt(a) cos(x)^2  :=  a
26317 @end example
26319 Note that this rule will @emph{not} match @samp{sin(x)^2 + 6 cos(x)^2}
26320 because one @expr{a} would have ``matched'' 1 while the other matched 6.
26322 Calc automatically converts a rule like
26324 @example
26325 f(x-1, x)  :=  g(x)
26326 @end example
26328 @noindent
26329 into the form
26331 @example
26332 f(temp, x)  :=  g(x)  :: temp = x-1
26333 @end example
26335 @noindent
26336 (where @code{temp} stands for a new, invented meta-variable that
26337 doesn't actually have a name).  This modified rule will successfully
26338 match @samp{f(6, 7)}, binding @samp{temp} and @samp{x} to 6 and 7,
26339 respectively, then verifying that they differ by one even though
26340 @samp{6} does not superficially look like @samp{x-1}.
26342 However, Calc does not solve equations to interpret a rule.  The
26343 following rule,
26345 @example
26346 f(x-1, x+1)  :=  g(x)
26347 @end example
26349 @noindent
26350 will not work.  That is, it will match @samp{f(a - 1 + b, a + 1 + b)}
26351 but not @samp{f(6, 8)}.  Calc always interprets at least one occurrence
26352 of a variable by literal matching.  If the variable appears ``isolated''
26353 then Calc is smart enough to use it for literal matching.  But in this
26354 last example, Calc is forced to rewrite the rule to @samp{f(x-1, temp)
26355 := g(x) :: temp = x+1} where the @samp{x-1} term must correspond to an
26356 actual ``something-minus-one'' in the target formula.
26358 A successful way to write this would be @samp{f(x, x+2) := g(x+1)}.
26359 You could make this resemble the original form more closely by using
26360 @code{let} notation, which is described in the next section:
26362 @example
26363 f(xm1, x+1)  :=  g(x)  :: let(x := xm1+1)
26364 @end example
26366 Calc does this rewriting or ``conditionalizing'' for any sub-pattern
26367 which involves only the functions in the following list, operating
26368 only on constants and meta-variables which have already been matched
26369 elsewhere in the pattern.  When matching a function call, Calc is
26370 careful to match arguments which are plain variables before arguments
26371 which are calls to any of the functions below, so that a pattern like
26372 @samp{f(x-1, x)} can be conditionalized even though the isolated
26373 @samp{x} comes after the @samp{x-1}.
26375 @smallexample
26376 + - * / \ % ^  abs sign  round rounde roundu trunc floor ceil
26377 max min  re im conj arg
26378 @end smallexample
26380 You can suppress all of the special treatments described in this
26381 section by surrounding a function call with a @code{plain} marker.
26382 This marker causes the function call which is its argument to be
26383 matched literally, without regard to commutativity, associativity,
26384 negation, or conditionalization.  When you use @code{plain}, the
26385 ``deep structure'' of the formula being matched can show through.
26386 For example,
26388 @example
26389 plain(a - a b)  :=  f(a, b)
26390 @end example
26392 @noindent
26393 will match only literal subtractions.  However, the @code{plain}
26394 marker does not affect its arguments' arguments.  In this case,
26395 commutativity and associativity is still considered while matching
26396 the @w{@samp{a b}} sub-pattern, so the whole pattern will match
26397 @samp{x - y x} as well as @samp{x - x y}.  We could go still
26398 further and use
26400 @example
26401 plain(a - plain(a b))  :=  f(a, b)
26402 @end example
26404 @noindent
26405 which would do a completely strict match for the pattern.
26407 By contrast, the @code{quote} marker means that not only the
26408 function name but also the arguments must be literally the same.
26409 The above pattern will match @samp{x - x y} but
26411 @example
26412 quote(a - a b)  :=  f(a, b)
26413 @end example
26415 @noindent
26416 will match only the single formula @samp{a - a b}.  Also,
26418 @example
26419 quote(a - quote(a b))  :=  f(a, b)
26420 @end example
26422 @noindent
26423 will match only @samp{a - quote(a b)}---probably not the desired
26424 effect!
26426 A certain amount of algebra is also done when substituting the
26427 meta-variables on the righthand side of a rule.  For example,
26428 in the rule
26430 @example
26431 a + f(b)  :=  f(a + b)
26432 @end example
26434 @noindent
26435 matching @samp{f(x) - y} would produce @samp{f((-y) + x)} if
26436 taken literally, but the rewrite mechanism will simplify the
26437 righthand side to @samp{f(x - y)} automatically.  (Of course,
26438 the default simplifications would do this anyway, so this
26439 special simplification is only noticeable if you have turned the
26440 default simplifications off.)  This rewriting is done only when
26441 a meta-variable expands to a ``negative-looking'' expression.
26442 If this simplification is not desirable, you can use a @code{plain}
26443 marker on the righthand side:
26445 @example
26446 a + f(b)  :=  f(plain(a + b))
26447 @end example
26449 @noindent
26450 In this example, we are still allowing the pattern-matcher to
26451 use all the algebra it can muster, but the righthand side will
26452 always simplify to a literal addition like @samp{f((-y) + x)}.
26454 @node Other Features of Rewrite Rules, Composing Patterns in Rewrite Rules, Algebraic Properties of Rewrite Rules, Rewrite Rules
26455 @subsection Other Features of Rewrite Rules
26457 @noindent
26458 Certain ``function names'' serve as markers in rewrite rules.
26459 Here is a complete list of these markers.  First are listed the
26460 markers that work inside a pattern; then come the markers that
26461 work in the righthand side of a rule.
26463 @ignore
26464 @starindex
26465 @end ignore
26466 @tindex import
26467 One kind of marker, @samp{import(x)}, takes the place of a whole
26468 rule.  Here @expr{x} is the name of a variable containing another
26469 rule set; those rules are ``spliced into'' the rule set that
26470 imports them.  For example, if @samp{[f(a+b) := f(a) + f(b),
26471 f(a b) := a f(b) :: real(a)]} is stored in variable @samp{linearF},
26472 then the rule set @samp{[f(0) := 0, import(linearF)]} will apply
26473 all three rules.  It is possible to modify the imported rules
26474 slightly:  @samp{import(x, v1, x1, v2, x2, @dots{})} imports
26475 the rule set @expr{x} with all occurrences of
26476 @texline @math{v_1},
26477 @infoline @expr{v1},
26478 as either a variable name or a function name, replaced with
26479 @texline @math{x_1}
26480 @infoline @expr{x1}
26481 and so on.  (If
26482 @texline @math{v_1}
26483 @infoline @expr{v1}
26484 is used as a function name, then
26485 @texline @math{x_1}
26486 @infoline @expr{x1}
26487 must be either a function name itself or a @w{@samp{< >}} nameless
26488 function; @pxref{Specifying Operators}.)  For example, @samp{[g(0) := 0,
26489 import(linearF, f, g)]} applies the linearity rules to the function
26490 @samp{g} instead of @samp{f}.  Imports can be nested, but the
26491 import-with-renaming feature may fail to rename sub-imports properly.
26493 The special functions allowed in patterns are:
26495 @table @samp
26496 @item quote(x)
26497 @ignore
26498 @starindex
26499 @end ignore
26500 @tindex quote
26501 This pattern matches exactly @expr{x}; variable names in @expr{x} are
26502 not interpreted as meta-variables.  The only flexibility is that
26503 numbers are compared for numeric equality, so that the pattern
26504 @samp{f(quote(12))} will match both @samp{f(12)} and @samp{f(12.0)}.
26505 (Numbers are always treated this way by the rewrite mechanism:
26506 The rule @samp{f(x,x) := g(x)} will match @samp{f(12, 12.0)}.
26507 The rewrite may produce either @samp{g(12)} or @samp{g(12.0)}
26508 as a result in this case.)
26510 @item plain(x)
26511 @ignore
26512 @starindex
26513 @end ignore
26514 @tindex plain
26515 Here @expr{x} must be a function call @samp{f(x1,x2,@dots{})}.  This
26516 pattern matches a call to function @expr{f} with the specified
26517 argument patterns.  No special knowledge of the properties of the
26518 function @expr{f} is used in this case; @samp{+} is not commutative or
26519 associative.  Unlike @code{quote}, the arguments @samp{x1,x2,@dots{}}
26520 are treated as patterns.  If you wish them to be treated ``plainly''
26521 as well, you must enclose them with more @code{plain} markers:
26522 @samp{plain(plain(@w{-a}) + plain(b c))}.
26524 @item opt(x,def)
26525 @ignore
26526 @starindex
26527 @end ignore
26528 @tindex opt
26529 Here @expr{x} must be a variable name.  This must appear as an
26530 argument to a function or an element of a vector; it specifies that
26531 the argument or element is optional.
26532 As an argument to @samp{+}, @samp{-}, @samp{*}, @samp{&&}, or @samp{||},
26533 or as the second argument to @samp{/} or @samp{^}, the value @var{def}
26534 may be omitted.  The pattern @samp{x + opt(y)} matches a sum by
26535 binding one summand to @expr{x} and the other to @expr{y}, and it
26536 matches anything else by binding the whole expression to @expr{x} and
26537 zero to @expr{y}.  The other operators above work similarly.
26539 For general miscellaneous functions, the default value @code{def}
26540 must be specified.  Optional arguments are dropped starting with
26541 the rightmost one during matching.  For example, the pattern
26542 @samp{f(opt(a,0), b, opt(c,b))} will match @samp{f(b)}, @samp{f(a,b)},
26543 or @samp{f(a,b,c)}.  Default values of zero and @expr{b} are
26544 supplied in this example for the omitted arguments.  Note that
26545 the literal variable @expr{b} will be the default in the latter
26546 case, @emph{not} the value that matched the meta-variable @expr{b}.
26547 In other words, the default @var{def} is effectively quoted.
26549 @item condition(x,c)
26550 @ignore
26551 @starindex
26552 @end ignore
26553 @tindex condition
26554 @tindex ::
26555 This matches the pattern @expr{x}, with the attached condition
26556 @expr{c}.  It is the same as @samp{x :: c}.
26558 @item pand(x,y)
26559 @ignore
26560 @starindex
26561 @end ignore
26562 @tindex pand
26563 @tindex &&&
26564 This matches anything that matches both pattern @expr{x} and
26565 pattern @expr{y}.  It is the same as @samp{x &&& y}.
26566 @pxref{Composing Patterns in Rewrite Rules}.
26568 @item por(x,y)
26569 @ignore
26570 @starindex
26571 @end ignore
26572 @tindex por
26573 @tindex |||
26574 This matches anything that matches either pattern @expr{x} or
26575 pattern @expr{y}.  It is the same as @w{@samp{x ||| y}}.
26577 @item pnot(x)
26578 @ignore
26579 @starindex
26580 @end ignore
26581 @tindex pnot
26582 @tindex !!!
26583 This matches anything that does not match pattern @expr{x}.
26584 It is the same as @samp{!!! x}.
26586 @item cons(h,t)
26587 @ignore
26588 @mindex cons
26589 @end ignore
26590 @tindex cons (rewrites)
26591 This matches any vector of one or more elements.  The first
26592 element is matched to @expr{h}; a vector of the remaining
26593 elements is matched to @expr{t}.  Note that vectors of fixed
26594 length can also be matched as actual vectors:  The rule
26595 @samp{cons(a,cons(b,[])) := cons(a+b,[])} is equivalent
26596 to the rule @samp{[a,b] := [a+b]}.
26598 @item rcons(t,h)
26599 @ignore
26600 @mindex rcons
26601 @end ignore
26602 @tindex rcons (rewrites)
26603 This is like @code{cons}, except that the @emph{last} element
26604 is matched to @expr{h}, with the remaining elements matched
26605 to @expr{t}.
26607 @item apply(f,args)
26608 @ignore
26609 @mindex apply
26610 @end ignore
26611 @tindex apply (rewrites)
26612 This matches any function call.  The name of the function, in
26613 the form of a variable, is matched to @expr{f}.  The arguments
26614 of the function, as a vector of zero or more objects, are
26615 matched to @samp{args}.  Constants, variables, and vectors
26616 do @emph{not} match an @code{apply} pattern.  For example,
26617 @samp{apply(f,x)} matches any function call, @samp{apply(quote(f),x)}
26618 matches any call to the function @samp{f}, @samp{apply(f,[a,b])}
26619 matches any function call with exactly two arguments, and
26620 @samp{apply(quote(f), cons(a,cons(b,x)))} matches any call
26621 to the function @samp{f} with two or more arguments.  Another
26622 way to implement the latter, if the rest of the rule does not
26623 need to refer to the first two arguments of @samp{f} by name,
26624 would be @samp{apply(quote(f), x :: vlen(x) >= 2)}.
26625 Here's a more interesting sample use of @code{apply}:
26627 @example
26628 apply(f,[x+n])  :=  n + apply(f,[x])
26629    :: in(f, [floor,ceil,round,trunc]) :: integer(n)
26630 @end example
26632 Note, however, that this will be slower to match than a rule
26633 set with four separate rules.  The reason is that Calc sorts
26634 the rules of a rule set according to top-level function name;
26635 if the top-level function is @code{apply}, Calc must try the
26636 rule for every single formula and sub-formula.  If the top-level
26637 function in the pattern is, say, @code{floor}, then Calc invokes
26638 the rule only for sub-formulas which are calls to @code{floor}.
26640 Formulas normally written with operators like @code{+} are still
26641 considered function calls:  @code{apply(f,x)} matches @samp{a+b}
26642 with @samp{f = add}, @samp{x = [a,b]}.
26644 You must use @code{apply} for meta-variables with function names
26645 on both sides of a rewrite rule:  @samp{apply(f, [x]) := f(x+1)}
26646 is @emph{not} correct, because it rewrites @samp{spam(6)} into
26647 @samp{f(7)}.  The righthand side should be @samp{apply(f, [x+1])}.
26648 Also note that you will have to use No-Simplify mode (@kbd{m O})
26649 when entering this rule so that the @code{apply} isn't
26650 evaluated immediately to get the new rule @samp{f(x) := f(x+1)}.
26651 Or, use @kbd{s e} to enter the rule without going through the stack,
26652 or enter the rule as @samp{apply(f, [x]) := apply(f, [x+1]) @w{:: 1}}.
26653 @xref{Conditional Rewrite Rules}.
26655 @item select(x)
26656 @ignore
26657 @starindex
26658 @end ignore
26659 @tindex select
26660 This is used for applying rules to formulas with selections;
26661 @pxref{Selections with Rewrite Rules}.
26662 @end table
26664 Special functions for the righthand sides of rules are:
26666 @table @samp
26667 @item quote(x)
26668 The notation @samp{quote(x)} is changed to @samp{x} when the
26669 righthand side is used.  As far as the rewrite rule is concerned,
26670 @code{quote} is invisible.  However, @code{quote} has the special
26671 property in Calc that its argument is not evaluated.  Thus,
26672 while it will not work to put the rule @samp{t(a) := typeof(a)}
26673 on the stack because @samp{typeof(a)} is evaluated immediately
26674 to produce @samp{t(a) := 100}, you can use @code{quote} to
26675 protect the righthand side:  @samp{t(a) := quote(typeof(a))}.
26676 (@xref{Conditional Rewrite Rules}, for another trick for
26677 protecting rules from evaluation.)
26679 @item plain(x)
26680 Special properties of and simplifications for the function call
26681 @expr{x} are not used.  One interesting case where @code{plain}
26682 is useful is the rule, @samp{q(x) := quote(x)}, trying to expand a
26683 shorthand notation for the @code{quote} function.  This rule will
26684 not work as shown; instead of replacing @samp{q(foo)} with
26685 @samp{quote(foo)}, it will replace it with @samp{foo}!  The correct
26686 rule would be @samp{q(x) := plain(quote(x))}.
26688 @item cons(h,t)
26689 Where @expr{t} is a vector, this is converted into an expanded
26690 vector during rewrite processing.  Note that @code{cons} is a regular
26691 Calc function which normally does this anyway; the only way @code{cons}
26692 is treated specially by rewrites is that @code{cons} on the righthand
26693 side of a rule will be evaluated even if default simplifications
26694 have been turned off.
26696 @item rcons(t,h)
26697 Analogous to @code{cons} except putting @expr{h} at the @emph{end} of
26698 the vector @expr{t}.
26700 @item apply(f,args)
26701 Where @expr{f} is a variable and @var{args} is a vector, this
26702 is converted to a function call.  Once again, note that @code{apply}
26703 is also a regular Calc function.
26705 @item eval(x)
26706 @ignore
26707 @starindex
26708 @end ignore
26709 @tindex eval
26710 The formula @expr{x} is handled in the usual way, then the
26711 default simplifications are applied to it even if they have
26712 been turned off normally.  This allows you to treat any function
26713 similarly to the way @code{cons} and @code{apply} are always
26714 treated.  However, there is a slight difference:  @samp{cons(2+3, [])}
26715 with default simplifications off will be converted to @samp{[2+3]},
26716 whereas @samp{eval(cons(2+3, []))} will be converted to @samp{[5]}.
26718 @item evalsimp(x)
26719 @ignore
26720 @starindex
26721 @end ignore
26722 @tindex evalsimp
26723 The formula @expr{x} has meta-variables substituted in the usual
26724 way, then algebraically simplified.
26726 @item evalextsimp(x)
26727 @ignore
26728 @starindex
26729 @end ignore
26730 @tindex evalextsimp
26731 The formula @expr{x} has meta-variables substituted in the normal
26732 way, then ``extendedly'' simplified as if by the @kbd{a e} command.
26734 @item select(x)
26735 @xref{Selections with Rewrite Rules}.
26736 @end table
26738 There are also some special functions you can use in conditions.
26740 @table @samp
26741 @item let(v := x)
26742 @ignore
26743 @starindex
26744 @end ignore
26745 @tindex let
26746 The expression @expr{x} is evaluated with meta-variables substituted.
26747 The algebraic simplifications are @emph{not} applied by
26748 default, but @expr{x} can include calls to @code{evalsimp} or
26749 @code{evalextsimp} as described above to invoke higher levels
26750 of simplification.  The result of @expr{x} is then bound to the
26751 meta-variable @expr{v}.  As usual, if this meta-variable has already
26752 been matched to something else the two values must be equal; if the
26753 meta-variable is new then it is bound to the result of the expression.
26754 This variable can then appear in later conditions, and on the righthand
26755 side of the rule. 
26756 In fact, @expr{v} may be any pattern in which case the result of
26757 evaluating @expr{x} is matched to that pattern, binding any
26758 meta-variables that appear in that pattern.  Note that @code{let}
26759 can only appear by itself as a condition, or as one term of an
26760 @samp{&&} which is a whole condition:  It cannot be inside
26761 an @samp{||} term or otherwise buried.
26763 The alternate, equivalent form @samp{let(v, x)} is also recognized.
26764 Note that the use of @samp{:=} by @code{let}, while still being
26765 assignment-like in character, is unrelated to the use of @samp{:=}
26766 in the main part of a rewrite rule.
26768 As an example, @samp{f(a) := g(ia) :: let(ia := 1/a) :: constant(ia)}
26769 replaces @samp{f(a)} with @samp{g} of the inverse of @samp{a}, if
26770 that inverse exists and is constant.  For example, if @samp{a} is a
26771 singular matrix the operation @samp{1/a} is left unsimplified and
26772 @samp{constant(ia)} fails, but if @samp{a} is an invertible matrix
26773 then the rule succeeds.  Without @code{let} there would be no way
26774 to express this rule that didn't have to invert the matrix twice.
26775 Note that, because the meta-variable @samp{ia} is otherwise unbound
26776 in this rule, the @code{let} condition itself always ``succeeds''
26777 because no matter what @samp{1/a} evaluates to, it can successfully
26778 be bound to @code{ia}.
26780 Here's another example, for integrating cosines of linear
26781 terms:  @samp{myint(cos(y),x) := sin(y)/b :: let([a,b,x] := lin(y,x))}.
26782 The @code{lin} function returns a 3-vector if its argument is linear,
26783 or leaves itself unevaluated if not.  But an unevaluated @code{lin}
26784 call will not match the 3-vector on the lefthand side of the @code{let},
26785 so this @code{let} both verifies that @code{y} is linear, and binds
26786 the coefficients @code{a} and @code{b} for use elsewhere in the rule.
26787 (It would have been possible to use @samp{sin(a x + b)/b} for the
26788 righthand side instead, but using @samp{sin(y)/b} avoids gratuitous
26789 rearrangement of the argument of the sine.)
26791 @ignore
26792 @starindex
26793 @end ignore
26794 @tindex ierf
26795 Similarly, here is a rule that implements an inverse-@code{erf}
26796 function.  It uses @code{root} to search for a solution.  If
26797 @code{root} succeeds, it will return a vector of two numbers
26798 where the first number is the desired solution.  If no solution
26799 is found, @code{root} remains in symbolic form.  So we use
26800 @code{let} to check that the result was indeed a vector.
26802 @example
26803 ierf(x)  :=  y  :: let([y,z] := root(erf(a) = x, a, .5))
26804 @end example
26806 @item matches(v,p)
26807 The meta-variable @var{v}, which must already have been matched
26808 to something elsewhere in the rule, is compared against pattern
26809 @var{p}.  Since @code{matches} is a standard Calc function, it
26810 can appear anywhere in a condition.  But if it appears alone or
26811 as a term of a top-level @samp{&&}, then you get the special
26812 extra feature that meta-variables which are bound to things
26813 inside @var{p} can be used elsewhere in the surrounding rewrite
26814 rule.
26816 The only real difference between @samp{let(p := v)} and
26817 @samp{matches(v, p)} is that the former evaluates @samp{v} using
26818 the default simplifications, while the latter does not.
26820 @item remember
26821 @vindex remember
26822 This is actually a variable, not a function.  If @code{remember}
26823 appears as a condition in a rule, then when that rule succeeds
26824 the original expression and rewritten expression are added to the
26825 front of the rule set that contained the rule.  If the rule set
26826 was not stored in a variable, @code{remember} is ignored.  The
26827 lefthand side is enclosed in @code{quote} in the added rule if it
26828 contains any variables.
26830 For example, the rule @samp{f(n) := n f(n-1) :: remember} applied
26831 to @samp{f(7)} will add the rule @samp{f(7) := 7 f(6)} to the front
26832 of the rule set.  The rule set @code{EvalRules} works slightly
26833 differently:  There, the evaluation of @samp{f(6)} will complete before
26834 the result is added to the rule set, in this case as @samp{f(7) := 5040}.
26835 Thus @code{remember} is most useful inside @code{EvalRules}.
26837 It is up to you to ensure that the optimization performed by
26838 @code{remember} is safe.  For example, the rule @samp{foo(n) := n
26839 :: evalv(eatfoo) > 0 :: remember} is a bad idea (@code{evalv} is
26840 the function equivalent of the @kbd{=} command); if the variable
26841 @code{eatfoo} ever contains 1, rules like @samp{foo(7) := 7} will
26842 be added to the rule set and will continue to operate even if
26843 @code{eatfoo} is later changed to 0.
26845 @item remember(c)
26846 @ignore
26847 @starindex
26848 @end ignore
26849 @tindex remember
26850 Remember the match as described above, but only if condition @expr{c}
26851 is true.  For example, @samp{remember(n % 4 = 0)} in the above factorial
26852 rule remembers only every fourth result.  Note that @samp{remember(1)}
26853 is equivalent to @samp{remember}, and @samp{remember(0)} has no effect.
26854 @end table
26856 @node Composing Patterns in Rewrite Rules, Nested Formulas with Rewrite Rules, Other Features of Rewrite Rules, Rewrite Rules
26857 @subsection Composing Patterns in Rewrite Rules
26859 @noindent
26860 There are three operators, @samp{&&&}, @samp{|||}, and @samp{!!!},
26861 that combine rewrite patterns to make larger patterns.  The
26862 combinations are ``and,'' ``or,'' and ``not,'' respectively, and
26863 these operators are the pattern equivalents of @samp{&&}, @samp{||}
26864 and @samp{!} (which operate on zero-or-nonzero logical values).
26866 Note that @samp{&&&}, @samp{|||}, and @samp{!!!} are left in symbolic
26867 form by all regular Calc features; they have special meaning only in
26868 the context of rewrite rule patterns.
26870 The pattern @samp{@var{p1} &&& @var{p2}} matches anything that
26871 matches both @var{p1} and @var{p2}.  One especially useful case is
26872 when one of @var{p1} or @var{p2} is a meta-variable.  For example,
26873 here is a rule that operates on error forms:
26875 @example
26876 f(x &&& a +/- b, x)  :=  g(x)
26877 @end example
26879 This does the same thing, but is arguably simpler than, the rule
26881 @example
26882 f(a +/- b, a +/- b)  :=  g(a +/- b)
26883 @end example
26885 @ignore
26886 @starindex
26887 @end ignore
26888 @tindex ends
26889 Here's another interesting example:
26891 @example
26892 ends(cons(a, x) &&& rcons(y, b))  :=  [a, b]
26893 @end example
26895 @noindent
26896 which effectively clips out the middle of a vector leaving just
26897 the first and last elements.  This rule will change a one-element
26898 vector @samp{[a]} to @samp{[a, a]}.  The similar rule
26900 @example
26901 ends(cons(a, rcons(y, b)))  :=  [a, b]
26902 @end example
26904 @noindent
26905 would do the same thing except that it would fail to match a
26906 one-element vector.
26908 @tex
26909 \bigskip
26910 @end tex
26912 The pattern @samp{@var{p1} ||| @var{p2}} matches anything that
26913 matches either @var{p1} or @var{p2}.  Calc first tries matching
26914 against @var{p1}; if that fails, it goes on to try @var{p2}.
26916 @ignore
26917 @starindex
26918 @end ignore
26919 @tindex curve
26920 A simple example of @samp{|||} is
26922 @example
26923 curve(inf ||| -inf)  :=  0
26924 @end example
26926 @noindent
26927 which converts both @samp{curve(inf)} and @samp{curve(-inf)} to zero.
26929 Here is a larger example:
26931 @example
26932 log(a, b) ||| (ln(a) :: let(b := e))  :=  mylog(a, b)
26933 @end example
26935 This matches both generalized and natural logarithms in a single rule.
26936 Note that the @samp{::} term must be enclosed in parentheses because
26937 that operator has lower precedence than @samp{|||} or @samp{:=}.
26939 (In practice this rule would probably include a third alternative,
26940 omitted here for brevity, to take care of @code{log10}.)
26942 While Calc generally treats interior conditions exactly the same as
26943 conditions on the outside of a rule, it does guarantee that if all the
26944 variables in the condition are special names like @code{e}, or already
26945 bound in the pattern to which the condition is attached (say, if
26946 @samp{a} had appeared in this condition), then Calc will process this
26947 condition right after matching the pattern to the left of the @samp{::}.
26948 Thus, we know that @samp{b} will be bound to @samp{e} only if the
26949 @code{ln} branch of the @samp{|||} was taken.
26951 Note that this rule was careful to bind the same set of meta-variables
26952 on both sides of the @samp{|||}.  Calc does not check this, but if
26953 you bind a certain meta-variable only in one branch and then use that
26954 meta-variable elsewhere in the rule, results are unpredictable:
26956 @example
26957 f(a,b) ||| g(b)  :=  h(a,b)
26958 @end example
26960 Here if the pattern matches @samp{g(17)}, Calc makes no promises about
26961 the value that will be substituted for @samp{a} on the righthand side.
26963 @tex
26964 \bigskip
26965 @end tex
26967 The pattern @samp{!!! @var{pat}} matches anything that does not
26968 match @var{pat}.  Any meta-variables that are bound while matching
26969 @var{pat} remain unbound outside of @var{pat}.
26971 For example,
26973 @example
26974 f(x &&& !!! a +/- b, !!![])  :=  g(x)
26975 @end example
26977 @noindent
26978 converts @code{f} whose first argument is anything @emph{except} an
26979 error form, and whose second argument is not the empty vector, into
26980 a similar call to @code{g} (but without the second argument).
26982 If we know that the second argument will be a vector (empty or not),
26983 then an equivalent rule would be:
26985 @example
26986 f(x, y)  :=  g(x)  :: typeof(x) != 7 :: vlen(y) > 0
26987 @end example
26989 @noindent
26990 where of course 7 is the @code{typeof} code for error forms.
26991 Another final condition, that works for any kind of @samp{y},
26992 would be @samp{!istrue(y == [])}.  (The @code{istrue} function
26993 returns an explicit 0 if its argument was left in symbolic form;
26994 plain @samp{!(y == [])} or @samp{y != []} would not work to replace
26995 @samp{!!![]} since these would be left unsimplified, and thus cause
26996 the rule to fail, if @samp{y} was something like a variable name.)
26998 It is possible for a @samp{!!!} to refer to meta-variables bound
26999 elsewhere in the pattern.  For example,
27001 @example
27002 f(a, !!!a)  :=  g(a)
27003 @end example
27005 @noindent
27006 matches any call to @code{f} with different arguments, changing
27007 this to @code{g} with only the first argument.
27009 If a function call is to be matched and one of the argument patterns
27010 contains a @samp{!!!} somewhere inside it, that argument will be
27011 matched last.  Thus
27013 @example
27014 f(!!!a, a)  :=  g(a)
27015 @end example
27017 @noindent
27018 will be careful to bind @samp{a} to the second argument of @code{f}
27019 before testing the first argument.  If Calc had tried to match the
27020 first argument of @code{f} first, the results would have been
27021 disastrous: since @code{a} was unbound so far, the pattern @samp{a}
27022 would have matched anything at all, and the pattern @samp{!!!a}
27023 therefore would @emph{not} have matched anything at all!
27025 @node Nested Formulas with Rewrite Rules, Multi-Phase Rewrite Rules, Composing Patterns in Rewrite Rules, Rewrite Rules
27026 @subsection Nested Formulas with Rewrite Rules
27028 @noindent
27029 When @kbd{a r} (@code{calc-rewrite}) is used, it takes an expression from
27030 the top of the stack and attempts to match any of the specified rules
27031 to any part of the expression, starting with the whole expression
27032 and then, if that fails, trying deeper and deeper sub-expressions.
27033 For each part of the expression, the rules are tried in the order
27034 they appear in the rules vector.  The first rule to match the first
27035 sub-expression wins; it replaces the matched sub-expression according
27036 to the @var{new} part of the rule.
27038 Often, the rule set will match and change the formula several times.
27039 The top-level formula is first matched and substituted repeatedly until
27040 it no longer matches the pattern; then, sub-formulas are tried, and
27041 so on.  Once every part of the formula has gotten its chance, the
27042 rewrite mechanism starts over again with the top-level formula
27043 (in case a substitution of one of its arguments has caused it again
27044 to match).  This continues until no further matches can be made
27045 anywhere in the formula.
27047 It is possible for a rule set to get into an infinite loop.  The
27048 most obvious case, replacing a formula with itself, is not a problem
27049 because a rule is not considered to ``succeed'' unless the righthand
27050 side actually comes out to something different than the original
27051 formula or sub-formula that was matched.  But if you accidentally
27052 had both @samp{ln(a b) := ln(a) + ln(b)} and the reverse
27053 @samp{ln(a) + ln(b) := ln(a b)} in your rule set, Calc would
27054 run forever switching a formula back and forth between the two
27055 forms.
27057 To avoid disaster, Calc normally stops after 100 changes have been
27058 made to the formula.  This will be enough for most multiple rewrites,
27059 but it will keep an endless loop of rewrites from locking up the
27060 computer forever.  (On most systems, you can also type @kbd{C-g} to
27061 halt any Emacs command prematurely.)
27063 To change this limit, give a positive numeric prefix argument.
27064 In particular, @kbd{M-1 a r} applies only one rewrite at a time,
27065 useful when you are first testing your rule (or just if repeated
27066 rewriting is not what is called for by your application).
27068 @ignore
27069 @starindex
27070 @end ignore
27071 @ignore
27072 @mindex iter@idots
27073 @end ignore
27074 @tindex iterations
27075 You can also put a ``function call'' @samp{iterations(@var{n})}
27076 in place of a rule anywhere in your rules vector (but usually at
27077 the top).  Then, @var{n} will be used instead of 100 as the default
27078 number of iterations for this rule set.  You can use
27079 @samp{iterations(inf)} if you want no iteration limit by default.
27080 A prefix argument will override the @code{iterations} limit in the
27081 rule set.
27083 @example
27084 [ iterations(1),
27085   f(x) := f(x+1) ]
27086 @end example
27088 More precisely, the limit controls the number of ``iterations,''
27089 where each iteration is a successful matching of a rule pattern whose
27090 righthand side, after substituting meta-variables and applying the
27091 default simplifications, is different from the original sub-formula
27092 that was matched.
27094 A prefix argument of zero sets the limit to infinity.  Use with caution!
27096 Given a negative numeric prefix argument, @kbd{a r} will match and
27097 substitute the top-level expression up to that many times, but
27098 will not attempt to match the rules to any sub-expressions.
27100 In a formula, @code{rewrite(@var{expr}, @var{rules}, @var{n})}
27101 does a rewriting operation.  Here @var{expr} is the expression
27102 being rewritten, @var{rules} is the rule, vector of rules, or
27103 variable containing the rules, and @var{n} is the optional
27104 iteration limit, which may be a positive integer, a negative
27105 integer, or @samp{inf} or @samp{-inf}.  If @var{n} is omitted
27106 the @code{iterations} value from the rule set is used; if both
27107 are omitted, 100 is used.
27109 @node Multi-Phase Rewrite Rules, Selections with Rewrite Rules, Nested Formulas with Rewrite Rules, Rewrite Rules
27110 @subsection Multi-Phase Rewrite Rules
27112 @noindent
27113 It is possible to separate a rewrite rule set into several @dfn{phases}.
27114 During each phase, certain rules will be enabled while certain others
27115 will be disabled.  A @dfn{phase schedule} controls the order in which
27116 phases occur during the rewriting process.
27118 @ignore
27119 @starindex
27120 @end ignore
27121 @tindex phase
27122 @vindex all
27123 If a call to the marker function @code{phase} appears in the rules
27124 vector in place of a rule, all rules following that point will be
27125 members of the phase(s) identified in the arguments to @code{phase}.
27126 Phases are given integer numbers.  The markers @samp{phase()} and
27127 @samp{phase(all)} both mean the following rules belong to all phases;
27128 this is the default at the start of the rule set.
27130 If you do not explicitly schedule the phases, Calc sorts all phase
27131 numbers that appear in the rule set and executes the phases in
27132 ascending order.  For example, the rule set
27134 @example
27135 @group
27136 [ f0(x) := g0(x),
27137   phase(1),
27138   f1(x) := g1(x),
27139   phase(2),
27140   f2(x) := g2(x),
27141   phase(3),
27142   f3(x) := g3(x),
27143   phase(1,2),
27144   f4(x) := g4(x) ]
27145 @end group
27146 @end example
27148 @noindent
27149 has three phases, 1 through 3.  Phase 1 consists of the @code{f0},
27150 @code{f1}, and @code{f4} rules (in that order).  Phase 2 consists of
27151 @code{f0}, @code{f2}, and @code{f4}.  Phase 3 consists of @code{f0}
27152 and @code{f3}.
27154 When Calc rewrites a formula using this rule set, it first rewrites
27155 the formula using only the phase 1 rules until no further changes are
27156 possible.  Then it switches to the phase 2 rule set and continues
27157 until no further changes occur, then finally rewrites with phase 3.
27158 When no more phase 3 rules apply, rewriting finishes.  (This is
27159 assuming @kbd{a r} with a large enough prefix argument to allow the
27160 rewriting to run to completion; the sequence just described stops
27161 early if the number of iterations specified in the prefix argument,
27162 100 by default, is reached.)
27164 During each phase, Calc descends through the nested levels of the
27165 formula as described previously.  (@xref{Nested Formulas with Rewrite
27166 Rules}.)  Rewriting starts at the top of the formula, then works its
27167 way down to the parts, then goes back to the top and works down again.
27168 The phase 2 rules do not begin until no phase 1 rules apply anywhere
27169 in the formula.
27171 @ignore
27172 @starindex
27173 @end ignore
27174 @tindex schedule
27175 A @code{schedule} marker appearing in the rule set (anywhere, but
27176 conventionally at the top) changes the default schedule of phases.
27177 In the simplest case, @code{schedule} has a sequence of phase numbers
27178 for arguments; each phase number is invoked in turn until the
27179 arguments to @code{schedule} are exhausted.  Thus adding
27180 @samp{schedule(3,2,1)} at the top of the above rule set would
27181 reverse the order of the phases; @samp{schedule(1,2,3)} would have
27182 no effect since this is the default schedule; and @samp{schedule(1,2,1,3)}
27183 would give phase 1 a second chance after phase 2 has completed, before
27184 moving on to phase 3.
27186 Any argument to @code{schedule} can instead be a vector of phase
27187 numbers (or even of sub-vectors).  Then the sub-sequence of phases
27188 described by the vector are tried repeatedly until no change occurs
27189 in any phase in the sequence.  For example, @samp{schedule([1, 2], 3)}
27190 tries phase 1, then phase 2, then, if either phase made any changes
27191 to the formula, repeats these two phases until they can make no
27192 further progress.  Finally, it goes on to phase 3 for finishing
27193 touches.
27195 Also, items in @code{schedule} can be variable names as well as
27196 numbers.  A variable name is interpreted as the name of a function
27197 to call on the whole formula.  For example, @samp{schedule(1, simplify)}
27198 says to apply the phase-1 rules (presumably, all of them), then to
27199 call @code{simplify} which is the function name equivalent of @kbd{a s}.
27200 Likewise, @samp{schedule([1, simplify])} says to alternate between
27201 phase 1 and @kbd{a s} until no further changes occur.
27203 Phases can be used purely to improve efficiency; if it is known that
27204 a certain group of rules will apply only at the beginning of rewriting,
27205 and a certain other group will apply only at the end, then rewriting
27206 will be faster if these groups are identified as separate phases.
27207 Once the phase 1 rules are done, Calc can put them aside and no longer
27208 spend any time on them while it works on phase 2.
27210 There are also some problems that can only be solved with several
27211 rewrite phases.  For a real-world example of a multi-phase rule set,
27212 examine the set @code{FitRules}, which is used by the curve-fitting
27213 command to convert a model expression to linear form.
27214 @xref{Curve Fitting Details}.  This set is divided into four phases.
27215 The first phase rewrites certain kinds of expressions to be more
27216 easily linearizable, but less computationally efficient.  After the
27217 linear components have been picked out, the final phase includes the
27218 opposite rewrites to put each component back into an efficient form.
27219 If both sets of rules were included in one big phase, Calc could get
27220 into an infinite loop going back and forth between the two forms.
27222 Elsewhere in @code{FitRules}, the components are first isolated,
27223 then recombined where possible to reduce the complexity of the linear
27224 fit, then finally packaged one component at a time into vectors.
27225 If the packaging rules were allowed to begin before the recombining
27226 rules were finished, some components might be put away into vectors
27227 before they had a chance to recombine.  By putting these rules in
27228 two separate phases, this problem is neatly avoided.
27230 @node Selections with Rewrite Rules, Matching Commands, Multi-Phase Rewrite Rules, Rewrite Rules
27231 @subsection Selections with Rewrite Rules
27233 @noindent
27234 If a sub-formula of the current formula is selected (as by @kbd{j s};
27235 @pxref{Selecting Subformulas}), the @kbd{a r} (@code{calc-rewrite})
27236 command applies only to that sub-formula.  Together with a negative
27237 prefix argument, you can use this fact to apply a rewrite to one
27238 specific part of a formula without affecting any other parts.
27240 @kindex j r
27241 @pindex calc-rewrite-selection
27242 The @kbd{j r} (@code{calc-rewrite-selection}) command allows more
27243 sophisticated operations on selections.  This command prompts for
27244 the rules in the same way as @kbd{a r}, but it then applies those
27245 rules to the whole formula in question even though a sub-formula
27246 of it has been selected.  However, the selected sub-formula will
27247 first have been surrounded by a @samp{select( )} function call.
27248 (Calc's evaluator does not understand the function name @code{select};
27249 this is only a tag used by the @kbd{j r} command.)
27251 For example, suppose the formula on the stack is @samp{2 (a + b)^2}
27252 and the sub-formula @samp{a + b} is selected.  This formula will
27253 be rewritten to @samp{2 select(a + b)^2} and then the rewrite
27254 rules will be applied in the usual way.  The rewrite rules can
27255 include references to @code{select} to tell where in the pattern
27256 the selected sub-formula should appear.
27258 If there is still exactly one @samp{select( )} function call in
27259 the formula after rewriting is done, it indicates which part of
27260 the formula should be selected afterwards.  Otherwise, the
27261 formula will be unselected.
27263 You can make @kbd{j r} act much like @kbd{a r} by enclosing both parts
27264 of the rewrite rule with @samp{select()}.  However, @kbd{j r}
27265 allows you to use the current selection in more flexible ways.
27266 Suppose you wished to make a rule which removed the exponent from
27267 the selected term; the rule @samp{select(a)^x := select(a)} would
27268 work.  In the above example, it would rewrite @samp{2 select(a + b)^2}
27269 to @samp{2 select(a + b)}.  This would then be returned to the
27270 stack as @samp{2 (a + b)} with the @samp{a + b} selected.
27272 The @kbd{j r} command uses one iteration by default, unlike
27273 @kbd{a r} which defaults to 100 iterations.  A numeric prefix
27274 argument affects @kbd{j r} in the same way as @kbd{a r}.
27275 @xref{Nested Formulas with Rewrite Rules}.
27277 As with other selection commands, @kbd{j r} operates on the stack
27278 entry that contains the cursor.  (If the cursor is on the top-of-stack
27279 @samp{.} marker, it works as if the cursor were on the formula
27280 at stack level 1.)
27282 If you don't specify a set of rules, the rules are taken from the
27283 top of the stack, just as with @kbd{a r}.  In this case, the
27284 cursor must indicate stack entry 2 or above as the formula to be
27285 rewritten (otherwise the same formula would be used as both the
27286 target and the rewrite rules).
27288 If the indicated formula has no selection, the cursor position within
27289 the formula temporarily selects a sub-formula for the purposes of this
27290 command.  If the cursor is not on any sub-formula (e.g., it is in
27291 the line-number area to the left of the formula), the @samp{select( )}
27292 markers are ignored by the rewrite mechanism and the rules are allowed
27293 to apply anywhere in the formula.
27295 As a special feature, the normal @kbd{a r} command also ignores
27296 @samp{select( )} calls in rewrite rules.  For example, if you used the
27297 above rule @samp{select(a)^x := select(a)} with @kbd{a r}, it would apply
27298 the rule as if it were @samp{a^x := a}.  Thus, you can write general
27299 purpose rules with @samp{select( )} hints inside them so that they
27300 will ``do the right thing'' in both @kbd{a r} and @kbd{j r},
27301 both with and without selections.
27303 @node Matching Commands, Automatic Rewrites, Selections with Rewrite Rules, Rewrite Rules
27304 @subsection Matching Commands
27306 @noindent
27307 @kindex a m
27308 @pindex calc-match
27309 @tindex match
27310 The @kbd{a m} (@code{calc-match}) [@code{match}] function takes a
27311 vector of formulas and a rewrite-rule-style pattern, and produces
27312 a vector of all formulas which match the pattern.  The command
27313 prompts you to enter the pattern; as for @kbd{a r}, you can enter
27314 a single pattern (i.e., a formula with meta-variables), or a
27315 vector of patterns, or a variable which contains patterns, or
27316 you can give a blank response in which case the patterns are taken
27317 from the top of the stack.  The pattern set will be compiled once
27318 and saved if it is stored in a variable.  If there are several
27319 patterns in the set, vector elements are kept if they match any
27320 of the patterns.
27322 For example, @samp{match(a+b, [x, x+y, x-y, 7, x+y+z])}
27323 will return @samp{[x+y, x-y, x+y+z]}.
27325 The @code{import} mechanism is not available for pattern sets.
27327 The @kbd{a m} command can also be used to extract all vector elements
27328 which satisfy any condition:  The pattern @samp{x :: x>0} will select
27329 all the positive vector elements.
27331 @kindex I a m
27332 @tindex matchnot
27333 With the Inverse flag [@code{matchnot}], this command extracts all
27334 vector elements which do @emph{not} match the given pattern.
27336 @ignore
27337 @starindex
27338 @end ignore
27339 @tindex matches
27340 There is also a function @samp{matches(@var{x}, @var{p})} which
27341 evaluates to 1 if expression @var{x} matches pattern @var{p}, or
27342 to 0 otherwise.  This is sometimes useful for including into the
27343 conditional clauses of other rewrite rules.
27345 @ignore
27346 @starindex
27347 @end ignore
27348 @tindex vmatches
27349 The function @code{vmatches} is just like @code{matches}, except
27350 that if the match succeeds it returns a vector of assignments to
27351 the meta-variables instead of the number 1.  For example,
27352 @samp{vmatches(f(1,2), f(a,b))} returns @samp{[a := 1, b := 2]}.
27353 If the match fails, the function returns the number 0.
27355 @node Automatic Rewrites, Debugging Rewrites, Matching Commands, Rewrite Rules
27356 @subsection Automatic Rewrites
27358 @noindent
27359 @cindex @code{EvalRules} variable
27360 @vindex EvalRules
27361 It is possible to get Calc to apply a set of rewrite rules on all
27362 results, effectively adding to the built-in set of default
27363 simplifications.  To do this, simply store your rule set in the
27364 variable @code{EvalRules}.  There is a convenient @kbd{s E} command
27365 for editing @code{EvalRules}; @pxref{Operations on Variables}.
27367 For example, suppose you want @samp{sin(a + b)} to be expanded out
27368 to @samp{sin(b) cos(a) + cos(b) sin(a)} wherever it appears, and
27369 similarly for @samp{cos(a + b)}.  The corresponding rewrite rule
27370 set would be,
27372 @smallexample
27373 @group
27374 [ sin(a + b)  :=  cos(a) sin(b) + sin(a) cos(b),
27375   cos(a + b)  :=  cos(a) cos(b) - sin(a) sin(b) ]
27376 @end group
27377 @end smallexample
27379 To apply these manually, you could put them in a variable called
27380 @code{trigexp} and then use @kbd{a r trigexp} every time you wanted
27381 to expand trig functions.  But if instead you store them in the
27382 variable @code{EvalRules}, they will automatically be applied to all
27383 sines and cosines of sums.  Then, with @samp{2 x} and @samp{45} on
27384 the stack, typing @kbd{+ S} will (assuming Degrees mode) result in
27385 @samp{0.7071 sin(2 x) + 0.7071 cos(2 x)} automatically.
27387 As each level of a formula is evaluated, the rules from
27388 @code{EvalRules} are applied before the default simplifications.
27389 Rewriting continues until no further @code{EvalRules} apply.
27390 Note that this is different from the usual order of application of
27391 rewrite rules:  @code{EvalRules} works from the bottom up, simplifying
27392 the arguments to a function before the function itself, while @kbd{a r}
27393 applies rules from the top down.
27395 Because the @code{EvalRules} are tried first, you can use them to
27396 override the normal behavior of any built-in Calc function.
27398 It is important not to write a rule that will get into an infinite
27399 loop.  For example, the rule set @samp{[f(0) := 1, f(n) := n f(n-1)]}
27400 appears to be a good definition of a factorial function, but it is
27401 unsafe.  Imagine what happens if @samp{f(2.5)} is simplified.  Calc
27402 will continue to subtract 1 from this argument forever without reaching
27403 zero.  A safer second rule would be @samp{f(n) := n f(n-1) :: n>0}.
27404 Another dangerous rule is @samp{g(x, y) := g(y, x)}.  Rewriting
27405 @samp{g(2, 4)}, this would bounce back and forth between that and
27406 @samp{g(4, 2)} forever.  If an infinite loop in @code{EvalRules}
27407 occurs, Emacs will eventually stop with a ``Computation got stuck
27408 or ran too long'' message.
27410 Another subtle difference between @code{EvalRules} and regular rewrites
27411 concerns rules that rewrite a formula into an identical formula.  For
27412 example, @samp{f(n) := f(floor(n))} ``fails to match'' when @expr{n} is
27413 already an integer.  But in @code{EvalRules} this case is detected only
27414 if the righthand side literally becomes the original formula before any
27415 further simplification.  This means that @samp{f(n) := f(floor(n))} will
27416 get into an infinite loop if it occurs in @code{EvalRules}.  Calc will
27417 replace @samp{f(6)} with @samp{f(floor(6))}, which is different from
27418 @samp{f(6)}, so it will consider the rule to have matched and will
27419 continue simplifying that formula; first the argument is simplified
27420 to get @samp{f(6)}, then the rule matches again to get @samp{f(floor(6))}
27421 again, ad infinitum.  A much safer rule would check its argument first,
27422 say, with @samp{f(n) := f(floor(n)) :: !dint(n)}.
27424 (What really happens is that the rewrite mechanism substitutes the
27425 meta-variables in the righthand side of a rule, compares to see if the
27426 result is the same as the original formula and fails if so, then uses
27427 the default simplifications to simplify the result and compares again
27428 (and again fails if the formula has simplified back to its original
27429 form).  The only special wrinkle for the @code{EvalRules} is that the
27430 same rules will come back into play when the default simplifications
27431 are used.  What Calc wants to do is build @samp{f(floor(6))}, see that
27432 this is different from the original formula, simplify to @samp{f(6)},
27433 see that this is the same as the original formula, and thus halt the
27434 rewriting.  But while simplifying, @samp{f(6)} will again trigger
27435 the same @code{EvalRules} rule and Calc will get into a loop inside
27436 the rewrite mechanism itself.)
27438 The @code{phase}, @code{schedule}, and @code{iterations} markers do
27439 not work in @code{EvalRules}.  If the rule set is divided into phases,
27440 only the phase 1 rules are applied, and the schedule is ignored.
27441 The rules are always repeated as many times as possible.
27443 The @code{EvalRules} are applied to all function calls in a formula,
27444 but not to numbers (and other number-like objects like error forms),
27445 nor to vectors or individual variable names.  (Though they will apply
27446 to @emph{components} of vectors and error forms when appropriate.)  You
27447 might try to make a variable @code{phihat} which automatically expands
27448 to its definition without the need to press @kbd{=} by writing the
27449 rule @samp{quote(phihat) := (1-sqrt(5))/2}, but unfortunately this rule
27450 will not work as part of @code{EvalRules}.
27452 Finally, another limitation is that Calc sometimes calls its built-in
27453 functions directly rather than going through the default simplifications.
27454 When it does this, @code{EvalRules} will not be able to override those
27455 functions.  For example, when you take the absolute value of the complex
27456 number @expr{(2, 3)}, Calc computes @samp{sqrt(2*2 + 3*3)} by calling
27457 the multiplication, addition, and square root functions directly rather
27458 than applying the default simplifications to this formula.  So an
27459 @code{EvalRules} rule that (perversely) rewrites @samp{sqrt(13) := 6}
27460 would not apply.  (However, if you put Calc into Symbolic mode so that
27461 @samp{sqrt(13)} will be left in symbolic form by the built-in square
27462 root function, your rule will be able to apply.  But if the complex
27463 number were @expr{(3,4)}, so that @samp{sqrt(25)} must be calculated,
27464 then Symbolic mode will not help because @samp{sqrt(25)} can be
27465 evaluated exactly to 5.)
27467 One subtle restriction that normally only manifests itself with
27468 @code{EvalRules} is that while a given rewrite rule is in the process
27469 of being checked, that same rule cannot be recursively applied.  Calc
27470 effectively removes the rule from its rule set while checking the rule,
27471 then puts it back once the match succeeds or fails.  (The technical
27472 reason for this is that compiled pattern programs are not reentrant.)
27473 For example, consider the rule @samp{foo(x) := x :: foo(x/2) > 0}
27474 attempting to match @samp{foo(8)}.  This rule will be inactive while
27475 the condition @samp{foo(4) > 0} is checked, even though it might be
27476 an integral part of evaluating that condition.  Note that this is not
27477 a problem for the more usual recursive type of rule, such as
27478 @samp{foo(x) := foo(x/2)}, because there the rule has succeeded and
27479 been reactivated by the time the righthand side is evaluated.
27481 If @code{EvalRules} has no stored value (its default state), or if
27482 anything but a vector is stored in it, then it is ignored.
27484 Even though Calc's rewrite mechanism is designed to compare rewrite
27485 rules to formulas as quickly as possible, storing rules in
27486 @code{EvalRules} may make Calc run substantially slower.  This is
27487 particularly true of rules where the top-level call is a commonly used
27488 function, or is not fixed.  The rule @samp{f(n) := n f(n-1) :: n>0} will
27489 only activate the rewrite mechanism for calls to the function @code{f},
27490 but @samp{lg(n) + lg(m) := lg(n m)} will check every @samp{+} operator.
27492 @smallexample
27493 apply(f, [a*b]) := apply(f, [a]) + apply(f, [b]) :: in(f, [ln, log10])
27494 @end smallexample
27496 @noindent
27497 may seem more ``efficient'' than two separate rules for @code{ln} and
27498 @code{log10}, but actually it is vastly less efficient because rules
27499 with @code{apply} as the top-level pattern must be tested against
27500 @emph{every} function call that is simplified.
27502 @cindex @code{AlgSimpRules} variable
27503 @vindex AlgSimpRules
27504 Suppose you want @samp{sin(a + b)} to be expanded out not all the time,
27505 but only when algebraic simplifications are used to simplify the
27506 formula.  The variable @code{AlgSimpRules} holds rules for this purpose.
27507 The @kbd{a s} command will apply @code{EvalRules} and
27508 @code{AlgSimpRules} to the formula, as well as all of its built-in
27509 simplifications. 
27511 Most of the special limitations for @code{EvalRules} don't apply to
27512 @code{AlgSimpRules}.  Calc simply does an @kbd{a r AlgSimpRules}
27513 command with an infinite repeat count as the first step of algebraic
27514 simplifications. It then applies its own built-in simplifications
27515 throughout the formula, and then repeats these two steps (along with
27516 applying the default simplifications) until no further changes are
27517 possible. 
27519 @cindex @code{ExtSimpRules} variable
27520 @cindex @code{UnitSimpRules} variable
27521 @vindex ExtSimpRules
27522 @vindex UnitSimpRules
27523 There are also @code{ExtSimpRules} and @code{UnitSimpRules} variables
27524 that are used by @kbd{a e} and @kbd{u s}, respectively; these commands
27525 also apply @code{EvalRules} and @code{AlgSimpRules}.  The variable
27526 @code{IntegSimpRules} contains simplification rules that are used
27527 only during integration by @kbd{a i}.
27529 @node Debugging Rewrites, Examples of Rewrite Rules, Automatic Rewrites, Rewrite Rules
27530 @subsection Debugging Rewrites
27532 @noindent
27533 If a buffer named @samp{*Trace*} exists, the rewrite mechanism will
27534 record some useful information there as it operates.  The original
27535 formula is written there, as is the result of each successful rewrite,
27536 and the final result of the rewriting.  All phase changes are also
27537 noted.
27539 Calc always appends to @samp{*Trace*}.  You must empty this buffer
27540 yourself periodically if it is in danger of growing unwieldy.
27542 Note that the rewriting mechanism is substantially slower when the
27543 @samp{*Trace*} buffer exists, even if the buffer is not visible on
27544 the screen.  Once you are done, you will probably want to kill this
27545 buffer (with @kbd{C-x k *Trace* @key{RET}}).  If you leave it in
27546 existence and forget about it, all your future rewrite commands will
27547 be needlessly slow.
27549 @node Examples of Rewrite Rules,  , Debugging Rewrites, Rewrite Rules
27550 @subsection Examples of Rewrite Rules
27552 @noindent
27553 Returning to the example of substituting the pattern
27554 @samp{sin(x)^2 + cos(x)^2} with 1, we saw that the rule
27555 @samp{opt(a) sin(x)^2 + opt(a) cos(x)^2 := a} does a good job of
27556 finding suitable cases.  Another solution would be to use the rule
27557 @samp{cos(x)^2 := 1 - sin(x)^2}, followed by algebraic simplification
27558 if necessary.  This rule will be the most effective way to do the job,
27559 but at the expense of making some changes that you might not desire.
27561 Another algebraic rewrite rule is @samp{exp(x+y) := exp(x) exp(y)}.
27562 To make this work with the @w{@kbd{j r}} command so that it can be
27563 easily targeted to a particular exponential in a large formula,
27564 you might wish to write the rule as @samp{select(exp(x+y)) :=
27565 select(exp(x) exp(y))}.  The @samp{select} markers will be
27566 ignored by the regular @kbd{a r} command
27567 (@pxref{Selections with Rewrite Rules}).
27569 A surprisingly useful rewrite rule is @samp{a/(b-c) := a*(b+c)/(b^2-c^2)}.
27570 This will simplify the formula whenever @expr{b} and/or @expr{c} can
27571 be made simpler by squaring.  For example, applying this rule to
27572 @samp{2 / (sqrt(2) + 3)} yields @samp{6:7 - 2:7 sqrt(2)} (assuming
27573 Symbolic mode has been enabled to keep the square root from being
27574 evaluated to a floating-point approximation).  This rule is also
27575 useful when working with symbolic complex numbers, e.g.,
27576 @samp{(a + b i) / (c + d i)}.
27578 As another example, we could define our own ``triangular numbers'' function
27579 with the rules @samp{[tri(0) := 0, tri(n) := n + tri(n-1) :: n>0]}.  Enter
27580 this vector and store it in a variable:  @kbd{@w{s t} trirules}.  Now, given
27581 a suitable formula like @samp{tri(5)} on the stack, type @samp{a r trirules}
27582 to apply these rules repeatedly.  After six applications, @kbd{a r} will
27583 stop with 15 on the stack.  Once these rules are debugged, it would probably
27584 be most useful to add them to @code{EvalRules} so that Calc will evaluate
27585 the new @code{tri} function automatically.  We could then use @kbd{Z K} on
27586 the keyboard macro @kbd{' tri($) @key{RET}} to make a command that applies
27587 @code{tri} to the value on the top of the stack.  @xref{Programming}.
27589 @cindex Quaternions
27590 The following rule set, contributed by
27591 @texline Fran\c cois
27592 @infoline Francois
27593 Pinard, implements @dfn{quaternions}, a generalization of the concept of
27594 complex numbers.  Quaternions have four components, and are here
27595 represented by function calls @samp{quat(@var{w}, [@var{x}, @var{y},
27596 @var{z}])} with ``real part'' @var{w} and the three ``imaginary'' parts
27597 collected into a vector.  Various arithmetical operations on quaternions
27598 are supported.  To use these rules, either add them to @code{EvalRules},
27599 or create a command based on @kbd{a r} for simplifying quaternion
27600 formulas.  A convenient way to enter quaternions would be a command
27601 defined by a keyboard macro containing: @kbd{' quat($$$$, [$$$, $$, $])
27602 @key{RET}}.
27604 @smallexample
27605 [ quat(w, x, y, z) := quat(w, [x, y, z]),
27606   quat(w, [0, 0, 0]) := w,
27607   abs(quat(w, v)) := hypot(w, v),
27608   -quat(w, v) := quat(-w, -v),
27609   r + quat(w, v) := quat(r + w, v) :: real(r),
27610   r - quat(w, v) := quat(r - w, -v) :: real(r),
27611   quat(w1, v1) + quat(w2, v2) := quat(w1 + w2, v1 + v2),
27612   r * quat(w, v) := quat(r * w, r * v) :: real(r),
27613   plain(quat(w1, v1) * quat(w2, v2))
27614      := quat(w1 * w2 - v1 * v2, w1 * v2 + w2 * v1 + cross(v1, v2)),
27615   quat(w1, v1) / r := quat(w1 / r, v1 / r) :: real(r),
27616   z / quat(w, v) := z * quatinv(quat(w, v)),
27617   quatinv(quat(w, v)) := quat(w, -v) / (w^2 + v^2),
27618   quatsqr(quat(w, v)) := quat(w^2 - v^2, 2 * w * v),
27619   quat(w, v)^k := quatsqr(quat(w, v)^(k / 2))
27620                :: integer(k) :: k > 0 :: k % 2 = 0,
27621   quat(w, v)^k := quatsqr(quat(w, v)^((k - 1) / 2)) * quat(w, v)
27622                :: integer(k) :: k > 2,
27623   quat(w, v)^-k := quatinv(quat(w, v)^k) :: integer(k) :: k > 0 ]
27624 @end smallexample
27626 Quaternions, like matrices, have non-commutative multiplication.
27627 In other words, @expr{q1 * q2 = q2 * q1} is not necessarily true if
27628 @expr{q1} and @expr{q2} are @code{quat} forms.  The @samp{quat*quat}
27629 rule above uses @code{plain} to prevent Calc from rearranging the
27630 product.  It may also be wise to add the line @samp{[quat(), matrix]}
27631 to the @code{Decls} matrix, to ensure that Calc's other algebraic
27632 operations will not rearrange a quaternion product.  @xref{Declarations}.
27634 These rules also accept a four-argument @code{quat} form, converting
27635 it to the preferred form in the first rule.  If you would rather see
27636 results in the four-argument form, just append the two items
27637 @samp{phase(2), quat(w, [x, y, z]) := quat(w, x, y, z)} to the end
27638 of the rule set.  (But remember that multi-phase rule sets don't work
27639 in @code{EvalRules}.)
27641 @node Units, Store and Recall, Algebra, Top
27642 @chapter Operating on Units
27644 @noindent
27645 One special interpretation of algebraic formulas is as numbers with units.
27646 For example, the formula @samp{5 m / s^2} can be read ``five meters
27647 per second squared.''  The commands in this chapter help you
27648 manipulate units expressions in this form.  Units-related commands
27649 begin with the @kbd{u} prefix key.
27651 @menu
27652 * Basic Operations on Units::
27653 * The Units Table::
27654 * Predefined Units::
27655 * User-Defined Units::
27656 * Logarithmic Units::
27657 * Musical Notes::
27658 @end menu
27660 @node Basic Operations on Units, The Units Table, Units, Units
27661 @section Basic Operations on Units
27663 @noindent
27664 A @dfn{units expression} is a formula which is basically a number
27665 multiplied and/or divided by one or more @dfn{unit names}, which may
27666 optionally be raised to integer powers.  Actually, the value part need not
27667 be a number; any product or quotient involving unit names is a units
27668 expression.  Many of the units commands will also accept any formula,
27669 where the command applies to all units expressions which appear in the
27670 formula.
27672 A unit name is a variable whose name appears in the @dfn{unit table},
27673 or a variable whose name is a prefix character like @samp{k} (for ``kilo'')
27674 or @samp{u} (for ``micro'') followed by a name in the unit table.
27675 A substantial table of built-in units is provided with Calc;
27676 @pxref{Predefined Units}.  You can also define your own unit names;
27677 @pxref{User-Defined Units}.
27679 Note that if the value part of a units expression is exactly @samp{1},
27680 it will be removed by the Calculator's automatic algebra routines:  The
27681 formula @samp{1 mm} is ``simplified'' to @samp{mm}.  This is only a
27682 display anomaly, however; @samp{mm} will work just fine as a
27683 representation of one millimeter.
27685 You may find that Algebraic mode (@pxref{Algebraic Entry}) makes working
27686 with units expressions easier.  Otherwise, you will have to remember
27687 to hit the apostrophe key every time you wish to enter units.
27689 @kindex u s
27690 @pindex calc-simplify-units
27691 @ignore
27692 @mindex usimpl@idots
27693 @end ignore
27694 @tindex usimplify
27695 The @kbd{u s} (@code{calc-simplify-units}) [@code{usimplify}] command
27696 simplifies a units
27697 expression.  It uses Calc's algebraic simplifications to simplify the
27698 expression first as a regular algebraic formula; it then looks for
27699 features that can be further simplified by converting one object's units
27700 to be compatible with another's.  For example, @samp{5 m + 23 mm} will
27701 simplify to @samp{5.023 m}.  When different but compatible units are
27702 added, the righthand term's units are converted to match those of the
27703 lefthand term.  @xref{Simplification Modes}, for a way to have this done
27704 automatically at all times.
27706 Units simplification also handles quotients of two units with the same
27707 dimensionality, as in @w{@samp{2 in s/L cm}} to @samp{5.08 s/L}; fractional
27708 powers of unit expressions, as in @samp{sqrt(9 mm^2)} to @samp{3 mm} and
27709 @samp{sqrt(9 acre)} to a quantity in meters; and @code{floor},
27710 @code{ceil}, @code{round}, @code{rounde}, @code{roundu}, @code{trunc},
27711 @code{float}, @code{frac}, @code{abs}, and @code{clean}
27712 applied to units expressions, in which case
27713 the operation in question is applied only to the numeric part of the
27714 expression.  Finally, trigonometric functions of quantities with units
27715 of angle are evaluated, regardless of the current angular mode.
27717 @kindex u c
27718 @pindex calc-convert-units
27719 The @kbd{u c} (@code{calc-convert-units}) command converts a units
27720 expression to new, compatible units.  For example, given the units
27721 expression @samp{55 mph}, typing @kbd{u c m/s @key{RET}} produces
27722 @samp{24.5872 m/s}.  If you have previously converted a units expression
27723 with the same type of units (in this case, distance over time), you will
27724 be offered the previous choice of new units as a default.  Continuing
27725 the above example, entering the units expression @samp{100 km/hr} and
27726 typing @kbd{u c @key{RET}} (without specifying new units) produces
27727 @samp{27.7777777778 m/s}.
27729 @kindex u t
27730 @pindex calc-convert-temperature
27731 @cindex Temperature conversion
27732 The @kbd{u c} command treats temperature units (like @samp{degC} and
27733 @samp{K}) as relative temperatures.  For example, @kbd{u c} converts
27734 @samp{10 degC} to @samp{18 degF}: A change of 10 degrees Celsius
27735 corresponds to a change of 18 degrees Fahrenheit.  To convert absolute
27736 temperatures, you can use the @kbd{u t}
27737 (@code{calc-convert-temperature}) command.   The value on the stack
27738 must be a simple units expression with units of temperature only.
27739 This command would convert @samp{10 degC} to @samp{50 degF}, the
27740 equivalent temperature on the Fahrenheit scale.
27742 While many of Calc's conversion factors are exact, some are necessarily
27743 approximate.  If Calc is in fraction mode (@pxref{Fraction Mode}), then
27744 unit conversions will try to give exact, rational conversions, but it
27745 isn't always possible.  Given @samp{55 mph} in fraction mode, typing
27746 @kbd{u c m/s @key{RET}} produces  @samp{15367:625 m/s}, for example,
27747 while typing @kbd{u c au/yr @key{RET}} produces
27748 @samp{5.18665819999e-3 au/yr}.
27750 If the units you request are inconsistent with the original units, the
27751 number will be converted into your units times whatever ``remainder''
27752 units are left over.  For example, converting @samp{55 mph} into acres
27753 produces @samp{6.08e-3 acre / m s}.  (Recall that multiplication binds
27754 more strongly than division in Calc formulas, so the units here are
27755 acres per meter-second.)  Remainder units are expressed in terms of
27756 ``fundamental'' units like @samp{m} and @samp{s}, regardless of the
27757 input units.
27759 If you want to disallow using inconsistent units, you can set the customizable variable
27760 @code{calc-ensure-consistent-units} to @code{t} (@pxref{Customizing Calc}).  In this case,
27761 if you request units which are inconsistent with the original units, you will be warned about
27762 it and no conversion will occur.
27764 One special exception is that if you specify a single unit name, and
27765 a compatible unit appears somewhere in the units expression, then
27766 that compatible unit will be converted to the new unit and the
27767 remaining units in the expression will be left alone.  For example,
27768 given the input @samp{980 cm/s^2}, the command @kbd{u c ms} will
27769 change the @samp{s} to @samp{ms} to get @samp{9.8e-4 cm/ms^2}.
27770 The ``remainder unit'' @samp{cm} is left alone rather than being
27771 changed to the base unit @samp{m}.
27773 You can use explicit unit conversion instead of the @kbd{u s} command
27774 to gain more control over the units of the result of an expression.
27775 For example, given @samp{5 m + 23 mm}, you can type @kbd{u c m} or
27776 @kbd{u c mm} to express the result in either meters or millimeters.
27777 (For that matter, you could type @kbd{u c fath} to express the result
27778 in fathoms, if you preferred!)
27780 In place of a specific set of units, you can also enter one of the
27781 units system names @code{si}, @code{mks} (equivalent), or @code{cgs}.
27782 For example, @kbd{u c si @key{RET}} converts the expression into
27783 International System of Units (SI) base units.  Also, @kbd{u c base}
27784 converts to Calc's base units, which are the same as @code{si} units
27785 except that @code{base} uses @samp{g} as the fundamental unit of mass
27786 whereas @code{si} uses @samp{kg}.
27788 @cindex Composite units
27789 The @kbd{u c} command also accepts @dfn{composite units}, which
27790 are expressed as the sum of several compatible unit names.  For
27791 example, converting @samp{30.5 in} to units @samp{mi+ft+in} (miles,
27792 feet, and inches) produces @samp{2 ft + 6.5 in}.  Calc first
27793 sorts the unit names into order of decreasing relative size.
27794 It then accounts for as much of the input quantity as it can
27795 using an integer number times the largest unit, then moves on
27796 to the next smaller unit, and so on.  Only the smallest unit
27797 may have a non-integer amount attached in the result.  A few
27798 standard unit names exist for common combinations, such as
27799 @code{mfi} for @samp{mi+ft+in}, and @code{tpo} for @samp{ton+lb+oz}.
27800 Composite units are expanded as if by @kbd{a x}, so that
27801 @samp{(ft+in)/hr} is first converted to @samp{ft/hr+in/hr}.
27803 If the value on the stack does not contain any units, @kbd{u c} will
27804 prompt first for the old units which this value should be considered
27805 to have, then for the new units.  Assuming the old and new units you
27806 give are consistent with each other, the result also will not contain
27807 any units.  For example, @kbd{@w{u c} cm @key{RET} in @key{RET}}
27808 converts the number 2 on the stack to 5.08.
27810 @kindex u b
27811 @pindex calc-base-units
27812 The @kbd{u b} (@code{calc-base-units}) command is shorthand for
27813 @kbd{u c base}; it converts the units expression on the top of the
27814 stack into @code{base} units.  If @kbd{u s} does not simplify a
27815 units expression as far as you would like, try @kbd{u b}.
27817 Like the @kbd{u c} command, the @kbd{u b} command treats temperature
27818 units as relative temperatures.
27820 @kindex u r
27821 @pindex calc-remove-units
27822 @kindex u x
27823 @pindex calc-extract-units
27824 The @kbd{u r} (@code{calc-remove-units}) command removes units from the
27825 formula at the top of the stack.  The @kbd{u x}
27826 (@code{calc-extract-units}) command extracts only the units portion of a
27827 formula.  These commands essentially replace every term of the formula
27828 that does or doesn't (respectively) look like a unit name by the
27829 constant 1, then resimplify the formula.
27831 @kindex u a
27832 @pindex calc-autorange-units
27833 The @kbd{u a} (@code{calc-autorange-units}) command turns on and off a
27834 mode in which unit prefixes like @code{k} (``kilo'') are automatically
27835 applied to keep the numeric part of a units expression in a reasonable
27836 range.  This mode affects @kbd{u s} and all units conversion commands
27837 except @kbd{u b}.  For example, with autoranging on, @samp{12345 Hz}
27838 will be simplified to @samp{12.345 kHz}.  Autoranging is useful for
27839 some kinds of units (like @code{Hz} and @code{m}), but is probably
27840 undesirable for non-metric units like @code{ft} and @code{tbsp}.
27841 (Composite units are more appropriate for those; see above.)
27843 Autoranging always applies the prefix to the leftmost unit name.
27844 Calc chooses the largest prefix that causes the number to be greater
27845 than or equal to 1.0.  Thus an increasing sequence of adjusted times
27846 would be @samp{1 ms, 10 ms, 100 ms, 1 s, 10 s, 100 s, 1 ks}.
27847 Generally the rule of thumb is that the number will be adjusted
27848 to be in the interval @samp{[1 .. 1000)}, although there are several
27849 exceptions to this rule.  First, if the unit has a power then this
27850 is not possible; @samp{0.1 s^2} simplifies to @samp{100000 ms^2}.
27851 Second, the ``centi-'' prefix is allowed to form @code{cm} (centimeters),
27852 but will not apply to other units.  The ``deci-,'' ``deka-,'' and
27853 ``hecto-'' prefixes are never used.  Thus the allowable interval is
27854 @samp{[1 .. 10)} for millimeters and @samp{[1 .. 100)} for centimeters.
27855 Finally, a prefix will not be added to a unit if the resulting name
27856 is also the actual name of another unit; @samp{1e-15 t} would normally
27857 be considered a ``femto-ton,'' but it is written as @samp{1000 at}
27858 (1000 atto-tons) instead because @code{ft} would be confused with feet.
27860 @node The Units Table, Predefined Units, Basic Operations on Units, Units
27861 @section The Units Table
27863 @noindent
27864 @kindex u v
27865 @pindex calc-enter-units-table
27866 The @kbd{u v} (@code{calc-enter-units-table}) command displays the units table
27867 in another buffer called @code{*Units Table*}.  Each entry in this table
27868 gives the unit name as it would appear in an expression, the definition
27869 of the unit in terms of simpler units, and a full name or description of
27870 the unit.  Fundamental units are defined as themselves; these are the
27871 units produced by the @kbd{u b} command.  The fundamental units are
27872 meters, seconds, grams, kelvins, amperes, candelas, moles, radians,
27873 and steradians.
27875 The Units Table buffer also displays the Unit Prefix Table.  Note that
27876 two prefixes, ``kilo'' and ``hecto,'' accept either upper- or lower-case
27877 prefix letters.  @samp{Meg} is also accepted as a synonym for the @samp{M}
27878 prefix.  Whenever a unit name can be interpreted as either a built-in name
27879 or a prefix followed by another built-in name, the former interpretation
27880 wins.  For example, @samp{2 pt} means two pints, not two pico-tons.
27882 The Units Table buffer, once created, is not rebuilt unless you define
27883 new units.  To force the buffer to be rebuilt, give any numeric prefix
27884 argument to @kbd{u v}.
27886 @kindex u V
27887 @pindex calc-view-units-table
27888 The @kbd{u V} (@code{calc-view-units-table}) command is like @kbd{u v} except
27889 that the cursor is not moved into the Units Table buffer.  You can
27890 type @kbd{u V} again to remove the Units Table from the display.  To
27891 return from the Units Table buffer after a @kbd{u v}, type @kbd{C-x * c}
27892 again or use the regular Emacs @w{@kbd{C-x o}} (@code{other-window})
27893 command.  You can also kill the buffer with @kbd{C-x k} if you wish;
27894 the actual units table is safely stored inside the Calculator.
27896 @kindex u g
27897 @pindex calc-get-unit-definition
27898 The @kbd{u g} (@code{calc-get-unit-definition}) command retrieves a unit's
27899 defining expression and pushes it onto the Calculator stack.  For example,
27900 @kbd{u g in} will produce the expression @samp{2.54 cm}.  This is the
27901 same definition for the unit that would appear in the Units Table buffer.
27902 Note that this command works only for actual unit names; @kbd{u g km}
27903 will report that no such unit exists, for example, because @code{km} is
27904 really the unit @code{m} with a @code{k} (``kilo'') prefix.  To see a
27905 definition of a unit in terms of base units, it is easier to push the
27906 unit name on the stack and then reduce it to base units with @kbd{u b}.
27908 @kindex u e
27909 @pindex calc-explain-units
27910 The @kbd{u e} (@code{calc-explain-units}) command displays an English
27911 description of the units of the expression on the stack.  For example,
27912 for the expression @samp{62 km^2 g / s^2 mol K}, the description is
27913 ``Square-Kilometer Gram per (Second-squared Mole Degree-Kelvin).''  This
27914 command uses the English descriptions that appear in the righthand
27915 column of the Units Table.
27917 @node Predefined Units, User-Defined Units, The Units Table, Units
27918 @section Predefined Units
27920 @noindent
27921 The definitions of many units have changed over the years.  For example,
27922 the meter was originally defined in 1791 as one ten-millionth of the
27923 distance from the equator to the north pole.  In order to be more
27924 precise, the definition was adjusted several times, and now a meter is
27925 defined as the distance that light will travel in a vacuum in
27926 1/299792458 of a second; consequently, the speed of light in a
27927 vacuum is exactly 299792458 m/s.  Many other units have been
27928 redefined in terms of fundamental physical processes; a second, for
27929 example, is currently defined as 9192631770 periods of a certain
27930 radiation related to the cesium-133 atom.  The only SI unit that is not
27931 based on a fundamental physical process (although there are efforts to
27932 change this) is the kilogram, which was originally defined as the mass
27933 of one liter of water, but is now defined as the mass of the
27934 International Prototype Kilogram (IPK), a cylinder of platinum-iridium
27935 kept at the Bureau International des Poids et Mesures in S@`evres,
27936 France.  (There are several copies of the IPK throughout the world.)
27937 The British imperial units, once defined in terms of physical objects,
27938 were redefined in 1963 in terms of SI units.  The US customary units,
27939 which were the same as British units until the British imperial system
27940 was created in 1824, were also defined in terms of the SI units in 1893.
27941 Because of these redefinitions, conversions between metric, British
27942 Imperial, and US customary units can often be done precisely.
27944 Since the exact definitions of many kinds of units have evolved over the
27945 years, and since certain countries sometimes have local differences in
27946 their definitions, it is a good idea to examine Calc's definition of a
27947 unit before depending on its exact value.  For example, there are three
27948 different units for gallons, corresponding to the US (@code{gal}),
27949 Canadian (@code{galC}), and British (@code{galUK}) definitions.  Also,
27950 note that @code{oz} is a standard ounce of mass, @code{ozt} is a Troy
27951 ounce, and @code{ozfl} is a fluid ounce.
27953 The temperature units corresponding to degrees Kelvin and Centigrade
27954 (Celsius) are the same in this table, since most units commands treat
27955 temperatures as being relative.  The @code{calc-convert-temperature}
27956 command has special rules for handling the different absolute magnitudes
27957 of the various temperature scales.
27959 The unit of volume ``liters'' can be referred to by either the lower-case
27960 @code{l} or the upper-case @code{L}.
27962 The unit @code{A} stands for Amperes; the name @code{Ang} is used
27963 @tex
27964 for \AA ngstroms.
27965 @end tex
27966 @ifnottex
27967 for Angstroms.
27968 @end ifnottex
27970 The unit @code{pt} stands for pints; the name @code{point} stands for
27971 a typographical point, defined by @samp{72 point = 1 in}.  This is
27972 slightly different than the point defined by the American Typefounder's
27973 Association in 1886, but the point used by Calc has become standard
27974 largely due to its use by the PostScript page description language.
27975 There is also @code{texpt}, which stands for a printer's point as
27976 defined by the @TeX{} typesetting system:  @samp{72.27 texpt = 1 in}.
27977 Other units used by @TeX{} are available; they are @code{texpc} (a pica),
27978 @code{texbp} (a ``big point'', equal to a standard point which is larger
27979 than the point used by @TeX{}), @code{texdd} (a Didot point),
27980 @code{texcc} (a Cicero) and @code{texsp} (a scaled @TeX{} point,
27981 all dimensions representable in @TeX{} are multiples of this value).
27983 When Calc is using the @TeX{} or @LaTeX{} language mode (@pxref{TeX
27984 and LaTeX Language Modes}), the @TeX{} specific unit names will not
27985 use the @samp{tex} prefix; the unit name for a @TeX{} point will be
27986 @samp{pt} instead of @samp{texpt}, for example.  To avoid conflicts,
27987 the unit names for pint and parsec will simply be @samp{pint} and
27988 @samp{parsec} instead of @samp{pt} and @samp{pc}.
27991 The unit @code{e} stands for the elementary (electron) unit of charge;
27992 because algebra command could mistake this for the special constant
27993 @expr{e}, Calc provides the alternate unit name @code{ech} which is
27994 preferable to @code{e}.
27996 The name @code{g} stands for one gram of mass; there is also @code{gf},
27997 one gram of force.  (Likewise for @kbd{lb}, pounds, and @kbd{lbf}.)
27998 Meanwhile, one ``@expr{g}'' of acceleration is denoted @code{ga}.
28000 The unit @code{ton} is a U.S. ton of @samp{2000 lb}, and @code{t} is
28001 a metric ton of @samp{1000 kg}.
28003 The names @code{s} (or @code{sec}) and @code{min} refer to units of
28004 time; @code{arcsec} and @code{arcmin} are units of angle.
28006 Some ``units'' are really physical constants; for example, @code{c}
28007 represents the speed of light, and @code{h} represents Planck's
28008 constant.  You can use these just like other units: converting
28009 @samp{.5 c} to @samp{m/s} expresses one-half the speed of light in
28010 meters per second.  You can also use this merely as a handy reference;
28011 the @kbd{u g} command gets the definition of one of these constants
28012 in its normal terms, and @kbd{u b} expresses the definition in base
28013 units.
28015 Two units, @code{pi} and @code{alpha} (the fine structure constant,
28016 approximately @mathit{1/137}) are dimensionless.  The units simplification
28017 commands simply treat these names as equivalent to their corresponding
28018 values.  However you can, for example, use @kbd{u c} to convert a pure
28019 number into multiples of the fine structure constant, or @kbd{u b} to
28020 convert this back into a pure number.  (When @kbd{u c} prompts for the
28021 ``old units,'' just enter a blank line to signify that the value
28022 really is unitless.)
28024 @c Describe angular units, luminosity vs. steradians problem.
28026 @node User-Defined Units, Logarithmic Units, Predefined Units, Units
28027 @section User-Defined Units
28029 @noindent
28030 Calc provides ways to get quick access to your selected ``favorite''
28031 units, as well as ways to define your own new units.
28033 @kindex u 0-9
28034 @pindex calc-quick-units
28035 @vindex Units
28036 @cindex @code{Units} variable
28037 @cindex Quick units
28038 To select your favorite units, store a vector of unit names or
28039 expressions in the Calc variable @code{Units}.  The @kbd{u 1}
28040 through @kbd{u 9} commands (@code{calc-quick-units}) provide access
28041 to these units.  If the value on the top of the stack is a plain
28042 number (with no units attached), then @kbd{u 1} gives it the
28043 specified units.  (Basically, it multiplies the number by the
28044 first item in the @code{Units} vector.)  If the number on the
28045 stack @emph{does} have units, then @kbd{u 1} converts that number
28046 to the new units.  For example, suppose the vector @samp{[in, ft]}
28047 is stored in @code{Units}.  Then @kbd{30 u 1} will create the
28048 expression @samp{30 in}, and @kbd{u 2} will convert that expression
28049 to @samp{2.5 ft}.
28051 The @kbd{u 0} command accesses the tenth element of @code{Units}.
28052 Only ten quick units may be defined at a time.  If the @code{Units}
28053 variable has no stored value (the default), or if its value is not
28054 a vector, then the quick-units commands will not function.  The
28055 @kbd{s U} command is a convenient way to edit the @code{Units}
28056 variable; @pxref{Operations on Variables}.
28058 @kindex u d
28059 @pindex calc-define-unit
28060 @cindex User-defined units
28061 The @kbd{u d} (@code{calc-define-unit}) command records the units
28062 expression on the top of the stack as the definition for a new,
28063 user-defined unit.  For example, putting @samp{16.5 ft} on the stack and
28064 typing @kbd{u d rod} defines the new unit @samp{rod} to be equivalent to
28065 16.5 feet.  The unit conversion and simplification commands will now
28066 treat @code{rod} just like any other unit of length.  You will also be
28067 prompted for an optional English description of the unit, which will
28068 appear in the Units Table.  If you wish the definition of this unit to
28069 be displayed in a special way in the Units Table buffer (such as with an
28070 asterisk to indicate an approximate value), then you can call this
28071 command with an argument, @kbd{C-u u d}; you will then also be prompted
28072 for a string that will be used to display the definition.
28074 @kindex u u
28075 @pindex calc-undefine-unit
28076 The @kbd{u u} (@code{calc-undefine-unit}) command removes a user-defined
28077 unit.  It is not possible to remove one of the predefined units,
28078 however.
28080 If you define a unit with an existing unit name, your new definition
28081 will replace the original definition of that unit.  If the unit was a
28082 predefined unit, the old definition will not be replaced, only
28083 ``shadowed.''  The built-in definition will reappear if you later use
28084 @kbd{u u} to remove the shadowing definition.
28086 To create a new fundamental unit, use either 1 or the unit name itself
28087 as the defining expression.  Otherwise the expression can involve any
28088 other units that you like (except for composite units like @samp{mfi}).
28089 You can create a new composite unit with a sum of other units as the
28090 defining expression.  The next unit operation like @kbd{u c} or @kbd{u v}
28091 will rebuild the internal unit table incorporating your modifications.
28092 Note that erroneous definitions (such as two units defined in terms of
28093 each other) will not be detected until the unit table is next rebuilt;
28094 @kbd{u v} is a convenient way to force this to happen.
28096 Temperature units are treated specially inside the Calculator; it is not
28097 possible to create user-defined temperature units.
28099 @kindex u p
28100 @pindex calc-permanent-units
28101 @cindex Calc init file, user-defined units
28102 The @kbd{u p} (@code{calc-permanent-units}) command stores the user-defined
28103 units in your Calc init file (the file given by the variable
28104 @code{calc-settings-file}, typically @file{~/.emacs.d/calc.el}), so that the
28105 units will still be available in subsequent Emacs sessions.  If there
28106 was already a set of user-defined units in your Calc init file, it
28107 is replaced by the new set.  (@xref{General Mode Commands}, for a way to
28108 tell Calc to use a different file for the Calc init file.)
28110 @node Logarithmic Units, Musical Notes, User-Defined Units, Units
28111 @section Logarithmic Units
28113 The units @code{dB} (decibels) and @code{Np} (nepers) are logarithmic
28114 units which are manipulated differently than standard units.  Calc
28115 provides commands to work with these logarithmic units.
28117 Decibels and nepers are used to measure power quantities as well as
28118 field quantities (quantities whose squares are proportional to power);
28119 these two types of quantities are handled slightly different from each
28120 other.  By default the Calc commands work as if power quantities are
28121 being used; with the @kbd{H} prefix the Calc commands work as if field
28122 quantities are being used.
28124 The decibel level of a power
28125 @infoline @math{P1},
28126 @texline @math{P_1},
28127 relative to a reference power
28128 @infoline @math{P0},
28129 @texline @math{P_0},
28130 is defined to be
28131 @infoline @math{10 log10(P1/P0) dB}.
28132 @texline @math{10 \log_{10}(P_{1}/P_{0}) {\rm dB}}.
28133 (The factor of 10 is because a decibel, as its name implies, is
28134 one-tenth of a bel. The bel, named after Alexander Graham Bell, was
28135 considered to be too large of a unit and was effectively replaced by
28136 the decibel.)  If @math{F} is a field quantity with power
28137 @math{P=k F^2}, then a reference quantity of
28138 @infoline @math{F0}
28139 @texline @math{F_0}
28140 would correspond to a power of
28141 @infoline @math{P0=k F0^2}.
28142 @texline @math{P_{0}=kF_{0}^2}.
28144 @infoline @math{P1=k F1^2},
28145 @texline @math{P_{1}=kF_{1}^2},
28146 then
28148 @ifnottex
28149 @example
28150 10 log10(P1/P0) = 10 log10(F1^2/F0^2) = 20 log10(F1/F0).
28151 @end example
28152 @end ifnottex
28153 @tex
28154 $$ 10 \log_{10}(P_1/P_0) = 10 \log_{10}(F_1^2/F_0^2) = 20
28155 \log_{10}(F_1/F_0)$$
28156 @end tex
28158 @noindent
28159 In order to get the same decibel level regardless of whether a field
28160 quantity or the corresponding power quantity is used,  the decibel
28161 level of a field quantity
28162 @infoline @math{F1},
28163 @texline @math{F_1},
28164 relative to a reference
28165 @infoline @math{F0},
28166 @texline @math{F_0},
28167 is defined as
28168 @infoline @math{20 log10(F1/F0) dB}.
28169 @texline @math{20 \log_{10}(F_{1}/F_{0}) {\rm dB}}.
28170 For example, the decibel value of a sound pressure level of
28171 @infoline @math{60 uPa}
28172 @texline @math{60 \mu{\rm Pa}}
28173 relative to
28174 @infoline @math{20 uPa}
28175 @texline @math{20 \mu{\rm Pa}}
28176 (the threshold of human hearing) is
28177 @infoline @math{20 log10(60 uPa/ 20 uPa) dB = 20 log10(3) dB},
28178 @texline  @math{20 \log_{10}(60 \mu{\rm Pa}/20 \mu{\rm Pa}) {\rm dB} = 20 \log_{10}(3) {\rm dB}},
28179 which is about
28180 @infoline @math{9.54 dB}.
28181 @texline @math{9.54 {\rm dB}}.
28182 Note that in taking the ratio, the original units cancel and so these
28183 logarithmic units are dimensionless.
28185 Nepers (named after John Napier, who is credited with inventing the
28186 logarithm) are similar to bels except they use natural logarithms instead
28187 of common logarithms.  The neper level of a power
28188 @infoline @math{P1},
28189 @texline @math{P_1},
28190 relative to a reference power
28191 @infoline @math{P0},
28192 @texline @math{P_0},
28194 @infoline @math{(1/2) ln(P1/P0) Np}.
28195 @texline @math{(1/2) \ln(P_1/P_0) {\rm Np}}.
28196 The neper level of a field
28197 @infoline @math{F1},
28198 @texline @math{F_1},
28199 relative to a reference field
28200 @infoline @math{F0},
28201 @texline @math{F_0},
28203 @infoline @math{ln(F1/F0) Np}.
28204 @texline @math{\ln(F_1/F_0) {\rm Np}}.
28206 @vindex calc-lu-power-reference
28207 @vindex calc-lu-field-reference
28208 For power quantities, Calc uses
28209 @infoline @math{1 mW}
28210 @texline @math{1 {\rm mW}}
28211 as the default reference quantity; this default can be changed by changing
28212 the value of the customizable variable
28213 @code{calc-lu-power-reference} (@pxref{Customizing Calc}).
28214 For field quantities, Calc uses
28215 @infoline @math{20 uPa}
28216 @texline @math{20 \mu{\rm Pa}}
28217 as the default reference quantity; this is the value used in acoustics
28218 which is where decibels are commonly encountered.  This default can be
28219 changed by changing the value of the customizable variable
28220 @code{calc-lu-field-reference} (@pxref{Customizing Calc}).  A
28221 non-default reference quantity will be read from the stack if the
28222 capital @kbd{O} prefix is used.
28224 @kindex l q
28225 @pindex calc-lu-quant
28226 @tindex lupquant
28227 @tindex lufquant
28228 The @kbd{l q} (@code{calc-lu-quant}) [@code{lupquant}]
28229 command computes the power quantity corresponding to a given number of
28230 logarithmic units. With the capital @kbd{O} prefix, @kbd{O l q}, the
28231 reference level will be read from the top of the stack. (In an
28232 algebraic formula, @code{lupquant} can be given an optional second
28233 argument which will be used for the reference level.) For example,
28234 @code{20 dB @key{RET} l q} will return @code{100 mW};
28235 @code{20 dB @key{RET} 4 W @key{RET} O l q} will return @code{400 W}.
28236 The @kbd{H l q} [@code{lufquant}] command behaves like @kbd{l q} but
28237 computes field quantities instead of power quantities.
28239 @kindex l d
28240 @pindex calc-db
28241 @tindex dbpower
28242 @tindex dbfield
28243 @kindex l n
28244 @pindex calc-np
28245 @tindex nppower
28246 @tindex npfield
28247 The @kbd{l d} (@code{calc-db}) [@code{dbpower}] command will compute
28248 the decibel level of a power quantity using the default reference
28249 level; @kbd{H l d} [@code{dbfield}] will compute the decibel level of
28250 a field quantity.  The commands @kbd{l n} (@code{calc-np})
28251 [@code{nppower}] and @kbd{H l n} [@code{npfield}] will similarly
28252 compute neper levels.  With the capital @kbd{O} prefix these commands
28253 will read a reference level from the stack; in an algebraic formula
28254 the reference level can be given as an optional second argument.
28256 @kindex l +
28257 @pindex calc-lu-plus
28258 @tindex lupadd
28259 @tindex lufadd
28260 @kindex l -
28261 @pindex calc-lu-minus
28262 @tindex lupsub
28263 @tindex lufsub
28264 @kindex l *
28265 @pindex calc-lu-times
28266 @tindex lupmul
28267 @tindex lufmul
28268 @kindex l /
28269 @pindex calc-lu-divide
28270 @tindex lupdiv
28271 @tindex lufdiv
28272 The sum of two power or field quantities doesn't correspond to the sum
28273 of the corresponding decibel or neper levels.  If the powers
28274 corresponding to decibel levels
28275 @infoline @math{D1}
28276 @texline @math{D_1}
28278 @infoline @math{D2}
28279 @texline @math{D_2}
28280 are added, the corresponding decibel level ``sum'' will be
28282 @ifnottex
28283 @example
28284   10 log10(10^(D1/10) + 10^(D2/10)) dB.
28285 @end example
28286 @end ifnottex
28287 @tex
28288 $$ 10 \log_{10}(10^{D_1/10} + 10^{D_2/10}) {\rm dB}.$$
28289 @end tex
28291 @noindent
28292 When field quantities are combined, it often means the corresponding
28293 powers are added and so the above formula might be used.  In
28294 acoustics, for example, the sound pressure level is a field quantity
28295 and so the decibels are often defined using the field formula, but the
28296 sound pressure levels are combined as the sound power levels, and so
28297 the above formula should be used.  If two field quantities themselves
28298 are added, the new decibel level will be
28300 @ifnottex
28301 @example
28302   20 log10(10^(D1/20) + 10^(D2/20)) dB.
28303 @end example
28304 @end ifnottex
28305 @tex
28306 $$ 20 \log_{10}(10^{D_1/20} + 10^{D_2/20}) {\rm dB}.$$
28307 @end tex
28309 @noindent
28310 If the power corresponding to @math{D} dB is multiplied by a number @math{N},
28311 then the corresponding decibel level will be
28313 @ifnottex
28314 @example
28315   D + 10 log10(N) dB,
28316 @end example
28317 @end ifnottex
28318 @tex
28319 $$ D + 10 \log_{10}(N) {\rm dB},$$
28320 @end tex
28322 @noindent
28323 if a field quantity is multiplied by @math{N} the corresponding decibel level
28324 will be
28326 @ifnottex
28327 @example
28328   D + 20 log10(N) dB.
28329 @end example
28330 @end ifnottex
28331 @tex
28332 $$ D + 20 \log_{10}(N) {\rm dB}.$$
28333 @end tex
28335 @noindent
28336 There are similar formulas for combining nepers.  The @kbd{l +}
28337 (@code{calc-lu-plus}) [@code{lupadd}] command will ``add'' two
28338 logarithmic unit power levels this way; with the @kbd{H} prefix,
28339 @kbd{H l +} [@code{lufadd}] will add logarithmic unit field levels.
28340 Similarly, logarithmic units can be ``subtracted'' with @kbd{l -}
28341 (@code{calc-lu-minus}) [@code{lupsub}] or @kbd{H l -} [@code{lufsub}].
28342 The @kbd{l *} (@code{calc-lu-times}) [@code{lupmul}] and @kbd{H l *}
28343 [@code{lufmul}] commands will ``multiply'' a logarithmic unit by a
28344 number; the @kbd{l /} (@code{calc-lu-divide}) [@code{lupdiv}] and
28345 @kbd{H l /} [@code{lufdiv}] commands will ``divide'' a logarithmic
28346 unit by a number. Note that the reference quantities don't play a role
28347 in this arithmetic.
28349 @node Musical Notes, , Logarithmic Units, Units
28350 @section Musical Notes
28352 Calc can convert between musical notes and their associated
28353 frequencies.  Notes can be given using either scientific pitch
28354 notation or midi numbers.  Since these note systems are basically
28355 logarithmic scales, Calc uses the @kbd{l} prefix for functions
28356 operating on notes.
28358 Scientific pitch notation refers to a note by giving a letter
28359 A through G, possibly followed by a flat or sharp) with a subscript
28360 indicating an octave number.  Each octave starts with C and ends with
28361 B and
28362 @c increasing each note by a semitone will result
28363 @c in the sequence @expr{C}, @expr{C} sharp, @expr{D}, @expr{E} flat, @expr{E},
28364 @c @expr{F}, @expr{F} sharp, @expr{G}, @expr{A} flat, @expr{A}, @expr{B}
28365 @c flat and @expr{B}.
28366 the octave numbered 0 was chosen to correspond to the lowest
28367 audible frequency.  Using this system, middle C (about 261.625 Hz)
28368 corresponds to the note @expr{C} in octave 4 and is denoted
28369 @expr{C_4}.  Any frequency can be described by giving a note plus an
28370 offset in cents (where a cent is a ratio of frequencies so that a
28371 semitone consists of 100 cents).
28373 The midi note number system assigns numbers to notes so that
28374 @expr{C_(-1)} corresponds to the midi note number 0 and @expr{G_9}
28375 corresponds to the midi note number 127.   A midi controller can have
28376 up to 128 keys and each midi note number from  0 to 127 corresponds to
28377 a possible key.
28379 @kindex l s
28380 @pindex calc-spn
28381 @tindex spn
28382 The @kbd{l s} (@code{calc-spn}) [@code{spn}] command converts either
28383 a frequency or a midi number to scientific pitch notation.  For
28384 example, @code{500 Hz} gets converted to
28385 @code{B_4 + 21.3094853649 cents} and @code{84} to @code{C_6}.
28388 @kindex l m
28389 @pindex calc-midi
28390 @tindex midi
28391 The @kbd{l m} (@code{calc-midi}) [@code{midi}] command converts either
28392 a frequency or a note given in scientific pitch notation to the
28393 corresponding midi number. For example, @code{C_6} gets converted to 84
28394 and @code{440 Hz} to 69.
28396 @kindex l f
28397 @pindex calc-freq
28398 @tindex freq
28399 The @kbd{l f} (@code{calc-freq}) [@code{freq}] command converts either
28400 either a midi number or a note given in scientific pitch notation to
28401 the corresponding frequency. For example, @code{Asharp_2 + 30 cents}
28402 gets converted to @code{118.578040134 Hz} and @code{55} to
28403 @code{195.99771799 Hz}.
28405 Since the frequencies of notes are not usually given exactly (and are
28406 typically irrational), the customizable variable
28407 @code{calc-note-threshold} determines how close (in cents) a frequency
28408 needs to be to a note to be recognized as that note
28409 (@pxref{Customizing Calc}).  This variable has a default value of
28410 @code{1}.  For example, middle @var{C} is approximately
28411 @expr{261.625565302 Hz}; this frequency is often shortened to
28412 @expr{261.625 Hz}.  Without @code{calc-note-threshold} (or a value of
28413 @expr{0}), Calc would convert @code{261.625 Hz} to scientific pitch
28414 notation @code{B_3 + 99.9962592773 cents}; with the default value of
28415 @code{1}, Calc converts @code{261.625 Hz} to @code{C_4}.
28419 @node Store and Recall, Graphics, Units, Top
28420 @chapter Storing and Recalling
28422 @noindent
28423 Calculator variables are really just Lisp variables that contain numbers
28424 or formulas in a form that Calc can understand.  The commands in this
28425 section allow you to manipulate variables conveniently.  Commands related
28426 to variables use the @kbd{s} prefix key.
28428 @menu
28429 * Storing Variables::
28430 * Recalling Variables::
28431 * Operations on Variables::
28432 * Let Command::
28433 * Evaluates-To Operator::
28434 @end menu
28436 @node Storing Variables, Recalling Variables, Store and Recall, Store and Recall
28437 @section Storing Variables
28439 @noindent
28440 @kindex s s
28441 @pindex calc-store
28442 @cindex Storing variables
28443 @cindex Quick variables
28444 @vindex q0
28445 @vindex q9
28446 The @kbd{s s} (@code{calc-store}) command stores the value at the top of
28447 the stack into a specified variable.  It prompts you to enter the
28448 name of the variable.  If you press a single digit, the value is stored
28449 immediately in one of the ``quick'' variables @code{q0} through
28450 @code{q9}.  Or you can enter any variable name.
28452 @kindex s t
28453 @pindex calc-store-into
28454 The @kbd{s s} command leaves the stored value on the stack.  There is
28455 also an @kbd{s t} (@code{calc-store-into}) command, which removes a
28456 value from the stack and stores it in a variable.
28458 If the top of stack value is an equation @samp{a = 7} or assignment
28459 @samp{a := 7} with a variable on the lefthand side, then Calc will
28460 assign that variable with that value by default, i.e., if you type
28461 @kbd{s s @key{RET}} or @kbd{s t @key{RET}}.  In this example, the
28462 value 7 would be stored in the variable @samp{a}.  (If you do type
28463 a variable name at the prompt, the top-of-stack value is stored in
28464 its entirety, even if it is an equation:  @samp{s s b @key{RET}}
28465 with @samp{a := 7} on the stack stores @samp{a := 7} in @code{b}.)
28467 In fact, the top of stack value can be a vector of equations or
28468 assignments with different variables on their lefthand sides; the
28469 default will be to store all the variables with their corresponding
28470 righthand sides simultaneously.
28472 It is also possible to type an equation or assignment directly at
28473 the prompt for the @kbd{s s} or @kbd{s t} command:  @kbd{s s foo = 7}.
28474 In this case the expression to the right of the @kbd{=} or @kbd{:=}
28475 symbol is evaluated as if by the @kbd{=} command, and that value is
28476 stored in the variable.  No value is taken from the stack; @kbd{s s}
28477 and @kbd{s t} are equivalent when used in this way.
28479 @kindex s 0-9
28480 @kindex t 0-9
28481 The prefix keys @kbd{s} and @kbd{t} may be followed immediately by a
28482 digit; @kbd{s 9} is equivalent to @kbd{s s 9}, and @kbd{t 9} is
28483 equivalent to @kbd{s t 9}.  (The @kbd{t} prefix is otherwise used
28484 for trail and time/date commands.)
28486 @kindex s +
28487 @kindex s -
28488 @ignore
28489 @mindex @idots
28490 @end ignore
28491 @kindex s *
28492 @ignore
28493 @mindex @null
28494 @end ignore
28495 @kindex s /
28496 @ignore
28497 @mindex @null
28498 @end ignore
28499 @kindex s ^
28500 @ignore
28501 @mindex @null
28502 @end ignore
28503 @kindex s |
28504 @ignore
28505 @mindex @null
28506 @end ignore
28507 @kindex s n
28508 @ignore
28509 @mindex @null
28510 @end ignore
28511 @kindex s &
28512 @ignore
28513 @mindex @null
28514 @end ignore
28515 @kindex s [
28516 @ignore
28517 @mindex @null
28518 @end ignore
28519 @kindex s ]
28520 @pindex calc-store-plus
28521 @pindex calc-store-minus
28522 @pindex calc-store-times
28523 @pindex calc-store-div
28524 @pindex calc-store-power
28525 @pindex calc-store-concat
28526 @pindex calc-store-neg
28527 @pindex calc-store-inv
28528 @pindex calc-store-decr
28529 @pindex calc-store-incr
28530 There are also several ``arithmetic store'' commands.  For example,
28531 @kbd{s +} removes a value from the stack and adds it to the specified
28532 variable.  The other arithmetic stores are @kbd{s -}, @kbd{s *}, @kbd{s /},
28533 @kbd{s ^}, and @w{@kbd{s |}} (vector concatenation), plus @kbd{s n} and
28534 @kbd{s &} which negate or invert the value in a variable, and @w{@kbd{s [}}
28535 and @kbd{s ]} which decrease or increase a variable by one.
28537 All the arithmetic stores accept the Inverse prefix to reverse the
28538 order of the operands.  If @expr{v} represents the contents of the
28539 variable, and @expr{a} is the value drawn from the stack, then regular
28540 @w{@kbd{s -}} assigns
28541 @texline @math{v \coloneq v - a},
28542 @infoline @expr{v := v - a},
28543 but @kbd{I s -} assigns
28544 @texline @math{v \coloneq a - v}.
28545 @infoline @expr{v := a - v}.
28546 While @kbd{I s *} might seem pointless, it is
28547 useful if matrix multiplication is involved.  Actually, all the
28548 arithmetic stores use formulas designed to behave usefully both
28549 forwards and backwards:
28551 @example
28552 @group
28553 s +        v := v + a          v := a + v
28554 s -        v := v - a          v := a - v
28555 s *        v := v * a          v := a * v
28556 s /        v := v / a          v := a / v
28557 s ^        v := v ^ a          v := a ^ v
28558 s |        v := v | a          v := a | v
28559 s n        v := v / (-1)       v := (-1) / v
28560 s &        v := v ^ (-1)       v := (-1) ^ v
28561 s [        v := v - 1          v := 1 - v
28562 s ]        v := v - (-1)       v := (-1) - v
28563 @end group
28564 @end example
28566 In the last four cases, a numeric prefix argument will be used in
28567 place of the number one.  (For example, @kbd{M-2 s ]} increases
28568 a variable by 2, and @kbd{M-2 I s ]} replaces a variable by
28569 minus-two minus the variable.
28571 The first six arithmetic stores can also be typed @kbd{s t +}, @kbd{s t -},
28572 etc.  The commands @kbd{s s +}, @kbd{s s -}, and so on are analogous
28573 arithmetic stores that don't remove the value @expr{a} from the stack.
28575 All arithmetic stores report the new value of the variable in the
28576 Trail for your information.  They signal an error if the variable
28577 previously had no stored value.  If default simplifications have been
28578 turned off, the arithmetic stores temporarily turn them on for numeric
28579 arguments only (i.e., they temporarily do an @kbd{m N} command).
28580 @xref{Simplification Modes}.  Large vectors put in the trail by
28581 these commands always use abbreviated (@kbd{t .}) mode.
28583 @kindex s m
28584 @pindex calc-store-map
28585 The @kbd{s m} command is a general way to adjust a variable's value
28586 using any Calc function.  It is a ``mapping'' command analogous to
28587 @kbd{V M}, @kbd{V R}, etc.  @xref{Reducing and Mapping}, to see
28588 how to specify a function for a mapping command.  Basically,
28589 all you do is type the Calc command key that would invoke that
28590 function normally.  For example, @kbd{s m n} applies the @kbd{n}
28591 key to negate the contents of the variable, so @kbd{s m n} is
28592 equivalent to @kbd{s n}.  Also, @kbd{s m Q} takes the square root
28593 of the value stored in a variable, @kbd{s m v v} uses @kbd{v v} to
28594 reverse the vector stored in the variable, and @kbd{s m H I S}
28595 takes the hyperbolic arcsine of the variable contents.
28597 If the mapping function takes two or more arguments, the additional
28598 arguments are taken from the stack; the old value of the variable
28599 is provided as the first argument.  Thus @kbd{s m -} with @expr{a}
28600 on the stack computes @expr{v - a}, just like @kbd{s -}.  With the
28601 Inverse prefix, the variable's original value becomes the @emph{last}
28602 argument instead of the first.  Thus @kbd{I s m -} is also
28603 equivalent to @kbd{I s -}.
28605 @kindex s x
28606 @pindex calc-store-exchange
28607 The @kbd{s x} (@code{calc-store-exchange}) command exchanges the value
28608 of a variable with the value on the top of the stack.  Naturally, the
28609 variable must already have a stored value for this to work.
28611 You can type an equation or assignment at the @kbd{s x} prompt.  The
28612 command @kbd{s x a=6} takes no values from the stack; instead, it
28613 pushes the old value of @samp{a} on the stack and stores @samp{a = 6}.
28615 @kindex s u
28616 @pindex calc-unstore
28617 @cindex Void variables
28618 @cindex Un-storing variables
28619 Until you store something in them, most variables are ``void,'' that is,
28620 they contain no value at all.  If they appear in an algebraic formula
28621 they will be left alone even if you press @kbd{=} (@code{calc-evaluate}).
28622 The @kbd{s u} (@code{calc-unstore}) command returns a variable to the
28623 void state.
28625 @kindex s c
28626 @pindex calc-copy-variable
28627 The @kbd{s c} (@code{calc-copy-variable}) command copies the stored
28628 value of one variable to another.  One way it differs from a simple
28629 @kbd{s r} followed by an @kbd{s t} (aside from saving keystrokes) is
28630 that the value never goes on the stack and thus is never rounded,
28631 evaluated, or simplified in any way; it is not even rounded down to the
28632 current precision.
28634 The only variables with predefined values are the ``special constants''
28635 @code{pi}, @code{e}, @code{i}, @code{phi}, and @code{gamma}.  You are free
28636 to unstore these variables or to store new values into them if you like,
28637 although some of the algebraic-manipulation functions may assume these
28638 variables represent their standard values.  Calc displays a warning if
28639 you change the value of one of these variables, or of one of the other
28640 special variables @code{inf}, @code{uinf}, and @code{nan} (which are
28641 normally void).
28643 Note that @code{pi} doesn't actually have 3.14159265359 stored in it,
28644 but rather a special magic value that evaluates to @cpi{} at the current
28645 precision.  Likewise @code{e}, @code{i}, and @code{phi} evaluate
28646 according to the current precision or polar mode.  If you recall a value
28647 from @code{pi} and store it back, this magic property will be lost.  The
28648 magic property is preserved, however, when a variable is copied with
28649 @kbd{s c}.
28651 @kindex s k
28652 @pindex calc-copy-special-constant
28653 If one of the ``special constants'' is redefined (or undefined) so that
28654 it no longer has its magic property, the property can be restored with
28655 @kbd{s k} (@code{calc-copy-special-constant}).  This command will prompt
28656 for a special constant and a variable to store it in, and so a special
28657 constant can be stored in any variable.  Here, the special constant that
28658 you enter doesn't depend on the value of the corresponding variable;
28659 @code{pi} will represent 3.14159@dots{} regardless of what is currently
28660 stored in the Calc variable @code{pi}.  If one of the other special
28661 variables, @code{inf}, @code{uinf} or @code{nan}, is given a value, its
28662 original behavior can be restored by voiding it with @kbd{s u}.
28664 @node Recalling Variables, Operations on Variables, Storing Variables, Store and Recall
28665 @section Recalling Variables
28667 @noindent
28668 @kindex s r
28669 @pindex calc-recall
28670 @cindex Recalling variables
28671 The most straightforward way to extract the stored value from a variable
28672 is to use the @kbd{s r} (@code{calc-recall}) command.  This command prompts
28673 for a variable name (similarly to @code{calc-store}), looks up the value
28674 of the specified variable, and pushes that value onto the stack.  It is
28675 an error to try to recall a void variable.
28677 It is also possible to recall the value from a variable by evaluating a
28678 formula containing that variable.  For example, @kbd{' a @key{RET} =} is
28679 the same as @kbd{s r a @key{RET}} except that if the variable is void, the
28680 former will simply leave the formula @samp{a} on the stack whereas the
28681 latter will produce an error message.
28683 @kindex r 0-9
28684 The @kbd{r} prefix may be followed by a digit, so that @kbd{r 9} is
28685 equivalent to @kbd{s r 9}.
28687 @node Operations on Variables, Let Command, Recalling Variables, Store and Recall
28688 @section Other Operations on Variables
28690 @noindent
28691 @kindex s e
28692 @pindex calc-edit-variable
28693 The @kbd{s e} (@code{calc-edit-variable}) command edits the stored
28694 value of a variable without ever putting that value on the stack
28695 or simplifying or evaluating the value.  It prompts for the name of
28696 the variable to edit.  If the variable has no stored value, the
28697 editing buffer will start out empty.  If the editing buffer is
28698 empty when you press @kbd{C-c C-c} to finish, the variable will
28699 be made void.  @xref{Editing Stack Entries}, for a general
28700 description of editing.
28702 The @kbd{s e} command is especially useful for creating and editing
28703 rewrite rules which are stored in variables.  Sometimes these rules
28704 contain formulas which must not be evaluated until the rules are
28705 actually used.  (For example, they may refer to @samp{deriv(x,y)},
28706 where @code{x} will someday become some expression involving @code{y};
28707 if you let Calc evaluate the rule while you are defining it, Calc will
28708 replace @samp{deriv(x,y)} with 0 because the formula @code{x} does
28709 not itself refer to @code{y}.)  By contrast, recalling the variable,
28710 editing with @kbd{`}, and storing will evaluate the variable's value
28711 as a side effect of putting the value on the stack.
28713 @kindex s A
28714 @kindex s D
28715 @ignore
28716 @mindex @idots
28717 @end ignore
28718 @kindex s E
28719 @ignore
28720 @mindex @null
28721 @end ignore
28722 @kindex s F
28723 @ignore
28724 @mindex @null
28725 @end ignore
28726 @kindex s G
28727 @ignore
28728 @mindex @null
28729 @end ignore
28730 @kindex s H
28731 @ignore
28732 @mindex @null
28733 @end ignore
28734 @kindex s I
28735 @ignore
28736 @mindex @null
28737 @end ignore
28738 @kindex s L
28739 @ignore
28740 @mindex @null
28741 @end ignore
28742 @kindex s P
28743 @ignore
28744 @mindex @null
28745 @end ignore
28746 @kindex s R
28747 @ignore
28748 @mindex @null
28749 @end ignore
28750 @kindex s T
28751 @ignore
28752 @mindex @null
28753 @end ignore
28754 @kindex s U
28755 @ignore
28756 @mindex @null
28757 @end ignore
28758 @kindex s X
28759 @pindex calc-store-AlgSimpRules
28760 @pindex calc-store-Decls
28761 @pindex calc-store-EvalRules
28762 @pindex calc-store-FitRules
28763 @pindex calc-store-GenCount
28764 @pindex calc-store-Holidays
28765 @pindex calc-store-IntegLimit
28766 @pindex calc-store-LineStyles
28767 @pindex calc-store-PointStyles
28768 @pindex calc-store-PlotRejects
28769 @pindex calc-store-TimeZone
28770 @pindex calc-store-Units
28771 @pindex calc-store-ExtSimpRules
28772 There are several special-purpose variable-editing commands that
28773 use the @kbd{s} prefix followed by a shifted letter:
28775 @table @kbd
28776 @item s A
28777 Edit @code{AlgSimpRules}.  @xref{Algebraic Simplifications}.
28778 @item s D
28779 Edit @code{Decls}.  @xref{Declarations}.
28780 @item s E
28781 Edit @code{EvalRules}.  @xref{Basic Simplifications}.
28782 @item s F
28783 Edit @code{FitRules}.  @xref{Curve Fitting}.
28784 @item s G
28785 Edit @code{GenCount}.  @xref{Solving Equations}.
28786 @item s H
28787 Edit @code{Holidays}.  @xref{Business Days}.
28788 @item s I
28789 Edit @code{IntegLimit}.  @xref{Calculus}.
28790 @item s L
28791 Edit @code{LineStyles}.  @xref{Graphics}.
28792 @item s P
28793 Edit @code{PointStyles}.  @xref{Graphics}.
28794 @item s R
28795 Edit @code{PlotRejects}.  @xref{Graphics}.
28796 @item s T
28797 Edit @code{TimeZone}.  @xref{Time Zones}.
28798 @item s U
28799 Edit @code{Units}.  @xref{User-Defined Units}.
28800 @item s X
28801 Edit @code{ExtSimpRules}.  @xref{Unsafe Simplifications}.
28802 @end table
28804 These commands are just versions of @kbd{s e} that use fixed variable
28805 names rather than prompting for the variable name.
28807 @kindex s p
28808 @pindex calc-permanent-variable
28809 @cindex Storing variables
28810 @cindex Permanent variables
28811 @cindex Calc init file, variables
28812 The @kbd{s p} (@code{calc-permanent-variable}) command saves a
28813 variable's value permanently in your Calc init file (the file given by
28814 the variable @code{calc-settings-file}, typically @file{~/.emacs.d/calc.el}), so
28815 that its value will still be available in future Emacs sessions.  You
28816 can re-execute @w{@kbd{s p}} later on to update the saved value, but the
28817 only way to remove a saved variable is to edit your calc init file
28818 by hand.  (@xref{General Mode Commands}, for a way to tell Calc to
28819 use a different file for the Calc init file.)
28821 If you do not specify the name of a variable to save (i.e.,
28822 @kbd{s p @key{RET}}), all Calc variables with defined values
28823 are saved except for the special constants @code{pi}, @code{e},
28824 @code{i}, @code{phi}, and @code{gamma}; the variables @code{TimeZone}
28825 and @code{PlotRejects};
28826 @code{FitRules}, @code{DistribRules}, and other built-in rewrite
28827 rules; and @code{PlotData@var{n}} variables generated
28828 by the graphics commands.  (You can still save these variables by
28829 explicitly naming them in an @kbd{s p} command.)
28831 @kindex s i
28832 @pindex calc-insert-variables
28833 The @kbd{s i} (@code{calc-insert-variables}) command writes
28834 the values of all Calc variables into a specified buffer.
28835 The variables are written with the prefix @code{var-} in the form of
28836 Lisp @code{setq} commands
28837 which store the values in string form.  You can place these commands
28838 in your Calc init file (or @file{.emacs}) if you wish, though in this case it
28839 would be easier to use @kbd{s p @key{RET}}.  (Note that @kbd{s i}
28840 omits the same set of variables as @w{@kbd{s p @key{RET}}}; the difference
28841 is that @kbd{s i} will store the variables in any buffer, and it also
28842 stores in a more human-readable format.)
28844 @node Let Command, Evaluates-To Operator, Operations on Variables, Store and Recall
28845 @section The Let Command
28847 @noindent
28848 @kindex s l
28849 @pindex calc-let
28850 @cindex Variables, temporary assignment
28851 @cindex Temporary assignment to variables
28852 If you have an expression like @samp{a+b^2} on the stack and you wish to
28853 compute its value where @expr{b=3}, you can simply store 3 in @expr{b} and
28854 then press @kbd{=} to reevaluate the formula.  This has the side-effect
28855 of leaving the stored value of 3 in @expr{b} for future operations.
28857 The @kbd{s l} (@code{calc-let}) command evaluates a formula under a
28858 @emph{temporary} assignment of a variable.  It stores the value on the
28859 top of the stack into the specified variable, then evaluates the
28860 second-to-top stack entry, then restores the original value (or lack of one)
28861 in the variable.  Thus after @kbd{'@w{ }a+b^2 @key{RET} 3 s l b @key{RET}},
28862 the stack will contain the formula @samp{a + 9}.  The subsequent command
28863 @kbd{@w{5 s l a} @key{RET}} will replace this formula with the number 14.
28864 The variables @samp{a} and @samp{b} are not permanently affected in any way
28865 by these commands.
28867 The value on the top of the stack may be an equation or assignment, or
28868 a vector of equations or assignments, in which case the default will be
28869 analogous to the case of @kbd{s t @key{RET}}.  @xref{Storing Variables}.
28871 Also, you can answer the variable-name prompt with an equation or
28872 assignment:  @kbd{s l b=3 @key{RET}} is the same as storing 3 on the stack
28873 and typing @kbd{s l b @key{RET}}.
28875 The @kbd{a b} (@code{calc-substitute}) command is another way to substitute
28876 a variable with a value in a formula.  It does an actual substitution
28877 rather than temporarily assigning the variable and evaluating.  For
28878 example, letting @expr{n=2} in @samp{f(n pi)} with @kbd{a b} will
28879 produce @samp{f(2 pi)}, whereas @kbd{s l} would give @samp{f(6.28)}
28880 since the evaluation step will also evaluate @code{pi}.
28882 @node Evaluates-To Operator,  , Let Command, Store and Recall
28883 @section The Evaluates-To Operator
28885 @noindent
28886 @tindex evalto
28887 @tindex =>
28888 @cindex Evaluates-to operator
28889 @cindex @samp{=>} operator
28890 The special algebraic symbol @samp{=>} is known as the @dfn{evaluates-to
28891 operator}.  (It will show up as an @code{evalto} function call in
28892 other language modes like Pascal and @LaTeX{}.)  This is a binary
28893 operator, that is, it has a lefthand and a righthand argument,
28894 although it can be entered with the righthand argument omitted.
28896 A formula like @samp{@var{a} => @var{b}} is evaluated by Calc as
28897 follows:  First, @var{a} is not simplified or modified in any
28898 way.  The previous value of argument @var{b} is thrown away; the
28899 formula @var{a} is then copied and evaluated as if by the @kbd{=}
28900 command according to all current modes and stored variable values,
28901 and the result is installed as the new value of @var{b}.
28903 For example, suppose you enter the algebraic formula @samp{2 + 3 => 17}.
28904 The number 17 is ignored, and the lefthand argument is left in its
28905 unevaluated form; the result is the formula @samp{2 + 3 => 5}.
28907 @kindex s =
28908 @pindex calc-evalto
28909 You can enter an @samp{=>} formula either directly using algebraic
28910 entry (in which case the righthand side may be omitted since it is
28911 going to be replaced right away anyhow), or by using the @kbd{s =}
28912 (@code{calc-evalto}) command, which takes @var{a} from the stack
28913 and replaces it with @samp{@var{a} => @var{b}}.
28915 Calc keeps track of all @samp{=>} operators on the stack, and
28916 recomputes them whenever anything changes that might affect their
28917 values, i.e., a mode setting or variable value.  This occurs only
28918 if the @samp{=>} operator is at the top level of the formula, or
28919 if it is part of a top-level vector.  In other words, pushing
28920 @samp{2 + (a => 17)} will change the 17 to the actual value of
28921 @samp{a} when you enter the formula, but the result will not be
28922 dynamically updated when @samp{a} is changed later because the
28923 @samp{=>} operator is buried inside a sum.  However, a vector
28924 of @samp{=>} operators will be recomputed, since it is convenient
28925 to push a vector like @samp{[a =>, b =>, c =>]} on the stack to
28926 make a concise display of all the variables in your problem.
28927 (Another way to do this would be to use @samp{[a, b, c] =>},
28928 which provides a slightly different format of display.  You
28929 can use whichever you find easiest to read.)
28931 @kindex m C
28932 @pindex calc-auto-recompute
28933 The @kbd{m C} (@code{calc-auto-recompute}) command allows you to
28934 turn this automatic recomputation on or off.  If you turn
28935 recomputation off, you must explicitly recompute an @samp{=>}
28936 operator on the stack in one of the usual ways, such as by
28937 pressing @kbd{=}.  Turning recomputation off temporarily can save
28938 a lot of time if you will be changing several modes or variables
28939 before you look at the @samp{=>} entries again.
28941 Most commands are not especially useful with @samp{=>} operators
28942 as arguments.  For example, given @samp{x + 2 => 17}, it won't
28943 work to type @kbd{1 +} to get @samp{x + 3 => 18}.  If you want
28944 to operate on the lefthand side of the @samp{=>} operator on
28945 the top of the stack, type @kbd{j 1} (that's the digit ``one'')
28946 to select the lefthand side, execute your commands, then type
28947 @kbd{j u} to unselect.
28949 All current modes apply when an @samp{=>} operator is computed,
28950 including the current simplification mode.  Recall that the
28951 formula @samp{arcsin(sin(x))} will not be handled by Calc's algebraic
28952 simplifications, but Calc's unsafe simplifications will reduce it to 
28953 @samp{x}.   If you enter @samp{arcsin(sin(x)) =>} normally, the result
28954 will be @samp{arcsin(sin(x)) => arcsin(sin(x))}.  If you change to 
28955 Extended Simplification mode, the result will be
28956 @samp{arcsin(sin(x)) => x}.  However, just pressing @kbd{a e}
28957 once will have no effect on @samp{arcsin(sin(x)) => arcsin(sin(x))},
28958 because the righthand side depends only on the lefthand side
28959 and the current mode settings, and the lefthand side is not
28960 affected by commands like @kbd{a e}.
28962 The ``let'' command (@kbd{s l}) has an interesting interaction
28963 with the @samp{=>} operator.  The @kbd{s l} command evaluates the
28964 second-to-top stack entry with the top stack entry supplying
28965 a temporary value for a given variable.  As you might expect,
28966 if that stack entry is an @samp{=>} operator its righthand
28967 side will temporarily show this value for the variable.  In
28968 fact, all @samp{=>}s on the stack will be updated if they refer
28969 to that variable.  But this change is temporary in the sense
28970 that the next command that causes Calc to look at those stack
28971 entries will make them revert to the old variable value.
28973 @smallexample
28974 @group
28975 2:  a => a             2:  a => 17         2:  a => a
28976 1:  a + 1 => a + 1     1:  a + 1 => 18     1:  a + 1 => a + 1
28977     .                      .                   .
28979                            17 s l a @key{RET}        p 8 @key{RET}
28980 @end group
28981 @end smallexample
28983 Here the @kbd{p 8} command changes the current precision,
28984 thus causing the @samp{=>} forms to be recomputed after the
28985 influence of the ``let'' is gone.  The @kbd{d @key{SPC}} command
28986 (@code{calc-refresh}) is a handy way to force the @samp{=>}
28987 operators on the stack to be recomputed without any other
28988 side effects.
28990 @kindex s :
28991 @pindex calc-assign
28992 @tindex assign
28993 @tindex :=
28994 Embedded mode also uses @samp{=>} operators.  In Embedded mode,
28995 the lefthand side of an @samp{=>} operator can refer to variables
28996 assigned elsewhere in the file by @samp{:=} operators.  The
28997 assignment operator @samp{a := 17} does not actually do anything
28998 by itself.  But Embedded mode recognizes it and marks it as a sort
28999 of file-local definition of the variable.  You can enter @samp{:=}
29000 operators in Algebraic mode, or by using the @kbd{s :}
29001 (@code{calc-assign}) [@code{assign}] command which takes a variable
29002 and value from the stack and replaces them with an assignment.
29004 @xref{TeX and LaTeX Language Modes}, for the way @samp{=>} appears in
29005 @TeX{} language output.  The @dfn{eqn} mode gives similar
29006 treatment to @samp{=>}.
29008 @node Graphics, Kill and Yank, Store and Recall, Top
29009 @chapter Graphics
29011 @noindent
29012 The commands for graphing data begin with the @kbd{g} prefix key.  Calc
29013 uses GNUPLOT 2.0 or later to do graphics.  These commands will only work
29014 if GNUPLOT is available on your system.  (While GNUPLOT sounds like
29015 a relative of GNU Emacs, it is actually completely unrelated.
29016 However, it is free software.   It can be obtained from
29017 @samp{http://www.gnuplot.info}.)
29019 @vindex calc-gnuplot-name
29020 If you have GNUPLOT installed on your system but Calc is unable to
29021 find it, you may need to set the @code{calc-gnuplot-name} variable in
29022 your Calc init file or @file{.emacs}.  You may also need to set some
29023 Lisp variables to show Calc how to run GNUPLOT on your system; these
29024 are described under @kbd{g D} and @kbd{g O} below.  If you are using
29025 the X window system or MS-Windows, Calc will configure GNUPLOT for you
29026 automatically.  If you have GNUPLOT 3.0 or later and you are using a
29027 Unix or GNU system without X, Calc will configure GNUPLOT to display
29028 graphs using simple character graphics that will work on any
29029 Posix-compatible terminal.
29031 @menu
29032 * Basic Graphics::
29033 * Three Dimensional Graphics::
29034 * Managing Curves::
29035 * Graphics Options::
29036 * Devices::
29037 @end menu
29039 @node Basic Graphics, Three Dimensional Graphics, Graphics, Graphics
29040 @section Basic Graphics
29042 @noindent
29043 @kindex g f
29044 @pindex calc-graph-fast
29045 The easiest graphics command is @kbd{g f} (@code{calc-graph-fast}).
29046 This command takes two vectors of equal length from the stack.
29047 The vector at the top of the stack represents the ``y'' values of
29048 the various data points.  The vector in the second-to-top position
29049 represents the corresponding ``x'' values.  This command runs
29050 GNUPLOT (if it has not already been started by previous graphing
29051 commands) and displays the set of data points.  The points will
29052 be connected by lines, and there will also be some kind of symbol
29053 to indicate the points themselves.
29055 The ``x'' entry may instead be an interval form, in which case suitable
29056 ``x'' values are interpolated between the minimum and maximum values of
29057 the interval (whether the interval is open or closed is ignored).
29059 The ``x'' entry may also be a number, in which case Calc uses the
29060 sequence of ``x'' values @expr{x}, @expr{x+1}, @expr{x+2}, etc.
29061 (Generally the number 0 or 1 would be used for @expr{x} in this case.)
29063 The ``y'' entry may be any formula instead of a vector.  Calc effectively
29064 uses @kbd{N} (@code{calc-eval-num}) to evaluate variables in the formula;
29065 the result of this must be a formula in a single (unassigned) variable.
29066 The formula is plotted with this variable taking on the various ``x''
29067 values.  Graphs of formulas by default use lines without symbols at the
29068 computed data points.  Note that if neither ``x'' nor ``y'' is a vector,
29069 Calc guesses at a reasonable number of data points to use.  See the
29070 @kbd{g N} command below.  (The ``x'' values must be either a vector
29071 or an interval if ``y'' is a formula.)
29073 @ignore
29074 @starindex
29075 @end ignore
29076 @tindex xy
29077 If ``y'' is (or evaluates to) a formula of the form
29078 @samp{xy(@var{x}, @var{y})} then the result is a
29079 parametric plot.  The two arguments of the fictitious @code{xy} function
29080 are used as the ``x'' and ``y'' coordinates of the curve, respectively.
29081 In this case the ``x'' vector or interval you specified is not directly
29082 visible in the graph.  For example, if ``x'' is the interval @samp{[0..360]}
29083 and ``y'' is the formula @samp{xy(sin(t), cos(t))}, the resulting graph
29084 will be a circle.
29086 Also, ``x'' and ``y'' may each be variable names, in which case Calc
29087 looks for suitable vectors, intervals, or formulas stored in those
29088 variables.
29090 The ``x'' and ``y'' values for the data points (as pulled from the vectors,
29091 calculated from the formulas, or interpolated from the intervals) should
29092 be real numbers (integers, fractions, or floats).  One exception to this
29093 is that the ``y'' entry can consist of a vector of numbers combined with
29094 error forms, in which case the points will be plotted with the
29095 appropriate error bars.  Other than this, if either the ``x''
29096 value or the ``y'' value of a given data point is not a real number, that
29097 data point will be omitted from the graph.  The points on either side
29098 of the invalid point will @emph{not} be connected by a line.
29100 See the documentation for @kbd{g a} below for a description of the way
29101 numeric prefix arguments affect @kbd{g f}.
29103 @cindex @code{PlotRejects} variable
29104 @vindex PlotRejects
29105 If you store an empty vector in the variable @code{PlotRejects}
29106 (i.e., @kbd{[ ] s t PlotRejects}), Calc will append information to
29107 this vector for every data point which was rejected because its
29108 ``x'' or ``y'' values were not real numbers.  The result will be
29109 a matrix where each row holds the curve number, data point number,
29110 ``x'' value, and ``y'' value for a rejected data point.
29111 @xref{Evaluates-To Operator}, for a handy way to keep tabs on the
29112 current value of @code{PlotRejects}.  @xref{Operations on Variables},
29113 for the @kbd{s R} command which is another easy way to examine
29114 @code{PlotRejects}.
29116 @kindex g c
29117 @pindex calc-graph-clear
29118 To clear the graphics display, type @kbd{g c} (@code{calc-graph-clear}).
29119 If the GNUPLOT output device is an X window, the window will go away.
29120 Effects on other kinds of output devices will vary.  You don't need
29121 to use @kbd{g c} if you don't want to---if you give another @kbd{g f}
29122 or @kbd{g p} command later on, it will reuse the existing graphics
29123 window if there is one.
29125 @node Three Dimensional Graphics, Managing Curves, Basic Graphics, Graphics
29126 @section Three-Dimensional Graphics
29128 @kindex g F
29129 @pindex calc-graph-fast-3d
29130 The @kbd{g F} (@code{calc-graph-fast-3d}) command makes a three-dimensional
29131 graph.  It works only if you have GNUPLOT 3.0 or later; with GNUPLOT 2.0,
29132 you will see a GNUPLOT error message if you try this command.
29134 The @kbd{g F} command takes three values from the stack, called ``x'',
29135 ``y'', and ``z'', respectively.  As was the case for 2D graphs, there
29136 are several options for these values.
29138 In the first case, ``x'' and ``y'' are each vectors (not necessarily of
29139 the same length); either or both may instead be interval forms.  The
29140 ``z'' value must be a matrix with the same number of rows as elements
29141 in ``x'', and the same number of columns as elements in ``y''.  The
29142 result is a surface plot where
29143 @texline @math{z_{ij}}
29144 @infoline @expr{z_ij}
29145 is the height of the point
29146 at coordinate @expr{(x_i, y_j)} on the surface.  The 3D graph will
29147 be displayed from a certain default viewpoint; you can change this
29148 viewpoint by adding a @samp{set view} to the @samp{*Gnuplot Commands*}
29149 buffer as described later.  See the GNUPLOT documentation for a
29150 description of the @samp{set view} command.
29152 Each point in the matrix will be displayed as a dot in the graph,
29153 and these points will be connected by a grid of lines (@dfn{isolines}).
29155 In the second case, ``x'', ``y'', and ``z'' are all vectors of equal
29156 length.  The resulting graph displays a 3D line instead of a surface,
29157 where the coordinates of points along the line are successive triplets
29158 of values from the input vectors.
29160 In the third case, ``x'' and ``y'' are vectors or interval forms, and
29161 ``z'' is any formula involving two variables (not counting variables
29162 with assigned values).  These variables are sorted into alphabetical
29163 order; the first takes on values from ``x'' and the second takes on
29164 values from ``y'' to form a matrix of results that are graphed as a
29165 3D surface.
29167 @ignore
29168 @starindex
29169 @end ignore
29170 @tindex xyz
29171 If the ``z'' formula evaluates to a call to the fictitious function
29172 @samp{xyz(@var{x}, @var{y}, @var{z})}, then the result is a
29173 ``parametric surface.''  In this case, the axes of the graph are
29174 taken from the @var{x} and @var{y} values in these calls, and the
29175 ``x'' and ``y'' values from the input vectors or intervals are used only
29176 to specify the range of inputs to the formula.  For example, plotting
29177 @samp{[0..360], [0..180], xyz(sin(x)*sin(y), cos(x)*sin(y), cos(y))}
29178 will draw a sphere.  (Since the default resolution for 3D plots is
29179 5 steps in each of ``x'' and ``y'', this will draw a very crude
29180 sphere.  You could use the @kbd{g N} command, described below, to
29181 increase this resolution, or specify the ``x'' and ``y'' values as
29182 vectors with more than 5 elements.
29184 It is also possible to have a function in a regular @kbd{g f} plot
29185 evaluate to an @code{xyz} call.  Since @kbd{g f} plots a line, not
29186 a surface, the result will be a 3D parametric line.  For example,
29187 @samp{[[0..720], xyz(sin(x), cos(x), x)]} will plot two turns of a
29188 helix (a three-dimensional spiral).
29190 As for @kbd{g f}, each of ``x'', ``y'', and ``z'' may instead be
29191 variables containing the relevant data.
29193 @node Managing Curves, Graphics Options, Three Dimensional Graphics, Graphics
29194 @section Managing Curves
29196 @noindent
29197 The @kbd{g f} command is really shorthand for the following commands:
29198 @kbd{C-u g d  g a  g p}.  Likewise, @w{@kbd{g F}} is shorthand for
29199 @kbd{C-u g d  g A  g p}.  You can gain more control over your graph
29200 by using these commands directly.
29202 @kindex g a
29203 @pindex calc-graph-add
29204 The @kbd{g a} (@code{calc-graph-add}) command adds the ``curve''
29205 represented by the two values on the top of the stack to the current
29206 graph.  You can have any number of curves in the same graph.  When
29207 you give the @kbd{g p} command, all the curves will be drawn superimposed
29208 on the same axes.
29210 The @kbd{g a} command (and many others that affect the current graph)
29211 will cause a special buffer, @samp{*Gnuplot Commands*}, to be displayed
29212 in another window.  This buffer is a template of the commands that will
29213 be sent to GNUPLOT when it is time to draw the graph.  The first
29214 @kbd{g a} command adds a @code{plot} command to this buffer.  Succeeding
29215 @kbd{g a} commands add extra curves onto that @code{plot} command.
29216 Other graph-related commands put other GNUPLOT commands into this
29217 buffer.  In normal usage you never need to work with this buffer
29218 directly, but you can if you wish.  The only constraint is that there
29219 must be only one @code{plot} command, and it must be the last command
29220 in the buffer.  If you want to save and later restore a complete graph
29221 configuration, you can use regular Emacs commands to save and restore
29222 the contents of the @samp{*Gnuplot Commands*} buffer.
29224 @vindex PlotData1
29225 @vindex PlotData2
29226 If the values on the stack are not variable names, @kbd{g a} will invent
29227 variable names for them (of the form @samp{PlotData@var{n}}) and store
29228 the values in those variables.  The ``x'' and ``y'' variables are what
29229 go into the @code{plot} command in the template.  If you add a curve
29230 that uses a certain variable and then later change that variable, you
29231 can replot the graph without having to delete and re-add the curve.
29232 That's because the variable name, not the vector, interval or formula
29233 itself, is what was added by @kbd{g a}.
29235 A numeric prefix argument on @kbd{g a} or @kbd{g f} changes the way
29236 stack entries are interpreted as curves.  With a positive prefix
29237 argument @expr{n}, the top @expr{n} stack entries are ``y'' values
29238 for @expr{n} different curves which share a common ``x'' value in
29239 the @expr{n+1}st stack entry.  (Thus @kbd{g a} with no prefix
29240 argument is equivalent to @kbd{C-u 1 g a}.)
29242 A prefix of zero or plain @kbd{C-u} means to take two stack entries,
29243 ``x'' and ``y'' as usual, but to interpret ``y'' as a vector of
29244 ``y'' values for several curves that share a common ``x''.
29246 A negative prefix argument tells Calc to read @expr{n} vectors from
29247 the stack; each vector @expr{[x, y]} describes an independent curve.
29248 This is the only form of @kbd{g a} that creates several curves at once
29249 that don't have common ``x'' values.  (Of course, the range of ``x''
29250 values covered by all the curves ought to be roughly the same if
29251 they are to look nice on the same graph.)
29253 For example, to plot
29254 @texline @math{\sin n x}
29255 @infoline @expr{sin(n x)}
29256 for integers @expr{n}
29257 from 1 to 5, you could use @kbd{v x} to create a vector of integers
29258 (@expr{n}), then @kbd{V M '} or @kbd{V M $} to map @samp{sin(n x)}
29259 across this vector.  The resulting vector of formulas is suitable
29260 for use as the ``y'' argument to a @kbd{C-u g a} or @kbd{C-u g f}
29261 command.
29263 @kindex g A
29264 @pindex calc-graph-add-3d
29265 The @kbd{g A} (@code{calc-graph-add-3d}) command adds a 3D curve
29266 to the graph.  It is not valid to intermix 2D and 3D curves in a
29267 single graph.  This command takes three arguments, ``x'', ``y'',
29268 and ``z'', from the stack.  With a positive prefix @expr{n}, it
29269 takes @expr{n+2} arguments (common ``x'' and ``y'', plus @expr{n}
29270 separate ``z''s).  With a zero prefix, it takes three stack entries
29271 but the ``z'' entry is a vector of curve values.  With a negative
29272 prefix @expr{-n}, it takes @expr{n} vectors of the form @expr{[x, y, z]}.
29273 The @kbd{g A} command works by adding a @code{splot} (surface-plot)
29274 command to the @samp{*Gnuplot Commands*} buffer.
29276 (Although @kbd{g a} adds a 2D @code{plot} command to the
29277 @samp{*Gnuplot Commands*} buffer, Calc changes this to @code{splot}
29278 before sending it to GNUPLOT if it notices that the data points are
29279 evaluating to @code{xyz} calls.  It will not work to mix 2D and 3D
29280 @kbd{g a} curves in a single graph, although Calc does not currently
29281 check for this.)
29283 @kindex g d
29284 @pindex calc-graph-delete
29285 The @kbd{g d} (@code{calc-graph-delete}) command deletes the most
29286 recently added curve from the graph.  It has no effect if there are
29287 no curves in the graph.  With a numeric prefix argument of any kind,
29288 it deletes all of the curves from the graph.
29290 @kindex g H
29291 @pindex calc-graph-hide
29292 The @kbd{g H} (@code{calc-graph-hide}) command ``hides'' or ``unhides''
29293 the most recently added curve.  A hidden curve will not appear in
29294 the actual plot, but information about it such as its name and line and
29295 point styles will be retained.
29297 @kindex g j
29298 @pindex calc-graph-juggle
29299 The @kbd{g j} (@code{calc-graph-juggle}) command moves the curve
29300 at the end of the list (the ``most recently added curve'') to the
29301 front of the list.  The next-most-recent curve is thus exposed for
29302 @w{@kbd{g d}} or similar commands to use.  With @kbd{g j} you can work
29303 with any curve in the graph even though curve-related commands only
29304 affect the last curve in the list.
29306 @kindex g p
29307 @pindex calc-graph-plot
29308 The @kbd{g p} (@code{calc-graph-plot}) command uses GNUPLOT to draw
29309 the graph described in the @samp{*Gnuplot Commands*} buffer.  Any
29310 GNUPLOT parameters which are not defined by commands in this buffer
29311 are reset to their default values.  The variables named in the @code{plot}
29312 command are written to a temporary data file and the variable names
29313 are then replaced by the file name in the template.  The resulting
29314 plotting commands are fed to the GNUPLOT program.  See the documentation
29315 for the GNUPLOT program for more specific information.  All temporary
29316 files are removed when Emacs or GNUPLOT exits.
29318 If you give a formula for ``y'', Calc will remember all the values that
29319 it calculates for the formula so that later plots can reuse these values.
29320 Calc throws out these saved values when you change any circumstances
29321 that may affect the data, such as switching from Degrees to Radians
29322 mode, or changing the value of a parameter in the formula.  You can
29323 force Calc to recompute the data from scratch by giving a negative
29324 numeric prefix argument to @kbd{g p}.
29326 Calc uses a fairly rough step size when graphing formulas over intervals.
29327 This is to ensure quick response.  You can ``refine'' a plot by giving
29328 a positive numeric prefix argument to @kbd{g p}.  Calc goes through
29329 the data points it has computed and saved from previous plots of the
29330 function, and computes and inserts a new data point midway between
29331 each of the existing points.  You can refine a plot any number of times,
29332 but beware that the amount of calculation involved doubles each time.
29334 Calc does not remember computed values for 3D graphs.  This means the
29335 numerix prefix argument, if any, to @kbd{g p} is effectively ignored if
29336 the current graph is three-dimensional.
29338 @kindex g P
29339 @pindex calc-graph-print
29340 The @kbd{g P} (@code{calc-graph-print}) command is like @kbd{g p},
29341 except that it sends the output to a printer instead of to the
29342 screen.  More precisely, @kbd{g p} looks for @samp{set terminal}
29343 or @samp{set output} commands in the @samp{*Gnuplot Commands*} buffer;
29344 lacking these it uses the default settings.  However, @kbd{g P}
29345 ignores @samp{set terminal} and @samp{set output} commands and
29346 uses a different set of default values.  All of these values are
29347 controlled by the @kbd{g D} and @kbd{g O} commands discussed below.
29348 Provided everything is set up properly, @kbd{g p} will plot to
29349 the screen unless you have specified otherwise and @kbd{g P} will
29350 always plot to the printer.
29352 @node Graphics Options, Devices, Managing Curves, Graphics
29353 @section Graphics Options
29355 @noindent
29356 @kindex g g
29357 @pindex calc-graph-grid
29358 The @kbd{g g} (@code{calc-graph-grid}) command turns the ``grid''
29359 on and off.  It is off by default; tick marks appear only at the
29360 edges of the graph.  With the grid turned on, dotted lines appear
29361 across the graph at each tick mark.  Note that this command only
29362 changes the setting in @samp{*Gnuplot Commands*}; to see the effects
29363 of the change you must give another @kbd{g p} command.
29365 @kindex g b
29366 @pindex calc-graph-border
29367 The @kbd{g b} (@code{calc-graph-border}) command turns the border
29368 (the box that surrounds the graph) on and off.  It is on by default.
29369 This command will only work with GNUPLOT 3.0 and later versions.
29371 @kindex g k
29372 @pindex calc-graph-key
29373 The @kbd{g k} (@code{calc-graph-key}) command turns the ``key''
29374 on and off.  The key is a chart in the corner of the graph that
29375 shows the correspondence between curves and line styles.  It is
29376 off by default, and is only really useful if you have several
29377 curves on the same graph.
29379 @kindex g N
29380 @pindex calc-graph-num-points
29381 The @kbd{g N} (@code{calc-graph-num-points}) command allows you
29382 to select the number of data points in the graph.  This only affects
29383 curves where neither ``x'' nor ``y'' is specified as a vector.
29384 Enter a blank line to revert to the default value (initially 15).
29385 With no prefix argument, this command affects only the current graph.
29386 With a positive prefix argument this command changes or, if you enter
29387 a blank line, displays the default number of points used for all
29388 graphs created by @kbd{g a} that don't specify the resolution explicitly.
29389 With a negative prefix argument, this command changes or displays
29390 the default value (initially 5) used for 3D graphs created by @kbd{g A}.
29391 Note that a 3D setting of 5 means that a total of @expr{5^2 = 25} points
29392 will be computed for the surface.
29394 Data values in the graph of a function are normally computed to a
29395 precision of five digits, regardless of the current precision at the
29396 time. This is usually more than adequate, but there are cases where
29397 it will not be.  For example, plotting @expr{1 + x} with @expr{x} in the
29398 interval @samp{[0 ..@: 1e-6]} will round all the data points down
29399 to 1.0!  Putting the command @samp{set precision @var{n}} in the
29400 @samp{*Gnuplot Commands*} buffer will cause the data to be computed
29401 at precision @var{n} instead of 5.  Since this is such a rare case,
29402 there is no keystroke-based command to set the precision.
29404 @kindex g h
29405 @pindex calc-graph-header
29406 The @kbd{g h} (@code{calc-graph-header}) command sets the title
29407 for the graph.  This will show up centered above the graph.
29408 The default title is blank (no title).
29410 @kindex g n
29411 @pindex calc-graph-name
29412 The @kbd{g n} (@code{calc-graph-name}) command sets the title of an
29413 individual curve.  Like the other curve-manipulating commands, it
29414 affects the most recently added curve, i.e., the last curve on the
29415 list in the @samp{*Gnuplot Commands*} buffer.  To set the title of
29416 the other curves you must first juggle them to the end of the list
29417 with @kbd{g j}, or edit the @samp{*Gnuplot Commands*} buffer by hand.
29418 Curve titles appear in the key; if the key is turned off they are
29419 not used.
29421 @kindex g t
29422 @kindex g T
29423 @pindex calc-graph-title-x
29424 @pindex calc-graph-title-y
29425 The @kbd{g t} (@code{calc-graph-title-x}) and @kbd{g T}
29426 (@code{calc-graph-title-y}) commands set the titles on the ``x''
29427 and ``y'' axes, respectively.  These titles appear next to the
29428 tick marks on the left and bottom edges of the graph, respectively.
29429 Calc does not have commands to control the tick marks themselves,
29430 but you can edit them into the @samp{*Gnuplot Commands*} buffer if
29431 you wish.  See the GNUPLOT documentation for details.
29433 @kindex g r
29434 @kindex g R
29435 @pindex calc-graph-range-x
29436 @pindex calc-graph-range-y
29437 The @kbd{g r} (@code{calc-graph-range-x}) and @kbd{g R}
29438 (@code{calc-graph-range-y}) commands set the range of values on the
29439 ``x'' and ``y'' axes, respectively.  You are prompted to enter a
29440 suitable range.  This should be either a pair of numbers of the
29441 form, @samp{@var{min}:@var{max}}, or a blank line to revert to the
29442 default behavior of setting the range based on the range of values
29443 in the data, or @samp{$} to take the range from the top of the stack.
29444 Ranges on the stack can be represented as either interval forms or
29445 vectors:  @samp{[@var{min} ..@: @var{max}]} or @samp{[@var{min}, @var{max}]}.
29447 @kindex g l
29448 @kindex g L
29449 @pindex calc-graph-log-x
29450 @pindex calc-graph-log-y
29451 The @kbd{g l} (@code{calc-graph-log-x}) and @kbd{g L} (@code{calc-graph-log-y})
29452 commands allow you to set either or both of the axes of the graph to
29453 be logarithmic instead of linear.
29455 @kindex g C-l
29456 @kindex g C-r
29457 @kindex g C-t
29458 @pindex calc-graph-log-z
29459 @pindex calc-graph-range-z
29460 @pindex calc-graph-title-z
29461 For 3D plots, @kbd{g C-t}, @kbd{g C-r}, and @kbd{g C-l} (those are
29462 letters with the Control key held down) are the corresponding commands
29463 for the ``z'' axis.
29465 @kindex g z
29466 @kindex g Z
29467 @pindex calc-graph-zero-x
29468 @pindex calc-graph-zero-y
29469 The @kbd{g z} (@code{calc-graph-zero-x}) and @kbd{g Z}
29470 (@code{calc-graph-zero-y}) commands control whether a dotted line is
29471 drawn to indicate the ``x'' and/or ``y'' zero axes.  (These are the same
29472 dotted lines that would be drawn there anyway if you used @kbd{g g} to
29473 turn the ``grid'' feature on.)  Zero-axis lines are on by default, and
29474 may be turned off only in GNUPLOT 3.0 and later versions.  They are
29475 not available for 3D plots.
29477 @kindex g s
29478 @pindex calc-graph-line-style
29479 The @kbd{g s} (@code{calc-graph-line-style}) command turns the connecting
29480 lines on or off for the most recently added curve, and optionally selects
29481 the style of lines to be used for that curve.  Plain @kbd{g s} simply
29482 toggles the lines on and off.  With a numeric prefix argument, @kbd{g s}
29483 turns lines on and sets a particular line style.  Line style numbers
29484 start at one and their meanings vary depending on the output device.
29485 GNUPLOT guarantees that there will be at least six different line styles
29486 available for any device.
29488 @kindex g S
29489 @pindex calc-graph-point-style
29490 The @kbd{g S} (@code{calc-graph-point-style}) command similarly turns
29491 the symbols at the data points on or off, or sets the point style.
29492 If you turn both lines and points off, the data points will show as
29493 tiny dots.  If the ``y'' values being plotted contain error forms and
29494 the connecting lines are turned off, then this command will also turn
29495 the error bars on or off.
29497 @cindex @code{LineStyles} variable
29498 @cindex @code{PointStyles} variable
29499 @vindex LineStyles
29500 @vindex PointStyles
29501 Another way to specify curve styles is with the @code{LineStyles} and
29502 @code{PointStyles} variables.  These variables initially have no stored
29503 values, but if you store a vector of integers in one of these variables,
29504 the @kbd{g a} and @kbd{g f} commands will use those style numbers
29505 instead of the defaults for new curves that are added to the graph.
29506 An entry should be a positive integer for a specific style, or 0 to let
29507 the style be chosen automatically, or @mathit{-1} to turn off lines or points
29508 altogether.  If there are more curves than elements in the vector, the
29509 last few curves will continue to have the default styles.  Of course,
29510 you can later use @kbd{g s} and @kbd{g S} to change any of these styles.
29512 For example, @kbd{'[2 -1 3] @key{RET} s t LineStyles} causes the first curve
29513 to have lines in style number 2, the second curve to have no connecting
29514 lines, and the third curve to have lines in style 3.  Point styles will
29515 still be assigned automatically, but you could store another vector in
29516 @code{PointStyles} to define them, too.
29518 @node Devices,  , Graphics Options, Graphics
29519 @section Graphical Devices
29521 @noindent
29522 @kindex g D
29523 @pindex calc-graph-device
29524 The @kbd{g D} (@code{calc-graph-device}) command sets the device name
29525 (or ``terminal name'' in GNUPLOT lingo) to be used by @kbd{g p} commands
29526 on this graph.  It does not affect the permanent default device name.
29527 If you enter a blank name, the device name reverts to the default.
29528 Enter @samp{?} to see a list of supported devices.
29530 With a positive numeric prefix argument, @kbd{g D} instead sets
29531 the default device name, used by all plots in the future which do
29532 not override it with a plain @kbd{g D} command.  If you enter a
29533 blank line this command shows you the current default.  The special
29534 name @code{default} signifies that Calc should choose @code{x11} if
29535 the X window system is in use (as indicated by the presence of a
29536 @code{DISPLAY} environment variable), @code{windows} on MS-Windows, or
29537 otherwise @code{dumb} under GNUPLOT 3.0 and later, or
29538 @code{postscript} under GNUPLOT 2.0.  This is the initial default
29539 value.
29541 The @code{dumb} device is an interface to ``dumb terminals,'' i.e.,
29542 terminals with no special graphics facilities.  It writes a crude
29543 picture of the graph composed of characters like @code{-} and @code{|}
29544 to a buffer called @samp{*Gnuplot Trail*}, which Calc then displays.
29545 The graph is made the same size as the Emacs screen, which on most
29546 dumb terminals will be
29547 @texline @math{80\times24}
29548 @infoline 80x24
29549 characters.  The graph is displayed in
29550 an Emacs ``recursive edit''; type @kbd{q} or @kbd{C-c C-c} to exit
29551 the recursive edit and return to Calc.  Note that the @code{dumb}
29552 device is present only in GNUPLOT 3.0 and later versions.
29554 The word @code{dumb} may be followed by two numbers separated by
29555 spaces.  These are the desired width and height of the graph in
29556 characters.  Also, the device name @code{big} is like @code{dumb}
29557 but creates a graph four times the width and height of the Emacs
29558 screen.  You will then have to scroll around to view the entire
29559 graph.  In the @samp{*Gnuplot Trail*} buffer, @key{SPC}, @key{DEL},
29560 @kbd{<}, and @kbd{>} are defined to scroll by one screenful in each
29561 of the four directions.
29563 With a negative numeric prefix argument, @kbd{g D} sets or displays
29564 the device name used by @kbd{g P} (@code{calc-graph-print}).  This
29565 is initially @code{postscript}.  If you don't have a PostScript
29566 printer, you may decide once again to use @code{dumb} to create a
29567 plot on any text-only printer.
29569 @kindex g O
29570 @pindex calc-graph-output
29571 The @kbd{g O} (@code{calc-graph-output}) command sets the name of the
29572 output file used by GNUPLOT.  For some devices, notably @code{x11} and
29573 @code{windows}, there is no output file and this information is not
29574 used.  Many other ``devices'' are really file formats like
29575 @code{postscript}; in these cases the output in the desired format
29576 goes into the file you name with @kbd{g O}.  Type @kbd{g O stdout
29577 @key{RET}} to set GNUPLOT to write to its standard output stream,
29578 i.e., to @samp{*Gnuplot Trail*}.  This is the default setting.
29580 Another special output name is @code{tty}, which means that GNUPLOT
29581 is going to write graphics commands directly to its standard output,
29582 which you wish Emacs to pass through to your terminal.  Tektronix
29583 graphics terminals, among other devices, operate this way.  Calc does
29584 this by telling GNUPLOT to write to a temporary file, then running a
29585 sub-shell executing the command @samp{cat tempfile >/dev/tty}.  On
29586 typical Unix systems, this will copy the temporary file directly to
29587 the terminal, bypassing Emacs entirely.  You will have to type @kbd{C-l}
29588 to Emacs afterwards to refresh the screen.
29590 Once again, @kbd{g O} with a positive or negative prefix argument
29591 sets the default or printer output file names, respectively.  In each
29592 case you can specify @code{auto}, which causes Calc to invent a temporary
29593 file name for each @kbd{g p} (or @kbd{g P}) command.  This temporary file
29594 will be deleted once it has been displayed or printed.  If the output file
29595 name is not @code{auto}, the file is not automatically deleted.
29597 The default and printer devices and output files can be saved
29598 permanently by the @kbd{m m} (@code{calc-save-modes}) command.  The
29599 default number of data points (see @kbd{g N}) and the X geometry
29600 (see @kbd{g X}) are also saved.  Other graph information is @emph{not}
29601 saved; you can save a graph's configuration simply by saving the contents
29602 of the @samp{*Gnuplot Commands*} buffer.
29604 @vindex calc-gnuplot-plot-command
29605 @vindex calc-gnuplot-default-device
29606 @vindex calc-gnuplot-default-output
29607 @vindex calc-gnuplot-print-command
29608 @vindex calc-gnuplot-print-device
29609 @vindex calc-gnuplot-print-output
29610 You may wish to configure the default and
29611 printer devices and output files for the whole system.  The relevant
29612 Lisp variables are @code{calc-gnuplot-default-device} and @code{-output},
29613 and @code{calc-gnuplot-print-device} and @code{-output}.  The output
29614 file names must be either strings as described above, or Lisp
29615 expressions which are evaluated on the fly to get the output file names.
29617 Other important Lisp variables are @code{calc-gnuplot-plot-command} and
29618 @code{calc-gnuplot-print-command}, which give the system commands to
29619 display or print the output of GNUPLOT, respectively.  These may be
29620 @code{nil} if no command is necessary, or strings which can include
29621 @samp{%s} to signify the name of the file to be displayed or printed.
29622 Or, these variables may contain Lisp expressions which are evaluated
29623 to display or print the output.  These variables are customizable
29624 (@pxref{Customizing Calc}).
29626 @kindex g x
29627 @pindex calc-graph-display
29628 The @kbd{g x} (@code{calc-graph-display}) command lets you specify
29629 on which X window system display your graphs should be drawn.  Enter
29630 a blank line to see the current display name.  This command has no
29631 effect unless the current device is @code{x11}.
29633 @kindex g X
29634 @pindex calc-graph-geometry
29635 The @kbd{g X} (@code{calc-graph-geometry}) command is a similar
29636 command for specifying the position and size of the X window.
29637 The normal value is @code{default}, which generally means your
29638 window manager will let you place the window interactively.
29639 Entering @samp{800x500+0+0} would create an 800-by-500 pixel
29640 window in the upper-left corner of the screen.  This command has no
29641 effect if the current device is @code{windows}.
29643 The buffer called @samp{*Gnuplot Trail*} holds a transcript of the
29644 session with GNUPLOT.  This shows the commands Calc has ``typed'' to
29645 GNUPLOT and the responses it has received.  Calc tries to notice when an
29646 error message has appeared here and display the buffer for you when
29647 this happens.  You can check this buffer yourself if you suspect
29648 something has gone wrong@footnote{
29649 On MS-Windows, due to the peculiarities of how the Windows version of
29650 GNUPLOT (called @command{wgnuplot}) works, the GNUPLOT responses are
29651 not communicated back to Calc.  Instead, you need to look them up in
29652 the GNUPLOT command window that is displayed as in normal interactive
29653 usage of GNUPLOT.
29656 @kindex g C
29657 @pindex calc-graph-command
29658 The @kbd{g C} (@code{calc-graph-command}) command prompts you to
29659 enter any line of text, then simply sends that line to the current
29660 GNUPLOT process.  The @samp{*Gnuplot Trail*} buffer looks deceptively
29661 like a Shell buffer but you can't type commands in it yourself.
29662 Instead, you must use @kbd{g C} for this purpose.
29664 @kindex g v
29665 @kindex g V
29666 @pindex calc-graph-view-commands
29667 @pindex calc-graph-view-trail
29668 The @kbd{g v} (@code{calc-graph-view-commands}) and @kbd{g V}
29669 (@code{calc-graph-view-trail}) commands display the @samp{*Gnuplot Commands*}
29670 and @samp{*Gnuplot Trail*} buffers, respectively, in another window.
29671 This happens automatically when Calc thinks there is something you
29672 will want to see in either of these buffers.  If you type @kbd{g v}
29673 or @kbd{g V} when the relevant buffer is already displayed, the
29674 buffer is hidden again.  (Note that on MS-Windows, the @samp{*Gnuplot
29675 Trail*} buffer will usually show nothing of interest, because
29676 GNUPLOT's responses are not communicated back to Calc.)
29678 One reason to use @kbd{g v} is to add your own commands to the
29679 @samp{*Gnuplot Commands*} buffer.  Press @kbd{g v}, then use
29680 @kbd{C-x o} to switch into that window.  For example, GNUPLOT has
29681 @samp{set label} and @samp{set arrow} commands that allow you to
29682 annotate your plots.  Since Calc doesn't understand these commands,
29683 you have to add them to the @samp{*Gnuplot Commands*} buffer
29684 yourself, then use @w{@kbd{g p}} to replot using these new commands.  Note
29685 that your commands must appear @emph{before} the @code{plot} command.
29686 To get help on any GNUPLOT feature, type, e.g., @kbd{g C help set label}.
29687 You may have to type @kbd{g C @key{RET}} a few times to clear the
29688 ``press return for more'' or ``subtopic of @dots{}'' requests.
29689 Note that Calc always sends commands (like @samp{set nolabel}) to
29690 reset all plotting parameters to the defaults before each plot, so
29691 to delete a label all you need to do is delete the @samp{set label}
29692 line you added (or comment it out with @samp{#}) and then replot
29693 with @kbd{g p}.
29695 @kindex g q
29696 @pindex calc-graph-quit
29697 You can use @kbd{g q} (@code{calc-graph-quit}) to kill the GNUPLOT
29698 process that is running.  The next graphing command you give will
29699 start a fresh GNUPLOT process.  The word @samp{Graph} appears in
29700 the Calc window's mode line whenever a GNUPLOT process is currently
29701 running.  The GNUPLOT process is automatically killed when you
29702 exit Emacs if you haven't killed it manually by then.
29704 @kindex g K
29705 @pindex calc-graph-kill
29706 The @kbd{g K} (@code{calc-graph-kill}) command is like @kbd{g q}
29707 except that it also views the @samp{*Gnuplot Trail*} buffer so that
29708 you can see the process being killed.  This is better if you are
29709 killing GNUPLOT because you think it has gotten stuck.
29711 @node Kill and Yank, Keypad Mode, Graphics, Top
29712 @chapter Kill and Yank Functions
29714 @noindent
29715 The commands in this chapter move information between the Calculator and
29716 other Emacs editing buffers.
29718 In many cases Embedded mode is an easier and more natural way to
29719 work with Calc from a regular editing buffer.  @xref{Embedded Mode}.
29721 @menu
29722 * Killing From Stack::
29723 * Yanking Into Stack::
29724 * Saving Into Registers::
29725 * Inserting From Registers::
29726 * Grabbing From Buffers::
29727 * Yanking Into Buffers::
29728 * X Cut and Paste::
29729 @end menu
29731 @node Killing From Stack, Yanking Into Stack, Kill and Yank, Kill and Yank
29732 @section Killing from the Stack
29734 @noindent
29735 @kindex C-k
29736 @pindex calc-kill
29737 @kindex M-k
29738 @pindex calc-copy-as-kill
29739 @kindex C-w
29740 @pindex calc-kill-region
29741 @kindex M-w
29742 @pindex calc-copy-region-as-kill
29743 @kindex M-C-w
29744 @cindex Kill ring
29745 @dfn{Kill} commands are Emacs commands that insert text into the ``kill
29746 ring,'' from which it can later be ``yanked'' by a @kbd{C-y} command.
29747 Three common kill commands in normal Emacs are @kbd{C-k}, which kills
29748 one line, @kbd{C-w}, which kills the region between mark and point, and
29749 @kbd{M-w}, which puts the region into the kill ring without actually
29750 deleting it.  All of these commands work in the Calculator, too,
29751 although in the Calculator they operate on whole stack entries, so they
29752 ``round up'' the specified region to encompass full lines.  (To copy
29753 only parts of lines, the @kbd{M-C-w} command in the Calculator will copy
29754 the region to the kill ring without any ``rounding up'', just like the
29755 @kbd{M-w} command in normal Emacs.)  Also, @kbd{M-k} has been provided
29756 to complete the set; it puts the current line into the kill ring without
29757 deleting anything.
29759 The kill commands are unusual in that they pay attention to the location
29760 of the cursor in the Calculator buffer.  If the cursor is on or below
29761 the bottom line, the kill commands operate on the top of the stack.
29762 Otherwise, they operate on whatever stack element the cursor is on.  The
29763 text is copied into the kill ring exactly as it appears on the screen,
29764 including line numbers if they are enabled.
29766 A numeric prefix argument to @kbd{C-k} or @kbd{M-k} affects the number
29767 of lines killed.  A positive argument kills the current line and @expr{n-1}
29768 lines below it.  A negative argument kills the @expr{-n} lines above the
29769 current line.  Again this mirrors the behavior of the standard Emacs
29770 @kbd{C-k} command.  Although a whole line is always deleted, @kbd{C-k}
29771 with no argument copies only the number itself into the kill ring, whereas
29772 @kbd{C-k} with a prefix argument of 1 copies the number with its trailing
29773 newline.
29775 @node Yanking Into Stack, Saving Into Registers, Killing From Stack, Kill and Yank
29776 @section Yanking into the Stack
29778 @noindent
29779 @kindex C-y
29780 @pindex calc-yank
29781 The @kbd{C-y} command yanks the most recently killed text back into the
29782 Calculator.  It pushes this value onto the top of the stack regardless of
29783 the cursor position.  In general it re-parses the killed text as a number
29784 or formula (or a list of these separated by commas or newlines).  However if
29785 the thing being yanked is something that was just killed from the Calculator
29786 itself, its full internal structure is yanked.  For example, if you have
29787 set the floating-point display mode to show only four significant digits,
29788 then killing and re-yanking 3.14159 (which displays as 3.142) will yank the
29789 full 3.14159, even though yanking it into any other buffer would yank the
29790 number in its displayed form, 3.142.  (Since the default display modes
29791 show all objects to their full precision, this feature normally makes no
29792 difference.)
29794 @node Saving Into Registers, Inserting From Registers, Yanking Into Stack, Kill and Yank
29795 @section Saving into Registers
29797 @noindent
29798 @kindex r s
29799 @pindex calc-copy-to-register
29800 @pindex calc-prepend-to-register
29801 @pindex calc-append-to-register
29802 @cindex Registers
29803 An alternative to killing and yanking stack entries is using
29804 registers in Calc.  Saving stack entries in registers is like
29805 saving text in normal Emacs registers; although, like Calc's kill
29806 commands, register commands always operate on whole stack
29807 entries.
29809 Registers in Calc are places to store stack entries for later use;
29810 each register is indexed by a single character.  To store the current
29811 region (rounded up, of course, to include full stack entries) into a
29812 register, use the command @kbd{r s} (@code{calc-copy-to-register}).
29813 You will then be prompted for a register to use, the next character
29814 you type will be the index for the register.  To store the region in
29815 register @var{r}, the full command will be @kbd{r s @var{r}}.  With an
29816 argument, @kbd{C-u r s @var{r}}, the region being copied to the
29817 register will be deleted from the Calc buffer.
29819 It is possible to add additional stack entries to a register.  The
29820 command @kbd{M-x calc-append-to-register} will prompt for a register,
29821 then add the stack entries in the region to the end of the register
29822 contents. The command @kbd{M-x calc-prepend-to-register} will
29823 similarly prompt for a register and add  the stack entries in the
29824 region to the beginning of the register contents.  Both commands take
29825 @kbd{C-u} arguments, which will cause the region to be deleted after being
29826 added to the register.
29828 @node Inserting From Registers, Grabbing From Buffers, Saving Into Registers, Kill and Yank
29829 @section Inserting from Registers
29830 @noindent
29831 @kindex r i
29832 @pindex calc-insert-register
29833 The command @kbd{r i} (@code{calc-insert-register}) will prompt for a
29834 register, then insert the contents of that register into the
29835 Calculator.  If the contents of the register were placed there from
29836 within Calc, then the full internal structure of the contents will be
29837 inserted into the Calculator, otherwise whatever text is in the
29838 register is reparsed and then inserted into the Calculator.
29840 @node Grabbing From Buffers, Yanking Into Buffers, Inserting From Registers, Kill and Yank
29841 @section Grabbing from Other Buffers
29843 @noindent
29844 @kindex C-x * g
29845 @pindex calc-grab-region
29846 The @kbd{C-x * g} (@code{calc-grab-region}) command takes the text between
29847 point and mark in the current buffer and attempts to parse it as a
29848 vector of values.  Basically, it wraps the text in vector brackets
29849 @samp{[ ]} unless the text already is enclosed in vector brackets,
29850 then reads the text as if it were an algebraic entry.  The contents
29851 of the vector may be numbers, formulas, or any other Calc objects.
29852 If the @kbd{C-x * g} command works successfully, it does an automatic
29853 @kbd{C-x * c} to enter the Calculator buffer.
29855 A numeric prefix argument grabs the specified number of lines around
29856 point, ignoring the mark.  A positive prefix grabs from point to the
29857 @expr{n}th following newline (so that @kbd{M-1 C-x * g} grabs from point
29858 to the end of the current line); a negative prefix grabs from point
29859 back to the @expr{n+1}st preceding newline.  In these cases the text
29860 that is grabbed is exactly the same as the text that @kbd{C-k} would
29861 delete given that prefix argument.
29863 A prefix of zero grabs the current line; point may be anywhere on the
29864 line.
29866 A plain @kbd{C-u} prefix interprets the region between point and mark
29867 as a single number or formula rather than a vector.  For example,
29868 @kbd{C-x * g} on the text @samp{2 a b} produces the vector of three
29869 values @samp{[2, a, b]}, but @kbd{C-u C-x * g} on the same region
29870 reads a formula which is a product of three things:  @samp{2 a b}.
29871 (The text @samp{a + b}, on the other hand, will be grabbed as a
29872 vector of one element by plain @kbd{C-x * g} because the interpretation
29873 @samp{[a, +, b]} would be a syntax error.)
29875 If a different language has been specified (@pxref{Language Modes}),
29876 the grabbed text will be interpreted according to that language.
29878 @kindex C-x * r
29879 @pindex calc-grab-rectangle
29880 The @kbd{C-x * r} (@code{calc-grab-rectangle}) command takes the text between
29881 point and mark and attempts to parse it as a matrix.  If point and mark
29882 are both in the leftmost column, the lines in between are parsed in their
29883 entirety.  Otherwise, point and mark define the corners of a rectangle
29884 whose contents are parsed.
29886 Each line of the grabbed area becomes a row of the matrix.  The result
29887 will actually be a vector of vectors, which Calc will treat as a matrix
29888 only if every row contains the same number of values.
29890 If a line contains a portion surrounded by square brackets (or curly
29891 braces), that portion is interpreted as a vector which becomes a row
29892 of the matrix.  Any text surrounding the bracketed portion on the line
29893 is ignored.
29895 Otherwise, the entire line is interpreted as a row vector as if it
29896 were surrounded by square brackets.  Leading line numbers (in the
29897 format used in the Calc stack buffer) are ignored.  If you wish to
29898 force this interpretation (even if the line contains bracketed
29899 portions), give a negative numeric prefix argument to the
29900 @kbd{C-x * r} command.
29902 If you give a numeric prefix argument of zero or plain @kbd{C-u}, each
29903 line is instead interpreted as a single formula which is converted into
29904 a one-element vector.  Thus the result of @kbd{C-u C-x * r} will be a
29905 one-column matrix.  For example, suppose one line of the data is the
29906 expression @samp{2 a}.  A plain @w{@kbd{C-x * r}} will interpret this as
29907 @samp{[2 a]}, which in turn is read as a two-element vector that forms
29908 one row of the matrix.  But a @kbd{C-u C-x * r} will interpret this row
29909 as @samp{[2*a]}.
29911 If you give a positive numeric prefix argument @var{n}, then each line
29912 will be split up into columns of width @var{n}; each column is parsed
29913 separately as a matrix element.  If a line contained
29914 @w{@samp{2 +/- 3 4 +/- 5}}, then grabbing with a prefix argument of 8
29915 would correctly split the line into two error forms.
29917 @xref{Matrix Functions}, to see how to pull the matrix apart into its
29918 constituent rows and columns.  (If it is a
29919 @texline @math{1\times1}
29920 @infoline 1x1
29921 matrix, just hit @kbd{v u} (@code{calc-unpack}) twice.)
29923 @kindex C-x * :
29924 @kindex C-x * _
29925 @pindex calc-grab-sum-across
29926 @pindex calc-grab-sum-down
29927 @cindex Summing rows and columns of data
29928 The @kbd{C-x * :} (@code{calc-grab-sum-down}) command is a handy way to
29929 grab a rectangle of data and sum its columns.  It is equivalent to
29930 typing @kbd{C-x * r}, followed by @kbd{V R : +} (the vector reduction
29931 command that sums the columns of a matrix; @pxref{Reducing}).  The
29932 result of the command will be a vector of numbers, one for each column
29933 in the input data.  The @kbd{C-x * _} (@code{calc-grab-sum-across}) command
29934 similarly grabs a rectangle and sums its rows by executing @w{@kbd{V R _ +}}.
29936 As well as being more convenient, @kbd{C-x * :} and @kbd{C-x * _} are also
29937 much faster because they don't actually place the grabbed vector on
29938 the stack.  In a @kbd{C-x * r V R : +} sequence, formatting the vector
29939 for display on the stack takes a large fraction of the total time
29940 (unless you have planned ahead and used @kbd{v .} and @kbd{t .} modes).
29942 For example, suppose we have a column of numbers in a file which we
29943 wish to sum.  Go to one corner of the column and press @kbd{C-@@} to
29944 set the mark; go to the other corner and type @kbd{C-x * :}.  Since there
29945 is only one column, the result will be a vector of one number, the sum.
29946 (You can type @kbd{v u} to unpack this vector into a plain number if
29947 you want to do further arithmetic with it.)
29949 To compute the product of the column of numbers, we would have to do
29950 it ``by hand'' since there's no special grab-and-multiply command.
29951 Use @kbd{C-x * r} to grab the column of numbers into the calculator in
29952 the form of a column matrix.  The statistics command @kbd{u *} is a
29953 handy way to find the product of a vector or matrix of numbers.
29954 @xref{Statistical Operations}.  Another approach would be to use
29955 an explicit column reduction command, @kbd{V R : *}.
29957 @node Yanking Into Buffers, X Cut and Paste, Grabbing From Buffers, Kill and Yank
29958 @section Yanking into Other Buffers
29960 @noindent
29961 @kindex y
29962 @pindex calc-copy-to-buffer
29963 The plain @kbd{y} (@code{calc-copy-to-buffer}) command inserts the number
29964 at the top of the stack into the most recently used normal editing buffer.
29965 (More specifically, this is the most recently used buffer which is displayed
29966 in a window and whose name does not begin with @samp{*}.  If there is no
29967 such buffer, this is the most recently used buffer except for Calculator
29968 and Calc Trail buffers.)  The number is inserted exactly as it appears and
29969 without a newline.  (If line-numbering is enabled, the line number is
29970 normally not included.)  The number is @emph{not} removed from the stack.
29972 With a prefix argument, @kbd{y} inserts several numbers, one per line.
29973 A positive argument inserts the specified number of values from the top
29974 of the stack.  A negative argument inserts the @expr{n}th value from the
29975 top of the stack.  An argument of zero inserts the entire stack.  Note
29976 that @kbd{y} with an argument of 1 is slightly different from @kbd{y}
29977 with no argument; the former always copies full lines, whereas the
29978 latter strips off the trailing newline.
29980 With a lone @kbd{C-u} as a prefix argument, @kbd{y} @emph{replaces} the
29981 region in the other buffer with the yanked text, then quits the
29982 Calculator, leaving you in that buffer.  A typical use would be to use
29983 @kbd{C-x * g} to read a region of data into the Calculator, operate on the
29984 data to produce a new matrix, then type @kbd{C-u y} to replace the
29985 original data with the new data.  One might wish to alter the matrix
29986 display style (@pxref{Vector and Matrix Formats}) or change the current
29987 display language (@pxref{Language Modes}) before doing this.  Also, note
29988 that this command replaces a linear region of text (as grabbed by
29989 @kbd{C-x * g}), not a rectangle (as grabbed by @kbd{C-x * r}).
29991 If the editing buffer is in overwrite (as opposed to insert) mode,
29992 and the @kbd{C-u} prefix was not used, then the yanked number will
29993 overwrite the characters following point rather than being inserted
29994 before those characters.  The usual conventions of overwrite mode
29995 are observed; for example, characters will be inserted at the end of
29996 a line rather than overflowing onto the next line.  Yanking a multi-line
29997 object such as a matrix in overwrite mode overwrites the next @var{n}
29998 lines in the buffer, lengthening or shortening each line as necessary.
29999 Finally, if the thing being yanked is a simple integer or floating-point
30000 number (like @samp{-1.2345e-3}) and the characters following point also
30001 make up such a number, then Calc will replace that number with the new
30002 number, lengthening or shortening as necessary.  The concept of
30003 ``overwrite mode'' has thus been generalized from overwriting characters
30004 to overwriting one complete number with another.
30006 @kindex C-x * y
30007 The @kbd{C-x * y} key sequence is equivalent to @kbd{y} except that
30008 it can be typed anywhere, not just in Calc.  This provides an easy
30009 way to guarantee that Calc knows which editing buffer you want to use!
30011 @node X Cut and Paste,  , Yanking Into Buffers, Kill and Yank
30012 @section X Cut and Paste
30014 @noindent
30015 If you are using Emacs with the X window system, there is an easier
30016 way to move small amounts of data into and out of the calculator:
30017 Use the mouse-oriented cut and paste facilities of X.
30019 The default bindings for a three-button mouse cause the left button
30020 to move the Emacs cursor to the given place, the right button to
30021 select the text between the cursor and the clicked location, and
30022 the middle button to yank the selection into the buffer at the
30023 clicked location.  So, if you have a Calc window and an editing
30024 window on your Emacs screen, you can use left-click/right-click
30025 to select a number, vector, or formula from one window, then
30026 middle-click to paste that value into the other window.  When you
30027 paste text into the Calc window, Calc interprets it as an algebraic
30028 entry.  It doesn't matter where you click in the Calc window; the
30029 new value is always pushed onto the top of the stack.
30031 The @code{xterm} program that is typically used for general-purpose
30032 shell windows in X interprets the mouse buttons in the same way.
30033 So you can use the mouse to move data between Calc and any other
30034 Unix program.  One nice feature of @code{xterm} is that a double
30035 left-click selects one word, and a triple left-click selects a
30036 whole line.  So you can usually transfer a single number into Calc
30037 just by double-clicking on it in the shell, then middle-clicking
30038 in the Calc window.
30040 @node Keypad Mode, Embedded Mode, Kill and Yank, Top
30041 @chapter Keypad Mode
30043 @noindent
30044 @kindex C-x * k
30045 @pindex calc-keypad
30046 The @kbd{C-x * k} (@code{calc-keypad}) command starts the Calculator
30047 and displays a picture of a calculator-style keypad.  If you are using
30048 the X window system, you can click on any of the ``keys'' in the
30049 keypad using the left mouse button to operate the calculator.
30050 The original window remains the selected window; in Keypad mode
30051 you can type in your file while simultaneously performing
30052 calculations with the mouse.
30054 @pindex full-calc-keypad
30055 If you have used @kbd{C-x * b} first, @kbd{C-x * k} instead invokes
30056 the @code{full-calc-keypad} command, which takes over the whole
30057 Emacs screen and displays the keypad, the Calc stack, and the Calc
30058 trail all at once.  This mode would normally be used when running
30059 Calc standalone (@pxref{Standalone Operation}).
30061 If you aren't using the X window system, you must switch into
30062 the @samp{*Calc Keypad*} window, place the cursor on the desired
30063 ``key,'' and type @key{SPC} or @key{RET}.  If you think this
30064 is easier than using Calc normally, go right ahead.
30066 Calc commands are more or less the same in Keypad mode.  Certain
30067 keypad keys differ slightly from the corresponding normal Calc
30068 keystrokes; all such deviations are described below.
30070 Keypad mode includes many more commands than will fit on the keypad
30071 at once.  Click the right mouse button [@code{calc-keypad-menu}]
30072 to switch to the next menu.  The bottom five rows of the keypad
30073 stay the same; the top three rows change to a new set of commands.
30074 To return to earlier menus, click the middle mouse button
30075 [@code{calc-keypad-menu-back}] or simply advance through the menus
30076 until you wrap around.  Typing @key{TAB} inside the keypad window
30077 is equivalent to clicking the right mouse button there.
30079 You can always click the @key{EXEC} button and type any normal
30080 Calc key sequence.  This is equivalent to switching into the
30081 Calc buffer, typing the keys, then switching back to your
30082 original buffer.
30084 @menu
30085 * Keypad Main Menu::
30086 * Keypad Functions Menu::
30087 * Keypad Binary Menu::
30088 * Keypad Vectors Menu::
30089 * Keypad Modes Menu::
30090 @end menu
30092 @node Keypad Main Menu, Keypad Functions Menu, Keypad Mode, Keypad Mode
30093 @section Main Menu
30095 @smallexample
30096 @group
30097 |----+----+--Calc---+----+----1
30098 |FLR |CEIL|RND |TRNC|CLN2|FLT |
30099 |----+----+----+----+----+----|
30100 | LN |EXP |    |ABS |IDIV|MOD |
30101 |----+----+----+----+----+----|
30102 |SIN |COS |TAN |SQRT|y^x |1/x |
30103 |----+----+----+----+----+----|
30104 |  ENTER  |+/- |EEX |UNDO| <- |
30105 |-----+---+-+--+--+-+---++----|
30106 | INV |  7  |  8  |  9  |  /  |
30107 |-----+-----+-----+-----+-----|
30108 | HYP |  4  |  5  |  6  |  *  |
30109 |-----+-----+-----+-----+-----|
30110 |EXEC |  1  |  2  |  3  |  -  |
30111 |-----+-----+-----+-----+-----|
30112 | OFF |  0  |  .  | PI  |  +  |
30113 |-----+-----+-----+-----+-----+
30114 @end group
30115 @end smallexample
30117 @noindent
30118 This is the menu that appears the first time you start Keypad mode.
30119 It will show up in a vertical window on the right side of your screen.
30120 Above this menu is the traditional Calc stack display.  On a 24-line
30121 screen you will be able to see the top three stack entries.
30123 The ten digit keys, decimal point, and @key{EEX} key are used for
30124 entering numbers in the obvious way.  @key{EEX} begins entry of an
30125 exponent in scientific notation.  Just as with regular Calc, the
30126 number is pushed onto the stack as soon as you press @key{ENTER}
30127 or any other function key.
30129 The @key{+/-} key corresponds to normal Calc's @kbd{n} key.  During
30130 numeric entry it changes the sign of the number or of the exponent.
30131 At other times it changes the sign of the number on the top of the
30132 stack.
30134 The @key{INV} and @key{HYP} keys modify other keys.  As well as
30135 having the effects described elsewhere in this manual, Keypad mode
30136 defines several other ``inverse'' operations.  These are described
30137 below and in the following sections.
30139 The @key{ENTER} key finishes the current numeric entry, or otherwise
30140 duplicates the top entry on the stack.
30142 The @key{UNDO} key undoes the most recent Calc operation.
30143 @kbd{INV UNDO} is the ``redo'' command, and @kbd{HYP UNDO} is
30144 ``last arguments'' (@kbd{M-@key{RET}}).
30146 The @key{<-} key acts as a ``backspace'' during numeric entry.
30147 At other times it removes the top stack entry.  @kbd{INV <-}
30148 clears the entire stack.  @kbd{HYP <-} takes an integer from
30149 the stack, then removes that many additional stack elements.
30151 The @key{EXEC} key prompts you to enter any keystroke sequence
30152 that would normally work in Calc mode.  This can include a
30153 numeric prefix if you wish.  It is also possible simply to
30154 switch into the Calc window and type commands in it; there is
30155 nothing ``magic'' about this window when Keypad mode is active.
30157 The other keys in this display perform their obvious calculator
30158 functions.  @key{CLN2} rounds the top-of-stack by temporarily
30159 reducing the precision by 2 digits.  @key{FLT} converts an
30160 integer or fraction on the top of the stack to floating-point.
30162 The @key{INV} and @key{HYP} keys combined with several of these keys
30163 give you access to some common functions even if the appropriate menu
30164 is not displayed.  Obviously you don't need to learn these keys
30165 unless you find yourself wasting time switching among the menus.
30167 @table @kbd
30168 @item INV +/-
30169 is the same as @key{1/x}.
30170 @item INV +
30171 is the same as @key{SQRT}.
30172 @item INV -
30173 is the same as @key{CONJ}.
30174 @item INV *
30175 is the same as @key{y^x}.
30176 @item INV /
30177 is the same as @key{INV y^x} (the @expr{x}th root of @expr{y}).
30178 @item HYP/INV 1
30179 are the same as @key{SIN} / @kbd{INV SIN}.
30180 @item HYP/INV 2
30181 are the same as @key{COS} / @kbd{INV COS}.
30182 @item HYP/INV 3
30183 are the same as @key{TAN} / @kbd{INV TAN}.
30184 @item INV/HYP 4
30185 are the same as @key{LN} / @kbd{HYP LN}.
30186 @item INV/HYP 5
30187 are the same as @key{EXP} / @kbd{HYP EXP}.
30188 @item INV 6
30189 is the same as @key{ABS}.
30190 @item INV 7
30191 is the same as @key{RND} (@code{calc-round}).
30192 @item INV 8
30193 is the same as @key{CLN2}.
30194 @item INV 9
30195 is the same as @key{FLT} (@code{calc-float}).
30196 @item INV 0
30197 is the same as @key{IMAG}.
30198 @item INV .
30199 is the same as @key{PREC}.
30200 @item INV ENTER
30201 is the same as @key{SWAP}.
30202 @item HYP ENTER
30203 is the same as @key{RLL3}.
30204 @item INV HYP ENTER
30205 is the same as @key{OVER}.
30206 @item HYP +/-
30207 packs the top two stack entries as an error form.
30208 @item HYP EEX
30209 packs the top two stack entries as a modulo form.
30210 @item INV EEX
30211 creates an interval form; this removes an integer which is one
30212 of 0 @samp{[]}, 1 @samp{[)}, 2 @samp{(]} or 3 @samp{()}, followed
30213 by the two limits of the interval.
30214 @end table
30216 The @kbd{OFF} key turns Calc off; typing @kbd{C-x * k} or @kbd{C-x * *}
30217 again has the same effect.  This is analogous to typing @kbd{q} or
30218 hitting @kbd{C-x * c} again in the normal calculator.  If Calc is
30219 running standalone (the @code{full-calc-keypad} command appeared in the
30220 command line that started Emacs), then @kbd{OFF} is replaced with
30221 @kbd{EXIT}; clicking on this actually exits Emacs itself.
30223 @node Keypad Functions Menu, Keypad Binary Menu, Keypad Main Menu, Keypad Mode
30224 @section Functions Menu
30226 @smallexample
30227 @group
30228 |----+----+----+----+----+----2
30229 |IGAM|BETA|IBET|ERF |BESJ|BESY|
30230 |----+----+----+----+----+----|
30231 |IMAG|CONJ| RE |ATN2|RAND|RAGN|
30232 |----+----+----+----+----+----|
30233 |GCD |FACT|DFCT|BNOM|PERM|NXTP|
30234 |----+----+----+----+----+----|
30235 @end group
30236 @end smallexample
30238 @noindent
30239 This menu provides various operations from the @kbd{f} and @kbd{k}
30240 prefix keys.
30242 @key{IMAG} multiplies the number on the stack by the imaginary
30243 number @expr{i = (0, 1)}.
30245 @key{RE} extracts the real part a complex number.  @kbd{INV RE}
30246 extracts the imaginary part.
30248 @key{RAND} takes a number from the top of the stack and computes
30249 a random number greater than or equal to zero but less than that
30250 number.  (@xref{Random Numbers}.)  @key{RAGN} is the ``random
30251 again'' command; it computes another random number using the
30252 same limit as last time.
30254 @key{INV GCD} computes the LCM (least common multiple) function.
30256 @key{INV FACT} is the gamma function.
30257 @texline @math{\Gamma(x) = (x-1)!}.
30258 @infoline @expr{gamma(x) = (x-1)!}.
30260 @key{PERM} is the number-of-permutations function, which is on the
30261 @kbd{H k c} key in normal Calc.
30263 @key{NXTP} finds the next prime after a number.  @kbd{INV NXTP}
30264 finds the previous prime.
30266 @node Keypad Binary Menu, Keypad Vectors Menu, Keypad Functions Menu, Keypad Mode
30267 @section Binary Menu
30269 @smallexample
30270 @group
30271 |----+----+----+----+----+----3
30272 |AND | OR |XOR |NOT |LSH |RSH |
30273 |----+----+----+----+----+----|
30274 |DEC |HEX |OCT |BIN |WSIZ|ARSH|
30275 |----+----+----+----+----+----|
30276 | A  | B  | C  | D  | E  | F  |
30277 |----+----+----+----+----+----|
30278 @end group
30279 @end smallexample
30281 @noindent
30282 The keys in this menu perform operations on binary integers.
30283 Note that both logical and arithmetic right-shifts are provided.
30284 @key{INV LSH} rotates one bit to the left.
30286 The ``difference'' function (normally on @kbd{b d}) is on @key{INV AND}.
30287 The ``clip'' function (normally on @w{@kbd{b c}}) is on @key{INV NOT}.
30289 The @key{DEC}, @key{HEX}, @key{OCT}, and @key{BIN} keys select the
30290 current radix for display and entry of numbers:  Decimal, hexadecimal,
30291 octal, or binary.  The six letter keys @key{A} through @key{F} are used
30292 for entering hexadecimal numbers.
30294 The @key{WSIZ} key displays the current word size for binary operations
30295 and allows you to enter a new word size.  You can respond to the prompt
30296 using either the keyboard or the digits and @key{ENTER} from the keypad.
30297 The initial word size is 32 bits.
30299 @node Keypad Vectors Menu, Keypad Modes Menu, Keypad Binary Menu, Keypad Mode
30300 @section Vectors Menu
30302 @smallexample
30303 @group
30304 |----+----+----+----+----+----4
30305 |SUM |PROD|MAX |MAP*|MAP^|MAP$|
30306 |----+----+----+----+----+----|
30307 |MINV|MDET|MTRN|IDNT|CRSS|"x" |
30308 |----+----+----+----+----+----|
30309 |PACK|UNPK|INDX|BLD |LEN |... |
30310 |----+----+----+----+----+----|
30311 @end group
30312 @end smallexample
30314 @noindent
30315 The keys in this menu operate on vectors and matrices.
30317 @key{PACK} removes an integer @var{n} from the top of the stack;
30318 the next @var{n} stack elements are removed and packed into a vector,
30319 which is replaced onto the stack.  Thus the sequence
30320 @kbd{1 ENTER 3 ENTER 5 ENTER 3 PACK} enters the vector
30321 @samp{[1, 3, 5]} onto the stack.  To enter a matrix, build each row
30322 on the stack as a vector, then use a final @key{PACK} to collect the
30323 rows into a matrix.
30325 @key{UNPK} unpacks the vector on the stack, pushing each of its
30326 components separately.
30328 @key{INDX} removes an integer @var{n}, then builds a vector of
30329 integers from 1 to @var{n}.  @kbd{INV INDX} takes three numbers
30330 from the stack:  The vector size @var{n}, the starting number,
30331 and the increment.  @kbd{BLD} takes an integer @var{n} and any
30332 value @var{x} and builds a vector of @var{n} copies of @var{x}.
30334 @key{IDNT} removes an integer @var{n}, then builds an @var{n}-by-@var{n}
30335 identity matrix.
30337 @key{LEN} replaces a vector by its length, an integer.
30339 @key{...} turns on or off ``abbreviated'' display mode for large vectors.
30341 @key{MINV}, @key{MDET}, @key{MTRN}, and @key{CROSS} are the matrix
30342 inverse, determinant, and transpose, and vector cross product.
30344 @key{SUM} replaces a vector by the sum of its elements.  It is
30345 equivalent to @kbd{u +} in normal Calc (@pxref{Statistical Operations}).
30346 @key{PROD} computes the product of the elements of a vector, and
30347 @key{MAX} computes the maximum of all the elements of a vector.
30349 @key{INV SUM} computes the alternating sum of the first element
30350 minus the second, plus the third, minus the fourth, and so on.
30351 @key{INV MAX} computes the minimum of the vector elements.
30353 @key{HYP SUM} computes the mean of the vector elements.
30354 @key{HYP PROD} computes the sample standard deviation.
30355 @key{HYP MAX} computes the median.
30357 @key{MAP*} multiplies two vectors elementwise.  It is equivalent
30358 to the @kbd{V M *} command.  @key{MAP^} computes powers elementwise.
30359 The arguments must be vectors of equal length, or one must be a vector
30360 and the other must be a plain number.  For example, @kbd{2 MAP^} squares
30361 all the elements of a vector.
30363 @key{MAP$} maps the formula on the top of the stack across the
30364 vector in the second-to-top position.  If the formula contains
30365 several variables, Calc takes that many vectors starting at the
30366 second-to-top position and matches them to the variables in
30367 alphabetical order.  The result is a vector of the same size as
30368 the input vectors, whose elements are the formula evaluated with
30369 the variables set to the various sets of numbers in those vectors.
30370 For example, you could simulate @key{MAP^} using @key{MAP$} with
30371 the formula @samp{x^y}.
30373 The @kbd{"x"} key pushes the variable name @expr{x} onto the
30374 stack.  To build the formula @expr{x^2 + 6}, you would use the
30375 key sequence @kbd{"x" 2 y^x 6 +}.  This formula would then be
30376 suitable for use with the @key{MAP$} key described above.
30377 With @key{INV}, @key{HYP}, or @key{INV} and @key{HYP}, the
30378 @kbd{"x"} key pushes the variable names @expr{y}, @expr{z}, and
30379 @expr{t}, respectively.
30381 @node Keypad Modes Menu,  , Keypad Vectors Menu, Keypad Mode
30382 @section Modes Menu
30384 @smallexample
30385 @group
30386 |----+----+----+----+----+----5
30387 |FLT |FIX |SCI |ENG |GRP |    |
30388 |----+----+----+----+----+----|
30389 |RAD |DEG |FRAC|POLR|SYMB|PREC|
30390 |----+----+----+----+----+----|
30391 |SWAP|RLL3|RLL4|OVER|STO |RCL |
30392 |----+----+----+----+----+----|
30393 @end group
30394 @end smallexample
30396 @noindent
30397 The keys in this menu manipulate modes, variables, and the stack.
30399 The @key{FLT}, @key{FIX}, @key{SCI}, and @key{ENG} keys select
30400 floating-point, fixed-point, scientific, or engineering notation.
30401 @key{FIX} displays two digits after the decimal by default; the
30402 others display full precision.  With the @key{INV} prefix, these
30403 keys pop a number-of-digits argument from the stack.
30405 The @key{GRP} key turns grouping of digits with commas on or off.
30406 @kbd{INV GRP} enables grouping to the right of the decimal point as
30407 well as to the left.
30409 The @key{RAD} and @key{DEG} keys switch between radians and degrees
30410 for trigonometric functions.
30412 The @key{FRAC} key turns Fraction mode on or off.  This affects
30413 whether commands like @kbd{/} with integer arguments produce
30414 fractional or floating-point results.
30416 The @key{POLR} key turns Polar mode on or off, determining whether
30417 polar or rectangular complex numbers are used by default.
30419 The @key{SYMB} key turns Symbolic mode on or off, in which
30420 operations that would produce inexact floating-point results
30421 are left unevaluated as algebraic formulas.
30423 The @key{PREC} key selects the current precision.  Answer with
30424 the keyboard or with the keypad digit and @key{ENTER} keys.
30426 The @key{SWAP} key exchanges the top two stack elements.
30427 The @key{RLL3} key rotates the top three stack elements upwards.
30428 The @key{RLL4} key rotates the top four stack elements upwards.
30429 The @key{OVER} key duplicates the second-to-top stack element.
30431 The @key{STO} and @key{RCL} keys are analogous to @kbd{s t} and
30432 @kbd{s r} in regular Calc.  @xref{Store and Recall}.  Click the
30433 @key{STO} or @key{RCL} key, then one of the ten digits.  (Named
30434 variables are not available in Keypad mode.)  You can also use,
30435 for example, @kbd{STO + 3} to add to register 3.
30437 @node Embedded Mode, Programming, Keypad Mode, Top
30438 @chapter Embedded Mode
30440 @noindent
30441 Embedded mode in Calc provides an alternative to copying numbers
30442 and formulas back and forth between editing buffers and the Calc
30443 stack.  In Embedded mode, your editing buffer becomes temporarily
30444 linked to the stack and this copying is taken care of automatically.
30446 @menu
30447 * Basic Embedded Mode::
30448 * More About Embedded Mode::
30449 * Assignments in Embedded Mode::
30450 * Mode Settings in Embedded Mode::
30451 * Customizing Embedded Mode::
30452 @end menu
30454 @node Basic Embedded Mode, More About Embedded Mode, Embedded Mode, Embedded Mode
30455 @section Basic Embedded Mode
30457 @noindent
30458 @kindex C-x * e
30459 @pindex calc-embedded
30460 To enter Embedded mode, position the Emacs point (cursor) on a
30461 formula in any buffer and press @kbd{C-x * e} (@code{calc-embedded}).
30462 Note that @kbd{C-x * e} is not to be used in the Calc stack buffer
30463 like most Calc commands, but rather in regular editing buffers that
30464 are visiting your own files.
30466 Calc will try to guess an appropriate language based on the major mode
30467 of the editing buffer. (@xref{Language Modes}.) If the current buffer is
30468 in @code{latex-mode}, for example, Calc will set its language to @LaTeX{}.
30469 Similarly, Calc will use @TeX{} language for @code{tex-mode},
30470 @code{plain-tex-mode} and @code{context-mode}, C language for
30471 @code{c-mode} and @code{c++-mode}, FORTRAN language for
30472 @code{fortran-mode} and @code{f90-mode}, Pascal for @code{pascal-mode},
30473 and eqn for @code{nroff-mode} (@pxref{Customizing Calc}).
30474 These can be overridden with Calc's mode
30475 changing commands (@pxref{Mode Settings in Embedded Mode}).  If no
30476 suitable language is available, Calc will continue with its current language.
30478 Calc normally scans backward and forward in the buffer for the
30479 nearest opening and closing @dfn{formula delimiters}.  The simplest
30480 delimiters are blank lines.  Other delimiters that Embedded mode
30481 understands are:
30483 @enumerate
30484 @item
30485 The @TeX{} and @LaTeX{} math delimiters @samp{$ $}, @samp{$$ $$},
30486 @samp{\[ \]}, and @samp{\( \)};
30487 @item
30488 Lines beginning with @samp{\begin} and @samp{\end} (except matrix delimiters);
30489 @item
30490 Lines beginning with @samp{@@} (Texinfo delimiters).
30491 @item
30492 Lines beginning with @samp{.EQ} and @samp{.EN} (@dfn{eqn} delimiters);
30493 @item
30494 Lines containing a single @samp{%} or @samp{.\"} symbol and nothing else.
30495 @end enumerate
30497 @xref{Customizing Embedded Mode}, to see how to make Calc recognize
30498 your own favorite delimiters.  Delimiters like @samp{$ $} can appear
30499 on their own separate lines or in-line with the formula.
30501 If you give a positive or negative numeric prefix argument, Calc
30502 instead uses the current point as one end of the formula, and includes
30503 that many lines forward or backward (respectively, including the current
30504 line). Explicit delimiters are not necessary in this case.
30506 With a prefix argument of zero, Calc uses the current region (delimited
30507 by point and mark) instead of formula delimiters.  With a prefix
30508 argument of @kbd{C-u} only, Calc uses the current line as the formula.
30510 @kindex C-x * w
30511 @pindex calc-embedded-word
30512 The @kbd{C-x * w} (@code{calc-embedded-word}) command will start Embedded
30513 mode on the current ``word''; in this case Calc will scan for the first
30514 non-numeric character (i.e., the first character that is not a digit,
30515 sign, decimal point, or upper- or lower-case @samp{e}) forward and
30516 backward to delimit the formula.
30518 When you enable Embedded mode for a formula, Calc reads the text
30519 between the delimiters and tries to interpret it as a Calc formula.
30520 Calc can generally identify @TeX{} formulas and
30521 Big-style formulas even if the language mode is wrong.  If Calc
30522 can't make sense of the formula, it beeps and refuses to enter
30523 Embedded mode.  But if the current language is wrong, Calc can
30524 sometimes parse the formula successfully (but incorrectly);
30525 for example, the C expression @samp{atan(a[1])} can be parsed
30526 in Normal language mode, but the @code{atan} won't correspond to
30527 the built-in @code{arctan} function, and the @samp{a[1]} will be
30528 interpreted as @samp{a} times the vector @samp{[1]}!
30530 If you press @kbd{C-x * e} or @kbd{C-x * w} to activate an embedded
30531 formula which is blank, say with the cursor on the space between
30532 the two delimiters @samp{$ $}, Calc will immediately prompt for
30533 an algebraic entry.
30535 Only one formula in one buffer can be enabled at a time.  If you
30536 move to another area of the current buffer and give Calc commands,
30537 Calc turns Embedded mode off for the old formula and then tries
30538 to restart Embedded mode at the new position.  Other buffers are
30539 not affected by Embedded mode.
30541 When Embedded mode begins, Calc pushes the current formula onto
30542 the stack.  No Calc stack window is created; however, Calc copies
30543 the top-of-stack position into the original buffer at all times.
30544 You can create a Calc window by hand with @kbd{C-x * o} if you
30545 find you need to see the entire stack.
30547 For example, typing @kbd{C-x * e} while somewhere in the formula
30548 @samp{n>2} in the following line enables Embedded mode on that
30549 inequality:
30551 @example
30552 We define $F_n = F_(n-1)+F_(n-2)$ for all $n>2$.
30553 @end example
30555 @noindent
30556 The formula @expr{n>2} will be pushed onto the Calc stack, and
30557 the top of stack will be copied back into the editing buffer.
30558 This means that spaces will appear around the @samp{>} symbol
30559 to match Calc's usual display style:
30561 @example
30562 We define $F_n = F_(n-1)+F_(n-2)$ for all $n > 2$.
30563 @end example
30565 @noindent
30566 No spaces have appeared around the @samp{+} sign because it's
30567 in a different formula, one which we have not yet touched with
30568 Embedded mode.
30570 Now that Embedded mode is enabled, keys you type in this buffer
30571 are interpreted as Calc commands.  At this point we might use
30572 the ``commute'' command @kbd{j C} to reverse the inequality.
30573 This is a selection-based command for which we first need to
30574 move the cursor onto the operator (@samp{>} in this case) that
30575 needs to be commuted.
30577 @example
30578 We define $F_n = F_(n-1)+F_(n-2)$ for all $2 < n$.
30579 @end example
30581 The @kbd{C-x * o} command is a useful way to open a Calc window
30582 without actually selecting that window.  Giving this command
30583 verifies that @samp{2 < n} is also on the Calc stack.  Typing
30584 @kbd{17 @key{RET}} would produce:
30586 @example
30587 We define $F_n = F_(n-1)+F_(n-2)$ for all $17$.
30588 @end example
30590 @noindent
30591 with @samp{2 < n} and @samp{17} on the stack; typing @key{TAB}
30592 at this point will exchange the two stack values and restore
30593 @samp{2 < n} to the embedded formula.  Even though you can't
30594 normally see the stack in Embedded mode, it is still there and
30595 it still operates in the same way.  But, as with old-fashioned
30596 RPN calculators, you can only see the value at the top of the
30597 stack at any given time (unless you use @kbd{C-x * o}).
30599 Typing @kbd{C-x * e} again turns Embedded mode off.  The Calc
30600 window reveals that the formula @w{@samp{2 < n}} is automatically
30601 removed from the stack, but the @samp{17} is not.  Entering
30602 Embedded mode always pushes one thing onto the stack, and
30603 leaving Embedded mode always removes one thing.  Anything else
30604 that happens on the stack is entirely your business as far as
30605 Embedded mode is concerned.
30607 If you press @kbd{C-x * e} in the wrong place by accident, it is
30608 possible that Calc will be able to parse the nearby text as a
30609 formula and will mangle that text in an attempt to redisplay it
30610 ``properly'' in the current language mode.  If this happens,
30611 press @kbd{C-x * e} again to exit Embedded mode, then give the
30612 regular Emacs ``undo'' command (@kbd{C-_} or @kbd{C-x u}) to put
30613 the text back the way it was before Calc edited it.  Note that Calc's
30614 own Undo command (typed before you turn Embedded mode back off)
30615 will not do you any good, because as far as Calc is concerned
30616 you haven't done anything with this formula yet.
30618 @node More About Embedded Mode, Assignments in Embedded Mode, Basic Embedded Mode, Embedded Mode
30619 @section More About Embedded Mode
30621 @noindent
30622 When Embedded mode ``activates'' a formula, i.e., when it examines
30623 the formula for the first time since the buffer was created or
30624 loaded, Calc tries to sense the language in which the formula was
30625 written.  If the formula contains any @LaTeX{}-like @samp{\} sequences,
30626 it is parsed (i.e., read) in @LaTeX{} mode.  If the formula appears to
30627 be written in multi-line Big mode, it is parsed in Big mode.  Otherwise,
30628 it is parsed according to the current language mode.
30630 Note that Calc does not change the current language mode according
30631 the formula it reads in.  Even though it can read a @LaTeX{} formula when
30632 not in @LaTeX{} mode, it will immediately rewrite this formula using
30633 whatever language mode is in effect.
30635 @tex
30636 \bigskip
30637 @end tex
30639 @kindex d p
30640 @pindex calc-show-plain
30641 Calc's parser is unable to read certain kinds of formulas.  For
30642 example, with @kbd{v ]} (@code{calc-matrix-brackets}) you can
30643 specify matrix display styles which the parser is unable to
30644 recognize as matrices.  The @kbd{d p} (@code{calc-show-plain})
30645 command turns on a mode in which a ``plain'' version of a
30646 formula is placed in front of the fully-formatted version.
30647 When Calc reads a formula that has such a plain version in
30648 front, it reads the plain version and ignores the formatted
30649 version.
30651 Plain formulas are preceded and followed by @samp{%%%} signs
30652 by default.  This notation has the advantage that the @samp{%}
30653 character begins a comment in @TeX{} and @LaTeX{}, so if your formula is
30654 embedded in a @TeX{} or @LaTeX{} document its plain version will be
30655 invisible in the final printed copy.  Certain major modes have different
30656 delimiters to ensure that the ``plain'' version will be
30657 in a comment for those modes, also.
30658 See @ref{Customizing Embedded Mode} to see how to change the ``plain''
30659 formula delimiters.
30661 There are several notations which Calc's parser for ``big''
30662 formatted formulas can't yet recognize.  In particular, it can't
30663 read the large symbols for @code{sum}, @code{prod}, and @code{integ},
30664 and it can't handle @samp{=>} with the righthand argument omitted.
30665 Also, Calc won't recognize special formats you have defined with
30666 the @kbd{Z C} command (@pxref{User-Defined Compositions}).  In
30667 these cases it is important to use ``plain'' mode to make sure
30668 Calc will be able to read your formula later.
30670 Another example where ``plain'' mode is important is if you have
30671 specified a float mode with few digits of precision.  Normally
30672 any digits that are computed but not displayed will simply be
30673 lost when you save and re-load your embedded buffer, but ``plain''
30674 mode allows you to make sure that the complete number is present
30675 in the file as well as the rounded-down number.
30677 @tex
30678 \bigskip
30679 @end tex
30681 Embedded buffers remember active formulas for as long as they
30682 exist in Emacs memory.  Suppose you have an embedded formula
30683 which is @cpi{} to the normal 12 decimal places, and then
30684 type @w{@kbd{C-u 5 d n}} to display only five decimal places.
30685 If you then type @kbd{d n}, all 12 places reappear because the
30686 full number is still there on the Calc stack.  More surprisingly,
30687 even if you exit Embedded mode and later re-enter it for that
30688 formula, typing @kbd{d n} will restore all 12 places because
30689 each buffer remembers all its active formulas.  However, if you
30690 save the buffer in a file and reload it in a new Emacs session,
30691 all non-displayed digits will have been lost unless you used
30692 ``plain'' mode.
30694 @tex
30695 \bigskip
30696 @end tex
30698 In some applications of Embedded mode, you will want to have a
30699 sequence of copies of a formula that show its evolution as you
30700 work on it.  For example, you might want to have a sequence
30701 like this in your file (elaborating here on the example from
30702 the ``Getting Started'' chapter):
30704 @smallexample
30705 The derivative of
30707                               ln(ln(x))
30711                   @r{(the derivative of }ln(ln(x))@r{)}
30713 whose value at x = 2 is
30715                             @r{(the value)}
30717 and at x = 3 is
30719                             @r{(the value)}
30720 @end smallexample
30722 @kindex C-x * d
30723 @pindex calc-embedded-duplicate
30724 The @kbd{C-x * d} (@code{calc-embedded-duplicate}) command is a
30725 handy way to make sequences like this.  If you type @kbd{C-x * d},
30726 the formula under the cursor (which may or may not have Embedded
30727 mode enabled for it at the time) is copied immediately below and
30728 Embedded mode is then enabled for that copy.
30730 For this example, you would start with just
30732 @smallexample
30733 The derivative of
30735                               ln(ln(x))
30736 @end smallexample
30738 @noindent
30739 and press @kbd{C-x * d} with the cursor on this formula.  The result
30742 @smallexample
30743 The derivative of
30745                               ln(ln(x))
30748                               ln(ln(x))
30749 @end smallexample
30751 @noindent
30752 with the second copy of the formula enabled in Embedded mode.
30753 You can now press @kbd{a d x @key{RET}} to take the derivative, and
30754 @kbd{C-x * d C-x * d} to make two more copies of the derivative.
30755 To complete the computations, type @kbd{3 s l x @key{RET}} to evaluate
30756 the last formula, then move up to the second-to-last formula
30757 and type @kbd{2 s l x @key{RET}}.
30759 Finally, you would want to press @kbd{C-x * e} to exit Embedded
30760 mode, then go up and insert the necessary text in between the
30761 various formulas and numbers.
30763 @tex
30764 \bigskip
30765 @end tex
30767 @kindex C-x * f
30768 @kindex C-x * '
30769 @pindex calc-embedded-new-formula
30770 The @kbd{C-x * f} (@code{calc-embedded-new-formula}) command
30771 creates a new embedded formula at the current point.  It inserts
30772 some default delimiters, which are usually just blank lines,
30773 and then does an algebraic entry to get the formula (which is
30774 then enabled for Embedded mode).  This is just shorthand for
30775 typing the delimiters yourself, positioning the cursor between
30776 the new delimiters, and pressing @kbd{C-x * e}.  The key sequence
30777 @kbd{C-x * '} is equivalent to @kbd{C-x * f}.
30779 @kindex C-x * n
30780 @kindex C-x * p
30781 @pindex calc-embedded-next
30782 @pindex calc-embedded-previous
30783 The @kbd{C-x * n} (@code{calc-embedded-next}) and @kbd{C-x * p}
30784 (@code{calc-embedded-previous}) commands move the cursor to the
30785 next or previous active embedded formula in the buffer.  They
30786 can take positive or negative prefix arguments to move by several
30787 formulas.  Note that these commands do not actually examine the
30788 text of the buffer looking for formulas; they only see formulas
30789 which have previously been activated in Embedded mode.  In fact,
30790 @kbd{C-x * n} and @kbd{C-x * p} are a useful way to tell which
30791 embedded formulas are currently active.  Also, note that these
30792 commands do not enable Embedded mode on the next or previous
30793 formula, they just move the cursor.
30795 @kindex C-x * `
30796 @pindex calc-embedded-edit
30797 The @kbd{C-x * `} (@code{calc-embedded-edit}) command edits the
30798 embedded formula at the current point as if by @kbd{`} (@code{calc-edit}).
30799 Embedded mode does not have to be enabled for this to work.  Press
30800 @kbd{C-c C-c} to finish the edit, or @kbd{C-x k} to cancel.
30802 @node Assignments in Embedded Mode, Mode Settings in Embedded Mode, More About Embedded Mode, Embedded Mode
30803 @section Assignments in Embedded Mode
30805 @noindent
30806 The @samp{:=} (assignment) and @samp{=>} (``evaluates-to'') operators
30807 are especially useful in Embedded mode.  They allow you to make
30808 a definition in one formula, then refer to that definition in
30809 other formulas embedded in the same buffer.
30811 An embedded formula which is an assignment to a variable, as in
30813 @example
30814 foo := 5
30815 @end example
30817 @noindent
30818 records @expr{5} as the stored value of @code{foo} for the
30819 purposes of Embedded mode operations in the current buffer.  It
30820 does @emph{not} actually store @expr{5} as the ``global'' value
30821 of @code{foo}, however.  Regular Calc operations, and Embedded
30822 formulas in other buffers, will not see this assignment.
30824 One way to use this assigned value is simply to create an
30825 Embedded formula elsewhere that refers to @code{foo}, and to press
30826 @kbd{=} in that formula.  However, this permanently replaces the
30827 @code{foo} in the formula with its current value.  More interesting
30828 is to use @samp{=>} elsewhere:
30830 @example
30831 foo + 7 => 12
30832 @end example
30834 @xref{Evaluates-To Operator}, for a general discussion of @samp{=>}.
30836 If you move back and change the assignment to @code{foo}, any
30837 @samp{=>} formulas which refer to it are automatically updated.
30839 @example
30840 foo := 17
30842 foo + 7 => 24
30843 @end example
30845 The obvious question then is, @emph{how} can one easily change the
30846 assignment to @code{foo}?  If you simply select the formula in
30847 Embedded mode and type 17, the assignment itself will be replaced
30848 by the 17.  The effect on the other formula will be that the
30849 variable @code{foo} becomes unassigned:
30851 @example
30854 foo + 7 => foo + 7
30855 @end example
30857 The right thing to do is first to use a selection command (@kbd{j 2}
30858 will do the trick) to select the righthand side of the assignment.
30859 Then, @kbd{17 @key{TAB} @key{DEL}} will swap the 17 into place (@pxref{Selecting
30860 Subformulas}, to see how this works).
30862 @kindex C-x * j
30863 @pindex calc-embedded-select
30864 The @kbd{C-x * j} (@code{calc-embedded-select}) command provides an
30865 easy way to operate on assignments.  It is just like @kbd{C-x * e},
30866 except that if the enabled formula is an assignment, it uses
30867 @kbd{j 2} to select the righthand side.  If the enabled formula
30868 is an evaluates-to, it uses @kbd{j 1} to select the lefthand side.
30869 A formula can also be a combination of both:
30871 @example
30872 bar := foo + 3 => 20
30873 @end example
30875 @noindent
30876 in which case @kbd{C-x * j} will select the middle part (@samp{foo + 3}).
30878 The formula is automatically deselected when you leave Embedded
30879 mode.
30881 @kindex C-x * u
30882 @pindex calc-embedded-update-formula
30883 Another way to change the assignment to @code{foo} would simply be
30884 to edit the number using regular Emacs editing rather than Embedded
30885 mode.  Then, we have to find a way to get Embedded mode to notice
30886 the change.  The @kbd{C-x * u} (@code{calc-embedded-update-formula})
30887 command is a convenient way to do this.
30889 @example
30890 foo := 6
30892 foo + 7 => 13
30893 @end example
30895 Pressing @kbd{C-x * u} is much like pressing @kbd{C-x * e = C-x * e}, that
30896 is, temporarily enabling Embedded mode for the formula under the
30897 cursor and then evaluating it with @kbd{=}.  But @kbd{C-x * u} does
30898 not actually use @kbd{C-x * e}, and in fact another formula somewhere
30899 else can be enabled in Embedded mode while you use @kbd{C-x * u} and
30900 that formula will not be disturbed.
30902 With a numeric prefix argument, @kbd{C-x * u} updates all active
30903 @samp{=>} formulas in the buffer.  Formulas which have not yet
30904 been activated in Embedded mode, and formulas which do not have
30905 @samp{=>} as their top-level operator, are not affected by this.
30906 (This is useful only if you have used @kbd{m C}; see below.)
30908 With a plain @kbd{C-u} prefix, @kbd{C-u C-x * u} updates only in the
30909 region between mark and point rather than in the whole buffer.
30911 @kbd{C-x * u} is also a handy way to activate a formula, such as an
30912 @samp{=>} formula that has freshly been typed in or loaded from a
30913 file.
30915 @kindex C-x * a
30916 @pindex calc-embedded-activate
30917 The @kbd{C-x * a} (@code{calc-embedded-activate}) command scans
30918 through the current buffer and activates all embedded formulas
30919 that contain @samp{:=} or @samp{=>} symbols.  This does not mean
30920 that Embedded mode is actually turned on, but only that the
30921 formulas' positions are registered with Embedded mode so that
30922 the @samp{=>} values can be properly updated as assignments are
30923 changed.
30925 It is a good idea to type @kbd{C-x * a} right after loading a file
30926 that uses embedded @samp{=>} operators.  Emacs includes a nifty
30927 ``buffer-local variables'' feature that you can use to do this
30928 automatically.  The idea is to place near the end of your file
30929 a few lines that look like this:
30931 @example
30932 --- Local Variables: ---
30933 --- eval:(calc-embedded-activate) ---
30934 --- End: ---
30935 @end example
30937 @noindent
30938 where the leading and trailing @samp{---} can be replaced by
30939 any suitable strings (which must be the same on all three lines)
30940 or omitted altogether; in a @TeX{} or @LaTeX{} file, @samp{%} would be a good
30941 leading string and no trailing string would be necessary.  In a
30942 C program, @samp{/*} and @samp{*/} would be good leading and
30943 trailing strings.
30945 When Emacs loads a file into memory, it checks for a Local Variables
30946 section like this one at the end of the file.  If it finds this
30947 section, it does the specified things (in this case, running
30948 @kbd{C-x * a} automatically) before editing of the file begins.
30949 The Local Variables section must be within 3000 characters of the
30950 end of the file for Emacs to find it, and it must be in the last
30951 page of the file if the file has any page separators.
30952 @xref{File Variables, , Local Variables in Files, emacs, the
30953 Emacs manual}.
30955 Note that @kbd{C-x * a} does not update the formulas it finds.
30956 To do this, type, say, @kbd{M-1 C-x * u} after @w{@kbd{C-x * a}}.
30957 Generally this should not be a problem, though, because the
30958 formulas will have been up-to-date already when the file was
30959 saved.
30961 Normally, @kbd{C-x * a} activates all the formulas it finds, but
30962 any previous active formulas remain active as well.  With a
30963 positive numeric prefix argument, @kbd{C-x * a} first deactivates
30964 all current active formulas, then actives the ones it finds in
30965 its scan of the buffer.  With a negative prefix argument,
30966 @kbd{C-x * a} simply deactivates all formulas.
30968 Embedded mode has two symbols, @samp{Active} and @samp{~Active},
30969 which it puts next to the major mode name in a buffer's mode line.
30970 It puts @samp{Active} if it has reason to believe that all
30971 formulas in the buffer are active, because you have typed @kbd{C-x * a}
30972 and Calc has not since had to deactivate any formulas (which can
30973 happen if Calc goes to update an @samp{=>} formula somewhere because
30974 a variable changed, and finds that the formula is no longer there
30975 due to some kind of editing outside of Embedded mode).  Calc puts
30976 @samp{~Active} in the mode line if some, but probably not all,
30977 formulas in the buffer are active.  This happens if you activate
30978 a few formulas one at a time but never use @kbd{C-x * a}, or if you
30979 used @kbd{C-x * a} but then Calc had to deactivate a formula
30980 because it lost track of it.  If neither of these symbols appears
30981 in the mode line, no embedded formulas are active in the buffer
30982 (e.g., before Embedded mode has been used, or after a @kbd{M-- C-x * a}).
30984 Embedded formulas can refer to assignments both before and after them
30985 in the buffer.  If there are several assignments to a variable, the
30986 nearest preceding assignment is used if there is one, otherwise the
30987 following assignment is used.
30989 @example
30990 x => 1
30992 x := 1
30994 x => 1
30996 x := 2
30998 x => 2
30999 @end example
31001 As well as simple variables, you can also assign to subscript
31002 expressions of the form @samp{@var{var}_@var{number}} (as in
31003 @code{x_0}), or @samp{@var{var}_@var{var}} (as in @code{x_max}).
31004 Assignments to other kinds of objects can be represented by Calc,
31005 but the automatic linkage between assignments and references works
31006 only for plain variables and these two kinds of subscript expressions.
31008 If there are no assignments to a given variable, the global
31009 stored value for the variable is used (@pxref{Storing Variables}),
31010 or, if no value is stored, the variable is left in symbolic form.
31011 Note that global stored values will be lost when the file is saved
31012 and loaded in a later Emacs session, unless you have used the
31013 @kbd{s p} (@code{calc-permanent-variable}) command to save them;
31014 @pxref{Operations on Variables}.
31016 The @kbd{m C} (@code{calc-auto-recompute}) command turns automatic
31017 recomputation of @samp{=>} forms on and off.  If you turn automatic
31018 recomputation off, you will have to use @kbd{C-x * u} to update these
31019 formulas manually after an assignment has been changed.  If you
31020 plan to change several assignments at once, it may be more efficient
31021 to type @kbd{m C}, change all the assignments, then use @kbd{M-1 C-x * u}
31022 to update the entire buffer afterwards.  The @kbd{m C} command also
31023 controls @samp{=>} formulas on the stack; @pxref{Evaluates-To
31024 Operator}.  When you turn automatic recomputation back on, the
31025 stack will be updated but the Embedded buffer will not; you must
31026 use @kbd{C-x * u} to update the buffer by hand.
31028 @node Mode Settings in Embedded Mode, Customizing Embedded Mode, Assignments in Embedded Mode, Embedded Mode
31029 @section Mode Settings in Embedded Mode
31031 @kindex m e
31032 @pindex calc-embedded-preserve-modes
31033 @noindent
31034 The mode settings can be changed while Calc is in embedded mode, but
31035 by default they will revert to their original values when embedded mode
31036 is ended. However, the modes saved when the mode-recording mode is
31037 @code{Save} (see below) and the modes in effect when the @kbd{m e}
31038 (@code{calc-embedded-preserve-modes}) command is given
31039 will be preserved when embedded mode is ended.
31041 Embedded mode has a rather complicated mechanism for handling mode
31042 settings in Embedded formulas.  It is possible to put annotations
31043 in the file that specify mode settings either global to the entire
31044 file or local to a particular formula or formulas.  In the latter
31045 case, different modes can be specified for use when a formula
31046 is the enabled Embedded mode formula.
31048 When you give any mode-setting command, like @kbd{m f} (for Fraction
31049 mode) or @kbd{d s} (for scientific notation), Embedded mode adds
31050 a line like the following one to the file just before the opening
31051 delimiter of the formula.
31053 @example
31054 % [calc-mode: fractions: t]
31055 % [calc-mode: float-format: (sci 0)]
31056 @end example
31058 When Calc interprets an embedded formula, it scans the text before
31059 the formula for mode-setting annotations like these and sets the
31060 Calc buffer to match these modes.  Modes not explicitly described
31061 in the file are not changed.  Calc scans all the way to the top of
31062 the file, or up to a line of the form
31064 @example
31065 % [calc-defaults]
31066 @end example
31068 @noindent
31069 which you can insert at strategic places in the file if this backward
31070 scan is getting too slow, or just to provide a barrier between one
31071 ``zone'' of mode settings and another.
31073 If the file contains several annotations for the same mode, the
31074 closest one before the formula is used.  Annotations after the
31075 formula are never used (except for global annotations, described
31076 below).
31078 The scan does not look for the leading @samp{% }, only for the
31079 square brackets and the text they enclose.  In fact, the leading
31080 characters are different for different major modes.  You can edit the
31081 mode annotations to a style that works better in context if you wish.
31082 @xref{Customizing Embedded Mode}, to see how to change the style
31083 that Calc uses when it generates the annotations.  You can write
31084 mode annotations into the file yourself if you know the syntax;
31085 the easiest way to find the syntax for a given mode is to let
31086 Calc write the annotation for it once and see what it does.
31088 If you give a mode-changing command for a mode that already has
31089 a suitable annotation just above the current formula, Calc will
31090 modify that annotation rather than generating a new, conflicting
31091 one.
31093 Mode annotations have three parts, separated by colons.  (Spaces
31094 after the colons are optional.)  The first identifies the kind
31095 of mode setting, the second is a name for the mode itself, and
31096 the third is the value in the form of a Lisp symbol, number,
31097 or list.  Annotations with unrecognizable text in the first or
31098 second parts are ignored.  The third part is not checked to make
31099 sure the value is of a valid type or range; if you write an
31100 annotation by hand, be sure to give a proper value or results
31101 will be unpredictable.  Mode-setting annotations are case-sensitive.
31103 While Embedded mode is enabled, the word @code{Local} appears in
31104 the mode line.  This is to show that mode setting commands generate
31105 annotations that are ``local'' to the current formula or set of
31106 formulas.  The @kbd{m R} (@code{calc-mode-record-mode}) command
31107 causes Calc to generate different kinds of annotations.  Pressing
31108 @kbd{m R} repeatedly cycles through the possible modes.
31110 @code{LocEdit} and @code{LocPerm} modes generate annotations
31111 that look like this, respectively:
31113 @example
31114 % [calc-edit-mode: float-format: (sci 0)]
31115 % [calc-perm-mode: float-format: (sci 5)]
31116 @end example
31118 The first kind of annotation will be used only while a formula
31119 is enabled in Embedded mode.  The second kind will be used only
31120 when the formula is @emph{not} enabled.  (Whether the formula
31121 is ``active'' or not, i.e., whether Calc has seen this formula
31122 yet, is not relevant here.)
31124 @code{Global} mode generates an annotation like this at the end
31125 of the file:
31127 @example
31128 % [calc-global-mode: fractions t]
31129 @end example
31131 Global mode annotations affect all formulas throughout the file,
31132 and may appear anywhere in the file.  This allows you to tuck your
31133 mode annotations somewhere out of the way, say, on a new page of
31134 the file, as long as those mode settings are suitable for all
31135 formulas in the file.
31137 Enabling a formula with @kbd{C-x * e} causes a fresh scan for local
31138 mode annotations; you will have to use this after adding annotations
31139 above a formula by hand to get the formula to notice them.  Updating
31140 a formula with @kbd{C-x * u} will also re-scan the local modes, but
31141 global modes are only re-scanned by @kbd{C-x * a}.
31143 Another way that modes can get out of date is if you add a local
31144 mode annotation to a formula that has another formula after it.
31145 In this example, we have used the @kbd{d s} command while the
31146 first of the two embedded formulas is active.  But the second
31147 formula has not changed its style to match, even though by the
31148 rules of reading annotations the @samp{(sci 0)} applies to it, too.
31150 @example
31151 % [calc-mode: float-format: (sci 0)]
31152 1.23e2
31154 456.
31155 @end example
31157 We would have to go down to the other formula and press @kbd{C-x * u}
31158 on it in order to get it to notice the new annotation.
31160 Two more mode-recording modes selectable by @kbd{m R} are available
31161 which are also available outside of Embedded mode.
31162 (@pxref{General Mode Commands}.) They are @code{Save},  in which mode
31163 settings are recorded permanently in your Calc init file (the file given
31164 by the variable @code{calc-settings-file}, typically @file{~/.emacs.d/calc.el})
31165 rather than by annotating the current document, and no-recording
31166 mode (where there is no symbol like @code{Save} or @code{Local} in
31167 the mode line), in which mode-changing commands do not leave any
31168 annotations at all.
31170 When Embedded mode is not enabled, mode-recording modes except
31171 for @code{Save} have no effect.
31173 @node Customizing Embedded Mode,  , Mode Settings in Embedded Mode, Embedded Mode
31174 @section Customizing Embedded Mode
31176 @noindent
31177 You can modify Embedded mode's behavior by setting various Lisp
31178 variables described here.  These variables are customizable
31179 (@pxref{Customizing Calc}), or you can use @kbd{M-x set-variable}
31180 or @kbd{M-x edit-options} to adjust a variable on the fly.
31181 (Another possibility would be to use a file-local variable annotation at
31182 the end of the file;
31183 @pxref{File Variables, , Local Variables in Files, emacs, the Emacs manual}.)
31184 Many of the variables given mentioned here can be set to depend on the
31185 major mode of the editing buffer (@pxref{Customizing Calc}).
31187 @vindex calc-embedded-open-formula
31188 The @code{calc-embedded-open-formula} variable holds a regular
31189 expression for the opening delimiter of a formula.  @xref{Regexp Search,
31190 , Regular Expression Search, emacs, the Emacs manual}, to see
31191 how regular expressions work.  Basically, a regular expression is a
31192 pattern that Calc can search for.  A regular expression that considers
31193 blank lines, @samp{$}, and @samp{$$} to be opening delimiters is
31194 @code{"\\`\\|^\n\\|\\$\\$?"}.  Just in case the meaning of this
31195 regular expression is not completely plain, let's go through it
31196 in detail.
31198 The surrounding @samp{" "} marks quote the text between them as a
31199 Lisp string.  If you left them off, @code{set-variable} or
31200 @code{edit-options} would try to read the regular expression as a
31201 Lisp program.
31203 The most obvious property of this regular expression is that it
31204 contains indecently many backslashes.  There are actually two levels
31205 of backslash usage going on here.  First, when Lisp reads a quoted
31206 string, all pairs of characters beginning with a backslash are
31207 interpreted as special characters.  Here, @code{\n} changes to a
31208 new-line character, and @code{\\} changes to a single backslash.
31209 So the actual regular expression seen by Calc is
31210 @samp{\`\|^ @r{(newline)} \|\$\$?}.
31212 Regular expressions also consider pairs beginning with backslash
31213 to have special meanings.  Sometimes the backslash is used to quote
31214 a character that otherwise would have a special meaning in a regular
31215 expression, like @samp{$}, which normally means ``end-of-line,''
31216 or @samp{?}, which means that the preceding item is optional.  So
31217 @samp{\$\$?} matches either one or two dollar signs.
31219 The other codes in this regular expression are @samp{^}, which matches
31220 ``beginning-of-line,'' @samp{\|}, which means ``or,'' and @samp{\`},
31221 which matches ``beginning-of-buffer.''  So the whole pattern means
31222 that a formula begins at the beginning of the buffer, or on a newline
31223 that occurs at the beginning of a line (i.e., a blank line), or at
31224 one or two dollar signs.
31226 The default value of @code{calc-embedded-open-formula} looks just
31227 like this example, with several more alternatives added on to
31228 recognize various other common kinds of delimiters.
31230 By the way, the reason to use @samp{^\n} rather than @samp{^$}
31231 or @samp{\n\n}, which also would appear to match blank lines,
31232 is that the former expression actually ``consumes'' only one
31233 newline character as @emph{part of} the delimiter, whereas the
31234 latter expressions consume zero or two newlines, respectively.
31235 The former choice gives the most natural behavior when Calc
31236 must operate on a whole formula including its delimiters.
31238 See the Emacs manual for complete details on regular expressions.
31239 But just for your convenience, here is a list of all characters
31240 which must be quoted with backslash (like @samp{\$}) to avoid
31241 some special interpretation:  @samp{. * + ? [ ] ^ $ \}.  (Note
31242 the backslash in this list; for example, to match @samp{\[} you
31243 must use @code{"\\\\\\["}.  An exercise for the reader is to
31244 account for each of these six backslashes!)
31246 @vindex calc-embedded-close-formula
31247 The @code{calc-embedded-close-formula} variable holds a regular
31248 expression for the closing delimiter of a formula.  A closing
31249 regular expression to match the above example would be
31250 @code{"\\'\\|\n$\\|\\$\\$?"}.  This is almost the same as the
31251 other one, except it now uses @samp{\'} (``end-of-buffer'') and
31252 @samp{\n$} (newline occurring at end of line, yet another way
31253 of describing a blank line that is more appropriate for this
31254 case).
31256 @vindex calc-embedded-word-regexp
31257 The @code{calc-embedded-word-regexp} variable holds a regular expression
31258 used to define an expression to look for (a ``word'') when you type
31259 @kbd{C-x * w} to enable Embedded mode.
31261 @vindex calc-embedded-open-plain
31262 The @code{calc-embedded-open-plain} variable is a string which
31263 begins a ``plain'' formula written in front of the formatted
31264 formula when @kbd{d p} mode is turned on.  Note that this is an
31265 actual string, not a regular expression, because Calc must be able
31266 to write this string into a buffer as well as to recognize it.
31267 The default string is @code{"%%% "} (note the trailing space), but may
31268 be different for certain major modes.
31270 @vindex calc-embedded-close-plain
31271 The @code{calc-embedded-close-plain} variable is a string which
31272 ends a ``plain'' formula.  The default is @code{" %%%\n"}, but may be
31273 different for different major modes.  Without
31274 the trailing newline here, the first line of a Big mode formula
31275 that followed might be shifted over with respect to the other lines.
31277 @vindex calc-embedded-open-new-formula
31278 The @code{calc-embedded-open-new-formula} variable is a string
31279 which is inserted at the front of a new formula when you type
31280 @kbd{C-x * f}.  Its default value is @code{"\n\n"}.  If this
31281 string begins with a newline character and the @kbd{C-x * f} is
31282 typed at the beginning of a line, @kbd{C-x * f} will skip this
31283 first newline to avoid introducing unnecessary blank lines in
31284 the file.
31286 @vindex calc-embedded-close-new-formula
31287 The @code{calc-embedded-close-new-formula} variable is the corresponding
31288 string which is inserted at the end of a new formula.  Its default
31289 value is also @code{"\n\n"}.  The final newline is omitted by
31290 @w{@kbd{C-x * f}} if typed at the end of a line.  (It follows that if
31291 @kbd{C-x * f} is typed on a blank line, both a leading opening
31292 newline and a trailing closing newline are omitted.)
31294 @vindex calc-embedded-announce-formula
31295 The @code{calc-embedded-announce-formula} variable is a regular
31296 expression which is sure to be followed by an embedded formula.
31297 The @kbd{C-x * a} command searches for this pattern as well as for
31298 @samp{=>} and @samp{:=} operators.  Note that @kbd{C-x * a} will
31299 not activate just anything surrounded by formula delimiters; after
31300 all, blank lines are considered formula delimiters by default!
31301 But if your language includes a delimiter which can only occur
31302 actually in front of a formula, you can take advantage of it here.
31303 The default pattern is @code{"%Embed\n\\(% .*\n\\)*"}, but may be
31304 different for different major modes.
31305 This pattern will check for @samp{%Embed} followed by any number of
31306 lines beginning with @samp{%} and a space.  This last is important to
31307 make Calc consider mode annotations part of the pattern, so that the
31308 formula's opening delimiter really is sure to follow the pattern.
31310 @vindex calc-embedded-open-mode
31311 The @code{calc-embedded-open-mode} variable is a string (not a
31312 regular expression) which should precede a mode annotation.
31313 Calc never scans for this string; Calc always looks for the
31314 annotation itself.  But this is the string that is inserted before
31315 the opening bracket when Calc adds an annotation on its own.
31316 The default is @code{"% "}, but may be different for different major
31317 modes.
31319 @vindex calc-embedded-close-mode
31320 The @code{calc-embedded-close-mode} variable is a string which
31321 follows a mode annotation written by Calc.  Its default value
31322 is simply a newline, @code{"\n"}, but may be different for different
31323 major modes.  If you change this, it is a good idea still to end with a
31324 newline so that mode annotations will appear on lines by themselves.
31326 @node Programming, Copying, Embedded Mode, Top
31327 @chapter Programming
31329 @noindent
31330 There are several ways to ``program'' the Emacs Calculator, depending
31331 on the nature of the problem you need to solve.
31333 @enumerate
31334 @item
31335 @dfn{Keyboard macros} allow you to record a sequence of keystrokes
31336 and play them back at a later time.  This is just the standard Emacs
31337 keyboard macro mechanism, dressed up with a few more features such
31338 as loops and conditionals.
31340 @item
31341 @dfn{Algebraic definitions} allow you to use any formula to define a
31342 new function.  This function can then be used in algebraic formulas or
31343 as an interactive command.
31345 @item
31346 @dfn{Rewrite rules} are discussed in the section on algebra commands.
31347 @xref{Rewrite Rules}.  If you put your rewrite rules in the variable
31348 @code{EvalRules}, they will be applied automatically to all Calc
31349 results in just the same way as an internal ``rule'' is applied to
31350 evaluate @samp{sqrt(9)} to 3 and so on.  @xref{Automatic Rewrites}.
31352 @item
31353 @dfn{Lisp} is the programming language that Calc (and most of Emacs)
31354 is written in.  If the above techniques aren't powerful enough, you
31355 can write Lisp functions to do anything that built-in Calc commands
31356 can do.  Lisp code is also somewhat faster than keyboard macros or
31357 rewrite rules.
31358 @end enumerate
31360 @kindex z
31361 Programming features are available through the @kbd{z} and @kbd{Z}
31362 prefix keys.  New commands that you define are two-key sequences
31363 beginning with @kbd{z}.  Commands for managing these definitions
31364 use the shift-@kbd{Z} prefix.  (The @kbd{Z T} (@code{calc-timing})
31365 command is described elsewhere; @pxref{Troubleshooting Commands}.
31366 The @kbd{Z C} (@code{calc-user-define-composition}) command is also
31367 described elsewhere; @pxref{User-Defined Compositions}.)
31369 @menu
31370 * Creating User Keys::
31371 * Keyboard Macros::
31372 * Invocation Macros::
31373 * Algebraic Definitions::
31374 * Lisp Definitions::
31375 @end menu
31377 @node Creating User Keys, Keyboard Macros, Programming, Programming
31378 @section Creating User Keys
31380 @noindent
31381 @kindex Z D
31382 @pindex calc-user-define
31383 Any Calculator command may be bound to a key using the @kbd{Z D}
31384 (@code{calc-user-define}) command.  Actually, it is bound to a two-key
31385 sequence beginning with the lower-case @kbd{z} prefix.
31387 The @kbd{Z D} command first prompts for the key to define.  For example,
31388 press @kbd{Z D a} to define the new key sequence @kbd{z a}.  You are then
31389 prompted for the name of the Calculator command that this key should
31390 run.  For example, the @code{calc-sincos} command is not normally
31391 available on a key.  Typing @kbd{Z D s sincos @key{RET}} programs the
31392 @kbd{z s} key sequence to run @code{calc-sincos}.  This definition will remain
31393 in effect for the rest of this Emacs session, or until you redefine
31394 @kbd{z s} to be something else.
31396 You can actually bind any Emacs command to a @kbd{z} key sequence by
31397 backspacing over the @samp{calc-} when you are prompted for the command name.
31399 As with any other prefix key, you can type @kbd{z ?} to see a list of
31400 all the two-key sequences you have defined that start with @kbd{z}.
31401 Initially, no @kbd{z} sequences (except @kbd{z ?} itself) are defined.
31403 User keys are typically letters, but may in fact be any key.
31404 (@key{META}-keys are not permitted, nor are a terminal's special
31405 function keys which generate multi-character sequences when pressed.)
31406 You can define different commands on the shifted and unshifted versions
31407 of a letter if you wish.
31409 @kindex Z U
31410 @pindex calc-user-undefine
31411 The @kbd{Z U} (@code{calc-user-undefine}) command unbinds a user key.
31412 For example, the key sequence @kbd{Z U s} will undefine the @code{sincos}
31413 key we defined above.
31415 @kindex Z P
31416 @pindex calc-user-define-permanent
31417 @cindex Storing user definitions
31418 @cindex Permanent user definitions
31419 @cindex Calc init file, user-defined commands
31420 The @kbd{Z P} (@code{calc-user-define-permanent}) command makes a key
31421 binding permanent so that it will remain in effect even in future Emacs
31422 sessions.  (It does this by adding a suitable bit of Lisp code into
31423 your Calc init file; that is, the file given by the variable
31424 @code{calc-settings-file}, typically @file{~/.emacs.d/calc.el}.)  For example,
31425 @kbd{Z P s} would register our @code{sincos} command permanently.  If
31426 you later wish to unregister this command you must edit your Calc init
31427 file by hand.  (@xref{General Mode Commands}, for a way to tell Calc to
31428 use a different file for the Calc init file.)
31430 The @kbd{Z P} command also saves the user definition, if any, for the
31431 command bound to the key.  After @kbd{Z F} and @kbd{Z C}, a given user
31432 key could invoke a command, which in turn calls an algebraic function,
31433 which might have one or more special display formats.  A single @kbd{Z P}
31434 command will save all of these definitions.
31435 To save an algebraic function, type @kbd{'} (the apostrophe)
31436 when prompted for a key, and type the function name.  To save a command
31437 without its key binding, type @kbd{M-x} and enter a function name.  (The
31438 @samp{calc-} prefix will automatically be inserted for you.)
31439 (If the command you give implies a function, the function will be saved,
31440 and if the function has any display formats, those will be saved, but
31441 not the other way around:  Saving a function will not save any commands
31442 or key bindings associated with the function.)
31444 @kindex Z E
31445 @pindex calc-user-define-edit
31446 @cindex Editing user definitions
31447 The @kbd{Z E} (@code{calc-user-define-edit}) command edits the definition
31448 of a user key.  This works for keys that have been defined by either
31449 keyboard macros or formulas; further details are contained in the relevant
31450 following sections.
31452 @node Keyboard Macros, Invocation Macros, Creating User Keys, Programming
31453 @section Programming with Keyboard Macros
31455 @noindent
31456 @kindex X
31457 @cindex Programming with keyboard macros
31458 @cindex Keyboard macros
31459 The easiest way to ``program'' the Emacs Calculator is to use standard
31460 keyboard macros.  Press @w{@kbd{C-x (}} to begin recording a macro.  From
31461 this point on, keystrokes you type will be saved away as well as
31462 performing their usual functions.  Press @kbd{C-x )} to end recording.
31463 Press shift-@kbd{X} (or the standard Emacs key sequence @kbd{C-x e}) to
31464 execute your keyboard macro by replaying the recorded keystrokes.
31465 @xref{Keyboard Macros, , , emacs, the Emacs Manual}, for further
31466 information.
31468 When you use @kbd{X} to invoke a keyboard macro, the entire macro is
31469 treated as a single command by the undo and trail features.  The stack
31470 display buffer is not updated during macro execution, but is instead
31471 fixed up once the macro completes.  Thus, commands defined with keyboard
31472 macros are convenient and efficient.  The @kbd{C-x e} command, on the
31473 other hand, invokes the keyboard macro with no special treatment: Each
31474 command in the macro will record its own undo information and trail entry,
31475 and update the stack buffer accordingly.  If your macro uses features
31476 outside of Calc's control to operate on the contents of the Calc stack
31477 buffer, or if it includes Undo, Redo, or last-arguments commands, you
31478 must use @kbd{C-x e} to make sure the buffer and undo list are up-to-date
31479 at all times.  You could also consider using @kbd{K} (@code{calc-keep-args})
31480 instead of @kbd{M-@key{RET}} (@code{calc-last-args}).
31482 Calc extends the standard Emacs keyboard macros in several ways.
31483 Keyboard macros can be used to create user-defined commands.  Keyboard
31484 macros can include conditional and iteration structures, somewhat
31485 analogous to those provided by a traditional programmable calculator.
31487 @menu
31488 * Naming Keyboard Macros::
31489 * Conditionals in Macros::
31490 * Loops in Macros::
31491 * Local Values in Macros::
31492 * Queries in Macros::
31493 @end menu
31495 @node Naming Keyboard Macros, Conditionals in Macros, Keyboard Macros, Keyboard Macros
31496 @subsection Naming Keyboard Macros
31498 @noindent
31499 @kindex Z K
31500 @pindex calc-user-define-kbd-macro
31501 Once you have defined a keyboard macro, you can bind it to a @kbd{z}
31502 key sequence with the @kbd{Z K} (@code{calc-user-define-kbd-macro}) command.
31503 This command prompts first for a key, then for a command name.  For
31504 example, if you type @kbd{C-x ( n @key{TAB} n @key{TAB} C-x )} you will
31505 define a keyboard macro which negates the top two numbers on the stack
31506 (@key{TAB} swaps the top two stack elements).  Now you can type
31507 @kbd{Z K n @key{RET}} to define this keyboard macro onto the @kbd{z n} key
31508 sequence.  The default command name (if you answer the second prompt with
31509 just the @key{RET} key as in this example) will be something like
31510 @samp{calc-User-n}.  The keyboard macro will now be available as both
31511 @kbd{z n} and @kbd{M-x calc-User-n}.  You can backspace and enter a more
31512 descriptive command name if you wish.
31514 Macros defined by @kbd{Z K} act like single commands; they are executed
31515 in the same way as by the @kbd{X} key.  If you wish to define the macro
31516 as a standard no-frills Emacs macro (to be executed as if by @kbd{C-x e}),
31517 give a negative prefix argument to @kbd{Z K}.
31519 Once you have bound your keyboard macro to a key, you can use
31520 @kbd{Z P} to register it permanently with Emacs.  @xref{Creating User Keys}.
31522 @cindex Keyboard macros, editing
31523 The @kbd{Z E} (@code{calc-user-define-edit}) command on a key that has
31524 been defined by a keyboard macro tries to use the @code{edmacro} package
31525 edit the macro.  Type @kbd{C-c C-c} to finish editing and update
31526 the definition stored on the key, or, to cancel the edit, kill the
31527 buffer with @kbd{C-x k}.
31528 The special characters @code{RET}, @code{LFD}, @code{TAB}, @code{SPC},
31529 @code{DEL}, and @code{NUL} must be entered as these three character
31530 sequences, written in all uppercase, as must the prefixes @code{C-} and
31531 @code{M-}.  Spaces and line breaks are ignored.  Other characters are
31532 copied verbatim into the keyboard macro.  Basically, the notation is the
31533 same as is used in all of this manual's examples, except that the manual
31534 takes some liberties with spaces: When we say @kbd{' [1 2 3] @key{RET}},
31535 we take it for granted that it is clear we really mean
31536 @kbd{' [1 @key{SPC} 2 @key{SPC} 3] @key{RET}}.
31538 @kindex C-x * m
31539 @pindex read-kbd-macro
31540 The @kbd{C-x * m} (@code{read-kbd-macro}) command reads an Emacs ``region''
31541 of spelled-out keystrokes and defines it as the current keyboard macro.
31542 It is a convenient way to define a keyboard macro that has been stored
31543 in a file, or to define a macro without executing it at the same time.
31545 @node Conditionals in Macros, Loops in Macros, Naming Keyboard Macros, Keyboard Macros
31546 @subsection Conditionals in Keyboard Macros
31548 @noindent
31549 @kindex Z [
31550 @kindex Z ]
31551 @pindex calc-kbd-if
31552 @pindex calc-kbd-else
31553 @pindex calc-kbd-else-if
31554 @pindex calc-kbd-end-if
31555 @cindex Conditional structures
31556 The @kbd{Z [} (@code{calc-kbd-if}) and @kbd{Z ]} (@code{calc-kbd-end-if})
31557 commands allow you to put simple tests in a keyboard macro.  When Calc
31558 sees the @kbd{Z [}, it pops an object from the stack and, if the object is
31559 a non-zero value, continues executing keystrokes.  But if the object is
31560 zero, or if it is not provably nonzero, Calc skips ahead to the matching
31561 @kbd{Z ]} keystroke.  @xref{Logical Operations}, for a set of commands for
31562 performing tests which conveniently produce 1 for true and 0 for false.
31564 For example, @kbd{@key{RET} 0 a < Z [ n Z ]} implements an absolute-value
31565 function in the form of a keyboard macro.  This macro duplicates the
31566 number on the top of the stack, pushes zero and compares using @kbd{a <}
31567 (@code{calc-less-than}), then, if the number was less than zero,
31568 executes @kbd{n} (@code{calc-change-sign}).  Otherwise, the change-sign
31569 command is skipped.
31571 To program this macro, type @kbd{C-x (}, type the above sequence of
31572 keystrokes, then type @kbd{C-x )}.  Note that the keystrokes will be
31573 executed while you are making the definition as well as when you later
31574 re-execute the macro by typing @kbd{X}.  Thus you should make sure a
31575 suitable number is on the stack before defining the macro so that you
31576 don't get a stack-underflow error during the definition process.
31578 Conditionals can be nested arbitrarily.  However, there should be exactly
31579 one @kbd{Z ]} for each @kbd{Z [} in a keyboard macro.
31581 @kindex Z :
31582 The @kbd{Z :} (@code{calc-kbd-else}) command allows you to choose between
31583 two keystroke sequences.  The general format is @kbd{@var{cond} Z [
31584 @var{then-part} Z : @var{else-part} Z ]}.  If @var{cond} is true
31585 (i.e., if the top of stack contains a non-zero number after @var{cond}
31586 has been executed), the @var{then-part} will be executed and the
31587 @var{else-part} will be skipped.  Otherwise, the @var{then-part} will
31588 be skipped and the @var{else-part} will be executed.
31590 @kindex Z |
31591 The @kbd{Z |} (@code{calc-kbd-else-if}) command allows you to choose
31592 between any number of alternatives.  For example,
31593 @kbd{@var{cond1} Z [ @var{part1} Z : @var{cond2} Z | @var{part2} Z :
31594 @var{part3} Z ]} will execute @var{part1} if @var{cond1} is true,
31595 otherwise it will execute @var{part2} if @var{cond2} is true, otherwise
31596 it will execute @var{part3}.
31598 More precisely, @kbd{Z [} pops a number and conditionally skips to the
31599 next matching @kbd{Z :} or @kbd{Z ]} key.  @w{@kbd{Z ]}} has no effect when
31600 actually executed.  @kbd{Z :} skips to the next matching @kbd{Z ]}.
31601 @kbd{Z |} pops a number and conditionally skips to the next matching
31602 @kbd{Z :} or @kbd{Z ]}; thus, @kbd{Z [} and @kbd{Z |} are functionally
31603 equivalent except that @kbd{Z [} participates in nesting but @kbd{Z |}
31604 does not.
31606 Calc's conditional and looping constructs work by scanning the
31607 keyboard macro for occurrences of character sequences like @samp{Z:}
31608 and @samp{Z]}.  One side-effect of this is that if you use these
31609 constructs you must be careful that these character pairs do not
31610 occur by accident in other parts of the macros.  Since Calc rarely
31611 uses shift-@kbd{Z} for any purpose except as a prefix character, this
31612 is not likely to be a problem.  Another side-effect is that it will
31613 not work to define your own custom key bindings for these commands.
31614 Only the standard shift-@kbd{Z} bindings will work correctly.
31616 @kindex Z C-g
31617 If Calc gets stuck while skipping characters during the definition of a
31618 macro, type @kbd{Z C-g} to cancel the definition.  (Typing plain @kbd{C-g}
31619 actually adds a @kbd{C-g} keystroke to the macro.)
31621 @node Loops in Macros, Local Values in Macros, Conditionals in Macros, Keyboard Macros
31622 @subsection Loops in Keyboard Macros
31624 @noindent
31625 @kindex Z <
31626 @kindex Z >
31627 @pindex calc-kbd-repeat
31628 @pindex calc-kbd-end-repeat
31629 @cindex Looping structures
31630 @cindex Iterative structures
31631 The @kbd{Z <} (@code{calc-kbd-repeat}) and @kbd{Z >}
31632 (@code{calc-kbd-end-repeat}) commands pop a number from the stack,
31633 which must be an integer, then repeat the keystrokes between the brackets
31634 the specified number of times.  If the integer is zero or negative, the
31635 body is skipped altogether.  For example, @kbd{1 @key{TAB} Z < 2 * Z >}
31636 computes two to a nonnegative integer power.  First, we push 1 on the
31637 stack and then swap the integer argument back to the top.  The @kbd{Z <}
31638 pops that argument leaving the 1 back on top of the stack.  Then, we
31639 repeat a multiply-by-two step however many times.
31641 Once again, the keyboard macro is executed as it is being entered.
31642 In this case it is especially important to set up reasonable initial
31643 conditions before making the definition:  Suppose the integer 1000 just
31644 happened to be sitting on the stack before we typed the above definition!
31645 Another approach is to enter a harmless dummy definition for the macro,
31646 then go back and edit in the real one with a @kbd{Z E} command.  Yet
31647 another approach is to type the macro as written-out keystroke names
31648 in a buffer, then use @kbd{C-x * m} (@code{read-kbd-macro}) to read the
31649 macro.
31651 @kindex Z /
31652 @pindex calc-break
31653 The @kbd{Z /} (@code{calc-kbd-break}) command allows you to break out
31654 of a keyboard macro loop prematurely.  It pops an object from the stack;
31655 if that object is true (a non-zero number), control jumps out of the
31656 innermost enclosing @kbd{Z <} @dots{} @kbd{Z >} loop and continues
31657 after the @kbd{Z >}.  If the object is false, the @kbd{Z /} has no
31658 effect.  Thus @kbd{@var{cond} Z /} is similar to @samp{if (@var{cond}) break;}
31659 in the C language.
31661 @kindex Z (
31662 @kindex Z )
31663 @pindex calc-kbd-for
31664 @pindex calc-kbd-end-for
31665 The @kbd{Z (} (@code{calc-kbd-for}) and @kbd{Z )} (@code{calc-kbd-end-for})
31666 commands are similar to @kbd{Z <} and @kbd{Z >}, except that they make the
31667 value of the counter available inside the loop.  The general layout is
31668 @kbd{@var{init} @var{final} Z ( @var{body} @var{step} Z )}.  The @kbd{Z (}
31669 command pops initial and final values from the stack.  It then creates
31670 a temporary internal counter and initializes it with the value @var{init}.
31671 The @kbd{Z (} command then repeatedly pushes the counter value onto the
31672 stack and executes @var{body} and @var{step}, adding @var{step} to the
31673 counter each time until the loop finishes.
31675 @cindex Summations (by keyboard macros)
31676 By default, the loop finishes when the counter becomes greater than (or
31677 less than) @var{final}, assuming @var{initial} is less than (greater
31678 than) @var{final}.  If @var{initial} is equal to @var{final}, the body
31679 executes exactly once.  The body of the loop always executes at least
31680 once.  For example, @kbd{0 1 10 Z ( 2 ^ + 1 Z )} computes the sum of the
31681 squares of the integers from 1 to 10, in steps of 1.
31683 If you give a numeric prefix argument of 1 to @kbd{Z (}, the loop is
31684 forced to use upward-counting conventions.  In this case, if @var{initial}
31685 is greater than @var{final} the body will not be executed at all.
31686 Note that @var{step} may still be negative in this loop; the prefix
31687 argument merely constrains the loop-finished test.  Likewise, a prefix
31688 argument of @mathit{-1} forces downward-counting conventions.
31690 @kindex Z @{
31691 @kindex Z @}
31692 @pindex calc-kbd-loop
31693 @pindex calc-kbd-end-loop
31694 The @kbd{Z @{} (@code{calc-kbd-loop}) and @kbd{Z @}}
31695 (@code{calc-kbd-end-loop}) commands are similar to @kbd{Z <} and
31696 @kbd{Z >}, except that they do not pop a count from the stack---they
31697 effectively create an infinite loop.  Every @kbd{Z @{} @dots{} @kbd{Z @}}
31698 loop ought to include at least one @kbd{Z /} to make sure the loop
31699 doesn't run forever.  (If any error message occurs which causes Emacs
31700 to beep, the keyboard macro will also be halted; this is a standard
31701 feature of Emacs.  You can also generally press @kbd{C-g} to halt a
31702 running keyboard macro, although not all versions of Unix support
31703 this feature.)
31705 The conditional and looping constructs are not actually tied to
31706 keyboard macros, but they are most often used in that context.
31707 For example, the keystrokes @kbd{10 Z < 23 @key{RET} Z >} push
31708 ten copies of 23 onto the stack.  This can be typed ``live'' just
31709 as easily as in a macro definition.
31711 @xref{Conditionals in Macros}, for some additional notes about
31712 conditional and looping commands.
31714 @node Local Values in Macros, Queries in Macros, Loops in Macros, Keyboard Macros
31715 @subsection Local Values in Macros
31717 @noindent
31718 @cindex Local variables
31719 @cindex Restoring saved modes
31720 Keyboard macros sometimes want to operate under known conditions
31721 without affecting surrounding conditions.  For example, a keyboard
31722 macro may wish to turn on Fraction mode, or set a particular
31723 precision, independent of the user's normal setting for those
31724 modes.
31726 @kindex Z `
31727 @kindex Z '
31728 @pindex calc-kbd-push
31729 @pindex calc-kbd-pop
31730 Macros also sometimes need to use local variables.  Assignments to
31731 local variables inside the macro should not affect any variables
31732 outside the macro.  The @kbd{Z `} (@code{calc-kbd-push}) and @kbd{Z '}
31733 (@code{calc-kbd-pop}) commands give you both of these capabilities.
31735 When you type @kbd{Z `} (with a backquote or accent grave character),
31736 the values of various mode settings are saved away.  The ten ``quick''
31737 variables @code{q0} through @code{q9} are also saved.  When
31738 you type @w{@kbd{Z '}} (with an apostrophe), these values are restored.
31739 Pairs of @kbd{Z `} and @kbd{Z '} commands may be nested.
31741 If a keyboard macro halts due to an error in between a @kbd{Z `} and
31742 a @kbd{Z '}, the saved values will be restored correctly even though
31743 the macro never reaches the @kbd{Z '} command.  Thus you can use
31744 @kbd{Z `} and @kbd{Z '} without having to worry about what happens
31745 in exceptional conditions.
31747 If you type @kbd{Z `} ``live'' (not in a keyboard macro), Calc puts
31748 you into a ``recursive edit.''  You can tell you are in a recursive
31749 edit because there will be extra square brackets in the mode line,
31750 as in @samp{[(Calculator)]}.  These brackets will go away when you
31751 type the matching @kbd{Z '} command.  The modes and quick variables
31752 will be saved and restored in just the same way as if actual keyboard
31753 macros were involved.
31755 The modes saved by @kbd{Z `} and @kbd{Z '} are the current precision
31756 and binary word size, the angular mode (Deg, Rad, or HMS), the
31757 simplification mode, Algebraic mode, Symbolic mode, Infinite mode,
31758 Matrix or Scalar mode, Fraction mode, and the current complex mode
31759 (Polar or Rectangular).  The ten ``quick'' variables' values (or lack
31760 thereof) are also saved.
31762 Most mode-setting commands act as toggles, but with a numeric prefix
31763 they force the mode either on (positive prefix) or off (negative
31764 or zero prefix).  Since you don't know what the environment might
31765 be when you invoke your macro, it's best to use prefix arguments
31766 for all mode-setting commands inside the macro.
31768 In fact, @kbd{C-u Z `} is like @kbd{Z `} except that it sets the modes
31769 listed above to their default values.  As usual, the matching @kbd{Z '}
31770 will restore the modes to their settings from before the @kbd{C-u Z `}.
31771 Also, @w{@kbd{Z `}} with a negative prefix argument resets the algebraic mode
31772 to its default (off) but leaves the other modes the same as they were
31773 outside the construct.
31775 The contents of the stack and trail, values of non-quick variables, and
31776 other settings such as the language mode and the various display modes,
31777 are @emph{not} affected by @kbd{Z `} and @kbd{Z '}.
31779 @node Queries in Macros,  , Local Values in Macros, Keyboard Macros
31780 @subsection Queries in Keyboard Macros
31782 @c @noindent
31783 @c @kindex Z =
31784 @c @pindex calc-kbd-report
31785 @c The @kbd{Z =} (@code{calc-kbd-report}) command displays an informative
31786 @c message including the value on the top of the stack.  You are prompted
31787 @c to enter a string.  That string, along with the top-of-stack value,
31788 @c is displayed unless @kbd{m w} (@code{calc-working}) has been used
31789 @c to turn such messages off.
31791 @noindent
31792 @kindex Z #
31793 @pindex calc-kbd-query
31794 The @kbd{Z #} (@code{calc-kbd-query}) command prompts for an algebraic
31795 entry which takes its input from the keyboard, even during macro
31796 execution.  All the normal conventions of algebraic input, including the
31797 use of @kbd{$} characters, are supported.  The prompt message itself is
31798 taken from the top of the stack, and so must be entered (as a string)
31799 before the @kbd{Z #} command.  (Recall, as a string it can be entered by
31800 pressing the @kbd{"} key and will appear as a vector when it is put on
31801 the stack.  The prompt message is only put on the stack to provide a
31802 prompt for the @kbd{Z #} command; it will not play any role in any
31803 subsequent calculations.)  This command allows your keyboard macros to
31804 accept numbers or formulas as interactive input.
31806 As an example,
31807 @kbd{2 @key{RET} "Power: " @key{RET} Z # 3 @key{RET} ^} will prompt for
31808 input with ``Power: '' in the minibuffer, then return 2 to the provided
31809 power.  (The response to the prompt that's given, 3 in this example,
31810 will not be part of the macro.)
31812 @xref{Keyboard Macro Query, , , emacs, the Emacs Manual}, for a description of
31813 @kbd{C-x q} (@code{kbd-macro-query}), the standard Emacs way to accept
31814 keyboard input during a keyboard macro.  In particular, you can use
31815 @kbd{C-x q} to enter a recursive edit, which allows the user to perform
31816 any Calculator operations interactively before pressing @kbd{C-M-c} to
31817 return control to the keyboard macro.
31819 @node Invocation Macros, Algebraic Definitions, Keyboard Macros, Programming
31820 @section Invocation Macros
31822 @kindex C-x * z
31823 @kindex Z I
31824 @pindex calc-user-invocation
31825 @pindex calc-user-define-invocation
31826 Calc provides one special keyboard macro, called up by @kbd{C-x * z}
31827 (@code{calc-user-invocation}), that is intended to allow you to define
31828 your own special way of starting Calc.  To define this ``invocation
31829 macro,'' create the macro in the usual way with @kbd{C-x (} and
31830 @kbd{C-x )}, then type @kbd{Z I} (@code{calc-user-define-invocation}).
31831 There is only one invocation macro, so you don't need to type any
31832 additional letters after @kbd{Z I}.  From now on, you can type
31833 @kbd{C-x * z} at any time to execute your invocation macro.
31835 For example, suppose you find yourself often grabbing rectangles of
31836 numbers into Calc and multiplying their columns.  You can do this
31837 by typing @kbd{C-x * r} to grab, and @kbd{V R : *} to multiply columns.
31838 To make this into an invocation macro, just type @kbd{C-x ( C-x * r
31839 V R : * C-x )}, then @kbd{Z I}.  Then, to multiply a rectangle of data,
31840 just mark the data in its buffer in the usual way and type @kbd{C-x * z}.
31842 Invocation macros are treated like regular Emacs keyboard macros;
31843 all the special features described above for @kbd{Z K}-style macros
31844 do not apply.  @kbd{C-x * z} is just like @kbd{C-x e}, except that it
31845 uses the macro that was last stored by @kbd{Z I}.  (In fact, the
31846 macro does not even have to have anything to do with Calc!)
31848 The @kbd{m m} command saves the last invocation macro defined by
31849 @kbd{Z I} along with all the other Calc mode settings.
31850 @xref{General Mode Commands}.
31852 @node Algebraic Definitions, Lisp Definitions, Invocation Macros, Programming
31853 @section Programming with Formulas
31855 @noindent
31856 @kindex Z F
31857 @pindex calc-user-define-formula
31858 @cindex Programming with algebraic formulas
31859 Another way to create a new Calculator command uses algebraic formulas.
31860 The @kbd{Z F} (@code{calc-user-define-formula}) command stores the
31861 formula at the top of the stack as the definition for a key.  This
31862 command prompts for five things: The key, the command name, the function
31863 name, the argument list, and the behavior of the command when given
31864 non-numeric arguments.
31866 For example, suppose we type @kbd{' a+2b @key{RET}} to push the formula
31867 @samp{a + 2*b} onto the stack.  We now type @kbd{Z F m} to define this
31868 formula on the @kbd{z m} key sequence.  The next prompt is for a command
31869 name, beginning with @samp{calc-}, which should be the long (@kbd{M-x}) form
31870 for the new command.  If you simply press @key{RET}, a default name like
31871 @code{calc-User-m} will be constructed.  In our example, suppose we enter
31872 @kbd{spam @key{RET}} to define the new command as @code{calc-spam}.
31874 If you want to give the formula a long-style name only, you can press
31875 @key{SPC} or @key{RET} when asked which single key to use.  For example
31876 @kbd{Z F @key{RET} spam @key{RET}} defines the new command as
31877 @kbd{M-x calc-spam}, with no keyboard equivalent.
31879 The third prompt is for an algebraic function name.  The default is to
31880 use the same name as the command name but without the @samp{calc-}
31881 prefix.  (If this is of the form @samp{User-m}, the hyphen is removed so
31882 it won't be taken for a minus sign in algebraic formulas.)
31883 This is the name you will use if you want to enter your
31884 new function in an algebraic formula.  Suppose we enter @kbd{yow @key{RET}}.
31885 Then the new function can be invoked by pushing two numbers on the
31886 stack and typing @kbd{z m} or @kbd{x spam}, or by entering the algebraic
31887 formula @samp{yow(x,y)}.
31889 The fourth prompt is for the function's argument list.  This is used to
31890 associate values on the stack with the variables that appear in the formula.
31891 The default is a list of all variables which appear in the formula, sorted
31892 into alphabetical order.  In our case, the default would be @samp{(a b)}.
31893 This means that, when the user types @kbd{z m}, the Calculator will remove
31894 two numbers from the stack, substitute these numbers for @samp{a} and
31895 @samp{b} (respectively) in the formula, then simplify the formula and
31896 push the result on the stack.  In other words, @kbd{10 @key{RET} 100 z m}
31897 would replace the 10 and 100 on the stack with the number 210, which is
31898 @expr{a + 2 b} with @expr{a=10} and @expr{b=100}.  Likewise, the formula
31899 @samp{yow(10, 100)} will be evaluated by substituting @expr{a=10} and
31900 @expr{b=100} in the definition.
31902 You can rearrange the order of the names before pressing @key{RET} to
31903 control which stack positions go to which variables in the formula.  If
31904 you remove a variable from the argument list, that variable will be left
31905 in symbolic form by the command.  Thus using an argument list of @samp{(b)}
31906 for our function would cause @kbd{10 z m} to replace the 10 on the stack
31907 with the formula @samp{a + 20}.  If we had used an argument list of
31908 @samp{(b a)}, the result with inputs 10 and 100 would have been 120.
31910 You can also put a nameless function on the stack instead of just a
31911 formula, as in @samp{<a, b : a + 2 b>}.  @xref{Specifying Operators}.
31912 In this example, the command will be defined by the formula @samp{a + 2 b}
31913 using the argument list @samp{(a b)}.
31915 The final prompt is a y-or-n question concerning what to do if symbolic
31916 arguments are given to your function.  If you answer @kbd{y}, then
31917 executing @kbd{z m} (using the original argument list @samp{(a b)}) with
31918 arguments @expr{10} and @expr{x} will leave the function in symbolic
31919 form, i.e., @samp{yow(10,x)}.  On the other hand, if you answer @kbd{n},
31920 then the formula will always be expanded, even for non-constant
31921 arguments: @samp{10 + 2 x}.  If you never plan to feed algebraic
31922 formulas to your new function, it doesn't matter how you answer this
31923 question.
31925 If you answered @kbd{y} to this question you can still cause a function
31926 call to be expanded by typing @kbd{a "} (@code{calc-expand-formula}).
31927 Also, Calc will expand the function if necessary when you take a
31928 derivative or integral or solve an equation involving the function.
31930 @kindex Z G
31931 @pindex calc-get-user-defn
31932 Once you have defined a formula on a key, you can retrieve this formula
31933 with the @kbd{Z G} (@code{calc-user-define-get-defn}) command.  Press a
31934 key, and this command pushes the formula that was used to define that
31935 key onto the stack.  Actually, it pushes a nameless function that
31936 specifies both the argument list and the defining formula.  You will get
31937 an error message if the key is undefined, or if the key was not defined
31938 by a @kbd{Z F} command.
31940 The @kbd{Z E} (@code{calc-user-define-edit}) command on a key that has
31941 been defined by a formula uses a variant of the @code{calc-edit} command
31942 to edit the defining formula.  Press @kbd{C-c C-c} to finish editing and
31943 store the new formula back in the definition, or kill the buffer with
31944 @kbd{C-x k} to
31945 cancel the edit.  (The argument list and other properties of the
31946 definition are unchanged; to adjust the argument list, you can use
31947 @kbd{Z G} to grab the function onto the stack, edit with @kbd{`}, and
31948 then re-execute the @kbd{Z F} command.)
31950 As usual, the @kbd{Z P} command records your definition permanently.
31951 In this case it will permanently record all three of the relevant
31952 definitions: the key, the command, and the function.
31954 You may find it useful to turn off the default simplifications with
31955 @kbd{m O} (@code{calc-no-simplify-mode}) when entering a formula to be
31956 used as a function definition.  For example, the formula @samp{deriv(a^2,v)}
31957 which might be used to define a new function @samp{dsqr(a,v)} will be
31958 ``simplified'' to 0 immediately upon entry since @code{deriv} considers
31959 @expr{a} to be constant with respect to @expr{v}.  Turning off
31960 default simplifications cures this problem:  The definition will be stored
31961 in symbolic form without ever activating the @code{deriv} function.  Press
31962 @kbd{m D} to turn the default simplifications back on afterwards.
31964 @node Lisp Definitions,  , Algebraic Definitions, Programming
31965 @section Programming with Lisp
31967 @noindent
31968 The Calculator can be programmed quite extensively in Lisp.  All you
31969 do is write a normal Lisp function definition, but with @code{defmath}
31970 in place of @code{defun}.  This has the same form as @code{defun}, but it
31971 automagically replaces calls to standard Lisp functions like @code{+} and
31972 @code{zerop} with calls to the corresponding functions in Calc's own library.
31973 Thus you can write natural-looking Lisp code which operates on all of the
31974 standard Calculator data types.  You can then use @kbd{Z D} if you wish to
31975 bind your new command to a @kbd{z}-prefix key sequence.  The @kbd{Z E} command
31976 will not edit a Lisp-based definition.
31978 Emacs Lisp is described in the GNU Emacs Lisp Reference Manual.  This section
31979 assumes a familiarity with Lisp programming concepts; if you do not know
31980 Lisp, you may find keyboard macros or rewrite rules to be an easier way
31981 to program the Calculator.
31983 This section first discusses ways to write commands, functions, or
31984 small programs to be executed inside of Calc.  Then it discusses how
31985 your own separate programs are able to call Calc from the outside.
31986 Finally, there is a list of internal Calc functions and data structures
31987 for the true Lisp enthusiast.
31989 @menu
31990 * Defining Functions::
31991 * Defining Simple Commands::
31992 * Defining Stack Commands::
31993 * Argument Qualifiers::
31994 * Example Definitions::
31996 * Calling Calc from Your Programs::
31997 * Internals::
31998 @end menu
32000 @node Defining Functions, Defining Simple Commands, Lisp Definitions, Lisp Definitions
32001 @subsection Defining New Functions
32003 @noindent
32004 @findex defmath
32005 The @code{defmath} function (actually a Lisp macro) is like @code{defun}
32006 except that code in the body of the definition can make use of the full
32007 range of Calculator data types.  The prefix @samp{calcFunc-} is added
32008 to the specified name to get the actual Lisp function name.  As a simple
32009 example,
32011 @example
32012 (defmath myfact (n)
32013   (if (> n 0)
32014       (* n (myfact (1- n)))
32015     1))
32016 @end example
32018 @noindent
32019 This actually expands to the code,
32021 @example
32022 (defun calcFunc-myfact (n)
32023   (if (math-posp n)
32024       (math-mul n (calcFunc-myfact (math-add n -1)))
32025     1))
32026 @end example
32028 @noindent
32029 This function can be used in algebraic expressions, e.g., @samp{myfact(5)}.
32031 The @samp{myfact} function as it is defined above has the bug that an
32032 expression @samp{myfact(a+b)} will be simplified to 1 because the
32033 formula @samp{a+b} is not considered to be @code{posp}.  A robust
32034 factorial function would be written along the following lines:
32036 @smallexample
32037 (defmath myfact (n)
32038   (if (> n 0)
32039       (* n (myfact (1- n)))
32040     (if (= n 0)
32041         1
32042       nil)))    ; this could be simplified as: (and (= n 0) 1)
32043 @end smallexample
32045 If a function returns @code{nil}, it is left unsimplified by the Calculator
32046 (except that its arguments will be simplified).  Thus, @samp{myfact(a+1+2)}
32047 will be simplified to @samp{myfact(a+3)} but no further.  Beware that every
32048 time the Calculator reexamines this formula it will attempt to resimplify
32049 it, so your function ought to detect the returning-@code{nil} case as
32050 efficiently as possible.
32052 The following standard Lisp functions are treated by @code{defmath}:
32053 @code{+}, @code{-}, @code{*}, @code{/}, @code{%}, @code{^} or
32054 @code{expt}, @code{=}, @code{<}, @code{>}, @code{<=}, @code{>=},
32055 @code{/=}, @code{1+}, @code{1-}, @code{logand}, @code{logior}, @code{logxor},
32056 @code{logandc2}, @code{lognot}.  Also, @code{~=} is an abbreviation for
32057 @code{math-nearly-equal}, which is useful in implementing Taylor series.
32059 For other functions @var{func}, if a function by the name
32060 @samp{calcFunc-@var{func}} exists it is used, otherwise if a function by the
32061 name @samp{math-@var{func}} exists it is used, otherwise if @var{func} itself
32062 is defined as a function it is used, otherwise @samp{calcFunc-@var{func}} is
32063 used on the assumption that this is a to-be-defined math function.  Also, if
32064 the function name is quoted as in @samp{('integerp a)} the function name is
32065 always used exactly as written (but not quoted).
32067 Variable names have @samp{var-} prepended to them unless they appear in
32068 the function's argument list or in an enclosing @code{let}, @code{let*},
32069 @code{for}, or @code{foreach} form,
32070 or their names already contain a @samp{-} character.  Thus a reference to
32071 @samp{foo} is the same as a reference to @samp{var-foo}.
32073 A few other Lisp extensions are available in @code{defmath} definitions:
32075 @itemize @bullet
32076 @item
32077 The @code{elt} function accepts any number of index variables.
32078 Note that Calc vectors are stored as Lisp lists whose first
32079 element is the symbol @code{vec}; thus, @samp{(elt v 2)} yields
32080 the second element of vector @code{v}, and @samp{(elt m i j)}
32081 yields one element of a Calc matrix.
32083 @item
32084 The @code{setq} function has been extended to act like the Common
32085 Lisp @code{setf} function.  (The name @code{setf} is recognized as
32086 a synonym of @code{setq}.)  Specifically, the first argument of
32087 @code{setq} can be an @code{nth}, @code{elt}, @code{car}, or @code{cdr} form,
32088 in which case the effect is to store into the specified
32089 element of a list.  Thus, @samp{(setq (elt m i j) x)} stores @expr{x}
32090 into one element of a matrix.
32092 @item
32093 A @code{for} looping construct is available.  For example,
32094 @samp{(for ((i 0 10)) body)} executes @code{body} once for each
32095 binding of @expr{i} from zero to 10.  This is like a @code{let}
32096 form in that @expr{i} is temporarily bound to the loop count
32097 without disturbing its value outside the @code{for} construct.
32098 Nested loops, as in @samp{(for ((i 0 10) (j 0 (1- i) 2)) body)},
32099 are also available.  For each value of @expr{i} from zero to 10,
32100 @expr{j} counts from 0 to @expr{i-1} in steps of two.  Note that
32101 @code{for} has the same general outline as @code{let*}, except
32102 that each element of the header is a list of three or four
32103 things, not just two.
32105 @item
32106 The @code{foreach} construct loops over elements of a list.
32107 For example, @samp{(foreach ((x (cdr v))) body)} executes
32108 @code{body} with @expr{x} bound to each element of Calc vector
32109 @expr{v} in turn.  The purpose of @code{cdr} here is to skip over
32110 the initial @code{vec} symbol in the vector.
32112 @item
32113 The @code{break} function breaks out of the innermost enclosing
32114 @code{while}, @code{for}, or @code{foreach} loop.  If given a
32115 value, as in @samp{(break x)}, this value is returned by the
32116 loop.  (Lisp loops otherwise always return @code{nil}.)
32118 @item
32119 The @code{return} function prematurely returns from the enclosing
32120 function.  For example, @samp{(return (+ x y))} returns @expr{x+y}
32121 as the value of a function.  You can use @code{return} anywhere
32122 inside the body of the function.
32123 @end itemize
32125 Non-integer numbers (and extremely large integers) cannot be included
32126 directly into a @code{defmath} definition.  This is because the Lisp
32127 reader will fail to parse them long before @code{defmath} ever gets control.
32128 Instead, use the notation, @samp{:"3.1415"}.  In fact, any algebraic
32129 formula can go between the quotes.  For example,
32131 @smallexample
32132 (defmath sqexp (x)     ; sqexp(x) == sqrt(exp(x)) == exp(x*0.5)
32133   (and (numberp x)
32134        (exp :"x * 0.5")))
32135 @end smallexample
32137 expands to
32139 @smallexample
32140 (defun calcFunc-sqexp (x)
32141   (and (math-numberp x)
32142        (calcFunc-exp (math-mul x '(float 5 -1)))))
32143 @end smallexample
32145 Note the use of @code{numberp} as a guard to ensure that the argument is
32146 a number first, returning @code{nil} if not.  The exponential function
32147 could itself have been included in the expression, if we had preferred:
32148 @samp{:"exp(x * 0.5)"}.  As another example, the multiplication-and-recursion
32149 step of @code{myfact} could have been written
32151 @example
32152 :"n * myfact(n-1)"
32153 @end example
32155 A good place to put your @code{defmath} commands is your Calc init file
32156 (the file given by @code{calc-settings-file}, typically
32157 @file{~/.emacs.d/calc.el}), which will not be loaded until Calc starts.
32158 If a file named @file{.emacs} exists in your home directory, Emacs reads
32159 and executes the Lisp forms in this file as it starts up.  While it may
32160 seem reasonable to put your favorite @code{defmath} commands there,
32161 this has the unfortunate side-effect that parts of the Calculator must be
32162 loaded in to process the @code{defmath} commands whether or not you will
32163 actually use the Calculator!  If you want to put the @code{defmath}
32164 commands there (for example, if you redefine @code{calc-settings-file}
32165 to be @file{.emacs}), a better effect can be had by writing
32167 @example
32168 (put 'calc-define 'thing '(progn
32169  (defmath ... )
32170  (defmath ... )
32172 @end example
32174 @noindent
32175 @vindex calc-define
32176 The @code{put} function adds a @dfn{property} to a symbol.  Each Lisp
32177 symbol has a list of properties associated with it.  Here we add a
32178 property with a name of @code{thing} and a @samp{(progn ...)} form as
32179 its value.  When Calc starts up, and at the start of every Calc command,
32180 the property list for the symbol @code{calc-define} is checked and the
32181 values of any properties found are evaluated as Lisp forms.  The
32182 properties are removed as they are evaluated.  The property names
32183 (like @code{thing}) are not used; you should choose something like the
32184 name of your project so as not to conflict with other properties.
32186 The net effect is that you can put the above code in your @file{.emacs}
32187 file and it will not be executed until Calc is loaded.  Or, you can put
32188 that same code in another file which you load by hand either before or
32189 after Calc itself is loaded.
32191 The properties of @code{calc-define} are evaluated in the same order
32192 that they were added.  They can assume that the Calc modules @file{calc.el},
32193 @file{calc-ext.el}, and @file{calc-macs.el} have been fully loaded, and
32194 that the @samp{*Calculator*} buffer will be the current buffer.
32196 If your @code{calc-define} property only defines algebraic functions,
32197 you can be sure that it will have been evaluated before Calc tries to
32198 call your function, even if the file defining the property is loaded
32199 after Calc is loaded.  But if the property defines commands or key
32200 sequences, it may not be evaluated soon enough.  (Suppose it defines the
32201 new command @code{tweak-calc}; the user can load your file, then type
32202 @kbd{M-x tweak-calc} before Calc has had chance to do anything.)  To
32203 protect against this situation, you can put
32205 @example
32206 (run-hooks 'calc-check-defines)
32207 @end example
32209 @findex calc-check-defines
32210 @noindent
32211 at the end of your file.  The @code{calc-check-defines} function is what
32212 looks for and evaluates properties on @code{calc-define}; @code{run-hooks}
32213 has the advantage that it is quietly ignored if @code{calc-check-defines}
32214 is not yet defined because Calc has not yet been loaded.
32216 Examples of things that ought to be enclosed in a @code{calc-define}
32217 property are @code{defmath} calls, @code{define-key} calls that modify
32218 the Calc key map, and any calls that redefine things defined inside Calc.
32219 Ordinary @code{defun}s need not be enclosed with @code{calc-define}.
32221 @node Defining Simple Commands, Defining Stack Commands, Defining Functions, Lisp Definitions
32222 @subsection Defining New Simple Commands
32224 @noindent
32225 @findex interactive
32226 If a @code{defmath} form contains an @code{interactive} clause, it defines
32227 a Calculator command.  Actually such a @code{defmath} results in @emph{two}
32228 function definitions:  One, a @samp{calcFunc-} function as was just described,
32229 with the @code{interactive} clause removed.  Two, a @samp{calc-} function
32230 with a suitable @code{interactive} clause and some sort of wrapper to make
32231 the command work in the Calc environment.
32233 In the simple case, the @code{interactive} clause has the same form as
32234 for normal Emacs Lisp commands:
32236 @smallexample
32237 (defmath increase-precision (delta)
32238   "Increase precision by DELTA."     ; This is the "documentation string"
32239   (interactive "p")                  ; Register this as a M-x-able command
32240   (setq calc-internal-prec (+ calc-internal-prec delta)))
32241 @end smallexample
32243 This expands to the pair of definitions,
32245 @smallexample
32246 (defun calc-increase-precision (delta)
32247   "Increase precision by DELTA."
32248   (interactive "p")
32249   (calc-wrapper
32250    (setq calc-internal-prec (math-add calc-internal-prec delta))))
32252 (defun calcFunc-increase-precision (delta)
32253   "Increase precision by DELTA."
32254   (setq calc-internal-prec (math-add calc-internal-prec delta)))
32255 @end smallexample
32257 @noindent
32258 where in this case the latter function would never really be used!  Note
32259 that since the Calculator stores small integers as plain Lisp integers,
32260 the @code{math-add} function will work just as well as the native
32261 @code{+} even when the intent is to operate on native Lisp integers.
32263 @findex calc-wrapper
32264 The @samp{calc-wrapper} call invokes a macro which surrounds the body of
32265 the function with code that looks roughly like this:
32267 @smallexample
32268 (let ((calc-command-flags nil))
32269   (unwind-protect
32270       (save-current-buffer
32271         (calc-select-buffer)
32272         @emph{body of function}
32273         @emph{renumber stack}
32274         @emph{clear} Working @emph{message})
32275     @emph{realign cursor and window}
32276     @emph{clear Inverse, Hyperbolic, and Keep Args flags}
32277     @emph{update Emacs mode line}))
32278 @end smallexample
32280 @findex calc-select-buffer
32281 The @code{calc-select-buffer} function selects the @samp{*Calculator*}
32282 buffer if necessary, say, because the command was invoked from inside
32283 the @samp{*Calc Trail*} window.
32285 @findex calc-set-command-flag
32286 You can call, for example, @code{(calc-set-command-flag 'no-align)} to
32287 set the above-mentioned command flags.  Calc routines recognize the
32288 following command flags:
32290 @table @code
32291 @item renum-stack
32292 Stack line numbers @samp{1:}, @samp{2:}, and so on must be renumbered
32293 after this command completes.  This is set by routines like
32294 @code{calc-push}.
32296 @item clear-message
32297 Calc should call @samp{(message "")} if this command completes normally
32298 (to clear a ``Working@dots{}'' message out of the echo area).
32300 @item no-align
32301 Do not move the cursor back to the @samp{.} top-of-stack marker.
32303 @item position-point
32304 Use the variables @code{calc-position-point-line} and
32305 @code{calc-position-point-column} to position the cursor after
32306 this command finishes.
32308 @item keep-flags
32309 Do not clear @code{calc-inverse-flag}, @code{calc-hyperbolic-flag},
32310 and @code{calc-keep-args-flag} at the end of this command.
32312 @item do-edit
32313 Switch to buffer @samp{*Calc Edit*} after this command.
32315 @item hold-trail
32316 Do not move trail pointer to end of trail when something is recorded
32317 there.
32318 @end table
32320 @kindex Y
32321 @kindex Y ?
32322 @vindex calc-Y-help-msgs
32323 Calc reserves a special prefix key, shift-@kbd{Y}, for user-written
32324 extensions to Calc.  There are no built-in commands that work with
32325 this prefix key; you must call @code{define-key} from Lisp (probably
32326 from inside a @code{calc-define} property) to add to it.  Initially only
32327 @kbd{Y ?} is defined; it takes help messages from a list of strings
32328 (initially @code{nil}) in the variable @code{calc-Y-help-msgs}.  All
32329 other undefined keys except for @kbd{Y} are reserved for use by
32330 future versions of Calc.
32332 If you are writing a Calc enhancement which you expect to give to
32333 others, it is best to minimize the number of @kbd{Y}-key sequences
32334 you use.  In fact, if you have more than one key sequence you should
32335 consider defining three-key sequences with a @kbd{Y}, then a key that
32336 stands for your package, then a third key for the particular command
32337 within your package.
32339 Users may wish to install several Calc enhancements, and it is possible
32340 that several enhancements will choose to use the same key.  In the
32341 example below, a variable @code{inc-prec-base-key} has been defined
32342 to contain the key that identifies the @code{inc-prec} package.  Its
32343 value is initially @code{"P"}, but a user can change this variable
32344 if necessary without having to modify the file.
32346 Here is a complete file, @file{inc-prec.el}, which makes a @kbd{Y P I}
32347 command that increases the precision, and a @kbd{Y P D} command that
32348 decreases the precision.
32350 @smallexample
32351 ;;; Increase and decrease Calc precision.  Dave Gillespie, 5/31/91.
32352 ;; (Include copyright or copyleft stuff here.)
32354 (defvar inc-prec-base-key "P"
32355   "Base key for inc-prec.el commands.")
32357 (put 'calc-define 'inc-prec '(progn
32359 (define-key calc-mode-map (format "Y%sI" inc-prec-base-key)
32360             'increase-precision)
32361 (define-key calc-mode-map (format "Y%sD" inc-prec-base-key)
32362             'decrease-precision)
32364 (setq calc-Y-help-msgs
32365       (cons (format "%s + Inc-prec, Dec-prec" inc-prec-base-key)
32366             calc-Y-help-msgs))
32368 (defmath increase-precision (delta)
32369   "Increase precision by DELTA."
32370   (interactive "p")
32371   (setq calc-internal-prec (+ calc-internal-prec delta)))
32373 (defmath decrease-precision (delta)
32374   "Decrease precision by DELTA."
32375   (interactive "p")
32376   (setq calc-internal-prec (- calc-internal-prec delta)))
32378 ))  ; end of calc-define property
32380 (run-hooks 'calc-check-defines)
32381 @end smallexample
32383 @node Defining Stack Commands, Argument Qualifiers, Defining Simple Commands, Lisp Definitions
32384 @subsection Defining New Stack-Based Commands
32386 @noindent
32387 To define a new computational command which takes and/or leaves arguments
32388 on the stack, a special form of @code{interactive} clause is used.
32390 @example
32391 (interactive @var{num} @var{tag})
32392 @end example
32394 @noindent
32395 where @var{num} is an integer, and @var{tag} is a string.  The effect is
32396 to pop @var{num} values off the stack, resimplify them by calling
32397 @code{calc-normalize}, and hand them to your function according to the
32398 function's argument list.  Your function may include @code{&optional} and
32399 @code{&rest} parameters, so long as calling the function with @var{num}
32400 parameters is valid.
32402 Your function must return either a number or a formula in a form
32403 acceptable to Calc, or a list of such numbers or formulas.  These value(s)
32404 are pushed onto the stack when the function completes.  They are also
32405 recorded in the Calc Trail buffer on a line beginning with @var{tag},
32406 a string of (normally) four characters or less.  If you omit @var{tag}
32407 or use @code{nil} as a tag, the result is not recorded in the trail.
32409 As an example, the definition
32411 @smallexample
32412 (defmath myfact (n)
32413   "Compute the factorial of the integer at the top of the stack."
32414   (interactive 1 "fact")
32415   (if (> n 0)
32416       (* n (myfact (1- n)))
32417     (and (= n 0) 1)))
32418 @end smallexample
32420 @noindent
32421 is a version of the factorial function shown previously which can be used
32422 as a command as well as an algebraic function.  It expands to
32424 @smallexample
32425 (defun calc-myfact ()
32426   "Compute the factorial of the integer at the top of the stack."
32427   (interactive)
32428   (calc-slow-wrapper
32429    (calc-enter-result 1 "fact"
32430      (cons 'calcFunc-myfact (calc-top-list-n 1)))))
32432 (defun calcFunc-myfact (n)
32433   "Compute the factorial of the integer at the top of the stack."
32434   (if (math-posp n)
32435       (math-mul n (calcFunc-myfact (math-add n -1)))
32436     (and (math-zerop n) 1)))
32437 @end smallexample
32439 @findex calc-slow-wrapper
32440 The @code{calc-slow-wrapper} function is a version of @code{calc-wrapper}
32441 that automatically puts up a @samp{Working...} message before the
32442 computation begins.  (This message can be turned off by the user
32443 with an @kbd{m w} (@code{calc-working}) command.)
32445 @findex calc-top-list-n
32446 The @code{calc-top-list-n} function returns a list of the specified number
32447 of values from the top of the stack.  It resimplifies each value by
32448 calling @code{calc-normalize}.  If its argument is zero it returns an
32449 empty list.  It does not actually remove these values from the stack.
32451 @findex calc-enter-result
32452 The @code{calc-enter-result} function takes an integer @var{num} and string
32453 @var{tag} as described above, plus a third argument which is either a
32454 Calculator data object or a list of such objects.  These objects are
32455 resimplified and pushed onto the stack after popping the specified number
32456 of values from the stack.  If @var{tag} is non-@code{nil}, the values
32457 being pushed are also recorded in the trail.
32459 Note that if @code{calcFunc-myfact} returns @code{nil} this represents
32460 ``leave the function in symbolic form.''  To return an actual empty list,
32461 in the sense that @code{calc-enter-result} will push zero elements back
32462 onto the stack, you should return the special value @samp{'(nil)}, a list
32463 containing the single symbol @code{nil}.
32465 The @code{interactive} declaration can actually contain a limited
32466 Emacs-style code string as well which comes just before @var{num} and
32467 @var{tag}.  Currently the only Emacs code supported is @samp{"p"}, as in
32469 @example
32470 (defmath foo (a b &optional c)
32471   (interactive "p" 2 "foo")
32472   @var{body})
32473 @end example
32475 In this example, the command @code{calc-foo} will evaluate the expression
32476 @samp{foo(a,b)} if executed with no argument, or @samp{foo(a,b,n)} if
32477 executed with a numeric prefix argument of @expr{n}.
32479 The other code string allowed is @samp{"m"} (unrelated to the usual @samp{"m"}
32480 code as used with @code{defun}).  It uses the numeric prefix argument as the
32481 number of objects to remove from the stack and pass to the function.
32482 In this case, the integer @var{num} serves as a default number of
32483 arguments to be used when no prefix is supplied.
32485 @node Argument Qualifiers, Example Definitions, Defining Stack Commands, Lisp Definitions
32486 @subsection Argument Qualifiers
32488 @noindent
32489 Anywhere a parameter name can appear in the parameter list you can also use
32490 an @dfn{argument qualifier}.  Thus the general form of a definition is:
32492 @example
32493 (defmath @var{name} (@var{param} @var{param...}
32494                &optional @var{param} @var{param...}
32495                &rest @var{param})
32496   @var{body})
32497 @end example
32499 @noindent
32500 where each @var{param} is either a symbol or a list of the form
32502 @example
32503 (@var{qual} @var{param})
32504 @end example
32506 The following qualifiers are recognized:
32508 @table @samp
32509 @item complete
32510 @findex complete
32511 The argument must not be an incomplete vector, interval, or complex number.
32512 (This is rarely needed since the Calculator itself will never call your
32513 function with an incomplete argument.  But there is nothing stopping your
32514 own Lisp code from calling your function with an incomplete argument.)
32516 @item integer
32517 @findex integer
32518 The argument must be an integer.  If it is an integer-valued float
32519 it will be accepted but converted to integer form.  Non-integers and
32520 formulas are rejected.
32522 @item natnum
32523 @findex natnum
32524 Like @samp{integer}, but the argument must be non-negative.
32526 @item fixnum
32527 @findex fixnum
32528 Like @samp{integer}, but the argument must fit into a native Lisp integer,
32529 which on most systems means less than 2^23 in absolute value.  The
32530 argument is converted into Lisp-integer form if necessary.
32532 @item float
32533 @findex float
32534 The argument is converted to floating-point format if it is a number or
32535 vector.  If it is a formula it is left alone.  (The argument is never
32536 actually rejected by this qualifier.)
32538 @item @var{pred}
32539 The argument must satisfy predicate @var{pred}, which is one of the
32540 standard Calculator predicates.  @xref{Predicates}.
32542 @item not-@var{pred}
32543 The argument must @emph{not} satisfy predicate @var{pred}.
32544 @end table
32546 For example,
32548 @example
32549 (defmath foo (a (constp (not-matrixp b)) &optional (float c)
32550               &rest (integer d))
32551   @var{body})
32552 @end example
32554 @noindent
32555 expands to
32557 @example
32558 (defun calcFunc-foo (a b &optional c &rest d)
32559   (and (math-matrixp b)
32560        (math-reject-arg b 'not-matrixp))
32561   (or (math-constp b)
32562       (math-reject-arg b 'constp))
32563   (and c (setq c (math-check-float c)))
32564   (setq d (mapcar 'math-check-integer d))
32565   @var{body})
32566 @end example
32568 @noindent
32569 which performs the necessary checks and conversions before executing the
32570 body of the function.
32572 @node Example Definitions, Calling Calc from Your Programs, Argument Qualifiers, Lisp Definitions
32573 @subsection Example Definitions
32575 @noindent
32576 This section includes some Lisp programming examples on a larger scale.
32577 These programs make use of some of the Calculator's internal functions;
32578 @pxref{Internals}.
32580 @menu
32581 * Bit Counting Example::
32582 * Sine Example::
32583 @end menu
32585 @node Bit Counting Example, Sine Example, Example Definitions, Example Definitions
32586 @subsubsection Bit-Counting
32588 @noindent
32589 @ignore
32590 @starindex
32591 @end ignore
32592 @tindex bcount
32593 Calc does not include a built-in function for counting the number of
32594 ``one'' bits in a binary integer.  It's easy to invent one using @kbd{b u}
32595 to convert the integer to a set, and @kbd{V #} to count the elements of
32596 that set; let's write a function that counts the bits without having to
32597 create an intermediate set.
32599 @smallexample
32600 (defmath bcount ((natnum n))
32601   (interactive 1 "bcnt")
32602   (let ((count 0))
32603     (while (> n 0)
32604       (if (oddp n)
32605           (setq count (1+ count)))
32606       (setq n (lsh n -1)))
32607     count))
32608 @end smallexample
32610 @noindent
32611 When this is expanded by @code{defmath}, it will become the following
32612 Emacs Lisp function:
32614 @smallexample
32615 (defun calcFunc-bcount (n)
32616   (setq n (math-check-natnum n))
32617   (let ((count 0))
32618     (while (math-posp n)
32619       (if (math-oddp n)
32620           (setq count (math-add count 1)))
32621       (setq n (calcFunc-lsh n -1)))
32622     count))
32623 @end smallexample
32625 If the input numbers are large, this function involves a fair amount
32626 of arithmetic.  A binary right shift is essentially a division by two;
32627 recall that Calc stores integers in decimal form so bit shifts must
32628 involve actual division.
32630 To gain a bit more efficiency, we could divide the integer into
32631 @var{n}-bit chunks, each of which can be handled quickly because
32632 they fit into Lisp integers.  It turns out that Calc's arithmetic
32633 routines are especially fast when dividing by an integer less than
32634 1000, so we can set @var{n = 9} bits and use repeated division by 512:
32636 @smallexample
32637 (defmath bcount ((natnum n))
32638   (interactive 1 "bcnt")
32639   (let ((count 0))
32640     (while (not (fixnump n))
32641       (let ((qr (idivmod n 512)))
32642         (setq count (+ count (bcount-fixnum (cdr qr)))
32643               n (car qr))))
32644     (+ count (bcount-fixnum n))))
32646 (defun bcount-fixnum (n)
32647   (let ((count 0))
32648     (while (> n 0)
32649       (setq count (+ count (logand n 1))
32650             n (lsh n -1)))
32651     count))
32652 @end smallexample
32654 @noindent
32655 Note that the second function uses @code{defun}, not @code{defmath}.
32656 Because this function deals only with native Lisp integers (``fixnums''),
32657 it can use the actual Emacs @code{+} and related functions rather
32658 than the slower but more general Calc equivalents which @code{defmath}
32659 uses.
32661 The @code{idivmod} function does an integer division, returning both
32662 the quotient and the remainder at once.  Again, note that while it
32663 might seem that @samp{(logand n 511)} and @samp{(lsh n -9)} are
32664 more efficient ways to split off the bottom nine bits of @code{n},
32665 actually they are less efficient because each operation is really
32666 a division by 512 in disguise; @code{idivmod} allows us to do the
32667 same thing with a single division by 512.
32669 @node Sine Example,  , Bit Counting Example, Example Definitions
32670 @subsubsection The Sine Function
32672 @noindent
32673 @ignore
32674 @starindex
32675 @end ignore
32676 @tindex mysin
32677 A somewhat limited sine function could be defined as follows, using the
32678 well-known Taylor series expansion for
32679 @texline @math{\sin x}:
32680 @infoline @samp{sin(x)}:
32682 @smallexample
32683 (defmath mysin ((float (anglep x)))
32684   (interactive 1 "mysn")
32685   (setq x (to-radians x))    ; Convert from current angular mode.
32686   (let ((sum x)              ; Initial term of Taylor expansion of sin.
32687         newsum
32688         (nfact 1)            ; "nfact" equals "n" factorial at all times.
32689         (xnegsqr :"-(x^2)")) ; "xnegsqr" equals -x^2.
32690     (for ((n 3 100 2))       ; Upper limit of 100 is a good precaution.
32691       (working "mysin" sum)  ; Display "Working" message, if enabled.
32692       (setq nfact (* nfact (1- n) n)
32693             x (* x xnegsqr)
32694             newsum (+ sum (/ x nfact)))
32695       (if (~= newsum sum)    ; If newsum is "nearly equal to" sum,
32696           (break))           ;  then we are done.
32697       (setq sum newsum))
32698     sum))
32699 @end smallexample
32701 The actual @code{sin} function in Calc works by first reducing the problem
32702 to a sine or cosine of a nonnegative number less than @cpiover{4}.  This
32703 ensures that the Taylor series will converge quickly.  Also, the calculation
32704 is carried out with two extra digits of precision to guard against cumulative
32705 round-off in @samp{sum}.  Finally, complex arguments are allowed and handled
32706 by a separate algorithm.
32708 @smallexample
32709 (defmath mysin ((float (scalarp x)))
32710   (interactive 1 "mysn")
32711   (setq x (to-radians x))    ; Convert from current angular mode.
32712   (with-extra-prec 2         ; Evaluate with extra precision.
32713     (cond ((complexp x)
32714            (mysin-complex x))
32715           ((< x 0)
32716            (- (mysin-raw (- x)))    ; Always call mysin-raw with x >= 0.
32717           (t (mysin-raw x))))))
32719 (defmath mysin-raw (x)
32720   (cond ((>= x 7)
32721          (mysin-raw (% x (two-pi))))     ; Now x < 7.
32722         ((> x (pi-over-2))
32723          (- (mysin-raw (- x (pi)))))     ; Now -pi/2 <= x <= pi/2.
32724         ((> x (pi-over-4))
32725          (mycos-raw (- x (pi-over-2))))  ; Now -pi/2 <= x <= pi/4.
32726         ((< x (- (pi-over-4)))
32727          (- (mycos-raw (+ x (pi-over-2)))))  ; Now -pi/4 <= x <= pi/4,
32728         (t (mysin-series x))))           ; so the series will be efficient.
32729 @end smallexample
32731 @noindent
32732 where @code{mysin-complex} is an appropriate function to handle complex
32733 numbers, @code{mysin-series} is the routine to compute the sine Taylor
32734 series as before, and @code{mycos-raw} is a function analogous to
32735 @code{mysin-raw} for cosines.
32737 The strategy is to ensure that @expr{x} is nonnegative before calling
32738 @code{mysin-raw}.  This function then recursively reduces its argument
32739 to a suitable range, namely, plus-or-minus @cpiover{4}.  Note that each
32740 test, and particularly the first comparison against 7, is designed so
32741 that small roundoff errors cannot produce an infinite loop.  (Suppose
32742 we compared with @samp{(two-pi)} instead; if due to roundoff problems
32743 the modulo operator ever returned @samp{(two-pi)} exactly, an infinite
32744 recursion could result!)  We use modulo only for arguments that will
32745 clearly get reduced, knowing that the next rule will catch any reductions
32746 that this rule misses.
32748 If a program is being written for general use, it is important to code
32749 it carefully as shown in this second example.  For quick-and-dirty programs,
32750 when you know that your own use of the sine function will never encounter
32751 a large argument, a simpler program like the first one shown is fine.
32753 @node Calling Calc from Your Programs, Internals, Example Definitions, Lisp Definitions
32754 @subsection Calling Calc from Your Lisp Programs
32756 @noindent
32757 A later section (@pxref{Internals}) gives a full description of
32758 Calc's internal Lisp functions.  It's not hard to call Calc from
32759 inside your programs, but the number of these functions can be daunting.
32760 So Calc provides one special ``programmer-friendly'' function called
32761 @code{calc-eval} that can be made to do just about everything you
32762 need.  It's not as fast as the low-level Calc functions, but it's
32763 much simpler to use!
32765 It may seem that @code{calc-eval} itself has a daunting number of
32766 options, but they all stem from one simple operation.
32768 In its simplest manifestation, @samp{(calc-eval "1+2")} parses the
32769 string @code{"1+2"} as if it were a Calc algebraic entry and returns
32770 the result formatted as a string: @code{"3"}.
32772 Since @code{calc-eval} is on the list of recommended @code{autoload}
32773 functions, you don't need to make any special preparations to load
32774 Calc before calling @code{calc-eval} the first time.  Calc will be
32775 loaded and initialized for you.
32777 All the Calc modes that are currently in effect will be used when
32778 evaluating the expression and formatting the result.
32780 @ifinfo
32781 @example
32783 @end example
32784 @end ifinfo
32785 @subsubsection Additional Arguments to @code{calc-eval}
32787 @noindent
32788 If the input string parses to a list of expressions, Calc returns
32789 the results separated by @code{", "}.  You can specify a different
32790 separator by giving a second string argument to @code{calc-eval}:
32791 @samp{(calc-eval "1+2,3+4" ";")} returns @code{"3;7"}.
32793 The ``separator'' can also be any of several Lisp symbols which
32794 request other behaviors from @code{calc-eval}.  These are discussed
32795 one by one below.
32797 You can give additional arguments to be substituted for
32798 @samp{$}, @samp{$$}, and so on in the main expression.  For
32799 example, @samp{(calc-eval "$/$$" nil "7" "1+1")} evaluates the
32800 expression @code{"7/(1+1)"} to yield the result @code{"3.5"}
32801 (assuming Fraction mode is not in effect).  Note the @code{nil}
32802 used as a placeholder for the item-separator argument.
32804 @ifinfo
32805 @example
32807 @end example
32808 @end ifinfo
32809 @subsubsection Error Handling
32811 @noindent
32812 If @code{calc-eval} encounters an error, it returns a list containing
32813 the character position of the error, plus a suitable message as a
32814 string.  Note that @samp{1 / 0} is @emph{not} an error by Calc's
32815 standards; it simply returns the string @code{"1 / 0"} which is the
32816 division left in symbolic form.  But @samp{(calc-eval "1/")} will
32817 return the list @samp{(2 "Expected a number")}.
32819 If you bind the variable @code{calc-eval-error} to @code{t}
32820 using a @code{let} form surrounding the call to @code{calc-eval},
32821 errors instead call the Emacs @code{error} function which aborts
32822 to the Emacs command loop with a beep and an error message.
32824 If you bind this variable to the symbol @code{string}, error messages
32825 are returned as strings instead of lists.  The character position is
32826 ignored.
32828 As a courtesy to other Lisp code which may be using Calc, be sure
32829 to bind @code{calc-eval-error} using @code{let} rather than changing
32830 it permanently with @code{setq}.
32832 @ifinfo
32833 @example
32835 @end example
32836 @end ifinfo
32837 @subsubsection Numbers Only
32839 @noindent
32840 Sometimes it is preferable to treat @samp{1 / 0} as an error
32841 rather than returning a symbolic result.  If you pass the symbol
32842 @code{num} as the second argument to @code{calc-eval}, results
32843 that are not constants are treated as errors.  The error message
32844 reported is the first @code{calc-why} message if there is one,
32845 or otherwise ``Number expected.''
32847 A result is ``constant'' if it is a number, vector, or other
32848 object that does not include variables or function calls.  If it
32849 is a vector, the components must themselves be constants.
32851 @ifinfo
32852 @example
32854 @end example
32855 @end ifinfo
32856 @subsubsection Default Modes
32858 @noindent
32859 If the first argument to @code{calc-eval} is a list whose first
32860 element is a formula string, then @code{calc-eval} sets all the
32861 various Calc modes to their default values while the formula is
32862 evaluated and formatted.  For example, the precision is set to 12
32863 digits, digit grouping is turned off, and the Normal language
32864 mode is used.
32866 This same principle applies to the other options discussed below.
32867 If the first argument would normally be @var{x}, then it can also
32868 be the list @samp{(@var{x})} to use the default mode settings.
32870 If there are other elements in the list, they are taken as
32871 variable-name/value pairs which override the default mode
32872 settings.  Look at the documentation at the front of the
32873 @file{calc.el} file to find the names of the Lisp variables for
32874 the various modes.  The mode settings are restored to their
32875 original values when @code{calc-eval} is done.
32877 For example, @samp{(calc-eval '("$+$$" calc-internal-prec 8) 'num a b)}
32878 computes the sum of two numbers, requiring a numeric result, and
32879 using default mode settings except that the precision is 8 instead
32880 of the default of 12.
32882 It's usually best to use this form of @code{calc-eval} unless your
32883 program actually considers the interaction with Calc's mode settings
32884 to be a feature.  This will avoid all sorts of potential ``gotchas'';
32885 consider what happens with @samp{(calc-eval "sqrt(2)" 'num)}
32886 when the user has left Calc in Symbolic mode or No-Simplify mode.
32888 As another example, @samp{(equal (calc-eval '("$<$$") nil a b) "1")}
32889 checks if the number in string @expr{a} is less than the one in
32890 string @expr{b}.  Without using a list, the integer 1 might
32891 come out in a variety of formats which would be hard to test for
32892 conveniently: @code{"1"}, @code{"8#1"}, @code{"00001"}.  (But
32893 see ``Predicates'' mode, below.)
32895 @ifinfo
32896 @example
32898 @end example
32899 @end ifinfo
32900 @subsubsection Raw Numbers
32902 @noindent
32903 Normally all input and output for @code{calc-eval} is done with strings.
32904 You can do arithmetic with, say, @samp{(calc-eval "$+$$" nil a b)}
32905 in place of @samp{(+ a b)}, but this is very inefficient since the
32906 numbers must be converted to and from string format as they are passed
32907 from one @code{calc-eval} to the next.
32909 If the separator is the symbol @code{raw}, the result will be returned
32910 as a raw Calc data structure rather than a string.  You can read about
32911 how these objects look in the following sections, but usually you can
32912 treat them as ``black box'' objects with no important internal
32913 structure.
32915 There is also a @code{rawnum} symbol, which is a combination of
32916 @code{raw} (returning a raw Calc object) and @code{num} (signaling
32917 an error if that object is not a constant).
32919 You can pass a raw Calc object to @code{calc-eval} in place of a
32920 string, either as the formula itself or as one of the @samp{$}
32921 arguments.  Thus @samp{(calc-eval "$+$$" 'raw a b)} is an
32922 addition function that operates on raw Calc objects.  Of course
32923 in this case it would be easier to call the low-level @code{math-add}
32924 function in Calc, if you can remember its name.
32926 In particular, note that a plain Lisp integer is acceptable to Calc
32927 as a raw object.  (All Lisp integers are accepted on input, but
32928 integers of more than six decimal digits are converted to ``big-integer''
32929 form for output.  @xref{Data Type Formats}.)
32931 When it comes time to display the object, just use @samp{(calc-eval a)}
32932 to format it as a string.
32934 It is an error if the input expression evaluates to a list of
32935 values.  The separator symbol @code{list} is like @code{raw}
32936 except that it returns a list of one or more raw Calc objects.
32938 Note that a Lisp string is not a valid Calc object, nor is a list
32939 containing a string.  Thus you can still safely distinguish all the
32940 various kinds of error returns discussed above.
32942 @ifinfo
32943 @example
32945 @end example
32946 @end ifinfo
32947 @subsubsection Predicates
32949 @noindent
32950 If the separator symbol is @code{pred}, the result of the formula is
32951 treated as a true/false value; @code{calc-eval} returns @code{t} or
32952 @code{nil}, respectively.  A value is considered ``true'' if it is a
32953 non-zero number, or false if it is zero or if it is not a number.
32955 For example, @samp{(calc-eval "$<$$" 'pred a b)} tests whether
32956 one value is less than another.
32958 As usual, it is also possible for @code{calc-eval} to return one of
32959 the error indicators described above.  Lisp will interpret such an
32960 indicator as ``true'' if you don't check for it explicitly.  If you
32961 wish to have an error register as ``false'', use something like
32962 @samp{(eq (calc-eval ...) t)}.
32964 @ifinfo
32965 @example
32967 @end example
32968 @end ifinfo
32969 @subsubsection Variable Values
32971 @noindent
32972 Variables in the formula passed to @code{calc-eval} are not normally
32973 replaced by their values.  If you wish this, you can use the
32974 @code{evalv} function (@pxref{Algebraic Manipulation}).  For example,
32975 if 4 is stored in Calc variable @code{a} (i.e., in Lisp variable
32976 @code{var-a}), then @samp{(calc-eval "a+pi")} will return the
32977 formula @code{"a + pi"}, but @samp{(calc-eval "evalv(a+pi)")}
32978 will return @code{"7.14159265359"}.
32980 To store in a Calc variable, just use @code{setq} to store in the
32981 corresponding Lisp variable.  (This is obtained by prepending
32982 @samp{var-} to the Calc variable name.)  Calc routines will
32983 understand either string or raw form values stored in variables,
32984 although raw data objects are much more efficient.  For example,
32985 to increment the Calc variable @code{a}:
32987 @example
32988 (setq var-a (calc-eval "evalv(a+1)" 'raw))
32989 @end example
32991 @ifinfo
32992 @example
32994 @end example
32995 @end ifinfo
32996 @subsubsection Stack Access
32998 @noindent
32999 If the separator symbol is @code{push}, the formula argument is
33000 evaluated (with possible @samp{$} expansions, as usual).  The
33001 result is pushed onto the Calc stack.  The return value is @code{nil}
33002 (unless there is an error from evaluating the formula, in which
33003 case the return value depends on @code{calc-eval-error} in the
33004 usual way).
33006 If the separator symbol is @code{pop}, the first argument to
33007 @code{calc-eval} must be an integer instead of a string.  That
33008 many values are popped from the stack and thrown away.  A negative
33009 argument deletes the entry at that stack level.  The return value
33010 is the number of elements remaining in the stack after popping;
33011 @samp{(calc-eval 0 'pop)} is a good way to measure the size of
33012 the stack.
33014 If the separator symbol is @code{top}, the first argument to
33015 @code{calc-eval} must again be an integer.  The value at that
33016 stack level is formatted as a string and returned.  Thus
33017 @samp{(calc-eval 1 'top)} returns the top-of-stack value.  If the
33018 integer is out of range, @code{nil} is returned.
33020 The separator symbol @code{rawtop} is just like @code{top} except
33021 that the stack entry is returned as a raw Calc object instead of
33022 as a string.
33024 In all of these cases the first argument can be made a list in
33025 order to force the default mode settings, as described above.
33026 Thus @samp{(calc-eval '(2 calc-number-radix 16) 'top)} returns the
33027 second-to-top stack entry, formatted as a string using the default
33028 instead of current display modes, except that the radix is
33029 hexadecimal instead of decimal.
33031 It is, of course, polite to put the Calc stack back the way you
33032 found it when you are done, unless the user of your program is
33033 actually expecting it to affect the stack.
33035 Note that you do not actually have to switch into the @samp{*Calculator*}
33036 buffer in order to use @code{calc-eval}; it temporarily switches into
33037 the stack buffer if necessary.
33039 @ifinfo
33040 @example
33042 @end example
33043 @end ifinfo
33044 @subsubsection Keyboard Macros
33046 @noindent
33047 If the separator symbol is @code{macro}, the first argument must be a
33048 string of characters which Calc can execute as a sequence of keystrokes.
33049 This switches into the Calc buffer for the duration of the macro.
33050 For example, @samp{(calc-eval "vx5\rVR+" 'macro)} pushes the
33051 vector @samp{[1,2,3,4,5]} on the stack and then replaces it
33052 with the sum of those numbers.  Note that @samp{\r} is the Lisp
33053 notation for the carriage-return, @key{RET}, character.
33055 If your keyboard macro wishes to pop the stack, @samp{\C-d} is
33056 safer than @samp{\177} (the @key{DEL} character) because some
33057 installations may have switched the meanings of @key{DEL} and
33058 @kbd{C-h}.  Calc always interprets @kbd{C-d} as a synonym for
33059 ``pop-stack'' regardless of key mapping.
33061 If you provide a third argument to @code{calc-eval}, evaluation
33062 of the keyboard macro will leave a record in the Trail using
33063 that argument as a tag string.  Normally the Trail is unaffected.
33065 The return value in this case is always @code{nil}.
33067 @ifinfo
33068 @example
33070 @end example
33071 @end ifinfo
33072 @subsubsection Lisp Evaluation
33074 @noindent
33075 Finally, if the separator symbol is @code{eval}, then the Lisp
33076 @code{eval} function is called on the first argument, which must
33077 be a Lisp expression rather than a Calc formula.  Remember to
33078 quote the expression so that it is not evaluated until inside
33079 @code{calc-eval}.
33081 The difference from plain @code{eval} is that @code{calc-eval}
33082 switches to the Calc buffer before evaluating the expression.
33083 For example, @samp{(calc-eval '(setq calc-internal-prec 17) 'eval)}
33084 will correctly affect the buffer-local Calc precision variable.
33086 An alternative would be @samp{(calc-eval '(calc-precision 17) 'eval)}.
33087 This is evaluating a call to the function that is normally invoked
33088 by the @kbd{p} key, giving it 17 as its ``numeric prefix argument.''
33089 Note that this function will leave a message in the echo area as
33090 a side effect.  Also, all Calc functions switch to the Calc buffer
33091 automatically if not invoked from there, so the above call is
33092 also equivalent to @samp{(calc-precision 17)} by itself.
33093 In all cases, Calc uses @code{save-excursion} to switch back to
33094 your original buffer when it is done.
33096 As usual the first argument can be a list that begins with a Lisp
33097 expression to use default instead of current mode settings.
33099 The result of @code{calc-eval} in this usage is just the result
33100 returned by the evaluated Lisp expression.
33102 @ifinfo
33103 @example
33105 @end example
33106 @end ifinfo
33107 @subsubsection Example
33109 @noindent
33110 @findex convert-temp
33111 Here is a sample Emacs command that uses @code{calc-eval}.  Suppose
33112 you have a document with lots of references to temperatures on the
33113 Fahrenheit scale, say ``98.6 F'', and you wish to convert these
33114 references to Centigrade.  The following command does this conversion.
33115 Place the Emacs cursor right after the letter ``F'' and invoke the
33116 command to change ``98.6 F'' to ``37 C''.  Or, if the temperature is
33117 already in Centigrade form, the command changes it back to Fahrenheit.
33119 @example
33120 (defun convert-temp ()
33121   (interactive)
33122   (save-excursion
33123     (re-search-backward "[^-.0-9]\\([-.0-9]+\\) *\\([FC]\\)")
33124     (let* ((top1 (match-beginning 1))
33125            (bot1 (match-end 1))
33126            (number (buffer-substring top1 bot1))
33127            (top2 (match-beginning 2))
33128            (bot2 (match-end 2))
33129            (type (buffer-substring top2 bot2)))
33130       (if (equal type "F")
33131           (setq type "C"
33132                 number (calc-eval "($ - 32)*5/9" nil number))
33133         (setq type "F"
33134               number (calc-eval "$*9/5 + 32" nil number)))
33135       (goto-char top2)
33136       (delete-region top2 bot2)
33137       (insert-before-markers type)
33138       (goto-char top1)
33139       (delete-region top1 bot1)
33140       (if (string-match "\\.$" number)   ; change "37." to "37"
33141           (setq number (substring number 0 -1)))
33142       (insert number))))
33143 @end example
33145 Note the use of @code{insert-before-markers} when changing between
33146 ``F'' and ``C'', so that the character winds up before the cursor
33147 instead of after it.
33149 @node Internals,  , Calling Calc from Your Programs, Lisp Definitions
33150 @subsection Calculator Internals
33152 @noindent
33153 This section describes the Lisp functions defined by the Calculator that
33154 may be of use to user-written Calculator programs (as described in the
33155 rest of this chapter).  These functions are shown by their names as they
33156 conventionally appear in @code{defmath}.  Their full Lisp names are
33157 generally gotten by prepending @samp{calcFunc-} or @samp{math-} to their
33158 apparent names.  (Names that begin with @samp{calc-} are already in
33159 their full Lisp form.)  You can use the actual full names instead if you
33160 prefer them, or if you are calling these functions from regular Lisp.
33162 The functions described here are scattered throughout the various
33163 Calc component files.  Note that @file{calc.el} includes @code{autoload}s
33164 for only a few component files; when Calc wants to call an advanced
33165 function it calls @samp{(calc-extensions)} first; this function
33166 autoloads @file{calc-ext.el}, which in turn autoloads all the functions
33167 in the remaining component files.
33169 Because @code{defmath} itself uses the extensions, user-written code
33170 generally always executes with the extensions already loaded, so
33171 normally you can use any Calc function and be confident that it will
33172 be autoloaded for you when necessary.  If you are doing something
33173 special, check carefully to make sure each function you are using is
33174 from @file{calc.el} or its components, and call @samp{(calc-extensions)}
33175 before using any function based in @file{calc-ext.el} if you can't
33176 prove this file will already be loaded.
33178 @menu
33179 * Data Type Formats::
33180 * Interactive Lisp Functions::
33181 * Stack Lisp Functions::
33182 * Predicates::
33183 * Computational Lisp Functions::
33184 * Vector Lisp Functions::
33185 * Symbolic Lisp Functions::
33186 * Formatting Lisp Functions::
33187 * Hooks::
33188 @end menu
33190 @node Data Type Formats, Interactive Lisp Functions, Internals, Internals
33191 @subsubsection Data Type Formats
33193 @noindent
33194 Integers are stored in either of two ways, depending on their magnitude.
33195 Integers less than one million in absolute value are stored as standard
33196 Lisp integers.  This is the only storage format for Calc data objects
33197 which is not a Lisp list.
33199 Large integers are stored as lists of the form @samp{(bigpos @var{d0}
33200 @var{d1} @var{d2} @dots{})} for positive integers 1000000 or more, or
33201 @samp{(bigneg @var{d0} @var{d1} @var{d2} @dots{})} for negative integers
33202 @mathit{-1000000} or less.  Each @var{d} is a base-1000 ``digit,'' a Lisp integer
33203 from 0 to 999.  The least significant digit is @var{d0}; the last digit,
33204 @var{dn}, which is always nonzero, is the most significant digit.  For
33205 example, the integer @mathit{-12345678} is stored as @samp{(bigneg 678 345 12)}.
33207 The distinction between small and large integers is entirely hidden from
33208 the user.  In @code{defmath} definitions, the Lisp predicate @code{integerp}
33209 returns true for either kind of integer, and in general both big and small
33210 integers are accepted anywhere the word ``integer'' is used in this manual.
33211 If the distinction must be made, native Lisp integers are called @dfn{fixnums}
33212 and large integers are called @dfn{bignums}.
33214 Fractions are stored as a list of the form, @samp{(frac @var{n} @var{d})}
33215 where @var{n} is an integer (big or small) numerator, @var{d} is an
33216 integer denominator greater than one, and @var{n} and @var{d} are relatively
33217 prime.  Note that fractions where @var{d} is one are automatically converted
33218 to plain integers by all math routines; fractions where @var{d} is negative
33219 are normalized by negating the numerator and denominator.
33221 Floating-point numbers are stored in the form, @samp{(float @var{mant}
33222 @var{exp})}, where @var{mant} (the ``mantissa'') is an integer less than
33223 @samp{10^@var{p}} in absolute value (@var{p} represents the current
33224 precision), and @var{exp} (the ``exponent'') is a fixnum.  The value of
33225 the float is @samp{@var{mant} * 10^@var{exp}}.  For example, the number
33226 @mathit{-3.14} is stored as @samp{(float -314 -2) = -314*10^-2}.  Other constraints
33227 are that the number 0.0 is always stored as @samp{(float 0 0)}, and,
33228 except for the 0.0 case, the rightmost base-10 digit of @var{mant} is
33229 always nonzero.  (If the rightmost digit is zero, the number is
33230 rearranged by dividing @var{mant} by ten and incrementing @var{exp}.)
33232 Rectangular complex numbers are stored in the form @samp{(cplx @var{re}
33233 @var{im})}, where @var{re} and @var{im} are each real numbers, either
33234 integers, fractions, or floats.  The value is @samp{@var{re} + @var{im}i}.
33235 The @var{im} part is nonzero; complex numbers with zero imaginary
33236 components are converted to real numbers automatically.
33238 Polar complex numbers are stored in the form @samp{(polar @var{r}
33239 @var{theta})}, where @var{r} is a positive real value and @var{theta}
33240 is a real value or HMS form representing an angle.  This angle is
33241 usually normalized to lie in the interval @samp{(-180 ..@: 180)} degrees,
33242 or @samp{(-pi ..@: pi)} radians, according to the current angular mode.
33243 If the angle is 0 the value is converted to a real number automatically.
33244 (If the angle is 180 degrees, the value is usually also converted to a
33245 negative real number.)
33247 Hours-minutes-seconds forms are stored as @samp{(hms @var{h} @var{m}
33248 @var{s})}, where @var{h} is an integer or an integer-valued float (i.e.,
33249 a float with @samp{@var{exp} >= 0}), @var{m} is an integer or integer-valued
33250 float in the range @w{@samp{[0 ..@: 60)}}, and @var{s} is any real number
33251 in the range @samp{[0 ..@: 60)}.
33253 Date forms are stored as @samp{(date @var{n})}, where @var{n} is
33254 a real number that counts days since midnight on the morning of
33255 January 1, 1 AD.  If @var{n} is an integer, this is a pure date
33256 form.  If @var{n} is a fraction or float, this is a date/time form.
33258 Modulo forms are stored as @samp{(mod @var{n} @var{m})}, where @var{m} is a
33259 positive real number or HMS form, and @var{n} is a real number or HMS
33260 form in the range @samp{[0 ..@: @var{m})}.
33262 Error forms are stored as @samp{(sdev @var{x} @var{sigma})}, where @var{x}
33263 is the mean value and @var{sigma} is the standard deviation.  Each
33264 component is either a number, an HMS form, or a symbolic object
33265 (a variable or function call).  If @var{sigma} is zero, the value is
33266 converted to a plain real number.  If @var{sigma} is negative or
33267 complex, it is automatically normalized to be a positive real.
33269 Interval forms are stored as @samp{(intv @var{mask} @var{lo} @var{hi})},
33270 where @var{mask} is one of the integers 0, 1, 2, or 3, and @var{lo} and
33271 @var{hi} are real numbers, HMS forms, or symbolic objects.  The @var{mask}
33272 is a binary integer where 1 represents the fact that the interval is
33273 closed on the high end, and 2 represents the fact that it is closed on
33274 the low end.  (Thus 3 represents a fully closed interval.)  The interval
33275 @w{@samp{(intv 3 @var{x} @var{x})}} is converted to the plain number @var{x};
33276 intervals @samp{(intv @var{mask} @var{x} @var{x})} for any other @var{mask}
33277 represent empty intervals.  If @var{hi} is less than @var{lo}, the interval
33278 is converted to a standard empty interval by replacing @var{hi} with @var{lo}.
33280 Vectors are stored as @samp{(vec @var{v1} @var{v2} @dots{})}, where @var{v1}
33281 is the first element of the vector, @var{v2} is the second, and so on.
33282 An empty vector is stored as @samp{(vec)}.  A matrix is simply a vector
33283 where all @var{v}'s are themselves vectors of equal lengths.  Note that
33284 Calc vectors are unrelated to the Emacs Lisp ``vector'' type, which is
33285 generally unused by Calc data structures.
33287 Variables are stored as @samp{(var @var{name} @var{sym})}, where
33288 @var{name} is a Lisp symbol whose print name is used as the visible name
33289 of the variable, and @var{sym} is a Lisp symbol in which the variable's
33290 value is actually stored.  Thus, @samp{(var pi var-pi)} represents the
33291 special constant @samp{pi}.  Almost always, the form is @samp{(var
33292 @var{v} var-@var{v})}.  If the variable name was entered with @code{#}
33293 signs (which are converted to hyphens internally), the form is
33294 @samp{(var @var{u} @var{v})}, where @var{u} is a symbol whose name
33295 contains @code{#} characters, and @var{v} is a symbol that contains
33296 @code{-} characters instead.  The value of a variable is the Calc
33297 object stored in its @var{sym} symbol's value cell.  If the symbol's
33298 value cell is void or if it contains @code{nil}, the variable has no
33299 value.  Special constants have the form @samp{(special-const
33300 @var{value})} stored in their value cell, where @var{value} is a formula
33301 which is evaluated when the constant's value is requested.  Variables
33302 which represent units are not stored in any special way; they are units
33303 only because their names appear in the units table.  If the value
33304 cell contains a string, it is parsed to get the variable's value when
33305 the variable is used.
33307 A Lisp list with any other symbol as the first element is a function call.
33308 The symbols @code{+}, @code{-}, @code{*}, @code{/}, @code{%}, @code{^},
33309 and @code{|} represent special binary operators; these lists are always
33310 of the form @samp{(@var{op} @var{lhs} @var{rhs})} where @var{lhs} is the
33311 sub-formula on the lefthand side and @var{rhs} is the sub-formula on the
33312 right.  The symbol @code{neg} represents unary negation; this list is always
33313 of the form @samp{(neg @var{arg})}.  Any other symbol @var{func} represents a
33314 function that would be displayed in function-call notation; the symbol
33315 @var{func} is in general always of the form @samp{calcFunc-@var{name}}.
33316 The function cell of the symbol @var{func} should contain a Lisp function
33317 for evaluating a call to @var{func}.  This function is passed the remaining
33318 elements of the list (themselves already evaluated) as arguments; such
33319 functions should return @code{nil} or call @code{reject-arg} to signify
33320 that they should be left in symbolic form, or they should return a Calc
33321 object which represents their value, or a list of such objects if they
33322 wish to return multiple values.  (The latter case is allowed only for
33323 functions which are the outer-level call in an expression whose value is
33324 about to be pushed on the stack; this feature is considered obsolete
33325 and is not used by any built-in Calc functions.)
33327 @node Interactive Lisp Functions, Stack Lisp Functions, Data Type Formats, Internals
33328 @subsubsection Interactive Functions
33330 @noindent
33331 The functions described here are used in implementing interactive Calc
33332 commands.  Note that this list is not exhaustive!  If there is an
33333 existing command that behaves similarly to the one you want to define,
33334 you may find helpful tricks by checking the source code for that command.
33336 @defun calc-set-command-flag flag
33337 Set the command flag @var{flag}.  This is generally a Lisp symbol, but
33338 may in fact be anything.  The effect is to add @var{flag} to the list
33339 stored in the variable @code{calc-command-flags}, unless it is already
33340 there.  @xref{Defining Simple Commands}.
33341 @end defun
33343 @defun calc-clear-command-flag flag
33344 If @var{flag} appears among the list of currently-set command flags,
33345 remove it from that list.
33346 @end defun
33348 @defun calc-record-undo rec
33349 Add the ``undo record'' @var{rec} to the list of steps to take if the
33350 current operation should need to be undone.  Stack push and pop functions
33351 automatically call @code{calc-record-undo}, so the kinds of undo records
33352 you might need to create take the form @samp{(set @var{sym} @var{value})},
33353 which says that the Lisp variable @var{sym} was changed and had previously
33354 contained @var{value}; @samp{(store @var{var} @var{value})} which says that
33355 the Calc variable @var{var} (a string which is the name of the symbol that
33356 contains the variable's value) was stored and its previous value was
33357 @var{value} (either a Calc data object, or @code{nil} if the variable was
33358 previously void); or @samp{(eval @var{undo} @var{redo} @var{args} @dots{})},
33359 which means that to undo requires calling the function @samp{(@var{undo}
33360 @var{args} @dots{})} and, if the undo is later redone, calling
33361 @samp{(@var{redo} @var{args} @dots{})}.
33362 @end defun
33364 @defun calc-record-why msg args
33365 Record the error or warning message @var{msg}, which is normally a string.
33366 This message will be replayed if the user types @kbd{w} (@code{calc-why});
33367 if the message string begins with a @samp{*}, it is considered important
33368 enough to display even if the user doesn't type @kbd{w}.  If one or more
33369 @var{args} are present, the displayed message will be of the form,
33370 @samp{@var{msg}: @var{arg1}, @var{arg2}, @dots{}}, where the arguments are
33371 formatted on the assumption that they are either strings or Calc objects of
33372 some sort.  If @var{msg} is a symbol, it is the name of a Calc predicate
33373 (such as @code{integerp} or @code{numvecp}) which the arguments did not
33374 satisfy; it is expanded to a suitable string such as ``Expected an
33375 integer.''  The @code{reject-arg} function calls @code{calc-record-why}
33376 automatically; @pxref{Predicates}.
33377 @end defun
33379 @defun calc-is-inverse
33380 This predicate returns true if the current command is inverse,
33381 i.e., if the Inverse (@kbd{I} key) flag was set.
33382 @end defun
33384 @defun calc-is-hyperbolic
33385 This predicate is the analogous function for the @kbd{H} key.
33386 @end defun
33388 @node Stack Lisp Functions, Predicates, Interactive Lisp Functions, Internals
33389 @subsubsection Stack-Oriented Functions
33391 @noindent
33392 The functions described here perform various operations on the Calc
33393 stack and trail.  They are to be used in interactive Calc commands.
33395 @defun calc-push-list vals n
33396 Push the Calc objects in list @var{vals} onto the stack at stack level
33397 @var{n}.  If @var{n} is omitted it defaults to 1, so that the elements
33398 are pushed at the top of the stack.  If @var{n} is greater than 1, the
33399 elements will be inserted into the stack so that the last element will
33400 end up at level @var{n}, the next-to-last at level @var{n}+1, etc.
33401 The elements of @var{vals} are assumed to be valid Calc objects, and
33402 are not evaluated, rounded, or renormalized in any way.  If @var{vals}
33403 is an empty list, nothing happens.
33405 The stack elements are pushed without any sub-formula selections.
33406 You can give an optional third argument to this function, which must
33407 be a list the same size as @var{vals} of selections.  Each selection
33408 must be @code{eq} to some sub-formula of the corresponding formula
33409 in @var{vals}, or @code{nil} if that formula should have no selection.
33410 @end defun
33412 @defun calc-top-list n m
33413 Return a list of the @var{n} objects starting at level @var{m} of the
33414 stack.  If @var{m} is omitted it defaults to 1, so that the elements are
33415 taken from the top of the stack.  If @var{n} is omitted, it also
33416 defaults to 1, so that the top stack element (in the form of a
33417 one-element list) is returned.  If @var{m} is greater than 1, the
33418 @var{m}th stack element will be at the end of the list, the @var{m}+1st
33419 element will be next-to-last, etc.  If @var{n} or @var{m} are out of
33420 range, the command is aborted with a suitable error message.  If @var{n}
33421 is zero, the function returns an empty list.  The stack elements are not
33422 evaluated, rounded, or renormalized.
33424 If any stack elements contain selections, and selections have not
33425 been disabled by the @kbd{j e} (@code{calc-enable-selections}) command,
33426 this function returns the selected portions rather than the entire
33427 stack elements.  It can be given a third ``selection-mode'' argument
33428 which selects other behaviors.  If it is the symbol @code{t}, then
33429 a selection in any of the requested stack elements produces an
33430 ``invalid operation on selections'' error.  If it is the symbol @code{full},
33431 the whole stack entry is always returned regardless of selections.
33432 If it is the symbol @code{sel}, the selected portion is always returned,
33433 or @code{nil} if there is no selection.  (This mode ignores the @kbd{j e}
33434 command.)  If the symbol is @code{entry}, the complete stack entry in
33435 list form is returned; the first element of this list will be the whole
33436 formula, and the third element will be the selection (or @code{nil}).
33437 @end defun
33439 @defun calc-pop-stack n m
33440 Remove the specified elements from the stack.  The parameters @var{n}
33441 and @var{m} are defined the same as for @code{calc-top-list}.  The return
33442 value of @code{calc-pop-stack} is uninteresting.
33444 If there are any selected sub-formulas among the popped elements, and
33445 @kbd{j e} has not been used to disable selections, this produces an
33446 error without changing the stack.  If you supply an optional third
33447 argument of @code{t}, the stack elements are popped even if they
33448 contain selections.
33449 @end defun
33451 @defun calc-record-list vals tag
33452 This function records one or more results in the trail.  The @var{vals}
33453 are a list of strings or Calc objects.  The @var{tag} is the four-character
33454 tag string to identify the values.  If @var{tag} is omitted, a blank tag
33455 will be used.
33456 @end defun
33458 @defun calc-normalize n
33459 This function takes a Calc object and ``normalizes'' it.  At the very
33460 least this involves re-rounding floating-point values according to the
33461 current precision and other similar jobs.  Also, unless the user has
33462 selected No-Simplify mode (@pxref{Simplification Modes}), this involves
33463 actually evaluating a formula object by executing the function calls
33464 it contains, and possibly also doing algebraic simplification, etc.
33465 @end defun
33467 @defun calc-top-list-n n m
33468 This function is identical to @code{calc-top-list}, except that it calls
33469 @code{calc-normalize} on the values that it takes from the stack.  They
33470 are also passed through @code{check-complete}, so that incomplete
33471 objects will be rejected with an error message.  All computational
33472 commands should use this in preference to @code{calc-top-list}; the only
33473 standard Calc commands that operate on the stack without normalizing
33474 are stack management commands like @code{calc-enter} and @code{calc-roll-up}.
33475 This function accepts the same optional selection-mode argument as
33476 @code{calc-top-list}.
33477 @end defun
33479 @defun calc-top-n m
33480 This function is a convenient form of @code{calc-top-list-n} in which only
33481 a single element of the stack is taken and returned, rather than a list
33482 of elements.  This also accepts an optional selection-mode argument.
33483 @end defun
33485 @defun calc-enter-result n tag vals
33486 This function is a convenient interface to most of the above functions.
33487 The @var{vals} argument should be either a single Calc object, or a list
33488 of Calc objects; the object or objects are normalized, and the top @var{n}
33489 stack entries are replaced by the normalized objects.  If @var{tag} is
33490 non-@code{nil}, the normalized objects are also recorded in the trail.
33491 A typical stack-based computational command would take the form,
33493 @smallexample
33494 (calc-enter-result @var{n} @var{tag} (cons 'calcFunc-@var{func}
33495                                (calc-top-list-n @var{n})))
33496 @end smallexample
33498 If any of the @var{n} stack elements replaced contain sub-formula
33499 selections, and selections have not been disabled by @kbd{j e},
33500 this function takes one of two courses of action.  If @var{n} is
33501 equal to the number of elements in @var{vals}, then each element of
33502 @var{vals} is spliced into the corresponding selection; this is what
33503 happens when you use the @key{TAB} key, or when you use a unary
33504 arithmetic operation like @code{sqrt}.  If @var{vals} has only one
33505 element but @var{n} is greater than one, there must be only one
33506 selection among the top @var{n} stack elements; the element from
33507 @var{vals} is spliced into that selection.  This is what happens when
33508 you use a binary arithmetic operation like @kbd{+}.  Any other
33509 combination of @var{n} and @var{vals} is an error when selections
33510 are present.
33511 @end defun
33513 @defun calc-unary-op tag func arg
33514 This function implements a unary operator that allows a numeric prefix
33515 argument to apply the operator over many stack entries.  If the prefix
33516 argument @var{arg} is @code{nil}, this uses @code{calc-enter-result}
33517 as outlined above.  Otherwise, it maps the function over several stack
33518 elements; @pxref{Prefix Arguments}.  For example,
33520 @smallexample
33521 (defun calc-zeta (arg)
33522   (interactive "P")
33523   (calc-unary-op "zeta" 'calcFunc-zeta arg))
33524 @end smallexample
33525 @end defun
33527 @defun calc-binary-op tag func arg ident unary
33528 This function implements a binary operator, analogously to
33529 @code{calc-unary-op}.  The optional @var{ident} and @var{unary}
33530 arguments specify the behavior when the prefix argument is zero or
33531 one, respectively.  If the prefix is zero, the value @var{ident}
33532 is pushed onto the stack, if specified, otherwise an error message
33533 is displayed.  If the prefix is one, the unary function @var{unary}
33534 is applied to the top stack element, or, if @var{unary} is not
33535 specified, nothing happens.  When the argument is two or more,
33536 the binary function @var{func} is reduced across the top @var{arg}
33537 stack elements; when the argument is negative, the function is
33538 mapped between the next-to-top @mathit{-@var{arg}} stack elements and the
33539 top element.
33540 @end defun
33542 @defun calc-stack-size
33543 Return the number of elements on the stack as an integer.  This count
33544 does not include elements that have been temporarily hidden by stack
33545 truncation; @pxref{Truncating the Stack}.
33546 @end defun
33548 @defun calc-cursor-stack-index n
33549 Move the point to the @var{n}th stack entry.  If @var{n} is zero, this
33550 will be the @samp{.} line.  If @var{n} is from 1 to the current stack size,
33551 this will be the beginning of the first line of that stack entry's display.
33552 If line numbers are enabled, this will move to the first character of the
33553 line number, not the stack entry itself.
33554 @end defun
33556 @defun calc-substack-height n
33557 Return the number of lines between the beginning of the @var{n}th stack
33558 entry and the bottom of the buffer.  If @var{n} is zero, this
33559 will be one (assuming no stack truncation).  If all stack entries are
33560 one line long (i.e., no matrices are displayed), the return value will
33561 be equal @var{n}+1 as long as @var{n} is in range.  (Note that in Big
33562 mode, the return value includes the blank lines that separate stack
33563 entries.)
33564 @end defun
33566 @defun calc-refresh
33567 Erase the @code{*Calculator*} buffer and reformat its contents from memory.
33568 This must be called after changing any parameter, such as the current
33569 display radix, which might change the appearance of existing stack
33570 entries.  (During a keyboard macro invoked by the @kbd{X} key, refreshing
33571 is suppressed, but a flag is set so that the entire stack will be refreshed
33572 rather than just the top few elements when the macro finishes.)
33573 @end defun
33575 @node Predicates, Computational Lisp Functions, Stack Lisp Functions, Internals
33576 @subsubsection Predicates
33578 @noindent
33579 The functions described here are predicates, that is, they return a
33580 true/false value where @code{nil} means false and anything else means
33581 true.  These predicates are expanded by @code{defmath}, for example,
33582 from @code{zerop} to @code{math-zerop}.  In many cases they correspond
33583 to native Lisp functions by the same name, but are extended to cover
33584 the full range of Calc data types.
33586 @defun zerop x
33587 Returns true if @var{x} is numerically zero, in any of the Calc data
33588 types.  (Note that for some types, such as error forms and intervals,
33589 it never makes sense to return true.)  In @code{defmath}, the expression
33590 @samp{(= x 0)} will automatically be converted to @samp{(math-zerop x)},
33591 and @samp{(/= x 0)} will be converted to @samp{(not (math-zerop x))}.
33592 @end defun
33594 @defun negp x
33595 Returns true if @var{x} is negative.  This accepts negative real numbers
33596 of various types, negative HMS and date forms, and intervals in which
33597 all included values are negative.  In @code{defmath}, the expression
33598 @samp{(< x 0)} will automatically be converted to @samp{(math-negp x)},
33599 and @samp{(>= x 0)} will be converted to @samp{(not (math-negp x))}.
33600 @end defun
33602 @defun posp x
33603 Returns true if @var{x} is positive (and non-zero).  For complex
33604 numbers, none of these three predicates will return true.
33605 @end defun
33607 @defun looks-negp x
33608 Returns true if @var{x} is ``negative-looking.''  This returns true if
33609 @var{x} is a negative number, or a formula with a leading minus sign
33610 such as @samp{-a/b}.  In other words, this is an object which can be
33611 made simpler by calling @code{(- @var{x})}.
33612 @end defun
33614 @defun integerp x
33615 Returns true if @var{x} is an integer of any size.
33616 @end defun
33618 @defun fixnump x
33619 Returns true if @var{x} is a native Lisp integer.
33620 @end defun
33622 @defun natnump x
33623 Returns true if @var{x} is a nonnegative integer of any size.
33624 @end defun
33626 @defun fixnatnump x
33627 Returns true if @var{x} is a nonnegative Lisp integer.
33628 @end defun
33630 @defun num-integerp x
33631 Returns true if @var{x} is numerically an integer, i.e., either a
33632 true integer or a float with no significant digits to the right of
33633 the decimal point.
33634 @end defun
33636 @defun messy-integerp x
33637 Returns true if @var{x} is numerically, but not literally, an integer.
33638 A value is @code{num-integerp} if it is @code{integerp} or
33639 @code{messy-integerp} (but it is never both at once).
33640 @end defun
33642 @defun num-natnump x
33643 Returns true if @var{x} is numerically a nonnegative integer.
33644 @end defun
33646 @defun evenp x
33647 Returns true if @var{x} is an even integer.
33648 @end defun
33650 @defun looks-evenp x
33651 Returns true if @var{x} is an even integer, or a formula with a leading
33652 multiplicative coefficient which is an even integer.
33653 @end defun
33655 @defun oddp x
33656 Returns true if @var{x} is an odd integer.
33657 @end defun
33659 @defun ratp x
33660 Returns true if @var{x} is a rational number, i.e., an integer or a
33661 fraction.
33662 @end defun
33664 @defun realp x
33665 Returns true if @var{x} is a real number, i.e., an integer, fraction,
33666 or floating-point number.
33667 @end defun
33669 @defun anglep x
33670 Returns true if @var{x} is a real number or HMS form.
33671 @end defun
33673 @defun floatp x
33674 Returns true if @var{x} is a float, or a complex number, error form,
33675 interval, date form, or modulo form in which at least one component
33676 is a float.
33677 @end defun
33679 @defun complexp x
33680 Returns true if @var{x} is a rectangular or polar complex number
33681 (but not a real number).
33682 @end defun
33684 @defun rect-complexp x
33685 Returns true if @var{x} is a rectangular complex number.
33686 @end defun
33688 @defun polar-complexp x
33689 Returns true if @var{x} is a polar complex number.
33690 @end defun
33692 @defun numberp x
33693 Returns true if @var{x} is a real number or a complex number.
33694 @end defun
33696 @defun scalarp x
33697 Returns true if @var{x} is a real or complex number or an HMS form.
33698 @end defun
33700 @defun vectorp x
33701 Returns true if @var{x} is a vector (this simply checks if its argument
33702 is a list whose first element is the symbol @code{vec}).
33703 @end defun
33705 @defun numvecp x
33706 Returns true if @var{x} is a number or vector.
33707 @end defun
33709 @defun matrixp x
33710 Returns true if @var{x} is a matrix, i.e., a vector of one or more vectors,
33711 all of the same size.
33712 @end defun
33714 @defun square-matrixp x
33715 Returns true if @var{x} is a square matrix.
33716 @end defun
33718 @defun objectp x
33719 Returns true if @var{x} is any numeric Calc object, including real and
33720 complex numbers, HMS forms, date forms, error forms, intervals, and
33721 modulo forms.  (Note that error forms and intervals may include formulas
33722 as their components; see @code{constp} below.)
33723 @end defun
33725 @defun objvecp x
33726 Returns true if @var{x} is an object or a vector.  This also accepts
33727 incomplete objects, but it rejects variables and formulas (except as
33728 mentioned above for @code{objectp}).
33729 @end defun
33731 @defun primp x
33732 Returns true if @var{x} is a ``primitive'' or ``atomic'' Calc object,
33733 i.e., one whose components cannot be regarded as sub-formulas.  This
33734 includes variables, and all @code{objectp} types except error forms
33735 and intervals.
33736 @end defun
33738 @defun constp x
33739 Returns true if @var{x} is constant, i.e., a real or complex number,
33740 HMS form, date form, or error form, interval, or vector all of whose
33741 components are @code{constp}.
33742 @end defun
33744 @defun lessp x y
33745 Returns true if @var{x} is numerically less than @var{y}.  Returns false
33746 if @var{x} is greater than or equal to @var{y}, or if the order is
33747 undefined or cannot be determined.  Generally speaking, this works
33748 by checking whether @samp{@var{x} - @var{y}} is @code{negp}.  In
33749 @code{defmath}, the expression @samp{(< x y)} will automatically be
33750 converted to @samp{(lessp x y)}; expressions involving @code{>}, @code{<=},
33751 and @code{>=} are similarly converted in terms of @code{lessp}.
33752 @end defun
33754 @defun beforep x y
33755 Returns true if @var{x} comes before @var{y} in a canonical ordering
33756 of Calc objects.  If @var{x} and @var{y} are both real numbers, this
33757 will be the same as @code{lessp}.  But whereas @code{lessp} considers
33758 other types of objects to be unordered, @code{beforep} puts any two
33759 objects into a definite, consistent order.  The @code{beforep}
33760 function is used by the @kbd{V S} vector-sorting command, and also
33761 by Calc's algebraic simplifications to put the terms of a product into
33762 canonical order: This allows @samp{x y + y x} to be simplified easily to
33763 @samp{2 x y}. 
33764 @end defun
33766 @defun equal x y
33767 This is the standard Lisp @code{equal} predicate; it returns true if
33768 @var{x} and @var{y} are structurally identical.  This is the usual way
33769 to compare numbers for equality, but note that @code{equal} will treat
33770 0 and 0.0 as different.
33771 @end defun
33773 @defun math-equal x y
33774 Returns true if @var{x} and @var{y} are numerically equal, either because
33775 they are @code{equal}, or because their difference is @code{zerop}.  In
33776 @code{defmath}, the expression @samp{(= x y)} will automatically be
33777 converted to @samp{(math-equal x y)}.
33778 @end defun
33780 @defun equal-int x n
33781 Returns true if @var{x} and @var{n} are numerically equal, where @var{n}
33782 is a fixnum which is not a multiple of 10.  This will automatically be
33783 used by @code{defmath} in place of the more general @code{math-equal}
33784 whenever possible.
33785 @end defun
33787 @defun nearly-equal x y
33788 Returns true if @var{x} and @var{y}, as floating-point numbers, are
33789 equal except possibly in the last decimal place.  For example,
33790 314.159 and 314.166 are considered nearly equal if the current
33791 precision is 6 (since they differ by 7 units), but not if the current
33792 precision is 7 (since they differ by 70 units).  Most functions which
33793 use series expansions use @code{with-extra-prec} to evaluate the
33794 series with 2 extra digits of precision, then use @code{nearly-equal}
33795 to decide when the series has converged; this guards against cumulative
33796 error in the series evaluation without doing extra work which would be
33797 lost when the result is rounded back down to the current precision.
33798 In @code{defmath}, this can be written @samp{(~= @var{x} @var{y})}.
33799 The @var{x} and @var{y} can be numbers of any kind, including complex.
33800 @end defun
33802 @defun nearly-zerop x y
33803 Returns true if @var{x} is nearly zero, compared to @var{y}.  This
33804 checks whether @var{x} plus @var{y} would by be @code{nearly-equal}
33805 to @var{y} itself, to within the current precision, in other words,
33806 if adding @var{x} to @var{y} would have a negligible effect on @var{y}
33807 due to roundoff error.  @var{X} may be a real or complex number, but
33808 @var{y} must be real.
33809 @end defun
33811 @defun is-true x
33812 Return true if the formula @var{x} represents a true value in
33813 Calc, not Lisp, terms.  It tests if @var{x} is a non-zero number
33814 or a provably non-zero formula.
33815 @end defun
33817 @defun reject-arg val pred
33818 Abort the current function evaluation due to unacceptable argument values.
33819 This calls @samp{(calc-record-why @var{pred} @var{val})}, then signals a
33820 Lisp error which @code{normalize} will trap.  The net effect is that the
33821 function call which led here will be left in symbolic form.
33822 @end defun
33824 @defun inexact-value
33825 If Symbolic mode is enabled, this will signal an error that causes
33826 @code{normalize} to leave the formula in symbolic form, with the message
33827 ``Inexact result.''  (This function has no effect when not in Symbolic mode.)
33828 Note that if your function calls @samp{(sin 5)} in Symbolic mode, the
33829 @code{sin} function will call @code{inexact-value}, which will cause your
33830 function to be left unsimplified.  You may instead wish to call
33831 @samp{(normalize (list 'calcFunc-sin 5))}, which in Symbolic mode will
33832 return the formula @samp{sin(5)} to your function.
33833 @end defun
33835 @defun overflow
33836 This signals an error that will be reported as a floating-point overflow.
33837 @end defun
33839 @defun underflow
33840 This signals a floating-point underflow.
33841 @end defun
33843 @node Computational Lisp Functions, Vector Lisp Functions, Predicates, Internals
33844 @subsubsection Computational Functions
33846 @noindent
33847 The functions described here do the actual computational work of the
33848 Calculator.  In addition to these, note that any function described in
33849 the main body of this manual may be called from Lisp; for example, if
33850 the documentation refers to the @code{calc-sqrt} [@code{sqrt}] command,
33851 this means @code{calc-sqrt} is an interactive stack-based square-root
33852 command and @code{sqrt} (which @code{defmath} expands to @code{calcFunc-sqrt})
33853 is the actual Lisp function for taking square roots.
33855 The functions @code{math-add}, @code{math-sub}, @code{math-mul},
33856 @code{math-div}, @code{math-mod}, and @code{math-neg} are not included
33857 in this list, since @code{defmath} allows you to write native Lisp
33858 @code{+}, @code{-}, @code{*}, @code{/}, @code{%}, and unary @code{-},
33859 respectively, instead.
33861 @defun normalize val
33862 (Full form: @code{math-normalize}.)
33863 Reduce the value @var{val} to standard form.  For example, if @var{val}
33864 is a fixnum, it will be converted to a bignum if it is too large, and
33865 if @var{val} is a bignum it will be normalized by clipping off trailing
33866 (i.e., most-significant) zero digits and converting to a fixnum if it is
33867 small.  All the various data types are similarly converted to their standard
33868 forms.  Variables are left alone, but function calls are actually evaluated
33869 in formulas.  For example, normalizing @samp{(+ 2 (calcFunc-abs -4))} will
33870 return 6.
33872 If a function call fails, because the function is void or has the wrong
33873 number of parameters, or because it returns @code{nil} or calls
33874 @code{reject-arg} or @code{inexact-result}, @code{normalize} returns
33875 the formula still in symbolic form.
33877 If the current simplification mode is ``none'' or ``numeric arguments
33878 only,'' @code{normalize} will act appropriately.  However, the more
33879 powerful simplification modes (like Algebraic Simplification) are
33880 not handled by @code{normalize}.  They are handled by @code{calc-normalize},
33881 which calls @code{normalize} and possibly some other routines, such
33882 as @code{simplify} or @code{simplify-units}.  Programs generally will
33883 never call @code{calc-normalize} except when popping or pushing values
33884 on the stack.
33885 @end defun
33887 @defun evaluate-expr expr
33888 Replace all variables in @var{expr} that have values with their values,
33889 then use @code{normalize} to simplify the result.  This is what happens
33890 when you press the @kbd{=} key interactively.
33891 @end defun
33893 @defmac with-extra-prec n body
33894 Evaluate the Lisp forms in @var{body} with precision increased by @var{n}
33895 digits.  This is a macro which expands to
33897 @smallexample
33898 (math-normalize
33899   (let ((calc-internal-prec (+ calc-internal-prec @var{n})))
33900     @var{body}))
33901 @end smallexample
33903 The surrounding call to @code{math-normalize} causes a floating-point
33904 result to be rounded down to the original precision afterwards.  This
33905 is important because some arithmetic operations assume a number's
33906 mantissa contains no more digits than the current precision allows.
33907 @end defmac
33909 @defun make-frac n d
33910 Build a fraction @samp{@var{n}:@var{d}}.  This is equivalent to calling
33911 @samp{(normalize (list 'frac @var{n} @var{d}))}, but more efficient.
33912 @end defun
33914 @defun make-float mant exp
33915 Build a floating-point value out of @var{mant} and @var{exp}, both
33916 of which are arbitrary integers.  This function will return a
33917 properly normalized float value, or signal an overflow or underflow
33918 if @var{exp} is out of range.
33919 @end defun
33921 @defun make-sdev x sigma
33922 Build an error form out of @var{x} and the absolute value of @var{sigma}.
33923 If @var{sigma} is zero, the result is the number @var{x} directly.
33924 If @var{sigma} is negative or complex, its absolute value is used.
33925 If @var{x} or @var{sigma} is not a valid type of object for use in
33926 error forms, this calls @code{reject-arg}.
33927 @end defun
33929 @defun make-intv mask lo hi
33930 Build an interval form out of @var{mask} (which is assumed to be an
33931 integer from 0 to 3), and the limits @var{lo} and @var{hi}.  If
33932 @var{lo} is greater than @var{hi}, an empty interval form is returned.
33933 This calls @code{reject-arg} if @var{lo} or @var{hi} is unsuitable.
33934 @end defun
33936 @defun sort-intv mask lo hi
33937 Build an interval form, similar to @code{make-intv}, except that if
33938 @var{lo} is less than @var{hi} they are simply exchanged, and the
33939 bits of @var{mask} are swapped accordingly.
33940 @end defun
33942 @defun make-mod n m
33943 Build a modulo form out of @var{n} and the modulus @var{m}.  Since modulo
33944 forms do not allow formulas as their components, if @var{n} or @var{m}
33945 is not a real number or HMS form the result will be a formula which
33946 is a call to @code{makemod}, the algebraic version of this function.
33947 @end defun
33949 @defun float x
33950 Convert @var{x} to floating-point form.  Integers and fractions are
33951 converted to numerically equivalent floats; components of complex
33952 numbers, vectors, HMS forms, date forms, error forms, intervals, and
33953 modulo forms are recursively floated.  If the argument is a variable
33954 or formula, this calls @code{reject-arg}.
33955 @end defun
33957 @defun compare x y
33958 Compare the numbers @var{x} and @var{y}, and return @mathit{-1} if
33959 @samp{(lessp @var{x} @var{y})}, 1 if @samp{(lessp @var{y} @var{x})},
33960 0 if @samp{(math-equal @var{x} @var{y})}, or 2 if the order is
33961 undefined or cannot be determined.
33962 @end defun
33964 @defun numdigs n
33965 Return the number of digits of integer @var{n}, effectively
33966 @samp{ceil(log10(@var{n}))}, but much more efficient.  Zero is
33967 considered to have zero digits.
33968 @end defun
33970 @defun scale-int x n
33971 Shift integer @var{x} left @var{n} decimal digits, or right @mathit{-@var{n}}
33972 digits with truncation toward zero.
33973 @end defun
33975 @defun scale-rounding x n
33976 Like @code{scale-int}, except that a right shift rounds to the nearest
33977 integer rather than truncating.
33978 @end defun
33980 @defun fixnum n
33981 Return the integer @var{n} as a fixnum, i.e., a native Lisp integer.
33982 If @var{n} is outside the permissible range for Lisp integers (usually
33983 24 binary bits) the result is undefined.
33984 @end defun
33986 @defun sqr x
33987 Compute the square of @var{x}; short for @samp{(* @var{x} @var{x})}.
33988 @end defun
33990 @defun quotient x y
33991 Divide integer @var{x} by integer @var{y}; return an integer quotient
33992 and discard the remainder.  If @var{x} or @var{y} is negative, the
33993 direction of rounding is undefined.
33994 @end defun
33996 @defun idiv x y
33997 Perform an integer division; if @var{x} and @var{y} are both nonnegative
33998 integers, this uses the @code{quotient} function, otherwise it computes
33999 @samp{floor(@var{x}/@var{y})}.  Thus the result is well-defined but
34000 slower than for @code{quotient}.
34001 @end defun
34003 @defun imod x y
34004 Divide integer @var{x} by integer @var{y}; return the integer remainder
34005 and discard the quotient.  Like @code{quotient}, this works only for
34006 integer arguments and is not well-defined for negative arguments.
34007 For a more well-defined result, use @samp{(% @var{x} @var{y})}.
34008 @end defun
34010 @defun idivmod x y
34011 Divide integer @var{x} by integer @var{y}; return a cons cell whose
34012 @code{car} is @samp{(quotient @var{x} @var{y})} and whose @code{cdr}
34013 is @samp{(imod @var{x} @var{y})}.
34014 @end defun
34016 @defun pow x y
34017 Compute @var{x} to the power @var{y}.  In @code{defmath} code, this can
34018 also be written @samp{(^ @var{x} @var{y})} or
34019 @w{@samp{(expt @var{x} @var{y})}}.
34020 @end defun
34022 @defun abs-approx x
34023 Compute a fast approximation to the absolute value of @var{x}.  For
34024 example, for a rectangular complex number the result is the sum of
34025 the absolute values of the components.
34026 @end defun
34028 @findex e
34029 @findex gamma-const
34030 @findex ln-2
34031 @findex ln-10
34032 @findex phi
34033 @findex pi-over-2
34034 @findex pi-over-4
34035 @findex pi-over-180
34036 @findex sqrt-two-pi
34037 @findex sqrt-e
34038 @findex two-pi
34039 @defun pi
34040 The function @samp{(pi)} computes @samp{pi} to the current precision.
34041 Other related constant-generating functions are @code{two-pi},
34042 @code{pi-over-2}, @code{pi-over-4}, @code{pi-over-180}, @code{sqrt-two-pi},
34043 @code{e}, @code{sqrt-e}, @code{ln-2}, @code{ln-10}, @code{phi} and
34044 @code{gamma-const}.  Each function returns a floating-point value in the
34045 current precision, and each uses caching so that all calls after the
34046 first are essentially free.
34047 @end defun
34049 @defmac math-defcache @var{func} @var{initial} @var{form}
34050 This macro, usually used as a top-level call like @code{defun} or
34051 @code{defvar}, defines a new cached constant analogous to @code{pi}, etc.
34052 It defines a function @code{func} which returns the requested value;
34053 if @var{initial} is non-@code{nil} it must be a @samp{(float @dots{})}
34054 form which serves as an initial value for the cache.  If @var{func}
34055 is called when the cache is empty or does not have enough digits to
34056 satisfy the current precision, the Lisp expression @var{form} is evaluated
34057 with the current precision increased by four, and the result minus its
34058 two least significant digits is stored in the cache.  For example,
34059 calling @samp{(pi)} with a precision of 30 computes @samp{pi} to 34
34060 digits, rounds it down to 32 digits for future use, then rounds it
34061 again to 30 digits for use in the present request.
34062 @end defmac
34064 @findex half-circle
34065 @findex quarter-circle
34066 @defun full-circle symb
34067 If the current angular mode is Degrees or HMS, this function returns the
34068 integer 360.  In Radians mode, this function returns either the
34069 corresponding value in radians to the current precision, or the formula
34070 @samp{2*pi}, depending on the Symbolic mode.  There are also similar
34071 function @code{half-circle} and @code{quarter-circle}.
34072 @end defun
34074 @defun power-of-2 n
34075 Compute two to the integer power @var{n}, as a (potentially very large)
34076 integer.  Powers of two are cached, so only the first call for a
34077 particular @var{n} is expensive.
34078 @end defun
34080 @defun integer-log2 n
34081 Compute the base-2 logarithm of @var{n}, which must be an integer which
34082 is a power of two.  If @var{n} is not a power of two, this function will
34083 return @code{nil}.
34084 @end defun
34086 @defun div-mod a b m
34087 Divide @var{a} by @var{b}, modulo @var{m}.  This returns @code{nil} if
34088 there is no solution, or if any of the arguments are not integers.
34089 @end defun
34091 @defun pow-mod a b m
34092 Compute @var{a} to the power @var{b}, modulo @var{m}.  If @var{a},
34093 @var{b}, and @var{m} are integers, this uses an especially efficient
34094 algorithm.  Otherwise, it simply computes @samp{(% (^ a b) m)}.
34095 @end defun
34097 @defun isqrt n
34098 Compute the integer square root of @var{n}.  This is the square root
34099 of @var{n} rounded down toward zero, i.e., @samp{floor(sqrt(@var{n}))}.
34100 If @var{n} is itself an integer, the computation is especially efficient.
34101 @end defun
34103 @defun to-hms a ang
34104 Convert the argument @var{a} into an HMS form.  If @var{ang} is specified,
34105 it is the angular mode in which to interpret @var{a}, either @code{deg}
34106 or @code{rad}.  Otherwise, the current angular mode is used.  If @var{a}
34107 is already an HMS form it is returned as-is.
34108 @end defun
34110 @defun from-hms a ang
34111 Convert the HMS form @var{a} into a real number.  If @var{ang} is specified,
34112 it is the angular mode in which to express the result, otherwise the
34113 current angular mode is used.  If @var{a} is already a real number, it
34114 is returned as-is.
34115 @end defun
34117 @defun to-radians a
34118 Convert the number or HMS form @var{a} to radians from the current
34119 angular mode.
34120 @end defun
34122 @defun from-radians a
34123 Convert the number @var{a} from radians to the current angular mode.
34124 If @var{a} is a formula, this returns the formula @samp{deg(@var{a})}.
34125 @end defun
34127 @defun to-radians-2 a
34128 Like @code{to-radians}, except that in Symbolic mode a degrees to
34129 radians conversion yields a formula like @samp{@var{a}*pi/180}.
34130 @end defun
34132 @defun from-radians-2 a
34133 Like @code{from-radians}, except that in Symbolic mode a radians to
34134 degrees conversion yields a formula like @samp{@var{a}*180/pi}.
34135 @end defun
34137 @defun random-digit
34138 Produce a random base-1000 digit in the range 0 to 999.
34139 @end defun
34141 @defun random-digits n
34142 Produce a random @var{n}-digit integer; this will be an integer
34143 in the interval @samp{[0, 10^@var{n})}.
34144 @end defun
34146 @defun random-float
34147 Produce a random float in the interval @samp{[0, 1)}.
34148 @end defun
34150 @defun prime-test n iters
34151 Determine whether the integer @var{n} is prime.  Return a list which has
34152 one of these forms: @samp{(nil @var{f})} means the number is non-prime
34153 because it was found to be divisible by @var{f}; @samp{(nil)} means it
34154 was found to be non-prime by table look-up (so no factors are known);
34155 @samp{(nil unknown)} means it is definitely non-prime but no factors
34156 are known because @var{n} was large enough that Fermat's probabilistic
34157 test had to be used; @samp{(t)} means the number is definitely prime;
34158 and @samp{(maybe @var{i} @var{p})} means that Fermat's test, after @var{i}
34159 iterations, is @var{p} percent sure that the number is prime.  The
34160 @var{iters} parameter is the number of Fermat iterations to use, in the
34161 case that this is necessary.  If @code{prime-test} returns ``maybe,''
34162 you can call it again with the same @var{n} to get a greater certainty;
34163 @code{prime-test} remembers where it left off.
34164 @end defun
34166 @defun to-simple-fraction f
34167 If @var{f} is a floating-point number which can be represented exactly
34168 as a small rational number. return that number, else return @var{f}.
34169 For example, 0.75 would be converted to 3:4.  This function is very
34170 fast.
34171 @end defun
34173 @defun to-fraction f tol
34174 Find a rational approximation to floating-point number @var{f} to within
34175 a specified tolerance @var{tol}; this corresponds to the algebraic
34176 function @code{frac}, and can be rather slow.
34177 @end defun
34179 @defun quarter-integer n
34180 If @var{n} is an integer or integer-valued float, this function
34181 returns zero.  If @var{n} is a half-integer (i.e., an integer plus
34182 @mathit{1:2} or 0.5), it returns 2.  If @var{n} is a quarter-integer,
34183 it returns 1 or 3.  If @var{n} is anything else, this function
34184 returns @code{nil}.
34185 @end defun
34187 @node Vector Lisp Functions, Symbolic Lisp Functions, Computational Lisp Functions, Internals
34188 @subsubsection Vector Functions
34190 @noindent
34191 The functions described here perform various operations on vectors and
34192 matrices.
34194 @defun math-concat x y
34195 Do a vector concatenation; this operation is written @samp{@var{x} | @var{y}}
34196 in a symbolic formula.  @xref{Building Vectors}.
34197 @end defun
34199 @defun vec-length v
34200 Return the length of vector @var{v}.  If @var{v} is not a vector, the
34201 result is zero.  If @var{v} is a matrix, this returns the number of
34202 rows in the matrix.
34203 @end defun
34205 @defun mat-dimens m
34206 Determine the dimensions of vector or matrix @var{m}.  If @var{m} is not
34207 a vector, the result is an empty list.  If @var{m} is a plain vector
34208 but not a matrix, the result is a one-element list containing the length
34209 of the vector.  If @var{m} is a matrix with @var{r} rows and @var{c} columns,
34210 the result is the list @samp{(@var{r} @var{c})}.  Higher-order tensors
34211 produce lists of more than two dimensions.  Note that the object
34212 @samp{[[1, 2, 3], [4, 5]]} is a vector of vectors not all the same size,
34213 and is treated by this and other Calc routines as a plain vector of two
34214 elements.
34215 @end defun
34217 @defun dimension-error
34218 Abort the current function with a message of ``Dimension error.''
34219 The Calculator will leave the function being evaluated in symbolic
34220 form; this is really just a special case of @code{reject-arg}.
34221 @end defun
34223 @defun build-vector args
34224 Return a Calc vector with @var{args} as elements.
34225 For example, @samp{(build-vector 1 2 3)} returns the Calc vector
34226 @samp{[1, 2, 3]}, stored internally as the list @samp{(vec 1 2 3)}.
34227 @end defun
34229 @defun make-vec obj dims
34230 Return a Calc vector or matrix all of whose elements are equal to
34231 @var{obj}.  For example, @samp{(make-vec 27 3 4)} returns a 3x4 matrix
34232 filled with 27's.
34233 @end defun
34235 @defun row-matrix v
34236 If @var{v} is a plain vector, convert it into a row matrix, i.e.,
34237 a matrix whose single row is @var{v}.  If @var{v} is already a matrix,
34238 leave it alone.
34239 @end defun
34241 @defun col-matrix v
34242 If @var{v} is a plain vector, convert it into a column matrix, i.e., a
34243 matrix with each element of @var{v} as a separate row.  If @var{v} is
34244 already a matrix, leave it alone.
34245 @end defun
34247 @defun map-vec f v
34248 Map the Lisp function @var{f} over the Calc vector @var{v}.  For example,
34249 @samp{(map-vec 'math-floor v)} returns a vector of the floored components
34250 of vector @var{v}.
34251 @end defun
34253 @defun map-vec-2 f a b
34254 Map the Lisp function @var{f} over the two vectors @var{a} and @var{b}.
34255 If @var{a} and @var{b} are vectors of equal length, the result is a
34256 vector of the results of calling @samp{(@var{f} @var{ai} @var{bi})}
34257 for each pair of elements @var{ai} and @var{bi}.  If either @var{a} or
34258 @var{b} is a scalar, it is matched with each value of the other vector.
34259 For example, @samp{(map-vec-2 'math-add v 1)} returns the vector @var{v}
34260 with each element increased by one.  Note that using @samp{'+} would not
34261 work here, since @code{defmath} does not expand function names everywhere,
34262 just where they are in the function position of a Lisp expression.
34263 @end defun
34265 @defun reduce-vec f v
34266 Reduce the function @var{f} over the vector @var{v}.  For example, if
34267 @var{v} is @samp{[10, 20, 30, 40]}, this calls @samp{(f (f (f 10 20) 30) 40)}.
34268 If @var{v} is a matrix, this reduces over the rows of @var{v}.
34269 @end defun
34271 @defun reduce-cols f m
34272 Reduce the function @var{f} over the columns of matrix @var{m}.  For
34273 example, if @var{m} is @samp{[[1, 2], [3, 4], [5, 6]]}, the result
34274 is a vector of the two elements @samp{(f (f 1 3) 5)} and @samp{(f (f 2 4) 6)}.
34275 @end defun
34277 @defun mat-row m n
34278 Return the @var{n}th row of matrix @var{m}.  This is equivalent to
34279 @samp{(elt m n)}.  For a slower but safer version, use @code{mrow}.
34280 (@xref{Extracting Elements}.)
34281 @end defun
34283 @defun mat-col m n
34284 Return the @var{n}th column of matrix @var{m}, in the form of a vector.
34285 The arguments are not checked for correctness.
34286 @end defun
34288 @defun mat-less-row m n
34289 Return a copy of matrix @var{m} with its @var{n}th row deleted.  The
34290 number @var{n} must be in range from 1 to the number of rows in @var{m}.
34291 @end defun
34293 @defun mat-less-col m n
34294 Return a copy of matrix @var{m} with its @var{n}th column deleted.
34295 @end defun
34297 @defun transpose m
34298 Return the transpose of matrix @var{m}.
34299 @end defun
34301 @defun flatten-vector v
34302 Flatten nested vector @var{v} into a vector of scalars.  For example,
34303 if @var{v} is @samp{[[1, 2, 3], [4, 5]]} the result is @samp{[1, 2, 3, 4, 5]}.
34304 @end defun
34306 @defun copy-matrix m
34307 If @var{m} is a matrix, return a copy of @var{m}.  This maps
34308 @code{copy-sequence} over the rows of @var{m}; in Lisp terms, each
34309 element of the result matrix will be @code{eq} to the corresponding
34310 element of @var{m}, but none of the @code{cons} cells that make up
34311 the structure of the matrix will be @code{eq}.  If @var{m} is a plain
34312 vector, this is the same as @code{copy-sequence}.
34313 @end defun
34315 @defun swap-rows m r1 r2
34316 Exchange rows @var{r1} and @var{r2} of matrix @var{m} in-place.  In
34317 other words, unlike most of the other functions described here, this
34318 function changes @var{m} itself rather than building up a new result
34319 matrix.  The return value is @var{m}, i.e., @samp{(eq (swap-rows m 1 2) m)}
34320 is true, with the side effect of exchanging the first two rows of
34321 @var{m}.
34322 @end defun
34324 @node Symbolic Lisp Functions, Formatting Lisp Functions, Vector Lisp Functions, Internals
34325 @subsubsection Symbolic Functions
34327 @noindent
34328 The functions described here operate on symbolic formulas in the
34329 Calculator.
34331 @defun calc-prepare-selection num
34332 Prepare a stack entry for selection operations.  If @var{num} is
34333 omitted, the stack entry containing the cursor is used; otherwise,
34334 it is the number of the stack entry to use.  This function stores
34335 useful information about the current stack entry into a set of
34336 variables.  @code{calc-selection-cache-num} contains the number of
34337 the stack entry involved (equal to @var{num} if you specified it);
34338 @code{calc-selection-cache-entry} contains the stack entry as a
34339 list (such as @code{calc-top-list} would return with @code{entry}
34340 as the selection mode); and @code{calc-selection-cache-comp} contains
34341 a special ``tagged'' composition (@pxref{Formatting Lisp Functions})
34342 which allows Calc to relate cursor positions in the buffer with
34343 their corresponding sub-formulas.
34345 A slight complication arises in the selection mechanism because
34346 formulas may contain small integers.  For example, in the vector
34347 @samp{[1, 2, 1]} the first and last elements are @code{eq} to each
34348 other; selections are recorded as the actual Lisp object that
34349 appears somewhere in the tree of the whole formula, but storing
34350 @code{1} would falsely select both @code{1}'s in the vector.  So
34351 @code{calc-prepare-selection} also checks the stack entry and
34352 replaces any plain integers with ``complex number'' lists of the form
34353 @samp{(cplx @var{n} 0)}.  This list will be displayed the same as a
34354 plain @var{n} and the change will be completely invisible to the
34355 user, but it will guarantee that no two sub-formulas of the stack
34356 entry will be @code{eq} to each other.  Next time the stack entry
34357 is involved in a computation, @code{calc-normalize} will replace
34358 these lists with plain numbers again, again invisibly to the user.
34359 @end defun
34361 @defun calc-encase-atoms x
34362 This modifies the formula @var{x} to ensure that each part of the
34363 formula is a unique atom, using the @samp{(cplx @var{n} 0)} trick
34364 described above.  This function may use @code{setcar} to modify
34365 the formula in-place.
34366 @end defun
34368 @defun calc-find-selected-part
34369 Find the smallest sub-formula of the current formula that contains
34370 the cursor.  This assumes @code{calc-prepare-selection} has been
34371 called already.  If the cursor is not actually on any part of the
34372 formula, this returns @code{nil}.
34373 @end defun
34375 @defun calc-change-current-selection selection
34376 Change the currently prepared stack element's selection to
34377 @var{selection}, which should be @code{eq} to some sub-formula
34378 of the stack element, or @code{nil} to unselect the formula.
34379 The stack element's appearance in the Calc buffer is adjusted
34380 to reflect the new selection.
34381 @end defun
34383 @defun calc-find-nth-part expr n
34384 Return the @var{n}th sub-formula of @var{expr}.  This function is used
34385 by the selection commands, and (unless @kbd{j b} has been used) treats
34386 sums and products as flat many-element formulas.  Thus if @var{expr}
34387 is @samp{((a + b) - c) + d}, calling @code{calc-find-nth-part} with
34388 @var{n} equal to four will return @samp{d}.
34389 @end defun
34391 @defun calc-find-parent-formula expr part
34392 Return the sub-formula of @var{expr} which immediately contains
34393 @var{part}.  If @var{expr} is @samp{a*b + (c+1)*d} and @var{part}
34394 is @code{eq} to the @samp{c+1} term of @var{expr}, then this function
34395 will return @samp{(c+1)*d}.  If @var{part} turns out not to be a
34396 sub-formula of @var{expr}, the function returns @code{nil}.  If
34397 @var{part} is @code{eq} to @var{expr}, the function returns @code{t}.
34398 This function does not take associativity into account.
34399 @end defun
34401 @defun calc-find-assoc-parent-formula expr part
34402 This is the same as @code{calc-find-parent-formula}, except that
34403 (unless @kbd{j b} has been used) it continues widening the selection
34404 to contain a complete level of the formula.  Given @samp{a} from
34405 @samp{((a + b) - c) + d}, @code{calc-find-parent-formula} will
34406 return @samp{a + b} but @code{calc-find-assoc-parent-formula} will
34407 return the whole expression.
34408 @end defun
34410 @defun calc-grow-assoc-formula expr part
34411 This expands sub-formula @var{part} of @var{expr} to encompass a
34412 complete level of the formula.  If @var{part} and its immediate
34413 parent are not compatible associative operators, or if @kbd{j b}
34414 has been used, this simply returns @var{part}.
34415 @end defun
34417 @defun calc-find-sub-formula expr part
34418 This finds the immediate sub-formula of @var{expr} which contains
34419 @var{part}.  It returns an index @var{n} such that
34420 @samp{(calc-find-nth-part @var{expr} @var{n})} would return @var{part}.
34421 If @var{part} is not a sub-formula of @var{expr}, it returns @code{nil}.
34422 If @var{part} is @code{eq} to @var{expr}, it returns @code{t}.  This
34423 function does not take associativity into account.
34424 @end defun
34426 @defun calc-replace-sub-formula expr old new
34427 This function returns a copy of formula @var{expr}, with the
34428 sub-formula that is @code{eq} to @var{old} replaced by @var{new}.
34429 @end defun
34431 @defun simplify expr
34432 Simplify the expression @var{expr} by applying Calc's algebraic
34433 simplifications.  This  always returns a copy of the expression; the
34434 structure @var{expr} points to remains unchanged in memory.
34436 More precisely, here is what @code{simplify} does:  The expression is
34437 first normalized and evaluated by calling @code{normalize}.  If any
34438 @code{AlgSimpRules} have been defined, they are then applied.  Then
34439 the expression is traversed in a depth-first, bottom-up fashion; at
34440 each level, any simplifications that can be made are made until no
34441 further changes are possible.  Once the entire formula has been
34442 traversed in this way, it is compared with the original formula (from
34443 before the call to @code{normalize}) and, if it has changed,
34444 the entire procedure is repeated (starting with @code{normalize})
34445 until no further changes occur.  Usually only two iterations are
34446 needed:@: one to simplify the formula, and another to verify that no
34447 further simplifications were possible.
34448 @end defun
34450 @defun simplify-extended expr
34451 Simplify the expression @var{expr}, with additional rules enabled that
34452 help do a more thorough job, while not being entirely ``safe'' in all
34453 circumstances.  (For example, this mode will simplify @samp{sqrt(x^2)}
34454 to @samp{x}, which is only valid when @var{x} is positive.)  This is
34455 implemented by temporarily binding the variable @code{math-living-dangerously}
34456 to @code{t} (using a @code{let} form) and calling @code{simplify}.
34457 Dangerous simplification rules are written to check this variable
34458 before taking any action.
34459 @end defun
34461 @defun simplify-units expr
34462 Simplify the expression @var{expr}, treating variable names as units
34463 whenever possible.  This works by binding the variable
34464 @code{math-simplifying-units} to @code{t} while calling @code{simplify}.
34465 @end defun
34467 @defmac math-defsimplify funcs body
34468 Register a new simplification rule; this is normally called as a top-level
34469 form, like @code{defun} or @code{defmath}.  If @var{funcs} is a symbol
34470 (like @code{+} or @code{calcFunc-sqrt}), this simplification rule is
34471 applied to the formulas which are calls to the specified function.  Or,
34472 @var{funcs} can be a list of such symbols; the rule applies to all
34473 functions on the list.  The @var{body} is written like the body of a
34474 function with a single argument called @code{expr}.  The body will be
34475 executed with @code{expr} bound to a formula which is a call to one of
34476 the functions @var{funcs}.  If the function body returns @code{nil}, or
34477 if it returns a result @code{equal} to the original @code{expr}, it is
34478 ignored and Calc goes on to try the next simplification rule that applies.
34479 If the function body returns something different, that new formula is
34480 substituted for @var{expr} in the original formula.
34482 At each point in the formula, rules are tried in the order of the
34483 original calls to @code{math-defsimplify}; the search stops after the
34484 first rule that makes a change.  Thus later rules for that same
34485 function will not have a chance to trigger until the next iteration
34486 of the main @code{simplify} loop.
34488 Note that, since @code{defmath} is not being used here, @var{body} must
34489 be written in true Lisp code without the conveniences that @code{defmath}
34490 provides.  If you prefer, you can have @var{body} simply call another
34491 function (defined with @code{defmath}) which does the real work.
34493 The arguments of a function call will already have been simplified
34494 before any rules for the call itself are invoked.  Since a new argument
34495 list is consed up when this happens, this means that the rule's body is
34496 allowed to rearrange the function's arguments destructively if that is
34497 convenient.  Here is a typical example of a simplification rule:
34499 @smallexample
34500 (math-defsimplify calcFunc-arcsinh
34501   (or (and (math-looks-negp (nth 1 expr))
34502            (math-neg (list 'calcFunc-arcsinh
34503                            (math-neg (nth 1 expr)))))
34504       (and (eq (car-safe (nth 1 expr)) 'calcFunc-sinh)
34505            (or math-living-dangerously
34506                (math-known-realp (nth 1 (nth 1 expr))))
34507            (nth 1 (nth 1 expr)))))
34508 @end smallexample
34510 This is really a pair of rules written with one @code{math-defsimplify}
34511 for convenience; the first replaces @samp{arcsinh(-x)} with
34512 @samp{-arcsinh(x)}, and the second, which is safe only for real @samp{x},
34513 replaces @samp{arcsinh(sinh(x))} with @samp{x}.
34514 @end defmac
34516 @defun common-constant-factor expr
34517 Check @var{expr} to see if it is a sum of terms all multiplied by the
34518 same rational value.  If so, return this value.  If not, return @code{nil}.
34519 For example, if called on @samp{6x + 9y + 12z}, it would return 3, since
34520 3 is a common factor of all the terms.
34521 @end defun
34523 @defun cancel-common-factor expr factor
34524 Assuming @var{expr} is a sum with @var{factor} as a common factor,
34525 divide each term of the sum by @var{factor}.  This is done by
34526 destructively modifying parts of @var{expr}, on the assumption that
34527 it is being used by a simplification rule (where such things are
34528 allowed; see above).  For example, consider this built-in rule for
34529 square roots:
34531 @smallexample
34532 (math-defsimplify calcFunc-sqrt
34533   (let ((fac (math-common-constant-factor (nth 1 expr))))
34534     (and fac (not (eq fac 1))
34535          (math-mul (math-normalize (list 'calcFunc-sqrt fac))
34536                    (math-normalize
34537                     (list 'calcFunc-sqrt
34538                           (math-cancel-common-factor
34539                            (nth 1 expr) fac)))))))
34540 @end smallexample
34541 @end defun
34543 @defun frac-gcd a b
34544 Compute a ``rational GCD'' of @var{a} and @var{b}, which must both be
34545 rational numbers.  This is the fraction composed of the GCD of the
34546 numerators of @var{a} and @var{b}, over the GCD of the denominators.
34547 It is used by @code{common-constant-factor}.  Note that the standard
34548 @code{gcd} function uses the LCM to combine the denominators.
34549 @end defun
34551 @defun map-tree func expr many
34552 Try applying Lisp function @var{func} to various sub-expressions of
34553 @var{expr}.  Initially, call @var{func} with @var{expr} itself as an
34554 argument.  If this returns an expression which is not @code{equal} to
34555 @var{expr}, apply @var{func} again until eventually it does return
34556 @var{expr} with no changes.  Then, if @var{expr} is a function call,
34557 recursively apply @var{func} to each of the arguments.  This keeps going
34558 until no changes occur anywhere in the expression; this final expression
34559 is returned by @code{map-tree}.  Note that, unlike simplification rules,
34560 @var{func} functions may @emph{not} make destructive changes to
34561 @var{expr}.  If a third argument @var{many} is provided, it is an
34562 integer which says how many times @var{func} may be applied; the
34563 default, as described above, is infinitely many times.
34564 @end defun
34566 @defun compile-rewrites rules
34567 Compile the rewrite rule set specified by @var{rules}, which should
34568 be a formula that is either a vector or a variable name.  If the latter,
34569 the compiled rules are saved so that later @code{compile-rules} calls
34570 for that same variable can return immediately.  If there are problems
34571 with the rules, this function calls @code{error} with a suitable
34572 message.
34573 @end defun
34575 @defun apply-rewrites expr crules heads
34576 Apply the compiled rewrite rule set @var{crules} to the expression
34577 @var{expr}.  This will make only one rewrite and only checks at the
34578 top level of the expression.  The result @code{nil} if no rules
34579 matched, or if the only rules that matched did not actually change
34580 the expression.  The @var{heads} argument is optional; if is given,
34581 it should be a list of all function names that (may) appear in
34582 @var{expr}.  The rewrite compiler tags each rule with the
34583 rarest-looking function name in the rule; if you specify @var{heads},
34584 @code{apply-rewrites} can use this information to narrow its search
34585 down to just a few rules in the rule set.
34586 @end defun
34588 @defun rewrite-heads expr
34589 Compute a @var{heads} list for @var{expr} suitable for use with
34590 @code{apply-rewrites}, as discussed above.
34591 @end defun
34593 @defun rewrite expr rules many
34594 This is an all-in-one rewrite function.  It compiles the rule set
34595 specified by @var{rules}, then uses @code{map-tree} to apply the
34596 rules throughout @var{expr} up to @var{many} (default infinity)
34597 times.
34598 @end defun
34600 @defun match-patterns pat vec not-flag
34601 Given a Calc vector @var{vec} and an uncompiled pattern set or
34602 pattern set variable @var{pat}, this function returns a new vector
34603 of all elements of @var{vec} which do (or don't, if @var{not-flag} is
34604 non-@code{nil}) match any of the patterns in @var{pat}.
34605 @end defun
34607 @defun deriv expr var value symb
34608 Compute the derivative of @var{expr} with respect to variable @var{var}
34609 (which may actually be any sub-expression).  If @var{value} is specified,
34610 the derivative is evaluated at the value of @var{var}; otherwise, the
34611 derivative is left in terms of @var{var}.  If the expression contains
34612 functions for which no derivative formula is known, new derivative
34613 functions are invented by adding primes to the names; @pxref{Calculus}.
34614 However, if @var{symb} is non-@code{nil}, the presence of nondifferentiable
34615 functions in @var{expr} instead cancels the whole differentiation, and
34616 @code{deriv} returns @code{nil} instead.
34618 Derivatives of an @var{n}-argument function can be defined by
34619 adding a @code{math-derivative-@var{n}} property to the property list
34620 of the symbol for the function's derivative, which will be the
34621 function name followed by an apostrophe.  The value of the property
34622 should be a Lisp function; it is called with the same arguments as the
34623 original function call that is being differentiated.  It should return
34624 a formula for the derivative.  For example, the derivative of @code{ln}
34625 is defined by
34627 @smallexample
34628 (put 'calcFunc-ln\' 'math-derivative-1
34629      (function (lambda (u) (math-div 1 u))))
34630 @end smallexample
34632 The two-argument @code{log} function has two derivatives,
34633 @smallexample
34634 (put 'calcFunc-log\' 'math-derivative-2     ; d(log(x,b)) / dx
34635      (function (lambda (x b) ... )))
34636 (put 'calcFunc-log\'2 'math-derivative-2    ; d(log(x,b)) / db
34637      (function (lambda (x b) ... )))
34638 @end smallexample
34639 @end defun
34641 @defun tderiv expr var value symb
34642 Compute the total derivative of @var{expr}.  This is the same as
34643 @code{deriv}, except that variables other than @var{var} are not
34644 assumed to be constant with respect to @var{var}.
34645 @end defun
34647 @defun integ expr var low high
34648 Compute the integral of @var{expr} with respect to @var{var}.
34649 @xref{Calculus}, for further details.
34650 @end defun
34652 @defmac math-defintegral funcs body
34653 Define a rule for integrating a function or functions of one argument;
34654 this macro is very similar in format to @code{math-defsimplify}.
34655 The main difference is that here @var{body} is the body of a function
34656 with a single argument @code{u} which is bound to the argument to the
34657 function being integrated, not the function call itself.  Also, the
34658 variable of integration is available as @code{math-integ-var}.  If
34659 evaluation of the integral requires doing further integrals, the body
34660 should call @samp{(math-integral @var{x})} to find the integral of
34661 @var{x} with respect to @code{math-integ-var}; this function returns
34662 @code{nil} if the integral could not be done.  Some examples:
34664 @smallexample
34665 (math-defintegral calcFunc-conj
34666   (let ((int (math-integral u)))
34667     (and int
34668          (list 'calcFunc-conj int))))
34670 (math-defintegral calcFunc-cos
34671   (and (equal u math-integ-var)
34672        (math-from-radians-2 (list 'calcFunc-sin u))))
34673 @end smallexample
34675 In the @code{cos} example, we define only the integral of @samp{cos(x) dx},
34676 relying on the general integration-by-substitution facility to handle
34677 cosines of more complicated arguments.  An integration rule should return
34678 @code{nil} if it can't do the integral; if several rules are defined for
34679 the same function, they are tried in order until one returns a non-@code{nil}
34680 result.
34681 @end defmac
34683 @defmac math-defintegral-2 funcs body
34684 Define a rule for integrating a function or functions of two arguments.
34685 This is exactly analogous to @code{math-defintegral}, except that @var{body}
34686 is written as the body of a function with two arguments, @var{u} and
34687 @var{v}.
34688 @end defmac
34690 @defun solve-for lhs rhs var full
34691 Attempt to solve the equation @samp{@var{lhs} = @var{rhs}} by isolating
34692 the variable @var{var} on the lefthand side; return the resulting righthand
34693 side, or @code{nil} if the equation cannot be solved.  The variable
34694 @var{var} must appear at least once in @var{lhs} or @var{rhs}.  Note that
34695 the return value is a formula which does not contain @var{var}; this is
34696 different from the user-level @code{solve} and @code{finv} functions,
34697 which return a rearranged equation or a functional inverse, respectively.
34698 If @var{full} is non-@code{nil}, a full solution including dummy signs
34699 and dummy integers will be produced.  User-defined inverses are provided
34700 as properties in a manner similar to derivatives:
34702 @smallexample
34703 (put 'calcFunc-ln 'math-inverse
34704      (function (lambda (x) (list 'calcFunc-exp x))))
34705 @end smallexample
34707 This function can call @samp{(math-solve-get-sign @var{x})} to create
34708 a new arbitrary sign variable, returning @var{x} times that sign, and
34709 @samp{(math-solve-get-int @var{x})} to create a new arbitrary integer
34710 variable multiplied by @var{x}.  These functions simply return @var{x}
34711 if the caller requested a non-``full'' solution.
34712 @end defun
34714 @defun solve-eqn expr var full
34715 This version of @code{solve-for} takes an expression which will
34716 typically be an equation or inequality.  (If it is not, it will be
34717 interpreted as the equation @samp{@var{expr} = 0}.)  It returns an
34718 equation or inequality, or @code{nil} if no solution could be found.
34719 @end defun
34721 @defun solve-system exprs vars full
34722 This function solves a system of equations.  Generally, @var{exprs}
34723 and @var{vars} will be vectors of equal length.
34724 @xref{Solving Systems of Equations}, for other options.
34725 @end defun
34727 @defun expr-contains expr var
34728 Returns a non-@code{nil} value if @var{var} occurs as a subexpression
34729 of @var{expr}.
34731 This function might seem at first to be identical to
34732 @code{calc-find-sub-formula}.  The key difference is that
34733 @code{expr-contains} uses @code{equal} to test for matches, whereas
34734 @code{calc-find-sub-formula} uses @code{eq}.  In the formula
34735 @samp{f(a, a)}, the two @samp{a}s will be @code{equal} but not
34736 @code{eq} to each other.
34737 @end defun
34739 @defun expr-contains-count expr var
34740 Returns the number of occurrences of @var{var} as a subexpression
34741 of @var{expr}, or @code{nil} if there are no occurrences.
34742 @end defun
34744 @defun expr-depends expr var
34745 Returns true if @var{expr} refers to any variable the occurs in @var{var}.
34746 In other words, it checks if @var{expr} and @var{var} have any variables
34747 in common.
34748 @end defun
34750 @defun expr-contains-vars expr
34751 Return true if @var{expr} contains any variables, or @code{nil} if @var{expr}
34752 contains only constants and functions with constant arguments.
34753 @end defun
34755 @defun expr-subst expr old new
34756 Returns a copy of @var{expr}, with all occurrences of @var{old} replaced
34757 by @var{new}.  This treats @code{lambda} forms specially with respect
34758 to the dummy argument variables, so that the effect is always to return
34759 @var{expr} evaluated at @var{old} = @var{new}.
34760 @end defun
34762 @defun multi-subst expr old new
34763 This is like @code{expr-subst}, except that @var{old} and @var{new}
34764 are lists of expressions to be substituted simultaneously.  If one
34765 list is shorter than the other, trailing elements of the longer list
34766 are ignored.
34767 @end defun
34769 @defun expr-weight expr
34770 Returns the ``weight'' of @var{expr}, basically a count of the total
34771 number of objects and function calls that appear in @var{expr}.  For
34772 ``primitive'' objects, this will be one.
34773 @end defun
34775 @defun expr-height expr
34776 Returns the ``height'' of @var{expr}, which is the deepest level to
34777 which function calls are nested.  (Note that @samp{@var{a} + @var{b}}
34778 counts as a function call.)  For primitive objects, this returns zero.
34779 @end defun
34781 @defun polynomial-p expr var
34782 Check if @var{expr} is a polynomial in variable (or sub-expression)
34783 @var{var}.  If so, return the degree of the polynomial, that is, the
34784 highest power of @var{var} that appears in @var{expr}.  For example,
34785 for @samp{(x^2 + 3)^3 + 4} this would return 6.  This function returns
34786 @code{nil} unless @var{expr}, when expanded out by @kbd{a x}
34787 (@code{calc-expand}), would consist of a sum of terms in which @var{var}
34788 appears only raised to nonnegative integer powers.  Note that if
34789 @var{var} does not occur in @var{expr}, then @var{expr} is considered
34790 a polynomial of degree 0.
34791 @end defun
34793 @defun is-polynomial expr var degree loose
34794 Check if @var{expr} is a polynomial in variable or sub-expression
34795 @var{var}, and, if so, return a list representation of the polynomial
34796 where the elements of the list are coefficients of successive powers of
34797 @var{var}: @samp{@var{a} + @var{b} x + @var{c} x^3} would produce the
34798 list @samp{(@var{a} @var{b} 0 @var{c})}, and @samp{(x + 1)^2} would
34799 produce the list @samp{(1 2 1)}.  The highest element of the list will
34800 be non-zero, with the special exception that if @var{expr} is the
34801 constant zero, the returned value will be @samp{(0)}.  Return @code{nil}
34802 if @var{expr} is not a polynomial in @var{var}.  If @var{degree} is
34803 specified, this will not consider polynomials of degree higher than that
34804 value.  This is a good precaution because otherwise an input of
34805 @samp{(x+1)^1000} will cause a huge coefficient list to be built.  If
34806 @var{loose} is non-@code{nil}, then a looser definition of a polynomial
34807 is used in which coefficients are no longer required not to depend on
34808 @var{var}, but are only required not to take the form of polynomials
34809 themselves.  For example, @samp{sin(x) x^2 + cos(x)} is a loose
34810 polynomial with coefficients @samp{((calcFunc-cos x) 0 (calcFunc-sin
34811 x))}.  The result will never be @code{nil} in loose mode, since any
34812 expression can be interpreted as a ``constant'' loose polynomial.
34813 @end defun
34815 @defun polynomial-base expr pred
34816 Check if @var{expr} is a polynomial in any variable that occurs in it;
34817 if so, return that variable.  (If @var{expr} is a multivariate polynomial,
34818 this chooses one variable arbitrarily.)  If @var{pred} is specified, it should
34819 be a Lisp function which is called as @samp{(@var{pred} @var{subexpr})},
34820 and which should return true if @code{mpb-top-expr} (a global name for
34821 the original @var{expr}) is a suitable polynomial in @var{subexpr}.
34822 The default predicate uses @samp{(polynomial-p mpb-top-expr @var{subexpr})};
34823 you can use @var{pred} to specify additional conditions.  Or, you could
34824 have @var{pred} build up a list of every suitable @var{subexpr} that
34825 is found.
34826 @end defun
34828 @defun poly-simplify poly
34829 Simplify polynomial coefficient list @var{poly} by (destructively)
34830 clipping off trailing zeros.
34831 @end defun
34833 @defun poly-mix a ac b bc
34834 Mix two polynomial lists @var{a} and @var{b} (in the form returned by
34835 @code{is-polynomial}) in a linear combination with coefficient expressions
34836 @var{ac} and @var{bc}.  The result is a (not necessarily simplified)
34837 polynomial list representing @samp{@var{ac} @var{a} + @var{bc} @var{b}}.
34838 @end defun
34840 @defun poly-mul a b
34841 Multiply two polynomial coefficient lists @var{a} and @var{b}.  The
34842 result will be in simplified form if the inputs were simplified.
34843 @end defun
34845 @defun build-polynomial-expr poly var
34846 Construct a Calc formula which represents the polynomial coefficient
34847 list @var{poly} applied to variable @var{var}.  The @kbd{a c}
34848 (@code{calc-collect}) command uses @code{is-polynomial} to turn an
34849 expression into a coefficient list, then @code{build-polynomial-expr}
34850 to turn the list back into an expression in regular form.
34851 @end defun
34853 @defun check-unit-name var
34854 Check if @var{var} is a variable which can be interpreted as a unit
34855 name.  If so, return the units table entry for that unit.  This
34856 will be a list whose first element is the unit name (not counting
34857 prefix characters) as a symbol and whose second element is the
34858 Calc expression which defines the unit.  (Refer to the Calc sources
34859 for details on the remaining elements of this list.)  If @var{var}
34860 is not a variable or is not a unit name, return @code{nil}.
34861 @end defun
34863 @defun units-in-expr-p expr sub-exprs
34864 Return true if @var{expr} contains any variables which can be
34865 interpreted as units.  If @var{sub-exprs} is @code{t}, the entire
34866 expression is searched.  If @var{sub-exprs} is @code{nil}, this
34867 checks whether @var{expr} is directly a units expression.
34868 @end defun
34870 @defun single-units-in-expr-p expr
34871 Check whether @var{expr} contains exactly one units variable.  If so,
34872 return the units table entry for the variable.  If @var{expr} does
34873 not contain any units, return @code{nil}.  If @var{expr} contains
34874 two or more units, return the symbol @code{wrong}.
34875 @end defun
34877 @defun to-standard-units expr which
34878 Convert units expression @var{expr} to base units.  If @var{which}
34879 is @code{nil}, use Calc's native base units.  Otherwise, @var{which}
34880 can specify a units system, which is a list of two-element lists,
34881 where the first element is a Calc base symbol name and the second
34882 is an expression to substitute for it.
34883 @end defun
34885 @defun remove-units expr
34886 Return a copy of @var{expr} with all units variables replaced by ones.
34887 This expression is generally normalized before use.
34888 @end defun
34890 @defun extract-units expr
34891 Return a copy of @var{expr} with everything but units variables replaced
34892 by ones.
34893 @end defun
34895 @node Formatting Lisp Functions, Hooks, Symbolic Lisp Functions, Internals
34896 @subsubsection I/O and Formatting Functions
34898 @noindent
34899 The functions described here are responsible for parsing and formatting
34900 Calc numbers and formulas.
34902 @defun calc-eval str sep arg1 arg2 @dots{}
34903 This is the simplest interface to the Calculator from another Lisp program.
34904 @xref{Calling Calc from Your Programs}.
34905 @end defun
34907 @defun read-number str
34908 If string @var{str} contains a valid Calc number, either integer,
34909 fraction, float, or HMS form, this function parses and returns that
34910 number.  Otherwise, it returns @code{nil}.
34911 @end defun
34913 @defun read-expr str
34914 Read an algebraic expression from string @var{str}.  If @var{str} does
34915 not have the form of a valid expression, return a list of the form
34916 @samp{(error @var{pos} @var{msg})} where @var{pos} is an integer index
34917 into @var{str} of the general location of the error, and @var{msg} is
34918 a string describing the problem.
34919 @end defun
34921 @defun read-exprs str
34922 Read a list of expressions separated by commas, and return it as a
34923 Lisp list.  If an error occurs in any expressions, an error list as
34924 shown above is returned instead.
34925 @end defun
34927 @defun calc-do-alg-entry initial prompt no-norm
34928 Read an algebraic formula or formulas using the minibuffer.  All
34929 conventions of regular algebraic entry are observed.  The return value
34930 is a list of Calc formulas; there will be more than one if the user
34931 entered a list of values separated by commas.  The result is @code{nil}
34932 if the user presses Return with a blank line.  If @var{initial} is
34933 given, it is a string which the minibuffer will initially contain.
34934 If @var{prompt} is given, it is the prompt string to use; the default
34935 is ``Algebraic:''.  If @var{no-norm} is @code{t}, the formulas will
34936 be returned exactly as parsed; otherwise, they will be passed through
34937 @code{calc-normalize} first.
34939 To support the use of @kbd{$} characters in the algebraic entry, use
34940 @code{let} to bind @code{calc-dollar-values} to a list of the values
34941 to be substituted for @kbd{$}, @kbd{$$}, and so on, and bind
34942 @code{calc-dollar-used} to 0.  Upon return, @code{calc-dollar-used}
34943 will have been changed to the highest number of consecutive @kbd{$}s
34944 that actually appeared in the input.
34945 @end defun
34947 @defun format-number a
34948 Convert the real or complex number or HMS form @var{a} to string form.
34949 @end defun
34951 @defun format-flat-expr a prec
34952 Convert the arbitrary Calc number or formula @var{a} to string form,
34953 in the style used by the trail buffer and the @code{calc-edit} command.
34954 This is a simple format designed
34955 mostly to guarantee the string is of a form that can be re-parsed by
34956 @code{read-expr}.  Most formatting modes, such as digit grouping,
34957 complex number format, and point character, are ignored to ensure the
34958 result will be re-readable.  The @var{prec} parameter is normally 0; if
34959 you pass a large integer like 1000 instead, the expression will be
34960 surrounded by parentheses unless it is a plain number or variable name.
34961 @end defun
34963 @defun format-nice-expr a width
34964 This is like @code{format-flat-expr} (with @var{prec} equal to 0),
34965 except that newlines will be inserted to keep lines down to the
34966 specified @var{width}, and vectors that look like matrices or rewrite
34967 rules are written in a pseudo-matrix format.  The @code{calc-edit}
34968 command uses this when only one stack entry is being edited.
34969 @end defun
34971 @defun format-value a width
34972 Convert the Calc number or formula @var{a} to string form, using the
34973 format seen in the stack buffer.  Beware the string returned may
34974 not be re-readable by @code{read-expr}, for example, because of digit
34975 grouping.  Multi-line objects like matrices produce strings that
34976 contain newline characters to separate the lines.  The @var{w}
34977 parameter, if given, is the target window size for which to format
34978 the expressions.  If @var{w} is omitted, the width of the Calculator
34979 window is used.
34980 @end defun
34982 @defun compose-expr a prec
34983 Format the Calc number or formula @var{a} according to the current
34984 language mode, returning a ``composition.''  To learn about the
34985 structure of compositions, see the comments in the Calc source code.
34986 You can specify the format of a given type of function call by putting
34987 a @code{math-compose-@var{lang}} property on the function's symbol,
34988 whose value is a Lisp function that takes @var{a} and @var{prec} as
34989 arguments and returns a composition.  Here @var{lang} is a language
34990 mode name, one of @code{normal}, @code{big}, @code{c}, @code{pascal},
34991 @code{fortran}, @code{tex}, @code{eqn}, @code{math}, or @code{maple}.
34992 In Big mode, Calc actually tries @code{math-compose-big} first, then
34993 tries @code{math-compose-normal}.  If this property does not exist,
34994 or if the function returns @code{nil}, the function is written in the
34995 normal function-call notation for that language.
34996 @end defun
34998 @defun composition-to-string c w
34999 Convert a composition structure returned by @code{compose-expr} into
35000 a string.  Multi-line compositions convert to strings containing
35001 newline characters.  The target window size is given by @var{w}.
35002 The @code{format-value} function basically calls @code{compose-expr}
35003 followed by @code{composition-to-string}.
35004 @end defun
35006 @defun comp-width c
35007 Compute the width in characters of composition @var{c}.
35008 @end defun
35010 @defun comp-height c
35011 Compute the height in lines of composition @var{c}.
35012 @end defun
35014 @defun comp-ascent c
35015 Compute the portion of the height of composition @var{c} which is on or
35016 above the baseline.  For a one-line composition, this will be one.
35017 @end defun
35019 @defun comp-descent c
35020 Compute the portion of the height of composition @var{c} which is below
35021 the baseline.  For a one-line composition, this will be zero.
35022 @end defun
35024 @defun comp-first-char c
35025 If composition @var{c} is a ``flat'' composition, return the first
35026 (leftmost) character of the composition as an integer.  Otherwise,
35027 return @code{nil}.
35028 @end defun
35030 @defun comp-last-char c
35031 If composition @var{c} is a ``flat'' composition, return the last
35032 (rightmost) character, otherwise return @code{nil}.
35033 @end defun
35035 @comment @node Lisp Variables, Hooks, Formatting Lisp Functions, Internals
35036 @comment @subsubsection Lisp Variables
35037 @comment
35038 @comment @noindent
35039 @comment (This section is currently unfinished.)
35041 @node Hooks,  , Formatting Lisp Functions, Internals
35042 @subsubsection Hooks
35044 @noindent
35045 Hooks are variables which contain Lisp functions (or lists of functions)
35046 which are called at various times.  Calc defines a number of hooks
35047 that help you to customize it in various ways.  Calc uses the Lisp
35048 function @code{run-hooks} to invoke the hooks shown below.  Several
35049 other customization-related variables are also described here.
35051 @defvar calc-load-hook
35052 This hook is called at the end of @file{calc.el}, after the file has
35053 been loaded, before any functions in it have been called, but after
35054 @code{calc-mode-map} and similar variables have been set up.
35055 @end defvar
35057 @defvar calc-ext-load-hook
35058 This hook is called at the end of @file{calc-ext.el}.
35059 @end defvar
35061 @defvar calc-start-hook
35062 This hook is called as the last step in a @kbd{M-x calc} command.
35063 At this point, the Calc buffer has been created and initialized if
35064 necessary, the Calc window and trail window have been created,
35065 and the ``Welcome to Calc'' message has been displayed.
35066 @end defvar
35068 @defvar calc-mode-hook
35069 This hook is called when the Calc buffer is being created.  Usually
35070 this will only happen once per Emacs session.  The hook is called
35071 after Emacs has switched to the new buffer, the mode-settings file
35072 has been read if necessary, and all other buffer-local variables
35073 have been set up.  After this hook returns, Calc will perform a
35074 @code{calc-refresh} operation, set up the mode line display, then
35075 evaluate any deferred @code{calc-define} properties that have not
35076 been evaluated yet.
35077 @end defvar
35079 @defvar calc-trail-mode-hook
35080 This hook is called when the Calc Trail buffer is being created.
35081 It is called as the very last step of setting up the Trail buffer.
35082 Like @code{calc-mode-hook}, this will normally happen only once
35083 per Emacs session.
35084 @end defvar
35086 @defvar calc-end-hook
35087 This hook is called by @code{calc-quit}, generally because the user
35088 presses @kbd{q} or @kbd{C-x * c} while in Calc.  The Calc buffer will
35089 be the current buffer.  The hook is called as the very first
35090 step, before the Calc window is destroyed.
35091 @end defvar
35093 @defvar calc-window-hook
35094 If this hook is non-@code{nil}, it is called to create the Calc window.
35095 Upon return, this new Calc window should be the current window.
35096 (The Calc buffer will already be the current buffer when the
35097 hook is called.)  If the hook is not defined, Calc will
35098 generally use @code{split-window}, @code{set-window-buffer},
35099 and @code{select-window} to create the Calc window.
35100 @end defvar
35102 @defvar calc-trail-window-hook
35103 If this hook is non-@code{nil}, it is called to create the Calc Trail
35104 window.  The variable @code{calc-trail-buffer} will contain the buffer
35105 which the window should use.  Unlike @code{calc-window-hook}, this hook
35106 must @emph{not} switch into the new window.
35107 @end defvar
35109 @defvar calc-embedded-mode-hook
35110 This hook is called the first time that Embedded mode is entered.
35111 @end defvar
35113 @defvar calc-embedded-new-buffer-hook
35114 This hook is called each time that Embedded mode is entered in a
35115 new buffer.
35116 @end defvar
35118 @defvar calc-embedded-new-formula-hook
35119 This hook is called each time that Embedded mode is enabled for a
35120 new formula.
35121 @end defvar
35123 @defvar calc-edit-mode-hook
35124 This hook is called by @code{calc-edit} (and the other ``edit''
35125 commands) when the temporary editing buffer is being created.
35126 The buffer will have been selected and set up to be in
35127 @code{calc-edit-mode}, but will not yet have been filled with
35128 text.  (In fact it may still have leftover text from a previous
35129 @code{calc-edit} command.)
35130 @end defvar
35132 @defvar calc-mode-save-hook
35133 This hook is called by the @code{calc-save-modes} command,
35134 after Calc's own mode features have been inserted into the
35135 Calc init file and just before the ``End of mode settings''
35136 message is inserted.
35137 @end defvar
35139 @defvar calc-reset-hook
35140 This hook is called after @kbd{C-x * 0} (@code{calc-reset}) has
35141 reset all modes.  The Calc buffer will be the current buffer.
35142 @end defvar
35144 @defvar calc-other-modes
35145 This variable contains a list of strings.  The strings are
35146 concatenated at the end of the modes portion of the Calc
35147 mode line (after standard modes such as ``Deg'', ``Inv'' and
35148 ``Hyp'').  Each string should be a short, single word followed
35149 by a space.  The variable is @code{nil} by default.
35150 @end defvar
35152 @defvar calc-mode-map
35153 This is the keymap that is used by Calc mode.  The best time
35154 to adjust it is probably in a @code{calc-mode-hook}.  If the
35155 Calc extensions package (@file{calc-ext.el}) has not yet been
35156 loaded, many of these keys will be bound to @code{calc-missing-key},
35157 which is a command that loads the extensions package and
35158 ``retypes'' the key.  If your @code{calc-mode-hook} rebinds
35159 one of these keys, it will probably be overridden when the
35160 extensions are loaded.
35161 @end defvar
35163 @defvar calc-digit-map
35164 This is the keymap that is used during numeric entry.  Numeric
35165 entry uses the minibuffer, but this map binds every non-numeric
35166 key to @code{calcDigit-nondigit} which generally calls
35167 @code{exit-minibuffer} and ``retypes'' the key.
35168 @end defvar
35170 @defvar calc-alg-ent-map
35171 This is the keymap that is used during algebraic entry.  This is
35172 mostly a copy of @code{minibuffer-local-map}.
35173 @end defvar
35175 @defvar calc-store-var-map
35176 This is the keymap that is used during entry of variable names for
35177 commands like @code{calc-store} and @code{calc-recall}.  This is
35178 mostly a copy of @code{minibuffer-local-completion-map}.
35179 @end defvar
35181 @defvar calc-edit-mode-map
35182 This is the (sparse) keymap used by @code{calc-edit} and other
35183 temporary editing commands.  It binds @key{RET}, @key{LFD},
35184 and @kbd{C-c C-c} to @code{calc-edit-finish}.
35185 @end defvar
35187 @defvar calc-mode-var-list
35188 This is a list of variables which are saved by @code{calc-save-modes}.
35189 Each entry is a list of two items, the variable (as a Lisp symbol)
35190 and its default value.  When modes are being saved, each variable
35191 is compared with its default value (using @code{equal}) and any
35192 non-default variables are written out.
35193 @end defvar
35195 @defvar calc-local-var-list
35196 This is a list of variables which should be buffer-local to the
35197 Calc buffer.  Each entry is a variable name (as a Lisp symbol).
35198 These variables also have their default values manipulated by
35199 the @code{calc} and @code{calc-quit} commands; @pxref{Multiple Calculators}.
35200 Since @code{calc-mode-hook} is called after this list has been
35201 used the first time, your hook should add a variable to the
35202 list and also call @code{make-local-variable} itself.
35203 @end defvar
35205 @node Copying, GNU Free Documentation License, Programming, Top
35206 @appendix GNU GENERAL PUBLIC LICENSE
35207 @include gpl.texi
35209 @node GNU Free Documentation License, Customizing Calc, Copying, Top
35210 @appendix GNU Free Documentation License
35211 @include doclicense.texi
35213 @node Customizing Calc, Reporting Bugs, GNU Free Documentation License, Top
35214 @appendix Customizing Calc
35216 The usual prefix for Calc is the key sequence @kbd{C-x *}.  If you wish
35217 to use a different prefix, you can put
35219 @example
35220 (global-set-key "NEWPREFIX" 'calc-dispatch)
35221 @end example
35223 @noindent
35224 in your .emacs file.
35225 (@xref{Key Bindings,,Customizing Key Bindings,emacs,
35226 The GNU Emacs Manual}, for more information on binding keys.)
35227 A convenient way to start Calc is with @kbd{C-x * *}; to make it equally
35228 convenient for users who use a different prefix, the prefix can be
35229 followed by  @kbd{=}, @kbd{&}, @kbd{#}, @kbd{\}, @kbd{/}, @kbd{+} or
35230 @kbd{-} as well as @kbd{*} to start Calc, and so in many cases the last
35231 character of the prefix can simply be typed twice.
35233 Calc is controlled by many variables, most of which can be reset
35234 from within Calc.  Some variables are less involved with actual
35235 calculation and can be set outside of Calc using Emacs's
35236 customization facilities.  These variables are listed below.
35237 Typing @kbd{M-x customize-variable RET @var{variable-name} RET}
35238 will bring up a buffer in which the variable's value can be redefined.
35239 Typing @kbd{M-x customize-group RET calc RET} will bring up a buffer which
35240 contains all of Calc's customizable variables.  (These variables can
35241 also be reset by putting the appropriate lines in your .emacs file;
35242 @xref{Init File, ,Init File, emacs, The GNU Emacs Manual}.)
35244 Some of the customizable variables are regular expressions.  A regular
35245 expression is basically a pattern that Calc can search for.
35246 See @ref{Regexp Search,, Regular Expression Search, emacs, The GNU Emacs Manual}
35247 to see how regular expressions work.
35249 @defvar calc-settings-file
35250 The variable @code{calc-settings-file} holds the file name in
35251 which commands like @kbd{m m} and @kbd{Z P} store ``permanent''
35252 definitions.
35253 If @code{calc-settings-file} is not your user init file (typically
35254 @file{~/.emacs}) and if the variable @code{calc-loaded-settings-file} is
35255 @code{nil}, then Calc will automatically load your settings file (if it
35256 exists) the first time Calc is invoked.
35258 The default value for this variable is @code{"~/.emacs.d/calc.el"}
35259 unless the file @file{~/.calc.el} exists, in which case the default
35260 value will be @code{"~/.calc.el"}.
35261 @end defvar
35263 @defvar calc-gnuplot-name
35264 See @ref{Graphics}.@*
35265 The variable @code{calc-gnuplot-name} should be the name of the
35266 GNUPLOT program (a string).  If you have GNUPLOT installed on your
35267 system but Calc is unable to find it, you may need to set this
35268 variable.  You may also need to set some Lisp variables to show Calc how
35269 to run GNUPLOT on your system, see @ref{Devices, ,Graphical Devices} .
35270 The default value of @code{calc-gnuplot-name} is @code{"gnuplot"}.
35271 @end defvar
35273 @defvar  calc-gnuplot-plot-command
35274 @defvarx calc-gnuplot-print-command
35275 See @ref{Devices, ,Graphical Devices}.@*
35276 The variables @code{calc-gnuplot-plot-command} and
35277 @code{calc-gnuplot-print-command} represent system commands to
35278 display and print the output of GNUPLOT, respectively.  These may be
35279 @code{nil} if no command is necessary, or strings which can include
35280 @samp{%s} to signify the name of the file to be displayed or printed.
35281 Or, these variables may contain Lisp expressions which are evaluated
35282 to display or print the output.
35284 The default value of @code{calc-gnuplot-plot-command} is @code{nil},
35285 and the default value of @code{calc-gnuplot-print-command} is
35286 @code{"lp %s"}.
35287 @end defvar
35289 @defvar calc-language-alist
35290 See @ref{Basic Embedded Mode}.@*
35291 The variable @code{calc-language-alist} controls the languages that
35292 Calc will associate with major modes.  When Calc embedded mode is
35293 enabled, it will try to use the current major mode to
35294 determine what language should be used.  (This can be overridden using
35295 Calc's mode changing commands, @xref{Mode Settings in Embedded Mode}.)
35296 The variable @code{calc-language-alist} consists of a list of pairs of
35297 the form  @code{(@var{MAJOR-MODE} . @var{LANGUAGE})}; for example,
35298 @code{(latex-mode . latex)} is one such pair.  If Calc embedded is
35299 activated in a buffer whose major mode is @var{MAJOR-MODE}, it will set itself
35300 to use the language @var{LANGUAGE}.
35302 The default value of @code{calc-language-alist} is
35303 @example
35304    ((latex-mode . latex)
35305     (tex-mode   . tex)
35306     (plain-tex-mode . tex)
35307     (context-mode . tex)
35308     (nroff-mode . eqn)
35309     (pascal-mode . pascal)
35310     (c-mode . c)
35311     (c++-mode . c)
35312     (fortran-mode . fortran)
35313     (f90-mode . fortran))
35314 @end example
35315 @end defvar
35317 @defvar calc-embedded-announce-formula
35318 @defvarx calc-embedded-announce-formula-alist
35319 See @ref{Customizing Embedded Mode}.@*
35320 The variable @code{calc-embedded-announce-formula} helps determine
35321 what formulas @kbd{C-x * a} will activate in a buffer.  It is a
35322 regular expression, and when activating embedded formulas with
35323 @kbd{C-x * a}, it will tell Calc that what follows is a formula to be
35324 activated.  (Calc also uses other patterns to find formulas, such as
35325 @samp{=>} and @samp{:=}.)
35327 The default pattern is @code{"%Embed\n\\(% .*\n\\)*"}, which checks
35328 for @samp{%Embed} followed by any number of lines beginning with
35329 @samp{%} and a space.
35331 The variable @code{calc-embedded-announce-formula-alist} is used to
35332 set @code{calc-embedded-announce-formula} to different regular
35333 expressions depending on the major mode of the editing buffer.
35334 It consists of a list of pairs of the form @code{(@var{MAJOR-MODE} .
35335 @var{REGEXP})}, and its default value is
35336 @example
35337    ((c++-mode     . "//Embed\n\\(// .*\n\\)*")
35338     (c-mode       . "/\\*Embed\\*/\n\\(/\\* .*\\*/\n\\)*")
35339     (f90-mode     . "!Embed\n\\(! .*\n\\)*")
35340     (fortran-mode . "C Embed\n\\(C .*\n\\)*")
35341     (html-helper-mode . "<!-- Embed -->\n\\(<!-- .* -->\n\\)*")
35342     (html-mode    . "<!-- Embed -->\n\\(<!-- .* -->\n\\)*")
35343     (nroff-mode   . "\\\\\"Embed\n\\(\\\\\" .*\n\\)*")
35344     (pascal-mode  . "@{Embed@}\n\\(@{.*@}\n\\)*")
35345     (sgml-mode    . "<!-- Embed -->\n\\(<!-- .* -->\n\\)*")
35346     (xml-mode     . "<!-- Embed -->\n\\(<!-- .* -->\n\\)*")
35347     (texinfo-mode . "@@c Embed\n\\(@@c .*\n\\)*"))
35348 @end example
35349 Any major modes added to @code{calc-embedded-announce-formula-alist}
35350 should also be added to @code{calc-embedded-open-close-plain-alist}
35351 and @code{calc-embedded-open-close-mode-alist}.
35352 @end defvar
35354 @defvar  calc-embedded-open-formula
35355 @defvarx calc-embedded-close-formula
35356 @defvarx calc-embedded-open-close-formula-alist
35357 See @ref{Customizing Embedded Mode}.@*
35358 The variables @code{calc-embedded-open-formula} and
35359 @code{calc-embedded-close-formula} control the region that Calc will
35360 activate as a formula when Embedded mode is entered with @kbd{C-x * e}.
35361 They are regular expressions;
35362 Calc normally scans backward and forward in the buffer for the
35363 nearest text matching these regular expressions to be the ``formula
35364 delimiters''.
35366 The simplest delimiters are blank lines.  Other delimiters that
35367 Embedded mode understands by default are:
35368 @enumerate
35369 @item
35370 The @TeX{} and @LaTeX{} math delimiters @samp{$ $}, @samp{$$ $$},
35371 @samp{\[ \]}, and @samp{\( \)};
35372 @item
35373 Lines beginning with @samp{\begin} and @samp{\end} (except matrix delimiters);
35374 @item
35375 Lines beginning with @samp{@@} (Texinfo delimiters).
35376 @item
35377 Lines beginning with @samp{.EQ} and @samp{.EN} (@dfn{eqn} delimiters);
35378 @item
35379 Lines containing a single @samp{%} or @samp{.\"} symbol and nothing else.
35380 @end enumerate
35382 The variable @code{calc-embedded-open-close-formula-alist} is used to
35383 set @code{calc-embedded-open-formula} and
35384 @code{calc-embedded-close-formula} to different regular
35385 expressions depending on the major mode of the editing buffer.
35386 It consists of a list of lists of the form
35387 @code{(@var{MAJOR-MODE}  @var{OPEN-FORMULA-REGEXP}
35388 @var{CLOSE-FORMULA-REGEXP})}, and its default value is
35389 @code{nil}.
35390 @end defvar
35392 @defvar  calc-embedded-word-regexp
35393 @defvarx calc-embedded-word-regexp-alist
35394 See @ref{Customizing Embedded Mode}.@*
35395 The variable @code{calc-embedded-word-regexp} determines the expression
35396 that Calc will activate when Embedded mode is entered with @kbd{C-x *
35397 w}.  It is a regular expressions.
35399 The default value of @code{calc-embedded-word-regexp} is
35400 @code{"[-+]?[0-9]+\\(\\.[0-9]+\\)?\\([eE][-+]?[0-9]+\\)?"}.
35402 The variable @code{calc-embedded-word-regexp-alist} is used to
35403 set @code{calc-embedded-word-regexp} to a different regular
35404 expression depending on the major mode of the editing buffer.
35405 It consists of a list of lists of the form
35406 @code{(@var{MAJOR-MODE}  @var{WORD-REGEXP})}, and its default value is
35407 @code{nil}.
35408 @end defvar
35410 @defvar  calc-embedded-open-plain
35411 @defvarx calc-embedded-close-plain
35412 @defvarx calc-embedded-open-close-plain-alist
35413 See @ref{Customizing Embedded Mode}.@*
35414 The variables @code{calc-embedded-open-plain} and
35415 @code{calc-embedded-open-plain} are used to delimit ``plain''
35416 formulas.  Note that these are actual strings, not regular
35417 expressions, because Calc must be able to write these string into a
35418 buffer as well as to recognize them.
35420 The default string for @code{calc-embedded-open-plain} is
35421 @code{"%%% "}, note the trailing space.  The default string for
35422 @code{calc-embedded-close-plain} is @code{" %%%\n"}, without
35423 the trailing newline here, the first line of a Big mode formula
35424 that followed might be shifted over with respect to the other lines.
35426 The variable @code{calc-embedded-open-close-plain-alist} is used to
35427 set @code{calc-embedded-open-plain} and
35428 @code{calc-embedded-close-plain} to different strings
35429 depending on the major mode of the editing buffer.
35430 It consists of a list of lists of the form
35431 @code{(@var{MAJOR-MODE}  @var{OPEN-PLAIN-STRING}
35432 @var{CLOSE-PLAIN-STRING})}, and its default value is
35433 @example
35434    ((c++-mode     "// %% "   " %%\n")
35435     (c-mode       "/* %% "   " %% */\n")
35436     (f90-mode     "! %% "    " %%\n")
35437     (fortran-mode "C %% "    " %%\n")
35438     (html-helper-mode "<!-- %% " " %% -->\n")
35439     (html-mode "<!-- %% " " %% -->\n")
35440     (nroff-mode   "\\\" %% " " %%\n")
35441     (pascal-mode  "@{%% "    " %%@}\n")
35442     (sgml-mode     "<!-- %% " " %% -->\n")
35443     (xml-mode     "<!-- %% " " %% -->\n")
35444     (texinfo-mode "@@c %% "   " %%\n"))
35445 @end example
35446 Any major modes added to @code{calc-embedded-open-close-plain-alist}
35447 should also be added to @code{calc-embedded-announce-formula-alist}
35448 and @code{calc-embedded-open-close-mode-alist}.
35449 @end defvar
35451 @defvar  calc-embedded-open-new-formula
35452 @defvarx calc-embedded-close-new-formula
35453 @defvarx calc-embedded-open-close-new-formula-alist
35454 See @ref{Customizing Embedded Mode}.@*
35455 The variables @code{calc-embedded-open-new-formula} and
35456 @code{calc-embedded-close-new-formula} are strings which are
35457 inserted before and after a new formula when you type @kbd{C-x * f}.
35459 The default value of @code{calc-embedded-open-new-formula} is
35460 @code{"\n\n"}.  If this string begins with a newline character and the
35461 @kbd{C-x * f} is typed at the beginning of a line, @kbd{C-x * f} will skip
35462 this first newline to avoid introducing unnecessary blank lines in the
35463 file.  The default value of @code{calc-embedded-close-new-formula} is
35464 also @code{"\n\n"}.  The final newline is omitted by @w{@kbd{C-x * f}}
35465 if typed at the end of a line.  (It follows that if @kbd{C-x * f} is
35466 typed on a blank line, both a leading opening newline and a trailing
35467 closing newline are omitted.)
35469 The variable @code{calc-embedded-open-close-new-formula-alist} is used to
35470 set @code{calc-embedded-open-new-formula} and
35471 @code{calc-embedded-close-new-formula} to different strings
35472 depending on the major mode of the editing buffer.
35473 It consists of a list of lists of the form
35474 @code{(@var{MAJOR-MODE}  @var{OPEN-NEW-FORMULA-STRING}
35475 @var{CLOSE-NEW-FORMULA-STRING})}, and its default value is
35476 @code{nil}.
35477 @end defvar
35479 @defvar  calc-embedded-open-mode
35480 @defvarx calc-embedded-close-mode
35481 @defvarx calc-embedded-open-close-mode-alist
35482 See @ref{Customizing Embedded Mode}.@*
35483 The variables @code{calc-embedded-open-mode} and
35484 @code{calc-embedded-close-mode} are strings which Calc will place before
35485 and after any mode annotations that it inserts.  Calc never scans for
35486 these strings; Calc always looks for the annotation itself, so it is not
35487 necessary to add them to user-written annotations.
35489 The default value of @code{calc-embedded-open-mode} is @code{"% "}
35490 and the default value of @code{calc-embedded-close-mode} is
35491 @code{"\n"}.
35492 If you change the value of @code{calc-embedded-close-mode}, it is a good
35493 idea still to end with a newline so that mode annotations will appear on
35494 lines by themselves.
35496 The variable @code{calc-embedded-open-close-mode-alist} is used to
35497 set @code{calc-embedded-open-mode} and
35498 @code{calc-embedded-close-mode} to different strings
35499 expressions depending on the major mode of the editing buffer.
35500 It consists of a list of lists of the form
35501 @code{(@var{MAJOR-MODE}  @var{OPEN-MODE-STRING}
35502 @var{CLOSE-MODE-STRING})}, and its default value is
35503 @example
35504    ((c++-mode     "// "   "\n")
35505     (c-mode       "/* "   " */\n")
35506     (f90-mode     "! "    "\n")
35507     (fortran-mode "C "    "\n")
35508     (html-helper-mode "<!-- " " -->\n")
35509     (html-mode    "<!-- " " -->\n")
35510     (nroff-mode   "\\\" " "\n")
35511     (pascal-mode  "@{ "    " @}\n")
35512     (sgml-mode    "<!-- " " -->\n")
35513     (xml-mode     "<!-- " " -->\n")
35514     (texinfo-mode "@@c "   "\n"))
35515 @end example
35516 Any major modes added to @code{calc-embedded-open-close-mode-alist}
35517 should also be added to @code{calc-embedded-announce-formula-alist}
35518 and @code{calc-embedded-open-close-plain-alist}.
35519 @end defvar
35521 @defvar  calc-lu-power-reference
35522 @defvarx calc-lu-field-reference
35523 See @ref{Logarithmic Units}.@*
35524 The variables @code{calc-lu-power-reference} and
35525 @code{calc-lu-field-reference} are unit expressions (written as
35526 strings) which Calc will use as reference quantities for logarithmic
35527 units.
35529 The default value of @code{calc-lu-power-reference} is @code{"mW"}
35530 and the default value of @code{calc-lu-field-reference} is
35531 @code{"20 uPa"}.
35532 @end defvar
35534 @defvar calc-note-threshold
35535 See @ref{Musical Notes}.@*
35536 The variable @code{calc-note-threshold} is a number (written as a
35537 string) which determines how close (in cents) a frequency needs to be
35538 to a note to be recognized as that note.
35540 The default value of @code{calc-note-threshold} is 1.
35541 @end defvar
35543 @defvar calc-highlight-selections-with-faces
35544 @defvarx calc-selected-face
35545 @defvarx calc-nonselected-face
35546 See @ref{Displaying Selections}.@*
35547 The variable @code{calc-highlight-selections-with-faces}
35548 determines how selected sub-formulas are distinguished.
35549 If @code{calc-highlight-selections-with-faces} is nil, then
35550 a selected sub-formula is distinguished either by changing every
35551 character not part of the sub-formula with a dot or by changing every
35552 character in the sub-formula with a @samp{#} sign.
35553 If @code{calc-highlight-selections-with-faces} is t,
35554 then a selected sub-formula is distinguished either by displaying the
35555 non-selected portion of the formula with @code{calc-nonselected-face}
35556 or by displaying the selected sub-formula with
35557 @code{calc-nonselected-face}.
35558 @end defvar
35560 @defvar calc-multiplication-has-precedence
35561 The variable @code{calc-multiplication-has-precedence} determines
35562 whether multiplication has precedence over division in algebraic
35563 formulas in normal language modes.  If
35564 @code{calc-multiplication-has-precedence} is non-@code{nil}, then
35565 multiplication has precedence (and, for certain obscure reasons, is
35566 right associative), and so for example @samp{a/b*c} will be interpreted
35567 as @samp{a/(b*c)}. If @code{calc-multiplication-has-precedence} is
35568 @code{nil}, then multiplication has the same precedence as division
35569 (and, like division, is left associative), and so for example
35570 @samp{a/b*c} will be interpreted as @samp{(a/b)*c}.  The default value
35571 of @code{calc-multiplication-has-precedence} is @code{t}.
35572 @end defvar
35574 @defvar calc-ensure-consistent-units
35575 When converting units, the variable @code{calc-ensure-consistent-units}
35576 determines whether or not the target units need to be consistent with the
35577 original units.  If @code{calc-ensure-consistent-units} is @code{nil}, then
35578 the target units don't need to have the same dimensions as the original units;
35579 for example, converting @samp{100 ft/s} to @samp{m} will produce @samp{30.48 m/s}.
35580 If @code{calc-ensure-consistent-units} is non-@code{nil}, then the target units
35581 need to have the same dimensions as the original units; for example, converting
35582 @samp{100 ft/s} to @samp{m} will result in an error, since @samp{ft/s} and @samp{m}
35583 have different dimensions. The default value of @code{calc-ensure-consistent-units}
35584 is @code{nil}.
35585 @end defvar
35587 @defvar calc-undo-length
35588 The variable @code{calc-undo-length} determines the number of undo
35589 steps that Calc will keep track of when @code{calc-quit} is called.
35590 If @code{calc-undo-length} is a non-negative integer, then this is the
35591 number of undo steps that will be preserved; if
35592 @code{calc-undo-length} has any other value, then all undo steps will
35593 be preserved.  The default value of @code{calc-undo-length} is @expr{100}.
35594 @end defvar
35596 @node Reporting Bugs, Summary, Customizing Calc, Top
35597 @appendix Reporting Bugs
35599 @noindent
35600 If you find a bug in Calc, send e-mail to Jay Belanger,
35602 @example
35603 jay.p.belanger@@gmail.com
35604 @end example
35606 @noindent
35607 There is an automatic command @kbd{M-x report-calc-bug} which helps
35608 you to report bugs.  This command prompts you for a brief subject
35609 line, then leaves you in a mail editing buffer.  Type @kbd{C-c C-c} to
35610 send your mail.  Make sure your subject line indicates that you are
35611 reporting a Calc bug; this command sends mail to the maintainer's
35612 regular mailbox.
35614 If you have suggestions for additional features for Calc, please send
35615 them.  Some have dared to suggest that Calc is already top-heavy with
35616 features; this obviously cannot be the case, so if you have ideas, send
35617 them right in.
35619 At the front of the source file, @file{calc.el}, is a list of ideas for
35620 future work.  If any enthusiastic souls wish to take it upon themselves
35621 to work on these, please send a message (using @kbd{M-x report-calc-bug})
35622 so any efforts can be coordinated.
35624 The latest version of Calc is available from Savannah, in the Emacs
35625 repository.  See @uref{http://savannah.gnu.org/projects/emacs}.
35627 @c [summary]
35628 @node Summary, Key Index, Reporting Bugs, Top
35629 @appendix Calc Summary
35631 @noindent
35632 This section includes a complete list of Calc keystroke commands.
35633 Each line lists the stack entries used by the command (top-of-stack
35634 last), the keystrokes themselves, the prompts asked by the command,
35635 and the result of the command (also with top-of-stack last).
35636 The result is expressed using the equivalent algebraic function.
35637 Commands which put no results on the stack show the full @kbd{M-x}
35638 command name in that position.  Numbers preceding the result or
35639 command name refer to notes at the end.
35641 Algebraic functions and @kbd{M-x} commands that don't have corresponding
35642 keystrokes are not listed in this summary.
35643 @xref{Command Index}.  @xref{Function Index}.
35645 @iftex
35646 @begingroup
35647 @tex
35648 \vskip-2\baselineskip \null
35649 \gdef\sumrow#1{\sumrowx#1\relax}%
35650 \gdef\sumrowx#1\:#2\:#3\:#4\:#5\:#6\relax{%
35651 \leavevmode%
35652 {\smallfonts
35653 \hbox to5em{\sl\hss#1}%
35654 \hbox to5em{\tt#2\hss}%
35655 \hbox to4em{\sl#3\hss}%
35656 \hbox to5em{\rm\hss#4}%
35657 \thinspace%
35658 {\tt#5}%
35659 {\sl#6}%
35661 \gdef\sumlpar{{\rm(}}%
35662 \gdef\sumrpar{{\rm)}}%
35663 \gdef\sumcomma{{\rm,\thinspace}}%
35664 \gdef\sumexcl{{\rm!}}%
35665 \gdef\sumbreak{\vskip-2.5\baselineskip\goodbreak}%
35666 \gdef\minus#1{{\tt-}}%
35667 @end tex
35668 @let@:=@sumsep
35669 @let@r=@sumrow
35670 @catcode`@(=@active @let(=@sumlpar
35671 @catcode`@)=@active @let)=@sumrpar
35672 @catcode`@,=@active @let,=@sumcomma
35673 @catcode`@!=@active @let!=@sumexcl
35674 @end iftex
35675 @format
35676 @iftex
35677 @advance@baselineskip-2.5pt
35678 @let@c@sumbreak
35679 @end iftex
35680 @r{       @:     C-x * a  @:             @:    33  @:calc-embedded-activate@:}
35681 @r{       @:     C-x * b  @:             @:        @:calc-big-or-small@:}
35682 @r{       @:     C-x * c  @:             @:        @:calc@:}
35683 @r{       @:     C-x * d  @:             @:        @:calc-embedded-duplicate@:}
35684 @r{       @:     C-x * e  @:             @:    34  @:calc-embedded@:}
35685 @r{       @:     C-x * f  @:formula      @:        @:calc-embedded-new-formula@:}
35686 @r{       @:     C-x * g  @:             @:    35  @:calc-grab-region@:}
35687 @r{       @:     C-x * i  @:             @:        @:calc-info@:}
35688 @r{       @:     C-x * j  @:             @:        @:calc-embedded-select@:}
35689 @r{       @:     C-x * k  @:             @:        @:calc-keypad@:}
35690 @r{       @:     C-x * l  @:             @:        @:calc-load-everything@:}
35691 @r{       @:     C-x * m  @:             @:        @:read-kbd-macro@:}
35692 @r{       @:     C-x * n  @:             @:     4  @:calc-embedded-next@:}
35693 @r{       @:     C-x * o  @:             @:        @:calc-other-window@:}
35694 @r{       @:     C-x * p  @:             @:     4  @:calc-embedded-previous@:}
35695 @r{       @:     C-x * q  @:formula      @:        @:quick-calc@:}
35696 @r{       @:     C-x * r  @:             @:    36  @:calc-grab-rectangle@:}
35697 @r{       @:     C-x * s  @:             @:        @:calc-info-summary@:}
35698 @r{       @:     C-x * t  @:             @:        @:calc-tutorial@:}
35699 @r{       @:     C-x * u  @:             @:        @:calc-embedded-update-formula@:}
35700 @r{       @:     C-x * w  @:             @:        @:calc-embedded-word@:}
35701 @r{       @:     C-x * x  @:             @:        @:calc-quit@:}
35702 @r{       @:     C-x * y  @:            @:1,28,49  @:calc-copy-to-buffer@:}
35703 @r{       @:     C-x * z  @:             @:        @:calc-user-invocation@:}
35704 @r{       @:     C-x * :  @:             @:    36  @:calc-grab-sum-down@:}
35705 @r{       @:     C-x * _  @:             @:    36  @:calc-grab-sum-across@:}
35706 @r{       @:     C-x * `  @:editing      @:    30  @:calc-embedded-edit@:}
35707 @r{       @:     C-x * 0  @:(zero)       @:        @:calc-reset@:}
35710 @r{       @:      0-9   @:number       @:        @:@:number}
35711 @r{       @:      .     @:number       @:        @:@:0.number}
35712 @r{       @:      _     @:number       @:        @:-@:number}
35713 @r{       @:      e     @:number       @:        @:@:1e number}
35714 @r{       @:      #     @:number       @:        @:@:current-radix@tfn{#}number}
35715 @r{       @:      P     @:(in number)  @:        @:+/-@:}
35716 @r{       @:      M     @:(in number)  @:        @:mod@:}
35717 @r{       @:      @@ ' " @:  (in number)@:        @:@:HMS form}
35718 @r{       @:      h m s @:  (in number)@:        @:@:HMS form}
35721 @r{       @:      '     @:formula      @: 37,46  @:@:formula}
35722 @r{       @:      $     @:formula      @: 37,46  @:$@:formula}
35723 @r{       @:      "     @:string       @: 37,46  @:@:string}
35726 @r{    a b@:      +     @:             @:     2  @:add@:(a,b)  a+b}
35727 @r{    a b@:      -     @:             @:     2  @:sub@:(a,b)  a@minus{}b}
35728 @r{    a b@:      *     @:             @:     2  @:mul@:(a,b)  a b, a*b}
35729 @r{    a b@:      /     @:             @:     2  @:div@:(a,b)  a/b}
35730 @r{    a b@:      ^     @:             @:     2  @:pow@:(a,b)  a^b}
35731 @r{    a b@:    I ^     @:             @:     2  @:nroot@:(a,b)  a^(1/b)}
35732 @r{    a b@:      %     @:             @:     2  @:mod@:(a,b)  a%b}
35733 @r{    a b@:      \     @:             @:     2  @:idiv@:(a,b)  a\b}
35734 @r{    a b@:      :     @:             @:     2  @:fdiv@:(a,b)}
35735 @r{    a b@:      |     @:             @:     2  @:vconcat@:(a,b)  a|b}
35736 @r{    a b@:    I |     @:             @:        @:vconcat@:(b,a)  b|a}
35737 @r{    a b@:    H |     @:             @:     2  @:append@:(a,b)}
35738 @r{    a b@:  I H |     @:             @:        @:append@:(b,a)}
35739 @r{      a@:      &     @:             @:     1  @:inv@:(a)  1/a}
35740 @r{      a@:      !     @:             @:     1  @:fact@:(a)  a!}
35741 @r{      a@:      =     @:             @:     1  @:evalv@:(a)}
35742 @r{      a@:      M-%   @:             @:        @:percent@:(a)  a%}
35745 @r{  ... a@:      @summarykey{RET}   @:             @:     1  @:@:... a a}
35746 @r{  ... a@:      @summarykey{SPC}   @:             @:     1  @:@:... a a}
35747 @r{... a b@:      @summarykey{TAB}   @:             @:     3  @:@:... b a}
35748 @r{. a b c@:      M-@summarykey{TAB} @:             @:     3  @:@:... b c a}
35749 @r{... a b@:      @summarykey{LFD}   @:             @:     1  @:@:... a b a}
35750 @r{  ... a@:      @summarykey{DEL}   @:             @:     1  @:@:...}
35751 @r{... a b@:      M-@summarykey{DEL} @:             @:     1  @:@:... b}
35752 @r{       @:      M-@summarykey{RET} @:             @:     4  @:calc-last-args@:}
35753 @r{      a@:      `     @:editing      @:  1,30  @:calc-edit@:}
35756 @r{  ... a@:      C-d   @:             @:     1  @:@:...}
35757 @r{       @:      C-k   @:             @:    27  @:calc-kill@:}
35758 @r{       @:      C-w   @:             @:    27  @:calc-kill-region@:}
35759 @r{       @:      C-y   @:             @:        @:calc-yank@:}
35760 @r{       @:      C-_   @:             @:     4  @:calc-undo@:}
35761 @r{       @:      M-k   @:             @:    27  @:calc-copy-as-kill@:}
35762 @r{       @:      M-w   @:             @:    27  @:calc-copy-region-as-kill@:}
35765 @r{       @:      [     @:             @:        @:@:[...}
35766 @r{[.. a b@:      ]     @:             @:        @:@:[a,b]}
35767 @r{       @:      (     @:             @:        @:@:(...}
35768 @r{(.. a b@:      )     @:             @:        @:@:(a,b)}
35769 @r{       @:      ,     @:             @:        @:@:vector or rect complex}
35770 @r{       @:      ;     @:             @:        @:@:matrix or polar complex}
35771 @r{       @:      ..    @:             @:        @:@:interval}
35774 @r{       @:      ~     @:             @:        @:calc-num-prefix@:}
35775 @r{       @:      <     @:             @:     4  @:calc-scroll-left@:}
35776 @r{       @:      >     @:             @:     4  @:calc-scroll-right@:}
35777 @r{       @:      @{     @:             @:     4  @:calc-scroll-down@:}
35778 @r{       @:      @}     @:             @:     4  @:calc-scroll-up@:}
35779 @r{       @:      ?     @:             @:        @:calc-help@:}
35782 @r{      a@:      n     @:             @:     1  @:neg@:(a)  @minus{}a}
35783 @r{       @:      o     @:             @:     4  @:calc-realign@:}
35784 @r{       @:      p     @:precision    @:    31  @:calc-precision@:}
35785 @r{       @:      q     @:             @:        @:calc-quit@:}
35786 @r{       @:      w     @:             @:        @:calc-why@:}
35787 @r{       @:      x     @:command      @:        @:M-x calc-@:command}
35788 @r{      a@:      y     @:            @:1,28,49  @:calc-copy-to-buffer@:}
35791 @r{      a@:      A     @:             @:     1  @:abs@:(a)}
35792 @r{    a b@:      B     @:             @:     2  @:log@:(a,b)}
35793 @r{    a b@:    I B     @:             @:     2  @:alog@:(a,b)  b^a}
35794 @r{      a@:      C     @:             @:     1  @:cos@:(a)}
35795 @r{      a@:    I C     @:             @:     1  @:arccos@:(a)}
35796 @r{      a@:    H C     @:             @:     1  @:cosh@:(a)}
35797 @r{      a@:  I H C     @:             @:     1  @:arccosh@:(a)}
35798 @r{       @:      D     @:             @:     4  @:calc-redo@:}
35799 @r{      a@:      E     @:             @:     1  @:exp@:(a)}
35800 @r{      a@:    H E     @:             @:     1  @:exp10@:(a)  10.^a}
35801 @r{      a@:      F     @:             @:  1,11  @:floor@:(a,d)}
35802 @r{      a@:    I F     @:             @:  1,11  @:ceil@:(a,d)}
35803 @r{      a@:    H F     @:             @:  1,11  @:ffloor@:(a,d)}
35804 @r{      a@:  I H F     @:             @:  1,11  @:fceil@:(a,d)}
35805 @r{      a@:      G     @:             @:     1  @:arg@:(a)}
35806 @r{       @:      H     @:command      @:    32  @:@:Hyperbolic}
35807 @r{       @:      I     @:command      @:    32  @:@:Inverse}
35808 @r{      a@:      J     @:             @:     1  @:conj@:(a)}
35809 @r{       @:      K     @:command      @:    32  @:@:Keep-args}
35810 @r{      a@:      L     @:             @:     1  @:ln@:(a)}
35811 @r{      a@:    H L     @:             @:     1  @:log10@:(a)}
35812 @r{       @:      M     @:             @:        @:calc-more-recursion-depth@:}
35813 @r{       @:    I M     @:             @:        @:calc-less-recursion-depth@:}
35814 @r{      a@:      N     @:             @:     5  @:evalvn@:(a)}
35815 @r{       @:      O     @:command      @:    32  @:@:Option}
35816 @r{       @:      P     @:             @:        @:@:pi}
35817 @r{       @:    I P     @:             @:        @:@:gamma}
35818 @r{       @:    H P     @:             @:        @:@:e}
35819 @r{       @:  I H P     @:             @:        @:@:phi}
35820 @r{      a@:      Q     @:             @:     1  @:sqrt@:(a)}
35821 @r{      a@:    I Q     @:             @:     1  @:sqr@:(a)  a^2}
35822 @r{      a@:      R     @:             @:  1,11  @:round@:(a,d)}
35823 @r{      a@:    I R     @:             @:  1,11  @:trunc@:(a,d)}
35824 @r{      a@:    H R     @:             @:  1,11  @:fround@:(a,d)}
35825 @r{      a@:  I H R     @:             @:  1,11  @:ftrunc@:(a,d)}
35826 @r{      a@:      S     @:             @:     1  @:sin@:(a)}
35827 @r{      a@:    I S     @:             @:     1  @:arcsin@:(a)}
35828 @r{      a@:    H S     @:             @:     1  @:sinh@:(a)}
35829 @r{      a@:  I H S     @:             @:     1  @:arcsinh@:(a)}
35830 @r{      a@:      T     @:             @:     1  @:tan@:(a)}
35831 @r{      a@:    I T     @:             @:     1  @:arctan@:(a)}
35832 @r{      a@:    H T     @:             @:     1  @:tanh@:(a)}
35833 @r{      a@:  I H T     @:             @:     1  @:arctanh@:(a)}
35834 @r{       @:      U     @:             @:     4  @:calc-undo@:}
35835 @r{       @:      X     @:             @:     4  @:calc-call-last-kbd-macro@:}
35838 @r{    a b@:      a =   @:             @:     2  @:eq@:(a,b)  a=b}
35839 @r{    a b@:      a #   @:             @:     2  @:neq@:(a,b)  a!=b}
35840 @r{    a b@:      a <   @:             @:     2  @:lt@:(a,b)  a<b}
35841 @r{    a b@:      a >   @:             @:     2  @:gt@:(a,b)  a>b}
35842 @r{    a b@:      a [   @:             @:     2  @:leq@:(a,b)  a<=b}
35843 @r{    a b@:      a ]   @:             @:     2  @:geq@:(a,b)  a>=b}
35844 @r{    a b@:      a @{   @:             @:     2  @:in@:(a,b)}
35845 @r{    a b@:      a &   @:             @:  2,45  @:land@:(a,b)  a&&b}
35846 @r{    a b@:      a |   @:             @:  2,45  @:lor@:(a,b)  a||b}
35847 @r{      a@:      a !   @:             @:  1,45  @:lnot@:(a)  !a}
35848 @r{  a b c@:      a :   @:             @:    45  @:if@:(a,b,c)  a?b:c}
35849 @r{      a@:      a .   @:             @:     1  @:rmeq@:(a)}
35850 @r{      a@:      a "   @:             @:   7,8  @:calc-expand-formula@:}
35853 @r{      a@:      a +   @:i, l, h      @:  6,38  @:sum@:(a,i,l,h)}
35854 @r{      a@:      a -   @:i, l, h      @:  6,38  @:asum@:(a,i,l,h)}
35855 @r{      a@:      a *   @:i, l, h      @:  6,38  @:prod@:(a,i,l,h)}
35856 @r{    a b@:      a _   @:             @:     2  @:subscr@:(a,b)  a_b}
35859 @r{    a b@:      a \   @:             @:     2  @:pdiv@:(a,b)}
35860 @r{    a b@:      a %   @:             @:     2  @:prem@:(a,b)}
35861 @r{    a b@:      a /   @:             @:     2  @:pdivrem@:(a,b)  [q,r]}
35862 @r{    a b@:    H a /   @:             @:     2  @:pdivide@:(a,b)  q+r/b}
35865 @r{      a@:      a a   @:             @:     1  @:apart@:(a)}
35866 @r{      a@:      a b   @:old, new     @:    38  @:subst@:(a,old,new)}
35867 @r{      a@:      a c   @:v            @:    38  @:collect@:(a,v)}
35868 @r{      a@:      a d   @:v            @:  4,38  @:deriv@:(a,v)}
35869 @r{      a@:    H a d   @:v            @:  4,38  @:tderiv@:(a,v)}
35870 @r{      a@:      a e   @:             @:        @:esimplify@:(a)}
35871 @r{      a@:      a f   @:             @:     1  @:factor@:(a)}
35872 @r{      a@:    H a f   @:             @:     1  @:factors@:(a)}
35873 @r{    a b@:      a g   @:             @:     2  @:pgcd@:(a,b)}
35874 @r{      a@:      a i   @:v            @:    38  @:integ@:(a,v)}
35875 @r{      a@:      a m   @:pats         @:    38  @:match@:(a,pats)}
35876 @r{      a@:    I a m   @:pats         @:    38  @:matchnot@:(a,pats)}
35877 @r{ data x@:      a p   @:             @:    28  @:polint@:(data,x)}
35878 @r{ data x@:    H a p   @:             @:    28  @:ratint@:(data,x)}
35879 @r{      a@:      a n   @:             @:     1  @:nrat@:(a)}
35880 @r{      a@:      a r   @:rules        @:4,8,38  @:rewrite@:(a,rules,n)}
35881 @r{      a@:      a s   @:             @:        @:simplify@:(a)}
35882 @r{      a@:      a t   @:v, n         @: 31,39  @:taylor@:(a,v,n)}
35883 @r{      a@:      a v   @:             @:   7,8  @:calc-alg-evaluate@:}
35884 @r{      a@:      a x   @:             @:   4,8  @:expand@:(a)}
35887 @r{   data@:      a F   @:model, vars  @:    48  @:fit@:(m,iv,pv,data)}
35888 @r{   data@:    I a F   @:model, vars  @:    48  @:xfit@:(m,iv,pv,data)}
35889 @r{   data@:    H a F   @:model, vars  @:    48  @:efit@:(m,iv,pv,data)}
35890 @r{      a@:      a I   @:v, l, h      @:    38  @:ninteg@:(a,v,l,h)}
35891 @r{    a b@:      a M   @:op           @:    22  @:mapeq@:(op,a,b)}
35892 @r{    a b@:    I a M   @:op           @:    22  @:mapeqr@:(op,a,b)}
35893 @r{    a b@:    H a M   @:op           @:    22  @:mapeqp@:(op,a,b)}
35894 @r{    a g@:      a N   @:v            @:    38  @:minimize@:(a,v,g)}
35895 @r{    a g@:    H a N   @:v            @:    38  @:wminimize@:(a,v,g)}
35896 @r{      a@:      a P   @:v            @:    38  @:roots@:(a,v)}
35897 @r{    a g@:      a R   @:v            @:    38  @:root@:(a,v,g)}
35898 @r{    a g@:    H a R   @:v            @:    38  @:wroot@:(a,v,g)}
35899 @r{      a@:      a S   @:v            @:    38  @:solve@:(a,v)}
35900 @r{      a@:    I a S   @:v            @:    38  @:finv@:(a,v)}
35901 @r{      a@:    H a S   @:v            @:    38  @:fsolve@:(a,v)}
35902 @r{      a@:  I H a S   @:v            @:    38  @:ffinv@:(a,v)}
35903 @r{      a@:      a T   @:i, l, h      @:  6,38  @:table@:(a,i,l,h)}
35904 @r{    a g@:      a X   @:v            @:    38  @:maximize@:(a,v,g)}
35905 @r{    a g@:    H a X   @:v            @:    38  @:wmaximize@:(a,v,g)}
35908 @r{    a b@:      b a   @:             @:     9  @:and@:(a,b,w)}
35909 @r{      a@:      b c   @:             @:     9  @:clip@:(a,w)}
35910 @r{    a b@:      b d   @:             @:     9  @:diff@:(a,b,w)}
35911 @r{      a@:      b l   @:             @:    10  @:lsh@:(a,n,w)}
35912 @r{    a n@:    H b l   @:             @:     9  @:lsh@:(a,n,w)}
35913 @r{      a@:      b n   @:             @:     9  @:not@:(a,w)}
35914 @r{    a b@:      b o   @:             @:     9  @:or@:(a,b,w)}
35915 @r{      v@:      b p   @:             @:     1  @:vpack@:(v)}
35916 @r{      a@:      b r   @:             @:    10  @:rsh@:(a,n,w)}
35917 @r{    a n@:    H b r   @:             @:     9  @:rsh@:(a,n,w)}
35918 @r{      a@:      b t   @:             @:    10  @:rot@:(a,n,w)}
35919 @r{    a n@:    H b t   @:             @:     9  @:rot@:(a,n,w)}
35920 @r{      a@:      b u   @:             @:     1  @:vunpack@:(a)}
35921 @r{       @:      b w   @:w            @:  9,50  @:calc-word-size@:}
35922 @r{    a b@:      b x   @:             @:     9  @:xor@:(a,b,w)}
35925 @r{c s l p@:      b D   @:             @:        @:ddb@:(c,s,l,p)}
35926 @r{  r n p@:      b F   @:             @:        @:fv@:(r,n,p)}
35927 @r{  r n p@:    I b F   @:             @:        @:fvb@:(r,n,p)}
35928 @r{  r n p@:    H b F   @:             @:        @:fvl@:(r,n,p)}
35929 @r{      v@:      b I   @:             @:    19  @:irr@:(v)}
35930 @r{      v@:    I b I   @:             @:    19  @:irrb@:(v)}
35931 @r{      a@:      b L   @:             @:    10  @:ash@:(a,n,w)}
35932 @r{    a n@:    H b L   @:             @:     9  @:ash@:(a,n,w)}
35933 @r{  r n a@:      b M   @:             @:        @:pmt@:(r,n,a)}
35934 @r{  r n a@:    I b M   @:             @:        @:pmtb@:(r,n,a)}
35935 @r{  r n a@:    H b M   @:             @:        @:pmtl@:(r,n,a)}
35936 @r{    r v@:      b N   @:             @:    19  @:npv@:(r,v)}
35937 @r{    r v@:    I b N   @:             @:    19  @:npvb@:(r,v)}
35938 @r{  r n p@:      b P   @:             @:        @:pv@:(r,n,p)}
35939 @r{  r n p@:    I b P   @:             @:        @:pvb@:(r,n,p)}
35940 @r{  r n p@:    H b P   @:             @:        @:pvl@:(r,n,p)}
35941 @r{      a@:      b R   @:             @:    10  @:rash@:(a,n,w)}
35942 @r{    a n@:    H b R   @:             @:     9  @:rash@:(a,n,w)}
35943 @r{  c s l@:      b S   @:             @:        @:sln@:(c,s,l)}
35944 @r{  n p a@:      b T   @:             @:        @:rate@:(n,p,a)}
35945 @r{  n p a@:    I b T   @:             @:        @:rateb@:(n,p,a)}
35946 @r{  n p a@:    H b T   @:             @:        @:ratel@:(n,p,a)}
35947 @r{c s l p@:      b Y   @:             @:        @:syd@:(c,s,l,p)}
35949 @r{  r p a@:      b #   @:             @:        @:nper@:(r,p,a)}
35950 @r{  r p a@:    I b #   @:             @:        @:nperb@:(r,p,a)}
35951 @r{  r p a@:    H b #   @:             @:        @:nperl@:(r,p,a)}
35952 @r{    a b@:      b %   @:             @:        @:relch@:(a,b)}
35955 @r{      a@:      c c   @:             @:     5  @:pclean@:(a,p)}
35956 @r{      a@:      c 0-9 @:             @:        @:pclean@:(a,p)}
35957 @r{      a@:    H c c   @:             @:     5  @:clean@:(a,p)}
35958 @r{      a@:    H c 0-9 @:             @:        @:clean@:(a,p)}
35959 @r{      a@:      c d   @:             @:     1  @:deg@:(a)}
35960 @r{      a@:      c f   @:             @:     1  @:pfloat@:(a)}
35961 @r{      a@:    H c f   @:             @:     1  @:float@:(a)}
35962 @r{      a@:      c h   @:             @:     1  @:hms@:(a)}
35963 @r{      a@:      c p   @:             @:        @:polar@:(a)}
35964 @r{      a@:    I c p   @:             @:        @:rect@:(a)}
35965 @r{      a@:      c r   @:             @:     1  @:rad@:(a)}
35968 @r{      a@:      c F   @:             @:     5  @:pfrac@:(a,p)}
35969 @r{      a@:    H c F   @:             @:     5  @:frac@:(a,p)}
35972 @r{      a@:      c %   @:             @:        @:percent@:(a*100)}
35975 @r{       @:      d .   @:char         @:    50  @:calc-point-char@:}
35976 @r{       @:      d ,   @:char         @:    50  @:calc-group-char@:}
35977 @r{       @:      d <   @:             @: 13,50  @:calc-left-justify@:}
35978 @r{       @:      d =   @:             @: 13,50  @:calc-center-justify@:}
35979 @r{       @:      d >   @:             @: 13,50  @:calc-right-justify@:}
35980 @r{       @:      d @{   @:label        @:    50  @:calc-left-label@:}
35981 @r{       @:      d @}   @:label        @:    50  @:calc-right-label@:}
35982 @r{       @:      d [   @:             @:     4  @:calc-truncate-up@:}
35983 @r{       @:      d ]   @:             @:     4  @:calc-truncate-down@:}
35984 @r{       @:      d "   @:             @: 12,50  @:calc-display-strings@:}
35985 @r{       @:      d @summarykey{SPC} @:             @:        @:calc-refresh@:}
35986 @r{       @:      d @summarykey{RET} @:             @:     1  @:calc-refresh-top@:}
35989 @r{       @:      d 0   @:             @:    50  @:calc-decimal-radix@:}
35990 @r{       @:      d 2   @:             @:    50  @:calc-binary-radix@:}
35991 @r{       @:      d 6   @:             @:    50  @:calc-hex-radix@:}
35992 @r{       @:      d 8   @:             @:    50  @:calc-octal-radix@:}
35995 @r{       @:      d b   @:           @:12,13,50  @:calc-line-breaking@:}
35996 @r{       @:      d c   @:             @:    50  @:calc-complex-notation@:}
35997 @r{       @:      d d   @:format       @:    50  @:calc-date-notation@:}
35998 @r{       @:      d e   @:             @:  5,50  @:calc-eng-notation@:}
35999 @r{       @:      d f   @:num          @: 31,50  @:calc-fix-notation@:}
36000 @r{       @:      d g   @:           @:12,13,50  @:calc-group-digits@:}
36001 @r{       @:      d h   @:format       @:    50  @:calc-hms-notation@:}
36002 @r{       @:      d i   @:             @:    50  @:calc-i-notation@:}
36003 @r{       @:      d j   @:             @:    50  @:calc-j-notation@:}
36004 @r{       @:      d l   @:             @: 12,50  @:calc-line-numbering@:}
36005 @r{       @:      d n   @:             @:  5,50  @:calc-normal-notation@:}
36006 @r{       @:      d o   @:format       @:    50  @:calc-over-notation@:}
36007 @r{       @:      d p   @:             @: 12,50  @:calc-show-plain@:}
36008 @r{       @:      d r   @:radix        @: 31,50  @:calc-radix@:}
36009 @r{       @:      d s   @:             @:  5,50  @:calc-sci-notation@:}
36010 @r{       @:      d t   @:             @:    27  @:calc-truncate-stack@:}
36011 @r{       @:      d w   @:             @: 12,13  @:calc-auto-why@:}
36012 @r{       @:      d z   @:             @: 12,50  @:calc-leading-zeros@:}
36015 @r{       @:      d B   @:             @:    50  @:calc-big-language@:}
36016 @r{       @:      d C   @:             @:    50  @:calc-c-language@:}
36017 @r{       @:      d E   @:             @:    50  @:calc-eqn-language@:}
36018 @r{       @:      d F   @:             @:    50  @:calc-fortran-language@:}
36019 @r{       @:      d M   @:             @:    50  @:calc-mathematica-language@:}
36020 @r{       @:      d N   @:             @:    50  @:calc-normal-language@:}
36021 @r{       @:      d O   @:             @:    50  @:calc-flat-language@:}
36022 @r{       @:      d P   @:             @:    50  @:calc-pascal-language@:}
36023 @r{       @:      d T   @:             @:    50  @:calc-tex-language@:}
36024 @r{       @:      d L   @:             @:    50  @:calc-latex-language@:}
36025 @r{       @:      d U   @:             @:    50  @:calc-unformatted-language@:}
36026 @r{       @:      d W   @:             @:    50  @:calc-maple-language@:}
36029 @r{      a@:      f [   @:             @:     4  @:decr@:(a,n)}
36030 @r{      a@:      f ]   @:             @:     4  @:incr@:(a,n)}
36033 @r{    a b@:      f b   @:             @:     2  @:beta@:(a,b)}
36034 @r{      a@:      f e   @:             @:     1  @:erf@:(a)}
36035 @r{      a@:    I f e   @:             @:     1  @:erfc@:(a)}
36036 @r{      a@:      f g   @:             @:     1  @:gamma@:(a)}
36037 @r{    a b@:      f h   @:             @:     2  @:hypot@:(a,b)}
36038 @r{      a@:      f i   @:             @:     1  @:im@:(a)}
36039 @r{    n a@:      f j   @:             @:     2  @:besJ@:(n,a)}
36040 @r{    a b@:      f n   @:             @:     2  @:min@:(a,b)}
36041 @r{      a@:      f r   @:             @:     1  @:re@:(a)}
36042 @r{      a@:      f s   @:             @:     1  @:sign@:(a)}
36043 @r{    a b@:      f x   @:             @:     2  @:max@:(a,b)}
36044 @r{    n a@:      f y   @:             @:     2  @:besY@:(n,a)}
36047 @r{      a@:      f A   @:             @:     1  @:abssqr@:(a)}
36048 @r{  x a b@:      f B   @:             @:        @:betaI@:(x,a,b)}
36049 @r{  x a b@:    H f B   @:             @:        @:betaB@:(x,a,b)}
36050 @r{      a@:      f E   @:             @:     1  @:expm1@:(a)}
36051 @r{    a x@:      f G   @:             @:     2  @:gammaP@:(a,x)}
36052 @r{    a x@:    I f G   @:             @:     2  @:gammaQ@:(a,x)}
36053 @r{    a x@:    H f G   @:             @:     2  @:gammag@:(a,x)}
36054 @r{    a x@:  I H f G   @:             @:     2  @:gammaG@:(a,x)}
36055 @r{    a b@:      f I   @:             @:     2  @:ilog@:(a,b)}
36056 @r{    a b@:    I f I   @:             @:     2  @:alog@:(a,b)  b^a}
36057 @r{      a@:      f L   @:             @:     1  @:lnp1@:(a)}
36058 @r{      a@:      f M   @:             @:     1  @:mant@:(a)}
36059 @r{      a@:      f Q   @:             @:     1  @:isqrt@:(a)}
36060 @r{      a@:    I f Q   @:             @:     1  @:sqr@:(a)  a^2}
36061 @r{    a n@:      f S   @:             @:     2  @:scf@:(a,n)}
36062 @r{    y x@:      f T   @:             @:        @:arctan2@:(y,x)}
36063 @r{      a@:      f X   @:             @:     1  @:xpon@:(a)}
36066 @r{    x y@:      g a   @:             @: 28,40  @:calc-graph-add@:}
36067 @r{       @:      g b   @:             @:    12  @:calc-graph-border@:}
36068 @r{       @:      g c   @:             @:        @:calc-graph-clear@:}
36069 @r{       @:      g d   @:             @:    41  @:calc-graph-delete@:}
36070 @r{    x y@:      g f   @:             @: 28,40  @:calc-graph-fast@:}
36071 @r{       @:      g g   @:             @:    12  @:calc-graph-grid@:}
36072 @r{       @:      g h   @:title        @:        @:calc-graph-header@:}
36073 @r{       @:      g j   @:             @:     4  @:calc-graph-juggle@:}
36074 @r{       @:      g k   @:             @:    12  @:calc-graph-key@:}
36075 @r{       @:      g l   @:             @:    12  @:calc-graph-log-x@:}
36076 @r{       @:      g n   @:name         @:        @:calc-graph-name@:}
36077 @r{       @:      g p   @:             @:    42  @:calc-graph-plot@:}
36078 @r{       @:      g q   @:             @:        @:calc-graph-quit@:}
36079 @r{       @:      g r   @:range        @:        @:calc-graph-range-x@:}
36080 @r{       @:      g s   @:             @: 12,13  @:calc-graph-line-style@:}
36081 @r{       @:      g t   @:title        @:        @:calc-graph-title-x@:}
36082 @r{       @:      g v   @:             @:        @:calc-graph-view-commands@:}
36083 @r{       @:      g x   @:display      @:        @:calc-graph-display@:}
36084 @r{       @:      g z   @:             @:    12  @:calc-graph-zero-x@:}
36087 @r{  x y z@:      g A   @:             @: 28,40  @:calc-graph-add-3d@:}
36088 @r{       @:      g C   @:command      @:        @:calc-graph-command@:}
36089 @r{       @:      g D   @:device       @: 43,44  @:calc-graph-device@:}
36090 @r{  x y z@:      g F   @:             @: 28,40  @:calc-graph-fast-3d@:}
36091 @r{       @:      g H   @:             @:    12  @:calc-graph-hide@:}
36092 @r{       @:      g K   @:             @:        @:calc-graph-kill@:}
36093 @r{       @:      g L   @:             @:    12  @:calc-graph-log-y@:}
36094 @r{       @:      g N   @:number       @: 43,51  @:calc-graph-num-points@:}
36095 @r{       @:      g O   @:filename     @: 43,44  @:calc-graph-output@:}
36096 @r{       @:      g P   @:             @:    42  @:calc-graph-print@:}
36097 @r{       @:      g R   @:range        @:        @:calc-graph-range-y@:}
36098 @r{       @:      g S   @:             @: 12,13  @:calc-graph-point-style@:}
36099 @r{       @:      g T   @:title        @:        @:calc-graph-title-y@:}
36100 @r{       @:      g V   @:             @:        @:calc-graph-view-trail@:}
36101 @r{       @:      g X   @:format       @:        @:calc-graph-geometry@:}
36102 @r{       @:      g Z   @:             @:    12  @:calc-graph-zero-y@:}
36105 @r{       @:      g C-l @:             @:    12  @:calc-graph-log-z@:}
36106 @r{       @:      g C-r @:range        @:        @:calc-graph-range-z@:}
36107 @r{       @:      g C-t @:title        @:        @:calc-graph-title-z@:}
36110 @r{       @:      h b   @:             @:        @:calc-describe-bindings@:}
36111 @r{       @:      h c   @:key          @:        @:calc-describe-key-briefly@:}
36112 @r{       @:      h f   @:function     @:        @:calc-describe-function@:}
36113 @r{       @:      h h   @:             @:        @:calc-full-help@:}
36114 @r{       @:      h i   @:             @:        @:calc-info@:}
36115 @r{       @:      h k   @:key          @:        @:calc-describe-key@:}
36116 @r{       @:      h n   @:             @:        @:calc-view-news@:}
36117 @r{       @:      h s   @:             @:        @:calc-info-summary@:}
36118 @r{       @:      h t   @:             @:        @:calc-tutorial@:}
36119 @r{       @:      h v   @:var          @:        @:calc-describe-variable@:}
36122 @r{       @:      j 1-9 @:             @:        @:calc-select-part@:}
36123 @r{       @:      j @summarykey{RET} @:             @:    27  @:calc-copy-selection@:}
36124 @r{       @:      j @summarykey{DEL} @:             @:    27  @:calc-del-selection@:}
36125 @r{       @:      j '   @:formula      @:    27  @:calc-enter-selection@:}
36126 @r{       @:      j `   @:editing      @: 27,30  @:calc-edit-selection@:}
36127 @r{       @:      j "   @:             @:  7,27  @:calc-sel-expand-formula@:}
36130 @r{       @:      j +   @:formula      @:    27  @:calc-sel-add-both-sides@:}
36131 @r{       @:      j -   @:formula      @:    27  @:calc-sel-sub-both-sides@:}
36132 @r{       @:      j *   @:formula      @:    27  @:calc-sel-mul-both-sides@:}
36133 @r{       @:      j /   @:formula      @:    27  @:calc-sel-div-both-sides@:}
36134 @r{       @:      j &   @:             @:    27  @:calc-sel-invert@:}
36137 @r{       @:      j a   @:             @:    27  @:calc-select-additional@:}
36138 @r{       @:      j b   @:             @:    12  @:calc-break-selections@:}
36139 @r{       @:      j c   @:             @:        @:calc-clear-selections@:}
36140 @r{       @:      j d   @:             @: 12,50  @:calc-show-selections@:}
36141 @r{       @:      j e   @:             @:    12  @:calc-enable-selections@:}
36142 @r{       @:      j l   @:             @:  4,27  @:calc-select-less@:}
36143 @r{       @:      j m   @:             @:  4,27  @:calc-select-more@:}
36144 @r{       @:      j n   @:             @:     4  @:calc-select-next@:}
36145 @r{       @:      j o   @:             @:  4,27  @:calc-select-once@:}
36146 @r{       @:      j p   @:             @:     4  @:calc-select-previous@:}
36147 @r{       @:      j r   @:rules        @:4,8,27  @:calc-rewrite-selection@:}
36148 @r{       @:      j s   @:             @:  4,27  @:calc-select-here@:}
36149 @r{       @:      j u   @:             @:    27  @:calc-unselect@:}
36150 @r{       @:      j v   @:             @:  7,27  @:calc-sel-evaluate@:}
36153 @r{       @:      j C   @:             @:    27  @:calc-sel-commute@:}
36154 @r{       @:      j D   @:             @:  4,27  @:calc-sel-distribute@:}
36155 @r{       @:      j E   @:             @:    27  @:calc-sel-jump-equals@:}
36156 @r{       @:      j I   @:             @:    27  @:calc-sel-isolate@:}
36157 @r{       @:    H j I   @:             @:    27  @:calc-sel-isolate@: (full)}
36158 @r{       @:      j L   @:             @:  4,27  @:calc-commute-left@:}
36159 @r{       @:      j M   @:             @:    27  @:calc-sel-merge@:}
36160 @r{       @:      j N   @:             @:    27  @:calc-sel-negate@:}
36161 @r{       @:      j O   @:             @:  4,27  @:calc-select-once-maybe@:}
36162 @r{       @:      j R   @:             @:  4,27  @:calc-commute-right@:}
36163 @r{       @:      j S   @:             @:  4,27  @:calc-select-here-maybe@:}
36164 @r{       @:      j U   @:             @:    27  @:calc-sel-unpack@:}
36167 @r{       @:      k a   @:             @:        @:calc-random-again@:}
36168 @r{      n@:      k b   @:             @:     1  @:bern@:(n)}
36169 @r{    n x@:    H k b   @:             @:     2  @:bern@:(n,x)}
36170 @r{    n m@:      k c   @:             @:     2  @:choose@:(n,m)}
36171 @r{    n m@:    H k c   @:             @:     2  @:perm@:(n,m)}
36172 @r{      n@:      k d   @:             @:     1  @:dfact@:(n)  n!!}
36173 @r{      n@:      k e   @:             @:     1  @:euler@:(n)}
36174 @r{    n x@:    H k e   @:             @:     2  @:euler@:(n,x)}
36175 @r{      n@:      k f   @:             @:     4  @:prfac@:(n)}
36176 @r{    n m@:      k g   @:             @:     2  @:gcd@:(n,m)}
36177 @r{    m n@:      k h   @:             @:    14  @:shuffle@:(n,m)}
36178 @r{    n m@:      k l   @:             @:     2  @:lcm@:(n,m)}
36179 @r{      n@:      k m   @:             @:     1  @:moebius@:(n)}
36180 @r{      n@:      k n   @:             @:     4  @:nextprime@:(n)}
36181 @r{      n@:    I k n   @:             @:     4  @:prevprime@:(n)}
36182 @r{      n@:      k p   @:             @:  4,28  @:calc-prime-test@:}
36183 @r{      m@:      k r   @:             @:    14  @:random@:(m)}
36184 @r{    n m@:      k s   @:             @:     2  @:stir1@:(n,m)}
36185 @r{    n m@:    H k s   @:             @:     2  @:stir2@:(n,m)}
36186 @r{      n@:      k t   @:             @:     1  @:totient@:(n)}
36189 @r{  n p x@:      k B   @:             @:        @:utpb@:(x,n,p)}
36190 @r{  n p x@:    I k B   @:             @:        @:ltpb@:(x,n,p)}
36191 @r{    v x@:      k C   @:             @:        @:utpc@:(x,v)}
36192 @r{    v x@:    I k C   @:             @:        @:ltpc@:(x,v)}
36193 @r{    n m@:      k E   @:             @:        @:egcd@:(n,m)}
36194 @r{v1 v2 x@:      k F   @:             @:        @:utpf@:(x,v1,v2)}
36195 @r{v1 v2 x@:    I k F   @:             @:        @:ltpf@:(x,v1,v2)}
36196 @r{  m s x@:      k N   @:             @:        @:utpn@:(x,m,s)}
36197 @r{  m s x@:    I k N   @:             @:        @:ltpn@:(x,m,s)}
36198 @r{    m x@:      k P   @:             @:        @:utpp@:(x,m)}
36199 @r{    m x@:    I k P   @:             @:        @:ltpp@:(x,m)}
36200 @r{    v x@:      k T   @:             @:        @:utpt@:(x,v)}
36201 @r{    v x@:    I k T   @:             @:        @:ltpt@:(x,v)}
36204 @r{    a b@:      l +   @:             @:        @:lupadd@:(a,b)}
36205 @r{    a b@:    H l +   @:             @:        @:lufadd@:(a,b)}
36206 @r{    a b@:      l -   @:             @:        @:lupsub@:(a,b)}
36207 @r{    a b@:    H l -   @:             @:        @:lufsub@:(a,b)}
36208 @r{    a b@:      l *   @:             @:        @:lupmul@:(a,b)}
36209 @r{    a b@:    H l *   @:             @:        @:lufmul@:(a,b)}
36210 @r{    a b@:      l /   @:             @:        @:lupdiv@:(a,b)}
36211 @r{    a b@:    H l /   @:             @:        @:lufdiv@:(a,b)}
36212 @r{      a@:      l d   @:             @:        @:dbpower@:(a)}
36213 @r{    a b@:    O l d   @:             @:        @:dbpower@:(a,b)}
36214 @r{      a@:    H l d   @:             @:        @:dbfield@:(a)}
36215 @r{    a b@:  O H l d   @:             @:        @:dbfield@:(a,b)}
36216 @r{      a@:      l n   @:             @:        @:nppower@:(a)}
36217 @r{    a b@:    O l n   @:             @:        @:nppower@:(a,b)}
36218 @r{      a@:    H l n   @:             @:        @:npfield@:(a)}
36219 @r{    a b@:  O H l n   @:             @:        @:npfield@:(a,b)}
36220 @r{      a@:      l q   @:             @:        @:lupquant@:(a)}
36221 @r{    a b@:    O l q   @:             @:        @:lupquant@:(a,b)}
36222 @r{      a@:    H l q   @:             @:        @:lufquant@:(a)}
36223 @r{    a b@:  O H l q   @:             @:        @:lufquant@:(a,b)}
36224 @r{      a@:      l s   @:             @:        @:spn@:(a)}
36225 @r{      a@:      l m   @:             @:        @:midi@:(a)}
36226 @r{      a@:      l f   @:             @:        @:freq@:(a)}
36229 @r{       @:      m a   @:             @: 12,13  @:calc-algebraic-mode@:}
36230 @r{       @:      m d   @:             @:        @:calc-degrees-mode@:}
36231 @r{       @:      m e   @:             @:        @:calc-embedded-preserve-modes@:}
36232 @r{       @:      m f   @:             @:    12  @:calc-frac-mode@:}
36233 @r{       @:      m g   @:             @:    52  @:calc-get-modes@:}
36234 @r{       @:      m h   @:             @:        @:calc-hms-mode@:}
36235 @r{       @:      m i   @:             @: 12,13  @:calc-infinite-mode@:}
36236 @r{       @:      m m   @:             @:        @:calc-save-modes@:}
36237 @r{       @:      m p   @:             @:    12  @:calc-polar-mode@:}
36238 @r{       @:      m r   @:             @:        @:calc-radians-mode@:}
36239 @r{       @:      m s   @:             @:    12  @:calc-symbolic-mode@:}
36240 @r{       @:      m t   @:             @:    12  @:calc-total-algebraic-mode@:}
36241 @r{       @:      m v   @:             @: 12,13  @:calc-matrix-mode@:}
36242 @r{       @:      m w   @:             @:    13  @:calc-working@:}
36243 @r{       @:      m x   @:             @:        @:calc-always-load-extensions@:}
36246 @r{       @:      m A   @:             @:    12  @:calc-alg-simplify-mode@:}
36247 @r{       @:      m B   @:             @:    12  @:calc-bin-simplify-mode@:}
36248 @r{       @:      m C   @:             @:    12  @:calc-auto-recompute@:}
36249 @r{       @:      m D   @:             @:        @:calc-default-simplify-mode@:}
36250 @r{       @:      m E   @:             @:    12  @:calc-ext-simplify-mode@:}
36251 @r{       @:      m F   @:filename     @:    13  @:calc-settings-file-name@:}
36252 @r{       @:      m N   @:             @:    12  @:calc-num-simplify-mode@:}
36253 @r{       @:      m O   @:             @:    12  @:calc-no-simplify-mode@:}
36254 @r{       @:      m R   @:             @: 12,13  @:calc-mode-record-mode@:}
36255 @r{       @:      m S   @:             @:    12  @:calc-shift-prefix@:}
36256 @r{       @:      m U   @:             @:    12  @:calc-units-simplify-mode@:}
36259 @r{       @:      r s   @:register     @:    27  @:calc-copy-to-register@:}
36260 @r{       @:      r i   @:register     @:        @:calc-insert-register@:}
36263 @r{       @:      s c   @:var1, var2   @:    29  @:calc-copy-variable@:}
36264 @r{       @:      s d   @:var, decl    @:        @:calc-declare-variable@:}
36265 @r{       @:      s e   @:var, editing @: 29,30  @:calc-edit-variable@:}
36266 @r{       @:      s i   @:buffer       @:        @:calc-insert-variables@:}
36267 @r{       @:      s k   @:const, var   @:    29  @:calc-copy-special-constant@:}
36268 @r{    a b@:      s l   @:var          @:    29  @:@:a  (letting var=b)}
36269 @r{  a ...@:      s m   @:op, var      @: 22,29  @:calc-store-map@:}
36270 @r{       @:      s n   @:var          @: 29,47  @:calc-store-neg@:  (v/-1)}
36271 @r{       @:      s p   @:var          @:    29  @:calc-permanent-variable@:}
36272 @r{       @:      s r   @:var          @:    29  @:@:v  (recalled value)}
36273 @r{       @:      r 0-9 @:             @:        @:calc-recall-quick@:}
36274 @r{      a@:      s s   @:var          @: 28,29  @:calc-store@:}
36275 @r{      a@:      s 0-9 @:             @:        @:calc-store-quick@:}
36276 @r{      a@:      s t   @:var          @:    29  @:calc-store-into@:}
36277 @r{      a@:      t 0-9 @:             @:        @:calc-store-into-quick@:}
36278 @r{       @:      s u   @:var          @:    29  @:calc-unstore@:}
36279 @r{      a@:      s x   @:var          @:    29  @:calc-store-exchange@:}
36282 @r{       @:      s A   @:editing      @:    30  @:calc-edit-AlgSimpRules@:}
36283 @r{       @:      s D   @:editing      @:    30  @:calc-edit-Decls@:}
36284 @r{       @:      s E   @:editing      @:    30  @:calc-edit-EvalRules@:}
36285 @r{       @:      s F   @:editing      @:    30  @:calc-edit-FitRules@:}
36286 @r{       @:      s G   @:editing      @:    30  @:calc-edit-GenCount@:}
36287 @r{       @:      s H   @:editing      @:    30  @:calc-edit-Holidays@:}
36288 @r{       @:      s I   @:editing      @:    30  @:calc-edit-IntegLimit@:}
36289 @r{       @:      s L   @:editing      @:    30  @:calc-edit-LineStyles@:}
36290 @r{       @:      s P   @:editing      @:    30  @:calc-edit-PointStyles@:}
36291 @r{       @:      s R   @:editing      @:    30  @:calc-edit-PlotRejects@:}
36292 @r{       @:      s T   @:editing      @:    30  @:calc-edit-TimeZone@:}
36293 @r{       @:      s U   @:editing      @:    30  @:calc-edit-Units@:}
36294 @r{       @:      s X   @:editing      @:    30  @:calc-edit-ExtSimpRules@:}
36297 @r{      a@:      s +   @:var          @: 29,47  @:calc-store-plus@:  (v+a)}
36298 @r{      a@:      s -   @:var          @: 29,47  @:calc-store-minus@:  (v-a)}
36299 @r{      a@:      s *   @:var          @: 29,47  @:calc-store-times@:  (v*a)}
36300 @r{      a@:      s /   @:var          @: 29,47  @:calc-store-div@:  (v/a)}
36301 @r{      a@:      s ^   @:var          @: 29,47  @:calc-store-power@:  (v^a)}
36302 @r{      a@:      s |   @:var          @: 29,47  @:calc-store-concat@:  (v|a)}
36303 @r{       @:      s &   @:var          @: 29,47  @:calc-store-inv@:  (v^-1)}
36304 @r{       @:      s [   @:var          @: 29,47  @:calc-store-decr@:  (v-1)}
36305 @r{       @:      s ]   @:var          @: 29,47  @:calc-store-incr@:  (v-(-1))}
36306 @r{    a b@:      s :   @:             @:     2  @:assign@:(a,b)  a @tfn{:=} b}
36307 @r{      a@:      s =   @:             @:     1  @:evalto@:(a,b)  a @tfn{=>}}
36310 @r{       @:      t [   @:             @:     4  @:calc-trail-first@:}
36311 @r{       @:      t ]   @:             @:     4  @:calc-trail-last@:}
36312 @r{       @:      t <   @:             @:     4  @:calc-trail-scroll-left@:}
36313 @r{       @:      t >   @:             @:     4  @:calc-trail-scroll-right@:}
36314 @r{       @:      t .   @:             @:    12  @:calc-full-trail-vectors@:}
36317 @r{       @:      t b   @:             @:     4  @:calc-trail-backward@:}
36318 @r{       @:      t d   @:             @: 12,50  @:calc-trail-display@:}
36319 @r{       @:      t f   @:             @:     4  @:calc-trail-forward@:}
36320 @r{       @:      t h   @:             @:        @:calc-trail-here@:}
36321 @r{       @:      t i   @:             @:        @:calc-trail-in@:}
36322 @r{       @:      t k   @:             @:     4  @:calc-trail-kill@:}
36323 @r{       @:      t m   @:string       @:        @:calc-trail-marker@:}
36324 @r{       @:      t n   @:             @:     4  @:calc-trail-next@:}
36325 @r{       @:      t o   @:             @:        @:calc-trail-out@:}
36326 @r{       @:      t p   @:             @:     4  @:calc-trail-previous@:}
36327 @r{       @:      t r   @:string       @:        @:calc-trail-isearch-backward@:}
36328 @r{       @:      t s   @:string       @:        @:calc-trail-isearch-forward@:}
36329 @r{       @:      t y   @:             @:     4  @:calc-trail-yank@:}
36332 @r{      d@:      t C   @:oz, nz       @:        @:tzconv@:(d,oz,nz)}
36333 @r{d oz nz@:      t C   @:$            @:        @:tzconv@:(d,oz,nz)}
36334 @r{      d@:      t D   @:             @:    15  @:date@:(d)}
36335 @r{      d@:      t I   @:             @:     4  @:incmonth@:(d,n)}
36336 @r{      d@:      t J   @:             @:    16  @:julian@:(d,z)}
36337 @r{      d@:      t M   @:             @:    17  @:newmonth@:(d,n)}
36338 @r{       @:      t N   @:             @:    16  @:now@:(z)}
36339 @r{      d@:      t P   @:1            @:    31  @:year@:(d)}
36340 @r{      d@:      t P   @:2            @:    31  @:month@:(d)}
36341 @r{      d@:      t P   @:3            @:    31  @:day@:(d)}
36342 @r{      d@:      t P   @:4            @:    31  @:hour@:(d)}
36343 @r{      d@:      t P   @:5            @:    31  @:minute@:(d)}
36344 @r{      d@:      t P   @:6            @:    31  @:second@:(d)}
36345 @r{      d@:      t P   @:7            @:    31  @:weekday@:(d)}
36346 @r{      d@:      t P   @:8            @:    31  @:yearday@:(d)}
36347 @r{      d@:      t P   @:9            @:    31  @:time@:(d)}
36348 @r{      d@:      t U   @:             @:    16  @:unixtime@:(d,z)}
36349 @r{      d@:      t W   @:             @:    17  @:newweek@:(d,w)}
36350 @r{      d@:      t Y   @:             @:    17  @:newyear@:(d,n)}
36353 @r{    a b@:      t +   @:             @:     2  @:badd@:(a,b)}
36354 @r{    a b@:      t -   @:             @:     2  @:bsub@:(a,b)}
36357 @r{       @:      u a   @:             @:    12  @:calc-autorange-units@:}
36358 @r{      a@:      u b   @:             @:        @:calc-base-units@:}
36359 @r{      a@:      u c   @:units        @:    18  @:calc-convert-units@:}
36360 @r{   defn@:      u d   @:unit, descr  @:        @:calc-define-unit@:}
36361 @r{       @:      u e   @:             @:        @:calc-explain-units@:}
36362 @r{       @:      u g   @:unit         @:        @:calc-get-unit-definition@:}
36363 @r{       @:      u p   @:             @:        @:calc-permanent-units@:}
36364 @r{      a@:      u r   @:             @:        @:calc-remove-units@:}
36365 @r{      a@:      u s   @:             @:        @:usimplify@:(a)}
36366 @r{      a@:      u t   @:units        @:    18  @:calc-convert-temperature@:}
36367 @r{       @:      u u   @:unit         @:        @:calc-undefine-unit@:}
36368 @r{       @:      u v   @:             @:        @:calc-enter-units-table@:}
36369 @r{      a@:      u x   @:             @:        @:calc-extract-units@:}
36370 @r{      a@:      u 0-9 @:             @:        @:calc-quick-units@:}
36373 @r{  v1 v2@:      u C   @:             @:    20  @:vcov@:(v1,v2)}
36374 @r{  v1 v2@:    I u C   @:             @:    20  @:vpcov@:(v1,v2)}
36375 @r{  v1 v2@:    H u C   @:             @:    20  @:vcorr@:(v1,v2)}
36376 @r{      v@:      u G   @:             @:    19  @:vgmean@:(v)}
36377 @r{    a b@:    H u G   @:             @:     2  @:agmean@:(a,b)}
36378 @r{      v@:      u M   @:             @:    19  @:vmean@:(v)}
36379 @r{      v@:    I u M   @:             @:    19  @:vmeane@:(v)}
36380 @r{      v@:    H u M   @:             @:    19  @:vmedian@:(v)}
36381 @r{      v@:  I H u M   @:             @:    19  @:vhmean@:(v)}
36382 @r{      v@:      u N   @:             @:    19  @:vmin@:(v)}
36383 @r{      v@:      u S   @:             @:    19  @:vsdev@:(v)}
36384 @r{      v@:    I u S   @:             @:    19  @:vpsdev@:(v)}
36385 @r{      v@:    H u S   @:             @:    19  @:vvar@:(v)}
36386 @r{      v@:  I H u S   @:             @:    19  @:vpvar@:(v)}
36387 @r{       @:      u V   @:             @:        @:calc-view-units-table@:}
36388 @r{      v@:      u X   @:             @:    19  @:vmax@:(v)}
36391 @r{      v@:      u +   @:             @:    19  @:vsum@:(v)}
36392 @r{      v@:      u *   @:             @:    19  @:vprod@:(v)}
36393 @r{      v@:      u #   @:             @:    19  @:vcount@:(v)}
36396 @r{       @:      V (   @:             @:    50  @:calc-vector-parens@:}
36397 @r{       @:      V @{   @:             @:    50  @:calc-vector-braces@:}
36398 @r{       @:      V [   @:             @:    50  @:calc-vector-brackets@:}
36399 @r{       @:      V ]   @:ROCP         @:    50  @:calc-matrix-brackets@:}
36400 @r{       @:      V ,   @:             @:    50  @:calc-vector-commas@:}
36401 @r{       @:      V <   @:             @:    50  @:calc-matrix-left-justify@:}
36402 @r{       @:      V =   @:             @:    50  @:calc-matrix-center-justify@:}
36403 @r{       @:      V >   @:             @:    50  @:calc-matrix-right-justify@:}
36404 @r{       @:      V /   @:             @: 12,50  @:calc-break-vectors@:}
36405 @r{       @:      V .   @:             @: 12,50  @:calc-full-vectors@:}
36408 @r{    s t@:      V ^   @:             @:     2  @:vint@:(s,t)}
36409 @r{    s t@:      V -   @:             @:     2  @:vdiff@:(s,t)}
36410 @r{      s@:      V ~   @:             @:     1  @:vcompl@:(s)}
36411 @r{      s@:      V #   @:             @:     1  @:vcard@:(s)}
36412 @r{      s@:      V :   @:             @:     1  @:vspan@:(s)}
36413 @r{      s@:      V +   @:             @:     1  @:rdup@:(s)}
36416 @r{      m@:      V &   @:             @:     1  @:inv@:(m)  1/m}
36419 @r{      v@:      v a   @:n            @:        @:arrange@:(v,n)}
36420 @r{      a@:      v b   @:n            @:        @:cvec@:(a,n)}
36421 @r{      v@:      v c   @:n >0         @: 21,31  @:mcol@:(v,n)}
36422 @r{      v@:      v c   @:n <0         @:    31  @:mrcol@:(v,-n)}
36423 @r{      m@:      v c   @:0            @:    31  @:getdiag@:(m)}
36424 @r{      v@:      v d   @:             @:    25  @:diag@:(v,n)}
36425 @r{    v m@:      v e   @:             @:     2  @:vexp@:(v,m)}
36426 @r{  v m f@:    H v e   @:             @:     2  @:vexp@:(v,m,f)}
36427 @r{    v a@:      v f   @:             @:    26  @:find@:(v,a,n)}
36428 @r{      v@:      v h   @:             @:     1  @:head@:(v)}
36429 @r{      v@:    I v h   @:             @:     1  @:tail@:(v)}
36430 @r{      v@:    H v h   @:             @:     1  @:rhead@:(v)}
36431 @r{      v@:  I H v h   @:             @:     1  @:rtail@:(v)}
36432 @r{       @:      v i   @:n            @:    31  @:idn@:(1,n)}
36433 @r{       @:      v i   @:0            @:    31  @:idn@:(1)}
36434 @r{    h t@:      v k   @:             @:     2  @:cons@:(h,t)}
36435 @r{    h t@:    H v k   @:             @:     2  @:rcons@:(h,t)}
36436 @r{      v@:      v l   @:             @:     1  @:vlen@:(v)}
36437 @r{      v@:    H v l   @:             @:     1  @:mdims@:(v)}
36438 @r{    v m@:      v m   @:             @:     2  @:vmask@:(v,m)}
36439 @r{      v@:      v n   @:             @:     1  @:rnorm@:(v)}
36440 @r{  a b c@:      v p   @:             @:    24  @:calc-pack@:}
36441 @r{      v@:      v r   @:n >0         @: 21,31  @:mrow@:(v,n)}
36442 @r{      v@:      v r   @:n <0         @:    31  @:mrrow@:(v,-n)}
36443 @r{      m@:      v r   @:0            @:    31  @:getdiag@:(m)}
36444 @r{  v i j@:      v s   @:             @:        @:subvec@:(v,i,j)}
36445 @r{  v i j@:    I v s   @:             @:        @:rsubvec@:(v,i,j)}
36446 @r{      m@:      v t   @:             @:     1  @:trn@:(m)}
36447 @r{      v@:      v u   @:             @:    24  @:calc-unpack@:}
36448 @r{      v@:      v v   @:             @:     1  @:rev@:(v)}
36449 @r{       @:      v x   @:n            @:    31  @:index@:(n)}
36450 @r{  n s i@:  C-u v x   @:             @:        @:index@:(n,s,i)}
36453 @r{      v@:      V A   @:op           @:    22  @:apply@:(op,v)}
36454 @r{  v1 v2@:      V C   @:             @:     2  @:cross@:(v1,v2)}
36455 @r{      m@:      V D   @:             @:     1  @:det@:(m)}
36456 @r{      s@:      V E   @:             @:     1  @:venum@:(s)}
36457 @r{      s@:      V F   @:             @:     1  @:vfloor@:(s)}
36458 @r{      v@:      V G   @:             @:        @:grade@:(v)}
36459 @r{      v@:    I V G   @:             @:        @:rgrade@:(v)}
36460 @r{      v@:      V H   @:n            @:    31  @:histogram@:(v,n)}
36461 @r{    v w@:    H V H   @:n            @:    31  @:histogram@:(v,w,n)}
36462 @r{  v1 v2@:      V I   @:mop aop      @:    22  @:inner@:(mop,aop,v1,v2)}
36463 @r{      m@:      V J   @:             @:     1  @:ctrn@:(m)}
36464 @r{  m1 m2@:      V K   @:             @:        @:kron@:(m1,m2)}
36465 @r{      m@:      V L   @:             @:     1  @:lud@:(m)}
36466 @r{      v@:      V M   @:op           @: 22,23  @:map@:(op,v)}
36467 @r{      v@:      V N   @:             @:     1  @:cnorm@:(v)}
36468 @r{  v1 v2@:      V O   @:op           @:    22  @:outer@:(op,v1,v2)}
36469 @r{      v@:      V R   @:op           @: 22,23  @:reduce@:(op,v)}
36470 @r{      v@:    I V R   @:op           @: 22,23  @:rreduce@:(op,v)}
36471 @r{    a n@:    H V R   @:op           @:    22  @:nest@:(op,a,n)}
36472 @r{      a@:  I H V R   @:op           @:    22  @:fixp@:(op,a)}
36473 @r{      v@:      V S   @:             @:        @:sort@:(v)}
36474 @r{      v@:    I V S   @:             @:        @:rsort@:(v)}
36475 @r{      m@:      V T   @:             @:     1  @:tr@:(m)}
36476 @r{      v@:      V U   @:op           @:    22  @:accum@:(op,v)}
36477 @r{      v@:    I V U   @:op           @:    22  @:raccum@:(op,v)}
36478 @r{    a n@:    H V U   @:op           @:    22  @:anest@:(op,a,n)}
36479 @r{      a@:  I H V U   @:op           @:    22  @:afixp@:(op,a)}
36480 @r{    s t@:      V V   @:             @:     2  @:vunion@:(s,t)}
36481 @r{    s t@:      V X   @:             @:     2  @:vxor@:(s,t)}
36484 @r{       @:      Y     @:             @:        @:@:user commands}
36487 @r{       @:      z     @:             @:        @:@:user commands}
36490 @r{      c@:      Z [   @:             @:    45  @:calc-kbd-if@:}
36491 @r{      c@:      Z |   @:             @:    45  @:calc-kbd-else-if@:}
36492 @r{       @:      Z :   @:             @:        @:calc-kbd-else@:}
36493 @r{       @:      Z ]   @:             @:        @:calc-kbd-end-if@:}
36496 @r{       @:      Z @{   @:             @:     4  @:calc-kbd-loop@:}
36497 @r{      c@:      Z /   @:             @:    45  @:calc-kbd-break@:}
36498 @r{       @:      Z @}   @:             @:        @:calc-kbd-end-loop@:}
36499 @r{      n@:      Z <   @:             @:        @:calc-kbd-repeat@:}
36500 @r{       @:      Z >   @:             @:        @:calc-kbd-end-repeat@:}
36501 @r{    n m@:      Z (   @:             @:        @:calc-kbd-for@:}
36502 @r{      s@:      Z )   @:             @:        @:calc-kbd-end-for@:}
36505 @r{       @:      Z C-g @:             @:        @:@:cancel if/loop command}
36508 @r{       @:      Z `   @:             @:        @:calc-kbd-push@:}
36509 @r{       @:      Z '   @:             @:        @:calc-kbd-pop@:}
36510 @r{       @:      Z #   @:             @:        @:calc-kbd-query@:}
36513 @r{   comp@:      Z C   @:func, args   @:    50  @:calc-user-define-composition@:}
36514 @r{       @:      Z D   @:key, command @:        @:calc-user-define@:}
36515 @r{       @:      Z E   @:key, editing @:    30  @:calc-user-define-edit@:}
36516 @r{   defn@:      Z F   @:k, c, f, a, n@:    28  @:calc-user-define-formula@:}
36517 @r{       @:      Z G   @:key          @:        @:calc-get-user-defn@:}
36518 @r{       @:      Z I   @:             @:        @:calc-user-define-invocation@:}
36519 @r{       @:      Z K   @:key, command @:        @:calc-user-define-kbd-macro@:}
36520 @r{       @:      Z P   @:key          @:        @:calc-user-define-permanent@:}
36521 @r{       @:      Z S   @:             @:    30  @:calc-edit-user-syntax@:}
36522 @r{       @:      Z T   @:             @:    12  @:calc-timing@:}
36523 @r{       @:      Z U   @:key          @:        @:calc-user-undefine@:}
36525 @end format
36527 @noindent
36528 NOTES
36530 @enumerate
36531 @c 1
36532 @item
36533 Positive prefix arguments apply to @expr{n} stack entries.
36534 Negative prefix arguments apply to the @expr{-n}th stack entry.
36535 A prefix of zero applies to the entire stack.  (For @key{LFD} and
36536 @kbd{M-@key{DEL}}, the meaning of the sign is reversed.)
36538 @c 2
36539 @item
36540 Positive prefix arguments apply to @expr{n} stack entries.
36541 Negative prefix arguments apply to the top stack entry
36542 and the next @expr{-n} stack entries.
36544 @c 3
36545 @item
36546 Positive prefix arguments rotate top @expr{n} stack entries by one.
36547 Negative prefix arguments rotate the entire stack by @expr{-n}.
36548 A prefix of zero reverses the entire stack.
36550 @c 4
36551 @item
36552 Prefix argument specifies a repeat count or distance.
36554 @c 5
36555 @item
36556 Positive prefix arguments specify a precision @expr{p}.
36557 Negative prefix arguments reduce the current precision by @expr{-p}.
36559 @c 6
36560 @item
36561 A prefix argument is interpreted as an additional step-size parameter.
36562 A plain @kbd{C-u} prefix means to prompt for the step size.
36564 @c 7
36565 @item
36566 A prefix argument specifies simplification level and depth.
36567 1=Basic simplifications, 2=Algebraic simplifications, 3=Extended simplifications
36569 @c 8
36570 @item
36571 A negative prefix operates only on the top level of the input formula.
36573 @c 9
36574 @item
36575 Positive prefix arguments specify a word size of @expr{w} bits, unsigned.
36576 Negative prefix arguments specify a word size of @expr{w} bits, signed.
36578 @c 10
36579 @item
36580 Prefix arguments specify the shift amount @expr{n}.  The @expr{w} argument
36581 cannot be specified in the keyboard version of this command.
36583 @c 11
36584 @item
36585 From the keyboard, @expr{d} is omitted and defaults to zero.
36587 @c 12
36588 @item
36589 Mode is toggled; a positive prefix always sets the mode, and a negative
36590 prefix always clears the mode.
36592 @c 13
36593 @item
36594 Some prefix argument values provide special variations of the mode.
36596 @c 14
36597 @item
36598 A prefix argument, if any, is used for @expr{m} instead of taking
36599 @expr{m} from the stack.  @expr{M} may take any of these values:
36600 @iftex
36601 {@advance@tableindent10pt
36602 @end iftex
36603 @table @asis
36604 @item Integer
36605 Random integer in the interval @expr{[0 .. m)}.
36606 @item Float
36607 Random floating-point number in the interval @expr{[0 .. m)}.
36608 @item 0.0
36609 Gaussian with mean 1 and standard deviation 0.
36610 @item Error form
36611 Gaussian with specified mean and standard deviation.
36612 @item Interval
36613 Random integer or floating-point number in that interval.
36614 @item Vector
36615 Random element from the vector.
36616 @end table
36617 @iftex
36619 @end iftex
36621 @c 15
36622 @item
36623 A prefix argument from 1 to 6 specifies number of date components
36624 to remove from the stack.  @xref{Date Conversions}.
36626 @c 16
36627 @item
36628 A prefix argument specifies a time zone; @kbd{C-u} says to take the
36629 time zone number or name from the top of the stack.  @xref{Time Zones}.
36631 @c 17
36632 @item
36633 A prefix argument specifies a day number (0-6, 0-31, or 0-366).
36635 @c 18
36636 @item
36637 If the input has no units, you will be prompted for both the old and
36638 the new units.
36640 @c 19
36641 @item
36642 With a prefix argument, collect that many stack entries to form the
36643 input data set.  Each entry may be a single value or a vector of values.
36645 @c 20
36646 @item
36647 With a prefix argument of 1, take a single
36648 @texline @var{n}@math{\times2}
36649 @infoline @mathit{@var{N}x2}
36650 matrix from the stack instead of two separate data vectors.
36652 @c 21
36653 @item
36654 The row or column number @expr{n} may be given as a numeric prefix
36655 argument instead.  A plain @kbd{C-u} prefix says to take @expr{n}
36656 from the top of the stack.  If @expr{n} is a vector or interval,
36657 a subvector/submatrix of the input is created.
36659 @c 22
36660 @item
36661 The @expr{op} prompt can be answered with the key sequence for the
36662 desired function, or with @kbd{x} or @kbd{z} followed by a function name,
36663 or with @kbd{$} to take a formula from the top of the stack, or with
36664 @kbd{'} and a typed formula.  In the last two cases, the formula may
36665 be a nameless function like @samp{<#1+#2>} or @samp{<x, y : x+y>}, or it
36666 may include @kbd{$}, @kbd{$$}, etc. (where @kbd{$} will correspond to the
36667 last argument of the created function), or otherwise you will be
36668 prompted for an argument list.  The number of vectors popped from the
36669 stack by @kbd{V M} depends on the number of arguments of the function.
36671 @c 23
36672 @item
36673 One of the mapping direction keys @kbd{_} (horizontal, i.e., map
36674 by rows or reduce across), @kbd{:} (vertical, i.e., map by columns or
36675 reduce down), or @kbd{=} (map or reduce by rows) may be used before
36676 entering @expr{op}; these modify the function name by adding the letter
36677 @code{r} for ``rows,'' @code{c} for ``columns,'' @code{a} for ``across,''
36678 or @code{d} for ``down.''
36680 @c 24
36681 @item
36682 The prefix argument specifies a packing mode.  A nonnegative mode
36683 is the number of items (for @kbd{v p}) or the number of levels
36684 (for @kbd{v u}).  A negative mode is as described below.  With no
36685 prefix argument, the mode is taken from the top of the stack and
36686 may be an integer or a vector of integers.
36687 @iftex
36688 {@advance@tableindent-20pt
36689 @end iftex
36690 @table @cite
36691 @item -1
36692 (@var{2})  Rectangular complex number.
36693 @item -2
36694 (@var{2})  Polar complex number.
36695 @item -3
36696 (@var{3})  HMS form.
36697 @item -4
36698 (@var{2})  Error form.
36699 @item -5
36700 (@var{2})  Modulo form.
36701 @item -6
36702 (@var{2})  Closed interval.
36703 @item -7
36704 (@var{2})  Closed .. open interval.
36705 @item -8
36706 (@var{2})  Open .. closed interval.
36707 @item -9
36708 (@var{2})  Open interval.
36709 @item -10
36710 (@var{2})  Fraction.
36711 @item -11
36712 (@var{2})  Float with integer mantissa.
36713 @item -12
36714 (@var{2})  Float with mantissa in @expr{[1 .. 10)}.
36715 @item -13
36716 (@var{1})  Date form (using date numbers).
36717 @item -14
36718 (@var{3})  Date form (using year, month, day).
36719 @item -15
36720 (@var{6})  Date form (using year, month, day, hour, minute, second).
36721 @end table
36722 @iftex
36724 @end iftex
36726 @c 25
36727 @item
36728 A prefix argument specifies the size @expr{n} of the matrix.  With no
36729 prefix argument, @expr{n} is omitted and the size is inferred from
36730 the input vector.
36732 @c 26
36733 @item
36734 The prefix argument specifies the starting position @expr{n} (default 1).
36736 @c 27
36737 @item
36738 Cursor position within stack buffer affects this command.
36740 @c 28
36741 @item
36742 Arguments are not actually removed from the stack by this command.
36744 @c 29
36745 @item
36746 Variable name may be a single digit or a full name.
36748 @c 30
36749 @item
36750 Editing occurs in a separate buffer.  Press @kbd{C-c C-c} (or
36751 @key{LFD}, or in some cases @key{RET}) to finish the edit, or kill the
36752 buffer with @kbd{C-x k} to cancel the edit.  The @key{LFD} key prevents evaluation
36753 of the result of the edit.
36755 @c 31
36756 @item
36757 The number prompted for can also be provided as a prefix argument.
36759 @c 32
36760 @item
36761 Press this key a second time to cancel the prefix.
36763 @c 33
36764 @item
36765 With a negative prefix, deactivate all formulas.  With a positive
36766 prefix, deactivate and then reactivate from scratch.
36768 @c 34
36769 @item
36770 Default is to scan for nearest formula delimiter symbols.  With a
36771 prefix of zero, formula is delimited by mark and point.  With a
36772 non-zero prefix, formula is delimited by scanning forward or
36773 backward by that many lines.
36775 @c 35
36776 @item
36777 Parse the region between point and mark as a vector.  A nonzero prefix
36778 parses @var{n} lines before or after point as a vector.  A zero prefix
36779 parses the current line as a vector.  A @kbd{C-u} prefix parses the
36780 region between point and mark as a single formula.
36782 @c 36
36783 @item
36784 Parse the rectangle defined by point and mark as a matrix.  A positive
36785 prefix @var{n} divides the rectangle into columns of width @var{n}.
36786 A zero or @kbd{C-u} prefix parses each line as one formula.  A negative
36787 prefix suppresses special treatment of bracketed portions of a line.
36789 @c 37
36790 @item
36791 A numeric prefix causes the current language mode to be ignored.
36793 @c 38
36794 @item
36795 Responding to a prompt with a blank line answers that and all
36796 later prompts by popping additional stack entries.
36798 @c 39
36799 @item
36800 Answer for @expr{v} may also be of the form @expr{v = v_0} or
36801 @expr{v - v_0}.
36803 @c 40
36804 @item
36805 With a positive prefix argument, stack contains many @expr{y}'s and one
36806 common @expr{x}.  With a zero prefix, stack contains a vector of
36807 @expr{y}s and a common @expr{x}.  With a negative prefix, stack
36808 contains many @expr{[x,y]} vectors.  (For 3D plots, substitute
36809 @expr{z} for @expr{y} and @expr{x,y} for @expr{x}.)
36811 @c 41
36812 @item
36813 With any prefix argument, all curves in the graph are deleted.
36815 @c 42
36816 @item
36817 With a positive prefix, refines an existing plot with more data points.
36818 With a negative prefix, forces recomputation of the plot data.
36820 @c 43
36821 @item
36822 With any prefix argument, set the default value instead of the
36823 value for this graph.
36825 @c 44
36826 @item
36827 With a negative prefix argument, set the value for the printer.
36829 @c 45
36830 @item
36831 Condition is considered ``true'' if it is a nonzero real or complex
36832 number, or a formula whose value is known to be nonzero; it is ``false''
36833 otherwise.
36835 @c 46
36836 @item
36837 Several formulas separated by commas are pushed as multiple stack
36838 entries.  Trailing @kbd{)}, @kbd{]}, @kbd{@}}, @kbd{>}, and @kbd{"}
36839 delimiters may be omitted.  The notation @kbd{$$$} refers to the value
36840 in stack level three, and causes the formula to replace the top three
36841 stack levels.  The notation @kbd{$3} refers to stack level three without
36842 causing that value to be removed from the stack.  Use @key{LFD} in place
36843 of @key{RET} to prevent evaluation; use @kbd{M-=} in place of @key{RET}
36844 to evaluate variables.
36846 @c 47
36847 @item
36848 The variable is replaced by the formula shown on the right.  The
36849 Inverse flag reverses the order of the operands, e.g., @kbd{I s - x}
36850 assigns
36851 @texline @math{x \coloneq a-x}.
36852 @infoline @expr{x := a-x}.
36854 @c 48
36855 @item
36856 Press @kbd{?} repeatedly to see how to choose a model.  Answer the
36857 variables prompt with @expr{iv} or @expr{iv;pv} to specify
36858 independent and parameter variables.  A positive prefix argument
36859 takes @mathit{@var{n}+1} vectors from the stack; a zero prefix takes a matrix
36860 and a vector from the stack.
36862 @c 49
36863 @item
36864 With a plain @kbd{C-u} prefix, replace the current region of the
36865 destination buffer with the yanked text instead of inserting.
36867 @c 50
36868 @item
36869 All stack entries are reformatted; the @kbd{H} prefix inhibits this.
36870 The @kbd{I} prefix sets the mode temporarily, redraws the top stack
36871 entry, then restores the original setting of the mode.
36873 @c 51
36874 @item
36875 A negative prefix sets the default 3D resolution instead of the
36876 default 2D resolution.
36878 @c 52
36879 @item
36880 This grabs a vector of the form [@var{prec}, @var{wsize}, @var{ssize},
36881 @var{radix}, @var{flfmt}, @var{ang}, @var{frac}, @var{symb}, @var{polar},
36882 @var{matrix}, @var{simp}, @var{inf}].  A prefix argument from 1 to 12
36883 grabs the @var{n}th mode value only.
36884 @end enumerate
36886 @iftex
36887 (Space is provided below for you to keep your own written notes.)
36888 @page
36889 @endgroup
36890 @end iftex
36893 @c [end-summary]
36895 @node Key Index, Command Index, Summary, Top
36896 @unnumbered Index of Key Sequences
36898 @printindex ky
36900 @node Command Index, Function Index, Key Index, Top
36901 @unnumbered Index of Calculator Commands
36903 Since all Calculator commands begin with the prefix @samp{calc-}, the
36904 @kbd{x} key has been provided as a variant of @kbd{M-x} which automatically
36905 types @samp{calc-} for you.  Thus, @kbd{x last-args} is short for
36906 @kbd{M-x calc-last-args}.
36908 @printindex pg
36910 @node Function Index, Concept Index, Command Index, Top
36911 @unnumbered Index of Algebraic Functions
36913 This is a list of built-in functions and operators usable in algebraic
36914 expressions.  Their full Lisp names are derived by adding the prefix
36915 @samp{calcFunc-}, as in @code{calcFunc-sqrt}.
36916 @iftex
36917 All functions except those noted with ``*'' have corresponding
36918 Calc keystrokes and can also be found in the Calc Summary.
36919 @end iftex
36921 @printindex tp
36923 @node Concept Index, Variable Index, Function Index, Top
36924 @unnumbered Concept Index
36926 @printindex cp
36928 @node Variable Index, Lisp Function Index, Concept Index, Top
36929 @unnumbered Index of Variables
36931 The variables in this list that do not contain dashes are accessible
36932 as Calc variables.  Add a @samp{var-} prefix to get the name of the
36933 corresponding Lisp variable.
36935 The remaining variables are Lisp variables suitable for @code{setq}ing
36936 in your Calc init file or @file{.emacs} file.
36938 @printindex vr
36940 @node Lisp Function Index,  , Variable Index, Top
36941 @unnumbered Index of Lisp Math Functions
36943 The following functions are meant to be used with @code{defmath}, not
36944 @code{defun} definitions.  For names that do not start with @samp{calc-},
36945 the corresponding full Lisp name is derived by adding a prefix of
36946 @samp{math-}.
36948 @printindex fn
36950 @bye