* configure.ac: Fix minimum Jansson version requirement.
[emacs.git] / src / alloc.c
blob4f3928a482434a935f6750618cb3aed67bab59ea
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2017 Free Software
4 Foundation, Inc.
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or (at
11 your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <https://www.gnu.org/licenses/>. */
21 #include <config.h>
23 #include <errno.h>
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <limits.h> /* For CHAR_BIT. */
27 #include <signal.h> /* For SIGABRT, SIGDANGER. */
29 #ifdef HAVE_PTHREAD
30 #include <pthread.h>
31 #endif
33 #include "lisp.h"
34 #include "dispextern.h"
35 #include "intervals.h"
36 #include "puresize.h"
37 #include "sheap.h"
38 #include "systime.h"
39 #include "character.h"
40 #include "buffer.h"
41 #include "window.h"
42 #include "keyboard.h"
43 #include "frame.h"
44 #include "blockinput.h"
45 #include "termhooks.h" /* For struct terminal. */
46 #ifdef HAVE_WINDOW_SYSTEM
47 #include TERM_HEADER
48 #endif /* HAVE_WINDOW_SYSTEM */
50 #include <flexmember.h>
51 #include <verify.h>
52 #include <execinfo.h> /* For backtrace. */
54 #ifdef HAVE_LINUX_SYSINFO
55 #include <sys/sysinfo.h>
56 #endif
58 #ifdef MSDOS
59 #include "dosfns.h" /* For dos_memory_info. */
60 #endif
62 #ifdef HAVE_MALLOC_H
63 # include <malloc.h>
64 #endif
66 #if (defined ENABLE_CHECKING \
67 && defined HAVE_VALGRIND_VALGRIND_H \
68 && !defined USE_VALGRIND)
69 # define USE_VALGRIND 1
70 #endif
72 #if USE_VALGRIND
73 #include <valgrind/valgrind.h>
74 #include <valgrind/memcheck.h>
75 static bool valgrind_p;
76 #endif
78 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
79 We turn that on by default when ENABLE_CHECKING is defined;
80 define GC_CHECK_MARKED_OBJECTS to zero to disable. */
82 #if defined ENABLE_CHECKING && !defined GC_CHECK_MARKED_OBJECTS
83 # define GC_CHECK_MARKED_OBJECTS 1
84 #endif
86 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
87 memory. Can do this only if using gmalloc.c and if not checking
88 marked objects. */
90 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
91 || defined HYBRID_MALLOC || GC_CHECK_MARKED_OBJECTS)
92 #undef GC_MALLOC_CHECK
93 #endif
95 #include <unistd.h>
96 #include <fcntl.h>
98 #ifdef USE_GTK
99 # include "gtkutil.h"
100 #endif
101 #ifdef WINDOWSNT
102 #include "w32.h"
103 #include "w32heap.h" /* for sbrk */
104 #endif
106 #ifdef GNU_LINUX
107 /* The address where the heap starts. */
108 void *
109 my_heap_start (void)
111 static void *start;
112 if (! start)
113 start = sbrk (0);
114 return start;
116 #endif
118 #ifdef DOUG_LEA_MALLOC
120 /* Specify maximum number of areas to mmap. It would be nice to use a
121 value that explicitly means "no limit". */
123 #define MMAP_MAX_AREAS 100000000
125 /* A pointer to the memory allocated that copies that static data
126 inside glibc's malloc. */
127 static void *malloc_state_ptr;
129 /* Restore the dumped malloc state. Because malloc can be invoked
130 even before main (e.g. by the dynamic linker), the dumped malloc
131 state must be restored as early as possible using this special hook. */
132 static void
133 malloc_initialize_hook (void)
135 static bool malloc_using_checking;
137 if (! initialized)
139 #ifdef GNU_LINUX
140 my_heap_start ();
141 #endif
142 malloc_using_checking = getenv ("MALLOC_CHECK_") != NULL;
144 else
146 if (!malloc_using_checking)
148 /* Work around a bug in glibc's malloc. MALLOC_CHECK_ must be
149 ignored if the heap to be restored was constructed without
150 malloc checking. Can't use unsetenv, since that calls malloc. */
151 char **p = environ;
152 if (p)
153 for (; *p; p++)
154 if (strncmp (*p, "MALLOC_CHECK_=", 14) == 0)
157 *p = p[1];
158 while (*++p);
160 break;
164 if (malloc_set_state (malloc_state_ptr) != 0)
165 emacs_abort ();
166 # ifndef XMALLOC_OVERRUN_CHECK
167 alloc_unexec_post ();
168 # endif
172 /* Declare the malloc initialization hook, which runs before 'main' starts.
173 EXTERNALLY_VISIBLE works around Bug#22522. */
174 # ifndef __MALLOC_HOOK_VOLATILE
175 # define __MALLOC_HOOK_VOLATILE
176 # endif
177 voidfuncptr __MALLOC_HOOK_VOLATILE __malloc_initialize_hook EXTERNALLY_VISIBLE
178 = malloc_initialize_hook;
180 #endif
182 #if defined DOUG_LEA_MALLOC || !defined CANNOT_DUMP
184 /* Allocator-related actions to do just before and after unexec. */
186 void
187 alloc_unexec_pre (void)
189 # ifdef DOUG_LEA_MALLOC
190 malloc_state_ptr = malloc_get_state ();
191 if (!malloc_state_ptr)
192 fatal ("malloc_get_state: %s", strerror (errno));
193 # endif
194 # ifdef HYBRID_MALLOC
195 bss_sbrk_did_unexec = true;
196 # endif
199 void
200 alloc_unexec_post (void)
202 # ifdef DOUG_LEA_MALLOC
203 free (malloc_state_ptr);
204 # endif
205 # ifdef HYBRID_MALLOC
206 bss_sbrk_did_unexec = false;
207 # endif
209 #endif
211 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
212 to a struct Lisp_String. */
214 #define MARK_STRING(S) ((S)->u.s.size |= ARRAY_MARK_FLAG)
215 #define UNMARK_STRING(S) ((S)->u.s.size &= ~ARRAY_MARK_FLAG)
216 #define STRING_MARKED_P(S) (((S)->u.s.size & ARRAY_MARK_FLAG) != 0)
218 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
219 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
220 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
222 /* Default value of gc_cons_threshold (see below). */
224 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
226 /* Global variables. */
227 struct emacs_globals globals;
229 /* Number of bytes of consing done since the last gc. */
231 EMACS_INT consing_since_gc;
233 /* Similar minimum, computed from Vgc_cons_percentage. */
235 EMACS_INT gc_relative_threshold;
237 /* Minimum number of bytes of consing since GC before next GC,
238 when memory is full. */
240 EMACS_INT memory_full_cons_threshold;
242 /* True during GC. */
244 bool gc_in_progress;
246 /* Number of live and free conses etc. */
248 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
249 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
250 static EMACS_INT total_free_floats, total_floats;
252 /* Points to memory space allocated as "spare", to be freed if we run
253 out of memory. We keep one large block, four cons-blocks, and
254 two string blocks. */
256 static char *spare_memory[7];
258 /* Amount of spare memory to keep in large reserve block, or to see
259 whether this much is available when malloc fails on a larger request. */
261 #define SPARE_MEMORY (1 << 14)
263 /* Initialize it to a nonzero value to force it into data space
264 (rather than bss space). That way unexec will remap it into text
265 space (pure), on some systems. We have not implemented the
266 remapping on more recent systems because this is less important
267 nowadays than in the days of small memories and timesharing. */
269 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
270 #define PUREBEG (char *) pure
272 /* Pointer to the pure area, and its size. */
274 static char *purebeg;
275 static ptrdiff_t pure_size;
277 /* Number of bytes of pure storage used before pure storage overflowed.
278 If this is non-zero, this implies that an overflow occurred. */
280 static ptrdiff_t pure_bytes_used_before_overflow;
282 /* Index in pure at which next pure Lisp object will be allocated.. */
284 static ptrdiff_t pure_bytes_used_lisp;
286 /* Number of bytes allocated for non-Lisp objects in pure storage. */
288 static ptrdiff_t pure_bytes_used_non_lisp;
290 /* If nonzero, this is a warning delivered by malloc and not yet
291 displayed. */
293 const char *pending_malloc_warning;
295 #if 0 /* Normally, pointer sanity only on request... */
296 #ifdef ENABLE_CHECKING
297 #define SUSPICIOUS_OBJECT_CHECKING 1
298 #endif
299 #endif
301 /* ... but unconditionally use SUSPICIOUS_OBJECT_CHECKING while the GC
302 bug is unresolved. */
303 #define SUSPICIOUS_OBJECT_CHECKING 1
305 #ifdef SUSPICIOUS_OBJECT_CHECKING
306 struct suspicious_free_record
308 void *suspicious_object;
309 void *backtrace[128];
311 static void *suspicious_objects[32];
312 static int suspicious_object_index;
313 struct suspicious_free_record suspicious_free_history[64] EXTERNALLY_VISIBLE;
314 static int suspicious_free_history_index;
315 /* Find the first currently-monitored suspicious pointer in range
316 [begin,end) or NULL if no such pointer exists. */
317 static void *find_suspicious_object_in_range (void *begin, void *end);
318 static void detect_suspicious_free (void *ptr);
319 #else
320 # define find_suspicious_object_in_range(begin, end) NULL
321 # define detect_suspicious_free(ptr) (void)
322 #endif
324 /* Maximum amount of C stack to save when a GC happens. */
326 #ifndef MAX_SAVE_STACK
327 #define MAX_SAVE_STACK 16000
328 #endif
330 /* Buffer in which we save a copy of the C stack at each GC. */
332 #if MAX_SAVE_STACK > 0
333 static char *stack_copy;
334 static ptrdiff_t stack_copy_size;
336 /* Copy to DEST a block of memory from SRC of size SIZE bytes,
337 avoiding any address sanitization. */
339 static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
340 no_sanitize_memcpy (void *dest, void const *src, size_t size)
342 if (! ADDRESS_SANITIZER)
343 return memcpy (dest, src, size);
344 else
346 size_t i;
347 char *d = dest;
348 char const *s = src;
349 for (i = 0; i < size; i++)
350 d[i] = s[i];
351 return dest;
355 #endif /* MAX_SAVE_STACK > 0 */
357 static void mark_terminals (void);
358 static void gc_sweep (void);
359 static Lisp_Object make_pure_vector (ptrdiff_t);
360 static void mark_buffer (struct buffer *);
362 #if !defined REL_ALLOC || defined SYSTEM_MALLOC || defined HYBRID_MALLOC
363 static void refill_memory_reserve (void);
364 #endif
365 static void compact_small_strings (void);
366 static void free_large_strings (void);
367 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
369 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
370 what memory allocated via lisp_malloc and lisp_align_malloc is intended
371 for what purpose. This enumeration specifies the type of memory. */
373 enum mem_type
375 MEM_TYPE_NON_LISP,
376 MEM_TYPE_BUFFER,
377 MEM_TYPE_CONS,
378 MEM_TYPE_STRING,
379 MEM_TYPE_MISC,
380 MEM_TYPE_SYMBOL,
381 MEM_TYPE_FLOAT,
382 /* Since all non-bool pseudovectors are small enough to be
383 allocated from vector blocks, this memory type denotes
384 large regular vectors and large bool pseudovectors. */
385 MEM_TYPE_VECTORLIKE,
386 /* Special type to denote vector blocks. */
387 MEM_TYPE_VECTOR_BLOCK,
388 /* Special type to denote reserved memory. */
389 MEM_TYPE_SPARE
392 /* A unique object in pure space used to make some Lisp objects
393 on free lists recognizable in O(1). */
395 static Lisp_Object Vdead;
396 #define DEADP(x) EQ (x, Vdead)
398 #ifdef GC_MALLOC_CHECK
400 enum mem_type allocated_mem_type;
402 #endif /* GC_MALLOC_CHECK */
404 /* A node in the red-black tree describing allocated memory containing
405 Lisp data. Each such block is recorded with its start and end
406 address when it is allocated, and removed from the tree when it
407 is freed.
409 A red-black tree is a balanced binary tree with the following
410 properties:
412 1. Every node is either red or black.
413 2. Every leaf is black.
414 3. If a node is red, then both of its children are black.
415 4. Every simple path from a node to a descendant leaf contains
416 the same number of black nodes.
417 5. The root is always black.
419 When nodes are inserted into the tree, or deleted from the tree,
420 the tree is "fixed" so that these properties are always true.
422 A red-black tree with N internal nodes has height at most 2
423 log(N+1). Searches, insertions and deletions are done in O(log N).
424 Please see a text book about data structures for a detailed
425 description of red-black trees. Any book worth its salt should
426 describe them. */
428 struct mem_node
430 /* Children of this node. These pointers are never NULL. When there
431 is no child, the value is MEM_NIL, which points to a dummy node. */
432 struct mem_node *left, *right;
434 /* The parent of this node. In the root node, this is NULL. */
435 struct mem_node *parent;
437 /* Start and end of allocated region. */
438 void *start, *end;
440 /* Node color. */
441 enum {MEM_BLACK, MEM_RED} color;
443 /* Memory type. */
444 enum mem_type type;
447 /* Root of the tree describing allocated Lisp memory. */
449 static struct mem_node *mem_root;
451 /* Lowest and highest known address in the heap. */
453 static void *min_heap_address, *max_heap_address;
455 /* Sentinel node of the tree. */
457 static struct mem_node mem_z;
458 #define MEM_NIL &mem_z
460 static struct mem_node *mem_insert (void *, void *, enum mem_type);
461 static void mem_insert_fixup (struct mem_node *);
462 static void mem_rotate_left (struct mem_node *);
463 static void mem_rotate_right (struct mem_node *);
464 static void mem_delete (struct mem_node *);
465 static void mem_delete_fixup (struct mem_node *);
466 static struct mem_node *mem_find (void *);
468 #ifndef DEADP
469 # define DEADP(x) 0
470 #endif
472 /* Addresses of staticpro'd variables. Initialize it to a nonzero
473 value; otherwise some compilers put it into BSS. */
475 enum { NSTATICS = 2048 };
476 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
478 /* Index of next unused slot in staticvec. */
480 static int staticidx;
482 static void *pure_alloc (size_t, int);
484 /* True if N is a power of 2. N should be positive. */
486 #define POWER_OF_2(n) (((n) & ((n) - 1)) == 0)
488 /* Return X rounded to the next multiple of Y. Y should be positive,
489 and Y - 1 + X should not overflow. Arguments should not have side
490 effects, as they are evaluated more than once. Tune for Y being a
491 power of 2. */
493 #define ROUNDUP(x, y) (POWER_OF_2 (y) \
494 ? ((y) - 1 + (x)) & ~ ((y) - 1) \
495 : ((y) - 1 + (x)) - ((y) - 1 + (x)) % (y))
497 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
499 static void *
500 pointer_align (void *ptr, int alignment)
502 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
505 /* Extract the pointer hidden within A, if A is not a symbol.
506 If A is a symbol, extract the hidden pointer's offset from lispsym,
507 converted to void *. */
509 #define macro_XPNTR_OR_SYMBOL_OFFSET(a) \
510 ((void *) (intptr_t) (USE_LSB_TAG ? XLI (a) - XTYPE (a) : XLI (a) & VALMASK))
512 /* Extract the pointer hidden within A. */
514 #define macro_XPNTR(a) \
515 ((void *) ((intptr_t) XPNTR_OR_SYMBOL_OFFSET (a) \
516 + (SYMBOLP (a) ? (char *) lispsym : NULL)))
518 /* For pointer access, define XPNTR and XPNTR_OR_SYMBOL_OFFSET as
519 functions, as functions are cleaner and can be used in debuggers.
520 Also, define them as macros if being compiled with GCC without
521 optimization, for performance in that case. The macro_* names are
522 private to this section of code. */
524 static ATTRIBUTE_UNUSED void *
525 XPNTR_OR_SYMBOL_OFFSET (Lisp_Object a)
527 return macro_XPNTR_OR_SYMBOL_OFFSET (a);
529 static ATTRIBUTE_UNUSED void *
530 XPNTR (Lisp_Object a)
532 return macro_XPNTR (a);
535 #if DEFINE_KEY_OPS_AS_MACROS
536 # define XPNTR_OR_SYMBOL_OFFSET(a) macro_XPNTR_OR_SYMBOL_OFFSET (a)
537 # define XPNTR(a) macro_XPNTR (a)
538 #endif
540 static void
541 XFLOAT_INIT (Lisp_Object f, double n)
543 XFLOAT (f)->u.data = n;
546 #ifdef DOUG_LEA_MALLOC
547 static bool
548 pointers_fit_in_lispobj_p (void)
550 return (UINTPTR_MAX <= VAL_MAX) || USE_LSB_TAG;
553 static bool
554 mmap_lisp_allowed_p (void)
556 /* If we can't store all memory addresses in our lisp objects, it's
557 risky to let the heap use mmap and give us addresses from all
558 over our address space. We also can't use mmap for lisp objects
559 if we might dump: unexec doesn't preserve the contents of mmapped
560 regions. */
561 return pointers_fit_in_lispobj_p () && !might_dump;
563 #endif
565 /* Head of a circularly-linked list of extant finalizers. */
566 static struct Lisp_Finalizer finalizers;
568 /* Head of a circularly-linked list of finalizers that must be invoked
569 because we deemed them unreachable. This list must be global, and
570 not a local inside garbage_collect_1, in case we GC again while
571 running finalizers. */
572 static struct Lisp_Finalizer doomed_finalizers;
575 /************************************************************************
576 Malloc
577 ************************************************************************/
579 #if defined SIGDANGER || (!defined SYSTEM_MALLOC && !defined HYBRID_MALLOC)
581 /* Function malloc calls this if it finds we are near exhausting storage. */
583 void
584 malloc_warning (const char *str)
586 pending_malloc_warning = str;
589 #endif
591 /* Display an already-pending malloc warning. */
593 void
594 display_malloc_warning (void)
596 call3 (intern ("display-warning"),
597 intern ("alloc"),
598 build_string (pending_malloc_warning),
599 intern ("emergency"));
600 pending_malloc_warning = 0;
603 /* Called if we can't allocate relocatable space for a buffer. */
605 void
606 buffer_memory_full (ptrdiff_t nbytes)
608 /* If buffers use the relocating allocator, no need to free
609 spare_memory, because we may have plenty of malloc space left
610 that we could get, and if we don't, the malloc that fails will
611 itself cause spare_memory to be freed. If buffers don't use the
612 relocating allocator, treat this like any other failing
613 malloc. */
615 #ifndef REL_ALLOC
616 memory_full (nbytes);
617 #else
618 /* This used to call error, but if we've run out of memory, we could
619 get infinite recursion trying to build the string. */
620 xsignal (Qnil, Vmemory_signal_data);
621 #endif
624 /* A common multiple of the positive integers A and B. Ideally this
625 would be the least common multiple, but there's no way to do that
626 as a constant expression in C, so do the best that we can easily do. */
627 #define COMMON_MULTIPLE(a, b) \
628 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
630 #ifndef XMALLOC_OVERRUN_CHECK
631 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
632 #else
634 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
635 around each block.
637 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
638 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
639 block size in little-endian order. The trailer consists of
640 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
642 The header is used to detect whether this block has been allocated
643 through these functions, as some low-level libc functions may
644 bypass the malloc hooks. */
646 #define XMALLOC_OVERRUN_CHECK_SIZE 16
647 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
648 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
650 #define XMALLOC_BASE_ALIGNMENT alignof (max_align_t)
652 #define XMALLOC_HEADER_ALIGNMENT \
653 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
655 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
656 hold a size_t value and (2) the header size is a multiple of the
657 alignment that Emacs needs for C types and for USE_LSB_TAG. */
658 #define XMALLOC_OVERRUN_SIZE_SIZE \
659 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
660 + XMALLOC_HEADER_ALIGNMENT - 1) \
661 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
662 - XMALLOC_OVERRUN_CHECK_SIZE)
664 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
665 { '\x9a', '\x9b', '\xae', '\xaf',
666 '\xbf', '\xbe', '\xce', '\xcf',
667 '\xea', '\xeb', '\xec', '\xed',
668 '\xdf', '\xde', '\x9c', '\x9d' };
670 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
671 { '\xaa', '\xab', '\xac', '\xad',
672 '\xba', '\xbb', '\xbc', '\xbd',
673 '\xca', '\xcb', '\xcc', '\xcd',
674 '\xda', '\xdb', '\xdc', '\xdd' };
676 /* Insert and extract the block size in the header. */
678 static void
679 xmalloc_put_size (unsigned char *ptr, size_t size)
681 int i;
682 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
684 *--ptr = size & ((1 << CHAR_BIT) - 1);
685 size >>= CHAR_BIT;
689 static size_t
690 xmalloc_get_size (unsigned char *ptr)
692 size_t size = 0;
693 int i;
694 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
695 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
697 size <<= CHAR_BIT;
698 size += *ptr++;
700 return size;
704 /* Like malloc, but wraps allocated block with header and trailer. */
706 static void *
707 overrun_check_malloc (size_t size)
709 register unsigned char *val;
710 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
711 emacs_abort ();
713 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
714 if (val)
716 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
717 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
718 xmalloc_put_size (val, size);
719 memcpy (val + size, xmalloc_overrun_check_trailer,
720 XMALLOC_OVERRUN_CHECK_SIZE);
722 return val;
726 /* Like realloc, but checks old block for overrun, and wraps new block
727 with header and trailer. */
729 static void *
730 overrun_check_realloc (void *block, size_t size)
732 register unsigned char *val = (unsigned char *) block;
733 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
734 emacs_abort ();
736 if (val
737 && memcmp (xmalloc_overrun_check_header,
738 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
739 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
741 size_t osize = xmalloc_get_size (val);
742 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
743 XMALLOC_OVERRUN_CHECK_SIZE))
744 emacs_abort ();
745 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
746 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
747 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
750 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
752 if (val)
754 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
755 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
756 xmalloc_put_size (val, size);
757 memcpy (val + size, xmalloc_overrun_check_trailer,
758 XMALLOC_OVERRUN_CHECK_SIZE);
760 return val;
763 /* Like free, but checks block for overrun. */
765 static void
766 overrun_check_free (void *block)
768 unsigned char *val = (unsigned char *) block;
770 if (val
771 && memcmp (xmalloc_overrun_check_header,
772 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
773 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
775 size_t osize = xmalloc_get_size (val);
776 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
777 XMALLOC_OVERRUN_CHECK_SIZE))
778 emacs_abort ();
779 #ifdef XMALLOC_CLEAR_FREE_MEMORY
780 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
781 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
782 #else
783 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
784 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
785 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
786 #endif
789 free (val);
792 #undef malloc
793 #undef realloc
794 #undef free
795 #define malloc overrun_check_malloc
796 #define realloc overrun_check_realloc
797 #define free overrun_check_free
798 #endif
800 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
801 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
802 If that variable is set, block input while in one of Emacs's memory
803 allocation functions. There should be no need for this debugging
804 option, since signal handlers do not allocate memory, but Emacs
805 formerly allocated memory in signal handlers and this compile-time
806 option remains as a way to help debug the issue should it rear its
807 ugly head again. */
808 #ifdef XMALLOC_BLOCK_INPUT_CHECK
809 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
810 static void
811 malloc_block_input (void)
813 if (block_input_in_memory_allocators)
814 block_input ();
816 static void
817 malloc_unblock_input (void)
819 if (block_input_in_memory_allocators)
820 unblock_input ();
822 # define MALLOC_BLOCK_INPUT malloc_block_input ()
823 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
824 #else
825 # define MALLOC_BLOCK_INPUT ((void) 0)
826 # define MALLOC_UNBLOCK_INPUT ((void) 0)
827 #endif
829 #define MALLOC_PROBE(size) \
830 do { \
831 if (profiler_memory_running) \
832 malloc_probe (size); \
833 } while (0)
835 static void *lmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
836 static void *lrealloc (void *, size_t);
838 /* Like malloc but check for no memory and block interrupt input. */
840 void *
841 xmalloc (size_t size)
843 void *val;
845 MALLOC_BLOCK_INPUT;
846 val = lmalloc (size);
847 MALLOC_UNBLOCK_INPUT;
849 if (!val && size)
850 memory_full (size);
851 MALLOC_PROBE (size);
852 return val;
855 /* Like the above, but zeroes out the memory just allocated. */
857 void *
858 xzalloc (size_t size)
860 void *val;
862 MALLOC_BLOCK_INPUT;
863 val = lmalloc (size);
864 MALLOC_UNBLOCK_INPUT;
866 if (!val && size)
867 memory_full (size);
868 memset (val, 0, size);
869 MALLOC_PROBE (size);
870 return val;
873 /* Like realloc but check for no memory and block interrupt input.. */
875 void *
876 xrealloc (void *block, size_t size)
878 void *val;
880 MALLOC_BLOCK_INPUT;
881 /* We must call malloc explicitly when BLOCK is 0, since some
882 reallocs don't do this. */
883 if (! block)
884 val = lmalloc (size);
885 else
886 val = lrealloc (block, size);
887 MALLOC_UNBLOCK_INPUT;
889 if (!val && size)
890 memory_full (size);
891 MALLOC_PROBE (size);
892 return val;
896 /* Like free but block interrupt input. */
898 void
899 xfree (void *block)
901 if (!block)
902 return;
903 MALLOC_BLOCK_INPUT;
904 free (block);
905 MALLOC_UNBLOCK_INPUT;
906 /* We don't call refill_memory_reserve here
907 because in practice the call in r_alloc_free seems to suffice. */
911 /* Other parts of Emacs pass large int values to allocator functions
912 expecting ptrdiff_t. This is portable in practice, but check it to
913 be safe. */
914 verify (INT_MAX <= PTRDIFF_MAX);
917 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
918 Signal an error on memory exhaustion, and block interrupt input. */
920 void *
921 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
923 eassert (0 <= nitems && 0 < item_size);
924 ptrdiff_t nbytes;
925 if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
926 memory_full (SIZE_MAX);
927 return xmalloc (nbytes);
931 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
932 Signal an error on memory exhaustion, and block interrupt input. */
934 void *
935 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
937 eassert (0 <= nitems && 0 < item_size);
938 ptrdiff_t nbytes;
939 if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
940 memory_full (SIZE_MAX);
941 return xrealloc (pa, nbytes);
945 /* Grow PA, which points to an array of *NITEMS items, and return the
946 location of the reallocated array, updating *NITEMS to reflect its
947 new size. The new array will contain at least NITEMS_INCR_MIN more
948 items, but will not contain more than NITEMS_MAX items total.
949 ITEM_SIZE is the size of each item, in bytes.
951 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
952 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
953 infinity.
955 If PA is null, then allocate a new array instead of reallocating
956 the old one.
958 Block interrupt input as needed. If memory exhaustion occurs, set
959 *NITEMS to zero if PA is null, and signal an error (i.e., do not
960 return).
962 Thus, to grow an array A without saving its old contents, do
963 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
964 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
965 and signals an error, and later this code is reexecuted and
966 attempts to free A. */
968 void *
969 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
970 ptrdiff_t nitems_max, ptrdiff_t item_size)
972 ptrdiff_t n0 = *nitems;
973 eassume (0 < item_size && 0 < nitems_incr_min && 0 <= n0 && -1 <= nitems_max);
975 /* The approximate size to use for initial small allocation
976 requests. This is the largest "small" request for the GNU C
977 library malloc. */
978 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
980 /* If the array is tiny, grow it to about (but no greater than)
981 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%.
982 Adjust the growth according to three constraints: NITEMS_INCR_MIN,
983 NITEMS_MAX, and what the C language can represent safely. */
985 ptrdiff_t n, nbytes;
986 if (INT_ADD_WRAPV (n0, n0 >> 1, &n))
987 n = PTRDIFF_MAX;
988 if (0 <= nitems_max && nitems_max < n)
989 n = nitems_max;
991 ptrdiff_t adjusted_nbytes
992 = ((INT_MULTIPLY_WRAPV (n, item_size, &nbytes) || SIZE_MAX < nbytes)
993 ? min (PTRDIFF_MAX, SIZE_MAX)
994 : nbytes < DEFAULT_MXFAST ? DEFAULT_MXFAST : 0);
995 if (adjusted_nbytes)
997 n = adjusted_nbytes / item_size;
998 nbytes = adjusted_nbytes - adjusted_nbytes % item_size;
1001 if (! pa)
1002 *nitems = 0;
1003 if (n - n0 < nitems_incr_min
1004 && (INT_ADD_WRAPV (n0, nitems_incr_min, &n)
1005 || (0 <= nitems_max && nitems_max < n)
1006 || INT_MULTIPLY_WRAPV (n, item_size, &nbytes)))
1007 memory_full (SIZE_MAX);
1008 pa = xrealloc (pa, nbytes);
1009 *nitems = n;
1010 return pa;
1014 /* Like strdup, but uses xmalloc. */
1016 char *
1017 xstrdup (const char *s)
1019 ptrdiff_t size;
1020 eassert (s);
1021 size = strlen (s) + 1;
1022 return memcpy (xmalloc (size), s, size);
1025 /* Like above, but duplicates Lisp string to C string. */
1027 char *
1028 xlispstrdup (Lisp_Object string)
1030 ptrdiff_t size = SBYTES (string) + 1;
1031 return memcpy (xmalloc (size), SSDATA (string), size);
1034 /* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
1035 pointed to. If STRING is null, assign it without copying anything.
1036 Allocate before freeing, to avoid a dangling pointer if allocation
1037 fails. */
1039 void
1040 dupstring (char **ptr, char const *string)
1042 char *old = *ptr;
1043 *ptr = string ? xstrdup (string) : 0;
1044 xfree (old);
1048 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
1049 argument is a const pointer. */
1051 void
1052 xputenv (char const *string)
1054 if (putenv ((char *) string) != 0)
1055 memory_full (0);
1058 /* Return a newly allocated memory block of SIZE bytes, remembering
1059 to free it when unwinding. */
1060 void *
1061 record_xmalloc (size_t size)
1063 void *p = xmalloc (size);
1064 record_unwind_protect_ptr (xfree, p);
1065 return p;
1069 /* Like malloc but used for allocating Lisp data. NBYTES is the
1070 number of bytes to allocate, TYPE describes the intended use of the
1071 allocated memory block (for strings, for conses, ...). */
1073 #if ! USE_LSB_TAG
1074 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
1075 #endif
1077 static void *
1078 lisp_malloc (size_t nbytes, enum mem_type type)
1080 register void *val;
1082 MALLOC_BLOCK_INPUT;
1084 #ifdef GC_MALLOC_CHECK
1085 allocated_mem_type = type;
1086 #endif
1088 val = lmalloc (nbytes);
1090 #if ! USE_LSB_TAG
1091 /* If the memory just allocated cannot be addressed thru a Lisp
1092 object's pointer, and it needs to be,
1093 that's equivalent to running out of memory. */
1094 if (val && type != MEM_TYPE_NON_LISP)
1096 Lisp_Object tem;
1097 XSETCONS (tem, (char *) val + nbytes - 1);
1098 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
1100 lisp_malloc_loser = val;
1101 free (val);
1102 val = 0;
1105 #endif
1107 #ifndef GC_MALLOC_CHECK
1108 if (val && type != MEM_TYPE_NON_LISP)
1109 mem_insert (val, (char *) val + nbytes, type);
1110 #endif
1112 MALLOC_UNBLOCK_INPUT;
1113 if (!val && nbytes)
1114 memory_full (nbytes);
1115 MALLOC_PROBE (nbytes);
1116 return val;
1119 /* Free BLOCK. This must be called to free memory allocated with a
1120 call to lisp_malloc. */
1122 static void
1123 lisp_free (void *block)
1125 MALLOC_BLOCK_INPUT;
1126 free (block);
1127 #ifndef GC_MALLOC_CHECK
1128 mem_delete (mem_find (block));
1129 #endif
1130 MALLOC_UNBLOCK_INPUT;
1133 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
1135 /* The entry point is lisp_align_malloc which returns blocks of at most
1136 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
1138 /* Byte alignment of storage blocks. */
1139 #define BLOCK_ALIGN (1 << 10)
1140 verify (POWER_OF_2 (BLOCK_ALIGN));
1142 /* Use aligned_alloc if it or a simple substitute is available.
1143 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
1144 clang 3.3 anyway. Aligned allocation is incompatible with
1145 unexmacosx.c, so don't use it on Darwin. */
1147 #if ! ADDRESS_SANITIZER && !defined DARWIN_OS
1148 # if (defined HAVE_ALIGNED_ALLOC \
1149 || (defined HYBRID_MALLOC \
1150 ? defined HAVE_POSIX_MEMALIGN \
1151 : !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC))
1152 # define USE_ALIGNED_ALLOC 1
1153 # elif !defined HYBRID_MALLOC && defined HAVE_POSIX_MEMALIGN
1154 # define USE_ALIGNED_ALLOC 1
1155 # define aligned_alloc my_aligned_alloc /* Avoid collision with lisp.h. */
1156 static void *
1157 aligned_alloc (size_t alignment, size_t size)
1159 /* POSIX says the alignment must be a power-of-2 multiple of sizeof (void *).
1160 Verify this for all arguments this function is given. */
1161 verify (BLOCK_ALIGN % sizeof (void *) == 0
1162 && POWER_OF_2 (BLOCK_ALIGN / sizeof (void *)));
1163 verify (GCALIGNMENT % sizeof (void *) == 0
1164 && POWER_OF_2 (GCALIGNMENT / sizeof (void *)));
1165 eassert (alignment == BLOCK_ALIGN || alignment == GCALIGNMENT);
1167 void *p;
1168 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
1170 # endif
1171 #endif
1173 /* Padding to leave at the end of a malloc'd block. This is to give
1174 malloc a chance to minimize the amount of memory wasted to alignment.
1175 It should be tuned to the particular malloc library used.
1176 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
1177 aligned_alloc on the other hand would ideally prefer a value of 4
1178 because otherwise, there's 1020 bytes wasted between each ablocks.
1179 In Emacs, testing shows that those 1020 can most of the time be
1180 efficiently used by malloc to place other objects, so a value of 0 can
1181 still preferable unless you have a lot of aligned blocks and virtually
1182 nothing else. */
1183 #define BLOCK_PADDING 0
1184 #define BLOCK_BYTES \
1185 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1187 /* Internal data structures and constants. */
1189 #define ABLOCKS_SIZE 16
1191 /* An aligned block of memory. */
1192 struct ablock
1194 union
1196 char payload[BLOCK_BYTES];
1197 struct ablock *next_free;
1198 } x;
1200 /* ABASE is the aligned base of the ablocks. It is overloaded to
1201 hold a virtual "busy" field that counts twice the number of used
1202 ablock values in the parent ablocks, plus one if the real base of
1203 the parent ablocks is ABASE (if the "busy" field is even, the
1204 word before the first ablock holds a pointer to the real base).
1205 The first ablock has a "busy" ABASE, and the others have an
1206 ordinary pointer ABASE. To tell the difference, the code assumes
1207 that pointers, when cast to uintptr_t, are at least 2 *
1208 ABLOCKS_SIZE + 1. */
1209 struct ablocks *abase;
1211 /* The padding of all but the last ablock is unused. The padding of
1212 the last ablock in an ablocks is not allocated. */
1213 #if BLOCK_PADDING
1214 char padding[BLOCK_PADDING];
1215 #endif
1218 /* A bunch of consecutive aligned blocks. */
1219 struct ablocks
1221 struct ablock blocks[ABLOCKS_SIZE];
1224 /* Size of the block requested from malloc or aligned_alloc. */
1225 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1227 #define ABLOCK_ABASE(block) \
1228 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1229 ? (struct ablocks *) (block) \
1230 : (block)->abase)
1232 /* Virtual `busy' field. */
1233 #define ABLOCKS_BUSY(a_base) ((a_base)->blocks[0].abase)
1235 /* Pointer to the (not necessarily aligned) malloc block. */
1236 #ifdef USE_ALIGNED_ALLOC
1237 #define ABLOCKS_BASE(abase) (abase)
1238 #else
1239 #define ABLOCKS_BASE(abase) \
1240 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **) (abase))[-1])
1241 #endif
1243 /* The list of free ablock. */
1244 static struct ablock *free_ablock;
1246 /* Allocate an aligned block of nbytes.
1247 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1248 smaller or equal to BLOCK_BYTES. */
1249 static void *
1250 lisp_align_malloc (size_t nbytes, enum mem_type type)
1252 void *base, *val;
1253 struct ablocks *abase;
1255 eassert (nbytes <= BLOCK_BYTES);
1257 MALLOC_BLOCK_INPUT;
1259 #ifdef GC_MALLOC_CHECK
1260 allocated_mem_type = type;
1261 #endif
1263 if (!free_ablock)
1265 int i;
1266 bool aligned;
1268 #ifdef DOUG_LEA_MALLOC
1269 if (!mmap_lisp_allowed_p ())
1270 mallopt (M_MMAP_MAX, 0);
1271 #endif
1273 #ifdef USE_ALIGNED_ALLOC
1274 verify (ABLOCKS_BYTES % BLOCK_ALIGN == 0);
1275 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
1276 #else
1277 base = malloc (ABLOCKS_BYTES);
1278 abase = pointer_align (base, BLOCK_ALIGN);
1279 #endif
1281 if (base == 0)
1283 MALLOC_UNBLOCK_INPUT;
1284 memory_full (ABLOCKS_BYTES);
1287 aligned = (base == abase);
1288 if (!aligned)
1289 ((void **) abase)[-1] = base;
1291 #ifdef DOUG_LEA_MALLOC
1292 if (!mmap_lisp_allowed_p ())
1293 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1294 #endif
1296 #if ! USE_LSB_TAG
1297 /* If the memory just allocated cannot be addressed thru a Lisp
1298 object's pointer, and it needs to be, that's equivalent to
1299 running out of memory. */
1300 if (type != MEM_TYPE_NON_LISP)
1302 Lisp_Object tem;
1303 char *end = (char *) base + ABLOCKS_BYTES - 1;
1304 XSETCONS (tem, end);
1305 if ((char *) XCONS (tem) != end)
1307 lisp_malloc_loser = base;
1308 free (base);
1309 MALLOC_UNBLOCK_INPUT;
1310 memory_full (SIZE_MAX);
1313 #endif
1315 /* Initialize the blocks and put them on the free list.
1316 If `base' was not properly aligned, we can't use the last block. */
1317 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1319 abase->blocks[i].abase = abase;
1320 abase->blocks[i].x.next_free = free_ablock;
1321 free_ablock = &abase->blocks[i];
1323 intptr_t ialigned = aligned;
1324 ABLOCKS_BUSY (abase) = (struct ablocks *) ialigned;
1326 eassert ((uintptr_t) abase % BLOCK_ALIGN == 0);
1327 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1328 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1329 eassert (ABLOCKS_BASE (abase) == base);
1330 eassert ((intptr_t) ABLOCKS_BUSY (abase) == aligned);
1333 abase = ABLOCK_ABASE (free_ablock);
1334 ABLOCKS_BUSY (abase)
1335 = (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1336 val = free_ablock;
1337 free_ablock = free_ablock->x.next_free;
1339 #ifndef GC_MALLOC_CHECK
1340 if (type != MEM_TYPE_NON_LISP)
1341 mem_insert (val, (char *) val + nbytes, type);
1342 #endif
1344 MALLOC_UNBLOCK_INPUT;
1346 MALLOC_PROBE (nbytes);
1348 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1349 return val;
1352 static void
1353 lisp_align_free (void *block)
1355 struct ablock *ablock = block;
1356 struct ablocks *abase = ABLOCK_ABASE (ablock);
1358 MALLOC_BLOCK_INPUT;
1359 #ifndef GC_MALLOC_CHECK
1360 mem_delete (mem_find (block));
1361 #endif
1362 /* Put on free list. */
1363 ablock->x.next_free = free_ablock;
1364 free_ablock = ablock;
1365 /* Update busy count. */
1366 intptr_t busy = (intptr_t) ABLOCKS_BUSY (abase) - 2;
1367 eassume (0 <= busy && busy <= 2 * ABLOCKS_SIZE - 1);
1368 ABLOCKS_BUSY (abase) = (struct ablocks *) busy;
1370 if (busy < 2)
1371 { /* All the blocks are free. */
1372 int i = 0;
1373 bool aligned = busy;
1374 struct ablock **tem = &free_ablock;
1375 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1377 while (*tem)
1379 if (*tem >= (struct ablock *) abase && *tem < atop)
1381 i++;
1382 *tem = (*tem)->x.next_free;
1384 else
1385 tem = &(*tem)->x.next_free;
1387 eassert ((aligned & 1) == aligned);
1388 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1389 #ifdef USE_POSIX_MEMALIGN
1390 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1391 #endif
1392 free (ABLOCKS_BASE (abase));
1394 MALLOC_UNBLOCK_INPUT;
1397 #if !defined __GNUC__ && !defined __alignof__
1398 # define __alignof__(type) alignof (type)
1399 #endif
1401 /* True if malloc (N) is known to return a multiple of GCALIGNMENT
1402 whenever N is also a multiple. In practice this is true if
1403 __alignof__ (max_align_t) is a multiple as well, assuming
1404 GCALIGNMENT is 8; other values of GCALIGNMENT have not been looked
1405 into. Use __alignof__ if available, as otherwise
1406 MALLOC_IS_GC_ALIGNED would be false on GCC x86 even though the
1407 alignment is OK there.
1409 This is a macro, not an enum constant, for portability to HP-UX
1410 10.20 cc and AIX 3.2.5 xlc. */
1411 #define MALLOC_IS_GC_ALIGNED \
1412 (GCALIGNMENT == 8 && __alignof__ (max_align_t) % GCALIGNMENT == 0)
1414 /* True if a malloc-returned pointer P is suitably aligned for SIZE,
1415 where Lisp alignment may be needed if SIZE is Lisp-aligned. */
1417 static bool
1418 laligned (void *p, size_t size)
1420 return (MALLOC_IS_GC_ALIGNED || (intptr_t) p % GCALIGNMENT == 0
1421 || size % GCALIGNMENT != 0);
1424 /* Like malloc and realloc except that if SIZE is Lisp-aligned, make
1425 sure the result is too, if necessary by reallocating (typically
1426 with larger and larger sizes) until the allocator returns a
1427 Lisp-aligned pointer. Code that needs to allocate C heap memory
1428 for a Lisp object should use one of these functions to obtain a
1429 pointer P; that way, if T is an enum Lisp_Type value and L ==
1430 make_lisp_ptr (P, T), then XPNTR (L) == P and XTYPE (L) == T.
1432 On typical modern platforms these functions' loops do not iterate.
1433 On now-rare (and perhaps nonexistent) platforms, the loops in
1434 theory could repeat forever. If an infinite loop is possible on a
1435 platform, a build would surely loop and the builder can then send
1436 us a bug report. Adding a counter to try to detect any such loop
1437 would complicate the code (and possibly introduce bugs, in code
1438 that's never really exercised) for little benefit. */
1440 static void *
1441 lmalloc (size_t size)
1443 #if USE_ALIGNED_ALLOC
1444 if (! MALLOC_IS_GC_ALIGNED && size % GCALIGNMENT == 0)
1445 return aligned_alloc (GCALIGNMENT, size);
1446 #endif
1448 while (true)
1450 void *p = malloc (size);
1451 if (laligned (p, size))
1452 return p;
1453 free (p);
1454 size_t bigger = size + GCALIGNMENT;
1455 if (size < bigger)
1456 size = bigger;
1460 static void *
1461 lrealloc (void *p, size_t size)
1463 while (true)
1465 p = realloc (p, size);
1466 if (laligned (p, size))
1467 return p;
1468 size_t bigger = size + GCALIGNMENT;
1469 if (size < bigger)
1470 size = bigger;
1475 /***********************************************************************
1476 Interval Allocation
1477 ***********************************************************************/
1479 /* Number of intervals allocated in an interval_block structure.
1480 The 1020 is 1024 minus malloc overhead. */
1482 #define INTERVAL_BLOCK_SIZE \
1483 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1485 /* Intervals are allocated in chunks in the form of an interval_block
1486 structure. */
1488 struct interval_block
1490 /* Place `intervals' first, to preserve alignment. */
1491 struct interval intervals[INTERVAL_BLOCK_SIZE];
1492 struct interval_block *next;
1495 /* Current interval block. Its `next' pointer points to older
1496 blocks. */
1498 static struct interval_block *interval_block;
1500 /* Index in interval_block above of the next unused interval
1501 structure. */
1503 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1505 /* Number of free and live intervals. */
1507 static EMACS_INT total_free_intervals, total_intervals;
1509 /* List of free intervals. */
1511 static INTERVAL interval_free_list;
1513 /* Return a new interval. */
1515 INTERVAL
1516 make_interval (void)
1518 INTERVAL val;
1520 MALLOC_BLOCK_INPUT;
1522 if (interval_free_list)
1524 val = interval_free_list;
1525 interval_free_list = INTERVAL_PARENT (interval_free_list);
1527 else
1529 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1531 struct interval_block *newi
1532 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1534 newi->next = interval_block;
1535 interval_block = newi;
1536 interval_block_index = 0;
1537 total_free_intervals += INTERVAL_BLOCK_SIZE;
1539 val = &interval_block->intervals[interval_block_index++];
1542 MALLOC_UNBLOCK_INPUT;
1544 consing_since_gc += sizeof (struct interval);
1545 intervals_consed++;
1546 total_free_intervals--;
1547 RESET_INTERVAL (val);
1548 val->gcmarkbit = 0;
1549 return val;
1553 /* Mark Lisp objects in interval I. */
1555 static void
1556 mark_interval (INTERVAL i, void *dummy)
1558 /* Intervals should never be shared. So, if extra internal checking is
1559 enabled, GC aborts if it seems to have visited an interval twice. */
1560 eassert (!i->gcmarkbit);
1561 i->gcmarkbit = 1;
1562 mark_object (i->plist);
1565 /* Mark the interval tree rooted in I. */
1567 #define MARK_INTERVAL_TREE(i) \
1568 do { \
1569 if (i && !i->gcmarkbit) \
1570 traverse_intervals_noorder (i, mark_interval, NULL); \
1571 } while (0)
1573 /***********************************************************************
1574 String Allocation
1575 ***********************************************************************/
1577 /* Lisp_Strings are allocated in string_block structures. When a new
1578 string_block is allocated, all the Lisp_Strings it contains are
1579 added to a free-list string_free_list. When a new Lisp_String is
1580 needed, it is taken from that list. During the sweep phase of GC,
1581 string_blocks that are entirely free are freed, except two which
1582 we keep.
1584 String data is allocated from sblock structures. Strings larger
1585 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1586 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1588 Sblocks consist internally of sdata structures, one for each
1589 Lisp_String. The sdata structure points to the Lisp_String it
1590 belongs to. The Lisp_String points back to the `u.data' member of
1591 its sdata structure.
1593 When a Lisp_String is freed during GC, it is put back on
1594 string_free_list, and its `data' member and its sdata's `string'
1595 pointer is set to null. The size of the string is recorded in the
1596 `n.nbytes' member of the sdata. So, sdata structures that are no
1597 longer used, can be easily recognized, and it's easy to compact the
1598 sblocks of small strings which we do in compact_small_strings. */
1600 /* Size in bytes of an sblock structure used for small strings. This
1601 is 8192 minus malloc overhead. */
1603 #define SBLOCK_SIZE 8188
1605 /* Strings larger than this are considered large strings. String data
1606 for large strings is allocated from individual sblocks. */
1608 #define LARGE_STRING_BYTES 1024
1610 /* The SDATA typedef is a struct or union describing string memory
1611 sub-allocated from an sblock. This is where the contents of Lisp
1612 strings are stored. */
1614 struct sdata
1616 /* Back-pointer to the string this sdata belongs to. If null, this
1617 structure is free, and NBYTES (in this structure or in the union below)
1618 contains the string's byte size (the same value that STRING_BYTES
1619 would return if STRING were non-null). If non-null, STRING_BYTES
1620 (STRING) is the size of the data, and DATA contains the string's
1621 contents. */
1622 struct Lisp_String *string;
1624 #ifdef GC_CHECK_STRING_BYTES
1625 ptrdiff_t nbytes;
1626 #endif
1628 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1631 #ifdef GC_CHECK_STRING_BYTES
1633 typedef struct sdata sdata;
1634 #define SDATA_NBYTES(S) (S)->nbytes
1635 #define SDATA_DATA(S) (S)->data
1637 #else
1639 typedef union
1641 struct Lisp_String *string;
1643 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1644 which has a flexible array member. However, if implemented by
1645 giving this union a member of type 'struct sdata', the union
1646 could not be the last (flexible) member of 'struct sblock',
1647 because C99 prohibits a flexible array member from having a type
1648 that is itself a flexible array. So, comment this member out here,
1649 but remember that the option's there when using this union. */
1650 #if 0
1651 struct sdata u;
1652 #endif
1654 /* When STRING is null. */
1655 struct
1657 struct Lisp_String *string;
1658 ptrdiff_t nbytes;
1659 } n;
1660 } sdata;
1662 #define SDATA_NBYTES(S) (S)->n.nbytes
1663 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1665 #endif /* not GC_CHECK_STRING_BYTES */
1667 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1669 /* Structure describing a block of memory which is sub-allocated to
1670 obtain string data memory for strings. Blocks for small strings
1671 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1672 as large as needed. */
1674 struct sblock
1676 /* Next in list. */
1677 struct sblock *next;
1679 /* Pointer to the next free sdata block. This points past the end
1680 of the sblock if there isn't any space left in this block. */
1681 sdata *next_free;
1683 /* String data. */
1684 sdata data[FLEXIBLE_ARRAY_MEMBER];
1687 /* Number of Lisp strings in a string_block structure. The 1020 is
1688 1024 minus malloc overhead. */
1690 #define STRING_BLOCK_SIZE \
1691 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1693 /* Structure describing a block from which Lisp_String structures
1694 are allocated. */
1696 struct string_block
1698 /* Place `strings' first, to preserve alignment. */
1699 struct Lisp_String strings[STRING_BLOCK_SIZE];
1700 struct string_block *next;
1703 /* Head and tail of the list of sblock structures holding Lisp string
1704 data. We always allocate from current_sblock. The NEXT pointers
1705 in the sblock structures go from oldest_sblock to current_sblock. */
1707 static struct sblock *oldest_sblock, *current_sblock;
1709 /* List of sblocks for large strings. */
1711 static struct sblock *large_sblocks;
1713 /* List of string_block structures. */
1715 static struct string_block *string_blocks;
1717 /* Free-list of Lisp_Strings. */
1719 static struct Lisp_String *string_free_list;
1721 /* Number of live and free Lisp_Strings. */
1723 static EMACS_INT total_strings, total_free_strings;
1725 /* Number of bytes used by live strings. */
1727 static EMACS_INT total_string_bytes;
1729 /* Given a pointer to a Lisp_String S which is on the free-list
1730 string_free_list, return a pointer to its successor in the
1731 free-list. */
1733 #define NEXT_FREE_LISP_STRING(S) ((S)->u.next)
1735 /* Return a pointer to the sdata structure belonging to Lisp string S.
1736 S must be live, i.e. S->data must not be null. S->data is actually
1737 a pointer to the `u.data' member of its sdata structure; the
1738 structure starts at a constant offset in front of that. */
1740 #define SDATA_OF_STRING(S) ((sdata *) ((S)->u.s.data - SDATA_DATA_OFFSET))
1743 #ifdef GC_CHECK_STRING_OVERRUN
1745 /* We check for overrun in string data blocks by appending a small
1746 "cookie" after each allocated string data block, and check for the
1747 presence of this cookie during GC. */
1749 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1750 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1751 { '\xde', '\xad', '\xbe', '\xef' };
1753 #else
1754 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1755 #endif
1757 /* Value is the size of an sdata structure large enough to hold NBYTES
1758 bytes of string data. The value returned includes a terminating
1759 NUL byte, the size of the sdata structure, and padding. */
1761 #ifdef GC_CHECK_STRING_BYTES
1763 #define SDATA_SIZE(NBYTES) FLEXSIZEOF (struct sdata, data, (NBYTES) + 1)
1765 #else /* not GC_CHECK_STRING_BYTES */
1767 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1768 less than the size of that member. The 'max' is not needed when
1769 SDATA_DATA_OFFSET is a multiple of FLEXALIGNOF (struct sdata),
1770 because then the alignment code reserves enough space. */
1772 #define SDATA_SIZE(NBYTES) \
1773 ((SDATA_DATA_OFFSET \
1774 + (SDATA_DATA_OFFSET % FLEXALIGNOF (struct sdata) == 0 \
1775 ? NBYTES \
1776 : max (NBYTES, FLEXALIGNOF (struct sdata) - 1)) \
1777 + 1 \
1778 + FLEXALIGNOF (struct sdata) - 1) \
1779 & ~(FLEXALIGNOF (struct sdata) - 1))
1781 #endif /* not GC_CHECK_STRING_BYTES */
1783 /* Extra bytes to allocate for each string. */
1785 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1787 /* Exact bound on the number of bytes in a string, not counting the
1788 terminating null. A string cannot contain more bytes than
1789 STRING_BYTES_BOUND, nor can it be so long that the size_t
1790 arithmetic in allocate_string_data would overflow while it is
1791 calculating a value to be passed to malloc. */
1792 static ptrdiff_t const STRING_BYTES_MAX =
1793 min (STRING_BYTES_BOUND,
1794 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1795 - GC_STRING_EXTRA
1796 - offsetof (struct sblock, data)
1797 - SDATA_DATA_OFFSET)
1798 & ~(sizeof (EMACS_INT) - 1)));
1800 /* Initialize string allocation. Called from init_alloc_once. */
1802 static void
1803 init_strings (void)
1805 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1806 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1810 #ifdef GC_CHECK_STRING_BYTES
1812 static int check_string_bytes_count;
1814 /* Like STRING_BYTES, but with debugging check. Can be
1815 called during GC, so pay attention to the mark bit. */
1817 ptrdiff_t
1818 string_bytes (struct Lisp_String *s)
1820 ptrdiff_t nbytes =
1821 (s->u.s.size_byte < 0 ? s->u.s.size & ~ARRAY_MARK_FLAG : s->u.s.size_byte);
1823 if (!PURE_P (s) && s->u.s.data
1824 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1825 emacs_abort ();
1826 return nbytes;
1829 /* Check validity of Lisp strings' string_bytes member in B. */
1831 static void
1832 check_sblock (struct sblock *b)
1834 sdata *from, *end, *from_end;
1836 end = b->next_free;
1838 for (from = b->data; from < end; from = from_end)
1840 /* Compute the next FROM here because copying below may
1841 overwrite data we need to compute it. */
1842 ptrdiff_t nbytes;
1844 /* Check that the string size recorded in the string is the
1845 same as the one recorded in the sdata structure. */
1846 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1847 : SDATA_NBYTES (from));
1848 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1853 /* Check validity of Lisp strings' string_bytes member. ALL_P
1854 means check all strings, otherwise check only most
1855 recently allocated strings. Used for hunting a bug. */
1857 static void
1858 check_string_bytes (bool all_p)
1860 if (all_p)
1862 struct sblock *b;
1864 for (b = large_sblocks; b; b = b->next)
1866 struct Lisp_String *s = b->data[0].string;
1867 if (s)
1868 string_bytes (s);
1871 for (b = oldest_sblock; b; b = b->next)
1872 check_sblock (b);
1874 else if (current_sblock)
1875 check_sblock (current_sblock);
1878 #else /* not GC_CHECK_STRING_BYTES */
1880 #define check_string_bytes(all) ((void) 0)
1882 #endif /* GC_CHECK_STRING_BYTES */
1884 #ifdef GC_CHECK_STRING_FREE_LIST
1886 /* Walk through the string free list looking for bogus next pointers.
1887 This may catch buffer overrun from a previous string. */
1889 static void
1890 check_string_free_list (void)
1892 struct Lisp_String *s;
1894 /* Pop a Lisp_String off the free-list. */
1895 s = string_free_list;
1896 while (s != NULL)
1898 if ((uintptr_t) s < 1024)
1899 emacs_abort ();
1900 s = NEXT_FREE_LISP_STRING (s);
1903 #else
1904 #define check_string_free_list()
1905 #endif
1907 /* Return a new Lisp_String. */
1909 static struct Lisp_String *
1910 allocate_string (void)
1912 struct Lisp_String *s;
1914 MALLOC_BLOCK_INPUT;
1916 /* If the free-list is empty, allocate a new string_block, and
1917 add all the Lisp_Strings in it to the free-list. */
1918 if (string_free_list == NULL)
1920 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1921 int i;
1923 b->next = string_blocks;
1924 string_blocks = b;
1926 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1928 s = b->strings + i;
1929 /* Every string on a free list should have NULL data pointer. */
1930 s->u.s.data = NULL;
1931 NEXT_FREE_LISP_STRING (s) = string_free_list;
1932 string_free_list = s;
1935 total_free_strings += STRING_BLOCK_SIZE;
1938 check_string_free_list ();
1940 /* Pop a Lisp_String off the free-list. */
1941 s = string_free_list;
1942 string_free_list = NEXT_FREE_LISP_STRING (s);
1944 MALLOC_UNBLOCK_INPUT;
1946 --total_free_strings;
1947 ++total_strings;
1948 ++strings_consed;
1949 consing_since_gc += sizeof *s;
1951 #ifdef GC_CHECK_STRING_BYTES
1952 if (!noninteractive)
1954 if (++check_string_bytes_count == 200)
1956 check_string_bytes_count = 0;
1957 check_string_bytes (1);
1959 else
1960 check_string_bytes (0);
1962 #endif /* GC_CHECK_STRING_BYTES */
1964 return s;
1968 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1969 plus a NUL byte at the end. Allocate an sdata structure DATA for
1970 S, and set S->u.s.data to SDATA->u.data. Store a NUL byte at the
1971 end of S->u.s.data. Set S->u.s.size to NCHARS and S->u.s.size_byte
1972 to NBYTES. Free S->u.s.data if it was initially non-null. */
1974 void
1975 allocate_string_data (struct Lisp_String *s,
1976 EMACS_INT nchars, EMACS_INT nbytes)
1978 sdata *data, *old_data;
1979 struct sblock *b;
1980 ptrdiff_t needed, old_nbytes;
1982 if (STRING_BYTES_MAX < nbytes)
1983 string_overflow ();
1985 /* Determine the number of bytes needed to store NBYTES bytes
1986 of string data. */
1987 needed = SDATA_SIZE (nbytes);
1988 if (s->u.s.data)
1990 old_data = SDATA_OF_STRING (s);
1991 old_nbytes = STRING_BYTES (s);
1993 else
1994 old_data = NULL;
1996 MALLOC_BLOCK_INPUT;
1998 if (nbytes > LARGE_STRING_BYTES)
2000 size_t size = FLEXSIZEOF (struct sblock, data, needed);
2002 #ifdef DOUG_LEA_MALLOC
2003 if (!mmap_lisp_allowed_p ())
2004 mallopt (M_MMAP_MAX, 0);
2005 #endif
2007 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
2009 #ifdef DOUG_LEA_MALLOC
2010 if (!mmap_lisp_allowed_p ())
2011 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2012 #endif
2014 data = b->data;
2015 b->next = large_sblocks;
2016 b->next_free = data;
2017 large_sblocks = b;
2019 else if (current_sblock == NULL
2020 || (((char *) current_sblock + SBLOCK_SIZE
2021 - (char *) current_sblock->next_free)
2022 < (needed + GC_STRING_EXTRA)))
2024 /* Not enough room in the current sblock. */
2025 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2026 data = b->data;
2027 b->next = NULL;
2028 b->next_free = data;
2030 if (current_sblock)
2031 current_sblock->next = b;
2032 else
2033 oldest_sblock = b;
2034 current_sblock = b;
2036 else
2038 b = current_sblock;
2039 data = b->next_free;
2042 data->string = s;
2043 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2045 MALLOC_UNBLOCK_INPUT;
2047 s->u.s.data = SDATA_DATA (data);
2048 #ifdef GC_CHECK_STRING_BYTES
2049 SDATA_NBYTES (data) = nbytes;
2050 #endif
2051 s->u.s.size = nchars;
2052 s->u.s.size_byte = nbytes;
2053 s->u.s.data[nbytes] = '\0';
2054 #ifdef GC_CHECK_STRING_OVERRUN
2055 memcpy ((char *) data + needed, string_overrun_cookie,
2056 GC_STRING_OVERRUN_COOKIE_SIZE);
2057 #endif
2059 /* Note that Faset may call to this function when S has already data
2060 assigned. In this case, mark data as free by setting it's string
2061 back-pointer to null, and record the size of the data in it. */
2062 if (old_data)
2064 SDATA_NBYTES (old_data) = old_nbytes;
2065 old_data->string = NULL;
2068 consing_since_gc += needed;
2072 /* Sweep and compact strings. */
2074 NO_INLINE /* For better stack traces */
2075 static void
2076 sweep_strings (void)
2078 struct string_block *b, *next;
2079 struct string_block *live_blocks = NULL;
2081 string_free_list = NULL;
2082 total_strings = total_free_strings = 0;
2083 total_string_bytes = 0;
2085 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2086 for (b = string_blocks; b; b = next)
2088 int i, nfree = 0;
2089 struct Lisp_String *free_list_before = string_free_list;
2091 next = b->next;
2093 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2095 struct Lisp_String *s = b->strings + i;
2097 if (s->u.s.data)
2099 /* String was not on free-list before. */
2100 if (STRING_MARKED_P (s))
2102 /* String is live; unmark it and its intervals. */
2103 UNMARK_STRING (s);
2105 /* Do not use string_(set|get)_intervals here. */
2106 s->u.s.intervals = balance_intervals (s->u.s.intervals);
2108 ++total_strings;
2109 total_string_bytes += STRING_BYTES (s);
2111 else
2113 /* String is dead. Put it on the free-list. */
2114 sdata *data = SDATA_OF_STRING (s);
2116 /* Save the size of S in its sdata so that we know
2117 how large that is. Reset the sdata's string
2118 back-pointer so that we know it's free. */
2119 #ifdef GC_CHECK_STRING_BYTES
2120 if (string_bytes (s) != SDATA_NBYTES (data))
2121 emacs_abort ();
2122 #else
2123 data->n.nbytes = STRING_BYTES (s);
2124 #endif
2125 data->string = NULL;
2127 /* Reset the strings's `data' member so that we
2128 know it's free. */
2129 s->u.s.data = NULL;
2131 /* Put the string on the free-list. */
2132 NEXT_FREE_LISP_STRING (s) = string_free_list;
2133 string_free_list = s;
2134 ++nfree;
2137 else
2139 /* S was on the free-list before. Put it there again. */
2140 NEXT_FREE_LISP_STRING (s) = string_free_list;
2141 string_free_list = s;
2142 ++nfree;
2146 /* Free blocks that contain free Lisp_Strings only, except
2147 the first two of them. */
2148 if (nfree == STRING_BLOCK_SIZE
2149 && total_free_strings > STRING_BLOCK_SIZE)
2151 lisp_free (b);
2152 string_free_list = free_list_before;
2154 else
2156 total_free_strings += nfree;
2157 b->next = live_blocks;
2158 live_blocks = b;
2162 check_string_free_list ();
2164 string_blocks = live_blocks;
2165 free_large_strings ();
2166 compact_small_strings ();
2168 check_string_free_list ();
2172 /* Free dead large strings. */
2174 static void
2175 free_large_strings (void)
2177 struct sblock *b, *next;
2178 struct sblock *live_blocks = NULL;
2180 for (b = large_sblocks; b; b = next)
2182 next = b->next;
2184 if (b->data[0].string == NULL)
2185 lisp_free (b);
2186 else
2188 b->next = live_blocks;
2189 live_blocks = b;
2193 large_sblocks = live_blocks;
2197 /* Compact data of small strings. Free sblocks that don't contain
2198 data of live strings after compaction. */
2200 static void
2201 compact_small_strings (void)
2203 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2204 to, and TB_END is the end of TB. */
2205 struct sblock *tb = oldest_sblock;
2206 if (tb)
2208 sdata *tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2209 sdata *to = tb->data;
2211 /* Step through the blocks from the oldest to the youngest. We
2212 expect that old blocks will stabilize over time, so that less
2213 copying will happen this way. */
2214 struct sblock *b = tb;
2217 sdata *end = b->next_free;
2218 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2220 for (sdata *from = b->data; from < end; )
2222 /* Compute the next FROM here because copying below may
2223 overwrite data we need to compute it. */
2224 ptrdiff_t nbytes;
2225 struct Lisp_String *s = from->string;
2227 #ifdef GC_CHECK_STRING_BYTES
2228 /* Check that the string size recorded in the string is the
2229 same as the one recorded in the sdata structure. */
2230 if (s && string_bytes (s) != SDATA_NBYTES (from))
2231 emacs_abort ();
2232 #endif /* GC_CHECK_STRING_BYTES */
2234 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
2235 eassert (nbytes <= LARGE_STRING_BYTES);
2237 nbytes = SDATA_SIZE (nbytes);
2238 sdata *from_end = (sdata *) ((char *) from
2239 + nbytes + GC_STRING_EXTRA);
2241 #ifdef GC_CHECK_STRING_OVERRUN
2242 if (memcmp (string_overrun_cookie,
2243 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2244 GC_STRING_OVERRUN_COOKIE_SIZE))
2245 emacs_abort ();
2246 #endif
2248 /* Non-NULL S means it's alive. Copy its data. */
2249 if (s)
2251 /* If TB is full, proceed with the next sblock. */
2252 sdata *to_end = (sdata *) ((char *) to
2253 + nbytes + GC_STRING_EXTRA);
2254 if (to_end > tb_end)
2256 tb->next_free = to;
2257 tb = tb->next;
2258 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2259 to = tb->data;
2260 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2263 /* Copy, and update the string's `data' pointer. */
2264 if (from != to)
2266 eassert (tb != b || to < from);
2267 memmove (to, from, nbytes + GC_STRING_EXTRA);
2268 to->string->u.s.data = SDATA_DATA (to);
2271 /* Advance past the sdata we copied to. */
2272 to = to_end;
2274 from = from_end;
2276 b = b->next;
2278 while (b);
2280 /* The rest of the sblocks following TB don't contain live data, so
2281 we can free them. */
2282 for (b = tb->next; b; )
2284 struct sblock *next = b->next;
2285 lisp_free (b);
2286 b = next;
2289 tb->next_free = to;
2290 tb->next = NULL;
2293 current_sblock = tb;
2296 void
2297 string_overflow (void)
2299 error ("Maximum string size exceeded");
2302 DEFUN ("make-string", Fmake_string, Smake_string, 2, 3, 0,
2303 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2304 LENGTH must be an integer.
2305 INIT must be an integer that represents a character.
2306 If optional argument MULTIBYTE is non-nil, the result will be
2307 a multibyte string even if INIT is an ASCII character. */)
2308 (Lisp_Object length, Lisp_Object init, Lisp_Object multibyte)
2310 register Lisp_Object val;
2311 int c;
2312 EMACS_INT nbytes;
2314 CHECK_NATNUM (length);
2315 CHECK_CHARACTER (init);
2317 c = XFASTINT (init);
2318 if (ASCII_CHAR_P (c) && NILP (multibyte))
2320 nbytes = XINT (length);
2321 val = make_uninit_string (nbytes);
2322 if (nbytes)
2324 memset (SDATA (val), c, nbytes);
2325 SDATA (val)[nbytes] = 0;
2328 else
2330 unsigned char str[MAX_MULTIBYTE_LENGTH];
2331 ptrdiff_t len = CHAR_STRING (c, str);
2332 EMACS_INT string_len = XINT (length);
2333 unsigned char *p, *beg, *end;
2335 if (INT_MULTIPLY_WRAPV (len, string_len, &nbytes))
2336 string_overflow ();
2337 val = make_uninit_multibyte_string (string_len, nbytes);
2338 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2340 /* First time we just copy `str' to the data of `val'. */
2341 if (p == beg)
2342 memcpy (p, str, len);
2343 else
2345 /* Next time we copy largest possible chunk from
2346 initialized to uninitialized part of `val'. */
2347 len = min (p - beg, end - p);
2348 memcpy (p, beg, len);
2351 if (nbytes)
2352 *p = 0;
2355 return val;
2358 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2359 Return A. */
2361 Lisp_Object
2362 bool_vector_fill (Lisp_Object a, Lisp_Object init)
2364 EMACS_INT nbits = bool_vector_size (a);
2365 if (0 < nbits)
2367 unsigned char *data = bool_vector_uchar_data (a);
2368 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2369 ptrdiff_t nbytes = bool_vector_bytes (nbits);
2370 int last_mask = ~ (~0u << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2371 memset (data, pattern, nbytes - 1);
2372 data[nbytes - 1] = pattern & last_mask;
2374 return a;
2377 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2379 Lisp_Object
2380 make_uninit_bool_vector (EMACS_INT nbits)
2382 Lisp_Object val;
2383 EMACS_INT words = bool_vector_words (nbits);
2384 EMACS_INT word_bytes = words * sizeof (bits_word);
2385 EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
2386 + word_size - 1)
2387 / word_size);
2388 struct Lisp_Bool_Vector *p
2389 = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2390 XSETVECTOR (val, p);
2391 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2392 p->size = nbits;
2394 /* Clear padding at the end. */
2395 if (words)
2396 p->data[words - 1] = 0;
2398 return val;
2401 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2402 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2403 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2404 (Lisp_Object length, Lisp_Object init)
2406 Lisp_Object val;
2408 CHECK_NATNUM (length);
2409 val = make_uninit_bool_vector (XFASTINT (length));
2410 return bool_vector_fill (val, init);
2413 DEFUN ("bool-vector", Fbool_vector, Sbool_vector, 0, MANY, 0,
2414 doc: /* Return a new bool-vector with specified arguments as elements.
2415 Any number of arguments, even zero arguments, are allowed.
2416 usage: (bool-vector &rest OBJECTS) */)
2417 (ptrdiff_t nargs, Lisp_Object *args)
2419 ptrdiff_t i;
2420 Lisp_Object vector;
2422 vector = make_uninit_bool_vector (nargs);
2423 for (i = 0; i < nargs; i++)
2424 bool_vector_set (vector, i, !NILP (args[i]));
2426 return vector;
2429 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2430 of characters from the contents. This string may be unibyte or
2431 multibyte, depending on the contents. */
2433 Lisp_Object
2434 make_string (const char *contents, ptrdiff_t nbytes)
2436 register Lisp_Object val;
2437 ptrdiff_t nchars, multibyte_nbytes;
2439 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2440 &nchars, &multibyte_nbytes);
2441 if (nbytes == nchars || nbytes != multibyte_nbytes)
2442 /* CONTENTS contains no multibyte sequences or contains an invalid
2443 multibyte sequence. We must make unibyte string. */
2444 val = make_unibyte_string (contents, nbytes);
2445 else
2446 val = make_multibyte_string (contents, nchars, nbytes);
2447 return val;
2450 /* Make a unibyte string from LENGTH bytes at CONTENTS. */
2452 Lisp_Object
2453 make_unibyte_string (const char *contents, ptrdiff_t length)
2455 register Lisp_Object val;
2456 val = make_uninit_string (length);
2457 memcpy (SDATA (val), contents, length);
2458 return val;
2462 /* Make a multibyte string from NCHARS characters occupying NBYTES
2463 bytes at CONTENTS. */
2465 Lisp_Object
2466 make_multibyte_string (const char *contents,
2467 ptrdiff_t nchars, ptrdiff_t nbytes)
2469 register Lisp_Object val;
2470 val = make_uninit_multibyte_string (nchars, nbytes);
2471 memcpy (SDATA (val), contents, nbytes);
2472 return val;
2476 /* Make a string from NCHARS characters occupying NBYTES bytes at
2477 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2479 Lisp_Object
2480 make_string_from_bytes (const char *contents,
2481 ptrdiff_t nchars, ptrdiff_t nbytes)
2483 register Lisp_Object val;
2484 val = make_uninit_multibyte_string (nchars, nbytes);
2485 memcpy (SDATA (val), contents, nbytes);
2486 if (SBYTES (val) == SCHARS (val))
2487 STRING_SET_UNIBYTE (val);
2488 return val;
2492 /* Make a string from NCHARS characters occupying NBYTES bytes at
2493 CONTENTS. The argument MULTIBYTE controls whether to label the
2494 string as multibyte. If NCHARS is negative, it counts the number of
2495 characters by itself. */
2497 Lisp_Object
2498 make_specified_string (const char *contents,
2499 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2501 Lisp_Object val;
2503 if (nchars < 0)
2505 if (multibyte)
2506 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2507 nbytes);
2508 else
2509 nchars = nbytes;
2511 val = make_uninit_multibyte_string (nchars, nbytes);
2512 memcpy (SDATA (val), contents, nbytes);
2513 if (!multibyte)
2514 STRING_SET_UNIBYTE (val);
2515 return val;
2519 /* Return a unibyte Lisp_String set up to hold LENGTH characters
2520 occupying LENGTH bytes. */
2522 Lisp_Object
2523 make_uninit_string (EMACS_INT length)
2525 Lisp_Object val;
2527 if (!length)
2528 return empty_unibyte_string;
2529 val = make_uninit_multibyte_string (length, length);
2530 STRING_SET_UNIBYTE (val);
2531 return val;
2535 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2536 which occupy NBYTES bytes. */
2538 Lisp_Object
2539 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2541 Lisp_Object string;
2542 struct Lisp_String *s;
2544 if (nchars < 0)
2545 emacs_abort ();
2546 if (!nbytes)
2547 return empty_multibyte_string;
2549 s = allocate_string ();
2550 s->u.s.intervals = NULL;
2551 allocate_string_data (s, nchars, nbytes);
2552 XSETSTRING (string, s);
2553 string_chars_consed += nbytes;
2554 return string;
2557 /* Print arguments to BUF according to a FORMAT, then return
2558 a Lisp_String initialized with the data from BUF. */
2560 Lisp_Object
2561 make_formatted_string (char *buf, const char *format, ...)
2563 va_list ap;
2564 int length;
2566 va_start (ap, format);
2567 length = vsprintf (buf, format, ap);
2568 va_end (ap);
2569 return make_string (buf, length);
2573 /***********************************************************************
2574 Float Allocation
2575 ***********************************************************************/
2577 /* We store float cells inside of float_blocks, allocating a new
2578 float_block with malloc whenever necessary. Float cells reclaimed
2579 by GC are put on a free list to be reallocated before allocating
2580 any new float cells from the latest float_block. */
2582 #define FLOAT_BLOCK_SIZE \
2583 (((BLOCK_BYTES - sizeof (struct float_block *) \
2584 /* The compiler might add padding at the end. */ \
2585 - (sizeof (struct Lisp_Float) - sizeof (bits_word))) * CHAR_BIT) \
2586 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2588 #define GETMARKBIT(block,n) \
2589 (((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2590 >> ((n) % BITS_PER_BITS_WORD)) \
2591 & 1)
2593 #define SETMARKBIT(block,n) \
2594 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2595 |= (bits_word) 1 << ((n) % BITS_PER_BITS_WORD))
2597 #define UNSETMARKBIT(block,n) \
2598 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2599 &= ~((bits_word) 1 << ((n) % BITS_PER_BITS_WORD)))
2601 #define FLOAT_BLOCK(fptr) \
2602 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2604 #define FLOAT_INDEX(fptr) \
2605 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2607 struct float_block
2609 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2610 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2611 bits_word gcmarkbits[1 + FLOAT_BLOCK_SIZE / BITS_PER_BITS_WORD];
2612 struct float_block *next;
2615 #define FLOAT_MARKED_P(fptr) \
2616 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2618 #define FLOAT_MARK(fptr) \
2619 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2621 #define FLOAT_UNMARK(fptr) \
2622 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2624 /* Current float_block. */
2626 static struct float_block *float_block;
2628 /* Index of first unused Lisp_Float in the current float_block. */
2630 static int float_block_index = FLOAT_BLOCK_SIZE;
2632 /* Free-list of Lisp_Floats. */
2634 static struct Lisp_Float *float_free_list;
2636 /* Return a new float object with value FLOAT_VALUE. */
2638 Lisp_Object
2639 make_float (double float_value)
2641 register Lisp_Object val;
2643 MALLOC_BLOCK_INPUT;
2645 if (float_free_list)
2647 /* We use the data field for chaining the free list
2648 so that we won't use the same field that has the mark bit. */
2649 XSETFLOAT (val, float_free_list);
2650 float_free_list = float_free_list->u.chain;
2652 else
2654 if (float_block_index == FLOAT_BLOCK_SIZE)
2656 struct float_block *new
2657 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2658 new->next = float_block;
2659 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2660 float_block = new;
2661 float_block_index = 0;
2662 total_free_floats += FLOAT_BLOCK_SIZE;
2664 XSETFLOAT (val, &float_block->floats[float_block_index]);
2665 float_block_index++;
2668 MALLOC_UNBLOCK_INPUT;
2670 XFLOAT_INIT (val, float_value);
2671 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2672 consing_since_gc += sizeof (struct Lisp_Float);
2673 floats_consed++;
2674 total_free_floats--;
2675 return val;
2680 /***********************************************************************
2681 Cons Allocation
2682 ***********************************************************************/
2684 /* We store cons cells inside of cons_blocks, allocating a new
2685 cons_block with malloc whenever necessary. Cons cells reclaimed by
2686 GC are put on a free list to be reallocated before allocating
2687 any new cons cells from the latest cons_block. */
2689 #define CONS_BLOCK_SIZE \
2690 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2691 /* The compiler might add padding at the end. */ \
2692 - (sizeof (struct Lisp_Cons) - sizeof (bits_word))) * CHAR_BIT) \
2693 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2695 #define CONS_BLOCK(fptr) \
2696 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2698 #define CONS_INDEX(fptr) \
2699 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2701 struct cons_block
2703 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2704 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2705 bits_word gcmarkbits[1 + CONS_BLOCK_SIZE / BITS_PER_BITS_WORD];
2706 struct cons_block *next;
2709 #define CONS_MARKED_P(fptr) \
2710 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2712 #define CONS_MARK(fptr) \
2713 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2715 #define CONS_UNMARK(fptr) \
2716 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2718 /* Current cons_block. */
2720 static struct cons_block *cons_block;
2722 /* Index of first unused Lisp_Cons in the current block. */
2724 static int cons_block_index = CONS_BLOCK_SIZE;
2726 /* Free-list of Lisp_Cons structures. */
2728 static struct Lisp_Cons *cons_free_list;
2730 /* Explicitly free a cons cell by putting it on the free-list. */
2732 void
2733 free_cons (struct Lisp_Cons *ptr)
2735 ptr->u.s.u.chain = cons_free_list;
2736 ptr->u.s.car = Vdead;
2737 cons_free_list = ptr;
2738 consing_since_gc -= sizeof *ptr;
2739 total_free_conses++;
2742 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2743 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2744 (Lisp_Object car, Lisp_Object cdr)
2746 register Lisp_Object val;
2748 MALLOC_BLOCK_INPUT;
2750 if (cons_free_list)
2752 /* We use the cdr for chaining the free list
2753 so that we won't use the same field that has the mark bit. */
2754 XSETCONS (val, cons_free_list);
2755 cons_free_list = cons_free_list->u.s.u.chain;
2757 else
2759 if (cons_block_index == CONS_BLOCK_SIZE)
2761 struct cons_block *new
2762 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2763 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2764 new->next = cons_block;
2765 cons_block = new;
2766 cons_block_index = 0;
2767 total_free_conses += CONS_BLOCK_SIZE;
2769 XSETCONS (val, &cons_block->conses[cons_block_index]);
2770 cons_block_index++;
2773 MALLOC_UNBLOCK_INPUT;
2775 XSETCAR (val, car);
2776 XSETCDR (val, cdr);
2777 eassert (!CONS_MARKED_P (XCONS (val)));
2778 consing_since_gc += sizeof (struct Lisp_Cons);
2779 total_free_conses--;
2780 cons_cells_consed++;
2781 return val;
2784 #ifdef GC_CHECK_CONS_LIST
2785 /* Get an error now if there's any junk in the cons free list. */
2786 void
2787 check_cons_list (void)
2789 struct Lisp_Cons *tail = cons_free_list;
2791 while (tail)
2792 tail = tail->u.s.u.chain;
2794 #endif
2796 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2798 Lisp_Object
2799 list1 (Lisp_Object arg1)
2801 return Fcons (arg1, Qnil);
2804 Lisp_Object
2805 list2 (Lisp_Object arg1, Lisp_Object arg2)
2807 return Fcons (arg1, Fcons (arg2, Qnil));
2811 Lisp_Object
2812 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2814 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2818 Lisp_Object
2819 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2821 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2825 Lisp_Object
2826 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2828 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2829 Fcons (arg5, Qnil)))));
2832 /* Make a list of COUNT Lisp_Objects, where ARG is the
2833 first one. Allocate conses from pure space if TYPE
2834 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2836 Lisp_Object
2837 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2839 Lisp_Object (*cons) (Lisp_Object, Lisp_Object);
2840 switch (type)
2842 case CONSTYPE_PURE: cons = pure_cons; break;
2843 case CONSTYPE_HEAP: cons = Fcons; break;
2844 default: emacs_abort ();
2847 eassume (0 < count);
2848 Lisp_Object val = cons (arg, Qnil);
2849 Lisp_Object tail = val;
2851 va_list ap;
2852 va_start (ap, arg);
2853 for (ptrdiff_t i = 1; i < count; i++)
2855 Lisp_Object elem = cons (va_arg (ap, Lisp_Object), Qnil);
2856 XSETCDR (tail, elem);
2857 tail = elem;
2859 va_end (ap);
2861 return val;
2864 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2865 doc: /* Return a newly created list with specified arguments as elements.
2866 Any number of arguments, even zero arguments, are allowed.
2867 usage: (list &rest OBJECTS) */)
2868 (ptrdiff_t nargs, Lisp_Object *args)
2870 register Lisp_Object val;
2871 val = Qnil;
2873 while (nargs > 0)
2875 nargs--;
2876 val = Fcons (args[nargs], val);
2878 return val;
2882 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2883 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2884 (Lisp_Object length, Lisp_Object init)
2886 Lisp_Object val = Qnil;
2887 CHECK_NATNUM (length);
2889 for (EMACS_INT size = XFASTINT (length); 0 < size; size--)
2891 val = Fcons (init, val);
2892 rarely_quit (size);
2895 return val;
2900 /***********************************************************************
2901 Vector Allocation
2902 ***********************************************************************/
2904 /* Sometimes a vector's contents are merely a pointer internally used
2905 in vector allocation code. On the rare platforms where a null
2906 pointer cannot be tagged, represent it with a Lisp 0.
2907 Usually you don't want to touch this. */
2909 static struct Lisp_Vector *
2910 next_vector (struct Lisp_Vector *v)
2912 return XUNTAG (v->contents[0], Lisp_Int0);
2915 static void
2916 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2918 v->contents[0] = make_lisp_ptr (p, Lisp_Int0);
2921 /* This value is balanced well enough to avoid too much internal overhead
2922 for the most common cases; it's not required to be a power of two, but
2923 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2925 #define VECTOR_BLOCK_SIZE 4096
2927 /* Alignment of struct Lisp_Vector objects. Because pseudovectors
2928 can contain any C type, align at least as strictly as
2929 max_align_t. On x86 and x86-64 this can waste up to 8 bytes
2930 for typical vectors, since alignof (max_align_t) is 16 but
2931 typical vectors need only an alignment of 8. However, it is
2932 not worth the hassle to avoid wasting those bytes. */
2933 enum {vector_alignment = COMMON_MULTIPLE (alignof (max_align_t), GCALIGNMENT)};
2935 /* Vector size requests are a multiple of this. */
2936 enum { roundup_size = COMMON_MULTIPLE (vector_alignment, word_size) };
2938 /* Verify assumptions described above. */
2939 verify (VECTOR_BLOCK_SIZE % roundup_size == 0);
2940 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2942 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2943 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2944 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2945 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2947 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2949 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2951 /* Size of the minimal vector allocated from block. */
2953 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2955 /* Size of the largest vector allocated from block. */
2957 #define VBLOCK_BYTES_MAX \
2958 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2960 /* We maintain one free list for each possible block-allocated
2961 vector size, and this is the number of free lists we have. */
2963 #define VECTOR_MAX_FREE_LIST_INDEX \
2964 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2966 /* Common shortcut to advance vector pointer over a block data. */
2968 static struct Lisp_Vector *
2969 ADVANCE (struct Lisp_Vector *v, ptrdiff_t nbytes)
2971 void *vv = v;
2972 char *cv = vv;
2973 void *p = cv + nbytes;
2974 return p;
2977 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2979 static ptrdiff_t
2980 VINDEX (ptrdiff_t nbytes)
2982 eassume (VBLOCK_BYTES_MIN <= nbytes);
2983 return (nbytes - VBLOCK_BYTES_MIN) / roundup_size;
2986 /* This internal type is used to maintain the list of large vectors
2987 which are allocated at their own, e.g. outside of vector blocks.
2989 struct large_vector itself cannot contain a struct Lisp_Vector, as
2990 the latter contains a flexible array member and C99 does not allow
2991 such structs to be nested. Instead, each struct large_vector
2992 object LV is followed by a struct Lisp_Vector, which is at offset
2993 large_vector_offset from LV, and whose address is therefore
2994 large_vector_vec (&LV). */
2996 struct large_vector
2998 struct large_vector *next;
3001 enum
3003 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
3006 static struct Lisp_Vector *
3007 large_vector_vec (struct large_vector *p)
3009 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
3012 /* This internal type is used to maintain an underlying storage
3013 for small vectors. */
3015 struct vector_block
3017 char data[VECTOR_BLOCK_BYTES];
3018 struct vector_block *next;
3021 /* Chain of vector blocks. */
3023 static struct vector_block *vector_blocks;
3025 /* Vector free lists, where NTH item points to a chain of free
3026 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
3028 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
3030 /* Singly-linked list of large vectors. */
3032 static struct large_vector *large_vectors;
3034 /* The only vector with 0 slots, allocated from pure space. */
3036 Lisp_Object zero_vector;
3038 /* Number of live vectors. */
3040 static EMACS_INT total_vectors;
3042 /* Total size of live and free vectors, in Lisp_Object units. */
3044 static EMACS_INT total_vector_slots, total_free_vector_slots;
3046 /* Common shortcut to setup vector on a free list. */
3048 static void
3049 setup_on_free_list (struct Lisp_Vector *v, ptrdiff_t nbytes)
3051 eassume (header_size <= nbytes);
3052 ptrdiff_t nwords = (nbytes - header_size) / word_size;
3053 XSETPVECTYPESIZE (v, PVEC_FREE, 0, nwords);
3054 eassert (nbytes % roundup_size == 0);
3055 ptrdiff_t vindex = VINDEX (nbytes);
3056 eassert (vindex < VECTOR_MAX_FREE_LIST_INDEX);
3057 set_next_vector (v, vector_free_lists[vindex]);
3058 vector_free_lists[vindex] = v;
3059 total_free_vector_slots += nbytes / word_size;
3062 /* Get a new vector block. */
3064 static struct vector_block *
3065 allocate_vector_block (void)
3067 struct vector_block *block = xmalloc (sizeof *block);
3069 #ifndef GC_MALLOC_CHECK
3070 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
3071 MEM_TYPE_VECTOR_BLOCK);
3072 #endif
3074 block->next = vector_blocks;
3075 vector_blocks = block;
3076 return block;
3079 /* Called once to initialize vector allocation. */
3081 static void
3082 init_vectors (void)
3084 zero_vector = make_pure_vector (0);
3087 /* Allocate vector from a vector block. */
3089 static struct Lisp_Vector *
3090 allocate_vector_from_block (size_t nbytes)
3092 struct Lisp_Vector *vector;
3093 struct vector_block *block;
3094 size_t index, restbytes;
3096 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
3097 eassert (nbytes % roundup_size == 0);
3099 /* First, try to allocate from a free list
3100 containing vectors of the requested size. */
3101 index = VINDEX (nbytes);
3102 if (vector_free_lists[index])
3104 vector = vector_free_lists[index];
3105 vector_free_lists[index] = next_vector (vector);
3106 total_free_vector_slots -= nbytes / word_size;
3107 return vector;
3110 /* Next, check free lists containing larger vectors. Since
3111 we will split the result, we should have remaining space
3112 large enough to use for one-slot vector at least. */
3113 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3114 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3115 if (vector_free_lists[index])
3117 /* This vector is larger than requested. */
3118 vector = vector_free_lists[index];
3119 vector_free_lists[index] = next_vector (vector);
3120 total_free_vector_slots -= nbytes / word_size;
3122 /* Excess bytes are used for the smaller vector,
3123 which should be set on an appropriate free list. */
3124 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3125 eassert (restbytes % roundup_size == 0);
3126 setup_on_free_list (ADVANCE (vector, nbytes), restbytes);
3127 return vector;
3130 /* Finally, need a new vector block. */
3131 block = allocate_vector_block ();
3133 /* New vector will be at the beginning of this block. */
3134 vector = (struct Lisp_Vector *) block->data;
3136 /* If the rest of space from this block is large enough
3137 for one-slot vector at least, set up it on a free list. */
3138 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3139 if (restbytes >= VBLOCK_BYTES_MIN)
3141 eassert (restbytes % roundup_size == 0);
3142 setup_on_free_list (ADVANCE (vector, nbytes), restbytes);
3144 return vector;
3147 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3149 #define VECTOR_IN_BLOCK(vector, block) \
3150 ((char *) (vector) <= (block)->data \
3151 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3153 /* Return the memory footprint of V in bytes. */
3155 static ptrdiff_t
3156 vector_nbytes (struct Lisp_Vector *v)
3158 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
3159 ptrdiff_t nwords;
3161 if (size & PSEUDOVECTOR_FLAG)
3163 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
3165 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
3166 ptrdiff_t word_bytes = (bool_vector_words (bv->size)
3167 * sizeof (bits_word));
3168 ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
3169 verify (header_size <= bool_header_size);
3170 nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
3172 else
3173 nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
3174 + ((size & PSEUDOVECTOR_REST_MASK)
3175 >> PSEUDOVECTOR_SIZE_BITS));
3177 else
3178 nwords = size;
3179 return vroundup (header_size + word_size * nwords);
3182 /* Release extra resources still in use by VECTOR, which may be any
3183 vector-like object. */
3185 static void
3186 cleanup_vector (struct Lisp_Vector *vector)
3188 detect_suspicious_free (vector);
3189 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
3190 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
3191 == FONT_OBJECT_MAX))
3193 struct font_driver const *drv = ((struct font *) vector)->driver;
3195 /* The font driver might sometimes be NULL, e.g. if Emacs was
3196 interrupted before it had time to set it up. */
3197 if (drv)
3199 /* Attempt to catch subtle bugs like Bug#16140. */
3200 eassert (valid_font_driver (drv));
3201 drv->close ((struct font *) vector);
3205 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_THREAD))
3206 finalize_one_thread ((struct thread_state *) vector);
3207 else if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_MUTEX))
3208 finalize_one_mutex ((struct Lisp_Mutex *) vector);
3209 else if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_CONDVAR))
3210 finalize_one_condvar ((struct Lisp_CondVar *) vector);
3213 /* Reclaim space used by unmarked vectors. */
3215 NO_INLINE /* For better stack traces */
3216 static void
3217 sweep_vectors (void)
3219 struct vector_block *block, **bprev = &vector_blocks;
3220 struct large_vector *lv, **lvprev = &large_vectors;
3221 struct Lisp_Vector *vector, *next;
3223 total_vectors = total_vector_slots = total_free_vector_slots = 0;
3224 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3226 /* Looking through vector blocks. */
3228 for (block = vector_blocks; block; block = *bprev)
3230 bool free_this_block = 0;
3231 ptrdiff_t nbytes;
3233 for (vector = (struct Lisp_Vector *) block->data;
3234 VECTOR_IN_BLOCK (vector, block); vector = next)
3236 if (VECTOR_MARKED_P (vector))
3238 VECTOR_UNMARK (vector);
3239 total_vectors++;
3240 nbytes = vector_nbytes (vector);
3241 total_vector_slots += nbytes / word_size;
3242 next = ADVANCE (vector, nbytes);
3244 else
3246 ptrdiff_t total_bytes;
3248 cleanup_vector (vector);
3249 nbytes = vector_nbytes (vector);
3250 total_bytes = nbytes;
3251 next = ADVANCE (vector, nbytes);
3253 /* While NEXT is not marked, try to coalesce with VECTOR,
3254 thus making VECTOR of the largest possible size. */
3256 while (VECTOR_IN_BLOCK (next, block))
3258 if (VECTOR_MARKED_P (next))
3259 break;
3260 cleanup_vector (next);
3261 nbytes = vector_nbytes (next);
3262 total_bytes += nbytes;
3263 next = ADVANCE (next, nbytes);
3266 eassert (total_bytes % roundup_size == 0);
3268 if (vector == (struct Lisp_Vector *) block->data
3269 && !VECTOR_IN_BLOCK (next, block))
3270 /* This block should be freed because all of its
3271 space was coalesced into the only free vector. */
3272 free_this_block = 1;
3273 else
3274 setup_on_free_list (vector, total_bytes);
3278 if (free_this_block)
3280 *bprev = block->next;
3281 #ifndef GC_MALLOC_CHECK
3282 mem_delete (mem_find (block->data));
3283 #endif
3284 xfree (block);
3286 else
3287 bprev = &block->next;
3290 /* Sweep large vectors. */
3292 for (lv = large_vectors; lv; lv = *lvprev)
3294 vector = large_vector_vec (lv);
3295 if (VECTOR_MARKED_P (vector))
3297 VECTOR_UNMARK (vector);
3298 total_vectors++;
3299 if (vector->header.size & PSEUDOVECTOR_FLAG)
3300 total_vector_slots += vector_nbytes (vector) / word_size;
3301 else
3302 total_vector_slots
3303 += header_size / word_size + vector->header.size;
3304 lvprev = &lv->next;
3306 else
3308 *lvprev = lv->next;
3309 lisp_free (lv);
3314 /* Value is a pointer to a newly allocated Lisp_Vector structure
3315 with room for LEN Lisp_Objects. */
3317 static struct Lisp_Vector *
3318 allocate_vectorlike (ptrdiff_t len)
3320 if (len == 0)
3321 return XVECTOR (zero_vector);
3322 else
3324 size_t nbytes = header_size + len * word_size;
3325 struct Lisp_Vector *p;
3327 MALLOC_BLOCK_INPUT;
3329 #ifdef DOUG_LEA_MALLOC
3330 if (!mmap_lisp_allowed_p ())
3331 mallopt (M_MMAP_MAX, 0);
3332 #endif
3334 if (nbytes <= VBLOCK_BYTES_MAX)
3335 p = allocate_vector_from_block (vroundup (nbytes));
3336 else
3338 struct large_vector *lv
3339 = lisp_malloc ((large_vector_offset + header_size
3340 + len * word_size),
3341 MEM_TYPE_VECTORLIKE);
3342 lv->next = large_vectors;
3343 large_vectors = lv;
3344 p = large_vector_vec (lv);
3347 #ifdef DOUG_LEA_MALLOC
3348 if (!mmap_lisp_allowed_p ())
3349 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3350 #endif
3352 if (find_suspicious_object_in_range (p, (char *) p + nbytes))
3353 emacs_abort ();
3355 consing_since_gc += nbytes;
3356 vector_cells_consed += len;
3358 MALLOC_UNBLOCK_INPUT;
3360 return p;
3365 /* Allocate a vector with LEN slots. */
3367 struct Lisp_Vector *
3368 allocate_vector (EMACS_INT len)
3370 struct Lisp_Vector *v;
3371 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3373 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3374 memory_full (SIZE_MAX);
3375 v = allocate_vectorlike (len);
3376 if (len)
3377 v->header.size = len;
3378 return v;
3382 /* Allocate other vector-like structures. */
3384 struct Lisp_Vector *
3385 allocate_pseudovector (int memlen, int lisplen,
3386 int zerolen, enum pvec_type tag)
3388 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3390 /* Catch bogus values. */
3391 eassert (0 <= tag && tag <= PVEC_FONT);
3392 eassert (0 <= lisplen && lisplen <= zerolen && zerolen <= memlen);
3393 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3394 eassert (lisplen <= PSEUDOVECTOR_SIZE_MASK);
3396 /* Only the first LISPLEN slots will be traced normally by the GC. */
3397 memclear (v->contents, zerolen * word_size);
3398 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3399 return v;
3402 struct buffer *
3403 allocate_buffer (void)
3405 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3407 BUFFER_PVEC_INIT (b);
3408 /* Put B on the chain of all buffers including killed ones. */
3409 b->next = all_buffers;
3410 all_buffers = b;
3411 /* Note that the rest fields of B are not initialized. */
3412 return b;
3416 /* Allocate a record with COUNT slots. COUNT must be positive, and
3417 includes the type slot. */
3419 static struct Lisp_Vector *
3420 allocate_record (EMACS_INT count)
3422 if (count > PSEUDOVECTOR_SIZE_MASK)
3423 error ("Attempt to allocate a record of %"pI"d slots; max is %d",
3424 count, PSEUDOVECTOR_SIZE_MASK);
3425 struct Lisp_Vector *p = allocate_vectorlike (count);
3426 p->header.size = count;
3427 XSETPVECTYPE (p, PVEC_RECORD);
3428 return p;
3432 DEFUN ("make-record", Fmake_record, Smake_record, 3, 3, 0,
3433 doc: /* Create a new record.
3434 TYPE is its type as returned by `type-of'; it should be either a
3435 symbol or a type descriptor. SLOTS is the number of non-type slots,
3436 each initialized to INIT. */)
3437 (Lisp_Object type, Lisp_Object slots, Lisp_Object init)
3439 CHECK_NATNUM (slots);
3440 EMACS_INT size = XFASTINT (slots) + 1;
3441 struct Lisp_Vector *p = allocate_record (size);
3442 p->contents[0] = type;
3443 for (ptrdiff_t i = 1; i < size; i++)
3444 p->contents[i] = init;
3445 return make_lisp_ptr (p, Lisp_Vectorlike);
3449 DEFUN ("record", Frecord, Srecord, 1, MANY, 0,
3450 doc: /* Create a new record.
3451 TYPE is its type as returned by `type-of'; it should be either a
3452 symbol or a type descriptor. SLOTS is used to initialize the record
3453 slots with shallow copies of the arguments.
3454 usage: (record TYPE &rest SLOTS) */)
3455 (ptrdiff_t nargs, Lisp_Object *args)
3457 struct Lisp_Vector *p = allocate_record (nargs);
3458 memcpy (p->contents, args, nargs * sizeof *args);
3459 return make_lisp_ptr (p, Lisp_Vectorlike);
3463 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3464 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3465 See also the function `vector'. */)
3466 (Lisp_Object length, Lisp_Object init)
3468 CHECK_NATNUM (length);
3469 struct Lisp_Vector *p = allocate_vector (XFASTINT (length));
3470 for (ptrdiff_t i = 0; i < XFASTINT (length); i++)
3471 p->contents[i] = init;
3472 return make_lisp_ptr (p, Lisp_Vectorlike);
3475 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3476 doc: /* Return a newly created vector with specified arguments as elements.
3477 Any number of arguments, even zero arguments, are allowed.
3478 usage: (vector &rest OBJECTS) */)
3479 (ptrdiff_t nargs, Lisp_Object *args)
3481 Lisp_Object val = make_uninit_vector (nargs);
3482 struct Lisp_Vector *p = XVECTOR (val);
3483 memcpy (p->contents, args, nargs * sizeof *args);
3484 return val;
3487 void
3488 make_byte_code (struct Lisp_Vector *v)
3490 /* Don't allow the global zero_vector to become a byte code object. */
3491 eassert (0 < v->header.size);
3493 if (v->header.size > 1 && STRINGP (v->contents[1])
3494 && STRING_MULTIBYTE (v->contents[1]))
3495 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3496 earlier because they produced a raw 8-bit string for byte-code
3497 and now such a byte-code string is loaded as multibyte while
3498 raw 8-bit characters converted to multibyte form. Thus, now we
3499 must convert them back to the original unibyte form. */
3500 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3501 XSETPVECTYPE (v, PVEC_COMPILED);
3504 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3505 doc: /* Create a byte-code object with specified arguments as elements.
3506 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3507 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3508 and (optional) INTERACTIVE-SPEC.
3509 The first four arguments are required; at most six have any
3510 significance.
3511 The ARGLIST can be either like the one of `lambda', in which case the arguments
3512 will be dynamically bound before executing the byte code, or it can be an
3513 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3514 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3515 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3516 argument to catch the left-over arguments. If such an integer is used, the
3517 arguments will not be dynamically bound but will be instead pushed on the
3518 stack before executing the byte-code.
3519 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3520 (ptrdiff_t nargs, Lisp_Object *args)
3522 Lisp_Object val = make_uninit_vector (nargs);
3523 struct Lisp_Vector *p = XVECTOR (val);
3525 /* We used to purecopy everything here, if purify-flag was set. This worked
3526 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3527 dangerous, since make-byte-code is used during execution to build
3528 closures, so any closure built during the preload phase would end up
3529 copied into pure space, including its free variables, which is sometimes
3530 just wasteful and other times plainly wrong (e.g. those free vars may want
3531 to be setcar'd). */
3533 memcpy (p->contents, args, nargs * sizeof *args);
3534 make_byte_code (p);
3535 XSETCOMPILED (val, p);
3536 return val;
3541 /***********************************************************************
3542 Symbol Allocation
3543 ***********************************************************************/
3545 /* Each symbol_block is just under 1020 bytes long, since malloc
3546 really allocates in units of powers of two and uses 4 bytes for its
3547 own overhead. */
3549 #define SYMBOL_BLOCK_SIZE \
3550 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3552 struct symbol_block
3554 /* Place `symbols' first, to preserve alignment. */
3555 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3556 struct symbol_block *next;
3559 /* Current symbol block and index of first unused Lisp_Symbol
3560 structure in it. */
3562 static struct symbol_block *symbol_block;
3563 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3564 /* Pointer to the first symbol_block that contains pinned symbols.
3565 Tests for 24.4 showed that at dump-time, Emacs contains about 15K symbols,
3566 10K of which are pinned (and all but 250 of them are interned in obarray),
3567 whereas a "typical session" has in the order of 30K symbols.
3568 `symbol_block_pinned' lets mark_pinned_symbols scan only 15K symbols rather
3569 than 30K to find the 10K symbols we need to mark. */
3570 static struct symbol_block *symbol_block_pinned;
3572 /* List of free symbols. */
3574 static struct Lisp_Symbol *symbol_free_list;
3576 static void
3577 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3579 XSYMBOL (sym)->u.s.name = name;
3582 void
3583 init_symbol (Lisp_Object val, Lisp_Object name)
3585 struct Lisp_Symbol *p = XSYMBOL (val);
3586 set_symbol_name (val, name);
3587 set_symbol_plist (val, Qnil);
3588 p->u.s.redirect = SYMBOL_PLAINVAL;
3589 SET_SYMBOL_VAL (p, Qunbound);
3590 set_symbol_function (val, Qnil);
3591 set_symbol_next (val, NULL);
3592 p->u.s.gcmarkbit = false;
3593 p->u.s.interned = SYMBOL_UNINTERNED;
3594 p->u.s.trapped_write = SYMBOL_UNTRAPPED_WRITE;
3595 p->u.s.declared_special = false;
3596 p->u.s.pinned = false;
3599 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3600 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3601 Its value is void, and its function definition and property list are nil. */)
3602 (Lisp_Object name)
3604 Lisp_Object val;
3606 CHECK_STRING (name);
3608 MALLOC_BLOCK_INPUT;
3610 if (symbol_free_list)
3612 XSETSYMBOL (val, symbol_free_list);
3613 symbol_free_list = symbol_free_list->u.s.next;
3615 else
3617 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3619 struct symbol_block *new
3620 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3621 new->next = symbol_block;
3622 symbol_block = new;
3623 symbol_block_index = 0;
3624 total_free_symbols += SYMBOL_BLOCK_SIZE;
3626 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3627 symbol_block_index++;
3630 MALLOC_UNBLOCK_INPUT;
3632 init_symbol (val, name);
3633 consing_since_gc += sizeof (struct Lisp_Symbol);
3634 symbols_consed++;
3635 total_free_symbols--;
3636 return val;
3641 /***********************************************************************
3642 Marker (Misc) Allocation
3643 ***********************************************************************/
3645 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3646 the required alignment. */
3648 union aligned_Lisp_Misc
3650 union Lisp_Misc m;
3651 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3652 & -GCALIGNMENT];
3655 /* Allocation of markers and other objects that share that structure.
3656 Works like allocation of conses. */
3658 #define MARKER_BLOCK_SIZE \
3659 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3661 struct marker_block
3663 /* Place `markers' first, to preserve alignment. */
3664 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3665 struct marker_block *next;
3668 static struct marker_block *marker_block;
3669 static int marker_block_index = MARKER_BLOCK_SIZE;
3671 static union Lisp_Misc *marker_free_list;
3673 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3675 static Lisp_Object
3676 allocate_misc (enum Lisp_Misc_Type type)
3678 Lisp_Object val;
3680 MALLOC_BLOCK_INPUT;
3682 if (marker_free_list)
3684 XSETMISC (val, marker_free_list);
3685 marker_free_list = marker_free_list->u_free.chain;
3687 else
3689 if (marker_block_index == MARKER_BLOCK_SIZE)
3691 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3692 new->next = marker_block;
3693 marker_block = new;
3694 marker_block_index = 0;
3695 total_free_markers += MARKER_BLOCK_SIZE;
3697 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3698 marker_block_index++;
3701 MALLOC_UNBLOCK_INPUT;
3703 --total_free_markers;
3704 consing_since_gc += sizeof (union Lisp_Misc);
3705 misc_objects_consed++;
3706 XMISCANY (val)->type = type;
3707 XMISCANY (val)->gcmarkbit = 0;
3708 return val;
3711 /* Free a Lisp_Misc object. */
3713 void
3714 free_misc (Lisp_Object misc)
3716 XMISCANY (misc)->type = Lisp_Misc_Free;
3717 XMISC (misc)->u_free.chain = marker_free_list;
3718 marker_free_list = XMISC (misc);
3719 consing_since_gc -= sizeof (union Lisp_Misc);
3720 total_free_markers++;
3723 /* Verify properties of Lisp_Save_Value's representation
3724 that are assumed here and elsewhere. */
3726 verify (SAVE_UNUSED == 0);
3727 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3728 >> SAVE_SLOT_BITS)
3729 == 0);
3731 /* Return Lisp_Save_Value objects for the various combinations
3732 that callers need. */
3734 Lisp_Object
3735 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3737 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3738 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3739 p->save_type = SAVE_TYPE_INT_INT_INT;
3740 p->data[0].integer = a;
3741 p->data[1].integer = b;
3742 p->data[2].integer = c;
3743 return val;
3746 Lisp_Object
3747 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3748 Lisp_Object d)
3750 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3751 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3752 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3753 p->data[0].object = a;
3754 p->data[1].object = b;
3755 p->data[2].object = c;
3756 p->data[3].object = d;
3757 return val;
3760 Lisp_Object
3761 make_save_ptr (void *a)
3763 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3764 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3765 p->save_type = SAVE_POINTER;
3766 p->data[0].pointer = a;
3767 return val;
3770 Lisp_Object
3771 make_save_ptr_int (void *a, ptrdiff_t b)
3773 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3774 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3775 p->save_type = SAVE_TYPE_PTR_INT;
3776 p->data[0].pointer = a;
3777 p->data[1].integer = b;
3778 return val;
3781 Lisp_Object
3782 make_save_ptr_ptr (void *a, void *b)
3784 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3785 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3786 p->save_type = SAVE_TYPE_PTR_PTR;
3787 p->data[0].pointer = a;
3788 p->data[1].pointer = b;
3789 return val;
3792 Lisp_Object
3793 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3795 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3796 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3797 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3798 p->data[0].funcpointer = a;
3799 p->data[1].pointer = b;
3800 p->data[2].object = c;
3801 return val;
3804 /* Return a Lisp_Save_Value object that represents an array A
3805 of N Lisp objects. */
3807 Lisp_Object
3808 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3810 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3811 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3812 p->save_type = SAVE_TYPE_MEMORY;
3813 p->data[0].pointer = a;
3814 p->data[1].integer = n;
3815 return val;
3818 /* Free a Lisp_Save_Value object. Do not use this function
3819 if SAVE contains pointer other than returned by xmalloc. */
3821 void
3822 free_save_value (Lisp_Object save)
3824 xfree (XSAVE_POINTER (save, 0));
3825 free_misc (save);
3828 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3830 Lisp_Object
3831 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3833 register Lisp_Object overlay;
3835 overlay = allocate_misc (Lisp_Misc_Overlay);
3836 OVERLAY_START (overlay) = start;
3837 OVERLAY_END (overlay) = end;
3838 set_overlay_plist (overlay, plist);
3839 XOVERLAY (overlay)->next = NULL;
3840 return overlay;
3843 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3844 doc: /* Return a newly allocated marker which does not point at any place. */)
3845 (void)
3847 register Lisp_Object val;
3848 register struct Lisp_Marker *p;
3850 val = allocate_misc (Lisp_Misc_Marker);
3851 p = XMARKER (val);
3852 p->buffer = 0;
3853 p->bytepos = 0;
3854 p->charpos = 0;
3855 p->next = NULL;
3856 p->insertion_type = 0;
3857 p->need_adjustment = 0;
3858 return val;
3861 /* Return a newly allocated marker which points into BUF
3862 at character position CHARPOS and byte position BYTEPOS. */
3864 Lisp_Object
3865 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3867 Lisp_Object obj;
3868 struct Lisp_Marker *m;
3870 /* No dead buffers here. */
3871 eassert (BUFFER_LIVE_P (buf));
3873 /* Every character is at least one byte. */
3874 eassert (charpos <= bytepos);
3876 obj = allocate_misc (Lisp_Misc_Marker);
3877 m = XMARKER (obj);
3878 m->buffer = buf;
3879 m->charpos = charpos;
3880 m->bytepos = bytepos;
3881 m->insertion_type = 0;
3882 m->need_adjustment = 0;
3883 m->next = BUF_MARKERS (buf);
3884 BUF_MARKERS (buf) = m;
3885 return obj;
3888 /* Put MARKER back on the free list after using it temporarily. */
3890 void
3891 free_marker (Lisp_Object marker)
3893 unchain_marker (XMARKER (marker));
3894 free_misc (marker);
3898 /* Return a newly created vector or string with specified arguments as
3899 elements. If all the arguments are characters that can fit
3900 in a string of events, make a string; otherwise, make a vector.
3902 Any number of arguments, even zero arguments, are allowed. */
3904 Lisp_Object
3905 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3907 ptrdiff_t i;
3909 for (i = 0; i < nargs; i++)
3910 /* The things that fit in a string
3911 are characters that are in 0...127,
3912 after discarding the meta bit and all the bits above it. */
3913 if (!INTEGERP (args[i])
3914 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3915 return Fvector (nargs, args);
3917 /* Since the loop exited, we know that all the things in it are
3918 characters, so we can make a string. */
3920 Lisp_Object result;
3922 result = Fmake_string (make_number (nargs), make_number (0), Qnil);
3923 for (i = 0; i < nargs; i++)
3925 SSET (result, i, XINT (args[i]));
3926 /* Move the meta bit to the right place for a string char. */
3927 if (XINT (args[i]) & CHAR_META)
3928 SSET (result, i, SREF (result, i) | 0x80);
3931 return result;
3935 #ifdef HAVE_MODULES
3936 /* Create a new module user ptr object. */
3937 Lisp_Object
3938 make_user_ptr (void (*finalizer) (void *), void *p)
3940 Lisp_Object obj;
3941 struct Lisp_User_Ptr *uptr;
3943 obj = allocate_misc (Lisp_Misc_User_Ptr);
3944 uptr = XUSER_PTR (obj);
3945 uptr->finalizer = finalizer;
3946 uptr->p = p;
3947 return obj;
3949 #endif
3951 static void
3952 init_finalizer_list (struct Lisp_Finalizer *head)
3954 head->prev = head->next = head;
3957 /* Insert FINALIZER before ELEMENT. */
3959 static void
3960 finalizer_insert (struct Lisp_Finalizer *element,
3961 struct Lisp_Finalizer *finalizer)
3963 eassert (finalizer->prev == NULL);
3964 eassert (finalizer->next == NULL);
3965 finalizer->next = element;
3966 finalizer->prev = element->prev;
3967 finalizer->prev->next = finalizer;
3968 element->prev = finalizer;
3971 static void
3972 unchain_finalizer (struct Lisp_Finalizer *finalizer)
3974 if (finalizer->prev != NULL)
3976 eassert (finalizer->next != NULL);
3977 finalizer->prev->next = finalizer->next;
3978 finalizer->next->prev = finalizer->prev;
3979 finalizer->prev = finalizer->next = NULL;
3983 static void
3984 mark_finalizer_list (struct Lisp_Finalizer *head)
3986 for (struct Lisp_Finalizer *finalizer = head->next;
3987 finalizer != head;
3988 finalizer = finalizer->next)
3990 finalizer->base.gcmarkbit = true;
3991 mark_object (finalizer->function);
3995 /* Move doomed finalizers to list DEST from list SRC. A doomed
3996 finalizer is one that is not GC-reachable and whose
3997 finalizer->function is non-nil. */
3999 static void
4000 queue_doomed_finalizers (struct Lisp_Finalizer *dest,
4001 struct Lisp_Finalizer *src)
4003 struct Lisp_Finalizer *finalizer = src->next;
4004 while (finalizer != src)
4006 struct Lisp_Finalizer *next = finalizer->next;
4007 if (!finalizer->base.gcmarkbit && !NILP (finalizer->function))
4009 unchain_finalizer (finalizer);
4010 finalizer_insert (dest, finalizer);
4013 finalizer = next;
4017 static Lisp_Object
4018 run_finalizer_handler (Lisp_Object args)
4020 add_to_log ("finalizer failed: %S", args);
4021 return Qnil;
4024 static void
4025 run_finalizer_function (Lisp_Object function)
4027 ptrdiff_t count = SPECPDL_INDEX ();
4029 specbind (Qinhibit_quit, Qt);
4030 internal_condition_case_1 (call0, function, Qt, run_finalizer_handler);
4031 unbind_to (count, Qnil);
4034 static void
4035 run_finalizers (struct Lisp_Finalizer *finalizers)
4037 struct Lisp_Finalizer *finalizer;
4038 Lisp_Object function;
4040 while (finalizers->next != finalizers)
4042 finalizer = finalizers->next;
4043 eassert (finalizer->base.type == Lisp_Misc_Finalizer);
4044 unchain_finalizer (finalizer);
4045 function = finalizer->function;
4046 if (!NILP (function))
4048 finalizer->function = Qnil;
4049 run_finalizer_function (function);
4054 DEFUN ("make-finalizer", Fmake_finalizer, Smake_finalizer, 1, 1, 0,
4055 doc: /* Make a finalizer that will run FUNCTION.
4056 FUNCTION will be called after garbage collection when the returned
4057 finalizer object becomes unreachable. If the finalizer object is
4058 reachable only through references from finalizer objects, it does not
4059 count as reachable for the purpose of deciding whether to run
4060 FUNCTION. FUNCTION will be run once per finalizer object. */)
4061 (Lisp_Object function)
4063 Lisp_Object val = allocate_misc (Lisp_Misc_Finalizer);
4064 struct Lisp_Finalizer *finalizer = XFINALIZER (val);
4065 finalizer->function = function;
4066 finalizer->prev = finalizer->next = NULL;
4067 finalizer_insert (&finalizers, finalizer);
4068 return val;
4072 /************************************************************************
4073 Memory Full Handling
4074 ************************************************************************/
4077 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
4078 there may have been size_t overflow so that malloc was never
4079 called, or perhaps malloc was invoked successfully but the
4080 resulting pointer had problems fitting into a tagged EMACS_INT. In
4081 either case this counts as memory being full even though malloc did
4082 not fail. */
4084 void
4085 memory_full (size_t nbytes)
4087 /* Do not go into hysterics merely because a large request failed. */
4088 bool enough_free_memory = 0;
4089 if (SPARE_MEMORY < nbytes)
4091 void *p;
4093 MALLOC_BLOCK_INPUT;
4094 p = malloc (SPARE_MEMORY);
4095 if (p)
4097 free (p);
4098 enough_free_memory = 1;
4100 MALLOC_UNBLOCK_INPUT;
4103 if (! enough_free_memory)
4105 int i;
4107 Vmemory_full = Qt;
4109 memory_full_cons_threshold = sizeof (struct cons_block);
4111 /* The first time we get here, free the spare memory. */
4112 for (i = 0; i < ARRAYELTS (spare_memory); i++)
4113 if (spare_memory[i])
4115 if (i == 0)
4116 free (spare_memory[i]);
4117 else if (i >= 1 && i <= 4)
4118 lisp_align_free (spare_memory[i]);
4119 else
4120 lisp_free (spare_memory[i]);
4121 spare_memory[i] = 0;
4125 /* This used to call error, but if we've run out of memory, we could
4126 get infinite recursion trying to build the string. */
4127 xsignal (Qnil, Vmemory_signal_data);
4130 /* If we released our reserve (due to running out of memory),
4131 and we have a fair amount free once again,
4132 try to set aside another reserve in case we run out once more.
4134 This is called when a relocatable block is freed in ralloc.c,
4135 and also directly from this file, in case we're not using ralloc.c. */
4137 void
4138 refill_memory_reserve (void)
4140 #if !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
4141 if (spare_memory[0] == 0)
4142 spare_memory[0] = malloc (SPARE_MEMORY);
4143 if (spare_memory[1] == 0)
4144 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
4145 MEM_TYPE_SPARE);
4146 if (spare_memory[2] == 0)
4147 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
4148 MEM_TYPE_SPARE);
4149 if (spare_memory[3] == 0)
4150 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
4151 MEM_TYPE_SPARE);
4152 if (spare_memory[4] == 0)
4153 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
4154 MEM_TYPE_SPARE);
4155 if (spare_memory[5] == 0)
4156 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
4157 MEM_TYPE_SPARE);
4158 if (spare_memory[6] == 0)
4159 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
4160 MEM_TYPE_SPARE);
4161 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
4162 Vmemory_full = Qnil;
4163 #endif
4166 /************************************************************************
4167 C Stack Marking
4168 ************************************************************************/
4170 /* Conservative C stack marking requires a method to identify possibly
4171 live Lisp objects given a pointer value. We do this by keeping
4172 track of blocks of Lisp data that are allocated in a red-black tree
4173 (see also the comment of mem_node which is the type of nodes in
4174 that tree). Function lisp_malloc adds information for an allocated
4175 block to the red-black tree with calls to mem_insert, and function
4176 lisp_free removes it with mem_delete. Functions live_string_p etc
4177 call mem_find to lookup information about a given pointer in the
4178 tree, and use that to determine if the pointer points into a Lisp
4179 object or not. */
4181 /* Initialize this part of alloc.c. */
4183 static void
4184 mem_init (void)
4186 mem_z.left = mem_z.right = MEM_NIL;
4187 mem_z.parent = NULL;
4188 mem_z.color = MEM_BLACK;
4189 mem_z.start = mem_z.end = NULL;
4190 mem_root = MEM_NIL;
4194 /* Value is a pointer to the mem_node containing START. Value is
4195 MEM_NIL if there is no node in the tree containing START. */
4197 static struct mem_node *
4198 mem_find (void *start)
4200 struct mem_node *p;
4202 if (start < min_heap_address || start > max_heap_address)
4203 return MEM_NIL;
4205 /* Make the search always successful to speed up the loop below. */
4206 mem_z.start = start;
4207 mem_z.end = (char *) start + 1;
4209 p = mem_root;
4210 while (start < p->start || start >= p->end)
4211 p = start < p->start ? p->left : p->right;
4212 return p;
4216 /* Insert a new node into the tree for a block of memory with start
4217 address START, end address END, and type TYPE. Value is a
4218 pointer to the node that was inserted. */
4220 static struct mem_node *
4221 mem_insert (void *start, void *end, enum mem_type type)
4223 struct mem_node *c, *parent, *x;
4225 if (min_heap_address == NULL || start < min_heap_address)
4226 min_heap_address = start;
4227 if (max_heap_address == NULL || end > max_heap_address)
4228 max_heap_address = end;
4230 /* See where in the tree a node for START belongs. In this
4231 particular application, it shouldn't happen that a node is already
4232 present. For debugging purposes, let's check that. */
4233 c = mem_root;
4234 parent = NULL;
4236 while (c != MEM_NIL)
4238 parent = c;
4239 c = start < c->start ? c->left : c->right;
4242 /* Create a new node. */
4243 #ifdef GC_MALLOC_CHECK
4244 x = malloc (sizeof *x);
4245 if (x == NULL)
4246 emacs_abort ();
4247 #else
4248 x = xmalloc (sizeof *x);
4249 #endif
4250 x->start = start;
4251 x->end = end;
4252 x->type = type;
4253 x->parent = parent;
4254 x->left = x->right = MEM_NIL;
4255 x->color = MEM_RED;
4257 /* Insert it as child of PARENT or install it as root. */
4258 if (parent)
4260 if (start < parent->start)
4261 parent->left = x;
4262 else
4263 parent->right = x;
4265 else
4266 mem_root = x;
4268 /* Re-establish red-black tree properties. */
4269 mem_insert_fixup (x);
4271 return x;
4275 /* Re-establish the red-black properties of the tree, and thereby
4276 balance the tree, after node X has been inserted; X is always red. */
4278 static void
4279 mem_insert_fixup (struct mem_node *x)
4281 while (x != mem_root && x->parent->color == MEM_RED)
4283 /* X is red and its parent is red. This is a violation of
4284 red-black tree property #3. */
4286 if (x->parent == x->parent->parent->left)
4288 /* We're on the left side of our grandparent, and Y is our
4289 "uncle". */
4290 struct mem_node *y = x->parent->parent->right;
4292 if (y->color == MEM_RED)
4294 /* Uncle and parent are red but should be black because
4295 X is red. Change the colors accordingly and proceed
4296 with the grandparent. */
4297 x->parent->color = MEM_BLACK;
4298 y->color = MEM_BLACK;
4299 x->parent->parent->color = MEM_RED;
4300 x = x->parent->parent;
4302 else
4304 /* Parent and uncle have different colors; parent is
4305 red, uncle is black. */
4306 if (x == x->parent->right)
4308 x = x->parent;
4309 mem_rotate_left (x);
4312 x->parent->color = MEM_BLACK;
4313 x->parent->parent->color = MEM_RED;
4314 mem_rotate_right (x->parent->parent);
4317 else
4319 /* This is the symmetrical case of above. */
4320 struct mem_node *y = x->parent->parent->left;
4322 if (y->color == MEM_RED)
4324 x->parent->color = MEM_BLACK;
4325 y->color = MEM_BLACK;
4326 x->parent->parent->color = MEM_RED;
4327 x = x->parent->parent;
4329 else
4331 if (x == x->parent->left)
4333 x = x->parent;
4334 mem_rotate_right (x);
4337 x->parent->color = MEM_BLACK;
4338 x->parent->parent->color = MEM_RED;
4339 mem_rotate_left (x->parent->parent);
4344 /* The root may have been changed to red due to the algorithm. Set
4345 it to black so that property #5 is satisfied. */
4346 mem_root->color = MEM_BLACK;
4350 /* (x) (y)
4351 / \ / \
4352 a (y) ===> (x) c
4353 / \ / \
4354 b c a b */
4356 static void
4357 mem_rotate_left (struct mem_node *x)
4359 struct mem_node *y;
4361 /* Turn y's left sub-tree into x's right sub-tree. */
4362 y = x->right;
4363 x->right = y->left;
4364 if (y->left != MEM_NIL)
4365 y->left->parent = x;
4367 /* Y's parent was x's parent. */
4368 if (y != MEM_NIL)
4369 y->parent = x->parent;
4371 /* Get the parent to point to y instead of x. */
4372 if (x->parent)
4374 if (x == x->parent->left)
4375 x->parent->left = y;
4376 else
4377 x->parent->right = y;
4379 else
4380 mem_root = y;
4382 /* Put x on y's left. */
4383 y->left = x;
4384 if (x != MEM_NIL)
4385 x->parent = y;
4389 /* (x) (Y)
4390 / \ / \
4391 (y) c ===> a (x)
4392 / \ / \
4393 a b b c */
4395 static void
4396 mem_rotate_right (struct mem_node *x)
4398 struct mem_node *y = x->left;
4400 x->left = y->right;
4401 if (y->right != MEM_NIL)
4402 y->right->parent = x;
4404 if (y != MEM_NIL)
4405 y->parent = x->parent;
4406 if (x->parent)
4408 if (x == x->parent->right)
4409 x->parent->right = y;
4410 else
4411 x->parent->left = y;
4413 else
4414 mem_root = y;
4416 y->right = x;
4417 if (x != MEM_NIL)
4418 x->parent = y;
4422 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4424 static void
4425 mem_delete (struct mem_node *z)
4427 struct mem_node *x, *y;
4429 if (!z || z == MEM_NIL)
4430 return;
4432 if (z->left == MEM_NIL || z->right == MEM_NIL)
4433 y = z;
4434 else
4436 y = z->right;
4437 while (y->left != MEM_NIL)
4438 y = y->left;
4441 if (y->left != MEM_NIL)
4442 x = y->left;
4443 else
4444 x = y->right;
4446 x->parent = y->parent;
4447 if (y->parent)
4449 if (y == y->parent->left)
4450 y->parent->left = x;
4451 else
4452 y->parent->right = x;
4454 else
4455 mem_root = x;
4457 if (y != z)
4459 z->start = y->start;
4460 z->end = y->end;
4461 z->type = y->type;
4464 if (y->color == MEM_BLACK)
4465 mem_delete_fixup (x);
4467 #ifdef GC_MALLOC_CHECK
4468 free (y);
4469 #else
4470 xfree (y);
4471 #endif
4475 /* Re-establish the red-black properties of the tree, after a
4476 deletion. */
4478 static void
4479 mem_delete_fixup (struct mem_node *x)
4481 while (x != mem_root && x->color == MEM_BLACK)
4483 if (x == x->parent->left)
4485 struct mem_node *w = x->parent->right;
4487 if (w->color == MEM_RED)
4489 w->color = MEM_BLACK;
4490 x->parent->color = MEM_RED;
4491 mem_rotate_left (x->parent);
4492 w = x->parent->right;
4495 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4497 w->color = MEM_RED;
4498 x = x->parent;
4500 else
4502 if (w->right->color == MEM_BLACK)
4504 w->left->color = MEM_BLACK;
4505 w->color = MEM_RED;
4506 mem_rotate_right (w);
4507 w = x->parent->right;
4509 w->color = x->parent->color;
4510 x->parent->color = MEM_BLACK;
4511 w->right->color = MEM_BLACK;
4512 mem_rotate_left (x->parent);
4513 x = mem_root;
4516 else
4518 struct mem_node *w = x->parent->left;
4520 if (w->color == MEM_RED)
4522 w->color = MEM_BLACK;
4523 x->parent->color = MEM_RED;
4524 mem_rotate_right (x->parent);
4525 w = x->parent->left;
4528 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4530 w->color = MEM_RED;
4531 x = x->parent;
4533 else
4535 if (w->left->color == MEM_BLACK)
4537 w->right->color = MEM_BLACK;
4538 w->color = MEM_RED;
4539 mem_rotate_left (w);
4540 w = x->parent->left;
4543 w->color = x->parent->color;
4544 x->parent->color = MEM_BLACK;
4545 w->left->color = MEM_BLACK;
4546 mem_rotate_right (x->parent);
4547 x = mem_root;
4552 x->color = MEM_BLACK;
4556 /* If P is a pointer into a live Lisp string object on the heap,
4557 return the object. Otherwise, return nil. M is a pointer to the
4558 mem_block for P.
4560 This and other *_holding functions look for a pointer anywhere into
4561 the object, not merely for a pointer to the start of the object,
4562 because some compilers sometimes optimize away the latter. See
4563 Bug#28213. */
4565 static Lisp_Object
4566 live_string_holding (struct mem_node *m, void *p)
4568 if (m->type == MEM_TYPE_STRING)
4570 struct string_block *b = m->start;
4571 char *cp = p;
4572 ptrdiff_t offset = cp - (char *) &b->strings[0];
4574 /* P must point into a Lisp_String structure, and it
4575 must not be on the free-list. */
4576 if (0 <= offset && offset < STRING_BLOCK_SIZE * sizeof b->strings[0])
4578 struct Lisp_String *s = p = cp -= offset % sizeof b->strings[0];
4579 if (s->u.s.data)
4580 return make_lisp_ptr (s, Lisp_String);
4583 return Qnil;
4586 static bool
4587 live_string_p (struct mem_node *m, void *p)
4589 return !NILP (live_string_holding (m, p));
4592 /* If P is a pointer into a live Lisp cons object on the heap, return
4593 the object. Otherwise, return nil. M is a pointer to the
4594 mem_block for P. */
4596 static Lisp_Object
4597 live_cons_holding (struct mem_node *m, void *p)
4599 if (m->type == MEM_TYPE_CONS)
4601 struct cons_block *b = m->start;
4602 char *cp = p;
4603 ptrdiff_t offset = cp - (char *) &b->conses[0];
4605 /* P must point into a Lisp_Cons, not be
4606 one of the unused cells in the current cons block,
4607 and not be on the free-list. */
4608 if (0 <= offset && offset < CONS_BLOCK_SIZE * sizeof b->conses[0]
4609 && (b != cons_block
4610 || offset / sizeof b->conses[0] < cons_block_index))
4612 struct Lisp_Cons *s = p = cp -= offset % sizeof b->conses[0];
4613 if (!EQ (s->u.s.car, Vdead))
4614 return make_lisp_ptr (s, Lisp_Cons);
4617 return Qnil;
4620 static bool
4621 live_cons_p (struct mem_node *m, void *p)
4623 return !NILP (live_cons_holding (m, p));
4627 /* If P is a pointer into a live Lisp symbol object on the heap,
4628 return the object. Otherwise, return nil. M is a pointer to the
4629 mem_block for P. */
4631 static Lisp_Object
4632 live_symbol_holding (struct mem_node *m, void *p)
4634 if (m->type == MEM_TYPE_SYMBOL)
4636 struct symbol_block *b = m->start;
4637 char *cp = p;
4638 ptrdiff_t offset = cp - (char *) &b->symbols[0];
4640 /* P must point into the Lisp_Symbol, not be
4641 one of the unused cells in the current symbol block,
4642 and not be on the free-list. */
4643 if (0 <= offset && offset < SYMBOL_BLOCK_SIZE * sizeof b->symbols[0]
4644 && (b != symbol_block
4645 || offset / sizeof b->symbols[0] < symbol_block_index))
4647 struct Lisp_Symbol *s = p = cp -= offset % sizeof b->symbols[0];
4648 if (!EQ (s->u.s.function, Vdead))
4649 return make_lisp_symbol (s);
4652 return Qnil;
4655 static bool
4656 live_symbol_p (struct mem_node *m, void *p)
4658 return !NILP (live_symbol_holding (m, p));
4662 /* Return true if P is a pointer to a live Lisp float on
4663 the heap. M is a pointer to the mem_block for P. */
4665 static bool
4666 live_float_p (struct mem_node *m, void *p)
4668 if (m->type == MEM_TYPE_FLOAT)
4670 struct float_block *b = m->start;
4671 char *cp = p;
4672 ptrdiff_t offset = cp - (char *) &b->floats[0];
4674 /* P must point to the start of a Lisp_Float and not be
4675 one of the unused cells in the current float block. */
4676 return (offset >= 0
4677 && offset % sizeof b->floats[0] == 0
4678 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4679 && (b != float_block
4680 || offset / sizeof b->floats[0] < float_block_index));
4682 else
4683 return 0;
4687 /* If P is a pointer to a live Lisp Misc on the heap, return the object.
4688 Otherwise, return nil. M is a pointer to the mem_block for P. */
4690 static Lisp_Object
4691 live_misc_holding (struct mem_node *m, void *p)
4693 if (m->type == MEM_TYPE_MISC)
4695 struct marker_block *b = m->start;
4696 char *cp = p;
4697 ptrdiff_t offset = cp - (char *) &b->markers[0];
4699 /* P must point into a Lisp_Misc, not be
4700 one of the unused cells in the current misc block,
4701 and not be on the free-list. */
4702 if (0 <= offset && offset < MARKER_BLOCK_SIZE * sizeof b->markers[0]
4703 && (b != marker_block
4704 || offset / sizeof b->markers[0] < marker_block_index))
4706 union Lisp_Misc *s = p = cp -= offset % sizeof b->markers[0];
4707 if (s->u_any.type != Lisp_Misc_Free)
4708 return make_lisp_ptr (s, Lisp_Misc);
4711 return Qnil;
4714 static bool
4715 live_misc_p (struct mem_node *m, void *p)
4717 return !NILP (live_misc_holding (m, p));
4720 /* If P is a pointer to a live vector-like object, return the object.
4721 Otherwise, return nil.
4722 M is a pointer to the mem_block for P. */
4724 static Lisp_Object
4725 live_vector_holding (struct mem_node *m, void *p)
4727 struct Lisp_Vector *vp = p;
4729 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4731 /* This memory node corresponds to a vector block. */
4732 struct vector_block *block = m->start;
4733 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4735 /* P is in the block's allocation range. Scan the block
4736 up to P and see whether P points to the start of some
4737 vector which is not on a free list. FIXME: check whether
4738 some allocation patterns (probably a lot of short vectors)
4739 may cause a substantial overhead of this loop. */
4740 while (VECTOR_IN_BLOCK (vector, block) && vector <= vp)
4742 struct Lisp_Vector *next = ADVANCE (vector, vector_nbytes (vector));
4743 if (vp < next && !PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE))
4744 return make_lisp_ptr (vector, Lisp_Vectorlike);
4745 vector = next;
4748 else if (m->type == MEM_TYPE_VECTORLIKE)
4750 /* This memory node corresponds to a large vector. */
4751 struct Lisp_Vector *vector = large_vector_vec (m->start);
4752 struct Lisp_Vector *next = ADVANCE (vector, vector_nbytes (vector));
4753 if (vector <= vp && vp < next)
4754 return make_lisp_ptr (vector, Lisp_Vectorlike);
4756 return Qnil;
4759 static bool
4760 live_vector_p (struct mem_node *m, void *p)
4762 return !NILP (live_vector_holding (m, p));
4765 /* If P is a pointer into a live buffer, return the buffer.
4766 Otherwise, return nil. M is a pointer to the mem_block for P. */
4768 static Lisp_Object
4769 live_buffer_holding (struct mem_node *m, void *p)
4771 /* P must point into the block, and the buffer
4772 must not have been killed. */
4773 if (m->type == MEM_TYPE_BUFFER)
4775 struct buffer *b = m->start;
4776 char *cb = m->start;
4777 char *cp = p;
4778 ptrdiff_t offset = cp - cb;
4779 if (0 <= offset && offset < sizeof *b && !NILP (b->name_))
4781 Lisp_Object obj;
4782 XSETBUFFER (obj, b);
4783 return obj;
4786 return Qnil;
4789 static bool
4790 live_buffer_p (struct mem_node *m, void *p)
4792 return !NILP (live_buffer_holding (m, p));
4795 /* Mark OBJ if we can prove it's a Lisp_Object. */
4797 static void
4798 mark_maybe_object (Lisp_Object obj)
4800 #if USE_VALGRIND
4801 if (valgrind_p)
4802 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4803 #endif
4805 if (INTEGERP (obj))
4806 return;
4808 void *po = XPNTR (obj);
4809 struct mem_node *m = mem_find (po);
4811 if (m != MEM_NIL)
4813 bool mark_p = false;
4815 switch (XTYPE (obj))
4817 case Lisp_String:
4818 mark_p = EQ (obj, live_string_holding (m, po));
4819 break;
4821 case Lisp_Cons:
4822 mark_p = EQ (obj, live_cons_holding (m, po));
4823 break;
4825 case Lisp_Symbol:
4826 mark_p = EQ (obj, live_symbol_holding (m, po));
4827 break;
4829 case Lisp_Float:
4830 mark_p = live_float_p (m, po);
4831 break;
4833 case Lisp_Vectorlike:
4834 mark_p = (EQ (obj, live_vector_holding (m, po))
4835 || EQ (obj, live_buffer_holding (m, po)));
4836 break;
4838 case Lisp_Misc:
4839 mark_p = EQ (obj, live_misc_holding (m, po));
4840 break;
4842 default:
4843 break;
4846 if (mark_p)
4847 mark_object (obj);
4851 /* Return true if P can point to Lisp data, and false otherwise.
4852 Symbols are implemented via offsets not pointers, but the offsets
4853 are also multiples of GCALIGNMENT. */
4855 static bool
4856 maybe_lisp_pointer (void *p)
4858 return (uintptr_t) p % GCALIGNMENT == 0;
4861 #ifndef HAVE_MODULES
4862 enum { HAVE_MODULES = false };
4863 #endif
4865 /* If P points to Lisp data, mark that as live if it isn't already
4866 marked. */
4868 static void
4869 mark_maybe_pointer (void *p)
4871 struct mem_node *m;
4873 #if USE_VALGRIND
4874 if (valgrind_p)
4875 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4876 #endif
4878 if (sizeof (Lisp_Object) == sizeof (void *) || !HAVE_MODULES)
4880 if (!maybe_lisp_pointer (p))
4881 return;
4883 else
4885 /* For the wide-int case, also mark emacs_value tagged pointers,
4886 which can be generated by emacs-module.c's value_to_lisp. */
4887 p = (void *) ((uintptr_t) p & ~(GCALIGNMENT - 1));
4890 m = mem_find (p);
4891 if (m != MEM_NIL)
4893 Lisp_Object obj = Qnil;
4895 switch (m->type)
4897 case MEM_TYPE_NON_LISP:
4898 case MEM_TYPE_SPARE:
4899 /* Nothing to do; not a pointer to Lisp memory. */
4900 break;
4902 case MEM_TYPE_BUFFER:
4903 obj = live_buffer_holding (m, p);
4904 break;
4906 case MEM_TYPE_CONS:
4907 obj = live_cons_holding (m, p);
4908 break;
4910 case MEM_TYPE_STRING:
4911 obj = live_string_holding (m, p);
4912 break;
4914 case MEM_TYPE_MISC:
4915 obj = live_misc_holding (m, p);
4916 break;
4918 case MEM_TYPE_SYMBOL:
4919 obj = live_symbol_holding (m, p);
4920 break;
4922 case MEM_TYPE_FLOAT:
4923 if (live_float_p (m, p))
4924 obj = make_lisp_ptr (p, Lisp_Float);
4925 break;
4927 case MEM_TYPE_VECTORLIKE:
4928 case MEM_TYPE_VECTOR_BLOCK:
4929 obj = live_vector_holding (m, p);
4930 break;
4932 default:
4933 emacs_abort ();
4936 if (!NILP (obj))
4937 mark_object (obj);
4942 /* Alignment of pointer values. Use alignof, as it sometimes returns
4943 a smaller alignment than GCC's __alignof__ and mark_memory might
4944 miss objects if __alignof__ were used. */
4945 #define GC_POINTER_ALIGNMENT alignof (void *)
4947 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4948 or END+OFFSET..START. */
4950 static void ATTRIBUTE_NO_SANITIZE_ADDRESS
4951 mark_memory (void *start, void *end)
4953 char *pp;
4955 /* Make START the pointer to the start of the memory region,
4956 if it isn't already. */
4957 if (end < start)
4959 void *tem = start;
4960 start = end;
4961 end = tem;
4964 eassert (((uintptr_t) start) % GC_POINTER_ALIGNMENT == 0);
4966 /* Mark Lisp data pointed to. This is necessary because, in some
4967 situations, the C compiler optimizes Lisp objects away, so that
4968 only a pointer to them remains. Example:
4970 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4973 Lisp_Object obj = build_string ("test");
4974 struct Lisp_String *s = XSTRING (obj);
4975 Fgarbage_collect ();
4976 fprintf (stderr, "test '%s'\n", s->u.s.data);
4977 return Qnil;
4980 Here, `obj' isn't really used, and the compiler optimizes it
4981 away. The only reference to the life string is through the
4982 pointer `s'. */
4984 for (pp = start; (void *) pp < end; pp += GC_POINTER_ALIGNMENT)
4986 mark_maybe_pointer (*(void **) pp);
4987 mark_maybe_object (*(Lisp_Object *) pp);
4991 #ifndef HAVE___BUILTIN_UNWIND_INIT
4993 # ifdef GC_SETJMP_WORKS
4994 static void
4995 test_setjmp (void)
4998 # else
5000 static bool setjmp_tested_p;
5001 static int longjmps_done;
5003 # define SETJMP_WILL_LIKELY_WORK "\
5005 Emacs garbage collector has been changed to use conservative stack\n\
5006 marking. Emacs has determined that the method it uses to do the\n\
5007 marking will likely work on your system, but this isn't sure.\n\
5009 If you are a system-programmer, or can get the help of a local wizard\n\
5010 who is, please take a look at the function mark_stack in alloc.c, and\n\
5011 verify that the methods used are appropriate for your system.\n\
5013 Please mail the result to <emacs-devel@gnu.org>.\n\
5016 # define SETJMP_WILL_NOT_WORK "\
5018 Emacs garbage collector has been changed to use conservative stack\n\
5019 marking. Emacs has determined that the default method it uses to do the\n\
5020 marking will not work on your system. We will need a system-dependent\n\
5021 solution for your system.\n\
5023 Please take a look at the function mark_stack in alloc.c, and\n\
5024 try to find a way to make it work on your system.\n\
5026 Note that you may get false negatives, depending on the compiler.\n\
5027 In particular, you need to use -O with GCC for this test.\n\
5029 Please mail the result to <emacs-devel@gnu.org>.\n\
5033 /* Perform a quick check if it looks like setjmp saves registers in a
5034 jmp_buf. Print a message to stderr saying so. When this test
5035 succeeds, this is _not_ a proof that setjmp is sufficient for
5036 conservative stack marking. Only the sources or a disassembly
5037 can prove that. */
5039 static void
5040 test_setjmp (void)
5042 if (setjmp_tested_p)
5043 return;
5044 setjmp_tested_p = true;
5045 char buf[10];
5046 register int x;
5047 sys_jmp_buf jbuf;
5049 /* Arrange for X to be put in a register. */
5050 sprintf (buf, "1");
5051 x = strlen (buf);
5052 x = 2 * x - 1;
5054 sys_setjmp (jbuf);
5055 if (longjmps_done == 1)
5057 /* Came here after the longjmp at the end of the function.
5059 If x == 1, the longjmp has restored the register to its
5060 value before the setjmp, and we can hope that setjmp
5061 saves all such registers in the jmp_buf, although that
5062 isn't sure.
5064 For other values of X, either something really strange is
5065 taking place, or the setjmp just didn't save the register. */
5067 if (x == 1)
5068 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
5069 else
5071 fprintf (stderr, SETJMP_WILL_NOT_WORK);
5072 exit (1);
5076 ++longjmps_done;
5077 x = 2;
5078 if (longjmps_done == 1)
5079 sys_longjmp (jbuf, 1);
5081 # endif /* ! GC_SETJMP_WORKS */
5082 #endif /* ! HAVE___BUILTIN_UNWIND_INIT */
5084 /* The type of an object near the stack top, whose address can be used
5085 as a stack scan limit. */
5086 typedef union
5088 /* Align the stack top properly. Even if !HAVE___BUILTIN_UNWIND_INIT,
5089 jmp_buf may not be aligned enough on darwin-ppc64. */
5090 max_align_t o;
5091 #ifndef HAVE___BUILTIN_UNWIND_INIT
5092 sys_jmp_buf j;
5093 char c;
5094 #endif
5095 } stacktop_sentry;
5097 /* Force callee-saved registers and register windows onto the stack.
5098 Use the platform-defined __builtin_unwind_init if available,
5099 obviating the need for machine dependent methods. */
5100 #ifndef HAVE___BUILTIN_UNWIND_INIT
5101 # ifdef __sparc__
5102 /* This trick flushes the register windows so that all the state of
5103 the process is contained in the stack.
5104 FreeBSD does not have a ta 3 handler, so handle it specially.
5105 FIXME: Code in the Boehm GC suggests flushing (with 'flushrs') is
5106 needed on ia64 too. See mach_dep.c, where it also says inline
5107 assembler doesn't work with relevant proprietary compilers. */
5108 # if defined __sparc64__ && defined __FreeBSD__
5109 # define __builtin_unwind_init() asm ("flushw")
5110 # else
5111 # define __builtin_unwind_init() asm ("ta 3")
5112 # endif
5113 # else
5114 # define __builtin_unwind_init() ((void) 0)
5115 # endif
5116 #endif
5118 /* Yield an address close enough to the top of the stack that the
5119 garbage collector need not scan above it. Callers should be
5120 declared NO_INLINE. */
5121 #ifdef HAVE___BUILTIN_FRAME_ADDRESS
5122 # define NEAR_STACK_TOP(addr) ((void) (addr), __builtin_frame_address (0))
5123 #else
5124 # define NEAR_STACK_TOP(addr) (addr)
5125 #endif
5127 /* Set *P to the address of the top of the stack. This must be a
5128 macro, not a function, so that it is executed in the caller’s
5129 environment. It is not inside a do-while so that its storage
5130 survives the macro. Callers should be declared NO_INLINE. */
5131 #ifdef HAVE___BUILTIN_UNWIND_INIT
5132 # define SET_STACK_TOP_ADDRESS(p) \
5133 stacktop_sentry sentry; \
5134 __builtin_unwind_init (); \
5135 *(p) = NEAR_STACK_TOP (&sentry)
5136 #else
5137 # define SET_STACK_TOP_ADDRESS(p) \
5138 stacktop_sentry sentry; \
5139 __builtin_unwind_init (); \
5140 test_setjmp (); \
5141 sys_setjmp (sentry.j); \
5142 *(p) = NEAR_STACK_TOP (&sentry + (stack_bottom < &sentry.c))
5143 #endif
5145 /* Mark live Lisp objects on the C stack.
5147 There are several system-dependent problems to consider when
5148 porting this to new architectures:
5150 Processor Registers
5152 We have to mark Lisp objects in CPU registers that can hold local
5153 variables or are used to pass parameters.
5155 This code assumes that calling setjmp saves registers we need
5156 to see in a jmp_buf which itself lies on the stack. This doesn't
5157 have to be true! It must be verified for each system, possibly
5158 by taking a look at the source code of setjmp.
5160 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
5161 can use it as a machine independent method to store all registers
5162 to the stack. In this case the macros described in the previous
5163 two paragraphs are not used.
5165 Stack Layout
5167 Architectures differ in the way their processor stack is organized.
5168 For example, the stack might look like this
5170 +----------------+
5171 | Lisp_Object | size = 4
5172 +----------------+
5173 | something else | size = 2
5174 +----------------+
5175 | Lisp_Object | size = 4
5176 +----------------+
5177 | ... |
5179 In such a case, not every Lisp_Object will be aligned equally. To
5180 find all Lisp_Object on the stack it won't be sufficient to walk
5181 the stack in steps of 4 bytes. Instead, two passes will be
5182 necessary, one starting at the start of the stack, and a second
5183 pass starting at the start of the stack + 2. Likewise, if the
5184 minimal alignment of Lisp_Objects on the stack is 1, four passes
5185 would be necessary, each one starting with one byte more offset
5186 from the stack start. */
5188 void
5189 mark_stack (char *bottom, char *end)
5191 /* This assumes that the stack is a contiguous region in memory. If
5192 that's not the case, something has to be done here to iterate
5193 over the stack segments. */
5194 mark_memory (bottom, end);
5196 /* Allow for marking a secondary stack, like the register stack on the
5197 ia64. */
5198 #ifdef GC_MARK_SECONDARY_STACK
5199 GC_MARK_SECONDARY_STACK ();
5200 #endif
5203 /* This is a trampoline function that flushes registers to the stack,
5204 and then calls FUNC. ARG is passed through to FUNC verbatim.
5206 This function must be called whenever Emacs is about to release the
5207 global interpreter lock. This lets the garbage collector easily
5208 find roots in registers on threads that are not actively running
5209 Lisp.
5211 It is invalid to run any Lisp code or to allocate any GC memory
5212 from FUNC. */
5214 NO_INLINE void
5215 flush_stack_call_func (void (*func) (void *arg), void *arg)
5217 void *end;
5218 struct thread_state *self = current_thread;
5219 SET_STACK_TOP_ADDRESS (&end);
5220 self->stack_top = end;
5221 func (arg);
5222 eassert (current_thread == self);
5225 static bool
5226 c_symbol_p (struct Lisp_Symbol *sym)
5228 char *lispsym_ptr = (char *) lispsym;
5229 char *sym_ptr = (char *) sym;
5230 ptrdiff_t lispsym_offset = sym_ptr - lispsym_ptr;
5231 return 0 <= lispsym_offset && lispsym_offset < sizeof lispsym;
5234 /* Determine whether it is safe to access memory at address P. */
5235 static int
5236 valid_pointer_p (void *p)
5238 #ifdef WINDOWSNT
5239 return w32_valid_pointer_p (p, 16);
5240 #else
5242 if (ADDRESS_SANITIZER)
5243 return p ? -1 : 0;
5245 int fd[2];
5247 /* Obviously, we cannot just access it (we would SEGV trying), so we
5248 trick the o/s to tell us whether p is a valid pointer.
5249 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
5250 not validate p in that case. */
5252 if (emacs_pipe (fd) == 0)
5254 bool valid = emacs_write (fd[1], p, 16) == 16;
5255 emacs_close (fd[1]);
5256 emacs_close (fd[0]);
5257 return valid;
5260 return -1;
5261 #endif
5264 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
5265 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
5266 cannot validate OBJ. This function can be quite slow, so its primary
5267 use is the manual debugging. The only exception is print_object, where
5268 we use it to check whether the memory referenced by the pointer of
5269 Lisp_Save_Value object contains valid objects. */
5272 valid_lisp_object_p (Lisp_Object obj)
5274 if (INTEGERP (obj))
5275 return 1;
5277 void *p = XPNTR (obj);
5278 if (PURE_P (p))
5279 return 1;
5281 if (SYMBOLP (obj) && c_symbol_p (p))
5282 return ((char *) p - (char *) lispsym) % sizeof lispsym[0] == 0;
5284 if (p == &buffer_defaults || p == &buffer_local_symbols)
5285 return 2;
5287 struct mem_node *m = mem_find (p);
5289 if (m == MEM_NIL)
5291 int valid = valid_pointer_p (p);
5292 if (valid <= 0)
5293 return valid;
5295 if (SUBRP (obj))
5296 return 1;
5298 return 0;
5301 switch (m->type)
5303 case MEM_TYPE_NON_LISP:
5304 case MEM_TYPE_SPARE:
5305 return 0;
5307 case MEM_TYPE_BUFFER:
5308 return live_buffer_p (m, p) ? 1 : 2;
5310 case MEM_TYPE_CONS:
5311 return live_cons_p (m, p);
5313 case MEM_TYPE_STRING:
5314 return live_string_p (m, p);
5316 case MEM_TYPE_MISC:
5317 return live_misc_p (m, p);
5319 case MEM_TYPE_SYMBOL:
5320 return live_symbol_p (m, p);
5322 case MEM_TYPE_FLOAT:
5323 return live_float_p (m, p);
5325 case MEM_TYPE_VECTORLIKE:
5326 case MEM_TYPE_VECTOR_BLOCK:
5327 return live_vector_p (m, p);
5329 default:
5330 break;
5333 return 0;
5336 /***********************************************************************
5337 Pure Storage Management
5338 ***********************************************************************/
5340 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5341 pointer to it. TYPE is the Lisp type for which the memory is
5342 allocated. TYPE < 0 means it's not used for a Lisp object. */
5344 static void *
5345 pure_alloc (size_t size, int type)
5347 void *result;
5349 again:
5350 if (type >= 0)
5352 /* Allocate space for a Lisp object from the beginning of the free
5353 space with taking account of alignment. */
5354 result = pointer_align (purebeg + pure_bytes_used_lisp, GCALIGNMENT);
5355 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5357 else
5359 /* Allocate space for a non-Lisp object from the end of the free
5360 space. */
5361 pure_bytes_used_non_lisp += size;
5362 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5364 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5366 if (pure_bytes_used <= pure_size)
5367 return result;
5369 /* Don't allocate a large amount here,
5370 because it might get mmap'd and then its address
5371 might not be usable. */
5372 purebeg = xmalloc (10000);
5373 pure_size = 10000;
5374 pure_bytes_used_before_overflow += pure_bytes_used - size;
5375 pure_bytes_used = 0;
5376 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5377 goto again;
5381 #ifndef CANNOT_DUMP
5383 /* Print a warning if PURESIZE is too small. */
5385 void
5386 check_pure_size (void)
5388 if (pure_bytes_used_before_overflow)
5389 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5390 " bytes needed)"),
5391 pure_bytes_used + pure_bytes_used_before_overflow);
5393 #endif
5396 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5397 the non-Lisp data pool of the pure storage, and return its start
5398 address. Return NULL if not found. */
5400 static char *
5401 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5403 int i;
5404 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5405 const unsigned char *p;
5406 char *non_lisp_beg;
5408 if (pure_bytes_used_non_lisp <= nbytes)
5409 return NULL;
5411 /* Set up the Boyer-Moore table. */
5412 skip = nbytes + 1;
5413 for (i = 0; i < 256; i++)
5414 bm_skip[i] = skip;
5416 p = (const unsigned char *) data;
5417 while (--skip > 0)
5418 bm_skip[*p++] = skip;
5420 last_char_skip = bm_skip['\0'];
5422 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5423 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5425 /* See the comments in the function `boyer_moore' (search.c) for the
5426 use of `infinity'. */
5427 infinity = pure_bytes_used_non_lisp + 1;
5428 bm_skip['\0'] = infinity;
5430 p = (const unsigned char *) non_lisp_beg + nbytes;
5431 start = 0;
5434 /* Check the last character (== '\0'). */
5437 start += bm_skip[*(p + start)];
5439 while (start <= start_max);
5441 if (start < infinity)
5442 /* Couldn't find the last character. */
5443 return NULL;
5445 /* No less than `infinity' means we could find the last
5446 character at `p[start - infinity]'. */
5447 start -= infinity;
5449 /* Check the remaining characters. */
5450 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5451 /* Found. */
5452 return non_lisp_beg + start;
5454 start += last_char_skip;
5456 while (start <= start_max);
5458 return NULL;
5462 /* Return a string allocated in pure space. DATA is a buffer holding
5463 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5464 means make the result string multibyte.
5466 Must get an error if pure storage is full, since if it cannot hold
5467 a large string it may be able to hold conses that point to that
5468 string; then the string is not protected from gc. */
5470 Lisp_Object
5471 make_pure_string (const char *data,
5472 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5474 Lisp_Object string;
5475 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5476 s->u.s.data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5477 if (s->u.s.data == NULL)
5479 s->u.s.data = pure_alloc (nbytes + 1, -1);
5480 memcpy (s->u.s.data, data, nbytes);
5481 s->u.s.data[nbytes] = '\0';
5483 s->u.s.size = nchars;
5484 s->u.s.size_byte = multibyte ? nbytes : -1;
5485 s->u.s.intervals = NULL;
5486 XSETSTRING (string, s);
5487 return string;
5490 /* Return a string allocated in pure space. Do not
5491 allocate the string data, just point to DATA. */
5493 Lisp_Object
5494 make_pure_c_string (const char *data, ptrdiff_t nchars)
5496 Lisp_Object string;
5497 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5498 s->u.s.size = nchars;
5499 s->u.s.size_byte = -1;
5500 s->u.s.data = (unsigned char *) data;
5501 s->u.s.intervals = NULL;
5502 XSETSTRING (string, s);
5503 return string;
5506 static Lisp_Object purecopy (Lisp_Object obj);
5508 /* Return a cons allocated from pure space. Give it pure copies
5509 of CAR as car and CDR as cdr. */
5511 Lisp_Object
5512 pure_cons (Lisp_Object car, Lisp_Object cdr)
5514 Lisp_Object new;
5515 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5516 XSETCONS (new, p);
5517 XSETCAR (new, purecopy (car));
5518 XSETCDR (new, purecopy (cdr));
5519 return new;
5523 /* Value is a float object with value NUM allocated from pure space. */
5525 static Lisp_Object
5526 make_pure_float (double num)
5528 Lisp_Object new;
5529 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5530 XSETFLOAT (new, p);
5531 XFLOAT_INIT (new, num);
5532 return new;
5536 /* Return a vector with room for LEN Lisp_Objects allocated from
5537 pure space. */
5539 static Lisp_Object
5540 make_pure_vector (ptrdiff_t len)
5542 Lisp_Object new;
5543 size_t size = header_size + len * word_size;
5544 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5545 XSETVECTOR (new, p);
5546 XVECTOR (new)->header.size = len;
5547 return new;
5550 /* Copy all contents and parameters of TABLE to a new table allocated
5551 from pure space, return the purified table. */
5552 static struct Lisp_Hash_Table *
5553 purecopy_hash_table (struct Lisp_Hash_Table *table)
5555 eassert (NILP (table->weak));
5556 eassert (table->pure);
5558 struct Lisp_Hash_Table *pure = pure_alloc (sizeof *pure, Lisp_Vectorlike);
5559 struct hash_table_test pure_test = table->test;
5561 /* Purecopy the hash table test. */
5562 pure_test.name = purecopy (table->test.name);
5563 pure_test.user_hash_function = purecopy (table->test.user_hash_function);
5564 pure_test.user_cmp_function = purecopy (table->test.user_cmp_function);
5566 pure->header = table->header;
5567 pure->weak = purecopy (Qnil);
5568 pure->hash = purecopy (table->hash);
5569 pure->next = purecopy (table->next);
5570 pure->index = purecopy (table->index);
5571 pure->count = table->count;
5572 pure->next_free = table->next_free;
5573 pure->pure = table->pure;
5574 pure->rehash_threshold = table->rehash_threshold;
5575 pure->rehash_size = table->rehash_size;
5576 pure->key_and_value = purecopy (table->key_and_value);
5577 pure->test = pure_test;
5579 return pure;
5582 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5583 doc: /* Make a copy of object OBJ in pure storage.
5584 Recursively copies contents of vectors and cons cells.
5585 Does not copy symbols. Copies strings without text properties. */)
5586 (register Lisp_Object obj)
5588 if (NILP (Vpurify_flag))
5589 return obj;
5590 else if (MARKERP (obj) || OVERLAYP (obj) || SYMBOLP (obj))
5591 /* Can't purify those. */
5592 return obj;
5593 else
5594 return purecopy (obj);
5597 /* Pinned objects are marked before every GC cycle. */
5598 static struct pinned_object
5600 Lisp_Object object;
5601 struct pinned_object *next;
5602 } *pinned_objects;
5604 static Lisp_Object
5605 purecopy (Lisp_Object obj)
5607 if (INTEGERP (obj)
5608 || (! SYMBOLP (obj) && PURE_P (XPNTR_OR_SYMBOL_OFFSET (obj)))
5609 || SUBRP (obj))
5610 return obj; /* Already pure. */
5612 if (STRINGP (obj) && XSTRING (obj)->u.s.intervals)
5613 message_with_string ("Dropping text-properties while making string `%s' pure",
5614 obj, true);
5616 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5618 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5619 if (!NILP (tmp))
5620 return tmp;
5623 if (CONSP (obj))
5624 obj = pure_cons (XCAR (obj), XCDR (obj));
5625 else if (FLOATP (obj))
5626 obj = make_pure_float (XFLOAT_DATA (obj));
5627 else if (STRINGP (obj))
5628 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5629 SBYTES (obj),
5630 STRING_MULTIBYTE (obj));
5631 else if (HASH_TABLE_P (obj))
5633 struct Lisp_Hash_Table *table = XHASH_TABLE (obj);
5634 /* Do not purify hash tables which haven't been defined with
5635 :purecopy as non-nil or are weak - they aren't guaranteed to
5636 not change. */
5637 if (!NILP (table->weak) || !table->pure)
5639 /* Instead, add the hash table to the list of pinned objects,
5640 so that it will be marked during GC. */
5641 struct pinned_object *o = xmalloc (sizeof *o);
5642 o->object = obj;
5643 o->next = pinned_objects;
5644 pinned_objects = o;
5645 return obj; /* Don't hash cons it. */
5648 struct Lisp_Hash_Table *h = purecopy_hash_table (table);
5649 XSET_HASH_TABLE (obj, h);
5651 else if (COMPILEDP (obj) || VECTORP (obj) || RECORDP (obj))
5653 struct Lisp_Vector *objp = XVECTOR (obj);
5654 ptrdiff_t nbytes = vector_nbytes (objp);
5655 struct Lisp_Vector *vec = pure_alloc (nbytes, Lisp_Vectorlike);
5656 register ptrdiff_t i;
5657 ptrdiff_t size = ASIZE (obj);
5658 if (size & PSEUDOVECTOR_FLAG)
5659 size &= PSEUDOVECTOR_SIZE_MASK;
5660 memcpy (vec, objp, nbytes);
5661 for (i = 0; i < size; i++)
5662 vec->contents[i] = purecopy (vec->contents[i]);
5663 XSETVECTOR (obj, vec);
5665 else if (SYMBOLP (obj))
5667 if (!XSYMBOL (obj)->u.s.pinned && !c_symbol_p (XSYMBOL (obj)))
5668 { /* We can't purify them, but they appear in many pure objects.
5669 Mark them as `pinned' so we know to mark them at every GC cycle. */
5670 XSYMBOL (obj)->u.s.pinned = true;
5671 symbol_block_pinned = symbol_block;
5673 /* Don't hash-cons it. */
5674 return obj;
5676 else
5678 AUTO_STRING (fmt, "Don't know how to purify: %S");
5679 Fsignal (Qerror, list1 (CALLN (Fformat, fmt, obj)));
5682 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5683 Fputhash (obj, obj, Vpurify_flag);
5685 return obj;
5690 /***********************************************************************
5691 Protection from GC
5692 ***********************************************************************/
5694 /* Put an entry in staticvec, pointing at the variable with address
5695 VARADDRESS. */
5697 void
5698 staticpro (Lisp_Object *varaddress)
5700 if (staticidx >= NSTATICS)
5701 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5702 staticvec[staticidx++] = varaddress;
5706 /***********************************************************************
5707 Protection from GC
5708 ***********************************************************************/
5710 /* Temporarily prevent garbage collection. */
5712 ptrdiff_t
5713 inhibit_garbage_collection (void)
5715 ptrdiff_t count = SPECPDL_INDEX ();
5717 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5718 return count;
5721 /* Used to avoid possible overflows when
5722 converting from C to Lisp integers. */
5724 static Lisp_Object
5725 bounded_number (EMACS_INT number)
5727 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5730 /* Calculate total bytes of live objects. */
5732 static size_t
5733 total_bytes_of_live_objects (void)
5735 size_t tot = 0;
5736 tot += total_conses * sizeof (struct Lisp_Cons);
5737 tot += total_symbols * sizeof (struct Lisp_Symbol);
5738 tot += total_markers * sizeof (union Lisp_Misc);
5739 tot += total_string_bytes;
5740 tot += total_vector_slots * word_size;
5741 tot += total_floats * sizeof (struct Lisp_Float);
5742 tot += total_intervals * sizeof (struct interval);
5743 tot += total_strings * sizeof (struct Lisp_String);
5744 return tot;
5747 #ifdef HAVE_WINDOW_SYSTEM
5749 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5750 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5752 static Lisp_Object
5753 compact_font_cache_entry (Lisp_Object entry)
5755 Lisp_Object tail, *prev = &entry;
5757 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5759 bool drop = 0;
5760 Lisp_Object obj = XCAR (tail);
5762 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5763 if (CONSP (obj) && GC_FONT_SPEC_P (XCAR (obj))
5764 && !VECTOR_MARKED_P (GC_XFONT_SPEC (XCAR (obj)))
5765 /* Don't use VECTORP here, as that calls ASIZE, which could
5766 hit assertion violation during GC. */
5767 && (VECTORLIKEP (XCDR (obj))
5768 && ! (gc_asize (XCDR (obj)) & PSEUDOVECTOR_FLAG)))
5770 ptrdiff_t i, size = gc_asize (XCDR (obj));
5771 Lisp_Object obj_cdr = XCDR (obj);
5773 /* If font-spec is not marked, most likely all font-entities
5774 are not marked too. But we must be sure that nothing is
5775 marked within OBJ before we really drop it. */
5776 for (i = 0; i < size; i++)
5778 Lisp_Object objlist;
5780 if (VECTOR_MARKED_P (GC_XFONT_ENTITY (AREF (obj_cdr, i))))
5781 break;
5783 objlist = AREF (AREF (obj_cdr, i), FONT_OBJLIST_INDEX);
5784 for (; CONSP (objlist); objlist = XCDR (objlist))
5786 Lisp_Object val = XCAR (objlist);
5787 struct font *font = GC_XFONT_OBJECT (val);
5789 if (!NILP (AREF (val, FONT_TYPE_INDEX))
5790 && VECTOR_MARKED_P(font))
5791 break;
5793 if (CONSP (objlist))
5795 /* Found a marked font, bail out. */
5796 break;
5800 if (i == size)
5802 /* No marked fonts were found, so this entire font
5803 entity can be dropped. */
5804 drop = 1;
5807 if (drop)
5808 *prev = XCDR (tail);
5809 else
5810 prev = xcdr_addr (tail);
5812 return entry;
5815 /* Compact font caches on all terminals and mark
5816 everything which is still here after compaction. */
5818 static void
5819 compact_font_caches (void)
5821 struct terminal *t;
5823 for (t = terminal_list; t; t = t->next_terminal)
5825 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5826 /* Inhibit compacting the caches if the user so wishes. Some of
5827 the users don't mind a larger memory footprint, but do mind
5828 slower redisplay. */
5829 if (!inhibit_compacting_font_caches
5830 && CONSP (cache))
5832 Lisp_Object entry;
5834 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5835 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5837 mark_object (cache);
5841 #else /* not HAVE_WINDOW_SYSTEM */
5843 #define compact_font_caches() (void)(0)
5845 #endif /* HAVE_WINDOW_SYSTEM */
5847 /* Remove (MARKER . DATA) entries with unmarked MARKER
5848 from buffer undo LIST and return changed list. */
5850 static Lisp_Object
5851 compact_undo_list (Lisp_Object list)
5853 Lisp_Object tail, *prev = &list;
5855 for (tail = list; CONSP (tail); tail = XCDR (tail))
5857 if (CONSP (XCAR (tail))
5858 && MARKERP (XCAR (XCAR (tail)))
5859 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5860 *prev = XCDR (tail);
5861 else
5862 prev = xcdr_addr (tail);
5864 return list;
5867 static void
5868 mark_pinned_objects (void)
5870 for (struct pinned_object *pobj = pinned_objects; pobj; pobj = pobj->next)
5871 mark_object (pobj->object);
5874 static void
5875 mark_pinned_symbols (void)
5877 struct symbol_block *sblk;
5878 int lim = (symbol_block_pinned == symbol_block
5879 ? symbol_block_index : SYMBOL_BLOCK_SIZE);
5881 for (sblk = symbol_block_pinned; sblk; sblk = sblk->next)
5883 struct Lisp_Symbol *sym = sblk->symbols, *end = sym + lim;
5884 for (; sym < end; ++sym)
5885 if (sym->u.s.pinned)
5886 mark_object (make_lisp_symbol (sym));
5888 lim = SYMBOL_BLOCK_SIZE;
5892 /* Subroutine of Fgarbage_collect that does most of the work. It is a
5893 separate function so that we could limit mark_stack in searching
5894 the stack frames below this function, thus avoiding the rare cases
5895 where mark_stack finds values that look like live Lisp objects on
5896 portions of stack that couldn't possibly contain such live objects.
5897 For more details of this, see the discussion at
5898 https://lists.gnu.org/r/emacs-devel/2014-05/msg00270.html. */
5899 static Lisp_Object
5900 garbage_collect_1 (void *end)
5902 struct buffer *nextb;
5903 char stack_top_variable;
5904 ptrdiff_t i;
5905 bool message_p;
5906 ptrdiff_t count = SPECPDL_INDEX ();
5907 struct timespec start;
5908 Lisp_Object retval = Qnil;
5909 size_t tot_before = 0;
5911 /* Can't GC if pure storage overflowed because we can't determine
5912 if something is a pure object or not. */
5913 if (pure_bytes_used_before_overflow)
5914 return Qnil;
5916 /* Record this function, so it appears on the profiler's backtraces. */
5917 record_in_backtrace (QAutomatic_GC, 0, 0);
5919 check_cons_list ();
5921 /* Don't keep undo information around forever.
5922 Do this early on, so it is no problem if the user quits. */
5923 FOR_EACH_BUFFER (nextb)
5924 compact_buffer (nextb);
5926 if (profiler_memory_running)
5927 tot_before = total_bytes_of_live_objects ();
5929 start = current_timespec ();
5931 /* In case user calls debug_print during GC,
5932 don't let that cause a recursive GC. */
5933 consing_since_gc = 0;
5935 /* Save what's currently displayed in the echo area. Don't do that
5936 if we are GC'ing because we've run out of memory, since
5937 push_message will cons, and we might have no memory for that. */
5938 if (NILP (Vmemory_full))
5940 message_p = push_message ();
5941 record_unwind_protect_void (pop_message_unwind);
5943 else
5944 message_p = false;
5946 /* Save a copy of the contents of the stack, for debugging. */
5947 #if MAX_SAVE_STACK > 0
5948 if (NILP (Vpurify_flag))
5950 char *stack;
5951 ptrdiff_t stack_size;
5952 if (&stack_top_variable < stack_bottom)
5954 stack = &stack_top_variable;
5955 stack_size = stack_bottom - &stack_top_variable;
5957 else
5959 stack = stack_bottom;
5960 stack_size = &stack_top_variable - stack_bottom;
5962 if (stack_size <= MAX_SAVE_STACK)
5964 if (stack_copy_size < stack_size)
5966 stack_copy = xrealloc (stack_copy, stack_size);
5967 stack_copy_size = stack_size;
5969 no_sanitize_memcpy (stack_copy, stack, stack_size);
5972 #endif /* MAX_SAVE_STACK > 0 */
5974 if (garbage_collection_messages)
5975 message1_nolog ("Garbage collecting...");
5977 block_input ();
5979 shrink_regexp_cache ();
5981 gc_in_progress = 1;
5983 /* Mark all the special slots that serve as the roots of accessibility. */
5985 mark_buffer (&buffer_defaults);
5986 mark_buffer (&buffer_local_symbols);
5988 for (i = 0; i < ARRAYELTS (lispsym); i++)
5989 mark_object (builtin_lisp_symbol (i));
5991 for (i = 0; i < staticidx; i++)
5992 mark_object (*staticvec[i]);
5994 mark_pinned_objects ();
5995 mark_pinned_symbols ();
5996 mark_terminals ();
5997 mark_kboards ();
5998 mark_threads ();
6000 #ifdef USE_GTK
6001 xg_mark_data ();
6002 #endif
6004 #ifdef HAVE_WINDOW_SYSTEM
6005 mark_fringe_data ();
6006 #endif
6008 #ifdef HAVE_MODULES
6009 mark_modules ();
6010 #endif
6012 /* Everything is now marked, except for the data in font caches,
6013 undo lists, and finalizers. The first two are compacted by
6014 removing an items which aren't reachable otherwise. */
6016 compact_font_caches ();
6018 FOR_EACH_BUFFER (nextb)
6020 if (!EQ (BVAR (nextb, undo_list), Qt))
6021 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
6022 /* Now that we have stripped the elements that need not be
6023 in the undo_list any more, we can finally mark the list. */
6024 mark_object (BVAR (nextb, undo_list));
6027 /* Now pre-sweep finalizers. Here, we add any unmarked finalizers
6028 to doomed_finalizers so we can run their associated functions
6029 after GC. It's important to scan finalizers at this stage so
6030 that we can be sure that unmarked finalizers are really
6031 unreachable except for references from their associated functions
6032 and from other finalizers. */
6034 queue_doomed_finalizers (&doomed_finalizers, &finalizers);
6035 mark_finalizer_list (&doomed_finalizers);
6037 gc_sweep ();
6039 /* Clear the mark bits that we set in certain root slots. */
6040 VECTOR_UNMARK (&buffer_defaults);
6041 VECTOR_UNMARK (&buffer_local_symbols);
6043 check_cons_list ();
6045 gc_in_progress = 0;
6047 unblock_input ();
6049 consing_since_gc = 0;
6050 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
6051 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
6053 gc_relative_threshold = 0;
6054 if (FLOATP (Vgc_cons_percentage))
6055 { /* Set gc_cons_combined_threshold. */
6056 double tot = total_bytes_of_live_objects ();
6058 tot *= XFLOAT_DATA (Vgc_cons_percentage);
6059 if (0 < tot)
6061 if (tot < TYPE_MAXIMUM (EMACS_INT))
6062 gc_relative_threshold = tot;
6063 else
6064 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
6068 if (garbage_collection_messages && NILP (Vmemory_full))
6070 if (message_p || minibuf_level > 0)
6071 restore_message ();
6072 else
6073 message1_nolog ("Garbage collecting...done");
6076 unbind_to (count, Qnil);
6078 Lisp_Object total[] = {
6079 list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
6080 bounded_number (total_conses),
6081 bounded_number (total_free_conses)),
6082 list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
6083 bounded_number (total_symbols),
6084 bounded_number (total_free_symbols)),
6085 list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
6086 bounded_number (total_markers),
6087 bounded_number (total_free_markers)),
6088 list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
6089 bounded_number (total_strings),
6090 bounded_number (total_free_strings)),
6091 list3 (Qstring_bytes, make_number (1),
6092 bounded_number (total_string_bytes)),
6093 list3 (Qvectors,
6094 make_number (header_size + sizeof (Lisp_Object)),
6095 bounded_number (total_vectors)),
6096 list4 (Qvector_slots, make_number (word_size),
6097 bounded_number (total_vector_slots),
6098 bounded_number (total_free_vector_slots)),
6099 list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
6100 bounded_number (total_floats),
6101 bounded_number (total_free_floats)),
6102 list4 (Qintervals, make_number (sizeof (struct interval)),
6103 bounded_number (total_intervals),
6104 bounded_number (total_free_intervals)),
6105 list3 (Qbuffers, make_number (sizeof (struct buffer)),
6106 bounded_number (total_buffers)),
6108 #ifdef DOUG_LEA_MALLOC
6109 list4 (Qheap, make_number (1024),
6110 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
6111 bounded_number ((mallinfo ().fordblks + 1023) >> 10)),
6112 #endif
6114 retval = CALLMANY (Flist, total);
6116 /* GC is complete: now we can run our finalizer callbacks. */
6117 run_finalizers (&doomed_finalizers);
6119 if (!NILP (Vpost_gc_hook))
6121 ptrdiff_t gc_count = inhibit_garbage_collection ();
6122 safe_run_hooks (Qpost_gc_hook);
6123 unbind_to (gc_count, Qnil);
6126 /* Accumulate statistics. */
6127 if (FLOATP (Vgc_elapsed))
6129 struct timespec since_start = timespec_sub (current_timespec (), start);
6130 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
6131 + timespectod (since_start));
6134 gcs_done++;
6136 /* Collect profiling data. */
6137 if (profiler_memory_running)
6139 size_t swept = 0;
6140 size_t tot_after = total_bytes_of_live_objects ();
6141 if (tot_before > tot_after)
6142 swept = tot_before - tot_after;
6143 malloc_probe (swept);
6146 return retval;
6149 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
6150 doc: /* Reclaim storage for Lisp objects no longer needed.
6151 Garbage collection happens automatically if you cons more than
6152 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
6153 `garbage-collect' normally returns a list with info on amount of space in use,
6154 where each entry has the form (NAME SIZE USED FREE), where:
6155 - NAME is a symbol describing the kind of objects this entry represents,
6156 - SIZE is the number of bytes used by each one,
6157 - USED is the number of those objects that were found live in the heap,
6158 - FREE is the number of those objects that are not live but that Emacs
6159 keeps around for future allocations (maybe because it does not know how
6160 to return them to the OS).
6161 However, if there was overflow in pure space, `garbage-collect'
6162 returns nil, because real GC can't be done.
6163 See Info node `(elisp)Garbage Collection'. */
6164 attributes: noinline)
6165 (void)
6167 void *end;
6168 SET_STACK_TOP_ADDRESS (&end);
6169 return garbage_collect_1 (end);
6172 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
6173 only interesting objects referenced from glyphs are strings. */
6175 static void
6176 mark_glyph_matrix (struct glyph_matrix *matrix)
6178 struct glyph_row *row = matrix->rows;
6179 struct glyph_row *end = row + matrix->nrows;
6181 for (; row < end; ++row)
6182 if (row->enabled_p)
6184 int area;
6185 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
6187 struct glyph *glyph = row->glyphs[area];
6188 struct glyph *end_glyph = glyph + row->used[area];
6190 for (; glyph < end_glyph; ++glyph)
6191 if (STRINGP (glyph->object)
6192 && !STRING_MARKED_P (XSTRING (glyph->object)))
6193 mark_object (glyph->object);
6198 /* Mark reference to a Lisp_Object.
6199 If the object referred to has not been seen yet, recursively mark
6200 all the references contained in it. */
6202 #define LAST_MARKED_SIZE 500
6203 Lisp_Object last_marked[LAST_MARKED_SIZE] EXTERNALLY_VISIBLE;
6204 static int last_marked_index;
6206 /* For debugging--call abort when we cdr down this many
6207 links of a list, in mark_object. In debugging,
6208 the call to abort will hit a breakpoint.
6209 Normally this is zero and the check never goes off. */
6210 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
6212 static void
6213 mark_vectorlike (struct Lisp_Vector *ptr)
6215 ptrdiff_t size = ptr->header.size;
6216 ptrdiff_t i;
6218 eassert (!VECTOR_MARKED_P (ptr));
6219 VECTOR_MARK (ptr); /* Else mark it. */
6220 if (size & PSEUDOVECTOR_FLAG)
6221 size &= PSEUDOVECTOR_SIZE_MASK;
6223 /* Note that this size is not the memory-footprint size, but only
6224 the number of Lisp_Object fields that we should trace.
6225 The distinction is used e.g. by Lisp_Process which places extra
6226 non-Lisp_Object fields at the end of the structure... */
6227 for (i = 0; i < size; i++) /* ...and then mark its elements. */
6228 mark_object (ptr->contents[i]);
6231 /* Like mark_vectorlike but optimized for char-tables (and
6232 sub-char-tables) assuming that the contents are mostly integers or
6233 symbols. */
6235 static void
6236 mark_char_table (struct Lisp_Vector *ptr, enum pvec_type pvectype)
6238 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6239 /* Consult the Lisp_Sub_Char_Table layout before changing this. */
6240 int i, idx = (pvectype == PVEC_SUB_CHAR_TABLE ? SUB_CHAR_TABLE_OFFSET : 0);
6242 eassert (!VECTOR_MARKED_P (ptr));
6243 VECTOR_MARK (ptr);
6244 for (i = idx; i < size; i++)
6246 Lisp_Object val = ptr->contents[i];
6248 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->u.s.gcmarkbit))
6249 continue;
6250 if (SUB_CHAR_TABLE_P (val))
6252 if (! VECTOR_MARKED_P (XVECTOR (val)))
6253 mark_char_table (XVECTOR (val), PVEC_SUB_CHAR_TABLE);
6255 else
6256 mark_object (val);
6260 NO_INLINE /* To reduce stack depth in mark_object. */
6261 static Lisp_Object
6262 mark_compiled (struct Lisp_Vector *ptr)
6264 int i, size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6266 VECTOR_MARK (ptr);
6267 for (i = 0; i < size; i++)
6268 if (i != COMPILED_CONSTANTS)
6269 mark_object (ptr->contents[i]);
6270 return size > COMPILED_CONSTANTS ? ptr->contents[COMPILED_CONSTANTS] : Qnil;
6273 /* Mark the chain of overlays starting at PTR. */
6275 static void
6276 mark_overlay (struct Lisp_Overlay *ptr)
6278 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
6280 ptr->gcmarkbit = 1;
6281 /* These two are always markers and can be marked fast. */
6282 XMARKER (ptr->start)->gcmarkbit = 1;
6283 XMARKER (ptr->end)->gcmarkbit = 1;
6284 mark_object (ptr->plist);
6288 /* Mark Lisp_Objects and special pointers in BUFFER. */
6290 static void
6291 mark_buffer (struct buffer *buffer)
6293 /* This is handled much like other pseudovectors... */
6294 mark_vectorlike ((struct Lisp_Vector *) buffer);
6296 /* ...but there are some buffer-specific things. */
6298 MARK_INTERVAL_TREE (buffer_intervals (buffer));
6300 /* For now, we just don't mark the undo_list. It's done later in
6301 a special way just before the sweep phase, and after stripping
6302 some of its elements that are not needed any more. */
6304 mark_overlay (buffer->overlays_before);
6305 mark_overlay (buffer->overlays_after);
6307 /* If this is an indirect buffer, mark its base buffer. */
6308 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
6309 mark_buffer (buffer->base_buffer);
6312 /* Mark Lisp faces in the face cache C. */
6314 NO_INLINE /* To reduce stack depth in mark_object. */
6315 static void
6316 mark_face_cache (struct face_cache *c)
6318 if (c)
6320 int i, j;
6321 for (i = 0; i < c->used; ++i)
6323 struct face *face = FACE_FROM_ID_OR_NULL (c->f, i);
6325 if (face)
6327 if (face->font && !VECTOR_MARKED_P (face->font))
6328 mark_vectorlike ((struct Lisp_Vector *) face->font);
6330 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
6331 mark_object (face->lface[j]);
6337 NO_INLINE /* To reduce stack depth in mark_object. */
6338 static void
6339 mark_localized_symbol (struct Lisp_Symbol *ptr)
6341 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6342 Lisp_Object where = blv->where;
6343 /* If the value is set up for a killed buffer or deleted
6344 frame, restore its global binding. If the value is
6345 forwarded to a C variable, either it's not a Lisp_Object
6346 var, or it's staticpro'd already. */
6347 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
6348 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
6349 swap_in_global_binding (ptr);
6350 mark_object (blv->where);
6351 mark_object (blv->valcell);
6352 mark_object (blv->defcell);
6355 NO_INLINE /* To reduce stack depth in mark_object. */
6356 static void
6357 mark_save_value (struct Lisp_Save_Value *ptr)
6359 /* If `save_type' is zero, `data[0].pointer' is the address
6360 of a memory area containing `data[1].integer' potential
6361 Lisp_Objects. */
6362 if (ptr->save_type == SAVE_TYPE_MEMORY)
6364 Lisp_Object *p = ptr->data[0].pointer;
6365 ptrdiff_t nelt;
6366 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6367 mark_maybe_object (*p);
6369 else
6371 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6372 int i;
6373 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6374 if (save_type (ptr, i) == SAVE_OBJECT)
6375 mark_object (ptr->data[i].object);
6379 /* Remove killed buffers or items whose car is a killed buffer from
6380 LIST, and mark other items. Return changed LIST, which is marked. */
6382 static Lisp_Object
6383 mark_discard_killed_buffers (Lisp_Object list)
6385 Lisp_Object tail, *prev = &list;
6387 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
6388 tail = XCDR (tail))
6390 Lisp_Object tem = XCAR (tail);
6391 if (CONSP (tem))
6392 tem = XCAR (tem);
6393 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
6394 *prev = XCDR (tail);
6395 else
6397 CONS_MARK (XCONS (tail));
6398 mark_object (XCAR (tail));
6399 prev = xcdr_addr (tail);
6402 mark_object (tail);
6403 return list;
6406 /* Determine type of generic Lisp_Object and mark it accordingly.
6408 This function implements a straightforward depth-first marking
6409 algorithm and so the recursion depth may be very high (a few
6410 tens of thousands is not uncommon). To minimize stack usage,
6411 a few cold paths are moved out to NO_INLINE functions above.
6412 In general, inlining them doesn't help you to gain more speed. */
6414 void
6415 mark_object (Lisp_Object arg)
6417 register Lisp_Object obj;
6418 void *po;
6419 #if GC_CHECK_MARKED_OBJECTS
6420 struct mem_node *m;
6421 #endif
6422 ptrdiff_t cdr_count = 0;
6424 obj = arg;
6425 loop:
6427 po = XPNTR (obj);
6428 if (PURE_P (po))
6429 return;
6431 last_marked[last_marked_index++] = obj;
6432 if (last_marked_index == LAST_MARKED_SIZE)
6433 last_marked_index = 0;
6435 /* Perform some sanity checks on the objects marked here. Abort if
6436 we encounter an object we know is bogus. This increases GC time
6437 by ~80%. */
6438 #if GC_CHECK_MARKED_OBJECTS
6440 /* Check that the object pointed to by PO is known to be a Lisp
6441 structure allocated from the heap. */
6442 #define CHECK_ALLOCATED() \
6443 do { \
6444 m = mem_find (po); \
6445 if (m == MEM_NIL) \
6446 emacs_abort (); \
6447 } while (0)
6449 /* Check that the object pointed to by PO is live, using predicate
6450 function LIVEP. */
6451 #define CHECK_LIVE(LIVEP) \
6452 do { \
6453 if (!LIVEP (m, po)) \
6454 emacs_abort (); \
6455 } while (0)
6457 /* Check both of the above conditions, for non-symbols. */
6458 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
6459 do { \
6460 CHECK_ALLOCATED (); \
6461 CHECK_LIVE (LIVEP); \
6462 } while (0) \
6464 /* Check both of the above conditions, for symbols. */
6465 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() \
6466 do { \
6467 if (!c_symbol_p (ptr)) \
6469 CHECK_ALLOCATED (); \
6470 CHECK_LIVE (live_symbol_p); \
6472 } while (0) \
6474 #else /* not GC_CHECK_MARKED_OBJECTS */
6476 #define CHECK_LIVE(LIVEP) ((void) 0)
6477 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) ((void) 0)
6478 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() ((void) 0)
6480 #endif /* not GC_CHECK_MARKED_OBJECTS */
6482 switch (XTYPE (obj))
6484 case Lisp_String:
6486 register struct Lisp_String *ptr = XSTRING (obj);
6487 if (STRING_MARKED_P (ptr))
6488 break;
6489 CHECK_ALLOCATED_AND_LIVE (live_string_p);
6490 MARK_STRING (ptr);
6491 MARK_INTERVAL_TREE (ptr->u.s.intervals);
6492 #ifdef GC_CHECK_STRING_BYTES
6493 /* Check that the string size recorded in the string is the
6494 same as the one recorded in the sdata structure. */
6495 string_bytes (ptr);
6496 #endif /* GC_CHECK_STRING_BYTES */
6498 break;
6500 case Lisp_Vectorlike:
6502 register struct Lisp_Vector *ptr = XVECTOR (obj);
6504 if (VECTOR_MARKED_P (ptr))
6505 break;
6507 #if GC_CHECK_MARKED_OBJECTS
6508 m = mem_find (po);
6509 if (m == MEM_NIL && !SUBRP (obj) && !main_thread_p (po))
6510 emacs_abort ();
6511 #endif /* GC_CHECK_MARKED_OBJECTS */
6513 enum pvec_type pvectype
6514 = PSEUDOVECTOR_TYPE (ptr);
6516 if (pvectype != PVEC_SUBR
6517 && pvectype != PVEC_BUFFER
6518 && !main_thread_p (po))
6519 CHECK_LIVE (live_vector_p);
6521 switch (pvectype)
6523 case PVEC_BUFFER:
6524 #if GC_CHECK_MARKED_OBJECTS
6526 struct buffer *b;
6527 FOR_EACH_BUFFER (b)
6528 if (b == po)
6529 break;
6530 if (b == NULL)
6531 emacs_abort ();
6533 #endif /* GC_CHECK_MARKED_OBJECTS */
6534 mark_buffer ((struct buffer *) ptr);
6535 break;
6537 case PVEC_COMPILED:
6538 /* Although we could treat this just like a vector, mark_compiled
6539 returns the COMPILED_CONSTANTS element, which is marked at the
6540 next iteration of goto-loop here. This is done to avoid a few
6541 recursive calls to mark_object. */
6542 obj = mark_compiled (ptr);
6543 if (!NILP (obj))
6544 goto loop;
6545 break;
6547 case PVEC_FRAME:
6549 struct frame *f = (struct frame *) ptr;
6551 mark_vectorlike (ptr);
6552 mark_face_cache (f->face_cache);
6553 #ifdef HAVE_WINDOW_SYSTEM
6554 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6556 struct font *font = FRAME_FONT (f);
6558 if (font && !VECTOR_MARKED_P (font))
6559 mark_vectorlike ((struct Lisp_Vector *) font);
6561 #endif
6563 break;
6565 case PVEC_WINDOW:
6567 struct window *w = (struct window *) ptr;
6569 mark_vectorlike (ptr);
6571 /* Mark glyph matrices, if any. Marking window
6572 matrices is sufficient because frame matrices
6573 use the same glyph memory. */
6574 if (w->current_matrix)
6576 mark_glyph_matrix (w->current_matrix);
6577 mark_glyph_matrix (w->desired_matrix);
6580 /* Filter out killed buffers from both buffer lists
6581 in attempt to help GC to reclaim killed buffers faster.
6582 We can do it elsewhere for live windows, but this is the
6583 best place to do it for dead windows. */
6584 wset_prev_buffers
6585 (w, mark_discard_killed_buffers (w->prev_buffers));
6586 wset_next_buffers
6587 (w, mark_discard_killed_buffers (w->next_buffers));
6589 break;
6591 case PVEC_HASH_TABLE:
6593 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6595 mark_vectorlike (ptr);
6596 mark_object (h->test.name);
6597 mark_object (h->test.user_hash_function);
6598 mark_object (h->test.user_cmp_function);
6599 /* If hash table is not weak, mark all keys and values.
6600 For weak tables, mark only the vector. */
6601 if (NILP (h->weak))
6602 mark_object (h->key_and_value);
6603 else
6604 VECTOR_MARK (XVECTOR (h->key_and_value));
6606 break;
6608 case PVEC_CHAR_TABLE:
6609 case PVEC_SUB_CHAR_TABLE:
6610 mark_char_table (ptr, (enum pvec_type) pvectype);
6611 break;
6613 case PVEC_BOOL_VECTOR:
6614 /* No Lisp_Objects to mark in a bool vector. */
6615 VECTOR_MARK (ptr);
6616 break;
6618 case PVEC_SUBR:
6619 break;
6621 case PVEC_FREE:
6622 emacs_abort ();
6624 default:
6625 mark_vectorlike (ptr);
6628 break;
6630 case Lisp_Symbol:
6632 struct Lisp_Symbol *ptr = XSYMBOL (obj);
6633 nextsym:
6634 if (ptr->u.s.gcmarkbit)
6635 break;
6636 CHECK_ALLOCATED_AND_LIVE_SYMBOL ();
6637 ptr->u.s.gcmarkbit = 1;
6638 /* Attempt to catch bogus objects. */
6639 eassert (valid_lisp_object_p (ptr->u.s.function));
6640 mark_object (ptr->u.s.function);
6641 mark_object (ptr->u.s.plist);
6642 switch (ptr->u.s.redirect)
6644 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6645 case SYMBOL_VARALIAS:
6647 Lisp_Object tem;
6648 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6649 mark_object (tem);
6650 break;
6652 case SYMBOL_LOCALIZED:
6653 mark_localized_symbol (ptr);
6654 break;
6655 case SYMBOL_FORWARDED:
6656 /* If the value is forwarded to a buffer or keyboard field,
6657 these are marked when we see the corresponding object.
6658 And if it's forwarded to a C variable, either it's not
6659 a Lisp_Object var, or it's staticpro'd already. */
6660 break;
6661 default: emacs_abort ();
6663 if (!PURE_P (XSTRING (ptr->u.s.name)))
6664 MARK_STRING (XSTRING (ptr->u.s.name));
6665 MARK_INTERVAL_TREE (string_intervals (ptr->u.s.name));
6666 /* Inner loop to mark next symbol in this bucket, if any. */
6667 po = ptr = ptr->u.s.next;
6668 if (ptr)
6669 goto nextsym;
6671 break;
6673 case Lisp_Misc:
6674 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6676 if (XMISCANY (obj)->gcmarkbit)
6677 break;
6679 switch (XMISCTYPE (obj))
6681 case Lisp_Misc_Marker:
6682 /* DO NOT mark thru the marker's chain.
6683 The buffer's markers chain does not preserve markers from gc;
6684 instead, markers are removed from the chain when freed by gc. */
6685 XMISCANY (obj)->gcmarkbit = 1;
6686 break;
6688 case Lisp_Misc_Save_Value:
6689 XMISCANY (obj)->gcmarkbit = 1;
6690 mark_save_value (XSAVE_VALUE (obj));
6691 break;
6693 case Lisp_Misc_Overlay:
6694 mark_overlay (XOVERLAY (obj));
6695 break;
6697 case Lisp_Misc_Finalizer:
6698 XMISCANY (obj)->gcmarkbit = true;
6699 mark_object (XFINALIZER (obj)->function);
6700 break;
6702 #ifdef HAVE_MODULES
6703 case Lisp_Misc_User_Ptr:
6704 XMISCANY (obj)->gcmarkbit = true;
6705 break;
6706 #endif
6708 default:
6709 emacs_abort ();
6711 break;
6713 case Lisp_Cons:
6715 register struct Lisp_Cons *ptr = XCONS (obj);
6716 if (CONS_MARKED_P (ptr))
6717 break;
6718 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6719 CONS_MARK (ptr);
6720 /* If the cdr is nil, avoid recursion for the car. */
6721 if (EQ (ptr->u.s.u.cdr, Qnil))
6723 obj = ptr->u.s.car;
6724 cdr_count = 0;
6725 goto loop;
6727 mark_object (ptr->u.s.car);
6728 obj = ptr->u.s.u.cdr;
6729 cdr_count++;
6730 if (cdr_count == mark_object_loop_halt)
6731 emacs_abort ();
6732 goto loop;
6735 case Lisp_Float:
6736 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6737 FLOAT_MARK (XFLOAT (obj));
6738 break;
6740 case_Lisp_Int:
6741 break;
6743 default:
6744 emacs_abort ();
6747 #undef CHECK_LIVE
6748 #undef CHECK_ALLOCATED
6749 #undef CHECK_ALLOCATED_AND_LIVE
6751 /* Mark the Lisp pointers in the terminal objects.
6752 Called by Fgarbage_collect. */
6754 static void
6755 mark_terminals (void)
6757 struct terminal *t;
6758 for (t = terminal_list; t; t = t->next_terminal)
6760 eassert (t->name != NULL);
6761 #ifdef HAVE_WINDOW_SYSTEM
6762 /* If a terminal object is reachable from a stacpro'ed object,
6763 it might have been marked already. Make sure the image cache
6764 gets marked. */
6765 mark_image_cache (t->image_cache);
6766 #endif /* HAVE_WINDOW_SYSTEM */
6767 if (!VECTOR_MARKED_P (t))
6768 mark_vectorlike ((struct Lisp_Vector *)t);
6774 /* Value is non-zero if OBJ will survive the current GC because it's
6775 either marked or does not need to be marked to survive. */
6777 bool
6778 survives_gc_p (Lisp_Object obj)
6780 bool survives_p;
6782 switch (XTYPE (obj))
6784 case_Lisp_Int:
6785 survives_p = 1;
6786 break;
6788 case Lisp_Symbol:
6789 survives_p = XSYMBOL (obj)->u.s.gcmarkbit;
6790 break;
6792 case Lisp_Misc:
6793 survives_p = XMISCANY (obj)->gcmarkbit;
6794 break;
6796 case Lisp_String:
6797 survives_p = STRING_MARKED_P (XSTRING (obj));
6798 break;
6800 case Lisp_Vectorlike:
6801 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6802 break;
6804 case Lisp_Cons:
6805 survives_p = CONS_MARKED_P (XCONS (obj));
6806 break;
6808 case Lisp_Float:
6809 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6810 break;
6812 default:
6813 emacs_abort ();
6816 return survives_p || PURE_P (XPNTR (obj));
6822 NO_INLINE /* For better stack traces */
6823 static void
6824 sweep_conses (void)
6826 struct cons_block *cblk;
6827 struct cons_block **cprev = &cons_block;
6828 int lim = cons_block_index;
6829 EMACS_INT num_free = 0, num_used = 0;
6831 cons_free_list = 0;
6833 for (cblk = cons_block; cblk; cblk = *cprev)
6835 int i = 0;
6836 int this_free = 0;
6837 int ilim = (lim + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
6839 /* Scan the mark bits an int at a time. */
6840 for (i = 0; i < ilim; i++)
6842 if (cblk->gcmarkbits[i] == BITS_WORD_MAX)
6844 /* Fast path - all cons cells for this int are marked. */
6845 cblk->gcmarkbits[i] = 0;
6846 num_used += BITS_PER_BITS_WORD;
6848 else
6850 /* Some cons cells for this int are not marked.
6851 Find which ones, and free them. */
6852 int start, pos, stop;
6854 start = i * BITS_PER_BITS_WORD;
6855 stop = lim - start;
6856 if (stop > BITS_PER_BITS_WORD)
6857 stop = BITS_PER_BITS_WORD;
6858 stop += start;
6860 for (pos = start; pos < stop; pos++)
6862 if (!CONS_MARKED_P (&cblk->conses[pos]))
6864 this_free++;
6865 cblk->conses[pos].u.s.u.chain = cons_free_list;
6866 cons_free_list = &cblk->conses[pos];
6867 cons_free_list->u.s.car = Vdead;
6869 else
6871 num_used++;
6872 CONS_UNMARK (&cblk->conses[pos]);
6878 lim = CONS_BLOCK_SIZE;
6879 /* If this block contains only free conses and we have already
6880 seen more than two blocks worth of free conses then deallocate
6881 this block. */
6882 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6884 *cprev = cblk->next;
6885 /* Unhook from the free list. */
6886 cons_free_list = cblk->conses[0].u.s.u.chain;
6887 lisp_align_free (cblk);
6889 else
6891 num_free += this_free;
6892 cprev = &cblk->next;
6895 total_conses = num_used;
6896 total_free_conses = num_free;
6899 NO_INLINE /* For better stack traces */
6900 static void
6901 sweep_floats (void)
6903 register struct float_block *fblk;
6904 struct float_block **fprev = &float_block;
6905 register int lim = float_block_index;
6906 EMACS_INT num_free = 0, num_used = 0;
6908 float_free_list = 0;
6910 for (fblk = float_block; fblk; fblk = *fprev)
6912 register int i;
6913 int this_free = 0;
6914 for (i = 0; i < lim; i++)
6915 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6917 this_free++;
6918 fblk->floats[i].u.chain = float_free_list;
6919 float_free_list = &fblk->floats[i];
6921 else
6923 num_used++;
6924 FLOAT_UNMARK (&fblk->floats[i]);
6926 lim = FLOAT_BLOCK_SIZE;
6927 /* If this block contains only free floats and we have already
6928 seen more than two blocks worth of free floats then deallocate
6929 this block. */
6930 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6932 *fprev = fblk->next;
6933 /* Unhook from the free list. */
6934 float_free_list = fblk->floats[0].u.chain;
6935 lisp_align_free (fblk);
6937 else
6939 num_free += this_free;
6940 fprev = &fblk->next;
6943 total_floats = num_used;
6944 total_free_floats = num_free;
6947 NO_INLINE /* For better stack traces */
6948 static void
6949 sweep_intervals (void)
6951 register struct interval_block *iblk;
6952 struct interval_block **iprev = &interval_block;
6953 register int lim = interval_block_index;
6954 EMACS_INT num_free = 0, num_used = 0;
6956 interval_free_list = 0;
6958 for (iblk = interval_block; iblk; iblk = *iprev)
6960 register int i;
6961 int this_free = 0;
6963 for (i = 0; i < lim; i++)
6965 if (!iblk->intervals[i].gcmarkbit)
6967 set_interval_parent (&iblk->intervals[i], interval_free_list);
6968 interval_free_list = &iblk->intervals[i];
6969 this_free++;
6971 else
6973 num_used++;
6974 iblk->intervals[i].gcmarkbit = 0;
6977 lim = INTERVAL_BLOCK_SIZE;
6978 /* If this block contains only free intervals and we have already
6979 seen more than two blocks worth of free intervals then
6980 deallocate this block. */
6981 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6983 *iprev = iblk->next;
6984 /* Unhook from the free list. */
6985 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6986 lisp_free (iblk);
6988 else
6990 num_free += this_free;
6991 iprev = &iblk->next;
6994 total_intervals = num_used;
6995 total_free_intervals = num_free;
6998 NO_INLINE /* For better stack traces */
6999 static void
7000 sweep_symbols (void)
7002 struct symbol_block *sblk;
7003 struct symbol_block **sprev = &symbol_block;
7004 int lim = symbol_block_index;
7005 EMACS_INT num_free = 0, num_used = ARRAYELTS (lispsym);
7007 symbol_free_list = NULL;
7009 for (int i = 0; i < ARRAYELTS (lispsym); i++)
7010 lispsym[i].u.s.gcmarkbit = 0;
7012 for (sblk = symbol_block; sblk; sblk = *sprev)
7014 int this_free = 0;
7015 struct Lisp_Symbol *sym = sblk->symbols;
7016 struct Lisp_Symbol *end = sym + lim;
7018 for (; sym < end; ++sym)
7020 if (!sym->u.s.gcmarkbit)
7022 if (sym->u.s.redirect == SYMBOL_LOCALIZED)
7024 xfree (SYMBOL_BLV (sym));
7025 /* At every GC we sweep all symbol_blocks and rebuild the
7026 symbol_free_list, so those symbols which stayed unused
7027 between the two will be re-swept.
7028 So we have to make sure we don't re-free this blv next
7029 time we sweep this symbol_block (bug#29066). */
7030 sym->u.s.redirect = SYMBOL_PLAINVAL;
7032 sym->u.s.next = symbol_free_list;
7033 symbol_free_list = sym;
7034 symbol_free_list->u.s.function = Vdead;
7035 ++this_free;
7037 else
7039 ++num_used;
7040 sym->u.s.gcmarkbit = 0;
7041 /* Attempt to catch bogus objects. */
7042 eassert (valid_lisp_object_p (sym->u.s.function));
7046 lim = SYMBOL_BLOCK_SIZE;
7047 /* If this block contains only free symbols and we have already
7048 seen more than two blocks worth of free symbols then deallocate
7049 this block. */
7050 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
7052 *sprev = sblk->next;
7053 /* Unhook from the free list. */
7054 symbol_free_list = sblk->symbols[0].u.s.next;
7055 lisp_free (sblk);
7057 else
7059 num_free += this_free;
7060 sprev = &sblk->next;
7063 total_symbols = num_used;
7064 total_free_symbols = num_free;
7067 NO_INLINE /* For better stack traces. */
7068 static void
7069 sweep_misc (void)
7071 register struct marker_block *mblk;
7072 struct marker_block **mprev = &marker_block;
7073 register int lim = marker_block_index;
7074 EMACS_INT num_free = 0, num_used = 0;
7076 /* Put all unmarked misc's on free list. For a marker, first
7077 unchain it from the buffer it points into. */
7079 marker_free_list = 0;
7081 for (mblk = marker_block; mblk; mblk = *mprev)
7083 register int i;
7084 int this_free = 0;
7086 for (i = 0; i < lim; i++)
7088 if (!mblk->markers[i].m.u_any.gcmarkbit)
7090 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
7091 unchain_marker (&mblk->markers[i].m.u_marker);
7092 else if (mblk->markers[i].m.u_any.type == Lisp_Misc_Finalizer)
7093 unchain_finalizer (&mblk->markers[i].m.u_finalizer);
7094 #ifdef HAVE_MODULES
7095 else if (mblk->markers[i].m.u_any.type == Lisp_Misc_User_Ptr)
7097 struct Lisp_User_Ptr *uptr = &mblk->markers[i].m.u_user_ptr;
7098 if (uptr->finalizer)
7099 uptr->finalizer (uptr->p);
7101 #endif
7102 /* Set the type of the freed object to Lisp_Misc_Free.
7103 We could leave the type alone, since nobody checks it,
7104 but this might catch bugs faster. */
7105 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
7106 mblk->markers[i].m.u_free.chain = marker_free_list;
7107 marker_free_list = &mblk->markers[i].m;
7108 this_free++;
7110 else
7112 num_used++;
7113 mblk->markers[i].m.u_any.gcmarkbit = 0;
7116 lim = MARKER_BLOCK_SIZE;
7117 /* If this block contains only free markers and we have already
7118 seen more than two blocks worth of free markers then deallocate
7119 this block. */
7120 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
7122 *mprev = mblk->next;
7123 /* Unhook from the free list. */
7124 marker_free_list = mblk->markers[0].m.u_free.chain;
7125 lisp_free (mblk);
7127 else
7129 num_free += this_free;
7130 mprev = &mblk->next;
7134 total_markers = num_used;
7135 total_free_markers = num_free;
7138 NO_INLINE /* For better stack traces */
7139 static void
7140 sweep_buffers (void)
7142 register struct buffer *buffer, **bprev = &all_buffers;
7144 total_buffers = 0;
7145 for (buffer = all_buffers; buffer; buffer = *bprev)
7146 if (!VECTOR_MARKED_P (buffer))
7148 *bprev = buffer->next;
7149 lisp_free (buffer);
7151 else
7153 VECTOR_UNMARK (buffer);
7154 /* Do not use buffer_(set|get)_intervals here. */
7155 buffer->text->intervals = balance_intervals (buffer->text->intervals);
7156 total_buffers++;
7157 bprev = &buffer->next;
7161 /* Sweep: find all structures not marked, and free them. */
7162 static void
7163 gc_sweep (void)
7165 /* Remove or mark entries in weak hash tables.
7166 This must be done before any object is unmarked. */
7167 sweep_weak_hash_tables ();
7169 sweep_strings ();
7170 check_string_bytes (!noninteractive);
7171 sweep_conses ();
7172 sweep_floats ();
7173 sweep_intervals ();
7174 sweep_symbols ();
7175 sweep_misc ();
7176 sweep_buffers ();
7177 sweep_vectors ();
7178 check_string_bytes (!noninteractive);
7181 DEFUN ("memory-info", Fmemory_info, Smemory_info, 0, 0, 0,
7182 doc: /* Return a list of (TOTAL-RAM FREE-RAM TOTAL-SWAP FREE-SWAP).
7183 All values are in Kbytes. If there is no swap space,
7184 last two values are zero. If the system is not supported
7185 or memory information can't be obtained, return nil. */)
7186 (void)
7188 #if defined HAVE_LINUX_SYSINFO
7189 struct sysinfo si;
7190 uintmax_t units;
7192 if (sysinfo (&si))
7193 return Qnil;
7194 #ifdef LINUX_SYSINFO_UNIT
7195 units = si.mem_unit;
7196 #else
7197 units = 1;
7198 #endif
7199 return list4i ((uintmax_t) si.totalram * units / 1024,
7200 (uintmax_t) si.freeram * units / 1024,
7201 (uintmax_t) si.totalswap * units / 1024,
7202 (uintmax_t) si.freeswap * units / 1024);
7203 #elif defined WINDOWSNT
7204 unsigned long long totalram, freeram, totalswap, freeswap;
7206 if (w32_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
7207 return list4i ((uintmax_t) totalram / 1024,
7208 (uintmax_t) freeram / 1024,
7209 (uintmax_t) totalswap / 1024,
7210 (uintmax_t) freeswap / 1024);
7211 else
7212 return Qnil;
7213 #elif defined MSDOS
7214 unsigned long totalram, freeram, totalswap, freeswap;
7216 if (dos_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
7217 return list4i ((uintmax_t) totalram / 1024,
7218 (uintmax_t) freeram / 1024,
7219 (uintmax_t) totalswap / 1024,
7220 (uintmax_t) freeswap / 1024);
7221 else
7222 return Qnil;
7223 #else /* not HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
7224 /* FIXME: add more systems. */
7225 return Qnil;
7226 #endif /* HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
7229 /* Debugging aids. */
7231 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
7232 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
7233 This may be helpful in debugging Emacs's memory usage.
7234 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
7235 (void)
7237 Lisp_Object end;
7239 #if defined HAVE_NS || defined __APPLE__ || !HAVE_SBRK
7240 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
7241 XSETINT (end, 0);
7242 #else
7243 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
7244 #endif
7246 return end;
7249 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
7250 doc: /* Return a list of counters that measure how much consing there has been.
7251 Each of these counters increments for a certain kind of object.
7252 The counters wrap around from the largest positive integer to zero.
7253 Garbage collection does not decrease them.
7254 The elements of the value are as follows:
7255 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
7256 All are in units of 1 = one object consed
7257 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
7258 objects consed.
7259 MISCS include overlays, markers, and some internal types.
7260 Frames, windows, buffers, and subprocesses count as vectors
7261 (but the contents of a buffer's text do not count here). */)
7262 (void)
7264 return listn (CONSTYPE_HEAP, 8,
7265 bounded_number (cons_cells_consed),
7266 bounded_number (floats_consed),
7267 bounded_number (vector_cells_consed),
7268 bounded_number (symbols_consed),
7269 bounded_number (string_chars_consed),
7270 bounded_number (misc_objects_consed),
7271 bounded_number (intervals_consed),
7272 bounded_number (strings_consed));
7275 static bool
7276 symbol_uses_obj (Lisp_Object symbol, Lisp_Object obj)
7278 struct Lisp_Symbol *sym = XSYMBOL (symbol);
7279 Lisp_Object val = find_symbol_value (symbol);
7280 return (EQ (val, obj)
7281 || EQ (sym->u.s.function, obj)
7282 || (!NILP (sym->u.s.function)
7283 && COMPILEDP (sym->u.s.function)
7284 && EQ (AREF (sym->u.s.function, COMPILED_BYTECODE), obj))
7285 || (!NILP (val)
7286 && COMPILEDP (val)
7287 && EQ (AREF (val, COMPILED_BYTECODE), obj)));
7290 /* Find at most FIND_MAX symbols which have OBJ as their value or
7291 function. This is used in gdbinit's `xwhichsymbols' command. */
7293 Lisp_Object
7294 which_symbols (Lisp_Object obj, EMACS_INT find_max)
7296 struct symbol_block *sblk;
7297 ptrdiff_t gc_count = inhibit_garbage_collection ();
7298 Lisp_Object found = Qnil;
7300 if (! DEADP (obj))
7302 for (int i = 0; i < ARRAYELTS (lispsym); i++)
7304 Lisp_Object sym = builtin_lisp_symbol (i);
7305 if (symbol_uses_obj (sym, obj))
7307 found = Fcons (sym, found);
7308 if (--find_max == 0)
7309 goto out;
7313 for (sblk = symbol_block; sblk; sblk = sblk->next)
7315 struct Lisp_Symbol *asym = sblk->symbols;
7316 int bn;
7318 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, asym++)
7320 if (sblk == symbol_block && bn >= symbol_block_index)
7321 break;
7323 Lisp_Object sym = make_lisp_symbol (asym);
7324 if (symbol_uses_obj (sym, obj))
7326 found = Fcons (sym, found);
7327 if (--find_max == 0)
7328 goto out;
7334 out:
7335 unbind_to (gc_count, Qnil);
7336 return found;
7339 #ifdef SUSPICIOUS_OBJECT_CHECKING
7341 static void *
7342 find_suspicious_object_in_range (void *begin, void *end)
7344 char *begin_a = begin;
7345 char *end_a = end;
7346 int i;
7348 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7350 char *suspicious_object = suspicious_objects[i];
7351 if (begin_a <= suspicious_object && suspicious_object < end_a)
7352 return suspicious_object;
7355 return NULL;
7358 static void
7359 note_suspicious_free (void *ptr)
7361 struct suspicious_free_record *rec;
7363 rec = &suspicious_free_history[suspicious_free_history_index++];
7364 if (suspicious_free_history_index ==
7365 ARRAYELTS (suspicious_free_history))
7367 suspicious_free_history_index = 0;
7370 memset (rec, 0, sizeof (*rec));
7371 rec->suspicious_object = ptr;
7372 backtrace (&rec->backtrace[0], ARRAYELTS (rec->backtrace));
7375 static void
7376 detect_suspicious_free (void *ptr)
7378 int i;
7380 eassert (ptr != NULL);
7382 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7383 if (suspicious_objects[i] == ptr)
7385 note_suspicious_free (ptr);
7386 suspicious_objects[i] = NULL;
7390 #endif /* SUSPICIOUS_OBJECT_CHECKING */
7392 DEFUN ("suspicious-object", Fsuspicious_object, Ssuspicious_object, 1, 1, 0,
7393 doc: /* Return OBJ, maybe marking it for extra scrutiny.
7394 If Emacs is compiled with suspicious object checking, capture
7395 a stack trace when OBJ is freed in order to help track down
7396 garbage collection bugs. Otherwise, do nothing and return OBJ. */)
7397 (Lisp_Object obj)
7399 #ifdef SUSPICIOUS_OBJECT_CHECKING
7400 /* Right now, we care only about vectors. */
7401 if (VECTORLIKEP (obj))
7403 suspicious_objects[suspicious_object_index++] = XVECTOR (obj);
7404 if (suspicious_object_index == ARRAYELTS (suspicious_objects))
7405 suspicious_object_index = 0;
7407 #endif
7408 return obj;
7411 #ifdef ENABLE_CHECKING
7413 bool suppress_checking;
7415 void
7416 die (const char *msg, const char *file, int line)
7418 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
7419 file, line, msg);
7420 terminate_due_to_signal (SIGABRT, INT_MAX);
7423 #endif /* ENABLE_CHECKING */
7425 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
7427 /* Stress alloca with inconveniently sized requests and check
7428 whether all allocated areas may be used for Lisp_Object. */
7430 NO_INLINE static void
7431 verify_alloca (void)
7433 int i;
7434 enum { ALLOCA_CHECK_MAX = 256 };
7435 /* Start from size of the smallest Lisp object. */
7436 for (i = sizeof (struct Lisp_Cons); i <= ALLOCA_CHECK_MAX; i++)
7438 void *ptr = alloca (i);
7439 make_lisp_ptr (ptr, Lisp_Cons);
7443 #else /* not ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7445 #define verify_alloca() ((void) 0)
7447 #endif /* ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7449 /* Initialization. */
7451 void
7452 init_alloc_once (void)
7454 /* Even though Qt's contents are not set up, its address is known. */
7455 Vpurify_flag = Qt;
7457 purebeg = PUREBEG;
7458 pure_size = PURESIZE;
7460 verify_alloca ();
7461 init_finalizer_list (&finalizers);
7462 init_finalizer_list (&doomed_finalizers);
7464 mem_init ();
7465 Vdead = make_pure_string ("DEAD", 4, 4, 0);
7467 #ifdef DOUG_LEA_MALLOC
7468 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
7469 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
7470 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
7471 #endif
7472 init_strings ();
7473 init_vectors ();
7475 refill_memory_reserve ();
7476 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
7479 void
7480 init_alloc (void)
7482 Vgc_elapsed = make_float (0.0);
7483 gcs_done = 0;
7485 #if USE_VALGRIND
7486 valgrind_p = RUNNING_ON_VALGRIND != 0;
7487 #endif
7490 void
7491 syms_of_alloc (void)
7493 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
7494 doc: /* Number of bytes of consing between garbage collections.
7495 Garbage collection can happen automatically once this many bytes have been
7496 allocated since the last garbage collection. All data types count.
7498 Garbage collection happens automatically only when `eval' is called.
7500 By binding this temporarily to a large number, you can effectively
7501 prevent garbage collection during a part of the program.
7502 See also `gc-cons-percentage'. */);
7504 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
7505 doc: /* Portion of the heap used for allocation.
7506 Garbage collection can happen automatically once this portion of the heap
7507 has been allocated since the last garbage collection.
7508 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
7509 Vgc_cons_percentage = make_float (0.1);
7511 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
7512 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
7514 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
7515 doc: /* Number of cons cells that have been consed so far. */);
7517 DEFVAR_INT ("floats-consed", floats_consed,
7518 doc: /* Number of floats that have been consed so far. */);
7520 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
7521 doc: /* Number of vector cells that have been consed so far. */);
7523 DEFVAR_INT ("symbols-consed", symbols_consed,
7524 doc: /* Number of symbols that have been consed so far. */);
7525 symbols_consed += ARRAYELTS (lispsym);
7527 DEFVAR_INT ("string-chars-consed", string_chars_consed,
7528 doc: /* Number of string characters that have been consed so far. */);
7530 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
7531 doc: /* Number of miscellaneous objects that have been consed so far.
7532 These include markers and overlays, plus certain objects not visible
7533 to users. */);
7535 DEFVAR_INT ("intervals-consed", intervals_consed,
7536 doc: /* Number of intervals that have been consed so far. */);
7538 DEFVAR_INT ("strings-consed", strings_consed,
7539 doc: /* Number of strings that have been consed so far. */);
7541 DEFVAR_LISP ("purify-flag", Vpurify_flag,
7542 doc: /* Non-nil means loading Lisp code in order to dump an executable.
7543 This means that certain objects should be allocated in shared (pure) space.
7544 It can also be set to a hash-table, in which case this table is used to
7545 do hash-consing of the objects allocated to pure space. */);
7547 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
7548 doc: /* Non-nil means display messages at start and end of garbage collection. */);
7549 garbage_collection_messages = 0;
7551 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
7552 doc: /* Hook run after garbage collection has finished. */);
7553 Vpost_gc_hook = Qnil;
7554 DEFSYM (Qpost_gc_hook, "post-gc-hook");
7556 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
7557 doc: /* Precomputed `signal' argument for memory-full error. */);
7558 /* We build this in advance because if we wait until we need it, we might
7559 not be able to allocate the memory to hold it. */
7560 Vmemory_signal_data
7561 = listn (CONSTYPE_PURE, 2, Qerror,
7562 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
7564 DEFVAR_LISP ("memory-full", Vmemory_full,
7565 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
7566 Vmemory_full = Qnil;
7568 DEFSYM (Qconses, "conses");
7569 DEFSYM (Qsymbols, "symbols");
7570 DEFSYM (Qmiscs, "miscs");
7571 DEFSYM (Qstrings, "strings");
7572 DEFSYM (Qvectors, "vectors");
7573 DEFSYM (Qfloats, "floats");
7574 DEFSYM (Qintervals, "intervals");
7575 DEFSYM (Qbuffers, "buffers");
7576 DEFSYM (Qstring_bytes, "string-bytes");
7577 DEFSYM (Qvector_slots, "vector-slots");
7578 DEFSYM (Qheap, "heap");
7579 DEFSYM (QAutomatic_GC, "Automatic GC");
7581 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
7582 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
7584 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
7585 doc: /* Accumulated time elapsed in garbage collections.
7586 The time is in seconds as a floating point value. */);
7587 DEFVAR_INT ("gcs-done", gcs_done,
7588 doc: /* Accumulated number of garbage collections done. */);
7590 defsubr (&Scons);
7591 defsubr (&Slist);
7592 defsubr (&Svector);
7593 defsubr (&Srecord);
7594 defsubr (&Sbool_vector);
7595 defsubr (&Smake_byte_code);
7596 defsubr (&Smake_list);
7597 defsubr (&Smake_vector);
7598 defsubr (&Smake_record);
7599 defsubr (&Smake_string);
7600 defsubr (&Smake_bool_vector);
7601 defsubr (&Smake_symbol);
7602 defsubr (&Smake_marker);
7603 defsubr (&Smake_finalizer);
7604 defsubr (&Spurecopy);
7605 defsubr (&Sgarbage_collect);
7606 defsubr (&Smemory_limit);
7607 defsubr (&Smemory_info);
7608 defsubr (&Smemory_use_counts);
7609 defsubr (&Ssuspicious_object);
7612 /* When compiled with GCC, GDB might say "No enum type named
7613 pvec_type" if we don't have at least one symbol with that type, and
7614 then xbacktrace could fail. Similarly for the other enums and
7615 their values. Some non-GCC compilers don't like these constructs. */
7616 #ifdef __GNUC__
7617 union
7619 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
7620 enum char_table_specials char_table_specials;
7621 enum char_bits char_bits;
7622 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
7623 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
7624 enum Lisp_Bits Lisp_Bits;
7625 enum Lisp_Compiled Lisp_Compiled;
7626 enum maxargs maxargs;
7627 enum MAX_ALLOCA MAX_ALLOCA;
7628 enum More_Lisp_Bits More_Lisp_Bits;
7629 enum pvec_type pvec_type;
7630 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
7631 #endif /* __GNUC__ */