Add an index entry for "minibuffer-only frame".
[emacs.git] / src / intervals.c
blob88f47f58b5233cd8186addbba75c90fdc0ad84db
1 /* Code for doing intervals.
2 Copyright (C) 1993-1995, 1997-1998, 2001-2012 Free Software Foundation, Inc.
4 This file is part of GNU Emacs.
6 GNU Emacs is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 3 of the License, or
9 (at your option) any later version.
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20 /* NOTES:
22 Have to ensure that we can't put symbol nil on a plist, or some
23 functions may work incorrectly.
25 An idea: Have the owner of the tree keep count of splits and/or
26 insertion lengths (in intervals), and balance after every N.
28 Need to call *_left_hook when buffer is killed.
30 Scan for zero-length, or 0-length to see notes about handling
31 zero length interval-markers.
33 There are comments around about freeing intervals. It might be
34 faster to explicitly free them (put them on the free list) than
35 to GC them.
40 #include <config.h>
41 #include <setjmp.h>
42 #include <intprops.h>
43 #include "lisp.h"
44 #include "intervals.h"
45 #include "buffer.h"
46 #include "puresize.h"
47 #include "keyboard.h"
48 #include "keymap.h"
50 /* Test for membership, allowing for t (actually any non-cons) to mean the
51 universal set. */
53 #define TMEM(sym, set) (CONSP (set) ? ! NILP (Fmemq (sym, set)) : ! NILP (set))
55 static Lisp_Object merge_properties_sticky (Lisp_Object, Lisp_Object);
56 static INTERVAL merge_interval_right (INTERVAL);
57 static INTERVAL reproduce_tree (INTERVAL, INTERVAL);
58 static INTERVAL reproduce_tree_obj (INTERVAL, Lisp_Object);
60 /* Utility functions for intervals. */
63 /* Create the root interval of some object, a buffer or string. */
65 INTERVAL
66 create_root_interval (Lisp_Object parent)
68 INTERVAL new;
70 CHECK_IMPURE (parent);
72 new = make_interval ();
74 if (BUFFERP (parent))
76 new->total_length = (BUF_Z (XBUFFER (parent))
77 - BUF_BEG (XBUFFER (parent)));
78 CHECK_TOTAL_LENGTH (new);
79 BUF_INTERVALS (XBUFFER (parent)) = new;
80 new->position = BEG;
82 else if (STRINGP (parent))
84 new->total_length = SCHARS (parent);
85 CHECK_TOTAL_LENGTH (new);
86 STRING_SET_INTERVALS (parent, new);
87 new->position = 0;
90 SET_INTERVAL_OBJECT (new, parent);
92 return new;
95 /* Make the interval TARGET have exactly the properties of SOURCE */
97 void
98 copy_properties (register INTERVAL source, register INTERVAL target)
100 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
101 return;
103 COPY_INTERVAL_CACHE (source, target);
104 target->plist = Fcopy_sequence (source->plist);
107 /* Merge the properties of interval SOURCE into the properties
108 of interval TARGET. That is to say, each property in SOURCE
109 is added to TARGET if TARGET has no such property as yet. */
111 static void
112 merge_properties (register INTERVAL source, register INTERVAL target)
114 register Lisp_Object o, sym, val;
116 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
117 return;
119 MERGE_INTERVAL_CACHE (source, target);
121 o = source->plist;
122 while (CONSP (o))
124 sym = XCAR (o);
125 o = XCDR (o);
126 CHECK_CONS (o);
128 val = target->plist;
129 while (CONSP (val) && !EQ (XCAR (val), sym))
131 val = XCDR (val);
132 if (!CONSP (val))
133 break;
134 val = XCDR (val);
137 if (NILP (val))
139 val = XCAR (o);
140 target->plist = Fcons (sym, Fcons (val, target->plist));
142 o = XCDR (o);
146 /* Return 1 if the two intervals have the same properties,
147 0 otherwise. */
150 intervals_equal (INTERVAL i0, INTERVAL i1)
152 register Lisp_Object i0_cdr, i0_sym;
153 register Lisp_Object i1_cdr, i1_val;
155 if (DEFAULT_INTERVAL_P (i0) && DEFAULT_INTERVAL_P (i1))
156 return 1;
158 if (DEFAULT_INTERVAL_P (i0) || DEFAULT_INTERVAL_P (i1))
159 return 0;
161 i0_cdr = i0->plist;
162 i1_cdr = i1->plist;
163 while (CONSP (i0_cdr) && CONSP (i1_cdr))
165 i0_sym = XCAR (i0_cdr);
166 i0_cdr = XCDR (i0_cdr);
167 if (!CONSP (i0_cdr))
168 return 0; /* abort (); */
169 i1_val = i1->plist;
170 while (CONSP (i1_val) && !EQ (XCAR (i1_val), i0_sym))
172 i1_val = XCDR (i1_val);
173 if (!CONSP (i1_val))
174 return 0; /* abort (); */
175 i1_val = XCDR (i1_val);
178 /* i0 has something i1 doesn't. */
179 if (EQ (i1_val, Qnil))
180 return 0;
182 /* i0 and i1 both have sym, but it has different values in each. */
183 if (!CONSP (i1_val)
184 || (i1_val = XCDR (i1_val), !CONSP (i1_val))
185 || !EQ (XCAR (i1_val), XCAR (i0_cdr)))
186 return 0;
188 i0_cdr = XCDR (i0_cdr);
190 i1_cdr = XCDR (i1_cdr);
191 if (!CONSP (i1_cdr))
192 return 0; /* abort (); */
193 i1_cdr = XCDR (i1_cdr);
196 /* Lengths of the two plists were equal. */
197 return (NILP (i0_cdr) && NILP (i1_cdr));
201 /* Traverse an interval tree TREE, performing FUNCTION on each node.
202 No guarantee is made about the order of traversal.
203 Pass FUNCTION two args: an interval, and ARG. */
205 void
206 traverse_intervals_noorder (INTERVAL tree, void (*function) (INTERVAL, Lisp_Object), Lisp_Object arg)
208 /* Minimize stack usage. */
209 while (!NULL_INTERVAL_P (tree))
211 (*function) (tree, arg);
212 if (NULL_INTERVAL_P (tree->right))
213 tree = tree->left;
214 else
216 traverse_intervals_noorder (tree->left, function, arg);
217 tree = tree->right;
222 /* Traverse an interval tree TREE, performing FUNCTION on each node.
223 Pass FUNCTION two args: an interval, and ARG. */
225 void
226 traverse_intervals (INTERVAL tree, EMACS_INT position,
227 void (*function) (INTERVAL, Lisp_Object), Lisp_Object arg)
229 while (!NULL_INTERVAL_P (tree))
231 traverse_intervals (tree->left, position, function, arg);
232 position += LEFT_TOTAL_LENGTH (tree);
233 tree->position = position;
234 (*function) (tree, arg);
235 position += LENGTH (tree); tree = tree->right;
239 #if 0
241 static int icount;
242 static int idepth;
243 static int zero_length;
245 /* These functions are temporary, for debugging purposes only. */
247 INTERVAL search_interval, found_interval;
249 void
250 check_for_interval (INTERVAL i)
252 if (i == search_interval)
254 found_interval = i;
255 icount++;
259 INTERVAL
260 search_for_interval (INTERVAL i, INTERVAL tree)
262 icount = 0;
263 search_interval = i;
264 found_interval = NULL_INTERVAL;
265 traverse_intervals_noorder (tree, &check_for_interval, Qnil);
266 return found_interval;
269 static void
270 inc_interval_count (INTERVAL i)
272 icount++;
273 if (LENGTH (i) == 0)
274 zero_length++;
275 if (depth > idepth)
276 idepth = depth;
280 count_intervals (INTERVAL i)
282 icount = 0;
283 idepth = 0;
284 zero_length = 0;
285 traverse_intervals_noorder (i, &inc_interval_count, Qnil);
287 return icount;
290 static INTERVAL
291 root_interval (INTERVAL interval)
293 register INTERVAL i = interval;
295 while (! ROOT_INTERVAL_P (i))
296 i = INTERVAL_PARENT (i);
298 return i;
300 #endif
302 /* Assuming that a left child exists, perform the following operation:
305 / \ / \
306 B => A
307 / \ / \
311 static inline INTERVAL
312 rotate_right (INTERVAL interval)
314 INTERVAL i;
315 INTERVAL B = interval->left;
316 EMACS_INT old_total = interval->total_length;
318 /* Deal with any Parent of A; make it point to B. */
319 if (! ROOT_INTERVAL_P (interval))
321 if (AM_LEFT_CHILD (interval))
322 INTERVAL_PARENT (interval)->left = B;
323 else
324 INTERVAL_PARENT (interval)->right = B;
326 COPY_INTERVAL_PARENT (B, interval);
328 /* Make B the parent of A */
329 i = B->right;
330 B->right = interval;
331 SET_INTERVAL_PARENT (interval, B);
333 /* Make A point to c */
334 interval->left = i;
335 if (! NULL_INTERVAL_P (i))
336 SET_INTERVAL_PARENT (i, interval);
338 /* A's total length is decreased by the length of B and its left child. */
339 interval->total_length -= B->total_length - LEFT_TOTAL_LENGTH (interval);
340 CHECK_TOTAL_LENGTH (interval);
342 /* B must have the same total length of A. */
343 B->total_length = old_total;
344 CHECK_TOTAL_LENGTH (B);
346 return B;
349 /* Assuming that a right child exists, perform the following operation:
352 / \ / \
353 B => A
354 / \ / \
358 static inline INTERVAL
359 rotate_left (INTERVAL interval)
361 INTERVAL i;
362 INTERVAL B = interval->right;
363 EMACS_INT old_total = interval->total_length;
365 /* Deal with any parent of A; make it point to B. */
366 if (! ROOT_INTERVAL_P (interval))
368 if (AM_LEFT_CHILD (interval))
369 INTERVAL_PARENT (interval)->left = B;
370 else
371 INTERVAL_PARENT (interval)->right = B;
373 COPY_INTERVAL_PARENT (B, interval);
375 /* Make B the parent of A */
376 i = B->left;
377 B->left = interval;
378 SET_INTERVAL_PARENT (interval, B);
380 /* Make A point to c */
381 interval->right = i;
382 if (! NULL_INTERVAL_P (i))
383 SET_INTERVAL_PARENT (i, interval);
385 /* A's total length is decreased by the length of B and its right child. */
386 interval->total_length -= B->total_length - RIGHT_TOTAL_LENGTH (interval);
387 CHECK_TOTAL_LENGTH (interval);
389 /* B must have the same total length of A. */
390 B->total_length = old_total;
391 CHECK_TOTAL_LENGTH (B);
393 return B;
396 /* Balance an interval tree with the assumption that the subtrees
397 themselves are already balanced. */
399 static INTERVAL
400 balance_an_interval (INTERVAL i)
402 register EMACS_INT old_diff, new_diff;
404 while (1)
406 old_diff = LEFT_TOTAL_LENGTH (i) - RIGHT_TOTAL_LENGTH (i);
407 if (old_diff > 0)
409 /* Since the left child is longer, there must be one. */
410 new_diff = i->total_length - i->left->total_length
411 + RIGHT_TOTAL_LENGTH (i->left) - LEFT_TOTAL_LENGTH (i->left);
412 if (eabs (new_diff) >= old_diff)
413 break;
414 i = rotate_right (i);
415 balance_an_interval (i->right);
417 else if (old_diff < 0)
419 /* Since the right child is longer, there must be one. */
420 new_diff = i->total_length - i->right->total_length
421 + LEFT_TOTAL_LENGTH (i->right) - RIGHT_TOTAL_LENGTH (i->right);
422 if (eabs (new_diff) >= -old_diff)
423 break;
424 i = rotate_left (i);
425 balance_an_interval (i->left);
427 else
428 break;
430 return i;
433 /* Balance INTERVAL, potentially stuffing it back into its parent
434 Lisp Object. */
436 static inline INTERVAL
437 balance_possible_root_interval (register INTERVAL interval)
439 Lisp_Object parent;
440 int have_parent = 0;
442 if (!INTERVAL_HAS_OBJECT (interval) && !INTERVAL_HAS_PARENT (interval))
443 return interval;
445 if (INTERVAL_HAS_OBJECT (interval))
447 have_parent = 1;
448 GET_INTERVAL_OBJECT (parent, interval);
450 interval = balance_an_interval (interval);
452 if (have_parent)
454 if (BUFFERP (parent))
455 BUF_INTERVALS (XBUFFER (parent)) = interval;
456 else if (STRINGP (parent))
457 STRING_SET_INTERVALS (parent, interval);
460 return interval;
463 /* Balance the interval tree TREE. Balancing is by weight
464 (the amount of text). */
466 static INTERVAL
467 balance_intervals_internal (register INTERVAL tree)
469 /* Balance within each side. */
470 if (tree->left)
471 balance_intervals_internal (tree->left);
472 if (tree->right)
473 balance_intervals_internal (tree->right);
474 return balance_an_interval (tree);
477 /* Advertised interface to balance intervals. */
479 INTERVAL
480 balance_intervals (INTERVAL tree)
482 if (tree == NULL_INTERVAL)
483 return NULL_INTERVAL;
485 return balance_intervals_internal (tree);
488 /* Split INTERVAL into two pieces, starting the second piece at
489 character position OFFSET (counting from 0), relative to INTERVAL.
490 INTERVAL becomes the left-hand piece, and the right-hand piece
491 (second, lexicographically) is returned.
493 The size and position fields of the two intervals are set based upon
494 those of the original interval. The property list of the new interval
495 is reset, thus it is up to the caller to do the right thing with the
496 result.
498 Note that this does not change the position of INTERVAL; if it is a root,
499 it is still a root after this operation. */
501 INTERVAL
502 split_interval_right (INTERVAL interval, EMACS_INT offset)
504 INTERVAL new = make_interval ();
505 EMACS_INT position = interval->position;
506 EMACS_INT new_length = LENGTH (interval) - offset;
508 new->position = position + offset;
509 SET_INTERVAL_PARENT (new, interval);
511 if (NULL_RIGHT_CHILD (interval))
513 interval->right = new;
514 new->total_length = new_length;
515 CHECK_TOTAL_LENGTH (new);
517 else
519 /* Insert the new node between INTERVAL and its right child. */
520 new->right = interval->right;
521 SET_INTERVAL_PARENT (interval->right, new);
522 interval->right = new;
523 new->total_length = new_length + new->right->total_length;
524 CHECK_TOTAL_LENGTH (new);
525 balance_an_interval (new);
528 balance_possible_root_interval (interval);
530 return new;
533 /* Split INTERVAL into two pieces, starting the second piece at
534 character position OFFSET (counting from 0), relative to INTERVAL.
535 INTERVAL becomes the right-hand piece, and the left-hand piece
536 (first, lexicographically) is returned.
538 The size and position fields of the two intervals are set based upon
539 those of the original interval. The property list of the new interval
540 is reset, thus it is up to the caller to do the right thing with the
541 result.
543 Note that this does not change the position of INTERVAL; if it is a root,
544 it is still a root after this operation. */
546 INTERVAL
547 split_interval_left (INTERVAL interval, EMACS_INT offset)
549 INTERVAL new = make_interval ();
550 EMACS_INT new_length = offset;
552 new->position = interval->position;
553 interval->position = interval->position + offset;
554 SET_INTERVAL_PARENT (new, interval);
556 if (NULL_LEFT_CHILD (interval))
558 interval->left = new;
559 new->total_length = new_length;
560 CHECK_TOTAL_LENGTH (new);
562 else
564 /* Insert the new node between INTERVAL and its left child. */
565 new->left = interval->left;
566 SET_INTERVAL_PARENT (new->left, new);
567 interval->left = new;
568 new->total_length = new_length + new->left->total_length;
569 CHECK_TOTAL_LENGTH (new);
570 balance_an_interval (new);
573 balance_possible_root_interval (interval);
575 return new;
578 /* Return the proper position for the first character
579 described by the interval tree SOURCE.
580 This is 1 if the parent is a buffer,
581 0 if the parent is a string or if there is no parent.
583 Don't use this function on an interval which is the child
584 of another interval! */
586 static int
587 interval_start_pos (INTERVAL source)
589 Lisp_Object parent;
591 if (NULL_INTERVAL_P (source))
592 return 0;
594 if (! INTERVAL_HAS_OBJECT (source))
595 return 0;
596 GET_INTERVAL_OBJECT (parent, source);
597 if (BUFFERP (parent))
598 return BUF_BEG (XBUFFER (parent));
599 return 0;
602 /* Find the interval containing text position POSITION in the text
603 represented by the interval tree TREE. POSITION is a buffer
604 position (starting from 1) or a string index (starting from 0).
605 If POSITION is at the end of the buffer or string,
606 return the interval containing the last character.
608 The `position' field, which is a cache of an interval's position,
609 is updated in the interval found. Other functions (e.g., next_interval)
610 will update this cache based on the result of find_interval. */
612 INTERVAL
613 find_interval (register INTERVAL tree, register EMACS_INT position)
615 /* The distance from the left edge of the subtree at TREE
616 to POSITION. */
617 register EMACS_INT relative_position;
619 if (NULL_INTERVAL_P (tree))
620 return NULL_INTERVAL;
622 relative_position = position;
623 if (INTERVAL_HAS_OBJECT (tree))
625 Lisp_Object parent;
626 GET_INTERVAL_OBJECT (parent, tree);
627 if (BUFFERP (parent))
628 relative_position -= BUF_BEG (XBUFFER (parent));
631 if (relative_position > TOTAL_LENGTH (tree))
632 abort (); /* Paranoia */
634 if (!handling_signal)
635 tree = balance_possible_root_interval (tree);
637 while (1)
639 if (relative_position < LEFT_TOTAL_LENGTH (tree))
641 tree = tree->left;
643 else if (! NULL_RIGHT_CHILD (tree)
644 && relative_position >= (TOTAL_LENGTH (tree)
645 - RIGHT_TOTAL_LENGTH (tree)))
647 relative_position -= (TOTAL_LENGTH (tree)
648 - RIGHT_TOTAL_LENGTH (tree));
649 tree = tree->right;
651 else
653 tree->position
654 = (position - relative_position /* left edge of *tree. */
655 + LEFT_TOTAL_LENGTH (tree)); /* left edge of this interval. */
657 return tree;
662 /* Find the succeeding interval (lexicographically) to INTERVAL.
663 Sets the `position' field based on that of INTERVAL (see
664 find_interval). */
666 INTERVAL
667 next_interval (register INTERVAL interval)
669 register INTERVAL i = interval;
670 register EMACS_INT next_position;
672 if (NULL_INTERVAL_P (i))
673 return NULL_INTERVAL;
674 next_position = interval->position + LENGTH (interval);
676 if (! NULL_RIGHT_CHILD (i))
678 i = i->right;
679 while (! NULL_LEFT_CHILD (i))
680 i = i->left;
682 i->position = next_position;
683 return i;
686 while (! NULL_PARENT (i))
688 if (AM_LEFT_CHILD (i))
690 i = INTERVAL_PARENT (i);
691 i->position = next_position;
692 return i;
695 i = INTERVAL_PARENT (i);
698 return NULL_INTERVAL;
701 /* Find the preceding interval (lexicographically) to INTERVAL.
702 Sets the `position' field based on that of INTERVAL (see
703 find_interval). */
705 INTERVAL
706 previous_interval (register INTERVAL interval)
708 register INTERVAL i;
710 if (NULL_INTERVAL_P (interval))
711 return NULL_INTERVAL;
713 if (! NULL_LEFT_CHILD (interval))
715 i = interval->left;
716 while (! NULL_RIGHT_CHILD (i))
717 i = i->right;
719 i->position = interval->position - LENGTH (i);
720 return i;
723 i = interval;
724 while (! NULL_PARENT (i))
726 if (AM_RIGHT_CHILD (i))
728 i = INTERVAL_PARENT (i);
730 i->position = interval->position - LENGTH (i);
731 return i;
733 i = INTERVAL_PARENT (i);
736 return NULL_INTERVAL;
739 /* Find the interval containing POS given some non-NULL INTERVAL
740 in the same tree. Note that we need to update interval->position
741 if we go down the tree.
742 To speed up the process, we assume that the ->position of
743 I and all its parents is already uptodate. */
744 INTERVAL
745 update_interval (register INTERVAL i, EMACS_INT pos)
747 if (NULL_INTERVAL_P (i))
748 return NULL_INTERVAL;
750 while (1)
752 if (pos < i->position)
754 /* Move left. */
755 if (pos >= i->position - TOTAL_LENGTH (i->left))
757 i->left->position = i->position - TOTAL_LENGTH (i->left)
758 + LEFT_TOTAL_LENGTH (i->left);
759 i = i->left; /* Move to the left child */
761 else if (NULL_PARENT (i))
762 error ("Point before start of properties");
763 else
764 i = INTERVAL_PARENT (i);
765 continue;
767 else if (pos >= INTERVAL_LAST_POS (i))
769 /* Move right. */
770 if (pos < INTERVAL_LAST_POS (i) + TOTAL_LENGTH (i->right))
772 i->right->position = INTERVAL_LAST_POS (i)
773 + LEFT_TOTAL_LENGTH (i->right);
774 i = i->right; /* Move to the right child */
776 else if (NULL_PARENT (i))
777 error ("Point %"pI"d after end of properties", pos);
778 else
779 i = INTERVAL_PARENT (i);
780 continue;
782 else
783 return i;
788 #if 0
789 /* Traverse a path down the interval tree TREE to the interval
790 containing POSITION, adjusting all nodes on the path for
791 an addition of LENGTH characters. Insertion between two intervals
792 (i.e., point == i->position, where i is second interval) means
793 text goes into second interval.
795 Modifications are needed to handle the hungry bits -- after simply
796 finding the interval at position (don't add length going down),
797 if it's the beginning of the interval, get the previous interval
798 and check the hungry bits of both. Then add the length going back up
799 to the root. */
801 static INTERVAL
802 adjust_intervals_for_insertion (INTERVAL tree, EMACS_INT position,
803 EMACS_INT length)
805 register EMACS_INT relative_position;
806 register INTERVAL this;
808 if (TOTAL_LENGTH (tree) == 0) /* Paranoia */
809 abort ();
811 /* If inserting at point-max of a buffer, that position
812 will be out of range */
813 if (position > TOTAL_LENGTH (tree))
814 position = TOTAL_LENGTH (tree);
815 relative_position = position;
816 this = tree;
818 while (1)
820 if (relative_position <= LEFT_TOTAL_LENGTH (this))
822 this->total_length += length;
823 CHECK_TOTAL_LENGTH (this);
824 this = this->left;
826 else if (relative_position > (TOTAL_LENGTH (this)
827 - RIGHT_TOTAL_LENGTH (this)))
829 relative_position -= (TOTAL_LENGTH (this)
830 - RIGHT_TOTAL_LENGTH (this));
831 this->total_length += length;
832 CHECK_TOTAL_LENGTH (this);
833 this = this->right;
835 else
837 /* If we are to use zero-length intervals as buffer pointers,
838 then this code will have to change. */
839 this->total_length += length;
840 CHECK_TOTAL_LENGTH (this);
841 this->position = LEFT_TOTAL_LENGTH (this)
842 + position - relative_position + 1;
843 return tree;
847 #endif
849 /* Effect an adjustment corresponding to the addition of LENGTH characters
850 of text. Do this by finding the interval containing POSITION in the
851 interval tree TREE, and then adjusting all of its ancestors by adding
852 LENGTH to them.
854 If POSITION is the first character of an interval, meaning that point
855 is actually between the two intervals, make the new text belong to
856 the interval which is "sticky".
858 If both intervals are "sticky", then make them belong to the left-most
859 interval. Another possibility would be to create a new interval for
860 this text, and make it have the merged properties of both ends. */
862 static INTERVAL
863 adjust_intervals_for_insertion (INTERVAL tree,
864 EMACS_INT position, EMACS_INT length)
866 register INTERVAL i;
867 register INTERVAL temp;
868 int eobp = 0;
869 Lisp_Object parent;
870 EMACS_INT offset;
872 if (TOTAL_LENGTH (tree) == 0) /* Paranoia */
873 abort ();
875 GET_INTERVAL_OBJECT (parent, tree);
876 offset = (BUFFERP (parent) ? BUF_BEG (XBUFFER (parent)) : 0);
878 /* If inserting at point-max of a buffer, that position will be out
879 of range. Remember that buffer positions are 1-based. */
880 if (position >= TOTAL_LENGTH (tree) + offset)
882 position = TOTAL_LENGTH (tree) + offset;
883 eobp = 1;
886 i = find_interval (tree, position);
888 /* If in middle of an interval which is not sticky either way,
889 we must not just give its properties to the insertion.
890 So split this interval at the insertion point.
892 Originally, the if condition here was this:
893 (! (position == i->position || eobp)
894 && END_NONSTICKY_P (i)
895 && FRONT_NONSTICKY_P (i))
896 But, these macros are now unreliable because of introduction of
897 Vtext_property_default_nonsticky. So, we always check properties
898 one by one if POSITION is in middle of an interval. */
899 if (! (position == i->position || eobp))
901 Lisp_Object tail;
902 Lisp_Object front, rear;
904 tail = i->plist;
906 /* Properties font-sticky and rear-nonsticky override
907 Vtext_property_default_nonsticky. So, if they are t, we can
908 skip one by one checking of properties. */
909 rear = textget (i->plist, Qrear_nonsticky);
910 if (! CONSP (rear) && ! NILP (rear))
912 /* All properties are nonsticky. We split the interval. */
913 goto check_done;
915 front = textget (i->plist, Qfront_sticky);
916 if (! CONSP (front) && ! NILP (front))
918 /* All properties are sticky. We don't split the interval. */
919 tail = Qnil;
920 goto check_done;
923 /* Does any actual property pose an actual problem? We break
924 the loop if we find a nonsticky property. */
925 for (; CONSP (tail); tail = Fcdr (XCDR (tail)))
927 Lisp_Object prop, tmp;
928 prop = XCAR (tail);
930 /* Is this particular property front-sticky? */
931 if (CONSP (front) && ! NILP (Fmemq (prop, front)))
932 continue;
934 /* Is this particular property rear-nonsticky? */
935 if (CONSP (rear) && ! NILP (Fmemq (prop, rear)))
936 break;
938 /* Is this particular property recorded as sticky or
939 nonsticky in Vtext_property_default_nonsticky? */
940 tmp = Fassq (prop, Vtext_property_default_nonsticky);
941 if (CONSP (tmp))
943 if (NILP (tmp))
944 continue;
945 break;
948 /* By default, a text property is rear-sticky, thus we
949 continue the loop. */
952 check_done:
953 /* If any property is a real problem, split the interval. */
954 if (! NILP (tail))
956 temp = split_interval_right (i, position - i->position);
957 copy_properties (i, temp);
958 i = temp;
962 /* If we are positioned between intervals, check the stickiness of
963 both of them. We have to do this too, if we are at BEG or Z. */
964 if (position == i->position || eobp)
966 register INTERVAL prev;
968 if (position == BEG)
969 prev = 0;
970 else if (eobp)
972 prev = i;
973 i = 0;
975 else
976 prev = previous_interval (i);
978 /* Even if we are positioned between intervals, we default
979 to the left one if it exists. We extend it now and split
980 off a part later, if stickiness demands it. */
981 for (temp = prev ? prev : i; temp; temp = INTERVAL_PARENT_OR_NULL (temp))
983 temp->total_length += length;
984 CHECK_TOTAL_LENGTH (temp);
985 temp = balance_possible_root_interval (temp);
988 /* If at least one interval has sticky properties,
989 we check the stickiness property by property.
991 Originally, the if condition here was this:
992 (END_NONSTICKY_P (prev) || FRONT_STICKY_P (i))
993 But, these macros are now unreliable because of introduction
994 of Vtext_property_default_nonsticky. So, we always have to
995 check stickiness of properties one by one. If cache of
996 stickiness is implemented in the future, we may be able to
997 use those macros again. */
998 if (1)
1000 Lisp_Object pleft, pright;
1001 struct interval newi;
1003 pleft = NULL_INTERVAL_P (prev) ? Qnil : prev->plist;
1004 pright = NULL_INTERVAL_P (i) ? Qnil : i->plist;
1005 newi.plist = merge_properties_sticky (pleft, pright);
1007 if (! prev) /* i.e. position == BEG */
1009 if (! intervals_equal (i, &newi))
1011 i = split_interval_left (i, length);
1012 i->plist = newi.plist;
1015 else if (! intervals_equal (prev, &newi))
1017 prev = split_interval_right (prev,
1018 position - prev->position);
1019 prev->plist = newi.plist;
1020 if (! NULL_INTERVAL_P (i)
1021 && intervals_equal (prev, i))
1022 merge_interval_right (prev);
1025 /* We will need to update the cache here later. */
1027 else if (! prev && ! NILP (i->plist))
1029 /* Just split off a new interval at the left.
1030 Since I wasn't front-sticky, the empty plist is ok. */
1031 i = split_interval_left (i, length);
1035 /* Otherwise just extend the interval. */
1036 else
1038 for (temp = i; temp; temp = INTERVAL_PARENT_OR_NULL (temp))
1040 temp->total_length += length;
1041 CHECK_TOTAL_LENGTH (temp);
1042 temp = balance_possible_root_interval (temp);
1046 return tree;
1049 /* Any property might be front-sticky on the left, rear-sticky on the left,
1050 front-sticky on the right, or rear-sticky on the right; the 16 combinations
1051 can be arranged in a matrix with rows denoting the left conditions and
1052 columns denoting the right conditions:
1053 _ __ _
1054 _ FR FR FR FR
1055 FR__ 0 1 2 3
1056 _FR 4 5 6 7
1057 FR 8 9 A B
1058 FR C D E F
1060 left-props = '(front-sticky (p8 p9 pa pb pc pd pe pf)
1061 rear-nonsticky (p4 p5 p6 p7 p8 p9 pa pb)
1062 p0 L p1 L p2 L p3 L p4 L p5 L p6 L p7 L
1063 p8 L p9 L pa L pb L pc L pd L pe L pf L)
1064 right-props = '(front-sticky (p2 p3 p6 p7 pa pb pe pf)
1065 rear-nonsticky (p1 p2 p5 p6 p9 pa pd pe)
1066 p0 R p1 R p2 R p3 R p4 R p5 R p6 R p7 R
1067 p8 R p9 R pa R pb R pc R pd R pe R pf R)
1069 We inherit from whoever has a sticky side facing us. If both sides
1070 do (cases 2, 3, E, and F), then we inherit from whichever side has a
1071 non-nil value for the current property. If both sides do, then we take
1072 from the left.
1074 When we inherit a property, we get its stickiness as well as its value.
1075 So, when we merge the above two lists, we expect to get this:
1077 result = '(front-sticky (p6 p7 pa pb pc pd pe pf)
1078 rear-nonsticky (p6 pa)
1079 p0 L p1 L p2 L p3 L p6 R p7 R
1080 pa R pb R pc L pd L pe L pf L)
1082 The optimizable special cases are:
1083 left rear-nonsticky = nil, right front-sticky = nil (inherit left)
1084 left rear-nonsticky = t, right front-sticky = t (inherit right)
1085 left rear-nonsticky = t, right front-sticky = nil (inherit none)
1088 static Lisp_Object
1089 merge_properties_sticky (Lisp_Object pleft, Lisp_Object pright)
1091 register Lisp_Object props, front, rear;
1092 Lisp_Object lfront, lrear, rfront, rrear;
1093 register Lisp_Object tail1, tail2, sym, lval, rval, cat;
1094 int use_left, use_right;
1095 int lpresent;
1097 props = Qnil;
1098 front = Qnil;
1099 rear = Qnil;
1100 lfront = textget (pleft, Qfront_sticky);
1101 lrear = textget (pleft, Qrear_nonsticky);
1102 rfront = textget (pright, Qfront_sticky);
1103 rrear = textget (pright, Qrear_nonsticky);
1105 /* Go through each element of PRIGHT. */
1106 for (tail1 = pright; CONSP (tail1); tail1 = Fcdr (XCDR (tail1)))
1108 Lisp_Object tmp;
1110 sym = XCAR (tail1);
1112 /* Sticky properties get special treatment. */
1113 if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
1114 continue;
1116 rval = Fcar (XCDR (tail1));
1117 for (tail2 = pleft; CONSP (tail2); tail2 = Fcdr (XCDR (tail2)))
1118 if (EQ (sym, XCAR (tail2)))
1119 break;
1121 /* Indicate whether the property is explicitly defined on the left.
1122 (We know it is defined explicitly on the right
1123 because otherwise we don't get here.) */
1124 lpresent = ! NILP (tail2);
1125 lval = (NILP (tail2) ? Qnil : Fcar (Fcdr (tail2)));
1127 /* Even if lrear or rfront say nothing about the stickiness of
1128 SYM, Vtext_property_default_nonsticky may give default
1129 stickiness to SYM. */
1130 tmp = Fassq (sym, Vtext_property_default_nonsticky);
1131 use_left = (lpresent
1132 && ! (TMEM (sym, lrear)
1133 || (CONSP (tmp) && ! NILP (XCDR (tmp)))));
1134 use_right = (TMEM (sym, rfront)
1135 || (CONSP (tmp) && NILP (XCDR (tmp))));
1136 if (use_left && use_right)
1138 if (NILP (lval))
1139 use_left = 0;
1140 else if (NILP (rval))
1141 use_right = 0;
1143 if (use_left)
1145 /* We build props as (value sym ...) rather than (sym value ...)
1146 because we plan to nreverse it when we're done. */
1147 props = Fcons (lval, Fcons (sym, props));
1148 if (TMEM (sym, lfront))
1149 front = Fcons (sym, front);
1150 if (TMEM (sym, lrear))
1151 rear = Fcons (sym, rear);
1153 else if (use_right)
1155 props = Fcons (rval, Fcons (sym, props));
1156 if (TMEM (sym, rfront))
1157 front = Fcons (sym, front);
1158 if (TMEM (sym, rrear))
1159 rear = Fcons (sym, rear);
1163 /* Now go through each element of PLEFT. */
1164 for (tail2 = pleft; CONSP (tail2); tail2 = Fcdr (XCDR (tail2)))
1166 Lisp_Object tmp;
1168 sym = XCAR (tail2);
1170 /* Sticky properties get special treatment. */
1171 if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
1172 continue;
1174 /* If sym is in PRIGHT, we've already considered it. */
1175 for (tail1 = pright; CONSP (tail1); tail1 = Fcdr (XCDR (tail1)))
1176 if (EQ (sym, XCAR (tail1)))
1177 break;
1178 if (! NILP (tail1))
1179 continue;
1181 lval = Fcar (XCDR (tail2));
1183 /* Even if lrear or rfront say nothing about the stickiness of
1184 SYM, Vtext_property_default_nonsticky may give default
1185 stickiness to SYM. */
1186 tmp = Fassq (sym, Vtext_property_default_nonsticky);
1188 /* Since rval is known to be nil in this loop, the test simplifies. */
1189 if (! (TMEM (sym, lrear) || (CONSP (tmp) && ! NILP (XCDR (tmp)))))
1191 props = Fcons (lval, Fcons (sym, props));
1192 if (TMEM (sym, lfront))
1193 front = Fcons (sym, front);
1195 else if (TMEM (sym, rfront) || (CONSP (tmp) && NILP (XCDR (tmp))))
1197 /* The value is nil, but we still inherit the stickiness
1198 from the right. */
1199 front = Fcons (sym, front);
1200 if (TMEM (sym, rrear))
1201 rear = Fcons (sym, rear);
1204 props = Fnreverse (props);
1205 if (! NILP (rear))
1206 props = Fcons (Qrear_nonsticky, Fcons (Fnreverse (rear), props));
1208 cat = textget (props, Qcategory);
1209 if (! NILP (front)
1211 /* If we have inherited a front-stick category property that is t,
1212 we don't need to set up a detailed one. */
1213 ! (! NILP (cat) && SYMBOLP (cat)
1214 && EQ (Fget (cat, Qfront_sticky), Qt)))
1215 props = Fcons (Qfront_sticky, Fcons (Fnreverse (front), props));
1216 return props;
1220 /* Delete a node I from its interval tree by merging its subtrees
1221 into one subtree which is then returned. Caller is responsible for
1222 storing the resulting subtree into its parent. */
1224 static INTERVAL
1225 delete_node (register INTERVAL i)
1227 register INTERVAL migrate, this;
1228 register EMACS_INT migrate_amt;
1230 if (NULL_INTERVAL_P (i->left))
1231 return i->right;
1232 if (NULL_INTERVAL_P (i->right))
1233 return i->left;
1235 migrate = i->left;
1236 migrate_amt = i->left->total_length;
1237 this = i->right;
1238 this->total_length += migrate_amt;
1239 while (! NULL_INTERVAL_P (this->left))
1241 this = this->left;
1242 this->total_length += migrate_amt;
1244 CHECK_TOTAL_LENGTH (this);
1245 this->left = migrate;
1246 SET_INTERVAL_PARENT (migrate, this);
1248 return i->right;
1251 /* Delete interval I from its tree by calling `delete_node'
1252 and properly connecting the resultant subtree.
1254 I is presumed to be empty; that is, no adjustments are made
1255 for the length of I. */
1257 static void
1258 delete_interval (register INTERVAL i)
1260 register INTERVAL parent;
1261 EMACS_INT amt = LENGTH (i);
1263 if (amt > 0) /* Only used on zero-length intervals now. */
1264 abort ();
1266 if (ROOT_INTERVAL_P (i))
1268 Lisp_Object owner;
1269 GET_INTERVAL_OBJECT (owner, i);
1270 parent = delete_node (i);
1271 if (! NULL_INTERVAL_P (parent))
1272 SET_INTERVAL_OBJECT (parent, owner);
1274 if (BUFFERP (owner))
1275 BUF_INTERVALS (XBUFFER (owner)) = parent;
1276 else if (STRINGP (owner))
1277 STRING_SET_INTERVALS (owner, parent);
1278 else
1279 abort ();
1281 return;
1284 parent = INTERVAL_PARENT (i);
1285 if (AM_LEFT_CHILD (i))
1287 parent->left = delete_node (i);
1288 if (! NULL_INTERVAL_P (parent->left))
1289 SET_INTERVAL_PARENT (parent->left, parent);
1291 else
1293 parent->right = delete_node (i);
1294 if (! NULL_INTERVAL_P (parent->right))
1295 SET_INTERVAL_PARENT (parent->right, parent);
1299 /* Find the interval in TREE corresponding to the relative position
1300 FROM and delete as much as possible of AMOUNT from that interval.
1301 Return the amount actually deleted, and if the interval was
1302 zeroed-out, delete that interval node from the tree.
1304 Note that FROM is actually origin zero, aka relative to the
1305 leftmost edge of tree. This is appropriate since we call ourselves
1306 recursively on subtrees.
1308 Do this by recursing down TREE to the interval in question, and
1309 deleting the appropriate amount of text. */
1311 static EMACS_INT
1312 interval_deletion_adjustment (register INTERVAL tree, register EMACS_INT from,
1313 register EMACS_INT amount)
1315 register EMACS_INT relative_position = from;
1317 if (NULL_INTERVAL_P (tree))
1318 return 0;
1320 /* Left branch. */
1321 if (relative_position < LEFT_TOTAL_LENGTH (tree))
1323 EMACS_INT subtract = interval_deletion_adjustment (tree->left,
1324 relative_position,
1325 amount);
1326 tree->total_length -= subtract;
1327 CHECK_TOTAL_LENGTH (tree);
1328 return subtract;
1330 /* Right branch. */
1331 else if (relative_position >= (TOTAL_LENGTH (tree)
1332 - RIGHT_TOTAL_LENGTH (tree)))
1334 EMACS_INT subtract;
1336 relative_position -= (tree->total_length
1337 - RIGHT_TOTAL_LENGTH (tree));
1338 subtract = interval_deletion_adjustment (tree->right,
1339 relative_position,
1340 amount);
1341 tree->total_length -= subtract;
1342 CHECK_TOTAL_LENGTH (tree);
1343 return subtract;
1345 /* Here -- this node. */
1346 else
1348 /* How much can we delete from this interval? */
1349 EMACS_INT my_amount = ((tree->total_length
1350 - RIGHT_TOTAL_LENGTH (tree))
1351 - relative_position);
1353 if (amount > my_amount)
1354 amount = my_amount;
1356 tree->total_length -= amount;
1357 CHECK_TOTAL_LENGTH (tree);
1358 if (LENGTH (tree) == 0)
1359 delete_interval (tree);
1361 return amount;
1364 /* Never reach here. */
1367 /* Effect the adjustments necessary to the interval tree of BUFFER to
1368 correspond to the deletion of LENGTH characters from that buffer
1369 text. The deletion is effected at position START (which is a
1370 buffer position, i.e. origin 1). */
1372 static void
1373 adjust_intervals_for_deletion (struct buffer *buffer,
1374 EMACS_INT start, EMACS_INT length)
1376 register EMACS_INT left_to_delete = length;
1377 register INTERVAL tree = BUF_INTERVALS (buffer);
1378 Lisp_Object parent;
1379 EMACS_INT offset;
1381 GET_INTERVAL_OBJECT (parent, tree);
1382 offset = (BUFFERP (parent) ? BUF_BEG (XBUFFER (parent)) : 0);
1384 if (NULL_INTERVAL_P (tree))
1385 return;
1387 if (start > offset + TOTAL_LENGTH (tree)
1388 || start + length > offset + TOTAL_LENGTH (tree))
1389 abort ();
1391 if (length == TOTAL_LENGTH (tree))
1393 BUF_INTERVALS (buffer) = NULL_INTERVAL;
1394 return;
1397 if (ONLY_INTERVAL_P (tree))
1399 tree->total_length -= length;
1400 CHECK_TOTAL_LENGTH (tree);
1401 return;
1404 if (start > offset + TOTAL_LENGTH (tree))
1405 start = offset + TOTAL_LENGTH (tree);
1406 while (left_to_delete > 0)
1408 left_to_delete -= interval_deletion_adjustment (tree, start - offset,
1409 left_to_delete);
1410 tree = BUF_INTERVALS (buffer);
1411 if (left_to_delete == tree->total_length)
1413 BUF_INTERVALS (buffer) = NULL_INTERVAL;
1414 return;
1419 /* Make the adjustments necessary to the interval tree of BUFFER to
1420 represent an addition or deletion of LENGTH characters starting
1421 at position START. Addition or deletion is indicated by the sign
1422 of LENGTH.
1424 The two inline functions (one static) pacify Sun C 5.8, a pre-C99
1425 compiler that does not allow calling a static function (here,
1426 adjust_intervals_for_deletion) from a non-static inline function. */
1428 void
1429 offset_intervals (struct buffer *buffer, EMACS_INT start, EMACS_INT length)
1431 if (NULL_INTERVAL_P (BUF_INTERVALS (buffer)) || length == 0)
1432 return;
1434 if (length > 0)
1435 adjust_intervals_for_insertion (BUF_INTERVALS (buffer), start, length);
1436 else
1438 IF_LINT (if (length < - TYPE_MAXIMUM (EMACS_INT)) abort ();)
1439 adjust_intervals_for_deletion (buffer, start, -length);
1443 /* Merge interval I with its lexicographic successor. The resulting
1444 interval is returned, and has the properties of the original
1445 successor. The properties of I are lost. I is removed from the
1446 interval tree.
1448 IMPORTANT:
1449 The caller must verify that this is not the last (rightmost)
1450 interval. */
1452 static INTERVAL
1453 merge_interval_right (register INTERVAL i)
1455 register EMACS_INT absorb = LENGTH (i);
1456 register INTERVAL successor;
1458 /* Zero out this interval. */
1459 i->total_length -= absorb;
1460 CHECK_TOTAL_LENGTH (i);
1462 /* Find the succeeding interval. */
1463 if (! NULL_RIGHT_CHILD (i)) /* It's below us. Add absorb
1464 as we descend. */
1466 successor = i->right;
1467 while (! NULL_LEFT_CHILD (successor))
1469 successor->total_length += absorb;
1470 CHECK_TOTAL_LENGTH (successor);
1471 successor = successor->left;
1474 successor->total_length += absorb;
1475 CHECK_TOTAL_LENGTH (successor);
1476 delete_interval (i);
1477 return successor;
1480 successor = i;
1481 while (! NULL_PARENT (successor)) /* It's above us. Subtract as
1482 we ascend. */
1484 if (AM_LEFT_CHILD (successor))
1486 successor = INTERVAL_PARENT (successor);
1487 delete_interval (i);
1488 return successor;
1491 successor = INTERVAL_PARENT (successor);
1492 successor->total_length -= absorb;
1493 CHECK_TOTAL_LENGTH (successor);
1496 /* This must be the rightmost or last interval and cannot
1497 be merged right. The caller should have known. */
1498 abort ();
1501 /* Merge interval I with its lexicographic predecessor. The resulting
1502 interval is returned, and has the properties of the original predecessor.
1503 The properties of I are lost. Interval node I is removed from the tree.
1505 IMPORTANT:
1506 The caller must verify that this is not the first (leftmost) interval. */
1508 INTERVAL
1509 merge_interval_left (register INTERVAL i)
1511 register EMACS_INT absorb = LENGTH (i);
1512 register INTERVAL predecessor;
1514 /* Zero out this interval. */
1515 i->total_length -= absorb;
1516 CHECK_TOTAL_LENGTH (i);
1518 /* Find the preceding interval. */
1519 if (! NULL_LEFT_CHILD (i)) /* It's below us. Go down,
1520 adding ABSORB as we go. */
1522 predecessor = i->left;
1523 while (! NULL_RIGHT_CHILD (predecessor))
1525 predecessor->total_length += absorb;
1526 CHECK_TOTAL_LENGTH (predecessor);
1527 predecessor = predecessor->right;
1530 predecessor->total_length += absorb;
1531 CHECK_TOTAL_LENGTH (predecessor);
1532 delete_interval (i);
1533 return predecessor;
1536 predecessor = i;
1537 while (! NULL_PARENT (predecessor)) /* It's above us. Go up,
1538 subtracting ABSORB. */
1540 if (AM_RIGHT_CHILD (predecessor))
1542 predecessor = INTERVAL_PARENT (predecessor);
1543 delete_interval (i);
1544 return predecessor;
1547 predecessor = INTERVAL_PARENT (predecessor);
1548 predecessor->total_length -= absorb;
1549 CHECK_TOTAL_LENGTH (predecessor);
1552 /* This must be the leftmost or first interval and cannot
1553 be merged left. The caller should have known. */
1554 abort ();
1557 /* Make an exact copy of interval tree SOURCE which descends from
1558 PARENT. This is done by recursing through SOURCE, copying
1559 the current interval and its properties, and then adjusting
1560 the pointers of the copy. */
1562 static INTERVAL
1563 reproduce_tree (INTERVAL source, INTERVAL parent)
1565 register INTERVAL t = make_interval ();
1567 memcpy (t, source, INTERVAL_SIZE);
1568 copy_properties (source, t);
1569 SET_INTERVAL_PARENT (t, parent);
1570 if (! NULL_LEFT_CHILD (source))
1571 t->left = reproduce_tree (source->left, t);
1572 if (! NULL_RIGHT_CHILD (source))
1573 t->right = reproduce_tree (source->right, t);
1575 return t;
1578 static INTERVAL
1579 reproduce_tree_obj (INTERVAL source, Lisp_Object parent)
1581 register INTERVAL t = make_interval ();
1583 memcpy (t, source, INTERVAL_SIZE);
1584 copy_properties (source, t);
1585 SET_INTERVAL_OBJECT (t, parent);
1586 if (! NULL_LEFT_CHILD (source))
1587 t->left = reproduce_tree (source->left, t);
1588 if (! NULL_RIGHT_CHILD (source))
1589 t->right = reproduce_tree (source->right, t);
1591 return t;
1594 #if 0
1595 /* Nobody calls this. Perhaps it's a vestige of an earlier design. */
1597 /* Make a new interval of length LENGTH starting at START in the
1598 group of intervals INTERVALS, which is actually an interval tree.
1599 Returns the new interval.
1601 Generate an error if the new positions would overlap an existing
1602 interval. */
1604 static INTERVAL
1605 make_new_interval (INTERVAL intervals, EMACS_INT start, EMACS_INT length)
1607 INTERVAL slot;
1609 slot = find_interval (intervals, start);
1610 if (start + length > slot->position + LENGTH (slot))
1611 error ("Interval would overlap");
1613 if (start == slot->position && length == LENGTH (slot))
1614 return slot;
1616 if (slot->position == start)
1618 /* New right node. */
1619 split_interval_right (slot, length);
1620 return slot;
1623 if (slot->position + LENGTH (slot) == start + length)
1625 /* New left node. */
1626 split_interval_left (slot, LENGTH (slot) - length);
1627 return slot;
1630 /* Convert interval SLOT into three intervals. */
1631 split_interval_left (slot, start - slot->position);
1632 split_interval_right (slot, length);
1633 return slot;
1635 #endif
1637 /* Insert the intervals of SOURCE into BUFFER at POSITION.
1638 LENGTH is the length of the text in SOURCE.
1640 The `position' field of the SOURCE intervals is assumed to be
1641 consistent with its parent; therefore, SOURCE must be an
1642 interval tree made with copy_interval or must be the whole
1643 tree of a buffer or a string.
1645 This is used in insdel.c when inserting Lisp_Strings into the
1646 buffer. The text corresponding to SOURCE is already in the buffer
1647 when this is called. The intervals of new tree are a copy of those
1648 belonging to the string being inserted; intervals are never
1649 shared.
1651 If the inserted text had no intervals associated, and we don't
1652 want to inherit the surrounding text's properties, this function
1653 simply returns -- offset_intervals should handle placing the
1654 text in the correct interval, depending on the sticky bits.
1656 If the inserted text had properties (intervals), then there are two
1657 cases -- either insertion happened in the middle of some interval,
1658 or between two intervals.
1660 If the text goes into the middle of an interval, then new
1661 intervals are created in the middle with only the properties of
1662 the new text, *unless* the macro MERGE_INSERTIONS is true, in
1663 which case the new text has the union of its properties and those
1664 of the text into which it was inserted.
1666 If the text goes between two intervals, then if neither interval
1667 had its appropriate sticky property set (front_sticky, rear_sticky),
1668 the new text has only its properties. If one of the sticky properties
1669 is set, then the new text "sticks" to that region and its properties
1670 depend on merging as above. If both the preceding and succeeding
1671 intervals to the new text are "sticky", then the new text retains
1672 only its properties, as if neither sticky property were set. Perhaps
1673 we should consider merging all three sets of properties onto the new
1674 text... */
1676 void
1677 graft_intervals_into_buffer (INTERVAL source, EMACS_INT position,
1678 EMACS_INT length, struct buffer *buffer,
1679 int inherit)
1681 register INTERVAL under, over, this;
1682 register INTERVAL tree;
1683 EMACS_INT over_used;
1685 tree = BUF_INTERVALS (buffer);
1687 /* If the new text has no properties, then with inheritance it
1688 becomes part of whatever interval it was inserted into.
1689 To prevent inheritance, we must clear out the properties
1690 of the newly inserted text. */
1691 if (NULL_INTERVAL_P (source))
1693 Lisp_Object buf;
1694 if (!inherit && !NULL_INTERVAL_P (tree) && length > 0)
1696 XSETBUFFER (buf, buffer);
1697 set_text_properties_1 (make_number (position),
1698 make_number (position + length),
1699 Qnil, buf, 0);
1701 if (! NULL_INTERVAL_P (BUF_INTERVALS (buffer)))
1702 /* Shouldn't be necessary. --Stef */
1703 BUF_INTERVALS (buffer) = balance_an_interval (BUF_INTERVALS (buffer));
1704 return;
1707 eassert (length == TOTAL_LENGTH (source));
1709 if ((BUF_Z (buffer) - BUF_BEG (buffer)) == length)
1710 { /* The inserted text constitutes the whole buffer, so
1711 simply copy over the interval structure. */
1712 Lisp_Object buf;
1713 XSETBUFFER (buf, buffer);
1714 BUF_INTERVALS (buffer) = reproduce_tree_obj (source, buf);
1715 BUF_INTERVALS (buffer)->position = BUF_BEG (buffer);
1716 eassert (BUF_INTERVALS (buffer)->up_obj == 1);
1717 return;
1719 else if (NULL_INTERVAL_P (tree))
1720 { /* Create an interval tree in which to place a copy
1721 of the intervals of the inserted string. */
1722 Lisp_Object buf;
1723 XSETBUFFER (buf, buffer);
1724 tree = create_root_interval (buf);
1726 /* Paranoia -- the text has already been added, so this buffer
1727 should be of non-zero length. */
1728 else if (TOTAL_LENGTH (tree) == 0)
1729 abort ();
1731 this = under = find_interval (tree, position);
1732 if (NULL_INTERVAL_P (under)) /* Paranoia. */
1733 abort ();
1734 over = find_interval (source, interval_start_pos (source));
1736 /* Here for insertion in the middle of an interval.
1737 Split off an equivalent interval to the right,
1738 then don't bother with it any more. */
1740 if (position > under->position)
1742 INTERVAL end_unchanged
1743 = split_interval_left (this, position - under->position);
1744 copy_properties (under, end_unchanged);
1745 under->position = position;
1747 else
1749 /* This call may have some effect because previous_interval may
1750 update `position' fields of intervals. Thus, don't ignore it
1751 for the moment. Someone please tell me the truth (K.Handa). */
1752 INTERVAL prev = previous_interval (under);
1753 (void) prev;
1754 #if 0
1755 /* But, this code surely has no effect. And, anyway,
1756 END_NONSTICKY_P is unreliable now. */
1757 if (prev && !END_NONSTICKY_P (prev))
1758 prev = 0;
1759 #endif /* 0 */
1762 /* Insertion is now at beginning of UNDER. */
1764 /* The inserted text "sticks" to the interval `under',
1765 which means it gets those properties.
1766 The properties of under are the result of
1767 adjust_intervals_for_insertion, so stickiness has
1768 already been taken care of. */
1770 /* OVER is the interval we are copying from next.
1771 OVER_USED says how many characters' worth of OVER
1772 have already been copied into target intervals.
1773 UNDER is the next interval in the target. */
1774 over_used = 0;
1775 while (! NULL_INTERVAL_P (over))
1777 /* If UNDER is longer than OVER, split it. */
1778 if (LENGTH (over) - over_used < LENGTH (under))
1780 this = split_interval_left (under, LENGTH (over) - over_used);
1781 copy_properties (under, this);
1783 else
1784 this = under;
1786 /* THIS is now the interval to copy or merge into.
1787 OVER covers all of it. */
1788 if (inherit)
1789 merge_properties (over, this);
1790 else
1791 copy_properties (over, this);
1793 /* If THIS and OVER end at the same place,
1794 advance OVER to a new source interval. */
1795 if (LENGTH (this) == LENGTH (over) - over_used)
1797 over = next_interval (over);
1798 over_used = 0;
1800 else
1801 /* Otherwise just record that more of OVER has been used. */
1802 over_used += LENGTH (this);
1804 /* Always advance to a new target interval. */
1805 under = next_interval (this);
1808 if (! NULL_INTERVAL_P (BUF_INTERVALS (buffer)))
1809 BUF_INTERVALS (buffer) = balance_an_interval (BUF_INTERVALS (buffer));
1810 return;
1813 /* Get the value of property PROP from PLIST,
1814 which is the plist of an interval.
1815 We check for direct properties, for categories with property PROP,
1816 and for PROP appearing on the default-text-properties list. */
1818 Lisp_Object
1819 textget (Lisp_Object plist, register Lisp_Object prop)
1821 return lookup_char_property (plist, prop, 1);
1824 Lisp_Object
1825 lookup_char_property (Lisp_Object plist, register Lisp_Object prop, int textprop)
1827 register Lisp_Object tail, fallback = Qnil;
1829 for (tail = plist; CONSP (tail); tail = Fcdr (XCDR (tail)))
1831 register Lisp_Object tem;
1832 tem = XCAR (tail);
1833 if (EQ (prop, tem))
1834 return Fcar (XCDR (tail));
1835 if (EQ (tem, Qcategory))
1837 tem = Fcar (XCDR (tail));
1838 if (SYMBOLP (tem))
1839 fallback = Fget (tem, prop);
1843 if (! NILP (fallback))
1844 return fallback;
1845 /* Check for alternative properties */
1846 tail = Fassq (prop, Vchar_property_alias_alist);
1847 if (! NILP (tail))
1849 tail = XCDR (tail);
1850 for (; NILP (fallback) && CONSP (tail); tail = XCDR (tail))
1851 fallback = Fplist_get (plist, XCAR (tail));
1854 if (textprop && NILP (fallback) && CONSP (Vdefault_text_properties))
1855 fallback = Fplist_get (Vdefault_text_properties, prop);
1856 return fallback;
1860 /* Set point in BUFFER "temporarily" to CHARPOS, which corresponds to
1861 byte position BYTEPOS. */
1863 void
1864 temp_set_point_both (struct buffer *buffer,
1865 EMACS_INT charpos, EMACS_INT bytepos)
1867 /* In a single-byte buffer, the two positions must be equal. */
1868 if (BUF_ZV (buffer) == BUF_ZV_BYTE (buffer)
1869 && charpos != bytepos)
1870 abort ();
1872 if (charpos > bytepos)
1873 abort ();
1875 if (charpos > BUF_ZV (buffer) || charpos < BUF_BEGV (buffer))
1876 abort ();
1878 SET_BUF_PT_BOTH (buffer, charpos, bytepos);
1881 /* Set point "temporarily", without checking any text properties. */
1883 void
1884 temp_set_point (struct buffer *buffer, EMACS_INT charpos)
1886 temp_set_point_both (buffer, charpos,
1887 buf_charpos_to_bytepos (buffer, charpos));
1890 /* Set point in BUFFER to CHARPOS. If the target position is
1891 before an intangible character, move to an ok place. */
1893 void
1894 set_point (EMACS_INT charpos)
1896 set_point_both (charpos, buf_charpos_to_bytepos (current_buffer, charpos));
1899 /* If there's an invisible character at position POS + TEST_OFFS in the
1900 current buffer, and the invisible property has a `stickiness' such that
1901 inserting a character at position POS would inherit the property it,
1902 return POS + ADJ, otherwise return POS. If TEST_INTANG is non-zero,
1903 then intangibility is required as well as invisibility.
1905 TEST_OFFS should be either 0 or -1, and ADJ should be either 1 or -1.
1907 Note that `stickiness' is determined by overlay marker insertion types,
1908 if the invisible property comes from an overlay. */
1910 static EMACS_INT
1911 adjust_for_invis_intang (EMACS_INT pos, EMACS_INT test_offs, EMACS_INT adj,
1912 int test_intang)
1914 Lisp_Object invis_propval, invis_overlay;
1915 Lisp_Object test_pos;
1917 if ((adj < 0 && pos + adj < BEGV) || (adj > 0 && pos + adj > ZV))
1918 /* POS + ADJ would be beyond the buffer bounds, so do no adjustment. */
1919 return pos;
1921 test_pos = make_number (pos + test_offs);
1923 invis_propval
1924 = get_char_property_and_overlay (test_pos, Qinvisible, Qnil,
1925 &invis_overlay);
1927 if ((!test_intang
1928 || ! NILP (Fget_char_property (test_pos, Qintangible, Qnil)))
1929 && TEXT_PROP_MEANS_INVISIBLE (invis_propval)
1930 /* This next test is true if the invisible property has a stickiness
1931 such that an insertion at POS would inherit it. */
1932 && (NILP (invis_overlay)
1933 /* Invisible property is from a text-property. */
1934 ? (text_property_stickiness (Qinvisible, make_number (pos), Qnil)
1935 == (test_offs == 0 ? 1 : -1))
1936 /* Invisible property is from an overlay. */
1937 : (test_offs == 0
1938 ? XMARKER (OVERLAY_START (invis_overlay))->insertion_type == 0
1939 : XMARKER (OVERLAY_END (invis_overlay))->insertion_type == 1)))
1940 pos += adj;
1942 return pos;
1945 /* Set point in BUFFER to CHARPOS, which corresponds to byte
1946 position BYTEPOS. If the target position is
1947 before an intangible character, move to an ok place. */
1949 void
1950 set_point_both (EMACS_INT charpos, EMACS_INT bytepos)
1952 register INTERVAL to, from, toprev, fromprev;
1953 EMACS_INT buffer_point;
1954 EMACS_INT old_position = PT;
1955 /* This ensures that we move forward past intangible text when the
1956 initial position is the same as the destination, in the rare
1957 instances where this is important, e.g. in line-move-finish
1958 (simple.el). */
1959 int backwards = (charpos < old_position ? 1 : 0);
1960 int have_overlays;
1961 EMACS_INT original_position;
1963 BVAR (current_buffer, point_before_scroll) = Qnil;
1965 if (charpos == PT)
1966 return;
1968 /* In a single-byte buffer, the two positions must be equal. */
1969 eassert (ZV != ZV_BYTE || charpos == bytepos);
1971 /* Check this now, before checking if the buffer has any intervals.
1972 That way, we can catch conditions which break this sanity check
1973 whether or not there are intervals in the buffer. */
1974 eassert (charpos <= ZV && charpos >= BEGV);
1976 have_overlays = (current_buffer->overlays_before
1977 || current_buffer->overlays_after);
1979 /* If we have no text properties and overlays,
1980 then we can do it quickly. */
1981 if (NULL_INTERVAL_P (BUF_INTERVALS (current_buffer)) && ! have_overlays)
1983 temp_set_point_both (current_buffer, charpos, bytepos);
1984 return;
1987 /* Set TO to the interval containing the char after CHARPOS,
1988 and TOPREV to the interval containing the char before CHARPOS.
1989 Either one may be null. They may be equal. */
1990 to = find_interval (BUF_INTERVALS (current_buffer), charpos);
1991 if (charpos == BEGV)
1992 toprev = 0;
1993 else if (to && to->position == charpos)
1994 toprev = previous_interval (to);
1995 else
1996 toprev = to;
1998 buffer_point = (PT == ZV ? ZV - 1 : PT);
2000 /* Set FROM to the interval containing the char after PT,
2001 and FROMPREV to the interval containing the char before PT.
2002 Either one may be null. They may be equal. */
2003 /* We could cache this and save time. */
2004 from = find_interval (BUF_INTERVALS (current_buffer), buffer_point);
2005 if (buffer_point == BEGV)
2006 fromprev = 0;
2007 else if (from && from->position == PT)
2008 fromprev = previous_interval (from);
2009 else if (buffer_point != PT)
2010 fromprev = from, from = 0;
2011 else
2012 fromprev = from;
2014 /* Moving within an interval. */
2015 if (to == from && toprev == fromprev && INTERVAL_VISIBLE_P (to)
2016 && ! have_overlays)
2018 temp_set_point_both (current_buffer, charpos, bytepos);
2019 return;
2022 original_position = charpos;
2024 /* If the new position is between two intangible characters
2025 with the same intangible property value,
2026 move forward or backward until a change in that property. */
2027 if (NILP (Vinhibit_point_motion_hooks)
2028 && ((! NULL_INTERVAL_P (to) && ! NULL_INTERVAL_P (toprev))
2029 || have_overlays)
2030 /* Intangibility never stops us from positioning at the beginning
2031 or end of the buffer, so don't bother checking in that case. */
2032 && charpos != BEGV && charpos != ZV)
2034 Lisp_Object pos;
2035 Lisp_Object intangible_propval;
2037 if (backwards)
2039 /* If the preceding character is both intangible and invisible,
2040 and the invisible property is `rear-sticky', perturb it so
2041 that the search starts one character earlier -- this ensures
2042 that point can never move to the end of an invisible/
2043 intangible/rear-sticky region. */
2044 charpos = adjust_for_invis_intang (charpos, -1, -1, 1);
2046 XSETINT (pos, charpos);
2048 /* If following char is intangible,
2049 skip back over all chars with matching intangible property. */
2051 intangible_propval = Fget_char_property (pos, Qintangible, Qnil);
2053 if (! NILP (intangible_propval))
2055 while (XINT (pos) > BEGV
2056 && EQ (Fget_char_property (make_number (XINT (pos) - 1),
2057 Qintangible, Qnil),
2058 intangible_propval))
2059 pos = Fprevious_char_property_change (pos, Qnil);
2061 /* Set CHARPOS from POS, and if the final intangible character
2062 that we skipped over is also invisible, and the invisible
2063 property is `front-sticky', perturb it to be one character
2064 earlier -- this ensures that point can never move to the
2065 beginning of an invisible/intangible/front-sticky region. */
2066 charpos = adjust_for_invis_intang (XINT (pos), 0, -1, 0);
2069 else
2071 /* If the following character is both intangible and invisible,
2072 and the invisible property is `front-sticky', perturb it so
2073 that the search starts one character later -- this ensures
2074 that point can never move to the beginning of an
2075 invisible/intangible/front-sticky region. */
2076 charpos = adjust_for_invis_intang (charpos, 0, 1, 1);
2078 XSETINT (pos, charpos);
2080 /* If preceding char is intangible,
2081 skip forward over all chars with matching intangible property. */
2083 intangible_propval = Fget_char_property (make_number (charpos - 1),
2084 Qintangible, Qnil);
2086 if (! NILP (intangible_propval))
2088 while (XINT (pos) < ZV
2089 && EQ (Fget_char_property (pos, Qintangible, Qnil),
2090 intangible_propval))
2091 pos = Fnext_char_property_change (pos, Qnil);
2093 /* Set CHARPOS from POS, and if the final intangible character
2094 that we skipped over is also invisible, and the invisible
2095 property is `rear-sticky', perturb it to be one character
2096 later -- this ensures that point can never move to the
2097 end of an invisible/intangible/rear-sticky region. */
2098 charpos = adjust_for_invis_intang (XINT (pos), -1, 1, 0);
2102 bytepos = buf_charpos_to_bytepos (current_buffer, charpos);
2105 if (charpos != original_position)
2107 /* Set TO to the interval containing the char after CHARPOS,
2108 and TOPREV to the interval containing the char before CHARPOS.
2109 Either one may be null. They may be equal. */
2110 to = find_interval (BUF_INTERVALS (current_buffer), charpos);
2111 if (charpos == BEGV)
2112 toprev = 0;
2113 else if (to && to->position == charpos)
2114 toprev = previous_interval (to);
2115 else
2116 toprev = to;
2119 /* Here TO is the interval after the stopping point
2120 and TOPREV is the interval before the stopping point.
2121 One or the other may be null. */
2123 temp_set_point_both (current_buffer, charpos, bytepos);
2125 /* We run point-left and point-entered hooks here, if the
2126 two intervals are not equivalent. These hooks take
2127 (old_point, new_point) as arguments. */
2128 if (NILP (Vinhibit_point_motion_hooks)
2129 && (! intervals_equal (from, to)
2130 || ! intervals_equal (fromprev, toprev)))
2132 Lisp_Object leave_after, leave_before, enter_after, enter_before;
2134 if (fromprev)
2135 leave_before = textget (fromprev->plist, Qpoint_left);
2136 else
2137 leave_before = Qnil;
2139 if (from)
2140 leave_after = textget (from->plist, Qpoint_left);
2141 else
2142 leave_after = Qnil;
2144 if (toprev)
2145 enter_before = textget (toprev->plist, Qpoint_entered);
2146 else
2147 enter_before = Qnil;
2149 if (to)
2150 enter_after = textget (to->plist, Qpoint_entered);
2151 else
2152 enter_after = Qnil;
2154 if (! EQ (leave_before, enter_before) && !NILP (leave_before))
2155 call2 (leave_before, make_number (old_position),
2156 make_number (charpos));
2157 if (! EQ (leave_after, enter_after) && !NILP (leave_after))
2158 call2 (leave_after, make_number (old_position),
2159 make_number (charpos));
2161 if (! EQ (enter_before, leave_before) && !NILP (enter_before))
2162 call2 (enter_before, make_number (old_position),
2163 make_number (charpos));
2164 if (! EQ (enter_after, leave_after) && !NILP (enter_after))
2165 call2 (enter_after, make_number (old_position),
2166 make_number (charpos));
2170 /* Move point to POSITION, unless POSITION is inside an intangible
2171 segment that reaches all the way to point. */
2173 void
2174 move_if_not_intangible (EMACS_INT position)
2176 Lisp_Object pos;
2177 Lisp_Object intangible_propval;
2179 XSETINT (pos, position);
2181 if (! NILP (Vinhibit_point_motion_hooks))
2182 /* If intangible is inhibited, always move point to POSITION. */
2184 else if (PT < position && XINT (pos) < ZV)
2186 /* We want to move forward, so check the text before POSITION. */
2188 intangible_propval = Fget_char_property (pos,
2189 Qintangible, Qnil);
2191 /* If following char is intangible,
2192 skip back over all chars with matching intangible property. */
2193 if (! NILP (intangible_propval))
2194 while (XINT (pos) > BEGV
2195 && EQ (Fget_char_property (make_number (XINT (pos) - 1),
2196 Qintangible, Qnil),
2197 intangible_propval))
2198 pos = Fprevious_char_property_change (pos, Qnil);
2200 else if (XINT (pos) > BEGV)
2202 /* We want to move backward, so check the text after POSITION. */
2204 intangible_propval = Fget_char_property (make_number (XINT (pos) - 1),
2205 Qintangible, Qnil);
2207 /* If following char is intangible,
2208 skip forward over all chars with matching intangible property. */
2209 if (! NILP (intangible_propval))
2210 while (XINT (pos) < ZV
2211 && EQ (Fget_char_property (pos, Qintangible, Qnil),
2212 intangible_propval))
2213 pos = Fnext_char_property_change (pos, Qnil);
2216 else if (position < BEGV)
2217 position = BEGV;
2218 else if (position > ZV)
2219 position = ZV;
2221 /* If the whole stretch between PT and POSITION isn't intangible,
2222 try moving to POSITION (which means we actually move farther
2223 if POSITION is inside of intangible text). */
2225 if (XINT (pos) != PT)
2226 SET_PT (position);
2229 /* If text at position POS has property PROP, set *VAL to the property
2230 value, *START and *END to the beginning and end of a region that
2231 has the same property, and return 1. Otherwise return 0.
2233 OBJECT is the string or buffer to look for the property in;
2234 nil means the current buffer. */
2237 get_property_and_range (EMACS_INT pos, Lisp_Object prop, Lisp_Object *val,
2238 EMACS_INT *start, EMACS_INT *end, Lisp_Object object)
2240 INTERVAL i, prev, next;
2242 if (NILP (object))
2243 i = find_interval (BUF_INTERVALS (current_buffer), pos);
2244 else if (BUFFERP (object))
2245 i = find_interval (BUF_INTERVALS (XBUFFER (object)), pos);
2246 else if (STRINGP (object))
2247 i = find_interval (STRING_INTERVALS (object), pos);
2248 else
2249 abort ();
2251 if (NULL_INTERVAL_P (i) || (i->position + LENGTH (i) <= pos))
2252 return 0;
2253 *val = textget (i->plist, prop);
2254 if (NILP (*val))
2255 return 0;
2257 next = i; /* remember it in advance */
2258 prev = previous_interval (i);
2259 while (! NULL_INTERVAL_P (prev)
2260 && EQ (*val, textget (prev->plist, prop)))
2261 i = prev, prev = previous_interval (prev);
2262 *start = i->position;
2264 next = next_interval (i);
2265 while (! NULL_INTERVAL_P (next)
2266 && EQ (*val, textget (next->plist, prop)))
2267 i = next, next = next_interval (next);
2268 *end = i->position + LENGTH (i);
2270 return 1;
2273 /* Return the proper local keymap TYPE for position POSITION in
2274 BUFFER; TYPE should be one of `keymap' or `local-map'. Use the map
2275 specified by the PROP property, if any. Otherwise, if TYPE is
2276 `local-map' use BUFFER's local map.
2278 POSITION must be in the accessible part of BUFFER. */
2280 Lisp_Object
2281 get_local_map (register EMACS_INT position, register struct buffer *buffer,
2282 Lisp_Object type)
2284 Lisp_Object prop, lispy_position, lispy_buffer;
2285 EMACS_INT old_begv, old_zv, old_begv_byte, old_zv_byte;
2287 /* Perhaps we should just change `position' to the limit. */
2288 if (position > BUF_ZV (buffer) || position < BUF_BEGV (buffer))
2289 abort ();
2291 /* Ignore narrowing, so that a local map continues to be valid even if
2292 the visible region contains no characters and hence no properties. */
2293 old_begv = BUF_BEGV (buffer);
2294 old_zv = BUF_ZV (buffer);
2295 old_begv_byte = BUF_BEGV_BYTE (buffer);
2296 old_zv_byte = BUF_ZV_BYTE (buffer);
2298 SET_BUF_BEGV_BOTH (buffer, BUF_BEG (buffer), BUF_BEG_BYTE (buffer));
2299 SET_BUF_ZV_BOTH (buffer, BUF_Z (buffer), BUF_Z_BYTE (buffer));
2301 XSETFASTINT (lispy_position, position);
2302 XSETBUFFER (lispy_buffer, buffer);
2303 /* First check if the CHAR has any property. This is because when
2304 we click with the mouse, the mouse pointer is really pointing
2305 to the CHAR after POS. */
2306 prop = Fget_char_property (lispy_position, type, lispy_buffer);
2307 /* If not, look at the POS's properties. This is necessary because when
2308 editing a field with a `local-map' property, we want insertion at the end
2309 to obey the `local-map' property. */
2310 if (NILP (prop))
2311 prop = get_pos_property (lispy_position, type, lispy_buffer);
2313 SET_BUF_BEGV_BOTH (buffer, old_begv, old_begv_byte);
2314 SET_BUF_ZV_BOTH (buffer, old_zv, old_zv_byte);
2316 /* Use the local map only if it is valid. */
2317 prop = get_keymap (prop, 0, 0);
2318 if (CONSP (prop))
2319 return prop;
2321 if (EQ (type, Qkeymap))
2322 return Qnil;
2323 else
2324 return BVAR (buffer, keymap);
2327 /* Produce an interval tree reflecting the intervals in
2328 TREE from START to START + LENGTH.
2329 The new interval tree has no parent and has a starting-position of 0. */
2331 INTERVAL
2332 copy_intervals (INTERVAL tree, EMACS_INT start, EMACS_INT length)
2334 register INTERVAL i, new, t;
2335 register EMACS_INT got, prevlen;
2337 if (NULL_INTERVAL_P (tree) || length <= 0)
2338 return NULL_INTERVAL;
2340 i = find_interval (tree, start);
2341 if (NULL_INTERVAL_P (i) || LENGTH (i) == 0)
2342 abort ();
2344 /* If there is only one interval and it's the default, return nil. */
2345 if ((start - i->position + 1 + length) < LENGTH (i)
2346 && DEFAULT_INTERVAL_P (i))
2347 return NULL_INTERVAL;
2349 new = make_interval ();
2350 new->position = 0;
2351 got = (LENGTH (i) - (start - i->position));
2352 new->total_length = length;
2353 CHECK_TOTAL_LENGTH (new);
2354 copy_properties (i, new);
2356 t = new;
2357 prevlen = got;
2358 while (got < length)
2360 i = next_interval (i);
2361 t = split_interval_right (t, prevlen);
2362 copy_properties (i, t);
2363 prevlen = LENGTH (i);
2364 got += prevlen;
2367 return balance_an_interval (new);
2370 /* Give STRING the properties of BUFFER from POSITION to LENGTH. */
2372 void
2373 copy_intervals_to_string (Lisp_Object string, struct buffer *buffer,
2374 EMACS_INT position, EMACS_INT length)
2376 INTERVAL interval_copy = copy_intervals (BUF_INTERVALS (buffer),
2377 position, length);
2378 if (NULL_INTERVAL_P (interval_copy))
2379 return;
2381 SET_INTERVAL_OBJECT (interval_copy, string);
2382 STRING_SET_INTERVALS (string, interval_copy);
2385 /* Return 1 if strings S1 and S2 have identical properties; 0 otherwise.
2386 Assume they have identical characters. */
2389 compare_string_intervals (Lisp_Object s1, Lisp_Object s2)
2391 INTERVAL i1, i2;
2392 EMACS_INT pos = 0;
2393 EMACS_INT end = SCHARS (s1);
2395 i1 = find_interval (STRING_INTERVALS (s1), 0);
2396 i2 = find_interval (STRING_INTERVALS (s2), 0);
2398 while (pos < end)
2400 /* Determine how far we can go before we reach the end of I1 or I2. */
2401 EMACS_INT len1 = (i1 != 0 ? INTERVAL_LAST_POS (i1) : end) - pos;
2402 EMACS_INT len2 = (i2 != 0 ? INTERVAL_LAST_POS (i2) : end) - pos;
2403 EMACS_INT distance = min (len1, len2);
2405 /* If we ever find a mismatch between the strings,
2406 they differ. */
2407 if (! intervals_equal (i1, i2))
2408 return 0;
2410 /* Advance POS till the end of the shorter interval,
2411 and advance one or both interval pointers for the new position. */
2412 pos += distance;
2413 if (len1 == distance)
2414 i1 = next_interval (i1);
2415 if (len2 == distance)
2416 i2 = next_interval (i2);
2418 return 1;
2421 /* Recursively adjust interval I in the current buffer
2422 for setting enable_multibyte_characters to MULTI_FLAG.
2423 The range of interval I is START ... END in characters,
2424 START_BYTE ... END_BYTE in bytes. */
2426 static void
2427 set_intervals_multibyte_1 (INTERVAL i, int multi_flag,
2428 EMACS_INT start, EMACS_INT start_byte,
2429 EMACS_INT end, EMACS_INT end_byte)
2431 /* Fix the length of this interval. */
2432 if (multi_flag)
2433 i->total_length = end - start;
2434 else
2435 i->total_length = end_byte - start_byte;
2436 CHECK_TOTAL_LENGTH (i);
2438 if (TOTAL_LENGTH (i) == 0)
2440 delete_interval (i);
2441 return;
2444 /* Recursively fix the length of the subintervals. */
2445 if (i->left)
2447 EMACS_INT left_end, left_end_byte;
2449 if (multi_flag)
2451 EMACS_INT temp;
2452 left_end_byte = start_byte + LEFT_TOTAL_LENGTH (i);
2453 left_end = BYTE_TO_CHAR (left_end_byte);
2455 temp = CHAR_TO_BYTE (left_end);
2457 /* If LEFT_END_BYTE is in the middle of a character,
2458 adjust it and LEFT_END to a char boundary. */
2459 if (left_end_byte > temp)
2461 left_end_byte = temp;
2463 if (left_end_byte < temp)
2465 left_end--;
2466 left_end_byte = CHAR_TO_BYTE (left_end);
2469 else
2471 left_end = start + LEFT_TOTAL_LENGTH (i);
2472 left_end_byte = CHAR_TO_BYTE (left_end);
2475 set_intervals_multibyte_1 (i->left, multi_flag, start, start_byte,
2476 left_end, left_end_byte);
2478 if (i->right)
2480 EMACS_INT right_start_byte, right_start;
2482 if (multi_flag)
2484 EMACS_INT temp;
2486 right_start_byte = end_byte - RIGHT_TOTAL_LENGTH (i);
2487 right_start = BYTE_TO_CHAR (right_start_byte);
2489 /* If RIGHT_START_BYTE is in the middle of a character,
2490 adjust it and RIGHT_START to a char boundary. */
2491 temp = CHAR_TO_BYTE (right_start);
2493 if (right_start_byte < temp)
2495 right_start_byte = temp;
2497 if (right_start_byte > temp)
2499 right_start++;
2500 right_start_byte = CHAR_TO_BYTE (right_start);
2503 else
2505 right_start = end - RIGHT_TOTAL_LENGTH (i);
2506 right_start_byte = CHAR_TO_BYTE (right_start);
2509 set_intervals_multibyte_1 (i->right, multi_flag,
2510 right_start, right_start_byte,
2511 end, end_byte);
2514 /* Rounding to char boundaries can theoretically ake this interval
2515 spurious. If so, delete one child, and copy its property list
2516 to this interval. */
2517 if (LEFT_TOTAL_LENGTH (i) + RIGHT_TOTAL_LENGTH (i) >= TOTAL_LENGTH (i))
2519 if ((i)->left)
2521 (i)->plist = (i)->left->plist;
2522 (i)->left->total_length = 0;
2523 delete_interval ((i)->left);
2525 else
2527 (i)->plist = (i)->right->plist;
2528 (i)->right->total_length = 0;
2529 delete_interval ((i)->right);
2534 /* Update the intervals of the current buffer
2535 to fit the contents as multibyte (if MULTI_FLAG is 1)
2536 or to fit them as non-multibyte (if MULTI_FLAG is 0). */
2538 void
2539 set_intervals_multibyte (int multi_flag)
2541 if (BUF_INTERVALS (current_buffer))
2542 set_intervals_multibyte_1 (BUF_INTERVALS (current_buffer), multi_flag,
2543 BEG, BEG_BYTE, Z, Z_BYTE);