Auto-commit of loaddefs files.
[emacs.git] / lisp / emacs-lisp / cl-loaddefs.el
bloba2e394e3f4e6ebf43f353a671038db82014db913
1 ;;; cl-loaddefs.el --- automatically extracted autoloads
2 ;;
3 ;;; Code:
5 \f
6 ;;;### (autoloads (cl-prettyexpand cl-remprop cl--do-remf cl--set-getf
7 ;;;;;; cl-getf cl-get cl-tailp cl-list-length cl-nreconc cl-revappend
8 ;;;;;; cl-concatenate cl-subseq cl-float-limits cl-random-state-p
9 ;;;;;; cl-make-random-state cl-random cl-signum cl-rem cl-mod cl-round
10 ;;;;;; cl-truncate cl-ceiling cl-floor cl-isqrt cl-lcm cl-gcd cl--set-frame-visible-p
11 ;;;;;; cl--map-overlays cl--map-intervals cl--map-keymap-recursively
12 ;;;;;; cl-notevery cl-notany cl-every cl-some cl-mapcon cl-mapcan
13 ;;;;;; cl-mapl cl-mapc cl-maplist cl-map cl--mapcar-many cl-equalp
14 ;;;;;; cl-coerce) "cl-extra" "cl-extra.el" "7d7f65d8a05e954a919fe2555b68fb05")
15 ;;; Generated autoloads from cl-extra.el
17 (autoload 'cl-coerce "cl-extra" "\
18 Coerce OBJECT to type TYPE.
19 TYPE is a Common Lisp type specifier.
21 \(fn OBJECT TYPE)" nil nil)
23 (autoload 'cl-equalp "cl-extra" "\
24 Return t if two Lisp objects have similar structures and contents.
25 This is like `equal', except that it accepts numerically equal
26 numbers of different types (float vs. integer), and also compares
27 strings case-insensitively.
29 \(fn X Y)" nil nil)
31 (autoload 'cl--mapcar-many "cl-extra" "\
34 \(fn CL-FUNC CL-SEQS)" nil nil)
36 (autoload 'cl-map "cl-extra" "\
37 Map a FUNCTION across one or more SEQUENCEs, returning a sequence.
38 TYPE is the sequence type to return.
40 \(fn TYPE FUNCTION SEQUENCE...)" nil nil)
42 (autoload 'cl-maplist "cl-extra" "\
43 Map FUNCTION to each sublist of LIST or LISTs.
44 Like `mapcar', except applies to lists and their cdr's rather than to
45 the elements themselves.
47 \(fn FUNCTION LIST...)" nil nil)
49 (autoload 'cl-mapc "cl-extra" "\
50 Like `cl-mapcar', but does not accumulate values returned by the function.
52 \(fn FUNCTION SEQUENCE...)" nil nil)
54 (autoload 'cl-mapl "cl-extra" "\
55 Like `cl-maplist', but does not accumulate values returned by the function.
57 \(fn FUNCTION LIST...)" nil nil)
59 (autoload 'cl-mapcan "cl-extra" "\
60 Like `mapcar', but nconc's together the values returned by the function.
62 \(fn FUNCTION SEQUENCE...)" nil nil)
64 (autoload 'cl-mapcon "cl-extra" "\
65 Like `cl-maplist', but nconc's together the values returned by the function.
67 \(fn FUNCTION LIST...)" nil nil)
69 (autoload 'cl-some "cl-extra" "\
70 Return true if PREDICATE is true of any element of SEQ or SEQs.
71 If so, return the true (non-nil) value returned by PREDICATE.
73 \(fn PREDICATE SEQ...)" nil nil)
75 (autoload 'cl-every "cl-extra" "\
76 Return true if PREDICATE is true of every element of SEQ or SEQs.
78 \(fn PREDICATE SEQ...)" nil nil)
80 (autoload 'cl-notany "cl-extra" "\
81 Return true if PREDICATE is false of every element of SEQ or SEQs.
83 \(fn PREDICATE SEQ...)" nil nil)
85 (autoload 'cl-notevery "cl-extra" "\
86 Return true if PREDICATE is false of some element of SEQ or SEQs.
88 \(fn PREDICATE SEQ...)" nil nil)
90 (autoload 'cl--map-keymap-recursively "cl-extra" "\
93 \(fn CL-FUNC-REC CL-MAP &optional CL-BASE)" nil nil)
95 (autoload 'cl--map-intervals "cl-extra" "\
98 \(fn CL-FUNC &optional CL-WHAT CL-PROP CL-START CL-END)" nil nil)
100 (autoload 'cl--map-overlays "cl-extra" "\
103 \(fn CL-FUNC &optional CL-BUFFER CL-START CL-END CL-ARG)" nil nil)
105 (autoload 'cl--set-frame-visible-p "cl-extra" "\
108 \(fn FRAME VAL)" nil nil)
110 (autoload 'cl-gcd "cl-extra" "\
111 Return the greatest common divisor of the arguments.
113 \(fn &rest ARGS)" nil nil)
115 (autoload 'cl-lcm "cl-extra" "\
116 Return the least common multiple of the arguments.
118 \(fn &rest ARGS)" nil nil)
120 (autoload 'cl-isqrt "cl-extra" "\
121 Return the integer square root of the argument.
123 \(fn X)" nil nil)
125 (autoload 'cl-floor "cl-extra" "\
126 Return a list of the floor of X and the fractional part of X.
127 With two arguments, return floor and remainder of their quotient.
129 \(fn X &optional Y)" nil nil)
131 (autoload 'cl-ceiling "cl-extra" "\
132 Return a list of the ceiling of X and the fractional part of X.
133 With two arguments, return ceiling and remainder of their quotient.
135 \(fn X &optional Y)" nil nil)
137 (autoload 'cl-truncate "cl-extra" "\
138 Return a list of the integer part of X and the fractional part of X.
139 With two arguments, return truncation and remainder of their quotient.
141 \(fn X &optional Y)" nil nil)
143 (autoload 'cl-round "cl-extra" "\
144 Return a list of X rounded to the nearest integer and the remainder.
145 With two arguments, return rounding and remainder of their quotient.
147 \(fn X &optional Y)" nil nil)
149 (autoload 'cl-mod "cl-extra" "\
150 The remainder of X divided by Y, with the same sign as Y.
152 \(fn X Y)" nil nil)
154 (autoload 'cl-rem "cl-extra" "\
155 The remainder of X divided by Y, with the same sign as X.
157 \(fn X Y)" nil nil)
159 (autoload 'cl-signum "cl-extra" "\
160 Return 1 if X is positive, -1 if negative, 0 if zero.
162 \(fn X)" nil nil)
164 (autoload 'cl-random "cl-extra" "\
165 Return a random nonnegative number less than LIM, an integer or float.
166 Optional second arg STATE is a random-state object.
168 \(fn LIM &optional STATE)" nil nil)
170 (autoload 'cl-make-random-state "cl-extra" "\
171 Return a copy of random-state STATE, or of the internal state if omitted.
172 If STATE is t, return a new state object seeded from the time of day.
174 \(fn &optional STATE)" nil nil)
176 (autoload 'cl-random-state-p "cl-extra" "\
177 Return t if OBJECT is a random-state object.
179 \(fn OBJECT)" nil nil)
181 (autoload 'cl-float-limits "cl-extra" "\
182 Initialize the Common Lisp floating-point parameters.
183 This sets the values of: `cl-most-positive-float', `cl-most-negative-float',
184 `cl-least-positive-float', `cl-least-negative-float', `cl-float-epsilon',
185 `cl-float-negative-epsilon', `cl-least-positive-normalized-float', and
186 `cl-least-negative-normalized-float'.
188 \(fn)" nil nil)
190 (autoload 'cl-subseq "cl-extra" "\
191 Return the subsequence of SEQ from START to END.
192 If END is omitted, it defaults to the length of the sequence.
193 If START or END is negative, it counts from the end.
195 \(fn SEQ START &optional END)" nil nil)
197 (autoload 'cl-concatenate "cl-extra" "\
198 Concatenate, into a sequence of type TYPE, the argument SEQUENCEs.
200 \(fn TYPE SEQUENCE...)" nil nil)
202 (autoload 'cl-revappend "cl-extra" "\
203 Equivalent to (append (reverse X) Y).
205 \(fn X Y)" nil nil)
207 (autoload 'cl-nreconc "cl-extra" "\
208 Equivalent to (nconc (nreverse X) Y).
210 \(fn X Y)" nil nil)
212 (autoload 'cl-list-length "cl-extra" "\
213 Return the length of list X. Return nil if list is circular.
215 \(fn X)" nil nil)
217 (autoload 'cl-tailp "cl-extra" "\
218 Return true if SUBLIST is a tail of LIST.
220 \(fn SUBLIST LIST)" nil nil)
222 (autoload 'cl-get "cl-extra" "\
223 Return the value of SYMBOL's PROPNAME property, or DEFAULT if none.
225 \(fn SYMBOL PROPNAME &optional DEFAULT)" nil nil)
227 (put 'cl-get 'compiler-macro #'cl--compiler-macro-get)
229 (autoload 'cl-getf "cl-extra" "\
230 Search PROPLIST for property PROPNAME; return its value or DEFAULT.
231 PROPLIST is a list of the sort returned by `symbol-plist'.
233 \(fn PROPLIST PROPNAME &optional DEFAULT)" nil nil)
235 (autoload 'cl--set-getf "cl-extra" "\
238 \(fn PLIST TAG VAL)" nil nil)
240 (autoload 'cl--do-remf "cl-extra" "\
243 \(fn PLIST TAG)" nil nil)
245 (autoload 'cl-remprop "cl-extra" "\
246 Remove from SYMBOL's plist the property PROPNAME and its value.
248 \(fn SYMBOL PROPNAME)" nil nil)
250 (autoload 'cl-prettyexpand "cl-extra" "\
253 \(fn FORM &optional FULL)" nil nil)
255 ;;;***
257 ;;;### (autoloads (cl--compiler-macro-adjoin cl-defsubst cl-compiler-macroexpand
258 ;;;;;; cl-define-compiler-macro cl-assert cl-check-type cl-typep
259 ;;;;;; cl-deftype cl-defstruct cl-callf2 cl-callf cl-letf* cl-letf
260 ;;;;;; cl-rotatef cl-shiftf cl-remf cl-psetf cl-declare cl-the cl-locally
261 ;;;;;; cl-multiple-value-setq cl-multiple-value-bind cl-symbol-macrolet
262 ;;;;;; cl-macrolet cl-labels cl-flet* cl-flet cl-progv cl-psetq
263 ;;;;;; cl-do-all-symbols cl-do-symbols cl-dotimes cl-dolist cl-do*
264 ;;;;;; cl-do cl-loop cl-return-from cl-return cl-block cl-etypecase
265 ;;;;;; cl-typecase cl-ecase cl-case cl-load-time-value cl-eval-when
266 ;;;;;; cl-destructuring-bind cl-function cl-defmacro cl-defun cl-gentemp
267 ;;;;;; cl-gensym cl--compiler-macro-cXXr cl--compiler-macro-list*)
268 ;;;;;; "cl-macs" "cl-macs.el" "57cf89149db1e8ea6bc1582713980cf8")
269 ;;; Generated autoloads from cl-macs.el
271 (autoload 'cl--compiler-macro-list* "cl-macs" "\
274 \(fn FORM ARG &rest OTHERS)" nil nil)
276 (autoload 'cl--compiler-macro-cXXr "cl-macs" "\
279 \(fn FORM X)" nil nil)
281 (autoload 'cl-gensym "cl-macs" "\
282 Generate a new uninterned symbol.
283 The name is made by appending a number to PREFIX, default \"G\".
285 \(fn &optional PREFIX)" nil nil)
287 (autoload 'cl-gentemp "cl-macs" "\
288 Generate a new interned symbol with a unique name.
289 The name is made by appending a number to PREFIX, default \"G\".
291 \(fn &optional PREFIX)" nil nil)
293 (autoload 'cl-defun "cl-macs" "\
294 Define NAME as a function.
295 Like normal `defun', except ARGLIST allows full Common Lisp conventions,
296 and BODY is implicitly surrounded by (cl-block NAME ...).
298 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil t)
300 (put 'cl-defun 'doc-string-elt '3)
302 (put 'cl-defun 'lisp-indent-function '2)
304 (autoload 'cl-defmacro "cl-macs" "\
305 Define NAME as a macro.
306 Like normal `defmacro', except ARGLIST allows full Common Lisp conventions,
307 and BODY is implicitly surrounded by (cl-block NAME ...).
309 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil t)
311 (put 'cl-defmacro 'doc-string-elt '3)
313 (put 'cl-defmacro 'lisp-indent-function '2)
315 (autoload 'cl-function "cl-macs" "\
316 Introduce a function.
317 Like normal `function', except that if argument is a lambda form,
318 its argument list allows full Common Lisp conventions.
320 \(fn FUNC)" nil t)
322 (autoload 'cl-destructuring-bind "cl-macs" "\
325 \(fn ARGS EXPR &rest BODY)" nil t)
327 (put 'cl-destructuring-bind 'lisp-indent-function '2)
329 (autoload 'cl-eval-when "cl-macs" "\
330 Control when BODY is evaluated.
331 If `compile' is in WHEN, BODY is evaluated when compiled at top-level.
332 If `load' is in WHEN, BODY is evaluated when loaded after top-level compile.
333 If `eval' is in WHEN, BODY is evaluated when interpreted or at non-top-level.
335 \(fn (WHEN...) BODY...)" nil t)
337 (put 'cl-eval-when 'lisp-indent-function '1)
339 (autoload 'cl-load-time-value "cl-macs" "\
340 Like `progn', but evaluates the body at load time.
341 The result of the body appears to the compiler as a quoted constant.
343 \(fn FORM &optional READ-ONLY)" nil t)
345 (autoload 'cl-case "cl-macs" "\
346 Eval EXPR and choose among clauses on that value.
347 Each clause looks like (KEYLIST BODY...). EXPR is evaluated and compared
348 against each key in each KEYLIST; the corresponding BODY is evaluated.
349 If no clause succeeds, cl-case returns nil. A single atom may be used in
350 place of a KEYLIST of one atom. A KEYLIST of t or `otherwise' is
351 allowed only in the final clause, and matches if no other keys match.
352 Key values are compared by `eql'.
354 \(fn EXPR (KEYLIST BODY...)...)" nil t)
356 (put 'cl-case 'lisp-indent-function '1)
358 (autoload 'cl-ecase "cl-macs" "\
359 Like `cl-case', but error if no case fits.
360 `otherwise'-clauses are not allowed.
362 \(fn EXPR (KEYLIST BODY...)...)" nil t)
364 (put 'cl-ecase 'lisp-indent-function '1)
366 (autoload 'cl-typecase "cl-macs" "\
367 Evals EXPR, chooses among clauses on that value.
368 Each clause looks like (TYPE BODY...). EXPR is evaluated and, if it
369 satisfies TYPE, the corresponding BODY is evaluated. If no clause succeeds,
370 cl-typecase returns nil. A TYPE of t or `otherwise' is allowed only in the
371 final clause, and matches if no other keys match.
373 \(fn EXPR (TYPE BODY...)...)" nil t)
375 (put 'cl-typecase 'lisp-indent-function '1)
377 (autoload 'cl-etypecase "cl-macs" "\
378 Like `cl-typecase', but error if no case fits.
379 `otherwise'-clauses are not allowed.
381 \(fn EXPR (TYPE BODY...)...)" nil t)
383 (put 'cl-etypecase 'lisp-indent-function '1)
385 (autoload 'cl-block "cl-macs" "\
386 Define a lexically-scoped block named NAME.
387 NAME may be any symbol. Code inside the BODY forms can call `cl-return-from'
388 to jump prematurely out of the block. This differs from `catch' and `throw'
389 in two respects: First, the NAME is an unevaluated symbol rather than a
390 quoted symbol or other form; and second, NAME is lexically rather than
391 dynamically scoped: Only references to it within BODY will work. These
392 references may appear inside macro expansions, but not inside functions
393 called from BODY.
395 \(fn NAME &rest BODY)" nil t)
397 (put 'cl-block 'lisp-indent-function '1)
399 (autoload 'cl-return "cl-macs" "\
400 Return from the block named nil.
401 This is equivalent to `(cl-return-from nil RESULT)'.
403 \(fn &optional RESULT)" nil t)
405 (autoload 'cl-return-from "cl-macs" "\
406 Return from the block named NAME.
407 This jumps out to the innermost enclosing `(cl-block NAME ...)' form,
408 returning RESULT from that form (or nil if RESULT is omitted).
409 This is compatible with Common Lisp, but note that `defun' and
410 `defmacro' do not create implicit blocks as they do in Common Lisp.
412 \(fn NAME &optional RESULT)" nil t)
414 (put 'cl-return-from 'lisp-indent-function '1)
416 (autoload 'cl-loop "cl-macs" "\
417 The Common Lisp `cl-loop' macro.
418 Valid clauses are:
419 for VAR from/upfrom/downfrom NUM to/upto/downto/above/below NUM by NUM,
420 for VAR in LIST by FUNC, for VAR on LIST by FUNC, for VAR = INIT then EXPR,
421 for VAR across ARRAY, repeat NUM, with VAR = INIT, while COND, until COND,
422 always COND, never COND, thereis COND, collect EXPR into VAR,
423 append EXPR into VAR, nconc EXPR into VAR, sum EXPR into VAR,
424 count EXPR into VAR, maximize EXPR into VAR, minimize EXPR into VAR,
425 if COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
426 unless COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
427 do EXPRS..., initially EXPRS..., finally EXPRS..., return EXPR,
428 finally return EXPR, named NAME.
430 \(fn CLAUSE...)" nil t)
432 (autoload 'cl-do "cl-macs" "\
433 The Common Lisp `cl-do' loop.
435 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil t)
437 (put 'cl-do 'lisp-indent-function '2)
439 (autoload 'cl-do* "cl-macs" "\
440 The Common Lisp `cl-do*' loop.
442 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil t)
444 (put 'cl-do* 'lisp-indent-function '2)
446 (autoload 'cl-dolist "cl-macs" "\
447 Loop over a list.
448 Evaluate BODY with VAR bound to each `car' from LIST, in turn.
449 Then evaluate RESULT to get return value, default nil.
450 An implicit nil block is established around the loop.
452 \(fn (VAR LIST [RESULT]) BODY...)" nil t)
454 (put 'cl-dolist 'lisp-indent-function '1)
456 (autoload 'cl-dotimes "cl-macs" "\
457 Loop a certain number of times.
458 Evaluate BODY with VAR bound to successive integers from 0, inclusive,
459 to COUNT, exclusive. Then evaluate RESULT to get return value, default
460 nil.
462 \(fn (VAR COUNT [RESULT]) BODY...)" nil t)
464 (put 'cl-dotimes 'lisp-indent-function '1)
466 (autoload 'cl-do-symbols "cl-macs" "\
467 Loop over all symbols.
468 Evaluate BODY with VAR bound to each interned symbol, or to each symbol
469 from OBARRAY.
471 \(fn (VAR [OBARRAY [RESULT]]) BODY...)" nil t)
473 (put 'cl-do-symbols 'lisp-indent-function '1)
475 (autoload 'cl-do-all-symbols "cl-macs" "\
476 Like `cl-do-symbols', but use the default obarray.
478 \(fn (VAR [RESULT]) BODY...)" nil t)
480 (put 'cl-do-all-symbols 'lisp-indent-function '1)
482 (autoload 'cl-psetq "cl-macs" "\
483 Set SYMs to the values VALs in parallel.
484 This is like `setq', except that all VAL forms are evaluated (in order)
485 before assigning any symbols SYM to the corresponding values.
487 \(fn SYM VAL SYM VAL ...)" nil t)
489 (autoload 'cl-progv "cl-macs" "\
490 Bind SYMBOLS to VALUES dynamically in BODY.
491 The forms SYMBOLS and VALUES are evaluated, and must evaluate to lists.
492 Each symbol in the first list is bound to the corresponding value in the
493 second list (or to nil if VALUES is shorter than SYMBOLS); then the
494 BODY forms are executed and their result is returned. This is much like
495 a `let' form, except that the list of symbols can be computed at run-time.
497 \(fn SYMBOLS VALUES &rest BODY)" nil t)
499 (put 'cl-progv 'lisp-indent-function '2)
501 (autoload 'cl-flet "cl-macs" "\
502 Make temporary function definitions.
503 Like `cl-labels' but the definitions are not recursive.
505 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil t)
507 (put 'cl-flet 'lisp-indent-function '1)
509 (autoload 'cl-flet* "cl-macs" "\
510 Make temporary function definitions.
511 Like `cl-flet' but the definitions can refer to previous ones.
513 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil t)
515 (put 'cl-flet* 'lisp-indent-function '1)
517 (autoload 'cl-labels "cl-macs" "\
518 Make temporary function bindings.
519 The bindings can be recursive and the scoping is lexical, but capturing them
520 in closures will only work if `lexical-binding' is in use.
522 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil t)
524 (put 'cl-labels 'lisp-indent-function '1)
526 (autoload 'cl-macrolet "cl-macs" "\
527 Make temporary macro definitions.
528 This is like `cl-flet', but for macros instead of functions.
530 \(fn ((NAME ARGLIST BODY...) ...) FORM...)" nil t)
532 (put 'cl-macrolet 'lisp-indent-function '1)
534 (autoload 'cl-symbol-macrolet "cl-macs" "\
535 Make symbol macro definitions.
536 Within the body FORMs, references to the variable NAME will be replaced
537 by EXPANSION, and (setq NAME ...) will act like (setf EXPANSION ...).
539 \(fn ((NAME EXPANSION) ...) FORM...)" nil t)
541 (put 'cl-symbol-macrolet 'lisp-indent-function '1)
543 (autoload 'cl-multiple-value-bind "cl-macs" "\
544 Collect multiple return values.
545 FORM must return a list; the BODY is then executed with the first N elements
546 of this list bound (`let'-style) to each of the symbols SYM in turn. This
547 is analogous to the Common Lisp `cl-multiple-value-bind' macro, using lists to
548 simulate true multiple return values. For compatibility, (cl-values A B C) is
549 a synonym for (list A B C).
551 \(fn (SYM...) FORM BODY)" nil t)
553 (put 'cl-multiple-value-bind 'lisp-indent-function '2)
555 (autoload 'cl-multiple-value-setq "cl-macs" "\
556 Collect multiple return values.
557 FORM must return a list; the first N elements of this list are stored in
558 each of the symbols SYM in turn. This is analogous to the Common Lisp
559 `cl-multiple-value-setq' macro, using lists to simulate true multiple return
560 values. For compatibility, (cl-values A B C) is a synonym for (list A B C).
562 \(fn (SYM...) FORM)" nil t)
564 (put 'cl-multiple-value-setq 'lisp-indent-function '1)
566 (autoload 'cl-locally "cl-macs" "\
569 \(fn &rest BODY)" nil t)
571 (autoload 'cl-the "cl-macs" "\
574 \(fn TYPE FORM)" nil t)
576 (put 'cl-the 'lisp-indent-function '1)
578 (autoload 'cl-declare "cl-macs" "\
579 Declare SPECS about the current function while compiling.
580 For instance
582 (cl-declare (warn 0))
584 will turn off byte-compile warnings in the function.
585 See Info node `(cl)Declarations' for details.
587 \(fn &rest SPECS)" nil t)
589 (autoload 'cl-psetf "cl-macs" "\
590 Set PLACEs to the values VALs in parallel.
591 This is like `setf', except that all VAL forms are evaluated (in order)
592 before assigning any PLACEs to the corresponding values.
594 \(fn PLACE VAL PLACE VAL ...)" nil t)
596 (autoload 'cl-remf "cl-macs" "\
597 Remove TAG from property list PLACE.
598 PLACE may be a symbol, or any generalized variable allowed by `setf'.
599 The form returns true if TAG was found and removed, nil otherwise.
601 \(fn PLACE TAG)" nil t)
603 (autoload 'cl-shiftf "cl-macs" "\
604 Shift left among PLACEs.
605 Example: (cl-shiftf A B C) sets A to B, B to C, and returns the old A.
606 Each PLACE may be a symbol, or any generalized variable allowed by `setf'.
608 \(fn PLACE... VAL)" nil t)
610 (autoload 'cl-rotatef "cl-macs" "\
611 Rotate left among PLACEs.
612 Example: (cl-rotatef A B C) sets A to B, B to C, and C to A. It returns nil.
613 Each PLACE may be a symbol, or any generalized variable allowed by `setf'.
615 \(fn PLACE...)" nil t)
617 (autoload 'cl-letf "cl-macs" "\
618 Temporarily bind to PLACEs.
619 This is the analogue of `let', but with generalized variables (in the
620 sense of `setf') for the PLACEs. Each PLACE is set to the corresponding
621 VALUE, then the BODY forms are executed. On exit, either normally or
622 because of a `throw' or error, the PLACEs are set back to their original
623 values. Note that this macro is *not* available in Common Lisp.
624 As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
625 the PLACE is not modified before executing BODY.
627 \(fn ((PLACE VALUE) ...) BODY...)" nil t)
629 (put 'cl-letf 'lisp-indent-function '1)
631 (autoload 'cl-letf* "cl-macs" "\
632 Temporarily bind to PLACEs.
633 Like `cl-letf' but where the bindings are performed one at a time,
634 rather than all at the end (i.e. like `let*' rather than like `let').
636 \(fn BINDINGS &rest BODY)" nil t)
638 (put 'cl-letf* 'lisp-indent-function '1)
640 (autoload 'cl-callf "cl-macs" "\
641 Set PLACE to (FUNC PLACE ARGS...).
642 FUNC should be an unquoted function name. PLACE may be a symbol,
643 or any generalized variable allowed by `setf'.
645 \(fn FUNC PLACE &rest ARGS)" nil t)
647 (put 'cl-callf 'lisp-indent-function '2)
649 (autoload 'cl-callf2 "cl-macs" "\
650 Set PLACE to (FUNC ARG1 PLACE ARGS...).
651 Like `cl-callf', but PLACE is the second argument of FUNC, not the first.
653 \(fn FUNC ARG1 PLACE ARGS...)" nil t)
655 (put 'cl-callf2 'lisp-indent-function '3)
657 (autoload 'cl-defstruct "cl-macs" "\
658 Define a struct type.
659 This macro defines a new data type called NAME that stores data
660 in SLOTs. It defines a `make-NAME' constructor, a `copy-NAME'
661 copier, a `NAME-p' predicate, and slot accessors named `NAME-SLOT'.
662 You can use the accessors to set the corresponding slots, via `setf'.
664 NAME may instead take the form (NAME OPTIONS...), where each
665 OPTION is either a single keyword or (KEYWORD VALUE) where
666 KEYWORD can be one of :conc-name, :constructor, :copier, :predicate,
667 :type, :named, :initial-offset, :print-function, or :include.
669 Each SLOT may instead take the form (SLOT SLOT-OPTS...), where
670 SLOT-OPTS are keyword-value pairs for that slot. Currently, only
671 one keyword is supported, `:read-only'. If this has a non-nil
672 value, that slot cannot be set via `setf'.
674 \(fn NAME SLOTS...)" nil t)
676 (put 'cl-defstruct 'doc-string-elt '2)
678 (put 'cl-defstruct 'lisp-indent-function '1)
680 (autoload 'cl-deftype "cl-macs" "\
681 Define NAME as a new data type.
682 The type name can then be used in `cl-typecase', `cl-check-type', etc.
684 \(fn NAME ARGLIST &rest BODY)" nil t)
686 (put 'cl-deftype 'doc-string-elt '3)
688 (autoload 'cl-typep "cl-macs" "\
689 Check that OBJECT is of type TYPE.
690 TYPE is a Common Lisp-style type specifier.
692 \(fn OBJECT TYPE)" nil nil)
694 (autoload 'cl-check-type "cl-macs" "\
695 Verify that FORM is of type TYPE; signal an error if not.
696 STRING is an optional description of the desired type.
698 \(fn FORM TYPE &optional STRING)" nil t)
700 (autoload 'cl-assert "cl-macs" "\
701 Verify that FORM returns non-nil; signal an error if not.
702 Second arg SHOW-ARGS means to include arguments of FORM in message.
703 Other args STRING and ARGS... are arguments to be passed to `error'.
704 They are not evaluated unless the assertion fails. If STRING is
705 omitted, a default message listing FORM itself is used.
707 \(fn FORM &optional SHOW-ARGS STRING &rest ARGS)" nil t)
709 (autoload 'cl-define-compiler-macro "cl-macs" "\
710 Define a compiler-only macro.
711 This is like `defmacro', but macro expansion occurs only if the call to
712 FUNC is compiled (i.e., not interpreted). Compiler macros should be used
713 for optimizing the way calls to FUNC are compiled; the form returned by
714 BODY should do the same thing as a call to the normal function called
715 FUNC, though possibly more efficiently. Note that, like regular macros,
716 compiler macros are expanded repeatedly until no further expansions are
717 possible. Unlike regular macros, BODY can decide to \"punt\" and leave the
718 original function call alone by declaring an initial `&whole foo' parameter
719 and then returning foo.
721 \(fn FUNC ARGS &rest BODY)" nil t)
723 (autoload 'cl-compiler-macroexpand "cl-macs" "\
726 \(fn FORM)" nil nil)
728 (autoload 'cl-defsubst "cl-macs" "\
729 Define NAME as a function.
730 Like `defun', except the function is automatically declared `inline',
731 ARGLIST allows full Common Lisp conventions, and BODY is implicitly
732 surrounded by (cl-block NAME ...).
734 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil t)
736 (put 'cl-defsubst 'lisp-indent-function '2)
738 (autoload 'cl--compiler-macro-adjoin "cl-macs" "\
741 \(fn FORM A LIST &rest KEYS)" nil nil)
743 ;;;***
745 ;;;### (autoloads (cl-tree-equal cl-nsublis cl-sublis cl-nsubst-if-not
746 ;;;;;; cl-nsubst-if cl-nsubst cl-subst-if-not cl-subst-if cl-subsetp
747 ;;;;;; cl-nset-exclusive-or cl-set-exclusive-or cl-nset-difference
748 ;;;;;; cl-set-difference cl-nintersection cl-intersection cl-nunion
749 ;;;;;; cl-union cl-rassoc-if-not cl-rassoc-if cl-rassoc cl-assoc-if-not
750 ;;;;;; cl-assoc-if cl-assoc cl--adjoin cl-member-if-not cl-member-if
751 ;;;;;; cl-member cl-merge cl-stable-sort cl-sort cl-search cl-mismatch
752 ;;;;;; cl-count-if-not cl-count-if cl-count cl-position-if-not cl-position-if
753 ;;;;;; cl-position cl-find-if-not cl-find-if cl-find cl-nsubstitute-if-not
754 ;;;;;; cl-nsubstitute-if cl-nsubstitute cl-substitute-if-not cl-substitute-if
755 ;;;;;; cl-substitute cl-delete-duplicates cl-remove-duplicates cl-delete-if-not
756 ;;;;;; cl-delete-if cl-delete cl-remove-if-not cl-remove-if cl-remove
757 ;;;;;; cl-replace cl-fill cl-reduce) "cl-seq" "cl-seq.el" "4c1e1191e82dc8d5449a5ec4d59efc10")
758 ;;; Generated autoloads from cl-seq.el
760 (autoload 'cl-reduce "cl-seq" "\
761 Reduce two-argument FUNCTION across SEQ.
763 Keywords supported: :start :end :from-end :initial-value :key
765 \(fn FUNCTION SEQ [KEYWORD VALUE]...)" nil nil)
767 (autoload 'cl-fill "cl-seq" "\
768 Fill the elements of SEQ with ITEM.
770 Keywords supported: :start :end
772 \(fn SEQ ITEM [KEYWORD VALUE]...)" nil nil)
774 (autoload 'cl-replace "cl-seq" "\
775 Replace the elements of SEQ1 with the elements of SEQ2.
776 SEQ1 is destructively modified, then returned.
778 Keywords supported: :start1 :end1 :start2 :end2
780 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
782 (autoload 'cl-remove "cl-seq" "\
783 Remove all occurrences of ITEM in SEQ.
784 This is a non-destructive function; it makes a copy of SEQ if necessary
785 to avoid corrupting the original SEQ.
787 Keywords supported: :test :test-not :key :count :start :end :from-end
789 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
791 (autoload 'cl-remove-if "cl-seq" "\
792 Remove all items satisfying PREDICATE in SEQ.
793 This is a non-destructive function; it makes a copy of SEQ if necessary
794 to avoid corrupting the original SEQ.
796 Keywords supported: :key :count :start :end :from-end
798 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
800 (autoload 'cl-remove-if-not "cl-seq" "\
801 Remove all items not satisfying PREDICATE in SEQ.
802 This is a non-destructive function; it makes a copy of SEQ if necessary
803 to avoid corrupting the original SEQ.
805 Keywords supported: :key :count :start :end :from-end
807 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
809 (autoload 'cl-delete "cl-seq" "\
810 Remove all occurrences of ITEM in SEQ.
811 This is a destructive function; it reuses the storage of SEQ whenever possible.
813 Keywords supported: :test :test-not :key :count :start :end :from-end
815 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
817 (autoload 'cl-delete-if "cl-seq" "\
818 Remove all items satisfying PREDICATE in SEQ.
819 This is a destructive function; it reuses the storage of SEQ whenever possible.
821 Keywords supported: :key :count :start :end :from-end
823 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
825 (autoload 'cl-delete-if-not "cl-seq" "\
826 Remove all items not satisfying PREDICATE in SEQ.
827 This is a destructive function; it reuses the storage of SEQ whenever possible.
829 Keywords supported: :key :count :start :end :from-end
831 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
833 (autoload 'cl-remove-duplicates "cl-seq" "\
834 Return a copy of SEQ with all duplicate elements removed.
836 Keywords supported: :test :test-not :key :start :end :from-end
838 \(fn SEQ [KEYWORD VALUE]...)" nil nil)
840 (autoload 'cl-delete-duplicates "cl-seq" "\
841 Remove all duplicate elements from SEQ (destructively).
843 Keywords supported: :test :test-not :key :start :end :from-end
845 \(fn SEQ [KEYWORD VALUE]...)" nil nil)
847 (autoload 'cl-substitute "cl-seq" "\
848 Substitute NEW for OLD in SEQ.
849 This is a non-destructive function; it makes a copy of SEQ if necessary
850 to avoid corrupting the original SEQ.
852 Keywords supported: :test :test-not :key :count :start :end :from-end
854 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
856 (autoload 'cl-substitute-if "cl-seq" "\
857 Substitute NEW for all items satisfying PREDICATE in SEQ.
858 This is a non-destructive function; it makes a copy of SEQ if necessary
859 to avoid corrupting the original SEQ.
861 Keywords supported: :key :count :start :end :from-end
863 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
865 (autoload 'cl-substitute-if-not "cl-seq" "\
866 Substitute NEW for all items not satisfying PREDICATE in SEQ.
867 This is a non-destructive function; it makes a copy of SEQ if necessary
868 to avoid corrupting the original SEQ.
870 Keywords supported: :key :count :start :end :from-end
872 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
874 (autoload 'cl-nsubstitute "cl-seq" "\
875 Substitute NEW for OLD in SEQ.
876 This is a destructive function; it reuses the storage of SEQ whenever possible.
878 Keywords supported: :test :test-not :key :count :start :end :from-end
880 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
882 (autoload 'cl-nsubstitute-if "cl-seq" "\
883 Substitute NEW for all items satisfying PREDICATE in SEQ.
884 This is a destructive function; it reuses the storage of SEQ whenever possible.
886 Keywords supported: :key :count :start :end :from-end
888 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
890 (autoload 'cl-nsubstitute-if-not "cl-seq" "\
891 Substitute NEW for all items not satisfying PREDICATE in SEQ.
892 This is a destructive function; it reuses the storage of SEQ whenever possible.
894 Keywords supported: :key :count :start :end :from-end
896 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
898 (autoload 'cl-find "cl-seq" "\
899 Find the first occurrence of ITEM in SEQ.
900 Return the matching ITEM, or nil if not found.
902 Keywords supported: :test :test-not :key :start :end :from-end
904 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
906 (autoload 'cl-find-if "cl-seq" "\
907 Find the first item satisfying PREDICATE in SEQ.
908 Return the matching item, or nil if not found.
910 Keywords supported: :key :start :end :from-end
912 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
914 (autoload 'cl-find-if-not "cl-seq" "\
915 Find the first item not satisfying PREDICATE in SEQ.
916 Return the matching item, or nil if not found.
918 Keywords supported: :key :start :end :from-end
920 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
922 (autoload 'cl-position "cl-seq" "\
923 Find the first occurrence of ITEM in SEQ.
924 Return the index of the matching item, or nil if not found.
926 Keywords supported: :test :test-not :key :start :end :from-end
928 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
930 (autoload 'cl-position-if "cl-seq" "\
931 Find the first item satisfying PREDICATE in SEQ.
932 Return the index of the matching item, or nil if not found.
934 Keywords supported: :key :start :end :from-end
936 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
938 (autoload 'cl-position-if-not "cl-seq" "\
939 Find the first item not satisfying PREDICATE in SEQ.
940 Return the index of the matching item, or nil if not found.
942 Keywords supported: :key :start :end :from-end
944 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
946 (autoload 'cl-count "cl-seq" "\
947 Count the number of occurrences of ITEM in SEQ.
949 Keywords supported: :test :test-not :key :start :end
951 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
953 (autoload 'cl-count-if "cl-seq" "\
954 Count the number of items satisfying PREDICATE in SEQ.
956 Keywords supported: :key :start :end
958 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
960 (autoload 'cl-count-if-not "cl-seq" "\
961 Count the number of items not satisfying PREDICATE in SEQ.
963 Keywords supported: :key :start :end
965 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
967 (autoload 'cl-mismatch "cl-seq" "\
968 Compare SEQ1 with SEQ2, return index of first mismatching element.
969 Return nil if the sequences match. If one sequence is a prefix of the
970 other, the return value indicates the end of the shorter sequence.
972 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
974 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
976 (autoload 'cl-search "cl-seq" "\
977 Search for SEQ1 as a subsequence of SEQ2.
978 Return the index of the leftmost element of the first match found;
979 return nil if there are no matches.
981 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
983 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
985 (autoload 'cl-sort "cl-seq" "\
986 Sort the argument SEQ according to PREDICATE.
987 This is a destructive function; it reuses the storage of SEQ if possible.
989 Keywords supported: :key
991 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
993 (autoload 'cl-stable-sort "cl-seq" "\
994 Sort the argument SEQ stably according to PREDICATE.
995 This is a destructive function; it reuses the storage of SEQ if possible.
997 Keywords supported: :key
999 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
1001 (autoload 'cl-merge "cl-seq" "\
1002 Destructively merge the two sequences to produce a new sequence.
1003 TYPE is the sequence type to return, SEQ1 and SEQ2 are the two argument
1004 sequences, and PREDICATE is a `less-than' predicate on the elements.
1006 Keywords supported: :key
1008 \(fn TYPE SEQ1 SEQ2 PREDICATE [KEYWORD VALUE]...)" nil nil)
1010 (autoload 'cl-member "cl-seq" "\
1011 Find the first occurrence of ITEM in LIST.
1012 Return the sublist of LIST whose car is ITEM.
1014 Keywords supported: :test :test-not :key
1016 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1018 (put 'cl-member 'compiler-macro #'cl--compiler-macro-member)
1020 (autoload 'cl-member-if "cl-seq" "\
1021 Find the first item satisfying PREDICATE in LIST.
1022 Return the sublist of LIST whose car matches.
1024 Keywords supported: :key
1026 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1028 (autoload 'cl-member-if-not "cl-seq" "\
1029 Find the first item not satisfying PREDICATE in LIST.
1030 Return the sublist of LIST whose car matches.
1032 Keywords supported: :key
1034 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1036 (autoload 'cl--adjoin "cl-seq" "\
1039 \(fn CL-ITEM CL-LIST &rest CL-KEYS)" nil nil)
1041 (autoload 'cl-assoc "cl-seq" "\
1042 Find the first item whose car matches ITEM in LIST.
1044 Keywords supported: :test :test-not :key
1046 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1048 (put 'cl-assoc 'compiler-macro #'cl--compiler-macro-assoc)
1050 (autoload 'cl-assoc-if "cl-seq" "\
1051 Find the first item whose car satisfies PREDICATE in LIST.
1053 Keywords supported: :key
1055 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1057 (autoload 'cl-assoc-if-not "cl-seq" "\
1058 Find the first item whose car does not satisfy PREDICATE in LIST.
1060 Keywords supported: :key
1062 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1064 (autoload 'cl-rassoc "cl-seq" "\
1065 Find the first item whose cdr matches ITEM in LIST.
1067 Keywords supported: :test :test-not :key
1069 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1071 (autoload 'cl-rassoc-if "cl-seq" "\
1072 Find the first item whose cdr satisfies PREDICATE in LIST.
1074 Keywords supported: :key
1076 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1078 (autoload 'cl-rassoc-if-not "cl-seq" "\
1079 Find the first item whose cdr does not satisfy PREDICATE in LIST.
1081 Keywords supported: :key
1083 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1085 (autoload 'cl-union "cl-seq" "\
1086 Combine LIST1 and LIST2 using a set-union operation.
1087 The resulting list contains all items that appear in either LIST1 or LIST2.
1088 This is a non-destructive function; it makes a copy of the data if necessary
1089 to avoid corrupting the original LIST1 and LIST2.
1091 Keywords supported: :test :test-not :key
1093 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1095 (autoload 'cl-nunion "cl-seq" "\
1096 Combine LIST1 and LIST2 using a set-union operation.
1097 The resulting list contains all items that appear in either LIST1 or LIST2.
1098 This is a destructive function; it reuses the storage of LIST1 and LIST2
1099 whenever possible.
1101 Keywords supported: :test :test-not :key
1103 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1105 (autoload 'cl-intersection "cl-seq" "\
1106 Combine LIST1 and LIST2 using a set-intersection operation.
1107 The resulting list contains all items that appear in both LIST1 and LIST2.
1108 This is a non-destructive function; it makes a copy of the data if necessary
1109 to avoid corrupting the original LIST1 and LIST2.
1111 Keywords supported: :test :test-not :key
1113 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1115 (autoload 'cl-nintersection "cl-seq" "\
1116 Combine LIST1 and LIST2 using a set-intersection operation.
1117 The resulting list contains all items that appear in both LIST1 and LIST2.
1118 This is a destructive function; it reuses the storage of LIST1 and LIST2
1119 whenever possible.
1121 Keywords supported: :test :test-not :key
1123 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1125 (autoload 'cl-set-difference "cl-seq" "\
1126 Combine LIST1 and LIST2 using a set-difference operation.
1127 The resulting list contains all items that appear in LIST1 but not LIST2.
1128 This is a non-destructive function; it makes a copy of the data if necessary
1129 to avoid corrupting the original LIST1 and LIST2.
1131 Keywords supported: :test :test-not :key
1133 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1135 (autoload 'cl-nset-difference "cl-seq" "\
1136 Combine LIST1 and LIST2 using a set-difference operation.
1137 The resulting list contains all items that appear in LIST1 but not LIST2.
1138 This is a destructive function; it reuses the storage of LIST1 and LIST2
1139 whenever possible.
1141 Keywords supported: :test :test-not :key
1143 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1145 (autoload 'cl-set-exclusive-or "cl-seq" "\
1146 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1147 The resulting list contains all items appearing in exactly one of LIST1, LIST2.
1148 This is a non-destructive function; it makes a copy of the data if necessary
1149 to avoid corrupting the original LIST1 and LIST2.
1151 Keywords supported: :test :test-not :key
1153 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1155 (autoload 'cl-nset-exclusive-or "cl-seq" "\
1156 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1157 The resulting list contains all items appearing in exactly one of LIST1, LIST2.
1158 This is a destructive function; it reuses the storage of LIST1 and LIST2
1159 whenever possible.
1161 Keywords supported: :test :test-not :key
1163 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1165 (autoload 'cl-subsetp "cl-seq" "\
1166 Return true if LIST1 is a subset of LIST2.
1167 I.e., if every element of LIST1 also appears in LIST2.
1169 Keywords supported: :test :test-not :key
1171 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1173 (autoload 'cl-subst-if "cl-seq" "\
1174 Substitute NEW for elements matching PREDICATE in TREE (non-destructively).
1175 Return a copy of TREE with all matching elements replaced by NEW.
1177 Keywords supported: :key
1179 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1181 (autoload 'cl-subst-if-not "cl-seq" "\
1182 Substitute NEW for elts not matching PREDICATE in TREE (non-destructively).
1183 Return a copy of TREE with all non-matching elements replaced by NEW.
1185 Keywords supported: :key
1187 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1189 (autoload 'cl-nsubst "cl-seq" "\
1190 Substitute NEW for OLD everywhere in TREE (destructively).
1191 Any element of TREE which is `eql' to OLD is changed to NEW (via a call
1192 to `setcar').
1194 Keywords supported: :test :test-not :key
1196 \(fn NEW OLD TREE [KEYWORD VALUE]...)" nil nil)
1198 (autoload 'cl-nsubst-if "cl-seq" "\
1199 Substitute NEW for elements matching PREDICATE in TREE (destructively).
1200 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1202 Keywords supported: :key
1204 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1206 (autoload 'cl-nsubst-if-not "cl-seq" "\
1207 Substitute NEW for elements not matching PREDICATE in TREE (destructively).
1208 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1210 Keywords supported: :key
1212 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1214 (autoload 'cl-sublis "cl-seq" "\
1215 Perform substitutions indicated by ALIST in TREE (non-destructively).
1216 Return a copy of TREE with all matching elements replaced.
1218 Keywords supported: :test :test-not :key
1220 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1222 (autoload 'cl-nsublis "cl-seq" "\
1223 Perform substitutions indicated by ALIST in TREE (destructively).
1224 Any matching element of TREE is changed via a call to `setcar'.
1226 Keywords supported: :test :test-not :key
1228 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1230 (autoload 'cl-tree-equal "cl-seq" "\
1231 Return t if trees TREE1 and TREE2 have `eql' leaves.
1232 Atoms are compared by `eql'; cons cells are compared recursively.
1234 Keywords supported: :test :test-not :key
1236 \(fn TREE1 TREE2 [KEYWORD VALUE]...)" nil nil)
1238 ;;;***
1240 ;; Local Variables:
1241 ;; version-control: never
1242 ;; no-byte-compile: t
1243 ;; no-update-autoloads: t
1244 ;; coding: utf-8
1245 ;; End:
1246 ;;; cl-loaddefs.el ends here