Merge from trunk
[emacs.git] / src / alloc.c
blob81a17b5c13b2c63bb5d70b431fcc857b15a5a45c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2011
3 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20 #include <config.h>
21 #include <stdio.h>
22 #include <limits.h> /* For CHAR_BIT. */
23 #include <setjmp.h>
25 #ifdef ALLOC_DEBUG
26 #undef INLINE
27 #endif
29 #include <signal.h>
31 #ifdef HAVE_GTK_AND_PTHREAD
32 #include <pthread.h>
33 #endif
35 /* This file is part of the core Lisp implementation, and thus must
36 deal with the real data structures. If the Lisp implementation is
37 replaced, this file likely will not be used. */
39 #undef HIDE_LISP_IMPLEMENTATION
40 #include "lisp.h"
41 #include "process.h"
42 #include "intervals.h"
43 #include "puresize.h"
44 #include "buffer.h"
45 #include "window.h"
46 #include "keyboard.h"
47 #include "frame.h"
48 #include "blockinput.h"
49 #include "character.h"
50 #include "syssignal.h"
51 #include "termhooks.h" /* For struct terminal. */
52 #include <setjmp.h>
54 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
55 memory. Can do this only if using gmalloc.c. */
57 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
58 #undef GC_MALLOC_CHECK
59 #endif
61 #include <unistd.h>
62 #ifndef HAVE_UNISTD_H
63 extern POINTER_TYPE *sbrk ();
64 #endif
66 #include <fcntl.h>
68 #ifdef WINDOWSNT
69 #include "w32.h"
70 #endif
72 #ifdef DOUG_LEA_MALLOC
74 #include <malloc.h>
75 /* malloc.h #defines this as size_t, at least in glibc2. */
76 #ifndef __malloc_size_t
77 #define __malloc_size_t int
78 #endif
80 /* Specify maximum number of areas to mmap. It would be nice to use a
81 value that explicitly means "no limit". */
83 #define MMAP_MAX_AREAS 100000000
85 #else /* not DOUG_LEA_MALLOC */
87 /* The following come from gmalloc.c. */
89 #define __malloc_size_t size_t
90 extern __malloc_size_t _bytes_used;
91 extern __malloc_size_t __malloc_extra_blocks;
93 #endif /* not DOUG_LEA_MALLOC */
95 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
97 /* When GTK uses the file chooser dialog, different backends can be loaded
98 dynamically. One such a backend is the Gnome VFS backend that gets loaded
99 if you run Gnome. That backend creates several threads and also allocates
100 memory with malloc.
102 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
103 functions below are called from malloc, there is a chance that one
104 of these threads preempts the Emacs main thread and the hook variables
105 end up in an inconsistent state. So we have a mutex to prevent that (note
106 that the backend handles concurrent access to malloc within its own threads
107 but Emacs code running in the main thread is not included in that control).
109 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
110 happens in one of the backend threads we will have two threads that tries
111 to run Emacs code at once, and the code is not prepared for that.
112 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
114 static pthread_mutex_t alloc_mutex;
116 #define BLOCK_INPUT_ALLOC \
117 do \
119 if (pthread_equal (pthread_self (), main_thread)) \
120 BLOCK_INPUT; \
121 pthread_mutex_lock (&alloc_mutex); \
123 while (0)
124 #define UNBLOCK_INPUT_ALLOC \
125 do \
127 pthread_mutex_unlock (&alloc_mutex); \
128 if (pthread_equal (pthread_self (), main_thread)) \
129 UNBLOCK_INPUT; \
131 while (0)
133 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
135 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
136 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
138 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
140 /* Value of _bytes_used, when spare_memory was freed. */
142 static __malloc_size_t bytes_used_when_full;
144 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
145 to a struct Lisp_String. */
147 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
148 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
149 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
151 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
152 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
153 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
155 /* Value is the number of bytes/chars of S, a pointer to a struct
156 Lisp_String. This must be used instead of STRING_BYTES (S) or
157 S->size during GC, because S->size contains the mark bit for
158 strings. */
160 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
161 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
163 /* Global variables. */
164 struct emacs_globals globals;
166 /* Number of bytes of consing done since the last gc. */
168 int consing_since_gc;
170 /* Similar minimum, computed from Vgc_cons_percentage. */
172 EMACS_INT gc_relative_threshold;
174 /* Minimum number of bytes of consing since GC before next GC,
175 when memory is full. */
177 EMACS_INT memory_full_cons_threshold;
179 /* Nonzero during GC. */
181 int gc_in_progress;
183 /* Nonzero means abort if try to GC.
184 This is for code which is written on the assumption that
185 no GC will happen, so as to verify that assumption. */
187 int abort_on_gc;
189 /* Number of live and free conses etc. */
191 static int total_conses, total_markers, total_symbols, total_vector_size;
192 static int total_free_conses, total_free_markers, total_free_symbols;
193 static int total_free_floats, total_floats;
195 /* Points to memory space allocated as "spare", to be freed if we run
196 out of memory. We keep one large block, four cons-blocks, and
197 two string blocks. */
199 static char *spare_memory[7];
201 /* Amount of spare memory to keep in large reserve block. */
203 #define SPARE_MEMORY (1 << 14)
205 /* Number of extra blocks malloc should get when it needs more core. */
207 static int malloc_hysteresis;
209 /* Initialize it to a nonzero value to force it into data space
210 (rather than bss space). That way unexec will remap it into text
211 space (pure), on some systems. We have not implemented the
212 remapping on more recent systems because this is less important
213 nowadays than in the days of small memories and timesharing. */
215 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
216 #define PUREBEG (char *) pure
218 /* Pointer to the pure area, and its size. */
220 static char *purebeg;
221 static size_t pure_size;
223 /* Number of bytes of pure storage used before pure storage overflowed.
224 If this is non-zero, this implies that an overflow occurred. */
226 static size_t pure_bytes_used_before_overflow;
228 /* Value is non-zero if P points into pure space. */
230 #define PURE_POINTER_P(P) \
231 (((PNTR_COMPARISON_TYPE) (P) \
232 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
233 && ((PNTR_COMPARISON_TYPE) (P) \
234 >= (PNTR_COMPARISON_TYPE) purebeg))
236 /* Index in pure at which next pure Lisp object will be allocated.. */
238 static EMACS_INT pure_bytes_used_lisp;
240 /* Number of bytes allocated for non-Lisp objects in pure storage. */
242 static EMACS_INT pure_bytes_used_non_lisp;
244 /* If nonzero, this is a warning delivered by malloc and not yet
245 displayed. */
247 const char *pending_malloc_warning;
249 /* Maximum amount of C stack to save when a GC happens. */
251 #ifndef MAX_SAVE_STACK
252 #define MAX_SAVE_STACK 16000
253 #endif
255 /* Buffer in which we save a copy of the C stack at each GC. */
257 static char *stack_copy;
258 static int stack_copy_size;
260 /* Non-zero means ignore malloc warnings. Set during initialization.
261 Currently not used. */
263 static int ignore_warnings;
265 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
267 /* Hook run after GC has finished. */
269 Lisp_Object Qpost_gc_hook;
271 static void mark_buffer (Lisp_Object);
272 static void mark_terminals (void);
273 extern void mark_kboards (void);
274 extern void mark_ttys (void);
275 extern void mark_backtrace (void);
276 static void gc_sweep (void);
277 static void mark_glyph_matrix (struct glyph_matrix *);
278 static void mark_face_cache (struct face_cache *);
280 #ifdef HAVE_WINDOW_SYSTEM
281 extern void mark_fringe_data (void);
282 #endif /* HAVE_WINDOW_SYSTEM */
284 static struct Lisp_String *allocate_string (void);
285 static void compact_small_strings (void);
286 static void free_large_strings (void);
287 static void sweep_strings (void);
289 extern int message_enable_multibyte;
291 /* When scanning the C stack for live Lisp objects, Emacs keeps track
292 of what memory allocated via lisp_malloc is intended for what
293 purpose. This enumeration specifies the type of memory. */
295 enum mem_type
297 MEM_TYPE_NON_LISP,
298 MEM_TYPE_BUFFER,
299 MEM_TYPE_CONS,
300 MEM_TYPE_STRING,
301 MEM_TYPE_MISC,
302 MEM_TYPE_SYMBOL,
303 MEM_TYPE_FLOAT,
304 /* We used to keep separate mem_types for subtypes of vectors such as
305 process, hash_table, frame, terminal, and window, but we never made
306 use of the distinction, so it only caused source-code complexity
307 and runtime slowdown. Minor but pointless. */
308 MEM_TYPE_VECTORLIKE
311 static POINTER_TYPE *lisp_align_malloc (size_t, enum mem_type);
312 static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
315 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
317 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
318 #include <stdio.h> /* For fprintf. */
319 #endif
321 /* A unique object in pure space used to make some Lisp objects
322 on free lists recognizable in O(1). */
324 static Lisp_Object Vdead;
326 #ifdef GC_MALLOC_CHECK
328 enum mem_type allocated_mem_type;
329 static int dont_register_blocks;
331 #endif /* GC_MALLOC_CHECK */
333 /* A node in the red-black tree describing allocated memory containing
334 Lisp data. Each such block is recorded with its start and end
335 address when it is allocated, and removed from the tree when it
336 is freed.
338 A red-black tree is a balanced binary tree with the following
339 properties:
341 1. Every node is either red or black.
342 2. Every leaf is black.
343 3. If a node is red, then both of its children are black.
344 4. Every simple path from a node to a descendant leaf contains
345 the same number of black nodes.
346 5. The root is always black.
348 When nodes are inserted into the tree, or deleted from the tree,
349 the tree is "fixed" so that these properties are always true.
351 A red-black tree with N internal nodes has height at most 2
352 log(N+1). Searches, insertions and deletions are done in O(log N).
353 Please see a text book about data structures for a detailed
354 description of red-black trees. Any book worth its salt should
355 describe them. */
357 struct mem_node
359 /* Children of this node. These pointers are never NULL. When there
360 is no child, the value is MEM_NIL, which points to a dummy node. */
361 struct mem_node *left, *right;
363 /* The parent of this node. In the root node, this is NULL. */
364 struct mem_node *parent;
366 /* Start and end of allocated region. */
367 void *start, *end;
369 /* Node color. */
370 enum {MEM_BLACK, MEM_RED} color;
372 /* Memory type. */
373 enum mem_type type;
376 /* Base address of stack. Set in main. */
378 Lisp_Object *stack_base;
380 /* Root of the tree describing allocated Lisp memory. */
382 static struct mem_node *mem_root;
384 /* Lowest and highest known address in the heap. */
386 static void *min_heap_address, *max_heap_address;
388 /* Sentinel node of the tree. */
390 static struct mem_node mem_z;
391 #define MEM_NIL &mem_z
393 static struct Lisp_Vector *allocate_vectorlike (EMACS_INT);
394 static void lisp_free (POINTER_TYPE *);
395 static void mark_stack (void);
396 static int live_vector_p (struct mem_node *, void *);
397 static int live_buffer_p (struct mem_node *, void *);
398 static int live_string_p (struct mem_node *, void *);
399 static int live_cons_p (struct mem_node *, void *);
400 static int live_symbol_p (struct mem_node *, void *);
401 static int live_float_p (struct mem_node *, void *);
402 static int live_misc_p (struct mem_node *, void *);
403 static void mark_maybe_object (Lisp_Object);
404 static void mark_memory (void *, void *, int);
405 static void mem_init (void);
406 static struct mem_node *mem_insert (void *, void *, enum mem_type);
407 static void mem_insert_fixup (struct mem_node *);
408 static void mem_rotate_left (struct mem_node *);
409 static void mem_rotate_right (struct mem_node *);
410 static void mem_delete (struct mem_node *);
411 static void mem_delete_fixup (struct mem_node *);
412 static INLINE struct mem_node *mem_find (void *);
415 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
416 static void check_gcpros (void);
417 #endif
419 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
421 /* Recording what needs to be marked for gc. */
423 struct gcpro *gcprolist;
425 /* Addresses of staticpro'd variables. Initialize it to a nonzero
426 value; otherwise some compilers put it into BSS. */
428 #define NSTATICS 0x640
429 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
431 /* Index of next unused slot in staticvec. */
433 static int staticidx = 0;
435 static POINTER_TYPE *pure_alloc (size_t, int);
438 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
439 ALIGNMENT must be a power of 2. */
441 #define ALIGN(ptr, ALIGNMENT) \
442 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
443 & ~((ALIGNMENT) - 1)))
447 /************************************************************************
448 Malloc
449 ************************************************************************/
451 /* Function malloc calls this if it finds we are near exhausting storage. */
453 void
454 malloc_warning (const char *str)
456 pending_malloc_warning = str;
460 /* Display an already-pending malloc warning. */
462 void
463 display_malloc_warning (void)
465 call3 (intern ("display-warning"),
466 intern ("alloc"),
467 build_string (pending_malloc_warning),
468 intern ("emergency"));
469 pending_malloc_warning = 0;
473 #ifdef DOUG_LEA_MALLOC
474 # define BYTES_USED (mallinfo ().uordblks)
475 #else
476 # define BYTES_USED _bytes_used
477 #endif
479 /* Called if we can't allocate relocatable space for a buffer. */
481 void
482 buffer_memory_full (void)
484 /* If buffers use the relocating allocator, no need to free
485 spare_memory, because we may have plenty of malloc space left
486 that we could get, and if we don't, the malloc that fails will
487 itself cause spare_memory to be freed. If buffers don't use the
488 relocating allocator, treat this like any other failing
489 malloc. */
491 #ifndef REL_ALLOC
492 memory_full ();
493 #endif
495 /* This used to call error, but if we've run out of memory, we could
496 get infinite recursion trying to build the string. */
497 xsignal (Qnil, Vmemory_signal_data);
501 #ifdef XMALLOC_OVERRUN_CHECK
503 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
504 and a 16 byte trailer around each block.
506 The header consists of 12 fixed bytes + a 4 byte integer contaning the
507 original block size, while the trailer consists of 16 fixed bytes.
509 The header is used to detect whether this block has been allocated
510 through these functions -- as it seems that some low-level libc
511 functions may bypass the malloc hooks.
515 #define XMALLOC_OVERRUN_CHECK_SIZE 16
517 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
518 { 0x9a, 0x9b, 0xae, 0xaf,
519 0xbf, 0xbe, 0xce, 0xcf,
520 0xea, 0xeb, 0xec, 0xed };
522 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
523 { 0xaa, 0xab, 0xac, 0xad,
524 0xba, 0xbb, 0xbc, 0xbd,
525 0xca, 0xcb, 0xcc, 0xcd,
526 0xda, 0xdb, 0xdc, 0xdd };
528 /* Macros to insert and extract the block size in the header. */
530 #define XMALLOC_PUT_SIZE(ptr, size) \
531 (ptr[-1] = (size & 0xff), \
532 ptr[-2] = ((size >> 8) & 0xff), \
533 ptr[-3] = ((size >> 16) & 0xff), \
534 ptr[-4] = ((size >> 24) & 0xff))
536 #define XMALLOC_GET_SIZE(ptr) \
537 (size_t)((unsigned)(ptr[-1]) | \
538 ((unsigned)(ptr[-2]) << 8) | \
539 ((unsigned)(ptr[-3]) << 16) | \
540 ((unsigned)(ptr[-4]) << 24))
543 /* The call depth in overrun_check functions. For example, this might happen:
544 xmalloc()
545 overrun_check_malloc()
546 -> malloc -> (via hook)_-> emacs_blocked_malloc
547 -> overrun_check_malloc
548 call malloc (hooks are NULL, so real malloc is called).
549 malloc returns 10000.
550 add overhead, return 10016.
551 <- (back in overrun_check_malloc)
552 add overhead again, return 10032
553 xmalloc returns 10032.
555 (time passes).
557 xfree(10032)
558 overrun_check_free(10032)
559 decrease overhed
560 free(10016) <- crash, because 10000 is the original pointer. */
562 static int check_depth;
564 /* Like malloc, but wraps allocated block with header and trailer. */
566 POINTER_TYPE *
567 overrun_check_malloc (size)
568 size_t size;
570 register unsigned char *val;
571 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
573 val = (unsigned char *) malloc (size + overhead);
574 if (val && check_depth == 1)
576 memcpy (val, xmalloc_overrun_check_header,
577 XMALLOC_OVERRUN_CHECK_SIZE - 4);
578 val += XMALLOC_OVERRUN_CHECK_SIZE;
579 XMALLOC_PUT_SIZE(val, size);
580 memcpy (val + size, xmalloc_overrun_check_trailer,
581 XMALLOC_OVERRUN_CHECK_SIZE);
583 --check_depth;
584 return (POINTER_TYPE *)val;
588 /* Like realloc, but checks old block for overrun, and wraps new block
589 with header and trailer. */
591 POINTER_TYPE *
592 overrun_check_realloc (block, size)
593 POINTER_TYPE *block;
594 size_t size;
596 register unsigned char *val = (unsigned char *)block;
597 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
599 if (val
600 && check_depth == 1
601 && memcmp (xmalloc_overrun_check_header,
602 val - XMALLOC_OVERRUN_CHECK_SIZE,
603 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
605 size_t osize = XMALLOC_GET_SIZE (val);
606 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
607 XMALLOC_OVERRUN_CHECK_SIZE))
608 abort ();
609 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
610 val -= XMALLOC_OVERRUN_CHECK_SIZE;
611 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
614 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
616 if (val && check_depth == 1)
618 memcpy (val, xmalloc_overrun_check_header,
619 XMALLOC_OVERRUN_CHECK_SIZE - 4);
620 val += XMALLOC_OVERRUN_CHECK_SIZE;
621 XMALLOC_PUT_SIZE(val, size);
622 memcpy (val + size, xmalloc_overrun_check_trailer,
623 XMALLOC_OVERRUN_CHECK_SIZE);
625 --check_depth;
626 return (POINTER_TYPE *)val;
629 /* Like free, but checks block for overrun. */
631 void
632 overrun_check_free (block)
633 POINTER_TYPE *block;
635 unsigned char *val = (unsigned char *)block;
637 ++check_depth;
638 if (val
639 && check_depth == 1
640 && memcmp (xmalloc_overrun_check_header,
641 val - XMALLOC_OVERRUN_CHECK_SIZE,
642 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
644 size_t osize = XMALLOC_GET_SIZE (val);
645 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
646 XMALLOC_OVERRUN_CHECK_SIZE))
647 abort ();
648 #ifdef XMALLOC_CLEAR_FREE_MEMORY
649 val -= XMALLOC_OVERRUN_CHECK_SIZE;
650 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
651 #else
652 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
653 val -= XMALLOC_OVERRUN_CHECK_SIZE;
654 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
655 #endif
658 free (val);
659 --check_depth;
662 #undef malloc
663 #undef realloc
664 #undef free
665 #define malloc overrun_check_malloc
666 #define realloc overrun_check_realloc
667 #define free overrun_check_free
668 #endif
670 #ifdef SYNC_INPUT
671 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
672 there's no need to block input around malloc. */
673 #define MALLOC_BLOCK_INPUT ((void)0)
674 #define MALLOC_UNBLOCK_INPUT ((void)0)
675 #else
676 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
677 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
678 #endif
680 /* Like malloc but check for no memory and block interrupt input.. */
682 POINTER_TYPE *
683 xmalloc (size_t size)
685 register POINTER_TYPE *val;
687 MALLOC_BLOCK_INPUT;
688 val = (POINTER_TYPE *) malloc (size);
689 MALLOC_UNBLOCK_INPUT;
691 if (!val && size)
692 memory_full ();
693 return val;
697 /* Like realloc but check for no memory and block interrupt input.. */
699 POINTER_TYPE *
700 xrealloc (POINTER_TYPE *block, size_t size)
702 register POINTER_TYPE *val;
704 MALLOC_BLOCK_INPUT;
705 /* We must call malloc explicitly when BLOCK is 0, since some
706 reallocs don't do this. */
707 if (! block)
708 val = (POINTER_TYPE *) malloc (size);
709 else
710 val = (POINTER_TYPE *) realloc (block, size);
711 MALLOC_UNBLOCK_INPUT;
713 if (!val && size) memory_full ();
714 return val;
718 /* Like free but block interrupt input. */
720 void
721 xfree (POINTER_TYPE *block)
723 if (!block)
724 return;
725 MALLOC_BLOCK_INPUT;
726 free (block);
727 MALLOC_UNBLOCK_INPUT;
728 /* We don't call refill_memory_reserve here
729 because that duplicates doing so in emacs_blocked_free
730 and the criterion should go there. */
734 /* Like strdup, but uses xmalloc. */
736 char *
737 xstrdup (const char *s)
739 size_t len = strlen (s) + 1;
740 char *p = (char *) xmalloc (len);
741 memcpy (p, s, len);
742 return p;
746 /* Unwind for SAFE_ALLOCA */
748 Lisp_Object
749 safe_alloca_unwind (Lisp_Object arg)
751 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
753 p->dogc = 0;
754 xfree (p->pointer);
755 p->pointer = 0;
756 free_misc (arg);
757 return Qnil;
761 /* Like malloc but used for allocating Lisp data. NBYTES is the
762 number of bytes to allocate, TYPE describes the intended use of the
763 allcated memory block (for strings, for conses, ...). */
765 #ifndef USE_LSB_TAG
766 static void *lisp_malloc_loser;
767 #endif
769 static POINTER_TYPE *
770 lisp_malloc (size_t nbytes, enum mem_type type)
772 register void *val;
774 MALLOC_BLOCK_INPUT;
776 #ifdef GC_MALLOC_CHECK
777 allocated_mem_type = type;
778 #endif
780 val = (void *) malloc (nbytes);
782 #ifndef USE_LSB_TAG
783 /* If the memory just allocated cannot be addressed thru a Lisp
784 object's pointer, and it needs to be,
785 that's equivalent to running out of memory. */
786 if (val && type != MEM_TYPE_NON_LISP)
788 Lisp_Object tem;
789 XSETCONS (tem, (char *) val + nbytes - 1);
790 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
792 lisp_malloc_loser = val;
793 free (val);
794 val = 0;
797 #endif
799 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
800 if (val && type != MEM_TYPE_NON_LISP)
801 mem_insert (val, (char *) val + nbytes, type);
802 #endif
804 MALLOC_UNBLOCK_INPUT;
805 if (!val && nbytes)
806 memory_full ();
807 return val;
810 /* Free BLOCK. This must be called to free memory allocated with a
811 call to lisp_malloc. */
813 static void
814 lisp_free (POINTER_TYPE *block)
816 MALLOC_BLOCK_INPUT;
817 free (block);
818 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
819 mem_delete (mem_find (block));
820 #endif
821 MALLOC_UNBLOCK_INPUT;
824 /* Allocation of aligned blocks of memory to store Lisp data. */
825 /* The entry point is lisp_align_malloc which returns blocks of at most */
826 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
828 /* Use posix_memalloc if the system has it and we're using the system's
829 malloc (because our gmalloc.c routines don't have posix_memalign although
830 its memalloc could be used). */
831 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
832 #define USE_POSIX_MEMALIGN 1
833 #endif
835 /* BLOCK_ALIGN has to be a power of 2. */
836 #define BLOCK_ALIGN (1 << 10)
838 /* Padding to leave at the end of a malloc'd block. This is to give
839 malloc a chance to minimize the amount of memory wasted to alignment.
840 It should be tuned to the particular malloc library used.
841 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
842 posix_memalign on the other hand would ideally prefer a value of 4
843 because otherwise, there's 1020 bytes wasted between each ablocks.
844 In Emacs, testing shows that those 1020 can most of the time be
845 efficiently used by malloc to place other objects, so a value of 0 can
846 still preferable unless you have a lot of aligned blocks and virtually
847 nothing else. */
848 #define BLOCK_PADDING 0
849 #define BLOCK_BYTES \
850 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
852 /* Internal data structures and constants. */
854 #define ABLOCKS_SIZE 16
856 /* An aligned block of memory. */
857 struct ablock
859 union
861 char payload[BLOCK_BYTES];
862 struct ablock *next_free;
863 } x;
864 /* `abase' is the aligned base of the ablocks. */
865 /* It is overloaded to hold the virtual `busy' field that counts
866 the number of used ablock in the parent ablocks.
867 The first ablock has the `busy' field, the others have the `abase'
868 field. To tell the difference, we assume that pointers will have
869 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
870 is used to tell whether the real base of the parent ablocks is `abase'
871 (if not, the word before the first ablock holds a pointer to the
872 real base). */
873 struct ablocks *abase;
874 /* The padding of all but the last ablock is unused. The padding of
875 the last ablock in an ablocks is not allocated. */
876 #if BLOCK_PADDING
877 char padding[BLOCK_PADDING];
878 #endif
881 /* A bunch of consecutive aligned blocks. */
882 struct ablocks
884 struct ablock blocks[ABLOCKS_SIZE];
887 /* Size of the block requested from malloc or memalign. */
888 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
890 #define ABLOCK_ABASE(block) \
891 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
892 ? (struct ablocks *)(block) \
893 : (block)->abase)
895 /* Virtual `busy' field. */
896 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
898 /* Pointer to the (not necessarily aligned) malloc block. */
899 #ifdef USE_POSIX_MEMALIGN
900 #define ABLOCKS_BASE(abase) (abase)
901 #else
902 #define ABLOCKS_BASE(abase) \
903 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
904 #endif
906 /* The list of free ablock. */
907 static struct ablock *free_ablock;
909 /* Allocate an aligned block of nbytes.
910 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
911 smaller or equal to BLOCK_BYTES. */
912 static POINTER_TYPE *
913 lisp_align_malloc (size_t nbytes, enum mem_type type)
915 void *base, *val;
916 struct ablocks *abase;
918 eassert (nbytes <= BLOCK_BYTES);
920 MALLOC_BLOCK_INPUT;
922 #ifdef GC_MALLOC_CHECK
923 allocated_mem_type = type;
924 #endif
926 if (!free_ablock)
928 int i;
929 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
931 #ifdef DOUG_LEA_MALLOC
932 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
933 because mapped region contents are not preserved in
934 a dumped Emacs. */
935 mallopt (M_MMAP_MAX, 0);
936 #endif
938 #ifdef USE_POSIX_MEMALIGN
940 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
941 if (err)
942 base = NULL;
943 abase = base;
945 #else
946 base = malloc (ABLOCKS_BYTES);
947 abase = ALIGN (base, BLOCK_ALIGN);
948 #endif
950 if (base == 0)
952 MALLOC_UNBLOCK_INPUT;
953 memory_full ();
956 aligned = (base == abase);
957 if (!aligned)
958 ((void**)abase)[-1] = base;
960 #ifdef DOUG_LEA_MALLOC
961 /* Back to a reasonable maximum of mmap'ed areas. */
962 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
963 #endif
965 #ifndef USE_LSB_TAG
966 /* If the memory just allocated cannot be addressed thru a Lisp
967 object's pointer, and it needs to be, that's equivalent to
968 running out of memory. */
969 if (type != MEM_TYPE_NON_LISP)
971 Lisp_Object tem;
972 char *end = (char *) base + ABLOCKS_BYTES - 1;
973 XSETCONS (tem, end);
974 if ((char *) XCONS (tem) != end)
976 lisp_malloc_loser = base;
977 free (base);
978 MALLOC_UNBLOCK_INPUT;
979 memory_full ();
982 #endif
984 /* Initialize the blocks and put them on the free list.
985 Is `base' was not properly aligned, we can't use the last block. */
986 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
988 abase->blocks[i].abase = abase;
989 abase->blocks[i].x.next_free = free_ablock;
990 free_ablock = &abase->blocks[i];
992 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
994 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
995 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
996 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
997 eassert (ABLOCKS_BASE (abase) == base);
998 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1001 abase = ABLOCK_ABASE (free_ablock);
1002 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1003 val = free_ablock;
1004 free_ablock = free_ablock->x.next_free;
1006 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1007 if (val && type != MEM_TYPE_NON_LISP)
1008 mem_insert (val, (char *) val + nbytes, type);
1009 #endif
1011 MALLOC_UNBLOCK_INPUT;
1012 if (!val && nbytes)
1013 memory_full ();
1015 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1016 return val;
1019 static void
1020 lisp_align_free (POINTER_TYPE *block)
1022 struct ablock *ablock = block;
1023 struct ablocks *abase = ABLOCK_ABASE (ablock);
1025 MALLOC_BLOCK_INPUT;
1026 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1027 mem_delete (mem_find (block));
1028 #endif
1029 /* Put on free list. */
1030 ablock->x.next_free = free_ablock;
1031 free_ablock = ablock;
1032 /* Update busy count. */
1033 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1035 if (2 > (long) ABLOCKS_BUSY (abase))
1036 { /* All the blocks are free. */
1037 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1038 struct ablock **tem = &free_ablock;
1039 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1041 while (*tem)
1043 if (*tem >= (struct ablock *) abase && *tem < atop)
1045 i++;
1046 *tem = (*tem)->x.next_free;
1048 else
1049 tem = &(*tem)->x.next_free;
1051 eassert ((aligned & 1) == aligned);
1052 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1053 #ifdef USE_POSIX_MEMALIGN
1054 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1055 #endif
1056 free (ABLOCKS_BASE (abase));
1058 MALLOC_UNBLOCK_INPUT;
1061 /* Return a new buffer structure allocated from the heap with
1062 a call to lisp_malloc. */
1064 struct buffer *
1065 allocate_buffer (void)
1067 struct buffer *b
1068 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1069 MEM_TYPE_BUFFER);
1070 b->size = sizeof (struct buffer) / sizeof (EMACS_INT);
1071 XSETPVECTYPE (b, PVEC_BUFFER);
1072 return b;
1076 #ifndef SYSTEM_MALLOC
1078 /* Arranging to disable input signals while we're in malloc.
1080 This only works with GNU malloc. To help out systems which can't
1081 use GNU malloc, all the calls to malloc, realloc, and free
1082 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1083 pair; unfortunately, we have no idea what C library functions
1084 might call malloc, so we can't really protect them unless you're
1085 using GNU malloc. Fortunately, most of the major operating systems
1086 can use GNU malloc. */
1088 #ifndef SYNC_INPUT
1089 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1090 there's no need to block input around malloc. */
1092 #ifndef DOUG_LEA_MALLOC
1093 extern void * (*__malloc_hook) (size_t, const void *);
1094 extern void * (*__realloc_hook) (void *, size_t, const void *);
1095 extern void (*__free_hook) (void *, const void *);
1096 /* Else declared in malloc.h, perhaps with an extra arg. */
1097 #endif /* DOUG_LEA_MALLOC */
1098 static void * (*old_malloc_hook) (size_t, const void *);
1099 static void * (*old_realloc_hook) (void *, size_t, const void*);
1100 static void (*old_free_hook) (void*, const void*);
1102 static __malloc_size_t bytes_used_when_reconsidered;
1104 /* This function is used as the hook for free to call. */
1106 static void
1107 emacs_blocked_free (void *ptr, const void *ptr2)
1109 BLOCK_INPUT_ALLOC;
1111 #ifdef GC_MALLOC_CHECK
1112 if (ptr)
1114 struct mem_node *m;
1116 m = mem_find (ptr);
1117 if (m == MEM_NIL || m->start != ptr)
1119 fprintf (stderr,
1120 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1121 abort ();
1123 else
1125 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1126 mem_delete (m);
1129 #endif /* GC_MALLOC_CHECK */
1131 __free_hook = old_free_hook;
1132 free (ptr);
1134 /* If we released our reserve (due to running out of memory),
1135 and we have a fair amount free once again,
1136 try to set aside another reserve in case we run out once more. */
1137 if (! NILP (Vmemory_full)
1138 /* Verify there is enough space that even with the malloc
1139 hysteresis this call won't run out again.
1140 The code here is correct as long as SPARE_MEMORY
1141 is substantially larger than the block size malloc uses. */
1142 && (bytes_used_when_full
1143 > ((bytes_used_when_reconsidered = BYTES_USED)
1144 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1145 refill_memory_reserve ();
1147 __free_hook = emacs_blocked_free;
1148 UNBLOCK_INPUT_ALLOC;
1152 /* This function is the malloc hook that Emacs uses. */
1154 static void *
1155 emacs_blocked_malloc (size_t size, const void *ptr)
1157 void *value;
1159 BLOCK_INPUT_ALLOC;
1160 __malloc_hook = old_malloc_hook;
1161 #ifdef DOUG_LEA_MALLOC
1162 /* Segfaults on my system. --lorentey */
1163 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1164 #else
1165 __malloc_extra_blocks = malloc_hysteresis;
1166 #endif
1168 value = (void *) malloc (size);
1170 #ifdef GC_MALLOC_CHECK
1172 struct mem_node *m = mem_find (value);
1173 if (m != MEM_NIL)
1175 fprintf (stderr, "Malloc returned %p which is already in use\n",
1176 value);
1177 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1178 m->start, m->end, (char *) m->end - (char *) m->start,
1179 m->type);
1180 abort ();
1183 if (!dont_register_blocks)
1185 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1186 allocated_mem_type = MEM_TYPE_NON_LISP;
1189 #endif /* GC_MALLOC_CHECK */
1191 __malloc_hook = emacs_blocked_malloc;
1192 UNBLOCK_INPUT_ALLOC;
1194 /* fprintf (stderr, "%p malloc\n", value); */
1195 return value;
1199 /* This function is the realloc hook that Emacs uses. */
1201 static void *
1202 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1204 void *value;
1206 BLOCK_INPUT_ALLOC;
1207 __realloc_hook = old_realloc_hook;
1209 #ifdef GC_MALLOC_CHECK
1210 if (ptr)
1212 struct mem_node *m = mem_find (ptr);
1213 if (m == MEM_NIL || m->start != ptr)
1215 fprintf (stderr,
1216 "Realloc of %p which wasn't allocated with malloc\n",
1217 ptr);
1218 abort ();
1221 mem_delete (m);
1224 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1226 /* Prevent malloc from registering blocks. */
1227 dont_register_blocks = 1;
1228 #endif /* GC_MALLOC_CHECK */
1230 value = (void *) realloc (ptr, size);
1232 #ifdef GC_MALLOC_CHECK
1233 dont_register_blocks = 0;
1236 struct mem_node *m = mem_find (value);
1237 if (m != MEM_NIL)
1239 fprintf (stderr, "Realloc returns memory that is already in use\n");
1240 abort ();
1243 /* Can't handle zero size regions in the red-black tree. */
1244 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1247 /* fprintf (stderr, "%p <- realloc\n", value); */
1248 #endif /* GC_MALLOC_CHECK */
1250 __realloc_hook = emacs_blocked_realloc;
1251 UNBLOCK_INPUT_ALLOC;
1253 return value;
1257 #ifdef HAVE_GTK_AND_PTHREAD
1258 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1259 normal malloc. Some thread implementations need this as they call
1260 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1261 calls malloc because it is the first call, and we have an endless loop. */
1263 void
1264 reset_malloc_hooks ()
1266 __free_hook = old_free_hook;
1267 __malloc_hook = old_malloc_hook;
1268 __realloc_hook = old_realloc_hook;
1270 #endif /* HAVE_GTK_AND_PTHREAD */
1273 /* Called from main to set up malloc to use our hooks. */
1275 void
1276 uninterrupt_malloc (void)
1278 #ifdef HAVE_GTK_AND_PTHREAD
1279 #ifdef DOUG_LEA_MALLOC
1280 pthread_mutexattr_t attr;
1282 /* GLIBC has a faster way to do this, but lets keep it portable.
1283 This is according to the Single UNIX Specification. */
1284 pthread_mutexattr_init (&attr);
1285 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1286 pthread_mutex_init (&alloc_mutex, &attr);
1287 #else /* !DOUG_LEA_MALLOC */
1288 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1289 and the bundled gmalloc.c doesn't require it. */
1290 pthread_mutex_init (&alloc_mutex, NULL);
1291 #endif /* !DOUG_LEA_MALLOC */
1292 #endif /* HAVE_GTK_AND_PTHREAD */
1294 if (__free_hook != emacs_blocked_free)
1295 old_free_hook = __free_hook;
1296 __free_hook = emacs_blocked_free;
1298 if (__malloc_hook != emacs_blocked_malloc)
1299 old_malloc_hook = __malloc_hook;
1300 __malloc_hook = emacs_blocked_malloc;
1302 if (__realloc_hook != emacs_blocked_realloc)
1303 old_realloc_hook = __realloc_hook;
1304 __realloc_hook = emacs_blocked_realloc;
1307 #endif /* not SYNC_INPUT */
1308 #endif /* not SYSTEM_MALLOC */
1312 /***********************************************************************
1313 Interval Allocation
1314 ***********************************************************************/
1316 /* Number of intervals allocated in an interval_block structure.
1317 The 1020 is 1024 minus malloc overhead. */
1319 #define INTERVAL_BLOCK_SIZE \
1320 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1322 /* Intervals are allocated in chunks in form of an interval_block
1323 structure. */
1325 struct interval_block
1327 /* Place `intervals' first, to preserve alignment. */
1328 struct interval intervals[INTERVAL_BLOCK_SIZE];
1329 struct interval_block *next;
1332 /* Current interval block. Its `next' pointer points to older
1333 blocks. */
1335 static struct interval_block *interval_block;
1337 /* Index in interval_block above of the next unused interval
1338 structure. */
1340 static int interval_block_index;
1342 /* Number of free and live intervals. */
1344 static int total_free_intervals, total_intervals;
1346 /* List of free intervals. */
1348 INTERVAL interval_free_list;
1350 /* Total number of interval blocks now in use. */
1352 static int n_interval_blocks;
1355 /* Initialize interval allocation. */
1357 static void
1358 init_intervals (void)
1360 interval_block = NULL;
1361 interval_block_index = INTERVAL_BLOCK_SIZE;
1362 interval_free_list = 0;
1363 n_interval_blocks = 0;
1367 /* Return a new interval. */
1369 INTERVAL
1370 make_interval (void)
1372 INTERVAL val;
1374 /* eassert (!handling_signal); */
1376 MALLOC_BLOCK_INPUT;
1378 if (interval_free_list)
1380 val = interval_free_list;
1381 interval_free_list = INTERVAL_PARENT (interval_free_list);
1383 else
1385 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1387 register struct interval_block *newi;
1389 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1390 MEM_TYPE_NON_LISP);
1392 newi->next = interval_block;
1393 interval_block = newi;
1394 interval_block_index = 0;
1395 n_interval_blocks++;
1397 val = &interval_block->intervals[interval_block_index++];
1400 MALLOC_UNBLOCK_INPUT;
1402 consing_since_gc += sizeof (struct interval);
1403 intervals_consed++;
1404 RESET_INTERVAL (val);
1405 val->gcmarkbit = 0;
1406 return val;
1410 /* Mark Lisp objects in interval I. */
1412 static void
1413 mark_interval (register INTERVAL i, Lisp_Object dummy)
1415 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1416 i->gcmarkbit = 1;
1417 mark_object (i->plist);
1421 /* Mark the interval tree rooted in TREE. Don't call this directly;
1422 use the macro MARK_INTERVAL_TREE instead. */
1424 static void
1425 mark_interval_tree (register INTERVAL tree)
1427 /* No need to test if this tree has been marked already; this
1428 function is always called through the MARK_INTERVAL_TREE macro,
1429 which takes care of that. */
1431 traverse_intervals_noorder (tree, mark_interval, Qnil);
1435 /* Mark the interval tree rooted in I. */
1437 #define MARK_INTERVAL_TREE(i) \
1438 do { \
1439 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1440 mark_interval_tree (i); \
1441 } while (0)
1444 #define UNMARK_BALANCE_INTERVALS(i) \
1445 do { \
1446 if (! NULL_INTERVAL_P (i)) \
1447 (i) = balance_intervals (i); \
1448 } while (0)
1451 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1452 can't create number objects in macros. */
1453 #ifndef make_number
1454 Lisp_Object
1455 make_number (EMACS_INT n)
1457 Lisp_Object obj;
1458 obj.s.val = n;
1459 obj.s.type = Lisp_Int;
1460 return obj;
1462 #endif
1464 /***********************************************************************
1465 String Allocation
1466 ***********************************************************************/
1468 /* Lisp_Strings are allocated in string_block structures. When a new
1469 string_block is allocated, all the Lisp_Strings it contains are
1470 added to a free-list string_free_list. When a new Lisp_String is
1471 needed, it is taken from that list. During the sweep phase of GC,
1472 string_blocks that are entirely free are freed, except two which
1473 we keep.
1475 String data is allocated from sblock structures. Strings larger
1476 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1477 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1479 Sblocks consist internally of sdata structures, one for each
1480 Lisp_String. The sdata structure points to the Lisp_String it
1481 belongs to. The Lisp_String points back to the `u.data' member of
1482 its sdata structure.
1484 When a Lisp_String is freed during GC, it is put back on
1485 string_free_list, and its `data' member and its sdata's `string'
1486 pointer is set to null. The size of the string is recorded in the
1487 `u.nbytes' member of the sdata. So, sdata structures that are no
1488 longer used, can be easily recognized, and it's easy to compact the
1489 sblocks of small strings which we do in compact_small_strings. */
1491 /* Size in bytes of an sblock structure used for small strings. This
1492 is 8192 minus malloc overhead. */
1494 #define SBLOCK_SIZE 8188
1496 /* Strings larger than this are considered large strings. String data
1497 for large strings is allocated from individual sblocks. */
1499 #define LARGE_STRING_BYTES 1024
1501 /* Structure describing string memory sub-allocated from an sblock.
1502 This is where the contents of Lisp strings are stored. */
1504 struct sdata
1506 /* Back-pointer to the string this sdata belongs to. If null, this
1507 structure is free, and the NBYTES member of the union below
1508 contains the string's byte size (the same value that STRING_BYTES
1509 would return if STRING were non-null). If non-null, STRING_BYTES
1510 (STRING) is the size of the data, and DATA contains the string's
1511 contents. */
1512 struct Lisp_String *string;
1514 #ifdef GC_CHECK_STRING_BYTES
1516 EMACS_INT nbytes;
1517 unsigned char data[1];
1519 #define SDATA_NBYTES(S) (S)->nbytes
1520 #define SDATA_DATA(S) (S)->data
1522 #else /* not GC_CHECK_STRING_BYTES */
1524 union
1526 /* When STRING in non-null. */
1527 unsigned char data[1];
1529 /* When STRING is null. */
1530 EMACS_INT nbytes;
1531 } u;
1534 #define SDATA_NBYTES(S) (S)->u.nbytes
1535 #define SDATA_DATA(S) (S)->u.data
1537 #endif /* not GC_CHECK_STRING_BYTES */
1541 /* Structure describing a block of memory which is sub-allocated to
1542 obtain string data memory for strings. Blocks for small strings
1543 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1544 as large as needed. */
1546 struct sblock
1548 /* Next in list. */
1549 struct sblock *next;
1551 /* Pointer to the next free sdata block. This points past the end
1552 of the sblock if there isn't any space left in this block. */
1553 struct sdata *next_free;
1555 /* Start of data. */
1556 struct sdata first_data;
1559 /* Number of Lisp strings in a string_block structure. The 1020 is
1560 1024 minus malloc overhead. */
1562 #define STRING_BLOCK_SIZE \
1563 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1565 /* Structure describing a block from which Lisp_String structures
1566 are allocated. */
1568 struct string_block
1570 /* Place `strings' first, to preserve alignment. */
1571 struct Lisp_String strings[STRING_BLOCK_SIZE];
1572 struct string_block *next;
1575 /* Head and tail of the list of sblock structures holding Lisp string
1576 data. We always allocate from current_sblock. The NEXT pointers
1577 in the sblock structures go from oldest_sblock to current_sblock. */
1579 static struct sblock *oldest_sblock, *current_sblock;
1581 /* List of sblocks for large strings. */
1583 static struct sblock *large_sblocks;
1585 /* List of string_block structures, and how many there are. */
1587 static struct string_block *string_blocks;
1588 static int n_string_blocks;
1590 /* Free-list of Lisp_Strings. */
1592 static struct Lisp_String *string_free_list;
1594 /* Number of live and free Lisp_Strings. */
1596 static int total_strings, total_free_strings;
1598 /* Number of bytes used by live strings. */
1600 static EMACS_INT total_string_size;
1602 /* Given a pointer to a Lisp_String S which is on the free-list
1603 string_free_list, return a pointer to its successor in the
1604 free-list. */
1606 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1608 /* Return a pointer to the sdata structure belonging to Lisp string S.
1609 S must be live, i.e. S->data must not be null. S->data is actually
1610 a pointer to the `u.data' member of its sdata structure; the
1611 structure starts at a constant offset in front of that. */
1613 #ifdef GC_CHECK_STRING_BYTES
1615 #define SDATA_OF_STRING(S) \
1616 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1617 - sizeof (EMACS_INT)))
1619 #else /* not GC_CHECK_STRING_BYTES */
1621 #define SDATA_OF_STRING(S) \
1622 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1624 #endif /* not GC_CHECK_STRING_BYTES */
1627 #ifdef GC_CHECK_STRING_OVERRUN
1629 /* We check for overrun in string data blocks by appending a small
1630 "cookie" after each allocated string data block, and check for the
1631 presence of this cookie during GC. */
1633 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1634 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1635 { 0xde, 0xad, 0xbe, 0xef };
1637 #else
1638 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1639 #endif
1641 /* Value is the size of an sdata structure large enough to hold NBYTES
1642 bytes of string data. The value returned includes a terminating
1643 NUL byte, the size of the sdata structure, and padding. */
1645 #ifdef GC_CHECK_STRING_BYTES
1647 #define SDATA_SIZE(NBYTES) \
1648 ((sizeof (struct Lisp_String *) \
1649 + (NBYTES) + 1 \
1650 + sizeof (EMACS_INT) \
1651 + sizeof (EMACS_INT) - 1) \
1652 & ~(sizeof (EMACS_INT) - 1))
1654 #else /* not GC_CHECK_STRING_BYTES */
1656 #define SDATA_SIZE(NBYTES) \
1657 ((sizeof (struct Lisp_String *) \
1658 + (NBYTES) + 1 \
1659 + sizeof (EMACS_INT) - 1) \
1660 & ~(sizeof (EMACS_INT) - 1))
1662 #endif /* not GC_CHECK_STRING_BYTES */
1664 /* Extra bytes to allocate for each string. */
1666 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1668 /* Initialize string allocation. Called from init_alloc_once. */
1670 static void
1671 init_strings (void)
1673 total_strings = total_free_strings = total_string_size = 0;
1674 oldest_sblock = current_sblock = large_sblocks = NULL;
1675 string_blocks = NULL;
1676 n_string_blocks = 0;
1677 string_free_list = NULL;
1678 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1679 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1683 #ifdef GC_CHECK_STRING_BYTES
1685 static int check_string_bytes_count;
1687 static void check_string_bytes (int);
1688 static void check_sblock (struct sblock *);
1690 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1693 /* Like GC_STRING_BYTES, but with debugging check. */
1695 EMACS_INT
1696 string_bytes (struct Lisp_String *s)
1698 EMACS_INT nbytes =
1699 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1701 if (!PURE_POINTER_P (s)
1702 && s->data
1703 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1704 abort ();
1705 return nbytes;
1708 /* Check validity of Lisp strings' string_bytes member in B. */
1710 static void
1711 check_sblock (b)
1712 struct sblock *b;
1714 struct sdata *from, *end, *from_end;
1716 end = b->next_free;
1718 for (from = &b->first_data; from < end; from = from_end)
1720 /* Compute the next FROM here because copying below may
1721 overwrite data we need to compute it. */
1722 EMACS_INT nbytes;
1724 /* Check that the string size recorded in the string is the
1725 same as the one recorded in the sdata structure. */
1726 if (from->string)
1727 CHECK_STRING_BYTES (from->string);
1729 if (from->string)
1730 nbytes = GC_STRING_BYTES (from->string);
1731 else
1732 nbytes = SDATA_NBYTES (from);
1734 nbytes = SDATA_SIZE (nbytes);
1735 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1740 /* Check validity of Lisp strings' string_bytes member. ALL_P
1741 non-zero means check all strings, otherwise check only most
1742 recently allocated strings. Used for hunting a bug. */
1744 static void
1745 check_string_bytes (all_p)
1746 int all_p;
1748 if (all_p)
1750 struct sblock *b;
1752 for (b = large_sblocks; b; b = b->next)
1754 struct Lisp_String *s = b->first_data.string;
1755 if (s)
1756 CHECK_STRING_BYTES (s);
1759 for (b = oldest_sblock; b; b = b->next)
1760 check_sblock (b);
1762 else
1763 check_sblock (current_sblock);
1766 #endif /* GC_CHECK_STRING_BYTES */
1768 #ifdef GC_CHECK_STRING_FREE_LIST
1770 /* Walk through the string free list looking for bogus next pointers.
1771 This may catch buffer overrun from a previous string. */
1773 static void
1774 check_string_free_list ()
1776 struct Lisp_String *s;
1778 /* Pop a Lisp_String off the free-list. */
1779 s = string_free_list;
1780 while (s != NULL)
1782 if ((unsigned long)s < 1024)
1783 abort();
1784 s = NEXT_FREE_LISP_STRING (s);
1787 #else
1788 #define check_string_free_list()
1789 #endif
1791 /* Return a new Lisp_String. */
1793 static struct Lisp_String *
1794 allocate_string (void)
1796 struct Lisp_String *s;
1798 /* eassert (!handling_signal); */
1800 MALLOC_BLOCK_INPUT;
1802 /* If the free-list is empty, allocate a new string_block, and
1803 add all the Lisp_Strings in it to the free-list. */
1804 if (string_free_list == NULL)
1806 struct string_block *b;
1807 int i;
1809 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1810 memset (b, 0, sizeof *b);
1811 b->next = string_blocks;
1812 string_blocks = b;
1813 ++n_string_blocks;
1815 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1817 s = b->strings + i;
1818 NEXT_FREE_LISP_STRING (s) = string_free_list;
1819 string_free_list = s;
1822 total_free_strings += STRING_BLOCK_SIZE;
1825 check_string_free_list ();
1827 /* Pop a Lisp_String off the free-list. */
1828 s = string_free_list;
1829 string_free_list = NEXT_FREE_LISP_STRING (s);
1831 MALLOC_UNBLOCK_INPUT;
1833 /* Probably not strictly necessary, but play it safe. */
1834 memset (s, 0, sizeof *s);
1836 --total_free_strings;
1837 ++total_strings;
1838 ++strings_consed;
1839 consing_since_gc += sizeof *s;
1841 #ifdef GC_CHECK_STRING_BYTES
1842 if (!noninteractive)
1844 if (++check_string_bytes_count == 200)
1846 check_string_bytes_count = 0;
1847 check_string_bytes (1);
1849 else
1850 check_string_bytes (0);
1852 #endif /* GC_CHECK_STRING_BYTES */
1854 return s;
1858 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1859 plus a NUL byte at the end. Allocate an sdata structure for S, and
1860 set S->data to its `u.data' member. Store a NUL byte at the end of
1861 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1862 S->data if it was initially non-null. */
1864 void
1865 allocate_string_data (struct Lisp_String *s,
1866 EMACS_INT nchars, EMACS_INT nbytes)
1868 struct sdata *data, *old_data;
1869 struct sblock *b;
1870 EMACS_INT needed, old_nbytes;
1872 /* Determine the number of bytes needed to store NBYTES bytes
1873 of string data. */
1874 needed = SDATA_SIZE (nbytes);
1875 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1876 old_nbytes = GC_STRING_BYTES (s);
1878 MALLOC_BLOCK_INPUT;
1880 if (nbytes > LARGE_STRING_BYTES)
1882 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1884 #ifdef DOUG_LEA_MALLOC
1885 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1886 because mapped region contents are not preserved in
1887 a dumped Emacs.
1889 In case you think of allowing it in a dumped Emacs at the
1890 cost of not being able to re-dump, there's another reason:
1891 mmap'ed data typically have an address towards the top of the
1892 address space, which won't fit into an EMACS_INT (at least on
1893 32-bit systems with the current tagging scheme). --fx */
1894 mallopt (M_MMAP_MAX, 0);
1895 #endif
1897 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1899 #ifdef DOUG_LEA_MALLOC
1900 /* Back to a reasonable maximum of mmap'ed areas. */
1901 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1902 #endif
1904 b->next_free = &b->first_data;
1905 b->first_data.string = NULL;
1906 b->next = large_sblocks;
1907 large_sblocks = b;
1909 else if (current_sblock == NULL
1910 || (((char *) current_sblock + SBLOCK_SIZE
1911 - (char *) current_sblock->next_free)
1912 < (needed + GC_STRING_EXTRA)))
1914 /* Not enough room in the current sblock. */
1915 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1916 b->next_free = &b->first_data;
1917 b->first_data.string = NULL;
1918 b->next = NULL;
1920 if (current_sblock)
1921 current_sblock->next = b;
1922 else
1923 oldest_sblock = b;
1924 current_sblock = b;
1926 else
1927 b = current_sblock;
1929 data = b->next_free;
1930 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1932 MALLOC_UNBLOCK_INPUT;
1934 data->string = s;
1935 s->data = SDATA_DATA (data);
1936 #ifdef GC_CHECK_STRING_BYTES
1937 SDATA_NBYTES (data) = nbytes;
1938 #endif
1939 s->size = nchars;
1940 s->size_byte = nbytes;
1941 s->data[nbytes] = '\0';
1942 #ifdef GC_CHECK_STRING_OVERRUN
1943 memcpy (data + needed, string_overrun_cookie, GC_STRING_OVERRUN_COOKIE_SIZE);
1944 #endif
1946 /* If S had already data assigned, mark that as free by setting its
1947 string back-pointer to null, and recording the size of the data
1948 in it. */
1949 if (old_data)
1951 SDATA_NBYTES (old_data) = old_nbytes;
1952 old_data->string = NULL;
1955 consing_since_gc += needed;
1959 /* Sweep and compact strings. */
1961 static void
1962 sweep_strings (void)
1964 struct string_block *b, *next;
1965 struct string_block *live_blocks = NULL;
1967 string_free_list = NULL;
1968 total_strings = total_free_strings = 0;
1969 total_string_size = 0;
1971 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1972 for (b = string_blocks; b; b = next)
1974 int i, nfree = 0;
1975 struct Lisp_String *free_list_before = string_free_list;
1977 next = b->next;
1979 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1981 struct Lisp_String *s = b->strings + i;
1983 if (s->data)
1985 /* String was not on free-list before. */
1986 if (STRING_MARKED_P (s))
1988 /* String is live; unmark it and its intervals. */
1989 UNMARK_STRING (s);
1991 if (!NULL_INTERVAL_P (s->intervals))
1992 UNMARK_BALANCE_INTERVALS (s->intervals);
1994 ++total_strings;
1995 total_string_size += STRING_BYTES (s);
1997 else
1999 /* String is dead. Put it on the free-list. */
2000 struct sdata *data = SDATA_OF_STRING (s);
2002 /* Save the size of S in its sdata so that we know
2003 how large that is. Reset the sdata's string
2004 back-pointer so that we know it's free. */
2005 #ifdef GC_CHECK_STRING_BYTES
2006 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2007 abort ();
2008 #else
2009 data->u.nbytes = GC_STRING_BYTES (s);
2010 #endif
2011 data->string = NULL;
2013 /* Reset the strings's `data' member so that we
2014 know it's free. */
2015 s->data = NULL;
2017 /* Put the string on the free-list. */
2018 NEXT_FREE_LISP_STRING (s) = string_free_list;
2019 string_free_list = s;
2020 ++nfree;
2023 else
2025 /* S was on the free-list before. Put it there again. */
2026 NEXT_FREE_LISP_STRING (s) = string_free_list;
2027 string_free_list = s;
2028 ++nfree;
2032 /* Free blocks that contain free Lisp_Strings only, except
2033 the first two of them. */
2034 if (nfree == STRING_BLOCK_SIZE
2035 && total_free_strings > STRING_BLOCK_SIZE)
2037 lisp_free (b);
2038 --n_string_blocks;
2039 string_free_list = free_list_before;
2041 else
2043 total_free_strings += nfree;
2044 b->next = live_blocks;
2045 live_blocks = b;
2049 check_string_free_list ();
2051 string_blocks = live_blocks;
2052 free_large_strings ();
2053 compact_small_strings ();
2055 check_string_free_list ();
2059 /* Free dead large strings. */
2061 static void
2062 free_large_strings (void)
2064 struct sblock *b, *next;
2065 struct sblock *live_blocks = NULL;
2067 for (b = large_sblocks; b; b = next)
2069 next = b->next;
2071 if (b->first_data.string == NULL)
2072 lisp_free (b);
2073 else
2075 b->next = live_blocks;
2076 live_blocks = b;
2080 large_sblocks = live_blocks;
2084 /* Compact data of small strings. Free sblocks that don't contain
2085 data of live strings after compaction. */
2087 static void
2088 compact_small_strings (void)
2090 struct sblock *b, *tb, *next;
2091 struct sdata *from, *to, *end, *tb_end;
2092 struct sdata *to_end, *from_end;
2094 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2095 to, and TB_END is the end of TB. */
2096 tb = oldest_sblock;
2097 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2098 to = &tb->first_data;
2100 /* Step through the blocks from the oldest to the youngest. We
2101 expect that old blocks will stabilize over time, so that less
2102 copying will happen this way. */
2103 for (b = oldest_sblock; b; b = b->next)
2105 end = b->next_free;
2106 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2108 for (from = &b->first_data; from < end; from = from_end)
2110 /* Compute the next FROM here because copying below may
2111 overwrite data we need to compute it. */
2112 EMACS_INT nbytes;
2114 #ifdef GC_CHECK_STRING_BYTES
2115 /* Check that the string size recorded in the string is the
2116 same as the one recorded in the sdata structure. */
2117 if (from->string
2118 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2119 abort ();
2120 #endif /* GC_CHECK_STRING_BYTES */
2122 if (from->string)
2123 nbytes = GC_STRING_BYTES (from->string);
2124 else
2125 nbytes = SDATA_NBYTES (from);
2127 if (nbytes > LARGE_STRING_BYTES)
2128 abort ();
2130 nbytes = SDATA_SIZE (nbytes);
2131 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2133 #ifdef GC_CHECK_STRING_OVERRUN
2134 if (memcmp (string_overrun_cookie,
2135 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2136 GC_STRING_OVERRUN_COOKIE_SIZE))
2137 abort ();
2138 #endif
2140 /* FROM->string non-null means it's alive. Copy its data. */
2141 if (from->string)
2143 /* If TB is full, proceed with the next sblock. */
2144 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2145 if (to_end > tb_end)
2147 tb->next_free = to;
2148 tb = tb->next;
2149 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2150 to = &tb->first_data;
2151 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2154 /* Copy, and update the string's `data' pointer. */
2155 if (from != to)
2157 xassert (tb != b || to <= from);
2158 memmove (to, from, nbytes + GC_STRING_EXTRA);
2159 to->string->data = SDATA_DATA (to);
2162 /* Advance past the sdata we copied to. */
2163 to = to_end;
2168 /* The rest of the sblocks following TB don't contain live data, so
2169 we can free them. */
2170 for (b = tb->next; b; b = next)
2172 next = b->next;
2173 lisp_free (b);
2176 tb->next_free = to;
2177 tb->next = NULL;
2178 current_sblock = tb;
2182 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2183 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2184 LENGTH must be an integer.
2185 INIT must be an integer that represents a character. */)
2186 (Lisp_Object length, Lisp_Object init)
2188 register Lisp_Object val;
2189 register unsigned char *p, *end;
2190 int c;
2191 EMACS_INT nbytes;
2193 CHECK_NATNUM (length);
2194 CHECK_NUMBER (init);
2196 c = XINT (init);
2197 if (ASCII_CHAR_P (c))
2199 nbytes = XINT (length);
2200 val = make_uninit_string (nbytes);
2201 p = SDATA (val);
2202 end = p + SCHARS (val);
2203 while (p != end)
2204 *p++ = c;
2206 else
2208 unsigned char str[MAX_MULTIBYTE_LENGTH];
2209 int len = CHAR_STRING (c, str);
2210 EMACS_INT string_len = XINT (length);
2212 if (string_len > MOST_POSITIVE_FIXNUM / len)
2213 error ("Maximum string size exceeded");
2214 nbytes = len * string_len;
2215 val = make_uninit_multibyte_string (string_len, nbytes);
2216 p = SDATA (val);
2217 end = p + nbytes;
2218 while (p != end)
2220 memcpy (p, str, len);
2221 p += len;
2225 *p = 0;
2226 return val;
2230 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2231 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2232 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2233 (Lisp_Object length, Lisp_Object init)
2235 register Lisp_Object val;
2236 struct Lisp_Bool_Vector *p;
2237 int real_init, i;
2238 EMACS_INT length_in_chars, length_in_elts;
2239 int bits_per_value;
2241 CHECK_NATNUM (length);
2243 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2245 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2246 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2247 / BOOL_VECTOR_BITS_PER_CHAR);
2249 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2250 slot `size' of the struct Lisp_Bool_Vector. */
2251 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2253 /* Get rid of any bits that would cause confusion. */
2254 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
2255 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
2256 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2258 p = XBOOL_VECTOR (val);
2259 p->size = XFASTINT (length);
2261 real_init = (NILP (init) ? 0 : -1);
2262 for (i = 0; i < length_in_chars ; i++)
2263 p->data[i] = real_init;
2265 /* Clear the extraneous bits in the last byte. */
2266 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2267 p->data[length_in_chars - 1]
2268 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2270 return val;
2274 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2275 of characters from the contents. This string may be unibyte or
2276 multibyte, depending on the contents. */
2278 Lisp_Object
2279 make_string (const char *contents, EMACS_INT nbytes)
2281 register Lisp_Object val;
2282 EMACS_INT nchars, multibyte_nbytes;
2284 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2285 &nchars, &multibyte_nbytes);
2286 if (nbytes == nchars || nbytes != multibyte_nbytes)
2287 /* CONTENTS contains no multibyte sequences or contains an invalid
2288 multibyte sequence. We must make unibyte string. */
2289 val = make_unibyte_string (contents, nbytes);
2290 else
2291 val = make_multibyte_string (contents, nchars, nbytes);
2292 return val;
2296 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2298 Lisp_Object
2299 make_unibyte_string (const char *contents, EMACS_INT length)
2301 register Lisp_Object val;
2302 val = make_uninit_string (length);
2303 memcpy (SDATA (val), contents, length);
2304 return val;
2308 /* Make a multibyte string from NCHARS characters occupying NBYTES
2309 bytes at CONTENTS. */
2311 Lisp_Object
2312 make_multibyte_string (const char *contents,
2313 EMACS_INT nchars, EMACS_INT nbytes)
2315 register Lisp_Object val;
2316 val = make_uninit_multibyte_string (nchars, nbytes);
2317 memcpy (SDATA (val), contents, nbytes);
2318 return val;
2322 /* Make a string from NCHARS characters occupying NBYTES bytes at
2323 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2325 Lisp_Object
2326 make_string_from_bytes (const char *contents,
2327 EMACS_INT nchars, EMACS_INT nbytes)
2329 register Lisp_Object val;
2330 val = make_uninit_multibyte_string (nchars, nbytes);
2331 memcpy (SDATA (val), contents, nbytes);
2332 if (SBYTES (val) == SCHARS (val))
2333 STRING_SET_UNIBYTE (val);
2334 return val;
2338 /* Make a string from NCHARS characters occupying NBYTES bytes at
2339 CONTENTS. The argument MULTIBYTE controls whether to label the
2340 string as multibyte. If NCHARS is negative, it counts the number of
2341 characters by itself. */
2343 Lisp_Object
2344 make_specified_string (const char *contents,
2345 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
2347 register Lisp_Object val;
2349 if (nchars < 0)
2351 if (multibyte)
2352 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2353 nbytes);
2354 else
2355 nchars = nbytes;
2357 val = make_uninit_multibyte_string (nchars, nbytes);
2358 memcpy (SDATA (val), contents, nbytes);
2359 if (!multibyte)
2360 STRING_SET_UNIBYTE (val);
2361 return val;
2365 /* Make a string from the data at STR, treating it as multibyte if the
2366 data warrants. */
2368 Lisp_Object
2369 build_string (const char *str)
2371 return make_string (str, strlen (str));
2375 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2376 occupying LENGTH bytes. */
2378 Lisp_Object
2379 make_uninit_string (EMACS_INT length)
2381 Lisp_Object val;
2383 if (!length)
2384 return empty_unibyte_string;
2385 val = make_uninit_multibyte_string (length, length);
2386 STRING_SET_UNIBYTE (val);
2387 return val;
2391 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2392 which occupy NBYTES bytes. */
2394 Lisp_Object
2395 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2397 Lisp_Object string;
2398 struct Lisp_String *s;
2400 if (nchars < 0)
2401 abort ();
2402 if (!nbytes)
2403 return empty_multibyte_string;
2405 s = allocate_string ();
2406 allocate_string_data (s, nchars, nbytes);
2407 XSETSTRING (string, s);
2408 string_chars_consed += nbytes;
2409 return string;
2414 /***********************************************************************
2415 Float Allocation
2416 ***********************************************************************/
2418 /* We store float cells inside of float_blocks, allocating a new
2419 float_block with malloc whenever necessary. Float cells reclaimed
2420 by GC are put on a free list to be reallocated before allocating
2421 any new float cells from the latest float_block. */
2423 #define FLOAT_BLOCK_SIZE \
2424 (((BLOCK_BYTES - sizeof (struct float_block *) \
2425 /* The compiler might add padding at the end. */ \
2426 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2427 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2429 #define GETMARKBIT(block,n) \
2430 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2431 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2432 & 1)
2434 #define SETMARKBIT(block,n) \
2435 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2436 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2438 #define UNSETMARKBIT(block,n) \
2439 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2440 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2442 #define FLOAT_BLOCK(fptr) \
2443 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2445 #define FLOAT_INDEX(fptr) \
2446 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2448 struct float_block
2450 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2451 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2452 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2453 struct float_block *next;
2456 #define FLOAT_MARKED_P(fptr) \
2457 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2459 #define FLOAT_MARK(fptr) \
2460 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2462 #define FLOAT_UNMARK(fptr) \
2463 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2465 /* Current float_block. */
2467 struct float_block *float_block;
2469 /* Index of first unused Lisp_Float in the current float_block. */
2471 int float_block_index;
2473 /* Total number of float blocks now in use. */
2475 int n_float_blocks;
2477 /* Free-list of Lisp_Floats. */
2479 struct Lisp_Float *float_free_list;
2482 /* Initialize float allocation. */
2484 static void
2485 init_float (void)
2487 float_block = NULL;
2488 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2489 float_free_list = 0;
2490 n_float_blocks = 0;
2494 /* Return a new float object with value FLOAT_VALUE. */
2496 Lisp_Object
2497 make_float (double float_value)
2499 register Lisp_Object val;
2501 /* eassert (!handling_signal); */
2503 MALLOC_BLOCK_INPUT;
2505 if (float_free_list)
2507 /* We use the data field for chaining the free list
2508 so that we won't use the same field that has the mark bit. */
2509 XSETFLOAT (val, float_free_list);
2510 float_free_list = float_free_list->u.chain;
2512 else
2514 if (float_block_index == FLOAT_BLOCK_SIZE)
2516 register struct float_block *new;
2518 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2519 MEM_TYPE_FLOAT);
2520 new->next = float_block;
2521 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2522 float_block = new;
2523 float_block_index = 0;
2524 n_float_blocks++;
2526 XSETFLOAT (val, &float_block->floats[float_block_index]);
2527 float_block_index++;
2530 MALLOC_UNBLOCK_INPUT;
2532 XFLOAT_INIT (val, float_value);
2533 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2534 consing_since_gc += sizeof (struct Lisp_Float);
2535 floats_consed++;
2536 return val;
2541 /***********************************************************************
2542 Cons Allocation
2543 ***********************************************************************/
2545 /* We store cons cells inside of cons_blocks, allocating a new
2546 cons_block with malloc whenever necessary. Cons cells reclaimed by
2547 GC are put on a free list to be reallocated before allocating
2548 any new cons cells from the latest cons_block. */
2550 #define CONS_BLOCK_SIZE \
2551 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2552 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2554 #define CONS_BLOCK(fptr) \
2555 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2557 #define CONS_INDEX(fptr) \
2558 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2560 struct cons_block
2562 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2563 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2564 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2565 struct cons_block *next;
2568 #define CONS_MARKED_P(fptr) \
2569 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2571 #define CONS_MARK(fptr) \
2572 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2574 #define CONS_UNMARK(fptr) \
2575 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2577 /* Current cons_block. */
2579 struct cons_block *cons_block;
2581 /* Index of first unused Lisp_Cons in the current block. */
2583 int cons_block_index;
2585 /* Free-list of Lisp_Cons structures. */
2587 struct Lisp_Cons *cons_free_list;
2589 /* Total number of cons blocks now in use. */
2591 static int n_cons_blocks;
2594 /* Initialize cons allocation. */
2596 static void
2597 init_cons (void)
2599 cons_block = NULL;
2600 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2601 cons_free_list = 0;
2602 n_cons_blocks = 0;
2606 /* Explicitly free a cons cell by putting it on the free-list. */
2608 void
2609 free_cons (struct Lisp_Cons *ptr)
2611 ptr->u.chain = cons_free_list;
2612 #if GC_MARK_STACK
2613 ptr->car = Vdead;
2614 #endif
2615 cons_free_list = ptr;
2618 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2619 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2620 (Lisp_Object car, Lisp_Object cdr)
2622 register Lisp_Object val;
2624 /* eassert (!handling_signal); */
2626 MALLOC_BLOCK_INPUT;
2628 if (cons_free_list)
2630 /* We use the cdr for chaining the free list
2631 so that we won't use the same field that has the mark bit. */
2632 XSETCONS (val, cons_free_list);
2633 cons_free_list = cons_free_list->u.chain;
2635 else
2637 if (cons_block_index == CONS_BLOCK_SIZE)
2639 register struct cons_block *new;
2640 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2641 MEM_TYPE_CONS);
2642 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2643 new->next = cons_block;
2644 cons_block = new;
2645 cons_block_index = 0;
2646 n_cons_blocks++;
2648 XSETCONS (val, &cons_block->conses[cons_block_index]);
2649 cons_block_index++;
2652 MALLOC_UNBLOCK_INPUT;
2654 XSETCAR (val, car);
2655 XSETCDR (val, cdr);
2656 eassert (!CONS_MARKED_P (XCONS (val)));
2657 consing_since_gc += sizeof (struct Lisp_Cons);
2658 cons_cells_consed++;
2659 return val;
2662 /* Get an error now if there's any junk in the cons free list. */
2663 void
2664 check_cons_list (void)
2666 #ifdef GC_CHECK_CONS_LIST
2667 struct Lisp_Cons *tail = cons_free_list;
2669 while (tail)
2670 tail = tail->u.chain;
2671 #endif
2674 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2676 Lisp_Object
2677 list1 (Lisp_Object arg1)
2679 return Fcons (arg1, Qnil);
2682 Lisp_Object
2683 list2 (Lisp_Object arg1, Lisp_Object arg2)
2685 return Fcons (arg1, Fcons (arg2, Qnil));
2689 Lisp_Object
2690 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2692 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2696 Lisp_Object
2697 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2699 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2703 Lisp_Object
2704 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2706 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2707 Fcons (arg5, Qnil)))));
2711 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2712 doc: /* Return a newly created list with specified arguments as elements.
2713 Any number of arguments, even zero arguments, are allowed.
2714 usage: (list &rest OBJECTS) */)
2715 (int nargs, register Lisp_Object *args)
2717 register Lisp_Object val;
2718 val = Qnil;
2720 while (nargs > 0)
2722 nargs--;
2723 val = Fcons (args[nargs], val);
2725 return val;
2729 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2730 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2731 (register Lisp_Object length, Lisp_Object init)
2733 register Lisp_Object val;
2734 register EMACS_INT size;
2736 CHECK_NATNUM (length);
2737 size = XFASTINT (length);
2739 val = Qnil;
2740 while (size > 0)
2742 val = Fcons (init, val);
2743 --size;
2745 if (size > 0)
2747 val = Fcons (init, val);
2748 --size;
2750 if (size > 0)
2752 val = Fcons (init, val);
2753 --size;
2755 if (size > 0)
2757 val = Fcons (init, val);
2758 --size;
2760 if (size > 0)
2762 val = Fcons (init, val);
2763 --size;
2769 QUIT;
2772 return val;
2777 /***********************************************************************
2778 Vector Allocation
2779 ***********************************************************************/
2781 /* Singly-linked list of all vectors. */
2783 static struct Lisp_Vector *all_vectors;
2785 /* Total number of vector-like objects now in use. */
2787 static int n_vectors;
2790 /* Value is a pointer to a newly allocated Lisp_Vector structure
2791 with room for LEN Lisp_Objects. */
2793 static struct Lisp_Vector *
2794 allocate_vectorlike (EMACS_INT len)
2796 struct Lisp_Vector *p;
2797 size_t nbytes;
2799 MALLOC_BLOCK_INPUT;
2801 #ifdef DOUG_LEA_MALLOC
2802 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2803 because mapped region contents are not preserved in
2804 a dumped Emacs. */
2805 mallopt (M_MMAP_MAX, 0);
2806 #endif
2808 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2809 /* eassert (!handling_signal); */
2811 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2812 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2814 #ifdef DOUG_LEA_MALLOC
2815 /* Back to a reasonable maximum of mmap'ed areas. */
2816 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2817 #endif
2819 consing_since_gc += nbytes;
2820 vector_cells_consed += len;
2822 p->next = all_vectors;
2823 all_vectors = p;
2825 MALLOC_UNBLOCK_INPUT;
2827 ++n_vectors;
2828 return p;
2832 /* Allocate a vector with NSLOTS slots. */
2834 struct Lisp_Vector *
2835 allocate_vector (EMACS_INT nslots)
2837 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2838 v->size = nslots;
2839 return v;
2843 /* Allocate other vector-like structures. */
2845 struct Lisp_Vector *
2846 allocate_pseudovector (int memlen, int lisplen, EMACS_INT tag)
2848 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2849 EMACS_INT i;
2851 /* Only the first lisplen slots will be traced normally by the GC. */
2852 v->size = lisplen;
2853 for (i = 0; i < lisplen; ++i)
2854 v->contents[i] = Qnil;
2856 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2857 return v;
2860 struct Lisp_Hash_Table *
2861 allocate_hash_table (void)
2863 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2867 struct window *
2868 allocate_window (void)
2870 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
2874 struct terminal *
2875 allocate_terminal (void)
2877 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
2878 next_terminal, PVEC_TERMINAL);
2879 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2880 memset (&t->next_terminal, 0,
2881 (char*) (t + 1) - (char*) &t->next_terminal);
2883 return t;
2886 struct frame *
2887 allocate_frame (void)
2889 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
2890 face_cache, PVEC_FRAME);
2891 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2892 memset (&f->face_cache, 0,
2893 (char *) (f + 1) - (char *) &f->face_cache);
2894 return f;
2898 struct Lisp_Process *
2899 allocate_process (void)
2901 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
2905 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2906 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2907 See also the function `vector'. */)
2908 (register Lisp_Object length, Lisp_Object init)
2910 Lisp_Object vector;
2911 register EMACS_INT sizei;
2912 register EMACS_INT index;
2913 register struct Lisp_Vector *p;
2915 CHECK_NATNUM (length);
2916 sizei = XFASTINT (length);
2918 p = allocate_vector (sizei);
2919 for (index = 0; index < sizei; index++)
2920 p->contents[index] = init;
2922 XSETVECTOR (vector, p);
2923 return vector;
2927 /* Return a new `function vector' containing KIND as the first element,
2928 followed by NUM_NIL_SLOTS nil elements, and further elements copied from
2929 the vector PARAMS of length NUM_PARAMS (so the total length of the
2930 resulting vector is 1 + NUM_NIL_SLOTS + NUM_PARAMS).
2932 If NUM_PARAMS is zero, then PARAMS may be NULL.
2934 A `function vector', a.k.a. `funvec', is a funcallable vector in Emacs Lisp.
2935 See the function `funvec' for more detail. */
2937 Lisp_Object
2938 make_funvec (Lisp_Object kind, int num_nil_slots, int num_params,
2939 Lisp_Object *params)
2941 int param_index;
2942 Lisp_Object funvec;
2944 funvec = Fmake_vector (make_number (1 + num_nil_slots + num_params), Qnil);
2946 ASET (funvec, 0, kind);
2948 for (param_index = 0; param_index < num_params; param_index++)
2949 ASET (funvec, 1 + num_nil_slots + param_index, params[param_index]);
2951 XSETPVECTYPE (XVECTOR (funvec), PVEC_FUNVEC);
2952 XSETFUNVEC (funvec, XVECTOR (funvec));
2954 return funvec;
2958 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2959 doc: /* Return a newly created vector with specified arguments as elements.
2960 Any number of arguments, even zero arguments, are allowed.
2961 usage: (vector &rest OBJECTS) */)
2962 (register int nargs, Lisp_Object *args)
2964 register Lisp_Object len, val;
2965 register int index;
2966 register struct Lisp_Vector *p;
2968 XSETFASTINT (len, nargs);
2969 val = Fmake_vector (len, Qnil);
2970 p = XVECTOR (val);
2971 for (index = 0; index < nargs; index++)
2972 p->contents[index] = args[index];
2973 return val;
2977 DEFUN ("funvec", Ffunvec, Sfunvec, 1, MANY, 0,
2978 doc: /* Return a newly created `function vector' of type KIND.
2979 A `function vector', a.k.a. `funvec', is a funcallable vector in Emacs Lisp.
2980 KIND indicates the kind of funvec, and determines its behavior when called.
2981 The meaning of the remaining arguments depends on KIND. Currently
2982 implemented values of KIND, and their meaning, are:
2984 A list -- A byte-compiled function. See `make-byte-code' for the usual
2985 way to create byte-compiled functions.
2987 `curry' -- A curried function. Remaining arguments are a function to
2988 call, and arguments to prepend to user arguments at the
2989 time of the call; see the `curry' function.
2991 usage: (funvec KIND &rest PARAMS) */)
2992 (int nargs, Lisp_Object *args)
2994 return make_funvec (args[0], 0, nargs - 1, args + 1);
2998 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2999 doc: /* Create a byte-code object with specified arguments as elements.
3000 The arguments should be the arglist, bytecode-string, constant vector,
3001 stack size, (optional) doc string, and (optional) interactive spec.
3002 The first four arguments are required; at most six have any
3003 significance.
3004 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3005 (register int nargs, Lisp_Object *args)
3007 register Lisp_Object len, val;
3008 register int index;
3009 register struct Lisp_Vector *p;
3011 /* Make sure the arg-list is really a list, as that's what's used to
3012 distinguish a byte-compiled object from other funvecs. */
3013 CHECK_LIST (args[0]);
3015 XSETFASTINT (len, nargs);
3016 if (!NILP (Vpurify_flag))
3017 val = make_pure_vector ((EMACS_INT) nargs);
3018 else
3019 val = Fmake_vector (len, Qnil);
3021 if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3022 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3023 earlier because they produced a raw 8-bit string for byte-code
3024 and now such a byte-code string is loaded as multibyte while
3025 raw 8-bit characters converted to multibyte form. Thus, now we
3026 must convert them back to the original unibyte form. */
3027 args[1] = Fstring_as_unibyte (args[1]);
3029 p = XVECTOR (val);
3030 for (index = 0; index < nargs; index++)
3032 if (!NILP (Vpurify_flag))
3033 args[index] = Fpurecopy (args[index]);
3034 p->contents[index] = args[index];
3036 XSETPVECTYPE (p, PVEC_FUNVEC);
3037 XSETFUNVEC (val, p);
3038 return val;
3043 /***********************************************************************
3044 Symbol Allocation
3045 ***********************************************************************/
3047 /* Each symbol_block is just under 1020 bytes long, since malloc
3048 really allocates in units of powers of two and uses 4 bytes for its
3049 own overhead. */
3051 #define SYMBOL_BLOCK_SIZE \
3052 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3054 struct symbol_block
3056 /* Place `symbols' first, to preserve alignment. */
3057 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3058 struct symbol_block *next;
3061 /* Current symbol block and index of first unused Lisp_Symbol
3062 structure in it. */
3064 static struct symbol_block *symbol_block;
3065 static int symbol_block_index;
3067 /* List of free symbols. */
3069 static struct Lisp_Symbol *symbol_free_list;
3071 /* Total number of symbol blocks now in use. */
3073 static int n_symbol_blocks;
3076 /* Initialize symbol allocation. */
3078 static void
3079 init_symbol (void)
3081 symbol_block = NULL;
3082 symbol_block_index = SYMBOL_BLOCK_SIZE;
3083 symbol_free_list = 0;
3084 n_symbol_blocks = 0;
3088 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3089 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3090 Its value and function definition are void, and its property list is nil. */)
3091 (Lisp_Object name)
3093 register Lisp_Object val;
3094 register struct Lisp_Symbol *p;
3096 CHECK_STRING (name);
3098 /* eassert (!handling_signal); */
3100 MALLOC_BLOCK_INPUT;
3102 if (symbol_free_list)
3104 XSETSYMBOL (val, symbol_free_list);
3105 symbol_free_list = symbol_free_list->next;
3107 else
3109 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3111 struct symbol_block *new;
3112 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3113 MEM_TYPE_SYMBOL);
3114 new->next = symbol_block;
3115 symbol_block = new;
3116 symbol_block_index = 0;
3117 n_symbol_blocks++;
3119 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3120 symbol_block_index++;
3123 MALLOC_UNBLOCK_INPUT;
3125 p = XSYMBOL (val);
3126 p->xname = name;
3127 p->plist = Qnil;
3128 p->redirect = SYMBOL_PLAINVAL;
3129 SET_SYMBOL_VAL (p, Qunbound);
3130 p->function = Qunbound;
3131 p->next = NULL;
3132 p->gcmarkbit = 0;
3133 p->interned = SYMBOL_UNINTERNED;
3134 p->constant = 0;
3135 p->declared_special = 0;
3136 consing_since_gc += sizeof (struct Lisp_Symbol);
3137 symbols_consed++;
3138 return val;
3143 /***********************************************************************
3144 Marker (Misc) Allocation
3145 ***********************************************************************/
3147 /* Allocation of markers and other objects that share that structure.
3148 Works like allocation of conses. */
3150 #define MARKER_BLOCK_SIZE \
3151 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3153 struct marker_block
3155 /* Place `markers' first, to preserve alignment. */
3156 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3157 struct marker_block *next;
3160 static struct marker_block *marker_block;
3161 static int marker_block_index;
3163 static union Lisp_Misc *marker_free_list;
3165 /* Total number of marker blocks now in use. */
3167 static int n_marker_blocks;
3169 static void
3170 init_marker (void)
3172 marker_block = NULL;
3173 marker_block_index = MARKER_BLOCK_SIZE;
3174 marker_free_list = 0;
3175 n_marker_blocks = 0;
3178 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3180 Lisp_Object
3181 allocate_misc (void)
3183 Lisp_Object val;
3185 /* eassert (!handling_signal); */
3187 MALLOC_BLOCK_INPUT;
3189 if (marker_free_list)
3191 XSETMISC (val, marker_free_list);
3192 marker_free_list = marker_free_list->u_free.chain;
3194 else
3196 if (marker_block_index == MARKER_BLOCK_SIZE)
3198 struct marker_block *new;
3199 new = (struct marker_block *) lisp_malloc (sizeof *new,
3200 MEM_TYPE_MISC);
3201 new->next = marker_block;
3202 marker_block = new;
3203 marker_block_index = 0;
3204 n_marker_blocks++;
3205 total_free_markers += MARKER_BLOCK_SIZE;
3207 XSETMISC (val, &marker_block->markers[marker_block_index]);
3208 marker_block_index++;
3211 MALLOC_UNBLOCK_INPUT;
3213 --total_free_markers;
3214 consing_since_gc += sizeof (union Lisp_Misc);
3215 misc_objects_consed++;
3216 XMISCANY (val)->gcmarkbit = 0;
3217 return val;
3220 /* Free a Lisp_Misc object */
3222 void
3223 free_misc (Lisp_Object misc)
3225 XMISCTYPE (misc) = Lisp_Misc_Free;
3226 XMISC (misc)->u_free.chain = marker_free_list;
3227 marker_free_list = XMISC (misc);
3229 total_free_markers++;
3232 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3233 INTEGER. This is used to package C values to call record_unwind_protect.
3234 The unwind function can get the C values back using XSAVE_VALUE. */
3236 Lisp_Object
3237 make_save_value (void *pointer, int integer)
3239 register Lisp_Object val;
3240 register struct Lisp_Save_Value *p;
3242 val = allocate_misc ();
3243 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3244 p = XSAVE_VALUE (val);
3245 p->pointer = pointer;
3246 p->integer = integer;
3247 p->dogc = 0;
3248 return val;
3251 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3252 doc: /* Return a newly allocated marker which does not point at any place. */)
3253 (void)
3255 register Lisp_Object val;
3256 register struct Lisp_Marker *p;
3258 val = allocate_misc ();
3259 XMISCTYPE (val) = Lisp_Misc_Marker;
3260 p = XMARKER (val);
3261 p->buffer = 0;
3262 p->bytepos = 0;
3263 p->charpos = 0;
3264 p->next = NULL;
3265 p->insertion_type = 0;
3266 return val;
3269 /* Put MARKER back on the free list after using it temporarily. */
3271 void
3272 free_marker (Lisp_Object marker)
3274 unchain_marker (XMARKER (marker));
3275 free_misc (marker);
3279 /* Return a newly created vector or string with specified arguments as
3280 elements. If all the arguments are characters that can fit
3281 in a string of events, make a string; otherwise, make a vector.
3283 Any number of arguments, even zero arguments, are allowed. */
3285 Lisp_Object
3286 make_event_array (register int nargs, Lisp_Object *args)
3288 int i;
3290 for (i = 0; i < nargs; i++)
3291 /* The things that fit in a string
3292 are characters that are in 0...127,
3293 after discarding the meta bit and all the bits above it. */
3294 if (!INTEGERP (args[i])
3295 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3296 return Fvector (nargs, args);
3298 /* Since the loop exited, we know that all the things in it are
3299 characters, so we can make a string. */
3301 Lisp_Object result;
3303 result = Fmake_string (make_number (nargs), make_number (0));
3304 for (i = 0; i < nargs; i++)
3306 SSET (result, i, XINT (args[i]));
3307 /* Move the meta bit to the right place for a string char. */
3308 if (XINT (args[i]) & CHAR_META)
3309 SSET (result, i, SREF (result, i) | 0x80);
3312 return result;
3318 /************************************************************************
3319 Memory Full Handling
3320 ************************************************************************/
3323 /* Called if malloc returns zero. */
3325 void
3326 memory_full (void)
3328 int i;
3330 Vmemory_full = Qt;
3332 memory_full_cons_threshold = sizeof (struct cons_block);
3334 /* The first time we get here, free the spare memory. */
3335 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3336 if (spare_memory[i])
3338 if (i == 0)
3339 free (spare_memory[i]);
3340 else if (i >= 1 && i <= 4)
3341 lisp_align_free (spare_memory[i]);
3342 else
3343 lisp_free (spare_memory[i]);
3344 spare_memory[i] = 0;
3347 /* Record the space now used. When it decreases substantially,
3348 we can refill the memory reserve. */
3349 #ifndef SYSTEM_MALLOC
3350 bytes_used_when_full = BYTES_USED;
3351 #endif
3353 /* This used to call error, but if we've run out of memory, we could
3354 get infinite recursion trying to build the string. */
3355 xsignal (Qnil, Vmemory_signal_data);
3358 /* If we released our reserve (due to running out of memory),
3359 and we have a fair amount free once again,
3360 try to set aside another reserve in case we run out once more.
3362 This is called when a relocatable block is freed in ralloc.c,
3363 and also directly from this file, in case we're not using ralloc.c. */
3365 void
3366 refill_memory_reserve (void)
3368 #ifndef SYSTEM_MALLOC
3369 if (spare_memory[0] == 0)
3370 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3371 if (spare_memory[1] == 0)
3372 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3373 MEM_TYPE_CONS);
3374 if (spare_memory[2] == 0)
3375 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3376 MEM_TYPE_CONS);
3377 if (spare_memory[3] == 0)
3378 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3379 MEM_TYPE_CONS);
3380 if (spare_memory[4] == 0)
3381 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3382 MEM_TYPE_CONS);
3383 if (spare_memory[5] == 0)
3384 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3385 MEM_TYPE_STRING);
3386 if (spare_memory[6] == 0)
3387 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3388 MEM_TYPE_STRING);
3389 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3390 Vmemory_full = Qnil;
3391 #endif
3394 /************************************************************************
3395 C Stack Marking
3396 ************************************************************************/
3398 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3400 /* Conservative C stack marking requires a method to identify possibly
3401 live Lisp objects given a pointer value. We do this by keeping
3402 track of blocks of Lisp data that are allocated in a red-black tree
3403 (see also the comment of mem_node which is the type of nodes in
3404 that tree). Function lisp_malloc adds information for an allocated
3405 block to the red-black tree with calls to mem_insert, and function
3406 lisp_free removes it with mem_delete. Functions live_string_p etc
3407 call mem_find to lookup information about a given pointer in the
3408 tree, and use that to determine if the pointer points to a Lisp
3409 object or not. */
3411 /* Initialize this part of alloc.c. */
3413 static void
3414 mem_init (void)
3416 mem_z.left = mem_z.right = MEM_NIL;
3417 mem_z.parent = NULL;
3418 mem_z.color = MEM_BLACK;
3419 mem_z.start = mem_z.end = NULL;
3420 mem_root = MEM_NIL;
3424 /* Value is a pointer to the mem_node containing START. Value is
3425 MEM_NIL if there is no node in the tree containing START. */
3427 static INLINE struct mem_node *
3428 mem_find (void *start)
3430 struct mem_node *p;
3432 if (start < min_heap_address || start > max_heap_address)
3433 return MEM_NIL;
3435 /* Make the search always successful to speed up the loop below. */
3436 mem_z.start = start;
3437 mem_z.end = (char *) start + 1;
3439 p = mem_root;
3440 while (start < p->start || start >= p->end)
3441 p = start < p->start ? p->left : p->right;
3442 return p;
3446 /* Insert a new node into the tree for a block of memory with start
3447 address START, end address END, and type TYPE. Value is a
3448 pointer to the node that was inserted. */
3450 static struct mem_node *
3451 mem_insert (void *start, void *end, enum mem_type type)
3453 struct mem_node *c, *parent, *x;
3455 if (min_heap_address == NULL || start < min_heap_address)
3456 min_heap_address = start;
3457 if (max_heap_address == NULL || end > max_heap_address)
3458 max_heap_address = end;
3460 /* See where in the tree a node for START belongs. In this
3461 particular application, it shouldn't happen that a node is already
3462 present. For debugging purposes, let's check that. */
3463 c = mem_root;
3464 parent = NULL;
3466 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3468 while (c != MEM_NIL)
3470 if (start >= c->start && start < c->end)
3471 abort ();
3472 parent = c;
3473 c = start < c->start ? c->left : c->right;
3476 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3478 while (c != MEM_NIL)
3480 parent = c;
3481 c = start < c->start ? c->left : c->right;
3484 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3486 /* Create a new node. */
3487 #ifdef GC_MALLOC_CHECK
3488 x = (struct mem_node *) _malloc_internal (sizeof *x);
3489 if (x == NULL)
3490 abort ();
3491 #else
3492 x = (struct mem_node *) xmalloc (sizeof *x);
3493 #endif
3494 x->start = start;
3495 x->end = end;
3496 x->type = type;
3497 x->parent = parent;
3498 x->left = x->right = MEM_NIL;
3499 x->color = MEM_RED;
3501 /* Insert it as child of PARENT or install it as root. */
3502 if (parent)
3504 if (start < parent->start)
3505 parent->left = x;
3506 else
3507 parent->right = x;
3509 else
3510 mem_root = x;
3512 /* Re-establish red-black tree properties. */
3513 mem_insert_fixup (x);
3515 return x;
3519 /* Re-establish the red-black properties of the tree, and thereby
3520 balance the tree, after node X has been inserted; X is always red. */
3522 static void
3523 mem_insert_fixup (struct mem_node *x)
3525 while (x != mem_root && x->parent->color == MEM_RED)
3527 /* X is red and its parent is red. This is a violation of
3528 red-black tree property #3. */
3530 if (x->parent == x->parent->parent->left)
3532 /* We're on the left side of our grandparent, and Y is our
3533 "uncle". */
3534 struct mem_node *y = x->parent->parent->right;
3536 if (y->color == MEM_RED)
3538 /* Uncle and parent are red but should be black because
3539 X is red. Change the colors accordingly and proceed
3540 with the grandparent. */
3541 x->parent->color = MEM_BLACK;
3542 y->color = MEM_BLACK;
3543 x->parent->parent->color = MEM_RED;
3544 x = x->parent->parent;
3546 else
3548 /* Parent and uncle have different colors; parent is
3549 red, uncle is black. */
3550 if (x == x->parent->right)
3552 x = x->parent;
3553 mem_rotate_left (x);
3556 x->parent->color = MEM_BLACK;
3557 x->parent->parent->color = MEM_RED;
3558 mem_rotate_right (x->parent->parent);
3561 else
3563 /* This is the symmetrical case of above. */
3564 struct mem_node *y = x->parent->parent->left;
3566 if (y->color == MEM_RED)
3568 x->parent->color = MEM_BLACK;
3569 y->color = MEM_BLACK;
3570 x->parent->parent->color = MEM_RED;
3571 x = x->parent->parent;
3573 else
3575 if (x == x->parent->left)
3577 x = x->parent;
3578 mem_rotate_right (x);
3581 x->parent->color = MEM_BLACK;
3582 x->parent->parent->color = MEM_RED;
3583 mem_rotate_left (x->parent->parent);
3588 /* The root may have been changed to red due to the algorithm. Set
3589 it to black so that property #5 is satisfied. */
3590 mem_root->color = MEM_BLACK;
3594 /* (x) (y)
3595 / \ / \
3596 a (y) ===> (x) c
3597 / \ / \
3598 b c a b */
3600 static void
3601 mem_rotate_left (struct mem_node *x)
3603 struct mem_node *y;
3605 /* Turn y's left sub-tree into x's right sub-tree. */
3606 y = x->right;
3607 x->right = y->left;
3608 if (y->left != MEM_NIL)
3609 y->left->parent = x;
3611 /* Y's parent was x's parent. */
3612 if (y != MEM_NIL)
3613 y->parent = x->parent;
3615 /* Get the parent to point to y instead of x. */
3616 if (x->parent)
3618 if (x == x->parent->left)
3619 x->parent->left = y;
3620 else
3621 x->parent->right = y;
3623 else
3624 mem_root = y;
3626 /* Put x on y's left. */
3627 y->left = x;
3628 if (x != MEM_NIL)
3629 x->parent = y;
3633 /* (x) (Y)
3634 / \ / \
3635 (y) c ===> a (x)
3636 / \ / \
3637 a b b c */
3639 static void
3640 mem_rotate_right (struct mem_node *x)
3642 struct mem_node *y = x->left;
3644 x->left = y->right;
3645 if (y->right != MEM_NIL)
3646 y->right->parent = x;
3648 if (y != MEM_NIL)
3649 y->parent = x->parent;
3650 if (x->parent)
3652 if (x == x->parent->right)
3653 x->parent->right = y;
3654 else
3655 x->parent->left = y;
3657 else
3658 mem_root = y;
3660 y->right = x;
3661 if (x != MEM_NIL)
3662 x->parent = y;
3666 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3668 static void
3669 mem_delete (struct mem_node *z)
3671 struct mem_node *x, *y;
3673 if (!z || z == MEM_NIL)
3674 return;
3676 if (z->left == MEM_NIL || z->right == MEM_NIL)
3677 y = z;
3678 else
3680 y = z->right;
3681 while (y->left != MEM_NIL)
3682 y = y->left;
3685 if (y->left != MEM_NIL)
3686 x = y->left;
3687 else
3688 x = y->right;
3690 x->parent = y->parent;
3691 if (y->parent)
3693 if (y == y->parent->left)
3694 y->parent->left = x;
3695 else
3696 y->parent->right = x;
3698 else
3699 mem_root = x;
3701 if (y != z)
3703 z->start = y->start;
3704 z->end = y->end;
3705 z->type = y->type;
3708 if (y->color == MEM_BLACK)
3709 mem_delete_fixup (x);
3711 #ifdef GC_MALLOC_CHECK
3712 _free_internal (y);
3713 #else
3714 xfree (y);
3715 #endif
3719 /* Re-establish the red-black properties of the tree, after a
3720 deletion. */
3722 static void
3723 mem_delete_fixup (struct mem_node *x)
3725 while (x != mem_root && x->color == MEM_BLACK)
3727 if (x == x->parent->left)
3729 struct mem_node *w = x->parent->right;
3731 if (w->color == MEM_RED)
3733 w->color = MEM_BLACK;
3734 x->parent->color = MEM_RED;
3735 mem_rotate_left (x->parent);
3736 w = x->parent->right;
3739 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3741 w->color = MEM_RED;
3742 x = x->parent;
3744 else
3746 if (w->right->color == MEM_BLACK)
3748 w->left->color = MEM_BLACK;
3749 w->color = MEM_RED;
3750 mem_rotate_right (w);
3751 w = x->parent->right;
3753 w->color = x->parent->color;
3754 x->parent->color = MEM_BLACK;
3755 w->right->color = MEM_BLACK;
3756 mem_rotate_left (x->parent);
3757 x = mem_root;
3760 else
3762 struct mem_node *w = x->parent->left;
3764 if (w->color == MEM_RED)
3766 w->color = MEM_BLACK;
3767 x->parent->color = MEM_RED;
3768 mem_rotate_right (x->parent);
3769 w = x->parent->left;
3772 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3774 w->color = MEM_RED;
3775 x = x->parent;
3777 else
3779 if (w->left->color == MEM_BLACK)
3781 w->right->color = MEM_BLACK;
3782 w->color = MEM_RED;
3783 mem_rotate_left (w);
3784 w = x->parent->left;
3787 w->color = x->parent->color;
3788 x->parent->color = MEM_BLACK;
3789 w->left->color = MEM_BLACK;
3790 mem_rotate_right (x->parent);
3791 x = mem_root;
3796 x->color = MEM_BLACK;
3800 /* Value is non-zero if P is a pointer to a live Lisp string on
3801 the heap. M is a pointer to the mem_block for P. */
3803 static INLINE int
3804 live_string_p (struct mem_node *m, void *p)
3806 if (m->type == MEM_TYPE_STRING)
3808 struct string_block *b = (struct string_block *) m->start;
3809 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
3811 /* P must point to the start of a Lisp_String structure, and it
3812 must not be on the free-list. */
3813 return (offset >= 0
3814 && offset % sizeof b->strings[0] == 0
3815 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3816 && ((struct Lisp_String *) p)->data != NULL);
3818 else
3819 return 0;
3823 /* Value is non-zero if P is a pointer to a live Lisp cons on
3824 the heap. M is a pointer to the mem_block for P. */
3826 static INLINE int
3827 live_cons_p (struct mem_node *m, void *p)
3829 if (m->type == MEM_TYPE_CONS)
3831 struct cons_block *b = (struct cons_block *) m->start;
3832 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
3834 /* P must point to the start of a Lisp_Cons, not be
3835 one of the unused cells in the current cons block,
3836 and not be on the free-list. */
3837 return (offset >= 0
3838 && offset % sizeof b->conses[0] == 0
3839 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3840 && (b != cons_block
3841 || offset / sizeof b->conses[0] < cons_block_index)
3842 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3844 else
3845 return 0;
3849 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3850 the heap. M is a pointer to the mem_block for P. */
3852 static INLINE int
3853 live_symbol_p (struct mem_node *m, void *p)
3855 if (m->type == MEM_TYPE_SYMBOL)
3857 struct symbol_block *b = (struct symbol_block *) m->start;
3858 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
3860 /* P must point to the start of a Lisp_Symbol, not be
3861 one of the unused cells in the current symbol block,
3862 and not be on the free-list. */
3863 return (offset >= 0
3864 && offset % sizeof b->symbols[0] == 0
3865 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3866 && (b != symbol_block
3867 || offset / sizeof b->symbols[0] < symbol_block_index)
3868 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3870 else
3871 return 0;
3875 /* Value is non-zero if P is a pointer to a live Lisp float on
3876 the heap. M is a pointer to the mem_block for P. */
3878 static INLINE int
3879 live_float_p (struct mem_node *m, void *p)
3881 if (m->type == MEM_TYPE_FLOAT)
3883 struct float_block *b = (struct float_block *) m->start;
3884 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
3886 /* P must point to the start of a Lisp_Float and not be
3887 one of the unused cells in the current float block. */
3888 return (offset >= 0
3889 && offset % sizeof b->floats[0] == 0
3890 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3891 && (b != float_block
3892 || offset / sizeof b->floats[0] < float_block_index));
3894 else
3895 return 0;
3899 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3900 the heap. M is a pointer to the mem_block for P. */
3902 static INLINE int
3903 live_misc_p (struct mem_node *m, void *p)
3905 if (m->type == MEM_TYPE_MISC)
3907 struct marker_block *b = (struct marker_block *) m->start;
3908 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
3910 /* P must point to the start of a Lisp_Misc, not be
3911 one of the unused cells in the current misc block,
3912 and not be on the free-list. */
3913 return (offset >= 0
3914 && offset % sizeof b->markers[0] == 0
3915 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3916 && (b != marker_block
3917 || offset / sizeof b->markers[0] < marker_block_index)
3918 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
3920 else
3921 return 0;
3925 /* Value is non-zero if P is a pointer to a live vector-like object.
3926 M is a pointer to the mem_block for P. */
3928 static INLINE int
3929 live_vector_p (struct mem_node *m, void *p)
3931 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
3935 /* Value is non-zero if P is a pointer to a live buffer. M is a
3936 pointer to the mem_block for P. */
3938 static INLINE int
3939 live_buffer_p (struct mem_node *m, void *p)
3941 /* P must point to the start of the block, and the buffer
3942 must not have been killed. */
3943 return (m->type == MEM_TYPE_BUFFER
3944 && p == m->start
3945 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
3948 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3950 #if GC_MARK_STACK
3952 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3954 /* Array of objects that are kept alive because the C stack contains
3955 a pattern that looks like a reference to them . */
3957 #define MAX_ZOMBIES 10
3958 static Lisp_Object zombies[MAX_ZOMBIES];
3960 /* Number of zombie objects. */
3962 static int nzombies;
3964 /* Number of garbage collections. */
3966 static int ngcs;
3968 /* Average percentage of zombies per collection. */
3970 static double avg_zombies;
3972 /* Max. number of live and zombie objects. */
3974 static int max_live, max_zombies;
3976 /* Average number of live objects per GC. */
3978 static double avg_live;
3980 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3981 doc: /* Show information about live and zombie objects. */)
3982 (void)
3984 Lisp_Object args[8], zombie_list = Qnil;
3985 int i;
3986 for (i = 0; i < nzombies; i++)
3987 zombie_list = Fcons (zombies[i], zombie_list);
3988 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3989 args[1] = make_number (ngcs);
3990 args[2] = make_float (avg_live);
3991 args[3] = make_float (avg_zombies);
3992 args[4] = make_float (avg_zombies / avg_live / 100);
3993 args[5] = make_number (max_live);
3994 args[6] = make_number (max_zombies);
3995 args[7] = zombie_list;
3996 return Fmessage (8, args);
3999 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4002 /* Mark OBJ if we can prove it's a Lisp_Object. */
4004 static INLINE void
4005 mark_maybe_object (Lisp_Object obj)
4007 void *po;
4008 struct mem_node *m;
4010 if (INTEGERP (obj))
4011 return;
4013 po = (void *) XPNTR (obj);
4014 m = mem_find (po);
4016 if (m != MEM_NIL)
4018 int mark_p = 0;
4020 switch (XTYPE (obj))
4022 case Lisp_String:
4023 mark_p = (live_string_p (m, po)
4024 && !STRING_MARKED_P ((struct Lisp_String *) po));
4025 break;
4027 case Lisp_Cons:
4028 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4029 break;
4031 case Lisp_Symbol:
4032 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4033 break;
4035 case Lisp_Float:
4036 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4037 break;
4039 case Lisp_Vectorlike:
4040 /* Note: can't check BUFFERP before we know it's a
4041 buffer because checking that dereferences the pointer
4042 PO which might point anywhere. */
4043 if (live_vector_p (m, po))
4044 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4045 else if (live_buffer_p (m, po))
4046 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4047 break;
4049 case Lisp_Misc:
4050 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4051 break;
4053 default:
4054 break;
4057 if (mark_p)
4059 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4060 if (nzombies < MAX_ZOMBIES)
4061 zombies[nzombies] = obj;
4062 ++nzombies;
4063 #endif
4064 mark_object (obj);
4070 /* If P points to Lisp data, mark that as live if it isn't already
4071 marked. */
4073 static INLINE void
4074 mark_maybe_pointer (void *p)
4076 struct mem_node *m;
4078 /* Quickly rule out some values which can't point to Lisp data. */
4079 if ((EMACS_INT) p %
4080 #ifdef USE_LSB_TAG
4081 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4082 #else
4083 2 /* We assume that Lisp data is aligned on even addresses. */
4084 #endif
4086 return;
4088 m = mem_find (p);
4089 if (m != MEM_NIL)
4091 Lisp_Object obj = Qnil;
4093 switch (m->type)
4095 case MEM_TYPE_NON_LISP:
4096 /* Nothing to do; not a pointer to Lisp memory. */
4097 break;
4099 case MEM_TYPE_BUFFER:
4100 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4101 XSETVECTOR (obj, p);
4102 break;
4104 case MEM_TYPE_CONS:
4105 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4106 XSETCONS (obj, p);
4107 break;
4109 case MEM_TYPE_STRING:
4110 if (live_string_p (m, p)
4111 && !STRING_MARKED_P ((struct Lisp_String *) p))
4112 XSETSTRING (obj, p);
4113 break;
4115 case MEM_TYPE_MISC:
4116 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4117 XSETMISC (obj, p);
4118 break;
4120 case MEM_TYPE_SYMBOL:
4121 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4122 XSETSYMBOL (obj, p);
4123 break;
4125 case MEM_TYPE_FLOAT:
4126 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4127 XSETFLOAT (obj, p);
4128 break;
4130 case MEM_TYPE_VECTORLIKE:
4131 if (live_vector_p (m, p))
4133 Lisp_Object tem;
4134 XSETVECTOR (tem, p);
4135 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4136 obj = tem;
4138 break;
4140 default:
4141 abort ();
4144 if (!NILP (obj))
4145 mark_object (obj);
4150 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4151 or END+OFFSET..START. */
4153 static void
4154 mark_memory (void *start, void *end, int offset)
4156 Lisp_Object *p;
4157 void **pp;
4159 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4160 nzombies = 0;
4161 #endif
4163 /* Make START the pointer to the start of the memory region,
4164 if it isn't already. */
4165 if (end < start)
4167 void *tem = start;
4168 start = end;
4169 end = tem;
4172 /* Mark Lisp_Objects. */
4173 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4174 mark_maybe_object (*p);
4176 /* Mark Lisp data pointed to. This is necessary because, in some
4177 situations, the C compiler optimizes Lisp objects away, so that
4178 only a pointer to them remains. Example:
4180 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4183 Lisp_Object obj = build_string ("test");
4184 struct Lisp_String *s = XSTRING (obj);
4185 Fgarbage_collect ();
4186 fprintf (stderr, "test `%s'\n", s->data);
4187 return Qnil;
4190 Here, `obj' isn't really used, and the compiler optimizes it
4191 away. The only reference to the life string is through the
4192 pointer `s'. */
4194 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4195 mark_maybe_pointer (*pp);
4198 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4199 the GCC system configuration. In gcc 3.2, the only systems for
4200 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4201 by others?) and ns32k-pc532-min. */
4203 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4205 static int setjmp_tested_p, longjmps_done;
4207 #define SETJMP_WILL_LIKELY_WORK "\
4209 Emacs garbage collector has been changed to use conservative stack\n\
4210 marking. Emacs has determined that the method it uses to do the\n\
4211 marking will likely work on your system, but this isn't sure.\n\
4213 If you are a system-programmer, or can get the help of a local wizard\n\
4214 who is, please take a look at the function mark_stack in alloc.c, and\n\
4215 verify that the methods used are appropriate for your system.\n\
4217 Please mail the result to <emacs-devel@gnu.org>.\n\
4220 #define SETJMP_WILL_NOT_WORK "\
4222 Emacs garbage collector has been changed to use conservative stack\n\
4223 marking. Emacs has determined that the default method it uses to do the\n\
4224 marking will not work on your system. We will need a system-dependent\n\
4225 solution for your system.\n\
4227 Please take a look at the function mark_stack in alloc.c, and\n\
4228 try to find a way to make it work on your system.\n\
4230 Note that you may get false negatives, depending on the compiler.\n\
4231 In particular, you need to use -O with GCC for this test.\n\
4233 Please mail the result to <emacs-devel@gnu.org>.\n\
4237 /* Perform a quick check if it looks like setjmp saves registers in a
4238 jmp_buf. Print a message to stderr saying so. When this test
4239 succeeds, this is _not_ a proof that setjmp is sufficient for
4240 conservative stack marking. Only the sources or a disassembly
4241 can prove that. */
4243 static void
4244 test_setjmp (void)
4246 char buf[10];
4247 register int x;
4248 jmp_buf jbuf;
4249 int result = 0;
4251 /* Arrange for X to be put in a register. */
4252 sprintf (buf, "1");
4253 x = strlen (buf);
4254 x = 2 * x - 1;
4256 setjmp (jbuf);
4257 if (longjmps_done == 1)
4259 /* Came here after the longjmp at the end of the function.
4261 If x == 1, the longjmp has restored the register to its
4262 value before the setjmp, and we can hope that setjmp
4263 saves all such registers in the jmp_buf, although that
4264 isn't sure.
4266 For other values of X, either something really strange is
4267 taking place, or the setjmp just didn't save the register. */
4269 if (x == 1)
4270 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4271 else
4273 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4274 exit (1);
4278 ++longjmps_done;
4279 x = 2;
4280 if (longjmps_done == 1)
4281 longjmp (jbuf, 1);
4284 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4287 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4289 /* Abort if anything GCPRO'd doesn't survive the GC. */
4291 static void
4292 check_gcpros (void)
4294 struct gcpro *p;
4295 int i;
4297 for (p = gcprolist; p; p = p->next)
4298 for (i = 0; i < p->nvars; ++i)
4299 if (!survives_gc_p (p->var[i]))
4300 /* FIXME: It's not necessarily a bug. It might just be that the
4301 GCPRO is unnecessary or should release the object sooner. */
4302 abort ();
4305 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4307 static void
4308 dump_zombies (void)
4310 int i;
4312 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4313 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4315 fprintf (stderr, " %d = ", i);
4316 debug_print (zombies[i]);
4320 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4323 /* Mark live Lisp objects on the C stack.
4325 There are several system-dependent problems to consider when
4326 porting this to new architectures:
4328 Processor Registers
4330 We have to mark Lisp objects in CPU registers that can hold local
4331 variables or are used to pass parameters.
4333 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4334 something that either saves relevant registers on the stack, or
4335 calls mark_maybe_object passing it each register's contents.
4337 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4338 implementation assumes that calling setjmp saves registers we need
4339 to see in a jmp_buf which itself lies on the stack. This doesn't
4340 have to be true! It must be verified for each system, possibly
4341 by taking a look at the source code of setjmp.
4343 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4344 can use it as a machine independent method to store all registers
4345 to the stack. In this case the macros described in the previous
4346 two paragraphs are not used.
4348 Stack Layout
4350 Architectures differ in the way their processor stack is organized.
4351 For example, the stack might look like this
4353 +----------------+
4354 | Lisp_Object | size = 4
4355 +----------------+
4356 | something else | size = 2
4357 +----------------+
4358 | Lisp_Object | size = 4
4359 +----------------+
4360 | ... |
4362 In such a case, not every Lisp_Object will be aligned equally. To
4363 find all Lisp_Object on the stack it won't be sufficient to walk
4364 the stack in steps of 4 bytes. Instead, two passes will be
4365 necessary, one starting at the start of the stack, and a second
4366 pass starting at the start of the stack + 2. Likewise, if the
4367 minimal alignment of Lisp_Objects on the stack is 1, four passes
4368 would be necessary, each one starting with one byte more offset
4369 from the stack start.
4371 The current code assumes by default that Lisp_Objects are aligned
4372 equally on the stack. */
4374 static void
4375 mark_stack (void)
4377 int i;
4378 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4379 union aligned_jmpbuf {
4380 Lisp_Object o;
4381 jmp_buf j;
4382 } j;
4383 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4384 void *end;
4386 #ifdef HAVE___BUILTIN_UNWIND_INIT
4387 /* Force callee-saved registers and register windows onto the stack.
4388 This is the preferred method if available, obviating the need for
4389 machine dependent methods. */
4390 __builtin_unwind_init ();
4391 end = &end;
4392 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4393 /* This trick flushes the register windows so that all the state of
4394 the process is contained in the stack. */
4395 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4396 needed on ia64 too. See mach_dep.c, where it also says inline
4397 assembler doesn't work with relevant proprietary compilers. */
4398 #ifdef __sparc__
4399 #if defined (__sparc64__) && defined (__FreeBSD__)
4400 /* FreeBSD does not have a ta 3 handler. */
4401 asm ("flushw");
4402 #else
4403 asm ("ta 3");
4404 #endif
4405 #endif
4407 /* Save registers that we need to see on the stack. We need to see
4408 registers used to hold register variables and registers used to
4409 pass parameters. */
4410 #ifdef GC_SAVE_REGISTERS_ON_STACK
4411 GC_SAVE_REGISTERS_ON_STACK (end);
4412 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4414 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4415 setjmp will definitely work, test it
4416 and print a message with the result
4417 of the test. */
4418 if (!setjmp_tested_p)
4420 setjmp_tested_p = 1;
4421 test_setjmp ();
4423 #endif /* GC_SETJMP_WORKS */
4425 setjmp (j.j);
4426 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4427 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4428 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4430 /* This assumes that the stack is a contiguous region in memory. If
4431 that's not the case, something has to be done here to iterate
4432 over the stack segments. */
4433 #ifndef GC_LISP_OBJECT_ALIGNMENT
4434 #ifdef __GNUC__
4435 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4436 #else
4437 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4438 #endif
4439 #endif
4440 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4441 mark_memory (stack_base, end, i);
4442 /* Allow for marking a secondary stack, like the register stack on the
4443 ia64. */
4444 #ifdef GC_MARK_SECONDARY_STACK
4445 GC_MARK_SECONDARY_STACK ();
4446 #endif
4448 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4449 check_gcpros ();
4450 #endif
4453 #endif /* GC_MARK_STACK != 0 */
4456 /* Determine whether it is safe to access memory at address P. */
4457 static int
4458 valid_pointer_p (void *p)
4460 #ifdef WINDOWSNT
4461 return w32_valid_pointer_p (p, 16);
4462 #else
4463 int fd;
4465 /* Obviously, we cannot just access it (we would SEGV trying), so we
4466 trick the o/s to tell us whether p is a valid pointer.
4467 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4468 not validate p in that case. */
4470 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4472 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4473 emacs_close (fd);
4474 unlink ("__Valid__Lisp__Object__");
4475 return valid;
4478 return -1;
4479 #endif
4482 /* Return 1 if OBJ is a valid lisp object.
4483 Return 0 if OBJ is NOT a valid lisp object.
4484 Return -1 if we cannot validate OBJ.
4485 This function can be quite slow,
4486 so it should only be used in code for manual debugging. */
4489 valid_lisp_object_p (Lisp_Object obj)
4491 void *p;
4492 #if GC_MARK_STACK
4493 struct mem_node *m;
4494 #endif
4496 if (INTEGERP (obj))
4497 return 1;
4499 p = (void *) XPNTR (obj);
4500 if (PURE_POINTER_P (p))
4501 return 1;
4503 #if !GC_MARK_STACK
4504 return valid_pointer_p (p);
4505 #else
4507 m = mem_find (p);
4509 if (m == MEM_NIL)
4511 int valid = valid_pointer_p (p);
4512 if (valid <= 0)
4513 return valid;
4515 if (SUBRP (obj))
4516 return 1;
4518 return 0;
4521 switch (m->type)
4523 case MEM_TYPE_NON_LISP:
4524 return 0;
4526 case MEM_TYPE_BUFFER:
4527 return live_buffer_p (m, p);
4529 case MEM_TYPE_CONS:
4530 return live_cons_p (m, p);
4532 case MEM_TYPE_STRING:
4533 return live_string_p (m, p);
4535 case MEM_TYPE_MISC:
4536 return live_misc_p (m, p);
4538 case MEM_TYPE_SYMBOL:
4539 return live_symbol_p (m, p);
4541 case MEM_TYPE_FLOAT:
4542 return live_float_p (m, p);
4544 case MEM_TYPE_VECTORLIKE:
4545 return live_vector_p (m, p);
4547 default:
4548 break;
4551 return 0;
4552 #endif
4558 /***********************************************************************
4559 Pure Storage Management
4560 ***********************************************************************/
4562 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4563 pointer to it. TYPE is the Lisp type for which the memory is
4564 allocated. TYPE < 0 means it's not used for a Lisp object. */
4566 static POINTER_TYPE *
4567 pure_alloc (size_t size, int type)
4569 POINTER_TYPE *result;
4570 #ifdef USE_LSB_TAG
4571 size_t alignment = (1 << GCTYPEBITS);
4572 #else
4573 size_t alignment = sizeof (EMACS_INT);
4575 /* Give Lisp_Floats an extra alignment. */
4576 if (type == Lisp_Float)
4578 #if defined __GNUC__ && __GNUC__ >= 2
4579 alignment = __alignof (struct Lisp_Float);
4580 #else
4581 alignment = sizeof (struct Lisp_Float);
4582 #endif
4584 #endif
4586 again:
4587 if (type >= 0)
4589 /* Allocate space for a Lisp object from the beginning of the free
4590 space with taking account of alignment. */
4591 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4592 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4594 else
4596 /* Allocate space for a non-Lisp object from the end of the free
4597 space. */
4598 pure_bytes_used_non_lisp += size;
4599 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4601 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4603 if (pure_bytes_used <= pure_size)
4604 return result;
4606 /* Don't allocate a large amount here,
4607 because it might get mmap'd and then its address
4608 might not be usable. */
4609 purebeg = (char *) xmalloc (10000);
4610 pure_size = 10000;
4611 pure_bytes_used_before_overflow += pure_bytes_used - size;
4612 pure_bytes_used = 0;
4613 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4614 goto again;
4618 /* Print a warning if PURESIZE is too small. */
4620 void
4621 check_pure_size (void)
4623 if (pure_bytes_used_before_overflow)
4624 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4625 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4629 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4630 the non-Lisp data pool of the pure storage, and return its start
4631 address. Return NULL if not found. */
4633 static char *
4634 find_string_data_in_pure (const char *data, EMACS_INT nbytes)
4636 int i;
4637 EMACS_INT skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4638 const unsigned char *p;
4639 char *non_lisp_beg;
4641 if (pure_bytes_used_non_lisp < nbytes + 1)
4642 return NULL;
4644 /* Set up the Boyer-Moore table. */
4645 skip = nbytes + 1;
4646 for (i = 0; i < 256; i++)
4647 bm_skip[i] = skip;
4649 p = (const unsigned char *) data;
4650 while (--skip > 0)
4651 bm_skip[*p++] = skip;
4653 last_char_skip = bm_skip['\0'];
4655 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4656 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4658 /* See the comments in the function `boyer_moore' (search.c) for the
4659 use of `infinity'. */
4660 infinity = pure_bytes_used_non_lisp + 1;
4661 bm_skip['\0'] = infinity;
4663 p = (const unsigned char *) non_lisp_beg + nbytes;
4664 start = 0;
4667 /* Check the last character (== '\0'). */
4670 start += bm_skip[*(p + start)];
4672 while (start <= start_max);
4674 if (start < infinity)
4675 /* Couldn't find the last character. */
4676 return NULL;
4678 /* No less than `infinity' means we could find the last
4679 character at `p[start - infinity]'. */
4680 start -= infinity;
4682 /* Check the remaining characters. */
4683 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4684 /* Found. */
4685 return non_lisp_beg + start;
4687 start += last_char_skip;
4689 while (start <= start_max);
4691 return NULL;
4695 /* Return a string allocated in pure space. DATA is a buffer holding
4696 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4697 non-zero means make the result string multibyte.
4699 Must get an error if pure storage is full, since if it cannot hold
4700 a large string it may be able to hold conses that point to that
4701 string; then the string is not protected from gc. */
4703 Lisp_Object
4704 make_pure_string (const char *data,
4705 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
4707 Lisp_Object string;
4708 struct Lisp_String *s;
4710 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4711 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
4712 if (s->data == NULL)
4714 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4715 memcpy (s->data, data, nbytes);
4716 s->data[nbytes] = '\0';
4718 s->size = nchars;
4719 s->size_byte = multibyte ? nbytes : -1;
4720 s->intervals = NULL_INTERVAL;
4721 XSETSTRING (string, s);
4722 return string;
4725 /* Return a string a string allocated in pure space. Do not allocate
4726 the string data, just point to DATA. */
4728 Lisp_Object
4729 make_pure_c_string (const char *data)
4731 Lisp_Object string;
4732 struct Lisp_String *s;
4733 EMACS_INT nchars = strlen (data);
4735 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4736 s->size = nchars;
4737 s->size_byte = -1;
4738 s->data = (unsigned char *) data;
4739 s->intervals = NULL_INTERVAL;
4740 XSETSTRING (string, s);
4741 return string;
4744 /* Return a cons allocated from pure space. Give it pure copies
4745 of CAR as car and CDR as cdr. */
4747 Lisp_Object
4748 pure_cons (Lisp_Object car, Lisp_Object cdr)
4750 register Lisp_Object new;
4751 struct Lisp_Cons *p;
4753 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4754 XSETCONS (new, p);
4755 XSETCAR (new, Fpurecopy (car));
4756 XSETCDR (new, Fpurecopy (cdr));
4757 return new;
4761 /* Value is a float object with value NUM allocated from pure space. */
4763 static Lisp_Object
4764 make_pure_float (double num)
4766 register Lisp_Object new;
4767 struct Lisp_Float *p;
4769 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4770 XSETFLOAT (new, p);
4771 XFLOAT_INIT (new, num);
4772 return new;
4776 /* Return a vector with room for LEN Lisp_Objects allocated from
4777 pure space. */
4779 Lisp_Object
4780 make_pure_vector (EMACS_INT len)
4782 Lisp_Object new;
4783 struct Lisp_Vector *p;
4784 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4786 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4787 XSETVECTOR (new, p);
4788 XVECTOR (new)->size = len;
4789 return new;
4793 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4794 doc: /* Make a copy of object OBJ in pure storage.
4795 Recursively copies contents of vectors and cons cells.
4796 Does not copy symbols. Copies strings without text properties. */)
4797 (register Lisp_Object obj)
4799 if (NILP (Vpurify_flag))
4800 return obj;
4802 if (PURE_POINTER_P (XPNTR (obj)))
4803 return obj;
4805 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4807 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4808 if (!NILP (tmp))
4809 return tmp;
4812 if (CONSP (obj))
4813 obj = pure_cons (XCAR (obj), XCDR (obj));
4814 else if (FLOATP (obj))
4815 obj = make_pure_float (XFLOAT_DATA (obj));
4816 else if (STRINGP (obj))
4817 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
4818 SBYTES (obj),
4819 STRING_MULTIBYTE (obj));
4820 else if (FUNVECP (obj) || VECTORP (obj))
4822 register struct Lisp_Vector *vec;
4823 register EMACS_INT i;
4824 EMACS_INT size;
4826 size = XVECTOR (obj)->size;
4827 if (size & PSEUDOVECTOR_FLAG)
4828 size &= PSEUDOVECTOR_SIZE_MASK;
4829 vec = XVECTOR (make_pure_vector (size));
4830 for (i = 0; i < size; i++)
4831 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4832 if (FUNVECP (obj))
4834 XSETPVECTYPE (vec, PVEC_FUNVEC);
4835 XSETFUNVEC (obj, vec);
4837 else
4838 XSETVECTOR (obj, vec);
4840 else if (MARKERP (obj))
4841 error ("Attempt to copy a marker to pure storage");
4842 else
4843 /* Not purified, don't hash-cons. */
4844 return obj;
4846 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4847 Fputhash (obj, obj, Vpurify_flag);
4849 return obj;
4854 /***********************************************************************
4855 Protection from GC
4856 ***********************************************************************/
4858 /* Put an entry in staticvec, pointing at the variable with address
4859 VARADDRESS. */
4861 void
4862 staticpro (Lisp_Object *varaddress)
4864 staticvec[staticidx++] = varaddress;
4865 if (staticidx >= NSTATICS)
4866 abort ();
4870 /***********************************************************************
4871 Protection from GC
4872 ***********************************************************************/
4874 /* Temporarily prevent garbage collection. */
4877 inhibit_garbage_collection (void)
4879 int count = SPECPDL_INDEX ();
4880 int nbits = min (VALBITS, BITS_PER_INT);
4882 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4883 return count;
4887 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4888 doc: /* Reclaim storage for Lisp objects no longer needed.
4889 Garbage collection happens automatically if you cons more than
4890 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4891 `garbage-collect' normally returns a list with info on amount of space in use:
4892 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4893 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4894 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4895 (USED-STRINGS . FREE-STRINGS))
4896 However, if there was overflow in pure space, `garbage-collect'
4897 returns nil, because real GC can't be done. */)
4898 (void)
4900 register struct specbinding *bind;
4901 char stack_top_variable;
4902 register int i;
4903 int message_p;
4904 Lisp_Object total[8];
4905 int count = SPECPDL_INDEX ();
4906 EMACS_TIME t1, t2, t3;
4908 if (abort_on_gc)
4909 abort ();
4911 /* Can't GC if pure storage overflowed because we can't determine
4912 if something is a pure object or not. */
4913 if (pure_bytes_used_before_overflow)
4914 return Qnil;
4916 CHECK_CONS_LIST ();
4918 /* Don't keep undo information around forever.
4919 Do this early on, so it is no problem if the user quits. */
4921 register struct buffer *nextb = all_buffers;
4923 while (nextb)
4925 /* If a buffer's undo list is Qt, that means that undo is
4926 turned off in that buffer. Calling truncate_undo_list on
4927 Qt tends to return NULL, which effectively turns undo back on.
4928 So don't call truncate_undo_list if undo_list is Qt. */
4929 if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name)) && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
4930 truncate_undo_list (nextb);
4932 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4933 if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
4934 && ! nextb->text->inhibit_shrinking)
4936 /* If a buffer's gap size is more than 10% of the buffer
4937 size, or larger than 2000 bytes, then shrink it
4938 accordingly. Keep a minimum size of 20 bytes. */
4939 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4941 if (nextb->text->gap_size > size)
4943 struct buffer *save_current = current_buffer;
4944 current_buffer = nextb;
4945 make_gap (-(nextb->text->gap_size - size));
4946 current_buffer = save_current;
4950 nextb = nextb->next;
4954 EMACS_GET_TIME (t1);
4956 /* In case user calls debug_print during GC,
4957 don't let that cause a recursive GC. */
4958 consing_since_gc = 0;
4960 /* Save what's currently displayed in the echo area. */
4961 message_p = push_message ();
4962 record_unwind_protect (pop_message_unwind, Qnil);
4964 /* Save a copy of the contents of the stack, for debugging. */
4965 #if MAX_SAVE_STACK > 0
4966 if (NILP (Vpurify_flag))
4968 i = &stack_top_variable - stack_bottom;
4969 if (i < 0) i = -i;
4970 if (i < MAX_SAVE_STACK)
4972 if (stack_copy == 0)
4973 stack_copy = (char *) xmalloc (stack_copy_size = i);
4974 else if (stack_copy_size < i)
4975 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4976 if (stack_copy)
4978 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4979 memcpy (stack_copy, stack_bottom, i);
4980 else
4981 memcpy (stack_copy, &stack_top_variable, i);
4985 #endif /* MAX_SAVE_STACK > 0 */
4987 if (garbage_collection_messages)
4988 message1_nolog ("Garbage collecting...");
4990 BLOCK_INPUT;
4992 shrink_regexp_cache ();
4994 gc_in_progress = 1;
4996 /* clear_marks (); */
4998 /* Mark all the special slots that serve as the roots of accessibility. */
5000 for (i = 0; i < staticidx; i++)
5001 mark_object (*staticvec[i]);
5003 for (bind = specpdl; bind != specpdl_ptr; bind++)
5005 mark_object (bind->symbol);
5006 mark_object (bind->old_value);
5008 mark_terminals ();
5009 mark_kboards ();
5010 mark_ttys ();
5012 #ifdef USE_GTK
5014 extern void xg_mark_data (void);
5015 xg_mark_data ();
5017 #endif
5019 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5020 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5021 mark_stack ();
5022 #else
5024 register struct gcpro *tail;
5025 for (tail = gcprolist; tail; tail = tail->next)
5026 for (i = 0; i < tail->nvars; i++)
5027 mark_object (tail->var[i]);
5029 mark_byte_stack ();
5031 struct catchtag *catch;
5032 struct handler *handler;
5034 for (catch = catchlist; catch; catch = catch->next)
5036 mark_object (catch->tag);
5037 mark_object (catch->val);
5039 for (handler = handlerlist; handler; handler = handler->next)
5041 mark_object (handler->handler);
5042 mark_object (handler->var);
5045 mark_backtrace ();
5046 #endif
5048 #ifdef HAVE_WINDOW_SYSTEM
5049 mark_fringe_data ();
5050 #endif
5052 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5053 mark_stack ();
5054 #endif
5056 /* Everything is now marked, except for the things that require special
5057 finalization, i.e. the undo_list.
5058 Look thru every buffer's undo list
5059 for elements that update markers that were not marked,
5060 and delete them. */
5062 register struct buffer *nextb = all_buffers;
5064 while (nextb)
5066 /* If a buffer's undo list is Qt, that means that undo is
5067 turned off in that buffer. Calling truncate_undo_list on
5068 Qt tends to return NULL, which effectively turns undo back on.
5069 So don't call truncate_undo_list if undo_list is Qt. */
5070 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5072 Lisp_Object tail, prev;
5073 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
5074 prev = Qnil;
5075 while (CONSP (tail))
5077 if (CONSP (XCAR (tail))
5078 && MARKERP (XCAR (XCAR (tail)))
5079 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5081 if (NILP (prev))
5082 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5083 else
5085 tail = XCDR (tail);
5086 XSETCDR (prev, tail);
5089 else
5091 prev = tail;
5092 tail = XCDR (tail);
5096 /* Now that we have stripped the elements that need not be in the
5097 undo_list any more, we can finally mark the list. */
5098 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
5100 nextb = nextb->next;
5104 gc_sweep ();
5106 /* Clear the mark bits that we set in certain root slots. */
5108 unmark_byte_stack ();
5109 VECTOR_UNMARK (&buffer_defaults);
5110 VECTOR_UNMARK (&buffer_local_symbols);
5112 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5113 dump_zombies ();
5114 #endif
5116 UNBLOCK_INPUT;
5118 CHECK_CONS_LIST ();
5120 /* clear_marks (); */
5121 gc_in_progress = 0;
5123 consing_since_gc = 0;
5124 if (gc_cons_threshold < 10000)
5125 gc_cons_threshold = 10000;
5127 if (FLOATP (Vgc_cons_percentage))
5128 { /* Set gc_cons_combined_threshold. */
5129 EMACS_INT total = 0;
5131 total += total_conses * sizeof (struct Lisp_Cons);
5132 total += total_symbols * sizeof (struct Lisp_Symbol);
5133 total += total_markers * sizeof (union Lisp_Misc);
5134 total += total_string_size;
5135 total += total_vector_size * sizeof (Lisp_Object);
5136 total += total_floats * sizeof (struct Lisp_Float);
5137 total += total_intervals * sizeof (struct interval);
5138 total += total_strings * sizeof (struct Lisp_String);
5140 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
5142 else
5143 gc_relative_threshold = 0;
5145 if (garbage_collection_messages)
5147 if (message_p || minibuf_level > 0)
5148 restore_message ();
5149 else
5150 message1_nolog ("Garbage collecting...done");
5153 unbind_to (count, Qnil);
5155 total[0] = Fcons (make_number (total_conses),
5156 make_number (total_free_conses));
5157 total[1] = Fcons (make_number (total_symbols),
5158 make_number (total_free_symbols));
5159 total[2] = Fcons (make_number (total_markers),
5160 make_number (total_free_markers));
5161 total[3] = make_number (total_string_size);
5162 total[4] = make_number (total_vector_size);
5163 total[5] = Fcons (make_number (total_floats),
5164 make_number (total_free_floats));
5165 total[6] = Fcons (make_number (total_intervals),
5166 make_number (total_free_intervals));
5167 total[7] = Fcons (make_number (total_strings),
5168 make_number (total_free_strings));
5170 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5172 /* Compute average percentage of zombies. */
5173 double nlive = 0;
5175 for (i = 0; i < 7; ++i)
5176 if (CONSP (total[i]))
5177 nlive += XFASTINT (XCAR (total[i]));
5179 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5180 max_live = max (nlive, max_live);
5181 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5182 max_zombies = max (nzombies, max_zombies);
5183 ++ngcs;
5185 #endif
5187 if (!NILP (Vpost_gc_hook))
5189 int count = inhibit_garbage_collection ();
5190 safe_run_hooks (Qpost_gc_hook);
5191 unbind_to (count, Qnil);
5194 /* Accumulate statistics. */
5195 EMACS_GET_TIME (t2);
5196 EMACS_SUB_TIME (t3, t2, t1);
5197 if (FLOATP (Vgc_elapsed))
5198 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5199 EMACS_SECS (t3) +
5200 EMACS_USECS (t3) * 1.0e-6);
5201 gcs_done++;
5203 return Flist (sizeof total / sizeof *total, total);
5207 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5208 only interesting objects referenced from glyphs are strings. */
5210 static void
5211 mark_glyph_matrix (struct glyph_matrix *matrix)
5213 struct glyph_row *row = matrix->rows;
5214 struct glyph_row *end = row + matrix->nrows;
5216 for (; row < end; ++row)
5217 if (row->enabled_p)
5219 int area;
5220 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5222 struct glyph *glyph = row->glyphs[area];
5223 struct glyph *end_glyph = glyph + row->used[area];
5225 for (; glyph < end_glyph; ++glyph)
5226 if (STRINGP (glyph->object)
5227 && !STRING_MARKED_P (XSTRING (glyph->object)))
5228 mark_object (glyph->object);
5234 /* Mark Lisp faces in the face cache C. */
5236 static void
5237 mark_face_cache (struct face_cache *c)
5239 if (c)
5241 int i, j;
5242 for (i = 0; i < c->used; ++i)
5244 struct face *face = FACE_FROM_ID (c->f, i);
5246 if (face)
5248 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5249 mark_object (face->lface[j]);
5257 /* Mark reference to a Lisp_Object.
5258 If the object referred to has not been seen yet, recursively mark
5259 all the references contained in it. */
5261 #define LAST_MARKED_SIZE 500
5262 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5263 int last_marked_index;
5265 /* For debugging--call abort when we cdr down this many
5266 links of a list, in mark_object. In debugging,
5267 the call to abort will hit a breakpoint.
5268 Normally this is zero and the check never goes off. */
5269 static int mark_object_loop_halt;
5271 static void
5272 mark_vectorlike (struct Lisp_Vector *ptr)
5274 register EMACS_UINT size = ptr->size;
5275 register EMACS_UINT i;
5277 eassert (!VECTOR_MARKED_P (ptr));
5278 VECTOR_MARK (ptr); /* Else mark it */
5279 if (size & PSEUDOVECTOR_FLAG)
5280 size &= PSEUDOVECTOR_SIZE_MASK;
5282 /* Note that this size is not the memory-footprint size, but only
5283 the number of Lisp_Object fields that we should trace.
5284 The distinction is used e.g. by Lisp_Process which places extra
5285 non-Lisp_Object fields at the end of the structure. */
5286 for (i = 0; i < size; i++) /* and then mark its elements */
5287 mark_object (ptr->contents[i]);
5290 /* Like mark_vectorlike but optimized for char-tables (and
5291 sub-char-tables) assuming that the contents are mostly integers or
5292 symbols. */
5294 static void
5295 mark_char_table (struct Lisp_Vector *ptr)
5297 register EMACS_UINT size = ptr->size & PSEUDOVECTOR_SIZE_MASK;
5298 register EMACS_UINT i;
5300 eassert (!VECTOR_MARKED_P (ptr));
5301 VECTOR_MARK (ptr);
5302 for (i = 0; i < size; i++)
5304 Lisp_Object val = ptr->contents[i];
5306 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5307 continue;
5308 if (SUB_CHAR_TABLE_P (val))
5310 if (! VECTOR_MARKED_P (XVECTOR (val)))
5311 mark_char_table (XVECTOR (val));
5313 else
5314 mark_object (val);
5318 void
5319 mark_object (Lisp_Object arg)
5321 register Lisp_Object obj = arg;
5322 #ifdef GC_CHECK_MARKED_OBJECTS
5323 void *po;
5324 struct mem_node *m;
5325 #endif
5326 int cdr_count = 0;
5328 loop:
5330 if (PURE_POINTER_P (XPNTR (obj)))
5331 return;
5333 last_marked[last_marked_index++] = obj;
5334 if (last_marked_index == LAST_MARKED_SIZE)
5335 last_marked_index = 0;
5337 /* Perform some sanity checks on the objects marked here. Abort if
5338 we encounter an object we know is bogus. This increases GC time
5339 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5340 #ifdef GC_CHECK_MARKED_OBJECTS
5342 po = (void *) XPNTR (obj);
5344 /* Check that the object pointed to by PO is known to be a Lisp
5345 structure allocated from the heap. */
5346 #define CHECK_ALLOCATED() \
5347 do { \
5348 m = mem_find (po); \
5349 if (m == MEM_NIL) \
5350 abort (); \
5351 } while (0)
5353 /* Check that the object pointed to by PO is live, using predicate
5354 function LIVEP. */
5355 #define CHECK_LIVE(LIVEP) \
5356 do { \
5357 if (!LIVEP (m, po)) \
5358 abort (); \
5359 } while (0)
5361 /* Check both of the above conditions. */
5362 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5363 do { \
5364 CHECK_ALLOCATED (); \
5365 CHECK_LIVE (LIVEP); \
5366 } while (0) \
5368 #else /* not GC_CHECK_MARKED_OBJECTS */
5370 #define CHECK_ALLOCATED() (void) 0
5371 #define CHECK_LIVE(LIVEP) (void) 0
5372 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5374 #endif /* not GC_CHECK_MARKED_OBJECTS */
5376 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5378 case Lisp_String:
5380 register struct Lisp_String *ptr = XSTRING (obj);
5381 if (STRING_MARKED_P (ptr))
5382 break;
5383 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5384 MARK_INTERVAL_TREE (ptr->intervals);
5385 MARK_STRING (ptr);
5386 #ifdef GC_CHECK_STRING_BYTES
5387 /* Check that the string size recorded in the string is the
5388 same as the one recorded in the sdata structure. */
5389 CHECK_STRING_BYTES (ptr);
5390 #endif /* GC_CHECK_STRING_BYTES */
5392 break;
5394 case Lisp_Vectorlike:
5395 if (VECTOR_MARKED_P (XVECTOR (obj)))
5396 break;
5397 #ifdef GC_CHECK_MARKED_OBJECTS
5398 m = mem_find (po);
5399 if (m == MEM_NIL && !SUBRP (obj)
5400 && po != &buffer_defaults
5401 && po != &buffer_local_symbols)
5402 abort ();
5403 #endif /* GC_CHECK_MARKED_OBJECTS */
5405 if (BUFFERP (obj))
5407 #ifdef GC_CHECK_MARKED_OBJECTS
5408 if (po != &buffer_defaults && po != &buffer_local_symbols)
5410 struct buffer *b;
5411 for (b = all_buffers; b && b != po; b = b->next)
5413 if (b == NULL)
5414 abort ();
5416 #endif /* GC_CHECK_MARKED_OBJECTS */
5417 mark_buffer (obj);
5419 else if (SUBRP (obj))
5420 break;
5421 else if (FUNVECP (obj) && FUNVEC_COMPILED_P (obj))
5422 /* We could treat this just like a vector, but it is better to
5423 save the COMPILED_CONSTANTS element for last and avoid
5424 recursion there. */
5426 register struct Lisp_Vector *ptr = XVECTOR (obj);
5427 register EMACS_UINT size = ptr->size;
5428 register EMACS_UINT i;
5430 CHECK_LIVE (live_vector_p);
5431 VECTOR_MARK (ptr); /* Else mark it */
5432 size &= PSEUDOVECTOR_SIZE_MASK;
5433 for (i = 0; i < size; i++) /* and then mark its elements */
5435 if (i != COMPILED_CONSTANTS)
5436 mark_object (ptr->contents[i]);
5438 obj = ptr->contents[COMPILED_CONSTANTS];
5439 goto loop;
5441 else if (FRAMEP (obj))
5443 register struct frame *ptr = XFRAME (obj);
5444 mark_vectorlike (XVECTOR (obj));
5445 mark_face_cache (ptr->face_cache);
5447 else if (WINDOWP (obj))
5449 register struct Lisp_Vector *ptr = XVECTOR (obj);
5450 struct window *w = XWINDOW (obj);
5451 mark_vectorlike (ptr);
5452 /* Mark glyphs for leaf windows. Marking window matrices is
5453 sufficient because frame matrices use the same glyph
5454 memory. */
5455 if (NILP (w->hchild)
5456 && NILP (w->vchild)
5457 && w->current_matrix)
5459 mark_glyph_matrix (w->current_matrix);
5460 mark_glyph_matrix (w->desired_matrix);
5463 else if (HASH_TABLE_P (obj))
5465 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5466 mark_vectorlike ((struct Lisp_Vector *)h);
5467 /* If hash table is not weak, mark all keys and values.
5468 For weak tables, mark only the vector. */
5469 if (NILP (h->weak))
5470 mark_object (h->key_and_value);
5471 else
5472 VECTOR_MARK (XVECTOR (h->key_and_value));
5474 else if (CHAR_TABLE_P (obj))
5475 mark_char_table (XVECTOR (obj));
5476 else
5477 mark_vectorlike (XVECTOR (obj));
5478 break;
5480 case Lisp_Symbol:
5482 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5483 struct Lisp_Symbol *ptrx;
5485 if (ptr->gcmarkbit)
5486 break;
5487 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5488 ptr->gcmarkbit = 1;
5489 mark_object (ptr->function);
5490 mark_object (ptr->plist);
5491 switch (ptr->redirect)
5493 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5494 case SYMBOL_VARALIAS:
5496 Lisp_Object tem;
5497 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5498 mark_object (tem);
5499 break;
5501 case SYMBOL_LOCALIZED:
5503 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5504 /* If the value is forwarded to a buffer or keyboard field,
5505 these are marked when we see the corresponding object.
5506 And if it's forwarded to a C variable, either it's not
5507 a Lisp_Object var, or it's staticpro'd already. */
5508 mark_object (blv->where);
5509 mark_object (blv->valcell);
5510 mark_object (blv->defcell);
5511 break;
5513 case SYMBOL_FORWARDED:
5514 /* If the value is forwarded to a buffer or keyboard field,
5515 these are marked when we see the corresponding object.
5516 And if it's forwarded to a C variable, either it's not
5517 a Lisp_Object var, or it's staticpro'd already. */
5518 break;
5519 default: abort ();
5521 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5522 MARK_STRING (XSTRING (ptr->xname));
5523 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5525 ptr = ptr->next;
5526 if (ptr)
5528 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5529 XSETSYMBOL (obj, ptrx);
5530 goto loop;
5533 break;
5535 case Lisp_Misc:
5536 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5537 if (XMISCANY (obj)->gcmarkbit)
5538 break;
5539 XMISCANY (obj)->gcmarkbit = 1;
5541 switch (XMISCTYPE (obj))
5544 case Lisp_Misc_Marker:
5545 /* DO NOT mark thru the marker's chain.
5546 The buffer's markers chain does not preserve markers from gc;
5547 instead, markers are removed from the chain when freed by gc. */
5548 break;
5550 case Lisp_Misc_Save_Value:
5551 #if GC_MARK_STACK
5553 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5554 /* If DOGC is set, POINTER is the address of a memory
5555 area containing INTEGER potential Lisp_Objects. */
5556 if (ptr->dogc)
5558 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5559 int nelt;
5560 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5561 mark_maybe_object (*p);
5564 #endif
5565 break;
5567 case Lisp_Misc_Overlay:
5569 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5570 mark_object (ptr->start);
5571 mark_object (ptr->end);
5572 mark_object (ptr->plist);
5573 if (ptr->next)
5575 XSETMISC (obj, ptr->next);
5576 goto loop;
5579 break;
5581 default:
5582 abort ();
5584 break;
5586 case Lisp_Cons:
5588 register struct Lisp_Cons *ptr = XCONS (obj);
5589 if (CONS_MARKED_P (ptr))
5590 break;
5591 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5592 CONS_MARK (ptr);
5593 /* If the cdr is nil, avoid recursion for the car. */
5594 if (EQ (ptr->u.cdr, Qnil))
5596 obj = ptr->car;
5597 cdr_count = 0;
5598 goto loop;
5600 mark_object (ptr->car);
5601 obj = ptr->u.cdr;
5602 cdr_count++;
5603 if (cdr_count == mark_object_loop_halt)
5604 abort ();
5605 goto loop;
5608 case Lisp_Float:
5609 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5610 FLOAT_MARK (XFLOAT (obj));
5611 break;
5613 case_Lisp_Int:
5614 break;
5616 default:
5617 abort ();
5620 #undef CHECK_LIVE
5621 #undef CHECK_ALLOCATED
5622 #undef CHECK_ALLOCATED_AND_LIVE
5625 /* Mark the pointers in a buffer structure. */
5627 static void
5628 mark_buffer (Lisp_Object buf)
5630 register struct buffer *buffer = XBUFFER (buf);
5631 register Lisp_Object *ptr, tmp;
5632 Lisp_Object base_buffer;
5634 eassert (!VECTOR_MARKED_P (buffer));
5635 VECTOR_MARK (buffer);
5637 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5639 /* For now, we just don't mark the undo_list. It's done later in
5640 a special way just before the sweep phase, and after stripping
5641 some of its elements that are not needed any more. */
5643 if (buffer->overlays_before)
5645 XSETMISC (tmp, buffer->overlays_before);
5646 mark_object (tmp);
5648 if (buffer->overlays_after)
5650 XSETMISC (tmp, buffer->overlays_after);
5651 mark_object (tmp);
5654 /* buffer-local Lisp variables start at `undo_list',
5655 tho only the ones from `name' on are GC'd normally. */
5656 for (ptr = &buffer->BUFFER_INTERNAL_FIELD (name);
5657 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5658 ptr++)
5659 mark_object (*ptr);
5661 /* If this is an indirect buffer, mark its base buffer. */
5662 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5664 XSETBUFFER (base_buffer, buffer->base_buffer);
5665 mark_buffer (base_buffer);
5669 /* Mark the Lisp pointers in the terminal objects.
5670 Called by the Fgarbage_collector. */
5672 static void
5673 mark_terminals (void)
5675 struct terminal *t;
5676 for (t = terminal_list; t; t = t->next_terminal)
5678 eassert (t->name != NULL);
5679 #ifdef HAVE_WINDOW_SYSTEM
5680 /* If a terminal object is reachable from a stacpro'ed object,
5681 it might have been marked already. Make sure the image cache
5682 gets marked. */
5683 mark_image_cache (t->image_cache);
5684 #endif /* HAVE_WINDOW_SYSTEM */
5685 if (!VECTOR_MARKED_P (t))
5686 mark_vectorlike ((struct Lisp_Vector *)t);
5692 /* Value is non-zero if OBJ will survive the current GC because it's
5693 either marked or does not need to be marked to survive. */
5696 survives_gc_p (Lisp_Object obj)
5698 int survives_p;
5700 switch (XTYPE (obj))
5702 case_Lisp_Int:
5703 survives_p = 1;
5704 break;
5706 case Lisp_Symbol:
5707 survives_p = XSYMBOL (obj)->gcmarkbit;
5708 break;
5710 case Lisp_Misc:
5711 survives_p = XMISCANY (obj)->gcmarkbit;
5712 break;
5714 case Lisp_String:
5715 survives_p = STRING_MARKED_P (XSTRING (obj));
5716 break;
5718 case Lisp_Vectorlike:
5719 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5720 break;
5722 case Lisp_Cons:
5723 survives_p = CONS_MARKED_P (XCONS (obj));
5724 break;
5726 case Lisp_Float:
5727 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5728 break;
5730 default:
5731 abort ();
5734 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5739 /* Sweep: find all structures not marked, and free them. */
5741 static void
5742 gc_sweep (void)
5744 /* Remove or mark entries in weak hash tables.
5745 This must be done before any object is unmarked. */
5746 sweep_weak_hash_tables ();
5748 sweep_strings ();
5749 #ifdef GC_CHECK_STRING_BYTES
5750 if (!noninteractive)
5751 check_string_bytes (1);
5752 #endif
5754 /* Put all unmarked conses on free list */
5756 register struct cons_block *cblk;
5757 struct cons_block **cprev = &cons_block;
5758 register int lim = cons_block_index;
5759 register int num_free = 0, num_used = 0;
5761 cons_free_list = 0;
5763 for (cblk = cons_block; cblk; cblk = *cprev)
5765 register int i = 0;
5766 int this_free = 0;
5767 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5769 /* Scan the mark bits an int at a time. */
5770 for (i = 0; i <= ilim; i++)
5772 if (cblk->gcmarkbits[i] == -1)
5774 /* Fast path - all cons cells for this int are marked. */
5775 cblk->gcmarkbits[i] = 0;
5776 num_used += BITS_PER_INT;
5778 else
5780 /* Some cons cells for this int are not marked.
5781 Find which ones, and free them. */
5782 int start, pos, stop;
5784 start = i * BITS_PER_INT;
5785 stop = lim - start;
5786 if (stop > BITS_PER_INT)
5787 stop = BITS_PER_INT;
5788 stop += start;
5790 for (pos = start; pos < stop; pos++)
5792 if (!CONS_MARKED_P (&cblk->conses[pos]))
5794 this_free++;
5795 cblk->conses[pos].u.chain = cons_free_list;
5796 cons_free_list = &cblk->conses[pos];
5797 #if GC_MARK_STACK
5798 cons_free_list->car = Vdead;
5799 #endif
5801 else
5803 num_used++;
5804 CONS_UNMARK (&cblk->conses[pos]);
5810 lim = CONS_BLOCK_SIZE;
5811 /* If this block contains only free conses and we have already
5812 seen more than two blocks worth of free conses then deallocate
5813 this block. */
5814 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5816 *cprev = cblk->next;
5817 /* Unhook from the free list. */
5818 cons_free_list = cblk->conses[0].u.chain;
5819 lisp_align_free (cblk);
5820 n_cons_blocks--;
5822 else
5824 num_free += this_free;
5825 cprev = &cblk->next;
5828 total_conses = num_used;
5829 total_free_conses = num_free;
5832 /* Put all unmarked floats on free list */
5834 register struct float_block *fblk;
5835 struct float_block **fprev = &float_block;
5836 register int lim = float_block_index;
5837 register int num_free = 0, num_used = 0;
5839 float_free_list = 0;
5841 for (fblk = float_block; fblk; fblk = *fprev)
5843 register int i;
5844 int this_free = 0;
5845 for (i = 0; i < lim; i++)
5846 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5848 this_free++;
5849 fblk->floats[i].u.chain = float_free_list;
5850 float_free_list = &fblk->floats[i];
5852 else
5854 num_used++;
5855 FLOAT_UNMARK (&fblk->floats[i]);
5857 lim = FLOAT_BLOCK_SIZE;
5858 /* If this block contains only free floats and we have already
5859 seen more than two blocks worth of free floats then deallocate
5860 this block. */
5861 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5863 *fprev = fblk->next;
5864 /* Unhook from the free list. */
5865 float_free_list = fblk->floats[0].u.chain;
5866 lisp_align_free (fblk);
5867 n_float_blocks--;
5869 else
5871 num_free += this_free;
5872 fprev = &fblk->next;
5875 total_floats = num_used;
5876 total_free_floats = num_free;
5879 /* Put all unmarked intervals on free list */
5881 register struct interval_block *iblk;
5882 struct interval_block **iprev = &interval_block;
5883 register int lim = interval_block_index;
5884 register int num_free = 0, num_used = 0;
5886 interval_free_list = 0;
5888 for (iblk = interval_block; iblk; iblk = *iprev)
5890 register int i;
5891 int this_free = 0;
5893 for (i = 0; i < lim; i++)
5895 if (!iblk->intervals[i].gcmarkbit)
5897 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5898 interval_free_list = &iblk->intervals[i];
5899 this_free++;
5901 else
5903 num_used++;
5904 iblk->intervals[i].gcmarkbit = 0;
5907 lim = INTERVAL_BLOCK_SIZE;
5908 /* If this block contains only free intervals and we have already
5909 seen more than two blocks worth of free intervals then
5910 deallocate this block. */
5911 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5913 *iprev = iblk->next;
5914 /* Unhook from the free list. */
5915 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5916 lisp_free (iblk);
5917 n_interval_blocks--;
5919 else
5921 num_free += this_free;
5922 iprev = &iblk->next;
5925 total_intervals = num_used;
5926 total_free_intervals = num_free;
5929 /* Put all unmarked symbols on free list */
5931 register struct symbol_block *sblk;
5932 struct symbol_block **sprev = &symbol_block;
5933 register int lim = symbol_block_index;
5934 register int num_free = 0, num_used = 0;
5936 symbol_free_list = NULL;
5938 for (sblk = symbol_block; sblk; sblk = *sprev)
5940 int this_free = 0;
5941 struct Lisp_Symbol *sym = sblk->symbols;
5942 struct Lisp_Symbol *end = sym + lim;
5944 for (; sym < end; ++sym)
5946 /* Check if the symbol was created during loadup. In such a case
5947 it might be pointed to by pure bytecode which we don't trace,
5948 so we conservatively assume that it is live. */
5949 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5951 if (!sym->gcmarkbit && !pure_p)
5953 if (sym->redirect == SYMBOL_LOCALIZED)
5954 xfree (SYMBOL_BLV (sym));
5955 sym->next = symbol_free_list;
5956 symbol_free_list = sym;
5957 #if GC_MARK_STACK
5958 symbol_free_list->function = Vdead;
5959 #endif
5960 ++this_free;
5962 else
5964 ++num_used;
5965 if (!pure_p)
5966 UNMARK_STRING (XSTRING (sym->xname));
5967 sym->gcmarkbit = 0;
5971 lim = SYMBOL_BLOCK_SIZE;
5972 /* If this block contains only free symbols and we have already
5973 seen more than two blocks worth of free symbols then deallocate
5974 this block. */
5975 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5977 *sprev = sblk->next;
5978 /* Unhook from the free list. */
5979 symbol_free_list = sblk->symbols[0].next;
5980 lisp_free (sblk);
5981 n_symbol_blocks--;
5983 else
5985 num_free += this_free;
5986 sprev = &sblk->next;
5989 total_symbols = num_used;
5990 total_free_symbols = num_free;
5993 /* Put all unmarked misc's on free list.
5994 For a marker, first unchain it from the buffer it points into. */
5996 register struct marker_block *mblk;
5997 struct marker_block **mprev = &marker_block;
5998 register int lim = marker_block_index;
5999 register int num_free = 0, num_used = 0;
6001 marker_free_list = 0;
6003 for (mblk = marker_block; mblk; mblk = *mprev)
6005 register int i;
6006 int this_free = 0;
6008 for (i = 0; i < lim; i++)
6010 if (!mblk->markers[i].u_any.gcmarkbit)
6012 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
6013 unchain_marker (&mblk->markers[i].u_marker);
6014 /* Set the type of the freed object to Lisp_Misc_Free.
6015 We could leave the type alone, since nobody checks it,
6016 but this might catch bugs faster. */
6017 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
6018 mblk->markers[i].u_free.chain = marker_free_list;
6019 marker_free_list = &mblk->markers[i];
6020 this_free++;
6022 else
6024 num_used++;
6025 mblk->markers[i].u_any.gcmarkbit = 0;
6028 lim = MARKER_BLOCK_SIZE;
6029 /* If this block contains only free markers and we have already
6030 seen more than two blocks worth of free markers then deallocate
6031 this block. */
6032 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6034 *mprev = mblk->next;
6035 /* Unhook from the free list. */
6036 marker_free_list = mblk->markers[0].u_free.chain;
6037 lisp_free (mblk);
6038 n_marker_blocks--;
6040 else
6042 num_free += this_free;
6043 mprev = &mblk->next;
6047 total_markers = num_used;
6048 total_free_markers = num_free;
6051 /* Free all unmarked buffers */
6053 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6055 while (buffer)
6056 if (!VECTOR_MARKED_P (buffer))
6058 if (prev)
6059 prev->next = buffer->next;
6060 else
6061 all_buffers = buffer->next;
6062 next = buffer->next;
6063 lisp_free (buffer);
6064 buffer = next;
6066 else
6068 VECTOR_UNMARK (buffer);
6069 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6070 prev = buffer, buffer = buffer->next;
6074 /* Free all unmarked vectors */
6076 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6077 total_vector_size = 0;
6079 while (vector)
6080 if (!VECTOR_MARKED_P (vector))
6082 if (prev)
6083 prev->next = vector->next;
6084 else
6085 all_vectors = vector->next;
6086 next = vector->next;
6087 lisp_free (vector);
6088 n_vectors--;
6089 vector = next;
6092 else
6094 VECTOR_UNMARK (vector);
6095 if (vector->size & PSEUDOVECTOR_FLAG)
6096 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6097 else
6098 total_vector_size += vector->size;
6099 prev = vector, vector = vector->next;
6103 #ifdef GC_CHECK_STRING_BYTES
6104 if (!noninteractive)
6105 check_string_bytes (1);
6106 #endif
6112 /* Debugging aids. */
6114 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6115 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6116 This may be helpful in debugging Emacs's memory usage.
6117 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6118 (void)
6120 Lisp_Object end;
6122 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
6124 return end;
6127 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6128 doc: /* Return a list of counters that measure how much consing there has been.
6129 Each of these counters increments for a certain kind of object.
6130 The counters wrap around from the largest positive integer to zero.
6131 Garbage collection does not decrease them.
6132 The elements of the value are as follows:
6133 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6134 All are in units of 1 = one object consed
6135 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6136 objects consed.
6137 MISCS include overlays, markers, and some internal types.
6138 Frames, windows, buffers, and subprocesses count as vectors
6139 (but the contents of a buffer's text do not count here). */)
6140 (void)
6142 Lisp_Object consed[8];
6144 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6145 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6146 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6147 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6148 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6149 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6150 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6151 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6153 return Flist (8, consed);
6156 int suppress_checking;
6158 void
6159 die (const char *msg, const char *file, int line)
6161 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6162 file, line, msg);
6163 abort ();
6166 /* Initialization */
6168 void
6169 init_alloc_once (void)
6171 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6172 purebeg = PUREBEG;
6173 pure_size = PURESIZE;
6174 pure_bytes_used = 0;
6175 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6176 pure_bytes_used_before_overflow = 0;
6178 /* Initialize the list of free aligned blocks. */
6179 free_ablock = NULL;
6181 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6182 mem_init ();
6183 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6184 #endif
6186 all_vectors = 0;
6187 ignore_warnings = 1;
6188 #ifdef DOUG_LEA_MALLOC
6189 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6190 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6191 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6192 #endif
6193 init_strings ();
6194 init_cons ();
6195 init_symbol ();
6196 init_marker ();
6197 init_float ();
6198 init_intervals ();
6199 init_weak_hash_tables ();
6201 #ifdef REL_ALLOC
6202 malloc_hysteresis = 32;
6203 #else
6204 malloc_hysteresis = 0;
6205 #endif
6207 refill_memory_reserve ();
6209 ignore_warnings = 0;
6210 gcprolist = 0;
6211 byte_stack_list = 0;
6212 staticidx = 0;
6213 consing_since_gc = 0;
6214 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6215 gc_relative_threshold = 0;
6218 void
6219 init_alloc (void)
6221 gcprolist = 0;
6222 byte_stack_list = 0;
6223 #if GC_MARK_STACK
6224 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6225 setjmp_tested_p = longjmps_done = 0;
6226 #endif
6227 #endif
6228 Vgc_elapsed = make_float (0.0);
6229 gcs_done = 0;
6232 void
6233 syms_of_alloc (void)
6235 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6236 doc: /* *Number of bytes of consing between garbage collections.
6237 Garbage collection can happen automatically once this many bytes have been
6238 allocated since the last garbage collection. All data types count.
6240 Garbage collection happens automatically only when `eval' is called.
6242 By binding this temporarily to a large number, you can effectively
6243 prevent garbage collection during a part of the program.
6244 See also `gc-cons-percentage'. */);
6246 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6247 doc: /* *Portion of the heap used for allocation.
6248 Garbage collection can happen automatically once this portion of the heap
6249 has been allocated since the last garbage collection.
6250 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6251 Vgc_cons_percentage = make_float (0.1);
6253 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6254 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6256 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6257 doc: /* Number of cons cells that have been consed so far. */);
6259 DEFVAR_INT ("floats-consed", floats_consed,
6260 doc: /* Number of floats that have been consed so far. */);
6262 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6263 doc: /* Number of vector cells that have been consed so far. */);
6265 DEFVAR_INT ("symbols-consed", symbols_consed,
6266 doc: /* Number of symbols that have been consed so far. */);
6268 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6269 doc: /* Number of string characters that have been consed so far. */);
6271 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6272 doc: /* Number of miscellaneous objects that have been consed so far. */);
6274 DEFVAR_INT ("intervals-consed", intervals_consed,
6275 doc: /* Number of intervals that have been consed so far. */);
6277 DEFVAR_INT ("strings-consed", strings_consed,
6278 doc: /* Number of strings that have been consed so far. */);
6280 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6281 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6282 This means that certain objects should be allocated in shared (pure) space.
6283 It can also be set to a hash-table, in which case this table is used to
6284 do hash-consing of the objects allocated to pure space. */);
6286 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6287 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6288 garbage_collection_messages = 0;
6290 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6291 doc: /* Hook run after garbage collection has finished. */);
6292 Vpost_gc_hook = Qnil;
6293 Qpost_gc_hook = intern_c_string ("post-gc-hook");
6294 staticpro (&Qpost_gc_hook);
6296 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6297 doc: /* Precomputed `signal' argument for memory-full error. */);
6298 /* We build this in advance because if we wait until we need it, we might
6299 not be able to allocate the memory to hold it. */
6300 Vmemory_signal_data
6301 = pure_cons (Qerror,
6302 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6304 DEFVAR_LISP ("memory-full", Vmemory_full,
6305 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6306 Vmemory_full = Qnil;
6308 staticpro (&Qgc_cons_threshold);
6309 Qgc_cons_threshold = intern_c_string ("gc-cons-threshold");
6311 staticpro (&Qchar_table_extra_slots);
6312 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
6314 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6315 doc: /* Accumulated time elapsed in garbage collections.
6316 The time is in seconds as a floating point value. */);
6317 DEFVAR_INT ("gcs-done", gcs_done,
6318 doc: /* Accumulated number of garbage collections done. */);
6320 defsubr (&Scons);
6321 defsubr (&Slist);
6322 defsubr (&Svector);
6323 defsubr (&Sfunvec);
6324 defsubr (&Smake_byte_code);
6325 defsubr (&Smake_list);
6326 defsubr (&Smake_vector);
6327 defsubr (&Smake_string);
6328 defsubr (&Smake_bool_vector);
6329 defsubr (&Smake_symbol);
6330 defsubr (&Smake_marker);
6331 defsubr (&Spurecopy);
6332 defsubr (&Sgarbage_collect);
6333 defsubr (&Smemory_limit);
6334 defsubr (&Smemory_use_counts);
6336 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6337 defsubr (&Sgc_status);
6338 #endif