1 /* count-leading-zeros.h -- counts the number of leading 0 bits in a word.
2 Copyright (C) 2012-2018 Free Software Foundation, Inc.
4 This program is free software: you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation; either version 3 of the License, or
7 (at your option) any later version.
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
14 You should have received a copy of the GNU General Public License
15 along with this program. If not, see <https://www.gnu.org/licenses/>. */
17 /* Written by Eric Blake. */
19 #ifndef COUNT_LEADING_ZEROS_H
20 #define COUNT_LEADING_ZEROS_H 1
25 #ifndef _GL_INLINE_HEADER_BEGIN
26 #error "Please include config.h first."
28 _GL_INLINE_HEADER_BEGIN
29 #ifndef COUNT_LEADING_ZEROS_INLINE
30 # define COUNT_LEADING_ZEROS_INLINE _GL_INLINE
33 /* Assuming the GCC builtin is BUILTIN and the MSC builtin is MSC_BUILTIN,
34 expand to code that computes the number of leading zeros of the local
35 variable 'x' of type TYPE (an unsigned integer type) and return it
36 from the current function. */
37 #if __GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)
38 # define COUNT_LEADING_ZEROS(BUILTIN, MSC_BUILTIN, TYPE) \
39 return x ? BUILTIN (x) : CHAR_BIT * sizeof x;
41 # pragma intrinsic _BitScanReverse
42 # pragma intrinsic _BitScanReverse64
43 # define COUNT_LEADING_ZEROS(BUILTIN, MSC_BUILTIN, TYPE) \
46 unsigned long result; \
47 return MSC_BUILTIN (&result, x) ? result : CHAR_BIT * sizeof x; \
51 # define COUNT_LEADING_ZEROS(BUILTIN, MSC_BUILTIN, TYPE) \
55 unsigned int leading_32; \
57 return CHAR_BIT * sizeof x; \
59 (leading_32 = ((x >> (sizeof (TYPE) * CHAR_BIT - 32)) \
61 count < CHAR_BIT * sizeof x - 32 && !leading_32); \
64 return count + count_leading_zeros_32 (leading_32); \
68 /* Compute and return the number of leading zeros in X,
69 where 0 < X < 2**32. */
70 COUNT_LEADING_ZEROS_INLINE
int
71 count_leading_zeros_32 (unsigned int x
)
73 /* <https://github.com/gibsjose/BitHacks>
74 <http://www.fit.vutbr.cz/~ibarina/pub/bithacks.pdf> */
75 static const char de_Bruijn_lookup
[32] = {
76 31, 22, 30, 21, 18, 10, 29, 2, 20, 17, 15, 13, 9, 6, 28, 1,
77 23, 19, 11, 3, 16, 14, 7, 24, 12, 4, 8, 25, 5, 26, 27, 0
85 return de_Bruijn_lookup
[((x
* 0x07c4acddU
) & 0xffffffffU
) >> 27];
89 /* Compute and return the number of leading zeros in X. */
90 COUNT_LEADING_ZEROS_INLINE
int
91 count_leading_zeros (unsigned int x
)
93 COUNT_LEADING_ZEROS (__builtin_clz
, _BitScanReverse
, unsigned int);
96 /* Compute and return the number of leading zeros in X. */
97 COUNT_LEADING_ZEROS_INLINE
int
98 count_leading_zeros_l (unsigned long int x
)
100 COUNT_LEADING_ZEROS (__builtin_clzl
, _BitScanReverse
, unsigned long int);
103 #if HAVE_UNSIGNED_LONG_LONG_INT
104 /* Compute and return the number of leading zeros in X. */
105 COUNT_LEADING_ZEROS_INLINE
int
106 count_leading_zeros_ll (unsigned long long int x
)
108 COUNT_LEADING_ZEROS (__builtin_clzll
, _BitScanReverse64
,
109 unsigned long long int);
113 _GL_INLINE_HEADER_END
115 #endif /* COUNT_LEADING_ZEROS_H */