1 /* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P10003.2/D11.2, except for
3 internationalization features.)
5 Copyright (C) 1993, 1994, 1995, 1996 Free Software Foundation, Inc.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
22 /* AIX requires this to be the first thing in the file. */
23 #if defined (_AIX) && !defined (REGEX_MALLOC)
34 /* We need this for `regex.h', and perhaps for the Emacs include files. */
35 #include <sys/types.h>
37 /* This is for other GNU distributions with internationalized messages. */
38 #if HAVE_LIBINTL_H || defined (_LIBC)
41 # define gettext(msgid) (msgid)
45 /* This define is so xgettext can find the internationalizable
47 #define gettext_noop(String) String
50 /* The `emacs' switch turns on certain matching commands
51 that make sense only in Emacs. */
58 #define malloc xmalloc
63 /* If we are not linking with Emacs proper,
64 we can't use the relocating allocator
65 even if config.h says that we can. */
68 #if defined (STDC_HEADERS) || defined (_LIBC)
75 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
76 If nothing else has been done, use the method below. */
77 #ifdef INHIBIT_STRING_HEADER
78 #if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY))
79 #if !defined (bzero) && !defined (bcopy)
80 #undef INHIBIT_STRING_HEADER
85 /* This is the normal way of making sure we have a bcopy and a bzero.
86 This is used in most programs--a few other programs avoid this
87 by defining INHIBIT_STRING_HEADER. */
88 #ifndef INHIBIT_STRING_HEADER
89 #if defined (HAVE_STRING_H) || defined (STDC_HEADERS) || defined (_LIBC)
92 #define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
95 #define bcopy(s, d, n) memcpy ((d), (s), (n))
98 #define bzero(s, n) memset ((s), 0, (n))
105 /* Define the syntax stuff for \<, \>, etc. */
107 /* This must be nonzero for the wordchar and notwordchar pattern
108 commands in re_match_2. */
113 #ifdef SWITCH_ENUM_BUG
114 #define SWITCH_ENUM_CAST(x) ((int)(x))
116 #define SWITCH_ENUM_CAST(x) (x)
121 extern char *re_syntax_table
;
123 #else /* not SYNTAX_TABLE */
125 /* How many characters in the character set. */
126 #define CHAR_SET_SIZE 256
128 static char re_syntax_table
[CHAR_SET_SIZE
];
139 bzero (re_syntax_table
, sizeof re_syntax_table
);
141 for (c
= 'a'; c
<= 'z'; c
++)
142 re_syntax_table
[c
] = Sword
;
144 for (c
= 'A'; c
<= 'Z'; c
++)
145 re_syntax_table
[c
] = Sword
;
147 for (c
= '0'; c
<= '9'; c
++)
148 re_syntax_table
[c
] = Sword
;
150 re_syntax_table
['_'] = Sword
;
155 #endif /* not SYNTAX_TABLE */
157 #define SYNTAX(c) re_syntax_table[c]
159 #endif /* not emacs */
161 /* Get the interface, including the syntax bits. */
164 /* isalpha etc. are used for the character classes. */
167 /* Jim Meyering writes:
169 "... Some ctype macros are valid only for character codes that
170 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
171 using /bin/cc or gcc but without giving an ansi option). So, all
172 ctype uses should be through macros like ISPRINT... If
173 STDC_HEADERS is defined, then autoconf has verified that the ctype
174 macros don't need to be guarded with references to isascii. ...
175 Defining isascii to 1 should let any compiler worth its salt
176 eliminate the && through constant folding." */
178 #if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
181 #define ISASCII(c) isascii(c)
185 #define ISBLANK(c) (ISASCII (c) && isblank (c))
187 #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
190 #define ISGRAPH(c) (ISASCII (c) && isgraph (c))
192 #define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
195 #define ISPRINT(c) (ISASCII (c) && isprint (c))
196 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
197 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
198 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
199 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
200 #define ISLOWER(c) (ISASCII (c) && islower (c))
201 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
202 #define ISSPACE(c) (ISASCII (c) && isspace (c))
203 #define ISUPPER(c) (ISASCII (c) && isupper (c))
204 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
207 #define NULL (void *)0
210 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
211 since ours (we hope) works properly with all combinations of
212 machines, compilers, `char' and `unsigned char' argument types.
213 (Per Bothner suggested the basic approach.) */
214 #undef SIGN_EXTEND_CHAR
216 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
217 #else /* not __STDC__ */
218 /* As in Harbison and Steele. */
219 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
222 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
223 use `alloca' instead of `malloc'. This is because using malloc in
224 re_search* or re_match* could cause memory leaks when C-g is used in
225 Emacs; also, malloc is slower and causes storage fragmentation. On
226 the other hand, malloc is more portable, and easier to debug.
228 Because we sometimes use alloca, some routines have to be macros,
229 not functions -- `alloca'-allocated space disappears at the end of the
230 function it is called in. */
234 #define REGEX_ALLOCATE malloc
235 #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
236 #define REGEX_FREE free
238 #else /* not REGEX_MALLOC */
240 /* Emacs already defines alloca, sometimes. */
243 /* Make alloca work the best possible way. */
245 #define alloca __builtin_alloca
246 #else /* not __GNUC__ */
249 #else /* not __GNUC__ or HAVE_ALLOCA_H */
250 #if 0 /* It is a bad idea to declare alloca. We always cast the result. */
251 #ifndef _AIX /* Already did AIX, up at the top. */
253 #endif /* not _AIX */
255 #endif /* not HAVE_ALLOCA_H */
256 #endif /* not __GNUC__ */
258 #endif /* not alloca */
260 #define REGEX_ALLOCATE alloca
262 /* Assumes a `char *destination' variable. */
263 #define REGEX_REALLOCATE(source, osize, nsize) \
264 (destination = (char *) alloca (nsize), \
265 bcopy (source, destination, osize), \
268 /* No need to do anything to free, after alloca. */
269 #define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
271 #endif /* not REGEX_MALLOC */
273 /* Define how to allocate the failure stack. */
275 #if defined (REL_ALLOC) && defined (REGEX_MALLOC)
277 #define REGEX_ALLOCATE_STACK(size) \
278 r_alloc (&failure_stack_ptr, (size))
279 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \
280 r_re_alloc (&failure_stack_ptr, (nsize))
281 #define REGEX_FREE_STACK(ptr) \
282 r_alloc_free (&failure_stack_ptr)
284 #else /* not using relocating allocator */
288 #define REGEX_ALLOCATE_STACK malloc
289 #define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
290 #define REGEX_FREE_STACK free
292 #else /* not REGEX_MALLOC */
294 #define REGEX_ALLOCATE_STACK alloca
296 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \
297 REGEX_REALLOCATE (source, osize, nsize)
298 /* No need to explicitly free anything. */
299 #define REGEX_FREE_STACK(arg)
301 #endif /* not REGEX_MALLOC */
302 #endif /* not using relocating allocator */
305 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
306 `string1' or just past its end. This works if PTR is NULL, which is
308 #define FIRST_STRING_P(ptr) \
309 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
311 /* (Re)Allocate N items of type T using malloc, or fail. */
312 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
313 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
314 #define RETALLOC_IF(addr, n, t) \
315 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
316 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
318 #define BYTEWIDTH 8 /* In bits. */
320 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
324 #define MAX(a, b) ((a) > (b) ? (a) : (b))
325 #define MIN(a, b) ((a) < (b) ? (a) : (b))
327 typedef char boolean
;
331 static int re_match_2_internal ();
333 /* These are the command codes that appear in compiled regular
334 expressions. Some opcodes are followed by argument bytes. A
335 command code can specify any interpretation whatsoever for its
336 arguments. Zero bytes may appear in the compiled regular expression. */
342 /* Succeed right away--no more backtracking. */
345 /* Followed by one byte giving n, then by n literal bytes. */
348 /* Matches any (more or less) character. */
351 /* Matches any one char belonging to specified set. First
352 following byte is number of bitmap bytes. Then come bytes
353 for a bitmap saying which chars are in. Bits in each byte
354 are ordered low-bit-first. A character is in the set if its
355 bit is 1. A character too large to have a bit in the map is
356 automatically not in the set. */
359 /* Same parameters as charset, but match any character that is
360 not one of those specified. */
363 /* Start remembering the text that is matched, for storing in a
364 register. Followed by one byte with the register number, in
365 the range 0 to one less than the pattern buffer's re_nsub
366 field. Then followed by one byte with the number of groups
367 inner to this one. (This last has to be part of the
368 start_memory only because we need it in the on_failure_jump
372 /* Stop remembering the text that is matched and store it in a
373 memory register. Followed by one byte with the register
374 number, in the range 0 to one less than `re_nsub' in the
375 pattern buffer, and one byte with the number of inner groups,
376 just like `start_memory'. (We need the number of inner
377 groups here because we don't have any easy way of finding the
378 corresponding start_memory when we're at a stop_memory.) */
381 /* Match a duplicate of something remembered. Followed by one
382 byte containing the register number. */
385 /* Fail unless at beginning of line. */
388 /* Fail unless at end of line. */
391 /* Succeeds if at beginning of buffer (if emacs) or at beginning
392 of string to be matched (if not). */
395 /* Analogously, for end of buffer/string. */
398 /* Followed by two byte relative address to which to jump. */
401 /* Same as jump, but marks the end of an alternative. */
404 /* Followed by two-byte relative address of place to resume at
405 in case of failure. */
408 /* Like on_failure_jump, but pushes a placeholder instead of the
409 current string position when executed. */
410 on_failure_keep_string_jump
,
412 /* Throw away latest failure point and then jump to following
413 two-byte relative address. */
416 /* Change to pop_failure_jump if know won't have to backtrack to
417 match; otherwise change to jump. This is used to jump
418 back to the beginning of a repeat. If what follows this jump
419 clearly won't match what the repeat does, such that we can be
420 sure that there is no use backtracking out of repetitions
421 already matched, then we change it to a pop_failure_jump.
422 Followed by two-byte address. */
425 /* Jump to following two-byte address, and push a dummy failure
426 point. This failure point will be thrown away if an attempt
427 is made to use it for a failure. A `+' construct makes this
428 before the first repeat. Also used as an intermediary kind
429 of jump when compiling an alternative. */
432 /* Push a dummy failure point and continue. Used at the end of
436 /* Followed by two-byte relative address and two-byte number n.
437 After matching N times, jump to the address upon failure. */
440 /* Followed by two-byte relative address, and two-byte number n.
441 Jump to the address N times, then fail. */
444 /* Set the following two-byte relative address to the
445 subsequent two-byte number. The address *includes* the two
449 wordchar
, /* Matches any word-constituent character. */
450 notwordchar
, /* Matches any char that is not a word-constituent. */
452 wordbeg
, /* Succeeds if at word beginning. */
453 wordend
, /* Succeeds if at word end. */
455 wordbound
, /* Succeeds if at a word boundary. */
456 notwordbound
/* Succeeds if not at a word boundary. */
459 ,before_dot
, /* Succeeds if before point. */
460 at_dot
, /* Succeeds if at point. */
461 after_dot
, /* Succeeds if after point. */
463 /* Matches any character whose syntax is specified. Followed by
464 a byte which contains a syntax code, e.g., Sword. */
467 /* Matches any character whose syntax is not that specified. */
472 /* Common operations on the compiled pattern. */
474 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
476 #define STORE_NUMBER(destination, number) \
478 (destination)[0] = (number) & 0377; \
479 (destination)[1] = (number) >> 8; \
482 /* Same as STORE_NUMBER, except increment DESTINATION to
483 the byte after where the number is stored. Therefore, DESTINATION
484 must be an lvalue. */
486 #define STORE_NUMBER_AND_INCR(destination, number) \
488 STORE_NUMBER (destination, number); \
489 (destination) += 2; \
492 /* Put into DESTINATION a number stored in two contiguous bytes starting
495 #define EXTRACT_NUMBER(destination, source) \
497 (destination) = *(source) & 0377; \
498 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
503 extract_number (dest
, source
)
505 unsigned char *source
;
507 int temp
= SIGN_EXTEND_CHAR (*(source
+ 1));
508 *dest
= *source
& 0377;
512 #ifndef EXTRACT_MACROS /* To debug the macros. */
513 #undef EXTRACT_NUMBER
514 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
515 #endif /* not EXTRACT_MACROS */
519 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
520 SOURCE must be an lvalue. */
522 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
524 EXTRACT_NUMBER (destination, source); \
530 extract_number_and_incr (destination
, source
)
532 unsigned char **source
;
534 extract_number (destination
, *source
);
538 #ifndef EXTRACT_MACROS
539 #undef EXTRACT_NUMBER_AND_INCR
540 #define EXTRACT_NUMBER_AND_INCR(dest, src) \
541 extract_number_and_incr (&dest, &src)
542 #endif /* not EXTRACT_MACROS */
546 /* If DEBUG is defined, Regex prints many voluminous messages about what
547 it is doing (if the variable `debug' is nonzero). If linked with the
548 main program in `iregex.c', you can enter patterns and strings
549 interactively. And if linked with the main program in `main.c' and
550 the other test files, you can run the already-written tests. */
554 /* We use standard I/O for debugging. */
557 /* It is useful to test things that ``must'' be true when debugging. */
560 static int debug
= 0;
562 #define DEBUG_STATEMENT(e) e
563 #define DEBUG_PRINT1(x) if (debug) printf (x)
564 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
565 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
566 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
567 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
568 if (debug) print_partial_compiled_pattern (s, e)
569 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
570 if (debug) print_double_string (w, s1, sz1, s2, sz2)
573 /* Print the fastmap in human-readable form. */
576 print_fastmap (fastmap
)
579 unsigned was_a_range
= 0;
582 while (i
< (1 << BYTEWIDTH
))
588 while (i
< (1 << BYTEWIDTH
) && fastmap
[i
])
604 /* Print a compiled pattern string in human-readable form, starting at
605 the START pointer into it and ending just before the pointer END. */
608 print_partial_compiled_pattern (start
, end
)
609 unsigned char *start
;
613 unsigned char *p
= start
;
614 unsigned char *pend
= end
;
622 /* Loop over pattern commands. */
625 printf ("%d:\t", p
- start
);
627 switch ((re_opcode_t
) *p
++)
635 printf ("/exactn/%d", mcnt
);
646 printf ("/start_memory/%d/%d", mcnt
, *p
++);
651 printf ("/stop_memory/%d/%d", mcnt
, *p
++);
655 printf ("/duplicate/%d", *p
++);
665 register int c
, last
= -100;
666 register int in_range
= 0;
668 printf ("/charset [%s",
669 (re_opcode_t
) *(p
- 1) == charset_not
? "^" : "");
671 assert (p
+ *p
< pend
);
673 for (c
= 0; c
< 256; c
++)
675 && (p
[1 + (c
/8)] & (1 << (c
% 8))))
677 /* Are we starting a range? */
678 if (last
+ 1 == c
&& ! in_range
)
683 /* Have we broken a range? */
684 else if (last
+ 1 != c
&& in_range
)
713 case on_failure_jump
:
714 extract_number_and_incr (&mcnt
, &p
);
715 printf ("/on_failure_jump to %d", p
+ mcnt
- start
);
718 case on_failure_keep_string_jump
:
719 extract_number_and_incr (&mcnt
, &p
);
720 printf ("/on_failure_keep_string_jump to %d", p
+ mcnt
- start
);
723 case dummy_failure_jump
:
724 extract_number_and_incr (&mcnt
, &p
);
725 printf ("/dummy_failure_jump to %d", p
+ mcnt
- start
);
728 case push_dummy_failure
:
729 printf ("/push_dummy_failure");
733 extract_number_and_incr (&mcnt
, &p
);
734 printf ("/maybe_pop_jump to %d", p
+ mcnt
- start
);
737 case pop_failure_jump
:
738 extract_number_and_incr (&mcnt
, &p
);
739 printf ("/pop_failure_jump to %d", p
+ mcnt
- start
);
743 extract_number_and_incr (&mcnt
, &p
);
744 printf ("/jump_past_alt to %d", p
+ mcnt
- start
);
748 extract_number_and_incr (&mcnt
, &p
);
749 printf ("/jump to %d", p
+ mcnt
- start
);
753 extract_number_and_incr (&mcnt
, &p
);
754 extract_number_and_incr (&mcnt2
, &p
);
755 printf ("/succeed_n to %d, %d times", p
+ mcnt
- start
, mcnt2
);
759 extract_number_and_incr (&mcnt
, &p
);
760 extract_number_and_incr (&mcnt2
, &p
);
761 printf ("/jump_n to %d, %d times", p
+ mcnt
- start
, mcnt2
);
765 extract_number_and_incr (&mcnt
, &p
);
766 extract_number_and_incr (&mcnt2
, &p
);
767 printf ("/set_number_at location %d to %d", p
+ mcnt
- start
, mcnt2
);
771 printf ("/wordbound");
775 printf ("/notwordbound");
787 printf ("/before_dot");
795 printf ("/after_dot");
799 printf ("/syntaxspec");
801 printf ("/%d", mcnt
);
805 printf ("/notsyntaxspec");
807 printf ("/%d", mcnt
);
812 printf ("/wordchar");
816 printf ("/notwordchar");
828 printf ("?%d", *(p
-1));
834 printf ("%d:\tend of pattern.\n", p
- start
);
839 print_compiled_pattern (bufp
)
840 struct re_pattern_buffer
*bufp
;
842 unsigned char *buffer
= bufp
->buffer
;
844 print_partial_compiled_pattern (buffer
, buffer
+ bufp
->used
);
845 printf ("%d bytes used/%d bytes allocated.\n", bufp
->used
, bufp
->allocated
);
847 if (bufp
->fastmap_accurate
&& bufp
->fastmap
)
849 printf ("fastmap: ");
850 print_fastmap (bufp
->fastmap
);
853 printf ("re_nsub: %d\t", bufp
->re_nsub
);
854 printf ("regs_alloc: %d\t", bufp
->regs_allocated
);
855 printf ("can_be_null: %d\t", bufp
->can_be_null
);
856 printf ("newline_anchor: %d\n", bufp
->newline_anchor
);
857 printf ("no_sub: %d\t", bufp
->no_sub
);
858 printf ("not_bol: %d\t", bufp
->not_bol
);
859 printf ("not_eol: %d\t", bufp
->not_eol
);
860 printf ("syntax: %d\n", bufp
->syntax
);
861 /* Perhaps we should print the translate table? */
866 print_double_string (where
, string1
, size1
, string2
, size2
)
879 if (FIRST_STRING_P (where
))
881 for (this_char
= where
- string1
; this_char
< size1
; this_char
++)
882 putchar (string1
[this_char
]);
887 for (this_char
= where
- string2
; this_char
< size2
; this_char
++)
888 putchar (string2
[this_char
]);
892 #else /* not DEBUG */
897 #define DEBUG_STATEMENT(e)
898 #define DEBUG_PRINT1(x)
899 #define DEBUG_PRINT2(x1, x2)
900 #define DEBUG_PRINT3(x1, x2, x3)
901 #define DEBUG_PRINT4(x1, x2, x3, x4)
902 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
903 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
905 #endif /* not DEBUG */
907 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
908 also be assigned to arbitrarily: each pattern buffer stores its own
909 syntax, so it can be changed between regex compilations. */
910 /* This has no initializer because initialized variables in Emacs
911 become read-only after dumping. */
912 reg_syntax_t re_syntax_options
;
915 /* Specify the precise syntax of regexps for compilation. This provides
916 for compatibility for various utilities which historically have
917 different, incompatible syntaxes.
919 The argument SYNTAX is a bit mask comprised of the various bits
920 defined in regex.h. We return the old syntax. */
923 re_set_syntax (syntax
)
926 reg_syntax_t ret
= re_syntax_options
;
928 re_syntax_options
= syntax
;
932 /* This table gives an error message for each of the error codes listed
933 in regex.h. Obviously the order here has to be same as there.
934 POSIX doesn't require that we do anything for REG_NOERROR,
935 but why not be nice? */
937 static const char *re_error_msgid
[] =
939 gettext_noop ("Success"), /* REG_NOERROR */
940 gettext_noop ("No match"), /* REG_NOMATCH */
941 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
942 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
943 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
944 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
945 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
946 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
947 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
948 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
949 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
950 gettext_noop ("Invalid range end"), /* REG_ERANGE */
951 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
952 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
953 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
954 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
955 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
958 /* Avoiding alloca during matching, to placate r_alloc. */
960 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
961 searching and matching functions should not call alloca. On some
962 systems, alloca is implemented in terms of malloc, and if we're
963 using the relocating allocator routines, then malloc could cause a
964 relocation, which might (if the strings being searched are in the
965 ralloc heap) shift the data out from underneath the regexp
968 Here's another reason to avoid allocation: Emacs
969 processes input from X in a signal handler; processing X input may
970 call malloc; if input arrives while a matching routine is calling
971 malloc, then we're scrod. But Emacs can't just block input while
972 calling matching routines; then we don't notice interrupts when
973 they come in. So, Emacs blocks input around all regexp calls
974 except the matching calls, which it leaves unprotected, in the
975 faith that they will not malloc. */
977 /* Normally, this is fine. */
978 #define MATCH_MAY_ALLOCATE
980 /* When using GNU C, we are not REALLY using the C alloca, no matter
981 what config.h may say. So don't take precautions for it. */
986 /* The match routines may not allocate if (1) they would do it with malloc
987 and (2) it's not safe for them to use malloc.
988 Note that if REL_ALLOC is defined, matching would not use malloc for the
989 failure stack, but we would still use it for the register vectors;
990 so REL_ALLOC should not affect this. */
991 #if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs)
992 #undef MATCH_MAY_ALLOCATE
996 /* Failure stack declarations and macros; both re_compile_fastmap and
997 re_match_2 use a failure stack. These have to be macros because of
998 REGEX_ALLOCATE_STACK. */
1001 /* Number of failure points for which to initially allocate space
1002 when matching. If this number is exceeded, we allocate more
1003 space, so it is not a hard limit. */
1004 #ifndef INIT_FAILURE_ALLOC
1005 #define INIT_FAILURE_ALLOC 5
1008 /* Roughly the maximum number of failure points on the stack. Would be
1009 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1010 This is a variable only so users of regex can assign to it; we never
1011 change it ourselves. */
1012 #if defined (MATCH_MAY_ALLOCATE)
1013 /* 4400 was enough to cause a crash on Alpha OSF/1,
1014 whose default stack limit is 2mb. */
1015 int re_max_failures
= 20000;
1017 int re_max_failures
= 2000;
1020 union fail_stack_elt
1022 unsigned char *pointer
;
1026 typedef union fail_stack_elt fail_stack_elt_t
;
1030 fail_stack_elt_t
*stack
;
1032 unsigned avail
; /* Offset of next open position. */
1035 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1036 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1037 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1040 /* Define macros to initialize and free the failure stack.
1041 Do `return -2' if the alloc fails. */
1043 #ifdef MATCH_MAY_ALLOCATE
1044 #define INIT_FAIL_STACK() \
1046 fail_stack.stack = (fail_stack_elt_t *) \
1047 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1049 if (fail_stack.stack == NULL) \
1052 fail_stack.size = INIT_FAILURE_ALLOC; \
1053 fail_stack.avail = 0; \
1056 #define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1058 #define INIT_FAIL_STACK() \
1060 fail_stack.avail = 0; \
1063 #define RESET_FAIL_STACK()
1067 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1069 Return 1 if succeeds, and 0 if either ran out of memory
1070 allocating space for it or it was already too large.
1072 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1074 #define DOUBLE_FAIL_STACK(fail_stack) \
1075 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
1077 : ((fail_stack).stack = (fail_stack_elt_t *) \
1078 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1079 (fail_stack).size * sizeof (fail_stack_elt_t), \
1080 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
1082 (fail_stack).stack == NULL \
1084 : ((fail_stack).size <<= 1, \
1088 /* Push pointer POINTER on FAIL_STACK.
1089 Return 1 if was able to do so and 0 if ran out of memory allocating
1091 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1092 ((FAIL_STACK_FULL () \
1093 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1095 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1098 /* Push a pointer value onto the failure stack.
1099 Assumes the variable `fail_stack'. Probably should only
1100 be called from within `PUSH_FAILURE_POINT'. */
1101 #define PUSH_FAILURE_POINTER(item) \
1102 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1104 /* This pushes an integer-valued item onto the failure stack.
1105 Assumes the variable `fail_stack'. Probably should only
1106 be called from within `PUSH_FAILURE_POINT'. */
1107 #define PUSH_FAILURE_INT(item) \
1108 fail_stack.stack[fail_stack.avail++].integer = (item)
1110 /* Push a fail_stack_elt_t value onto the failure stack.
1111 Assumes the variable `fail_stack'. Probably should only
1112 be called from within `PUSH_FAILURE_POINT'. */
1113 #define PUSH_FAILURE_ELT(item) \
1114 fail_stack.stack[fail_stack.avail++] = (item)
1116 /* These three POP... operations complement the three PUSH... operations.
1117 All assume that `fail_stack' is nonempty. */
1118 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1119 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1120 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1122 /* Used to omit pushing failure point id's when we're not debugging. */
1124 #define DEBUG_PUSH PUSH_FAILURE_INT
1125 #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1127 #define DEBUG_PUSH(item)
1128 #define DEBUG_POP(item_addr)
1132 /* Push the information about the state we will need
1133 if we ever fail back to it.
1135 Requires variables fail_stack, regstart, regend, reg_info, and
1136 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
1139 Does `return FAILURE_CODE' if runs out of memory. */
1141 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1143 char *destination; \
1144 /* Must be int, so when we don't save any registers, the arithmetic \
1145 of 0 + -1 isn't done as unsigned. */ \
1148 DEBUG_STATEMENT (failure_id++); \
1149 DEBUG_STATEMENT (nfailure_points_pushed++); \
1150 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1151 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1152 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1154 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
1155 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1157 /* Ensure we have enough space allocated for what we will push. */ \
1158 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1160 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1161 return failure_code; \
1163 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1164 (fail_stack).size); \
1165 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1168 /* Push the info, starting with the registers. */ \
1169 DEBUG_PRINT1 ("\n"); \
1172 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1175 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
1176 DEBUG_STATEMENT (num_regs_pushed++); \
1178 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1179 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1181 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1182 PUSH_FAILURE_POINTER (regend[this_reg]); \
1184 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
1185 DEBUG_PRINT2 (" match_null=%d", \
1186 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1187 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1188 DEBUG_PRINT2 (" matched_something=%d", \
1189 MATCHED_SOMETHING (reg_info[this_reg])); \
1190 DEBUG_PRINT2 (" ever_matched=%d", \
1191 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1192 DEBUG_PRINT1 ("\n"); \
1193 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1196 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
1197 PUSH_FAILURE_INT (lowest_active_reg); \
1199 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
1200 PUSH_FAILURE_INT (highest_active_reg); \
1202 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
1203 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1204 PUSH_FAILURE_POINTER (pattern_place); \
1206 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
1207 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1209 DEBUG_PRINT1 ("'\n"); \
1210 PUSH_FAILURE_POINTER (string_place); \
1212 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1213 DEBUG_PUSH (failure_id); \
1216 /* This is the number of items that are pushed and popped on the stack
1217 for each register. */
1218 #define NUM_REG_ITEMS 3
1220 /* Individual items aside from the registers. */
1222 #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1224 #define NUM_NONREG_ITEMS 4
1227 /* We push at most this many items on the stack. */
1228 /* We used to use (num_regs - 1), which is the number of registers
1229 this regexp will save; but that was changed to 5
1230 to avoid stack overflow for a regexp with lots of parens. */
1231 #define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1233 /* We actually push this many items. */
1234 #define NUM_FAILURE_ITEMS \
1236 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1240 /* How many items can still be added to the stack without overflowing it. */
1241 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1244 /* Pops what PUSH_FAIL_STACK pushes.
1246 We restore into the parameters, all of which should be lvalues:
1247 STR -- the saved data position.
1248 PAT -- the saved pattern position.
1249 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1250 REGSTART, REGEND -- arrays of string positions.
1251 REG_INFO -- array of information about each subexpression.
1253 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1254 `pend', `string1', `size1', `string2', and `size2'. */
1256 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1258 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
1260 const unsigned char *string_temp; \
1262 assert (!FAIL_STACK_EMPTY ()); \
1264 /* Remove failure points and point to how many regs pushed. */ \
1265 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1266 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1267 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1269 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1271 DEBUG_POP (&failure_id); \
1272 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1274 /* If the saved string location is NULL, it came from an \
1275 on_failure_keep_string_jump opcode, and we want to throw away the \
1276 saved NULL, thus retaining our current position in the string. */ \
1277 string_temp = POP_FAILURE_POINTER (); \
1278 if (string_temp != NULL) \
1279 str = (const char *) string_temp; \
1281 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
1282 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1283 DEBUG_PRINT1 ("'\n"); \
1285 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1286 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
1287 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1289 /* Restore register info. */ \
1290 high_reg = (unsigned) POP_FAILURE_INT (); \
1291 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
1293 low_reg = (unsigned) POP_FAILURE_INT (); \
1294 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
1297 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1299 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
1301 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1302 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
1304 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1305 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1307 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1308 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1312 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1314 reg_info[this_reg].word.integer = 0; \
1315 regend[this_reg] = 0; \
1316 regstart[this_reg] = 0; \
1318 highest_active_reg = high_reg; \
1321 set_regs_matched_done = 0; \
1322 DEBUG_STATEMENT (nfailure_points_popped++); \
1323 } /* POP_FAILURE_POINT */
1327 /* Structure for per-register (a.k.a. per-group) information.
1328 Other register information, such as the
1329 starting and ending positions (which are addresses), and the list of
1330 inner groups (which is a bits list) are maintained in separate
1333 We are making a (strictly speaking) nonportable assumption here: that
1334 the compiler will pack our bit fields into something that fits into
1335 the type of `word', i.e., is something that fits into one item on the
1340 fail_stack_elt_t word
;
1343 /* This field is one if this group can match the empty string,
1344 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1345 #define MATCH_NULL_UNSET_VALUE 3
1346 unsigned match_null_string_p
: 2;
1347 unsigned is_active
: 1;
1348 unsigned matched_something
: 1;
1349 unsigned ever_matched_something
: 1;
1351 } register_info_type
;
1353 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1354 #define IS_ACTIVE(R) ((R).bits.is_active)
1355 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1356 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1359 /* Call this when have matched a real character; it sets `matched' flags
1360 for the subexpressions which we are currently inside. Also records
1361 that those subexprs have matched. */
1362 #define SET_REGS_MATCHED() \
1365 if (!set_regs_matched_done) \
1368 set_regs_matched_done = 1; \
1369 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1371 MATCHED_SOMETHING (reg_info[r]) \
1372 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1379 /* Registers are set to a sentinel when they haven't yet matched. */
1380 static char reg_unset_dummy
;
1381 #define REG_UNSET_VALUE (®_unset_dummy)
1382 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1384 /* Subroutine declarations and macros for regex_compile. */
1386 static void store_op1 (), store_op2 ();
1387 static void insert_op1 (), insert_op2 ();
1388 static boolean
at_begline_loc_p (), at_endline_loc_p ();
1389 static boolean
group_in_compile_stack ();
1390 static reg_errcode_t
compile_range ();
1392 /* Fetch the next character in the uncompiled pattern---translating it
1393 if necessary. Also cast from a signed character in the constant
1394 string passed to us by the user to an unsigned char that we can use
1395 as an array index (in, e.g., `translate'). */
1397 #define PATFETCH(c) \
1398 do {if (p == pend) return REG_EEND; \
1399 c = (unsigned char) *p++; \
1400 if (translate) c = (unsigned char) translate[c]; \
1404 /* Fetch the next character in the uncompiled pattern, with no
1406 #define PATFETCH_RAW(c) \
1407 do {if (p == pend) return REG_EEND; \
1408 c = (unsigned char) *p++; \
1411 /* Go backwards one character in the pattern. */
1412 #define PATUNFETCH p--
1415 /* If `translate' is non-null, return translate[D], else just D. We
1416 cast the subscript to translate because some data is declared as
1417 `char *', to avoid warnings when a string constant is passed. But
1418 when we use a character as a subscript we must make it unsigned. */
1420 #define TRANSLATE(d) \
1421 (translate ? (char) translate[(unsigned char) (d)] : (d))
1425 /* Macros for outputting the compiled pattern into `buffer'. */
1427 /* If the buffer isn't allocated when it comes in, use this. */
1428 #define INIT_BUF_SIZE 32
1430 /* Make sure we have at least N more bytes of space in buffer. */
1431 #define GET_BUFFER_SPACE(n) \
1432 while (b - bufp->buffer + (n) > bufp->allocated) \
1435 /* Make sure we have one more byte of buffer space and then add C to it. */
1436 #define BUF_PUSH(c) \
1438 GET_BUFFER_SPACE (1); \
1439 *b++ = (unsigned char) (c); \
1443 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1444 #define BUF_PUSH_2(c1, c2) \
1446 GET_BUFFER_SPACE (2); \
1447 *b++ = (unsigned char) (c1); \
1448 *b++ = (unsigned char) (c2); \
1452 /* As with BUF_PUSH_2, except for three bytes. */
1453 #define BUF_PUSH_3(c1, c2, c3) \
1455 GET_BUFFER_SPACE (3); \
1456 *b++ = (unsigned char) (c1); \
1457 *b++ = (unsigned char) (c2); \
1458 *b++ = (unsigned char) (c3); \
1462 /* Store a jump with opcode OP at LOC to location TO. We store a
1463 relative address offset by the three bytes the jump itself occupies. */
1464 #define STORE_JUMP(op, loc, to) \
1465 store_op1 (op, loc, (to) - (loc) - 3)
1467 /* Likewise, for a two-argument jump. */
1468 #define STORE_JUMP2(op, loc, to, arg) \
1469 store_op2 (op, loc, (to) - (loc) - 3, arg)
1471 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1472 #define INSERT_JUMP(op, loc, to) \
1473 insert_op1 (op, loc, (to) - (loc) - 3, b)
1475 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1476 #define INSERT_JUMP2(op, loc, to, arg) \
1477 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1480 /* This is not an arbitrary limit: the arguments which represent offsets
1481 into the pattern are two bytes long. So if 2^16 bytes turns out to
1482 be too small, many things would have to change. */
1483 #define MAX_BUF_SIZE (1L << 16)
1486 /* Extend the buffer by twice its current size via realloc and
1487 reset the pointers that pointed into the old block to point to the
1488 correct places in the new one. If extending the buffer results in it
1489 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1490 #define EXTEND_BUFFER() \
1492 unsigned char *old_buffer = bufp->buffer; \
1493 if (bufp->allocated == MAX_BUF_SIZE) \
1495 bufp->allocated <<= 1; \
1496 if (bufp->allocated > MAX_BUF_SIZE) \
1497 bufp->allocated = MAX_BUF_SIZE; \
1498 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
1499 if (bufp->buffer == NULL) \
1500 return REG_ESPACE; \
1501 /* If the buffer moved, move all the pointers into it. */ \
1502 if (old_buffer != bufp->buffer) \
1504 b = (b - old_buffer) + bufp->buffer; \
1505 begalt = (begalt - old_buffer) + bufp->buffer; \
1506 if (fixup_alt_jump) \
1507 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1509 laststart = (laststart - old_buffer) + bufp->buffer; \
1510 if (pending_exact) \
1511 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1516 /* Since we have one byte reserved for the register number argument to
1517 {start,stop}_memory, the maximum number of groups we can report
1518 things about is what fits in that byte. */
1519 #define MAX_REGNUM 255
1521 /* But patterns can have more than `MAX_REGNUM' registers. We just
1522 ignore the excess. */
1523 typedef unsigned regnum_t
;
1526 /* Macros for the compile stack. */
1528 /* Since offsets can go either forwards or backwards, this type needs to
1529 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1530 typedef int pattern_offset_t
;
1534 pattern_offset_t begalt_offset
;
1535 pattern_offset_t fixup_alt_jump
;
1536 pattern_offset_t inner_group_offset
;
1537 pattern_offset_t laststart_offset
;
1539 } compile_stack_elt_t
;
1544 compile_stack_elt_t
*stack
;
1546 unsigned avail
; /* Offset of next open position. */
1547 } compile_stack_type
;
1550 #define INIT_COMPILE_STACK_SIZE 32
1552 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1553 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1555 /* The next available element. */
1556 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1559 /* Set the bit for character C in a list. */
1560 #define SET_LIST_BIT(c) \
1561 (b[((unsigned char) (c)) / BYTEWIDTH] \
1562 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1565 /* Get the next unsigned number in the uncompiled pattern. */
1566 #define GET_UNSIGNED_NUMBER(num) \
1570 while (ISDIGIT (c)) \
1574 num = num * 10 + c - '0'; \
1582 #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1584 #define IS_CHAR_CLASS(string) \
1585 (STREQ (string, "alpha") || STREQ (string, "upper") \
1586 || STREQ (string, "lower") || STREQ (string, "digit") \
1587 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1588 || STREQ (string, "space") || STREQ (string, "print") \
1589 || STREQ (string, "punct") || STREQ (string, "graph") \
1590 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1592 #ifndef MATCH_MAY_ALLOCATE
1594 /* If we cannot allocate large objects within re_match_2_internal,
1595 we make the fail stack and register vectors global.
1596 The fail stack, we grow to the maximum size when a regexp
1598 The register vectors, we adjust in size each time we
1599 compile a regexp, according to the number of registers it needs. */
1601 static fail_stack_type fail_stack
;
1603 /* Size with which the following vectors are currently allocated.
1604 That is so we can make them bigger as needed,
1605 but never make them smaller. */
1606 static int regs_allocated_size
;
1608 static const char ** regstart
, ** regend
;
1609 static const char ** old_regstart
, ** old_regend
;
1610 static const char **best_regstart
, **best_regend
;
1611 static register_info_type
*reg_info
;
1612 static const char **reg_dummy
;
1613 static register_info_type
*reg_info_dummy
;
1615 /* Make the register vectors big enough for NUM_REGS registers,
1616 but don't make them smaller. */
1619 regex_grow_registers (num_regs
)
1622 if (num_regs
> regs_allocated_size
)
1624 RETALLOC_IF (regstart
, num_regs
, const char *);
1625 RETALLOC_IF (regend
, num_regs
, const char *);
1626 RETALLOC_IF (old_regstart
, num_regs
, const char *);
1627 RETALLOC_IF (old_regend
, num_regs
, const char *);
1628 RETALLOC_IF (best_regstart
, num_regs
, const char *);
1629 RETALLOC_IF (best_regend
, num_regs
, const char *);
1630 RETALLOC_IF (reg_info
, num_regs
, register_info_type
);
1631 RETALLOC_IF (reg_dummy
, num_regs
, const char *);
1632 RETALLOC_IF (reg_info_dummy
, num_regs
, register_info_type
);
1634 regs_allocated_size
= num_regs
;
1638 #endif /* not MATCH_MAY_ALLOCATE */
1640 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1641 Returns one of error codes defined in `regex.h', or zero for success.
1643 Assumes the `allocated' (and perhaps `buffer') and `translate'
1644 fields are set in BUFP on entry.
1646 If it succeeds, results are put in BUFP (if it returns an error, the
1647 contents of BUFP are undefined):
1648 `buffer' is the compiled pattern;
1649 `syntax' is set to SYNTAX;
1650 `used' is set to the length of the compiled pattern;
1651 `fastmap_accurate' is zero;
1652 `re_nsub' is the number of subexpressions in PATTERN;
1653 `not_bol' and `not_eol' are zero;
1655 The `fastmap' and `newline_anchor' fields are neither
1656 examined nor set. */
1658 /* Return, freeing storage we allocated. */
1659 #define FREE_STACK_RETURN(value) \
1660 return (free (compile_stack.stack), value)
1662 static reg_errcode_t
1663 regex_compile (pattern
, size
, syntax
, bufp
)
1664 const char *pattern
;
1666 reg_syntax_t syntax
;
1667 struct re_pattern_buffer
*bufp
;
1669 /* We fetch characters from PATTERN here. Even though PATTERN is
1670 `char *' (i.e., signed), we declare these variables as unsigned, so
1671 they can be reliably used as array indices. */
1672 register unsigned char c
, c1
;
1674 /* A random temporary spot in PATTERN. */
1677 /* Points to the end of the buffer, where we should append. */
1678 register unsigned char *b
;
1680 /* Keeps track of unclosed groups. */
1681 compile_stack_type compile_stack
;
1683 /* Points to the current (ending) position in the pattern. */
1684 const char *p
= pattern
;
1685 const char *pend
= pattern
+ size
;
1687 /* How to translate the characters in the pattern. */
1688 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
1690 /* Address of the count-byte of the most recently inserted `exactn'
1691 command. This makes it possible to tell if a new exact-match
1692 character can be added to that command or if the character requires
1693 a new `exactn' command. */
1694 unsigned char *pending_exact
= 0;
1696 /* Address of start of the most recently finished expression.
1697 This tells, e.g., postfix * where to find the start of its
1698 operand. Reset at the beginning of groups and alternatives. */
1699 unsigned char *laststart
= 0;
1701 /* Address of beginning of regexp, or inside of last group. */
1702 unsigned char *begalt
;
1704 /* Place in the uncompiled pattern (i.e., the {) to
1705 which to go back if the interval is invalid. */
1706 const char *beg_interval
;
1708 /* Address of the place where a forward jump should go to the end of
1709 the containing expression. Each alternative of an `or' -- except the
1710 last -- ends with a forward jump of this sort. */
1711 unsigned char *fixup_alt_jump
= 0;
1713 /* Counts open-groups as they are encountered. Remembered for the
1714 matching close-group on the compile stack, so the same register
1715 number is put in the stop_memory as the start_memory. */
1716 regnum_t regnum
= 0;
1719 DEBUG_PRINT1 ("\nCompiling pattern: ");
1722 unsigned debug_count
;
1724 for (debug_count
= 0; debug_count
< size
; debug_count
++)
1725 putchar (pattern
[debug_count
]);
1730 /* Initialize the compile stack. */
1731 compile_stack
.stack
= TALLOC (INIT_COMPILE_STACK_SIZE
, compile_stack_elt_t
);
1732 if (compile_stack
.stack
== NULL
)
1735 compile_stack
.size
= INIT_COMPILE_STACK_SIZE
;
1736 compile_stack
.avail
= 0;
1738 /* Initialize the pattern buffer. */
1739 bufp
->syntax
= syntax
;
1740 bufp
->fastmap_accurate
= 0;
1741 bufp
->not_bol
= bufp
->not_eol
= 0;
1743 /* Set `used' to zero, so that if we return an error, the pattern
1744 printer (for debugging) will think there's no pattern. We reset it
1748 /* Always count groups, whether or not bufp->no_sub is set. */
1751 #if !defined (emacs) && !defined (SYNTAX_TABLE)
1752 /* Initialize the syntax table. */
1753 init_syntax_once ();
1756 if (bufp
->allocated
== 0)
1759 { /* If zero allocated, but buffer is non-null, try to realloc
1760 enough space. This loses if buffer's address is bogus, but
1761 that is the user's responsibility. */
1762 RETALLOC (bufp
->buffer
, INIT_BUF_SIZE
, unsigned char);
1765 { /* Caller did not allocate a buffer. Do it for them. */
1766 bufp
->buffer
= TALLOC (INIT_BUF_SIZE
, unsigned char);
1768 if (!bufp
->buffer
) FREE_STACK_RETURN (REG_ESPACE
);
1770 bufp
->allocated
= INIT_BUF_SIZE
;
1773 begalt
= b
= bufp
->buffer
;
1775 /* Loop through the uncompiled pattern until we're at the end. */
1784 if ( /* If at start of pattern, it's an operator. */
1786 /* If context independent, it's an operator. */
1787 || syntax
& RE_CONTEXT_INDEP_ANCHORS
1788 /* Otherwise, depends on what's come before. */
1789 || at_begline_loc_p (pattern
, p
, syntax
))
1799 if ( /* If at end of pattern, it's an operator. */
1801 /* If context independent, it's an operator. */
1802 || syntax
& RE_CONTEXT_INDEP_ANCHORS
1803 /* Otherwise, depends on what's next. */
1804 || at_endline_loc_p (p
, pend
, syntax
))
1814 if ((syntax
& RE_BK_PLUS_QM
)
1815 || (syntax
& RE_LIMITED_OPS
))
1819 /* If there is no previous pattern... */
1822 if (syntax
& RE_CONTEXT_INVALID_OPS
)
1823 FREE_STACK_RETURN (REG_BADRPT
);
1824 else if (!(syntax
& RE_CONTEXT_INDEP_OPS
))
1829 /* Are we optimizing this jump? */
1830 boolean keep_string_p
= false;
1832 /* 1 means zero (many) matches is allowed. */
1833 char zero_times_ok
= 0, many_times_ok
= 0;
1835 /* If there is a sequence of repetition chars, collapse it
1836 down to just one (the right one). We can't combine
1837 interval operators with these because of, e.g., `a{2}*',
1838 which should only match an even number of `a's. */
1842 zero_times_ok
|= c
!= '+';
1843 many_times_ok
|= c
!= '?';
1851 || (!(syntax
& RE_BK_PLUS_QM
) && (c
== '+' || c
== '?')))
1854 else if (syntax
& RE_BK_PLUS_QM
&& c
== '\\')
1856 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
1859 if (!(c1
== '+' || c1
== '?'))
1874 /* If we get here, we found another repeat character. */
1877 /* Star, etc. applied to an empty pattern is equivalent
1878 to an empty pattern. */
1882 /* Now we know whether or not zero matches is allowed
1883 and also whether or not two or more matches is allowed. */
1885 { /* More than one repetition is allowed, so put in at the
1886 end a backward relative jump from `b' to before the next
1887 jump we're going to put in below (which jumps from
1888 laststart to after this jump).
1890 But if we are at the `*' in the exact sequence `.*\n',
1891 insert an unconditional jump backwards to the .,
1892 instead of the beginning of the loop. This way we only
1893 push a failure point once, instead of every time
1894 through the loop. */
1895 assert (p
- 1 > pattern
);
1897 /* Allocate the space for the jump. */
1898 GET_BUFFER_SPACE (3);
1900 /* We know we are not at the first character of the pattern,
1901 because laststart was nonzero. And we've already
1902 incremented `p', by the way, to be the character after
1903 the `*'. Do we have to do something analogous here
1904 for null bytes, because of RE_DOT_NOT_NULL? */
1905 if (TRANSLATE (*(p
- 2)) == TRANSLATE ('.')
1907 && p
< pend
&& TRANSLATE (*p
) == TRANSLATE ('\n')
1908 && !(syntax
& RE_DOT_NEWLINE
))
1909 { /* We have .*\n. */
1910 STORE_JUMP (jump
, b
, laststart
);
1911 keep_string_p
= true;
1914 /* Anything else. */
1915 STORE_JUMP (maybe_pop_jump
, b
, laststart
- 3);
1917 /* We've added more stuff to the buffer. */
1921 /* On failure, jump from laststart to b + 3, which will be the
1922 end of the buffer after this jump is inserted. */
1923 GET_BUFFER_SPACE (3);
1924 INSERT_JUMP (keep_string_p
? on_failure_keep_string_jump
1932 /* At least one repetition is required, so insert a
1933 `dummy_failure_jump' before the initial
1934 `on_failure_jump' instruction of the loop. This
1935 effects a skip over that instruction the first time
1936 we hit that loop. */
1937 GET_BUFFER_SPACE (3);
1938 INSERT_JUMP (dummy_failure_jump
, laststart
, laststart
+ 6);
1953 boolean had_char_class
= false;
1955 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
1957 /* Ensure that we have enough space to push a charset: the
1958 opcode, the length count, and the bitset; 34 bytes in all. */
1959 GET_BUFFER_SPACE (34);
1963 /* We test `*p == '^' twice, instead of using an if
1964 statement, so we only need one BUF_PUSH. */
1965 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
1969 /* Remember the first position in the bracket expression. */
1972 /* Push the number of bytes in the bitmap. */
1973 BUF_PUSH ((1 << BYTEWIDTH
) / BYTEWIDTH
);
1975 /* Clear the whole map. */
1976 bzero (b
, (1 << BYTEWIDTH
) / BYTEWIDTH
);
1978 /* charset_not matches newline according to a syntax bit. */
1979 if ((re_opcode_t
) b
[-2] == charset_not
1980 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
1981 SET_LIST_BIT ('\n');
1983 /* Read in characters and ranges, setting map bits. */
1986 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
1990 /* \ might escape characters inside [...] and [^...]. */
1991 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
1993 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2000 /* Could be the end of the bracket expression. If it's
2001 not (i.e., when the bracket expression is `[]' so
2002 far), the ']' character bit gets set way below. */
2003 if (c
== ']' && p
!= p1
+ 1)
2006 /* Look ahead to see if it's a range when the last thing
2007 was a character class. */
2008 if (had_char_class
&& c
== '-' && *p
!= ']')
2009 FREE_STACK_RETURN (REG_ERANGE
);
2011 /* Look ahead to see if it's a range when the last thing
2012 was a character: if this is a hyphen not at the
2013 beginning or the end of a list, then it's the range
2016 && !(p
- 2 >= pattern
&& p
[-2] == '[')
2017 && !(p
- 3 >= pattern
&& p
[-3] == '[' && p
[-2] == '^')
2021 = compile_range (&p
, pend
, translate
, syntax
, b
);
2022 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
2025 else if (p
[0] == '-' && p
[1] != ']')
2026 { /* This handles ranges made up of characters only. */
2029 /* Move past the `-'. */
2032 ret
= compile_range (&p
, pend
, translate
, syntax
, b
);
2033 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
2036 /* See if we're at the beginning of a possible character
2039 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
2040 { /* Leave room for the null. */
2041 char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
2046 /* If pattern is `[[:'. */
2047 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2052 if (c
== ':' || c
== ']' || p
== pend
2053 || c1
== CHAR_CLASS_MAX_LENGTH
)
2059 /* If isn't a word bracketed by `[:' and:`]':
2060 undo the ending character, the letters, and leave
2061 the leading `:' and `[' (but set bits for them). */
2062 if (c
== ':' && *p
== ']')
2065 boolean is_alnum
= STREQ (str
, "alnum");
2066 boolean is_alpha
= STREQ (str
, "alpha");
2067 boolean is_blank
= STREQ (str
, "blank");
2068 boolean is_cntrl
= STREQ (str
, "cntrl");
2069 boolean is_digit
= STREQ (str
, "digit");
2070 boolean is_graph
= STREQ (str
, "graph");
2071 boolean is_lower
= STREQ (str
, "lower");
2072 boolean is_print
= STREQ (str
, "print");
2073 boolean is_punct
= STREQ (str
, "punct");
2074 boolean is_space
= STREQ (str
, "space");
2075 boolean is_upper
= STREQ (str
, "upper");
2076 boolean is_xdigit
= STREQ (str
, "xdigit");
2078 if (!IS_CHAR_CLASS (str
))
2079 FREE_STACK_RETURN (REG_ECTYPE
);
2081 /* Throw away the ] at the end of the character
2085 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2087 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ch
++)
2089 int translated
= TRANSLATE (ch
);
2090 /* This was split into 3 if's to
2091 avoid an arbitrary limit in some compiler. */
2092 if ( (is_alnum
&& ISALNUM (ch
))
2093 || (is_alpha
&& ISALPHA (ch
))
2094 || (is_blank
&& ISBLANK (ch
))
2095 || (is_cntrl
&& ISCNTRL (ch
)))
2096 SET_LIST_BIT (translated
);
2097 if ( (is_digit
&& ISDIGIT (ch
))
2098 || (is_graph
&& ISGRAPH (ch
))
2099 || (is_lower
&& ISLOWER (ch
))
2100 || (is_print
&& ISPRINT (ch
)))
2101 SET_LIST_BIT (translated
);
2102 if ( (is_punct
&& ISPUNCT (ch
))
2103 || (is_space
&& ISSPACE (ch
))
2104 || (is_upper
&& ISUPPER (ch
))
2105 || (is_xdigit
&& ISXDIGIT (ch
)))
2106 SET_LIST_BIT (translated
);
2108 had_char_class
= true;
2117 had_char_class
= false;
2122 had_char_class
= false;
2127 /* Discard any (non)matching list bytes that are all 0 at the
2128 end of the map. Decrease the map-length byte too. */
2129 while ((int) b
[-1] > 0 && b
[b
[-1] - 1] == 0)
2137 if (syntax
& RE_NO_BK_PARENS
)
2144 if (syntax
& RE_NO_BK_PARENS
)
2151 if (syntax
& RE_NEWLINE_ALT
)
2158 if (syntax
& RE_NO_BK_VBAR
)
2165 if (syntax
& RE_INTERVALS
&& syntax
& RE_NO_BK_BRACES
)
2166 goto handle_interval
;
2172 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2174 /* Do not translate the character after the \, so that we can
2175 distinguish, e.g., \B from \b, even if we normally would
2176 translate, e.g., B to b. */
2182 if (syntax
& RE_NO_BK_PARENS
)
2183 goto normal_backslash
;
2189 if (COMPILE_STACK_FULL
)
2191 RETALLOC (compile_stack
.stack
, compile_stack
.size
<< 1,
2192 compile_stack_elt_t
);
2193 if (compile_stack
.stack
== NULL
) return REG_ESPACE
;
2195 compile_stack
.size
<<= 1;
2198 /* These are the values to restore when we hit end of this
2199 group. They are all relative offsets, so that if the
2200 whole pattern moves because of realloc, they will still
2202 COMPILE_STACK_TOP
.begalt_offset
= begalt
- bufp
->buffer
;
2203 COMPILE_STACK_TOP
.fixup_alt_jump
2204 = fixup_alt_jump
? fixup_alt_jump
- bufp
->buffer
+ 1 : 0;
2205 COMPILE_STACK_TOP
.laststart_offset
= b
- bufp
->buffer
;
2206 COMPILE_STACK_TOP
.regnum
= regnum
;
2208 /* We will eventually replace the 0 with the number of
2209 groups inner to this one. But do not push a
2210 start_memory for groups beyond the last one we can
2211 represent in the compiled pattern. */
2212 if (regnum
<= MAX_REGNUM
)
2214 COMPILE_STACK_TOP
.inner_group_offset
= b
- bufp
->buffer
+ 2;
2215 BUF_PUSH_3 (start_memory
, regnum
, 0);
2218 compile_stack
.avail
++;
2223 /* If we've reached MAX_REGNUM groups, then this open
2224 won't actually generate any code, so we'll have to
2225 clear pending_exact explicitly. */
2231 if (syntax
& RE_NO_BK_PARENS
) goto normal_backslash
;
2233 if (COMPILE_STACK_EMPTY
)
2234 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
2235 goto normal_backslash
;
2237 FREE_STACK_RETURN (REG_ERPAREN
);
2241 { /* Push a dummy failure point at the end of the
2242 alternative for a possible future
2243 `pop_failure_jump' to pop. See comments at
2244 `push_dummy_failure' in `re_match_2'. */
2245 BUF_PUSH (push_dummy_failure
);
2247 /* We allocated space for this jump when we assigned
2248 to `fixup_alt_jump', in the `handle_alt' case below. */
2249 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
- 1);
2252 /* See similar code for backslashed left paren above. */
2253 if (COMPILE_STACK_EMPTY
)
2254 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
2257 FREE_STACK_RETURN (REG_ERPAREN
);
2259 /* Since we just checked for an empty stack above, this
2260 ``can't happen''. */
2261 assert (compile_stack
.avail
!= 0);
2263 /* We don't just want to restore into `regnum', because
2264 later groups should continue to be numbered higher,
2265 as in `(ab)c(de)' -- the second group is #2. */
2266 regnum_t this_group_regnum
;
2268 compile_stack
.avail
--;
2269 begalt
= bufp
->buffer
+ COMPILE_STACK_TOP
.begalt_offset
;
2271 = COMPILE_STACK_TOP
.fixup_alt_jump
2272 ? bufp
->buffer
+ COMPILE_STACK_TOP
.fixup_alt_jump
- 1
2274 laststart
= bufp
->buffer
+ COMPILE_STACK_TOP
.laststart_offset
;
2275 this_group_regnum
= COMPILE_STACK_TOP
.regnum
;
2276 /* If we've reached MAX_REGNUM groups, then this open
2277 won't actually generate any code, so we'll have to
2278 clear pending_exact explicitly. */
2281 /* We're at the end of the group, so now we know how many
2282 groups were inside this one. */
2283 if (this_group_regnum
<= MAX_REGNUM
)
2285 unsigned char *inner_group_loc
2286 = bufp
->buffer
+ COMPILE_STACK_TOP
.inner_group_offset
;
2288 *inner_group_loc
= regnum
- this_group_regnum
;
2289 BUF_PUSH_3 (stop_memory
, this_group_regnum
,
2290 regnum
- this_group_regnum
);
2296 case '|': /* `\|'. */
2297 if (syntax
& RE_LIMITED_OPS
|| syntax
& RE_NO_BK_VBAR
)
2298 goto normal_backslash
;
2300 if (syntax
& RE_LIMITED_OPS
)
2303 /* Insert before the previous alternative a jump which
2304 jumps to this alternative if the former fails. */
2305 GET_BUFFER_SPACE (3);
2306 INSERT_JUMP (on_failure_jump
, begalt
, b
+ 6);
2310 /* The alternative before this one has a jump after it
2311 which gets executed if it gets matched. Adjust that
2312 jump so it will jump to this alternative's analogous
2313 jump (put in below, which in turn will jump to the next
2314 (if any) alternative's such jump, etc.). The last such
2315 jump jumps to the correct final destination. A picture:
2321 If we are at `b', then fixup_alt_jump right now points to a
2322 three-byte space after `a'. We'll put in the jump, set
2323 fixup_alt_jump to right after `b', and leave behind three
2324 bytes which we'll fill in when we get to after `c'. */
2327 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
2329 /* Mark and leave space for a jump after this alternative,
2330 to be filled in later either by next alternative or
2331 when know we're at the end of a series of alternatives. */
2333 GET_BUFFER_SPACE (3);
2342 /* If \{ is a literal. */
2343 if (!(syntax
& RE_INTERVALS
)
2344 /* If we're at `\{' and it's not the open-interval
2346 || ((syntax
& RE_INTERVALS
) && (syntax
& RE_NO_BK_BRACES
))
2347 || (p
- 2 == pattern
&& p
== pend
))
2348 goto normal_backslash
;
2352 /* If got here, then the syntax allows intervals. */
2354 /* At least (most) this many matches must be made. */
2355 int lower_bound
= -1, upper_bound
= -1;
2357 beg_interval
= p
- 1;
2361 if (syntax
& RE_NO_BK_BRACES
)
2362 goto unfetch_interval
;
2364 FREE_STACK_RETURN (REG_EBRACE
);
2367 GET_UNSIGNED_NUMBER (lower_bound
);
2371 GET_UNSIGNED_NUMBER (upper_bound
);
2372 if (upper_bound
< 0) upper_bound
= RE_DUP_MAX
;
2375 /* Interval such as `{1}' => match exactly once. */
2376 upper_bound
= lower_bound
;
2378 if (lower_bound
< 0 || upper_bound
> RE_DUP_MAX
2379 || lower_bound
> upper_bound
)
2381 if (syntax
& RE_NO_BK_BRACES
)
2382 goto unfetch_interval
;
2384 FREE_STACK_RETURN (REG_BADBR
);
2387 if (!(syntax
& RE_NO_BK_BRACES
))
2389 if (c
!= '\\') FREE_STACK_RETURN (REG_EBRACE
);
2396 if (syntax
& RE_NO_BK_BRACES
)
2397 goto unfetch_interval
;
2399 FREE_STACK_RETURN (REG_BADBR
);
2402 /* We just parsed a valid interval. */
2404 /* If it's invalid to have no preceding re. */
2407 if (syntax
& RE_CONTEXT_INVALID_OPS
)
2408 FREE_STACK_RETURN (REG_BADRPT
);
2409 else if (syntax
& RE_CONTEXT_INDEP_OPS
)
2412 goto unfetch_interval
;
2415 /* If the upper bound is zero, don't want to succeed at
2416 all; jump from `laststart' to `b + 3', which will be
2417 the end of the buffer after we insert the jump. */
2418 if (upper_bound
== 0)
2420 GET_BUFFER_SPACE (3);
2421 INSERT_JUMP (jump
, laststart
, b
+ 3);
2425 /* Otherwise, we have a nontrivial interval. When
2426 we're all done, the pattern will look like:
2427 set_number_at <jump count> <upper bound>
2428 set_number_at <succeed_n count> <lower bound>
2429 succeed_n <after jump addr> <succeed_n count>
2431 jump_n <succeed_n addr> <jump count>
2432 (The upper bound and `jump_n' are omitted if
2433 `upper_bound' is 1, though.) */
2435 { /* If the upper bound is > 1, we need to insert
2436 more at the end of the loop. */
2437 unsigned nbytes
= 10 + (upper_bound
> 1) * 10;
2439 GET_BUFFER_SPACE (nbytes
);
2441 /* Initialize lower bound of the `succeed_n', even
2442 though it will be set during matching by its
2443 attendant `set_number_at' (inserted next),
2444 because `re_compile_fastmap' needs to know.
2445 Jump to the `jump_n' we might insert below. */
2446 INSERT_JUMP2 (succeed_n
, laststart
,
2447 b
+ 5 + (upper_bound
> 1) * 5,
2451 /* Code to initialize the lower bound. Insert
2452 before the `succeed_n'. The `5' is the last two
2453 bytes of this `set_number_at', plus 3 bytes of
2454 the following `succeed_n'. */
2455 insert_op2 (set_number_at
, laststart
, 5, lower_bound
, b
);
2458 if (upper_bound
> 1)
2459 { /* More than one repetition is allowed, so
2460 append a backward jump to the `succeed_n'
2461 that starts this interval.
2463 When we've reached this during matching,
2464 we'll have matched the interval once, so
2465 jump back only `upper_bound - 1' times. */
2466 STORE_JUMP2 (jump_n
, b
, laststart
+ 5,
2470 /* The location we want to set is the second
2471 parameter of the `jump_n'; that is `b-2' as
2472 an absolute address. `laststart' will be
2473 the `set_number_at' we're about to insert;
2474 `laststart+3' the number to set, the source
2475 for the relative address. But we are
2476 inserting into the middle of the pattern --
2477 so everything is getting moved up by 5.
2478 Conclusion: (b - 2) - (laststart + 3) + 5,
2479 i.e., b - laststart.
2481 We insert this at the beginning of the loop
2482 so that if we fail during matching, we'll
2483 reinitialize the bounds. */
2484 insert_op2 (set_number_at
, laststart
, b
- laststart
,
2485 upper_bound
- 1, b
);
2490 beg_interval
= NULL
;
2495 /* If an invalid interval, match the characters as literals. */
2496 assert (beg_interval
);
2498 beg_interval
= NULL
;
2500 /* normal_char and normal_backslash need `c'. */
2503 if (!(syntax
& RE_NO_BK_BRACES
))
2505 if (p
> pattern
&& p
[-1] == '\\')
2506 goto normal_backslash
;
2511 /* There is no way to specify the before_dot and after_dot
2512 operators. rms says this is ok. --karl */
2520 BUF_PUSH_2 (syntaxspec
, syntax_spec_code
[c
]);
2526 BUF_PUSH_2 (notsyntaxspec
, syntax_spec_code
[c
]);
2533 BUF_PUSH (wordchar
);
2539 BUF_PUSH (notwordchar
);
2552 BUF_PUSH (wordbound
);
2556 BUF_PUSH (notwordbound
);
2567 case '1': case '2': case '3': case '4': case '5':
2568 case '6': case '7': case '8': case '9':
2569 if (syntax
& RE_NO_BK_REFS
)
2575 FREE_STACK_RETURN (REG_ESUBREG
);
2577 /* Can't back reference to a subexpression if inside of it. */
2578 if (group_in_compile_stack (compile_stack
, c1
))
2582 BUF_PUSH_2 (duplicate
, c1
);
2588 if (syntax
& RE_BK_PLUS_QM
)
2591 goto normal_backslash
;
2595 /* You might think it would be useful for \ to mean
2596 not to translate; but if we don't translate it
2597 it will never match anything. */
2605 /* Expects the character in `c'. */
2607 /* If no exactn currently being built. */
2610 /* If last exactn not at current position. */
2611 || pending_exact
+ *pending_exact
+ 1 != b
2613 /* We have only one byte following the exactn for the count. */
2614 || *pending_exact
== (1 << BYTEWIDTH
) - 1
2616 /* If followed by a repetition operator. */
2617 || *p
== '*' || *p
== '^'
2618 || ((syntax
& RE_BK_PLUS_QM
)
2619 ? *p
== '\\' && (p
[1] == '+' || p
[1] == '?')
2620 : (*p
== '+' || *p
== '?'))
2621 || ((syntax
& RE_INTERVALS
)
2622 && ((syntax
& RE_NO_BK_BRACES
)
2624 : (p
[0] == '\\' && p
[1] == '{'))))
2626 /* Start building a new exactn. */
2630 BUF_PUSH_2 (exactn
, 0);
2631 pending_exact
= b
- 1;
2638 } /* while p != pend */
2641 /* Through the pattern now. */
2644 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
2646 if (!COMPILE_STACK_EMPTY
)
2647 FREE_STACK_RETURN (REG_EPAREN
);
2649 /* If we don't want backtracking, force success
2650 the first time we reach the end of the compiled pattern. */
2651 if (syntax
& RE_NO_POSIX_BACKTRACKING
)
2654 free (compile_stack
.stack
);
2656 /* We have succeeded; set the length of the buffer. */
2657 bufp
->used
= b
- bufp
->buffer
;
2662 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2663 print_compiled_pattern (bufp
);
2667 #ifndef MATCH_MAY_ALLOCATE
2668 /* Initialize the failure stack to the largest possible stack. This
2669 isn't necessary unless we're trying to avoid calling alloca in
2670 the search and match routines. */
2672 int num_regs
= bufp
->re_nsub
+ 1;
2674 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2675 is strictly greater than re_max_failures, the largest possible stack
2676 is 2 * re_max_failures failure points. */
2677 if (fail_stack
.size
< (2 * re_max_failures
* MAX_FAILURE_ITEMS
))
2679 fail_stack
.size
= (2 * re_max_failures
* MAX_FAILURE_ITEMS
);
2682 if (! fail_stack
.stack
)
2684 = (fail_stack_elt_t
*) xmalloc (fail_stack
.size
2685 * sizeof (fail_stack_elt_t
));
2688 = (fail_stack_elt_t
*) xrealloc (fail_stack
.stack
,
2690 * sizeof (fail_stack_elt_t
)));
2691 #else /* not emacs */
2692 if (! fail_stack
.stack
)
2694 = (fail_stack_elt_t
*) malloc (fail_stack
.size
2695 * sizeof (fail_stack_elt_t
));
2698 = (fail_stack_elt_t
*) realloc (fail_stack
.stack
,
2700 * sizeof (fail_stack_elt_t
)));
2701 #endif /* not emacs */
2704 regex_grow_registers (num_regs
);
2706 #endif /* not MATCH_MAY_ALLOCATE */
2709 } /* regex_compile */
2711 /* Subroutines for `regex_compile'. */
2713 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2716 store_op1 (op
, loc
, arg
)
2721 *loc
= (unsigned char) op
;
2722 STORE_NUMBER (loc
+ 1, arg
);
2726 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2729 store_op2 (op
, loc
, arg1
, arg2
)
2734 *loc
= (unsigned char) op
;
2735 STORE_NUMBER (loc
+ 1, arg1
);
2736 STORE_NUMBER (loc
+ 3, arg2
);
2740 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2741 for OP followed by two-byte integer parameter ARG. */
2744 insert_op1 (op
, loc
, arg
, end
)
2750 register unsigned char *pfrom
= end
;
2751 register unsigned char *pto
= end
+ 3;
2753 while (pfrom
!= loc
)
2756 store_op1 (op
, loc
, arg
);
2760 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2763 insert_op2 (op
, loc
, arg1
, arg2
, end
)
2769 register unsigned char *pfrom
= end
;
2770 register unsigned char *pto
= end
+ 5;
2772 while (pfrom
!= loc
)
2775 store_op2 (op
, loc
, arg1
, arg2
);
2779 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
2780 after an alternative or a begin-subexpression. We assume there is at
2781 least one character before the ^. */
2784 at_begline_loc_p (pattern
, p
, syntax
)
2785 const char *pattern
, *p
;
2786 reg_syntax_t syntax
;
2788 const char *prev
= p
- 2;
2789 boolean prev_prev_backslash
= prev
> pattern
&& prev
[-1] == '\\';
2792 /* After a subexpression? */
2793 (*prev
== '(' && (syntax
& RE_NO_BK_PARENS
|| prev_prev_backslash
))
2794 /* After an alternative? */
2795 || (*prev
== '|' && (syntax
& RE_NO_BK_VBAR
|| prev_prev_backslash
));
2799 /* The dual of at_begline_loc_p. This one is for $. We assume there is
2800 at least one character after the $, i.e., `P < PEND'. */
2803 at_endline_loc_p (p
, pend
, syntax
)
2804 const char *p
, *pend
;
2807 const char *next
= p
;
2808 boolean next_backslash
= *next
== '\\';
2809 const char *next_next
= p
+ 1 < pend
? p
+ 1 : 0;
2812 /* Before a subexpression? */
2813 (syntax
& RE_NO_BK_PARENS
? *next
== ')'
2814 : next_backslash
&& next_next
&& *next_next
== ')')
2815 /* Before an alternative? */
2816 || (syntax
& RE_NO_BK_VBAR
? *next
== '|'
2817 : next_backslash
&& next_next
&& *next_next
== '|');
2821 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
2822 false if it's not. */
2825 group_in_compile_stack (compile_stack
, regnum
)
2826 compile_stack_type compile_stack
;
2831 for (this_element
= compile_stack
.avail
- 1;
2834 if (compile_stack
.stack
[this_element
].regnum
== regnum
)
2841 /* Read the ending character of a range (in a bracket expression) from the
2842 uncompiled pattern *P_PTR (which ends at PEND). We assume the
2843 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
2844 Then we set the translation of all bits between the starting and
2845 ending characters (inclusive) in the compiled pattern B.
2847 Return an error code.
2849 We use these short variable names so we can use the same macros as
2850 `regex_compile' itself. */
2852 static reg_errcode_t
2853 compile_range (p_ptr
, pend
, translate
, syntax
, b
)
2854 const char **p_ptr
, *pend
;
2855 RE_TRANSLATE_TYPE translate
;
2856 reg_syntax_t syntax
;
2861 const char *p
= *p_ptr
;
2862 int range_start
, range_end
;
2867 /* Even though the pattern is a signed `char *', we need to fetch
2868 with unsigned char *'s; if the high bit of the pattern character
2869 is set, the range endpoints will be negative if we fetch using a
2872 We also want to fetch the endpoints without translating them; the
2873 appropriate translation is done in the bit-setting loop below. */
2874 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
2875 range_start
= ((const unsigned char *) p
)[-2];
2876 range_end
= ((const unsigned char *) p
)[0];
2878 /* Have to increment the pointer into the pattern string, so the
2879 caller isn't still at the ending character. */
2882 /* If the start is after the end, the range is empty. */
2883 if (range_start
> range_end
)
2884 return syntax
& RE_NO_EMPTY_RANGES
? REG_ERANGE
: REG_NOERROR
;
2886 /* Here we see why `this_char' has to be larger than an `unsigned
2887 char' -- the range is inclusive, so if `range_end' == 0xff
2888 (assuming 8-bit characters), we would otherwise go into an infinite
2889 loop, since all characters <= 0xff. */
2890 for (this_char
= range_start
; this_char
<= range_end
; this_char
++)
2892 SET_LIST_BIT (TRANSLATE (this_char
));
2898 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
2899 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
2900 characters can start a string that matches the pattern. This fastmap
2901 is used by re_search to skip quickly over impossible starting points.
2903 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
2904 area as BUFP->fastmap.
2906 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
2909 Returns 0 if we succeed, -2 if an internal error. */
2912 re_compile_fastmap (bufp
)
2913 struct re_pattern_buffer
*bufp
;
2916 #ifdef MATCH_MAY_ALLOCATE
2917 fail_stack_type fail_stack
;
2919 #ifndef REGEX_MALLOC
2922 /* We don't push any register information onto the failure stack. */
2923 unsigned num_regs
= 0;
2925 register char *fastmap
= bufp
->fastmap
;
2926 unsigned char *pattern
= bufp
->buffer
;
2927 unsigned long size
= bufp
->used
;
2928 unsigned char *p
= pattern
;
2929 register unsigned char *pend
= pattern
+ size
;
2931 /* This holds the pointer to the failure stack, when
2932 it is allocated relocatably. */
2933 fail_stack_elt_t
*failure_stack_ptr
;
2935 /* Assume that each path through the pattern can be null until
2936 proven otherwise. We set this false at the bottom of switch
2937 statement, to which we get only if a particular path doesn't
2938 match the empty string. */
2939 boolean path_can_be_null
= true;
2941 /* We aren't doing a `succeed_n' to begin with. */
2942 boolean succeed_n_p
= false;
2944 assert (fastmap
!= NULL
&& p
!= NULL
);
2947 bzero (fastmap
, 1 << BYTEWIDTH
); /* Assume nothing's valid. */
2948 bufp
->fastmap_accurate
= 1; /* It will be when we're done. */
2949 bufp
->can_be_null
= 0;
2953 if (p
== pend
|| *p
== succeed
)
2955 /* We have reached the (effective) end of pattern. */
2956 if (!FAIL_STACK_EMPTY ())
2958 bufp
->can_be_null
|= path_can_be_null
;
2960 /* Reset for next path. */
2961 path_can_be_null
= true;
2963 p
= fail_stack
.stack
[--fail_stack
.avail
].pointer
;
2971 /* We should never be about to go beyond the end of the pattern. */
2974 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
2977 /* I guess the idea here is to simply not bother with a fastmap
2978 if a backreference is used, since it's too hard to figure out
2979 the fastmap for the corresponding group. Setting
2980 `can_be_null' stops `re_search_2' from using the fastmap, so
2981 that is all we do. */
2983 bufp
->can_be_null
= 1;
2987 /* Following are the cases which match a character. These end
2996 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
2997 if (p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
)))
3003 /* Chars beyond end of map must be allowed. */
3004 for (j
= *p
* BYTEWIDTH
; j
< (1 << BYTEWIDTH
); j
++)
3007 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
3008 if (!(p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
))))
3014 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3015 if (SYNTAX (j
) == Sword
)
3021 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3022 if (SYNTAX (j
) != Sword
)
3029 int fastmap_newline
= fastmap
['\n'];
3031 /* `.' matches anything ... */
3032 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3035 /* ... except perhaps newline. */
3036 if (!(bufp
->syntax
& RE_DOT_NEWLINE
))
3037 fastmap
['\n'] = fastmap_newline
;
3039 /* Return if we have already set `can_be_null'; if we have,
3040 then the fastmap is irrelevant. Something's wrong here. */
3041 else if (bufp
->can_be_null
)
3044 /* Otherwise, have to check alternative paths. */
3051 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3052 if (SYNTAX (j
) == (enum syntaxcode
) k
)
3059 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3060 if (SYNTAX (j
) != (enum syntaxcode
) k
)
3065 /* All cases after this match the empty string. These end with
3085 case push_dummy_failure
:
3090 case pop_failure_jump
:
3091 case maybe_pop_jump
:
3094 case dummy_failure_jump
:
3095 EXTRACT_NUMBER_AND_INCR (j
, p
);
3100 /* Jump backward implies we just went through the body of a
3101 loop and matched nothing. Opcode jumped to should be
3102 `on_failure_jump' or `succeed_n'. Just treat it like an
3103 ordinary jump. For a * loop, it has pushed its failure
3104 point already; if so, discard that as redundant. */
3105 if ((re_opcode_t
) *p
!= on_failure_jump
3106 && (re_opcode_t
) *p
!= succeed_n
)
3110 EXTRACT_NUMBER_AND_INCR (j
, p
);
3113 /* If what's on the stack is where we are now, pop it. */
3114 if (!FAIL_STACK_EMPTY ()
3115 && fail_stack
.stack
[fail_stack
.avail
- 1].pointer
== p
)
3121 case on_failure_jump
:
3122 case on_failure_keep_string_jump
:
3123 handle_on_failure_jump
:
3124 EXTRACT_NUMBER_AND_INCR (j
, p
);
3126 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3127 end of the pattern. We don't want to push such a point,
3128 since when we restore it above, entering the switch will
3129 increment `p' past the end of the pattern. We don't need
3130 to push such a point since we obviously won't find any more
3131 fastmap entries beyond `pend'. Such a pattern can match
3132 the null string, though. */
3135 if (!PUSH_PATTERN_OP (p
+ j
, fail_stack
))
3137 RESET_FAIL_STACK ();
3142 bufp
->can_be_null
= 1;
3146 EXTRACT_NUMBER_AND_INCR (k
, p
); /* Skip the n. */
3147 succeed_n_p
= false;
3154 /* Get to the number of times to succeed. */
3157 /* Increment p past the n for when k != 0. */
3158 EXTRACT_NUMBER_AND_INCR (k
, p
);
3162 succeed_n_p
= true; /* Spaghetti code alert. */
3163 goto handle_on_failure_jump
;
3180 abort (); /* We have listed all the cases. */
3183 /* Getting here means we have found the possible starting
3184 characters for one path of the pattern -- and that the empty
3185 string does not match. We need not follow this path further.
3186 Instead, look at the next alternative (remembered on the
3187 stack), or quit if no more. The test at the top of the loop
3188 does these things. */
3189 path_can_be_null
= false;
3193 /* Set `can_be_null' for the last path (also the first path, if the
3194 pattern is empty). */
3195 bufp
->can_be_null
|= path_can_be_null
;
3198 RESET_FAIL_STACK ();
3200 } /* re_compile_fastmap */
3202 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3203 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3204 this memory for recording register information. STARTS and ENDS
3205 must be allocated using the malloc library routine, and must each
3206 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3208 If NUM_REGS == 0, then subsequent matches should allocate their own
3211 Unless this function is called, the first search or match using
3212 PATTERN_BUFFER will allocate its own register data, without
3213 freeing the old data. */
3216 re_set_registers (bufp
, regs
, num_regs
, starts
, ends
)
3217 struct re_pattern_buffer
*bufp
;
3218 struct re_registers
*regs
;
3220 regoff_t
*starts
, *ends
;
3224 bufp
->regs_allocated
= REGS_REALLOCATE
;
3225 regs
->num_regs
= num_regs
;
3226 regs
->start
= starts
;
3231 bufp
->regs_allocated
= REGS_UNALLOCATED
;
3233 regs
->start
= regs
->end
= (regoff_t
*) 0;
3237 /* Searching routines. */
3239 /* Like re_search_2, below, but only one string is specified, and
3240 doesn't let you say where to stop matching. */
3243 re_search (bufp
, string
, size
, startpos
, range
, regs
)
3244 struct re_pattern_buffer
*bufp
;
3246 int size
, startpos
, range
;
3247 struct re_registers
*regs
;
3249 return re_search_2 (bufp
, NULL
, 0, string
, size
, startpos
, range
,
3254 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3255 virtual concatenation of STRING1 and STRING2, starting first at index
3256 STARTPOS, then at STARTPOS + 1, and so on.
3258 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3260 RANGE is how far to scan while trying to match. RANGE = 0 means try
3261 only at STARTPOS; in general, the last start tried is STARTPOS +
3264 In REGS, return the indices of the virtual concatenation of STRING1
3265 and STRING2 that matched the entire BUFP->buffer and its contained
3268 Do not consider matching one past the index STOP in the virtual
3269 concatenation of STRING1 and STRING2.
3271 We return either the position in the strings at which the match was
3272 found, -1 if no match, or -2 if error (such as failure
3276 re_search_2 (bufp
, string1
, size1
, string2
, size2
, startpos
, range
, regs
, stop
)
3277 struct re_pattern_buffer
*bufp
;
3278 const char *string1
, *string2
;
3282 struct re_registers
*regs
;
3286 register char *fastmap
= bufp
->fastmap
;
3287 register RE_TRANSLATE_TYPE translate
= bufp
->translate
;
3288 int total_size
= size1
+ size2
;
3289 int endpos
= startpos
+ range
;
3290 int anchored_start
= 0;
3292 /* Check for out-of-range STARTPOS. */
3293 if (startpos
< 0 || startpos
> total_size
)
3296 /* Fix up RANGE if it might eventually take us outside
3297 the virtual concatenation of STRING1 and STRING2.
3298 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
3300 range
= 0 - startpos
;
3301 else if (endpos
> total_size
)
3302 range
= total_size
- startpos
;
3304 /* If the search isn't to be a backwards one, don't waste time in a
3305 search for a pattern that must be anchored. */
3306 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == begbuf
&& range
> 0)
3315 /* In a forward search for something that starts with \=.
3316 don't keep searching past point. */
3317 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == at_dot
&& range
> 0)
3319 range
= PT
- startpos
;
3325 /* Update the fastmap now if not correct already. */
3326 if (fastmap
&& !bufp
->fastmap_accurate
)
3327 if (re_compile_fastmap (bufp
) == -2)
3330 /* See whether the pattern is anchored. */
3331 if (bufp
->buffer
[0] == begline
)
3334 /* Loop through the string, looking for a place to start matching. */
3337 /* If the pattern is anchored,
3338 skip quickly past places we cannot match.
3339 We don't bother to treat startpos == 0 specially
3340 because that case doesn't repeat. */
3341 if (anchored_start
&& startpos
> 0)
3343 if (! (bufp
->newline_anchor
3344 && ((startpos
<= size1
? string1
[startpos
- 1]
3345 : string2
[startpos
- size1
- 1])
3350 /* If a fastmap is supplied, skip quickly over characters that
3351 cannot be the start of a match. If the pattern can match the
3352 null string, however, we don't need to skip characters; we want
3353 the first null string. */
3354 if (fastmap
&& startpos
< total_size
&& !bufp
->can_be_null
)
3356 if (range
> 0) /* Searching forwards. */
3358 register const char *d
;
3359 register int lim
= 0;
3362 if (startpos
< size1
&& startpos
+ range
>= size1
)
3363 lim
= range
- (size1
- startpos
);
3365 d
= (startpos
>= size1
? string2
- size1
: string1
) + startpos
;
3367 /* Written out as an if-else to avoid testing `translate'
3371 && !fastmap
[(unsigned char)
3372 translate
[(unsigned char) *d
++]])
3375 while (range
> lim
&& !fastmap
[(unsigned char) *d
++])
3378 startpos
+= irange
- range
;
3380 else /* Searching backwards. */
3382 register char c
= (size1
== 0 || startpos
>= size1
3383 ? string2
[startpos
- size1
]
3384 : string1
[startpos
]);
3386 if (!fastmap
[(unsigned char) TRANSLATE (c
)])
3391 /* If can't match the null string, and that's all we have left, fail. */
3392 if (range
>= 0 && startpos
== total_size
&& fastmap
3393 && !bufp
->can_be_null
)
3396 val
= re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
3397 startpos
, regs
, stop
);
3398 #ifndef REGEX_MALLOC
3427 /* Declarations and macros for re_match_2. */
3429 static int bcmp_translate ();
3430 static boolean
alt_match_null_string_p (),
3431 common_op_match_null_string_p (),
3432 group_match_null_string_p ();
3434 /* This converts PTR, a pointer into one of the search strings `string1'
3435 and `string2' into an offset from the beginning of that string. */
3436 #define POINTER_TO_OFFSET(ptr) \
3437 (FIRST_STRING_P (ptr) \
3438 ? ((regoff_t) ((ptr) - string1)) \
3439 : ((regoff_t) ((ptr) - string2 + size1)))
3441 /* Macros for dealing with the split strings in re_match_2. */
3443 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3445 /* Call before fetching a character with *d. This switches over to
3446 string2 if necessary. */
3447 #define PREFETCH() \
3450 /* End of string2 => fail. */ \
3451 if (dend == end_match_2) \
3453 /* End of string1 => advance to string2. */ \
3455 dend = end_match_2; \
3459 /* Test if at very beginning or at very end of the virtual concatenation
3460 of `string1' and `string2'. If only one string, it's `string2'. */
3461 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3462 #define AT_STRINGS_END(d) ((d) == end2)
3465 /* Test if D points to a character which is word-constituent. We have
3466 two special cases to check for: if past the end of string1, look at
3467 the first character in string2; and if before the beginning of
3468 string2, look at the last character in string1. */
3469 #define WORDCHAR_P(d) \
3470 (SYNTAX ((d) == end1 ? *string2 \
3471 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3474 /* Disabled due to a compiler bug -- see comment at case wordbound */
3476 /* Test if the character before D and the one at D differ with respect
3477 to being word-constituent. */
3478 #define AT_WORD_BOUNDARY(d) \
3479 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3480 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3483 /* Free everything we malloc. */
3484 #ifdef MATCH_MAY_ALLOCATE
3485 #define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
3486 #define FREE_VARIABLES() \
3488 REGEX_FREE_STACK (fail_stack.stack); \
3489 FREE_VAR (regstart); \
3490 FREE_VAR (regend); \
3491 FREE_VAR (old_regstart); \
3492 FREE_VAR (old_regend); \
3493 FREE_VAR (best_regstart); \
3494 FREE_VAR (best_regend); \
3495 FREE_VAR (reg_info); \
3496 FREE_VAR (reg_dummy); \
3497 FREE_VAR (reg_info_dummy); \
3500 #define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
3501 #endif /* not MATCH_MAY_ALLOCATE */
3503 /* These values must meet several constraints. They must not be valid
3504 register values; since we have a limit of 255 registers (because
3505 we use only one byte in the pattern for the register number), we can
3506 use numbers larger than 255. They must differ by 1, because of
3507 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3508 be larger than the value for the highest register, so we do not try
3509 to actually save any registers when none are active. */
3510 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3511 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3513 /* Matching routines. */
3515 #ifndef emacs /* Emacs never uses this. */
3516 /* re_match is like re_match_2 except it takes only a single string. */
3519 re_match (bufp
, string
, size
, pos
, regs
)
3520 struct re_pattern_buffer
*bufp
;
3523 struct re_registers
*regs
;
3525 int result
= re_match_2_internal (bufp
, NULL
, 0, string
, size
,
3530 #endif /* not emacs */
3533 /* re_match_2 matches the compiled pattern in BUFP against the
3534 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3535 and SIZE2, respectively). We start matching at POS, and stop
3538 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3539 store offsets for the substring each group matched in REGS. See the
3540 documentation for exactly how many groups we fill.
3542 We return -1 if no match, -2 if an internal error (such as the
3543 failure stack overflowing). Otherwise, we return the length of the
3544 matched substring. */
3547 re_match_2 (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
3548 struct re_pattern_buffer
*bufp
;
3549 const char *string1
, *string2
;
3552 struct re_registers
*regs
;
3555 int result
= re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
3561 /* This is a separate function so that we can force an alloca cleanup
3564 re_match_2_internal (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
3565 struct re_pattern_buffer
*bufp
;
3566 const char *string1
, *string2
;
3569 struct re_registers
*regs
;
3572 /* General temporaries. */
3576 /* Just past the end of the corresponding string. */
3577 const char *end1
, *end2
;
3579 /* Pointers into string1 and string2, just past the last characters in
3580 each to consider matching. */
3581 const char *end_match_1
, *end_match_2
;
3583 /* Where we are in the data, and the end of the current string. */
3584 const char *d
, *dend
;
3586 /* Where we are in the pattern, and the end of the pattern. */
3587 unsigned char *p
= bufp
->buffer
;
3588 register unsigned char *pend
= p
+ bufp
->used
;
3590 /* Mark the opcode just after a start_memory, so we can test for an
3591 empty subpattern when we get to the stop_memory. */
3592 unsigned char *just_past_start_mem
= 0;
3594 /* We use this to map every character in the string. */
3595 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
3597 /* Failure point stack. Each place that can handle a failure further
3598 down the line pushes a failure point on this stack. It consists of
3599 restart, regend, and reg_info for all registers corresponding to
3600 the subexpressions we're currently inside, plus the number of such
3601 registers, and, finally, two char *'s. The first char * is where
3602 to resume scanning the pattern; the second one is where to resume
3603 scanning the strings. If the latter is zero, the failure point is
3604 a ``dummy''; if a failure happens and the failure point is a dummy,
3605 it gets discarded and the next next one is tried. */
3606 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3607 fail_stack_type fail_stack
;
3610 static unsigned failure_id
= 0;
3611 unsigned nfailure_points_pushed
= 0, nfailure_points_popped
= 0;
3614 /* This holds the pointer to the failure stack, when
3615 it is allocated relocatably. */
3616 fail_stack_elt_t
*failure_stack_ptr
;
3618 /* We fill all the registers internally, independent of what we
3619 return, for use in backreferences. The number here includes
3620 an element for register zero. */
3621 unsigned num_regs
= bufp
->re_nsub
+ 1;
3623 /* The currently active registers. */
3624 unsigned lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
3625 unsigned highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
3627 /* Information on the contents of registers. These are pointers into
3628 the input strings; they record just what was matched (on this
3629 attempt) by a subexpression part of the pattern, that is, the
3630 regnum-th regstart pointer points to where in the pattern we began
3631 matching and the regnum-th regend points to right after where we
3632 stopped matching the regnum-th subexpression. (The zeroth register
3633 keeps track of what the whole pattern matches.) */
3634 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3635 const char **regstart
, **regend
;
3638 /* If a group that's operated upon by a repetition operator fails to
3639 match anything, then the register for its start will need to be
3640 restored because it will have been set to wherever in the string we
3641 are when we last see its open-group operator. Similarly for a
3643 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3644 const char **old_regstart
, **old_regend
;
3647 /* The is_active field of reg_info helps us keep track of which (possibly
3648 nested) subexpressions we are currently in. The matched_something
3649 field of reg_info[reg_num] helps us tell whether or not we have
3650 matched any of the pattern so far this time through the reg_num-th
3651 subexpression. These two fields get reset each time through any
3652 loop their register is in. */
3653 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3654 register_info_type
*reg_info
;
3657 /* The following record the register info as found in the above
3658 variables when we find a match better than any we've seen before.
3659 This happens as we backtrack through the failure points, which in
3660 turn happens only if we have not yet matched the entire string. */
3661 unsigned best_regs_set
= false;
3662 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3663 const char **best_regstart
, **best_regend
;
3666 /* Logically, this is `best_regend[0]'. But we don't want to have to
3667 allocate space for that if we're not allocating space for anything
3668 else (see below). Also, we never need info about register 0 for
3669 any of the other register vectors, and it seems rather a kludge to
3670 treat `best_regend' differently than the rest. So we keep track of
3671 the end of the best match so far in a separate variable. We
3672 initialize this to NULL so that when we backtrack the first time
3673 and need to test it, it's not garbage. */
3674 const char *match_end
= NULL
;
3676 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
3677 int set_regs_matched_done
= 0;
3679 /* Used when we pop values we don't care about. */
3680 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3681 const char **reg_dummy
;
3682 register_info_type
*reg_info_dummy
;
3686 /* Counts the total number of registers pushed. */
3687 unsigned num_regs_pushed
= 0;
3690 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3694 #ifdef MATCH_MAY_ALLOCATE
3695 /* Do not bother to initialize all the register variables if there are
3696 no groups in the pattern, as it takes a fair amount of time. If
3697 there are groups, we include space for register 0 (the whole
3698 pattern), even though we never use it, since it simplifies the
3699 array indexing. We should fix this. */
3702 regstart
= REGEX_TALLOC (num_regs
, const char *);
3703 regend
= REGEX_TALLOC (num_regs
, const char *);
3704 old_regstart
= REGEX_TALLOC (num_regs
, const char *);
3705 old_regend
= REGEX_TALLOC (num_regs
, const char *);
3706 best_regstart
= REGEX_TALLOC (num_regs
, const char *);
3707 best_regend
= REGEX_TALLOC (num_regs
, const char *);
3708 reg_info
= REGEX_TALLOC (num_regs
, register_info_type
);
3709 reg_dummy
= REGEX_TALLOC (num_regs
, const char *);
3710 reg_info_dummy
= REGEX_TALLOC (num_regs
, register_info_type
);
3712 if (!(regstart
&& regend
&& old_regstart
&& old_regend
&& reg_info
3713 && best_regstart
&& best_regend
&& reg_dummy
&& reg_info_dummy
))
3721 /* We must initialize all our variables to NULL, so that
3722 `FREE_VARIABLES' doesn't try to free them. */
3723 regstart
= regend
= old_regstart
= old_regend
= best_regstart
3724 = best_regend
= reg_dummy
= NULL
;
3725 reg_info
= reg_info_dummy
= (register_info_type
*) NULL
;
3727 #endif /* MATCH_MAY_ALLOCATE */
3729 /* The starting position is bogus. */
3730 if (pos
< 0 || pos
> size1
+ size2
)
3736 /* Initialize subexpression text positions to -1 to mark ones that no
3737 start_memory/stop_memory has been seen for. Also initialize the
3738 register information struct. */
3739 for (mcnt
= 1; mcnt
< num_regs
; mcnt
++)
3741 regstart
[mcnt
] = regend
[mcnt
]
3742 = old_regstart
[mcnt
] = old_regend
[mcnt
] = REG_UNSET_VALUE
;
3744 REG_MATCH_NULL_STRING_P (reg_info
[mcnt
]) = MATCH_NULL_UNSET_VALUE
;
3745 IS_ACTIVE (reg_info
[mcnt
]) = 0;
3746 MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
3747 EVER_MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
3750 /* We move `string1' into `string2' if the latter's empty -- but not if
3751 `string1' is null. */
3752 if (size2
== 0 && string1
!= NULL
)
3759 end1
= string1
+ size1
;
3760 end2
= string2
+ size2
;
3762 /* Compute where to stop matching, within the two strings. */
3765 end_match_1
= string1
+ stop
;
3766 end_match_2
= string2
;
3771 end_match_2
= string2
+ stop
- size1
;
3774 /* `p' scans through the pattern as `d' scans through the data.
3775 `dend' is the end of the input string that `d' points within. `d'
3776 is advanced into the following input string whenever necessary, but
3777 this happens before fetching; therefore, at the beginning of the
3778 loop, `d' can be pointing at the end of a string, but it cannot
3780 if (size1
> 0 && pos
<= size1
)
3787 d
= string2
+ pos
- size1
;
3791 DEBUG_PRINT1 ("The compiled pattern is: ");
3792 DEBUG_PRINT_COMPILED_PATTERN (bufp
, p
, pend
);
3793 DEBUG_PRINT1 ("The string to match is: `");
3794 DEBUG_PRINT_DOUBLE_STRING (d
, string1
, size1
, string2
, size2
);
3795 DEBUG_PRINT1 ("'\n");
3797 /* This loops over pattern commands. It exits by returning from the
3798 function if the match is complete, or it drops through if the match
3799 fails at this starting point in the input data. */
3802 DEBUG_PRINT2 ("\n0x%x: ", p
);
3805 { /* End of pattern means we might have succeeded. */
3806 DEBUG_PRINT1 ("end of pattern ... ");
3808 /* If we haven't matched the entire string, and we want the
3809 longest match, try backtracking. */
3810 if (d
!= end_match_2
)
3812 /* 1 if this match ends in the same string (string1 or string2)
3813 as the best previous match. */
3814 boolean same_str_p
= (FIRST_STRING_P (match_end
)
3815 == MATCHING_IN_FIRST_STRING
);
3816 /* 1 if this match is the best seen so far. */
3817 boolean best_match_p
;
3819 /* AIX compiler got confused when this was combined
3820 with the previous declaration. */
3822 best_match_p
= d
> match_end
;
3824 best_match_p
= !MATCHING_IN_FIRST_STRING
;
3826 DEBUG_PRINT1 ("backtracking.\n");
3828 if (!FAIL_STACK_EMPTY ())
3829 { /* More failure points to try. */
3831 /* If exceeds best match so far, save it. */
3832 if (!best_regs_set
|| best_match_p
)
3834 best_regs_set
= true;
3837 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
3839 for (mcnt
= 1; mcnt
< num_regs
; mcnt
++)
3841 best_regstart
[mcnt
] = regstart
[mcnt
];
3842 best_regend
[mcnt
] = regend
[mcnt
];
3848 /* If no failure points, don't restore garbage. And if
3849 last match is real best match, don't restore second
3851 else if (best_regs_set
&& !best_match_p
)
3854 /* Restore best match. It may happen that `dend ==
3855 end_match_1' while the restored d is in string2.
3856 For example, the pattern `x.*y.*z' against the
3857 strings `x-' and `y-z-', if the two strings are
3858 not consecutive in memory. */
3859 DEBUG_PRINT1 ("Restoring best registers.\n");
3862 dend
= ((d
>= string1
&& d
<= end1
)
3863 ? end_match_1
: end_match_2
);
3865 for (mcnt
= 1; mcnt
< num_regs
; mcnt
++)
3867 regstart
[mcnt
] = best_regstart
[mcnt
];
3868 regend
[mcnt
] = best_regend
[mcnt
];
3871 } /* d != end_match_2 */
3874 DEBUG_PRINT1 ("Accepting match.\n");
3876 /* If caller wants register contents data back, do it. */
3877 if (regs
&& !bufp
->no_sub
)
3879 /* Have the register data arrays been allocated? */
3880 if (bufp
->regs_allocated
== REGS_UNALLOCATED
)
3881 { /* No. So allocate them with malloc. We need one
3882 extra element beyond `num_regs' for the `-1' marker
3884 regs
->num_regs
= MAX (RE_NREGS
, num_regs
+ 1);
3885 regs
->start
= TALLOC (regs
->num_regs
, regoff_t
);
3886 regs
->end
= TALLOC (regs
->num_regs
, regoff_t
);
3887 if (regs
->start
== NULL
|| regs
->end
== NULL
)
3892 bufp
->regs_allocated
= REGS_REALLOCATE
;
3894 else if (bufp
->regs_allocated
== REGS_REALLOCATE
)
3895 { /* Yes. If we need more elements than were already
3896 allocated, reallocate them. If we need fewer, just
3898 if (regs
->num_regs
< num_regs
+ 1)
3900 regs
->num_regs
= num_regs
+ 1;
3901 RETALLOC (regs
->start
, regs
->num_regs
, regoff_t
);
3902 RETALLOC (regs
->end
, regs
->num_regs
, regoff_t
);
3903 if (regs
->start
== NULL
|| regs
->end
== NULL
)
3912 /* These braces fend off a "empty body in an else-statement"
3913 warning under GCC when assert expands to nothing. */
3914 assert (bufp
->regs_allocated
== REGS_FIXED
);
3917 /* Convert the pointer data in `regstart' and `regend' to
3918 indices. Register zero has to be set differently,
3919 since we haven't kept track of any info for it. */
3920 if (regs
->num_regs
> 0)
3922 regs
->start
[0] = pos
;
3923 regs
->end
[0] = (MATCHING_IN_FIRST_STRING
3924 ? ((regoff_t
) (d
- string1
))
3925 : ((regoff_t
) (d
- string2
+ size1
)));
3928 /* Go through the first `min (num_regs, regs->num_regs)'
3929 registers, since that is all we initialized. */
3930 for (mcnt
= 1; mcnt
< MIN (num_regs
, regs
->num_regs
); mcnt
++)
3932 if (REG_UNSET (regstart
[mcnt
]) || REG_UNSET (regend
[mcnt
]))
3933 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
3937 = (regoff_t
) POINTER_TO_OFFSET (regstart
[mcnt
]);
3939 = (regoff_t
) POINTER_TO_OFFSET (regend
[mcnt
]);
3943 /* If the regs structure we return has more elements than
3944 were in the pattern, set the extra elements to -1. If
3945 we (re)allocated the registers, this is the case,
3946 because we always allocate enough to have at least one
3948 for (mcnt
= num_regs
; mcnt
< regs
->num_regs
; mcnt
++)
3949 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
3950 } /* regs && !bufp->no_sub */
3952 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
3953 nfailure_points_pushed
, nfailure_points_popped
,
3954 nfailure_points_pushed
- nfailure_points_popped
);
3955 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed
);
3957 mcnt
= d
- pos
- (MATCHING_IN_FIRST_STRING
3961 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt
);
3967 /* Otherwise match next pattern command. */
3968 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
3970 /* Ignore these. Used to ignore the n of succeed_n's which
3971 currently have n == 0. */
3973 DEBUG_PRINT1 ("EXECUTING no_op.\n");
3977 DEBUG_PRINT1 ("EXECUTING succeed.\n");
3980 /* Match the next n pattern characters exactly. The following
3981 byte in the pattern defines n, and the n bytes after that
3982 are the characters to match. */
3985 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt
);
3987 /* This is written out as an if-else so we don't waste time
3988 testing `translate' inside the loop. */
3994 if ((unsigned char) translate
[(unsigned char) *d
++]
3995 != (unsigned char) *p
++)
4005 if (*d
++ != (char) *p
++) goto fail
;
4009 SET_REGS_MATCHED ();
4013 /* Match any character except possibly a newline or a null. */
4015 DEBUG_PRINT1 ("EXECUTING anychar.\n");
4019 if ((!(bufp
->syntax
& RE_DOT_NEWLINE
) && TRANSLATE (*d
) == '\n')
4020 || (bufp
->syntax
& RE_DOT_NOT_NULL
&& TRANSLATE (*d
) == '\000'))
4023 SET_REGS_MATCHED ();
4024 DEBUG_PRINT2 (" Matched `%d'.\n", *d
);
4032 register unsigned char c
;
4033 boolean
not = (re_opcode_t
) *(p
- 1) == charset_not
;
4035 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4038 c
= TRANSLATE (*d
); /* The character to match. */
4040 /* Cast to `unsigned' instead of `unsigned char' in case the
4041 bit list is a full 32 bytes long. */
4042 if (c
< (unsigned) (*p
* BYTEWIDTH
)
4043 && p
[1 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
4048 if (!not) goto fail
;
4050 SET_REGS_MATCHED ();
4056 /* The beginning of a group is represented by start_memory.
4057 The arguments are the register number in the next byte, and the
4058 number of groups inner to this one in the next. The text
4059 matched within the group is recorded (in the internal
4060 registers data structure) under the register number. */
4062 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p
, p
[1]);
4064 /* Find out if this group can match the empty string. */
4065 p1
= p
; /* To send to group_match_null_string_p. */
4067 if (REG_MATCH_NULL_STRING_P (reg_info
[*p
]) == MATCH_NULL_UNSET_VALUE
)
4068 REG_MATCH_NULL_STRING_P (reg_info
[*p
])
4069 = group_match_null_string_p (&p1
, pend
, reg_info
);
4071 /* Save the position in the string where we were the last time
4072 we were at this open-group operator in case the group is
4073 operated upon by a repetition operator, e.g., with `(a*)*b'
4074 against `ab'; then we want to ignore where we are now in
4075 the string in case this attempt to match fails. */
4076 old_regstart
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
4077 ? REG_UNSET (regstart
[*p
]) ? d
: regstart
[*p
]
4079 DEBUG_PRINT2 (" old_regstart: %d\n",
4080 POINTER_TO_OFFSET (old_regstart
[*p
]));
4083 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart
[*p
]));
4085 IS_ACTIVE (reg_info
[*p
]) = 1;
4086 MATCHED_SOMETHING (reg_info
[*p
]) = 0;
4088 /* Clear this whenever we change the register activity status. */
4089 set_regs_matched_done
= 0;
4091 /* This is the new highest active register. */
4092 highest_active_reg
= *p
;
4094 /* If nothing was active before, this is the new lowest active
4096 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
4097 lowest_active_reg
= *p
;
4099 /* Move past the register number and inner group count. */
4101 just_past_start_mem
= p
;
4106 /* The stop_memory opcode represents the end of a group. Its
4107 arguments are the same as start_memory's: the register
4108 number, and the number of inner groups. */
4110 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p
, p
[1]);
4112 /* We need to save the string position the last time we were at
4113 this close-group operator in case the group is operated
4114 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4115 against `aba'; then we want to ignore where we are now in
4116 the string in case this attempt to match fails. */
4117 old_regend
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
4118 ? REG_UNSET (regend
[*p
]) ? d
: regend
[*p
]
4120 DEBUG_PRINT2 (" old_regend: %d\n",
4121 POINTER_TO_OFFSET (old_regend
[*p
]));
4124 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend
[*p
]));
4126 /* This register isn't active anymore. */
4127 IS_ACTIVE (reg_info
[*p
]) = 0;
4129 /* Clear this whenever we change the register activity status. */
4130 set_regs_matched_done
= 0;
4132 /* If this was the only register active, nothing is active
4134 if (lowest_active_reg
== highest_active_reg
)
4136 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
4137 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
4140 { /* We must scan for the new highest active register, since
4141 it isn't necessarily one less than now: consider
4142 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4143 new highest active register is 1. */
4144 unsigned char r
= *p
- 1;
4145 while (r
> 0 && !IS_ACTIVE (reg_info
[r
]))
4148 /* If we end up at register zero, that means that we saved
4149 the registers as the result of an `on_failure_jump', not
4150 a `start_memory', and we jumped to past the innermost
4151 `stop_memory'. For example, in ((.)*) we save
4152 registers 1 and 2 as a result of the *, but when we pop
4153 back to the second ), we are at the stop_memory 1.
4154 Thus, nothing is active. */
4157 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
4158 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
4161 highest_active_reg
= r
;
4164 /* If just failed to match something this time around with a
4165 group that's operated on by a repetition operator, try to
4166 force exit from the ``loop'', and restore the register
4167 information for this group that we had before trying this
4169 if ((!MATCHED_SOMETHING (reg_info
[*p
])
4170 || just_past_start_mem
== p
- 1)
4173 boolean is_a_jump_n
= false;
4177 switch ((re_opcode_t
) *p1
++)
4181 case pop_failure_jump
:
4182 case maybe_pop_jump
:
4184 case dummy_failure_jump
:
4185 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4195 /* If the next operation is a jump backwards in the pattern
4196 to an on_failure_jump right before the start_memory
4197 corresponding to this stop_memory, exit from the loop
4198 by forcing a failure after pushing on the stack the
4199 on_failure_jump's jump in the pattern, and d. */
4200 if (mcnt
< 0 && (re_opcode_t
) *p1
== on_failure_jump
4201 && (re_opcode_t
) p1
[3] == start_memory
&& p1
[4] == *p
)
4203 /* If this group ever matched anything, then restore
4204 what its registers were before trying this last
4205 failed match, e.g., with `(a*)*b' against `ab' for
4206 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4207 against `aba' for regend[3].
4209 Also restore the registers for inner groups for,
4210 e.g., `((a*)(b*))*' against `aba' (register 3 would
4211 otherwise get trashed). */
4213 if (EVER_MATCHED_SOMETHING (reg_info
[*p
]))
4217 EVER_MATCHED_SOMETHING (reg_info
[*p
]) = 0;
4219 /* Restore this and inner groups' (if any) registers. */
4220 for (r
= *p
; r
< *p
+ *(p
+ 1); r
++)
4222 regstart
[r
] = old_regstart
[r
];
4224 /* xx why this test? */
4225 if (old_regend
[r
] >= regstart
[r
])
4226 regend
[r
] = old_regend
[r
];
4230 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4231 PUSH_FAILURE_POINT (p1
+ mcnt
, d
, -2);
4237 /* Move past the register number and the inner group count. */
4242 /* \<digit> has been turned into a `duplicate' command which is
4243 followed by the numeric value of <digit> as the register number. */
4246 register const char *d2
, *dend2
;
4247 int regno
= *p
++; /* Get which register to match against. */
4248 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno
);
4250 /* Can't back reference a group which we've never matched. */
4251 if (REG_UNSET (regstart
[regno
]) || REG_UNSET (regend
[regno
]))
4254 /* Where in input to try to start matching. */
4255 d2
= regstart
[regno
];
4257 /* Where to stop matching; if both the place to start and
4258 the place to stop matching are in the same string, then
4259 set to the place to stop, otherwise, for now have to use
4260 the end of the first string. */
4262 dend2
= ((FIRST_STRING_P (regstart
[regno
])
4263 == FIRST_STRING_P (regend
[regno
]))
4264 ? regend
[regno
] : end_match_1
);
4267 /* If necessary, advance to next segment in register
4271 if (dend2
== end_match_2
) break;
4272 if (dend2
== regend
[regno
]) break;
4274 /* End of string1 => advance to string2. */
4276 dend2
= regend
[regno
];
4278 /* At end of register contents => success */
4279 if (d2
== dend2
) break;
4281 /* If necessary, advance to next segment in data. */
4284 /* How many characters left in this segment to match. */
4287 /* Want how many consecutive characters we can match in
4288 one shot, so, if necessary, adjust the count. */
4289 if (mcnt
> dend2
- d2
)
4292 /* Compare that many; failure if mismatch, else move
4295 ? bcmp_translate (d
, d2
, mcnt
, translate
)
4296 : bcmp (d
, d2
, mcnt
))
4298 d
+= mcnt
, d2
+= mcnt
;
4300 /* Do this because we've match some characters. */
4301 SET_REGS_MATCHED ();
4307 /* begline matches the empty string at the beginning of the string
4308 (unless `not_bol' is set in `bufp'), and, if
4309 `newline_anchor' is set, after newlines. */
4311 DEBUG_PRINT1 ("EXECUTING begline.\n");
4313 if (AT_STRINGS_BEG (d
))
4315 if (!bufp
->not_bol
) break;
4317 else if (d
[-1] == '\n' && bufp
->newline_anchor
)
4321 /* In all other cases, we fail. */
4325 /* endline is the dual of begline. */
4327 DEBUG_PRINT1 ("EXECUTING endline.\n");
4329 if (AT_STRINGS_END (d
))
4331 if (!bufp
->not_eol
) break;
4334 /* We have to ``prefetch'' the next character. */
4335 else if ((d
== end1
? *string2
: *d
) == '\n'
4336 && bufp
->newline_anchor
)
4343 /* Match at the very beginning of the data. */
4345 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4346 if (AT_STRINGS_BEG (d
))
4351 /* Match at the very end of the data. */
4353 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4354 if (AT_STRINGS_END (d
))
4359 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4360 pushes NULL as the value for the string on the stack. Then
4361 `pop_failure_point' will keep the current value for the
4362 string, instead of restoring it. To see why, consider
4363 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4364 then the . fails against the \n. But the next thing we want
4365 to do is match the \n against the \n; if we restored the
4366 string value, we would be back at the foo.
4368 Because this is used only in specific cases, we don't need to
4369 check all the things that `on_failure_jump' does, to make
4370 sure the right things get saved on the stack. Hence we don't
4371 share its code. The only reason to push anything on the
4372 stack at all is that otherwise we would have to change
4373 `anychar's code to do something besides goto fail in this
4374 case; that seems worse than this. */
4375 case on_failure_keep_string_jump
:
4376 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4378 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4379 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt
, p
+ mcnt
);
4381 PUSH_FAILURE_POINT (p
+ mcnt
, NULL
, -2);
4385 /* Uses of on_failure_jump:
4387 Each alternative starts with an on_failure_jump that points
4388 to the beginning of the next alternative. Each alternative
4389 except the last ends with a jump that in effect jumps past
4390 the rest of the alternatives. (They really jump to the
4391 ending jump of the following alternative, because tensioning
4392 these jumps is a hassle.)
4394 Repeats start with an on_failure_jump that points past both
4395 the repetition text and either the following jump or
4396 pop_failure_jump back to this on_failure_jump. */
4397 case on_failure_jump
:
4399 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4401 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4402 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt
, p
+ mcnt
);
4404 /* If this on_failure_jump comes right before a group (i.e.,
4405 the original * applied to a group), save the information
4406 for that group and all inner ones, so that if we fail back
4407 to this point, the group's information will be correct.
4408 For example, in \(a*\)*\1, we need the preceding group,
4409 and in \(zz\(a*\)b*\)\2, we need the inner group. */
4411 /* We can't use `p' to check ahead because we push
4412 a failure point to `p + mcnt' after we do this. */
4415 /* We need to skip no_op's before we look for the
4416 start_memory in case this on_failure_jump is happening as
4417 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4419 while (p1
< pend
&& (re_opcode_t
) *p1
== no_op
)
4422 if (p1
< pend
&& (re_opcode_t
) *p1
== start_memory
)
4424 /* We have a new highest active register now. This will
4425 get reset at the start_memory we are about to get to,
4426 but we will have saved all the registers relevant to
4427 this repetition op, as described above. */
4428 highest_active_reg
= *(p1
+ 1) + *(p1
+ 2);
4429 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
4430 lowest_active_reg
= *(p1
+ 1);
4433 DEBUG_PRINT1 (":\n");
4434 PUSH_FAILURE_POINT (p
+ mcnt
, d
, -2);
4438 /* A smart repeat ends with `maybe_pop_jump'.
4439 We change it to either `pop_failure_jump' or `jump'. */
4440 case maybe_pop_jump
:
4441 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4442 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt
);
4444 register unsigned char *p2
= p
;
4446 /* Compare the beginning of the repeat with what in the
4447 pattern follows its end. If we can establish that there
4448 is nothing that they would both match, i.e., that we
4449 would have to backtrack because of (as in, e.g., `a*a')
4450 then we can change to pop_failure_jump, because we'll
4451 never have to backtrack.
4453 This is not true in the case of alternatives: in
4454 `(a|ab)*' we do need to backtrack to the `ab' alternative
4455 (e.g., if the string was `ab'). But instead of trying to
4456 detect that here, the alternative has put on a dummy
4457 failure point which is what we will end up popping. */
4459 /* Skip over open/close-group commands.
4460 If what follows this loop is a ...+ construct,
4461 look at what begins its body, since we will have to
4462 match at least one of that. */
4466 && ((re_opcode_t
) *p2
== stop_memory
4467 || (re_opcode_t
) *p2
== start_memory
))
4469 else if (p2
+ 6 < pend
4470 && (re_opcode_t
) *p2
== dummy_failure_jump
)
4477 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4478 to the `maybe_finalize_jump' of this case. Examine what
4481 /* If we're at the end of the pattern, we can change. */
4484 /* Consider what happens when matching ":\(.*\)"
4485 against ":/". I don't really understand this code
4487 p
[-3] = (unsigned char) pop_failure_jump
;
4489 (" End of pattern: change to `pop_failure_jump'.\n");
4492 else if ((re_opcode_t
) *p2
== exactn
4493 || (bufp
->newline_anchor
&& (re_opcode_t
) *p2
== endline
))
4495 register unsigned char c
4496 = *p2
== (unsigned char) endline
? '\n' : p2
[2];
4498 if ((re_opcode_t
) p1
[3] == exactn
&& p1
[5] != c
)
4500 p
[-3] = (unsigned char) pop_failure_jump
;
4501 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4505 else if ((re_opcode_t
) p1
[3] == charset
4506 || (re_opcode_t
) p1
[3] == charset_not
)
4508 int not = (re_opcode_t
) p1
[3] == charset_not
;
4510 if (c
< (unsigned char) (p1
[4] * BYTEWIDTH
)
4511 && p1
[5 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
4514 /* `not' is equal to 1 if c would match, which means
4515 that we can't change to pop_failure_jump. */
4518 p
[-3] = (unsigned char) pop_failure_jump
;
4519 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4523 else if ((re_opcode_t
) *p2
== charset
)
4526 register unsigned char c
4527 = *p2
== (unsigned char) endline
? '\n' : p2
[2];
4530 if ((re_opcode_t
) p1
[3] == exactn
4531 && ! ((int) p2
[1] * BYTEWIDTH
> (int) p1
[5]
4532 && (p2
[2 + p1
[5] / BYTEWIDTH
]
4533 & (1 << (p1
[5] % BYTEWIDTH
)))))
4535 p
[-3] = (unsigned char) pop_failure_jump
;
4536 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4540 else if ((re_opcode_t
) p1
[3] == charset_not
)
4543 /* We win if the charset_not inside the loop
4544 lists every character listed in the charset after. */
4545 for (idx
= 0; idx
< (int) p2
[1]; idx
++)
4546 if (! (p2
[2 + idx
] == 0
4547 || (idx
< (int) p1
[4]
4548 && ((p2
[2 + idx
] & ~ p1
[5 + idx
]) == 0))))
4553 p
[-3] = (unsigned char) pop_failure_jump
;
4554 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4557 else if ((re_opcode_t
) p1
[3] == charset
)
4560 /* We win if the charset inside the loop
4561 has no overlap with the one after the loop. */
4563 idx
< (int) p2
[1] && idx
< (int) p1
[4];
4565 if ((p2
[2 + idx
] & p1
[5 + idx
]) != 0)
4568 if (idx
== p2
[1] || idx
== p1
[4])
4570 p
[-3] = (unsigned char) pop_failure_jump
;
4571 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4576 p
-= 2; /* Point at relative address again. */
4577 if ((re_opcode_t
) p
[-1] != pop_failure_jump
)
4579 p
[-1] = (unsigned char) jump
;
4580 DEBUG_PRINT1 (" Match => jump.\n");
4581 goto unconditional_jump
;
4583 /* Note fall through. */
4586 /* The end of a simple repeat has a pop_failure_jump back to
4587 its matching on_failure_jump, where the latter will push a
4588 failure point. The pop_failure_jump takes off failure
4589 points put on by this pop_failure_jump's matching
4590 on_failure_jump; we got through the pattern to here from the
4591 matching on_failure_jump, so didn't fail. */
4592 case pop_failure_jump
:
4594 /* We need to pass separate storage for the lowest and
4595 highest registers, even though we don't care about the
4596 actual values. Otherwise, we will restore only one
4597 register from the stack, since lowest will == highest in
4598 `pop_failure_point'. */
4599 unsigned dummy_low_reg
, dummy_high_reg
;
4600 unsigned char *pdummy
;
4603 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4604 POP_FAILURE_POINT (sdummy
, pdummy
,
4605 dummy_low_reg
, dummy_high_reg
,
4606 reg_dummy
, reg_dummy
, reg_info_dummy
);
4608 /* Note fall through. */
4611 /* Unconditionally jump (without popping any failure points). */
4614 EXTRACT_NUMBER_AND_INCR (mcnt
, p
); /* Get the amount to jump. */
4615 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt
);
4616 p
+= mcnt
; /* Do the jump. */
4617 DEBUG_PRINT2 ("(to 0x%x).\n", p
);
4621 /* We need this opcode so we can detect where alternatives end
4622 in `group_match_null_string_p' et al. */
4624 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4625 goto unconditional_jump
;
4628 /* Normally, the on_failure_jump pushes a failure point, which
4629 then gets popped at pop_failure_jump. We will end up at
4630 pop_failure_jump, also, and with a pattern of, say, `a+', we
4631 are skipping over the on_failure_jump, so we have to push
4632 something meaningless for pop_failure_jump to pop. */
4633 case dummy_failure_jump
:
4634 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4635 /* It doesn't matter what we push for the string here. What
4636 the code at `fail' tests is the value for the pattern. */
4637 PUSH_FAILURE_POINT (0, 0, -2);
4638 goto unconditional_jump
;
4641 /* At the end of an alternative, we need to push a dummy failure
4642 point in case we are followed by a `pop_failure_jump', because
4643 we don't want the failure point for the alternative to be
4644 popped. For example, matching `(a|ab)*' against `aab'
4645 requires that we match the `ab' alternative. */
4646 case push_dummy_failure
:
4647 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4648 /* See comments just above at `dummy_failure_jump' about the
4650 PUSH_FAILURE_POINT (0, 0, -2);
4653 /* Have to succeed matching what follows at least n times.
4654 After that, handle like `on_failure_jump'. */
4656 EXTRACT_NUMBER (mcnt
, p
+ 2);
4657 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt
);
4660 /* Originally, this is how many times we HAVE to succeed. */
4665 STORE_NUMBER_AND_INCR (p
, mcnt
);
4666 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p
, mcnt
);
4670 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p
+2);
4671 p
[2] = (unsigned char) no_op
;
4672 p
[3] = (unsigned char) no_op
;
4678 EXTRACT_NUMBER (mcnt
, p
+ 2);
4679 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt
);
4681 /* Originally, this is how many times we CAN jump. */
4685 STORE_NUMBER (p
+ 2, mcnt
);
4686 goto unconditional_jump
;
4688 /* If don't have to jump any more, skip over the rest of command. */
4695 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4697 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4699 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4700 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1
, mcnt
);
4701 STORE_NUMBER (p1
, mcnt
);
4706 /* The DEC Alpha C compiler 3.x generates incorrect code for the
4707 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4708 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4709 macro and introducing temporary variables works around the bug. */
4712 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4713 if (AT_WORD_BOUNDARY (d
))
4718 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4719 if (AT_WORD_BOUNDARY (d
))
4725 boolean prevchar
, thischar
;
4727 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4728 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
4731 prevchar
= WORDCHAR_P (d
- 1);
4732 thischar
= WORDCHAR_P (d
);
4733 if (prevchar
!= thischar
)
4740 boolean prevchar
, thischar
;
4742 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4743 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
4746 prevchar
= WORDCHAR_P (d
- 1);
4747 thischar
= WORDCHAR_P (d
);
4748 if (prevchar
!= thischar
)
4755 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
4756 if (WORDCHAR_P (d
) && (AT_STRINGS_BEG (d
) || !WORDCHAR_P (d
- 1)))
4761 DEBUG_PRINT1 ("EXECUTING wordend.\n");
4762 if (!AT_STRINGS_BEG (d
) && WORDCHAR_P (d
- 1)
4763 && (!WORDCHAR_P (d
) || AT_STRINGS_END (d
)))
4769 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
4770 if (PTR_CHAR_POS ((unsigned char *) d
) >= PT
)
4775 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4776 if (PTR_CHAR_POS ((unsigned char *) d
) != PT
)
4781 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
4782 if (PTR_CHAR_POS ((unsigned char *) d
) <= PT
)
4787 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt
);
4792 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
4796 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
4798 if (SYNTAX (d
[-1]) != (enum syntaxcode
) mcnt
)
4800 SET_REGS_MATCHED ();
4804 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt
);
4806 goto matchnotsyntax
;
4809 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
4813 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
4815 if (SYNTAX (d
[-1]) == (enum syntaxcode
) mcnt
)
4817 SET_REGS_MATCHED ();
4820 #else /* not emacs */
4822 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
4824 if (!WORDCHAR_P (d
))
4826 SET_REGS_MATCHED ();
4831 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
4835 SET_REGS_MATCHED ();
4838 #endif /* not emacs */
4843 continue; /* Successfully executed one pattern command; keep going. */
4846 /* We goto here if a matching operation fails. */
4848 if (!FAIL_STACK_EMPTY ())
4849 { /* A restart point is known. Restore to that state. */
4850 DEBUG_PRINT1 ("\nFAIL:\n");
4851 POP_FAILURE_POINT (d
, p
,
4852 lowest_active_reg
, highest_active_reg
,
4853 regstart
, regend
, reg_info
);
4855 /* If this failure point is a dummy, try the next one. */
4859 /* If we failed to the end of the pattern, don't examine *p. */
4863 boolean is_a_jump_n
= false;
4865 /* If failed to a backwards jump that's part of a repetition
4866 loop, need to pop this failure point and use the next one. */
4867 switch ((re_opcode_t
) *p
)
4871 case maybe_pop_jump
:
4872 case pop_failure_jump
:
4875 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4878 if ((is_a_jump_n
&& (re_opcode_t
) *p1
== succeed_n
)
4880 && (re_opcode_t
) *p1
== on_failure_jump
))
4888 if (d
>= string1
&& d
<= end1
)
4892 break; /* Matching at this starting point really fails. */
4896 goto restore_best_regs
;
4900 return -1; /* Failure to match. */
4903 /* Subroutine definitions for re_match_2. */
4906 /* We are passed P pointing to a register number after a start_memory.
4908 Return true if the pattern up to the corresponding stop_memory can
4909 match the empty string, and false otherwise.
4911 If we find the matching stop_memory, sets P to point to one past its number.
4912 Otherwise, sets P to an undefined byte less than or equal to END.
4914 We don't handle duplicates properly (yet). */
4917 group_match_null_string_p (p
, end
, reg_info
)
4918 unsigned char **p
, *end
;
4919 register_info_type
*reg_info
;
4922 /* Point to after the args to the start_memory. */
4923 unsigned char *p1
= *p
+ 2;
4927 /* Skip over opcodes that can match nothing, and return true or
4928 false, as appropriate, when we get to one that can't, or to the
4929 matching stop_memory. */
4931 switch ((re_opcode_t
) *p1
)
4933 /* Could be either a loop or a series of alternatives. */
4934 case on_failure_jump
:
4936 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4938 /* If the next operation is not a jump backwards in the
4943 /* Go through the on_failure_jumps of the alternatives,
4944 seeing if any of the alternatives cannot match nothing.
4945 The last alternative starts with only a jump,
4946 whereas the rest start with on_failure_jump and end
4947 with a jump, e.g., here is the pattern for `a|b|c':
4949 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
4950 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
4953 So, we have to first go through the first (n-1)
4954 alternatives and then deal with the last one separately. */
4957 /* Deal with the first (n-1) alternatives, which start
4958 with an on_failure_jump (see above) that jumps to right
4959 past a jump_past_alt. */
4961 while ((re_opcode_t
) p1
[mcnt
-3] == jump_past_alt
)
4963 /* `mcnt' holds how many bytes long the alternative
4964 is, including the ending `jump_past_alt' and
4967 if (!alt_match_null_string_p (p1
, p1
+ mcnt
- 3,
4971 /* Move to right after this alternative, including the
4975 /* Break if it's the beginning of an n-th alternative
4976 that doesn't begin with an on_failure_jump. */
4977 if ((re_opcode_t
) *p1
!= on_failure_jump
)
4980 /* Still have to check that it's not an n-th
4981 alternative that starts with an on_failure_jump. */
4983 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4984 if ((re_opcode_t
) p1
[mcnt
-3] != jump_past_alt
)
4986 /* Get to the beginning of the n-th alternative. */
4992 /* Deal with the last alternative: go back and get number
4993 of the `jump_past_alt' just before it. `mcnt' contains
4994 the length of the alternative. */
4995 EXTRACT_NUMBER (mcnt
, p1
- 2);
4997 if (!alt_match_null_string_p (p1
, p1
+ mcnt
, reg_info
))
5000 p1
+= mcnt
; /* Get past the n-th alternative. */
5006 assert (p1
[1] == **p
);
5012 if (!common_op_match_null_string_p (&p1
, end
, reg_info
))
5015 } /* while p1 < end */
5018 } /* group_match_null_string_p */
5021 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5022 It expects P to be the first byte of a single alternative and END one
5023 byte past the last. The alternative can contain groups. */
5026 alt_match_null_string_p (p
, end
, reg_info
)
5027 unsigned char *p
, *end
;
5028 register_info_type
*reg_info
;
5031 unsigned char *p1
= p
;
5035 /* Skip over opcodes that can match nothing, and break when we get
5036 to one that can't. */
5038 switch ((re_opcode_t
) *p1
)
5041 case on_failure_jump
:
5043 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5048 if (!common_op_match_null_string_p (&p1
, end
, reg_info
))
5051 } /* while p1 < end */
5054 } /* alt_match_null_string_p */
5057 /* Deals with the ops common to group_match_null_string_p and
5058 alt_match_null_string_p.
5060 Sets P to one after the op and its arguments, if any. */
5063 common_op_match_null_string_p (p
, end
, reg_info
)
5064 unsigned char **p
, *end
;
5065 register_info_type
*reg_info
;
5070 unsigned char *p1
= *p
;
5072 switch ((re_opcode_t
) *p1
++)
5092 assert (reg_no
> 0 && reg_no
<= MAX_REGNUM
);
5093 ret
= group_match_null_string_p (&p1
, end
, reg_info
);
5095 /* Have to set this here in case we're checking a group which
5096 contains a group and a back reference to it. */
5098 if (REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) == MATCH_NULL_UNSET_VALUE
)
5099 REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) = ret
;
5105 /* If this is an optimized succeed_n for zero times, make the jump. */
5107 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5115 /* Get to the number of times to succeed. */
5117 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5122 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5130 if (!REG_MATCH_NULL_STRING_P (reg_info
[*p1
]))
5138 /* All other opcodes mean we cannot match the empty string. */
5144 } /* common_op_match_null_string_p */
5147 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5148 bytes; nonzero otherwise. */
5151 bcmp_translate (s1
, s2
, len
, translate
)
5152 unsigned char *s1
, *s2
;
5154 RE_TRANSLATE_TYPE translate
;
5156 register unsigned char *p1
= s1
, *p2
= s2
;
5159 if (translate
[*p1
++] != translate
[*p2
++]) return 1;
5165 /* Entry points for GNU code. */
5167 /* re_compile_pattern is the GNU regular expression compiler: it
5168 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5169 Returns 0 if the pattern was valid, otherwise an error string.
5171 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5172 are set in BUFP on entry.
5174 We call regex_compile to do the actual compilation. */
5177 re_compile_pattern (pattern
, length
, bufp
)
5178 const char *pattern
;
5180 struct re_pattern_buffer
*bufp
;
5184 /* GNU code is written to assume at least RE_NREGS registers will be set
5185 (and at least one extra will be -1). */
5186 bufp
->regs_allocated
= REGS_UNALLOCATED
;
5188 /* And GNU code determines whether or not to get register information
5189 by passing null for the REGS argument to re_match, etc., not by
5193 /* Match anchors at newline. */
5194 bufp
->newline_anchor
= 1;
5196 ret
= regex_compile (pattern
, length
, re_syntax_options
, bufp
);
5200 return gettext (re_error_msgid
[(int) ret
]);
5203 /* Entry points compatible with 4.2 BSD regex library. We don't define
5204 them unless specifically requested. */
5206 #if defined (_REGEX_RE_COMP) || defined (_LIBC)
5208 /* BSD has one and only one pattern buffer. */
5209 static struct re_pattern_buffer re_comp_buf
;
5213 /* Make these definitions weak in libc, so POSIX programs can redefine
5214 these names if they don't use our functions, and still use
5215 regcomp/regexec below without link errors. */
5225 if (!re_comp_buf
.buffer
)
5226 return gettext ("No previous regular expression");
5230 if (!re_comp_buf
.buffer
)
5232 re_comp_buf
.buffer
= (unsigned char *) malloc (200);
5233 if (re_comp_buf
.buffer
== NULL
)
5234 return gettext (re_error_msgid
[(int) REG_ESPACE
]);
5235 re_comp_buf
.allocated
= 200;
5237 re_comp_buf
.fastmap
= (char *) malloc (1 << BYTEWIDTH
);
5238 if (re_comp_buf
.fastmap
== NULL
)
5239 return gettext (re_error_msgid
[(int) REG_ESPACE
]);
5242 /* Since `re_exec' always passes NULL for the `regs' argument, we
5243 don't need to initialize the pattern buffer fields which affect it. */
5245 /* Match anchors at newlines. */
5246 re_comp_buf
.newline_anchor
= 1;
5248 ret
= regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
5253 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5254 return (char *) gettext (re_error_msgid
[(int) ret
]);
5265 const int len
= strlen (s
);
5267 0 <= re_search (&re_comp_buf
, s
, len
, 0, len
, (struct re_registers
*) 0);
5269 #endif /* _REGEX_RE_COMP */
5271 /* POSIX.2 functions. Don't define these for Emacs. */
5275 /* regcomp takes a regular expression as a string and compiles it.
5277 PREG is a regex_t *. We do not expect any fields to be initialized,
5278 since POSIX says we shouldn't. Thus, we set
5280 `buffer' to the compiled pattern;
5281 `used' to the length of the compiled pattern;
5282 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5283 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5284 RE_SYNTAX_POSIX_BASIC;
5285 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5286 `fastmap' and `fastmap_accurate' to zero;
5287 `re_nsub' to the number of subexpressions in PATTERN.
5289 PATTERN is the address of the pattern string.
5291 CFLAGS is a series of bits which affect compilation.
5293 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5294 use POSIX basic syntax.
5296 If REG_NEWLINE is set, then . and [^...] don't match newline.
5297 Also, regexec will try a match beginning after every newline.
5299 If REG_ICASE is set, then we considers upper- and lowercase
5300 versions of letters to be equivalent when matching.
5302 If REG_NOSUB is set, then when PREG is passed to regexec, that
5303 routine will report only success or failure, and nothing about the
5306 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
5307 the return codes and their meanings.) */
5310 regcomp (preg
, pattern
, cflags
)
5312 const char *pattern
;
5317 = (cflags
& REG_EXTENDED
) ?
5318 RE_SYNTAX_POSIX_EXTENDED
: RE_SYNTAX_POSIX_BASIC
;
5320 /* regex_compile will allocate the space for the compiled pattern. */
5322 preg
->allocated
= 0;
5325 /* Don't bother to use a fastmap when searching. This simplifies the
5326 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
5327 characters after newlines into the fastmap. This way, we just try
5331 if (cflags
& REG_ICASE
)
5336 = (RE_TRANSLATE_TYPE
) malloc (CHAR_SET_SIZE
5337 * sizeof (*(RE_TRANSLATE_TYPE
)0));
5338 if (preg
->translate
== NULL
)
5339 return (int) REG_ESPACE
;
5341 /* Map uppercase characters to corresponding lowercase ones. */
5342 for (i
= 0; i
< CHAR_SET_SIZE
; i
++)
5343 preg
->translate
[i
] = ISUPPER (i
) ? tolower (i
) : i
;
5346 preg
->translate
= NULL
;
5348 /* If REG_NEWLINE is set, newlines are treated differently. */
5349 if (cflags
& REG_NEWLINE
)
5350 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5351 syntax
&= ~RE_DOT_NEWLINE
;
5352 syntax
|= RE_HAT_LISTS_NOT_NEWLINE
;
5353 /* It also changes the matching behavior. */
5354 preg
->newline_anchor
= 1;
5357 preg
->newline_anchor
= 0;
5359 preg
->no_sub
= !!(cflags
& REG_NOSUB
);
5361 /* POSIX says a null character in the pattern terminates it, so we
5362 can use strlen here in compiling the pattern. */
5363 ret
= regex_compile (pattern
, strlen (pattern
), syntax
, preg
);
5365 /* POSIX doesn't distinguish between an unmatched open-group and an
5366 unmatched close-group: both are REG_EPAREN. */
5367 if (ret
== REG_ERPAREN
) ret
= REG_EPAREN
;
5373 /* regexec searches for a given pattern, specified by PREG, in the
5376 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5377 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5378 least NMATCH elements, and we set them to the offsets of the
5379 corresponding matched substrings.
5381 EFLAGS specifies `execution flags' which affect matching: if
5382 REG_NOTBOL is set, then ^ does not match at the beginning of the
5383 string; if REG_NOTEOL is set, then $ does not match at the end.
5385 We return 0 if we find a match and REG_NOMATCH if not. */
5388 regexec (preg
, string
, nmatch
, pmatch
, eflags
)
5389 const regex_t
*preg
;
5392 regmatch_t pmatch
[];
5396 struct re_registers regs
;
5397 regex_t private_preg
;
5398 int len
= strlen (string
);
5399 boolean want_reg_info
= !preg
->no_sub
&& nmatch
> 0;
5401 private_preg
= *preg
;
5403 private_preg
.not_bol
= !!(eflags
& REG_NOTBOL
);
5404 private_preg
.not_eol
= !!(eflags
& REG_NOTEOL
);
5406 /* The user has told us exactly how many registers to return
5407 information about, via `nmatch'. We have to pass that on to the
5408 matching routines. */
5409 private_preg
.regs_allocated
= REGS_FIXED
;
5413 regs
.num_regs
= nmatch
;
5414 regs
.start
= TALLOC (nmatch
, regoff_t
);
5415 regs
.end
= TALLOC (nmatch
, regoff_t
);
5416 if (regs
.start
== NULL
|| regs
.end
== NULL
)
5417 return (int) REG_NOMATCH
;
5420 /* Perform the searching operation. */
5421 ret
= re_search (&private_preg
, string
, len
,
5422 /* start: */ 0, /* range: */ len
,
5423 want_reg_info
? ®s
: (struct re_registers
*) 0);
5425 /* Copy the register information to the POSIX structure. */
5432 for (r
= 0; r
< nmatch
; r
++)
5434 pmatch
[r
].rm_so
= regs
.start
[r
];
5435 pmatch
[r
].rm_eo
= regs
.end
[r
];
5439 /* If we needed the temporary register info, free the space now. */
5444 /* We want zero return to mean success, unlike `re_search'. */
5445 return ret
>= 0 ? (int) REG_NOERROR
: (int) REG_NOMATCH
;
5449 /* Returns a message corresponding to an error code, ERRCODE, returned
5450 from either regcomp or regexec. We don't use PREG here. */
5453 regerror (errcode
, preg
, errbuf
, errbuf_size
)
5455 const regex_t
*preg
;
5463 || errcode
>= (sizeof (re_error_msgid
) / sizeof (re_error_msgid
[0])))
5464 /* Only error codes returned by the rest of the code should be passed
5465 to this routine. If we are given anything else, or if other regex
5466 code generates an invalid error code, then the program has a bug.
5467 Dump core so we can fix it. */
5470 msg
= gettext (re_error_msgid
[errcode
]);
5472 msg_size
= strlen (msg
) + 1; /* Includes the null. */
5474 if (errbuf_size
!= 0)
5476 if (msg_size
> errbuf_size
)
5478 strncpy (errbuf
, msg
, errbuf_size
- 1);
5479 errbuf
[errbuf_size
- 1] = 0;
5482 strcpy (errbuf
, msg
);
5489 /* Free dynamically allocated space used by PREG. */
5495 if (preg
->buffer
!= NULL
)
5496 free (preg
->buffer
);
5497 preg
->buffer
= NULL
;
5499 preg
->allocated
= 0;
5502 if (preg
->fastmap
!= NULL
)
5503 free (preg
->fastmap
);
5504 preg
->fastmap
= NULL
;
5505 preg
->fastmap_accurate
= 0;
5507 if (preg
->translate
!= NULL
)
5508 free (preg
->translate
);
5509 preg
->translate
= NULL
;
5512 #endif /* not emacs */