1 /* Unexec for Siemens machines running Sinix (modified SVR4).
2 Copyright (C) 1985, 1986, 1987, 1988, 1990, 1992, 1993, 1994, 1995
3 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA.
22 In other words, you are welcome to use, share and improve this program.
23 You are forbidden to forbid anyone else to use, share and improve
24 what you give them. Help stamp out software-hoarding! */
28 * unexec.c - Convert a running program into an a.out file.
30 * Author: Spencer W. Thomas
31 * Computer Science Dept.
33 * Date: Tue Mar 2 1982
34 * Modified heavily since then.
37 * unexec (new_name, a_name, data_start, bss_start, entry_address)
38 * char *new_name, *a_name;
39 * unsigned data_start, bss_start, entry_address;
41 * Takes a snapshot of the program and makes an a.out format file in the
42 * file named by the string argument new_name.
43 * If a_name is non-NULL, the symbol table will be taken from the given file.
44 * On some machines, an existing a_name file is required.
46 * The boundaries within the a.out file may be adjusted with the data_start
47 * and bss_start arguments. Either or both may be given as 0 for defaults.
49 * Data_start gives the boundary between the text segment and the data
50 * segment of the program. The text segment can contain shared, read-only
51 * program code and literal data, while the data segment is always unshared
52 * and unprotected. Data_start gives the lowest unprotected address.
53 * The value you specify may be rounded down to a suitable boundary
54 * as required by the machine you are using.
56 * Specifying zero for data_start means the boundary between text and data
57 * should not be the same as when the program was loaded.
58 * If NO_REMAP is defined, the argument data_start is ignored and the
59 * segment boundaries are never changed.
61 * Bss_start indicates how much of the data segment is to be saved in the
62 * a.out file and restored when the program is executed. It gives the lowest
63 * unsaved address, and is rounded up to a page boundary. The default when 0
64 * is given assumes that the entire data segment is to be stored, including
65 * the previous data and bss as well as any additional storage allocated with
68 * The new file is set up to start at entry_address.
70 * If you make improvements I'd like to get them too.
71 * harpo!utah-cs!thomas, thomas@Utah-20
75 /* Even more heavily modified by james@bigtex.cactus.org of Dell Computer Co.
78 * Basic theory: the data space of the running process needs to be
79 * dumped to the output file. Normally we would just enlarge the size
80 * of .data, scooting everything down. But we can't do that in ELF,
81 * because there is often something between the .data space and the
84 * In the temacs dump below, notice that the Global Offset Table
85 * (.got) and the Dynamic link data (.dynamic) come between .data1 and
86 * .bss. It does not work to overlap .data with these fields.
88 * The solution is to create a new .data segment. This segment is
89 * filled with data from the current process. Since the contents of
90 * various sections refer to sections by index, the new .data segment
91 * is made the last in the table to avoid changing any existing index.
94 /* Modified by wtien@urbana.mcd.mot.com of Motorola Inc.
96 * The above mechanism does not work if the unexeced ELF file is being
97 * re-layout by other applications (such as `strip'). All the applications
98 * that re-layout the internal of ELF will layout all sections in ascending
99 * order of their file offsets. After the re-layout, the data2 section will
100 * still be the LAST section in the section header vector, but its file offset
101 * is now being pushed far away down, and causes part of it not to be mapped
102 * in (ie. not covered by the load segment entry in PHDR vector), therefore
103 * causes the new binary to fail.
105 * The solution is to modify the unexec algorithm to insert the new data2
106 * section header right before the new bss section header, so their file
107 * offsets will be in the ascending order. Since some of the section's (all
108 * sections AFTER the bss section) indexes are now changed, we also need to
109 * modify some fields to make them point to the right sections. This is done
110 * by macro PATCH_INDEX. All the fields that need to be patched are:
112 * 1. ELF header e_shstrndx field.
113 * 2. section header sh_link and sh_info field.
114 * 3. symbol table entry st_shndx field.
118 * New modifications for Siemens Nixdorf's MIPS-based machines.
119 * Marco.Walther@mch.sni.de
121 * The problem: Before the bss segment we have a so called sbss segment
122 * (small bss) and maybe an sdata segment. These segments
123 * must also be handled correct.
125 * /home1/marco/emacs/emacs-19.22/src
130 * **** SECTION HEADER TABLE ****
131 * [No] Type Flags Addr Offset Size Name
132 * Link Info Adralgn Entsize
134 * [1] PBIT -A-- 0x4000f4 0xf4 0x13 .interp
137 * [2] REGI -A-- 0x400108 0x108 0x18 .reginfo
140 * [3] DYNM -A-- 0x400120 0x120 0xb8 .dynamic
143 * [4] HASH -A-- 0x4001d8 0x1d8 0x8a0 .hash
146 * [5] DYNS -A-- 0x400a78 0xa78 0x11f0 .dynsym
149 * [6] STRT -A-- 0x401c68 0x1c68 0xbf9 .dynstr
152 * [7] REL -A-- 0x402864 0x2864 0x18 .rel.dyn
155 * [8] PBIT -AI- 0x402880 0x2880 0x60 .init
158 * [9] PBIT -AI- 0x4028e0 0x28e0 0x1234 .plt
161 * [10] PBIT -AI- 0x403b20 0x3b20 0xee400 .text
164 * [11] PBIT -AI- 0x4f1f20 0xf1f20 0x60 .fini
167 * [12] PBIT -A-- 0x4f1f80 0xf1f80 0xd90 .rdata
170 * [13] PBIT -A-- 0x4f2d10 0xf2d10 0x17e0 .rodata
173 * [14] PBIT WA-- 0x5344f0 0xf44f0 0x4b3e4 .data <<<<<
176 * [15] PBIT WA-G 0x57f8d4 0x13f8d4 0x2a84 .got
179 * [16] PBIT WA-G 0x582360 0x142360 0x10 .sdata <<<<<
182 * [17] NOBI WA-G 0x582370 0x142370 0xb84 .sbss <<<<<
185 * [18] NOBI WA-- 0x582f00 0x142370 0x27ec0 .bss <<<<<
188 * [19] SYMT ---- 0 0x142370 0x10e40 .symtab
191 * [20] STRT ---- 0 0x1531b0 0xed9e .strtab
194 * [21] STRT ---- 0 0x161f4e 0xb5 .shstrtab
197 * [22] PBIT ---- 0 0x162003 0x28e2a .comment
200 * [23] PBIT ---- 0 0x18ae2d 0x592 .debug
203 * [24] PBIT ---- 0 0x18b3bf 0x80 .line
206 * [25] MDBG ---- 0 0x18b440 0x60 .mdebug
214 * **** SECTION HEADER TABLE ****
215 * [No] Type Flags Addr Offset Size Name
216 * Link Info Adralgn Entsize
218 * [1] PBIT -A-- 0x4000f4 0xf4 0x13 .interp
221 * [2] REGI -A-- 0x400108 0x108 0x18 .reginfo
224 * [3] DYNM -A-- 0x400120 0x120 0xb8 .dynamic
227 * [4] HASH -A-- 0x4001d8 0x1d8 0x8a0 .hash
230 * [5] DYNS -A-- 0x400a78 0xa78 0x11f0 .dynsym
233 * [6] STRT -A-- 0x401c68 0x1c68 0xbf9 .dynstr
236 * [7] REL -A-- 0x402864 0x2864 0x18 .rel.dyn
239 * [8] PBIT -AI- 0x402880 0x2880 0x60 .init
242 * [9] PBIT -AI- 0x4028e0 0x28e0 0x1234 .plt
245 * [10] PBIT -AI- 0x403b20 0x3b20 0xee400 .text
248 * [11] PBIT -AI- 0x4f1f20 0xf1f20 0x60 .fini
251 * [12] PBIT -A-- 0x4f1f80 0xf1f80 0xd90 .rdata
254 * [13] PBIT -A-- 0x4f2d10 0xf2d10 0x17e0 .rodata
257 * [14] PBIT WA-- 0x5344f0 0xf44f0 0x4b3e4 .data <<<<<
260 * [15] PBIT WA-G 0x57f8d4 0x13f8d4 0x2a84 .got
263 * [16] PBIT WA-G 0x582360 0x142360 0xb94 .sdata <<<<<
266 * [17] PBIT WA-- 0x582f00 0x142f00 0x94100 .data <<<<<
269 * [18] NOBI WA-G 0x617000 0x1d7000 0 .sbss <<<<<
272 * [19] NOBI WA-- 0x617000 0x1d7000 0 .bss <<<<<
275 * [20] SYMT ---- 0 0x1d7000 0x10e40 .symtab
278 * [21] STRT ---- 0 0x1e7e40 0xed9e .strtab
281 * [22] STRT ---- 0 0x1f6bde 0xb5 .shstrtab
284 * [23] PBIT ---- 0 0x1f6c93 0x28e2a .comment
287 * [24] PBIT ---- 0 0x21fabd 0x592 .debug
290 * [25] PBIT ---- 0 0x22004f 0x80 .line
293 * [26] MDBG ---- 0 0x2200d0 0x60 .mdebug
298 #include <sys/types.h>
300 #include <sys/stat.h>
307 #include <sys/mman.h>
310 #define fatal(a, b, c) fprintf(stderr, a, b, c), exit(1)
312 extern void fatal(char *, ...);
315 /* Get the address of a particular section or program header entry,
316 * accounting for the size of the entries.
319 #define OLD_SECTION_H(n) \
320 (*(Elf32_Shdr *) ((byte *) old_section_h + old_file_h->e_shentsize * (n)))
321 #define NEW_SECTION_H(n) \
322 (*(Elf32_Shdr *) ((byte *) new_section_h + new_file_h->e_shentsize * (n)))
323 #define OLD_PROGRAM_H(n) \
324 (*(Elf32_Phdr *) ((byte *) old_program_h + old_file_h->e_phentsize * (n)))
325 #define NEW_PROGRAM_H(n) \
326 (*(Elf32_Phdr *) ((byte *) new_program_h + new_file_h->e_phentsize * (n)))
328 #define PATCH_INDEX(n) \
330 if ((n) >= old_sbss_index) \
331 (n) += 1 + (old_sdata_index ? 0 : 1); } while (0)
333 typedef unsigned char byte
;
335 /* Round X up to a multiple of Y. */
347 /* ****************************************************************
352 * In ELF, this works by replacing the old .bss section with a new
353 * .data section, and inserting an empty .bss immediately afterwards.
357 unexec (new_name
, old_name
, data_start
, bss_start
, entry_address
)
358 char *new_name
, *old_name
;
359 unsigned data_start
, bss_start
, entry_address
;
361 extern unsigned int bss_end
;
362 int new_file
, old_file
, new_file_size
;
364 /* Pointers to the base of the image of the two files. */
365 caddr_t old_base
, new_base
;
367 /* Pointers to the file, program and section headers for the old and new
370 Elf32_Ehdr
*old_file_h
, *new_file_h
;
371 Elf32_Phdr
*old_program_h
, *new_program_h
;
372 Elf32_Shdr
*old_section_h
, *new_section_h
;
374 /* Point to the section name table in the old file */
375 char *old_section_names
;
377 Elf32_Addr old_bss_addr
, new_bss_addr
;
378 Elf32_Addr old_sbss_addr
;
379 Elf32_Word old_bss_size
, new_data2_size
;
380 Elf32_Word old_sbss_size
, new_data3_size
;
381 Elf32_Off new_data2_offset
;
382 Elf32_Off new_data3_offset
;
383 Elf32_Addr new_data2_addr
;
384 Elf32_Addr new_data3_addr
;
386 Elf32_Word old_sdata_size
, new_sdata_size
;
387 int old_sdata_index
= 0;
389 int n
, nn
, old_data_index
, new_data2_align
;
393 struct stat stat_buf
;
395 /* Open the old file & map it into the address space. */
397 old_file
= open (old_name
, O_RDONLY
);
400 fatal ("Can't open %s for reading: errno %d\n", old_name
, errno
);
402 if (fstat (old_file
, &stat_buf
) == -1)
403 fatal ("Can't fstat(%s): errno %d\n", old_name
, errno
);
405 old_base
= mmap (0, stat_buf
.st_size
, PROT_READ
, MAP_SHARED
, old_file
, 0);
407 if (old_base
== (caddr_t
) -1)
408 fatal ("Can't mmap(%s): errno %d\n", old_name
, errno
);
411 fprintf (stderr
, "mmap(%s, %x) -> %x\n", old_name
, stat_buf
.st_size
,
415 /* Get pointers to headers & section names */
417 old_file_h
= (Elf32_Ehdr
*) old_base
;
418 old_program_h
= (Elf32_Phdr
*) ((byte
*) old_base
+ old_file_h
->e_phoff
);
419 old_section_h
= (Elf32_Shdr
*) ((byte
*) old_base
+ old_file_h
->e_shoff
);
420 old_section_names
= (char *) old_base
421 + OLD_SECTION_H(old_file_h
->e_shstrndx
).sh_offset
;
423 /* Find the old .sbss section.
426 for (old_sbss_index
= 1; old_sbss_index
< old_file_h
->e_shnum
;
430 fprintf (stderr
, "Looking for .sbss - found %s\n",
431 old_section_names
+ OLD_SECTION_H(old_sbss_index
).sh_name
);
433 if (!strcmp (old_section_names
+ OLD_SECTION_H(old_sbss_index
).sh_name
,
437 if (old_sbss_index
== old_file_h
->e_shnum
)
438 fatal ("Can't find .sbss in %s.\n", old_name
, 0);
440 if (!strcmp(old_section_names
+ OLD_SECTION_H(old_sbss_index
- 1).sh_name
,
443 old_sdata_index
= old_sbss_index
- 1;
447 /* Find the old .bss section.
450 for (old_bss_index
= 1; old_bss_index
< old_file_h
->e_shnum
; old_bss_index
++)
453 fprintf (stderr
, "Looking for .bss - found %s\n",
454 old_section_names
+ OLD_SECTION_H(old_bss_index
).sh_name
);
456 if (!strcmp (old_section_names
+ OLD_SECTION_H(old_bss_index
).sh_name
,
460 if (old_bss_index
== old_file_h
->e_shnum
)
461 fatal ("Can't find .bss in %s.\n", old_name
, 0);
463 if (old_sbss_index
!= (old_bss_index
- 1))
464 fatal (".sbss should come immediately before .bss in %s.\n", old_name
, 0);
466 /* Figure out parameters of the new data3 and data2 sections.
467 * Change the sbss and bss sections.
470 old_bss_addr
= OLD_SECTION_H(old_bss_index
).sh_addr
;
471 old_bss_size
= OLD_SECTION_H(old_bss_index
).sh_size
;
473 old_sbss_addr
= OLD_SECTION_H(old_sbss_index
).sh_addr
;
474 old_sbss_size
= OLD_SECTION_H(old_sbss_index
).sh_size
;
478 old_sdata_size
= OLD_SECTION_H(old_sdata_index
).sh_size
;
481 #if defined(emacs) || !defined(DEBUG)
482 bss_end
= (unsigned int) sbrk (0);
483 new_bss_addr
= (Elf32_Addr
) bss_end
;
485 new_bss_addr
= old_bss_addr
+ old_bss_size
+ 0x1234;
489 new_sdata_size
= OLD_SECTION_H(old_sbss_index
).sh_offset
-
490 OLD_SECTION_H(old_sdata_index
).sh_offset
+ old_sbss_size
;
493 new_data3_addr
= old_sbss_addr
;
494 new_data3_size
= old_sbss_size
;
495 new_data3_offset
= OLD_SECTION_H(old_sbss_index
).sh_offset
;
497 new_data2_addr
= old_bss_addr
;
498 new_data2_size
= new_bss_addr
- old_bss_addr
;
499 new_data2_align
= (new_data3_offset
+ old_sbss_size
) %
500 OLD_SECTION_H(old_bss_index
).sh_addralign
;
501 new_data2_align
= new_data2_align
?
502 OLD_SECTION_H(old_bss_index
).sh_addralign
- new_data2_align
:
504 new_data2_offset
= new_data3_offset
+ old_sbss_size
+ new_data2_align
;
506 old_bss_padding
= OLD_SECTION_H(old_bss_index
).sh_offset
-
507 OLD_SECTION_H(old_sbss_index
).sh_offset
;
509 fprintf (stderr
, "old_bss_index %d\n", old_bss_index
);
510 fprintf (stderr
, "old_bss_addr %x\n", old_bss_addr
);
511 fprintf (stderr
, "old_bss_size %x\n", old_bss_size
);
512 fprintf (stderr
, "new_bss_addr %x\n", new_bss_addr
);
513 fprintf (stderr
, "new_data2_addr %x\n", new_data2_addr
);
514 fprintf (stderr
, "new_data2_size %x\n", new_data2_size
);
515 fprintf (stderr
, "new_data2_offset %x\n", new_data2_offset
);
516 fprintf (stderr
, "old_sbss_index %d\n", old_sbss_index
);
517 fprintf (stderr
, "old_sbss_addr %x\n", old_sbss_addr
);
518 fprintf (stderr
, "old_sbss_size %x\n", old_sbss_size
);
521 fprintf (stderr
, "old_sdata_size %x\n", old_sdata_size
);
522 fprintf (stderr
, "new_sdata_size %x\n", new_sdata_size
);
526 fprintf (stderr
, "new_data3_addr %x\n", new_data3_addr
);
527 fprintf (stderr
, "new_data3_size %x\n", new_data3_size
);
528 fprintf (stderr
, "new_data3_offset %x\n", new_data3_offset
);
532 if ((unsigned) new_bss_addr
< (unsigned) old_bss_addr
+ old_bss_size
)
533 fatal (".bss shrank when undumping???\n", 0, 0);
535 /* Set the output file to the right size and mmap(2) it. Set
536 * pointers to various interesting objects. stat_buf still has
540 new_file
= open (new_name
, O_RDWR
| O_CREAT
, 0666);
542 fatal ("Can't creat(%s): errno %d\n", new_name
, errno
);
544 new_file_size
= stat_buf
.st_size
+
545 ((1 + (old_sdata_index
? 0 : 1)) * old_file_h
->e_shentsize
) +
546 new_data2_size
+ new_data3_size
+ new_data2_align
;
548 if (ftruncate (new_file
, new_file_size
))
549 fatal ("Can't ftruncate(%s): errno %d\n", new_name
, errno
);
551 new_base
= mmap (0, new_file_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
554 if (new_base
== (caddr_t
) -1)
555 fatal ("Can't mmap(%s): errno %d\n", new_name
, errno
);
557 new_file_h
= (Elf32_Ehdr
*) new_base
;
558 new_program_h
= (Elf32_Phdr
*) ((byte
*) new_base
+ old_file_h
->e_phoff
);
559 new_section_h
= (Elf32_Shdr
*) ((byte
*) new_base
+
560 old_file_h
->e_shoff
+
565 /* Make our new file, program and section headers as copies of the
569 memcpy (new_file_h
, old_file_h
, old_file_h
->e_ehsize
);
570 memcpy (new_program_h
, old_program_h
,
571 old_file_h
->e_phnum
* old_file_h
->e_phentsize
);
573 /* Modify the e_shstrndx if necessary. */
574 PATCH_INDEX (new_file_h
->e_shstrndx
);
576 /* Fix up file header. We'll add one section. Section header is
580 new_file_h
->e_shoff
+= new_data2_size
+ new_data2_align
+ new_data3_size
;
581 new_file_h
->e_shnum
+= 1 + (old_sdata_index
? 0 : 1);
584 fprintf (stderr
, "Old section offset %x\n", old_file_h
->e_shoff
);
585 fprintf (stderr
, "Old section count %d\n", old_file_h
->e_shnum
);
586 fprintf (stderr
, "New section offset %x\n", new_file_h
->e_shoff
);
587 fprintf (stderr
, "New section count %d\n", new_file_h
->e_shnum
);
590 /* Fix up a new program header. Extend the writable data segment so
591 * that the bss area is covered too. Find that segment by looking
592 * for a segment that ends just before the .bss area. Make sure
593 * that no segments are above the new .data2. Put a loop at the end
594 * to adjust the offset and address of any segment that is above
595 * data2, just in case we decide to allow this later.
598 for (n
= new_file_h
->e_phnum
- 1; n
>= 0; n
--)
600 /* Compute maximum of all requirements for alignment of section. */
601 int alignment
= (NEW_PROGRAM_H (n
)).p_align
;
602 if ((OLD_SECTION_H (old_bss_index
)).sh_addralign
> alignment
)
603 alignment
= OLD_SECTION_H (old_bss_index
).sh_addralign
;
605 if ((OLD_SECTION_H (old_sbss_index
)).sh_addralign
> alignment
)
606 alignment
= OLD_SECTION_H (old_sbss_index
).sh_addralign
;
608 /* Supposedly this condition is okay for the SGI. */
610 if (NEW_PROGRAM_H(n
).p_vaddr
+ NEW_PROGRAM_H(n
).p_filesz
> old_bss_addr
)
611 fatal ("Program segment above .bss in %s\n", old_name
, 0);
614 if (NEW_PROGRAM_H(n
).p_type
== PT_LOAD
615 && (round_up ((NEW_PROGRAM_H (n
)).p_vaddr
616 + (NEW_PROGRAM_H (n
)).p_filesz
,
618 == round_up (old_bss_addr
, alignment
)))
622 fatal ("Couldn't find segment next to .bss in %s\n", old_name
, 0);
624 NEW_PROGRAM_H(n
).p_filesz
+= new_data2_size
+ new_data2_align
+
626 NEW_PROGRAM_H(n
).p_memsz
= NEW_PROGRAM_H(n
).p_filesz
;
628 #if 1 /* Maybe allow section after data2 - does this ever happen? */
629 for (n
= new_file_h
->e_phnum
- 1; n
>= 0; n
--)
631 if (NEW_PROGRAM_H(n
).p_vaddr
632 && NEW_PROGRAM_H(n
).p_vaddr
>= new_data3_addr
)
633 NEW_PROGRAM_H(n
).p_vaddr
+= new_data2_size
- old_bss_size
+
634 new_data3_size
- old_sbss_size
;
636 if (NEW_PROGRAM_H(n
).p_offset
>= new_data3_offset
)
637 NEW_PROGRAM_H(n
).p_offset
+= new_data2_size
+ new_data2_align
+
642 /* Fix up section headers based on new .data2 section. Any section
643 * whose offset or virtual address is after the new .data2 section
644 * gets its value adjusted. .bss size becomes zero and new address
645 * is set. data2 section header gets added by copying the existing
646 * .data header and modifying the offset, address and size.
648 for (old_data_index
= 1; old_data_index
< old_file_h
->e_shnum
;
650 if (!strcmp (old_section_names
+ OLD_SECTION_H(old_data_index
).sh_name
,
653 if (old_data_index
== old_file_h
->e_shnum
)
654 fatal ("Can't find .data in %s.\n", old_name
, 0);
656 /* Walk through all section headers, insert the new data2 section right
657 before the new bss section. */
658 for (n
= 1, nn
= 1; n
< old_file_h
->e_shnum
; n
++, nn
++)
662 if (n
== old_sbss_index
)
664 /* If it is sbss section, insert the new data3 section before it. */
666 /* Steal the data section header for this data3 section. */
667 if (!old_sdata_index
)
669 memcpy (&NEW_SECTION_H(nn
), &OLD_SECTION_H(old_data_index
),
670 new_file_h
->e_shentsize
);
672 NEW_SECTION_H(nn
).sh_addr
= new_data3_addr
;
673 NEW_SECTION_H(nn
).sh_offset
= new_data3_offset
;
674 NEW_SECTION_H(nn
).sh_size
= new_data3_size
;
675 NEW_SECTION_H(nn
).sh_flags
= OLD_SECTION_H(n
).sh_flags
;
676 /* Use the sbss section's alignment. This will assure that the
677 new data3 section always be placed in the same spot as the old
678 sbss section by any other application. */
679 NEW_SECTION_H(nn
).sh_addralign
= OLD_SECTION_H(n
).sh_addralign
;
681 /* Now copy over what we have in the memory now. */
682 memcpy (NEW_SECTION_H(nn
).sh_offset
+ new_base
,
683 (caddr_t
) OLD_SECTION_H(n
).sh_addr
,
685 /* the new .data2 section should also come before the
686 * new .sbss section */
691 /* We always have a .sdata section: append the contents of the
694 memcpy (new_data3_offset
+ new_base
,
695 (caddr_t
) OLD_SECTION_H(n
).sh_addr
,
700 else if (n
== old_bss_index
)
702 /* If it is bss section, insert the new data2 section before it. */
704 Elf32_Word tmp_align
;
707 tmp_align
= OLD_SECTION_H(n
).sh_addralign
;
708 tmp_addr
= OLD_SECTION_H(n
).sh_addr
;
711 /* Steal the data section header for this data2 section. */
712 memcpy (&NEW_SECTION_H(nn
), &OLD_SECTION_H(old_data_index
),
713 new_file_h
->e_shentsize
);
715 NEW_SECTION_H(nn
).sh_addr
= new_data2_addr
;
716 NEW_SECTION_H(nn
).sh_offset
= new_data2_offset
;
717 NEW_SECTION_H(nn
).sh_size
= new_data2_size
;
718 /* Use the bss section's alignment. This will assure that the
719 new data2 section always be placed in the same spot as the old
720 bss section by any other application. */
721 NEW_SECTION_H(nn
).sh_addralign
= tmp_align
;
723 /* Now copy over what we have in the memory now. */
724 memcpy (NEW_SECTION_H(nn
).sh_offset
+ new_base
,
725 (caddr_t
) tmp_addr
, new_data2_size
);
729 memcpy (&NEW_SECTION_H(nn
), &OLD_SECTION_H(n
),
730 old_file_h
->e_shentsize
);
732 if (old_sdata_index
&& n
== old_sdata_index
)
733 /* The old .sdata section has now a new size */
734 NEW_SECTION_H(nn
).sh_size
= new_sdata_size
;
736 /* The new bss section's size is zero, and its file offset and virtual
737 address should be off by NEW_DATA2_SIZE. */
738 if (n
== old_sbss_index
)
740 /* NN should be `old_sbss_index + 2' at this point. */
741 NEW_SECTION_H(nn
).sh_offset
+= new_data2_size
+ new_data2_align
+
743 NEW_SECTION_H(nn
).sh_addr
+= new_data2_size
+ new_data2_align
+
745 /* Let the new bss section address alignment be the same as the
746 section address alignment followed the old bss section, so
747 this section will be placed in exactly the same place. */
748 NEW_SECTION_H(nn
).sh_addralign
=
749 OLD_SECTION_H(nn
+ (old_sdata_index
? 1 : 0)).sh_addralign
;
750 NEW_SECTION_H(nn
).sh_size
= 0;
752 else if (n
== old_bss_index
)
754 /* NN should be `old_bss_index + 2' at this point. */
755 NEW_SECTION_H(nn
).sh_offset
+= new_data2_size
+ new_data2_align
+
756 new_data3_size
- old_bss_padding
;
757 NEW_SECTION_H(nn
).sh_addr
+= new_data2_size
;
758 /* Let the new bss section address alignment be the same as the
759 section address alignment followed the old bss section, so
760 this section will be placed in exactly the same place. */
761 NEW_SECTION_H(nn
).sh_addralign
=
762 OLD_SECTION_H((nn
- (old_sdata_index
? 0 : 1))).sh_addralign
;
763 NEW_SECTION_H(nn
).sh_size
= 0;
765 /* Any section that was original placed AFTER the bss section should now
766 be off by NEW_DATA2_SIZE. */
767 else if (NEW_SECTION_H(nn
).sh_offset
>= new_data3_offset
)
768 NEW_SECTION_H(nn
).sh_offset
+= new_data2_size
+
773 /* If any section hdr refers to the section after the new .data
774 section, make it refer to next one because we have inserted
775 a new section in between. */
777 PATCH_INDEX(NEW_SECTION_H(nn
).sh_link
);
778 PATCH_INDEX(NEW_SECTION_H(nn
).sh_info
);
780 /* Now, start to copy the content of sections. */
781 if (NEW_SECTION_H(nn
).sh_type
== SHT_NULL
782 || NEW_SECTION_H(nn
).sh_type
== SHT_NOBITS
)
785 /* Write out the sections. .data, .data1 and .sdata get copied from
786 * the current process instead of the old file.
788 if (!strcmp (old_section_names
+ OLD_SECTION_H(n
).sh_name
, ".data") ||
789 !strcmp (old_section_names
+ OLD_SECTION_H(n
).sh_name
, ".data1") ||
790 (old_sdata_index
&& (n
== old_sdata_index
)))
791 src
= (caddr_t
) OLD_SECTION_H(n
).sh_addr
;
793 src
= old_base
+ OLD_SECTION_H(n
).sh_offset
;
795 memcpy (NEW_SECTION_H(nn
).sh_offset
+ new_base
, src
,
796 ((n
== old_sdata_index
) ?
798 NEW_SECTION_H(nn
).sh_size
));
800 /* If it is the symbol table, its st_shndx field needs to be patched. */
801 if (NEW_SECTION_H(nn
).sh_type
== SHT_SYMTAB
802 || NEW_SECTION_H(nn
).sh_type
== SHT_DYNSYM
)
804 Elf32_Shdr
*spt
= &NEW_SECTION_H(nn
);
805 unsigned int num
= spt
->sh_size
/ spt
->sh_entsize
;
806 Elf32_Sym
* sym
= (Elf32_Sym
*) (NEW_SECTION_H(nn
).sh_offset
+
810 if ((sym
->st_shndx
== SHN_UNDEF
)
811 || (sym
->st_shndx
== SHN_ABS
)
812 || (sym
->st_shndx
== SHN_COMMON
))
815 PATCH_INDEX(sym
->st_shndx
);
820 /* Close the files and make the new file executable */
822 if (close (old_file
))
823 fatal ("Can't close(%s): errno %d\n", old_name
, errno
);
825 if (close (new_file
))
826 fatal ("Can't close(%s): errno %d\n", new_name
, errno
);
828 if (stat (new_name
, &stat_buf
) == -1)
829 fatal ("Can't stat(%s): errno %d\n", new_name
, errno
);
833 stat_buf
.st_mode
|= 0111 & ~n
;
834 if (chmod (new_name
, stat_buf
.st_mode
) == -1)
835 fatal ("Can't chmod(%s): errno %d\n", new_name
, errno
);