1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 86, 88, 93, 94, 95, 97, 98, 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
29 /* Note that this declares bzero on OSF/1. How dumb. */
33 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
34 memory. Can do this only if using gmalloc.c. */
36 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
37 #undef GC_MALLOC_CHECK
40 /* This file is part of the core Lisp implementation, and thus must
41 deal with the real data structures. If the Lisp implementation is
42 replaced, this file likely will not be used. */
44 #undef HIDE_LISP_IMPLEMENTATION
47 #include "intervals.h"
53 #include "blockinput.h"
55 #include "syssignal.h"
61 extern POINTER_TYPE
*sbrk ();
64 #ifdef DOUG_LEA_MALLOC
67 /* malloc.h #defines this as size_t, at least in glibc2. */
68 #ifndef __malloc_size_t
69 #define __malloc_size_t int
72 /* Specify maximum number of areas to mmap. It would be nice to use a
73 value that explicitly means "no limit". */
75 #define MMAP_MAX_AREAS 100000000
77 #else /* not DOUG_LEA_MALLOC */
79 /* The following come from gmalloc.c. */
81 #define __malloc_size_t size_t
82 extern __malloc_size_t _bytes_used
;
83 extern __malloc_size_t __malloc_extra_blocks
;
85 #endif /* not DOUG_LEA_MALLOC */
87 /* Value of _bytes_used, when spare_memory was freed. */
89 static __malloc_size_t bytes_used_when_full
;
91 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
92 to a struct Lisp_String. */
94 #define MARK_STRING(S) ((S)->size |= MARKBIT)
95 #define UNMARK_STRING(S) ((S)->size &= ~MARKBIT)
96 #define STRING_MARKED_P(S) ((S)->size & MARKBIT)
98 /* Value is the number of bytes/chars of S, a pointer to a struct
99 Lisp_String. This must be used instead of STRING_BYTES (S) or
100 S->size during GC, because S->size contains the mark bit for
103 #define GC_STRING_BYTES(S) (STRING_BYTES (S) & ~MARKBIT)
104 #define GC_STRING_CHARS(S) ((S)->size & ~MARKBIT)
106 /* Number of bytes of consing done since the last gc. */
108 int consing_since_gc
;
110 /* Count the amount of consing of various sorts of space. */
112 EMACS_INT cons_cells_consed
;
113 EMACS_INT floats_consed
;
114 EMACS_INT vector_cells_consed
;
115 EMACS_INT symbols_consed
;
116 EMACS_INT string_chars_consed
;
117 EMACS_INT misc_objects_consed
;
118 EMACS_INT intervals_consed
;
119 EMACS_INT strings_consed
;
121 /* Number of bytes of consing since GC before another GC should be done. */
123 EMACS_INT gc_cons_threshold
;
125 /* Nonzero during GC. */
129 /* Nonzero means abort if try to GC.
130 This is for code which is written on the assumption that
131 no GC will happen, so as to verify that assumption. */
135 /* Nonzero means display messages at beginning and end of GC. */
137 int garbage_collection_messages
;
139 #ifndef VIRT_ADDR_VARIES
141 #endif /* VIRT_ADDR_VARIES */
142 int malloc_sbrk_used
;
144 #ifndef VIRT_ADDR_VARIES
146 #endif /* VIRT_ADDR_VARIES */
147 int malloc_sbrk_unused
;
149 /* Two limits controlling how much undo information to keep. */
151 EMACS_INT undo_limit
;
152 EMACS_INT undo_strong_limit
;
154 /* Number of live and free conses etc. */
156 static int total_conses
, total_markers
, total_symbols
, total_vector_size
;
157 static int total_free_conses
, total_free_markers
, total_free_symbols
;
158 static int total_free_floats
, total_floats
;
160 /* Points to memory space allocated as "spare", to be freed if we run
163 static char *spare_memory
;
165 /* Amount of spare memory to keep in reserve. */
167 #define SPARE_MEMORY (1 << 14)
169 /* Number of extra blocks malloc should get when it needs more core. */
171 static int malloc_hysteresis
;
173 /* Non-nil means defun should do purecopy on the function definition. */
175 Lisp_Object Vpurify_flag
;
177 /* Non-nil means we are handling a memory-full error. */
179 Lisp_Object Vmemory_full
;
183 /* Force it into data space! */
185 EMACS_INT pure
[PURESIZE
/ sizeof (EMACS_INT
)] = {0,};
186 #define PUREBEG (char *) pure
190 #define pure PURE_SEG_BITS /* Use shared memory segment */
191 #define PUREBEG (char *)PURE_SEG_BITS
193 #endif /* HAVE_SHM */
195 /* Pointer to the pure area, and its size. */
197 static char *purebeg
;
198 static size_t pure_size
;
200 /* Number of bytes of pure storage used before pure storage overflowed.
201 If this is non-zero, this implies that an overflow occurred. */
203 static size_t pure_bytes_used_before_overflow
;
205 /* Value is non-zero if P points into pure space. */
207 #define PURE_POINTER_P(P) \
208 (((PNTR_COMPARISON_TYPE) (P) \
209 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
210 && ((PNTR_COMPARISON_TYPE) (P) \
211 >= (PNTR_COMPARISON_TYPE) purebeg))
213 /* Index in pure at which next pure object will be allocated.. */
215 EMACS_INT pure_bytes_used
;
217 /* If nonzero, this is a warning delivered by malloc and not yet
220 char *pending_malloc_warning
;
222 /* Pre-computed signal argument for use when memory is exhausted. */
224 Lisp_Object Vmemory_signal_data
;
226 /* Maximum amount of C stack to save when a GC happens. */
228 #ifndef MAX_SAVE_STACK
229 #define MAX_SAVE_STACK 16000
232 /* Buffer in which we save a copy of the C stack at each GC. */
237 /* Non-zero means ignore malloc warnings. Set during initialization.
238 Currently not used. */
242 Lisp_Object Qgc_cons_threshold
, Qchar_table_extra_slots
;
244 /* Hook run after GC has finished. */
246 Lisp_Object Vpost_gc_hook
, Qpost_gc_hook
;
248 Lisp_Object Vgc_elapsed
; /* accumulated elapsed time in GC */
249 EMACS_INT gcs_done
; /* accumulated GCs */
251 static void mark_buffer
P_ ((Lisp_Object
));
252 extern void mark_kboards
P_ ((void));
253 static void gc_sweep
P_ ((void));
254 static void mark_glyph_matrix
P_ ((struct glyph_matrix
*));
255 static void mark_face_cache
P_ ((struct face_cache
*));
257 #ifdef HAVE_WINDOW_SYSTEM
258 static void mark_image
P_ ((struct image
*));
259 static void mark_image_cache
P_ ((struct frame
*));
260 #endif /* HAVE_WINDOW_SYSTEM */
262 static struct Lisp_String
*allocate_string
P_ ((void));
263 static void compact_small_strings
P_ ((void));
264 static void free_large_strings
P_ ((void));
265 static void sweep_strings
P_ ((void));
267 extern int message_enable_multibyte
;
269 /* When scanning the C stack for live Lisp objects, Emacs keeps track
270 of what memory allocated via lisp_malloc is intended for what
271 purpose. This enumeration specifies the type of memory. */
282 /* Keep the following vector-like types together, with
283 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
284 first. Or change the code of live_vector_p, for instance. */
292 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
294 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
295 #include <stdio.h> /* For fprintf. */
298 /* A unique object in pure space used to make some Lisp objects
299 on free lists recognizable in O(1). */
303 #ifdef GC_MALLOC_CHECK
305 enum mem_type allocated_mem_type
;
306 int dont_register_blocks
;
308 #endif /* GC_MALLOC_CHECK */
310 /* A node in the red-black tree describing allocated memory containing
311 Lisp data. Each such block is recorded with its start and end
312 address when it is allocated, and removed from the tree when it
315 A red-black tree is a balanced binary tree with the following
318 1. Every node is either red or black.
319 2. Every leaf is black.
320 3. If a node is red, then both of its children are black.
321 4. Every simple path from a node to a descendant leaf contains
322 the same number of black nodes.
323 5. The root is always black.
325 When nodes are inserted into the tree, or deleted from the tree,
326 the tree is "fixed" so that these properties are always true.
328 A red-black tree with N internal nodes has height at most 2
329 log(N+1). Searches, insertions and deletions are done in O(log N).
330 Please see a text book about data structures for a detailed
331 description of red-black trees. Any book worth its salt should
336 /* Children of this node. These pointers are never NULL. When there
337 is no child, the value is MEM_NIL, which points to a dummy node. */
338 struct mem_node
*left
, *right
;
340 /* The parent of this node. In the root node, this is NULL. */
341 struct mem_node
*parent
;
343 /* Start and end of allocated region. */
347 enum {MEM_BLACK
, MEM_RED
} color
;
353 /* Base address of stack. Set in main. */
355 Lisp_Object
*stack_base
;
357 /* Root of the tree describing allocated Lisp memory. */
359 static struct mem_node
*mem_root
;
361 /* Lowest and highest known address in the heap. */
363 static void *min_heap_address
, *max_heap_address
;
365 /* Sentinel node of the tree. */
367 static struct mem_node mem_z
;
368 #define MEM_NIL &mem_z
370 static POINTER_TYPE
*lisp_malloc
P_ ((size_t, enum mem_type
));
371 static struct Lisp_Vector
*allocate_vectorlike
P_ ((EMACS_INT
, enum mem_type
));
372 static void lisp_free
P_ ((POINTER_TYPE
*));
373 static void mark_stack
P_ ((void));
374 static int live_vector_p
P_ ((struct mem_node
*, void *));
375 static int live_buffer_p
P_ ((struct mem_node
*, void *));
376 static int live_string_p
P_ ((struct mem_node
*, void *));
377 static int live_cons_p
P_ ((struct mem_node
*, void *));
378 static int live_symbol_p
P_ ((struct mem_node
*, void *));
379 static int live_float_p
P_ ((struct mem_node
*, void *));
380 static int live_misc_p
P_ ((struct mem_node
*, void *));
381 static void mark_maybe_object
P_ ((Lisp_Object
));
382 static void mark_memory
P_ ((void *, void *));
383 static void mem_init
P_ ((void));
384 static struct mem_node
*mem_insert
P_ ((void *, void *, enum mem_type
));
385 static void mem_insert_fixup
P_ ((struct mem_node
*));
386 static void mem_rotate_left
P_ ((struct mem_node
*));
387 static void mem_rotate_right
P_ ((struct mem_node
*));
388 static void mem_delete
P_ ((struct mem_node
*));
389 static void mem_delete_fixup
P_ ((struct mem_node
*));
390 static INLINE
struct mem_node
*mem_find
P_ ((void *));
392 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
393 static void check_gcpros
P_ ((void));
396 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
398 /* Recording what needs to be marked for gc. */
400 struct gcpro
*gcprolist
;
402 /* Addresses of staticpro'd variables. */
404 #define NSTATICS 1280
405 Lisp_Object
*staticvec
[NSTATICS
] = {0};
407 /* Index of next unused slot in staticvec. */
411 static POINTER_TYPE
*pure_alloc
P_ ((size_t, int));
414 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
415 ALIGNMENT must be a power of 2. */
417 #define ALIGN(SZ, ALIGNMENT) \
418 (((SZ) + (ALIGNMENT) - 1) & ~((ALIGNMENT) - 1))
422 /************************************************************************
424 ************************************************************************/
426 /* Function malloc calls this if it finds we are near exhausting storage. */
432 pending_malloc_warning
= str
;
436 /* Display an already-pending malloc warning. */
439 display_malloc_warning ()
441 call3 (intern ("display-warning"),
443 build_string (pending_malloc_warning
),
444 intern ("emergency"));
445 pending_malloc_warning
= 0;
449 #ifdef DOUG_LEA_MALLOC
450 # define BYTES_USED (mallinfo ().arena)
452 # define BYTES_USED _bytes_used
456 /* Called if malloc returns zero. */
463 #ifndef SYSTEM_MALLOC
464 bytes_used_when_full
= BYTES_USED
;
467 /* The first time we get here, free the spare memory. */
474 /* This used to call error, but if we've run out of memory, we could
475 get infinite recursion trying to build the string. */
477 Fsignal (Qnil
, Vmemory_signal_data
);
481 /* Called if we can't allocate relocatable space for a buffer. */
484 buffer_memory_full ()
486 /* If buffers use the relocating allocator, no need to free
487 spare_memory, because we may have plenty of malloc space left
488 that we could get, and if we don't, the malloc that fails will
489 itself cause spare_memory to be freed. If buffers don't use the
490 relocating allocator, treat this like any other failing
499 /* This used to call error, but if we've run out of memory, we could
500 get infinite recursion trying to build the string. */
502 Fsignal (Qnil
, Vmemory_signal_data
);
506 /* Like malloc but check for no memory and block interrupt input.. */
512 register POINTER_TYPE
*val
;
515 val
= (POINTER_TYPE
*) malloc (size
);
524 /* Like realloc but check for no memory and block interrupt input.. */
527 xrealloc (block
, size
)
531 register POINTER_TYPE
*val
;
534 /* We must call malloc explicitly when BLOCK is 0, since some
535 reallocs don't do this. */
537 val
= (POINTER_TYPE
*) malloc (size
);
539 val
= (POINTER_TYPE
*) realloc (block
, size
);
542 if (!val
&& size
) memory_full ();
547 /* Like free but block interrupt input.. */
559 /* Like strdup, but uses xmalloc. */
565 size_t len
= strlen (s
) + 1;
566 char *p
= (char *) xmalloc (len
);
572 /* Like malloc but used for allocating Lisp data. NBYTES is the
573 number of bytes to allocate, TYPE describes the intended use of the
574 allcated memory block (for strings, for conses, ...). */
576 static void *lisp_malloc_loser
;
578 static POINTER_TYPE
*
579 lisp_malloc (nbytes
, type
)
587 #ifdef GC_MALLOC_CHECK
588 allocated_mem_type
= type
;
591 val
= (void *) malloc (nbytes
);
593 /* If the memory just allocated cannot be addressed thru a Lisp
594 object's pointer, and it needs to be,
595 that's equivalent to running out of memory. */
596 if (val
&& type
!= MEM_TYPE_NON_LISP
)
599 XSETCONS (tem
, (char *) val
+ nbytes
- 1);
600 if ((char *) XCONS (tem
) != (char *) val
+ nbytes
- 1)
602 lisp_malloc_loser
= val
;
608 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
609 if (val
&& type
!= MEM_TYPE_NON_LISP
)
610 mem_insert (val
, (char *) val
+ nbytes
, type
);
620 /* Return a new buffer structure allocated from the heap with
621 a call to lisp_malloc. */
627 = (struct buffer
*) lisp_malloc (sizeof (struct buffer
),
633 /* Free BLOCK. This must be called to free memory allocated with a
634 call to lisp_malloc. */
642 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
643 mem_delete (mem_find (block
));
649 /* Arranging to disable input signals while we're in malloc.
651 This only works with GNU malloc. To help out systems which can't
652 use GNU malloc, all the calls to malloc, realloc, and free
653 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
654 pairs; unfortunately, we have no idea what C library functions
655 might call malloc, so we can't really protect them unless you're
656 using GNU malloc. Fortunately, most of the major operating systems
657 can use GNU malloc. */
659 #ifndef SYSTEM_MALLOC
660 #ifndef DOUG_LEA_MALLOC
661 extern void * (*__malloc_hook
) P_ ((size_t));
662 extern void * (*__realloc_hook
) P_ ((void *, size_t));
663 extern void (*__free_hook
) P_ ((void *));
664 /* Else declared in malloc.h, perhaps with an extra arg. */
665 #endif /* DOUG_LEA_MALLOC */
666 static void * (*old_malloc_hook
) ();
667 static void * (*old_realloc_hook
) ();
668 static void (*old_free_hook
) ();
670 /* This function is used as the hook for free to call. */
673 emacs_blocked_free (ptr
)
678 #ifdef GC_MALLOC_CHECK
684 if (m
== MEM_NIL
|| m
->start
!= ptr
)
687 "Freeing `%p' which wasn't allocated with malloc\n", ptr
);
692 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
696 #endif /* GC_MALLOC_CHECK */
698 __free_hook
= old_free_hook
;
701 /* If we released our reserve (due to running out of memory),
702 and we have a fair amount free once again,
703 try to set aside another reserve in case we run out once more. */
704 if (spare_memory
== 0
705 /* Verify there is enough space that even with the malloc
706 hysteresis this call won't run out again.
707 The code here is correct as long as SPARE_MEMORY
708 is substantially larger than the block size malloc uses. */
709 && (bytes_used_when_full
710 > BYTES_USED
+ max (malloc_hysteresis
, 4) * SPARE_MEMORY
))
711 spare_memory
= (char *) malloc ((size_t) SPARE_MEMORY
);
713 __free_hook
= emacs_blocked_free
;
718 /* If we released our reserve (due to running out of memory),
719 and we have a fair amount free once again,
720 try to set aside another reserve in case we run out once more.
722 This is called when a relocatable block is freed in ralloc.c. */
725 refill_memory_reserve ()
727 if (spare_memory
== 0)
728 spare_memory
= (char *) malloc ((size_t) SPARE_MEMORY
);
732 /* This function is the malloc hook that Emacs uses. */
735 emacs_blocked_malloc (size
)
741 __malloc_hook
= old_malloc_hook
;
742 #ifdef DOUG_LEA_MALLOC
743 mallopt (M_TOP_PAD
, malloc_hysteresis
* 4096);
745 __malloc_extra_blocks
= malloc_hysteresis
;
748 value
= (void *) malloc (size
);
750 #ifdef GC_MALLOC_CHECK
752 struct mem_node
*m
= mem_find (value
);
755 fprintf (stderr
, "Malloc returned %p which is already in use\n",
757 fprintf (stderr
, "Region in use is %p...%p, %u bytes, type %d\n",
758 m
->start
, m
->end
, (char *) m
->end
- (char *) m
->start
,
763 if (!dont_register_blocks
)
765 mem_insert (value
, (char *) value
+ max (1, size
), allocated_mem_type
);
766 allocated_mem_type
= MEM_TYPE_NON_LISP
;
769 #endif /* GC_MALLOC_CHECK */
771 __malloc_hook
= emacs_blocked_malloc
;
774 /* fprintf (stderr, "%p malloc\n", value); */
779 /* This function is the realloc hook that Emacs uses. */
782 emacs_blocked_realloc (ptr
, size
)
789 __realloc_hook
= old_realloc_hook
;
791 #ifdef GC_MALLOC_CHECK
794 struct mem_node
*m
= mem_find (ptr
);
795 if (m
== MEM_NIL
|| m
->start
!= ptr
)
798 "Realloc of %p which wasn't allocated with malloc\n",
806 /* fprintf (stderr, "%p -> realloc\n", ptr); */
808 /* Prevent malloc from registering blocks. */
809 dont_register_blocks
= 1;
810 #endif /* GC_MALLOC_CHECK */
812 value
= (void *) realloc (ptr
, size
);
814 #ifdef GC_MALLOC_CHECK
815 dont_register_blocks
= 0;
818 struct mem_node
*m
= mem_find (value
);
821 fprintf (stderr
, "Realloc returns memory that is already in use\n");
825 /* Can't handle zero size regions in the red-black tree. */
826 mem_insert (value
, (char *) value
+ max (size
, 1), MEM_TYPE_NON_LISP
);
829 /* fprintf (stderr, "%p <- realloc\n", value); */
830 #endif /* GC_MALLOC_CHECK */
832 __realloc_hook
= emacs_blocked_realloc
;
839 /* Called from main to set up malloc to use our hooks. */
842 uninterrupt_malloc ()
844 if (__free_hook
!= emacs_blocked_free
)
845 old_free_hook
= __free_hook
;
846 __free_hook
= emacs_blocked_free
;
848 if (__malloc_hook
!= emacs_blocked_malloc
)
849 old_malloc_hook
= __malloc_hook
;
850 __malloc_hook
= emacs_blocked_malloc
;
852 if (__realloc_hook
!= emacs_blocked_realloc
)
853 old_realloc_hook
= __realloc_hook
;
854 __realloc_hook
= emacs_blocked_realloc
;
857 #endif /* not SYSTEM_MALLOC */
861 /***********************************************************************
863 ***********************************************************************/
865 /* Number of intervals allocated in an interval_block structure.
866 The 1020 is 1024 minus malloc overhead. */
868 #define INTERVAL_BLOCK_SIZE \
869 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
871 /* Intervals are allocated in chunks in form of an interval_block
874 struct interval_block
876 struct interval_block
*next
;
877 struct interval intervals
[INTERVAL_BLOCK_SIZE
];
880 /* Current interval block. Its `next' pointer points to older
883 struct interval_block
*interval_block
;
885 /* Index in interval_block above of the next unused interval
888 static int interval_block_index
;
890 /* Number of free and live intervals. */
892 static int total_free_intervals
, total_intervals
;
894 /* List of free intervals. */
896 INTERVAL interval_free_list
;
898 /* Total number of interval blocks now in use. */
900 int n_interval_blocks
;
903 /* Initialize interval allocation. */
909 = (struct interval_block
*) lisp_malloc (sizeof *interval_block
,
911 interval_block
->next
= 0;
912 bzero ((char *) interval_block
->intervals
, sizeof interval_block
->intervals
);
913 interval_block_index
= 0;
914 interval_free_list
= 0;
915 n_interval_blocks
= 1;
919 /* Return a new interval. */
926 if (interval_free_list
)
928 val
= interval_free_list
;
929 interval_free_list
= INTERVAL_PARENT (interval_free_list
);
933 if (interval_block_index
== INTERVAL_BLOCK_SIZE
)
935 register struct interval_block
*newi
;
937 newi
= (struct interval_block
*) lisp_malloc (sizeof *newi
,
940 newi
->next
= interval_block
;
941 interval_block
= newi
;
942 interval_block_index
= 0;
945 val
= &interval_block
->intervals
[interval_block_index
++];
947 consing_since_gc
+= sizeof (struct interval
);
949 RESET_INTERVAL (val
);
955 /* Mark Lisp objects in interval I. */
958 mark_interval (i
, dummy
)
962 eassert (!i
->gcmarkbit
); /* Intervals are never shared. */
964 mark_object (&i
->plist
);
968 /* Mark the interval tree rooted in TREE. Don't call this directly;
969 use the macro MARK_INTERVAL_TREE instead. */
972 mark_interval_tree (tree
)
973 register INTERVAL tree
;
975 /* No need to test if this tree has been marked already; this
976 function is always called through the MARK_INTERVAL_TREE macro,
977 which takes care of that. */
979 traverse_intervals_noorder (tree
, mark_interval
, Qnil
);
983 /* Mark the interval tree rooted in I. */
985 #define MARK_INTERVAL_TREE(i) \
987 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
988 mark_interval_tree (i); \
992 #define UNMARK_BALANCE_INTERVALS(i) \
994 if (! NULL_INTERVAL_P (i)) \
995 (i) = balance_intervals (i); \
999 /* Number support. If NO_UNION_TYPE isn't in effect, we
1000 can't create number objects in macros. */
1008 obj
.s
.type
= Lisp_Int
;
1013 /***********************************************************************
1015 ***********************************************************************/
1017 /* Lisp_Strings are allocated in string_block structures. When a new
1018 string_block is allocated, all the Lisp_Strings it contains are
1019 added to a free-list string_free_list. When a new Lisp_String is
1020 needed, it is taken from that list. During the sweep phase of GC,
1021 string_blocks that are entirely free are freed, except two which
1024 String data is allocated from sblock structures. Strings larger
1025 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1026 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1028 Sblocks consist internally of sdata structures, one for each
1029 Lisp_String. The sdata structure points to the Lisp_String it
1030 belongs to. The Lisp_String points back to the `u.data' member of
1031 its sdata structure.
1033 When a Lisp_String is freed during GC, it is put back on
1034 string_free_list, and its `data' member and its sdata's `string'
1035 pointer is set to null. The size of the string is recorded in the
1036 `u.nbytes' member of the sdata. So, sdata structures that are no
1037 longer used, can be easily recognized, and it's easy to compact the
1038 sblocks of small strings which we do in compact_small_strings. */
1040 /* Size in bytes of an sblock structure used for small strings. This
1041 is 8192 minus malloc overhead. */
1043 #define SBLOCK_SIZE 8188
1045 /* Strings larger than this are considered large strings. String data
1046 for large strings is allocated from individual sblocks. */
1048 #define LARGE_STRING_BYTES 1024
1050 /* Structure describing string memory sub-allocated from an sblock.
1051 This is where the contents of Lisp strings are stored. */
1055 /* Back-pointer to the string this sdata belongs to. If null, this
1056 structure is free, and the NBYTES member of the union below
1057 contains the string's byte size (the same value that STRING_BYTES
1058 would return if STRING were non-null). If non-null, STRING_BYTES
1059 (STRING) is the size of the data, and DATA contains the string's
1061 struct Lisp_String
*string
;
1063 #ifdef GC_CHECK_STRING_BYTES
1066 unsigned char data
[1];
1068 #define SDATA_NBYTES(S) (S)->nbytes
1069 #define SDATA_DATA(S) (S)->data
1071 #else /* not GC_CHECK_STRING_BYTES */
1075 /* When STRING in non-null. */
1076 unsigned char data
[1];
1078 /* When STRING is null. */
1083 #define SDATA_NBYTES(S) (S)->u.nbytes
1084 #define SDATA_DATA(S) (S)->u.data
1086 #endif /* not GC_CHECK_STRING_BYTES */
1090 /* Structure describing a block of memory which is sub-allocated to
1091 obtain string data memory for strings. Blocks for small strings
1092 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1093 as large as needed. */
1098 struct sblock
*next
;
1100 /* Pointer to the next free sdata block. This points past the end
1101 of the sblock if there isn't any space left in this block. */
1102 struct sdata
*next_free
;
1104 /* Start of data. */
1105 struct sdata first_data
;
1108 /* Number of Lisp strings in a string_block structure. The 1020 is
1109 1024 minus malloc overhead. */
1111 #define STRINGS_IN_STRING_BLOCK \
1112 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1114 /* Structure describing a block from which Lisp_String structures
1119 struct string_block
*next
;
1120 struct Lisp_String strings
[STRINGS_IN_STRING_BLOCK
];
1123 /* Head and tail of the list of sblock structures holding Lisp string
1124 data. We always allocate from current_sblock. The NEXT pointers
1125 in the sblock structures go from oldest_sblock to current_sblock. */
1127 static struct sblock
*oldest_sblock
, *current_sblock
;
1129 /* List of sblocks for large strings. */
1131 static struct sblock
*large_sblocks
;
1133 /* List of string_block structures, and how many there are. */
1135 static struct string_block
*string_blocks
;
1136 static int n_string_blocks
;
1138 /* Free-list of Lisp_Strings. */
1140 static struct Lisp_String
*string_free_list
;
1142 /* Number of live and free Lisp_Strings. */
1144 static int total_strings
, total_free_strings
;
1146 /* Number of bytes used by live strings. */
1148 static int total_string_size
;
1150 /* Given a pointer to a Lisp_String S which is on the free-list
1151 string_free_list, return a pointer to its successor in the
1154 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1156 /* Return a pointer to the sdata structure belonging to Lisp string S.
1157 S must be live, i.e. S->data must not be null. S->data is actually
1158 a pointer to the `u.data' member of its sdata structure; the
1159 structure starts at a constant offset in front of that. */
1161 #ifdef GC_CHECK_STRING_BYTES
1163 #define SDATA_OF_STRING(S) \
1164 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1165 - sizeof (EMACS_INT)))
1167 #else /* not GC_CHECK_STRING_BYTES */
1169 #define SDATA_OF_STRING(S) \
1170 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1172 #endif /* not GC_CHECK_STRING_BYTES */
1174 /* Value is the size of an sdata structure large enough to hold NBYTES
1175 bytes of string data. The value returned includes a terminating
1176 NUL byte, the size of the sdata structure, and padding. */
1178 #ifdef GC_CHECK_STRING_BYTES
1180 #define SDATA_SIZE(NBYTES) \
1181 ((sizeof (struct Lisp_String *) \
1183 + sizeof (EMACS_INT) \
1184 + sizeof (EMACS_INT) - 1) \
1185 & ~(sizeof (EMACS_INT) - 1))
1187 #else /* not GC_CHECK_STRING_BYTES */
1189 #define SDATA_SIZE(NBYTES) \
1190 ((sizeof (struct Lisp_String *) \
1192 + sizeof (EMACS_INT) - 1) \
1193 & ~(sizeof (EMACS_INT) - 1))
1195 #endif /* not GC_CHECK_STRING_BYTES */
1197 /* Initialize string allocation. Called from init_alloc_once. */
1202 total_strings
= total_free_strings
= total_string_size
= 0;
1203 oldest_sblock
= current_sblock
= large_sblocks
= NULL
;
1204 string_blocks
= NULL
;
1205 n_string_blocks
= 0;
1206 string_free_list
= NULL
;
1210 #ifdef GC_CHECK_STRING_BYTES
1212 static int check_string_bytes_count
;
1214 void check_string_bytes
P_ ((int));
1215 void check_sblock
P_ ((struct sblock
*));
1217 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1220 /* Like GC_STRING_BYTES, but with debugging check. */
1224 struct Lisp_String
*s
;
1226 int nbytes
= (s
->size_byte
< 0 ? s
->size
: s
->size_byte
) & ~MARKBIT
;
1227 if (!PURE_POINTER_P (s
)
1229 && nbytes
!= SDATA_NBYTES (SDATA_OF_STRING (s
)))
1234 /* Check validity of Lisp strings' string_bytes member in B. */
1240 struct sdata
*from
, *end
, *from_end
;
1244 for (from
= &b
->first_data
; from
< end
; from
= from_end
)
1246 /* Compute the next FROM here because copying below may
1247 overwrite data we need to compute it. */
1250 /* Check that the string size recorded in the string is the
1251 same as the one recorded in the sdata structure. */
1253 CHECK_STRING_BYTES (from
->string
);
1256 nbytes
= GC_STRING_BYTES (from
->string
);
1258 nbytes
= SDATA_NBYTES (from
);
1260 nbytes
= SDATA_SIZE (nbytes
);
1261 from_end
= (struct sdata
*) ((char *) from
+ nbytes
);
1266 /* Check validity of Lisp strings' string_bytes member. ALL_P
1267 non-zero means check all strings, otherwise check only most
1268 recently allocated strings. Used for hunting a bug. */
1271 check_string_bytes (all_p
)
1278 for (b
= large_sblocks
; b
; b
= b
->next
)
1280 struct Lisp_String
*s
= b
->first_data
.string
;
1282 CHECK_STRING_BYTES (s
);
1285 for (b
= oldest_sblock
; b
; b
= b
->next
)
1289 check_sblock (current_sblock
);
1292 #endif /* GC_CHECK_STRING_BYTES */
1295 /* Return a new Lisp_String. */
1297 static struct Lisp_String
*
1300 struct Lisp_String
*s
;
1302 /* If the free-list is empty, allocate a new string_block, and
1303 add all the Lisp_Strings in it to the free-list. */
1304 if (string_free_list
== NULL
)
1306 struct string_block
*b
;
1309 b
= (struct string_block
*) lisp_malloc (sizeof *b
, MEM_TYPE_STRING
);
1310 bzero (b
, sizeof *b
);
1311 b
->next
= string_blocks
;
1315 for (i
= STRINGS_IN_STRING_BLOCK
- 1; i
>= 0; --i
)
1318 NEXT_FREE_LISP_STRING (s
) = string_free_list
;
1319 string_free_list
= s
;
1322 total_free_strings
+= STRINGS_IN_STRING_BLOCK
;
1325 /* Pop a Lisp_String off the free-list. */
1326 s
= string_free_list
;
1327 string_free_list
= NEXT_FREE_LISP_STRING (s
);
1329 /* Probably not strictly necessary, but play it safe. */
1330 bzero (s
, sizeof *s
);
1332 --total_free_strings
;
1335 consing_since_gc
+= sizeof *s
;
1337 #ifdef GC_CHECK_STRING_BYTES
1344 if (++check_string_bytes_count
== 200)
1346 check_string_bytes_count
= 0;
1347 check_string_bytes (1);
1350 check_string_bytes (0);
1352 #endif /* GC_CHECK_STRING_BYTES */
1358 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1359 plus a NUL byte at the end. Allocate an sdata structure for S, and
1360 set S->data to its `u.data' member. Store a NUL byte at the end of
1361 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1362 S->data if it was initially non-null. */
1365 allocate_string_data (s
, nchars
, nbytes
)
1366 struct Lisp_String
*s
;
1369 struct sdata
*data
, *old_data
;
1371 int needed
, old_nbytes
;
1373 /* Determine the number of bytes needed to store NBYTES bytes
1375 needed
= SDATA_SIZE (nbytes
);
1377 if (nbytes
> LARGE_STRING_BYTES
)
1379 size_t size
= sizeof *b
- sizeof (struct sdata
) + needed
;
1381 #ifdef DOUG_LEA_MALLOC
1382 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1383 because mapped region contents are not preserved in
1386 In case you think of allowing it in a dumped Emacs at the
1387 cost of not being able to re-dump, there's another reason:
1388 mmap'ed data typically have an address towards the top of the
1389 address space, which won't fit into an EMACS_INT (at least on
1390 32-bit systems with the current tagging scheme). --fx */
1391 mallopt (M_MMAP_MAX
, 0);
1394 b
= (struct sblock
*) lisp_malloc (size
, MEM_TYPE_NON_LISP
);
1396 #ifdef DOUG_LEA_MALLOC
1397 /* Back to a reasonable maximum of mmap'ed areas. */
1398 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
);
1401 b
->next_free
= &b
->first_data
;
1402 b
->first_data
.string
= NULL
;
1403 b
->next
= large_sblocks
;
1406 else if (current_sblock
== NULL
1407 || (((char *) current_sblock
+ SBLOCK_SIZE
1408 - (char *) current_sblock
->next_free
)
1411 /* Not enough room in the current sblock. */
1412 b
= (struct sblock
*) lisp_malloc (SBLOCK_SIZE
, MEM_TYPE_NON_LISP
);
1413 b
->next_free
= &b
->first_data
;
1414 b
->first_data
.string
= NULL
;
1418 current_sblock
->next
= b
;
1426 old_data
= s
->data
? SDATA_OF_STRING (s
) : NULL
;
1427 old_nbytes
= GC_STRING_BYTES (s
);
1429 data
= b
->next_free
;
1431 s
->data
= SDATA_DATA (data
);
1432 #ifdef GC_CHECK_STRING_BYTES
1433 SDATA_NBYTES (data
) = nbytes
;
1436 s
->size_byte
= nbytes
;
1437 s
->data
[nbytes
] = '\0';
1438 b
->next_free
= (struct sdata
*) ((char *) data
+ needed
);
1440 /* If S had already data assigned, mark that as free by setting its
1441 string back-pointer to null, and recording the size of the data
1445 SDATA_NBYTES (old_data
) = old_nbytes
;
1446 old_data
->string
= NULL
;
1449 consing_since_gc
+= needed
;
1453 /* Sweep and compact strings. */
1458 struct string_block
*b
, *next
;
1459 struct string_block
*live_blocks
= NULL
;
1461 string_free_list
= NULL
;
1462 total_strings
= total_free_strings
= 0;
1463 total_string_size
= 0;
1465 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1466 for (b
= string_blocks
; b
; b
= next
)
1469 struct Lisp_String
*free_list_before
= string_free_list
;
1473 for (i
= 0; i
< STRINGS_IN_STRING_BLOCK
; ++i
)
1475 struct Lisp_String
*s
= b
->strings
+ i
;
1479 /* String was not on free-list before. */
1480 if (STRING_MARKED_P (s
))
1482 /* String is live; unmark it and its intervals. */
1485 if (!NULL_INTERVAL_P (s
->intervals
))
1486 UNMARK_BALANCE_INTERVALS (s
->intervals
);
1489 total_string_size
+= STRING_BYTES (s
);
1493 /* String is dead. Put it on the free-list. */
1494 struct sdata
*data
= SDATA_OF_STRING (s
);
1496 /* Save the size of S in its sdata so that we know
1497 how large that is. Reset the sdata's string
1498 back-pointer so that we know it's free. */
1499 #ifdef GC_CHECK_STRING_BYTES
1500 if (GC_STRING_BYTES (s
) != SDATA_NBYTES (data
))
1503 data
->u
.nbytes
= GC_STRING_BYTES (s
);
1505 data
->string
= NULL
;
1507 /* Reset the strings's `data' member so that we
1511 /* Put the string on the free-list. */
1512 NEXT_FREE_LISP_STRING (s
) = string_free_list
;
1513 string_free_list
= s
;
1519 /* S was on the free-list before. Put it there again. */
1520 NEXT_FREE_LISP_STRING (s
) = string_free_list
;
1521 string_free_list
= s
;
1526 /* Free blocks that contain free Lisp_Strings only, except
1527 the first two of them. */
1528 if (nfree
== STRINGS_IN_STRING_BLOCK
1529 && total_free_strings
> STRINGS_IN_STRING_BLOCK
)
1533 string_free_list
= free_list_before
;
1537 total_free_strings
+= nfree
;
1538 b
->next
= live_blocks
;
1543 string_blocks
= live_blocks
;
1544 free_large_strings ();
1545 compact_small_strings ();
1549 /* Free dead large strings. */
1552 free_large_strings ()
1554 struct sblock
*b
, *next
;
1555 struct sblock
*live_blocks
= NULL
;
1557 for (b
= large_sblocks
; b
; b
= next
)
1561 if (b
->first_data
.string
== NULL
)
1565 b
->next
= live_blocks
;
1570 large_sblocks
= live_blocks
;
1574 /* Compact data of small strings. Free sblocks that don't contain
1575 data of live strings after compaction. */
1578 compact_small_strings ()
1580 struct sblock
*b
, *tb
, *next
;
1581 struct sdata
*from
, *to
, *end
, *tb_end
;
1582 struct sdata
*to_end
, *from_end
;
1584 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1585 to, and TB_END is the end of TB. */
1587 tb_end
= (struct sdata
*) ((char *) tb
+ SBLOCK_SIZE
);
1588 to
= &tb
->first_data
;
1590 /* Step through the blocks from the oldest to the youngest. We
1591 expect that old blocks will stabilize over time, so that less
1592 copying will happen this way. */
1593 for (b
= oldest_sblock
; b
; b
= b
->next
)
1596 xassert ((char *) end
<= (char *) b
+ SBLOCK_SIZE
);
1598 for (from
= &b
->first_data
; from
< end
; from
= from_end
)
1600 /* Compute the next FROM here because copying below may
1601 overwrite data we need to compute it. */
1604 #ifdef GC_CHECK_STRING_BYTES
1605 /* Check that the string size recorded in the string is the
1606 same as the one recorded in the sdata structure. */
1608 && GC_STRING_BYTES (from
->string
) != SDATA_NBYTES (from
))
1610 #endif /* GC_CHECK_STRING_BYTES */
1613 nbytes
= GC_STRING_BYTES (from
->string
);
1615 nbytes
= SDATA_NBYTES (from
);
1617 nbytes
= SDATA_SIZE (nbytes
);
1618 from_end
= (struct sdata
*) ((char *) from
+ nbytes
);
1620 /* FROM->string non-null means it's alive. Copy its data. */
1623 /* If TB is full, proceed with the next sblock. */
1624 to_end
= (struct sdata
*) ((char *) to
+ nbytes
);
1625 if (to_end
> tb_end
)
1629 tb_end
= (struct sdata
*) ((char *) tb
+ SBLOCK_SIZE
);
1630 to
= &tb
->first_data
;
1631 to_end
= (struct sdata
*) ((char *) to
+ nbytes
);
1634 /* Copy, and update the string's `data' pointer. */
1637 xassert (tb
!= b
|| to
<= from
);
1638 safe_bcopy ((char *) from
, (char *) to
, nbytes
);
1639 to
->string
->data
= SDATA_DATA (to
);
1642 /* Advance past the sdata we copied to. */
1648 /* The rest of the sblocks following TB don't contain live data, so
1649 we can free them. */
1650 for (b
= tb
->next
; b
; b
= next
)
1658 current_sblock
= tb
;
1662 DEFUN ("make-string", Fmake_string
, Smake_string
, 2, 2, 0,
1663 doc
: /* Return a newly created string of length LENGTH, with each element being INIT.
1664 Both LENGTH and INIT must be numbers. */)
1666 Lisp_Object length
, init
;
1668 register Lisp_Object val
;
1669 register unsigned char *p
, *end
;
1672 CHECK_NATNUM (length
);
1673 CHECK_NUMBER (init
);
1676 if (SINGLE_BYTE_CHAR_P (c
))
1678 nbytes
= XINT (length
);
1679 val
= make_uninit_string (nbytes
);
1681 end
= p
+ SCHARS (val
);
1687 unsigned char str
[MAX_MULTIBYTE_LENGTH
];
1688 int len
= CHAR_STRING (c
, str
);
1690 nbytes
= len
* XINT (length
);
1691 val
= make_uninit_multibyte_string (XINT (length
), nbytes
);
1696 bcopy (str
, p
, len
);
1706 DEFUN ("make-bool-vector", Fmake_bool_vector
, Smake_bool_vector
, 2, 2, 0,
1707 doc
: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
1708 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
1710 Lisp_Object length
, init
;
1712 register Lisp_Object val
;
1713 struct Lisp_Bool_Vector
*p
;
1715 int length_in_chars
, length_in_elts
, bits_per_value
;
1717 CHECK_NATNUM (length
);
1719 bits_per_value
= sizeof (EMACS_INT
) * BITS_PER_CHAR
;
1721 length_in_elts
= (XFASTINT (length
) + bits_per_value
- 1) / bits_per_value
;
1722 length_in_chars
= ((XFASTINT (length
) + BITS_PER_CHAR
- 1) / BITS_PER_CHAR
);
1724 /* We must allocate one more elements than LENGTH_IN_ELTS for the
1725 slot `size' of the struct Lisp_Bool_Vector. */
1726 val
= Fmake_vector (make_number (length_in_elts
+ 1), Qnil
);
1727 p
= XBOOL_VECTOR (val
);
1729 /* Get rid of any bits that would cause confusion. */
1731 XSETBOOL_VECTOR (val
, p
);
1732 p
->size
= XFASTINT (length
);
1734 real_init
= (NILP (init
) ? 0 : -1);
1735 for (i
= 0; i
< length_in_chars
; i
++)
1736 p
->data
[i
] = real_init
;
1738 /* Clear the extraneous bits in the last byte. */
1739 if (XINT (length
) != length_in_chars
* BITS_PER_CHAR
)
1740 XBOOL_VECTOR (val
)->data
[length_in_chars
- 1]
1741 &= (1 << (XINT (length
) % BITS_PER_CHAR
)) - 1;
1747 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
1748 of characters from the contents. This string may be unibyte or
1749 multibyte, depending on the contents. */
1752 make_string (contents
, nbytes
)
1753 const char *contents
;
1756 register Lisp_Object val
;
1757 int nchars
, multibyte_nbytes
;
1759 parse_str_as_multibyte (contents
, nbytes
, &nchars
, &multibyte_nbytes
);
1760 if (nbytes
== nchars
|| nbytes
!= multibyte_nbytes
)
1761 /* CONTENTS contains no multibyte sequences or contains an invalid
1762 multibyte sequence. We must make unibyte string. */
1763 val
= make_unibyte_string (contents
, nbytes
);
1765 val
= make_multibyte_string (contents
, nchars
, nbytes
);
1770 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
1773 make_unibyte_string (contents
, length
)
1774 const char *contents
;
1777 register Lisp_Object val
;
1778 val
= make_uninit_string (length
);
1779 bcopy (contents
, SDATA (val
), length
);
1780 STRING_SET_UNIBYTE (val
);
1785 /* Make a multibyte string from NCHARS characters occupying NBYTES
1786 bytes at CONTENTS. */
1789 make_multibyte_string (contents
, nchars
, nbytes
)
1790 const char *contents
;
1793 register Lisp_Object val
;
1794 val
= make_uninit_multibyte_string (nchars
, nbytes
);
1795 bcopy (contents
, SDATA (val
), nbytes
);
1800 /* Make a string from NCHARS characters occupying NBYTES bytes at
1801 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
1804 make_string_from_bytes (contents
, nchars
, nbytes
)
1805 const char *contents
;
1808 register Lisp_Object val
;
1809 val
= make_uninit_multibyte_string (nchars
, nbytes
);
1810 bcopy (contents
, SDATA (val
), nbytes
);
1811 if (SBYTES (val
) == SCHARS (val
))
1812 STRING_SET_UNIBYTE (val
);
1817 /* Make a string from NCHARS characters occupying NBYTES bytes at
1818 CONTENTS. The argument MULTIBYTE controls whether to label the
1819 string as multibyte. If NCHARS is negative, it counts the number of
1820 characters by itself. */
1823 make_specified_string (contents
, nchars
, nbytes
, multibyte
)
1824 const char *contents
;
1828 register Lisp_Object val
;
1833 nchars
= multibyte_chars_in_text (contents
, nbytes
);
1837 val
= make_uninit_multibyte_string (nchars
, nbytes
);
1838 bcopy (contents
, SDATA (val
), nbytes
);
1840 STRING_SET_UNIBYTE (val
);
1845 /* Make a string from the data at STR, treating it as multibyte if the
1852 return make_string (str
, strlen (str
));
1856 /* Return an unibyte Lisp_String set up to hold LENGTH characters
1857 occupying LENGTH bytes. */
1860 make_uninit_string (length
)
1864 val
= make_uninit_multibyte_string (length
, length
);
1865 STRING_SET_UNIBYTE (val
);
1870 /* Return a multibyte Lisp_String set up to hold NCHARS characters
1871 which occupy NBYTES bytes. */
1874 make_uninit_multibyte_string (nchars
, nbytes
)
1878 struct Lisp_String
*s
;
1883 s
= allocate_string ();
1884 allocate_string_data (s
, nchars
, nbytes
);
1885 XSETSTRING (string
, s
);
1886 string_chars_consed
+= nbytes
;
1892 /***********************************************************************
1894 ***********************************************************************/
1896 /* We store float cells inside of float_blocks, allocating a new
1897 float_block with malloc whenever necessary. Float cells reclaimed
1898 by GC are put on a free list to be reallocated before allocating
1899 any new float cells from the latest float_block.
1901 Each float_block is just under 1020 bytes long, since malloc really
1902 allocates in units of powers of two and uses 4 bytes for its own
1905 #define FLOAT_BLOCK_SIZE \
1906 ((1020 - sizeof (struct float_block *)) / sizeof (struct Lisp_Float))
1910 struct float_block
*next
;
1911 struct Lisp_Float floats
[FLOAT_BLOCK_SIZE
];
1914 /* Current float_block. */
1916 struct float_block
*float_block
;
1918 /* Index of first unused Lisp_Float in the current float_block. */
1920 int float_block_index
;
1922 /* Total number of float blocks now in use. */
1926 /* Free-list of Lisp_Floats. */
1928 struct Lisp_Float
*float_free_list
;
1931 /* Initialize float allocation. */
1936 float_block
= (struct float_block
*) lisp_malloc (sizeof *float_block
,
1938 float_block
->next
= 0;
1939 bzero ((char *) float_block
->floats
, sizeof float_block
->floats
);
1940 float_block_index
= 0;
1941 float_free_list
= 0;
1946 /* Explicitly free a float cell by putting it on the free-list. */
1950 struct Lisp_Float
*ptr
;
1952 *(struct Lisp_Float
**)&ptr
->data
= float_free_list
;
1956 float_free_list
= ptr
;
1960 /* Return a new float object with value FLOAT_VALUE. */
1963 make_float (float_value
)
1966 register Lisp_Object val
;
1968 if (float_free_list
)
1970 /* We use the data field for chaining the free list
1971 so that we won't use the same field that has the mark bit. */
1972 XSETFLOAT (val
, float_free_list
);
1973 float_free_list
= *(struct Lisp_Float
**)&float_free_list
->data
;
1977 if (float_block_index
== FLOAT_BLOCK_SIZE
)
1979 register struct float_block
*new;
1981 new = (struct float_block
*) lisp_malloc (sizeof *new,
1983 new->next
= float_block
;
1985 float_block_index
= 0;
1988 XSETFLOAT (val
, &float_block
->floats
[float_block_index
++]);
1991 XFLOAT_DATA (val
) = float_value
;
1992 XSETFASTINT (XFLOAT (val
)->type
, 0); /* bug chasing -wsr */
1993 consing_since_gc
+= sizeof (struct Lisp_Float
);
2000 /***********************************************************************
2002 ***********************************************************************/
2004 /* We store cons cells inside of cons_blocks, allocating a new
2005 cons_block with malloc whenever necessary. Cons cells reclaimed by
2006 GC are put on a free list to be reallocated before allocating
2007 any new cons cells from the latest cons_block.
2009 Each cons_block is just under 1020 bytes long,
2010 since malloc really allocates in units of powers of two
2011 and uses 4 bytes for its own overhead. */
2013 #define CONS_BLOCK_SIZE \
2014 ((1020 - sizeof (struct cons_block *)) / sizeof (struct Lisp_Cons))
2018 struct cons_block
*next
;
2019 struct Lisp_Cons conses
[CONS_BLOCK_SIZE
];
2022 /* Current cons_block. */
2024 struct cons_block
*cons_block
;
2026 /* Index of first unused Lisp_Cons in the current block. */
2028 int cons_block_index
;
2030 /* Free-list of Lisp_Cons structures. */
2032 struct Lisp_Cons
*cons_free_list
;
2034 /* Total number of cons blocks now in use. */
2039 /* Initialize cons allocation. */
2044 cons_block
= (struct cons_block
*) lisp_malloc (sizeof *cons_block
,
2046 cons_block
->next
= 0;
2047 bzero ((char *) cons_block
->conses
, sizeof cons_block
->conses
);
2048 cons_block_index
= 0;
2054 /* Explicitly free a cons cell by putting it on the free-list. */
2058 struct Lisp_Cons
*ptr
;
2060 *(struct Lisp_Cons
**)&ptr
->cdr
= cons_free_list
;
2064 cons_free_list
= ptr
;
2068 DEFUN ("cons", Fcons
, Scons
, 2, 2, 0,
2069 doc
: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2071 Lisp_Object car
, cdr
;
2073 register Lisp_Object val
;
2077 /* We use the cdr for chaining the free list
2078 so that we won't use the same field that has the mark bit. */
2079 XSETCONS (val
, cons_free_list
);
2080 cons_free_list
= *(struct Lisp_Cons
**)&cons_free_list
->cdr
;
2084 if (cons_block_index
== CONS_BLOCK_SIZE
)
2086 register struct cons_block
*new;
2087 new = (struct cons_block
*) lisp_malloc (sizeof *new,
2089 new->next
= cons_block
;
2091 cons_block_index
= 0;
2094 XSETCONS (val
, &cons_block
->conses
[cons_block_index
++]);
2099 consing_since_gc
+= sizeof (struct Lisp_Cons
);
2100 cons_cells_consed
++;
2105 /* Make a list of 2, 3, 4 or 5 specified objects. */
2109 Lisp_Object arg1
, arg2
;
2111 return Fcons (arg1
, Fcons (arg2
, Qnil
));
2116 list3 (arg1
, arg2
, arg3
)
2117 Lisp_Object arg1
, arg2
, arg3
;
2119 return Fcons (arg1
, Fcons (arg2
, Fcons (arg3
, Qnil
)));
2124 list4 (arg1
, arg2
, arg3
, arg4
)
2125 Lisp_Object arg1
, arg2
, arg3
, arg4
;
2127 return Fcons (arg1
, Fcons (arg2
, Fcons (arg3
, Fcons (arg4
, Qnil
))));
2132 list5 (arg1
, arg2
, arg3
, arg4
, arg5
)
2133 Lisp_Object arg1
, arg2
, arg3
, arg4
, arg5
;
2135 return Fcons (arg1
, Fcons (arg2
, Fcons (arg3
, Fcons (arg4
,
2136 Fcons (arg5
, Qnil
)))));
2140 DEFUN ("list", Flist
, Slist
, 0, MANY
, 0,
2141 doc
: /* Return a newly created list with specified arguments as elements.
2142 Any number of arguments, even zero arguments, are allowed.
2143 usage: (list &rest OBJECTS) */)
2146 register Lisp_Object
*args
;
2148 register Lisp_Object val
;
2154 val
= Fcons (args
[nargs
], val
);
2160 DEFUN ("make-list", Fmake_list
, Smake_list
, 2, 2, 0,
2161 doc
: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2163 register Lisp_Object length
, init
;
2165 register Lisp_Object val
;
2168 CHECK_NATNUM (length
);
2169 size
= XFASTINT (length
);
2174 val
= Fcons (init
, val
);
2179 val
= Fcons (init
, val
);
2184 val
= Fcons (init
, val
);
2189 val
= Fcons (init
, val
);
2194 val
= Fcons (init
, val
);
2209 /***********************************************************************
2211 ***********************************************************************/
2213 /* Singly-linked list of all vectors. */
2215 struct Lisp_Vector
*all_vectors
;
2217 /* Total number of vector-like objects now in use. */
2222 /* Value is a pointer to a newly allocated Lisp_Vector structure
2223 with room for LEN Lisp_Objects. */
2225 static struct Lisp_Vector
*
2226 allocate_vectorlike (len
, type
)
2230 struct Lisp_Vector
*p
;
2233 #ifdef DOUG_LEA_MALLOC
2234 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2235 because mapped region contents are not preserved in
2237 mallopt (M_MMAP_MAX
, 0);
2240 nbytes
= sizeof *p
+ (len
- 1) * sizeof p
->contents
[0];
2241 p
= (struct Lisp_Vector
*) lisp_malloc (nbytes
, type
);
2243 #ifdef DOUG_LEA_MALLOC
2244 /* Back to a reasonable maximum of mmap'ed areas. */
2245 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
);
2248 consing_since_gc
+= nbytes
;
2249 vector_cells_consed
+= len
;
2251 p
->next
= all_vectors
;
2258 /* Allocate a vector with NSLOTS slots. */
2260 struct Lisp_Vector
*
2261 allocate_vector (nslots
)
2264 struct Lisp_Vector
*v
= allocate_vectorlike (nslots
, MEM_TYPE_VECTOR
);
2270 /* Allocate other vector-like structures. */
2272 struct Lisp_Hash_Table
*
2273 allocate_hash_table ()
2275 EMACS_INT len
= VECSIZE (struct Lisp_Hash_Table
);
2276 struct Lisp_Vector
*v
= allocate_vectorlike (len
, MEM_TYPE_HASH_TABLE
);
2280 for (i
= 0; i
< len
; ++i
)
2281 v
->contents
[i
] = Qnil
;
2283 return (struct Lisp_Hash_Table
*) v
;
2290 EMACS_INT len
= VECSIZE (struct window
);
2291 struct Lisp_Vector
*v
= allocate_vectorlike (len
, MEM_TYPE_WINDOW
);
2294 for (i
= 0; i
< len
; ++i
)
2295 v
->contents
[i
] = Qnil
;
2298 return (struct window
*) v
;
2305 EMACS_INT len
= VECSIZE (struct frame
);
2306 struct Lisp_Vector
*v
= allocate_vectorlike (len
, MEM_TYPE_FRAME
);
2309 for (i
= 0; i
< len
; ++i
)
2310 v
->contents
[i
] = make_number (0);
2312 return (struct frame
*) v
;
2316 struct Lisp_Process
*
2319 EMACS_INT len
= VECSIZE (struct Lisp_Process
);
2320 struct Lisp_Vector
*v
= allocate_vectorlike (len
, MEM_TYPE_PROCESS
);
2323 for (i
= 0; i
< len
; ++i
)
2324 v
->contents
[i
] = Qnil
;
2327 return (struct Lisp_Process
*) v
;
2331 struct Lisp_Vector
*
2332 allocate_other_vector (len
)
2335 struct Lisp_Vector
*v
= allocate_vectorlike (len
, MEM_TYPE_VECTOR
);
2338 for (i
= 0; i
< len
; ++i
)
2339 v
->contents
[i
] = Qnil
;
2346 DEFUN ("make-vector", Fmake_vector
, Smake_vector
, 2, 2, 0,
2347 doc
: /* Return a newly created vector of length LENGTH, with each element being INIT.
2348 See also the function `vector'. */)
2350 register Lisp_Object length
, init
;
2353 register EMACS_INT sizei
;
2355 register struct Lisp_Vector
*p
;
2357 CHECK_NATNUM (length
);
2358 sizei
= XFASTINT (length
);
2360 p
= allocate_vector (sizei
);
2361 for (index
= 0; index
< sizei
; index
++)
2362 p
->contents
[index
] = init
;
2364 XSETVECTOR (vector
, p
);
2369 DEFUN ("make-char-table", Fmake_char_table
, Smake_char_table
, 1, 2, 0,
2370 doc
: /* Return a newly created char-table, with purpose PURPOSE.
2371 Each element is initialized to INIT, which defaults to nil.
2372 PURPOSE should be a symbol which has a `char-table-extra-slots' property.
2373 The property's value should be an integer between 0 and 10. */)
2375 register Lisp_Object purpose
, init
;
2379 CHECK_SYMBOL (purpose
);
2380 n
= Fget (purpose
, Qchar_table_extra_slots
);
2382 if (XINT (n
) < 0 || XINT (n
) > 10)
2383 args_out_of_range (n
, Qnil
);
2384 /* Add 2 to the size for the defalt and parent slots. */
2385 vector
= Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS
+ XINT (n
)),
2387 XCHAR_TABLE (vector
)->top
= Qt
;
2388 XCHAR_TABLE (vector
)->parent
= Qnil
;
2389 XCHAR_TABLE (vector
)->purpose
= purpose
;
2390 XSETCHAR_TABLE (vector
, XCHAR_TABLE (vector
));
2395 /* Return a newly created sub char table with default value DEFALT.
2396 Since a sub char table does not appear as a top level Emacs Lisp
2397 object, we don't need a Lisp interface to make it. */
2400 make_sub_char_table (defalt
)
2404 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS
), Qnil
);
2405 XCHAR_TABLE (vector
)->top
= Qnil
;
2406 XCHAR_TABLE (vector
)->defalt
= defalt
;
2407 XSETCHAR_TABLE (vector
, XCHAR_TABLE (vector
));
2412 DEFUN ("vector", Fvector
, Svector
, 0, MANY
, 0,
2413 doc
: /* Return a newly created vector with specified arguments as elements.
2414 Any number of arguments, even zero arguments, are allowed.
2415 usage: (vector &rest OBJECTS) */)
2420 register Lisp_Object len
, val
;
2422 register struct Lisp_Vector
*p
;
2424 XSETFASTINT (len
, nargs
);
2425 val
= Fmake_vector (len
, Qnil
);
2427 for (index
= 0; index
< nargs
; index
++)
2428 p
->contents
[index
] = args
[index
];
2433 DEFUN ("make-byte-code", Fmake_byte_code
, Smake_byte_code
, 4, MANY
, 0,
2434 doc
: /* Create a byte-code object with specified arguments as elements.
2435 The arguments should be the arglist, bytecode-string, constant vector,
2436 stack size, (optional) doc string, and (optional) interactive spec.
2437 The first four arguments are required; at most six have any
2439 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2444 register Lisp_Object len
, val
;
2446 register struct Lisp_Vector
*p
;
2448 XSETFASTINT (len
, nargs
);
2449 if (!NILP (Vpurify_flag
))
2450 val
= make_pure_vector ((EMACS_INT
) nargs
);
2452 val
= Fmake_vector (len
, Qnil
);
2454 if (STRINGP (args
[1]) && STRING_MULTIBYTE (args
[1]))
2455 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2456 earlier because they produced a raw 8-bit string for byte-code
2457 and now such a byte-code string is loaded as multibyte while
2458 raw 8-bit characters converted to multibyte form. Thus, now we
2459 must convert them back to the original unibyte form. */
2460 args
[1] = Fstring_as_unibyte (args
[1]);
2463 for (index
= 0; index
< nargs
; index
++)
2465 if (!NILP (Vpurify_flag
))
2466 args
[index
] = Fpurecopy (args
[index
]);
2467 p
->contents
[index
] = args
[index
];
2469 XSETCOMPILED (val
, p
);
2475 /***********************************************************************
2477 ***********************************************************************/
2479 /* Each symbol_block is just under 1020 bytes long, since malloc
2480 really allocates in units of powers of two and uses 4 bytes for its
2483 #define SYMBOL_BLOCK_SIZE \
2484 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2488 struct symbol_block
*next
;
2489 struct Lisp_Symbol symbols
[SYMBOL_BLOCK_SIZE
];
2492 /* Current symbol block and index of first unused Lisp_Symbol
2495 struct symbol_block
*symbol_block
;
2496 int symbol_block_index
;
2498 /* List of free symbols. */
2500 struct Lisp_Symbol
*symbol_free_list
;
2502 /* Total number of symbol blocks now in use. */
2504 int n_symbol_blocks
;
2507 /* Initialize symbol allocation. */
2512 symbol_block
= (struct symbol_block
*) lisp_malloc (sizeof *symbol_block
,
2514 symbol_block
->next
= 0;
2515 bzero ((char *) symbol_block
->symbols
, sizeof symbol_block
->symbols
);
2516 symbol_block_index
= 0;
2517 symbol_free_list
= 0;
2518 n_symbol_blocks
= 1;
2522 DEFUN ("make-symbol", Fmake_symbol
, Smake_symbol
, 1, 1, 0,
2523 doc
: /* Return a newly allocated uninterned symbol whose name is NAME.
2524 Its value and function definition are void, and its property list is nil. */)
2528 register Lisp_Object val
;
2529 register struct Lisp_Symbol
*p
;
2531 CHECK_STRING (name
);
2533 if (symbol_free_list
)
2535 XSETSYMBOL (val
, symbol_free_list
);
2536 symbol_free_list
= *(struct Lisp_Symbol
**)&symbol_free_list
->value
;
2540 if (symbol_block_index
== SYMBOL_BLOCK_SIZE
)
2542 struct symbol_block
*new;
2543 new = (struct symbol_block
*) lisp_malloc (sizeof *new,
2545 new->next
= symbol_block
;
2547 symbol_block_index
= 0;
2550 XSETSYMBOL (val
, &symbol_block
->symbols
[symbol_block_index
++]);
2556 p
->value
= Qunbound
;
2557 p
->function
= Qunbound
;
2560 p
->interned
= SYMBOL_UNINTERNED
;
2562 p
->indirect_variable
= 0;
2563 consing_since_gc
+= sizeof (struct Lisp_Symbol
);
2570 /***********************************************************************
2571 Marker (Misc) Allocation
2572 ***********************************************************************/
2574 /* Allocation of markers and other objects that share that structure.
2575 Works like allocation of conses. */
2577 #define MARKER_BLOCK_SIZE \
2578 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
2582 struct marker_block
*next
;
2583 union Lisp_Misc markers
[MARKER_BLOCK_SIZE
];
2586 struct marker_block
*marker_block
;
2587 int marker_block_index
;
2589 union Lisp_Misc
*marker_free_list
;
2591 /* Total number of marker blocks now in use. */
2593 int n_marker_blocks
;
2598 marker_block
= (struct marker_block
*) lisp_malloc (sizeof *marker_block
,
2600 marker_block
->next
= 0;
2601 bzero ((char *) marker_block
->markers
, sizeof marker_block
->markers
);
2602 marker_block_index
= 0;
2603 marker_free_list
= 0;
2604 n_marker_blocks
= 1;
2607 /* Return a newly allocated Lisp_Misc object, with no substructure. */
2614 if (marker_free_list
)
2616 XSETMISC (val
, marker_free_list
);
2617 marker_free_list
= marker_free_list
->u_free
.chain
;
2621 if (marker_block_index
== MARKER_BLOCK_SIZE
)
2623 struct marker_block
*new;
2624 new = (struct marker_block
*) lisp_malloc (sizeof *new,
2626 new->next
= marker_block
;
2628 marker_block_index
= 0;
2631 XSETMISC (val
, &marker_block
->markers
[marker_block_index
++]);
2634 consing_since_gc
+= sizeof (union Lisp_Misc
);
2635 misc_objects_consed
++;
2636 XMARKER (val
)->gcmarkbit
= 0;
2640 /* Return a Lisp_Misc_Save_Value object containing POINTER and
2641 INTEGER. This is used to package C values to call record_unwind_protect.
2642 The unwind function can get the C values back using XSAVE_VALUE. */
2645 make_save_value (pointer
, integer
)
2649 register Lisp_Object val
;
2650 register struct Lisp_Save_Value
*p
;
2652 val
= allocate_misc ();
2653 XMISCTYPE (val
) = Lisp_Misc_Save_Value
;
2654 p
= XSAVE_VALUE (val
);
2655 p
->pointer
= pointer
;
2656 p
->integer
= integer
;
2660 DEFUN ("make-marker", Fmake_marker
, Smake_marker
, 0, 0, 0,
2661 doc
: /* Return a newly allocated marker which does not point at any place. */)
2664 register Lisp_Object val
;
2665 register struct Lisp_Marker
*p
;
2667 val
= allocate_misc ();
2668 XMISCTYPE (val
) = Lisp_Misc_Marker
;
2674 p
->insertion_type
= 0;
2678 /* Put MARKER back on the free list after using it temporarily. */
2681 free_marker (marker
)
2684 unchain_marker (XMARKER (marker
));
2686 XMISC (marker
)->u_marker
.type
= Lisp_Misc_Free
;
2687 XMISC (marker
)->u_free
.chain
= marker_free_list
;
2688 marker_free_list
= XMISC (marker
);
2690 total_free_markers
++;
2694 /* Return a newly created vector or string with specified arguments as
2695 elements. If all the arguments are characters that can fit
2696 in a string of events, make a string; otherwise, make a vector.
2698 Any number of arguments, even zero arguments, are allowed. */
2701 make_event_array (nargs
, args
)
2707 for (i
= 0; i
< nargs
; i
++)
2708 /* The things that fit in a string
2709 are characters that are in 0...127,
2710 after discarding the meta bit and all the bits above it. */
2711 if (!INTEGERP (args
[i
])
2712 || (XUINT (args
[i
]) & ~(-CHAR_META
)) >= 0200)
2713 return Fvector (nargs
, args
);
2715 /* Since the loop exited, we know that all the things in it are
2716 characters, so we can make a string. */
2720 result
= Fmake_string (make_number (nargs
), make_number (0));
2721 for (i
= 0; i
< nargs
; i
++)
2723 SSET (result
, i
, XINT (args
[i
]));
2724 /* Move the meta bit to the right place for a string char. */
2725 if (XINT (args
[i
]) & CHAR_META
)
2726 SSET (result
, i
, SREF (result
, i
) | 0x80);
2735 /************************************************************************
2737 ************************************************************************/
2739 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
2741 /* Conservative C stack marking requires a method to identify possibly
2742 live Lisp objects given a pointer value. We do this by keeping
2743 track of blocks of Lisp data that are allocated in a red-black tree
2744 (see also the comment of mem_node which is the type of nodes in
2745 that tree). Function lisp_malloc adds information for an allocated
2746 block to the red-black tree with calls to mem_insert, and function
2747 lisp_free removes it with mem_delete. Functions live_string_p etc
2748 call mem_find to lookup information about a given pointer in the
2749 tree, and use that to determine if the pointer points to a Lisp
2752 /* Initialize this part of alloc.c. */
2757 mem_z
.left
= mem_z
.right
= MEM_NIL
;
2758 mem_z
.parent
= NULL
;
2759 mem_z
.color
= MEM_BLACK
;
2760 mem_z
.start
= mem_z
.end
= NULL
;
2765 /* Value is a pointer to the mem_node containing START. Value is
2766 MEM_NIL if there is no node in the tree containing START. */
2768 static INLINE
struct mem_node
*
2774 if (start
< min_heap_address
|| start
> max_heap_address
)
2777 /* Make the search always successful to speed up the loop below. */
2778 mem_z
.start
= start
;
2779 mem_z
.end
= (char *) start
+ 1;
2782 while (start
< p
->start
|| start
>= p
->end
)
2783 p
= start
< p
->start
? p
->left
: p
->right
;
2788 /* Insert a new node into the tree for a block of memory with start
2789 address START, end address END, and type TYPE. Value is a
2790 pointer to the node that was inserted. */
2792 static struct mem_node
*
2793 mem_insert (start
, end
, type
)
2797 struct mem_node
*c
, *parent
, *x
;
2799 if (start
< min_heap_address
)
2800 min_heap_address
= start
;
2801 if (end
> max_heap_address
)
2802 max_heap_address
= end
;
2804 /* See where in the tree a node for START belongs. In this
2805 particular application, it shouldn't happen that a node is already
2806 present. For debugging purposes, let's check that. */
2810 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
2812 while (c
!= MEM_NIL
)
2814 if (start
>= c
->start
&& start
< c
->end
)
2817 c
= start
< c
->start
? c
->left
: c
->right
;
2820 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
2822 while (c
!= MEM_NIL
)
2825 c
= start
< c
->start
? c
->left
: c
->right
;
2828 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
2830 /* Create a new node. */
2831 #ifdef GC_MALLOC_CHECK
2832 x
= (struct mem_node
*) _malloc_internal (sizeof *x
);
2836 x
= (struct mem_node
*) xmalloc (sizeof *x
);
2842 x
->left
= x
->right
= MEM_NIL
;
2845 /* Insert it as child of PARENT or install it as root. */
2848 if (start
< parent
->start
)
2856 /* Re-establish red-black tree properties. */
2857 mem_insert_fixup (x
);
2863 /* Re-establish the red-black properties of the tree, and thereby
2864 balance the tree, after node X has been inserted; X is always red. */
2867 mem_insert_fixup (x
)
2870 while (x
!= mem_root
&& x
->parent
->color
== MEM_RED
)
2872 /* X is red and its parent is red. This is a violation of
2873 red-black tree property #3. */
2875 if (x
->parent
== x
->parent
->parent
->left
)
2877 /* We're on the left side of our grandparent, and Y is our
2879 struct mem_node
*y
= x
->parent
->parent
->right
;
2881 if (y
->color
== MEM_RED
)
2883 /* Uncle and parent are red but should be black because
2884 X is red. Change the colors accordingly and proceed
2885 with the grandparent. */
2886 x
->parent
->color
= MEM_BLACK
;
2887 y
->color
= MEM_BLACK
;
2888 x
->parent
->parent
->color
= MEM_RED
;
2889 x
= x
->parent
->parent
;
2893 /* Parent and uncle have different colors; parent is
2894 red, uncle is black. */
2895 if (x
== x
->parent
->right
)
2898 mem_rotate_left (x
);
2901 x
->parent
->color
= MEM_BLACK
;
2902 x
->parent
->parent
->color
= MEM_RED
;
2903 mem_rotate_right (x
->parent
->parent
);
2908 /* This is the symmetrical case of above. */
2909 struct mem_node
*y
= x
->parent
->parent
->left
;
2911 if (y
->color
== MEM_RED
)
2913 x
->parent
->color
= MEM_BLACK
;
2914 y
->color
= MEM_BLACK
;
2915 x
->parent
->parent
->color
= MEM_RED
;
2916 x
= x
->parent
->parent
;
2920 if (x
== x
->parent
->left
)
2923 mem_rotate_right (x
);
2926 x
->parent
->color
= MEM_BLACK
;
2927 x
->parent
->parent
->color
= MEM_RED
;
2928 mem_rotate_left (x
->parent
->parent
);
2933 /* The root may have been changed to red due to the algorithm. Set
2934 it to black so that property #5 is satisfied. */
2935 mem_root
->color
= MEM_BLACK
;
2951 /* Turn y's left sub-tree into x's right sub-tree. */
2954 if (y
->left
!= MEM_NIL
)
2955 y
->left
->parent
= x
;
2957 /* Y's parent was x's parent. */
2959 y
->parent
= x
->parent
;
2961 /* Get the parent to point to y instead of x. */
2964 if (x
== x
->parent
->left
)
2965 x
->parent
->left
= y
;
2967 x
->parent
->right
= y
;
2972 /* Put x on y's left. */
2986 mem_rotate_right (x
)
2989 struct mem_node
*y
= x
->left
;
2992 if (y
->right
!= MEM_NIL
)
2993 y
->right
->parent
= x
;
2996 y
->parent
= x
->parent
;
2999 if (x
== x
->parent
->right
)
3000 x
->parent
->right
= y
;
3002 x
->parent
->left
= y
;
3013 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3019 struct mem_node
*x
, *y
;
3021 if (!z
|| z
== MEM_NIL
)
3024 if (z
->left
== MEM_NIL
|| z
->right
== MEM_NIL
)
3029 while (y
->left
!= MEM_NIL
)
3033 if (y
->left
!= MEM_NIL
)
3038 x
->parent
= y
->parent
;
3041 if (y
== y
->parent
->left
)
3042 y
->parent
->left
= x
;
3044 y
->parent
->right
= x
;
3051 z
->start
= y
->start
;
3056 if (y
->color
== MEM_BLACK
)
3057 mem_delete_fixup (x
);
3059 #ifdef GC_MALLOC_CHECK
3067 /* Re-establish the red-black properties of the tree, after a
3071 mem_delete_fixup (x
)
3074 while (x
!= mem_root
&& x
->color
== MEM_BLACK
)
3076 if (x
== x
->parent
->left
)
3078 struct mem_node
*w
= x
->parent
->right
;
3080 if (w
->color
== MEM_RED
)
3082 w
->color
= MEM_BLACK
;
3083 x
->parent
->color
= MEM_RED
;
3084 mem_rotate_left (x
->parent
);
3085 w
= x
->parent
->right
;
3088 if (w
->left
->color
== MEM_BLACK
&& w
->right
->color
== MEM_BLACK
)
3095 if (w
->right
->color
== MEM_BLACK
)
3097 w
->left
->color
= MEM_BLACK
;
3099 mem_rotate_right (w
);
3100 w
= x
->parent
->right
;
3102 w
->color
= x
->parent
->color
;
3103 x
->parent
->color
= MEM_BLACK
;
3104 w
->right
->color
= MEM_BLACK
;
3105 mem_rotate_left (x
->parent
);
3111 struct mem_node
*w
= x
->parent
->left
;
3113 if (w
->color
== MEM_RED
)
3115 w
->color
= MEM_BLACK
;
3116 x
->parent
->color
= MEM_RED
;
3117 mem_rotate_right (x
->parent
);
3118 w
= x
->parent
->left
;
3121 if (w
->right
->color
== MEM_BLACK
&& w
->left
->color
== MEM_BLACK
)
3128 if (w
->left
->color
== MEM_BLACK
)
3130 w
->right
->color
= MEM_BLACK
;
3132 mem_rotate_left (w
);
3133 w
= x
->parent
->left
;
3136 w
->color
= x
->parent
->color
;
3137 x
->parent
->color
= MEM_BLACK
;
3138 w
->left
->color
= MEM_BLACK
;
3139 mem_rotate_right (x
->parent
);
3145 x
->color
= MEM_BLACK
;
3149 /* Value is non-zero if P is a pointer to a live Lisp string on
3150 the heap. M is a pointer to the mem_block for P. */
3153 live_string_p (m
, p
)
3157 if (m
->type
== MEM_TYPE_STRING
)
3159 struct string_block
*b
= (struct string_block
*) m
->start
;
3160 int offset
= (char *) p
- (char *) &b
->strings
[0];
3162 /* P must point to the start of a Lisp_String structure, and it
3163 must not be on the free-list. */
3165 && offset
% sizeof b
->strings
[0] == 0
3166 && ((struct Lisp_String
*) p
)->data
!= NULL
);
3173 /* Value is non-zero if P is a pointer to a live Lisp cons on
3174 the heap. M is a pointer to the mem_block for P. */
3181 if (m
->type
== MEM_TYPE_CONS
)
3183 struct cons_block
*b
= (struct cons_block
*) m
->start
;
3184 int offset
= (char *) p
- (char *) &b
->conses
[0];
3186 /* P must point to the start of a Lisp_Cons, not be
3187 one of the unused cells in the current cons block,
3188 and not be on the free-list. */
3190 && offset
% sizeof b
->conses
[0] == 0
3192 || offset
/ sizeof b
->conses
[0] < cons_block_index
)
3193 && !EQ (((struct Lisp_Cons
*) p
)->car
, Vdead
));
3200 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3201 the heap. M is a pointer to the mem_block for P. */
3204 live_symbol_p (m
, p
)
3208 if (m
->type
== MEM_TYPE_SYMBOL
)
3210 struct symbol_block
*b
= (struct symbol_block
*) m
->start
;
3211 int offset
= (char *) p
- (char *) &b
->symbols
[0];
3213 /* P must point to the start of a Lisp_Symbol, not be
3214 one of the unused cells in the current symbol block,
3215 and not be on the free-list. */
3217 && offset
% sizeof b
->symbols
[0] == 0
3218 && (b
!= symbol_block
3219 || offset
/ sizeof b
->symbols
[0] < symbol_block_index
)
3220 && !EQ (((struct Lisp_Symbol
*) p
)->function
, Vdead
));
3227 /* Value is non-zero if P is a pointer to a live Lisp float on
3228 the heap. M is a pointer to the mem_block for P. */
3235 if (m
->type
== MEM_TYPE_FLOAT
)
3237 struct float_block
*b
= (struct float_block
*) m
->start
;
3238 int offset
= (char *) p
- (char *) &b
->floats
[0];
3240 /* P must point to the start of a Lisp_Float, not be
3241 one of the unused cells in the current float block,
3242 and not be on the free-list. */
3244 && offset
% sizeof b
->floats
[0] == 0
3245 && (b
!= float_block
3246 || offset
/ sizeof b
->floats
[0] < float_block_index
)
3247 && !EQ (((struct Lisp_Float
*) p
)->type
, Vdead
));
3254 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3255 the heap. M is a pointer to the mem_block for P. */
3262 if (m
->type
== MEM_TYPE_MISC
)
3264 struct marker_block
*b
= (struct marker_block
*) m
->start
;
3265 int offset
= (char *) p
- (char *) &b
->markers
[0];
3267 /* P must point to the start of a Lisp_Misc, not be
3268 one of the unused cells in the current misc block,
3269 and not be on the free-list. */
3271 && offset
% sizeof b
->markers
[0] == 0
3272 && (b
!= marker_block
3273 || offset
/ sizeof b
->markers
[0] < marker_block_index
)
3274 && ((union Lisp_Misc
*) p
)->u_marker
.type
!= Lisp_Misc_Free
);
3281 /* Value is non-zero if P is a pointer to a live vector-like object.
3282 M is a pointer to the mem_block for P. */
3285 live_vector_p (m
, p
)
3289 return (p
== m
->start
3290 && m
->type
>= MEM_TYPE_VECTOR
3291 && m
->type
<= MEM_TYPE_WINDOW
);
3295 /* Value is non-zero if P is a pointer to a live buffer. M is a
3296 pointer to the mem_block for P. */
3299 live_buffer_p (m
, p
)
3303 /* P must point to the start of the block, and the buffer
3304 must not have been killed. */
3305 return (m
->type
== MEM_TYPE_BUFFER
3307 && !NILP (((struct buffer
*) p
)->name
));
3310 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3314 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3316 /* Array of objects that are kept alive because the C stack contains
3317 a pattern that looks like a reference to them . */
3319 #define MAX_ZOMBIES 10
3320 static Lisp_Object zombies
[MAX_ZOMBIES
];
3322 /* Number of zombie objects. */
3324 static int nzombies
;
3326 /* Number of garbage collections. */
3330 /* Average percentage of zombies per collection. */
3332 static double avg_zombies
;
3334 /* Max. number of live and zombie objects. */
3336 static int max_live
, max_zombies
;
3338 /* Average number of live objects per GC. */
3340 static double avg_live
;
3342 DEFUN ("gc-status", Fgc_status
, Sgc_status
, 0, 0, "",
3343 doc
: /* Show information about live and zombie objects. */)
3346 Lisp_Object args
[8], zombie_list
= Qnil
;
3348 for (i
= 0; i
< nzombies
; i
++)
3349 zombie_list
= Fcons (zombies
[i
], zombie_list
);
3350 args
[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3351 args
[1] = make_number (ngcs
);
3352 args
[2] = make_float (avg_live
);
3353 args
[3] = make_float (avg_zombies
);
3354 args
[4] = make_float (avg_zombies
/ avg_live
/ 100);
3355 args
[5] = make_number (max_live
);
3356 args
[6] = make_number (max_zombies
);
3357 args
[7] = zombie_list
;
3358 return Fmessage (8, args
);
3361 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3364 /* Mark OBJ if we can prove it's a Lisp_Object. */
3367 mark_maybe_object (obj
)
3370 void *po
= (void *) XPNTR (obj
);
3371 struct mem_node
*m
= mem_find (po
);
3377 switch (XGCTYPE (obj
))
3380 mark_p
= (live_string_p (m
, po
)
3381 && !STRING_MARKED_P ((struct Lisp_String
*) po
));
3385 mark_p
= (live_cons_p (m
, po
)
3386 && !XMARKBIT (XCONS (obj
)->car
));
3390 mark_p
= (live_symbol_p (m
, po
) && !XSYMBOL (obj
)->gcmarkbit
);
3394 mark_p
= (live_float_p (m
, po
)
3395 && !XMARKBIT (XFLOAT (obj
)->type
));
3398 case Lisp_Vectorlike
:
3399 /* Note: can't check GC_BUFFERP before we know it's a
3400 buffer because checking that dereferences the pointer
3401 PO which might point anywhere. */
3402 if (live_vector_p (m
, po
))
3403 mark_p
= (!GC_SUBRP (obj
)
3404 && !(XVECTOR (obj
)->size
& ARRAY_MARK_FLAG
));
3405 else if (live_buffer_p (m
, po
))
3406 mark_p
= GC_BUFFERP (obj
) && !XMARKBIT (XBUFFER (obj
)->name
);
3410 mark_p
= (live_misc_p (m
, po
) && !XMARKER (obj
)->gcmarkbit
);
3414 case Lisp_Type_Limit
:
3420 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3421 if (nzombies
< MAX_ZOMBIES
)
3422 zombies
[nzombies
] = obj
;
3431 /* If P points to Lisp data, mark that as live if it isn't already
3435 mark_maybe_pointer (p
)
3440 /* Quickly rule out some values which can't point to Lisp data. We
3441 assume that Lisp data is aligned on even addresses. */
3442 if ((EMACS_INT
) p
& 1)
3448 Lisp_Object obj
= Qnil
;
3452 case MEM_TYPE_NON_LISP
:
3453 /* Nothing to do; not a pointer to Lisp memory. */
3456 case MEM_TYPE_BUFFER
:
3457 if (live_buffer_p (m
, p
)
3458 && !XMARKBIT (((struct buffer
*) p
)->name
))
3459 XSETVECTOR (obj
, p
);
3463 if (live_cons_p (m
, p
)
3464 && !XMARKBIT (((struct Lisp_Cons
*) p
)->car
))
3468 case MEM_TYPE_STRING
:
3469 if (live_string_p (m
, p
)
3470 && !STRING_MARKED_P ((struct Lisp_String
*) p
))
3471 XSETSTRING (obj
, p
);
3475 if (live_misc_p (m
, p
) && !((struct Lisp_Free
*) p
)->gcmarkbit
)
3479 case MEM_TYPE_SYMBOL
:
3480 if (live_symbol_p (m
, p
) && !((struct Lisp_Symbol
*) p
)->gcmarkbit
)
3481 XSETSYMBOL (obj
, p
);
3484 case MEM_TYPE_FLOAT
:
3485 if (live_float_p (m
, p
)
3486 && !XMARKBIT (((struct Lisp_Float
*) p
)->type
))
3490 case MEM_TYPE_VECTOR
:
3491 case MEM_TYPE_PROCESS
:
3492 case MEM_TYPE_HASH_TABLE
:
3493 case MEM_TYPE_FRAME
:
3494 case MEM_TYPE_WINDOW
:
3495 if (live_vector_p (m
, p
))
3498 XSETVECTOR (tem
, p
);
3500 && !(XVECTOR (tem
)->size
& ARRAY_MARK_FLAG
))
3515 /* Mark Lisp objects referenced from the address range START..END. */
3518 mark_memory (start
, end
)
3524 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3528 /* Make START the pointer to the start of the memory region,
3529 if it isn't already. */
3537 /* Mark Lisp_Objects. */
3538 for (p
= (Lisp_Object
*) start
; (void *) p
< end
; ++p
)
3539 mark_maybe_object (*p
);
3541 /* Mark Lisp data pointed to. This is necessary because, in some
3542 situations, the C compiler optimizes Lisp objects away, so that
3543 only a pointer to them remains. Example:
3545 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
3548 Lisp_Object obj = build_string ("test");
3549 struct Lisp_String *s = XSTRING (obj);
3550 Fgarbage_collect ();
3551 fprintf (stderr, "test `%s'\n", s->data);
3555 Here, `obj' isn't really used, and the compiler optimizes it
3556 away. The only reference to the life string is through the
3559 for (pp
= (void **) start
; (void *) pp
< end
; ++pp
)
3560 mark_maybe_pointer (*pp
);
3563 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
3564 the GCC system configuration. In gcc 3.2, the only systems for
3565 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
3566 by others?) and ns32k-pc532-min. */
3568 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
3570 static int setjmp_tested_p
, longjmps_done
;
3572 #define SETJMP_WILL_LIKELY_WORK "\
3574 Emacs garbage collector has been changed to use conservative stack\n\
3575 marking. Emacs has determined that the method it uses to do the\n\
3576 marking will likely work on your system, but this isn't sure.\n\
3578 If you are a system-programmer, or can get the help of a local wizard\n\
3579 who is, please take a look at the function mark_stack in alloc.c, and\n\
3580 verify that the methods used are appropriate for your system.\n\
3582 Please mail the result to <emacs-devel@gnu.org>.\n\
3585 #define SETJMP_WILL_NOT_WORK "\
3587 Emacs garbage collector has been changed to use conservative stack\n\
3588 marking. Emacs has determined that the default method it uses to do the\n\
3589 marking will not work on your system. We will need a system-dependent\n\
3590 solution for your system.\n\
3592 Please take a look at the function mark_stack in alloc.c, and\n\
3593 try to find a way to make it work on your system.\n\
3595 Note that you may get false negatives, depending on the compiler.\n\
3596 In particular, you need to use -O with GCC for this test.\n\
3598 Please mail the result to <emacs-devel@gnu.org>.\n\
3602 /* Perform a quick check if it looks like setjmp saves registers in a
3603 jmp_buf. Print a message to stderr saying so. When this test
3604 succeeds, this is _not_ a proof that setjmp is sufficient for
3605 conservative stack marking. Only the sources or a disassembly
3616 /* Arrange for X to be put in a register. */
3622 if (longjmps_done
== 1)
3624 /* Came here after the longjmp at the end of the function.
3626 If x == 1, the longjmp has restored the register to its
3627 value before the setjmp, and we can hope that setjmp
3628 saves all such registers in the jmp_buf, although that
3631 For other values of X, either something really strange is
3632 taking place, or the setjmp just didn't save the register. */
3635 fprintf (stderr
, SETJMP_WILL_LIKELY_WORK
);
3638 fprintf (stderr
, SETJMP_WILL_NOT_WORK
);
3645 if (longjmps_done
== 1)
3649 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
3652 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3654 /* Abort if anything GCPRO'd doesn't survive the GC. */
3662 for (p
= gcprolist
; p
; p
= p
->next
)
3663 for (i
= 0; i
< p
->nvars
; ++i
)
3664 if (!survives_gc_p (p
->var
[i
]))
3665 /* FIXME: It's not necessarily a bug. It might just be that the
3666 GCPRO is unnecessary or should release the object sooner. */
3670 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3677 fprintf (stderr
, "\nZombies kept alive = %d:\n", nzombies
);
3678 for (i
= 0; i
< min (MAX_ZOMBIES
, nzombies
); ++i
)
3680 fprintf (stderr
, " %d = ", i
);
3681 debug_print (zombies
[i
]);
3685 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3688 /* Mark live Lisp objects on the C stack.
3690 There are several system-dependent problems to consider when
3691 porting this to new architectures:
3695 We have to mark Lisp objects in CPU registers that can hold local
3696 variables or are used to pass parameters.
3698 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
3699 something that either saves relevant registers on the stack, or
3700 calls mark_maybe_object passing it each register's contents.
3702 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
3703 implementation assumes that calling setjmp saves registers we need
3704 to see in a jmp_buf which itself lies on the stack. This doesn't
3705 have to be true! It must be verified for each system, possibly
3706 by taking a look at the source code of setjmp.
3710 Architectures differ in the way their processor stack is organized.
3711 For example, the stack might look like this
3714 | Lisp_Object | size = 4
3716 | something else | size = 2
3718 | Lisp_Object | size = 4
3722 In such a case, not every Lisp_Object will be aligned equally. To
3723 find all Lisp_Object on the stack it won't be sufficient to walk
3724 the stack in steps of 4 bytes. Instead, two passes will be
3725 necessary, one starting at the start of the stack, and a second
3726 pass starting at the start of the stack + 2. Likewise, if the
3727 minimal alignment of Lisp_Objects on the stack is 1, four passes
3728 would be necessary, each one starting with one byte more offset
3729 from the stack start.
3731 The current code assumes by default that Lisp_Objects are aligned
3732 equally on the stack. */
3739 volatile int stack_grows_down_p
= (char *) &j
> (char *) stack_base
;
3742 /* This trick flushes the register windows so that all the state of
3743 the process is contained in the stack. */
3744 /* Fixme: Code in the Boehm GC sugests flushing (with `flushrs') is
3745 needed on ia64 too. See mach_dep.c, where it also says inline
3746 assembler doesn't work with relevant proprietary compilers. */
3751 /* Save registers that we need to see on the stack. We need to see
3752 registers used to hold register variables and registers used to
3754 #ifdef GC_SAVE_REGISTERS_ON_STACK
3755 GC_SAVE_REGISTERS_ON_STACK (end
);
3756 #else /* not GC_SAVE_REGISTERS_ON_STACK */
3758 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
3759 setjmp will definitely work, test it
3760 and print a message with the result
3762 if (!setjmp_tested_p
)
3764 setjmp_tested_p
= 1;
3767 #endif /* GC_SETJMP_WORKS */
3770 end
= stack_grows_down_p
? (char *) &j
+ sizeof j
: (char *) &j
;
3771 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
3773 /* This assumes that the stack is a contiguous region in memory. If
3774 that's not the case, something has to be done here to iterate
3775 over the stack segments. */
3776 #ifndef GC_LISP_OBJECT_ALIGNMENT
3778 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
3780 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
3783 for (i
= 0; i
< sizeof (Lisp_Object
); i
+= GC_LISP_OBJECT_ALIGNMENT
)
3784 mark_memory ((char *) stack_base
+ i
, end
);
3786 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3792 #endif /* GC_MARK_STACK != 0 */
3796 /***********************************************************************
3797 Pure Storage Management
3798 ***********************************************************************/
3800 /* Allocate room for SIZE bytes from pure Lisp storage and return a
3801 pointer to it. TYPE is the Lisp type for which the memory is
3802 allocated. TYPE < 0 means it's not used for a Lisp object.
3804 If store_pure_type_info is set and TYPE is >= 0, the type of
3805 the allocated object is recorded in pure_types. */
3807 static POINTER_TYPE
*
3808 pure_alloc (size
, type
)
3812 POINTER_TYPE
*result
;
3813 size_t alignment
= sizeof (EMACS_INT
);
3815 /* Give Lisp_Floats an extra alignment. */
3816 if (type
== Lisp_Float
)
3818 #if defined __GNUC__ && __GNUC__ >= 2
3819 alignment
= __alignof (struct Lisp_Float
);
3821 alignment
= sizeof (struct Lisp_Float
);
3826 result
= (POINTER_TYPE
*) ALIGN ((EMACS_UINT
)purebeg
+ pure_bytes_used
, alignment
);
3827 pure_bytes_used
= ((char *)result
- (char *)purebeg
) + size
;
3829 if (pure_bytes_used
<= pure_size
)
3832 /* Don't allocate a large amount here,
3833 because it might get mmap'd and then its address
3834 might not be usable. */
3835 purebeg
= (char *) xmalloc (10000);
3837 pure_bytes_used_before_overflow
+= pure_bytes_used
- size
;
3838 pure_bytes_used
= 0;
3843 /* Print a warning if PURESIZE is too small. */
3848 if (pure_bytes_used_before_overflow
)
3849 message ("Pure Lisp storage overflow (approx. %d bytes needed)",
3850 (int) (pure_bytes_used
+ pure_bytes_used_before_overflow
));
3854 /* Return a string allocated in pure space. DATA is a buffer holding
3855 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
3856 non-zero means make the result string multibyte.
3858 Must get an error if pure storage is full, since if it cannot hold
3859 a large string it may be able to hold conses that point to that
3860 string; then the string is not protected from gc. */
3863 make_pure_string (data
, nchars
, nbytes
, multibyte
)
3869 struct Lisp_String
*s
;
3871 s
= (struct Lisp_String
*) pure_alloc (sizeof *s
, Lisp_String
);
3872 s
->data
= (unsigned char *) pure_alloc (nbytes
+ 1, -1);
3874 s
->size_byte
= multibyte
? nbytes
: -1;
3875 bcopy (data
, s
->data
, nbytes
);
3876 s
->data
[nbytes
] = '\0';
3877 s
->intervals
= NULL_INTERVAL
;
3878 XSETSTRING (string
, s
);
3883 /* Return a cons allocated from pure space. Give it pure copies
3884 of CAR as car and CDR as cdr. */
3887 pure_cons (car
, cdr
)
3888 Lisp_Object car
, cdr
;
3890 register Lisp_Object
new;
3891 struct Lisp_Cons
*p
;
3893 p
= (struct Lisp_Cons
*) pure_alloc (sizeof *p
, Lisp_Cons
);
3895 XSETCAR (new, Fpurecopy (car
));
3896 XSETCDR (new, Fpurecopy (cdr
));
3901 /* Value is a float object with value NUM allocated from pure space. */
3904 make_pure_float (num
)
3907 register Lisp_Object
new;
3908 struct Lisp_Float
*p
;
3910 p
= (struct Lisp_Float
*) pure_alloc (sizeof *p
, Lisp_Float
);
3912 XFLOAT_DATA (new) = num
;
3917 /* Return a vector with room for LEN Lisp_Objects allocated from
3921 make_pure_vector (len
)
3925 struct Lisp_Vector
*p
;
3926 size_t size
= sizeof *p
+ (len
- 1) * sizeof (Lisp_Object
);
3928 p
= (struct Lisp_Vector
*) pure_alloc (size
, Lisp_Vectorlike
);
3929 XSETVECTOR (new, p
);
3930 XVECTOR (new)->size
= len
;
3935 DEFUN ("purecopy", Fpurecopy
, Spurecopy
, 1, 1, 0,
3936 doc
: /* Make a copy of OBJECT in pure storage.
3937 Recursively copies contents of vectors and cons cells.
3938 Does not copy symbols. Copies strings without text properties. */)
3940 register Lisp_Object obj
;
3942 if (NILP (Vpurify_flag
))
3945 if (PURE_POINTER_P (XPNTR (obj
)))
3949 return pure_cons (XCAR (obj
), XCDR (obj
));
3950 else if (FLOATP (obj
))
3951 return make_pure_float (XFLOAT_DATA (obj
));
3952 else if (STRINGP (obj
))
3953 return make_pure_string (SDATA (obj
), SCHARS (obj
),
3955 STRING_MULTIBYTE (obj
));
3956 else if (COMPILEDP (obj
) || VECTORP (obj
))
3958 register struct Lisp_Vector
*vec
;
3959 register int i
, size
;
3961 size
= XVECTOR (obj
)->size
;
3962 if (size
& PSEUDOVECTOR_FLAG
)
3963 size
&= PSEUDOVECTOR_SIZE_MASK
;
3964 vec
= XVECTOR (make_pure_vector ((EMACS_INT
) size
));
3965 for (i
= 0; i
< size
; i
++)
3966 vec
->contents
[i
] = Fpurecopy (XVECTOR (obj
)->contents
[i
]);
3967 if (COMPILEDP (obj
))
3968 XSETCOMPILED (obj
, vec
);
3970 XSETVECTOR (obj
, vec
);
3973 else if (MARKERP (obj
))
3974 error ("Attempt to copy a marker to pure storage");
3981 /***********************************************************************
3983 ***********************************************************************/
3985 /* Put an entry in staticvec, pointing at the variable with address
3989 staticpro (varaddress
)
3990 Lisp_Object
*varaddress
;
3992 staticvec
[staticidx
++] = varaddress
;
3993 if (staticidx
>= NSTATICS
)
4001 struct catchtag
*next
;
4006 struct backtrace
*next
;
4007 Lisp_Object
*function
;
4008 Lisp_Object
*args
; /* Points to vector of args. */
4009 int nargs
; /* Length of vector. */
4010 /* If nargs is UNEVALLED, args points to slot holding list of
4017 /***********************************************************************
4019 ***********************************************************************/
4021 /* Temporarily prevent garbage collection. */
4024 inhibit_garbage_collection ()
4026 int count
= SPECPDL_INDEX ();
4027 int nbits
= min (VALBITS
, BITS_PER_INT
);
4029 specbind (Qgc_cons_threshold
, make_number (((EMACS_INT
) 1 << (nbits
- 1)) - 1));
4034 DEFUN ("garbage-collect", Fgarbage_collect
, Sgarbage_collect
, 0, 0, "",
4035 doc
: /* Reclaim storage for Lisp objects no longer needed.
4036 Returns info on amount of space in use:
4037 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4038 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4039 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4040 (USED-STRINGS . FREE-STRINGS))
4041 Garbage collection happens automatically if you cons more than
4042 `gc-cons-threshold' bytes of Lisp data since previous garbage collection. */)
4045 register struct specbinding
*bind
;
4046 struct catchtag
*catch;
4047 struct handler
*handler
;
4048 register struct backtrace
*backlist
;
4049 char stack_top_variable
;
4052 Lisp_Object total
[8];
4053 int count
= SPECPDL_INDEX ();
4054 EMACS_TIME t1
, t2
, t3
;
4059 EMACS_GET_TIME (t1
);
4061 /* Can't GC if pure storage overflowed because we can't determine
4062 if something is a pure object or not. */
4063 if (pure_bytes_used_before_overflow
)
4066 /* In case user calls debug_print during GC,
4067 don't let that cause a recursive GC. */
4068 consing_since_gc
= 0;
4070 /* Save what's currently displayed in the echo area. */
4071 message_p
= push_message ();
4072 record_unwind_protect (pop_message_unwind
, Qnil
);
4074 /* Save a copy of the contents of the stack, for debugging. */
4075 #if MAX_SAVE_STACK > 0
4076 if (NILP (Vpurify_flag
))
4078 i
= &stack_top_variable
- stack_bottom
;
4080 if (i
< MAX_SAVE_STACK
)
4082 if (stack_copy
== 0)
4083 stack_copy
= (char *) xmalloc (stack_copy_size
= i
);
4084 else if (stack_copy_size
< i
)
4085 stack_copy
= (char *) xrealloc (stack_copy
, (stack_copy_size
= i
));
4088 if ((EMACS_INT
) (&stack_top_variable
- stack_bottom
) > 0)
4089 bcopy (stack_bottom
, stack_copy
, i
);
4091 bcopy (&stack_top_variable
, stack_copy
, i
);
4095 #endif /* MAX_SAVE_STACK > 0 */
4097 if (garbage_collection_messages
)
4098 message1_nolog ("Garbage collecting...");
4102 shrink_regexp_cache ();
4104 /* Don't keep undo information around forever. */
4106 register struct buffer
*nextb
= all_buffers
;
4110 /* If a buffer's undo list is Qt, that means that undo is
4111 turned off in that buffer. Calling truncate_undo_list on
4112 Qt tends to return NULL, which effectively turns undo back on.
4113 So don't call truncate_undo_list if undo_list is Qt. */
4114 if (! EQ (nextb
->undo_list
, Qt
))
4116 = truncate_undo_list (nextb
->undo_list
, undo_limit
,
4119 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4120 if (nextb
->base_buffer
== 0 && !NILP (nextb
->name
))
4122 /* If a buffer's gap size is more than 10% of the buffer
4123 size, or larger than 2000 bytes, then shrink it
4124 accordingly. Keep a minimum size of 20 bytes. */
4125 int size
= min (2000, max (20, (nextb
->text
->z_byte
/ 10)));
4127 if (nextb
->text
->gap_size
> size
)
4129 struct buffer
*save_current
= current_buffer
;
4130 current_buffer
= nextb
;
4131 make_gap (-(nextb
->text
->gap_size
- size
));
4132 current_buffer
= save_current
;
4136 nextb
= nextb
->next
;
4142 /* clear_marks (); */
4144 /* Mark all the special slots that serve as the roots of accessibility.
4146 Usually the special slots to mark are contained in particular structures.
4147 Then we know no slot is marked twice because the structures don't overlap.
4148 In some cases, the structures point to the slots to be marked.
4149 For these, we use MARKBIT to avoid double marking of the slot. */
4151 for (i
= 0; i
< staticidx
; i
++)
4152 mark_object (staticvec
[i
]);
4154 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4155 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4159 register struct gcpro
*tail
;
4160 for (tail
= gcprolist
; tail
; tail
= tail
->next
)
4161 for (i
= 0; i
< tail
->nvars
; i
++)
4162 if (!XMARKBIT (tail
->var
[i
]))
4164 /* Explicit casting prevents compiler warning about
4165 discarding the `volatile' qualifier. */
4166 mark_object ((Lisp_Object
*)&tail
->var
[i
]);
4167 XMARK (tail
->var
[i
]);
4173 for (bind
= specpdl
; bind
!= specpdl_ptr
; bind
++)
4175 /* These casts avoid a warning for discarding `volatile'. */
4176 mark_object ((Lisp_Object
*) &bind
->symbol
);
4177 mark_object ((Lisp_Object
*) &bind
->old_value
);
4179 for (catch = catchlist
; catch; catch = catch->next
)
4181 mark_object (&catch->tag
);
4182 mark_object (&catch->val
);
4184 for (handler
= handlerlist
; handler
; handler
= handler
->next
)
4186 mark_object (&handler
->handler
);
4187 mark_object (&handler
->var
);
4189 for (backlist
= backtrace_list
; backlist
; backlist
= backlist
->next
)
4191 if (!XMARKBIT (*backlist
->function
))
4193 mark_object (backlist
->function
);
4194 XMARK (*backlist
->function
);
4196 if (backlist
->nargs
== UNEVALLED
|| backlist
->nargs
== MANY
)
4199 i
= backlist
->nargs
- 1;
4201 if (!XMARKBIT (backlist
->args
[i
]))
4203 mark_object (&backlist
->args
[i
]);
4204 XMARK (backlist
->args
[i
]);
4209 /* Look thru every buffer's undo list
4210 for elements that update markers that were not marked,
4213 register struct buffer
*nextb
= all_buffers
;
4217 /* If a buffer's undo list is Qt, that means that undo is
4218 turned off in that buffer. Calling truncate_undo_list on
4219 Qt tends to return NULL, which effectively turns undo back on.
4220 So don't call truncate_undo_list if undo_list is Qt. */
4221 if (! EQ (nextb
->undo_list
, Qt
))
4223 Lisp_Object tail
, prev
;
4224 tail
= nextb
->undo_list
;
4226 while (CONSP (tail
))
4228 if (GC_CONSP (XCAR (tail
))
4229 && GC_MARKERP (XCAR (XCAR (tail
)))
4230 && !XMARKER (XCAR (XCAR (tail
)))->gcmarkbit
)
4233 nextb
->undo_list
= tail
= XCDR (tail
);
4237 XSETCDR (prev
, tail
);
4248 nextb
= nextb
->next
;
4252 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4258 extern void xg_mark_data ();
4265 /* Clear the mark bits that we set in certain root slots. */
4267 #if (GC_MARK_STACK == GC_USE_GCPROS_AS_BEFORE \
4268 || GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES)
4270 register struct gcpro
*tail
;
4272 for (tail
= gcprolist
; tail
; tail
= tail
->next
)
4273 for (i
= 0; i
< tail
->nvars
; i
++)
4274 XUNMARK (tail
->var
[i
]);
4278 unmark_byte_stack ();
4279 for (backlist
= backtrace_list
; backlist
; backlist
= backlist
->next
)
4281 XUNMARK (*backlist
->function
);
4282 if (backlist
->nargs
== UNEVALLED
|| backlist
->nargs
== MANY
)
4285 i
= backlist
->nargs
- 1;
4287 XUNMARK (backlist
->args
[i
]);
4289 XUNMARK (buffer_defaults
.name
);
4290 XUNMARK (buffer_local_symbols
.name
);
4292 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4298 /* clear_marks (); */
4301 consing_since_gc
= 0;
4302 if (gc_cons_threshold
< 10000)
4303 gc_cons_threshold
= 10000;
4305 if (garbage_collection_messages
)
4307 if (message_p
|| minibuf_level
> 0)
4310 message1_nolog ("Garbage collecting...done");
4313 unbind_to (count
, Qnil
);
4315 total
[0] = Fcons (make_number (total_conses
),
4316 make_number (total_free_conses
));
4317 total
[1] = Fcons (make_number (total_symbols
),
4318 make_number (total_free_symbols
));
4319 total
[2] = Fcons (make_number (total_markers
),
4320 make_number (total_free_markers
));
4321 total
[3] = make_number (total_string_size
);
4322 total
[4] = make_number (total_vector_size
);
4323 total
[5] = Fcons (make_number (total_floats
),
4324 make_number (total_free_floats
));
4325 total
[6] = Fcons (make_number (total_intervals
),
4326 make_number (total_free_intervals
));
4327 total
[7] = Fcons (make_number (total_strings
),
4328 make_number (total_free_strings
));
4330 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4332 /* Compute average percentage of zombies. */
4335 for (i
= 0; i
< 7; ++i
)
4336 if (CONSP (total
[i
]))
4337 nlive
+= XFASTINT (XCAR (total
[i
]));
4339 avg_live
= (avg_live
* ngcs
+ nlive
) / (ngcs
+ 1);
4340 max_live
= max (nlive
, max_live
);
4341 avg_zombies
= (avg_zombies
* ngcs
+ nzombies
) / (ngcs
+ 1);
4342 max_zombies
= max (nzombies
, max_zombies
);
4347 if (!NILP (Vpost_gc_hook
))
4349 int count
= inhibit_garbage_collection ();
4350 safe_run_hooks (Qpost_gc_hook
);
4351 unbind_to (count
, Qnil
);
4354 /* Accumulate statistics. */
4355 EMACS_GET_TIME (t2
);
4356 EMACS_SUB_TIME (t3
, t2
, t1
);
4357 if (FLOATP (Vgc_elapsed
))
4358 Vgc_elapsed
= make_float (XFLOAT_DATA (Vgc_elapsed
) +
4360 EMACS_USECS (t3
) * 1.0e-6);
4363 return Flist (sizeof total
/ sizeof *total
, total
);
4367 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
4368 only interesting objects referenced from glyphs are strings. */
4371 mark_glyph_matrix (matrix
)
4372 struct glyph_matrix
*matrix
;
4374 struct glyph_row
*row
= matrix
->rows
;
4375 struct glyph_row
*end
= row
+ matrix
->nrows
;
4377 for (; row
< end
; ++row
)
4381 for (area
= LEFT_MARGIN_AREA
; area
< LAST_AREA
; ++area
)
4383 struct glyph
*glyph
= row
->glyphs
[area
];
4384 struct glyph
*end_glyph
= glyph
+ row
->used
[area
];
4386 for (; glyph
< end_glyph
; ++glyph
)
4387 if (GC_STRINGP (glyph
->object
)
4388 && !STRING_MARKED_P (XSTRING (glyph
->object
)))
4389 mark_object (&glyph
->object
);
4395 /* Mark Lisp faces in the face cache C. */
4399 struct face_cache
*c
;
4404 for (i
= 0; i
< c
->used
; ++i
)
4406 struct face
*face
= FACE_FROM_ID (c
->f
, i
);
4410 for (j
= 0; j
< LFACE_VECTOR_SIZE
; ++j
)
4411 mark_object (&face
->lface
[j
]);
4418 #ifdef HAVE_WINDOW_SYSTEM
4420 /* Mark Lisp objects in image IMG. */
4426 mark_object (&img
->spec
);
4428 if (!NILP (img
->data
.lisp_val
))
4429 mark_object (&img
->data
.lisp_val
);
4433 /* Mark Lisp objects in image cache of frame F. It's done this way so
4434 that we don't have to include xterm.h here. */
4437 mark_image_cache (f
)
4440 forall_images_in_image_cache (f
, mark_image
);
4443 #endif /* HAVE_X_WINDOWS */
4447 /* Mark reference to a Lisp_Object.
4448 If the object referred to has not been seen yet, recursively mark
4449 all the references contained in it. */
4451 #define LAST_MARKED_SIZE 500
4452 Lisp_Object
*last_marked
[LAST_MARKED_SIZE
];
4453 int last_marked_index
;
4455 /* For debugging--call abort when we cdr down this many
4456 links of a list, in mark_object. In debugging,
4457 the call to abort will hit a breakpoint.
4458 Normally this is zero and the check never goes off. */
4459 int mark_object_loop_halt
;
4462 mark_object (argptr
)
4463 Lisp_Object
*argptr
;
4465 Lisp_Object
*objptr
= argptr
;
4466 register Lisp_Object obj
;
4467 #ifdef GC_CHECK_MARKED_OBJECTS
4478 if (PURE_POINTER_P (XPNTR (obj
)))
4481 last_marked
[last_marked_index
++] = objptr
;
4482 if (last_marked_index
== LAST_MARKED_SIZE
)
4483 last_marked_index
= 0;
4485 /* Perform some sanity checks on the objects marked here. Abort if
4486 we encounter an object we know is bogus. This increases GC time
4487 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
4488 #ifdef GC_CHECK_MARKED_OBJECTS
4490 po
= (void *) XPNTR (obj
);
4492 /* Check that the object pointed to by PO is known to be a Lisp
4493 structure allocated from the heap. */
4494 #define CHECK_ALLOCATED() \
4496 m = mem_find (po); \
4501 /* Check that the object pointed to by PO is live, using predicate
4503 #define CHECK_LIVE(LIVEP) \
4505 if (!LIVEP (m, po)) \
4509 /* Check both of the above conditions. */
4510 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
4512 CHECK_ALLOCATED (); \
4513 CHECK_LIVE (LIVEP); \
4516 #else /* not GC_CHECK_MARKED_OBJECTS */
4518 #define CHECK_ALLOCATED() (void) 0
4519 #define CHECK_LIVE(LIVEP) (void) 0
4520 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
4522 #endif /* not GC_CHECK_MARKED_OBJECTS */
4524 switch (SWITCH_ENUM_CAST (XGCTYPE (obj
)))
4528 register struct Lisp_String
*ptr
= XSTRING (obj
);
4529 CHECK_ALLOCATED_AND_LIVE (live_string_p
);
4530 MARK_INTERVAL_TREE (ptr
->intervals
);
4532 #ifdef GC_CHECK_STRING_BYTES
4533 /* Check that the string size recorded in the string is the
4534 same as the one recorded in the sdata structure. */
4535 CHECK_STRING_BYTES (ptr
);
4536 #endif /* GC_CHECK_STRING_BYTES */
4540 case Lisp_Vectorlike
:
4541 #ifdef GC_CHECK_MARKED_OBJECTS
4543 if (m
== MEM_NIL
&& !GC_SUBRP (obj
)
4544 && po
!= &buffer_defaults
4545 && po
!= &buffer_local_symbols
)
4547 #endif /* GC_CHECK_MARKED_OBJECTS */
4549 if (GC_BUFFERP (obj
))
4551 if (!XMARKBIT (XBUFFER (obj
)->name
))
4553 #ifdef GC_CHECK_MARKED_OBJECTS
4554 if (po
!= &buffer_defaults
&& po
!= &buffer_local_symbols
)
4557 for (b
= all_buffers
; b
&& b
!= po
; b
= b
->next
)
4562 #endif /* GC_CHECK_MARKED_OBJECTS */
4566 else if (GC_SUBRP (obj
))
4568 else if (GC_COMPILEDP (obj
))
4569 /* We could treat this just like a vector, but it is better to
4570 save the COMPILED_CONSTANTS element for last and avoid
4573 register struct Lisp_Vector
*ptr
= XVECTOR (obj
);
4574 register EMACS_INT size
= ptr
->size
;
4577 if (size
& ARRAY_MARK_FLAG
)
4578 break; /* Already marked */
4580 CHECK_LIVE (live_vector_p
);
4581 ptr
->size
|= ARRAY_MARK_FLAG
; /* Else mark it */
4582 size
&= PSEUDOVECTOR_SIZE_MASK
;
4583 for (i
= 0; i
< size
; i
++) /* and then mark its elements */
4585 if (i
!= COMPILED_CONSTANTS
)
4586 mark_object (&ptr
->contents
[i
]);
4588 /* This cast should be unnecessary, but some Mips compiler complains
4589 (MIPS-ABI + SysVR4, DC/OSx, etc). */
4590 objptr
= (Lisp_Object
*) &ptr
->contents
[COMPILED_CONSTANTS
];
4593 else if (GC_FRAMEP (obj
))
4595 register struct frame
*ptr
= XFRAME (obj
);
4596 register EMACS_INT size
= ptr
->size
;
4598 if (size
& ARRAY_MARK_FLAG
) break; /* Already marked */
4599 ptr
->size
|= ARRAY_MARK_FLAG
; /* Else mark it */
4601 CHECK_LIVE (live_vector_p
);
4602 mark_object (&ptr
->name
);
4603 mark_object (&ptr
->icon_name
);
4604 mark_object (&ptr
->title
);
4605 mark_object (&ptr
->focus_frame
);
4606 mark_object (&ptr
->selected_window
);
4607 mark_object (&ptr
->minibuffer_window
);
4608 mark_object (&ptr
->param_alist
);
4609 mark_object (&ptr
->scroll_bars
);
4610 mark_object (&ptr
->condemned_scroll_bars
);
4611 mark_object (&ptr
->menu_bar_items
);
4612 mark_object (&ptr
->face_alist
);
4613 mark_object (&ptr
->menu_bar_vector
);
4614 mark_object (&ptr
->buffer_predicate
);
4615 mark_object (&ptr
->buffer_list
);
4616 mark_object (&ptr
->menu_bar_window
);
4617 mark_object (&ptr
->tool_bar_window
);
4618 mark_face_cache (ptr
->face_cache
);
4619 #ifdef HAVE_WINDOW_SYSTEM
4620 mark_image_cache (ptr
);
4621 mark_object (&ptr
->tool_bar_items
);
4622 mark_object (&ptr
->desired_tool_bar_string
);
4623 mark_object (&ptr
->current_tool_bar_string
);
4624 #endif /* HAVE_WINDOW_SYSTEM */
4626 else if (GC_BOOL_VECTOR_P (obj
))
4628 register struct Lisp_Vector
*ptr
= XVECTOR (obj
);
4630 if (ptr
->size
& ARRAY_MARK_FLAG
)
4631 break; /* Already marked */
4632 CHECK_LIVE (live_vector_p
);
4633 ptr
->size
|= ARRAY_MARK_FLAG
; /* Else mark it */
4635 else if (GC_WINDOWP (obj
))
4637 register struct Lisp_Vector
*ptr
= XVECTOR (obj
);
4638 struct window
*w
= XWINDOW (obj
);
4639 register EMACS_INT size
= ptr
->size
;
4642 /* Stop if already marked. */
4643 if (size
& ARRAY_MARK_FLAG
)
4647 CHECK_LIVE (live_vector_p
);
4648 ptr
->size
|= ARRAY_MARK_FLAG
;
4650 /* There is no Lisp data above The member CURRENT_MATRIX in
4651 struct WINDOW. Stop marking when that slot is reached. */
4653 (char *) &ptr
->contents
[i
] < (char *) &w
->current_matrix
;
4655 mark_object (&ptr
->contents
[i
]);
4657 /* Mark glyphs for leaf windows. Marking window matrices is
4658 sufficient because frame matrices use the same glyph
4660 if (NILP (w
->hchild
)
4662 && w
->current_matrix
)
4664 mark_glyph_matrix (w
->current_matrix
);
4665 mark_glyph_matrix (w
->desired_matrix
);
4668 else if (GC_HASH_TABLE_P (obj
))
4670 struct Lisp_Hash_Table
*h
= XHASH_TABLE (obj
);
4671 EMACS_INT size
= h
->size
;
4673 /* Stop if already marked. */
4674 if (size
& ARRAY_MARK_FLAG
)
4678 CHECK_LIVE (live_vector_p
);
4679 h
->size
|= ARRAY_MARK_FLAG
;
4681 /* Mark contents. */
4682 /* Do not mark next_free or next_weak.
4683 Being in the next_weak chain
4684 should not keep the hash table alive.
4685 No need to mark `count' since it is an integer. */
4686 mark_object (&h
->test
);
4687 mark_object (&h
->weak
);
4688 mark_object (&h
->rehash_size
);
4689 mark_object (&h
->rehash_threshold
);
4690 mark_object (&h
->hash
);
4691 mark_object (&h
->next
);
4692 mark_object (&h
->index
);
4693 mark_object (&h
->user_hash_function
);
4694 mark_object (&h
->user_cmp_function
);
4696 /* If hash table is not weak, mark all keys and values.
4697 For weak tables, mark only the vector. */
4698 if (GC_NILP (h
->weak
))
4699 mark_object (&h
->key_and_value
);
4701 XVECTOR (h
->key_and_value
)->size
|= ARRAY_MARK_FLAG
;
4706 register struct Lisp_Vector
*ptr
= XVECTOR (obj
);
4707 register EMACS_INT size
= ptr
->size
;
4710 if (size
& ARRAY_MARK_FLAG
) break; /* Already marked */
4711 CHECK_LIVE (live_vector_p
);
4712 ptr
->size
|= ARRAY_MARK_FLAG
; /* Else mark it */
4713 if (size
& PSEUDOVECTOR_FLAG
)
4714 size
&= PSEUDOVECTOR_SIZE_MASK
;
4716 for (i
= 0; i
< size
; i
++) /* and then mark its elements */
4717 mark_object (&ptr
->contents
[i
]);
4723 register struct Lisp_Symbol
*ptr
= XSYMBOL (obj
);
4724 struct Lisp_Symbol
*ptrx
;
4726 if (ptr
->gcmarkbit
) break;
4727 CHECK_ALLOCATED_AND_LIVE (live_symbol_p
);
4729 mark_object ((Lisp_Object
*) &ptr
->value
);
4730 mark_object (&ptr
->function
);
4731 mark_object (&ptr
->plist
);
4733 if (!PURE_POINTER_P (XSTRING (ptr
->xname
)))
4734 MARK_STRING (XSTRING (ptr
->xname
));
4735 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr
->xname
));
4737 /* Note that we do not mark the obarray of the symbol.
4738 It is safe not to do so because nothing accesses that
4739 slot except to check whether it is nil. */
4743 /* For the benefit of the last_marked log. */
4744 objptr
= (Lisp_Object
*)&XSYMBOL (obj
)->next
;
4745 ptrx
= ptr
; /* Use of ptrx avoids compiler bug on Sun */
4746 XSETSYMBOL (obj
, ptrx
);
4747 /* We can't goto loop here because *objptr doesn't contain an
4748 actual Lisp_Object with valid datatype field. */
4755 CHECK_ALLOCATED_AND_LIVE (live_misc_p
);
4756 if (XMARKER (obj
)->gcmarkbit
)
4758 XMARKER (obj
)->gcmarkbit
= 1;
4759 switch (XMISCTYPE (obj
))
4761 case Lisp_Misc_Buffer_Local_Value
:
4762 case Lisp_Misc_Some_Buffer_Local_Value
:
4764 register struct Lisp_Buffer_Local_Value
*ptr
4765 = XBUFFER_LOCAL_VALUE (obj
);
4766 /* If the cdr is nil, avoid recursion for the car. */
4767 if (EQ (ptr
->cdr
, Qnil
))
4769 objptr
= &ptr
->realvalue
;
4772 mark_object (&ptr
->realvalue
);
4773 mark_object (&ptr
->buffer
);
4774 mark_object (&ptr
->frame
);
4779 case Lisp_Misc_Marker
:
4780 /* DO NOT mark thru the marker's chain.
4781 The buffer's markers chain does not preserve markers from gc;
4782 instead, markers are removed from the chain when freed by gc. */
4783 case Lisp_Misc_Intfwd
:
4784 case Lisp_Misc_Boolfwd
:
4785 case Lisp_Misc_Objfwd
:
4786 case Lisp_Misc_Buffer_Objfwd
:
4787 case Lisp_Misc_Kboard_Objfwd
:
4788 /* Don't bother with Lisp_Buffer_Objfwd,
4789 since all markable slots in current buffer marked anyway. */
4790 /* Don't need to do Lisp_Objfwd, since the places they point
4791 are protected with staticpro. */
4794 case Lisp_Misc_Overlay
:
4796 struct Lisp_Overlay
*ptr
= XOVERLAY (obj
);
4797 mark_object (&ptr
->start
);
4798 mark_object (&ptr
->end
);
4799 objptr
= &ptr
->plist
;
4811 register struct Lisp_Cons
*ptr
= XCONS (obj
);
4812 if (XMARKBIT (ptr
->car
)) break;
4813 CHECK_ALLOCATED_AND_LIVE (live_cons_p
);
4815 /* If the cdr is nil, avoid recursion for the car. */
4816 if (EQ (ptr
->cdr
, Qnil
))
4822 mark_object (&ptr
->car
);
4825 if (cdr_count
== mark_object_loop_halt
)
4831 CHECK_ALLOCATED_AND_LIVE (live_float_p
);
4832 XMARK (XFLOAT (obj
)->type
);
4843 #undef CHECK_ALLOCATED
4844 #undef CHECK_ALLOCATED_AND_LIVE
4847 /* Mark the pointers in a buffer structure. */
4853 register struct buffer
*buffer
= XBUFFER (buf
);
4854 register Lisp_Object
*ptr
;
4855 Lisp_Object base_buffer
;
4857 /* This is the buffer's markbit */
4858 mark_object (&buffer
->name
);
4859 XMARK (buffer
->name
);
4861 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer
));
4863 if (CONSP (buffer
->undo_list
))
4866 tail
= buffer
->undo_list
;
4868 /* We mark the undo list specially because
4869 its pointers to markers should be weak. */
4871 while (CONSP (tail
))
4873 register struct Lisp_Cons
*ptr
= XCONS (tail
);
4875 if (XMARKBIT (ptr
->car
))
4878 if (GC_CONSP (ptr
->car
)
4879 && ! XMARKBIT (XCAR (ptr
->car
))
4880 && GC_MARKERP (XCAR (ptr
->car
)))
4882 XMARK (XCAR_AS_LVALUE (ptr
->car
));
4883 mark_object (&XCDR_AS_LVALUE (ptr
->car
));
4886 mark_object (&ptr
->car
);
4888 if (CONSP (ptr
->cdr
))
4894 mark_object (&XCDR_AS_LVALUE (tail
));
4897 mark_object (&buffer
->undo_list
);
4899 for (ptr
= &buffer
->name
+ 1;
4900 (char *)ptr
< (char *)buffer
+ sizeof (struct buffer
);
4904 /* If this is an indirect buffer, mark its base buffer. */
4905 if (buffer
->base_buffer
&& !XMARKBIT (buffer
->base_buffer
->name
))
4907 XSETBUFFER (base_buffer
, buffer
->base_buffer
);
4908 mark_buffer (base_buffer
);
4913 /* Value is non-zero if OBJ will survive the current GC because it's
4914 either marked or does not need to be marked to survive. */
4922 switch (XGCTYPE (obj
))
4929 survives_p
= XSYMBOL (obj
)->gcmarkbit
;
4933 survives_p
= XMARKER (obj
)->gcmarkbit
;
4938 struct Lisp_String
*s
= XSTRING (obj
);
4939 survives_p
= STRING_MARKED_P (s
);
4943 case Lisp_Vectorlike
:
4944 if (GC_BUFFERP (obj
))
4945 survives_p
= XMARKBIT (XBUFFER (obj
)->name
);
4946 else if (GC_SUBRP (obj
))
4949 survives_p
= XVECTOR (obj
)->size
& ARRAY_MARK_FLAG
;
4953 survives_p
= XMARKBIT (XCAR (obj
));
4957 survives_p
= XMARKBIT (XFLOAT (obj
)->type
);
4964 return survives_p
|| PURE_POINTER_P ((void *) XPNTR (obj
));
4969 /* Sweep: find all structures not marked, and free them. */
4974 /* Remove or mark entries in weak hash tables.
4975 This must be done before any object is unmarked. */
4976 sweep_weak_hash_tables ();
4979 #ifdef GC_CHECK_STRING_BYTES
4980 if (!noninteractive
)
4981 check_string_bytes (1);
4984 /* Put all unmarked conses on free list */
4986 register struct cons_block
*cblk
;
4987 struct cons_block
**cprev
= &cons_block
;
4988 register int lim
= cons_block_index
;
4989 register int num_free
= 0, num_used
= 0;
4993 for (cblk
= cons_block
; cblk
; cblk
= *cprev
)
4997 for (i
= 0; i
< lim
; i
++)
4998 if (!XMARKBIT (cblk
->conses
[i
].car
))
5001 *(struct Lisp_Cons
**)&cblk
->conses
[i
].cdr
= cons_free_list
;
5002 cons_free_list
= &cblk
->conses
[i
];
5004 cons_free_list
->car
= Vdead
;
5010 XUNMARK (cblk
->conses
[i
].car
);
5012 lim
= CONS_BLOCK_SIZE
;
5013 /* If this block contains only free conses and we have already
5014 seen more than two blocks worth of free conses then deallocate
5016 if (this_free
== CONS_BLOCK_SIZE
&& num_free
> CONS_BLOCK_SIZE
)
5018 *cprev
= cblk
->next
;
5019 /* Unhook from the free list. */
5020 cons_free_list
= *(struct Lisp_Cons
**) &cblk
->conses
[0].cdr
;
5026 num_free
+= this_free
;
5027 cprev
= &cblk
->next
;
5030 total_conses
= num_used
;
5031 total_free_conses
= num_free
;
5034 /* Put all unmarked floats on free list */
5036 register struct float_block
*fblk
;
5037 struct float_block
**fprev
= &float_block
;
5038 register int lim
= float_block_index
;
5039 register int num_free
= 0, num_used
= 0;
5041 float_free_list
= 0;
5043 for (fblk
= float_block
; fblk
; fblk
= *fprev
)
5047 for (i
= 0; i
< lim
; i
++)
5048 if (!XMARKBIT (fblk
->floats
[i
].type
))
5051 *(struct Lisp_Float
**)&fblk
->floats
[i
].data
= float_free_list
;
5052 float_free_list
= &fblk
->floats
[i
];
5054 float_free_list
->type
= Vdead
;
5060 XUNMARK (fblk
->floats
[i
].type
);
5062 lim
= FLOAT_BLOCK_SIZE
;
5063 /* If this block contains only free floats and we have already
5064 seen more than two blocks worth of free floats then deallocate
5066 if (this_free
== FLOAT_BLOCK_SIZE
&& num_free
> FLOAT_BLOCK_SIZE
)
5068 *fprev
= fblk
->next
;
5069 /* Unhook from the free list. */
5070 float_free_list
= *(struct Lisp_Float
**) &fblk
->floats
[0].data
;
5076 num_free
+= this_free
;
5077 fprev
= &fblk
->next
;
5080 total_floats
= num_used
;
5081 total_free_floats
= num_free
;
5084 /* Put all unmarked intervals on free list */
5086 register struct interval_block
*iblk
;
5087 struct interval_block
**iprev
= &interval_block
;
5088 register int lim
= interval_block_index
;
5089 register int num_free
= 0, num_used
= 0;
5091 interval_free_list
= 0;
5093 for (iblk
= interval_block
; iblk
; iblk
= *iprev
)
5098 for (i
= 0; i
< lim
; i
++)
5100 if (!iblk
->intervals
[i
].gcmarkbit
)
5102 SET_INTERVAL_PARENT (&iblk
->intervals
[i
], interval_free_list
);
5103 interval_free_list
= &iblk
->intervals
[i
];
5109 iblk
->intervals
[i
].gcmarkbit
= 0;
5112 lim
= INTERVAL_BLOCK_SIZE
;
5113 /* If this block contains only free intervals and we have already
5114 seen more than two blocks worth of free intervals then
5115 deallocate this block. */
5116 if (this_free
== INTERVAL_BLOCK_SIZE
&& num_free
> INTERVAL_BLOCK_SIZE
)
5118 *iprev
= iblk
->next
;
5119 /* Unhook from the free list. */
5120 interval_free_list
= INTERVAL_PARENT (&iblk
->intervals
[0]);
5122 n_interval_blocks
--;
5126 num_free
+= this_free
;
5127 iprev
= &iblk
->next
;
5130 total_intervals
= num_used
;
5131 total_free_intervals
= num_free
;
5134 /* Put all unmarked symbols on free list */
5136 register struct symbol_block
*sblk
;
5137 struct symbol_block
**sprev
= &symbol_block
;
5138 register int lim
= symbol_block_index
;
5139 register int num_free
= 0, num_used
= 0;
5141 symbol_free_list
= NULL
;
5143 for (sblk
= symbol_block
; sblk
; sblk
= *sprev
)
5146 struct Lisp_Symbol
*sym
= sblk
->symbols
;
5147 struct Lisp_Symbol
*end
= sym
+ lim
;
5149 for (; sym
< end
; ++sym
)
5151 /* Check if the symbol was created during loadup. In such a case
5152 it might be pointed to by pure bytecode which we don't trace,
5153 so we conservatively assume that it is live. */
5154 int pure_p
= PURE_POINTER_P (XSTRING (sym
->xname
));
5156 if (!sym
->gcmarkbit
&& !pure_p
)
5158 *(struct Lisp_Symbol
**) &sym
->value
= symbol_free_list
;
5159 symbol_free_list
= sym
;
5161 symbol_free_list
->function
= Vdead
;
5169 UNMARK_STRING (XSTRING (sym
->xname
));
5174 lim
= SYMBOL_BLOCK_SIZE
;
5175 /* If this block contains only free symbols and we have already
5176 seen more than two blocks worth of free symbols then deallocate
5178 if (this_free
== SYMBOL_BLOCK_SIZE
&& num_free
> SYMBOL_BLOCK_SIZE
)
5180 *sprev
= sblk
->next
;
5181 /* Unhook from the free list. */
5182 symbol_free_list
= *(struct Lisp_Symbol
**)&sblk
->symbols
[0].value
;
5188 num_free
+= this_free
;
5189 sprev
= &sblk
->next
;
5192 total_symbols
= num_used
;
5193 total_free_symbols
= num_free
;
5196 /* Put all unmarked misc's on free list.
5197 For a marker, first unchain it from the buffer it points into. */
5199 register struct marker_block
*mblk
;
5200 struct marker_block
**mprev
= &marker_block
;
5201 register int lim
= marker_block_index
;
5202 register int num_free
= 0, num_used
= 0;
5204 marker_free_list
= 0;
5206 for (mblk
= marker_block
; mblk
; mblk
= *mprev
)
5211 for (i
= 0; i
< lim
; i
++)
5213 if (!mblk
->markers
[i
].u_marker
.gcmarkbit
)
5216 if (mblk
->markers
[i
].u_marker
.type
== Lisp_Misc_Marker
)
5217 unchain_marker (&mblk
->markers
[i
].u_marker
);
5218 /* Set the type of the freed object to Lisp_Misc_Free.
5219 We could leave the type alone, since nobody checks it,
5220 but this might catch bugs faster. */
5221 mblk
->markers
[i
].u_marker
.type
= Lisp_Misc_Free
;
5222 mblk
->markers
[i
].u_free
.chain
= marker_free_list
;
5223 marker_free_list
= &mblk
->markers
[i
];
5229 mblk
->markers
[i
].u_marker
.gcmarkbit
= 0;
5232 lim
= MARKER_BLOCK_SIZE
;
5233 /* If this block contains only free markers and we have already
5234 seen more than two blocks worth of free markers then deallocate
5236 if (this_free
== MARKER_BLOCK_SIZE
&& num_free
> MARKER_BLOCK_SIZE
)
5238 *mprev
= mblk
->next
;
5239 /* Unhook from the free list. */
5240 marker_free_list
= mblk
->markers
[0].u_free
.chain
;
5246 num_free
+= this_free
;
5247 mprev
= &mblk
->next
;
5251 total_markers
= num_used
;
5252 total_free_markers
= num_free
;
5255 /* Free all unmarked buffers */
5257 register struct buffer
*buffer
= all_buffers
, *prev
= 0, *next
;
5260 if (!XMARKBIT (buffer
->name
))
5263 prev
->next
= buffer
->next
;
5265 all_buffers
= buffer
->next
;
5266 next
= buffer
->next
;
5272 XUNMARK (buffer
->name
);
5273 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer
));
5274 prev
= buffer
, buffer
= buffer
->next
;
5278 /* Free all unmarked vectors */
5280 register struct Lisp_Vector
*vector
= all_vectors
, *prev
= 0, *next
;
5281 total_vector_size
= 0;
5284 if (!(vector
->size
& ARRAY_MARK_FLAG
))
5287 prev
->next
= vector
->next
;
5289 all_vectors
= vector
->next
;
5290 next
= vector
->next
;
5298 vector
->size
&= ~ARRAY_MARK_FLAG
;
5299 if (vector
->size
& PSEUDOVECTOR_FLAG
)
5300 total_vector_size
+= (PSEUDOVECTOR_SIZE_MASK
& vector
->size
);
5302 total_vector_size
+= vector
->size
;
5303 prev
= vector
, vector
= vector
->next
;
5307 #ifdef GC_CHECK_STRING_BYTES
5308 if (!noninteractive
)
5309 check_string_bytes (1);
5316 /* Debugging aids. */
5318 DEFUN ("memory-limit", Fmemory_limit
, Smemory_limit
, 0, 0, 0,
5319 doc
: /* Return the address of the last byte Emacs has allocated, divided by 1024.
5320 This may be helpful in debugging Emacs's memory usage.
5321 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5326 XSETINT (end
, (EMACS_INT
) sbrk (0) / 1024);
5331 DEFUN ("memory-use-counts", Fmemory_use_counts
, Smemory_use_counts
, 0, 0, 0,
5332 doc
: /* Return a list of counters that measure how much consing there has been.
5333 Each of these counters increments for a certain kind of object.
5334 The counters wrap around from the largest positive integer to zero.
5335 Garbage collection does not decrease them.
5336 The elements of the value are as follows:
5337 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
5338 All are in units of 1 = one object consed
5339 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
5341 MISCS include overlays, markers, and some internal types.
5342 Frames, windows, buffers, and subprocesses count as vectors
5343 (but the contents of a buffer's text do not count here). */)
5346 Lisp_Object consed
[8];
5348 consed
[0] = make_number (min (MOST_POSITIVE_FIXNUM
, cons_cells_consed
));
5349 consed
[1] = make_number (min (MOST_POSITIVE_FIXNUM
, floats_consed
));
5350 consed
[2] = make_number (min (MOST_POSITIVE_FIXNUM
, vector_cells_consed
));
5351 consed
[3] = make_number (min (MOST_POSITIVE_FIXNUM
, symbols_consed
));
5352 consed
[4] = make_number (min (MOST_POSITIVE_FIXNUM
, string_chars_consed
));
5353 consed
[5] = make_number (min (MOST_POSITIVE_FIXNUM
, misc_objects_consed
));
5354 consed
[6] = make_number (min (MOST_POSITIVE_FIXNUM
, intervals_consed
));
5355 consed
[7] = make_number (min (MOST_POSITIVE_FIXNUM
, strings_consed
));
5357 return Flist (8, consed
);
5360 int suppress_checking
;
5362 die (msg
, file
, line
)
5367 fprintf (stderr
, "\r\nEmacs fatal error: %s:%d: %s\r\n",
5372 /* Initialization */
5377 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
5379 pure_size
= PURESIZE
;
5380 pure_bytes_used
= 0;
5381 pure_bytes_used_before_overflow
= 0;
5383 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
5385 Vdead
= make_pure_string ("DEAD", 4, 4, 0);
5389 ignore_warnings
= 1;
5390 #ifdef DOUG_LEA_MALLOC
5391 mallopt (M_TRIM_THRESHOLD
, 128*1024); /* trim threshold */
5392 mallopt (M_MMAP_THRESHOLD
, 64*1024); /* mmap threshold */
5393 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
); /* max. number of mmap'ed areas */
5403 malloc_hysteresis
= 32;
5405 malloc_hysteresis
= 0;
5408 spare_memory
= (char *) malloc (SPARE_MEMORY
);
5410 ignore_warnings
= 0;
5412 byte_stack_list
= 0;
5414 consing_since_gc
= 0;
5415 gc_cons_threshold
= 100000 * sizeof (Lisp_Object
);
5416 #ifdef VIRT_ADDR_VARIES
5417 malloc_sbrk_unused
= 1<<22; /* A large number */
5418 malloc_sbrk_used
= 100000; /* as reasonable as any number */
5419 #endif /* VIRT_ADDR_VARIES */
5426 byte_stack_list
= 0;
5428 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
5429 setjmp_tested_p
= longjmps_done
= 0;
5432 Vgc_elapsed
= make_float (0.0);
5439 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold
,
5440 doc
: /* *Number of bytes of consing between garbage collections.
5441 Garbage collection can happen automatically once this many bytes have been
5442 allocated since the last garbage collection. All data types count.
5444 Garbage collection happens automatically only when `eval' is called.
5446 By binding this temporarily to a large number, you can effectively
5447 prevent garbage collection during a part of the program. */);
5449 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used
,
5450 doc
: /* Number of bytes of sharable Lisp data allocated so far. */);
5452 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed
,
5453 doc
: /* Number of cons cells that have been consed so far. */);
5455 DEFVAR_INT ("floats-consed", &floats_consed
,
5456 doc
: /* Number of floats that have been consed so far. */);
5458 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed
,
5459 doc
: /* Number of vector cells that have been consed so far. */);
5461 DEFVAR_INT ("symbols-consed", &symbols_consed
,
5462 doc
: /* Number of symbols that have been consed so far. */);
5464 DEFVAR_INT ("string-chars-consed", &string_chars_consed
,
5465 doc
: /* Number of string characters that have been consed so far. */);
5467 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed
,
5468 doc
: /* Number of miscellaneous objects that have been consed so far. */);
5470 DEFVAR_INT ("intervals-consed", &intervals_consed
,
5471 doc
: /* Number of intervals that have been consed so far. */);
5473 DEFVAR_INT ("strings-consed", &strings_consed
,
5474 doc
: /* Number of strings that have been consed so far. */);
5476 DEFVAR_LISP ("purify-flag", &Vpurify_flag
,
5477 doc
: /* Non-nil means loading Lisp code in order to dump an executable.
5478 This means that certain objects should be allocated in shared (pure) space. */);
5480 DEFVAR_INT ("undo-limit", &undo_limit
,
5481 doc
: /* Keep no more undo information once it exceeds this size.
5482 This limit is applied when garbage collection happens.
5483 The size is counted as the number of bytes occupied,
5484 which includes both saved text and other data. */);
5487 DEFVAR_INT ("undo-strong-limit", &undo_strong_limit
,
5488 doc
: /* Don't keep more than this much size of undo information.
5489 A command which pushes past this size is itself forgotten.
5490 This limit is applied when garbage collection happens.
5491 The size is counted as the number of bytes occupied,
5492 which includes both saved text and other data. */);
5493 undo_strong_limit
= 30000;
5495 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages
,
5496 doc
: /* Non-nil means display messages at start and end of garbage collection. */);
5497 garbage_collection_messages
= 0;
5499 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook
,
5500 doc
: /* Hook run after garbage collection has finished. */);
5501 Vpost_gc_hook
= Qnil
;
5502 Qpost_gc_hook
= intern ("post-gc-hook");
5503 staticpro (&Qpost_gc_hook
);
5505 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data
,
5506 doc
: /* Precomputed `signal' argument for memory-full error. */);
5507 /* We build this in advance because if we wait until we need it, we might
5508 not be able to allocate the memory to hold it. */
5511 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
5513 DEFVAR_LISP ("memory-full", &Vmemory_full
,
5514 doc
: /* Non-nil means we are handling a memory-full error. */);
5515 Vmemory_full
= Qnil
;
5517 staticpro (&Qgc_cons_threshold
);
5518 Qgc_cons_threshold
= intern ("gc-cons-threshold");
5520 staticpro (&Qchar_table_extra_slots
);
5521 Qchar_table_extra_slots
= intern ("char-table-extra-slots");
5523 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed
,
5524 doc
: /* Accumulated time elapsed in garbage collections.
5525 The time is in seconds as a floating point value.
5526 Programs may reset this to get statistics in a specific period. */);
5527 DEFVAR_INT ("gcs-done", &gcs_done
,
5528 doc
: /* Accumulated number of garbage collections done.
5529 Programs may reset this to get statistics in a specific period. */);
5534 defsubr (&Smake_byte_code
);
5535 defsubr (&Smake_list
);
5536 defsubr (&Smake_vector
);
5537 defsubr (&Smake_char_table
);
5538 defsubr (&Smake_string
);
5539 defsubr (&Smake_bool_vector
);
5540 defsubr (&Smake_symbol
);
5541 defsubr (&Smake_marker
);
5542 defsubr (&Spurecopy
);
5543 defsubr (&Sgarbage_collect
);
5544 defsubr (&Smemory_limit
);
5545 defsubr (&Smemory_use_counts
);
5547 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5548 defsubr (&Sgc_status
);