* lisp/emacs-lisp/pcase.el (pcase--expand): Warn for unused pattern.
[emacs.git] / src / floatfns.c
blobeaa1b32eb17ea634c5410d83070711dac883ceff
1 /* Primitive operations on floating point for GNU Emacs Lisp interpreter.
3 Copyright (C) 1988, 1993-1994, 1999, 2001-2012
4 Free Software Foundation, Inc.
6 Author: Wolfgang Rupprecht
7 (according to ack.texi)
9 This file is part of GNU Emacs.
11 GNU Emacs is free software: you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation, either version 3 of the License, or
14 (at your option) any later version.
16 GNU Emacs is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
25 /* ANSI C requires only these float functions:
26 acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod,
27 frexp, ldexp, log, log10, modf, pow, sin, sinh, sqrt, tan, tanh.
29 Define HAVE_INVERSE_HYPERBOLIC if you have acosh, asinh, and atanh.
30 Define HAVE_CBRT if you have cbrt.
31 Define HAVE_RINT if you have a working rint.
32 If you don't define these, then the appropriate routines will be simulated.
34 Define HAVE_MATHERR if on a system supporting the SysV matherr callback.
35 (This should happen automatically.)
37 Define FLOAT_CHECK_ERRNO if the float library routines set errno.
38 This has no effect if HAVE_MATHERR is defined.
40 Define FLOAT_CATCH_SIGILL if the float library routines signal SIGILL.
41 (What systems actually do this? Please let us know.)
43 Define FLOAT_CHECK_DOMAIN if the float library doesn't handle errors by
44 either setting errno, or signaling SIGFPE/SIGILL. Otherwise, domain and
45 range checking will happen before calling the float routines. This has
46 no effect if HAVE_MATHERR is defined (since matherr will be called when
47 a domain error occurs.)
50 #include <config.h>
51 #include <signal.h>
52 #include <setjmp.h>
53 #include "lisp.h"
54 #include "syssignal.h"
56 #include <float.h>
57 /* If IEEE_FLOATING_POINT isn't defined, default it from FLT_*. */
58 #ifndef IEEE_FLOATING_POINT
59 #if (FLT_RADIX == 2 && FLT_MANT_DIG == 24 \
60 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
61 #define IEEE_FLOATING_POINT 1
62 #else
63 #define IEEE_FLOATING_POINT 0
64 #endif
65 #endif
67 #include <math.h>
69 /* This declaration is omitted on some systems, like Ultrix. */
70 #if !defined (HPUX) && defined (HAVE_LOGB) && !defined (logb)
71 extern double logb (double);
72 #endif /* not HPUX and HAVE_LOGB and no logb macro */
74 #if defined (DOMAIN) && defined (SING) && defined (OVERFLOW)
75 /* If those are defined, then this is probably a `matherr' machine. */
76 # ifndef HAVE_MATHERR
77 # define HAVE_MATHERR
78 # endif
79 #endif
81 #ifdef NO_MATHERR
82 #undef HAVE_MATHERR
83 #endif
85 #ifdef HAVE_MATHERR
86 # ifdef FLOAT_CHECK_ERRNO
87 # undef FLOAT_CHECK_ERRNO
88 # endif
89 # ifdef FLOAT_CHECK_DOMAIN
90 # undef FLOAT_CHECK_DOMAIN
91 # endif
92 #endif
94 #ifndef NO_FLOAT_CHECK_ERRNO
95 #define FLOAT_CHECK_ERRNO
96 #endif
98 #ifdef FLOAT_CHECK_ERRNO
99 # include <errno.h>
100 #endif
102 #ifdef FLOAT_CATCH_SIGILL
103 static void float_error ();
104 #endif
106 /* Nonzero while executing in floating point.
107 This tells float_error what to do. */
109 static int in_float;
111 /* If an argument is out of range for a mathematical function,
112 here is the actual argument value to use in the error message.
113 These variables are used only across the floating point library call
114 so there is no need to staticpro them. */
116 static Lisp_Object float_error_arg, float_error_arg2;
118 static const char *float_error_fn_name;
120 /* Evaluate the floating point expression D, recording NUM
121 as the original argument for error messages.
122 D is normally an assignment expression.
123 Handle errors which may result in signals or may set errno.
125 Note that float_error may be declared to return void, so you can't
126 just cast the zero after the colon to (void) to make the types
127 check properly. */
129 #ifdef FLOAT_CHECK_ERRNO
130 #define IN_FLOAT(d, name, num) \
131 do { \
132 float_error_arg = num; \
133 float_error_fn_name = name; \
134 in_float = 1; errno = 0; (d); in_float = 0; \
135 switch (errno) { \
136 case 0: break; \
137 case EDOM: domain_error (float_error_fn_name, float_error_arg); \
138 case ERANGE: range_error (float_error_fn_name, float_error_arg); \
139 default: arith_error (float_error_fn_name, float_error_arg); \
141 } while (0)
142 #define IN_FLOAT2(d, name, num, num2) \
143 do { \
144 float_error_arg = num; \
145 float_error_arg2 = num2; \
146 float_error_fn_name = name; \
147 in_float = 1; errno = 0; (d); in_float = 0; \
148 switch (errno) { \
149 case 0: break; \
150 case EDOM: domain_error (float_error_fn_name, float_error_arg); \
151 case ERANGE: range_error (float_error_fn_name, float_error_arg); \
152 default: arith_error (float_error_fn_name, float_error_arg); \
154 } while (0)
155 #else
156 #define IN_FLOAT(d, name, num) (in_float = 1, (d), in_float = 0)
157 #define IN_FLOAT2(d, name, num, num2) (in_float = 1, (d), in_float = 0)
158 #endif
160 /* Convert float to Lisp_Int if it fits, else signal a range error
161 using the given arguments. */
162 #define FLOAT_TO_INT(x, i, name, num) \
163 do \
165 if (FIXNUM_OVERFLOW_P (x)) \
166 range_error (name, num); \
167 XSETINT (i, (EMACS_INT)(x)); \
169 while (0)
170 #define FLOAT_TO_INT2(x, i, name, num1, num2) \
171 do \
173 if (FIXNUM_OVERFLOW_P (x)) \
174 range_error2 (name, num1, num2); \
175 XSETINT (i, (EMACS_INT)(x)); \
177 while (0)
179 #define arith_error(op,arg) \
180 xsignal2 (Qarith_error, build_string ((op)), (arg))
181 #define range_error(op,arg) \
182 xsignal2 (Qrange_error, build_string ((op)), (arg))
183 #define range_error2(op,a1,a2) \
184 xsignal3 (Qrange_error, build_string ((op)), (a1), (a2))
185 #define domain_error(op,arg) \
186 xsignal2 (Qdomain_error, build_string ((op)), (arg))
187 #ifdef FLOAT_CHECK_DOMAIN
188 #define domain_error2(op,a1,a2) \
189 xsignal3 (Qdomain_error, build_string ((op)), (a1), (a2))
190 #endif
192 /* Extract a Lisp number as a `double', or signal an error. */
194 double
195 extract_float (Lisp_Object num)
197 CHECK_NUMBER_OR_FLOAT (num);
199 if (FLOATP (num))
200 return XFLOAT_DATA (num);
201 return (double) XINT (num);
204 /* Trig functions. */
206 DEFUN ("acos", Facos, Sacos, 1, 1, 0,
207 doc: /* Return the inverse cosine of ARG. */)
208 (register Lisp_Object arg)
210 double d = extract_float (arg);
211 #ifdef FLOAT_CHECK_DOMAIN
212 if (d > 1.0 || d < -1.0)
213 domain_error ("acos", arg);
214 #endif
215 IN_FLOAT (d = acos (d), "acos", arg);
216 return make_float (d);
219 DEFUN ("asin", Fasin, Sasin, 1, 1, 0,
220 doc: /* Return the inverse sine of ARG. */)
221 (register Lisp_Object arg)
223 double d = extract_float (arg);
224 #ifdef FLOAT_CHECK_DOMAIN
225 if (d > 1.0 || d < -1.0)
226 domain_error ("asin", arg);
227 #endif
228 IN_FLOAT (d = asin (d), "asin", arg);
229 return make_float (d);
232 DEFUN ("atan", Fatan, Satan, 1, 2, 0,
233 doc: /* Return the inverse tangent of the arguments.
234 If only one argument Y is given, return the inverse tangent of Y.
235 If two arguments Y and X are given, return the inverse tangent of Y
236 divided by X, i.e. the angle in radians between the vector (X, Y)
237 and the x-axis. */)
238 (register Lisp_Object y, Lisp_Object x)
240 double d = extract_float (y);
242 if (NILP (x))
243 IN_FLOAT (d = atan (d), "atan", y);
244 else
246 double d2 = extract_float (x);
248 IN_FLOAT2 (d = atan2 (d, d2), "atan", y, x);
250 return make_float (d);
253 DEFUN ("cos", Fcos, Scos, 1, 1, 0,
254 doc: /* Return the cosine of ARG. */)
255 (register Lisp_Object arg)
257 double d = extract_float (arg);
258 IN_FLOAT (d = cos (d), "cos", arg);
259 return make_float (d);
262 DEFUN ("sin", Fsin, Ssin, 1, 1, 0,
263 doc: /* Return the sine of ARG. */)
264 (register Lisp_Object arg)
266 double d = extract_float (arg);
267 IN_FLOAT (d = sin (d), "sin", arg);
268 return make_float (d);
271 DEFUN ("tan", Ftan, Stan, 1, 1, 0,
272 doc: /* Return the tangent of ARG. */)
273 (register Lisp_Object arg)
275 double d = extract_float (arg);
276 double c = cos (d);
277 #ifdef FLOAT_CHECK_DOMAIN
278 if (c == 0.0)
279 domain_error ("tan", arg);
280 #endif
281 IN_FLOAT (d = sin (d) / c, "tan", arg);
282 return make_float (d);
285 #undef isnan
286 #define isnan(x) ((x) != (x))
288 DEFUN ("isnan", Fisnan, Sisnan, 1, 1, 0,
289 doc: /* Return non nil iff argument X is a NaN. */)
290 (Lisp_Object x)
292 CHECK_FLOAT (x);
293 return isnan (XFLOAT_DATA (x)) ? Qt : Qnil;
296 #ifdef HAVE_COPYSIGN
297 DEFUN ("copysign", Fcopysign, Scopysign, 2, 2, 0,
298 doc: /* Copy sign of X2 to value of X1, and return the result.
299 Cause an error if X1 or X2 is not a float. */)
300 (Lisp_Object x1, Lisp_Object x2)
302 double f1, f2;
304 CHECK_FLOAT (x1);
305 CHECK_FLOAT (x2);
307 f1 = XFLOAT_DATA (x1);
308 f2 = XFLOAT_DATA (x2);
310 return make_float (copysign (f1, f2));
313 DEFUN ("frexp", Ffrexp, Sfrexp, 1, 1, 0,
314 doc: /* Get significand and exponent of a floating point number.
315 Breaks the floating point number X into its binary significand SGNFCAND
316 \(a floating point value between 0.5 (included) and 1.0 (excluded))
317 and an integral exponent EXP for 2, such that:
319 X = SGNFCAND * 2^EXP
321 The function returns the cons cell (SGNFCAND . EXP).
322 If X is zero, both parts (SGNFCAND and EXP) are zero. */)
323 (Lisp_Object x)
325 double f = XFLOATINT (x);
327 if (f == 0.0)
328 return Fcons (make_float (0.0), make_number (0));
329 else
331 int exponent;
332 double sgnfcand = frexp (f, &exponent);
333 return Fcons (make_float (sgnfcand), make_number (exponent));
337 DEFUN ("ldexp", Fldexp, Sldexp, 1, 2, 0,
338 doc: /* Construct number X from significand SGNFCAND and exponent EXP.
339 Returns the floating point value resulting from multiplying SGNFCAND
340 (the significand) by 2 raised to the power of EXP (the exponent). */)
341 (Lisp_Object sgnfcand, Lisp_Object exponent)
343 CHECK_NUMBER (exponent);
344 return make_float (ldexp (XFLOATINT (sgnfcand), XINT (exponent)));
346 #endif
348 #if 0 /* Leave these out unless we find there's a reason for them. */
350 DEFUN ("bessel-j0", Fbessel_j0, Sbessel_j0, 1, 1, 0,
351 doc: /* Return the bessel function j0 of ARG. */)
352 (register Lisp_Object arg)
354 double d = extract_float (arg);
355 IN_FLOAT (d = j0 (d), "bessel-j0", arg);
356 return make_float (d);
359 DEFUN ("bessel-j1", Fbessel_j1, Sbessel_j1, 1, 1, 0,
360 doc: /* Return the bessel function j1 of ARG. */)
361 (register Lisp_Object arg)
363 double d = extract_float (arg);
364 IN_FLOAT (d = j1 (d), "bessel-j1", arg);
365 return make_float (d);
368 DEFUN ("bessel-jn", Fbessel_jn, Sbessel_jn, 2, 2, 0,
369 doc: /* Return the order N bessel function output jn of ARG.
370 The first arg (the order) is truncated to an integer. */)
371 (register Lisp_Object n, Lisp_Object arg)
373 int i1 = extract_float (n);
374 double f2 = extract_float (arg);
376 IN_FLOAT (f2 = jn (i1, f2), "bessel-jn", n);
377 return make_float (f2);
380 DEFUN ("bessel-y0", Fbessel_y0, Sbessel_y0, 1, 1, 0,
381 doc: /* Return the bessel function y0 of ARG. */)
382 (register Lisp_Object arg)
384 double d = extract_float (arg);
385 IN_FLOAT (d = y0 (d), "bessel-y0", arg);
386 return make_float (d);
389 DEFUN ("bessel-y1", Fbessel_y1, Sbessel_y1, 1, 1, 0,
390 doc: /* Return the bessel function y1 of ARG. */)
391 (register Lisp_Object arg)
393 double d = extract_float (arg);
394 IN_FLOAT (d = y1 (d), "bessel-y0", arg);
395 return make_float (d);
398 DEFUN ("bessel-yn", Fbessel_yn, Sbessel_yn, 2, 2, 0,
399 doc: /* Return the order N bessel function output yn of ARG.
400 The first arg (the order) is truncated to an integer. */)
401 (register Lisp_Object n, Lisp_Object arg)
403 int i1 = extract_float (n);
404 double f2 = extract_float (arg);
406 IN_FLOAT (f2 = yn (i1, f2), "bessel-yn", n);
407 return make_float (f2);
410 #endif
412 #if 0 /* Leave these out unless we see they are worth having. */
414 DEFUN ("erf", Ferf, Serf, 1, 1, 0,
415 doc: /* Return the mathematical error function of ARG. */)
416 (register Lisp_Object arg)
418 double d = extract_float (arg);
419 IN_FLOAT (d = erf (d), "erf", arg);
420 return make_float (d);
423 DEFUN ("erfc", Ferfc, Serfc, 1, 1, 0,
424 doc: /* Return the complementary error function of ARG. */)
425 (register Lisp_Object arg)
427 double d = extract_float (arg);
428 IN_FLOAT (d = erfc (d), "erfc", arg);
429 return make_float (d);
432 DEFUN ("log-gamma", Flog_gamma, Slog_gamma, 1, 1, 0,
433 doc: /* Return the log gamma of ARG. */)
434 (register Lisp_Object arg)
436 double d = extract_float (arg);
437 IN_FLOAT (d = lgamma (d), "log-gamma", arg);
438 return make_float (d);
441 DEFUN ("cube-root", Fcube_root, Scube_root, 1, 1, 0,
442 doc: /* Return the cube root of ARG. */)
443 (register Lisp_Object arg)
445 double d = extract_float (arg);
446 #ifdef HAVE_CBRT
447 IN_FLOAT (d = cbrt (d), "cube-root", arg);
448 #else
449 if (d >= 0.0)
450 IN_FLOAT (d = pow (d, 1.0/3.0), "cube-root", arg);
451 else
452 IN_FLOAT (d = -pow (-d, 1.0/3.0), "cube-root", arg);
453 #endif
454 return make_float (d);
457 #endif
459 DEFUN ("exp", Fexp, Sexp, 1, 1, 0,
460 doc: /* Return the exponential base e of ARG. */)
461 (register Lisp_Object arg)
463 double d = extract_float (arg);
464 #ifdef FLOAT_CHECK_DOMAIN
465 if (d > 709.7827) /* Assume IEEE doubles here */
466 range_error ("exp", arg);
467 else if (d < -709.0)
468 return make_float (0.0);
469 else
470 #endif
471 IN_FLOAT (d = exp (d), "exp", arg);
472 return make_float (d);
475 DEFUN ("expt", Fexpt, Sexpt, 2, 2, 0,
476 doc: /* Return the exponential ARG1 ** ARG2. */)
477 (register Lisp_Object arg1, Lisp_Object arg2)
479 double f1, f2, f3;
481 CHECK_NUMBER_OR_FLOAT (arg1);
482 CHECK_NUMBER_OR_FLOAT (arg2);
483 if (INTEGERP (arg1) /* common lisp spec */
484 && INTEGERP (arg2) /* don't promote, if both are ints, and */
485 && 0 <= XINT (arg2)) /* we are sure the result is not fractional */
486 { /* this can be improved by pre-calculating */
487 EMACS_INT y; /* some binary powers of x then accumulating */
488 EMACS_UINT acc, x; /* Unsigned so that overflow is well defined. */
489 Lisp_Object val;
491 x = XINT (arg1);
492 y = XINT (arg2);
493 acc = (y & 1 ? x : 1);
495 while ((y >>= 1) != 0)
497 x *= x;
498 if (y & 1)
499 acc *= x;
501 XSETINT (val, acc);
502 return val;
504 f1 = FLOATP (arg1) ? XFLOAT_DATA (arg1) : XINT (arg1);
505 f2 = FLOATP (arg2) ? XFLOAT_DATA (arg2) : XINT (arg2);
506 /* Really should check for overflow, too */
507 if (f1 == 0.0 && f2 == 0.0)
508 f1 = 1.0;
509 #ifdef FLOAT_CHECK_DOMAIN
510 else if ((f1 == 0.0 && f2 < 0.0) || (f1 < 0 && f2 != floor (f2)))
511 domain_error2 ("expt", arg1, arg2);
512 #endif
513 IN_FLOAT2 (f3 = pow (f1, f2), "expt", arg1, arg2);
514 /* Check for overflow in the result. */
515 if (f1 != 0.0 && f3 == 0.0)
516 range_error ("expt", arg1);
517 return make_float (f3);
520 DEFUN ("log", Flog, Slog, 1, 2, 0,
521 doc: /* Return the natural logarithm of ARG.
522 If the optional argument BASE is given, return log ARG using that base. */)
523 (register Lisp_Object arg, Lisp_Object base)
525 double d = extract_float (arg);
527 #ifdef FLOAT_CHECK_DOMAIN
528 if (d <= 0.0)
529 domain_error2 ("log", arg, base);
530 #endif
531 if (NILP (base))
532 IN_FLOAT (d = log (d), "log", arg);
533 else
535 double b = extract_float (base);
537 #ifdef FLOAT_CHECK_DOMAIN
538 if (b <= 0.0 || b == 1.0)
539 domain_error2 ("log", arg, base);
540 #endif
541 if (b == 10.0)
542 IN_FLOAT2 (d = log10 (d), "log", arg, base);
543 else
544 IN_FLOAT2 (d = log (d) / log (b), "log", arg, base);
546 return make_float (d);
549 DEFUN ("log10", Flog10, Slog10, 1, 1, 0,
550 doc: /* Return the logarithm base 10 of ARG. */)
551 (register Lisp_Object arg)
553 double d = extract_float (arg);
554 #ifdef FLOAT_CHECK_DOMAIN
555 if (d <= 0.0)
556 domain_error ("log10", arg);
557 #endif
558 IN_FLOAT (d = log10 (d), "log10", arg);
559 return make_float (d);
562 DEFUN ("sqrt", Fsqrt, Ssqrt, 1, 1, 0,
563 doc: /* Return the square root of ARG. */)
564 (register Lisp_Object arg)
566 double d = extract_float (arg);
567 #ifdef FLOAT_CHECK_DOMAIN
568 if (d < 0.0)
569 domain_error ("sqrt", arg);
570 #endif
571 IN_FLOAT (d = sqrt (d), "sqrt", arg);
572 return make_float (d);
575 #if 0 /* Not clearly worth adding. */
577 DEFUN ("acosh", Facosh, Sacosh, 1, 1, 0,
578 doc: /* Return the inverse hyperbolic cosine of ARG. */)
579 (register Lisp_Object arg)
581 double d = extract_float (arg);
582 #ifdef FLOAT_CHECK_DOMAIN
583 if (d < 1.0)
584 domain_error ("acosh", arg);
585 #endif
586 #ifdef HAVE_INVERSE_HYPERBOLIC
587 IN_FLOAT (d = acosh (d), "acosh", arg);
588 #else
589 IN_FLOAT (d = log (d + sqrt (d*d - 1.0)), "acosh", arg);
590 #endif
591 return make_float (d);
594 DEFUN ("asinh", Fasinh, Sasinh, 1, 1, 0,
595 doc: /* Return the inverse hyperbolic sine of ARG. */)
596 (register Lisp_Object arg)
598 double d = extract_float (arg);
599 #ifdef HAVE_INVERSE_HYPERBOLIC
600 IN_FLOAT (d = asinh (d), "asinh", arg);
601 #else
602 IN_FLOAT (d = log (d + sqrt (d*d + 1.0)), "asinh", arg);
603 #endif
604 return make_float (d);
607 DEFUN ("atanh", Fatanh, Satanh, 1, 1, 0,
608 doc: /* Return the inverse hyperbolic tangent of ARG. */)
609 (register Lisp_Object arg)
611 double d = extract_float (arg);
612 #ifdef FLOAT_CHECK_DOMAIN
613 if (d >= 1.0 || d <= -1.0)
614 domain_error ("atanh", arg);
615 #endif
616 #ifdef HAVE_INVERSE_HYPERBOLIC
617 IN_FLOAT (d = atanh (d), "atanh", arg);
618 #else
619 IN_FLOAT (d = 0.5 * log ((1.0 + d) / (1.0 - d)), "atanh", arg);
620 #endif
621 return make_float (d);
624 DEFUN ("cosh", Fcosh, Scosh, 1, 1, 0,
625 doc: /* Return the hyperbolic cosine of ARG. */)
626 (register Lisp_Object arg)
628 double d = extract_float (arg);
629 #ifdef FLOAT_CHECK_DOMAIN
630 if (d > 710.0 || d < -710.0)
631 range_error ("cosh", arg);
632 #endif
633 IN_FLOAT (d = cosh (d), "cosh", arg);
634 return make_float (d);
637 DEFUN ("sinh", Fsinh, Ssinh, 1, 1, 0,
638 doc: /* Return the hyperbolic sine of ARG. */)
639 (register Lisp_Object arg)
641 double d = extract_float (arg);
642 #ifdef FLOAT_CHECK_DOMAIN
643 if (d > 710.0 || d < -710.0)
644 range_error ("sinh", arg);
645 #endif
646 IN_FLOAT (d = sinh (d), "sinh", arg);
647 return make_float (d);
650 DEFUN ("tanh", Ftanh, Stanh, 1, 1, 0,
651 doc: /* Return the hyperbolic tangent of ARG. */)
652 (register Lisp_Object arg)
654 double d = extract_float (arg);
655 IN_FLOAT (d = tanh (d), "tanh", arg);
656 return make_float (d);
658 #endif
660 DEFUN ("abs", Fabs, Sabs, 1, 1, 0,
661 doc: /* Return the absolute value of ARG. */)
662 (register Lisp_Object arg)
664 CHECK_NUMBER_OR_FLOAT (arg);
666 if (FLOATP (arg))
667 IN_FLOAT (arg = make_float (fabs (XFLOAT_DATA (arg))), "abs", arg);
668 else if (XINT (arg) < 0)
669 XSETINT (arg, - XINT (arg));
671 return arg;
674 DEFUN ("float", Ffloat, Sfloat, 1, 1, 0,
675 doc: /* Return the floating point number equal to ARG. */)
676 (register Lisp_Object arg)
678 CHECK_NUMBER_OR_FLOAT (arg);
680 if (INTEGERP (arg))
681 return make_float ((double) XINT (arg));
682 else /* give 'em the same float back */
683 return arg;
686 DEFUN ("logb", Flogb, Slogb, 1, 1, 0,
687 doc: /* Returns largest integer <= the base 2 log of the magnitude of ARG.
688 This is the same as the exponent of a float. */)
689 (Lisp_Object arg)
691 Lisp_Object val;
692 EMACS_INT value;
693 double f = extract_float (arg);
695 if (f == 0.0)
696 value = MOST_NEGATIVE_FIXNUM;
697 else
699 #ifdef HAVE_LOGB
700 IN_FLOAT (value = logb (f), "logb", arg);
701 #else
702 #ifdef HAVE_FREXP
703 int ivalue;
704 IN_FLOAT (frexp (f, &ivalue), "logb", arg);
705 value = ivalue - 1;
706 #else
707 int i;
708 double d;
709 if (f < 0.0)
710 f = -f;
711 value = -1;
712 while (f < 0.5)
714 for (i = 1, d = 0.5; d * d >= f; i += i)
715 d *= d;
716 f /= d;
717 value -= i;
719 while (f >= 1.0)
721 for (i = 1, d = 2.0; d * d <= f; i += i)
722 d *= d;
723 f /= d;
724 value += i;
726 #endif
727 #endif
729 XSETINT (val, value);
730 return val;
734 /* the rounding functions */
736 static Lisp_Object
737 rounding_driver (Lisp_Object arg, Lisp_Object divisor,
738 double (*double_round) (double),
739 EMACS_INT (*int_round2) (EMACS_INT, EMACS_INT),
740 const char *name)
742 CHECK_NUMBER_OR_FLOAT (arg);
744 if (! NILP (divisor))
746 EMACS_INT i1, i2;
748 CHECK_NUMBER_OR_FLOAT (divisor);
750 if (FLOATP (arg) || FLOATP (divisor))
752 double f1, f2;
754 f1 = FLOATP (arg) ? XFLOAT_DATA (arg) : XINT (arg);
755 f2 = (FLOATP (divisor) ? XFLOAT_DATA (divisor) : XINT (divisor));
756 if (! IEEE_FLOATING_POINT && f2 == 0)
757 xsignal0 (Qarith_error);
759 IN_FLOAT2 (f1 = (*double_round) (f1 / f2), name, arg, divisor);
760 FLOAT_TO_INT2 (f1, arg, name, arg, divisor);
761 return arg;
764 i1 = XINT (arg);
765 i2 = XINT (divisor);
767 if (i2 == 0)
768 xsignal0 (Qarith_error);
770 XSETINT (arg, (*int_round2) (i1, i2));
771 return arg;
774 if (FLOATP (arg))
776 double d;
778 IN_FLOAT (d = (*double_round) (XFLOAT_DATA (arg)), name, arg);
779 FLOAT_TO_INT (d, arg, name, arg);
782 return arg;
785 /* With C's /, the result is implementation-defined if either operand
786 is negative, so take care with negative operands in the following
787 integer functions. */
789 static EMACS_INT
790 ceiling2 (EMACS_INT i1, EMACS_INT i2)
792 return (i2 < 0
793 ? (i1 < 0 ? ((-1 - i1) / -i2) + 1 : - (i1 / -i2))
794 : (i1 <= 0 ? - (-i1 / i2) : ((i1 - 1) / i2) + 1));
797 static EMACS_INT
798 floor2 (EMACS_INT i1, EMACS_INT i2)
800 return (i2 < 0
801 ? (i1 <= 0 ? -i1 / -i2 : -1 - ((i1 - 1) / -i2))
802 : (i1 < 0 ? -1 - ((-1 - i1) / i2) : i1 / i2));
805 static EMACS_INT
806 truncate2 (EMACS_INT i1, EMACS_INT i2)
808 return (i2 < 0
809 ? (i1 < 0 ? -i1 / -i2 : - (i1 / -i2))
810 : (i1 < 0 ? - (-i1 / i2) : i1 / i2));
813 static EMACS_INT
814 round2 (EMACS_INT i1, EMACS_INT i2)
816 /* The C language's division operator gives us one remainder R, but
817 we want the remainder R1 on the other side of 0 if R1 is closer
818 to 0 than R is; because we want to round to even, we also want R1
819 if R and R1 are the same distance from 0 and if C's quotient is
820 odd. */
821 EMACS_INT q = i1 / i2;
822 EMACS_INT r = i1 % i2;
823 EMACS_INT abs_r = r < 0 ? -r : r;
824 EMACS_INT abs_r1 = (i2 < 0 ? -i2 : i2) - abs_r;
825 return q + (abs_r + (q & 1) <= abs_r1 ? 0 : (i2 ^ r) < 0 ? -1 : 1);
828 /* The code uses emacs_rint, so that it works to undefine HAVE_RINT
829 if `rint' exists but does not work right. */
830 #ifdef HAVE_RINT
831 #define emacs_rint rint
832 #else
833 static double
834 emacs_rint (double d)
836 return floor (d + 0.5);
838 #endif
840 static double
841 double_identity (double d)
843 return d;
846 DEFUN ("ceiling", Fceiling, Sceiling, 1, 2, 0,
847 doc: /* Return the smallest integer no less than ARG.
848 This rounds the value towards +inf.
849 With optional DIVISOR, return the smallest integer no less than ARG/DIVISOR. */)
850 (Lisp_Object arg, Lisp_Object divisor)
852 return rounding_driver (arg, divisor, ceil, ceiling2, "ceiling");
855 DEFUN ("floor", Ffloor, Sfloor, 1, 2, 0,
856 doc: /* Return the largest integer no greater than ARG.
857 This rounds the value towards -inf.
858 With optional DIVISOR, return the largest integer no greater than ARG/DIVISOR. */)
859 (Lisp_Object arg, Lisp_Object divisor)
861 return rounding_driver (arg, divisor, floor, floor2, "floor");
864 DEFUN ("round", Fround, Sround, 1, 2, 0,
865 doc: /* Return the nearest integer to ARG.
866 With optional DIVISOR, return the nearest integer to ARG/DIVISOR.
868 Rounding a value equidistant between two integers may choose the
869 integer closer to zero, or it may prefer an even integer, depending on
870 your machine. For example, \(round 2.5\) can return 3 on some
871 systems, but 2 on others. */)
872 (Lisp_Object arg, Lisp_Object divisor)
874 return rounding_driver (arg, divisor, emacs_rint, round2, "round");
877 DEFUN ("truncate", Ftruncate, Struncate, 1, 2, 0,
878 doc: /* Truncate a floating point number to an int.
879 Rounds ARG toward zero.
880 With optional DIVISOR, truncate ARG/DIVISOR. */)
881 (Lisp_Object arg, Lisp_Object divisor)
883 return rounding_driver (arg, divisor, double_identity, truncate2,
884 "truncate");
888 Lisp_Object
889 fmod_float (Lisp_Object x, Lisp_Object y)
891 double f1, f2;
893 f1 = FLOATP (x) ? XFLOAT_DATA (x) : XINT (x);
894 f2 = FLOATP (y) ? XFLOAT_DATA (y) : XINT (y);
896 if (! IEEE_FLOATING_POINT && f2 == 0)
897 xsignal0 (Qarith_error);
899 /* If the "remainder" comes out with the wrong sign, fix it. */
900 IN_FLOAT2 ((f1 = fmod (f1, f2),
901 f1 = (f2 < 0 ? f1 > 0 : f1 < 0) ? f1 + f2 : f1),
902 "mod", x, y);
903 return make_float (f1);
906 /* It's not clear these are worth adding. */
908 DEFUN ("fceiling", Ffceiling, Sfceiling, 1, 1, 0,
909 doc: /* Return the smallest integer no less than ARG, as a float.
910 \(Round toward +inf.\) */)
911 (register Lisp_Object arg)
913 double d = extract_float (arg);
914 IN_FLOAT (d = ceil (d), "fceiling", arg);
915 return make_float (d);
918 DEFUN ("ffloor", Fffloor, Sffloor, 1, 1, 0,
919 doc: /* Return the largest integer no greater than ARG, as a float.
920 \(Round towards -inf.\) */)
921 (register Lisp_Object arg)
923 double d = extract_float (arg);
924 IN_FLOAT (d = floor (d), "ffloor", arg);
925 return make_float (d);
928 DEFUN ("fround", Ffround, Sfround, 1, 1, 0,
929 doc: /* Return the nearest integer to ARG, as a float. */)
930 (register Lisp_Object arg)
932 double d = extract_float (arg);
933 IN_FLOAT (d = emacs_rint (d), "fround", arg);
934 return make_float (d);
937 DEFUN ("ftruncate", Fftruncate, Sftruncate, 1, 1, 0,
938 doc: /* Truncate a floating point number to an integral float value.
939 Rounds the value toward zero. */)
940 (register Lisp_Object arg)
942 double d = extract_float (arg);
943 if (d >= 0.0)
944 IN_FLOAT (d = floor (d), "ftruncate", arg);
945 else
946 IN_FLOAT (d = ceil (d), "ftruncate", arg);
947 return make_float (d);
950 #ifdef FLOAT_CATCH_SIGILL
951 static void
952 float_error (int signo)
954 if (! in_float)
955 fatal_error_signal (signo);
957 #ifdef BSD_SYSTEM
958 sigsetmask (SIGEMPTYMASK);
959 #else
960 /* Must reestablish handler each time it is called. */
961 signal (SIGILL, float_error);
962 #endif /* BSD_SYSTEM */
964 SIGNAL_THREAD_CHECK (signo);
965 in_float = 0;
967 xsignal1 (Qarith_error, float_error_arg);
970 /* Another idea was to replace the library function `infnan'
971 where SIGILL is signaled. */
973 #endif /* FLOAT_CATCH_SIGILL */
975 #ifdef HAVE_MATHERR
977 matherr (struct exception *x)
979 Lisp_Object args;
980 const char *name = x->name;
982 if (! in_float)
983 /* Not called from emacs-lisp float routines; do the default thing. */
984 return 0;
985 if (!strcmp (x->name, "pow"))
986 name = "expt";
988 args
989 = Fcons (build_string (name),
990 Fcons (make_float (x->arg1),
991 ((!strcmp (name, "log") || !strcmp (name, "pow"))
992 ? Fcons (make_float (x->arg2), Qnil)
993 : Qnil)));
994 switch (x->type)
996 case DOMAIN: xsignal (Qdomain_error, args); break;
997 case SING: xsignal (Qsingularity_error, args); break;
998 case OVERFLOW: xsignal (Qoverflow_error, args); break;
999 case UNDERFLOW: xsignal (Qunderflow_error, args); break;
1000 default: xsignal (Qarith_error, args); break;
1002 return (1); /* don't set errno or print a message */
1004 #endif /* HAVE_MATHERR */
1006 void
1007 init_floatfns (void)
1009 #ifdef FLOAT_CATCH_SIGILL
1010 signal (SIGILL, float_error);
1011 #endif
1012 in_float = 0;
1015 void
1016 syms_of_floatfns (void)
1018 defsubr (&Sacos);
1019 defsubr (&Sasin);
1020 defsubr (&Satan);
1021 defsubr (&Scos);
1022 defsubr (&Ssin);
1023 defsubr (&Stan);
1024 defsubr (&Sisnan);
1025 #ifdef HAVE_COPYSIGN
1026 defsubr (&Scopysign);
1027 defsubr (&Sfrexp);
1028 defsubr (&Sldexp);
1029 #endif
1030 #if 0
1031 defsubr (&Sacosh);
1032 defsubr (&Sasinh);
1033 defsubr (&Satanh);
1034 defsubr (&Scosh);
1035 defsubr (&Ssinh);
1036 defsubr (&Stanh);
1037 defsubr (&Sbessel_y0);
1038 defsubr (&Sbessel_y1);
1039 defsubr (&Sbessel_yn);
1040 defsubr (&Sbessel_j0);
1041 defsubr (&Sbessel_j1);
1042 defsubr (&Sbessel_jn);
1043 defsubr (&Serf);
1044 defsubr (&Serfc);
1045 defsubr (&Slog_gamma);
1046 defsubr (&Scube_root);
1047 #endif
1048 defsubr (&Sfceiling);
1049 defsubr (&Sffloor);
1050 defsubr (&Sfround);
1051 defsubr (&Sftruncate);
1052 defsubr (&Sexp);
1053 defsubr (&Sexpt);
1054 defsubr (&Slog);
1055 defsubr (&Slog10);
1056 defsubr (&Ssqrt);
1058 defsubr (&Sabs);
1059 defsubr (&Sfloat);
1060 defsubr (&Slogb);
1061 defsubr (&Sceiling);
1062 defsubr (&Sfloor);
1063 defsubr (&Sround);
1064 defsubr (&Struncate);