* display.texi (Line Height): Emphasize that line-spacing only takes
[emacs.git] / src / fns.c
blobdd05f1f4ca7bd5ef4cb476ad4575b77658870211
1 /* Random utility Lisp functions.
2 Copyright (C) 1985, 1986, 1987, 1993, 1994, 1995, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004,
4 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
21 #include <config.h>
23 #ifdef HAVE_UNISTD_H
24 #include <unistd.h>
25 #endif
26 #include <time.h>
28 /* Note on some machines this defines `vector' as a typedef,
29 so make sure we don't use that name in this file. */
30 #undef vector
31 #define vector *****
33 #include "lisp.h"
34 #include "commands.h"
35 #include "character.h"
36 #include "coding.h"
37 #include "buffer.h"
38 #include "keyboard.h"
39 #include "keymap.h"
40 #include "intervals.h"
41 #include "frame.h"
42 #include "window.h"
43 #include "blockinput.h"
44 #ifdef HAVE_MENUS
45 #if defined (HAVE_X_WINDOWS)
46 #include "xterm.h"
47 #elif defined (MAC_OS)
48 #include "macterm.h"
49 #endif
50 #endif
52 #ifndef NULL
53 #define NULL ((POINTER_TYPE *)0)
54 #endif
56 /* Nonzero enables use of dialog boxes for questions
57 asked by mouse commands. */
58 int use_dialog_box;
60 /* Nonzero enables use of a file dialog for file name
61 questions asked by mouse commands. */
62 int use_file_dialog;
64 extern int minibuffer_auto_raise;
65 extern Lisp_Object minibuf_window;
66 extern Lisp_Object Vlocale_coding_system;
67 extern int load_in_progress;
69 Lisp_Object Qstring_lessp, Qprovide, Qrequire;
70 Lisp_Object Qyes_or_no_p_history;
71 Lisp_Object Qcursor_in_echo_area;
72 Lisp_Object Qwidget_type;
73 Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
75 extern Lisp_Object Qinput_method_function;
77 static int internal_equal P_ ((Lisp_Object , Lisp_Object, int, int));
79 extern long get_random ();
80 extern void seed_random P_ ((long));
82 #ifndef HAVE_UNISTD_H
83 extern long time ();
84 #endif
86 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
87 doc: /* Return the argument unchanged. */)
88 (arg)
89 Lisp_Object arg;
91 return arg;
94 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
95 doc: /* Return a pseudo-random number.
96 All integers representable in Lisp are equally likely.
97 On most systems, this is 29 bits' worth.
98 With positive integer LIMIT, return random number in interval [0,LIMIT).
99 With argument t, set the random number seed from the current time and pid.
100 Other values of LIMIT are ignored. */)
101 (limit)
102 Lisp_Object limit;
104 EMACS_INT val;
105 Lisp_Object lispy_val;
106 unsigned long denominator;
108 if (EQ (limit, Qt))
109 seed_random (getpid () + time (NULL));
110 if (NATNUMP (limit) && XFASTINT (limit) != 0)
112 /* Try to take our random number from the higher bits of VAL,
113 not the lower, since (says Gentzel) the low bits of `random'
114 are less random than the higher ones. We do this by using the
115 quotient rather than the remainder. At the high end of the RNG
116 it's possible to get a quotient larger than n; discarding
117 these values eliminates the bias that would otherwise appear
118 when using a large n. */
119 denominator = ((unsigned long)1 << VALBITS) / XFASTINT (limit);
121 val = get_random () / denominator;
122 while (val >= XFASTINT (limit));
124 else
125 val = get_random ();
126 XSETINT (lispy_val, val);
127 return lispy_val;
130 /* Random data-structure functions */
132 DEFUN ("length", Flength, Slength, 1, 1, 0,
133 doc: /* Return the length of vector, list or string SEQUENCE.
134 A byte-code function object is also allowed.
135 If the string contains multibyte characters, this is not necessarily
136 the number of bytes in the string; it is the number of characters.
137 To get the number of bytes, use `string-bytes'. */)
138 (sequence)
139 register Lisp_Object sequence;
141 register Lisp_Object val;
142 register int i;
144 if (STRINGP (sequence))
145 XSETFASTINT (val, SCHARS (sequence));
146 else if (VECTORP (sequence))
147 XSETFASTINT (val, ASIZE (sequence));
148 else if (CHAR_TABLE_P (sequence))
149 XSETFASTINT (val, MAX_CHAR);
150 else if (BOOL_VECTOR_P (sequence))
151 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
152 else if (COMPILEDP (sequence))
153 XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
154 else if (CONSP (sequence))
156 i = 0;
157 while (CONSP (sequence))
159 sequence = XCDR (sequence);
160 ++i;
162 if (!CONSP (sequence))
163 break;
165 sequence = XCDR (sequence);
166 ++i;
167 QUIT;
170 CHECK_LIST_END (sequence, sequence);
172 val = make_number (i);
174 else if (NILP (sequence))
175 XSETFASTINT (val, 0);
176 else
177 wrong_type_argument (Qsequencep, sequence);
179 return val;
182 /* This does not check for quits. That is safe since it must terminate. */
184 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
185 doc: /* Return the length of a list, but avoid error or infinite loop.
186 This function never gets an error. If LIST is not really a list,
187 it returns 0. If LIST is circular, it returns a finite value
188 which is at least the number of distinct elements. */)
189 (list)
190 Lisp_Object list;
192 Lisp_Object tail, halftail, length;
193 int len = 0;
195 /* halftail is used to detect circular lists. */
196 halftail = list;
197 for (tail = list; CONSP (tail); tail = XCDR (tail))
199 if (EQ (tail, halftail) && len != 0)
200 break;
201 len++;
202 if ((len & 1) == 0)
203 halftail = XCDR (halftail);
206 XSETINT (length, len);
207 return length;
210 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
211 doc: /* Return the number of bytes in STRING.
212 If STRING is multibyte, this may be greater than the length of STRING. */)
213 (string)
214 Lisp_Object string;
216 CHECK_STRING (string);
217 return make_number (SBYTES (string));
220 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
221 doc: /* Return t if two strings have identical contents.
222 Case is significant, but text properties are ignored.
223 Symbols are also allowed; their print names are used instead. */)
224 (s1, s2)
225 register Lisp_Object s1, s2;
227 if (SYMBOLP (s1))
228 s1 = SYMBOL_NAME (s1);
229 if (SYMBOLP (s2))
230 s2 = SYMBOL_NAME (s2);
231 CHECK_STRING (s1);
232 CHECK_STRING (s2);
234 if (SCHARS (s1) != SCHARS (s2)
235 || SBYTES (s1) != SBYTES (s2)
236 || bcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
237 return Qnil;
238 return Qt;
241 DEFUN ("compare-strings", Fcompare_strings,
242 Scompare_strings, 6, 7, 0,
243 doc: /* Compare the contents of two strings, converting to multibyte if needed.
244 In string STR1, skip the first START1 characters and stop at END1.
245 In string STR2, skip the first START2 characters and stop at END2.
246 END1 and END2 default to the full lengths of the respective strings.
248 Case is significant in this comparison if IGNORE-CASE is nil.
249 Unibyte strings are converted to multibyte for comparison.
251 The value is t if the strings (or specified portions) match.
252 If string STR1 is less, the value is a negative number N;
253 - 1 - N is the number of characters that match at the beginning.
254 If string STR1 is greater, the value is a positive number N;
255 N - 1 is the number of characters that match at the beginning. */)
256 (str1, start1, end1, str2, start2, end2, ignore_case)
257 Lisp_Object str1, start1, end1, start2, str2, end2, ignore_case;
259 register int end1_char, end2_char;
260 register int i1, i1_byte, i2, i2_byte;
262 CHECK_STRING (str1);
263 CHECK_STRING (str2);
264 if (NILP (start1))
265 start1 = make_number (0);
266 if (NILP (start2))
267 start2 = make_number (0);
268 CHECK_NATNUM (start1);
269 CHECK_NATNUM (start2);
270 if (! NILP (end1))
271 CHECK_NATNUM (end1);
272 if (! NILP (end2))
273 CHECK_NATNUM (end2);
275 i1 = XINT (start1);
276 i2 = XINT (start2);
278 i1_byte = string_char_to_byte (str1, i1);
279 i2_byte = string_char_to_byte (str2, i2);
281 end1_char = SCHARS (str1);
282 if (! NILP (end1) && end1_char > XINT (end1))
283 end1_char = XINT (end1);
285 end2_char = SCHARS (str2);
286 if (! NILP (end2) && end2_char > XINT (end2))
287 end2_char = XINT (end2);
289 while (i1 < end1_char && i2 < end2_char)
291 /* When we find a mismatch, we must compare the
292 characters, not just the bytes. */
293 int c1, c2;
295 if (STRING_MULTIBYTE (str1))
296 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
297 else
299 c1 = SREF (str1, i1++);
300 c1 = unibyte_char_to_multibyte (c1);
303 if (STRING_MULTIBYTE (str2))
304 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
305 else
307 c2 = SREF (str2, i2++);
308 c2 = unibyte_char_to_multibyte (c2);
311 if (c1 == c2)
312 continue;
314 if (! NILP (ignore_case))
316 Lisp_Object tem;
318 tem = Fupcase (make_number (c1));
319 c1 = XINT (tem);
320 tem = Fupcase (make_number (c2));
321 c2 = XINT (tem);
324 if (c1 == c2)
325 continue;
327 /* Note that I1 has already been incremented
328 past the character that we are comparing;
329 hence we don't add or subtract 1 here. */
330 if (c1 < c2)
331 return make_number (- i1 + XINT (start1));
332 else
333 return make_number (i1 - XINT (start1));
336 if (i1 < end1_char)
337 return make_number (i1 - XINT (start1) + 1);
338 if (i2 < end2_char)
339 return make_number (- i1 + XINT (start1) - 1);
341 return Qt;
344 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
345 doc: /* Return t if first arg string is less than second in lexicographic order.
346 Case is significant.
347 Symbols are also allowed; their print names are used instead. */)
348 (s1, s2)
349 register Lisp_Object s1, s2;
351 register int end;
352 register int i1, i1_byte, i2, i2_byte;
354 if (SYMBOLP (s1))
355 s1 = SYMBOL_NAME (s1);
356 if (SYMBOLP (s2))
357 s2 = SYMBOL_NAME (s2);
358 CHECK_STRING (s1);
359 CHECK_STRING (s2);
361 i1 = i1_byte = i2 = i2_byte = 0;
363 end = SCHARS (s1);
364 if (end > SCHARS (s2))
365 end = SCHARS (s2);
367 while (i1 < end)
369 /* When we find a mismatch, we must compare the
370 characters, not just the bytes. */
371 int c1, c2;
373 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
374 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
376 if (c1 != c2)
377 return c1 < c2 ? Qt : Qnil;
379 return i1 < SCHARS (s2) ? Qt : Qnil;
382 #if __GNUC__
383 /* "gcc -O3" enables automatic function inlining, which optimizes out
384 the arguments for the invocations of this function, whereas it
385 expects these values on the stack. */
386 static Lisp_Object concat P_ ((int nargs, Lisp_Object *args, enum Lisp_Type target_type, int last_special)) __attribute__((noinline));
387 #else /* !__GNUC__ */
388 static Lisp_Object concat P_ ((int nargs, Lisp_Object *args, enum Lisp_Type target_type, int last_special));
389 #endif
391 /* ARGSUSED */
392 Lisp_Object
393 concat2 (s1, s2)
394 Lisp_Object s1, s2;
396 #ifdef NO_ARG_ARRAY
397 Lisp_Object args[2];
398 args[0] = s1;
399 args[1] = s2;
400 return concat (2, args, Lisp_String, 0);
401 #else
402 return concat (2, &s1, Lisp_String, 0);
403 #endif /* NO_ARG_ARRAY */
406 /* ARGSUSED */
407 Lisp_Object
408 concat3 (s1, s2, s3)
409 Lisp_Object s1, s2, s3;
411 #ifdef NO_ARG_ARRAY
412 Lisp_Object args[3];
413 args[0] = s1;
414 args[1] = s2;
415 args[2] = s3;
416 return concat (3, args, Lisp_String, 0);
417 #else
418 return concat (3, &s1, Lisp_String, 0);
419 #endif /* NO_ARG_ARRAY */
422 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
423 doc: /* Concatenate all the arguments and make the result a list.
424 The result is a list whose elements are the elements of all the arguments.
425 Each argument may be a list, vector or string.
426 The last argument is not copied, just used as the tail of the new list.
427 usage: (append &rest SEQUENCES) */)
428 (nargs, args)
429 int nargs;
430 Lisp_Object *args;
432 return concat (nargs, args, Lisp_Cons, 1);
435 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
436 doc: /* Concatenate all the arguments and make the result a string.
437 The result is a string whose elements are the elements of all the arguments.
438 Each argument may be a string or a list or vector of characters (integers).
439 usage: (concat &rest SEQUENCES) */)
440 (nargs, args)
441 int nargs;
442 Lisp_Object *args;
444 return concat (nargs, args, Lisp_String, 0);
447 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
448 doc: /* Concatenate all the arguments and make the result a vector.
449 The result is a vector whose elements are the elements of all the arguments.
450 Each argument may be a list, vector or string.
451 usage: (vconcat &rest SEQUENCES) */)
452 (nargs, args)
453 int nargs;
454 Lisp_Object *args;
456 return concat (nargs, args, Lisp_Vectorlike, 0);
460 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
461 doc: /* Return a copy of a list, vector, string or char-table.
462 The elements of a list or vector are not copied; they are shared
463 with the original. */)
464 (arg)
465 Lisp_Object arg;
467 if (NILP (arg)) return arg;
469 if (CHAR_TABLE_P (arg))
471 return copy_char_table (arg);
474 if (BOOL_VECTOR_P (arg))
476 Lisp_Object val;
477 int size_in_chars
478 = ((XBOOL_VECTOR (arg)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
479 / BOOL_VECTOR_BITS_PER_CHAR);
481 val = Fmake_bool_vector (Flength (arg), Qnil);
482 bcopy (XBOOL_VECTOR (arg)->data, XBOOL_VECTOR (val)->data,
483 size_in_chars);
484 return val;
487 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
488 wrong_type_argument (Qsequencep, arg);
490 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
493 /* This structure holds information of an argument of `concat' that is
494 a string and has text properties to be copied. */
495 struct textprop_rec
497 int argnum; /* refer to ARGS (arguments of `concat') */
498 int from; /* refer to ARGS[argnum] (argument string) */
499 int to; /* refer to VAL (the target string) */
502 static Lisp_Object
503 concat (nargs, args, target_type, last_special)
504 int nargs;
505 Lisp_Object *args;
506 enum Lisp_Type target_type;
507 int last_special;
509 Lisp_Object val;
510 register Lisp_Object tail;
511 register Lisp_Object this;
512 int toindex;
513 int toindex_byte = 0;
514 register int result_len;
515 register int result_len_byte;
516 register int argnum;
517 Lisp_Object last_tail;
518 Lisp_Object prev;
519 int some_multibyte;
520 /* When we make a multibyte string, we can't copy text properties
521 while concatinating each string because the length of resulting
522 string can't be decided until we finish the whole concatination.
523 So, we record strings that have text properties to be copied
524 here, and copy the text properties after the concatination. */
525 struct textprop_rec *textprops = NULL;
526 /* Number of elments in textprops. */
527 int num_textprops = 0;
528 USE_SAFE_ALLOCA;
530 tail = Qnil;
532 /* In append, the last arg isn't treated like the others */
533 if (last_special && nargs > 0)
535 nargs--;
536 last_tail = args[nargs];
538 else
539 last_tail = Qnil;
541 /* Check each argument. */
542 for (argnum = 0; argnum < nargs; argnum++)
544 this = args[argnum];
545 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
546 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
547 wrong_type_argument (Qsequencep, this);
550 /* Compute total length in chars of arguments in RESULT_LEN.
551 If desired output is a string, also compute length in bytes
552 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
553 whether the result should be a multibyte string. */
554 result_len_byte = 0;
555 result_len = 0;
556 some_multibyte = 0;
557 for (argnum = 0; argnum < nargs; argnum++)
559 int len;
560 this = args[argnum];
561 len = XFASTINT (Flength (this));
562 if (target_type == Lisp_String)
564 /* We must count the number of bytes needed in the string
565 as well as the number of characters. */
566 int i;
567 Lisp_Object ch;
568 int this_len_byte;
570 if (VECTORP (this))
571 for (i = 0; i < len; i++)
573 ch = AREF (this, i);
574 CHECK_CHARACTER (ch);
575 this_len_byte = CHAR_BYTES (XINT (ch));
576 result_len_byte += this_len_byte;
577 if (! ASCII_CHAR_P (XINT (ch)) && ! CHAR_BYTE8_P (XINT (ch)))
578 some_multibyte = 1;
580 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
581 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
582 else if (CONSP (this))
583 for (; CONSP (this); this = XCDR (this))
585 ch = XCAR (this);
586 CHECK_CHARACTER (ch);
587 this_len_byte = CHAR_BYTES (XINT (ch));
588 result_len_byte += this_len_byte;
589 if (! ASCII_CHAR_P (XINT (ch)) && ! CHAR_BYTE8_P (XINT (ch)))
590 some_multibyte = 1;
592 else if (STRINGP (this))
594 if (STRING_MULTIBYTE (this))
596 some_multibyte = 1;
597 result_len_byte += SBYTES (this);
599 else
600 result_len_byte += count_size_as_multibyte (SDATA (this),
601 SCHARS (this));
605 result_len += len;
606 if (result_len < 0)
607 error ("String overflow");
610 if (! some_multibyte)
611 result_len_byte = result_len;
613 /* Create the output object. */
614 if (target_type == Lisp_Cons)
615 val = Fmake_list (make_number (result_len), Qnil);
616 else if (target_type == Lisp_Vectorlike)
617 val = Fmake_vector (make_number (result_len), Qnil);
618 else if (some_multibyte)
619 val = make_uninit_multibyte_string (result_len, result_len_byte);
620 else
621 val = make_uninit_string (result_len);
623 /* In `append', if all but last arg are nil, return last arg. */
624 if (target_type == Lisp_Cons && EQ (val, Qnil))
625 return last_tail;
627 /* Copy the contents of the args into the result. */
628 if (CONSP (val))
629 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
630 else
631 toindex = 0, toindex_byte = 0;
633 prev = Qnil;
634 if (STRINGP (val))
635 SAFE_ALLOCA (textprops, struct textprop_rec *, sizeof (struct textprop_rec) * nargs);
637 for (argnum = 0; argnum < nargs; argnum++)
639 Lisp_Object thislen;
640 int thisleni = 0;
641 register unsigned int thisindex = 0;
642 register unsigned int thisindex_byte = 0;
644 this = args[argnum];
645 if (!CONSP (this))
646 thislen = Flength (this), thisleni = XINT (thislen);
648 /* Between strings of the same kind, copy fast. */
649 if (STRINGP (this) && STRINGP (val)
650 && STRING_MULTIBYTE (this) == some_multibyte)
652 int thislen_byte = SBYTES (this);
654 bcopy (SDATA (this), SDATA (val) + toindex_byte,
655 SBYTES (this));
656 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
658 textprops[num_textprops].argnum = argnum;
659 textprops[num_textprops].from = 0;
660 textprops[num_textprops++].to = toindex;
662 toindex_byte += thislen_byte;
663 toindex += thisleni;
664 STRING_SET_CHARS (val, SCHARS (val));
666 /* Copy a single-byte string to a multibyte string. */
667 else if (STRINGP (this) && STRINGP (val))
669 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
671 textprops[num_textprops].argnum = argnum;
672 textprops[num_textprops].from = 0;
673 textprops[num_textprops++].to = toindex;
675 toindex_byte += copy_text (SDATA (this),
676 SDATA (val) + toindex_byte,
677 SCHARS (this), 0, 1);
678 toindex += thisleni;
680 else
681 /* Copy element by element. */
682 while (1)
684 register Lisp_Object elt;
686 /* Fetch next element of `this' arg into `elt', or break if
687 `this' is exhausted. */
688 if (NILP (this)) break;
689 if (CONSP (this))
690 elt = XCAR (this), this = XCDR (this);
691 else if (thisindex >= thisleni)
692 break;
693 else if (STRINGP (this))
695 int c;
696 if (STRING_MULTIBYTE (this))
698 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
699 thisindex,
700 thisindex_byte);
701 XSETFASTINT (elt, c);
703 else
705 XSETFASTINT (elt, SREF (this, thisindex)); thisindex++;
706 if (some_multibyte
707 && XINT (elt) >= 0200
708 && XINT (elt) < 0400)
710 c = unibyte_char_to_multibyte (XINT (elt));
711 XSETINT (elt, c);
715 else if (BOOL_VECTOR_P (this))
717 int byte;
718 byte = XBOOL_VECTOR (this)->data[thisindex / BOOL_VECTOR_BITS_PER_CHAR];
719 if (byte & (1 << (thisindex % BOOL_VECTOR_BITS_PER_CHAR)))
720 elt = Qt;
721 else
722 elt = Qnil;
723 thisindex++;
725 else
727 elt = AREF (this, thisindex);
728 thisindex++;
731 /* Store this element into the result. */
732 if (toindex < 0)
734 XSETCAR (tail, elt);
735 prev = tail;
736 tail = XCDR (tail);
738 else if (VECTORP (val))
740 ASET (val, toindex, elt);
741 toindex++;
743 else
745 CHECK_NUMBER (elt);
746 if (some_multibyte)
747 toindex_byte += CHAR_STRING (XINT (elt),
748 SDATA (val) + toindex_byte);
749 else
750 SSET (val, toindex_byte++, XINT (elt));
751 toindex++;
755 if (!NILP (prev))
756 XSETCDR (prev, last_tail);
758 if (num_textprops > 0)
760 Lisp_Object props;
761 int last_to_end = -1;
763 for (argnum = 0; argnum < num_textprops; argnum++)
765 this = args[textprops[argnum].argnum];
766 props = text_property_list (this,
767 make_number (0),
768 make_number (SCHARS (this)),
769 Qnil);
770 /* If successive arguments have properites, be sure that the
771 value of `composition' property be the copy. */
772 if (last_to_end == textprops[argnum].to)
773 make_composition_value_copy (props);
774 add_text_properties_from_list (val, props,
775 make_number (textprops[argnum].to));
776 last_to_end = textprops[argnum].to + SCHARS (this);
780 SAFE_FREE ();
781 return val;
784 static Lisp_Object string_char_byte_cache_string;
785 static EMACS_INT string_char_byte_cache_charpos;
786 static EMACS_INT string_char_byte_cache_bytepos;
788 void
789 clear_string_char_byte_cache ()
791 string_char_byte_cache_string = Qnil;
794 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
796 EMACS_INT
797 string_char_to_byte (string, char_index)
798 Lisp_Object string;
799 EMACS_INT char_index;
801 EMACS_INT i_byte;
802 EMACS_INT best_below, best_below_byte;
803 EMACS_INT best_above, best_above_byte;
805 best_below = best_below_byte = 0;
806 best_above = SCHARS (string);
807 best_above_byte = SBYTES (string);
808 if (best_above == best_above_byte)
809 return char_index;
811 if (EQ (string, string_char_byte_cache_string))
813 if (string_char_byte_cache_charpos < char_index)
815 best_below = string_char_byte_cache_charpos;
816 best_below_byte = string_char_byte_cache_bytepos;
818 else
820 best_above = string_char_byte_cache_charpos;
821 best_above_byte = string_char_byte_cache_bytepos;
825 if (char_index - best_below < best_above - char_index)
827 unsigned char *p = SDATA (string) + best_below_byte;
829 while (best_below < char_index)
831 p += BYTES_BY_CHAR_HEAD (*p);
832 best_below++;
834 i_byte = p - SDATA (string);
836 else
838 unsigned char *p = SDATA (string) + best_above_byte;
840 while (best_above > char_index)
842 p--;
843 while (!CHAR_HEAD_P (*p)) p--;
844 best_above--;
846 i_byte = p - SDATA (string);
849 string_char_byte_cache_bytepos = i_byte;
850 string_char_byte_cache_charpos = char_index;
851 string_char_byte_cache_string = string;
853 return i_byte;
856 /* Return the character index corresponding to BYTE_INDEX in STRING. */
858 EMACS_INT
859 string_byte_to_char (string, byte_index)
860 Lisp_Object string;
861 EMACS_INT byte_index;
863 EMACS_INT i, i_byte;
864 EMACS_INT best_below, best_below_byte;
865 EMACS_INT best_above, best_above_byte;
867 best_below = best_below_byte = 0;
868 best_above = SCHARS (string);
869 best_above_byte = SBYTES (string);
870 if (best_above == best_above_byte)
871 return byte_index;
873 if (EQ (string, string_char_byte_cache_string))
875 if (string_char_byte_cache_bytepos < byte_index)
877 best_below = string_char_byte_cache_charpos;
878 best_below_byte = string_char_byte_cache_bytepos;
880 else
882 best_above = string_char_byte_cache_charpos;
883 best_above_byte = string_char_byte_cache_bytepos;
887 if (byte_index - best_below_byte < best_above_byte - byte_index)
889 unsigned char *p = SDATA (string) + best_below_byte;
890 unsigned char *pend = SDATA (string) + byte_index;
892 while (p < pend)
894 p += BYTES_BY_CHAR_HEAD (*p);
895 best_below++;
897 i = best_below;
898 i_byte = p - SDATA (string);
900 else
902 unsigned char *p = SDATA (string) + best_above_byte;
903 unsigned char *pbeg = SDATA (string) + byte_index;
905 while (p > pbeg)
907 p--;
908 while (!CHAR_HEAD_P (*p)) p--;
909 best_above--;
911 i = best_above;
912 i_byte = p - SDATA (string);
915 string_char_byte_cache_bytepos = i_byte;
916 string_char_byte_cache_charpos = i;
917 string_char_byte_cache_string = string;
919 return i;
922 /* Convert STRING to a multibyte string. */
924 Lisp_Object
925 string_make_multibyte (string)
926 Lisp_Object string;
928 unsigned char *buf;
929 EMACS_INT nbytes;
930 Lisp_Object ret;
931 USE_SAFE_ALLOCA;
933 if (STRING_MULTIBYTE (string))
934 return string;
936 nbytes = count_size_as_multibyte (SDATA (string),
937 SCHARS (string));
938 /* If all the chars are ASCII, they won't need any more bytes
939 once converted. In that case, we can return STRING itself. */
940 if (nbytes == SBYTES (string))
941 return string;
943 SAFE_ALLOCA (buf, unsigned char *, nbytes);
944 copy_text (SDATA (string), buf, SBYTES (string),
945 0, 1);
947 ret = make_multibyte_string (buf, SCHARS (string), nbytes);
948 SAFE_FREE ();
950 return ret;
954 /* Convert STRING (if unibyte) to a multibyte string without changing
955 the number of characters. Characters 0200 trough 0237 are
956 converted to eight-bit characters. */
958 Lisp_Object
959 string_to_multibyte (string)
960 Lisp_Object string;
962 unsigned char *buf;
963 EMACS_INT nbytes;
964 Lisp_Object ret;
965 USE_SAFE_ALLOCA;
967 if (STRING_MULTIBYTE (string))
968 return string;
970 nbytes = parse_str_to_multibyte (SDATA (string), SBYTES (string));
971 /* If all the chars are ASCII, they won't need any more bytes once
972 converted. */
973 if (nbytes == SBYTES (string))
974 return make_multibyte_string (SDATA (string), nbytes, nbytes);
976 SAFE_ALLOCA (buf, unsigned char *, nbytes);
977 bcopy (SDATA (string), buf, SBYTES (string));
978 str_to_multibyte (buf, nbytes, SBYTES (string));
980 ret = make_multibyte_string (buf, SCHARS (string), nbytes);
981 SAFE_FREE ();
983 return ret;
987 /* Convert STRING to a single-byte string. */
989 Lisp_Object
990 string_make_unibyte (string)
991 Lisp_Object string;
993 int nchars;
994 unsigned char *buf;
995 Lisp_Object ret;
996 USE_SAFE_ALLOCA;
998 if (! STRING_MULTIBYTE (string))
999 return string;
1001 nchars = SCHARS (string);
1003 SAFE_ALLOCA (buf, unsigned char *, nchars);
1004 copy_text (SDATA (string), buf, SBYTES (string),
1005 1, 0);
1007 ret = make_unibyte_string (buf, nchars);
1008 SAFE_FREE ();
1010 return ret;
1013 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
1014 1, 1, 0,
1015 doc: /* Return the multibyte equivalent of STRING.
1016 If STRING is unibyte and contains non-ASCII characters, the function
1017 `unibyte-char-to-multibyte' is used to convert each unibyte character
1018 to a multibyte character. In this case, the returned string is a
1019 newly created string with no text properties. If STRING is multibyte
1020 or entirely ASCII, it is returned unchanged. In particular, when
1021 STRING is unibyte and entirely ASCII, the returned string is unibyte.
1022 \(When the characters are all ASCII, Emacs primitives will treat the
1023 string the same way whether it is unibyte or multibyte.) */)
1024 (string)
1025 Lisp_Object string;
1027 CHECK_STRING (string);
1029 return string_make_multibyte (string);
1032 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
1033 1, 1, 0,
1034 doc: /* Return the unibyte equivalent of STRING.
1035 Multibyte character codes are converted to unibyte according to
1036 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
1037 If the lookup in the translation table fails, this function takes just
1038 the low 8 bits of each character. */)
1039 (string)
1040 Lisp_Object string;
1042 CHECK_STRING (string);
1044 return string_make_unibyte (string);
1047 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
1048 1, 1, 0,
1049 doc: /* Return a unibyte string with the same individual bytes as STRING.
1050 If STRING is unibyte, the result is STRING itself.
1051 Otherwise it is a newly created string, with no text properties.
1052 If STRING is multibyte and contains a character of charset
1053 `eight-bit', it is converted to the corresponding single byte. */)
1054 (string)
1055 Lisp_Object string;
1057 CHECK_STRING (string);
1059 if (STRING_MULTIBYTE (string))
1061 int bytes = SBYTES (string);
1062 unsigned char *str = (unsigned char *) xmalloc (bytes);
1064 bcopy (SDATA (string), str, bytes);
1065 bytes = str_as_unibyte (str, bytes);
1066 string = make_unibyte_string (str, bytes);
1067 xfree (str);
1069 return string;
1072 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1073 1, 1, 0,
1074 doc: /* Return a multibyte string with the same individual bytes as STRING.
1075 If STRING is multibyte, the result is STRING itself.
1076 Otherwise it is a newly created string, with no text properties.
1078 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1079 part of a correct utf-8 sequence), it is converted to the corresponding
1080 multibyte character of charset `eight-bit'.
1081 See also `string-to-multibyte'.
1083 Beware, this often doesn't really do what you think it does.
1084 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1085 If you're not sure, whether to use `string-as-multibyte' or
1086 `string-to-multibyte', use `string-to-multibyte'. */)
1087 (string)
1088 Lisp_Object string;
1090 CHECK_STRING (string);
1092 if (! STRING_MULTIBYTE (string))
1094 Lisp_Object new_string;
1095 int nchars, nbytes;
1097 parse_str_as_multibyte (SDATA (string),
1098 SBYTES (string),
1099 &nchars, &nbytes);
1100 new_string = make_uninit_multibyte_string (nchars, nbytes);
1101 bcopy (SDATA (string), SDATA (new_string),
1102 SBYTES (string));
1103 if (nbytes != SBYTES (string))
1104 str_as_multibyte (SDATA (new_string), nbytes,
1105 SBYTES (string), NULL);
1106 string = new_string;
1107 STRING_SET_INTERVALS (string, NULL_INTERVAL);
1109 return string;
1112 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1113 1, 1, 0,
1114 doc: /* Return a multibyte string with the same individual chars as STRING.
1115 If STRING is multibyte, the result is STRING itself.
1116 Otherwise it is a newly created string, with no text properties.
1118 If STRING is unibyte and contains an 8-bit byte, it is converted to
1119 the corresponding multibyte character of charset `eight-bit'.
1121 This differs from `string-as-multibyte' by converting each byte of a correct
1122 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1123 correct sequence. */)
1124 (string)
1125 Lisp_Object string;
1127 CHECK_STRING (string);
1129 return string_to_multibyte (string);
1132 DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
1133 1, 1, 0,
1134 doc: /* Return a unibyte string with the same individual chars as STRING.
1135 If STRING is unibyte, the result is STRING itself.
1136 Otherwise it is a newly created string, with no text properties,
1137 where each `eight-bit' character is converted to the corresponding byte.
1138 If STRING contains a non-ASCII, non-`eight-bit' character,
1139 an error is signaled. */)
1140 (string)
1141 Lisp_Object string;
1143 CHECK_STRING (string);
1145 if (STRING_MULTIBYTE (string))
1147 EMACS_INT chars = SCHARS (string);
1148 unsigned char *str = (unsigned char *) xmalloc (chars);
1149 EMACS_INT converted = str_to_unibyte (SDATA (string), str, chars, 0);
1151 if (converted < chars)
1152 error ("Can't convert the %dth character to unibyte", converted);
1153 string = make_unibyte_string (str, chars);
1154 xfree (str);
1156 return string;
1160 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1161 doc: /* Return a copy of ALIST.
1162 This is an alist which represents the same mapping from objects to objects,
1163 but does not share the alist structure with ALIST.
1164 The objects mapped (cars and cdrs of elements of the alist)
1165 are shared, however.
1166 Elements of ALIST that are not conses are also shared. */)
1167 (alist)
1168 Lisp_Object alist;
1170 register Lisp_Object tem;
1172 CHECK_LIST (alist);
1173 if (NILP (alist))
1174 return alist;
1175 alist = concat (1, &alist, Lisp_Cons, 0);
1176 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1178 register Lisp_Object car;
1179 car = XCAR (tem);
1181 if (CONSP (car))
1182 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1184 return alist;
1187 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1188 doc: /* Return a new string whose contents are a substring of STRING.
1189 The returned string consists of the characters between index FROM
1190 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1191 zero-indexed: 0 means the first character of STRING. Negative values
1192 are counted from the end of STRING. If TO is nil, the substring runs
1193 to the end of STRING.
1195 The STRING argument may also be a vector. In that case, the return
1196 value is a new vector that contains the elements between index FROM
1197 \(inclusive) and index TO (exclusive) of that vector argument. */)
1198 (string, from, to)
1199 Lisp_Object string;
1200 register Lisp_Object from, to;
1202 Lisp_Object res;
1203 int size;
1204 int size_byte = 0;
1205 int from_char, to_char;
1206 int from_byte = 0, to_byte = 0;
1208 CHECK_VECTOR_OR_STRING (string);
1209 CHECK_NUMBER (from);
1211 if (STRINGP (string))
1213 size = SCHARS (string);
1214 size_byte = SBYTES (string);
1216 else
1217 size = ASIZE (string);
1219 if (NILP (to))
1221 to_char = size;
1222 to_byte = size_byte;
1224 else
1226 CHECK_NUMBER (to);
1228 to_char = XINT (to);
1229 if (to_char < 0)
1230 to_char += size;
1232 if (STRINGP (string))
1233 to_byte = string_char_to_byte (string, to_char);
1236 from_char = XINT (from);
1237 if (from_char < 0)
1238 from_char += size;
1239 if (STRINGP (string))
1240 from_byte = string_char_to_byte (string, from_char);
1242 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1243 args_out_of_range_3 (string, make_number (from_char),
1244 make_number (to_char));
1246 if (STRINGP (string))
1248 res = make_specified_string (SDATA (string) + from_byte,
1249 to_char - from_char, to_byte - from_byte,
1250 STRING_MULTIBYTE (string));
1251 copy_text_properties (make_number (from_char), make_number (to_char),
1252 string, make_number (0), res, Qnil);
1254 else
1255 res = Fvector (to_char - from_char, &AREF (string, from_char));
1257 return res;
1261 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1262 doc: /* Return a substring of STRING, without text properties.
1263 It starts at index FROM and ending before TO.
1264 TO may be nil or omitted; then the substring runs to the end of STRING.
1265 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1266 If FROM or TO is negative, it counts from the end.
1268 With one argument, just copy STRING without its properties. */)
1269 (string, from, to)
1270 Lisp_Object string;
1271 register Lisp_Object from, to;
1273 int size, size_byte;
1274 int from_char, to_char;
1275 int from_byte, to_byte;
1277 CHECK_STRING (string);
1279 size = SCHARS (string);
1280 size_byte = SBYTES (string);
1282 if (NILP (from))
1283 from_char = from_byte = 0;
1284 else
1286 CHECK_NUMBER (from);
1287 from_char = XINT (from);
1288 if (from_char < 0)
1289 from_char += size;
1291 from_byte = string_char_to_byte (string, from_char);
1294 if (NILP (to))
1296 to_char = size;
1297 to_byte = size_byte;
1299 else
1301 CHECK_NUMBER (to);
1303 to_char = XINT (to);
1304 if (to_char < 0)
1305 to_char += size;
1307 to_byte = string_char_to_byte (string, to_char);
1310 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1311 args_out_of_range_3 (string, make_number (from_char),
1312 make_number (to_char));
1314 return make_specified_string (SDATA (string) + from_byte,
1315 to_char - from_char, to_byte - from_byte,
1316 STRING_MULTIBYTE (string));
1319 /* Extract a substring of STRING, giving start and end positions
1320 both in characters and in bytes. */
1322 Lisp_Object
1323 substring_both (string, from, from_byte, to, to_byte)
1324 Lisp_Object string;
1325 int from, from_byte, to, to_byte;
1327 Lisp_Object res;
1328 int size;
1329 int size_byte;
1331 CHECK_VECTOR_OR_STRING (string);
1333 if (STRINGP (string))
1335 size = SCHARS (string);
1336 size_byte = SBYTES (string);
1338 else
1339 size = ASIZE (string);
1341 if (!(0 <= from && from <= to && to <= size))
1342 args_out_of_range_3 (string, make_number (from), make_number (to));
1344 if (STRINGP (string))
1346 res = make_specified_string (SDATA (string) + from_byte,
1347 to - from, to_byte - from_byte,
1348 STRING_MULTIBYTE (string));
1349 copy_text_properties (make_number (from), make_number (to),
1350 string, make_number (0), res, Qnil);
1352 else
1353 res = Fvector (to - from, &AREF (string, from));
1355 return res;
1358 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1359 doc: /* Take cdr N times on LIST, returns the result. */)
1360 (n, list)
1361 Lisp_Object n;
1362 register Lisp_Object list;
1364 register int i, num;
1365 CHECK_NUMBER (n);
1366 num = XINT (n);
1367 for (i = 0; i < num && !NILP (list); i++)
1369 QUIT;
1370 CHECK_LIST_CONS (list, list);
1371 list = XCDR (list);
1373 return list;
1376 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1377 doc: /* Return the Nth element of LIST.
1378 N counts from zero. If LIST is not that long, nil is returned. */)
1379 (n, list)
1380 Lisp_Object n, list;
1382 return Fcar (Fnthcdr (n, list));
1385 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1386 doc: /* Return element of SEQUENCE at index N. */)
1387 (sequence, n)
1388 register Lisp_Object sequence, n;
1390 CHECK_NUMBER (n);
1391 if (CONSP (sequence) || NILP (sequence))
1392 return Fcar (Fnthcdr (n, sequence));
1394 /* Faref signals a "not array" error, so check here. */
1395 CHECK_ARRAY (sequence, Qsequencep);
1396 return Faref (sequence, n);
1399 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1400 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1401 The value is actually the tail of LIST whose car is ELT. */)
1402 (elt, list)
1403 register Lisp_Object elt;
1404 Lisp_Object list;
1406 register Lisp_Object tail;
1407 for (tail = list; CONSP (tail); tail = XCDR (tail))
1409 register Lisp_Object tem;
1410 CHECK_LIST_CONS (tail, list);
1411 tem = XCAR (tail);
1412 if (! NILP (Fequal (elt, tem)))
1413 return tail;
1414 QUIT;
1416 return Qnil;
1419 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1420 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1421 The value is actually the tail of LIST whose car is ELT. */)
1422 (elt, list)
1423 register Lisp_Object elt, list;
1425 while (1)
1427 if (!CONSP (list) || EQ (XCAR (list), elt))
1428 break;
1430 list = XCDR (list);
1431 if (!CONSP (list) || EQ (XCAR (list), elt))
1432 break;
1434 list = XCDR (list);
1435 if (!CONSP (list) || EQ (XCAR (list), elt))
1436 break;
1438 list = XCDR (list);
1439 QUIT;
1442 CHECK_LIST (list);
1443 return list;
1446 DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1447 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1448 The value is actually the tail of LIST whose car is ELT. */)
1449 (elt, list)
1450 register Lisp_Object elt;
1451 Lisp_Object list;
1453 register Lisp_Object tail;
1455 if (!FLOATP (elt))
1456 return Fmemq (elt, list);
1458 for (tail = list; CONSP (tail); tail = XCDR (tail))
1460 register Lisp_Object tem;
1461 CHECK_LIST_CONS (tail, list);
1462 tem = XCAR (tail);
1463 if (FLOATP (tem) && internal_equal (elt, tem, 0, 0))
1464 return tail;
1465 QUIT;
1467 return Qnil;
1470 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1471 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1472 The value is actually the first element of LIST whose car is KEY.
1473 Elements of LIST that are not conses are ignored. */)
1474 (key, list)
1475 Lisp_Object key, list;
1477 while (1)
1479 if (!CONSP (list)
1480 || (CONSP (XCAR (list))
1481 && EQ (XCAR (XCAR (list)), key)))
1482 break;
1484 list = XCDR (list);
1485 if (!CONSP (list)
1486 || (CONSP (XCAR (list))
1487 && EQ (XCAR (XCAR (list)), key)))
1488 break;
1490 list = XCDR (list);
1491 if (!CONSP (list)
1492 || (CONSP (XCAR (list))
1493 && EQ (XCAR (XCAR (list)), key)))
1494 break;
1496 list = XCDR (list);
1497 QUIT;
1500 return CAR (list);
1503 /* Like Fassq but never report an error and do not allow quits.
1504 Use only on lists known never to be circular. */
1506 Lisp_Object
1507 assq_no_quit (key, list)
1508 Lisp_Object key, list;
1510 while (CONSP (list)
1511 && (!CONSP (XCAR (list))
1512 || !EQ (XCAR (XCAR (list)), key)))
1513 list = XCDR (list);
1515 return CAR_SAFE (list);
1518 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1519 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1520 The value is actually the first element of LIST whose car equals KEY. */)
1521 (key, list)
1522 Lisp_Object key, list;
1524 Lisp_Object car;
1526 while (1)
1528 if (!CONSP (list)
1529 || (CONSP (XCAR (list))
1530 && (car = XCAR (XCAR (list)),
1531 EQ (car, key) || !NILP (Fequal (car, key)))))
1532 break;
1534 list = XCDR (list);
1535 if (!CONSP (list)
1536 || (CONSP (XCAR (list))
1537 && (car = XCAR (XCAR (list)),
1538 EQ (car, key) || !NILP (Fequal (car, key)))))
1539 break;
1541 list = XCDR (list);
1542 if (!CONSP (list)
1543 || (CONSP (XCAR (list))
1544 && (car = XCAR (XCAR (list)),
1545 EQ (car, key) || !NILP (Fequal (car, key)))))
1546 break;
1548 list = XCDR (list);
1549 QUIT;
1552 return CAR (list);
1555 /* Like Fassoc but never report an error and do not allow quits.
1556 Use only on lists known never to be circular. */
1558 Lisp_Object
1559 assoc_no_quit (key, list)
1560 Lisp_Object key, list;
1562 while (CONSP (list)
1563 && (!CONSP (XCAR (list))
1564 || (!EQ (XCAR (XCAR (list)), key)
1565 && NILP (Fequal (XCAR (XCAR (list)), key)))))
1566 list = XCDR (list);
1568 return CONSP (list) ? XCAR (list) : Qnil;
1571 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1572 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1573 The value is actually the first element of LIST whose cdr is KEY. */)
1574 (key, list)
1575 register Lisp_Object key;
1576 Lisp_Object list;
1578 while (1)
1580 if (!CONSP (list)
1581 || (CONSP (XCAR (list))
1582 && EQ (XCDR (XCAR (list)), key)))
1583 break;
1585 list = XCDR (list);
1586 if (!CONSP (list)
1587 || (CONSP (XCAR (list))
1588 && EQ (XCDR (XCAR (list)), key)))
1589 break;
1591 list = XCDR (list);
1592 if (!CONSP (list)
1593 || (CONSP (XCAR (list))
1594 && EQ (XCDR (XCAR (list)), key)))
1595 break;
1597 list = XCDR (list);
1598 QUIT;
1601 return CAR (list);
1604 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1605 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1606 The value is actually the first element of LIST whose cdr equals KEY. */)
1607 (key, list)
1608 Lisp_Object key, list;
1610 Lisp_Object cdr;
1612 while (1)
1614 if (!CONSP (list)
1615 || (CONSP (XCAR (list))
1616 && (cdr = XCDR (XCAR (list)),
1617 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1618 break;
1620 list = XCDR (list);
1621 if (!CONSP (list)
1622 || (CONSP (XCAR (list))
1623 && (cdr = XCDR (XCAR (list)),
1624 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1625 break;
1627 list = XCDR (list);
1628 if (!CONSP (list)
1629 || (CONSP (XCAR (list))
1630 && (cdr = XCDR (XCAR (list)),
1631 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1632 break;
1634 list = XCDR (list);
1635 QUIT;
1638 return CAR (list);
1641 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1642 doc: /* Delete by side effect any occurrences of ELT as a member of LIST.
1643 The modified LIST is returned. Comparison is done with `eq'.
1644 If the first member of LIST is ELT, there is no way to remove it by side effect;
1645 therefore, write `(setq foo (delq element foo))'
1646 to be sure of changing the value of `foo'. */)
1647 (elt, list)
1648 register Lisp_Object elt;
1649 Lisp_Object list;
1651 register Lisp_Object tail, prev;
1652 register Lisp_Object tem;
1654 tail = list;
1655 prev = Qnil;
1656 while (!NILP (tail))
1658 CHECK_LIST_CONS (tail, list);
1659 tem = XCAR (tail);
1660 if (EQ (elt, tem))
1662 if (NILP (prev))
1663 list = XCDR (tail);
1664 else
1665 Fsetcdr (prev, XCDR (tail));
1667 else
1668 prev = tail;
1669 tail = XCDR (tail);
1670 QUIT;
1672 return list;
1675 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1676 doc: /* Delete by side effect any occurrences of ELT as a member of SEQ.
1677 SEQ must be a list, a vector, or a string.
1678 The modified SEQ is returned. Comparison is done with `equal'.
1679 If SEQ is not a list, or the first member of SEQ is ELT, deleting it
1680 is not a side effect; it is simply using a different sequence.
1681 Therefore, write `(setq foo (delete element foo))'
1682 to be sure of changing the value of `foo'. */)
1683 (elt, seq)
1684 Lisp_Object elt, seq;
1686 if (VECTORP (seq))
1688 EMACS_INT i, n;
1690 for (i = n = 0; i < ASIZE (seq); ++i)
1691 if (NILP (Fequal (AREF (seq, i), elt)))
1692 ++n;
1694 if (n != ASIZE (seq))
1696 struct Lisp_Vector *p = allocate_vector (n);
1698 for (i = n = 0; i < ASIZE (seq); ++i)
1699 if (NILP (Fequal (AREF (seq, i), elt)))
1700 p->contents[n++] = AREF (seq, i);
1702 XSETVECTOR (seq, p);
1705 else if (STRINGP (seq))
1707 EMACS_INT i, ibyte, nchars, nbytes, cbytes;
1708 int c;
1710 for (i = nchars = nbytes = ibyte = 0;
1711 i < SCHARS (seq);
1712 ++i, ibyte += cbytes)
1714 if (STRING_MULTIBYTE (seq))
1716 c = STRING_CHAR (SDATA (seq) + ibyte,
1717 SBYTES (seq) - ibyte);
1718 cbytes = CHAR_BYTES (c);
1720 else
1722 c = SREF (seq, i);
1723 cbytes = 1;
1726 if (!INTEGERP (elt) || c != XINT (elt))
1728 ++nchars;
1729 nbytes += cbytes;
1733 if (nchars != SCHARS (seq))
1735 Lisp_Object tem;
1737 tem = make_uninit_multibyte_string (nchars, nbytes);
1738 if (!STRING_MULTIBYTE (seq))
1739 STRING_SET_UNIBYTE (tem);
1741 for (i = nchars = nbytes = ibyte = 0;
1742 i < SCHARS (seq);
1743 ++i, ibyte += cbytes)
1745 if (STRING_MULTIBYTE (seq))
1747 c = STRING_CHAR (SDATA (seq) + ibyte,
1748 SBYTES (seq) - ibyte);
1749 cbytes = CHAR_BYTES (c);
1751 else
1753 c = SREF (seq, i);
1754 cbytes = 1;
1757 if (!INTEGERP (elt) || c != XINT (elt))
1759 unsigned char *from = SDATA (seq) + ibyte;
1760 unsigned char *to = SDATA (tem) + nbytes;
1761 EMACS_INT n;
1763 ++nchars;
1764 nbytes += cbytes;
1766 for (n = cbytes; n--; )
1767 *to++ = *from++;
1771 seq = tem;
1774 else
1776 Lisp_Object tail, prev;
1778 for (tail = seq, prev = Qnil; CONSP (tail); tail = XCDR (tail))
1780 CHECK_LIST_CONS (tail, seq);
1782 if (!NILP (Fequal (elt, XCAR (tail))))
1784 if (NILP (prev))
1785 seq = XCDR (tail);
1786 else
1787 Fsetcdr (prev, XCDR (tail));
1789 else
1790 prev = tail;
1791 QUIT;
1795 return seq;
1798 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1799 doc: /* Reverse LIST by modifying cdr pointers.
1800 Return the reversed list. */)
1801 (list)
1802 Lisp_Object list;
1804 register Lisp_Object prev, tail, next;
1806 if (NILP (list)) return list;
1807 prev = Qnil;
1808 tail = list;
1809 while (!NILP (tail))
1811 QUIT;
1812 CHECK_LIST_CONS (tail, list);
1813 next = XCDR (tail);
1814 Fsetcdr (tail, prev);
1815 prev = tail;
1816 tail = next;
1818 return prev;
1821 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1822 doc: /* Reverse LIST, copying. Return the reversed list.
1823 See also the function `nreverse', which is used more often. */)
1824 (list)
1825 Lisp_Object list;
1827 Lisp_Object new;
1829 for (new = Qnil; CONSP (list); list = XCDR (list))
1831 QUIT;
1832 new = Fcons (XCAR (list), new);
1834 CHECK_LIST_END (list, list);
1835 return new;
1838 Lisp_Object merge ();
1840 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1841 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1842 Returns the sorted list. LIST is modified by side effects.
1843 PREDICATE is called with two elements of LIST, and should return non-nil
1844 if the first element should sort before the second. */)
1845 (list, predicate)
1846 Lisp_Object list, predicate;
1848 Lisp_Object front, back;
1849 register Lisp_Object len, tem;
1850 struct gcpro gcpro1, gcpro2;
1851 register int length;
1853 front = list;
1854 len = Flength (list);
1855 length = XINT (len);
1856 if (length < 2)
1857 return list;
1859 XSETINT (len, (length / 2) - 1);
1860 tem = Fnthcdr (len, list);
1861 back = Fcdr (tem);
1862 Fsetcdr (tem, Qnil);
1864 GCPRO2 (front, back);
1865 front = Fsort (front, predicate);
1866 back = Fsort (back, predicate);
1867 UNGCPRO;
1868 return merge (front, back, predicate);
1871 Lisp_Object
1872 merge (org_l1, org_l2, pred)
1873 Lisp_Object org_l1, org_l2;
1874 Lisp_Object pred;
1876 Lisp_Object value;
1877 register Lisp_Object tail;
1878 Lisp_Object tem;
1879 register Lisp_Object l1, l2;
1880 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1882 l1 = org_l1;
1883 l2 = org_l2;
1884 tail = Qnil;
1885 value = Qnil;
1887 /* It is sufficient to protect org_l1 and org_l2.
1888 When l1 and l2 are updated, we copy the new values
1889 back into the org_ vars. */
1890 GCPRO4 (org_l1, org_l2, pred, value);
1892 while (1)
1894 if (NILP (l1))
1896 UNGCPRO;
1897 if (NILP (tail))
1898 return l2;
1899 Fsetcdr (tail, l2);
1900 return value;
1902 if (NILP (l2))
1904 UNGCPRO;
1905 if (NILP (tail))
1906 return l1;
1907 Fsetcdr (tail, l1);
1908 return value;
1910 tem = call2 (pred, Fcar (l2), Fcar (l1));
1911 if (NILP (tem))
1913 tem = l1;
1914 l1 = Fcdr (l1);
1915 org_l1 = l1;
1917 else
1919 tem = l2;
1920 l2 = Fcdr (l2);
1921 org_l2 = l2;
1923 if (NILP (tail))
1924 value = tem;
1925 else
1926 Fsetcdr (tail, tem);
1927 tail = tem;
1932 #if 0 /* Unsafe version. */
1933 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1934 doc: /* Extract a value from a property list.
1935 PLIST is a property list, which is a list of the form
1936 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1937 corresponding to the given PROP, or nil if PROP is not
1938 one of the properties on the list. */)
1939 (plist, prop)
1940 Lisp_Object plist;
1941 Lisp_Object prop;
1943 Lisp_Object tail;
1945 for (tail = plist;
1946 CONSP (tail) && CONSP (XCDR (tail));
1947 tail = XCDR (XCDR (tail)))
1949 if (EQ (prop, XCAR (tail)))
1950 return XCAR (XCDR (tail));
1952 /* This function can be called asynchronously
1953 (setup_coding_system). Don't QUIT in that case. */
1954 if (!interrupt_input_blocked)
1955 QUIT;
1958 CHECK_LIST_END (tail, prop);
1960 return Qnil;
1962 #endif
1964 /* This does not check for quits. That is safe since it must terminate. */
1966 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1967 doc: /* Extract a value from a property list.
1968 PLIST is a property list, which is a list of the form
1969 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1970 corresponding to the given PROP, or nil if PROP is not one of the
1971 properties on the list. This function never signals an error. */)
1972 (plist, prop)
1973 Lisp_Object plist;
1974 Lisp_Object prop;
1976 Lisp_Object tail, halftail;
1978 /* halftail is used to detect circular lists. */
1979 tail = halftail = plist;
1980 while (CONSP (tail) && CONSP (XCDR (tail)))
1982 if (EQ (prop, XCAR (tail)))
1983 return XCAR (XCDR (tail));
1985 tail = XCDR (XCDR (tail));
1986 halftail = XCDR (halftail);
1987 if (EQ (tail, halftail))
1988 break;
1991 return Qnil;
1994 DEFUN ("get", Fget, Sget, 2, 2, 0,
1995 doc: /* Return the value of SYMBOL's PROPNAME property.
1996 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1997 (symbol, propname)
1998 Lisp_Object symbol, propname;
2000 CHECK_SYMBOL (symbol);
2001 return Fplist_get (XSYMBOL (symbol)->plist, propname);
2004 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
2005 doc: /* Change value in PLIST of PROP to VAL.
2006 PLIST is a property list, which is a list of the form
2007 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
2008 If PROP is already a property on the list, its value is set to VAL,
2009 otherwise the new PROP VAL pair is added. The new plist is returned;
2010 use `(setq x (plist-put x prop val))' to be sure to use the new value.
2011 The PLIST is modified by side effects. */)
2012 (plist, prop, val)
2013 Lisp_Object plist;
2014 register Lisp_Object prop;
2015 Lisp_Object val;
2017 register Lisp_Object tail, prev;
2018 Lisp_Object newcell;
2019 prev = Qnil;
2020 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
2021 tail = XCDR (XCDR (tail)))
2023 if (EQ (prop, XCAR (tail)))
2025 Fsetcar (XCDR (tail), val);
2026 return plist;
2029 prev = tail;
2030 QUIT;
2032 newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
2033 if (NILP (prev))
2034 return newcell;
2035 else
2036 Fsetcdr (XCDR (prev), newcell);
2037 return plist;
2040 DEFUN ("put", Fput, Sput, 3, 3, 0,
2041 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
2042 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
2043 (symbol, propname, value)
2044 Lisp_Object symbol, propname, value;
2046 CHECK_SYMBOL (symbol);
2047 XSYMBOL (symbol)->plist
2048 = Fplist_put (XSYMBOL (symbol)->plist, propname, value);
2049 return value;
2052 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
2053 doc: /* Extract a value from a property list, comparing with `equal'.
2054 PLIST is a property list, which is a list of the form
2055 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
2056 corresponding to the given PROP, or nil if PROP is not
2057 one of the properties on the list. */)
2058 (plist, prop)
2059 Lisp_Object plist;
2060 Lisp_Object prop;
2062 Lisp_Object tail;
2064 for (tail = plist;
2065 CONSP (tail) && CONSP (XCDR (tail));
2066 tail = XCDR (XCDR (tail)))
2068 if (! NILP (Fequal (prop, XCAR (tail))))
2069 return XCAR (XCDR (tail));
2071 QUIT;
2074 CHECK_LIST_END (tail, prop);
2076 return Qnil;
2079 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
2080 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
2081 PLIST is a property list, which is a list of the form
2082 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
2083 If PROP is already a property on the list, its value is set to VAL,
2084 otherwise the new PROP VAL pair is added. The new plist is returned;
2085 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
2086 The PLIST is modified by side effects. */)
2087 (plist, prop, val)
2088 Lisp_Object plist;
2089 register Lisp_Object prop;
2090 Lisp_Object val;
2092 register Lisp_Object tail, prev;
2093 Lisp_Object newcell;
2094 prev = Qnil;
2095 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
2096 tail = XCDR (XCDR (tail)))
2098 if (! NILP (Fequal (prop, XCAR (tail))))
2100 Fsetcar (XCDR (tail), val);
2101 return plist;
2104 prev = tail;
2105 QUIT;
2107 newcell = Fcons (prop, Fcons (val, Qnil));
2108 if (NILP (prev))
2109 return newcell;
2110 else
2111 Fsetcdr (XCDR (prev), newcell);
2112 return plist;
2115 DEFUN ("eql", Feql, Seql, 2, 2, 0,
2116 doc: /* Return t if the two args are the same Lisp object.
2117 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
2118 (obj1, obj2)
2119 Lisp_Object obj1, obj2;
2121 if (FLOATP (obj1))
2122 return internal_equal (obj1, obj2, 0, 0) ? Qt : Qnil;
2123 else
2124 return EQ (obj1, obj2) ? Qt : Qnil;
2127 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
2128 doc: /* Return t if two Lisp objects have similar structure and contents.
2129 They must have the same data type.
2130 Conses are compared by comparing the cars and the cdrs.
2131 Vectors and strings are compared element by element.
2132 Numbers are compared by value, but integers cannot equal floats.
2133 (Use `=' if you want integers and floats to be able to be equal.)
2134 Symbols must match exactly. */)
2135 (o1, o2)
2136 register Lisp_Object o1, o2;
2138 return internal_equal (o1, o2, 0, 0) ? Qt : Qnil;
2141 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
2142 doc: /* Return t if two Lisp objects have similar structure and contents.
2143 This is like `equal' except that it compares the text properties
2144 of strings. (`equal' ignores text properties.) */)
2145 (o1, o2)
2146 register Lisp_Object o1, o2;
2148 return internal_equal (o1, o2, 0, 1) ? Qt : Qnil;
2151 /* DEPTH is current depth of recursion. Signal an error if it
2152 gets too deep.
2153 PROPS, if non-nil, means compare string text properties too. */
2155 static int
2156 internal_equal (o1, o2, depth, props)
2157 register Lisp_Object o1, o2;
2158 int depth, props;
2160 if (depth > 200)
2161 error ("Stack overflow in equal");
2163 tail_recurse:
2164 QUIT;
2165 if (EQ (o1, o2))
2166 return 1;
2167 if (XTYPE (o1) != XTYPE (o2))
2168 return 0;
2170 switch (XTYPE (o1))
2172 case Lisp_Float:
2174 double d1, d2;
2176 d1 = extract_float (o1);
2177 d2 = extract_float (o2);
2178 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2179 though they are not =. */
2180 return d1 == d2 || (d1 != d1 && d2 != d2);
2183 case Lisp_Cons:
2184 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props))
2185 return 0;
2186 o1 = XCDR (o1);
2187 o2 = XCDR (o2);
2188 goto tail_recurse;
2190 case Lisp_Misc:
2191 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2192 return 0;
2193 if (OVERLAYP (o1))
2195 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2196 depth + 1, props)
2197 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2198 depth + 1, props))
2199 return 0;
2200 o1 = XOVERLAY (o1)->plist;
2201 o2 = XOVERLAY (o2)->plist;
2202 goto tail_recurse;
2204 if (MARKERP (o1))
2206 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2207 && (XMARKER (o1)->buffer == 0
2208 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2210 break;
2212 case Lisp_Vectorlike:
2214 register int i;
2215 EMACS_INT size = ASIZE (o1);
2216 /* Pseudovectors have the type encoded in the size field, so this test
2217 actually checks that the objects have the same type as well as the
2218 same size. */
2219 if (ASIZE (o2) != size)
2220 return 0;
2221 /* Boolvectors are compared much like strings. */
2222 if (BOOL_VECTOR_P (o1))
2224 int size_in_chars
2225 = ((XBOOL_VECTOR (o1)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2226 / BOOL_VECTOR_BITS_PER_CHAR);
2228 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2229 return 0;
2230 if (bcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2231 size_in_chars))
2232 return 0;
2233 return 1;
2235 if (WINDOW_CONFIGURATIONP (o1))
2236 return compare_window_configurations (o1, o2, 0);
2238 /* Aside from them, only true vectors, char-tables, compiled
2239 functions, and fonts (font-spec, font-entity, font-ojbect)
2240 are sensible to compare, so eliminate the others now. */
2241 if (size & PSEUDOVECTOR_FLAG)
2243 if (!(size & (PVEC_COMPILED
2244 | PVEC_CHAR_TABLE | PVEC_SUB_CHAR_TABLE | PVEC_FONT)))
2245 return 0;
2246 size &= PSEUDOVECTOR_SIZE_MASK;
2248 for (i = 0; i < size; i++)
2250 Lisp_Object v1, v2;
2251 v1 = AREF (o1, i);
2252 v2 = AREF (o2, i);
2253 if (!internal_equal (v1, v2, depth + 1, props))
2254 return 0;
2256 return 1;
2258 break;
2260 case Lisp_String:
2261 if (SCHARS (o1) != SCHARS (o2))
2262 return 0;
2263 if (SBYTES (o1) != SBYTES (o2))
2264 return 0;
2265 if (bcmp (SDATA (o1), SDATA (o2),
2266 SBYTES (o1)))
2267 return 0;
2268 if (props && !compare_string_intervals (o1, o2))
2269 return 0;
2270 return 1;
2272 case Lisp_Int:
2273 case Lisp_Symbol:
2274 case Lisp_Type_Limit:
2275 break;
2278 return 0;
2281 extern Lisp_Object Fmake_char_internal ();
2283 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2284 doc: /* Store each element of ARRAY with ITEM.
2285 ARRAY is a vector, string, char-table, or bool-vector. */)
2286 (array, item)
2287 Lisp_Object array, item;
2289 register int size, index, charval;
2290 if (VECTORP (array))
2292 register Lisp_Object *p = XVECTOR (array)->contents;
2293 size = ASIZE (array);
2294 for (index = 0; index < size; index++)
2295 p[index] = item;
2297 else if (CHAR_TABLE_P (array))
2299 int i;
2301 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2302 XCHAR_TABLE (array)->contents[i] = item;
2303 XCHAR_TABLE (array)->defalt = item;
2305 else if (STRINGP (array))
2307 register unsigned char *p = SDATA (array);
2308 CHECK_NUMBER (item);
2309 charval = XINT (item);
2310 size = SCHARS (array);
2311 if (STRING_MULTIBYTE (array))
2313 unsigned char str[MAX_MULTIBYTE_LENGTH];
2314 int len = CHAR_STRING (charval, str);
2315 int size_byte = SBYTES (array);
2316 unsigned char *p1 = p, *endp = p + size_byte;
2317 int i;
2319 if (size != size_byte)
2320 while (p1 < endp)
2322 int this_len = MULTIBYTE_FORM_LENGTH (p1, endp - p1);
2323 if (len != this_len)
2324 error ("Attempt to change byte length of a string");
2325 p1 += this_len;
2327 for (i = 0; i < size_byte; i++)
2328 *p++ = str[i % len];
2330 else
2331 for (index = 0; index < size; index++)
2332 p[index] = charval;
2334 else if (BOOL_VECTOR_P (array))
2336 register unsigned char *p = XBOOL_VECTOR (array)->data;
2337 int size_in_chars
2338 = ((XBOOL_VECTOR (array)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2339 / BOOL_VECTOR_BITS_PER_CHAR);
2341 charval = (! NILP (item) ? -1 : 0);
2342 for (index = 0; index < size_in_chars - 1; index++)
2343 p[index] = charval;
2344 if (index < size_in_chars)
2346 /* Mask out bits beyond the vector size. */
2347 if (XBOOL_VECTOR (array)->size % BOOL_VECTOR_BITS_PER_CHAR)
2348 charval &= (1 << (XBOOL_VECTOR (array)->size % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2349 p[index] = charval;
2352 else
2353 wrong_type_argument (Qarrayp, array);
2354 return array;
2357 DEFUN ("clear-string", Fclear_string, Sclear_string,
2358 1, 1, 0,
2359 doc: /* Clear the contents of STRING.
2360 This makes STRING unibyte and may change its length. */)
2361 (string)
2362 Lisp_Object string;
2364 int len;
2365 CHECK_STRING (string);
2366 len = SBYTES (string);
2367 bzero (SDATA (string), len);
2368 STRING_SET_CHARS (string, len);
2369 STRING_SET_UNIBYTE (string);
2370 return Qnil;
2373 /* ARGSUSED */
2374 Lisp_Object
2375 nconc2 (s1, s2)
2376 Lisp_Object s1, s2;
2378 #ifdef NO_ARG_ARRAY
2379 Lisp_Object args[2];
2380 args[0] = s1;
2381 args[1] = s2;
2382 return Fnconc (2, args);
2383 #else
2384 return Fnconc (2, &s1);
2385 #endif /* NO_ARG_ARRAY */
2388 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2389 doc: /* Concatenate any number of lists by altering them.
2390 Only the last argument is not altered, and need not be a list.
2391 usage: (nconc &rest LISTS) */)
2392 (nargs, args)
2393 int nargs;
2394 Lisp_Object *args;
2396 register int argnum;
2397 register Lisp_Object tail, tem, val;
2399 val = tail = Qnil;
2401 for (argnum = 0; argnum < nargs; argnum++)
2403 tem = args[argnum];
2404 if (NILP (tem)) continue;
2406 if (NILP (val))
2407 val = tem;
2409 if (argnum + 1 == nargs) break;
2411 CHECK_LIST_CONS (tem, tem);
2413 while (CONSP (tem))
2415 tail = tem;
2416 tem = XCDR (tail);
2417 QUIT;
2420 tem = args[argnum + 1];
2421 Fsetcdr (tail, tem);
2422 if (NILP (tem))
2423 args[argnum + 1] = tail;
2426 return val;
2429 /* This is the guts of all mapping functions.
2430 Apply FN to each element of SEQ, one by one,
2431 storing the results into elements of VALS, a C vector of Lisp_Objects.
2432 LENI is the length of VALS, which should also be the length of SEQ. */
2434 static void
2435 mapcar1 (leni, vals, fn, seq)
2436 int leni;
2437 Lisp_Object *vals;
2438 Lisp_Object fn, seq;
2440 register Lisp_Object tail;
2441 Lisp_Object dummy;
2442 register int i;
2443 struct gcpro gcpro1, gcpro2, gcpro3;
2445 if (vals)
2447 /* Don't let vals contain any garbage when GC happens. */
2448 for (i = 0; i < leni; i++)
2449 vals[i] = Qnil;
2451 GCPRO3 (dummy, fn, seq);
2452 gcpro1.var = vals;
2453 gcpro1.nvars = leni;
2455 else
2456 GCPRO2 (fn, seq);
2457 /* We need not explicitly protect `tail' because it is used only on lists, and
2458 1) lists are not relocated and 2) the list is marked via `seq' so will not
2459 be freed */
2461 if (VECTORP (seq))
2463 for (i = 0; i < leni; i++)
2465 dummy = call1 (fn, AREF (seq, i));
2466 if (vals)
2467 vals[i] = dummy;
2470 else if (BOOL_VECTOR_P (seq))
2472 for (i = 0; i < leni; i++)
2474 int byte;
2475 byte = XBOOL_VECTOR (seq)->data[i / BOOL_VECTOR_BITS_PER_CHAR];
2476 dummy = (byte & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR))) ? Qt : Qnil;
2477 dummy = call1 (fn, dummy);
2478 if (vals)
2479 vals[i] = dummy;
2482 else if (STRINGP (seq))
2484 int i_byte;
2486 for (i = 0, i_byte = 0; i < leni;)
2488 int c;
2489 int i_before = i;
2491 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2492 XSETFASTINT (dummy, c);
2493 dummy = call1 (fn, dummy);
2494 if (vals)
2495 vals[i_before] = dummy;
2498 else /* Must be a list, since Flength did not get an error */
2500 tail = seq;
2501 for (i = 0; i < leni && CONSP (tail); i++)
2503 dummy = call1 (fn, XCAR (tail));
2504 if (vals)
2505 vals[i] = dummy;
2506 tail = XCDR (tail);
2510 UNGCPRO;
2513 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2514 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2515 In between each pair of results, stick in SEPARATOR. Thus, " " as
2516 SEPARATOR results in spaces between the values returned by FUNCTION.
2517 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2518 (function, sequence, separator)
2519 Lisp_Object function, sequence, separator;
2521 Lisp_Object len;
2522 register int leni;
2523 int nargs;
2524 register Lisp_Object *args;
2525 register int i;
2526 struct gcpro gcpro1;
2527 Lisp_Object ret;
2528 USE_SAFE_ALLOCA;
2530 len = Flength (sequence);
2531 if (CHAR_TABLE_P (sequence))
2532 wrong_type_argument (Qlistp, sequence);
2533 leni = XINT (len);
2534 nargs = leni + leni - 1;
2535 if (nargs < 0) return empty_unibyte_string;
2537 SAFE_ALLOCA_LISP (args, nargs);
2539 GCPRO1 (separator);
2540 mapcar1 (leni, args, function, sequence);
2541 UNGCPRO;
2543 for (i = leni - 1; i > 0; i--)
2544 args[i + i] = args[i];
2546 for (i = 1; i < nargs; i += 2)
2547 args[i] = separator;
2549 ret = Fconcat (nargs, args);
2550 SAFE_FREE ();
2552 return ret;
2555 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2556 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2557 The result is a list just as long as SEQUENCE.
2558 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2559 (function, sequence)
2560 Lisp_Object function, sequence;
2562 register Lisp_Object len;
2563 register int leni;
2564 register Lisp_Object *args;
2565 Lisp_Object ret;
2566 USE_SAFE_ALLOCA;
2568 len = Flength (sequence);
2569 if (CHAR_TABLE_P (sequence))
2570 wrong_type_argument (Qlistp, sequence);
2571 leni = XFASTINT (len);
2573 SAFE_ALLOCA_LISP (args, leni);
2575 mapcar1 (leni, args, function, sequence);
2577 ret = Flist (leni, args);
2578 SAFE_FREE ();
2580 return ret;
2583 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2584 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2585 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2586 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2587 (function, sequence)
2588 Lisp_Object function, sequence;
2590 register int leni;
2592 leni = XFASTINT (Flength (sequence));
2593 if (CHAR_TABLE_P (sequence))
2594 wrong_type_argument (Qlistp, sequence);
2595 mapcar1 (leni, 0, function, sequence);
2597 return sequence;
2600 /* Anything that calls this function must protect from GC! */
2602 DEFUN ("y-or-n-p", Fy_or_n_p, Sy_or_n_p, 1, 1, 0,
2603 doc: /* Ask user a "y or n" question. Return t if answer is "y".
2604 Takes one argument, which is the string to display to ask the question.
2605 It should end in a space; `y-or-n-p' adds `(y or n) ' to it.
2606 No confirmation of the answer is requested; a single character is enough.
2607 Also accepts Space to mean yes, or Delete to mean no. \(Actually, it uses
2608 the bindings in `query-replace-map'; see the documentation of that variable
2609 for more information. In this case, the useful bindings are `act', `skip',
2610 `recenter', and `quit'.\)
2612 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2613 is nil and `use-dialog-box' is non-nil. */)
2614 (prompt)
2615 Lisp_Object prompt;
2617 register Lisp_Object obj, key, def, map;
2618 register int answer;
2619 Lisp_Object xprompt;
2620 Lisp_Object args[2];
2621 struct gcpro gcpro1, gcpro2;
2622 int count = SPECPDL_INDEX ();
2624 specbind (Qcursor_in_echo_area, Qt);
2626 map = Fsymbol_value (intern ("query-replace-map"));
2628 CHECK_STRING (prompt);
2629 xprompt = prompt;
2630 GCPRO2 (prompt, xprompt);
2632 #ifdef HAVE_WINDOW_SYSTEM
2633 if (display_hourglass_p)
2634 cancel_hourglass ();
2635 #endif
2637 while (1)
2640 #ifdef HAVE_MENUS
2641 if (FRAME_WINDOW_P (SELECTED_FRAME ())
2642 && (NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2643 && use_dialog_box
2644 && have_menus_p ())
2646 Lisp_Object pane, menu;
2647 redisplay_preserve_echo_area (3);
2648 pane = Fcons (Fcons (build_string ("Yes"), Qt),
2649 Fcons (Fcons (build_string ("No"), Qnil),
2650 Qnil));
2651 menu = Fcons (prompt, pane);
2652 obj = Fx_popup_dialog (Qt, menu, Qnil);
2653 answer = !NILP (obj);
2654 break;
2656 #endif /* HAVE_MENUS */
2657 cursor_in_echo_area = 1;
2658 choose_minibuf_frame ();
2661 Lisp_Object pargs[3];
2663 /* Colorize prompt according to `minibuffer-prompt' face. */
2664 pargs[0] = build_string ("%s(y or n) ");
2665 pargs[1] = intern ("face");
2666 pargs[2] = intern ("minibuffer-prompt");
2667 args[0] = Fpropertize (3, pargs);
2668 args[1] = xprompt;
2669 Fmessage (2, args);
2672 if (minibuffer_auto_raise)
2674 Lisp_Object mini_frame;
2676 mini_frame = WINDOW_FRAME (XWINDOW (minibuf_window));
2678 Fraise_frame (mini_frame);
2681 temporarily_switch_to_single_kboard (SELECTED_FRAME ());
2682 obj = read_filtered_event (1, 0, 0, 0, Qnil);
2683 cursor_in_echo_area = 0;
2684 /* If we need to quit, quit with cursor_in_echo_area = 0. */
2685 QUIT;
2687 key = Fmake_vector (make_number (1), obj);
2688 def = Flookup_key (map, key, Qt);
2690 if (EQ (def, intern ("skip")))
2692 answer = 0;
2693 break;
2695 else if (EQ (def, intern ("act")))
2697 answer = 1;
2698 break;
2700 else if (EQ (def, intern ("recenter")))
2702 Frecenter (Qnil);
2703 xprompt = prompt;
2704 continue;
2706 else if (EQ (def, intern ("quit")))
2707 Vquit_flag = Qt;
2708 /* We want to exit this command for exit-prefix,
2709 and this is the only way to do it. */
2710 else if (EQ (def, intern ("exit-prefix")))
2711 Vquit_flag = Qt;
2713 QUIT;
2715 /* If we don't clear this, then the next call to read_char will
2716 return quit_char again, and we'll enter an infinite loop. */
2717 Vquit_flag = Qnil;
2719 Fding (Qnil);
2720 Fdiscard_input ();
2721 if (EQ (xprompt, prompt))
2723 args[0] = build_string ("Please answer y or n. ");
2724 args[1] = prompt;
2725 xprompt = Fconcat (2, args);
2728 UNGCPRO;
2730 if (! noninteractive)
2732 cursor_in_echo_area = -1;
2733 message_with_string (answer ? "%s(y or n) y" : "%s(y or n) n",
2734 xprompt, 0);
2737 unbind_to (count, Qnil);
2738 return answer ? Qt : Qnil;
2741 /* This is how C code calls `yes-or-no-p' and allows the user
2742 to redefined it.
2744 Anything that calls this function must protect from GC! */
2746 Lisp_Object
2747 do_yes_or_no_p (prompt)
2748 Lisp_Object prompt;
2750 return call1 (intern ("yes-or-no-p"), prompt);
2753 /* Anything that calls this function must protect from GC! */
2755 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
2756 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
2757 Takes one argument, which is the string to display to ask the question.
2758 It should end in a space; `yes-or-no-p' adds `(yes or no) ' to it.
2759 The user must confirm the answer with RET,
2760 and can edit it until it has been confirmed.
2762 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2763 is nil, and `use-dialog-box' is non-nil. */)
2764 (prompt)
2765 Lisp_Object prompt;
2767 register Lisp_Object ans;
2768 Lisp_Object args[2];
2769 struct gcpro gcpro1;
2771 CHECK_STRING (prompt);
2773 #ifdef HAVE_MENUS
2774 if (FRAME_WINDOW_P (SELECTED_FRAME ())
2775 && (NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2776 && use_dialog_box
2777 && have_menus_p ())
2779 Lisp_Object pane, menu, obj;
2780 redisplay_preserve_echo_area (4);
2781 pane = Fcons (Fcons (build_string ("Yes"), Qt),
2782 Fcons (Fcons (build_string ("No"), Qnil),
2783 Qnil));
2784 GCPRO1 (pane);
2785 menu = Fcons (prompt, pane);
2786 obj = Fx_popup_dialog (Qt, menu, Qnil);
2787 UNGCPRO;
2788 return obj;
2790 #endif /* HAVE_MENUS */
2792 args[0] = prompt;
2793 args[1] = build_string ("(yes or no) ");
2794 prompt = Fconcat (2, args);
2796 GCPRO1 (prompt);
2798 while (1)
2800 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2801 Qyes_or_no_p_history, Qnil,
2802 Qnil));
2803 if (SCHARS (ans) == 3 && !strcmp (SDATA (ans), "yes"))
2805 UNGCPRO;
2806 return Qt;
2808 if (SCHARS (ans) == 2 && !strcmp (SDATA (ans), "no"))
2810 UNGCPRO;
2811 return Qnil;
2814 Fding (Qnil);
2815 Fdiscard_input ();
2816 message ("Please answer yes or no.");
2817 Fsleep_for (make_number (2), Qnil);
2821 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2822 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2824 Each of the three load averages is multiplied by 100, then converted
2825 to integer.
2827 When USE-FLOATS is non-nil, floats will be used instead of integers.
2828 These floats are not multiplied by 100.
2830 If the 5-minute or 15-minute load averages are not available, return a
2831 shortened list, containing only those averages which are available.
2833 An error is thrown if the load average can't be obtained. In some
2834 cases making it work would require Emacs being installed setuid or
2835 setgid so that it can read kernel information, and that usually isn't
2836 advisable. */)
2837 (use_floats)
2838 Lisp_Object use_floats;
2840 double load_ave[3];
2841 int loads = getloadavg (load_ave, 3);
2842 Lisp_Object ret = Qnil;
2844 if (loads < 0)
2845 error ("load-average not implemented for this operating system");
2847 while (loads-- > 0)
2849 Lisp_Object load = (NILP (use_floats) ?
2850 make_number ((int) (100.0 * load_ave[loads]))
2851 : make_float (load_ave[loads]));
2852 ret = Fcons (load, ret);
2855 return ret;
2858 Lisp_Object Vfeatures, Qsubfeatures;
2859 extern Lisp_Object Vafter_load_alist;
2861 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2862 doc: /* Returns t if FEATURE is present in this Emacs.
2864 Use this to conditionalize execution of lisp code based on the
2865 presence or absence of Emacs or environment extensions.
2866 Use `provide' to declare that a feature is available. This function
2867 looks at the value of the variable `features'. The optional argument
2868 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2869 (feature, subfeature)
2870 Lisp_Object feature, subfeature;
2872 register Lisp_Object tem;
2873 CHECK_SYMBOL (feature);
2874 tem = Fmemq (feature, Vfeatures);
2875 if (!NILP (tem) && !NILP (subfeature))
2876 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2877 return (NILP (tem)) ? Qnil : Qt;
2880 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2881 doc: /* Announce that FEATURE is a feature of the current Emacs.
2882 The optional argument SUBFEATURES should be a list of symbols listing
2883 particular subfeatures supported in this version of FEATURE. */)
2884 (feature, subfeatures)
2885 Lisp_Object feature, subfeatures;
2887 register Lisp_Object tem;
2888 CHECK_SYMBOL (feature);
2889 CHECK_LIST (subfeatures);
2890 if (!NILP (Vautoload_queue))
2891 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2892 Vautoload_queue);
2893 tem = Fmemq (feature, Vfeatures);
2894 if (NILP (tem))
2895 Vfeatures = Fcons (feature, Vfeatures);
2896 if (!NILP (subfeatures))
2897 Fput (feature, Qsubfeatures, subfeatures);
2898 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2900 /* Run any load-hooks for this file. */
2901 tem = Fassq (feature, Vafter_load_alist);
2902 if (CONSP (tem))
2903 Fprogn (XCDR (tem));
2905 return feature;
2908 /* `require' and its subroutines. */
2910 /* List of features currently being require'd, innermost first. */
2912 Lisp_Object require_nesting_list;
2914 Lisp_Object
2915 require_unwind (old_value)
2916 Lisp_Object old_value;
2918 return require_nesting_list = old_value;
2921 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2922 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2923 If FEATURE is not a member of the list `features', then the feature
2924 is not loaded; so load the file FILENAME.
2925 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2926 and `load' will try to load this name appended with the suffix `.elc' or
2927 `.el', in that order. The name without appended suffix will not be used.
2928 If the optional third argument NOERROR is non-nil,
2929 then return nil if the file is not found instead of signaling an error.
2930 Normally the return value is FEATURE.
2931 The normal messages at start and end of loading FILENAME are suppressed. */)
2932 (feature, filename, noerror)
2933 Lisp_Object feature, filename, noerror;
2935 register Lisp_Object tem;
2936 struct gcpro gcpro1, gcpro2;
2937 int from_file = load_in_progress;
2939 CHECK_SYMBOL (feature);
2941 /* Record the presence of `require' in this file
2942 even if the feature specified is already loaded.
2943 But not more than once in any file,
2944 and not when we aren't loading or reading from a file. */
2945 if (!from_file)
2946 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2947 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2948 from_file = 1;
2950 if (from_file)
2952 tem = Fcons (Qrequire, feature);
2953 if (NILP (Fmember (tem, Vcurrent_load_list)))
2954 LOADHIST_ATTACH (tem);
2956 tem = Fmemq (feature, Vfeatures);
2958 if (NILP (tem))
2960 int count = SPECPDL_INDEX ();
2961 int nesting = 0;
2963 /* This is to make sure that loadup.el gives a clear picture
2964 of what files are preloaded and when. */
2965 if (! NILP (Vpurify_flag))
2966 error ("(require %s) while preparing to dump",
2967 SDATA (SYMBOL_NAME (feature)));
2969 /* A certain amount of recursive `require' is legitimate,
2970 but if we require the same feature recursively 3 times,
2971 signal an error. */
2972 tem = require_nesting_list;
2973 while (! NILP (tem))
2975 if (! NILP (Fequal (feature, XCAR (tem))))
2976 nesting++;
2977 tem = XCDR (tem);
2979 if (nesting > 3)
2980 error ("Recursive `require' for feature `%s'",
2981 SDATA (SYMBOL_NAME (feature)));
2983 /* Update the list for any nested `require's that occur. */
2984 record_unwind_protect (require_unwind, require_nesting_list);
2985 require_nesting_list = Fcons (feature, require_nesting_list);
2987 /* Value saved here is to be restored into Vautoload_queue */
2988 record_unwind_protect (un_autoload, Vautoload_queue);
2989 Vautoload_queue = Qt;
2991 /* Load the file. */
2992 GCPRO2 (feature, filename);
2993 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2994 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2995 UNGCPRO;
2997 /* If load failed entirely, return nil. */
2998 if (NILP (tem))
2999 return unbind_to (count, Qnil);
3001 tem = Fmemq (feature, Vfeatures);
3002 if (NILP (tem))
3003 error ("Required feature `%s' was not provided",
3004 SDATA (SYMBOL_NAME (feature)));
3006 /* Once loading finishes, don't undo it. */
3007 Vautoload_queue = Qt;
3008 feature = unbind_to (count, feature);
3011 return feature;
3014 /* Primitives for work of the "widget" library.
3015 In an ideal world, this section would not have been necessary.
3016 However, lisp function calls being as slow as they are, it turns
3017 out that some functions in the widget library (wid-edit.el) are the
3018 bottleneck of Widget operation. Here is their translation to C,
3019 for the sole reason of efficiency. */
3021 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
3022 doc: /* Return non-nil if PLIST has the property PROP.
3023 PLIST is a property list, which is a list of the form
3024 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
3025 Unlike `plist-get', this allows you to distinguish between a missing
3026 property and a property with the value nil.
3027 The value is actually the tail of PLIST whose car is PROP. */)
3028 (plist, prop)
3029 Lisp_Object plist, prop;
3031 while (CONSP (plist) && !EQ (XCAR (plist), prop))
3033 QUIT;
3034 plist = XCDR (plist);
3035 plist = CDR (plist);
3037 return plist;
3040 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
3041 doc: /* In WIDGET, set PROPERTY to VALUE.
3042 The value can later be retrieved with `widget-get'. */)
3043 (widget, property, value)
3044 Lisp_Object widget, property, value;
3046 CHECK_CONS (widget);
3047 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
3048 return value;
3051 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
3052 doc: /* In WIDGET, get the value of PROPERTY.
3053 The value could either be specified when the widget was created, or
3054 later with `widget-put'. */)
3055 (widget, property)
3056 Lisp_Object widget, property;
3058 Lisp_Object tmp;
3060 while (1)
3062 if (NILP (widget))
3063 return Qnil;
3064 CHECK_CONS (widget);
3065 tmp = Fplist_member (XCDR (widget), property);
3066 if (CONSP (tmp))
3068 tmp = XCDR (tmp);
3069 return CAR (tmp);
3071 tmp = XCAR (widget);
3072 if (NILP (tmp))
3073 return Qnil;
3074 widget = Fget (tmp, Qwidget_type);
3078 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
3079 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
3080 ARGS are passed as extra arguments to the function.
3081 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
3082 (nargs, args)
3083 int nargs;
3084 Lisp_Object *args;
3086 /* This function can GC. */
3087 Lisp_Object newargs[3];
3088 struct gcpro gcpro1, gcpro2;
3089 Lisp_Object result;
3091 newargs[0] = Fwidget_get (args[0], args[1]);
3092 newargs[1] = args[0];
3093 newargs[2] = Flist (nargs - 2, args + 2);
3094 GCPRO2 (newargs[0], newargs[2]);
3095 result = Fapply (3, newargs);
3096 UNGCPRO;
3097 return result;
3100 #ifdef HAVE_LANGINFO_CODESET
3101 #include <langinfo.h>
3102 #endif
3104 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
3105 doc: /* Access locale data ITEM for the current C locale, if available.
3106 ITEM should be one of the following:
3108 `codeset', returning the character set as a string (locale item CODESET);
3110 `days', returning a 7-element vector of day names (locale items DAY_n);
3112 `months', returning a 12-element vector of month names (locale items MON_n);
3114 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
3115 both measured in milimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
3117 If the system can't provide such information through a call to
3118 `nl_langinfo', or if ITEM isn't from the list above, return nil.
3120 See also Info node `(libc)Locales'.
3122 The data read from the system are decoded using `locale-coding-system'. */)
3123 (item)
3124 Lisp_Object item;
3126 char *str = NULL;
3127 #ifdef HAVE_LANGINFO_CODESET
3128 Lisp_Object val;
3129 if (EQ (item, Qcodeset))
3131 str = nl_langinfo (CODESET);
3132 return build_string (str);
3134 #ifdef DAY_1
3135 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
3137 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
3138 int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
3139 int i;
3140 synchronize_system_time_locale ();
3141 for (i = 0; i < 7; i++)
3143 str = nl_langinfo (days[i]);
3144 val = make_unibyte_string (str, strlen (str));
3145 /* Fixme: Is this coding system necessarily right, even if
3146 it is consistent with CODESET? If not, what to do? */
3147 Faset (v, make_number (i),
3148 code_convert_string_norecord (val, Vlocale_coding_system,
3149 0));
3151 return v;
3153 #endif /* DAY_1 */
3154 #ifdef MON_1
3155 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
3157 struct Lisp_Vector *p = allocate_vector (12);
3158 int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
3159 MON_8, MON_9, MON_10, MON_11, MON_12};
3160 int i;
3161 synchronize_system_time_locale ();
3162 for (i = 0; i < 12; i++)
3164 str = nl_langinfo (months[i]);
3165 val = make_unibyte_string (str, strlen (str));
3166 p->contents[i] =
3167 code_convert_string_norecord (val, Vlocale_coding_system, 0);
3169 XSETVECTOR (val, p);
3170 return val;
3172 #endif /* MON_1 */
3173 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
3174 but is in the locale files. This could be used by ps-print. */
3175 #ifdef PAPER_WIDTH
3176 else if (EQ (item, Qpaper))
3178 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
3179 make_number (nl_langinfo (PAPER_HEIGHT)));
3181 #endif /* PAPER_WIDTH */
3182 #endif /* HAVE_LANGINFO_CODESET*/
3183 return Qnil;
3186 /* base64 encode/decode functions (RFC 2045).
3187 Based on code from GNU recode. */
3189 #define MIME_LINE_LENGTH 76
3191 #define IS_ASCII(Character) \
3192 ((Character) < 128)
3193 #define IS_BASE64(Character) \
3194 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
3195 #define IS_BASE64_IGNORABLE(Character) \
3196 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
3197 || (Character) == '\f' || (Character) == '\r')
3199 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
3200 character or return retval if there are no characters left to
3201 process. */
3202 #define READ_QUADRUPLET_BYTE(retval) \
3203 do \
3205 if (i == length) \
3207 if (nchars_return) \
3208 *nchars_return = nchars; \
3209 return (retval); \
3211 c = from[i++]; \
3213 while (IS_BASE64_IGNORABLE (c))
3215 /* Table of characters coding the 64 values. */
3216 static char base64_value_to_char[64] =
3218 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
3219 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
3220 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
3221 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
3222 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
3223 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
3224 '8', '9', '+', '/' /* 60-63 */
3227 /* Table of base64 values for first 128 characters. */
3228 static short base64_char_to_value[128] =
3230 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
3231 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
3232 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
3233 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
3234 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
3235 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
3236 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
3237 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
3238 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
3239 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
3240 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
3241 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
3242 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
3245 /* The following diagram shows the logical steps by which three octets
3246 get transformed into four base64 characters.
3248 .--------. .--------. .--------.
3249 |aaaaaabb| |bbbbcccc| |ccdddddd|
3250 `--------' `--------' `--------'
3251 6 2 4 4 2 6
3252 .--------+--------+--------+--------.
3253 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
3254 `--------+--------+--------+--------'
3256 .--------+--------+--------+--------.
3257 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
3258 `--------+--------+--------+--------'
3260 The octets are divided into 6 bit chunks, which are then encoded into
3261 base64 characters. */
3264 static int base64_encode_1 P_ ((const char *, char *, int, int, int));
3265 static int base64_decode_1 P_ ((const char *, char *, int, int, int *));
3267 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
3268 2, 3, "r",
3269 doc: /* Base64-encode the region between BEG and END.
3270 Return the length of the encoded text.
3271 Optional third argument NO-LINE-BREAK means do not break long lines
3272 into shorter lines. */)
3273 (beg, end, no_line_break)
3274 Lisp_Object beg, end, no_line_break;
3276 char *encoded;
3277 int allength, length;
3278 int ibeg, iend, encoded_length;
3279 int old_pos = PT;
3280 USE_SAFE_ALLOCA;
3282 validate_region (&beg, &end);
3284 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3285 iend = CHAR_TO_BYTE (XFASTINT (end));
3286 move_gap_both (XFASTINT (beg), ibeg);
3288 /* We need to allocate enough room for encoding the text.
3289 We need 33 1/3% more space, plus a newline every 76
3290 characters, and then we round up. */
3291 length = iend - ibeg;
3292 allength = length + length/3 + 1;
3293 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3295 SAFE_ALLOCA (encoded, char *, allength);
3296 encoded_length = base64_encode_1 (BYTE_POS_ADDR (ibeg), encoded, length,
3297 NILP (no_line_break),
3298 !NILP (current_buffer->enable_multibyte_characters));
3299 if (encoded_length > allength)
3300 abort ();
3302 if (encoded_length < 0)
3304 /* The encoding wasn't possible. */
3305 SAFE_FREE ();
3306 error ("Multibyte character in data for base64 encoding");
3309 /* Now we have encoded the region, so we insert the new contents
3310 and delete the old. (Insert first in order to preserve markers.) */
3311 SET_PT_BOTH (XFASTINT (beg), ibeg);
3312 insert (encoded, encoded_length);
3313 SAFE_FREE ();
3314 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
3316 /* If point was outside of the region, restore it exactly; else just
3317 move to the beginning of the region. */
3318 if (old_pos >= XFASTINT (end))
3319 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
3320 else if (old_pos > XFASTINT (beg))
3321 old_pos = XFASTINT (beg);
3322 SET_PT (old_pos);
3324 /* We return the length of the encoded text. */
3325 return make_number (encoded_length);
3328 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
3329 1, 2, 0,
3330 doc: /* Base64-encode STRING and return the result.
3331 Optional second argument NO-LINE-BREAK means do not break long lines
3332 into shorter lines. */)
3333 (string, no_line_break)
3334 Lisp_Object string, no_line_break;
3336 int allength, length, encoded_length;
3337 char *encoded;
3338 Lisp_Object encoded_string;
3339 USE_SAFE_ALLOCA;
3341 CHECK_STRING (string);
3343 /* We need to allocate enough room for encoding the text.
3344 We need 33 1/3% more space, plus a newline every 76
3345 characters, and then we round up. */
3346 length = SBYTES (string);
3347 allength = length + length/3 + 1;
3348 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3350 /* We need to allocate enough room for decoding the text. */
3351 SAFE_ALLOCA (encoded, char *, allength);
3353 encoded_length = base64_encode_1 (SDATA (string),
3354 encoded, length, NILP (no_line_break),
3355 STRING_MULTIBYTE (string));
3356 if (encoded_length > allength)
3357 abort ();
3359 if (encoded_length < 0)
3361 /* The encoding wasn't possible. */
3362 SAFE_FREE ();
3363 error ("Multibyte character in data for base64 encoding");
3366 encoded_string = make_unibyte_string (encoded, encoded_length);
3367 SAFE_FREE ();
3369 return encoded_string;
3372 static int
3373 base64_encode_1 (from, to, length, line_break, multibyte)
3374 const char *from;
3375 char *to;
3376 int length;
3377 int line_break;
3378 int multibyte;
3380 int counter = 0, i = 0;
3381 char *e = to;
3382 int c;
3383 unsigned int value;
3384 int bytes;
3386 while (i < length)
3388 if (multibyte)
3390 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3391 if (CHAR_BYTE8_P (c))
3392 c = CHAR_TO_BYTE8 (c);
3393 else if (c >= 256)
3394 return -1;
3395 i += bytes;
3397 else
3398 c = from[i++];
3400 /* Wrap line every 76 characters. */
3402 if (line_break)
3404 if (counter < MIME_LINE_LENGTH / 4)
3405 counter++;
3406 else
3408 *e++ = '\n';
3409 counter = 1;
3413 /* Process first byte of a triplet. */
3415 *e++ = base64_value_to_char[0x3f & c >> 2];
3416 value = (0x03 & c) << 4;
3418 /* Process second byte of a triplet. */
3420 if (i == length)
3422 *e++ = base64_value_to_char[value];
3423 *e++ = '=';
3424 *e++ = '=';
3425 break;
3428 if (multibyte)
3430 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3431 if (CHAR_BYTE8_P (c))
3432 c = CHAR_TO_BYTE8 (c);
3433 else if (c >= 256)
3434 return -1;
3435 i += bytes;
3437 else
3438 c = from[i++];
3440 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3441 value = (0x0f & c) << 2;
3443 /* Process third byte of a triplet. */
3445 if (i == length)
3447 *e++ = base64_value_to_char[value];
3448 *e++ = '=';
3449 break;
3452 if (multibyte)
3454 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3455 if (CHAR_BYTE8_P (c))
3456 c = CHAR_TO_BYTE8 (c);
3457 else if (c >= 256)
3458 return -1;
3459 i += bytes;
3461 else
3462 c = from[i++];
3464 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3465 *e++ = base64_value_to_char[0x3f & c];
3468 return e - to;
3472 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3473 2, 2, "r",
3474 doc: /* Base64-decode the region between BEG and END.
3475 Return the length of the decoded text.
3476 If the region can't be decoded, signal an error and don't modify the buffer. */)
3477 (beg, end)
3478 Lisp_Object beg, end;
3480 int ibeg, iend, length, allength;
3481 char *decoded;
3482 int old_pos = PT;
3483 int decoded_length;
3484 int inserted_chars;
3485 int multibyte = !NILP (current_buffer->enable_multibyte_characters);
3486 USE_SAFE_ALLOCA;
3488 validate_region (&beg, &end);
3490 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3491 iend = CHAR_TO_BYTE (XFASTINT (end));
3493 length = iend - ibeg;
3495 /* We need to allocate enough room for decoding the text. If we are
3496 working on a multibyte buffer, each decoded code may occupy at
3497 most two bytes. */
3498 allength = multibyte ? length * 2 : length;
3499 SAFE_ALLOCA (decoded, char *, allength);
3501 move_gap_both (XFASTINT (beg), ibeg);
3502 decoded_length = base64_decode_1 (BYTE_POS_ADDR (ibeg), decoded, length,
3503 multibyte, &inserted_chars);
3504 if (decoded_length > allength)
3505 abort ();
3507 if (decoded_length < 0)
3509 /* The decoding wasn't possible. */
3510 SAFE_FREE ();
3511 error ("Invalid base64 data");
3514 /* Now we have decoded the region, so we insert the new contents
3515 and delete the old. (Insert first in order to preserve markers.) */
3516 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3517 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3518 SAFE_FREE ();
3520 /* Delete the original text. */
3521 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3522 iend + decoded_length, 1);
3524 /* If point was outside of the region, restore it exactly; else just
3525 move to the beginning of the region. */
3526 if (old_pos >= XFASTINT (end))
3527 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3528 else if (old_pos > XFASTINT (beg))
3529 old_pos = XFASTINT (beg);
3530 SET_PT (old_pos > ZV ? ZV : old_pos);
3532 return make_number (inserted_chars);
3535 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3536 1, 1, 0,
3537 doc: /* Base64-decode STRING and return the result. */)
3538 (string)
3539 Lisp_Object string;
3541 char *decoded;
3542 int length, decoded_length;
3543 Lisp_Object decoded_string;
3544 USE_SAFE_ALLOCA;
3546 CHECK_STRING (string);
3548 length = SBYTES (string);
3549 /* We need to allocate enough room for decoding the text. */
3550 SAFE_ALLOCA (decoded, char *, length);
3552 /* The decoded result should be unibyte. */
3553 decoded_length = base64_decode_1 (SDATA (string), decoded, length,
3554 0, NULL);
3555 if (decoded_length > length)
3556 abort ();
3557 else if (decoded_length >= 0)
3558 decoded_string = make_unibyte_string (decoded, decoded_length);
3559 else
3560 decoded_string = Qnil;
3562 SAFE_FREE ();
3563 if (!STRINGP (decoded_string))
3564 error ("Invalid base64 data");
3566 return decoded_string;
3569 /* Base64-decode the data at FROM of LENGHT bytes into TO. If
3570 MULTIBYTE is nonzero, the decoded result should be in multibyte
3571 form. If NCHARS_RETRUN is not NULL, store the number of produced
3572 characters in *NCHARS_RETURN. */
3574 static int
3575 base64_decode_1 (from, to, length, multibyte, nchars_return)
3576 const char *from;
3577 char *to;
3578 int length;
3579 int multibyte;
3580 int *nchars_return;
3582 int i = 0;
3583 char *e = to;
3584 unsigned char c;
3585 unsigned long value;
3586 int nchars = 0;
3588 while (1)
3590 /* Process first byte of a quadruplet. */
3592 READ_QUADRUPLET_BYTE (e-to);
3594 if (!IS_BASE64 (c))
3595 return -1;
3596 value = base64_char_to_value[c] << 18;
3598 /* Process second byte of a quadruplet. */
3600 READ_QUADRUPLET_BYTE (-1);
3602 if (!IS_BASE64 (c))
3603 return -1;
3604 value |= base64_char_to_value[c] << 12;
3606 c = (unsigned char) (value >> 16);
3607 if (multibyte && c >= 128)
3608 e += BYTE8_STRING (c, e);
3609 else
3610 *e++ = c;
3611 nchars++;
3613 /* Process third byte of a quadruplet. */
3615 READ_QUADRUPLET_BYTE (-1);
3617 if (c == '=')
3619 READ_QUADRUPLET_BYTE (-1);
3621 if (c != '=')
3622 return -1;
3623 continue;
3626 if (!IS_BASE64 (c))
3627 return -1;
3628 value |= base64_char_to_value[c] << 6;
3630 c = (unsigned char) (0xff & value >> 8);
3631 if (multibyte && c >= 128)
3632 e += BYTE8_STRING (c, e);
3633 else
3634 *e++ = c;
3635 nchars++;
3637 /* Process fourth byte of a quadruplet. */
3639 READ_QUADRUPLET_BYTE (-1);
3641 if (c == '=')
3642 continue;
3644 if (!IS_BASE64 (c))
3645 return -1;
3646 value |= base64_char_to_value[c];
3648 c = (unsigned char) (0xff & value);
3649 if (multibyte && c >= 128)
3650 e += BYTE8_STRING (c, e);
3651 else
3652 *e++ = c;
3653 nchars++;
3659 /***********************************************************************
3660 ***** *****
3661 ***** Hash Tables *****
3662 ***** *****
3663 ***********************************************************************/
3665 /* Implemented by gerd@gnu.org. This hash table implementation was
3666 inspired by CMUCL hash tables. */
3668 /* Ideas:
3670 1. For small tables, association lists are probably faster than
3671 hash tables because they have lower overhead.
3673 For uses of hash tables where the O(1) behavior of table
3674 operations is not a requirement, it might therefore be a good idea
3675 not to hash. Instead, we could just do a linear search in the
3676 key_and_value vector of the hash table. This could be done
3677 if a `:linear-search t' argument is given to make-hash-table. */
3680 /* The list of all weak hash tables. Don't staticpro this one. */
3682 struct Lisp_Hash_Table *weak_hash_tables;
3684 /* Various symbols. */
3686 Lisp_Object Qhash_table_p, Qeq, Qeql, Qequal, Qkey, Qvalue;
3687 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
3688 Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
3690 /* Function prototypes. */
3692 static struct Lisp_Hash_Table *check_hash_table P_ ((Lisp_Object));
3693 static int get_key_arg P_ ((Lisp_Object, int, Lisp_Object *, char *));
3694 static void maybe_resize_hash_table P_ ((struct Lisp_Hash_Table *));
3695 static int cmpfn_eql P_ ((struct Lisp_Hash_Table *, Lisp_Object, unsigned,
3696 Lisp_Object, unsigned));
3697 static int cmpfn_equal P_ ((struct Lisp_Hash_Table *, Lisp_Object, unsigned,
3698 Lisp_Object, unsigned));
3699 static int cmpfn_user_defined P_ ((struct Lisp_Hash_Table *, Lisp_Object,
3700 unsigned, Lisp_Object, unsigned));
3701 static unsigned hashfn_eq P_ ((struct Lisp_Hash_Table *, Lisp_Object));
3702 static unsigned hashfn_eql P_ ((struct Lisp_Hash_Table *, Lisp_Object));
3703 static unsigned hashfn_equal P_ ((struct Lisp_Hash_Table *, Lisp_Object));
3704 static unsigned hashfn_user_defined P_ ((struct Lisp_Hash_Table *,
3705 Lisp_Object));
3706 static unsigned sxhash_string P_ ((unsigned char *, int));
3707 static unsigned sxhash_list P_ ((Lisp_Object, int));
3708 static unsigned sxhash_vector P_ ((Lisp_Object, int));
3709 static unsigned sxhash_bool_vector P_ ((Lisp_Object));
3710 static int sweep_weak_table P_ ((struct Lisp_Hash_Table *, int));
3714 /***********************************************************************
3715 Utilities
3716 ***********************************************************************/
3718 /* If OBJ is a Lisp hash table, return a pointer to its struct
3719 Lisp_Hash_Table. Otherwise, signal an error. */
3721 static struct Lisp_Hash_Table *
3722 check_hash_table (obj)
3723 Lisp_Object obj;
3725 CHECK_HASH_TABLE (obj);
3726 return XHASH_TABLE (obj);
3730 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3731 number. */
3734 next_almost_prime (n)
3735 int n;
3737 if (n % 2 == 0)
3738 n += 1;
3739 if (n % 3 == 0)
3740 n += 2;
3741 if (n % 7 == 0)
3742 n += 4;
3743 return n;
3747 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3748 which USED[I] is non-zero. If found at index I in ARGS, set
3749 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3750 -1. This function is used to extract a keyword/argument pair from
3751 a DEFUN parameter list. */
3753 static int
3754 get_key_arg (key, nargs, args, used)
3755 Lisp_Object key;
3756 int nargs;
3757 Lisp_Object *args;
3758 char *used;
3760 int i;
3762 for (i = 0; i < nargs - 1; ++i)
3763 if (!used[i] && EQ (args[i], key))
3764 break;
3766 if (i >= nargs - 1)
3767 i = -1;
3768 else
3770 used[i++] = 1;
3771 used[i] = 1;
3774 return i;
3778 /* Return a Lisp vector which has the same contents as VEC but has
3779 size NEW_SIZE, NEW_SIZE >= VEC->size. Entries in the resulting
3780 vector that are not copied from VEC are set to INIT. */
3782 Lisp_Object
3783 larger_vector (vec, new_size, init)
3784 Lisp_Object vec;
3785 int new_size;
3786 Lisp_Object init;
3788 struct Lisp_Vector *v;
3789 int i, old_size;
3791 xassert (VECTORP (vec));
3792 old_size = ASIZE (vec);
3793 xassert (new_size >= old_size);
3795 v = allocate_vector (new_size);
3796 bcopy (XVECTOR (vec)->contents, v->contents,
3797 old_size * sizeof *v->contents);
3798 for (i = old_size; i < new_size; ++i)
3799 v->contents[i] = init;
3800 XSETVECTOR (vec, v);
3801 return vec;
3805 /***********************************************************************
3806 Low-level Functions
3807 ***********************************************************************/
3809 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3810 HASH2 in hash table H using `eql'. Value is non-zero if KEY1 and
3811 KEY2 are the same. */
3813 static int
3814 cmpfn_eql (h, key1, hash1, key2, hash2)
3815 struct Lisp_Hash_Table *h;
3816 Lisp_Object key1, key2;
3817 unsigned hash1, hash2;
3819 return (FLOATP (key1)
3820 && FLOATP (key2)
3821 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3825 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3826 HASH2 in hash table H using `equal'. Value is non-zero if KEY1 and
3827 KEY2 are the same. */
3829 static int
3830 cmpfn_equal (h, key1, hash1, key2, hash2)
3831 struct Lisp_Hash_Table *h;
3832 Lisp_Object key1, key2;
3833 unsigned hash1, hash2;
3835 return hash1 == hash2 && !NILP (Fequal (key1, key2));
3839 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3840 HASH2 in hash table H using H->user_cmp_function. Value is non-zero
3841 if KEY1 and KEY2 are the same. */
3843 static int
3844 cmpfn_user_defined (h, key1, hash1, key2, hash2)
3845 struct Lisp_Hash_Table *h;
3846 Lisp_Object key1, key2;
3847 unsigned hash1, hash2;
3849 if (hash1 == hash2)
3851 Lisp_Object args[3];
3853 args[0] = h->user_cmp_function;
3854 args[1] = key1;
3855 args[2] = key2;
3856 return !NILP (Ffuncall (3, args));
3858 else
3859 return 0;
3863 /* Value is a hash code for KEY for use in hash table H which uses
3864 `eq' to compare keys. The hash code returned is guaranteed to fit
3865 in a Lisp integer. */
3867 static unsigned
3868 hashfn_eq (h, key)
3869 struct Lisp_Hash_Table *h;
3870 Lisp_Object key;
3872 unsigned hash = XUINT (key) ^ XTYPE (key);
3873 xassert ((hash & ~INTMASK) == 0);
3874 return hash;
3878 /* Value is a hash code for KEY for use in hash table H which uses
3879 `eql' to compare keys. The hash code returned is guaranteed to fit
3880 in a Lisp integer. */
3882 static unsigned
3883 hashfn_eql (h, key)
3884 struct Lisp_Hash_Table *h;
3885 Lisp_Object key;
3887 unsigned hash;
3888 if (FLOATP (key))
3889 hash = sxhash (key, 0);
3890 else
3891 hash = XUINT (key) ^ XTYPE (key);
3892 xassert ((hash & ~INTMASK) == 0);
3893 return hash;
3897 /* Value is a hash code for KEY for use in hash table H which uses
3898 `equal' to compare keys. The hash code returned is guaranteed to fit
3899 in a Lisp integer. */
3901 static unsigned
3902 hashfn_equal (h, key)
3903 struct Lisp_Hash_Table *h;
3904 Lisp_Object key;
3906 unsigned hash = sxhash (key, 0);
3907 xassert ((hash & ~INTMASK) == 0);
3908 return hash;
3912 /* Value is a hash code for KEY for use in hash table H which uses as
3913 user-defined function to compare keys. The hash code returned is
3914 guaranteed to fit in a Lisp integer. */
3916 static unsigned
3917 hashfn_user_defined (h, key)
3918 struct Lisp_Hash_Table *h;
3919 Lisp_Object key;
3921 Lisp_Object args[2], hash;
3923 args[0] = h->user_hash_function;
3924 args[1] = key;
3925 hash = Ffuncall (2, args);
3926 if (!INTEGERP (hash))
3927 signal_error ("Invalid hash code returned from user-supplied hash function", hash);
3928 return XUINT (hash);
3932 /* Create and initialize a new hash table.
3934 TEST specifies the test the hash table will use to compare keys.
3935 It must be either one of the predefined tests `eq', `eql' or
3936 `equal' or a symbol denoting a user-defined test named TEST with
3937 test and hash functions USER_TEST and USER_HASH.
3939 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3941 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3942 new size when it becomes full is computed by adding REHASH_SIZE to
3943 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3944 table's new size is computed by multiplying its old size with
3945 REHASH_SIZE.
3947 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3948 be resized when the ratio of (number of entries in the table) /
3949 (table size) is >= REHASH_THRESHOLD.
3951 WEAK specifies the weakness of the table. If non-nil, it must be
3952 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3954 Lisp_Object
3955 make_hash_table (test, size, rehash_size, rehash_threshold, weak,
3956 user_test, user_hash)
3957 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
3958 Lisp_Object user_test, user_hash;
3960 struct Lisp_Hash_Table *h;
3961 Lisp_Object table;
3962 int index_size, i, sz;
3964 /* Preconditions. */
3965 xassert (SYMBOLP (test));
3966 xassert (INTEGERP (size) && XINT (size) >= 0);
3967 xassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
3968 || (FLOATP (rehash_size) && XFLOATINT (rehash_size) > 1.0));
3969 xassert (FLOATP (rehash_threshold)
3970 && XFLOATINT (rehash_threshold) > 0
3971 && XFLOATINT (rehash_threshold) <= 1.0);
3973 if (XFASTINT (size) == 0)
3974 size = make_number (1);
3976 /* Allocate a table and initialize it. */
3977 h = allocate_hash_table ();
3979 /* Initialize hash table slots. */
3980 sz = XFASTINT (size);
3982 h->test = test;
3983 if (EQ (test, Qeql))
3985 h->cmpfn = cmpfn_eql;
3986 h->hashfn = hashfn_eql;
3988 else if (EQ (test, Qeq))
3990 h->cmpfn = NULL;
3991 h->hashfn = hashfn_eq;
3993 else if (EQ (test, Qequal))
3995 h->cmpfn = cmpfn_equal;
3996 h->hashfn = hashfn_equal;
3998 else
4000 h->user_cmp_function = user_test;
4001 h->user_hash_function = user_hash;
4002 h->cmpfn = cmpfn_user_defined;
4003 h->hashfn = hashfn_user_defined;
4006 h->weak = weak;
4007 h->rehash_threshold = rehash_threshold;
4008 h->rehash_size = rehash_size;
4009 h->count = 0;
4010 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
4011 h->hash = Fmake_vector (size, Qnil);
4012 h->next = Fmake_vector (size, Qnil);
4013 /* Cast to int here avoids losing with gcc 2.95 on Tru64/Alpha... */
4014 index_size = next_almost_prime ((int) (sz / XFLOATINT (rehash_threshold)));
4015 h->index = Fmake_vector (make_number (index_size), Qnil);
4017 /* Set up the free list. */
4018 for (i = 0; i < sz - 1; ++i)
4019 HASH_NEXT (h, i) = make_number (i + 1);
4020 h->next_free = make_number (0);
4022 XSET_HASH_TABLE (table, h);
4023 xassert (HASH_TABLE_P (table));
4024 xassert (XHASH_TABLE (table) == h);
4026 /* Maybe add this hash table to the list of all weak hash tables. */
4027 if (NILP (h->weak))
4028 h->next_weak = NULL;
4029 else
4031 h->next_weak = weak_hash_tables;
4032 weak_hash_tables = h;
4035 return table;
4039 /* Return a copy of hash table H1. Keys and values are not copied,
4040 only the table itself is. */
4042 Lisp_Object
4043 copy_hash_table (h1)
4044 struct Lisp_Hash_Table *h1;
4046 Lisp_Object table;
4047 struct Lisp_Hash_Table *h2;
4048 struct Lisp_Vector *next;
4050 h2 = allocate_hash_table ();
4051 next = h2->vec_next;
4052 bcopy (h1, h2, sizeof *h2);
4053 h2->vec_next = next;
4054 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
4055 h2->hash = Fcopy_sequence (h1->hash);
4056 h2->next = Fcopy_sequence (h1->next);
4057 h2->index = Fcopy_sequence (h1->index);
4058 XSET_HASH_TABLE (table, h2);
4060 /* Maybe add this hash table to the list of all weak hash tables. */
4061 if (!NILP (h2->weak))
4063 h2->next_weak = weak_hash_tables;
4064 weak_hash_tables = h2;
4067 return table;
4071 /* Resize hash table H if it's too full. If H cannot be resized
4072 because it's already too large, throw an error. */
4074 static INLINE void
4075 maybe_resize_hash_table (h)
4076 struct Lisp_Hash_Table *h;
4078 if (NILP (h->next_free))
4080 int old_size = HASH_TABLE_SIZE (h);
4081 int i, new_size, index_size;
4082 EMACS_INT nsize;
4084 if (INTEGERP (h->rehash_size))
4085 new_size = old_size + XFASTINT (h->rehash_size);
4086 else
4087 new_size = old_size * XFLOATINT (h->rehash_size);
4088 new_size = max (old_size + 1, new_size);
4089 index_size = next_almost_prime ((int)
4090 (new_size
4091 / XFLOATINT (h->rehash_threshold)));
4092 /* Assignment to EMACS_INT stops GCC whining about limited range
4093 of data type. */
4094 nsize = max (index_size, 2 * new_size);
4095 if (nsize > MOST_POSITIVE_FIXNUM)
4096 error ("Hash table too large to resize");
4098 h->key_and_value = larger_vector (h->key_and_value, 2 * new_size, Qnil);
4099 h->next = larger_vector (h->next, new_size, Qnil);
4100 h->hash = larger_vector (h->hash, new_size, Qnil);
4101 h->index = Fmake_vector (make_number (index_size), Qnil);
4103 /* Update the free list. Do it so that new entries are added at
4104 the end of the free list. This makes some operations like
4105 maphash faster. */
4106 for (i = old_size; i < new_size - 1; ++i)
4107 HASH_NEXT (h, i) = make_number (i + 1);
4109 if (!NILP (h->next_free))
4111 Lisp_Object last, next;
4113 last = h->next_free;
4114 while (next = HASH_NEXT (h, XFASTINT (last)),
4115 !NILP (next))
4116 last = next;
4118 HASH_NEXT (h, XFASTINT (last)) = make_number (old_size);
4120 else
4121 XSETFASTINT (h->next_free, old_size);
4123 /* Rehash. */
4124 for (i = 0; i < old_size; ++i)
4125 if (!NILP (HASH_HASH (h, i)))
4127 unsigned hash_code = XUINT (HASH_HASH (h, i));
4128 int start_of_bucket = hash_code % ASIZE (h->index);
4129 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
4130 HASH_INDEX (h, start_of_bucket) = make_number (i);
4136 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
4137 the hash code of KEY. Value is the index of the entry in H
4138 matching KEY, or -1 if not found. */
4141 hash_lookup (h, key, hash)
4142 struct Lisp_Hash_Table *h;
4143 Lisp_Object key;
4144 unsigned *hash;
4146 unsigned hash_code;
4147 int start_of_bucket;
4148 Lisp_Object idx;
4150 hash_code = h->hashfn (h, key);
4151 if (hash)
4152 *hash = hash_code;
4154 start_of_bucket = hash_code % ASIZE (h->index);
4155 idx = HASH_INDEX (h, start_of_bucket);
4157 /* We need not gcpro idx since it's either an integer or nil. */
4158 while (!NILP (idx))
4160 int i = XFASTINT (idx);
4161 if (EQ (key, HASH_KEY (h, i))
4162 || (h->cmpfn
4163 && h->cmpfn (h, key, hash_code,
4164 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
4165 break;
4166 idx = HASH_NEXT (h, i);
4169 return NILP (idx) ? -1 : XFASTINT (idx);
4173 /* Put an entry into hash table H that associates KEY with VALUE.
4174 HASH is a previously computed hash code of KEY.
4175 Value is the index of the entry in H matching KEY. */
4178 hash_put (h, key, value, hash)
4179 struct Lisp_Hash_Table *h;
4180 Lisp_Object key, value;
4181 unsigned hash;
4183 int start_of_bucket, i;
4185 xassert ((hash & ~INTMASK) == 0);
4187 /* Increment count after resizing because resizing may fail. */
4188 maybe_resize_hash_table (h);
4189 h->count++;
4191 /* Store key/value in the key_and_value vector. */
4192 i = XFASTINT (h->next_free);
4193 h->next_free = HASH_NEXT (h, i);
4194 HASH_KEY (h, i) = key;
4195 HASH_VALUE (h, i) = value;
4197 /* Remember its hash code. */
4198 HASH_HASH (h, i) = make_number (hash);
4200 /* Add new entry to its collision chain. */
4201 start_of_bucket = hash % ASIZE (h->index);
4202 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
4203 HASH_INDEX (h, start_of_bucket) = make_number (i);
4204 return i;
4208 /* Remove the entry matching KEY from hash table H, if there is one. */
4210 static void
4211 hash_remove_from_table (h, key)
4212 struct Lisp_Hash_Table *h;
4213 Lisp_Object key;
4215 unsigned hash_code;
4216 int start_of_bucket;
4217 Lisp_Object idx, prev;
4219 hash_code = h->hashfn (h, key);
4220 start_of_bucket = hash_code % ASIZE (h->index);
4221 idx = HASH_INDEX (h, start_of_bucket);
4222 prev = Qnil;
4224 /* We need not gcpro idx, prev since they're either integers or nil. */
4225 while (!NILP (idx))
4227 int i = XFASTINT (idx);
4229 if (EQ (key, HASH_KEY (h, i))
4230 || (h->cmpfn
4231 && h->cmpfn (h, key, hash_code,
4232 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
4234 /* Take entry out of collision chain. */
4235 if (NILP (prev))
4236 HASH_INDEX (h, start_of_bucket) = HASH_NEXT (h, i);
4237 else
4238 HASH_NEXT (h, XFASTINT (prev)) = HASH_NEXT (h, i);
4240 /* Clear slots in key_and_value and add the slots to
4241 the free list. */
4242 HASH_KEY (h, i) = HASH_VALUE (h, i) = HASH_HASH (h, i) = Qnil;
4243 HASH_NEXT (h, i) = h->next_free;
4244 h->next_free = make_number (i);
4245 h->count--;
4246 xassert (h->count >= 0);
4247 break;
4249 else
4251 prev = idx;
4252 idx = HASH_NEXT (h, i);
4258 /* Clear hash table H. */
4260 void
4261 hash_clear (h)
4262 struct Lisp_Hash_Table *h;
4264 if (h->count > 0)
4266 int i, size = HASH_TABLE_SIZE (h);
4268 for (i = 0; i < size; ++i)
4270 HASH_NEXT (h, i) = i < size - 1 ? make_number (i + 1) : Qnil;
4271 HASH_KEY (h, i) = Qnil;
4272 HASH_VALUE (h, i) = Qnil;
4273 HASH_HASH (h, i) = Qnil;
4276 for (i = 0; i < ASIZE (h->index); ++i)
4277 ASET (h->index, i, Qnil);
4279 h->next_free = make_number (0);
4280 h->count = 0;
4286 /************************************************************************
4287 Weak Hash Tables
4288 ************************************************************************/
4290 void
4291 init_weak_hash_tables ()
4293 weak_hash_tables = NULL;
4296 /* Sweep weak hash table H. REMOVE_ENTRIES_P non-zero means remove
4297 entries from the table that don't survive the current GC.
4298 REMOVE_ENTRIES_P zero means mark entries that are in use. Value is
4299 non-zero if anything was marked. */
4301 static int
4302 sweep_weak_table (h, remove_entries_p)
4303 struct Lisp_Hash_Table *h;
4304 int remove_entries_p;
4306 int bucket, n, marked;
4308 n = ASIZE (h->index) & ~ARRAY_MARK_FLAG;
4309 marked = 0;
4311 for (bucket = 0; bucket < n; ++bucket)
4313 Lisp_Object idx, next, prev;
4315 /* Follow collision chain, removing entries that
4316 don't survive this garbage collection. */
4317 prev = Qnil;
4318 for (idx = HASH_INDEX (h, bucket); !NILP (idx); idx = next)
4320 int i = XFASTINT (idx);
4321 int key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
4322 int value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
4323 int remove_p;
4325 if (EQ (h->weak, Qkey))
4326 remove_p = !key_known_to_survive_p;
4327 else if (EQ (h->weak, Qvalue))
4328 remove_p = !value_known_to_survive_p;
4329 else if (EQ (h->weak, Qkey_or_value))
4330 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
4331 else if (EQ (h->weak, Qkey_and_value))
4332 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
4333 else
4334 abort ();
4336 next = HASH_NEXT (h, i);
4338 if (remove_entries_p)
4340 if (remove_p)
4342 /* Take out of collision chain. */
4343 if (NILP (prev))
4344 HASH_INDEX (h, bucket) = next;
4345 else
4346 HASH_NEXT (h, XFASTINT (prev)) = next;
4348 /* Add to free list. */
4349 HASH_NEXT (h, i) = h->next_free;
4350 h->next_free = idx;
4352 /* Clear key, value, and hash. */
4353 HASH_KEY (h, i) = HASH_VALUE (h, i) = Qnil;
4354 HASH_HASH (h, i) = Qnil;
4356 h->count--;
4358 else
4360 prev = idx;
4363 else
4365 if (!remove_p)
4367 /* Make sure key and value survive. */
4368 if (!key_known_to_survive_p)
4370 mark_object (HASH_KEY (h, i));
4371 marked = 1;
4374 if (!value_known_to_survive_p)
4376 mark_object (HASH_VALUE (h, i));
4377 marked = 1;
4384 return marked;
4387 /* Remove elements from weak hash tables that don't survive the
4388 current garbage collection. Remove weak tables that don't survive
4389 from Vweak_hash_tables. Called from gc_sweep. */
4391 void
4392 sweep_weak_hash_tables ()
4394 struct Lisp_Hash_Table *h, *used, *next;
4395 int marked;
4397 /* Mark all keys and values that are in use. Keep on marking until
4398 there is no more change. This is necessary for cases like
4399 value-weak table A containing an entry X -> Y, where Y is used in a
4400 key-weak table B, Z -> Y. If B comes after A in the list of weak
4401 tables, X -> Y might be removed from A, although when looking at B
4402 one finds that it shouldn't. */
4405 marked = 0;
4406 for (h = weak_hash_tables; h; h = h->next_weak)
4408 if (h->size & ARRAY_MARK_FLAG)
4409 marked |= sweep_weak_table (h, 0);
4412 while (marked);
4414 /* Remove tables and entries that aren't used. */
4415 for (h = weak_hash_tables, used = NULL; h; h = next)
4417 next = h->next_weak;
4419 if (h->size & ARRAY_MARK_FLAG)
4421 /* TABLE is marked as used. Sweep its contents. */
4422 if (h->count > 0)
4423 sweep_weak_table (h, 1);
4425 /* Add table to the list of used weak hash tables. */
4426 h->next_weak = used;
4427 used = h;
4431 weak_hash_tables = used;
4436 /***********************************************************************
4437 Hash Code Computation
4438 ***********************************************************************/
4440 /* Maximum depth up to which to dive into Lisp structures. */
4442 #define SXHASH_MAX_DEPTH 3
4444 /* Maximum length up to which to take list and vector elements into
4445 account. */
4447 #define SXHASH_MAX_LEN 7
4449 /* Combine two integers X and Y for hashing. */
4451 #define SXHASH_COMBINE(X, Y) \
4452 ((((unsigned)(X) << 4) + (((unsigned)(X) >> 24) & 0x0fffffff)) \
4453 + (unsigned)(Y))
4456 /* Return a hash for string PTR which has length LEN. The hash
4457 code returned is guaranteed to fit in a Lisp integer. */
4459 static unsigned
4460 sxhash_string (ptr, len)
4461 unsigned char *ptr;
4462 int len;
4464 unsigned char *p = ptr;
4465 unsigned char *end = p + len;
4466 unsigned char c;
4467 unsigned hash = 0;
4469 while (p != end)
4471 c = *p++;
4472 if (c >= 0140)
4473 c -= 40;
4474 hash = ((hash << 4) + (hash >> 28) + c);
4477 return hash & INTMASK;
4481 /* Return a hash for list LIST. DEPTH is the current depth in the
4482 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4484 static unsigned
4485 sxhash_list (list, depth)
4486 Lisp_Object list;
4487 int depth;
4489 unsigned hash = 0;
4490 int i;
4492 if (depth < SXHASH_MAX_DEPTH)
4493 for (i = 0;
4494 CONSP (list) && i < SXHASH_MAX_LEN;
4495 list = XCDR (list), ++i)
4497 unsigned hash2 = sxhash (XCAR (list), depth + 1);
4498 hash = SXHASH_COMBINE (hash, hash2);
4501 if (!NILP (list))
4503 unsigned hash2 = sxhash (list, depth + 1);
4504 hash = SXHASH_COMBINE (hash, hash2);
4507 return hash;
4511 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4512 the Lisp structure. */
4514 static unsigned
4515 sxhash_vector (vec, depth)
4516 Lisp_Object vec;
4517 int depth;
4519 unsigned hash = ASIZE (vec);
4520 int i, n;
4522 n = min (SXHASH_MAX_LEN, ASIZE (vec));
4523 for (i = 0; i < n; ++i)
4525 unsigned hash2 = sxhash (AREF (vec, i), depth + 1);
4526 hash = SXHASH_COMBINE (hash, hash2);
4529 return hash;
4533 /* Return a hash for bool-vector VECTOR. */
4535 static unsigned
4536 sxhash_bool_vector (vec)
4537 Lisp_Object vec;
4539 unsigned hash = XBOOL_VECTOR (vec)->size;
4540 int i, n;
4542 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->vector_size);
4543 for (i = 0; i < n; ++i)
4544 hash = SXHASH_COMBINE (hash, XBOOL_VECTOR (vec)->data[i]);
4546 return hash;
4550 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4551 structure. Value is an unsigned integer clipped to INTMASK. */
4553 unsigned
4554 sxhash (obj, depth)
4555 Lisp_Object obj;
4556 int depth;
4558 unsigned hash;
4560 if (depth > SXHASH_MAX_DEPTH)
4561 return 0;
4563 switch (XTYPE (obj))
4565 case Lisp_Int:
4566 hash = XUINT (obj);
4567 break;
4569 case Lisp_Misc:
4570 hash = XUINT (obj);
4571 break;
4573 case Lisp_Symbol:
4574 obj = SYMBOL_NAME (obj);
4575 /* Fall through. */
4577 case Lisp_String:
4578 hash = sxhash_string (SDATA (obj), SCHARS (obj));
4579 break;
4581 /* This can be everything from a vector to an overlay. */
4582 case Lisp_Vectorlike:
4583 if (VECTORP (obj))
4584 /* According to the CL HyperSpec, two arrays are equal only if
4585 they are `eq', except for strings and bit-vectors. In
4586 Emacs, this works differently. We have to compare element
4587 by element. */
4588 hash = sxhash_vector (obj, depth);
4589 else if (BOOL_VECTOR_P (obj))
4590 hash = sxhash_bool_vector (obj);
4591 else
4592 /* Others are `equal' if they are `eq', so let's take their
4593 address as hash. */
4594 hash = XUINT (obj);
4595 break;
4597 case Lisp_Cons:
4598 hash = sxhash_list (obj, depth);
4599 break;
4601 case Lisp_Float:
4603 unsigned char *p = (unsigned char *) &XFLOAT_DATA (obj);
4604 unsigned char *e = p + sizeof XFLOAT_DATA (obj);
4605 for (hash = 0; p < e; ++p)
4606 hash = SXHASH_COMBINE (hash, *p);
4607 break;
4610 default:
4611 abort ();
4614 return hash & INTMASK;
4619 /***********************************************************************
4620 Lisp Interface
4621 ***********************************************************************/
4624 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4625 doc: /* Compute a hash code for OBJ and return it as integer. */)
4626 (obj)
4627 Lisp_Object obj;
4629 unsigned hash = sxhash (obj, 0);
4630 return make_number (hash);
4634 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4635 doc: /* Create and return a new hash table.
4637 Arguments are specified as keyword/argument pairs. The following
4638 arguments are defined:
4640 :test TEST -- TEST must be a symbol that specifies how to compare
4641 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4642 `equal'. User-supplied test and hash functions can be specified via
4643 `define-hash-table-test'.
4645 :size SIZE -- A hint as to how many elements will be put in the table.
4646 Default is 65.
4648 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4649 fills up. If REHASH-SIZE is an integer, add that many space. If it
4650 is a float, it must be > 1.0, and the new size is computed by
4651 multiplying the old size with that factor. Default is 1.5.
4653 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4654 Resize the hash table when ratio of the number of entries in the
4655 table. Default is 0.8.
4657 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4658 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4659 returned is a weak table. Key/value pairs are removed from a weak
4660 hash table when there are no non-weak references pointing to their
4661 key, value, one of key or value, or both key and value, depending on
4662 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4663 is nil.
4665 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4666 (nargs, args)
4667 int nargs;
4668 Lisp_Object *args;
4670 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4671 Lisp_Object user_test, user_hash;
4672 char *used;
4673 int i;
4675 /* The vector `used' is used to keep track of arguments that
4676 have been consumed. */
4677 used = (char *) alloca (nargs * sizeof *used);
4678 bzero (used, nargs * sizeof *used);
4680 /* See if there's a `:test TEST' among the arguments. */
4681 i = get_key_arg (QCtest, nargs, args, used);
4682 test = i < 0 ? Qeql : args[i];
4683 if (!EQ (test, Qeq) && !EQ (test, Qeql) && !EQ (test, Qequal))
4685 /* See if it is a user-defined test. */
4686 Lisp_Object prop;
4688 prop = Fget (test, Qhash_table_test);
4689 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4690 signal_error ("Invalid hash table test", test);
4691 user_test = XCAR (prop);
4692 user_hash = XCAR (XCDR (prop));
4694 else
4695 user_test = user_hash = Qnil;
4697 /* See if there's a `:size SIZE' argument. */
4698 i = get_key_arg (QCsize, nargs, args, used);
4699 size = i < 0 ? Qnil : args[i];
4700 if (NILP (size))
4701 size = make_number (DEFAULT_HASH_SIZE);
4702 else if (!INTEGERP (size) || XINT (size) < 0)
4703 signal_error ("Invalid hash table size", size);
4705 /* Look for `:rehash-size SIZE'. */
4706 i = get_key_arg (QCrehash_size, nargs, args, used);
4707 rehash_size = i < 0 ? make_float (DEFAULT_REHASH_SIZE) : args[i];
4708 if (!NUMBERP (rehash_size)
4709 || (INTEGERP (rehash_size) && XINT (rehash_size) <= 0)
4710 || XFLOATINT (rehash_size) <= 1.0)
4711 signal_error ("Invalid hash table rehash size", rehash_size);
4713 /* Look for `:rehash-threshold THRESHOLD'. */
4714 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4715 rehash_threshold = i < 0 ? make_float (DEFAULT_REHASH_THRESHOLD) : args[i];
4716 if (!FLOATP (rehash_threshold)
4717 || XFLOATINT (rehash_threshold) <= 0.0
4718 || XFLOATINT (rehash_threshold) > 1.0)
4719 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
4721 /* Look for `:weakness WEAK'. */
4722 i = get_key_arg (QCweakness, nargs, args, used);
4723 weak = i < 0 ? Qnil : args[i];
4724 if (EQ (weak, Qt))
4725 weak = Qkey_and_value;
4726 if (!NILP (weak)
4727 && !EQ (weak, Qkey)
4728 && !EQ (weak, Qvalue)
4729 && !EQ (weak, Qkey_or_value)
4730 && !EQ (weak, Qkey_and_value))
4731 signal_error ("Invalid hash table weakness", weak);
4733 /* Now, all args should have been used up, or there's a problem. */
4734 for (i = 0; i < nargs; ++i)
4735 if (!used[i])
4736 signal_error ("Invalid argument list", args[i]);
4738 return make_hash_table (test, size, rehash_size, rehash_threshold, weak,
4739 user_test, user_hash);
4743 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4744 doc: /* Return a copy of hash table TABLE. */)
4745 (table)
4746 Lisp_Object table;
4748 return copy_hash_table (check_hash_table (table));
4752 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4753 doc: /* Return the number of elements in TABLE. */)
4754 (table)
4755 Lisp_Object table;
4757 return make_number (check_hash_table (table)->count);
4761 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4762 Shash_table_rehash_size, 1, 1, 0,
4763 doc: /* Return the current rehash size of TABLE. */)
4764 (table)
4765 Lisp_Object table;
4767 return check_hash_table (table)->rehash_size;
4771 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4772 Shash_table_rehash_threshold, 1, 1, 0,
4773 doc: /* Return the current rehash threshold of TABLE. */)
4774 (table)
4775 Lisp_Object table;
4777 return check_hash_table (table)->rehash_threshold;
4781 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4782 doc: /* Return the size of TABLE.
4783 The size can be used as an argument to `make-hash-table' to create
4784 a hash table than can hold as many elements of TABLE holds
4785 without need for resizing. */)
4786 (table)
4787 Lisp_Object table;
4789 struct Lisp_Hash_Table *h = check_hash_table (table);
4790 return make_number (HASH_TABLE_SIZE (h));
4794 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4795 doc: /* Return the test TABLE uses. */)
4796 (table)
4797 Lisp_Object table;
4799 return check_hash_table (table)->test;
4803 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4804 1, 1, 0,
4805 doc: /* Return the weakness of TABLE. */)
4806 (table)
4807 Lisp_Object table;
4809 return check_hash_table (table)->weak;
4813 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4814 doc: /* Return t if OBJ is a Lisp hash table object. */)
4815 (obj)
4816 Lisp_Object obj;
4818 return HASH_TABLE_P (obj) ? Qt : Qnil;
4822 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4823 doc: /* Clear hash table TABLE and return it. */)
4824 (table)
4825 Lisp_Object table;
4827 hash_clear (check_hash_table (table));
4828 /* Be compatible with XEmacs. */
4829 return table;
4833 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4834 doc: /* Look up KEY in TABLE and return its associated value.
4835 If KEY is not found, return DFLT which defaults to nil. */)
4836 (key, table, dflt)
4837 Lisp_Object key, table, dflt;
4839 struct Lisp_Hash_Table *h = check_hash_table (table);
4840 int i = hash_lookup (h, key, NULL);
4841 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4845 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4846 doc: /* Associate KEY with VALUE in hash table TABLE.
4847 If KEY is already present in table, replace its current value with
4848 VALUE. */)
4849 (key, value, table)
4850 Lisp_Object key, value, table;
4852 struct Lisp_Hash_Table *h = check_hash_table (table);
4853 int i;
4854 unsigned hash;
4856 i = hash_lookup (h, key, &hash);
4857 if (i >= 0)
4858 HASH_VALUE (h, i) = value;
4859 else
4860 hash_put (h, key, value, hash);
4862 return value;
4866 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4867 doc: /* Remove KEY from TABLE. */)
4868 (key, table)
4869 Lisp_Object key, table;
4871 struct Lisp_Hash_Table *h = check_hash_table (table);
4872 hash_remove_from_table (h, key);
4873 return Qnil;
4877 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4878 doc: /* Call FUNCTION for all entries in hash table TABLE.
4879 FUNCTION is called with two arguments, KEY and VALUE. */)
4880 (function, table)
4881 Lisp_Object function, table;
4883 struct Lisp_Hash_Table *h = check_hash_table (table);
4884 Lisp_Object args[3];
4885 int i;
4887 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
4888 if (!NILP (HASH_HASH (h, i)))
4890 args[0] = function;
4891 args[1] = HASH_KEY (h, i);
4892 args[2] = HASH_VALUE (h, i);
4893 Ffuncall (3, args);
4896 return Qnil;
4900 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4901 Sdefine_hash_table_test, 3, 3, 0,
4902 doc: /* Define a new hash table test with name NAME, a symbol.
4904 In hash tables created with NAME specified as test, use TEST to
4905 compare keys, and HASH for computing hash codes of keys.
4907 TEST must be a function taking two arguments and returning non-nil if
4908 both arguments are the same. HASH must be a function taking one
4909 argument and return an integer that is the hash code of the argument.
4910 Hash code computation should use the whole value range of integers,
4911 including negative integers. */)
4912 (name, test, hash)
4913 Lisp_Object name, test, hash;
4915 return Fput (name, Qhash_table_test, list2 (test, hash));
4920 /************************************************************************
4922 ************************************************************************/
4924 #include "md5.h"
4926 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4927 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4929 A message digest is a cryptographic checksum of a document, and the
4930 algorithm to calculate it is defined in RFC 1321.
4932 The two optional arguments START and END are character positions
4933 specifying for which part of OBJECT the message digest should be
4934 computed. If nil or omitted, the digest is computed for the whole
4935 OBJECT.
4937 The MD5 message digest is computed from the result of encoding the
4938 text in a coding system, not directly from the internal Emacs form of
4939 the text. The optional fourth argument CODING-SYSTEM specifies which
4940 coding system to encode the text with. It should be the same coding
4941 system that you used or will use when actually writing the text into a
4942 file.
4944 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4945 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4946 system would be chosen by default for writing this text into a file.
4948 If OBJECT is a string, the most preferred coding system (see the
4949 command `prefer-coding-system') is used.
4951 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4952 guesswork fails. Normally, an error is signaled in such case. */)
4953 (object, start, end, coding_system, noerror)
4954 Lisp_Object object, start, end, coding_system, noerror;
4956 unsigned char digest[16];
4957 unsigned char value[33];
4958 int i;
4959 int size;
4960 int size_byte = 0;
4961 int start_char = 0, end_char = 0;
4962 int start_byte = 0, end_byte = 0;
4963 register int b, e;
4964 register struct buffer *bp;
4965 int temp;
4967 if (STRINGP (object))
4969 if (NILP (coding_system))
4971 /* Decide the coding-system to encode the data with. */
4973 if (STRING_MULTIBYTE (object))
4974 /* use default, we can't guess correct value */
4975 coding_system = preferred_coding_system ();
4976 else
4977 coding_system = Qraw_text;
4980 if (NILP (Fcoding_system_p (coding_system)))
4982 /* Invalid coding system. */
4984 if (!NILP (noerror))
4985 coding_system = Qraw_text;
4986 else
4987 xsignal1 (Qcoding_system_error, coding_system);
4990 if (STRING_MULTIBYTE (object))
4991 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4993 size = SCHARS (object);
4994 size_byte = SBYTES (object);
4996 if (!NILP (start))
4998 CHECK_NUMBER (start);
5000 start_char = XINT (start);
5002 if (start_char < 0)
5003 start_char += size;
5005 start_byte = string_char_to_byte (object, start_char);
5008 if (NILP (end))
5010 end_char = size;
5011 end_byte = size_byte;
5013 else
5015 CHECK_NUMBER (end);
5017 end_char = XINT (end);
5019 if (end_char < 0)
5020 end_char += size;
5022 end_byte = string_char_to_byte (object, end_char);
5025 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
5026 args_out_of_range_3 (object, make_number (start_char),
5027 make_number (end_char));
5029 else
5031 struct buffer *prev = current_buffer;
5033 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
5035 CHECK_BUFFER (object);
5037 bp = XBUFFER (object);
5038 if (bp != current_buffer)
5039 set_buffer_internal (bp);
5041 if (NILP (start))
5042 b = BEGV;
5043 else
5045 CHECK_NUMBER_COERCE_MARKER (start);
5046 b = XINT (start);
5049 if (NILP (end))
5050 e = ZV;
5051 else
5053 CHECK_NUMBER_COERCE_MARKER (end);
5054 e = XINT (end);
5057 if (b > e)
5058 temp = b, b = e, e = temp;
5060 if (!(BEGV <= b && e <= ZV))
5061 args_out_of_range (start, end);
5063 if (NILP (coding_system))
5065 /* Decide the coding-system to encode the data with.
5066 See fileio.c:Fwrite-region */
5068 if (!NILP (Vcoding_system_for_write))
5069 coding_system = Vcoding_system_for_write;
5070 else
5072 int force_raw_text = 0;
5074 coding_system = XBUFFER (object)->buffer_file_coding_system;
5075 if (NILP (coding_system)
5076 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
5078 coding_system = Qnil;
5079 if (NILP (current_buffer->enable_multibyte_characters))
5080 force_raw_text = 1;
5083 if (NILP (coding_system) && !NILP (Fbuffer_file_name(object)))
5085 /* Check file-coding-system-alist. */
5086 Lisp_Object args[4], val;
5088 args[0] = Qwrite_region; args[1] = start; args[2] = end;
5089 args[3] = Fbuffer_file_name(object);
5090 val = Ffind_operation_coding_system (4, args);
5091 if (CONSP (val) && !NILP (XCDR (val)))
5092 coding_system = XCDR (val);
5095 if (NILP (coding_system)
5096 && !NILP (XBUFFER (object)->buffer_file_coding_system))
5098 /* If we still have not decided a coding system, use the
5099 default value of buffer-file-coding-system. */
5100 coding_system = XBUFFER (object)->buffer_file_coding_system;
5103 if (!force_raw_text
5104 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
5105 /* Confirm that VAL can surely encode the current region. */
5106 coding_system = call4 (Vselect_safe_coding_system_function,
5107 make_number (b), make_number (e),
5108 coding_system, Qnil);
5110 if (force_raw_text)
5111 coding_system = Qraw_text;
5114 if (NILP (Fcoding_system_p (coding_system)))
5116 /* Invalid coding system. */
5118 if (!NILP (noerror))
5119 coding_system = Qraw_text;
5120 else
5121 xsignal1 (Qcoding_system_error, coding_system);
5125 object = make_buffer_string (b, e, 0);
5126 if (prev != current_buffer)
5127 set_buffer_internal (prev);
5128 /* Discard the unwind protect for recovering the current
5129 buffer. */
5130 specpdl_ptr--;
5132 if (STRING_MULTIBYTE (object))
5133 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
5136 md5_buffer (SDATA (object) + start_byte,
5137 SBYTES (object) - (size_byte - end_byte),
5138 digest);
5140 for (i = 0; i < 16; i++)
5141 sprintf (&value[2 * i], "%02x", digest[i]);
5142 value[32] = '\0';
5144 return make_string (value, 32);
5148 void
5149 syms_of_fns ()
5151 /* Hash table stuff. */
5152 Qhash_table_p = intern ("hash-table-p");
5153 staticpro (&Qhash_table_p);
5154 Qeq = intern ("eq");
5155 staticpro (&Qeq);
5156 Qeql = intern ("eql");
5157 staticpro (&Qeql);
5158 Qequal = intern ("equal");
5159 staticpro (&Qequal);
5160 QCtest = intern (":test");
5161 staticpro (&QCtest);
5162 QCsize = intern (":size");
5163 staticpro (&QCsize);
5164 QCrehash_size = intern (":rehash-size");
5165 staticpro (&QCrehash_size);
5166 QCrehash_threshold = intern (":rehash-threshold");
5167 staticpro (&QCrehash_threshold);
5168 QCweakness = intern (":weakness");
5169 staticpro (&QCweakness);
5170 Qkey = intern ("key");
5171 staticpro (&Qkey);
5172 Qvalue = intern ("value");
5173 staticpro (&Qvalue);
5174 Qhash_table_test = intern ("hash-table-test");
5175 staticpro (&Qhash_table_test);
5176 Qkey_or_value = intern ("key-or-value");
5177 staticpro (&Qkey_or_value);
5178 Qkey_and_value = intern ("key-and-value");
5179 staticpro (&Qkey_and_value);
5181 defsubr (&Ssxhash);
5182 defsubr (&Smake_hash_table);
5183 defsubr (&Scopy_hash_table);
5184 defsubr (&Shash_table_count);
5185 defsubr (&Shash_table_rehash_size);
5186 defsubr (&Shash_table_rehash_threshold);
5187 defsubr (&Shash_table_size);
5188 defsubr (&Shash_table_test);
5189 defsubr (&Shash_table_weakness);
5190 defsubr (&Shash_table_p);
5191 defsubr (&Sclrhash);
5192 defsubr (&Sgethash);
5193 defsubr (&Sputhash);
5194 defsubr (&Sremhash);
5195 defsubr (&Smaphash);
5196 defsubr (&Sdefine_hash_table_test);
5198 Qstring_lessp = intern ("string-lessp");
5199 staticpro (&Qstring_lessp);
5200 Qprovide = intern ("provide");
5201 staticpro (&Qprovide);
5202 Qrequire = intern ("require");
5203 staticpro (&Qrequire);
5204 Qyes_or_no_p_history = intern ("yes-or-no-p-history");
5205 staticpro (&Qyes_or_no_p_history);
5206 Qcursor_in_echo_area = intern ("cursor-in-echo-area");
5207 staticpro (&Qcursor_in_echo_area);
5208 Qwidget_type = intern ("widget-type");
5209 staticpro (&Qwidget_type);
5211 staticpro (&string_char_byte_cache_string);
5212 string_char_byte_cache_string = Qnil;
5214 require_nesting_list = Qnil;
5215 staticpro (&require_nesting_list);
5217 Fset (Qyes_or_no_p_history, Qnil);
5219 DEFVAR_LISP ("features", &Vfeatures,
5220 doc: /* A list of symbols which are the features of the executing Emacs.
5221 Used by `featurep' and `require', and altered by `provide'. */);
5222 Vfeatures = Fcons (intern ("emacs"), Qnil);
5223 Qsubfeatures = intern ("subfeatures");
5224 staticpro (&Qsubfeatures);
5226 #ifdef HAVE_LANGINFO_CODESET
5227 Qcodeset = intern ("codeset");
5228 staticpro (&Qcodeset);
5229 Qdays = intern ("days");
5230 staticpro (&Qdays);
5231 Qmonths = intern ("months");
5232 staticpro (&Qmonths);
5233 Qpaper = intern ("paper");
5234 staticpro (&Qpaper);
5235 #endif /* HAVE_LANGINFO_CODESET */
5237 DEFVAR_BOOL ("use-dialog-box", &use_dialog_box,
5238 doc: /* *Non-nil means mouse commands use dialog boxes to ask questions.
5239 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
5240 invoked by mouse clicks and mouse menu items.
5242 On some platforms, file selection dialogs are also enabled if this is
5243 non-nil. */);
5244 use_dialog_box = 1;
5246 DEFVAR_BOOL ("use-file-dialog", &use_file_dialog,
5247 doc: /* *Non-nil means mouse commands use a file dialog to ask for files.
5248 This applies to commands from menus and tool bar buttons even when
5249 they are initiated from the keyboard. The value of `use-dialog-box'
5250 takes precedence over this variable, so a file dialog is only used if
5251 both `use-dialog-box' and this variable are non-nil. */);
5252 use_file_dialog = 1;
5254 defsubr (&Sidentity);
5255 defsubr (&Srandom);
5256 defsubr (&Slength);
5257 defsubr (&Ssafe_length);
5258 defsubr (&Sstring_bytes);
5259 defsubr (&Sstring_equal);
5260 defsubr (&Scompare_strings);
5261 defsubr (&Sstring_lessp);
5262 defsubr (&Sappend);
5263 defsubr (&Sconcat);
5264 defsubr (&Svconcat);
5265 defsubr (&Scopy_sequence);
5266 defsubr (&Sstring_make_multibyte);
5267 defsubr (&Sstring_make_unibyte);
5268 defsubr (&Sstring_as_multibyte);
5269 defsubr (&Sstring_as_unibyte);
5270 defsubr (&Sstring_to_multibyte);
5271 defsubr (&Sstring_to_unibyte);
5272 defsubr (&Scopy_alist);
5273 defsubr (&Ssubstring);
5274 defsubr (&Ssubstring_no_properties);
5275 defsubr (&Snthcdr);
5276 defsubr (&Snth);
5277 defsubr (&Selt);
5278 defsubr (&Smember);
5279 defsubr (&Smemq);
5280 defsubr (&Smemql);
5281 defsubr (&Sassq);
5282 defsubr (&Sassoc);
5283 defsubr (&Srassq);
5284 defsubr (&Srassoc);
5285 defsubr (&Sdelq);
5286 defsubr (&Sdelete);
5287 defsubr (&Snreverse);
5288 defsubr (&Sreverse);
5289 defsubr (&Ssort);
5290 defsubr (&Splist_get);
5291 defsubr (&Sget);
5292 defsubr (&Splist_put);
5293 defsubr (&Sput);
5294 defsubr (&Slax_plist_get);
5295 defsubr (&Slax_plist_put);
5296 defsubr (&Seql);
5297 defsubr (&Sequal);
5298 defsubr (&Sequal_including_properties);
5299 defsubr (&Sfillarray);
5300 defsubr (&Sclear_string);
5301 defsubr (&Snconc);
5302 defsubr (&Smapcar);
5303 defsubr (&Smapc);
5304 defsubr (&Smapconcat);
5305 defsubr (&Sy_or_n_p);
5306 defsubr (&Syes_or_no_p);
5307 defsubr (&Sload_average);
5308 defsubr (&Sfeaturep);
5309 defsubr (&Srequire);
5310 defsubr (&Sprovide);
5311 defsubr (&Splist_member);
5312 defsubr (&Swidget_put);
5313 defsubr (&Swidget_get);
5314 defsubr (&Swidget_apply);
5315 defsubr (&Sbase64_encode_region);
5316 defsubr (&Sbase64_decode_region);
5317 defsubr (&Sbase64_encode_string);
5318 defsubr (&Sbase64_decode_string);
5319 defsubr (&Smd5);
5320 defsubr (&Slocale_info);
5324 void
5325 init_fns ()
5329 /* arch-tag: 787f8219-5b74-46bd-8469-7e1cc475fa31
5330 (do not change this comment) */