(do_check_ram_size): Don't hardcode the lisp address space size.
[emacs.git] / src / alloc.c
blob91fade836099a20f83304de981e1dd7e8d974988
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 86, 88, 93, 94, 95, 97, 98, 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
26 #ifdef ALLOC_DEBUG
27 #undef INLINE
28 #endif
30 /* Note that this declares bzero on OSF/1. How dumb. */
32 #include <signal.h>
34 /* This file is part of the core Lisp implementation, and thus must
35 deal with the real data structures. If the Lisp implementation is
36 replaced, this file likely will not be used. */
38 #undef HIDE_LISP_IMPLEMENTATION
39 #include "lisp.h"
40 #include "process.h"
41 #include "intervals.h"
42 #include "puresize.h"
43 #include "buffer.h"
44 #include "window.h"
45 #include "keyboard.h"
46 #include "frame.h"
47 #include "blockinput.h"
48 #include "charset.h"
49 #include "syssignal.h"
50 #include <setjmp.h>
52 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
53 memory. Can do this only if using gmalloc.c. */
55 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
56 #undef GC_MALLOC_CHECK
57 #endif
59 #ifdef HAVE_UNISTD_H
60 #include <unistd.h>
61 #else
62 extern POINTER_TYPE *sbrk ();
63 #endif
65 #ifdef DOUG_LEA_MALLOC
67 #include <malloc.h>
68 /* malloc.h #defines this as size_t, at least in glibc2. */
69 #ifndef __malloc_size_t
70 #define __malloc_size_t int
71 #endif
73 /* Specify maximum number of areas to mmap. It would be nice to use a
74 value that explicitly means "no limit". */
76 #define MMAP_MAX_AREAS 100000000
78 #else /* not DOUG_LEA_MALLOC */
80 /* The following come from gmalloc.c. */
82 #define __malloc_size_t size_t
83 extern __malloc_size_t _bytes_used;
84 extern __malloc_size_t __malloc_extra_blocks;
86 #endif /* not DOUG_LEA_MALLOC */
88 /* Value of _bytes_used, when spare_memory was freed. */
90 static __malloc_size_t bytes_used_when_full;
92 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
93 to a struct Lisp_String. */
95 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
96 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
97 #define STRING_MARKED_P(S) ((S)->size & ARRAY_MARK_FLAG)
99 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
100 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
101 #define VECTOR_MARKED_P(V) ((V)->size & ARRAY_MARK_FLAG)
103 /* Value is the number of bytes/chars of S, a pointer to a struct
104 Lisp_String. This must be used instead of STRING_BYTES (S) or
105 S->size during GC, because S->size contains the mark bit for
106 strings. */
108 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
109 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
111 /* Number of bytes of consing done since the last gc. */
113 int consing_since_gc;
115 /* Count the amount of consing of various sorts of space. */
117 EMACS_INT cons_cells_consed;
118 EMACS_INT floats_consed;
119 EMACS_INT vector_cells_consed;
120 EMACS_INT symbols_consed;
121 EMACS_INT string_chars_consed;
122 EMACS_INT misc_objects_consed;
123 EMACS_INT intervals_consed;
124 EMACS_INT strings_consed;
126 /* Number of bytes of consing since GC before another GC should be done. */
128 EMACS_INT gc_cons_threshold;
130 /* Nonzero during GC. */
132 int gc_in_progress;
134 /* Nonzero means abort if try to GC.
135 This is for code which is written on the assumption that
136 no GC will happen, so as to verify that assumption. */
138 int abort_on_gc;
140 /* Nonzero means display messages at beginning and end of GC. */
142 int garbage_collection_messages;
144 #ifndef VIRT_ADDR_VARIES
145 extern
146 #endif /* VIRT_ADDR_VARIES */
147 int malloc_sbrk_used;
149 #ifndef VIRT_ADDR_VARIES
150 extern
151 #endif /* VIRT_ADDR_VARIES */
152 int malloc_sbrk_unused;
154 /* Two limits controlling how much undo information to keep. */
156 EMACS_INT undo_limit;
157 EMACS_INT undo_strong_limit;
159 /* Number of live and free conses etc. */
161 static int total_conses, total_markers, total_symbols, total_vector_size;
162 static int total_free_conses, total_free_markers, total_free_symbols;
163 static int total_free_floats, total_floats;
165 /* Points to memory space allocated as "spare", to be freed if we run
166 out of memory. */
168 static char *spare_memory;
170 /* Amount of spare memory to keep in reserve. */
172 #define SPARE_MEMORY (1 << 14)
174 /* Number of extra blocks malloc should get when it needs more core. */
176 static int malloc_hysteresis;
178 /* Non-nil means defun should do purecopy on the function definition. */
180 Lisp_Object Vpurify_flag;
182 /* Non-nil means we are handling a memory-full error. */
184 Lisp_Object Vmemory_full;
186 #ifndef HAVE_SHM
188 /* Force it into data space! Initialize it to a nonzero value;
189 otherwise some compilers put it into BSS. */
191 EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
192 #define PUREBEG (char *) pure
194 #else /* HAVE_SHM */
196 #define pure PURE_SEG_BITS /* Use shared memory segment */
197 #define PUREBEG (char *)PURE_SEG_BITS
199 #endif /* HAVE_SHM */
201 /* Pointer to the pure area, and its size. */
203 static char *purebeg;
204 static size_t pure_size;
206 /* Number of bytes of pure storage used before pure storage overflowed.
207 If this is non-zero, this implies that an overflow occurred. */
209 static size_t pure_bytes_used_before_overflow;
211 /* Value is non-zero if P points into pure space. */
213 #define PURE_POINTER_P(P) \
214 (((PNTR_COMPARISON_TYPE) (P) \
215 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
216 && ((PNTR_COMPARISON_TYPE) (P) \
217 >= (PNTR_COMPARISON_TYPE) purebeg))
219 /* Index in pure at which next pure object will be allocated.. */
221 EMACS_INT pure_bytes_used;
223 /* If nonzero, this is a warning delivered by malloc and not yet
224 displayed. */
226 char *pending_malloc_warning;
228 /* Pre-computed signal argument for use when memory is exhausted. */
230 Lisp_Object Vmemory_signal_data;
232 /* Maximum amount of C stack to save when a GC happens. */
234 #ifndef MAX_SAVE_STACK
235 #define MAX_SAVE_STACK 16000
236 #endif
238 /* Buffer in which we save a copy of the C stack at each GC. */
240 char *stack_copy;
241 int stack_copy_size;
243 /* Non-zero means ignore malloc warnings. Set during initialization.
244 Currently not used. */
246 int ignore_warnings;
248 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
250 /* Hook run after GC has finished. */
252 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
254 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
255 EMACS_INT gcs_done; /* accumulated GCs */
257 static void mark_buffer P_ ((Lisp_Object));
258 extern void mark_kboards P_ ((void));
259 static void gc_sweep P_ ((void));
260 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
261 static void mark_face_cache P_ ((struct face_cache *));
263 #ifdef HAVE_WINDOW_SYSTEM
264 static void mark_image P_ ((struct image *));
265 static void mark_image_cache P_ ((struct frame *));
266 #endif /* HAVE_WINDOW_SYSTEM */
268 static struct Lisp_String *allocate_string P_ ((void));
269 static void compact_small_strings P_ ((void));
270 static void free_large_strings P_ ((void));
271 static void sweep_strings P_ ((void));
273 extern int message_enable_multibyte;
275 /* When scanning the C stack for live Lisp objects, Emacs keeps track
276 of what memory allocated via lisp_malloc is intended for what
277 purpose. This enumeration specifies the type of memory. */
279 enum mem_type
281 MEM_TYPE_NON_LISP,
282 MEM_TYPE_BUFFER,
283 MEM_TYPE_CONS,
284 MEM_TYPE_STRING,
285 MEM_TYPE_MISC,
286 MEM_TYPE_SYMBOL,
287 MEM_TYPE_FLOAT,
288 /* Keep the following vector-like types together, with
289 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
290 first. Or change the code of live_vector_p, for instance. */
291 MEM_TYPE_VECTOR,
292 MEM_TYPE_PROCESS,
293 MEM_TYPE_HASH_TABLE,
294 MEM_TYPE_FRAME,
295 MEM_TYPE_WINDOW
298 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
300 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
301 #include <stdio.h> /* For fprintf. */
302 #endif
304 /* A unique object in pure space used to make some Lisp objects
305 on free lists recognizable in O(1). */
307 Lisp_Object Vdead;
309 #ifdef GC_MALLOC_CHECK
311 enum mem_type allocated_mem_type;
312 int dont_register_blocks;
314 #endif /* GC_MALLOC_CHECK */
316 /* A node in the red-black tree describing allocated memory containing
317 Lisp data. Each such block is recorded with its start and end
318 address when it is allocated, and removed from the tree when it
319 is freed.
321 A red-black tree is a balanced binary tree with the following
322 properties:
324 1. Every node is either red or black.
325 2. Every leaf is black.
326 3. If a node is red, then both of its children are black.
327 4. Every simple path from a node to a descendant leaf contains
328 the same number of black nodes.
329 5. The root is always black.
331 When nodes are inserted into the tree, or deleted from the tree,
332 the tree is "fixed" so that these properties are always true.
334 A red-black tree with N internal nodes has height at most 2
335 log(N+1). Searches, insertions and deletions are done in O(log N).
336 Please see a text book about data structures for a detailed
337 description of red-black trees. Any book worth its salt should
338 describe them. */
340 struct mem_node
342 /* Children of this node. These pointers are never NULL. When there
343 is no child, the value is MEM_NIL, which points to a dummy node. */
344 struct mem_node *left, *right;
346 /* The parent of this node. In the root node, this is NULL. */
347 struct mem_node *parent;
349 /* Start and end of allocated region. */
350 void *start, *end;
352 /* Node color. */
353 enum {MEM_BLACK, MEM_RED} color;
355 /* Memory type. */
356 enum mem_type type;
359 /* Base address of stack. Set in main. */
361 Lisp_Object *stack_base;
363 /* Root of the tree describing allocated Lisp memory. */
365 static struct mem_node *mem_root;
367 /* Lowest and highest known address in the heap. */
369 static void *min_heap_address, *max_heap_address;
371 /* Sentinel node of the tree. */
373 static struct mem_node mem_z;
374 #define MEM_NIL &mem_z
376 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
377 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
378 static void lisp_free P_ ((POINTER_TYPE *));
379 static void mark_stack P_ ((void));
380 static int live_vector_p P_ ((struct mem_node *, void *));
381 static int live_buffer_p P_ ((struct mem_node *, void *));
382 static int live_string_p P_ ((struct mem_node *, void *));
383 static int live_cons_p P_ ((struct mem_node *, void *));
384 static int live_symbol_p P_ ((struct mem_node *, void *));
385 static int live_float_p P_ ((struct mem_node *, void *));
386 static int live_misc_p P_ ((struct mem_node *, void *));
387 static void mark_maybe_object P_ ((Lisp_Object));
388 static void mark_memory P_ ((void *, void *));
389 static void mem_init P_ ((void));
390 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
391 static void mem_insert_fixup P_ ((struct mem_node *));
392 static void mem_rotate_left P_ ((struct mem_node *));
393 static void mem_rotate_right P_ ((struct mem_node *));
394 static void mem_delete P_ ((struct mem_node *));
395 static void mem_delete_fixup P_ ((struct mem_node *));
396 static INLINE struct mem_node *mem_find P_ ((void *));
398 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
399 static void check_gcpros P_ ((void));
400 #endif
402 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
404 /* Recording what needs to be marked for gc. */
406 struct gcpro *gcprolist;
408 /* Addresses of staticpro'd variables. Initialize it to a nonzero
409 value; otherwise some compilers put it into BSS. */
411 #define NSTATICS 1280
412 Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
414 /* Index of next unused slot in staticvec. */
416 int staticidx = 0;
418 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
421 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
422 ALIGNMENT must be a power of 2. */
424 #define ALIGN(ptr, ALIGNMENT) \
425 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
426 & ~((ALIGNMENT) - 1)))
430 /************************************************************************
431 Malloc
432 ************************************************************************/
434 /* Function malloc calls this if it finds we are near exhausting storage. */
436 void
437 malloc_warning (str)
438 char *str;
440 pending_malloc_warning = str;
444 /* Display an already-pending malloc warning. */
446 void
447 display_malloc_warning ()
449 call3 (intern ("display-warning"),
450 intern ("alloc"),
451 build_string (pending_malloc_warning),
452 intern ("emergency"));
453 pending_malloc_warning = 0;
457 #ifdef DOUG_LEA_MALLOC
458 # define BYTES_USED (mallinfo ().arena)
459 #else
460 # define BYTES_USED _bytes_used
461 #endif
464 /* Called if malloc returns zero. */
466 void
467 memory_full ()
469 Vmemory_full = Qt;
471 #ifndef SYSTEM_MALLOC
472 bytes_used_when_full = BYTES_USED;
473 #endif
475 /* The first time we get here, free the spare memory. */
476 if (spare_memory)
478 free (spare_memory);
479 spare_memory = 0;
482 /* This used to call error, but if we've run out of memory, we could
483 get infinite recursion trying to build the string. */
484 while (1)
485 Fsignal (Qnil, Vmemory_signal_data);
489 /* Called if we can't allocate relocatable space for a buffer. */
491 void
492 buffer_memory_full ()
494 /* If buffers use the relocating allocator, no need to free
495 spare_memory, because we may have plenty of malloc space left
496 that we could get, and if we don't, the malloc that fails will
497 itself cause spare_memory to be freed. If buffers don't use the
498 relocating allocator, treat this like any other failing
499 malloc. */
501 #ifndef REL_ALLOC
502 memory_full ();
503 #endif
505 Vmemory_full = Qt;
507 /* This used to call error, but if we've run out of memory, we could
508 get infinite recursion trying to build the string. */
509 while (1)
510 Fsignal (Qnil, Vmemory_signal_data);
514 /* Like malloc but check for no memory and block interrupt input.. */
516 POINTER_TYPE *
517 xmalloc (size)
518 size_t size;
520 register POINTER_TYPE *val;
522 BLOCK_INPUT;
523 val = (POINTER_TYPE *) malloc (size);
524 UNBLOCK_INPUT;
526 if (!val && size)
527 memory_full ();
528 return val;
532 /* Like realloc but check for no memory and block interrupt input.. */
534 POINTER_TYPE *
535 xrealloc (block, size)
536 POINTER_TYPE *block;
537 size_t size;
539 register POINTER_TYPE *val;
541 BLOCK_INPUT;
542 /* We must call malloc explicitly when BLOCK is 0, since some
543 reallocs don't do this. */
544 if (! block)
545 val = (POINTER_TYPE *) malloc (size);
546 else
547 val = (POINTER_TYPE *) realloc (block, size);
548 UNBLOCK_INPUT;
550 if (!val && size) memory_full ();
551 return val;
555 /* Like free but block interrupt input. */
557 void
558 xfree (block)
559 POINTER_TYPE *block;
561 BLOCK_INPUT;
562 free (block);
563 UNBLOCK_INPUT;
567 /* Like strdup, but uses xmalloc. */
569 char *
570 xstrdup (s)
571 const char *s;
573 size_t len = strlen (s) + 1;
574 char *p = (char *) xmalloc (len);
575 bcopy (s, p, len);
576 return p;
580 /* Like malloc but used for allocating Lisp data. NBYTES is the
581 number of bytes to allocate, TYPE describes the intended use of the
582 allcated memory block (for strings, for conses, ...). */
584 static void *lisp_malloc_loser;
586 static POINTER_TYPE *
587 lisp_malloc (nbytes, type)
588 size_t nbytes;
589 enum mem_type type;
591 register void *val;
593 BLOCK_INPUT;
595 #ifdef GC_MALLOC_CHECK
596 allocated_mem_type = type;
597 #endif
599 val = (void *) malloc (nbytes);
601 /* If the memory just allocated cannot be addressed thru a Lisp
602 object's pointer, and it needs to be,
603 that's equivalent to running out of memory. */
604 if (val && type != MEM_TYPE_NON_LISP)
606 Lisp_Object tem;
607 XSETCONS (tem, (char *) val + nbytes - 1);
608 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
610 lisp_malloc_loser = val;
611 free (val);
612 val = 0;
616 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
617 if (val && type != MEM_TYPE_NON_LISP)
618 mem_insert (val, (char *) val + nbytes, type);
619 #endif
621 UNBLOCK_INPUT;
622 if (!val && nbytes)
623 memory_full ();
624 return val;
627 /* Free BLOCK. This must be called to free memory allocated with a
628 call to lisp_malloc. */
630 static void
631 lisp_free (block)
632 POINTER_TYPE *block;
634 BLOCK_INPUT;
635 free (block);
636 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
637 mem_delete (mem_find (block));
638 #endif
639 UNBLOCK_INPUT;
642 /* Allocation of aligned blocks of memory to store Lisp data. */
643 /* The entry point is lisp_align_malloc which returns blocks of at most */
644 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
647 /* BLOCK_ALIGN has to be a power of 2. */
648 #define BLOCK_ALIGN (1 << 10)
650 /* Padding to leave at the end of a malloc'd block. This is to give
651 malloc a chance to minimize the amount of memory wasted to alignment.
652 It should be tuned to the particular malloc library used.
653 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
654 posix_memalign on the other hand would ideally prefer a value of 4
655 because otherwise, there's 1020 bytes wasted between each ablocks.
656 But testing shows that those 1020 will most of the time be efficiently
657 used by malloc to place other objects, so a value of 0 is still preferable
658 unless you have a lot of cons&floats and virtually nothing else. */
659 #define BLOCK_PADDING 0
660 #define BLOCK_BYTES \
661 (BLOCK_ALIGN - sizeof (struct aligned_block *) - BLOCK_PADDING)
663 /* Internal data structures and constants. */
665 #define ABLOCKS_SIZE 16
667 /* An aligned block of memory. */
668 struct ablock
670 union
672 char payload[BLOCK_BYTES];
673 struct ablock *next_free;
674 } x;
675 /* `abase' is the aligned base of the ablocks. */
676 /* It is overloaded to hold the virtual `busy' field that counts
677 the number of used ablock in the parent ablocks.
678 The first ablock has the `busy' field, the others have the `abase'
679 field. To tell the difference, we assume that pointers will have
680 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
681 is used to tell whether the real base of the parent ablocks is `abase'
682 (if not, the word before the first ablock holds a pointer to the
683 real base). */
684 struct ablocks *abase;
685 /* The padding of all but the last ablock is unused. The padding of
686 the last ablock in an ablocks is not allocated. */
687 #if BLOCK_PADDING
688 char padding[BLOCK_PADDING];
689 #endif
692 /* A bunch of consecutive aligned blocks. */
693 struct ablocks
695 struct ablock blocks[ABLOCKS_SIZE];
698 /* Size of the block requested from malloc or memalign. */
699 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
701 #define ABLOCK_ABASE(block) \
702 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
703 ? (struct ablocks *)(block) \
704 : (block)->abase)
706 /* Virtual `busy' field. */
707 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
709 /* Pointer to the (not necessarily aligned) malloc block. */
710 #ifdef HAVE_POSIX_MEMALIGN
711 #define ABLOCKS_BASE(abase) (abase)
712 #else
713 #define ABLOCKS_BASE(abase) \
714 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
715 #endif
717 /* The list of free ablock. */
718 static struct ablock *free_ablock;
720 /* Allocate an aligned block of nbytes.
721 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
722 smaller or equal to BLOCK_BYTES. */
723 static POINTER_TYPE *
724 lisp_align_malloc (nbytes, type)
725 size_t nbytes;
726 enum mem_type type;
728 void *base, *val;
729 struct ablocks *abase;
731 eassert (nbytes <= BLOCK_BYTES);
733 BLOCK_INPUT;
735 #ifdef GC_MALLOC_CHECK
736 allocated_mem_type = type;
737 #endif
739 if (!free_ablock)
741 int i;
742 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
744 #ifdef DOUG_LEA_MALLOC
745 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
746 because mapped region contents are not preserved in
747 a dumped Emacs. */
748 mallopt (M_MMAP_MAX, 0);
749 #endif
751 #ifdef HAVE_POSIX_MEMALIGN
753 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
754 abase = err ? (base = NULL) : base;
756 #else
757 base = malloc (ABLOCKS_BYTES);
758 abase = ALIGN (base, BLOCK_ALIGN);
759 if (base == 0)
761 UNBLOCK_INPUT;
762 memory_full ();
764 #endif
766 aligned = (base == abase);
767 if (!aligned)
768 ((void**)abase)[-1] = base;
770 #ifdef DOUG_LEA_MALLOC
771 /* Back to a reasonable maximum of mmap'ed areas. */
772 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
773 #endif
775 /* If the memory just allocated cannot be addressed thru a Lisp
776 object's pointer, and it needs to be, that's equivalent to
777 running out of memory. */
778 if (type != MEM_TYPE_NON_LISP)
780 Lisp_Object tem;
781 char *end = (char *) base + ABLOCKS_BYTES - 1;
782 XSETCONS (tem, end);
783 if ((char *) XCONS (tem) != end)
785 lisp_malloc_loser = base;
786 free (base);
787 UNBLOCK_INPUT;
788 memory_full ();
792 /* Initialize the blocks and put them on the free list.
793 Is `base' was not properly aligned, we can't use the last block. */
794 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
796 abase->blocks[i].abase = abase;
797 abase->blocks[i].x.next_free = free_ablock;
798 free_ablock = &abase->blocks[i];
800 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
802 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
803 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
804 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
805 eassert (ABLOCKS_BASE (abase) == base);
806 eassert (aligned == (long) ABLOCKS_BUSY (abase));
809 abase = ABLOCK_ABASE (free_ablock);
810 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
811 val = free_ablock;
812 free_ablock = free_ablock->x.next_free;
814 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
815 if (val && type != MEM_TYPE_NON_LISP)
816 mem_insert (val, (char *) val + nbytes, type);
817 #endif
819 UNBLOCK_INPUT;
820 if (!val && nbytes)
821 memory_full ();
823 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
824 return val;
827 static void
828 lisp_align_free (block)
829 POINTER_TYPE *block;
831 struct ablock *ablock = block;
832 struct ablocks *abase = ABLOCK_ABASE (ablock);
834 BLOCK_INPUT;
835 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
836 mem_delete (mem_find (block));
837 #endif
838 /* Put on free list. */
839 ablock->x.next_free = free_ablock;
840 free_ablock = ablock;
841 /* Update busy count. */
842 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
844 if (2 > (long) ABLOCKS_BUSY (abase))
845 { /* All the blocks are free. */
846 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
847 struct ablock **tem = &free_ablock;
848 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
850 while (*tem)
852 if (*tem >= (struct ablock *) abase && *tem < atop)
854 i++;
855 *tem = (*tem)->x.next_free;
857 else
858 tem = &(*tem)->x.next_free;
860 eassert ((aligned & 1) == aligned);
861 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
862 free (ABLOCKS_BASE (abase));
864 UNBLOCK_INPUT;
867 /* Return a new buffer structure allocated from the heap with
868 a call to lisp_malloc. */
870 struct buffer *
871 allocate_buffer ()
873 struct buffer *b
874 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
875 MEM_TYPE_BUFFER);
876 return b;
880 /* Arranging to disable input signals while we're in malloc.
882 This only works with GNU malloc. To help out systems which can't
883 use GNU malloc, all the calls to malloc, realloc, and free
884 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
885 pairs; unfortunately, we have no idea what C library functions
886 might call malloc, so we can't really protect them unless you're
887 using GNU malloc. Fortunately, most of the major operating systems
888 can use GNU malloc. */
890 #ifndef SYSTEM_MALLOC
891 #ifndef DOUG_LEA_MALLOC
892 extern void * (*__malloc_hook) P_ ((size_t));
893 extern void * (*__realloc_hook) P_ ((void *, size_t));
894 extern void (*__free_hook) P_ ((void *));
895 /* Else declared in malloc.h, perhaps with an extra arg. */
896 #endif /* DOUG_LEA_MALLOC */
897 static void * (*old_malloc_hook) ();
898 static void * (*old_realloc_hook) ();
899 static void (*old_free_hook) ();
901 /* This function is used as the hook for free to call. */
903 static void
904 emacs_blocked_free (ptr)
905 void *ptr;
907 BLOCK_INPUT;
909 #ifdef GC_MALLOC_CHECK
910 if (ptr)
912 struct mem_node *m;
914 m = mem_find (ptr);
915 if (m == MEM_NIL || m->start != ptr)
917 fprintf (stderr,
918 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
919 abort ();
921 else
923 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
924 mem_delete (m);
927 #endif /* GC_MALLOC_CHECK */
929 __free_hook = old_free_hook;
930 free (ptr);
932 /* If we released our reserve (due to running out of memory),
933 and we have a fair amount free once again,
934 try to set aside another reserve in case we run out once more. */
935 if (spare_memory == 0
936 /* Verify there is enough space that even with the malloc
937 hysteresis this call won't run out again.
938 The code here is correct as long as SPARE_MEMORY
939 is substantially larger than the block size malloc uses. */
940 && (bytes_used_when_full
941 > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
942 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
944 __free_hook = emacs_blocked_free;
945 UNBLOCK_INPUT;
949 /* If we released our reserve (due to running out of memory),
950 and we have a fair amount free once again,
951 try to set aside another reserve in case we run out once more.
953 This is called when a relocatable block is freed in ralloc.c. */
955 void
956 refill_memory_reserve ()
958 if (spare_memory == 0)
959 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
963 /* This function is the malloc hook that Emacs uses. */
965 static void *
966 emacs_blocked_malloc (size)
967 size_t size;
969 void *value;
971 BLOCK_INPUT;
972 __malloc_hook = old_malloc_hook;
973 #ifdef DOUG_LEA_MALLOC
974 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
975 #else
976 __malloc_extra_blocks = malloc_hysteresis;
977 #endif
979 value = (void *) malloc (size);
981 #ifdef GC_MALLOC_CHECK
983 struct mem_node *m = mem_find (value);
984 if (m != MEM_NIL)
986 fprintf (stderr, "Malloc returned %p which is already in use\n",
987 value);
988 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
989 m->start, m->end, (char *) m->end - (char *) m->start,
990 m->type);
991 abort ();
994 if (!dont_register_blocks)
996 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
997 allocated_mem_type = MEM_TYPE_NON_LISP;
1000 #endif /* GC_MALLOC_CHECK */
1002 __malloc_hook = emacs_blocked_malloc;
1003 UNBLOCK_INPUT;
1005 /* fprintf (stderr, "%p malloc\n", value); */
1006 return value;
1010 /* This function is the realloc hook that Emacs uses. */
1012 static void *
1013 emacs_blocked_realloc (ptr, size)
1014 void *ptr;
1015 size_t size;
1017 void *value;
1019 BLOCK_INPUT;
1020 __realloc_hook = old_realloc_hook;
1022 #ifdef GC_MALLOC_CHECK
1023 if (ptr)
1025 struct mem_node *m = mem_find (ptr);
1026 if (m == MEM_NIL || m->start != ptr)
1028 fprintf (stderr,
1029 "Realloc of %p which wasn't allocated with malloc\n",
1030 ptr);
1031 abort ();
1034 mem_delete (m);
1037 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1039 /* Prevent malloc from registering blocks. */
1040 dont_register_blocks = 1;
1041 #endif /* GC_MALLOC_CHECK */
1043 value = (void *) realloc (ptr, size);
1045 #ifdef GC_MALLOC_CHECK
1046 dont_register_blocks = 0;
1049 struct mem_node *m = mem_find (value);
1050 if (m != MEM_NIL)
1052 fprintf (stderr, "Realloc returns memory that is already in use\n");
1053 abort ();
1056 /* Can't handle zero size regions in the red-black tree. */
1057 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1060 /* fprintf (stderr, "%p <- realloc\n", value); */
1061 #endif /* GC_MALLOC_CHECK */
1063 __realloc_hook = emacs_blocked_realloc;
1064 UNBLOCK_INPUT;
1066 return value;
1070 /* Called from main to set up malloc to use our hooks. */
1072 void
1073 uninterrupt_malloc ()
1075 if (__free_hook != emacs_blocked_free)
1076 old_free_hook = __free_hook;
1077 __free_hook = emacs_blocked_free;
1079 if (__malloc_hook != emacs_blocked_malloc)
1080 old_malloc_hook = __malloc_hook;
1081 __malloc_hook = emacs_blocked_malloc;
1083 if (__realloc_hook != emacs_blocked_realloc)
1084 old_realloc_hook = __realloc_hook;
1085 __realloc_hook = emacs_blocked_realloc;
1088 #endif /* not SYSTEM_MALLOC */
1092 /***********************************************************************
1093 Interval Allocation
1094 ***********************************************************************/
1096 /* Number of intervals allocated in an interval_block structure.
1097 The 1020 is 1024 minus malloc overhead. */
1099 #define INTERVAL_BLOCK_SIZE \
1100 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1102 /* Intervals are allocated in chunks in form of an interval_block
1103 structure. */
1105 struct interval_block
1107 struct interval_block *next;
1108 struct interval intervals[INTERVAL_BLOCK_SIZE];
1111 /* Current interval block. Its `next' pointer points to older
1112 blocks. */
1114 struct interval_block *interval_block;
1116 /* Index in interval_block above of the next unused interval
1117 structure. */
1119 static int interval_block_index;
1121 /* Number of free and live intervals. */
1123 static int total_free_intervals, total_intervals;
1125 /* List of free intervals. */
1127 INTERVAL interval_free_list;
1129 /* Total number of interval blocks now in use. */
1131 int n_interval_blocks;
1134 /* Initialize interval allocation. */
1136 static void
1137 init_intervals ()
1139 interval_block = NULL;
1140 interval_block_index = INTERVAL_BLOCK_SIZE;
1141 interval_free_list = 0;
1142 n_interval_blocks = 0;
1146 /* Return a new interval. */
1148 INTERVAL
1149 make_interval ()
1151 INTERVAL val;
1153 if (interval_free_list)
1155 val = interval_free_list;
1156 interval_free_list = INTERVAL_PARENT (interval_free_list);
1158 else
1160 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1162 register struct interval_block *newi;
1164 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1165 MEM_TYPE_NON_LISP);
1167 newi->next = interval_block;
1168 interval_block = newi;
1169 interval_block_index = 0;
1170 n_interval_blocks++;
1172 val = &interval_block->intervals[interval_block_index++];
1174 consing_since_gc += sizeof (struct interval);
1175 intervals_consed++;
1176 RESET_INTERVAL (val);
1177 val->gcmarkbit = 0;
1178 return val;
1182 /* Mark Lisp objects in interval I. */
1184 static void
1185 mark_interval (i, dummy)
1186 register INTERVAL i;
1187 Lisp_Object dummy;
1189 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1190 i->gcmarkbit = 1;
1191 mark_object (i->plist);
1195 /* Mark the interval tree rooted in TREE. Don't call this directly;
1196 use the macro MARK_INTERVAL_TREE instead. */
1198 static void
1199 mark_interval_tree (tree)
1200 register INTERVAL tree;
1202 /* No need to test if this tree has been marked already; this
1203 function is always called through the MARK_INTERVAL_TREE macro,
1204 which takes care of that. */
1206 traverse_intervals_noorder (tree, mark_interval, Qnil);
1210 /* Mark the interval tree rooted in I. */
1212 #define MARK_INTERVAL_TREE(i) \
1213 do { \
1214 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1215 mark_interval_tree (i); \
1216 } while (0)
1219 #define UNMARK_BALANCE_INTERVALS(i) \
1220 do { \
1221 if (! NULL_INTERVAL_P (i)) \
1222 (i) = balance_intervals (i); \
1223 } while (0)
1226 /* Number support. If NO_UNION_TYPE isn't in effect, we
1227 can't create number objects in macros. */
1228 #ifndef make_number
1229 Lisp_Object
1230 make_number (n)
1231 int n;
1233 Lisp_Object obj;
1234 obj.s.val = n;
1235 obj.s.type = Lisp_Int;
1236 return obj;
1238 #endif
1240 /***********************************************************************
1241 String Allocation
1242 ***********************************************************************/
1244 /* Lisp_Strings are allocated in string_block structures. When a new
1245 string_block is allocated, all the Lisp_Strings it contains are
1246 added to a free-list string_free_list. When a new Lisp_String is
1247 needed, it is taken from that list. During the sweep phase of GC,
1248 string_blocks that are entirely free are freed, except two which
1249 we keep.
1251 String data is allocated from sblock structures. Strings larger
1252 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1253 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1255 Sblocks consist internally of sdata structures, one for each
1256 Lisp_String. The sdata structure points to the Lisp_String it
1257 belongs to. The Lisp_String points back to the `u.data' member of
1258 its sdata structure.
1260 When a Lisp_String is freed during GC, it is put back on
1261 string_free_list, and its `data' member and its sdata's `string'
1262 pointer is set to null. The size of the string is recorded in the
1263 `u.nbytes' member of the sdata. So, sdata structures that are no
1264 longer used, can be easily recognized, and it's easy to compact the
1265 sblocks of small strings which we do in compact_small_strings. */
1267 /* Size in bytes of an sblock structure used for small strings. This
1268 is 8192 minus malloc overhead. */
1270 #define SBLOCK_SIZE 8188
1272 /* Strings larger than this are considered large strings. String data
1273 for large strings is allocated from individual sblocks. */
1275 #define LARGE_STRING_BYTES 1024
1277 /* Structure describing string memory sub-allocated from an sblock.
1278 This is where the contents of Lisp strings are stored. */
1280 struct sdata
1282 /* Back-pointer to the string this sdata belongs to. If null, this
1283 structure is free, and the NBYTES member of the union below
1284 contains the string's byte size (the same value that STRING_BYTES
1285 would return if STRING were non-null). If non-null, STRING_BYTES
1286 (STRING) is the size of the data, and DATA contains the string's
1287 contents. */
1288 struct Lisp_String *string;
1290 #ifdef GC_CHECK_STRING_BYTES
1292 EMACS_INT nbytes;
1293 unsigned char data[1];
1295 #define SDATA_NBYTES(S) (S)->nbytes
1296 #define SDATA_DATA(S) (S)->data
1298 #else /* not GC_CHECK_STRING_BYTES */
1300 union
1302 /* When STRING in non-null. */
1303 unsigned char data[1];
1305 /* When STRING is null. */
1306 EMACS_INT nbytes;
1307 } u;
1310 #define SDATA_NBYTES(S) (S)->u.nbytes
1311 #define SDATA_DATA(S) (S)->u.data
1313 #endif /* not GC_CHECK_STRING_BYTES */
1317 /* Structure describing a block of memory which is sub-allocated to
1318 obtain string data memory for strings. Blocks for small strings
1319 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1320 as large as needed. */
1322 struct sblock
1324 /* Next in list. */
1325 struct sblock *next;
1327 /* Pointer to the next free sdata block. This points past the end
1328 of the sblock if there isn't any space left in this block. */
1329 struct sdata *next_free;
1331 /* Start of data. */
1332 struct sdata first_data;
1335 /* Number of Lisp strings in a string_block structure. The 1020 is
1336 1024 minus malloc overhead. */
1338 #define STRING_BLOCK_SIZE \
1339 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1341 /* Structure describing a block from which Lisp_String structures
1342 are allocated. */
1344 struct string_block
1346 struct string_block *next;
1347 struct Lisp_String strings[STRING_BLOCK_SIZE];
1350 /* Head and tail of the list of sblock structures holding Lisp string
1351 data. We always allocate from current_sblock. The NEXT pointers
1352 in the sblock structures go from oldest_sblock to current_sblock. */
1354 static struct sblock *oldest_sblock, *current_sblock;
1356 /* List of sblocks for large strings. */
1358 static struct sblock *large_sblocks;
1360 /* List of string_block structures, and how many there are. */
1362 static struct string_block *string_blocks;
1363 static int n_string_blocks;
1365 /* Free-list of Lisp_Strings. */
1367 static struct Lisp_String *string_free_list;
1369 /* Number of live and free Lisp_Strings. */
1371 static int total_strings, total_free_strings;
1373 /* Number of bytes used by live strings. */
1375 static int total_string_size;
1377 /* Given a pointer to a Lisp_String S which is on the free-list
1378 string_free_list, return a pointer to its successor in the
1379 free-list. */
1381 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1383 /* Return a pointer to the sdata structure belonging to Lisp string S.
1384 S must be live, i.e. S->data must not be null. S->data is actually
1385 a pointer to the `u.data' member of its sdata structure; the
1386 structure starts at a constant offset in front of that. */
1388 #ifdef GC_CHECK_STRING_BYTES
1390 #define SDATA_OF_STRING(S) \
1391 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1392 - sizeof (EMACS_INT)))
1394 #else /* not GC_CHECK_STRING_BYTES */
1396 #define SDATA_OF_STRING(S) \
1397 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1399 #endif /* not GC_CHECK_STRING_BYTES */
1401 /* Value is the size of an sdata structure large enough to hold NBYTES
1402 bytes of string data. The value returned includes a terminating
1403 NUL byte, the size of the sdata structure, and padding. */
1405 #ifdef GC_CHECK_STRING_BYTES
1407 #define SDATA_SIZE(NBYTES) \
1408 ((sizeof (struct Lisp_String *) \
1409 + (NBYTES) + 1 \
1410 + sizeof (EMACS_INT) \
1411 + sizeof (EMACS_INT) - 1) \
1412 & ~(sizeof (EMACS_INT) - 1))
1414 #else /* not GC_CHECK_STRING_BYTES */
1416 #define SDATA_SIZE(NBYTES) \
1417 ((sizeof (struct Lisp_String *) \
1418 + (NBYTES) + 1 \
1419 + sizeof (EMACS_INT) - 1) \
1420 & ~(sizeof (EMACS_INT) - 1))
1422 #endif /* not GC_CHECK_STRING_BYTES */
1424 /* Initialize string allocation. Called from init_alloc_once. */
1426 void
1427 init_strings ()
1429 total_strings = total_free_strings = total_string_size = 0;
1430 oldest_sblock = current_sblock = large_sblocks = NULL;
1431 string_blocks = NULL;
1432 n_string_blocks = 0;
1433 string_free_list = NULL;
1437 #ifdef GC_CHECK_STRING_BYTES
1439 static int check_string_bytes_count;
1441 void check_string_bytes P_ ((int));
1442 void check_sblock P_ ((struct sblock *));
1444 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1447 /* Like GC_STRING_BYTES, but with debugging check. */
1450 string_bytes (s)
1451 struct Lisp_String *s;
1453 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1454 if (!PURE_POINTER_P (s)
1455 && s->data
1456 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1457 abort ();
1458 return nbytes;
1461 /* Check validity of Lisp strings' string_bytes member in B. */
1463 void
1464 check_sblock (b)
1465 struct sblock *b;
1467 struct sdata *from, *end, *from_end;
1469 end = b->next_free;
1471 for (from = &b->first_data; from < end; from = from_end)
1473 /* Compute the next FROM here because copying below may
1474 overwrite data we need to compute it. */
1475 int nbytes;
1477 /* Check that the string size recorded in the string is the
1478 same as the one recorded in the sdata structure. */
1479 if (from->string)
1480 CHECK_STRING_BYTES (from->string);
1482 if (from->string)
1483 nbytes = GC_STRING_BYTES (from->string);
1484 else
1485 nbytes = SDATA_NBYTES (from);
1487 nbytes = SDATA_SIZE (nbytes);
1488 from_end = (struct sdata *) ((char *) from + nbytes);
1493 /* Check validity of Lisp strings' string_bytes member. ALL_P
1494 non-zero means check all strings, otherwise check only most
1495 recently allocated strings. Used for hunting a bug. */
1497 void
1498 check_string_bytes (all_p)
1499 int all_p;
1501 if (all_p)
1503 struct sblock *b;
1505 for (b = large_sblocks; b; b = b->next)
1507 struct Lisp_String *s = b->first_data.string;
1508 if (s)
1509 CHECK_STRING_BYTES (s);
1512 for (b = oldest_sblock; b; b = b->next)
1513 check_sblock (b);
1515 else
1516 check_sblock (current_sblock);
1519 #endif /* GC_CHECK_STRING_BYTES */
1522 /* Return a new Lisp_String. */
1524 static struct Lisp_String *
1525 allocate_string ()
1527 struct Lisp_String *s;
1529 /* If the free-list is empty, allocate a new string_block, and
1530 add all the Lisp_Strings in it to the free-list. */
1531 if (string_free_list == NULL)
1533 struct string_block *b;
1534 int i;
1536 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1537 bzero (b, sizeof *b);
1538 b->next = string_blocks;
1539 string_blocks = b;
1540 ++n_string_blocks;
1542 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1544 s = b->strings + i;
1545 NEXT_FREE_LISP_STRING (s) = string_free_list;
1546 string_free_list = s;
1549 total_free_strings += STRING_BLOCK_SIZE;
1552 /* Pop a Lisp_String off the free-list. */
1553 s = string_free_list;
1554 string_free_list = NEXT_FREE_LISP_STRING (s);
1556 /* Probably not strictly necessary, but play it safe. */
1557 bzero (s, sizeof *s);
1559 --total_free_strings;
1560 ++total_strings;
1561 ++strings_consed;
1562 consing_since_gc += sizeof *s;
1564 #ifdef GC_CHECK_STRING_BYTES
1565 if (!noninteractive
1566 #ifdef MAC_OS8
1567 && current_sblock
1568 #endif
1571 if (++check_string_bytes_count == 200)
1573 check_string_bytes_count = 0;
1574 check_string_bytes (1);
1576 else
1577 check_string_bytes (0);
1579 #endif /* GC_CHECK_STRING_BYTES */
1581 return s;
1585 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1586 plus a NUL byte at the end. Allocate an sdata structure for S, and
1587 set S->data to its `u.data' member. Store a NUL byte at the end of
1588 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1589 S->data if it was initially non-null. */
1591 void
1592 allocate_string_data (s, nchars, nbytes)
1593 struct Lisp_String *s;
1594 int nchars, nbytes;
1596 struct sdata *data, *old_data;
1597 struct sblock *b;
1598 int needed, old_nbytes;
1600 /* Determine the number of bytes needed to store NBYTES bytes
1601 of string data. */
1602 needed = SDATA_SIZE (nbytes);
1604 if (nbytes > LARGE_STRING_BYTES)
1606 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1608 #ifdef DOUG_LEA_MALLOC
1609 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1610 because mapped region contents are not preserved in
1611 a dumped Emacs.
1613 In case you think of allowing it in a dumped Emacs at the
1614 cost of not being able to re-dump, there's another reason:
1615 mmap'ed data typically have an address towards the top of the
1616 address space, which won't fit into an EMACS_INT (at least on
1617 32-bit systems with the current tagging scheme). --fx */
1618 mallopt (M_MMAP_MAX, 0);
1619 #endif
1621 b = (struct sblock *) lisp_malloc (size, MEM_TYPE_NON_LISP);
1623 #ifdef DOUG_LEA_MALLOC
1624 /* Back to a reasonable maximum of mmap'ed areas. */
1625 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1626 #endif
1628 b->next_free = &b->first_data;
1629 b->first_data.string = NULL;
1630 b->next = large_sblocks;
1631 large_sblocks = b;
1633 else if (current_sblock == NULL
1634 || (((char *) current_sblock + SBLOCK_SIZE
1635 - (char *) current_sblock->next_free)
1636 < needed))
1638 /* Not enough room in the current sblock. */
1639 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1640 b->next_free = &b->first_data;
1641 b->first_data.string = NULL;
1642 b->next = NULL;
1644 if (current_sblock)
1645 current_sblock->next = b;
1646 else
1647 oldest_sblock = b;
1648 current_sblock = b;
1650 else
1651 b = current_sblock;
1653 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1654 old_nbytes = GC_STRING_BYTES (s);
1656 data = b->next_free;
1657 data->string = s;
1658 s->data = SDATA_DATA (data);
1659 #ifdef GC_CHECK_STRING_BYTES
1660 SDATA_NBYTES (data) = nbytes;
1661 #endif
1662 s->size = nchars;
1663 s->size_byte = nbytes;
1664 s->data[nbytes] = '\0';
1665 b->next_free = (struct sdata *) ((char *) data + needed);
1667 /* If S had already data assigned, mark that as free by setting its
1668 string back-pointer to null, and recording the size of the data
1669 in it. */
1670 if (old_data)
1672 SDATA_NBYTES (old_data) = old_nbytes;
1673 old_data->string = NULL;
1676 consing_since_gc += needed;
1680 /* Sweep and compact strings. */
1682 static void
1683 sweep_strings ()
1685 struct string_block *b, *next;
1686 struct string_block *live_blocks = NULL;
1688 string_free_list = NULL;
1689 total_strings = total_free_strings = 0;
1690 total_string_size = 0;
1692 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1693 for (b = string_blocks; b; b = next)
1695 int i, nfree = 0;
1696 struct Lisp_String *free_list_before = string_free_list;
1698 next = b->next;
1700 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1702 struct Lisp_String *s = b->strings + i;
1704 if (s->data)
1706 /* String was not on free-list before. */
1707 if (STRING_MARKED_P (s))
1709 /* String is live; unmark it and its intervals. */
1710 UNMARK_STRING (s);
1712 if (!NULL_INTERVAL_P (s->intervals))
1713 UNMARK_BALANCE_INTERVALS (s->intervals);
1715 ++total_strings;
1716 total_string_size += STRING_BYTES (s);
1718 else
1720 /* String is dead. Put it on the free-list. */
1721 struct sdata *data = SDATA_OF_STRING (s);
1723 /* Save the size of S in its sdata so that we know
1724 how large that is. Reset the sdata's string
1725 back-pointer so that we know it's free. */
1726 #ifdef GC_CHECK_STRING_BYTES
1727 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
1728 abort ();
1729 #else
1730 data->u.nbytes = GC_STRING_BYTES (s);
1731 #endif
1732 data->string = NULL;
1734 /* Reset the strings's `data' member so that we
1735 know it's free. */
1736 s->data = NULL;
1738 /* Put the string on the free-list. */
1739 NEXT_FREE_LISP_STRING (s) = string_free_list;
1740 string_free_list = s;
1741 ++nfree;
1744 else
1746 /* S was on the free-list before. Put it there again. */
1747 NEXT_FREE_LISP_STRING (s) = string_free_list;
1748 string_free_list = s;
1749 ++nfree;
1753 /* Free blocks that contain free Lisp_Strings only, except
1754 the first two of them. */
1755 if (nfree == STRING_BLOCK_SIZE
1756 && total_free_strings > STRING_BLOCK_SIZE)
1758 lisp_free (b);
1759 --n_string_blocks;
1760 string_free_list = free_list_before;
1762 else
1764 total_free_strings += nfree;
1765 b->next = live_blocks;
1766 live_blocks = b;
1770 string_blocks = live_blocks;
1771 free_large_strings ();
1772 compact_small_strings ();
1776 /* Free dead large strings. */
1778 static void
1779 free_large_strings ()
1781 struct sblock *b, *next;
1782 struct sblock *live_blocks = NULL;
1784 for (b = large_sblocks; b; b = next)
1786 next = b->next;
1788 if (b->first_data.string == NULL)
1789 lisp_free (b);
1790 else
1792 b->next = live_blocks;
1793 live_blocks = b;
1797 large_sblocks = live_blocks;
1801 /* Compact data of small strings. Free sblocks that don't contain
1802 data of live strings after compaction. */
1804 static void
1805 compact_small_strings ()
1807 struct sblock *b, *tb, *next;
1808 struct sdata *from, *to, *end, *tb_end;
1809 struct sdata *to_end, *from_end;
1811 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1812 to, and TB_END is the end of TB. */
1813 tb = oldest_sblock;
1814 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1815 to = &tb->first_data;
1817 /* Step through the blocks from the oldest to the youngest. We
1818 expect that old blocks will stabilize over time, so that less
1819 copying will happen this way. */
1820 for (b = oldest_sblock; b; b = b->next)
1822 end = b->next_free;
1823 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1825 for (from = &b->first_data; from < end; from = from_end)
1827 /* Compute the next FROM here because copying below may
1828 overwrite data we need to compute it. */
1829 int nbytes;
1831 #ifdef GC_CHECK_STRING_BYTES
1832 /* Check that the string size recorded in the string is the
1833 same as the one recorded in the sdata structure. */
1834 if (from->string
1835 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
1836 abort ();
1837 #endif /* GC_CHECK_STRING_BYTES */
1839 if (from->string)
1840 nbytes = GC_STRING_BYTES (from->string);
1841 else
1842 nbytes = SDATA_NBYTES (from);
1844 nbytes = SDATA_SIZE (nbytes);
1845 from_end = (struct sdata *) ((char *) from + nbytes);
1847 /* FROM->string non-null means it's alive. Copy its data. */
1848 if (from->string)
1850 /* If TB is full, proceed with the next sblock. */
1851 to_end = (struct sdata *) ((char *) to + nbytes);
1852 if (to_end > tb_end)
1854 tb->next_free = to;
1855 tb = tb->next;
1856 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1857 to = &tb->first_data;
1858 to_end = (struct sdata *) ((char *) to + nbytes);
1861 /* Copy, and update the string's `data' pointer. */
1862 if (from != to)
1864 xassert (tb != b || to <= from);
1865 safe_bcopy ((char *) from, (char *) to, nbytes);
1866 to->string->data = SDATA_DATA (to);
1869 /* Advance past the sdata we copied to. */
1870 to = to_end;
1875 /* The rest of the sblocks following TB don't contain live data, so
1876 we can free them. */
1877 for (b = tb->next; b; b = next)
1879 next = b->next;
1880 lisp_free (b);
1883 tb->next_free = to;
1884 tb->next = NULL;
1885 current_sblock = tb;
1889 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1890 doc: /* Return a newly created string of length LENGTH, with each element being INIT.
1891 Both LENGTH and INIT must be numbers. */)
1892 (length, init)
1893 Lisp_Object length, init;
1895 register Lisp_Object val;
1896 register unsigned char *p, *end;
1897 int c, nbytes;
1899 CHECK_NATNUM (length);
1900 CHECK_NUMBER (init);
1902 c = XINT (init);
1903 if (SINGLE_BYTE_CHAR_P (c))
1905 nbytes = XINT (length);
1906 val = make_uninit_string (nbytes);
1907 p = SDATA (val);
1908 end = p + SCHARS (val);
1909 while (p != end)
1910 *p++ = c;
1912 else
1914 unsigned char str[MAX_MULTIBYTE_LENGTH];
1915 int len = CHAR_STRING (c, str);
1917 nbytes = len * XINT (length);
1918 val = make_uninit_multibyte_string (XINT (length), nbytes);
1919 p = SDATA (val);
1920 end = p + nbytes;
1921 while (p != end)
1923 bcopy (str, p, len);
1924 p += len;
1928 *p = 0;
1929 return val;
1933 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
1934 doc: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
1935 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
1936 (length, init)
1937 Lisp_Object length, init;
1939 register Lisp_Object val;
1940 struct Lisp_Bool_Vector *p;
1941 int real_init, i;
1942 int length_in_chars, length_in_elts, bits_per_value;
1944 CHECK_NATNUM (length);
1946 bits_per_value = sizeof (EMACS_INT) * BITS_PER_CHAR;
1948 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
1949 length_in_chars = ((XFASTINT (length) + BITS_PER_CHAR - 1) / BITS_PER_CHAR);
1951 /* We must allocate one more elements than LENGTH_IN_ELTS for the
1952 slot `size' of the struct Lisp_Bool_Vector. */
1953 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
1954 p = XBOOL_VECTOR (val);
1956 /* Get rid of any bits that would cause confusion. */
1957 p->vector_size = 0;
1958 XSETBOOL_VECTOR (val, p);
1959 p->size = XFASTINT (length);
1961 real_init = (NILP (init) ? 0 : -1);
1962 for (i = 0; i < length_in_chars ; i++)
1963 p->data[i] = real_init;
1965 /* Clear the extraneous bits in the last byte. */
1966 if (XINT (length) != length_in_chars * BITS_PER_CHAR)
1967 XBOOL_VECTOR (val)->data[length_in_chars - 1]
1968 &= (1 << (XINT (length) % BITS_PER_CHAR)) - 1;
1970 return val;
1974 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
1975 of characters from the contents. This string may be unibyte or
1976 multibyte, depending on the contents. */
1978 Lisp_Object
1979 make_string (contents, nbytes)
1980 const char *contents;
1981 int nbytes;
1983 register Lisp_Object val;
1984 int nchars, multibyte_nbytes;
1986 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
1987 if (nbytes == nchars || nbytes != multibyte_nbytes)
1988 /* CONTENTS contains no multibyte sequences or contains an invalid
1989 multibyte sequence. We must make unibyte string. */
1990 val = make_unibyte_string (contents, nbytes);
1991 else
1992 val = make_multibyte_string (contents, nchars, nbytes);
1993 return val;
1997 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
1999 Lisp_Object
2000 make_unibyte_string (contents, length)
2001 const char *contents;
2002 int length;
2004 register Lisp_Object val;
2005 val = make_uninit_string (length);
2006 bcopy (contents, SDATA (val), length);
2007 STRING_SET_UNIBYTE (val);
2008 return val;
2012 /* Make a multibyte string from NCHARS characters occupying NBYTES
2013 bytes at CONTENTS. */
2015 Lisp_Object
2016 make_multibyte_string (contents, nchars, nbytes)
2017 const char *contents;
2018 int nchars, nbytes;
2020 register Lisp_Object val;
2021 val = make_uninit_multibyte_string (nchars, nbytes);
2022 bcopy (contents, SDATA (val), nbytes);
2023 return val;
2027 /* Make a string from NCHARS characters occupying NBYTES bytes at
2028 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2030 Lisp_Object
2031 make_string_from_bytes (contents, nchars, nbytes)
2032 const char *contents;
2033 int nchars, nbytes;
2035 register Lisp_Object val;
2036 val = make_uninit_multibyte_string (nchars, nbytes);
2037 bcopy (contents, SDATA (val), nbytes);
2038 if (SBYTES (val) == SCHARS (val))
2039 STRING_SET_UNIBYTE (val);
2040 return val;
2044 /* Make a string from NCHARS characters occupying NBYTES bytes at
2045 CONTENTS. The argument MULTIBYTE controls whether to label the
2046 string as multibyte. If NCHARS is negative, it counts the number of
2047 characters by itself. */
2049 Lisp_Object
2050 make_specified_string (contents, nchars, nbytes, multibyte)
2051 const char *contents;
2052 int nchars, nbytes;
2053 int multibyte;
2055 register Lisp_Object val;
2057 if (nchars < 0)
2059 if (multibyte)
2060 nchars = multibyte_chars_in_text (contents, nbytes);
2061 else
2062 nchars = nbytes;
2064 val = make_uninit_multibyte_string (nchars, nbytes);
2065 bcopy (contents, SDATA (val), nbytes);
2066 if (!multibyte)
2067 STRING_SET_UNIBYTE (val);
2068 return val;
2072 /* Make a string from the data at STR, treating it as multibyte if the
2073 data warrants. */
2075 Lisp_Object
2076 build_string (str)
2077 const char *str;
2079 return make_string (str, strlen (str));
2083 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2084 occupying LENGTH bytes. */
2086 Lisp_Object
2087 make_uninit_string (length)
2088 int length;
2090 Lisp_Object val;
2091 val = make_uninit_multibyte_string (length, length);
2092 STRING_SET_UNIBYTE (val);
2093 return val;
2097 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2098 which occupy NBYTES bytes. */
2100 Lisp_Object
2101 make_uninit_multibyte_string (nchars, nbytes)
2102 int nchars, nbytes;
2104 Lisp_Object string;
2105 struct Lisp_String *s;
2107 if (nchars < 0)
2108 abort ();
2110 s = allocate_string ();
2111 allocate_string_data (s, nchars, nbytes);
2112 XSETSTRING (string, s);
2113 string_chars_consed += nbytes;
2114 return string;
2119 /***********************************************************************
2120 Float Allocation
2121 ***********************************************************************/
2123 /* We store float cells inside of float_blocks, allocating a new
2124 float_block with malloc whenever necessary. Float cells reclaimed
2125 by GC are put on a free list to be reallocated before allocating
2126 any new float cells from the latest float_block. */
2128 #define FLOAT_BLOCK_SIZE \
2129 (((BLOCK_BYTES - sizeof (struct float_block *)) * CHAR_BIT) \
2130 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2132 #define GETMARKBIT(block,n) \
2133 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2134 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2135 & 1)
2137 #define SETMARKBIT(block,n) \
2138 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2139 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2141 #define UNSETMARKBIT(block,n) \
2142 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2143 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2145 #define FLOAT_BLOCK(fptr) \
2146 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2148 #define FLOAT_INDEX(fptr) \
2149 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2151 struct float_block
2153 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2154 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2155 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2156 struct float_block *next;
2159 #define FLOAT_MARKED_P(fptr) \
2160 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2162 #define FLOAT_MARK(fptr) \
2163 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2165 #define FLOAT_UNMARK(fptr) \
2166 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2168 /* Current float_block. */
2170 struct float_block *float_block;
2172 /* Index of first unused Lisp_Float in the current float_block. */
2174 int float_block_index;
2176 /* Total number of float blocks now in use. */
2178 int n_float_blocks;
2180 /* Free-list of Lisp_Floats. */
2182 struct Lisp_Float *float_free_list;
2185 /* Initialize float allocation. */
2187 void
2188 init_float ()
2190 float_block = NULL;
2191 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2192 float_free_list = 0;
2193 n_float_blocks = 0;
2197 /* Explicitly free a float cell by putting it on the free-list. */
2199 void
2200 free_float (ptr)
2201 struct Lisp_Float *ptr;
2203 *(struct Lisp_Float **)&ptr->data = float_free_list;
2204 float_free_list = ptr;
2208 /* Return a new float object with value FLOAT_VALUE. */
2210 Lisp_Object
2211 make_float (float_value)
2212 double float_value;
2214 register Lisp_Object val;
2216 if (float_free_list)
2218 /* We use the data field for chaining the free list
2219 so that we won't use the same field that has the mark bit. */
2220 XSETFLOAT (val, float_free_list);
2221 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
2223 else
2225 if (float_block_index == FLOAT_BLOCK_SIZE)
2227 register struct float_block *new;
2229 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2230 MEM_TYPE_FLOAT);
2231 new->next = float_block;
2232 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2233 float_block = new;
2234 float_block_index = 0;
2235 n_float_blocks++;
2237 XSETFLOAT (val, &float_block->floats[float_block_index]);
2238 float_block_index++;
2241 XFLOAT_DATA (val) = float_value;
2242 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2243 consing_since_gc += sizeof (struct Lisp_Float);
2244 floats_consed++;
2245 return val;
2250 /***********************************************************************
2251 Cons Allocation
2252 ***********************************************************************/
2254 /* We store cons cells inside of cons_blocks, allocating a new
2255 cons_block with malloc whenever necessary. Cons cells reclaimed by
2256 GC are put on a free list to be reallocated before allocating
2257 any new cons cells from the latest cons_block. */
2259 #define CONS_BLOCK_SIZE \
2260 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2261 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2263 #define CONS_BLOCK(fptr) \
2264 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2266 #define CONS_INDEX(fptr) \
2267 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2269 struct cons_block
2271 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2272 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2273 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2274 struct cons_block *next;
2277 #define CONS_MARKED_P(fptr) \
2278 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2280 #define CONS_MARK(fptr) \
2281 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2283 #define CONS_UNMARK(fptr) \
2284 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2286 /* Current cons_block. */
2288 struct cons_block *cons_block;
2290 /* Index of first unused Lisp_Cons in the current block. */
2292 int cons_block_index;
2294 /* Free-list of Lisp_Cons structures. */
2296 struct Lisp_Cons *cons_free_list;
2298 /* Total number of cons blocks now in use. */
2300 int n_cons_blocks;
2303 /* Initialize cons allocation. */
2305 void
2306 init_cons ()
2308 cons_block = NULL;
2309 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2310 cons_free_list = 0;
2311 n_cons_blocks = 0;
2315 /* Explicitly free a cons cell by putting it on the free-list. */
2317 void
2318 free_cons (ptr)
2319 struct Lisp_Cons *ptr;
2321 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
2322 #if GC_MARK_STACK
2323 ptr->car = Vdead;
2324 #endif
2325 cons_free_list = ptr;
2329 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2330 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2331 (car, cdr)
2332 Lisp_Object car, cdr;
2334 register Lisp_Object val;
2336 if (cons_free_list)
2338 /* We use the cdr for chaining the free list
2339 so that we won't use the same field that has the mark bit. */
2340 XSETCONS (val, cons_free_list);
2341 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
2343 else
2345 if (cons_block_index == CONS_BLOCK_SIZE)
2347 register struct cons_block *new;
2348 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2349 MEM_TYPE_CONS);
2350 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2351 new->next = cons_block;
2352 cons_block = new;
2353 cons_block_index = 0;
2354 n_cons_blocks++;
2356 XSETCONS (val, &cons_block->conses[cons_block_index]);
2357 cons_block_index++;
2360 XSETCAR (val, car);
2361 XSETCDR (val, cdr);
2362 eassert (!CONS_MARKED_P (XCONS (val)));
2363 consing_since_gc += sizeof (struct Lisp_Cons);
2364 cons_cells_consed++;
2365 return val;
2369 /* Make a list of 2, 3, 4 or 5 specified objects. */
2371 Lisp_Object
2372 list2 (arg1, arg2)
2373 Lisp_Object arg1, arg2;
2375 return Fcons (arg1, Fcons (arg2, Qnil));
2379 Lisp_Object
2380 list3 (arg1, arg2, arg3)
2381 Lisp_Object arg1, arg2, arg3;
2383 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2387 Lisp_Object
2388 list4 (arg1, arg2, arg3, arg4)
2389 Lisp_Object arg1, arg2, arg3, arg4;
2391 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2395 Lisp_Object
2396 list5 (arg1, arg2, arg3, arg4, arg5)
2397 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2399 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2400 Fcons (arg5, Qnil)))));
2404 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2405 doc: /* Return a newly created list with specified arguments as elements.
2406 Any number of arguments, even zero arguments, are allowed.
2407 usage: (list &rest OBJECTS) */)
2408 (nargs, args)
2409 int nargs;
2410 register Lisp_Object *args;
2412 register Lisp_Object val;
2413 val = Qnil;
2415 while (nargs > 0)
2417 nargs--;
2418 val = Fcons (args[nargs], val);
2420 return val;
2424 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2425 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2426 (length, init)
2427 register Lisp_Object length, init;
2429 register Lisp_Object val;
2430 register int size;
2432 CHECK_NATNUM (length);
2433 size = XFASTINT (length);
2435 val = Qnil;
2436 while (size > 0)
2438 val = Fcons (init, val);
2439 --size;
2441 if (size > 0)
2443 val = Fcons (init, val);
2444 --size;
2446 if (size > 0)
2448 val = Fcons (init, val);
2449 --size;
2451 if (size > 0)
2453 val = Fcons (init, val);
2454 --size;
2456 if (size > 0)
2458 val = Fcons (init, val);
2459 --size;
2465 QUIT;
2468 return val;
2473 /***********************************************************************
2474 Vector Allocation
2475 ***********************************************************************/
2477 /* Singly-linked list of all vectors. */
2479 struct Lisp_Vector *all_vectors;
2481 /* Total number of vector-like objects now in use. */
2483 int n_vectors;
2486 /* Value is a pointer to a newly allocated Lisp_Vector structure
2487 with room for LEN Lisp_Objects. */
2489 static struct Lisp_Vector *
2490 allocate_vectorlike (len, type)
2491 EMACS_INT len;
2492 enum mem_type type;
2494 struct Lisp_Vector *p;
2495 size_t nbytes;
2497 #ifdef DOUG_LEA_MALLOC
2498 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2499 because mapped region contents are not preserved in
2500 a dumped Emacs. */
2501 BLOCK_INPUT;
2502 mallopt (M_MMAP_MAX, 0);
2503 UNBLOCK_INPUT;
2504 #endif
2506 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2507 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
2509 #ifdef DOUG_LEA_MALLOC
2510 /* Back to a reasonable maximum of mmap'ed areas. */
2511 BLOCK_INPUT;
2512 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2513 UNBLOCK_INPUT;
2514 #endif
2516 consing_since_gc += nbytes;
2517 vector_cells_consed += len;
2519 p->next = all_vectors;
2520 all_vectors = p;
2521 ++n_vectors;
2522 return p;
2526 /* Allocate a vector with NSLOTS slots. */
2528 struct Lisp_Vector *
2529 allocate_vector (nslots)
2530 EMACS_INT nslots;
2532 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2533 v->size = nslots;
2534 return v;
2538 /* Allocate other vector-like structures. */
2540 struct Lisp_Hash_Table *
2541 allocate_hash_table ()
2543 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2544 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2545 EMACS_INT i;
2547 v->size = len;
2548 for (i = 0; i < len; ++i)
2549 v->contents[i] = Qnil;
2551 return (struct Lisp_Hash_Table *) v;
2555 struct window *
2556 allocate_window ()
2558 EMACS_INT len = VECSIZE (struct window);
2559 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
2560 EMACS_INT i;
2562 for (i = 0; i < len; ++i)
2563 v->contents[i] = Qnil;
2564 v->size = len;
2566 return (struct window *) v;
2570 struct frame *
2571 allocate_frame ()
2573 EMACS_INT len = VECSIZE (struct frame);
2574 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
2575 EMACS_INT i;
2577 for (i = 0; i < len; ++i)
2578 v->contents[i] = make_number (0);
2579 v->size = len;
2580 return (struct frame *) v;
2584 struct Lisp_Process *
2585 allocate_process ()
2587 EMACS_INT len = VECSIZE (struct Lisp_Process);
2588 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
2589 EMACS_INT i;
2591 for (i = 0; i < len; ++i)
2592 v->contents[i] = Qnil;
2593 v->size = len;
2595 return (struct Lisp_Process *) v;
2599 struct Lisp_Vector *
2600 allocate_other_vector (len)
2601 EMACS_INT len;
2603 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
2604 EMACS_INT i;
2606 for (i = 0; i < len; ++i)
2607 v->contents[i] = Qnil;
2608 v->size = len;
2610 return v;
2614 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2615 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2616 See also the function `vector'. */)
2617 (length, init)
2618 register Lisp_Object length, init;
2620 Lisp_Object vector;
2621 register EMACS_INT sizei;
2622 register int index;
2623 register struct Lisp_Vector *p;
2625 CHECK_NATNUM (length);
2626 sizei = XFASTINT (length);
2628 p = allocate_vector (sizei);
2629 for (index = 0; index < sizei; index++)
2630 p->contents[index] = init;
2632 XSETVECTOR (vector, p);
2633 return vector;
2637 DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
2638 doc: /* Return a newly created char-table, with purpose PURPOSE.
2639 Each element is initialized to INIT, which defaults to nil.
2640 PURPOSE should be a symbol which has a `char-table-extra-slots' property.
2641 The property's value should be an integer between 0 and 10. */)
2642 (purpose, init)
2643 register Lisp_Object purpose, init;
2645 Lisp_Object vector;
2646 Lisp_Object n;
2647 CHECK_SYMBOL (purpose);
2648 n = Fget (purpose, Qchar_table_extra_slots);
2649 CHECK_NUMBER (n);
2650 if (XINT (n) < 0 || XINT (n) > 10)
2651 args_out_of_range (n, Qnil);
2652 /* Add 2 to the size for the defalt and parent slots. */
2653 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
2654 init);
2655 XCHAR_TABLE (vector)->top = Qt;
2656 XCHAR_TABLE (vector)->parent = Qnil;
2657 XCHAR_TABLE (vector)->purpose = purpose;
2658 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2659 return vector;
2663 /* Return a newly created sub char table with default value DEFALT.
2664 Since a sub char table does not appear as a top level Emacs Lisp
2665 object, we don't need a Lisp interface to make it. */
2667 Lisp_Object
2668 make_sub_char_table (defalt)
2669 Lisp_Object defalt;
2671 Lisp_Object vector
2672 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), Qnil);
2673 XCHAR_TABLE (vector)->top = Qnil;
2674 XCHAR_TABLE (vector)->defalt = defalt;
2675 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2676 return vector;
2680 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2681 doc: /* Return a newly created vector with specified arguments as elements.
2682 Any number of arguments, even zero arguments, are allowed.
2683 usage: (vector &rest OBJECTS) */)
2684 (nargs, args)
2685 register int nargs;
2686 Lisp_Object *args;
2688 register Lisp_Object len, val;
2689 register int index;
2690 register struct Lisp_Vector *p;
2692 XSETFASTINT (len, nargs);
2693 val = Fmake_vector (len, Qnil);
2694 p = XVECTOR (val);
2695 for (index = 0; index < nargs; index++)
2696 p->contents[index] = args[index];
2697 return val;
2701 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2702 doc: /* Create a byte-code object with specified arguments as elements.
2703 The arguments should be the arglist, bytecode-string, constant vector,
2704 stack size, (optional) doc string, and (optional) interactive spec.
2705 The first four arguments are required; at most six have any
2706 significance.
2707 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2708 (nargs, args)
2709 register int nargs;
2710 Lisp_Object *args;
2712 register Lisp_Object len, val;
2713 register int index;
2714 register struct Lisp_Vector *p;
2716 XSETFASTINT (len, nargs);
2717 if (!NILP (Vpurify_flag))
2718 val = make_pure_vector ((EMACS_INT) nargs);
2719 else
2720 val = Fmake_vector (len, Qnil);
2722 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2723 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2724 earlier because they produced a raw 8-bit string for byte-code
2725 and now such a byte-code string is loaded as multibyte while
2726 raw 8-bit characters converted to multibyte form. Thus, now we
2727 must convert them back to the original unibyte form. */
2728 args[1] = Fstring_as_unibyte (args[1]);
2730 p = XVECTOR (val);
2731 for (index = 0; index < nargs; index++)
2733 if (!NILP (Vpurify_flag))
2734 args[index] = Fpurecopy (args[index]);
2735 p->contents[index] = args[index];
2737 XSETCOMPILED (val, p);
2738 return val;
2743 /***********************************************************************
2744 Symbol Allocation
2745 ***********************************************************************/
2747 /* Each symbol_block is just under 1020 bytes long, since malloc
2748 really allocates in units of powers of two and uses 4 bytes for its
2749 own overhead. */
2751 #define SYMBOL_BLOCK_SIZE \
2752 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2754 struct symbol_block
2756 struct symbol_block *next;
2757 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
2760 /* Current symbol block and index of first unused Lisp_Symbol
2761 structure in it. */
2763 struct symbol_block *symbol_block;
2764 int symbol_block_index;
2766 /* List of free symbols. */
2768 struct Lisp_Symbol *symbol_free_list;
2770 /* Total number of symbol blocks now in use. */
2772 int n_symbol_blocks;
2775 /* Initialize symbol allocation. */
2777 void
2778 init_symbol ()
2780 symbol_block = NULL;
2781 symbol_block_index = SYMBOL_BLOCK_SIZE;
2782 symbol_free_list = 0;
2783 n_symbol_blocks = 0;
2787 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
2788 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
2789 Its value and function definition are void, and its property list is nil. */)
2790 (name)
2791 Lisp_Object name;
2793 register Lisp_Object val;
2794 register struct Lisp_Symbol *p;
2796 CHECK_STRING (name);
2798 if (symbol_free_list)
2800 XSETSYMBOL (val, symbol_free_list);
2801 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
2803 else
2805 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
2807 struct symbol_block *new;
2808 new = (struct symbol_block *) lisp_malloc (sizeof *new,
2809 MEM_TYPE_SYMBOL);
2810 new->next = symbol_block;
2811 symbol_block = new;
2812 symbol_block_index = 0;
2813 n_symbol_blocks++;
2815 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
2816 symbol_block_index++;
2819 p = XSYMBOL (val);
2820 p->xname = name;
2821 p->plist = Qnil;
2822 p->value = Qunbound;
2823 p->function = Qunbound;
2824 p->next = NULL;
2825 p->gcmarkbit = 0;
2826 p->interned = SYMBOL_UNINTERNED;
2827 p->constant = 0;
2828 p->indirect_variable = 0;
2829 consing_since_gc += sizeof (struct Lisp_Symbol);
2830 symbols_consed++;
2831 return val;
2836 /***********************************************************************
2837 Marker (Misc) Allocation
2838 ***********************************************************************/
2840 /* Allocation of markers and other objects that share that structure.
2841 Works like allocation of conses. */
2843 #define MARKER_BLOCK_SIZE \
2844 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
2846 struct marker_block
2848 struct marker_block *next;
2849 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
2852 struct marker_block *marker_block;
2853 int marker_block_index;
2855 union Lisp_Misc *marker_free_list;
2857 /* Total number of marker blocks now in use. */
2859 int n_marker_blocks;
2861 void
2862 init_marker ()
2864 marker_block = NULL;
2865 marker_block_index = MARKER_BLOCK_SIZE;
2866 marker_free_list = 0;
2867 n_marker_blocks = 0;
2870 /* Return a newly allocated Lisp_Misc object, with no substructure. */
2872 Lisp_Object
2873 allocate_misc ()
2875 Lisp_Object val;
2877 if (marker_free_list)
2879 XSETMISC (val, marker_free_list);
2880 marker_free_list = marker_free_list->u_free.chain;
2882 else
2884 if (marker_block_index == MARKER_BLOCK_SIZE)
2886 struct marker_block *new;
2887 new = (struct marker_block *) lisp_malloc (sizeof *new,
2888 MEM_TYPE_MISC);
2889 new->next = marker_block;
2890 marker_block = new;
2891 marker_block_index = 0;
2892 n_marker_blocks++;
2894 XSETMISC (val, &marker_block->markers[marker_block_index]);
2895 marker_block_index++;
2898 consing_since_gc += sizeof (union Lisp_Misc);
2899 misc_objects_consed++;
2900 XMARKER (val)->gcmarkbit = 0;
2901 return val;
2904 /* Return a Lisp_Misc_Save_Value object containing POINTER and
2905 INTEGER. This is used to package C values to call record_unwind_protect.
2906 The unwind function can get the C values back using XSAVE_VALUE. */
2908 Lisp_Object
2909 make_save_value (pointer, integer)
2910 void *pointer;
2911 int integer;
2913 register Lisp_Object val;
2914 register struct Lisp_Save_Value *p;
2916 val = allocate_misc ();
2917 XMISCTYPE (val) = Lisp_Misc_Save_Value;
2918 p = XSAVE_VALUE (val);
2919 p->pointer = pointer;
2920 p->integer = integer;
2921 return val;
2924 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
2925 doc: /* Return a newly allocated marker which does not point at any place. */)
2928 register Lisp_Object val;
2929 register struct Lisp_Marker *p;
2931 val = allocate_misc ();
2932 XMISCTYPE (val) = Lisp_Misc_Marker;
2933 p = XMARKER (val);
2934 p->buffer = 0;
2935 p->bytepos = 0;
2936 p->charpos = 0;
2937 p->next = NULL;
2938 p->insertion_type = 0;
2939 return val;
2942 /* Put MARKER back on the free list after using it temporarily. */
2944 void
2945 free_marker (marker)
2946 Lisp_Object marker;
2948 unchain_marker (XMARKER (marker));
2950 XMISC (marker)->u_marker.type = Lisp_Misc_Free;
2951 XMISC (marker)->u_free.chain = marker_free_list;
2952 marker_free_list = XMISC (marker);
2954 total_free_markers++;
2958 /* Return a newly created vector or string with specified arguments as
2959 elements. If all the arguments are characters that can fit
2960 in a string of events, make a string; otherwise, make a vector.
2962 Any number of arguments, even zero arguments, are allowed. */
2964 Lisp_Object
2965 make_event_array (nargs, args)
2966 register int nargs;
2967 Lisp_Object *args;
2969 int i;
2971 for (i = 0; i < nargs; i++)
2972 /* The things that fit in a string
2973 are characters that are in 0...127,
2974 after discarding the meta bit and all the bits above it. */
2975 if (!INTEGERP (args[i])
2976 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
2977 return Fvector (nargs, args);
2979 /* Since the loop exited, we know that all the things in it are
2980 characters, so we can make a string. */
2982 Lisp_Object result;
2984 result = Fmake_string (make_number (nargs), make_number (0));
2985 for (i = 0; i < nargs; i++)
2987 SSET (result, i, XINT (args[i]));
2988 /* Move the meta bit to the right place for a string char. */
2989 if (XINT (args[i]) & CHAR_META)
2990 SSET (result, i, SREF (result, i) | 0x80);
2993 return result;
2999 /************************************************************************
3000 C Stack Marking
3001 ************************************************************************/
3003 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3005 /* Conservative C stack marking requires a method to identify possibly
3006 live Lisp objects given a pointer value. We do this by keeping
3007 track of blocks of Lisp data that are allocated in a red-black tree
3008 (see also the comment of mem_node which is the type of nodes in
3009 that tree). Function lisp_malloc adds information for an allocated
3010 block to the red-black tree with calls to mem_insert, and function
3011 lisp_free removes it with mem_delete. Functions live_string_p etc
3012 call mem_find to lookup information about a given pointer in the
3013 tree, and use that to determine if the pointer points to a Lisp
3014 object or not. */
3016 /* Initialize this part of alloc.c. */
3018 static void
3019 mem_init ()
3021 mem_z.left = mem_z.right = MEM_NIL;
3022 mem_z.parent = NULL;
3023 mem_z.color = MEM_BLACK;
3024 mem_z.start = mem_z.end = NULL;
3025 mem_root = MEM_NIL;
3029 /* Value is a pointer to the mem_node containing START. Value is
3030 MEM_NIL if there is no node in the tree containing START. */
3032 static INLINE struct mem_node *
3033 mem_find (start)
3034 void *start;
3036 struct mem_node *p;
3038 if (start < min_heap_address || start > max_heap_address)
3039 return MEM_NIL;
3041 /* Make the search always successful to speed up the loop below. */
3042 mem_z.start = start;
3043 mem_z.end = (char *) start + 1;
3045 p = mem_root;
3046 while (start < p->start || start >= p->end)
3047 p = start < p->start ? p->left : p->right;
3048 return p;
3052 /* Insert a new node into the tree for a block of memory with start
3053 address START, end address END, and type TYPE. Value is a
3054 pointer to the node that was inserted. */
3056 static struct mem_node *
3057 mem_insert (start, end, type)
3058 void *start, *end;
3059 enum mem_type type;
3061 struct mem_node *c, *parent, *x;
3063 if (start < min_heap_address)
3064 min_heap_address = start;
3065 if (end > max_heap_address)
3066 max_heap_address = end;
3068 /* See where in the tree a node for START belongs. In this
3069 particular application, it shouldn't happen that a node is already
3070 present. For debugging purposes, let's check that. */
3071 c = mem_root;
3072 parent = NULL;
3074 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3076 while (c != MEM_NIL)
3078 if (start >= c->start && start < c->end)
3079 abort ();
3080 parent = c;
3081 c = start < c->start ? c->left : c->right;
3084 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3086 while (c != MEM_NIL)
3088 parent = c;
3089 c = start < c->start ? c->left : c->right;
3092 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3094 /* Create a new node. */
3095 #ifdef GC_MALLOC_CHECK
3096 x = (struct mem_node *) _malloc_internal (sizeof *x);
3097 if (x == NULL)
3098 abort ();
3099 #else
3100 x = (struct mem_node *) xmalloc (sizeof *x);
3101 #endif
3102 x->start = start;
3103 x->end = end;
3104 x->type = type;
3105 x->parent = parent;
3106 x->left = x->right = MEM_NIL;
3107 x->color = MEM_RED;
3109 /* Insert it as child of PARENT or install it as root. */
3110 if (parent)
3112 if (start < parent->start)
3113 parent->left = x;
3114 else
3115 parent->right = x;
3117 else
3118 mem_root = x;
3120 /* Re-establish red-black tree properties. */
3121 mem_insert_fixup (x);
3123 return x;
3127 /* Re-establish the red-black properties of the tree, and thereby
3128 balance the tree, after node X has been inserted; X is always red. */
3130 static void
3131 mem_insert_fixup (x)
3132 struct mem_node *x;
3134 while (x != mem_root && x->parent->color == MEM_RED)
3136 /* X is red and its parent is red. This is a violation of
3137 red-black tree property #3. */
3139 if (x->parent == x->parent->parent->left)
3141 /* We're on the left side of our grandparent, and Y is our
3142 "uncle". */
3143 struct mem_node *y = x->parent->parent->right;
3145 if (y->color == MEM_RED)
3147 /* Uncle and parent are red but should be black because
3148 X is red. Change the colors accordingly and proceed
3149 with the grandparent. */
3150 x->parent->color = MEM_BLACK;
3151 y->color = MEM_BLACK;
3152 x->parent->parent->color = MEM_RED;
3153 x = x->parent->parent;
3155 else
3157 /* Parent and uncle have different colors; parent is
3158 red, uncle is black. */
3159 if (x == x->parent->right)
3161 x = x->parent;
3162 mem_rotate_left (x);
3165 x->parent->color = MEM_BLACK;
3166 x->parent->parent->color = MEM_RED;
3167 mem_rotate_right (x->parent->parent);
3170 else
3172 /* This is the symmetrical case of above. */
3173 struct mem_node *y = x->parent->parent->left;
3175 if (y->color == MEM_RED)
3177 x->parent->color = MEM_BLACK;
3178 y->color = MEM_BLACK;
3179 x->parent->parent->color = MEM_RED;
3180 x = x->parent->parent;
3182 else
3184 if (x == x->parent->left)
3186 x = x->parent;
3187 mem_rotate_right (x);
3190 x->parent->color = MEM_BLACK;
3191 x->parent->parent->color = MEM_RED;
3192 mem_rotate_left (x->parent->parent);
3197 /* The root may have been changed to red due to the algorithm. Set
3198 it to black so that property #5 is satisfied. */
3199 mem_root->color = MEM_BLACK;
3203 /* (x) (y)
3204 / \ / \
3205 a (y) ===> (x) c
3206 / \ / \
3207 b c a b */
3209 static void
3210 mem_rotate_left (x)
3211 struct mem_node *x;
3213 struct mem_node *y;
3215 /* Turn y's left sub-tree into x's right sub-tree. */
3216 y = x->right;
3217 x->right = y->left;
3218 if (y->left != MEM_NIL)
3219 y->left->parent = x;
3221 /* Y's parent was x's parent. */
3222 if (y != MEM_NIL)
3223 y->parent = x->parent;
3225 /* Get the parent to point to y instead of x. */
3226 if (x->parent)
3228 if (x == x->parent->left)
3229 x->parent->left = y;
3230 else
3231 x->parent->right = y;
3233 else
3234 mem_root = y;
3236 /* Put x on y's left. */
3237 y->left = x;
3238 if (x != MEM_NIL)
3239 x->parent = y;
3243 /* (x) (Y)
3244 / \ / \
3245 (y) c ===> a (x)
3246 / \ / \
3247 a b b c */
3249 static void
3250 mem_rotate_right (x)
3251 struct mem_node *x;
3253 struct mem_node *y = x->left;
3255 x->left = y->right;
3256 if (y->right != MEM_NIL)
3257 y->right->parent = x;
3259 if (y != MEM_NIL)
3260 y->parent = x->parent;
3261 if (x->parent)
3263 if (x == x->parent->right)
3264 x->parent->right = y;
3265 else
3266 x->parent->left = y;
3268 else
3269 mem_root = y;
3271 y->right = x;
3272 if (x != MEM_NIL)
3273 x->parent = y;
3277 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3279 static void
3280 mem_delete (z)
3281 struct mem_node *z;
3283 struct mem_node *x, *y;
3285 if (!z || z == MEM_NIL)
3286 return;
3288 if (z->left == MEM_NIL || z->right == MEM_NIL)
3289 y = z;
3290 else
3292 y = z->right;
3293 while (y->left != MEM_NIL)
3294 y = y->left;
3297 if (y->left != MEM_NIL)
3298 x = y->left;
3299 else
3300 x = y->right;
3302 x->parent = y->parent;
3303 if (y->parent)
3305 if (y == y->parent->left)
3306 y->parent->left = x;
3307 else
3308 y->parent->right = x;
3310 else
3311 mem_root = x;
3313 if (y != z)
3315 z->start = y->start;
3316 z->end = y->end;
3317 z->type = y->type;
3320 if (y->color == MEM_BLACK)
3321 mem_delete_fixup (x);
3323 #ifdef GC_MALLOC_CHECK
3324 _free_internal (y);
3325 #else
3326 xfree (y);
3327 #endif
3331 /* Re-establish the red-black properties of the tree, after a
3332 deletion. */
3334 static void
3335 mem_delete_fixup (x)
3336 struct mem_node *x;
3338 while (x != mem_root && x->color == MEM_BLACK)
3340 if (x == x->parent->left)
3342 struct mem_node *w = x->parent->right;
3344 if (w->color == MEM_RED)
3346 w->color = MEM_BLACK;
3347 x->parent->color = MEM_RED;
3348 mem_rotate_left (x->parent);
3349 w = x->parent->right;
3352 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3354 w->color = MEM_RED;
3355 x = x->parent;
3357 else
3359 if (w->right->color == MEM_BLACK)
3361 w->left->color = MEM_BLACK;
3362 w->color = MEM_RED;
3363 mem_rotate_right (w);
3364 w = x->parent->right;
3366 w->color = x->parent->color;
3367 x->parent->color = MEM_BLACK;
3368 w->right->color = MEM_BLACK;
3369 mem_rotate_left (x->parent);
3370 x = mem_root;
3373 else
3375 struct mem_node *w = x->parent->left;
3377 if (w->color == MEM_RED)
3379 w->color = MEM_BLACK;
3380 x->parent->color = MEM_RED;
3381 mem_rotate_right (x->parent);
3382 w = x->parent->left;
3385 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3387 w->color = MEM_RED;
3388 x = x->parent;
3390 else
3392 if (w->left->color == MEM_BLACK)
3394 w->right->color = MEM_BLACK;
3395 w->color = MEM_RED;
3396 mem_rotate_left (w);
3397 w = x->parent->left;
3400 w->color = x->parent->color;
3401 x->parent->color = MEM_BLACK;
3402 w->left->color = MEM_BLACK;
3403 mem_rotate_right (x->parent);
3404 x = mem_root;
3409 x->color = MEM_BLACK;
3413 /* Value is non-zero if P is a pointer to a live Lisp string on
3414 the heap. M is a pointer to the mem_block for P. */
3416 static INLINE int
3417 live_string_p (m, p)
3418 struct mem_node *m;
3419 void *p;
3421 if (m->type == MEM_TYPE_STRING)
3423 struct string_block *b = (struct string_block *) m->start;
3424 int offset = (char *) p - (char *) &b->strings[0];
3426 /* P must point to the start of a Lisp_String structure, and it
3427 must not be on the free-list. */
3428 return (offset >= 0
3429 && offset % sizeof b->strings[0] == 0
3430 && ((struct Lisp_String *) p)->data != NULL);
3432 else
3433 return 0;
3437 /* Value is non-zero if P is a pointer to a live Lisp cons on
3438 the heap. M is a pointer to the mem_block for P. */
3440 static INLINE int
3441 live_cons_p (m, p)
3442 struct mem_node *m;
3443 void *p;
3445 if (m->type == MEM_TYPE_CONS)
3447 struct cons_block *b = (struct cons_block *) m->start;
3448 int offset = (char *) p - (char *) &b->conses[0];
3450 /* P must point to the start of a Lisp_Cons, not be
3451 one of the unused cells in the current cons block,
3452 and not be on the free-list. */
3453 return (offset >= 0
3454 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3455 && offset % sizeof b->conses[0] == 0
3456 && (b != cons_block
3457 || offset / sizeof b->conses[0] < cons_block_index)
3458 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3460 else
3461 return 0;
3465 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3466 the heap. M is a pointer to the mem_block for P. */
3468 static INLINE int
3469 live_symbol_p (m, p)
3470 struct mem_node *m;
3471 void *p;
3473 if (m->type == MEM_TYPE_SYMBOL)
3475 struct symbol_block *b = (struct symbol_block *) m->start;
3476 int offset = (char *) p - (char *) &b->symbols[0];
3478 /* P must point to the start of a Lisp_Symbol, not be
3479 one of the unused cells in the current symbol block,
3480 and not be on the free-list. */
3481 return (offset >= 0
3482 && offset % sizeof b->symbols[0] == 0
3483 && (b != symbol_block
3484 || offset / sizeof b->symbols[0] < symbol_block_index)
3485 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3487 else
3488 return 0;
3492 /* Value is non-zero if P is a pointer to a live Lisp float on
3493 the heap. M is a pointer to the mem_block for P. */
3495 static INLINE int
3496 live_float_p (m, p)
3497 struct mem_node *m;
3498 void *p;
3500 if (m->type == MEM_TYPE_FLOAT)
3502 struct float_block *b = (struct float_block *) m->start;
3503 int offset = (char *) p - (char *) &b->floats[0];
3505 /* P must point to the start of a Lisp_Float and not be
3506 one of the unused cells in the current float block. */
3507 return (offset >= 0
3508 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3509 && offset % sizeof b->floats[0] == 0
3510 && (b != float_block
3511 || offset / sizeof b->floats[0] < float_block_index));
3513 else
3514 return 0;
3518 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3519 the heap. M is a pointer to the mem_block for P. */
3521 static INLINE int
3522 live_misc_p (m, p)
3523 struct mem_node *m;
3524 void *p;
3526 if (m->type == MEM_TYPE_MISC)
3528 struct marker_block *b = (struct marker_block *) m->start;
3529 int offset = (char *) p - (char *) &b->markers[0];
3531 /* P must point to the start of a Lisp_Misc, not be
3532 one of the unused cells in the current misc block,
3533 and not be on the free-list. */
3534 return (offset >= 0
3535 && offset % sizeof b->markers[0] == 0
3536 && (b != marker_block
3537 || offset / sizeof b->markers[0] < marker_block_index)
3538 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
3540 else
3541 return 0;
3545 /* Value is non-zero if P is a pointer to a live vector-like object.
3546 M is a pointer to the mem_block for P. */
3548 static INLINE int
3549 live_vector_p (m, p)
3550 struct mem_node *m;
3551 void *p;
3553 return (p == m->start
3554 && m->type >= MEM_TYPE_VECTOR
3555 && m->type <= MEM_TYPE_WINDOW);
3559 /* Value is non-zero if P is a pointer to a live buffer. M is a
3560 pointer to the mem_block for P. */
3562 static INLINE int
3563 live_buffer_p (m, p)
3564 struct mem_node *m;
3565 void *p;
3567 /* P must point to the start of the block, and the buffer
3568 must not have been killed. */
3569 return (m->type == MEM_TYPE_BUFFER
3570 && p == m->start
3571 && !NILP (((struct buffer *) p)->name));
3574 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3576 #if GC_MARK_STACK
3578 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3580 /* Array of objects that are kept alive because the C stack contains
3581 a pattern that looks like a reference to them . */
3583 #define MAX_ZOMBIES 10
3584 static Lisp_Object zombies[MAX_ZOMBIES];
3586 /* Number of zombie objects. */
3588 static int nzombies;
3590 /* Number of garbage collections. */
3592 static int ngcs;
3594 /* Average percentage of zombies per collection. */
3596 static double avg_zombies;
3598 /* Max. number of live and zombie objects. */
3600 static int max_live, max_zombies;
3602 /* Average number of live objects per GC. */
3604 static double avg_live;
3606 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3607 doc: /* Show information about live and zombie objects. */)
3610 Lisp_Object args[8], zombie_list = Qnil;
3611 int i;
3612 for (i = 0; i < nzombies; i++)
3613 zombie_list = Fcons (zombies[i], zombie_list);
3614 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3615 args[1] = make_number (ngcs);
3616 args[2] = make_float (avg_live);
3617 args[3] = make_float (avg_zombies);
3618 args[4] = make_float (avg_zombies / avg_live / 100);
3619 args[5] = make_number (max_live);
3620 args[6] = make_number (max_zombies);
3621 args[7] = zombie_list;
3622 return Fmessage (8, args);
3625 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3628 /* Mark OBJ if we can prove it's a Lisp_Object. */
3630 static INLINE void
3631 mark_maybe_object (obj)
3632 Lisp_Object obj;
3634 void *po = (void *) XPNTR (obj);
3635 struct mem_node *m = mem_find (po);
3637 if (m != MEM_NIL)
3639 int mark_p = 0;
3641 switch (XGCTYPE (obj))
3643 case Lisp_String:
3644 mark_p = (live_string_p (m, po)
3645 && !STRING_MARKED_P ((struct Lisp_String *) po));
3646 break;
3648 case Lisp_Cons:
3649 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
3650 break;
3652 case Lisp_Symbol:
3653 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
3654 break;
3656 case Lisp_Float:
3657 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
3658 break;
3660 case Lisp_Vectorlike:
3661 /* Note: can't check GC_BUFFERP before we know it's a
3662 buffer because checking that dereferences the pointer
3663 PO which might point anywhere. */
3664 if (live_vector_p (m, po))
3665 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
3666 else if (live_buffer_p (m, po))
3667 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
3668 break;
3670 case Lisp_Misc:
3671 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
3672 break;
3674 case Lisp_Int:
3675 case Lisp_Type_Limit:
3676 break;
3679 if (mark_p)
3681 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3682 if (nzombies < MAX_ZOMBIES)
3683 zombies[nzombies] = obj;
3684 ++nzombies;
3685 #endif
3686 mark_object (obj);
3692 /* If P points to Lisp data, mark that as live if it isn't already
3693 marked. */
3695 static INLINE void
3696 mark_maybe_pointer (p)
3697 void *p;
3699 struct mem_node *m;
3701 /* Quickly rule out some values which can't point to Lisp data. We
3702 assume that Lisp data is aligned on even addresses. */
3703 if ((EMACS_INT) p & 1)
3704 return;
3706 m = mem_find (p);
3707 if (m != MEM_NIL)
3709 Lisp_Object obj = Qnil;
3711 switch (m->type)
3713 case MEM_TYPE_NON_LISP:
3714 /* Nothing to do; not a pointer to Lisp memory. */
3715 break;
3717 case MEM_TYPE_BUFFER:
3718 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
3719 XSETVECTOR (obj, p);
3720 break;
3722 case MEM_TYPE_CONS:
3723 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
3724 XSETCONS (obj, p);
3725 break;
3727 case MEM_TYPE_STRING:
3728 if (live_string_p (m, p)
3729 && !STRING_MARKED_P ((struct Lisp_String *) p))
3730 XSETSTRING (obj, p);
3731 break;
3733 case MEM_TYPE_MISC:
3734 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
3735 XSETMISC (obj, p);
3736 break;
3738 case MEM_TYPE_SYMBOL:
3739 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
3740 XSETSYMBOL (obj, p);
3741 break;
3743 case MEM_TYPE_FLOAT:
3744 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
3745 XSETFLOAT (obj, p);
3746 break;
3748 case MEM_TYPE_VECTOR:
3749 case MEM_TYPE_PROCESS:
3750 case MEM_TYPE_HASH_TABLE:
3751 case MEM_TYPE_FRAME:
3752 case MEM_TYPE_WINDOW:
3753 if (live_vector_p (m, p))
3755 Lisp_Object tem;
3756 XSETVECTOR (tem, p);
3757 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
3758 obj = tem;
3760 break;
3762 default:
3763 abort ();
3766 if (!GC_NILP (obj))
3767 mark_object (obj);
3772 /* Mark Lisp objects referenced from the address range START..END. */
3774 static void
3775 mark_memory (start, end)
3776 void *start, *end;
3778 Lisp_Object *p;
3779 void **pp;
3781 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3782 nzombies = 0;
3783 #endif
3785 /* Make START the pointer to the start of the memory region,
3786 if it isn't already. */
3787 if (end < start)
3789 void *tem = start;
3790 start = end;
3791 end = tem;
3794 /* Mark Lisp_Objects. */
3795 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
3796 mark_maybe_object (*p);
3798 /* Mark Lisp data pointed to. This is necessary because, in some
3799 situations, the C compiler optimizes Lisp objects away, so that
3800 only a pointer to them remains. Example:
3802 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
3805 Lisp_Object obj = build_string ("test");
3806 struct Lisp_String *s = XSTRING (obj);
3807 Fgarbage_collect ();
3808 fprintf (stderr, "test `%s'\n", s->data);
3809 return Qnil;
3812 Here, `obj' isn't really used, and the compiler optimizes it
3813 away. The only reference to the life string is through the
3814 pointer `s'. */
3816 for (pp = (void **) start; (void *) pp < end; ++pp)
3817 mark_maybe_pointer (*pp);
3820 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
3821 the GCC system configuration. In gcc 3.2, the only systems for
3822 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
3823 by others?) and ns32k-pc532-min. */
3825 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
3827 static int setjmp_tested_p, longjmps_done;
3829 #define SETJMP_WILL_LIKELY_WORK "\
3831 Emacs garbage collector has been changed to use conservative stack\n\
3832 marking. Emacs has determined that the method it uses to do the\n\
3833 marking will likely work on your system, but this isn't sure.\n\
3835 If you are a system-programmer, or can get the help of a local wizard\n\
3836 who is, please take a look at the function mark_stack in alloc.c, and\n\
3837 verify that the methods used are appropriate for your system.\n\
3839 Please mail the result to <emacs-devel@gnu.org>.\n\
3842 #define SETJMP_WILL_NOT_WORK "\
3844 Emacs garbage collector has been changed to use conservative stack\n\
3845 marking. Emacs has determined that the default method it uses to do the\n\
3846 marking will not work on your system. We will need a system-dependent\n\
3847 solution for your system.\n\
3849 Please take a look at the function mark_stack in alloc.c, and\n\
3850 try to find a way to make it work on your system.\n\
3852 Note that you may get false negatives, depending on the compiler.\n\
3853 In particular, you need to use -O with GCC for this test.\n\
3855 Please mail the result to <emacs-devel@gnu.org>.\n\
3859 /* Perform a quick check if it looks like setjmp saves registers in a
3860 jmp_buf. Print a message to stderr saying so. When this test
3861 succeeds, this is _not_ a proof that setjmp is sufficient for
3862 conservative stack marking. Only the sources or a disassembly
3863 can prove that. */
3865 static void
3866 test_setjmp ()
3868 char buf[10];
3869 register int x;
3870 jmp_buf jbuf;
3871 int result = 0;
3873 /* Arrange for X to be put in a register. */
3874 sprintf (buf, "1");
3875 x = strlen (buf);
3876 x = 2 * x - 1;
3878 setjmp (jbuf);
3879 if (longjmps_done == 1)
3881 /* Came here after the longjmp at the end of the function.
3883 If x == 1, the longjmp has restored the register to its
3884 value before the setjmp, and we can hope that setjmp
3885 saves all such registers in the jmp_buf, although that
3886 isn't sure.
3888 For other values of X, either something really strange is
3889 taking place, or the setjmp just didn't save the register. */
3891 if (x == 1)
3892 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
3893 else
3895 fprintf (stderr, SETJMP_WILL_NOT_WORK);
3896 exit (1);
3900 ++longjmps_done;
3901 x = 2;
3902 if (longjmps_done == 1)
3903 longjmp (jbuf, 1);
3906 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
3909 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3911 /* Abort if anything GCPRO'd doesn't survive the GC. */
3913 static void
3914 check_gcpros ()
3916 struct gcpro *p;
3917 int i;
3919 for (p = gcprolist; p; p = p->next)
3920 for (i = 0; i < p->nvars; ++i)
3921 if (!survives_gc_p (p->var[i]))
3922 /* FIXME: It's not necessarily a bug. It might just be that the
3923 GCPRO is unnecessary or should release the object sooner. */
3924 abort ();
3927 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3929 static void
3930 dump_zombies ()
3932 int i;
3934 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
3935 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
3937 fprintf (stderr, " %d = ", i);
3938 debug_print (zombies[i]);
3942 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3945 /* Mark live Lisp objects on the C stack.
3947 There are several system-dependent problems to consider when
3948 porting this to new architectures:
3950 Processor Registers
3952 We have to mark Lisp objects in CPU registers that can hold local
3953 variables or are used to pass parameters.
3955 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
3956 something that either saves relevant registers on the stack, or
3957 calls mark_maybe_object passing it each register's contents.
3959 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
3960 implementation assumes that calling setjmp saves registers we need
3961 to see in a jmp_buf which itself lies on the stack. This doesn't
3962 have to be true! It must be verified for each system, possibly
3963 by taking a look at the source code of setjmp.
3965 Stack Layout
3967 Architectures differ in the way their processor stack is organized.
3968 For example, the stack might look like this
3970 +----------------+
3971 | Lisp_Object | size = 4
3972 +----------------+
3973 | something else | size = 2
3974 +----------------+
3975 | Lisp_Object | size = 4
3976 +----------------+
3977 | ... |
3979 In such a case, not every Lisp_Object will be aligned equally. To
3980 find all Lisp_Object on the stack it won't be sufficient to walk
3981 the stack in steps of 4 bytes. Instead, two passes will be
3982 necessary, one starting at the start of the stack, and a second
3983 pass starting at the start of the stack + 2. Likewise, if the
3984 minimal alignment of Lisp_Objects on the stack is 1, four passes
3985 would be necessary, each one starting with one byte more offset
3986 from the stack start.
3988 The current code assumes by default that Lisp_Objects are aligned
3989 equally on the stack. */
3991 static void
3992 mark_stack ()
3994 int i;
3995 jmp_buf j;
3996 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
3997 void *end;
3999 /* This trick flushes the register windows so that all the state of
4000 the process is contained in the stack. */
4001 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4002 needed on ia64 too. See mach_dep.c, where it also says inline
4003 assembler doesn't work with relevant proprietary compilers. */
4004 #ifdef sparc
4005 asm ("ta 3");
4006 #endif
4008 /* Save registers that we need to see on the stack. We need to see
4009 registers used to hold register variables and registers used to
4010 pass parameters. */
4011 #ifdef GC_SAVE_REGISTERS_ON_STACK
4012 GC_SAVE_REGISTERS_ON_STACK (end);
4013 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4015 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4016 setjmp will definitely work, test it
4017 and print a message with the result
4018 of the test. */
4019 if (!setjmp_tested_p)
4021 setjmp_tested_p = 1;
4022 test_setjmp ();
4024 #endif /* GC_SETJMP_WORKS */
4026 setjmp (j);
4027 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4028 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4030 /* This assumes that the stack is a contiguous region in memory. If
4031 that's not the case, something has to be done here to iterate
4032 over the stack segments. */
4033 #ifndef GC_LISP_OBJECT_ALIGNMENT
4034 #ifdef __GNUC__
4035 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4036 #else
4037 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4038 #endif
4039 #endif
4040 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4041 mark_memory ((char *) stack_base + i, end);
4043 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4044 check_gcpros ();
4045 #endif
4049 #endif /* GC_MARK_STACK != 0 */
4053 /***********************************************************************
4054 Pure Storage Management
4055 ***********************************************************************/
4057 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4058 pointer to it. TYPE is the Lisp type for which the memory is
4059 allocated. TYPE < 0 means it's not used for a Lisp object.
4061 If store_pure_type_info is set and TYPE is >= 0, the type of
4062 the allocated object is recorded in pure_types. */
4064 static POINTER_TYPE *
4065 pure_alloc (size, type)
4066 size_t size;
4067 int type;
4069 POINTER_TYPE *result;
4070 size_t alignment = sizeof (EMACS_INT);
4072 /* Give Lisp_Floats an extra alignment. */
4073 if (type == Lisp_Float)
4075 #if defined __GNUC__ && __GNUC__ >= 2
4076 alignment = __alignof (struct Lisp_Float);
4077 #else
4078 alignment = sizeof (struct Lisp_Float);
4079 #endif
4082 again:
4083 result = ALIGN (purebeg + pure_bytes_used, alignment);
4084 pure_bytes_used = ((char *)result - (char *)purebeg) + size;
4086 if (pure_bytes_used <= pure_size)
4087 return result;
4089 /* Don't allocate a large amount here,
4090 because it might get mmap'd and then its address
4091 might not be usable. */
4092 purebeg = (char *) xmalloc (10000);
4093 pure_size = 10000;
4094 pure_bytes_used_before_overflow += pure_bytes_used - size;
4095 pure_bytes_used = 0;
4096 goto again;
4100 /* Print a warning if PURESIZE is too small. */
4102 void
4103 check_pure_size ()
4105 if (pure_bytes_used_before_overflow)
4106 message ("Pure Lisp storage overflow (approx. %d bytes needed)",
4107 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4111 /* Return a string allocated in pure space. DATA is a buffer holding
4112 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4113 non-zero means make the result string multibyte.
4115 Must get an error if pure storage is full, since if it cannot hold
4116 a large string it may be able to hold conses that point to that
4117 string; then the string is not protected from gc. */
4119 Lisp_Object
4120 make_pure_string (data, nchars, nbytes, multibyte)
4121 char *data;
4122 int nchars, nbytes;
4123 int multibyte;
4125 Lisp_Object string;
4126 struct Lisp_String *s;
4128 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4129 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4130 s->size = nchars;
4131 s->size_byte = multibyte ? nbytes : -1;
4132 bcopy (data, s->data, nbytes);
4133 s->data[nbytes] = '\0';
4134 s->intervals = NULL_INTERVAL;
4135 XSETSTRING (string, s);
4136 return string;
4140 /* Return a cons allocated from pure space. Give it pure copies
4141 of CAR as car and CDR as cdr. */
4143 Lisp_Object
4144 pure_cons (car, cdr)
4145 Lisp_Object car, cdr;
4147 register Lisp_Object new;
4148 struct Lisp_Cons *p;
4150 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4151 XSETCONS (new, p);
4152 XSETCAR (new, Fpurecopy (car));
4153 XSETCDR (new, Fpurecopy (cdr));
4154 return new;
4158 /* Value is a float object with value NUM allocated from pure space. */
4160 Lisp_Object
4161 make_pure_float (num)
4162 double num;
4164 register Lisp_Object new;
4165 struct Lisp_Float *p;
4167 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4168 XSETFLOAT (new, p);
4169 XFLOAT_DATA (new) = num;
4170 return new;
4174 /* Return a vector with room for LEN Lisp_Objects allocated from
4175 pure space. */
4177 Lisp_Object
4178 make_pure_vector (len)
4179 EMACS_INT len;
4181 Lisp_Object new;
4182 struct Lisp_Vector *p;
4183 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4185 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4186 XSETVECTOR (new, p);
4187 XVECTOR (new)->size = len;
4188 return new;
4192 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4193 doc: /* Make a copy of OBJECT in pure storage.
4194 Recursively copies contents of vectors and cons cells.
4195 Does not copy symbols. Copies strings without text properties. */)
4196 (obj)
4197 register Lisp_Object obj;
4199 if (NILP (Vpurify_flag))
4200 return obj;
4202 if (PURE_POINTER_P (XPNTR (obj)))
4203 return obj;
4205 if (CONSP (obj))
4206 return pure_cons (XCAR (obj), XCDR (obj));
4207 else if (FLOATP (obj))
4208 return make_pure_float (XFLOAT_DATA (obj));
4209 else if (STRINGP (obj))
4210 return make_pure_string (SDATA (obj), SCHARS (obj),
4211 SBYTES (obj),
4212 STRING_MULTIBYTE (obj));
4213 else if (COMPILEDP (obj) || VECTORP (obj))
4215 register struct Lisp_Vector *vec;
4216 register int i, size;
4218 size = XVECTOR (obj)->size;
4219 if (size & PSEUDOVECTOR_FLAG)
4220 size &= PSEUDOVECTOR_SIZE_MASK;
4221 vec = XVECTOR (make_pure_vector ((EMACS_INT) size));
4222 for (i = 0; i < size; i++)
4223 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4224 if (COMPILEDP (obj))
4225 XSETCOMPILED (obj, vec);
4226 else
4227 XSETVECTOR (obj, vec);
4228 return obj;
4230 else if (MARKERP (obj))
4231 error ("Attempt to copy a marker to pure storage");
4233 return obj;
4238 /***********************************************************************
4239 Protection from GC
4240 ***********************************************************************/
4242 /* Put an entry in staticvec, pointing at the variable with address
4243 VARADDRESS. */
4245 void
4246 staticpro (varaddress)
4247 Lisp_Object *varaddress;
4249 staticvec[staticidx++] = varaddress;
4250 if (staticidx >= NSTATICS)
4251 abort ();
4254 struct catchtag
4256 Lisp_Object tag;
4257 Lisp_Object val;
4258 struct catchtag *next;
4261 struct backtrace
4263 struct backtrace *next;
4264 Lisp_Object *function;
4265 Lisp_Object *args; /* Points to vector of args. */
4266 int nargs; /* Length of vector. */
4267 /* If nargs is UNEVALLED, args points to slot holding list of
4268 unevalled args. */
4269 char evalargs;
4274 /***********************************************************************
4275 Protection from GC
4276 ***********************************************************************/
4278 /* Temporarily prevent garbage collection. */
4281 inhibit_garbage_collection ()
4283 int count = SPECPDL_INDEX ();
4284 int nbits = min (VALBITS, BITS_PER_INT);
4286 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4287 return count;
4291 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4292 doc: /* Reclaim storage for Lisp objects no longer needed.
4293 Garbage collection happens automatically if you cons more than
4294 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4295 `garbage-collect' normally returns a list with info on amount of space in use:
4296 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4297 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4298 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4299 (USED-STRINGS . FREE-STRINGS))
4300 However, if there was overflow in pure space, `garbage-collect'
4301 returns nil, because real GC can't be done. */)
4304 register struct specbinding *bind;
4305 struct catchtag *catch;
4306 struct handler *handler;
4307 register struct backtrace *backlist;
4308 char stack_top_variable;
4309 register int i;
4310 int message_p;
4311 Lisp_Object total[8];
4312 int count = SPECPDL_INDEX ();
4313 EMACS_TIME t1, t2, t3;
4315 if (abort_on_gc)
4316 abort ();
4318 EMACS_GET_TIME (t1);
4320 /* Can't GC if pure storage overflowed because we can't determine
4321 if something is a pure object or not. */
4322 if (pure_bytes_used_before_overflow)
4323 return Qnil;
4325 /* In case user calls debug_print during GC,
4326 don't let that cause a recursive GC. */
4327 consing_since_gc = 0;
4329 /* Save what's currently displayed in the echo area. */
4330 message_p = push_message ();
4331 record_unwind_protect (pop_message_unwind, Qnil);
4333 /* Save a copy of the contents of the stack, for debugging. */
4334 #if MAX_SAVE_STACK > 0
4335 if (NILP (Vpurify_flag))
4337 i = &stack_top_variable - stack_bottom;
4338 if (i < 0) i = -i;
4339 if (i < MAX_SAVE_STACK)
4341 if (stack_copy == 0)
4342 stack_copy = (char *) xmalloc (stack_copy_size = i);
4343 else if (stack_copy_size < i)
4344 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4345 if (stack_copy)
4347 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4348 bcopy (stack_bottom, stack_copy, i);
4349 else
4350 bcopy (&stack_top_variable, stack_copy, i);
4354 #endif /* MAX_SAVE_STACK > 0 */
4356 if (garbage_collection_messages)
4357 message1_nolog ("Garbage collecting...");
4359 BLOCK_INPUT;
4361 shrink_regexp_cache ();
4363 /* Don't keep undo information around forever. */
4365 register struct buffer *nextb = all_buffers;
4367 while (nextb)
4369 /* If a buffer's undo list is Qt, that means that undo is
4370 turned off in that buffer. Calling truncate_undo_list on
4371 Qt tends to return NULL, which effectively turns undo back on.
4372 So don't call truncate_undo_list if undo_list is Qt. */
4373 if (! EQ (nextb->undo_list, Qt))
4374 nextb->undo_list
4375 = truncate_undo_list (nextb->undo_list, undo_limit,
4376 undo_strong_limit);
4378 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4379 if (nextb->base_buffer == 0 && !NILP (nextb->name))
4381 /* If a buffer's gap size is more than 10% of the buffer
4382 size, or larger than 2000 bytes, then shrink it
4383 accordingly. Keep a minimum size of 20 bytes. */
4384 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4386 if (nextb->text->gap_size > size)
4388 struct buffer *save_current = current_buffer;
4389 current_buffer = nextb;
4390 make_gap (-(nextb->text->gap_size - size));
4391 current_buffer = save_current;
4395 nextb = nextb->next;
4399 gc_in_progress = 1;
4401 /* clear_marks (); */
4403 /* Mark all the special slots that serve as the roots of accessibility. */
4405 for (i = 0; i < staticidx; i++)
4406 mark_object (*staticvec[i]);
4408 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4409 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4410 mark_stack ();
4411 #else
4413 register struct gcpro *tail;
4414 for (tail = gcprolist; tail; tail = tail->next)
4415 for (i = 0; i < tail->nvars; i++)
4416 mark_object (tail->var[i]);
4418 #endif
4420 mark_byte_stack ();
4421 for (bind = specpdl; bind != specpdl_ptr; bind++)
4423 mark_object (bind->symbol);
4424 mark_object (bind->old_value);
4426 for (catch = catchlist; catch; catch = catch->next)
4428 mark_object (catch->tag);
4429 mark_object (catch->val);
4431 for (handler = handlerlist; handler; handler = handler->next)
4433 mark_object (handler->handler);
4434 mark_object (handler->var);
4436 for (backlist = backtrace_list; backlist; backlist = backlist->next)
4438 mark_object (*backlist->function);
4440 if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
4441 i = 0;
4442 else
4443 i = backlist->nargs - 1;
4444 for (; i >= 0; i--)
4445 mark_object (backlist->args[i]);
4447 mark_kboards ();
4449 /* Look thru every buffer's undo list
4450 for elements that update markers that were not marked,
4451 and delete them. */
4453 register struct buffer *nextb = all_buffers;
4455 while (nextb)
4457 /* If a buffer's undo list is Qt, that means that undo is
4458 turned off in that buffer. Calling truncate_undo_list on
4459 Qt tends to return NULL, which effectively turns undo back on.
4460 So don't call truncate_undo_list if undo_list is Qt. */
4461 if (! EQ (nextb->undo_list, Qt))
4463 Lisp_Object tail, prev;
4464 tail = nextb->undo_list;
4465 prev = Qnil;
4466 while (CONSP (tail))
4468 if (GC_CONSP (XCAR (tail))
4469 && GC_MARKERP (XCAR (XCAR (tail)))
4470 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4472 if (NILP (prev))
4473 nextb->undo_list = tail = XCDR (tail);
4474 else
4476 tail = XCDR (tail);
4477 XSETCDR (prev, tail);
4480 else
4482 prev = tail;
4483 tail = XCDR (tail);
4488 nextb = nextb->next;
4492 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4493 mark_stack ();
4494 #endif
4496 #ifdef USE_GTK
4498 extern void xg_mark_data ();
4499 xg_mark_data ();
4501 #endif
4503 gc_sweep ();
4505 /* Clear the mark bits that we set in certain root slots. */
4507 unmark_byte_stack ();
4508 VECTOR_UNMARK (&buffer_defaults);
4509 VECTOR_UNMARK (&buffer_local_symbols);
4511 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4512 dump_zombies ();
4513 #endif
4515 UNBLOCK_INPUT;
4517 /* clear_marks (); */
4518 gc_in_progress = 0;
4520 consing_since_gc = 0;
4521 if (gc_cons_threshold < 10000)
4522 gc_cons_threshold = 10000;
4524 if (garbage_collection_messages)
4526 if (message_p || minibuf_level > 0)
4527 restore_message ();
4528 else
4529 message1_nolog ("Garbage collecting...done");
4532 unbind_to (count, Qnil);
4534 total[0] = Fcons (make_number (total_conses),
4535 make_number (total_free_conses));
4536 total[1] = Fcons (make_number (total_symbols),
4537 make_number (total_free_symbols));
4538 total[2] = Fcons (make_number (total_markers),
4539 make_number (total_free_markers));
4540 total[3] = make_number (total_string_size);
4541 total[4] = make_number (total_vector_size);
4542 total[5] = Fcons (make_number (total_floats),
4543 make_number (total_free_floats));
4544 total[6] = Fcons (make_number (total_intervals),
4545 make_number (total_free_intervals));
4546 total[7] = Fcons (make_number (total_strings),
4547 make_number (total_free_strings));
4549 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4551 /* Compute average percentage of zombies. */
4552 double nlive = 0;
4554 for (i = 0; i < 7; ++i)
4555 if (CONSP (total[i]))
4556 nlive += XFASTINT (XCAR (total[i]));
4558 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
4559 max_live = max (nlive, max_live);
4560 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
4561 max_zombies = max (nzombies, max_zombies);
4562 ++ngcs;
4564 #endif
4566 if (!NILP (Vpost_gc_hook))
4568 int count = inhibit_garbage_collection ();
4569 safe_run_hooks (Qpost_gc_hook);
4570 unbind_to (count, Qnil);
4573 /* Accumulate statistics. */
4574 EMACS_GET_TIME (t2);
4575 EMACS_SUB_TIME (t3, t2, t1);
4576 if (FLOATP (Vgc_elapsed))
4577 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
4578 EMACS_SECS (t3) +
4579 EMACS_USECS (t3) * 1.0e-6);
4580 gcs_done++;
4582 return Flist (sizeof total / sizeof *total, total);
4586 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
4587 only interesting objects referenced from glyphs are strings. */
4589 static void
4590 mark_glyph_matrix (matrix)
4591 struct glyph_matrix *matrix;
4593 struct glyph_row *row = matrix->rows;
4594 struct glyph_row *end = row + matrix->nrows;
4596 for (; row < end; ++row)
4597 if (row->enabled_p)
4599 int area;
4600 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
4602 struct glyph *glyph = row->glyphs[area];
4603 struct glyph *end_glyph = glyph + row->used[area];
4605 for (; glyph < end_glyph; ++glyph)
4606 if (GC_STRINGP (glyph->object)
4607 && !STRING_MARKED_P (XSTRING (glyph->object)))
4608 mark_object (glyph->object);
4614 /* Mark Lisp faces in the face cache C. */
4616 static void
4617 mark_face_cache (c)
4618 struct face_cache *c;
4620 if (c)
4622 int i, j;
4623 for (i = 0; i < c->used; ++i)
4625 struct face *face = FACE_FROM_ID (c->f, i);
4627 if (face)
4629 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
4630 mark_object (face->lface[j]);
4637 #ifdef HAVE_WINDOW_SYSTEM
4639 /* Mark Lisp objects in image IMG. */
4641 static void
4642 mark_image (img)
4643 struct image *img;
4645 mark_object (img->spec);
4647 if (!NILP (img->data.lisp_val))
4648 mark_object (img->data.lisp_val);
4652 /* Mark Lisp objects in image cache of frame F. It's done this way so
4653 that we don't have to include xterm.h here. */
4655 static void
4656 mark_image_cache (f)
4657 struct frame *f;
4659 forall_images_in_image_cache (f, mark_image);
4662 #endif /* HAVE_X_WINDOWS */
4666 /* Mark reference to a Lisp_Object.
4667 If the object referred to has not been seen yet, recursively mark
4668 all the references contained in it. */
4670 #define LAST_MARKED_SIZE 500
4671 Lisp_Object last_marked[LAST_MARKED_SIZE];
4672 int last_marked_index;
4674 /* For debugging--call abort when we cdr down this many
4675 links of a list, in mark_object. In debugging,
4676 the call to abort will hit a breakpoint.
4677 Normally this is zero and the check never goes off. */
4678 int mark_object_loop_halt;
4680 void
4681 mark_object (arg)
4682 Lisp_Object arg;
4684 register Lisp_Object obj = arg;
4685 #ifdef GC_CHECK_MARKED_OBJECTS
4686 void *po;
4687 struct mem_node *m;
4688 #endif
4689 int cdr_count = 0;
4691 loop:
4693 if (PURE_POINTER_P (XPNTR (obj)))
4694 return;
4696 last_marked[last_marked_index++] = obj;
4697 if (last_marked_index == LAST_MARKED_SIZE)
4698 last_marked_index = 0;
4700 /* Perform some sanity checks on the objects marked here. Abort if
4701 we encounter an object we know is bogus. This increases GC time
4702 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
4703 #ifdef GC_CHECK_MARKED_OBJECTS
4705 po = (void *) XPNTR (obj);
4707 /* Check that the object pointed to by PO is known to be a Lisp
4708 structure allocated from the heap. */
4709 #define CHECK_ALLOCATED() \
4710 do { \
4711 m = mem_find (po); \
4712 if (m == MEM_NIL) \
4713 abort (); \
4714 } while (0)
4716 /* Check that the object pointed to by PO is live, using predicate
4717 function LIVEP. */
4718 #define CHECK_LIVE(LIVEP) \
4719 do { \
4720 if (!LIVEP (m, po)) \
4721 abort (); \
4722 } while (0)
4724 /* Check both of the above conditions. */
4725 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
4726 do { \
4727 CHECK_ALLOCATED (); \
4728 CHECK_LIVE (LIVEP); \
4729 } while (0) \
4731 #else /* not GC_CHECK_MARKED_OBJECTS */
4733 #define CHECK_ALLOCATED() (void) 0
4734 #define CHECK_LIVE(LIVEP) (void) 0
4735 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
4737 #endif /* not GC_CHECK_MARKED_OBJECTS */
4739 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
4741 case Lisp_String:
4743 register struct Lisp_String *ptr = XSTRING (obj);
4744 CHECK_ALLOCATED_AND_LIVE (live_string_p);
4745 MARK_INTERVAL_TREE (ptr->intervals);
4746 MARK_STRING (ptr);
4747 #ifdef GC_CHECK_STRING_BYTES
4748 /* Check that the string size recorded in the string is the
4749 same as the one recorded in the sdata structure. */
4750 CHECK_STRING_BYTES (ptr);
4751 #endif /* GC_CHECK_STRING_BYTES */
4753 break;
4755 case Lisp_Vectorlike:
4756 #ifdef GC_CHECK_MARKED_OBJECTS
4757 m = mem_find (po);
4758 if (m == MEM_NIL && !GC_SUBRP (obj)
4759 && po != &buffer_defaults
4760 && po != &buffer_local_symbols)
4761 abort ();
4762 #endif /* GC_CHECK_MARKED_OBJECTS */
4764 if (GC_BUFFERP (obj))
4766 if (!VECTOR_MARKED_P (XBUFFER (obj)))
4768 #ifdef GC_CHECK_MARKED_OBJECTS
4769 if (po != &buffer_defaults && po != &buffer_local_symbols)
4771 struct buffer *b;
4772 for (b = all_buffers; b && b != po; b = b->next)
4774 if (b == NULL)
4775 abort ();
4777 #endif /* GC_CHECK_MARKED_OBJECTS */
4778 mark_buffer (obj);
4781 else if (GC_SUBRP (obj))
4782 break;
4783 else if (GC_COMPILEDP (obj))
4784 /* We could treat this just like a vector, but it is better to
4785 save the COMPILED_CONSTANTS element for last and avoid
4786 recursion there. */
4788 register struct Lisp_Vector *ptr = XVECTOR (obj);
4789 register EMACS_INT size = ptr->size;
4790 register int i;
4792 if (VECTOR_MARKED_P (ptr))
4793 break; /* Already marked */
4795 CHECK_LIVE (live_vector_p);
4796 VECTOR_MARK (ptr); /* Else mark it */
4797 size &= PSEUDOVECTOR_SIZE_MASK;
4798 for (i = 0; i < size; i++) /* and then mark its elements */
4800 if (i != COMPILED_CONSTANTS)
4801 mark_object (ptr->contents[i]);
4803 obj = ptr->contents[COMPILED_CONSTANTS];
4804 goto loop;
4806 else if (GC_FRAMEP (obj))
4808 register struct frame *ptr = XFRAME (obj);
4810 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4811 VECTOR_MARK (ptr); /* Else mark it */
4813 CHECK_LIVE (live_vector_p);
4814 mark_object (ptr->name);
4815 mark_object (ptr->icon_name);
4816 mark_object (ptr->title);
4817 mark_object (ptr->focus_frame);
4818 mark_object (ptr->selected_window);
4819 mark_object (ptr->minibuffer_window);
4820 mark_object (ptr->param_alist);
4821 mark_object (ptr->scroll_bars);
4822 mark_object (ptr->condemned_scroll_bars);
4823 mark_object (ptr->menu_bar_items);
4824 mark_object (ptr->face_alist);
4825 mark_object (ptr->menu_bar_vector);
4826 mark_object (ptr->buffer_predicate);
4827 mark_object (ptr->buffer_list);
4828 mark_object (ptr->menu_bar_window);
4829 mark_object (ptr->tool_bar_window);
4830 mark_face_cache (ptr->face_cache);
4831 #ifdef HAVE_WINDOW_SYSTEM
4832 mark_image_cache (ptr);
4833 mark_object (ptr->tool_bar_items);
4834 mark_object (ptr->desired_tool_bar_string);
4835 mark_object (ptr->current_tool_bar_string);
4836 #endif /* HAVE_WINDOW_SYSTEM */
4838 else if (GC_BOOL_VECTOR_P (obj))
4840 register struct Lisp_Vector *ptr = XVECTOR (obj);
4842 if (VECTOR_MARKED_P (ptr))
4843 break; /* Already marked */
4844 CHECK_LIVE (live_vector_p);
4845 VECTOR_MARK (ptr); /* Else mark it */
4847 else if (GC_WINDOWP (obj))
4849 register struct Lisp_Vector *ptr = XVECTOR (obj);
4850 struct window *w = XWINDOW (obj);
4851 register int i;
4853 /* Stop if already marked. */
4854 if (VECTOR_MARKED_P (ptr))
4855 break;
4857 /* Mark it. */
4858 CHECK_LIVE (live_vector_p);
4859 VECTOR_MARK (ptr);
4861 /* There is no Lisp data above The member CURRENT_MATRIX in
4862 struct WINDOW. Stop marking when that slot is reached. */
4863 for (i = 0;
4864 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
4865 i++)
4866 mark_object (ptr->contents[i]);
4868 /* Mark glyphs for leaf windows. Marking window matrices is
4869 sufficient because frame matrices use the same glyph
4870 memory. */
4871 if (NILP (w->hchild)
4872 && NILP (w->vchild)
4873 && w->current_matrix)
4875 mark_glyph_matrix (w->current_matrix);
4876 mark_glyph_matrix (w->desired_matrix);
4879 else if (GC_HASH_TABLE_P (obj))
4881 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
4883 /* Stop if already marked. */
4884 if (VECTOR_MARKED_P (h))
4885 break;
4887 /* Mark it. */
4888 CHECK_LIVE (live_vector_p);
4889 VECTOR_MARK (h);
4891 /* Mark contents. */
4892 /* Do not mark next_free or next_weak.
4893 Being in the next_weak chain
4894 should not keep the hash table alive.
4895 No need to mark `count' since it is an integer. */
4896 mark_object (h->test);
4897 mark_object (h->weak);
4898 mark_object (h->rehash_size);
4899 mark_object (h->rehash_threshold);
4900 mark_object (h->hash);
4901 mark_object (h->next);
4902 mark_object (h->index);
4903 mark_object (h->user_hash_function);
4904 mark_object (h->user_cmp_function);
4906 /* If hash table is not weak, mark all keys and values.
4907 For weak tables, mark only the vector. */
4908 if (GC_NILP (h->weak))
4909 mark_object (h->key_and_value);
4910 else
4911 VECTOR_MARK (XVECTOR (h->key_and_value));
4913 else
4915 register struct Lisp_Vector *ptr = XVECTOR (obj);
4916 register EMACS_INT size = ptr->size;
4917 register int i;
4919 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4920 CHECK_LIVE (live_vector_p);
4921 VECTOR_MARK (ptr); /* Else mark it */
4922 if (size & PSEUDOVECTOR_FLAG)
4923 size &= PSEUDOVECTOR_SIZE_MASK;
4925 for (i = 0; i < size; i++) /* and then mark its elements */
4926 mark_object (ptr->contents[i]);
4928 break;
4930 case Lisp_Symbol:
4932 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
4933 struct Lisp_Symbol *ptrx;
4935 if (ptr->gcmarkbit) break;
4936 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
4937 ptr->gcmarkbit = 1;
4938 mark_object (ptr->value);
4939 mark_object (ptr->function);
4940 mark_object (ptr->plist);
4942 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
4943 MARK_STRING (XSTRING (ptr->xname));
4944 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
4946 /* Note that we do not mark the obarray of the symbol.
4947 It is safe not to do so because nothing accesses that
4948 slot except to check whether it is nil. */
4949 ptr = ptr->next;
4950 if (ptr)
4952 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
4953 XSETSYMBOL (obj, ptrx);
4954 goto loop;
4957 break;
4959 case Lisp_Misc:
4960 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
4961 if (XMARKER (obj)->gcmarkbit)
4962 break;
4963 XMARKER (obj)->gcmarkbit = 1;
4964 switch (XMISCTYPE (obj))
4966 case Lisp_Misc_Buffer_Local_Value:
4967 case Lisp_Misc_Some_Buffer_Local_Value:
4969 register struct Lisp_Buffer_Local_Value *ptr
4970 = XBUFFER_LOCAL_VALUE (obj);
4971 /* If the cdr is nil, avoid recursion for the car. */
4972 if (EQ (ptr->cdr, Qnil))
4974 obj = ptr->realvalue;
4975 goto loop;
4977 mark_object (ptr->realvalue);
4978 mark_object (ptr->buffer);
4979 mark_object (ptr->frame);
4980 obj = ptr->cdr;
4981 goto loop;
4984 case Lisp_Misc_Marker:
4985 /* DO NOT mark thru the marker's chain.
4986 The buffer's markers chain does not preserve markers from gc;
4987 instead, markers are removed from the chain when freed by gc. */
4988 case Lisp_Misc_Intfwd:
4989 case Lisp_Misc_Boolfwd:
4990 case Lisp_Misc_Objfwd:
4991 case Lisp_Misc_Buffer_Objfwd:
4992 case Lisp_Misc_Kboard_Objfwd:
4993 /* Don't bother with Lisp_Buffer_Objfwd,
4994 since all markable slots in current buffer marked anyway. */
4995 /* Don't need to do Lisp_Objfwd, since the places they point
4996 are protected with staticpro. */
4997 case Lisp_Misc_Save_Value:
4998 break;
5000 case Lisp_Misc_Overlay:
5002 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5003 mark_object (ptr->start);
5004 mark_object (ptr->end);
5005 mark_object (ptr->plist);
5006 if (ptr->next)
5008 XSETMISC (obj, ptr->next);
5009 goto loop;
5012 break;
5014 default:
5015 abort ();
5017 break;
5019 case Lisp_Cons:
5021 register struct Lisp_Cons *ptr = XCONS (obj);
5022 if (CONS_MARKED_P (ptr)) break;
5023 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5024 CONS_MARK (ptr);
5025 /* If the cdr is nil, avoid recursion for the car. */
5026 if (EQ (ptr->cdr, Qnil))
5028 obj = ptr->car;
5029 cdr_count = 0;
5030 goto loop;
5032 mark_object (ptr->car);
5033 obj = ptr->cdr;
5034 cdr_count++;
5035 if (cdr_count == mark_object_loop_halt)
5036 abort ();
5037 goto loop;
5040 case Lisp_Float:
5041 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5042 FLOAT_MARK (XFLOAT (obj));
5043 break;
5045 case Lisp_Int:
5046 break;
5048 default:
5049 abort ();
5052 #undef CHECK_LIVE
5053 #undef CHECK_ALLOCATED
5054 #undef CHECK_ALLOCATED_AND_LIVE
5057 /* Mark the pointers in a buffer structure. */
5059 static void
5060 mark_buffer (buf)
5061 Lisp_Object buf;
5063 register struct buffer *buffer = XBUFFER (buf);
5064 register Lisp_Object *ptr, tmp;
5065 Lisp_Object base_buffer;
5067 VECTOR_MARK (buffer);
5069 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5071 if (CONSP (buffer->undo_list))
5073 Lisp_Object tail;
5074 tail = buffer->undo_list;
5076 /* We mark the undo list specially because
5077 its pointers to markers should be weak. */
5079 while (CONSP (tail))
5081 register struct Lisp_Cons *ptr = XCONS (tail);
5083 if (CONS_MARKED_P (ptr))
5084 break;
5085 CONS_MARK (ptr);
5086 if (GC_CONSP (ptr->car)
5087 && !CONS_MARKED_P (XCONS (ptr->car))
5088 && GC_MARKERP (XCAR (ptr->car)))
5090 CONS_MARK (XCONS (ptr->car));
5091 mark_object (XCDR (ptr->car));
5093 else
5094 mark_object (ptr->car);
5096 if (CONSP (ptr->cdr))
5097 tail = ptr->cdr;
5098 else
5099 break;
5102 mark_object (XCDR (tail));
5104 else
5105 mark_object (buffer->undo_list);
5107 if (buffer->overlays_before)
5109 XSETMISC (tmp, buffer->overlays_before);
5110 mark_object (tmp);
5112 if (buffer->overlays_after)
5114 XSETMISC (tmp, buffer->overlays_after);
5115 mark_object (tmp);
5118 for (ptr = &buffer->name;
5119 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5120 ptr++)
5121 mark_object (*ptr);
5123 /* If this is an indirect buffer, mark its base buffer. */
5124 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5126 XSETBUFFER (base_buffer, buffer->base_buffer);
5127 mark_buffer (base_buffer);
5132 /* Value is non-zero if OBJ will survive the current GC because it's
5133 either marked or does not need to be marked to survive. */
5136 survives_gc_p (obj)
5137 Lisp_Object obj;
5139 int survives_p;
5141 switch (XGCTYPE (obj))
5143 case Lisp_Int:
5144 survives_p = 1;
5145 break;
5147 case Lisp_Symbol:
5148 survives_p = XSYMBOL (obj)->gcmarkbit;
5149 break;
5151 case Lisp_Misc:
5152 survives_p = XMARKER (obj)->gcmarkbit;
5153 break;
5155 case Lisp_String:
5156 survives_p = STRING_MARKED_P (XSTRING (obj));
5157 break;
5159 case Lisp_Vectorlike:
5160 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5161 break;
5163 case Lisp_Cons:
5164 survives_p = CONS_MARKED_P (XCONS (obj));
5165 break;
5167 case Lisp_Float:
5168 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5169 break;
5171 default:
5172 abort ();
5175 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5180 /* Sweep: find all structures not marked, and free them. */
5182 static void
5183 gc_sweep ()
5185 /* Remove or mark entries in weak hash tables.
5186 This must be done before any object is unmarked. */
5187 sweep_weak_hash_tables ();
5189 sweep_strings ();
5190 #ifdef GC_CHECK_STRING_BYTES
5191 if (!noninteractive)
5192 check_string_bytes (1);
5193 #endif
5195 /* Put all unmarked conses on free list */
5197 register struct cons_block *cblk;
5198 struct cons_block **cprev = &cons_block;
5199 register int lim = cons_block_index;
5200 register int num_free = 0, num_used = 0;
5202 cons_free_list = 0;
5204 for (cblk = cons_block; cblk; cblk = *cprev)
5206 register int i;
5207 int this_free = 0;
5208 for (i = 0; i < lim; i++)
5209 if (!CONS_MARKED_P (&cblk->conses[i]))
5211 this_free++;
5212 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
5213 cons_free_list = &cblk->conses[i];
5214 #if GC_MARK_STACK
5215 cons_free_list->car = Vdead;
5216 #endif
5218 else
5220 num_used++;
5221 CONS_UNMARK (&cblk->conses[i]);
5223 lim = CONS_BLOCK_SIZE;
5224 /* If this block contains only free conses and we have already
5225 seen more than two blocks worth of free conses then deallocate
5226 this block. */
5227 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5229 *cprev = cblk->next;
5230 /* Unhook from the free list. */
5231 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
5232 lisp_align_free (cblk);
5233 n_cons_blocks--;
5235 else
5237 num_free += this_free;
5238 cprev = &cblk->next;
5241 total_conses = num_used;
5242 total_free_conses = num_free;
5245 /* Put all unmarked floats on free list */
5247 register struct float_block *fblk;
5248 struct float_block **fprev = &float_block;
5249 register int lim = float_block_index;
5250 register int num_free = 0, num_used = 0;
5252 float_free_list = 0;
5254 for (fblk = float_block; fblk; fblk = *fprev)
5256 register int i;
5257 int this_free = 0;
5258 for (i = 0; i < lim; i++)
5259 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5261 this_free++;
5262 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
5263 float_free_list = &fblk->floats[i];
5265 else
5267 num_used++;
5268 FLOAT_UNMARK (&fblk->floats[i]);
5270 lim = FLOAT_BLOCK_SIZE;
5271 /* If this block contains only free floats and we have already
5272 seen more than two blocks worth of free floats then deallocate
5273 this block. */
5274 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5276 *fprev = fblk->next;
5277 /* Unhook from the free list. */
5278 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
5279 lisp_align_free (fblk);
5280 n_float_blocks--;
5282 else
5284 num_free += this_free;
5285 fprev = &fblk->next;
5288 total_floats = num_used;
5289 total_free_floats = num_free;
5292 /* Put all unmarked intervals on free list */
5294 register struct interval_block *iblk;
5295 struct interval_block **iprev = &interval_block;
5296 register int lim = interval_block_index;
5297 register int num_free = 0, num_used = 0;
5299 interval_free_list = 0;
5301 for (iblk = interval_block; iblk; iblk = *iprev)
5303 register int i;
5304 int this_free = 0;
5306 for (i = 0; i < lim; i++)
5308 if (!iblk->intervals[i].gcmarkbit)
5310 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5311 interval_free_list = &iblk->intervals[i];
5312 this_free++;
5314 else
5316 num_used++;
5317 iblk->intervals[i].gcmarkbit = 0;
5320 lim = INTERVAL_BLOCK_SIZE;
5321 /* If this block contains only free intervals and we have already
5322 seen more than two blocks worth of free intervals then
5323 deallocate this block. */
5324 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5326 *iprev = iblk->next;
5327 /* Unhook from the free list. */
5328 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5329 lisp_free (iblk);
5330 n_interval_blocks--;
5332 else
5334 num_free += this_free;
5335 iprev = &iblk->next;
5338 total_intervals = num_used;
5339 total_free_intervals = num_free;
5342 /* Put all unmarked symbols on free list */
5344 register struct symbol_block *sblk;
5345 struct symbol_block **sprev = &symbol_block;
5346 register int lim = symbol_block_index;
5347 register int num_free = 0, num_used = 0;
5349 symbol_free_list = NULL;
5351 for (sblk = symbol_block; sblk; sblk = *sprev)
5353 int this_free = 0;
5354 struct Lisp_Symbol *sym = sblk->symbols;
5355 struct Lisp_Symbol *end = sym + lim;
5357 for (; sym < end; ++sym)
5359 /* Check if the symbol was created during loadup. In such a case
5360 it might be pointed to by pure bytecode which we don't trace,
5361 so we conservatively assume that it is live. */
5362 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5364 if (!sym->gcmarkbit && !pure_p)
5366 *(struct Lisp_Symbol **) &sym->value = symbol_free_list;
5367 symbol_free_list = sym;
5368 #if GC_MARK_STACK
5369 symbol_free_list->function = Vdead;
5370 #endif
5371 ++this_free;
5373 else
5375 ++num_used;
5376 if (!pure_p)
5377 UNMARK_STRING (XSTRING (sym->xname));
5378 sym->gcmarkbit = 0;
5382 lim = SYMBOL_BLOCK_SIZE;
5383 /* If this block contains only free symbols and we have already
5384 seen more than two blocks worth of free symbols then deallocate
5385 this block. */
5386 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5388 *sprev = sblk->next;
5389 /* Unhook from the free list. */
5390 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
5391 lisp_free (sblk);
5392 n_symbol_blocks--;
5394 else
5396 num_free += this_free;
5397 sprev = &sblk->next;
5400 total_symbols = num_used;
5401 total_free_symbols = num_free;
5404 /* Put all unmarked misc's on free list.
5405 For a marker, first unchain it from the buffer it points into. */
5407 register struct marker_block *mblk;
5408 struct marker_block **mprev = &marker_block;
5409 register int lim = marker_block_index;
5410 register int num_free = 0, num_used = 0;
5412 marker_free_list = 0;
5414 for (mblk = marker_block; mblk; mblk = *mprev)
5416 register int i;
5417 int this_free = 0;
5419 for (i = 0; i < lim; i++)
5421 if (!mblk->markers[i].u_marker.gcmarkbit)
5423 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
5424 unchain_marker (&mblk->markers[i].u_marker);
5425 /* Set the type of the freed object to Lisp_Misc_Free.
5426 We could leave the type alone, since nobody checks it,
5427 but this might catch bugs faster. */
5428 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5429 mblk->markers[i].u_free.chain = marker_free_list;
5430 marker_free_list = &mblk->markers[i];
5431 this_free++;
5433 else
5435 num_used++;
5436 mblk->markers[i].u_marker.gcmarkbit = 0;
5439 lim = MARKER_BLOCK_SIZE;
5440 /* If this block contains only free markers and we have already
5441 seen more than two blocks worth of free markers then deallocate
5442 this block. */
5443 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5445 *mprev = mblk->next;
5446 /* Unhook from the free list. */
5447 marker_free_list = mblk->markers[0].u_free.chain;
5448 lisp_free (mblk);
5449 n_marker_blocks--;
5451 else
5453 num_free += this_free;
5454 mprev = &mblk->next;
5458 total_markers = num_used;
5459 total_free_markers = num_free;
5462 /* Free all unmarked buffers */
5464 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5466 while (buffer)
5467 if (!VECTOR_MARKED_P (buffer))
5469 if (prev)
5470 prev->next = buffer->next;
5471 else
5472 all_buffers = buffer->next;
5473 next = buffer->next;
5474 lisp_free (buffer);
5475 buffer = next;
5477 else
5479 VECTOR_UNMARK (buffer);
5480 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
5481 prev = buffer, buffer = buffer->next;
5485 /* Free all unmarked vectors */
5487 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
5488 total_vector_size = 0;
5490 while (vector)
5491 if (!VECTOR_MARKED_P (vector))
5493 if (prev)
5494 prev->next = vector->next;
5495 else
5496 all_vectors = vector->next;
5497 next = vector->next;
5498 lisp_free (vector);
5499 n_vectors--;
5500 vector = next;
5503 else
5505 VECTOR_UNMARK (vector);
5506 if (vector->size & PSEUDOVECTOR_FLAG)
5507 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
5508 else
5509 total_vector_size += vector->size;
5510 prev = vector, vector = vector->next;
5514 #ifdef GC_CHECK_STRING_BYTES
5515 if (!noninteractive)
5516 check_string_bytes (1);
5517 #endif
5523 /* Debugging aids. */
5525 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
5526 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
5527 This may be helpful in debugging Emacs's memory usage.
5528 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5531 Lisp_Object end;
5533 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
5535 return end;
5538 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
5539 doc: /* Return a list of counters that measure how much consing there has been.
5540 Each of these counters increments for a certain kind of object.
5541 The counters wrap around from the largest positive integer to zero.
5542 Garbage collection does not decrease them.
5543 The elements of the value are as follows:
5544 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
5545 All are in units of 1 = one object consed
5546 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
5547 objects consed.
5548 MISCS include overlays, markers, and some internal types.
5549 Frames, windows, buffers, and subprocesses count as vectors
5550 (but the contents of a buffer's text do not count here). */)
5553 Lisp_Object consed[8];
5555 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
5556 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
5557 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
5558 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
5559 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
5560 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
5561 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
5562 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
5564 return Flist (8, consed);
5567 int suppress_checking;
5568 void
5569 die (msg, file, line)
5570 const char *msg;
5571 const char *file;
5572 int line;
5574 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
5575 file, line, msg);
5576 abort ();
5579 /* Initialization */
5581 void
5582 init_alloc_once ()
5584 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
5585 purebeg = PUREBEG;
5586 pure_size = PURESIZE;
5587 pure_bytes_used = 0;
5588 pure_bytes_used_before_overflow = 0;
5590 /* Initialize the list of free aligned blocks. */
5591 free_ablock = NULL;
5593 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
5594 mem_init ();
5595 Vdead = make_pure_string ("DEAD", 4, 4, 0);
5596 #endif
5598 all_vectors = 0;
5599 ignore_warnings = 1;
5600 #ifdef DOUG_LEA_MALLOC
5601 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
5602 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
5603 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
5604 #endif
5605 init_strings ();
5606 init_cons ();
5607 init_symbol ();
5608 init_marker ();
5609 init_float ();
5610 init_intervals ();
5612 #ifdef REL_ALLOC
5613 malloc_hysteresis = 32;
5614 #else
5615 malloc_hysteresis = 0;
5616 #endif
5618 spare_memory = (char *) malloc (SPARE_MEMORY);
5620 ignore_warnings = 0;
5621 gcprolist = 0;
5622 byte_stack_list = 0;
5623 staticidx = 0;
5624 consing_since_gc = 0;
5625 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
5626 #ifdef VIRT_ADDR_VARIES
5627 malloc_sbrk_unused = 1<<22; /* A large number */
5628 malloc_sbrk_used = 100000; /* as reasonable as any number */
5629 #endif /* VIRT_ADDR_VARIES */
5632 void
5633 init_alloc ()
5635 gcprolist = 0;
5636 byte_stack_list = 0;
5637 #if GC_MARK_STACK
5638 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
5639 setjmp_tested_p = longjmps_done = 0;
5640 #endif
5641 #endif
5642 Vgc_elapsed = make_float (0.0);
5643 gcs_done = 0;
5646 void
5647 syms_of_alloc ()
5649 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
5650 doc: /* *Number of bytes of consing between garbage collections.
5651 Garbage collection can happen automatically once this many bytes have been
5652 allocated since the last garbage collection. All data types count.
5654 Garbage collection happens automatically only when `eval' is called.
5656 By binding this temporarily to a large number, you can effectively
5657 prevent garbage collection during a part of the program. */);
5659 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
5660 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
5662 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
5663 doc: /* Number of cons cells that have been consed so far. */);
5665 DEFVAR_INT ("floats-consed", &floats_consed,
5666 doc: /* Number of floats that have been consed so far. */);
5668 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
5669 doc: /* Number of vector cells that have been consed so far. */);
5671 DEFVAR_INT ("symbols-consed", &symbols_consed,
5672 doc: /* Number of symbols that have been consed so far. */);
5674 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
5675 doc: /* Number of string characters that have been consed so far. */);
5677 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
5678 doc: /* Number of miscellaneous objects that have been consed so far. */);
5680 DEFVAR_INT ("intervals-consed", &intervals_consed,
5681 doc: /* Number of intervals that have been consed so far. */);
5683 DEFVAR_INT ("strings-consed", &strings_consed,
5684 doc: /* Number of strings that have been consed so far. */);
5686 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
5687 doc: /* Non-nil means loading Lisp code in order to dump an executable.
5688 This means that certain objects should be allocated in shared (pure) space. */);
5690 DEFVAR_INT ("undo-limit", &undo_limit,
5691 doc: /* Keep no more undo information once it exceeds this size.
5692 This limit is applied when garbage collection happens.
5693 The size is counted as the number of bytes occupied,
5694 which includes both saved text and other data. */);
5695 undo_limit = 20000;
5697 DEFVAR_INT ("undo-strong-limit", &undo_strong_limit,
5698 doc: /* Don't keep more than this much size of undo information.
5699 A command which pushes past this size is itself forgotten.
5700 This limit is applied when garbage collection happens.
5701 The size is counted as the number of bytes occupied,
5702 which includes both saved text and other data. */);
5703 undo_strong_limit = 30000;
5705 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
5706 doc: /* Non-nil means display messages at start and end of garbage collection. */);
5707 garbage_collection_messages = 0;
5709 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
5710 doc: /* Hook run after garbage collection has finished. */);
5711 Vpost_gc_hook = Qnil;
5712 Qpost_gc_hook = intern ("post-gc-hook");
5713 staticpro (&Qpost_gc_hook);
5715 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
5716 doc: /* Precomputed `signal' argument for memory-full error. */);
5717 /* We build this in advance because if we wait until we need it, we might
5718 not be able to allocate the memory to hold it. */
5719 Vmemory_signal_data
5720 = list2 (Qerror,
5721 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
5723 DEFVAR_LISP ("memory-full", &Vmemory_full,
5724 doc: /* Non-nil means we are handling a memory-full error. */);
5725 Vmemory_full = Qnil;
5727 staticpro (&Qgc_cons_threshold);
5728 Qgc_cons_threshold = intern ("gc-cons-threshold");
5730 staticpro (&Qchar_table_extra_slots);
5731 Qchar_table_extra_slots = intern ("char-table-extra-slots");
5733 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
5734 doc: /* Accumulated time elapsed in garbage collections.
5735 The time is in seconds as a floating point value. */);
5736 DEFVAR_INT ("gcs-done", &gcs_done,
5737 doc: /* Accumulated number of garbage collections done. */);
5739 defsubr (&Scons);
5740 defsubr (&Slist);
5741 defsubr (&Svector);
5742 defsubr (&Smake_byte_code);
5743 defsubr (&Smake_list);
5744 defsubr (&Smake_vector);
5745 defsubr (&Smake_char_table);
5746 defsubr (&Smake_string);
5747 defsubr (&Smake_bool_vector);
5748 defsubr (&Smake_symbol);
5749 defsubr (&Smake_marker);
5750 defsubr (&Spurecopy);
5751 defsubr (&Sgarbage_collect);
5752 defsubr (&Smemory_limit);
5753 defsubr (&Smemory_use_counts);
5755 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5756 defsubr (&Sgc_status);
5757 #endif
5760 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
5761 (do not change this comment) */