(do_check_ram_size): Don't hardcode the lisp address space size.
[emacs.git] / lispref / strings.texi
blob7cc182cc0581a2f4181bfbbfc715f64f9b387b51
1 @c -*-texinfo-*-
2 @c This is part of the GNU Emacs Lisp Reference Manual.
3 @c Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999, 2003
4 @c   Free Software Foundation, Inc.
5 @c See the file elisp.texi for copying conditions.
6 @setfilename ../info/strings
7 @node Strings and Characters, Lists, Numbers, Top
8 @comment  node-name,  next,  previous,  up
9 @chapter Strings and Characters
10 @cindex strings
11 @cindex character arrays
12 @cindex characters
13 @cindex bytes
15   A string in Emacs Lisp is an array that contains an ordered sequence
16 of characters.  Strings are used as names of symbols, buffers, and
17 files; to send messages to users; to hold text being copied between
18 buffers; and for many other purposes.  Because strings are so important,
19 Emacs Lisp has many functions expressly for manipulating them.  Emacs
20 Lisp programs use strings more often than individual characters.
22   @xref{Strings of Events}, for special considerations for strings of
23 keyboard character events.
25 @menu
26 * Basics: String Basics.      Basic properties of strings and characters.
27 * Predicates for Strings::    Testing whether an object is a string or char.
28 * Creating Strings::          Functions to allocate new strings.
29 * Modifying Strings::         Altering the contents of an existing string.
30 * Text Comparison::           Comparing characters or strings.
31 * String Conversion::         Converting to and from characters and strings.
32 * Formatting Strings::        @code{format}: Emacs's analogue of @code{printf}.
33 * Case Conversion::           Case conversion functions.
34 * Case Tables::               Customizing case conversion.
35 @end menu
37 @node String Basics
38 @section String and Character Basics
40   Characters are represented in Emacs Lisp as integers;
41 whether an integer is a character or not is determined only by how it is
42 used.  Thus, strings really contain integers.
44   The length of a string (like any array) is fixed, and cannot be
45 altered once the string exists.  Strings in Lisp are @emph{not}
46 terminated by a distinguished character code.  (By contrast, strings in
47 C are terminated by a character with @acronym{ASCII} code 0.)
49   Since strings are arrays, and therefore sequences as well, you can
50 operate on them with the general array and sequence functions.
51 (@xref{Sequences Arrays Vectors}.)  For example, you can access or
52 change individual characters in a string using the functions @code{aref}
53 and @code{aset} (@pxref{Array Functions}).
55   There are two text representations for non-@acronym{ASCII} characters in
56 Emacs strings (and in buffers): unibyte and multibyte (@pxref{Text
57 Representations}).  An @acronym{ASCII} character always occupies one byte in a
58 string; in fact, when a string is all @acronym{ASCII}, there is no real
59 difference between the unibyte and multibyte representations.
60 For most Lisp programming, you don't need to be concerned with these two
61 representations.
63   Sometimes key sequences are represented as strings.  When a string is
64 a key sequence, string elements in the range 128 to 255 represent meta
65 characters (which are large integers) rather than character
66 codes in the range 128 to 255.
68   Strings cannot hold characters that have the hyper, super or alt
69 modifiers; they can hold @acronym{ASCII} control characters, but no other
70 control characters.  They do not distinguish case in @acronym{ASCII} control
71 characters.  If you want to store such characters in a sequence, such as
72 a key sequence, you must use a vector instead of a string.
73 @xref{Character Type}, for more information about the representation of meta
74 and other modifiers for keyboard input characters.
76   Strings are useful for holding regular expressions.  You can also
77 match regular expressions against strings (@pxref{Regexp Search}).  The
78 functions @code{match-string} (@pxref{Simple Match Data}) and
79 @code{replace-match} (@pxref{Replacing Match}) are useful for
80 decomposing and modifying strings based on regular expression matching.
82   Like a buffer, a string can contain text properties for the characters
83 in it, as well as the characters themselves.  @xref{Text Properties}.
84 All the Lisp primitives that copy text from strings to buffers or other
85 strings also copy the properties of the characters being copied.
87   @xref{Text}, for information about functions that display strings or
88 copy them into buffers.  @xref{Character Type}, and @ref{String Type},
89 for information about the syntax of characters and strings.
90 @xref{Non-ASCII Characters}, for functions to convert between text
91 representations and to encode and decode character codes.
93 @node Predicates for Strings
94 @section The Predicates for Strings
96 For more information about general sequence and array predicates,
97 see @ref{Sequences Arrays Vectors}, and @ref{Arrays}.
99 @defun stringp object
100 This function returns @code{t} if @var{object} is a string, @code{nil}
101 otherwise.
102 @end defun
104 @defun char-or-string-p object
105 This function returns @code{t} if @var{object} is a string or a
106 character (i.e., an integer), @code{nil} otherwise.
107 @end defun
109 @node Creating Strings
110 @section Creating Strings
112   The following functions create strings, either from scratch, or by
113 putting strings together, or by taking them apart.
115 @defun make-string count character
116 This function returns a string made up of @var{count} repetitions of
117 @var{character}.  If @var{count} is negative, an error is signaled.
119 @example
120 (make-string 5 ?x)
121      @result{} "xxxxx"
122 (make-string 0 ?x)
123      @result{} ""
124 @end example
126   Other functions to compare with this one include @code{char-to-string}
127 (@pxref{String Conversion}), @code{make-vector} (@pxref{Vectors}), and
128 @code{make-list} (@pxref{Building Lists}).
129 @end defun
131 @defun string &rest characters
132 This returns a string containing the characters @var{characters}.
134 @example
135 (string ?a ?b ?c)
136      @result{} "abc"
137 @end example
138 @end defun
140 @defun substring string start &optional end
141 This function returns a new string which consists of those characters
142 from @var{string} in the range from (and including) the character at the
143 index @var{start} up to (but excluding) the character at the index
144 @var{end}.  The first character is at index zero.
146 @example
147 @group
148 (substring "abcdefg" 0 3)
149      @result{} "abc"
150 @end group
151 @end example
153 @noindent
154 Here the index for @samp{a} is 0, the index for @samp{b} is 1, and the
155 index for @samp{c} is 2.  Thus, three letters, @samp{abc}, are copied
156 from the string @code{"abcdefg"}.  The index 3 marks the character
157 position up to which the substring is copied.  The character whose index
158 is 3 is actually the fourth character in the string.
160 A negative number counts from the end of the string, so that @minus{}1
161 signifies the index of the last character of the string.  For example:
163 @example
164 @group
165 (substring "abcdefg" -3 -1)
166      @result{} "ef"
167 @end group
168 @end example
170 @noindent
171 In this example, the index for @samp{e} is @minus{}3, the index for
172 @samp{f} is @minus{}2, and the index for @samp{g} is @minus{}1.
173 Therefore, @samp{e} and @samp{f} are included, and @samp{g} is excluded.
175 When @code{nil} is used for @var{end}, it stands for the length of the
176 string.  Thus,
178 @example
179 @group
180 (substring "abcdefg" -3 nil)
181      @result{} "efg"
182 @end group
183 @end example
185 Omitting the argument @var{end} is equivalent to specifying @code{nil}.
186 It follows that @code{(substring @var{string} 0)} returns a copy of all
187 of @var{string}.
189 @example
190 @group
191 (substring "abcdefg" 0)
192      @result{} "abcdefg"
193 @end group
194 @end example
196 @noindent
197 But we recommend @code{copy-sequence} for this purpose (@pxref{Sequence
198 Functions}).
200 If the characters copied from @var{string} have text properties, the
201 properties are copied into the new string also.  @xref{Text Properties}.
203 @code{substring} also accepts a vector for the first argument.
204 For example:
206 @example
207 (substring [a b (c) "d"] 1 3)
208      @result{} [b (c)]
209 @end example
211 A @code{wrong-type-argument} error is signaled if @var{start} is not
212 an integer or if @var{end} is neither an integer nor @code{nil}.  An
213 @code{args-out-of-range} error is signaled if @var{start} indicates a
214 character following @var{end}, or if either integer is out of range
215 for @var{string}.
217 Contrast this function with @code{buffer-substring} (@pxref{Buffer
218 Contents}), which returns a string containing a portion of the text in
219 the current buffer.  The beginning of a string is at index 0, but the
220 beginning of a buffer is at index 1.
221 @end defun
223 @defun substring-no-properties string &optional start end
224 This works like @code{substring} but discards all text properties from
225 the value.  Also, @var{start} may be omitted or @code{nil}, which is
226 equivalent to 0.  Thus, @w{@code{(substring-no-properties
227 @var{string})}} returns a copy of @var{string}, with all text
228 properties removed.
229 @end defun
231 @defun concat &rest sequences
232 @cindex copying strings
233 @cindex concatenating strings
234 This function returns a new string consisting of the characters in the
235 arguments passed to it (along with their text properties, if any).  The
236 arguments may be strings, lists of numbers, or vectors of numbers; they
237 are not themselves changed.  If @code{concat} receives no arguments, it
238 returns an empty string.
240 @example
241 (concat "abc" "-def")
242      @result{} "abc-def"
243 (concat "abc" (list 120 121) [122])
244      @result{} "abcxyz"
245 ;; @r{@code{nil} is an empty sequence.}
246 (concat "abc" nil "-def")
247      @result{} "abc-def"
248 (concat "The " "quick brown " "fox.")
249      @result{} "The quick brown fox."
250 (concat)
251      @result{} ""
252 @end example
254 @noindent
255 The @code{concat} function always constructs a new string that is
256 not @code{eq} to any existing string.
258 In Emacs versions before 21, when an argument was an integer (not a
259 sequence of integers), it was converted to a string of digits making up
260 the decimal printed representation of the integer.  This obsolete usage
261 no longer works.  The proper way to convert an integer to its decimal
262 printed form is with @code{format} (@pxref{Formatting Strings}) or
263 @code{number-to-string} (@pxref{String Conversion}).
265 For information about other concatenation functions, see the
266 description of @code{mapconcat} in @ref{Mapping Functions},
267 @code{vconcat} in @ref{Vector Functions}, and @code{append} in @ref{Building
268 Lists}.
269 @end defun
271 @defun split-string string &optional separators omit-nulls
272 This function splits @var{string} into substrings at matches for the
273 regular expression @var{separators}.  Each match for @var{separators}
274 defines a splitting point; the substrings between the splitting points
275 are made into a list, which is the value returned by
276 @code{split-string}.
278 If @var{omit-nulls} is @code{nil}, the result contains null strings
279 whenever there are two consecutive matches for @var{separators}, or a
280 match is adjacent to the beginning or end of @var{string}.  If
281 @var{omit-nulls} is @code{t}, these null strings are omitted from the
282 result list.
284 If @var{separators} is @code{nil} (or omitted),
285 the default is the value of @code{split-string-default-separators}.
287 As a special case, when @var{separators} is @code{nil} (or omitted),
288 null strings are always omitted from the result.  Thus:
290 @example
291 (split-string "  two words ")
292      @result{} ("two" "words")
293 @end example
295 The result is not @samp{("" "two" "words" "")}, which would rarely be
296 useful.  If you need such a result, use an explict value for
297 @var{separators}:
299 @example
300 (split-string "  two words " split-string-default-separators)
301      @result{} ("" "two" "words" "")
302 @end example
304 More examples:
306 @example
307 (split-string "Soup is good food" "o")
308      @result{} ("S" "up is g" "" "d f" "" "d")
309 (split-string "Soup is good food" "o" t)
310      @result{} ("S" "up is g" "d f" "d")
311 (split-string "Soup is good food" "o+")
312      @result{} ("S" "up is g" "d f" "d")
313 @end example
315 Empty matches do count, except that @code{split-string} will not look
316 for a final empty match when it already reached the end of the string
317 using a non-empty match or when @var{string} is empty:
319 @example
320 (split-string "aooob" "o*")
321      @result{} ("" "a" "" "b" "")
322 (split-string "ooaboo" "o*")
323      @result{} ("" "" "a" "b" "")
324 (split-string "" "")
325      @result{} ("")
326 @end example
328 However, when @var{separators} can match the empty string,
329 @var{omit-nulls} is usually @code{t}, so that the subtleties in the
330 three previous examples are rarely relevant:
332 @example
333 (split-string "Soup is good food" "o*" t)
334      @result{} ("S" "u" "p" " " "i" "s" " " "g" "d" " " "f" "d")
335 (split-string "Nice doggy!" "" t)
336      @result{} ("N" "i" "c" "e" " " "d" "o" "g" "g" "y" "!")
337 (split-string "" "" t)
338      @result{} nil
339 @end example
341 Somewhat odd, but predictable, behavior can occur for certain
342 ``non-greedy'' values of @var{separators} that can prefer empty
343 matches over non-empty matches.  Again, such values rarely occur in
344 practice:
346 @example
347 (split-string "ooo" "o*" t)
348      @result{} nil
349 (split-string "ooo" "\\|o+" t)
350      @result{} ("o" "o" "o")
351 @end example
352 @end defun
354 @defvar split-string-default-separators
355 The default value of @var{separators} for @code{split-string}, initially
356 @w{@samp{"[ \f\t\n\r\v]+"}}.
357 @end defvar
359 @node Modifying Strings
360 @section Modifying Strings
362   The most basic way to alter the contents of an existing string is with
363 @code{aset} (@pxref{Array Functions}).  @code{(aset @var{string}
364 @var{idx} @var{char})} stores @var{char} into @var{string} at index
365 @var{idx}.  Each character occupies one or more bytes, and if @var{char}
366 needs a different number of bytes from the character already present at
367 that index, @code{aset} signals an error.
369   A more powerful function is @code{store-substring}:
371 @defun store-substring string idx obj
372 This function alters part of the contents of the string @var{string}, by
373 storing @var{obj} starting at index @var{idx}.  The argument @var{obj}
374 may be either a character or a (smaller) string.
376 Since it is impossible to change the length of an existing string, it is
377 an error if @var{obj} doesn't fit within @var{string}'s actual length,
378 or if any new character requires a different number of bytes from the
379 character currently present at that point in @var{string}.
380 @end defun
382   To clear out a string that contained a password, use
383 @code{clear-string}:
385 @defun clear-string string
386 This clears the contents of @var{string} to zeros
387 and may change its length.
388 @end defun
390 @need 2000
391 @node Text Comparison
392 @section Comparison of Characters and Strings
393 @cindex string equality
395 @defun char-equal character1 character2
396 This function returns @code{t} if the arguments represent the same
397 character, @code{nil} otherwise.  This function ignores differences
398 in case if @code{case-fold-search} is non-@code{nil}.
400 @example
401 (char-equal ?x ?x)
402      @result{} t
403 (let ((case-fold-search nil))
404   (char-equal ?x ?X))
405      @result{} nil
406 @end example
407 @end defun
409 @defun string= string1 string2
410 This function returns @code{t} if the characters of the two strings
411 match exactly.  Symbols are also allowed as arguments, in which case
412 their print names are used.
413 Case is always significant, regardless of @code{case-fold-search}.
415 @example
416 (string= "abc" "abc")
417      @result{} t
418 (string= "abc" "ABC")
419      @result{} nil
420 (string= "ab" "ABC")
421      @result{} nil
422 @end example
424 The function @code{string=} ignores the text properties of the two
425 strings.  When @code{equal} (@pxref{Equality Predicates}) compares two
426 strings, it uses @code{string=}.
428 For technical reasons, a unibyte and a multibyte string are
429 @code{equal} if and only if they contain the same sequence of
430 character codes and all these codes are either in the range 0 through
431 127 (@acronym{ASCII}) or 160 through 255 (@code{eight-bit-graphic}).
432 However, when a unibyte string gets converted to a multibyte string,
433 all characters with codes in the range 160 through 255 get converted
434 to characters with higher codes, whereas @acronym{ASCII} characters
435 remain unchanged.  Thus, a unibyte string and its conversion to
436 multibyte are only @code{equal} if the string is all @acronym{ASCII}.
437 Character codes 160 through 255 are not entirely proper in multibyte
438 text, even though they can occur.  As a consequence, the situation
439 where a unibyte and a multibyte string are @code{equal} without both
440 being all @acronym{ASCII} is a technical oddity that very few Emacs
441 Lisp programmers ever get confronted with.  @xref{Text
442 Representations}.
443 @end defun
445 @defun string-equal string1 string2
446 @code{string-equal} is another name for @code{string=}.
447 @end defun
449 @cindex lexical comparison
450 @defun string< string1 string2
451 @c (findex string< causes problems for permuted index!!)
452 This function compares two strings a character at a time.  It
453 scans both the strings at the same time to find the first pair of corresponding
454 characters that do not match.  If the lesser character of these two is
455 the character from @var{string1}, then @var{string1} is less, and this
456 function returns @code{t}.  If the lesser character is the one from
457 @var{string2}, then @var{string1} is greater, and this function returns
458 @code{nil}.  If the two strings match entirely, the value is @code{nil}.
460 Pairs of characters are compared according to their character codes.
461 Keep in mind that lower case letters have higher numeric values in the
462 @acronym{ASCII} character set than their upper case counterparts; digits and
463 many punctuation characters have a lower numeric value than upper case
464 letters.  An @acronym{ASCII} character is less than any non-@acronym{ASCII}
465 character; a unibyte non-@acronym{ASCII} character is always less than any
466 multibyte non-@acronym{ASCII} character (@pxref{Text Representations}).
468 @example
469 @group
470 (string< "abc" "abd")
471      @result{} t
472 (string< "abd" "abc")
473      @result{} nil
474 (string< "123" "abc")
475      @result{} t
476 @end group
477 @end example
479 When the strings have different lengths, and they match up to the
480 length of @var{string1}, then the result is @code{t}.  If they match up
481 to the length of @var{string2}, the result is @code{nil}.  A string of
482 no characters is less than any other string.
484 @example
485 @group
486 (string< "" "abc")
487      @result{} t
488 (string< "ab" "abc")
489      @result{} t
490 (string< "abc" "")
491      @result{} nil
492 (string< "abc" "ab")
493      @result{} nil
494 (string< "" "")
495      @result{} nil
496 @end group
497 @end example
499 Symbols are also allowed as arguments, in which case their print names
500 are used.
501 @end defun
503 @defun string-lessp string1 string2
504 @code{string-lessp} is another name for @code{string<}.
505 @end defun
507 @defun compare-strings string1 start1 end1 string2 start2 end2 &optional ignore-case
508 This function compares the specified part of @var{string1} with the
509 specified part of @var{string2}.  The specified part of @var{string1}
510 runs from index @var{start1} up to index @var{end1} (@code{nil} means
511 the end of the string).  The specified part of @var{string2} runs from
512 index @var{start2} up to index @var{end2} (@code{nil} means the end of
513 the string).
515 The strings are both converted to multibyte for the comparison
516 (@pxref{Text Representations}) so that a unibyte string and its
517 conversion to multibyte are always regarded as equal.  If
518 @var{ignore-case} is non-@code{nil}, then case is ignored, so that
519 upper case letters can be equal to lower case letters.
521 If the specified portions of the two strings match, the value is
522 @code{t}.  Otherwise, the value is an integer which indicates how many
523 leading characters agree, and which string is less.  Its absolute value
524 is one plus the number of characters that agree at the beginning of the
525 two strings.  The sign is negative if @var{string1} (or its specified
526 portion) is less.
527 @end defun
529 @defun assoc-string key alist &optional case-fold
530 This function works like @code{assoc}, except that @var{key} must be a
531 string, and comparison is done using @code{compare-strings}.  If
532 @var{case-fold} is non-@code{nil}, it ignores case differences.
533 @xref{Association Lists}.
534 @end defun
536   See also @code{compare-buffer-substrings} in @ref{Comparing Text}, for
537 a way to compare text in buffers.  The function @code{string-match},
538 which matches a regular expression against a string, can be used
539 for a kind of string comparison; see @ref{Regexp Search}.
541 @node String Conversion
542 @comment  node-name,  next,  previous,  up
543 @section Conversion of Characters and Strings
544 @cindex conversion of strings
546   This section describes functions for conversions between characters,
547 strings and integers.  @code{format} and @code{prin1-to-string}
548 (@pxref{Output Functions}) can also convert Lisp objects into strings.
549 @code{read-from-string} (@pxref{Input Functions}) can ``convert'' a
550 string representation of a Lisp object into an object.  The functions
551 @code{string-make-multibyte} and @code{string-make-unibyte} convert the
552 text representation of a string (@pxref{Converting Representations}).
554   @xref{Documentation}, for functions that produce textual descriptions
555 of text characters and general input events
556 (@code{single-key-description} and @code{text-char-description}).  These
557 functions are used primarily for making help messages.
559 @defun char-to-string character
560 @cindex character to string
561 This function returns a new string containing one character,
562 @var{character}.  This function is semi-obsolete because the function
563 @code{string} is more general.  @xref{Creating Strings}.
564 @end defun
566 @defun string-to-char string
567 @cindex string to character
568   This function returns the first character in @var{string}.  If the
569 string is empty, the function returns 0.  The value is also 0 when the
570 first character of @var{string} is the null character, @acronym{ASCII} code
573 @example
574 (string-to-char "ABC")
575      @result{} 65
576 (string-to-char "xyz")
577      @result{} 120
578 (string-to-char "")
579      @result{} 0
580 @group
581 (string-to-char "\000")
582      @result{} 0
583 @end group
584 @end example
586 This function may be eliminated in the future if it does not seem useful
587 enough to retain.
588 @end defun
590 @defun number-to-string number
591 @cindex integer to string
592 @cindex integer to decimal
593 This function returns a string consisting of the printed base-ten
594 representation of @var{number}, which may be an integer or a floating
595 point number.  The returned value starts with a minus sign if the argument is
596 negative.
598 @example
599 (number-to-string 256)
600      @result{} "256"
601 @group
602 (number-to-string -23)
603      @result{} "-23"
604 @end group
605 (number-to-string -23.5)
606      @result{} "-23.5"
607 @end example
609 @cindex int-to-string
610 @code{int-to-string} is a semi-obsolete alias for this function.
612 See also the function @code{format} in @ref{Formatting Strings}.
613 @end defun
615 @defun string-to-number string &optional base
616 @cindex string to number
617 This function returns the numeric value of the characters in
618 @var{string}.  If @var{base} is non-@code{nil}, it must be an integer
619 between 2 and 16 (inclusive), and integers are converted in that base.
620 If @var{base} is @code{nil}, then base ten is used.  Floating point
621 conversion only works in base ten; we have not implemented other
622 radices for floating point numbers, because that would be much more
623 work and does not seem useful.  If @var{string} looks like an integer
624 but its value is too large to fit into a Lisp integer,
625 @code{string-to-number} returns a floating point result.
627 The parsing skips spaces and tabs at the beginning of @var{string},
628 then reads as much of @var{string} as it can interpret as a number in
629 the given base.  (On some systems it ignores other whitespace at the
630 beginning, not just spaces and tabs.)  If the first character after
631 the ignored whitespace is neither a digit in the given base, nor a
632 plus or minus sign, nor the leading dot of a floating point number,
633 this function returns 0.
635 @example
636 (string-to-number "256")
637      @result{} 256
638 (string-to-number "25 is a perfect square.")
639      @result{} 25
640 (string-to-number "X256")
641      @result{} 0
642 (string-to-number "-4.5")
643      @result{} -4.5
644 (string-to-number "1e5")
645      @result{} 100000.0
646 @end example
648 @findex string-to-int
649 @code{string-to-int} is an obsolete alias for this function.
650 @end defun
652   Here are some other functions that can convert to or from a string:
654 @table @code
655 @item concat
656 @code{concat} can convert a vector or a list into a string.
657 @xref{Creating Strings}.
659 @item vconcat
660 @code{vconcat} can convert a string into a vector.  @xref{Vector
661 Functions}.
663 @item append
664 @code{append} can convert a string into a list.  @xref{Building Lists}.
665 @end table
667 @node Formatting Strings
668 @comment  node-name,  next,  previous,  up
669 @section Formatting Strings
670 @cindex formatting strings
671 @cindex strings, formatting them
673   @dfn{Formatting} means constructing a string by substitution of
674 computed values at various places in a constant string.  This constant string
675 controls how the other values are printed, as well as where they appear;
676 it is called a @dfn{format string}.
678   Formatting is often useful for computing messages to be displayed.  In
679 fact, the functions @code{message} and @code{error} provide the same
680 formatting feature described here; they differ from @code{format} only
681 in how they use the result of formatting.
683 @defun format string &rest objects
684 This function returns a new string that is made by copying
685 @var{string} and then replacing any format specification
686 in the copy with encodings of the corresponding @var{objects}.  The
687 arguments @var{objects} are the computed values to be formatted.
689 The characters in @var{string}, other than the format specifications,
690 are copied directly into the output; starting in Emacs 21, if they have
691 text properties, these are copied into the output also.
692 @end defun
694 @cindex @samp{%} in format
695 @cindex format specification
696   A format specification is a sequence of characters beginning with a
697 @samp{%}.  Thus, if there is a @samp{%d} in @var{string}, the
698 @code{format} function replaces it with the printed representation of
699 one of the values to be formatted (one of the arguments @var{objects}).
700 For example:
702 @example
703 @group
704 (format "The value of fill-column is %d." fill-column)
705      @result{} "The value of fill-column is 72."
706 @end group
707 @end example
709   If @var{string} contains more than one format specification, the
710 format specifications correspond to successive values from
711 @var{objects}.  Thus, the first format specification in @var{string}
712 uses the first such value, the second format specification uses the
713 second such value, and so on.  Any extra format specifications (those
714 for which there are no corresponding values) cause unpredictable
715 behavior.  Any extra values to be formatted are ignored.
717   Certain format specifications require values of particular types.  If
718 you supply a value that doesn't fit the requirements, an error is
719 signaled.
721   Here is a table of valid format specifications:
723 @table @samp
724 @item %s
725 Replace the specification with the printed representation of the object,
726 made without quoting (that is, using @code{princ}, not
727 @code{prin1}---@pxref{Output Functions}).  Thus, strings are represented
728 by their contents alone, with no @samp{"} characters, and symbols appear
729 without @samp{\} characters.
731 Starting in Emacs 21, if the object is a string, its text properties are
732 copied into the output.  The text properties of the @samp{%s} itself
733 are also copied, but those of the object take priority.
735 @item %S
736 Replace the specification with the printed representation of the object,
737 made with quoting (that is, using @code{prin1}---@pxref{Output
738 Functions}).  Thus, strings are enclosed in @samp{"} characters, and
739 @samp{\} characters appear where necessary before special characters.
741 @item %o
742 @cindex integer to octal
743 Replace the specification with the base-eight representation of an
744 integer.
746 @item %d
747 Replace the specification with the base-ten representation of an
748 integer.
750 @item %x
751 @itemx %X
752 @cindex integer to hexadecimal
753 Replace the specification with the base-sixteen representation of an
754 integer.  @samp{%x} uses lower case and @samp{%X} uses upper case.
756 @item %c
757 Replace the specification with the character which is the value given.
759 @item %e
760 Replace the specification with the exponential notation for a floating
761 point number.
763 @item %f
764 Replace the specification with the decimal-point notation for a floating
765 point number.
767 @item %g
768 Replace the specification with notation for a floating point number,
769 using either exponential notation or decimal-point notation, whichever
770 is shorter.
772 @item %%
773 Replace the specification with a single @samp{%}.  This format
774 specification is unusual in that it does not use a value.  For example,
775 @code{(format "%% %d" 30)} returns @code{"% 30"}.
776 @end table
778   Any other format character results in an @samp{Invalid format
779 operation} error.
781   Here are several examples:
783 @example
784 @group
785 (format "The name of this buffer is %s." (buffer-name))
786      @result{} "The name of this buffer is strings.texi."
788 (format "The buffer object prints as %s." (current-buffer))
789      @result{} "The buffer object prints as strings.texi."
791 (format "The octal value of %d is %o,
792          and the hex value is %x." 18 18 18)
793      @result{} "The octal value of 18 is 22,
794          and the hex value is 12."
795 @end group
796 @end example
798 @cindex numeric prefix
799 @cindex field width
800 @cindex padding
801   All the specification characters allow an optional numeric prefix
802 between the @samp{%} and the character.  The optional numeric prefix
803 defines the minimum width for the object.  If the printed
804 representation of the object contains fewer characters than this, then
805 it is padded.  The padding is on the left if the prefix is positive
806 (or starts with zero) and on the right if the prefix is negative.  The
807 padding character is normally a space, but if the numeric prefix
808 starts with a zero, zeros are used for padding.  Some of these
809 conventions are ignored for specification characters for which they do
810 not make sense.  That is, %s, %S and %c accept a numeric prefix
811 starting with 0, but still pad with @emph{spaces} on the left.  Also,
812 %% accepts a numeric prefix, but ignores it.  Here are some examples
813 of padding:
815 @example
816 (format "%06d is padded on the left with zeros" 123)
817      @result{} "000123 is padded on the left with zeros"
819 (format "%-6d is padded on the right" 123)
820      @result{} "123    is padded on the right"
821 @end example
823   @code{format} never truncates an object's printed representation, no
824 matter what width you specify.  Thus, you can use a numeric prefix to
825 specify a minimum spacing between columns with no risk of losing
826 information.
828   In the following three examples, @samp{%7s} specifies a minimum width
829 of 7.  In the first case, the string inserted in place of @samp{%7s} has
830 only 3 letters, so 4 blank spaces are inserted for padding.  In the
831 second case, the string @code{"specification"} is 13 letters wide but is
832 not truncated.  In the third case, the padding is on the right.
834 @smallexample
835 @group
836 (format "The word `%7s' actually has %d letters in it."
837         "foo" (length "foo"))
838      @result{} "The word `    foo' actually has 3 letters in it."
839 @end group
841 @group
842 (format "The word `%7s' actually has %d letters in it."
843         "specification" (length "specification"))
844      @result{} "The word `specification' actually has 13 letters in it."
845 @end group
847 @group
848 (format "The word `%-7s' actually has %d letters in it."
849         "foo" (length "foo"))
850      @result{} "The word `foo    ' actually has 3 letters in it."
851 @end group
852 @end smallexample
854 @node Case Conversion
855 @comment node-name, next, previous, up
856 @section Case Conversion in Lisp
857 @cindex upper case
858 @cindex lower case
859 @cindex character case
860 @cindex case conversion in Lisp
862   The character case functions change the case of single characters or
863 of the contents of strings.  The functions normally convert only
864 alphabetic characters (the letters @samp{A} through @samp{Z} and
865 @samp{a} through @samp{z}, as well as non-@acronym{ASCII} letters); other
866 characters are not altered.  You can specify a different case
867 conversion mapping by specifying a case table (@pxref{Case Tables}).
869   These functions do not modify the strings that are passed to them as
870 arguments.
872   The examples below use the characters @samp{X} and @samp{x} which have
873 @acronym{ASCII} codes 88 and 120 respectively.
875 @defun downcase string-or-char
876 This function converts a character or a string to lower case.
878 When the argument to @code{downcase} is a string, the function creates
879 and returns a new string in which each letter in the argument that is
880 upper case is converted to lower case.  When the argument to
881 @code{downcase} is a character, @code{downcase} returns the
882 corresponding lower case character.  This value is an integer.  If the
883 original character is lower case, or is not a letter, then the value
884 equals the original character.
886 @example
887 (downcase "The cat in the hat")
888      @result{} "the cat in the hat"
890 (downcase ?X)
891      @result{} 120
892 @end example
893 @end defun
895 @defun upcase string-or-char
896 This function converts a character or a string to upper case.
898 When the argument to @code{upcase} is a string, the function creates
899 and returns a new string in which each letter in the argument that is
900 lower case is converted to upper case.
902 When the argument to @code{upcase} is a character, @code{upcase}
903 returns the corresponding upper case character.  This value is an integer.
904 If the original character is upper case, or is not a letter, then the
905 value returned equals the original character.
907 @example
908 (upcase "The cat in the hat")
909      @result{} "THE CAT IN THE HAT"
911 (upcase ?x)
912      @result{} 88
913 @end example
914 @end defun
916 @defun capitalize string-or-char
917 @cindex capitalization
918 This function capitalizes strings or characters.  If
919 @var{string-or-char} is a string, the function creates and returns a new
920 string, whose contents are a copy of @var{string-or-char} in which each
921 word has been capitalized.  This means that the first character of each
922 word is converted to upper case, and the rest are converted to lower
923 case.
925 The definition of a word is any sequence of consecutive characters that
926 are assigned to the word constituent syntax class in the current syntax
927 table (@pxref{Syntax Class Table}).
929 When the argument to @code{capitalize} is a character, @code{capitalize}
930 has the same result as @code{upcase}.
932 @example
933 @group
934 (capitalize "The cat in the hat")
935      @result{} "The Cat In The Hat"
936 @end group
938 @group
939 (capitalize "THE 77TH-HATTED CAT")
940      @result{} "The 77th-Hatted Cat"
941 @end group
943 @group
944 (capitalize ?x)
945      @result{} 88
946 @end group
947 @end example
948 @end defun
950 @defun upcase-initials string-or-char
951 If @var{string-or-char} is a string, this function capitalizes the
952 initials of the words in @var{string-or-char}, without altering any
953 letters other than the initials.  It returns a new string whose
954 contents are a copy of @var{string-or-char}, in which each word has
955 had its initial letter converted to upper case.
957 The definition of a word is any sequence of consecutive characters that
958 are assigned to the word constituent syntax class in the current syntax
959 table (@pxref{Syntax Class Table}).
961 When the argument to @code{upcase-initials} is a character,
962 @code{upcase-initials} has the same result as @code{upcase}.
964 @example
965 @group
966 (upcase-initials "The CAT in the hAt")
967      @result{} "The CAT In The HAt"
968 @end group
969 @end example
970 @end defun
972   @xref{Text Comparison}, for functions that compare strings; some of
973 them ignore case differences, or can optionally ignore case differences.
975 @node Case Tables
976 @section The Case Table
978   You can customize case conversion by installing a special @dfn{case
979 table}.  A case table specifies the mapping between upper case and lower
980 case letters.  It affects both the case conversion functions for Lisp
981 objects (see the previous section) and those that apply to text in the
982 buffer (@pxref{Case Changes}).  Each buffer has a case table; there is
983 also a standard case table which is used to initialize the case table
984 of new buffers.
986   A case table is a char-table (@pxref{Char-Tables}) whose subtype is
987 @code{case-table}.  This char-table maps each character into the
988 corresponding lower case character.  It has three extra slots, which
989 hold related tables:
991 @table @var
992 @item upcase
993 The upcase table maps each character into the corresponding upper
994 case character.
995 @item canonicalize
996 The canonicalize table maps all of a set of case-related characters
997 into a particular member of that set.
998 @item equivalences
999 The equivalences table maps each one of a set of case-related characters
1000 into the next character in that set.
1001 @end table
1003   In simple cases, all you need to specify is the mapping to lower-case;
1004 the three related tables will be calculated automatically from that one.
1006   For some languages, upper and lower case letters are not in one-to-one
1007 correspondence.  There may be two different lower case letters with the
1008 same upper case equivalent.  In these cases, you need to specify the
1009 maps for both lower case and upper case.
1011   The extra table @var{canonicalize} maps each character to a canonical
1012 equivalent; any two characters that are related by case-conversion have
1013 the same canonical equivalent character.  For example, since @samp{a}
1014 and @samp{A} are related by case-conversion, they should have the same
1015 canonical equivalent character (which should be either @samp{a} for both
1016 of them, or @samp{A} for both of them).
1018   The extra table @var{equivalences} is a map that cyclicly permutes
1019 each equivalence class (of characters with the same canonical
1020 equivalent).  (For ordinary @acronym{ASCII}, this would map @samp{a} into
1021 @samp{A} and @samp{A} into @samp{a}, and likewise for each set of
1022 equivalent characters.)
1024   When you construct a case table, you can provide @code{nil} for
1025 @var{canonicalize}; then Emacs fills in this slot from the lower case
1026 and upper case mappings.  You can also provide @code{nil} for
1027 @var{equivalences}; then Emacs fills in this slot from
1028 @var{canonicalize}.  In a case table that is actually in use, those
1029 components are non-@code{nil}.  Do not try to specify @var{equivalences}
1030 without also specifying @var{canonicalize}.
1032   Here are the functions for working with case tables:
1034 @defun case-table-p object
1035 This predicate returns non-@code{nil} if @var{object} is a valid case
1036 table.
1037 @end defun
1039 @defun set-standard-case-table table
1040 This function makes @var{table} the standard case table, so that it will
1041 be used in any buffers created subsequently.
1042 @end defun
1044 @defun standard-case-table
1045 This returns the standard case table.
1046 @end defun
1048 @defun current-case-table
1049 This function returns the current buffer's case table.
1050 @end defun
1052 @defun set-case-table table
1053 This sets the current buffer's case table to @var{table}.
1054 @end defun
1056   The following three functions are convenient subroutines for packages
1057 that define non-@acronym{ASCII} character sets.  They modify the specified
1058 case table @var{case-table}; they also modify the standard syntax table.
1059 @xref{Syntax Tables}.  Normally you would use these functions to change
1060 the standard case table.
1062 @defun set-case-syntax-pair uc lc case-table
1063 This function specifies a pair of corresponding letters, one upper case
1064 and one lower case.
1065 @end defun
1067 @defun set-case-syntax-delims l r case-table
1068 This function makes characters @var{l} and @var{r} a matching pair of
1069 case-invariant delimiters.
1070 @end defun
1072 @defun set-case-syntax char syntax case-table
1073 This function makes @var{char} case-invariant, with syntax
1074 @var{syntax}.
1075 @end defun
1077 @deffn Command describe-buffer-case-table
1078 This command displays a description of the contents of the current
1079 buffer's case table.
1080 @end deffn
1082 @ignore
1083    arch-tag: 700b8e95-7aa5-4b52-9eb3-8f2e1ea152b4
1084 @end ignore