Merge from emacs--devo--0
[emacs.git] / src / alloc.c
blob2e88afc00acbb9a03a0e3f6fbead37dab41819db
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
22 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
26 #ifdef STDC_HEADERS
27 #include <stddef.h> /* For offsetof, used by PSEUDOVECSIZE. */
28 #endif
30 #ifdef ALLOC_DEBUG
31 #undef INLINE
32 #endif
34 /* Note that this declares bzero on OSF/1. How dumb. */
36 #include <signal.h>
38 #ifdef HAVE_GTK_AND_PTHREAD
39 #include <pthread.h>
40 #endif
42 /* This file is part of the core Lisp implementation, and thus must
43 deal with the real data structures. If the Lisp implementation is
44 replaced, this file likely will not be used. */
46 #undef HIDE_LISP_IMPLEMENTATION
47 #include "lisp.h"
48 #include "process.h"
49 #include "intervals.h"
50 #include "puresize.h"
51 #include "buffer.h"
52 #include "window.h"
53 #include "keyboard.h"
54 #include "frame.h"
55 #include "blockinput.h"
56 #include "character.h"
57 #include "syssignal.h"
58 #include <setjmp.h>
60 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
61 memory. Can do this only if using gmalloc.c. */
63 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
64 #undef GC_MALLOC_CHECK
65 #endif
67 #ifdef HAVE_UNISTD_H
68 #include <unistd.h>
69 #else
70 extern POINTER_TYPE *sbrk ();
71 #endif
73 #ifdef HAVE_FCNTL_H
74 #define INCLUDED_FCNTL
75 #include <fcntl.h>
76 #endif
77 #ifndef O_WRONLY
78 #define O_WRONLY 1
79 #endif
81 #ifdef WINDOWSNT
82 #include <fcntl.h>
83 #include "w32.h"
84 #endif
86 #ifdef DOUG_LEA_MALLOC
88 #include <malloc.h>
89 /* malloc.h #defines this as size_t, at least in glibc2. */
90 #ifndef __malloc_size_t
91 #define __malloc_size_t int
92 #endif
94 /* Specify maximum number of areas to mmap. It would be nice to use a
95 value that explicitly means "no limit". */
97 #define MMAP_MAX_AREAS 100000000
99 #else /* not DOUG_LEA_MALLOC */
101 /* The following come from gmalloc.c. */
103 #define __malloc_size_t size_t
104 extern __malloc_size_t _bytes_used;
105 extern __malloc_size_t __malloc_extra_blocks;
107 #endif /* not DOUG_LEA_MALLOC */
109 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
111 /* When GTK uses the file chooser dialog, different backends can be loaded
112 dynamically. One such a backend is the Gnome VFS backend that gets loaded
113 if you run Gnome. That backend creates several threads and also allocates
114 memory with malloc.
116 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
117 functions below are called from malloc, there is a chance that one
118 of these threads preempts the Emacs main thread and the hook variables
119 end up in an inconsistent state. So we have a mutex to prevent that (note
120 that the backend handles concurrent access to malloc within its own threads
121 but Emacs code running in the main thread is not included in that control).
123 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
124 happens in one of the backend threads we will have two threads that tries
125 to run Emacs code at once, and the code is not prepared for that.
126 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
128 static pthread_mutex_t alloc_mutex;
130 #define BLOCK_INPUT_ALLOC \
131 do \
133 if (pthread_equal (pthread_self (), main_thread)) \
134 BLOCK_INPUT; \
135 pthread_mutex_lock (&alloc_mutex); \
137 while (0)
138 #define UNBLOCK_INPUT_ALLOC \
139 do \
141 pthread_mutex_unlock (&alloc_mutex); \
142 if (pthread_equal (pthread_self (), main_thread)) \
143 UNBLOCK_INPUT; \
145 while (0)
147 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
149 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
150 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
152 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
154 /* Value of _bytes_used, when spare_memory was freed. */
156 static __malloc_size_t bytes_used_when_full;
158 static __malloc_size_t bytes_used_when_reconsidered;
160 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
161 to a struct Lisp_String. */
163 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
164 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
165 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
167 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
168 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
169 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
171 /* Value is the number of bytes/chars of S, a pointer to a struct
172 Lisp_String. This must be used instead of STRING_BYTES (S) or
173 S->size during GC, because S->size contains the mark bit for
174 strings. */
176 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
177 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
179 /* Number of bytes of consing done since the last gc. */
181 int consing_since_gc;
183 /* Count the amount of consing of various sorts of space. */
185 EMACS_INT cons_cells_consed;
186 EMACS_INT floats_consed;
187 EMACS_INT vector_cells_consed;
188 EMACS_INT symbols_consed;
189 EMACS_INT string_chars_consed;
190 EMACS_INT misc_objects_consed;
191 EMACS_INT intervals_consed;
192 EMACS_INT strings_consed;
194 /* Minimum number of bytes of consing since GC before next GC. */
196 EMACS_INT gc_cons_threshold;
198 /* Similar minimum, computed from Vgc_cons_percentage. */
200 EMACS_INT gc_relative_threshold;
202 static Lisp_Object Vgc_cons_percentage;
204 /* Minimum number of bytes of consing since GC before next GC,
205 when memory is full. */
207 EMACS_INT memory_full_cons_threshold;
209 /* Nonzero during GC. */
211 int gc_in_progress;
213 /* Nonzero means abort if try to GC.
214 This is for code which is written on the assumption that
215 no GC will happen, so as to verify that assumption. */
217 int abort_on_gc;
219 /* Nonzero means display messages at beginning and end of GC. */
221 int garbage_collection_messages;
223 #ifndef VIRT_ADDR_VARIES
224 extern
225 #endif /* VIRT_ADDR_VARIES */
226 int malloc_sbrk_used;
228 #ifndef VIRT_ADDR_VARIES
229 extern
230 #endif /* VIRT_ADDR_VARIES */
231 int malloc_sbrk_unused;
233 /* Number of live and free conses etc. */
235 static int total_conses, total_markers, total_symbols, total_vector_size;
236 static int total_free_conses, total_free_markers, total_free_symbols;
237 static int total_free_floats, total_floats;
239 /* Points to memory space allocated as "spare", to be freed if we run
240 out of memory. We keep one large block, four cons-blocks, and
241 two string blocks. */
243 char *spare_memory[7];
245 /* Amount of spare memory to keep in large reserve block. */
247 #define SPARE_MEMORY (1 << 14)
249 /* Number of extra blocks malloc should get when it needs more core. */
251 static int malloc_hysteresis;
253 /* Non-nil means defun should do purecopy on the function definition. */
255 Lisp_Object Vpurify_flag;
257 /* Non-nil means we are handling a memory-full error. */
259 Lisp_Object Vmemory_full;
261 #ifndef HAVE_SHM
263 /* Initialize it to a nonzero value to force it into data space
264 (rather than bss space). That way unexec will remap it into text
265 space (pure), on some systems. We have not implemented the
266 remapping on more recent systems because this is less important
267 nowadays than in the days of small memories and timesharing. */
269 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
270 #define PUREBEG (char *) pure
272 #else /* HAVE_SHM */
274 #define pure PURE_SEG_BITS /* Use shared memory segment */
275 #define PUREBEG (char *)PURE_SEG_BITS
277 #endif /* HAVE_SHM */
279 /* Pointer to the pure area, and its size. */
281 static char *purebeg;
282 static size_t pure_size;
284 /* Number of bytes of pure storage used before pure storage overflowed.
285 If this is non-zero, this implies that an overflow occurred. */
287 static size_t pure_bytes_used_before_overflow;
289 /* Value is non-zero if P points into pure space. */
291 #define PURE_POINTER_P(P) \
292 (((PNTR_COMPARISON_TYPE) (P) \
293 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
294 && ((PNTR_COMPARISON_TYPE) (P) \
295 >= (PNTR_COMPARISON_TYPE) purebeg))
297 /* Total number of bytes allocated in pure storage. */
299 EMACS_INT pure_bytes_used;
301 /* Index in pure at which next pure Lisp object will be allocated.. */
303 static EMACS_INT pure_bytes_used_lisp;
305 /* Number of bytes allocated for non-Lisp objects in pure storage. */
307 static EMACS_INT pure_bytes_used_non_lisp;
309 /* If nonzero, this is a warning delivered by malloc and not yet
310 displayed. */
312 char *pending_malloc_warning;
314 /* Pre-computed signal argument for use when memory is exhausted. */
316 Lisp_Object Vmemory_signal_data;
318 /* Maximum amount of C stack to save when a GC happens. */
320 #ifndef MAX_SAVE_STACK
321 #define MAX_SAVE_STACK 16000
322 #endif
324 /* Buffer in which we save a copy of the C stack at each GC. */
326 char *stack_copy;
327 int stack_copy_size;
329 /* Non-zero means ignore malloc warnings. Set during initialization.
330 Currently not used. */
332 int ignore_warnings;
334 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
336 /* Hook run after GC has finished. */
338 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
340 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
341 EMACS_INT gcs_done; /* accumulated GCs */
343 static void mark_buffer P_ ((Lisp_Object));
344 extern void mark_kboards P_ ((void));
345 extern void mark_backtrace P_ ((void));
346 static void gc_sweep P_ ((void));
347 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
348 static void mark_face_cache P_ ((struct face_cache *));
350 #ifdef HAVE_WINDOW_SYSTEM
351 extern void mark_fringe_data P_ ((void));
352 static void mark_image P_ ((struct image *));
353 static void mark_image_cache P_ ((struct frame *));
354 #endif /* HAVE_WINDOW_SYSTEM */
356 static struct Lisp_String *allocate_string P_ ((void));
357 static void compact_small_strings P_ ((void));
358 static void free_large_strings P_ ((void));
359 static void sweep_strings P_ ((void));
361 extern int message_enable_multibyte;
363 /* When scanning the C stack for live Lisp objects, Emacs keeps track
364 of what memory allocated via lisp_malloc is intended for what
365 purpose. This enumeration specifies the type of memory. */
367 enum mem_type
369 MEM_TYPE_NON_LISP,
370 MEM_TYPE_BUFFER,
371 MEM_TYPE_CONS,
372 MEM_TYPE_STRING,
373 MEM_TYPE_MISC,
374 MEM_TYPE_SYMBOL,
375 MEM_TYPE_FLOAT,
376 /* Keep the following vector-like types together, with
377 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
378 first. Or change the code of live_vector_p, for instance. */
379 MEM_TYPE_VECTOR,
380 MEM_TYPE_PROCESS,
381 MEM_TYPE_HASH_TABLE,
382 MEM_TYPE_FRAME,
383 MEM_TYPE_WINDOW
386 static POINTER_TYPE *lisp_align_malloc P_ ((size_t, enum mem_type));
387 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
388 void refill_memory_reserve ();
391 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
393 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
394 #include <stdio.h> /* For fprintf. */
395 #endif
397 /* A unique object in pure space used to make some Lisp objects
398 on free lists recognizable in O(1). */
400 Lisp_Object Vdead;
402 #ifdef GC_MALLOC_CHECK
404 enum mem_type allocated_mem_type;
405 int dont_register_blocks;
407 #endif /* GC_MALLOC_CHECK */
409 /* A node in the red-black tree describing allocated memory containing
410 Lisp data. Each such block is recorded with its start and end
411 address when it is allocated, and removed from the tree when it
412 is freed.
414 A red-black tree is a balanced binary tree with the following
415 properties:
417 1. Every node is either red or black.
418 2. Every leaf is black.
419 3. If a node is red, then both of its children are black.
420 4. Every simple path from a node to a descendant leaf contains
421 the same number of black nodes.
422 5. The root is always black.
424 When nodes are inserted into the tree, or deleted from the tree,
425 the tree is "fixed" so that these properties are always true.
427 A red-black tree with N internal nodes has height at most 2
428 log(N+1). Searches, insertions and deletions are done in O(log N).
429 Please see a text book about data structures for a detailed
430 description of red-black trees. Any book worth its salt should
431 describe them. */
433 struct mem_node
435 /* Children of this node. These pointers are never NULL. When there
436 is no child, the value is MEM_NIL, which points to a dummy node. */
437 struct mem_node *left, *right;
439 /* The parent of this node. In the root node, this is NULL. */
440 struct mem_node *parent;
442 /* Start and end of allocated region. */
443 void *start, *end;
445 /* Node color. */
446 enum {MEM_BLACK, MEM_RED} color;
448 /* Memory type. */
449 enum mem_type type;
452 /* Base address of stack. Set in main. */
454 Lisp_Object *stack_base;
456 /* Root of the tree describing allocated Lisp memory. */
458 static struct mem_node *mem_root;
460 /* Lowest and highest known address in the heap. */
462 static void *min_heap_address, *max_heap_address;
464 /* Sentinel node of the tree. */
466 static struct mem_node mem_z;
467 #define MEM_NIL &mem_z
469 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
470 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
471 static void lisp_free P_ ((POINTER_TYPE *));
472 static void mark_stack P_ ((void));
473 static int live_vector_p P_ ((struct mem_node *, void *));
474 static int live_buffer_p P_ ((struct mem_node *, void *));
475 static int live_string_p P_ ((struct mem_node *, void *));
476 static int live_cons_p P_ ((struct mem_node *, void *));
477 static int live_symbol_p P_ ((struct mem_node *, void *));
478 static int live_float_p P_ ((struct mem_node *, void *));
479 static int live_misc_p P_ ((struct mem_node *, void *));
480 static void mark_maybe_object P_ ((Lisp_Object));
481 static void mark_memory P_ ((void *, void *, int));
482 static void mem_init P_ ((void));
483 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
484 static void mem_insert_fixup P_ ((struct mem_node *));
485 static void mem_rotate_left P_ ((struct mem_node *));
486 static void mem_rotate_right P_ ((struct mem_node *));
487 static void mem_delete P_ ((struct mem_node *));
488 static void mem_delete_fixup P_ ((struct mem_node *));
489 static INLINE struct mem_node *mem_find P_ ((void *));
492 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
493 static void check_gcpros P_ ((void));
494 #endif
496 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
498 /* Recording what needs to be marked for gc. */
500 struct gcpro *gcprolist;
502 /* Addresses of staticpro'd variables. Initialize it to a nonzero
503 value; otherwise some compilers put it into BSS. */
505 #define NSTATICS 0x600
506 Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
508 /* Index of next unused slot in staticvec. */
510 int staticidx = 0;
512 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
515 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
516 ALIGNMENT must be a power of 2. */
518 #define ALIGN(ptr, ALIGNMENT) \
519 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
520 & ~((ALIGNMENT) - 1)))
524 /************************************************************************
525 Malloc
526 ************************************************************************/
528 /* Function malloc calls this if it finds we are near exhausting storage. */
530 void
531 malloc_warning (str)
532 char *str;
534 pending_malloc_warning = str;
538 /* Display an already-pending malloc warning. */
540 void
541 display_malloc_warning ()
543 call3 (intern ("display-warning"),
544 intern ("alloc"),
545 build_string (pending_malloc_warning),
546 intern ("emergency"));
547 pending_malloc_warning = 0;
551 #ifdef DOUG_LEA_MALLOC
552 # define BYTES_USED (mallinfo ().uordblks)
553 #else
554 # define BYTES_USED _bytes_used
555 #endif
557 /* Called if we can't allocate relocatable space for a buffer. */
559 void
560 buffer_memory_full ()
562 /* If buffers use the relocating allocator, no need to free
563 spare_memory, because we may have plenty of malloc space left
564 that we could get, and if we don't, the malloc that fails will
565 itself cause spare_memory to be freed. If buffers don't use the
566 relocating allocator, treat this like any other failing
567 malloc. */
569 #ifndef REL_ALLOC
570 memory_full ();
571 #endif
573 /* This used to call error, but if we've run out of memory, we could
574 get infinite recursion trying to build the string. */
575 xsignal (Qnil, Vmemory_signal_data);
579 #ifdef XMALLOC_OVERRUN_CHECK
581 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
582 and a 16 byte trailer around each block.
584 The header consists of 12 fixed bytes + a 4 byte integer contaning the
585 original block size, while the trailer consists of 16 fixed bytes.
587 The header is used to detect whether this block has been allocated
588 through these functions -- as it seems that some low-level libc
589 functions may bypass the malloc hooks.
593 #define XMALLOC_OVERRUN_CHECK_SIZE 16
595 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
596 { 0x9a, 0x9b, 0xae, 0xaf,
597 0xbf, 0xbe, 0xce, 0xcf,
598 0xea, 0xeb, 0xec, 0xed };
600 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
601 { 0xaa, 0xab, 0xac, 0xad,
602 0xba, 0xbb, 0xbc, 0xbd,
603 0xca, 0xcb, 0xcc, 0xcd,
604 0xda, 0xdb, 0xdc, 0xdd };
606 /* Macros to insert and extract the block size in the header. */
608 #define XMALLOC_PUT_SIZE(ptr, size) \
609 (ptr[-1] = (size & 0xff), \
610 ptr[-2] = ((size >> 8) & 0xff), \
611 ptr[-3] = ((size >> 16) & 0xff), \
612 ptr[-4] = ((size >> 24) & 0xff))
614 #define XMALLOC_GET_SIZE(ptr) \
615 (size_t)((unsigned)(ptr[-1]) | \
616 ((unsigned)(ptr[-2]) << 8) | \
617 ((unsigned)(ptr[-3]) << 16) | \
618 ((unsigned)(ptr[-4]) << 24))
621 /* The call depth in overrun_check functions. For example, this might happen:
622 xmalloc()
623 overrun_check_malloc()
624 -> malloc -> (via hook)_-> emacs_blocked_malloc
625 -> overrun_check_malloc
626 call malloc (hooks are NULL, so real malloc is called).
627 malloc returns 10000.
628 add overhead, return 10016.
629 <- (back in overrun_check_malloc)
630 add overhead again, return 10032
631 xmalloc returns 10032.
633 (time passes).
635 xfree(10032)
636 overrun_check_free(10032)
637 decrease overhed
638 free(10016) <- crash, because 10000 is the original pointer. */
640 static int check_depth;
642 /* Like malloc, but wraps allocated block with header and trailer. */
644 POINTER_TYPE *
645 overrun_check_malloc (size)
646 size_t size;
648 register unsigned char *val;
649 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
651 val = (unsigned char *) malloc (size + overhead);
652 if (val && check_depth == 1)
654 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
655 val += XMALLOC_OVERRUN_CHECK_SIZE;
656 XMALLOC_PUT_SIZE(val, size);
657 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
659 --check_depth;
660 return (POINTER_TYPE *)val;
664 /* Like realloc, but checks old block for overrun, and wraps new block
665 with header and trailer. */
667 POINTER_TYPE *
668 overrun_check_realloc (block, size)
669 POINTER_TYPE *block;
670 size_t size;
672 register unsigned char *val = (unsigned char *)block;
673 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
675 if (val
676 && check_depth == 1
677 && bcmp (xmalloc_overrun_check_header,
678 val - XMALLOC_OVERRUN_CHECK_SIZE,
679 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
681 size_t osize = XMALLOC_GET_SIZE (val);
682 if (bcmp (xmalloc_overrun_check_trailer,
683 val + osize,
684 XMALLOC_OVERRUN_CHECK_SIZE))
685 abort ();
686 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
687 val -= XMALLOC_OVERRUN_CHECK_SIZE;
688 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
691 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
693 if (val && check_depth == 1)
695 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
696 val += XMALLOC_OVERRUN_CHECK_SIZE;
697 XMALLOC_PUT_SIZE(val, size);
698 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
700 --check_depth;
701 return (POINTER_TYPE *)val;
704 /* Like free, but checks block for overrun. */
706 void
707 overrun_check_free (block)
708 POINTER_TYPE *block;
710 unsigned char *val = (unsigned char *)block;
712 ++check_depth;
713 if (val
714 && check_depth == 1
715 && bcmp (xmalloc_overrun_check_header,
716 val - XMALLOC_OVERRUN_CHECK_SIZE,
717 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
719 size_t osize = XMALLOC_GET_SIZE (val);
720 if (bcmp (xmalloc_overrun_check_trailer,
721 val + osize,
722 XMALLOC_OVERRUN_CHECK_SIZE))
723 abort ();
724 #ifdef XMALLOC_CLEAR_FREE_MEMORY
725 val -= XMALLOC_OVERRUN_CHECK_SIZE;
726 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
727 #else
728 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
729 val -= XMALLOC_OVERRUN_CHECK_SIZE;
730 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
731 #endif
734 free (val);
735 --check_depth;
738 #undef malloc
739 #undef realloc
740 #undef free
741 #define malloc overrun_check_malloc
742 #define realloc overrun_check_realloc
743 #define free overrun_check_free
744 #endif
747 /* Like malloc but check for no memory and block interrupt input.. */
749 POINTER_TYPE *
750 xmalloc (size)
751 size_t size;
753 register POINTER_TYPE *val;
755 BLOCK_INPUT;
756 val = (POINTER_TYPE *) malloc (size);
757 UNBLOCK_INPUT;
759 if (!val && size)
760 memory_full ();
761 return val;
765 /* Like realloc but check for no memory and block interrupt input.. */
767 POINTER_TYPE *
768 xrealloc (block, size)
769 POINTER_TYPE *block;
770 size_t size;
772 register POINTER_TYPE *val;
774 BLOCK_INPUT;
775 /* We must call malloc explicitly when BLOCK is 0, since some
776 reallocs don't do this. */
777 if (! block)
778 val = (POINTER_TYPE *) malloc (size);
779 else
780 val = (POINTER_TYPE *) realloc (block, size);
781 UNBLOCK_INPUT;
783 if (!val && size) memory_full ();
784 return val;
788 /* Like free but block interrupt input. */
790 void
791 xfree (block)
792 POINTER_TYPE *block;
794 BLOCK_INPUT;
795 free (block);
796 UNBLOCK_INPUT;
797 /* We don't call refill_memory_reserve here
798 because that duplicates doing so in emacs_blocked_free
799 and the criterion should go there. */
803 /* Like strdup, but uses xmalloc. */
805 char *
806 xstrdup (s)
807 const char *s;
809 size_t len = strlen (s) + 1;
810 char *p = (char *) xmalloc (len);
811 bcopy (s, p, len);
812 return p;
816 /* Unwind for SAFE_ALLOCA */
818 Lisp_Object
819 safe_alloca_unwind (arg)
820 Lisp_Object arg;
822 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
824 p->dogc = 0;
825 xfree (p->pointer);
826 p->pointer = 0;
827 free_misc (arg);
828 return Qnil;
832 /* Like malloc but used for allocating Lisp data. NBYTES is the
833 number of bytes to allocate, TYPE describes the intended use of the
834 allcated memory block (for strings, for conses, ...). */
836 #ifndef USE_LSB_TAG
837 static void *lisp_malloc_loser;
838 #endif
840 static POINTER_TYPE *
841 lisp_malloc (nbytes, type)
842 size_t nbytes;
843 enum mem_type type;
845 register void *val;
847 BLOCK_INPUT;
849 #ifdef GC_MALLOC_CHECK
850 allocated_mem_type = type;
851 #endif
853 val = (void *) malloc (nbytes);
855 #ifndef USE_LSB_TAG
856 /* If the memory just allocated cannot be addressed thru a Lisp
857 object's pointer, and it needs to be,
858 that's equivalent to running out of memory. */
859 if (val && type != MEM_TYPE_NON_LISP)
861 Lisp_Object tem;
862 XSETCONS (tem, (char *) val + nbytes - 1);
863 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
865 lisp_malloc_loser = val;
866 free (val);
867 val = 0;
870 #endif
872 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
873 if (val && type != MEM_TYPE_NON_LISP)
874 mem_insert (val, (char *) val + nbytes, type);
875 #endif
877 UNBLOCK_INPUT;
878 if (!val && nbytes)
879 memory_full ();
880 return val;
883 /* Free BLOCK. This must be called to free memory allocated with a
884 call to lisp_malloc. */
886 static void
887 lisp_free (block)
888 POINTER_TYPE *block;
890 BLOCK_INPUT;
891 free (block);
892 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
893 mem_delete (mem_find (block));
894 #endif
895 UNBLOCK_INPUT;
898 /* Allocation of aligned blocks of memory to store Lisp data. */
899 /* The entry point is lisp_align_malloc which returns blocks of at most */
900 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
902 /* Use posix_memalloc if the system has it and we're using the system's
903 malloc (because our gmalloc.c routines don't have posix_memalign although
904 its memalloc could be used). */
905 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
906 #define USE_POSIX_MEMALIGN 1
907 #endif
909 /* BLOCK_ALIGN has to be a power of 2. */
910 #define BLOCK_ALIGN (1 << 10)
912 /* Padding to leave at the end of a malloc'd block. This is to give
913 malloc a chance to minimize the amount of memory wasted to alignment.
914 It should be tuned to the particular malloc library used.
915 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
916 posix_memalign on the other hand would ideally prefer a value of 4
917 because otherwise, there's 1020 bytes wasted between each ablocks.
918 In Emacs, testing shows that those 1020 can most of the time be
919 efficiently used by malloc to place other objects, so a value of 0 can
920 still preferable unless you have a lot of aligned blocks and virtually
921 nothing else. */
922 #define BLOCK_PADDING 0
923 #define BLOCK_BYTES \
924 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
926 /* Internal data structures and constants. */
928 #define ABLOCKS_SIZE 16
930 /* An aligned block of memory. */
931 struct ablock
933 union
935 char payload[BLOCK_BYTES];
936 struct ablock *next_free;
937 } x;
938 /* `abase' is the aligned base of the ablocks. */
939 /* It is overloaded to hold the virtual `busy' field that counts
940 the number of used ablock in the parent ablocks.
941 The first ablock has the `busy' field, the others have the `abase'
942 field. To tell the difference, we assume that pointers will have
943 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
944 is used to tell whether the real base of the parent ablocks is `abase'
945 (if not, the word before the first ablock holds a pointer to the
946 real base). */
947 struct ablocks *abase;
948 /* The padding of all but the last ablock is unused. The padding of
949 the last ablock in an ablocks is not allocated. */
950 #if BLOCK_PADDING
951 char padding[BLOCK_PADDING];
952 #endif
955 /* A bunch of consecutive aligned blocks. */
956 struct ablocks
958 struct ablock blocks[ABLOCKS_SIZE];
961 /* Size of the block requested from malloc or memalign. */
962 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
964 #define ABLOCK_ABASE(block) \
965 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
966 ? (struct ablocks *)(block) \
967 : (block)->abase)
969 /* Virtual `busy' field. */
970 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
972 /* Pointer to the (not necessarily aligned) malloc block. */
973 #ifdef USE_POSIX_MEMALIGN
974 #define ABLOCKS_BASE(abase) (abase)
975 #else
976 #define ABLOCKS_BASE(abase) \
977 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
978 #endif
980 /* The list of free ablock. */
981 static struct ablock *free_ablock;
983 /* Allocate an aligned block of nbytes.
984 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
985 smaller or equal to BLOCK_BYTES. */
986 static POINTER_TYPE *
987 lisp_align_malloc (nbytes, type)
988 size_t nbytes;
989 enum mem_type type;
991 void *base, *val;
992 struct ablocks *abase;
994 eassert (nbytes <= BLOCK_BYTES);
996 BLOCK_INPUT;
998 #ifdef GC_MALLOC_CHECK
999 allocated_mem_type = type;
1000 #endif
1002 if (!free_ablock)
1004 int i;
1005 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
1007 #ifdef DOUG_LEA_MALLOC
1008 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1009 because mapped region contents are not preserved in
1010 a dumped Emacs. */
1011 mallopt (M_MMAP_MAX, 0);
1012 #endif
1014 #ifdef USE_POSIX_MEMALIGN
1016 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1017 if (err)
1018 base = NULL;
1019 abase = base;
1021 #else
1022 base = malloc (ABLOCKS_BYTES);
1023 abase = ALIGN (base, BLOCK_ALIGN);
1024 #endif
1026 if (base == 0)
1028 UNBLOCK_INPUT;
1029 memory_full ();
1032 aligned = (base == abase);
1033 if (!aligned)
1034 ((void**)abase)[-1] = base;
1036 #ifdef DOUG_LEA_MALLOC
1037 /* Back to a reasonable maximum of mmap'ed areas. */
1038 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1039 #endif
1041 #ifndef USE_LSB_TAG
1042 /* If the memory just allocated cannot be addressed thru a Lisp
1043 object's pointer, and it needs to be, that's equivalent to
1044 running out of memory. */
1045 if (type != MEM_TYPE_NON_LISP)
1047 Lisp_Object tem;
1048 char *end = (char *) base + ABLOCKS_BYTES - 1;
1049 XSETCONS (tem, end);
1050 if ((char *) XCONS (tem) != end)
1052 lisp_malloc_loser = base;
1053 free (base);
1054 UNBLOCK_INPUT;
1055 memory_full ();
1058 #endif
1060 /* Initialize the blocks and put them on the free list.
1061 Is `base' was not properly aligned, we can't use the last block. */
1062 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1064 abase->blocks[i].abase = abase;
1065 abase->blocks[i].x.next_free = free_ablock;
1066 free_ablock = &abase->blocks[i];
1068 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
1070 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
1071 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1072 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1073 eassert (ABLOCKS_BASE (abase) == base);
1074 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1077 abase = ABLOCK_ABASE (free_ablock);
1078 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1079 val = free_ablock;
1080 free_ablock = free_ablock->x.next_free;
1082 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1083 if (val && type != MEM_TYPE_NON_LISP)
1084 mem_insert (val, (char *) val + nbytes, type);
1085 #endif
1087 UNBLOCK_INPUT;
1088 if (!val && nbytes)
1089 memory_full ();
1091 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1092 return val;
1095 static void
1096 lisp_align_free (block)
1097 POINTER_TYPE *block;
1099 struct ablock *ablock = block;
1100 struct ablocks *abase = ABLOCK_ABASE (ablock);
1102 BLOCK_INPUT;
1103 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1104 mem_delete (mem_find (block));
1105 #endif
1106 /* Put on free list. */
1107 ablock->x.next_free = free_ablock;
1108 free_ablock = ablock;
1109 /* Update busy count. */
1110 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1112 if (2 > (long) ABLOCKS_BUSY (abase))
1113 { /* All the blocks are free. */
1114 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1115 struct ablock **tem = &free_ablock;
1116 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1118 while (*tem)
1120 if (*tem >= (struct ablock *) abase && *tem < atop)
1122 i++;
1123 *tem = (*tem)->x.next_free;
1125 else
1126 tem = &(*tem)->x.next_free;
1128 eassert ((aligned & 1) == aligned);
1129 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1130 #ifdef USE_POSIX_MEMALIGN
1131 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1132 #endif
1133 free (ABLOCKS_BASE (abase));
1135 UNBLOCK_INPUT;
1138 /* Return a new buffer structure allocated from the heap with
1139 a call to lisp_malloc. */
1141 struct buffer *
1142 allocate_buffer ()
1144 struct buffer *b
1145 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1146 MEM_TYPE_BUFFER);
1147 return b;
1151 #ifndef SYSTEM_MALLOC
1153 /* Arranging to disable input signals while we're in malloc.
1155 This only works with GNU malloc. To help out systems which can't
1156 use GNU malloc, all the calls to malloc, realloc, and free
1157 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1158 pair; unfortunately, we have no idea what C library functions
1159 might call malloc, so we can't really protect them unless you're
1160 using GNU malloc. Fortunately, most of the major operating systems
1161 can use GNU malloc. */
1163 #ifndef SYNC_INPUT
1165 #ifndef DOUG_LEA_MALLOC
1166 extern void * (*__malloc_hook) P_ ((size_t, const void *));
1167 extern void * (*__realloc_hook) P_ ((void *, size_t, const void *));
1168 extern void (*__free_hook) P_ ((void *, const void *));
1169 /* Else declared in malloc.h, perhaps with an extra arg. */
1170 #endif /* DOUG_LEA_MALLOC */
1171 static void * (*old_malloc_hook) P_ ((size_t, const void *));
1172 static void * (*old_realloc_hook) P_ ((void *, size_t, const void*));
1173 static void (*old_free_hook) P_ ((void*, const void*));
1175 /* This function is used as the hook for free to call. */
1177 static void
1178 emacs_blocked_free (ptr, ptr2)
1179 void *ptr;
1180 const void *ptr2;
1182 BLOCK_INPUT_ALLOC;
1184 #ifdef GC_MALLOC_CHECK
1185 if (ptr)
1187 struct mem_node *m;
1189 m = mem_find (ptr);
1190 if (m == MEM_NIL || m->start != ptr)
1192 fprintf (stderr,
1193 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1194 abort ();
1196 else
1198 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1199 mem_delete (m);
1202 #endif /* GC_MALLOC_CHECK */
1204 __free_hook = old_free_hook;
1205 free (ptr);
1207 /* If we released our reserve (due to running out of memory),
1208 and we have a fair amount free once again,
1209 try to set aside another reserve in case we run out once more. */
1210 if (! NILP (Vmemory_full)
1211 /* Verify there is enough space that even with the malloc
1212 hysteresis this call won't run out again.
1213 The code here is correct as long as SPARE_MEMORY
1214 is substantially larger than the block size malloc uses. */
1215 && (bytes_used_when_full
1216 > ((bytes_used_when_reconsidered = BYTES_USED)
1217 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1218 refill_memory_reserve ();
1220 __free_hook = emacs_blocked_free;
1221 UNBLOCK_INPUT_ALLOC;
1225 /* This function is the malloc hook that Emacs uses. */
1227 static void *
1228 emacs_blocked_malloc (size, ptr)
1229 size_t size;
1230 const void *ptr;
1232 void *value;
1234 BLOCK_INPUT_ALLOC;
1235 __malloc_hook = old_malloc_hook;
1236 #ifdef DOUG_LEA_MALLOC
1237 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
1238 #else
1239 __malloc_extra_blocks = malloc_hysteresis;
1240 #endif
1242 value = (void *) malloc (size);
1244 #ifdef GC_MALLOC_CHECK
1246 struct mem_node *m = mem_find (value);
1247 if (m != MEM_NIL)
1249 fprintf (stderr, "Malloc returned %p which is already in use\n",
1250 value);
1251 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1252 m->start, m->end, (char *) m->end - (char *) m->start,
1253 m->type);
1254 abort ();
1257 if (!dont_register_blocks)
1259 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1260 allocated_mem_type = MEM_TYPE_NON_LISP;
1263 #endif /* GC_MALLOC_CHECK */
1265 __malloc_hook = emacs_blocked_malloc;
1266 UNBLOCK_INPUT_ALLOC;
1268 /* fprintf (stderr, "%p malloc\n", value); */
1269 return value;
1273 /* This function is the realloc hook that Emacs uses. */
1275 static void *
1276 emacs_blocked_realloc (ptr, size, ptr2)
1277 void *ptr;
1278 size_t size;
1279 const void *ptr2;
1281 void *value;
1283 BLOCK_INPUT_ALLOC;
1284 __realloc_hook = old_realloc_hook;
1286 #ifdef GC_MALLOC_CHECK
1287 if (ptr)
1289 struct mem_node *m = mem_find (ptr);
1290 if (m == MEM_NIL || m->start != ptr)
1292 fprintf (stderr,
1293 "Realloc of %p which wasn't allocated with malloc\n",
1294 ptr);
1295 abort ();
1298 mem_delete (m);
1301 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1303 /* Prevent malloc from registering blocks. */
1304 dont_register_blocks = 1;
1305 #endif /* GC_MALLOC_CHECK */
1307 value = (void *) realloc (ptr, size);
1309 #ifdef GC_MALLOC_CHECK
1310 dont_register_blocks = 0;
1313 struct mem_node *m = mem_find (value);
1314 if (m != MEM_NIL)
1316 fprintf (stderr, "Realloc returns memory that is already in use\n");
1317 abort ();
1320 /* Can't handle zero size regions in the red-black tree. */
1321 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1324 /* fprintf (stderr, "%p <- realloc\n", value); */
1325 #endif /* GC_MALLOC_CHECK */
1327 __realloc_hook = emacs_blocked_realloc;
1328 UNBLOCK_INPUT_ALLOC;
1330 return value;
1334 #ifdef HAVE_GTK_AND_PTHREAD
1335 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1336 normal malloc. Some thread implementations need this as they call
1337 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1338 calls malloc because it is the first call, and we have an endless loop. */
1340 void
1341 reset_malloc_hooks ()
1343 __free_hook = 0;
1344 __malloc_hook = 0;
1345 __realloc_hook = 0;
1347 #endif /* HAVE_GTK_AND_PTHREAD */
1350 /* Called from main to set up malloc to use our hooks. */
1352 void
1353 uninterrupt_malloc ()
1355 #ifdef HAVE_GTK_AND_PTHREAD
1356 pthread_mutexattr_t attr;
1358 /* GLIBC has a faster way to do this, but lets keep it portable.
1359 This is according to the Single UNIX Specification. */
1360 pthread_mutexattr_init (&attr);
1361 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1362 pthread_mutex_init (&alloc_mutex, &attr);
1363 #endif /* HAVE_GTK_AND_PTHREAD */
1365 if (__free_hook != emacs_blocked_free)
1366 old_free_hook = __free_hook;
1367 __free_hook = emacs_blocked_free;
1369 if (__malloc_hook != emacs_blocked_malloc)
1370 old_malloc_hook = __malloc_hook;
1371 __malloc_hook = emacs_blocked_malloc;
1373 if (__realloc_hook != emacs_blocked_realloc)
1374 old_realloc_hook = __realloc_hook;
1375 __realloc_hook = emacs_blocked_realloc;
1378 #endif /* not SYNC_INPUT */
1379 #endif /* not SYSTEM_MALLOC */
1383 /***********************************************************************
1384 Interval Allocation
1385 ***********************************************************************/
1387 /* Number of intervals allocated in an interval_block structure.
1388 The 1020 is 1024 minus malloc overhead. */
1390 #define INTERVAL_BLOCK_SIZE \
1391 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1393 /* Intervals are allocated in chunks in form of an interval_block
1394 structure. */
1396 struct interval_block
1398 /* Place `intervals' first, to preserve alignment. */
1399 struct interval intervals[INTERVAL_BLOCK_SIZE];
1400 struct interval_block *next;
1403 /* Current interval block. Its `next' pointer points to older
1404 blocks. */
1406 struct interval_block *interval_block;
1408 /* Index in interval_block above of the next unused interval
1409 structure. */
1411 static int interval_block_index;
1413 /* Number of free and live intervals. */
1415 static int total_free_intervals, total_intervals;
1417 /* List of free intervals. */
1419 INTERVAL interval_free_list;
1421 /* Total number of interval blocks now in use. */
1423 int n_interval_blocks;
1426 /* Initialize interval allocation. */
1428 static void
1429 init_intervals ()
1431 interval_block = NULL;
1432 interval_block_index = INTERVAL_BLOCK_SIZE;
1433 interval_free_list = 0;
1434 n_interval_blocks = 0;
1438 /* Return a new interval. */
1440 INTERVAL
1441 make_interval ()
1443 INTERVAL val;
1445 /* eassert (!handling_signal); */
1447 #ifndef SYNC_INPUT
1448 BLOCK_INPUT;
1449 #endif
1451 if (interval_free_list)
1453 val = interval_free_list;
1454 interval_free_list = INTERVAL_PARENT (interval_free_list);
1456 else
1458 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1460 register struct interval_block *newi;
1462 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1463 MEM_TYPE_NON_LISP);
1465 newi->next = interval_block;
1466 interval_block = newi;
1467 interval_block_index = 0;
1468 n_interval_blocks++;
1470 val = &interval_block->intervals[interval_block_index++];
1473 #ifndef SYNC_INPUT
1474 UNBLOCK_INPUT;
1475 #endif
1477 consing_since_gc += sizeof (struct interval);
1478 intervals_consed++;
1479 RESET_INTERVAL (val);
1480 val->gcmarkbit = 0;
1481 return val;
1485 /* Mark Lisp objects in interval I. */
1487 static void
1488 mark_interval (i, dummy)
1489 register INTERVAL i;
1490 Lisp_Object dummy;
1492 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1493 i->gcmarkbit = 1;
1494 mark_object (i->plist);
1498 /* Mark the interval tree rooted in TREE. Don't call this directly;
1499 use the macro MARK_INTERVAL_TREE instead. */
1501 static void
1502 mark_interval_tree (tree)
1503 register INTERVAL tree;
1505 /* No need to test if this tree has been marked already; this
1506 function is always called through the MARK_INTERVAL_TREE macro,
1507 which takes care of that. */
1509 traverse_intervals_noorder (tree, mark_interval, Qnil);
1513 /* Mark the interval tree rooted in I. */
1515 #define MARK_INTERVAL_TREE(i) \
1516 do { \
1517 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1518 mark_interval_tree (i); \
1519 } while (0)
1522 #define UNMARK_BALANCE_INTERVALS(i) \
1523 do { \
1524 if (! NULL_INTERVAL_P (i)) \
1525 (i) = balance_intervals (i); \
1526 } while (0)
1529 /* Number support. If NO_UNION_TYPE isn't in effect, we
1530 can't create number objects in macros. */
1531 #ifndef make_number
1532 Lisp_Object
1533 make_number (n)
1534 EMACS_INT n;
1536 Lisp_Object obj;
1537 obj.s.val = n;
1538 obj.s.type = Lisp_Int;
1539 return obj;
1541 #endif
1543 /***********************************************************************
1544 String Allocation
1545 ***********************************************************************/
1547 /* Lisp_Strings are allocated in string_block structures. When a new
1548 string_block is allocated, all the Lisp_Strings it contains are
1549 added to a free-list string_free_list. When a new Lisp_String is
1550 needed, it is taken from that list. During the sweep phase of GC,
1551 string_blocks that are entirely free are freed, except two which
1552 we keep.
1554 String data is allocated from sblock structures. Strings larger
1555 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1556 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1558 Sblocks consist internally of sdata structures, one for each
1559 Lisp_String. The sdata structure points to the Lisp_String it
1560 belongs to. The Lisp_String points back to the `u.data' member of
1561 its sdata structure.
1563 When a Lisp_String is freed during GC, it is put back on
1564 string_free_list, and its `data' member and its sdata's `string'
1565 pointer is set to null. The size of the string is recorded in the
1566 `u.nbytes' member of the sdata. So, sdata structures that are no
1567 longer used, can be easily recognized, and it's easy to compact the
1568 sblocks of small strings which we do in compact_small_strings. */
1570 /* Size in bytes of an sblock structure used for small strings. This
1571 is 8192 minus malloc overhead. */
1573 #define SBLOCK_SIZE 8188
1575 /* Strings larger than this are considered large strings. String data
1576 for large strings is allocated from individual sblocks. */
1578 #define LARGE_STRING_BYTES 1024
1580 /* Structure describing string memory sub-allocated from an sblock.
1581 This is where the contents of Lisp strings are stored. */
1583 struct sdata
1585 /* Back-pointer to the string this sdata belongs to. If null, this
1586 structure is free, and the NBYTES member of the union below
1587 contains the string's byte size (the same value that STRING_BYTES
1588 would return if STRING were non-null). If non-null, STRING_BYTES
1589 (STRING) is the size of the data, and DATA contains the string's
1590 contents. */
1591 struct Lisp_String *string;
1593 #ifdef GC_CHECK_STRING_BYTES
1595 EMACS_INT nbytes;
1596 unsigned char data[1];
1598 #define SDATA_NBYTES(S) (S)->nbytes
1599 #define SDATA_DATA(S) (S)->data
1601 #else /* not GC_CHECK_STRING_BYTES */
1603 union
1605 /* When STRING in non-null. */
1606 unsigned char data[1];
1608 /* When STRING is null. */
1609 EMACS_INT nbytes;
1610 } u;
1613 #define SDATA_NBYTES(S) (S)->u.nbytes
1614 #define SDATA_DATA(S) (S)->u.data
1616 #endif /* not GC_CHECK_STRING_BYTES */
1620 /* Structure describing a block of memory which is sub-allocated to
1621 obtain string data memory for strings. Blocks for small strings
1622 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1623 as large as needed. */
1625 struct sblock
1627 /* Next in list. */
1628 struct sblock *next;
1630 /* Pointer to the next free sdata block. This points past the end
1631 of the sblock if there isn't any space left in this block. */
1632 struct sdata *next_free;
1634 /* Start of data. */
1635 struct sdata first_data;
1638 /* Number of Lisp strings in a string_block structure. The 1020 is
1639 1024 minus malloc overhead. */
1641 #define STRING_BLOCK_SIZE \
1642 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1644 /* Structure describing a block from which Lisp_String structures
1645 are allocated. */
1647 struct string_block
1649 /* Place `strings' first, to preserve alignment. */
1650 struct Lisp_String strings[STRING_BLOCK_SIZE];
1651 struct string_block *next;
1654 /* Head and tail of the list of sblock structures holding Lisp string
1655 data. We always allocate from current_sblock. The NEXT pointers
1656 in the sblock structures go from oldest_sblock to current_sblock. */
1658 static struct sblock *oldest_sblock, *current_sblock;
1660 /* List of sblocks for large strings. */
1662 static struct sblock *large_sblocks;
1664 /* List of string_block structures, and how many there are. */
1666 static struct string_block *string_blocks;
1667 static int n_string_blocks;
1669 /* Free-list of Lisp_Strings. */
1671 static struct Lisp_String *string_free_list;
1673 /* Number of live and free Lisp_Strings. */
1675 static int total_strings, total_free_strings;
1677 /* Number of bytes used by live strings. */
1679 static int total_string_size;
1681 /* Given a pointer to a Lisp_String S which is on the free-list
1682 string_free_list, return a pointer to its successor in the
1683 free-list. */
1685 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1687 /* Return a pointer to the sdata structure belonging to Lisp string S.
1688 S must be live, i.e. S->data must not be null. S->data is actually
1689 a pointer to the `u.data' member of its sdata structure; the
1690 structure starts at a constant offset in front of that. */
1692 #ifdef GC_CHECK_STRING_BYTES
1694 #define SDATA_OF_STRING(S) \
1695 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1696 - sizeof (EMACS_INT)))
1698 #else /* not GC_CHECK_STRING_BYTES */
1700 #define SDATA_OF_STRING(S) \
1701 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1703 #endif /* not GC_CHECK_STRING_BYTES */
1706 #ifdef GC_CHECK_STRING_OVERRUN
1708 /* We check for overrun in string data blocks by appending a small
1709 "cookie" after each allocated string data block, and check for the
1710 presence of this cookie during GC. */
1712 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1713 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1714 { 0xde, 0xad, 0xbe, 0xef };
1716 #else
1717 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1718 #endif
1720 /* Value is the size of an sdata structure large enough to hold NBYTES
1721 bytes of string data. The value returned includes a terminating
1722 NUL byte, the size of the sdata structure, and padding. */
1724 #ifdef GC_CHECK_STRING_BYTES
1726 #define SDATA_SIZE(NBYTES) \
1727 ((sizeof (struct Lisp_String *) \
1728 + (NBYTES) + 1 \
1729 + sizeof (EMACS_INT) \
1730 + sizeof (EMACS_INT) - 1) \
1731 & ~(sizeof (EMACS_INT) - 1))
1733 #else /* not GC_CHECK_STRING_BYTES */
1735 #define SDATA_SIZE(NBYTES) \
1736 ((sizeof (struct Lisp_String *) \
1737 + (NBYTES) + 1 \
1738 + sizeof (EMACS_INT) - 1) \
1739 & ~(sizeof (EMACS_INT) - 1))
1741 #endif /* not GC_CHECK_STRING_BYTES */
1743 /* Extra bytes to allocate for each string. */
1745 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1747 /* Initialize string allocation. Called from init_alloc_once. */
1749 void
1750 init_strings ()
1752 total_strings = total_free_strings = total_string_size = 0;
1753 oldest_sblock = current_sblock = large_sblocks = NULL;
1754 string_blocks = NULL;
1755 n_string_blocks = 0;
1756 string_free_list = NULL;
1757 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1758 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1762 #ifdef GC_CHECK_STRING_BYTES
1764 static int check_string_bytes_count;
1766 void check_string_bytes P_ ((int));
1767 void check_sblock P_ ((struct sblock *));
1769 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1772 /* Like GC_STRING_BYTES, but with debugging check. */
1775 string_bytes (s)
1776 struct Lisp_String *s;
1778 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1779 if (!PURE_POINTER_P (s)
1780 && s->data
1781 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1782 abort ();
1783 return nbytes;
1786 /* Check validity of Lisp strings' string_bytes member in B. */
1788 void
1789 check_sblock (b)
1790 struct sblock *b;
1792 struct sdata *from, *end, *from_end;
1794 end = b->next_free;
1796 for (from = &b->first_data; from < end; from = from_end)
1798 /* Compute the next FROM here because copying below may
1799 overwrite data we need to compute it. */
1800 int nbytes;
1802 /* Check that the string size recorded in the string is the
1803 same as the one recorded in the sdata structure. */
1804 if (from->string)
1805 CHECK_STRING_BYTES (from->string);
1807 if (from->string)
1808 nbytes = GC_STRING_BYTES (from->string);
1809 else
1810 nbytes = SDATA_NBYTES (from);
1812 nbytes = SDATA_SIZE (nbytes);
1813 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1818 /* Check validity of Lisp strings' string_bytes member. ALL_P
1819 non-zero means check all strings, otherwise check only most
1820 recently allocated strings. Used for hunting a bug. */
1822 void
1823 check_string_bytes (all_p)
1824 int all_p;
1826 if (all_p)
1828 struct sblock *b;
1830 for (b = large_sblocks; b; b = b->next)
1832 struct Lisp_String *s = b->first_data.string;
1833 if (s)
1834 CHECK_STRING_BYTES (s);
1837 for (b = oldest_sblock; b; b = b->next)
1838 check_sblock (b);
1840 else
1841 check_sblock (current_sblock);
1844 #endif /* GC_CHECK_STRING_BYTES */
1846 #ifdef GC_CHECK_STRING_FREE_LIST
1848 /* Walk through the string free list looking for bogus next pointers.
1849 This may catch buffer overrun from a previous string. */
1851 static void
1852 check_string_free_list ()
1854 struct Lisp_String *s;
1856 /* Pop a Lisp_String off the free-list. */
1857 s = string_free_list;
1858 while (s != NULL)
1860 if ((unsigned)s < 1024)
1861 abort();
1862 s = NEXT_FREE_LISP_STRING (s);
1865 #else
1866 #define check_string_free_list()
1867 #endif
1869 /* Return a new Lisp_String. */
1871 static struct Lisp_String *
1872 allocate_string ()
1874 struct Lisp_String *s;
1876 /* eassert (!handling_signal); */
1878 #ifndef SYNC_INPUT
1879 BLOCK_INPUT;
1880 #endif
1882 /* If the free-list is empty, allocate a new string_block, and
1883 add all the Lisp_Strings in it to the free-list. */
1884 if (string_free_list == NULL)
1886 struct string_block *b;
1887 int i;
1889 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1890 bzero (b, sizeof *b);
1891 b->next = string_blocks;
1892 string_blocks = b;
1893 ++n_string_blocks;
1895 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1897 s = b->strings + i;
1898 NEXT_FREE_LISP_STRING (s) = string_free_list;
1899 string_free_list = s;
1902 total_free_strings += STRING_BLOCK_SIZE;
1905 check_string_free_list ();
1907 /* Pop a Lisp_String off the free-list. */
1908 s = string_free_list;
1909 string_free_list = NEXT_FREE_LISP_STRING (s);
1911 #ifndef SYNC_INPUT
1912 UNBLOCK_INPUT;
1913 #endif
1915 /* Probably not strictly necessary, but play it safe. */
1916 bzero (s, sizeof *s);
1918 --total_free_strings;
1919 ++total_strings;
1920 ++strings_consed;
1921 consing_since_gc += sizeof *s;
1923 #ifdef GC_CHECK_STRING_BYTES
1924 if (!noninteractive
1925 #ifdef MAC_OS8
1926 && current_sblock
1927 #endif
1930 if (++check_string_bytes_count == 200)
1932 check_string_bytes_count = 0;
1933 check_string_bytes (1);
1935 else
1936 check_string_bytes (0);
1938 #endif /* GC_CHECK_STRING_BYTES */
1940 return s;
1944 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1945 plus a NUL byte at the end. Allocate an sdata structure for S, and
1946 set S->data to its `u.data' member. Store a NUL byte at the end of
1947 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1948 S->data if it was initially non-null. */
1950 void
1951 allocate_string_data (s, nchars, nbytes)
1952 struct Lisp_String *s;
1953 int nchars, nbytes;
1955 struct sdata *data, *old_data;
1956 struct sblock *b;
1957 int needed, old_nbytes;
1959 /* Determine the number of bytes needed to store NBYTES bytes
1960 of string data. */
1961 needed = SDATA_SIZE (nbytes);
1962 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1963 old_nbytes = GC_STRING_BYTES (s);
1965 #ifndef SYNC_INPUT
1966 BLOCK_INPUT;
1967 #endif
1969 if (nbytes > LARGE_STRING_BYTES)
1971 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1973 #ifdef DOUG_LEA_MALLOC
1974 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1975 because mapped region contents are not preserved in
1976 a dumped Emacs.
1978 In case you think of allowing it in a dumped Emacs at the
1979 cost of not being able to re-dump, there's another reason:
1980 mmap'ed data typically have an address towards the top of the
1981 address space, which won't fit into an EMACS_INT (at least on
1982 32-bit systems with the current tagging scheme). --fx */
1983 BLOCK_INPUT;
1984 mallopt (M_MMAP_MAX, 0);
1985 UNBLOCK_INPUT;
1986 #endif
1988 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1990 #ifdef DOUG_LEA_MALLOC
1991 /* Back to a reasonable maximum of mmap'ed areas. */
1992 BLOCK_INPUT;
1993 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1994 UNBLOCK_INPUT;
1995 #endif
1997 b->next_free = &b->first_data;
1998 b->first_data.string = NULL;
1999 b->next = large_sblocks;
2000 large_sblocks = b;
2002 else if (current_sblock == NULL
2003 || (((char *) current_sblock + SBLOCK_SIZE
2004 - (char *) current_sblock->next_free)
2005 < (needed + GC_STRING_EXTRA)))
2007 /* Not enough room in the current sblock. */
2008 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2009 b->next_free = &b->first_data;
2010 b->first_data.string = NULL;
2011 b->next = NULL;
2013 if (current_sblock)
2014 current_sblock->next = b;
2015 else
2016 oldest_sblock = b;
2017 current_sblock = b;
2019 else
2020 b = current_sblock;
2022 data = b->next_free;
2023 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2025 #ifndef SYNC_INPUT
2026 UNBLOCK_INPUT;
2027 #endif
2029 data->string = s;
2030 s->data = SDATA_DATA (data);
2031 #ifdef GC_CHECK_STRING_BYTES
2032 SDATA_NBYTES (data) = nbytes;
2033 #endif
2034 s->size = nchars;
2035 s->size_byte = nbytes;
2036 s->data[nbytes] = '\0';
2037 #ifdef GC_CHECK_STRING_OVERRUN
2038 bcopy (string_overrun_cookie, (char *) data + needed,
2039 GC_STRING_OVERRUN_COOKIE_SIZE);
2040 #endif
2042 /* If S had already data assigned, mark that as free by setting its
2043 string back-pointer to null, and recording the size of the data
2044 in it. */
2045 if (old_data)
2047 SDATA_NBYTES (old_data) = old_nbytes;
2048 old_data->string = NULL;
2051 consing_since_gc += needed;
2055 /* Sweep and compact strings. */
2057 static void
2058 sweep_strings ()
2060 struct string_block *b, *next;
2061 struct string_block *live_blocks = NULL;
2063 string_free_list = NULL;
2064 total_strings = total_free_strings = 0;
2065 total_string_size = 0;
2067 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2068 for (b = string_blocks; b; b = next)
2070 int i, nfree = 0;
2071 struct Lisp_String *free_list_before = string_free_list;
2073 next = b->next;
2075 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2077 struct Lisp_String *s = b->strings + i;
2079 if (s->data)
2081 /* String was not on free-list before. */
2082 if (STRING_MARKED_P (s))
2084 /* String is live; unmark it and its intervals. */
2085 UNMARK_STRING (s);
2087 if (!NULL_INTERVAL_P (s->intervals))
2088 UNMARK_BALANCE_INTERVALS (s->intervals);
2090 ++total_strings;
2091 total_string_size += STRING_BYTES (s);
2093 else
2095 /* String is dead. Put it on the free-list. */
2096 struct sdata *data = SDATA_OF_STRING (s);
2098 /* Save the size of S in its sdata so that we know
2099 how large that is. Reset the sdata's string
2100 back-pointer so that we know it's free. */
2101 #ifdef GC_CHECK_STRING_BYTES
2102 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2103 abort ();
2104 #else
2105 data->u.nbytes = GC_STRING_BYTES (s);
2106 #endif
2107 data->string = NULL;
2109 /* Reset the strings's `data' member so that we
2110 know it's free. */
2111 s->data = NULL;
2113 /* Put the string on the free-list. */
2114 NEXT_FREE_LISP_STRING (s) = string_free_list;
2115 string_free_list = s;
2116 ++nfree;
2119 else
2121 /* S was on the free-list before. Put it there again. */
2122 NEXT_FREE_LISP_STRING (s) = string_free_list;
2123 string_free_list = s;
2124 ++nfree;
2128 /* Free blocks that contain free Lisp_Strings only, except
2129 the first two of them. */
2130 if (nfree == STRING_BLOCK_SIZE
2131 && total_free_strings > STRING_BLOCK_SIZE)
2133 lisp_free (b);
2134 --n_string_blocks;
2135 string_free_list = free_list_before;
2137 else
2139 total_free_strings += nfree;
2140 b->next = live_blocks;
2141 live_blocks = b;
2145 check_string_free_list ();
2147 string_blocks = live_blocks;
2148 free_large_strings ();
2149 compact_small_strings ();
2151 check_string_free_list ();
2155 /* Free dead large strings. */
2157 static void
2158 free_large_strings ()
2160 struct sblock *b, *next;
2161 struct sblock *live_blocks = NULL;
2163 for (b = large_sblocks; b; b = next)
2165 next = b->next;
2167 if (b->first_data.string == NULL)
2168 lisp_free (b);
2169 else
2171 b->next = live_blocks;
2172 live_blocks = b;
2176 large_sblocks = live_blocks;
2180 /* Compact data of small strings. Free sblocks that don't contain
2181 data of live strings after compaction. */
2183 static void
2184 compact_small_strings ()
2186 struct sblock *b, *tb, *next;
2187 struct sdata *from, *to, *end, *tb_end;
2188 struct sdata *to_end, *from_end;
2190 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2191 to, and TB_END is the end of TB. */
2192 tb = oldest_sblock;
2193 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2194 to = &tb->first_data;
2196 /* Step through the blocks from the oldest to the youngest. We
2197 expect that old blocks will stabilize over time, so that less
2198 copying will happen this way. */
2199 for (b = oldest_sblock; b; b = b->next)
2201 end = b->next_free;
2202 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2204 for (from = &b->first_data; from < end; from = from_end)
2206 /* Compute the next FROM here because copying below may
2207 overwrite data we need to compute it. */
2208 int nbytes;
2210 #ifdef GC_CHECK_STRING_BYTES
2211 /* Check that the string size recorded in the string is the
2212 same as the one recorded in the sdata structure. */
2213 if (from->string
2214 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2215 abort ();
2216 #endif /* GC_CHECK_STRING_BYTES */
2218 if (from->string)
2219 nbytes = GC_STRING_BYTES (from->string);
2220 else
2221 nbytes = SDATA_NBYTES (from);
2223 if (nbytes > LARGE_STRING_BYTES)
2224 abort ();
2226 nbytes = SDATA_SIZE (nbytes);
2227 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2229 #ifdef GC_CHECK_STRING_OVERRUN
2230 if (bcmp (string_overrun_cookie,
2231 ((char *) from_end) - GC_STRING_OVERRUN_COOKIE_SIZE,
2232 GC_STRING_OVERRUN_COOKIE_SIZE))
2233 abort ();
2234 #endif
2236 /* FROM->string non-null means it's alive. Copy its data. */
2237 if (from->string)
2239 /* If TB is full, proceed with the next sblock. */
2240 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2241 if (to_end > tb_end)
2243 tb->next_free = to;
2244 tb = tb->next;
2245 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2246 to = &tb->first_data;
2247 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2250 /* Copy, and update the string's `data' pointer. */
2251 if (from != to)
2253 xassert (tb != b || to <= from);
2254 safe_bcopy ((char *) from, (char *) to, nbytes + GC_STRING_EXTRA);
2255 to->string->data = SDATA_DATA (to);
2258 /* Advance past the sdata we copied to. */
2259 to = to_end;
2264 /* The rest of the sblocks following TB don't contain live data, so
2265 we can free them. */
2266 for (b = tb->next; b; b = next)
2268 next = b->next;
2269 lisp_free (b);
2272 tb->next_free = to;
2273 tb->next = NULL;
2274 current_sblock = tb;
2278 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2279 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2280 LENGTH must be an integer.
2281 INIT must be an integer that represents a character. */)
2282 (length, init)
2283 Lisp_Object length, init;
2285 register Lisp_Object val;
2286 register unsigned char *p, *end;
2287 int c, nbytes;
2289 CHECK_NATNUM (length);
2290 CHECK_NUMBER (init);
2292 c = XINT (init);
2293 if (ASCII_CHAR_P (c))
2295 nbytes = XINT (length);
2296 val = make_uninit_string (nbytes);
2297 p = SDATA (val);
2298 end = p + SCHARS (val);
2299 while (p != end)
2300 *p++ = c;
2302 else
2304 unsigned char str[MAX_MULTIBYTE_LENGTH];
2305 int len = CHAR_STRING (c, str);
2307 nbytes = len * XINT (length);
2308 val = make_uninit_multibyte_string (XINT (length), nbytes);
2309 p = SDATA (val);
2310 end = p + nbytes;
2311 while (p != end)
2313 bcopy (str, p, len);
2314 p += len;
2318 *p = 0;
2319 return val;
2323 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2324 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2325 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2326 (length, init)
2327 Lisp_Object length, init;
2329 register Lisp_Object val;
2330 struct Lisp_Bool_Vector *p;
2331 int real_init, i;
2332 int length_in_chars, length_in_elts, bits_per_value;
2334 CHECK_NATNUM (length);
2336 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2338 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2339 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2340 / BOOL_VECTOR_BITS_PER_CHAR);
2342 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2343 slot `size' of the struct Lisp_Bool_Vector. */
2344 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2345 p = XBOOL_VECTOR (val);
2347 /* Get rid of any bits that would cause confusion. */
2348 p->vector_size = 0;
2349 XSETBOOL_VECTOR (val, p);
2350 p->size = XFASTINT (length);
2352 real_init = (NILP (init) ? 0 : -1);
2353 for (i = 0; i < length_in_chars ; i++)
2354 p->data[i] = real_init;
2356 /* Clear the extraneous bits in the last byte. */
2357 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2358 XBOOL_VECTOR (val)->data[length_in_chars - 1]
2359 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2361 return val;
2365 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2366 of characters from the contents. This string may be unibyte or
2367 multibyte, depending on the contents. */
2369 Lisp_Object
2370 make_string (contents, nbytes)
2371 const char *contents;
2372 int nbytes;
2374 register Lisp_Object val;
2375 int nchars, multibyte_nbytes;
2377 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2378 if (nbytes == nchars || nbytes != multibyte_nbytes)
2379 /* CONTENTS contains no multibyte sequences or contains an invalid
2380 multibyte sequence. We must make unibyte string. */
2381 val = make_unibyte_string (contents, nbytes);
2382 else
2383 val = make_multibyte_string (contents, nchars, nbytes);
2384 return val;
2388 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2390 Lisp_Object
2391 make_unibyte_string (contents, length)
2392 const char *contents;
2393 int length;
2395 register Lisp_Object val;
2396 val = make_uninit_string (length);
2397 bcopy (contents, SDATA (val), length);
2398 STRING_SET_UNIBYTE (val);
2399 return val;
2403 /* Make a multibyte string from NCHARS characters occupying NBYTES
2404 bytes at CONTENTS. */
2406 Lisp_Object
2407 make_multibyte_string (contents, nchars, nbytes)
2408 const char *contents;
2409 int nchars, nbytes;
2411 register Lisp_Object val;
2412 val = make_uninit_multibyte_string (nchars, nbytes);
2413 bcopy (contents, SDATA (val), nbytes);
2414 return val;
2418 /* Make a string from NCHARS characters occupying NBYTES bytes at
2419 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2421 Lisp_Object
2422 make_string_from_bytes (contents, nchars, nbytes)
2423 const char *contents;
2424 int nchars, nbytes;
2426 register Lisp_Object val;
2427 val = make_uninit_multibyte_string (nchars, nbytes);
2428 bcopy (contents, SDATA (val), nbytes);
2429 if (SBYTES (val) == SCHARS (val))
2430 STRING_SET_UNIBYTE (val);
2431 return val;
2435 /* Make a string from NCHARS characters occupying NBYTES bytes at
2436 CONTENTS. The argument MULTIBYTE controls whether to label the
2437 string as multibyte. If NCHARS is negative, it counts the number of
2438 characters by itself. */
2440 Lisp_Object
2441 make_specified_string (contents, nchars, nbytes, multibyte)
2442 const char *contents;
2443 int nchars, nbytes;
2444 int multibyte;
2446 register Lisp_Object val;
2448 if (nchars < 0)
2450 if (multibyte)
2451 nchars = multibyte_chars_in_text (contents, nbytes);
2452 else
2453 nchars = nbytes;
2455 val = make_uninit_multibyte_string (nchars, nbytes);
2456 bcopy (contents, SDATA (val), nbytes);
2457 if (!multibyte)
2458 STRING_SET_UNIBYTE (val);
2459 return val;
2463 /* Make a string from the data at STR, treating it as multibyte if the
2464 data warrants. */
2466 Lisp_Object
2467 build_string (str)
2468 const char *str;
2470 return make_string (str, strlen (str));
2474 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2475 occupying LENGTH bytes. */
2477 Lisp_Object
2478 make_uninit_string (length)
2479 int length;
2481 Lisp_Object val;
2483 if (!length)
2484 return empty_unibyte_string;
2485 val = make_uninit_multibyte_string (length, length);
2486 STRING_SET_UNIBYTE (val);
2487 return val;
2491 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2492 which occupy NBYTES bytes. */
2494 Lisp_Object
2495 make_uninit_multibyte_string (nchars, nbytes)
2496 int nchars, nbytes;
2498 Lisp_Object string;
2499 struct Lisp_String *s;
2501 if (nchars < 0)
2502 abort ();
2503 if (!nbytes)
2504 return empty_multibyte_string;
2506 s = allocate_string ();
2507 allocate_string_data (s, nchars, nbytes);
2508 XSETSTRING (string, s);
2509 string_chars_consed += nbytes;
2510 return string;
2515 /***********************************************************************
2516 Float Allocation
2517 ***********************************************************************/
2519 /* We store float cells inside of float_blocks, allocating a new
2520 float_block with malloc whenever necessary. Float cells reclaimed
2521 by GC are put on a free list to be reallocated before allocating
2522 any new float cells from the latest float_block. */
2524 #define FLOAT_BLOCK_SIZE \
2525 (((BLOCK_BYTES - sizeof (struct float_block *) \
2526 /* The compiler might add padding at the end. */ \
2527 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2528 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2530 #define GETMARKBIT(block,n) \
2531 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2532 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2533 & 1)
2535 #define SETMARKBIT(block,n) \
2536 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2537 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2539 #define UNSETMARKBIT(block,n) \
2540 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2541 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2543 #define FLOAT_BLOCK(fptr) \
2544 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2546 #define FLOAT_INDEX(fptr) \
2547 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2549 struct float_block
2551 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2552 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2553 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2554 struct float_block *next;
2557 #define FLOAT_MARKED_P(fptr) \
2558 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2560 #define FLOAT_MARK(fptr) \
2561 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2563 #define FLOAT_UNMARK(fptr) \
2564 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2566 /* Current float_block. */
2568 struct float_block *float_block;
2570 /* Index of first unused Lisp_Float in the current float_block. */
2572 int float_block_index;
2574 /* Total number of float blocks now in use. */
2576 int n_float_blocks;
2578 /* Free-list of Lisp_Floats. */
2580 struct Lisp_Float *float_free_list;
2583 /* Initialize float allocation. */
2585 void
2586 init_float ()
2588 float_block = NULL;
2589 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2590 float_free_list = 0;
2591 n_float_blocks = 0;
2595 /* Explicitly free a float cell by putting it on the free-list. */
2597 void
2598 free_float (ptr)
2599 struct Lisp_Float *ptr;
2601 ptr->u.chain = float_free_list;
2602 float_free_list = ptr;
2606 /* Return a new float object with value FLOAT_VALUE. */
2608 Lisp_Object
2609 make_float (float_value)
2610 double float_value;
2612 register Lisp_Object val;
2614 /* eassert (!handling_signal); */
2616 #ifndef SYNC_INPUT
2617 BLOCK_INPUT;
2618 #endif
2620 if (float_free_list)
2622 /* We use the data field for chaining the free list
2623 so that we won't use the same field that has the mark bit. */
2624 XSETFLOAT (val, float_free_list);
2625 float_free_list = float_free_list->u.chain;
2627 else
2629 if (float_block_index == FLOAT_BLOCK_SIZE)
2631 register struct float_block *new;
2633 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2634 MEM_TYPE_FLOAT);
2635 new->next = float_block;
2636 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2637 float_block = new;
2638 float_block_index = 0;
2639 n_float_blocks++;
2641 XSETFLOAT (val, &float_block->floats[float_block_index]);
2642 float_block_index++;
2645 #ifndef SYNC_INPUT
2646 UNBLOCK_INPUT;
2647 #endif
2649 XFLOAT_DATA (val) = float_value;
2650 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2651 consing_since_gc += sizeof (struct Lisp_Float);
2652 floats_consed++;
2653 return val;
2658 /***********************************************************************
2659 Cons Allocation
2660 ***********************************************************************/
2662 /* We store cons cells inside of cons_blocks, allocating a new
2663 cons_block with malloc whenever necessary. Cons cells reclaimed by
2664 GC are put on a free list to be reallocated before allocating
2665 any new cons cells from the latest cons_block. */
2667 #define CONS_BLOCK_SIZE \
2668 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2669 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2671 #define CONS_BLOCK(fptr) \
2672 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2674 #define CONS_INDEX(fptr) \
2675 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2677 struct cons_block
2679 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2680 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2681 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2682 struct cons_block *next;
2685 #define CONS_MARKED_P(fptr) \
2686 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2688 #define CONS_MARK(fptr) \
2689 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2691 #define CONS_UNMARK(fptr) \
2692 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2694 /* Current cons_block. */
2696 struct cons_block *cons_block;
2698 /* Index of first unused Lisp_Cons in the current block. */
2700 int cons_block_index;
2702 /* Free-list of Lisp_Cons structures. */
2704 struct Lisp_Cons *cons_free_list;
2706 /* Total number of cons blocks now in use. */
2708 int n_cons_blocks;
2711 /* Initialize cons allocation. */
2713 void
2714 init_cons ()
2716 cons_block = NULL;
2717 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2718 cons_free_list = 0;
2719 n_cons_blocks = 0;
2723 /* Explicitly free a cons cell by putting it on the free-list. */
2725 void
2726 free_cons (ptr)
2727 struct Lisp_Cons *ptr;
2729 ptr->u.chain = cons_free_list;
2730 #if GC_MARK_STACK
2731 ptr->car = Vdead;
2732 #endif
2733 cons_free_list = ptr;
2736 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2737 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2738 (car, cdr)
2739 Lisp_Object car, cdr;
2741 register Lisp_Object val;
2743 /* eassert (!handling_signal); */
2745 #ifndef SYNC_INPUT
2746 BLOCK_INPUT;
2747 #endif
2749 if (cons_free_list)
2751 /* We use the cdr for chaining the free list
2752 so that we won't use the same field that has the mark bit. */
2753 XSETCONS (val, cons_free_list);
2754 cons_free_list = cons_free_list->u.chain;
2756 else
2758 if (cons_block_index == CONS_BLOCK_SIZE)
2760 register struct cons_block *new;
2761 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2762 MEM_TYPE_CONS);
2763 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2764 new->next = cons_block;
2765 cons_block = new;
2766 cons_block_index = 0;
2767 n_cons_blocks++;
2769 XSETCONS (val, &cons_block->conses[cons_block_index]);
2770 cons_block_index++;
2773 #ifndef SYNC_INPUT
2774 UNBLOCK_INPUT;
2775 #endif
2777 XSETCAR (val, car);
2778 XSETCDR (val, cdr);
2779 eassert (!CONS_MARKED_P (XCONS (val)));
2780 consing_since_gc += sizeof (struct Lisp_Cons);
2781 cons_cells_consed++;
2782 return val;
2785 /* Get an error now if there's any junk in the cons free list. */
2786 void
2787 check_cons_list ()
2789 #ifdef GC_CHECK_CONS_LIST
2790 struct Lisp_Cons *tail = cons_free_list;
2792 while (tail)
2793 tail = tail->u.chain;
2794 #endif
2797 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2799 Lisp_Object
2800 list1 (arg1)
2801 Lisp_Object arg1;
2803 return Fcons (arg1, Qnil);
2806 Lisp_Object
2807 list2 (arg1, arg2)
2808 Lisp_Object arg1, arg2;
2810 return Fcons (arg1, Fcons (arg2, Qnil));
2814 Lisp_Object
2815 list3 (arg1, arg2, arg3)
2816 Lisp_Object arg1, arg2, arg3;
2818 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2822 Lisp_Object
2823 list4 (arg1, arg2, arg3, arg4)
2824 Lisp_Object arg1, arg2, arg3, arg4;
2826 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2830 Lisp_Object
2831 list5 (arg1, arg2, arg3, arg4, arg5)
2832 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2834 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2835 Fcons (arg5, Qnil)))));
2839 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2840 doc: /* Return a newly created list with specified arguments as elements.
2841 Any number of arguments, even zero arguments, are allowed.
2842 usage: (list &rest OBJECTS) */)
2843 (nargs, args)
2844 int nargs;
2845 register Lisp_Object *args;
2847 register Lisp_Object val;
2848 val = Qnil;
2850 while (nargs > 0)
2852 nargs--;
2853 val = Fcons (args[nargs], val);
2855 return val;
2859 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2860 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2861 (length, init)
2862 register Lisp_Object length, init;
2864 register Lisp_Object val;
2865 register int size;
2867 CHECK_NATNUM (length);
2868 size = XFASTINT (length);
2870 val = Qnil;
2871 while (size > 0)
2873 val = Fcons (init, val);
2874 --size;
2876 if (size > 0)
2878 val = Fcons (init, val);
2879 --size;
2881 if (size > 0)
2883 val = Fcons (init, val);
2884 --size;
2886 if (size > 0)
2888 val = Fcons (init, val);
2889 --size;
2891 if (size > 0)
2893 val = Fcons (init, val);
2894 --size;
2900 QUIT;
2903 return val;
2908 /***********************************************************************
2909 Vector Allocation
2910 ***********************************************************************/
2912 /* Singly-linked list of all vectors. */
2914 struct Lisp_Vector *all_vectors;
2916 /* Total number of vector-like objects now in use. */
2918 int n_vectors;
2921 /* Value is a pointer to a newly allocated Lisp_Vector structure
2922 with room for LEN Lisp_Objects. */
2924 static struct Lisp_Vector *
2925 allocate_vectorlike (len, type)
2926 EMACS_INT len;
2927 enum mem_type type;
2929 struct Lisp_Vector *p;
2930 size_t nbytes;
2932 #ifdef DOUG_LEA_MALLOC
2933 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2934 because mapped region contents are not preserved in
2935 a dumped Emacs. */
2936 BLOCK_INPUT;
2937 mallopt (M_MMAP_MAX, 0);
2938 UNBLOCK_INPUT;
2939 #endif
2941 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2942 /* eassert (!handling_signal); */
2944 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2945 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
2947 #ifdef DOUG_LEA_MALLOC
2948 /* Back to a reasonable maximum of mmap'ed areas. */
2949 BLOCK_INPUT;
2950 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2951 UNBLOCK_INPUT;
2952 #endif
2954 consing_since_gc += nbytes;
2955 vector_cells_consed += len;
2957 #ifndef SYNC_INPUT
2958 BLOCK_INPUT;
2959 #endif
2961 p->next = all_vectors;
2962 all_vectors = p;
2964 #ifndef SYNC_INPUT
2965 UNBLOCK_INPUT;
2966 #endif
2968 ++n_vectors;
2969 return p;
2973 /* Allocate a vector with NSLOTS slots. */
2975 struct Lisp_Vector *
2976 allocate_vector (nslots)
2977 EMACS_INT nslots;
2979 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2980 v->size = nslots;
2981 return v;
2985 /* Allocate other vector-like structures. */
2987 struct Lisp_Hash_Table *
2988 allocate_hash_table ()
2990 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2991 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2992 EMACS_INT i;
2994 v->size = len;
2995 for (i = 0; i < len; ++i)
2996 v->contents[i] = Qnil;
2998 return (struct Lisp_Hash_Table *) v;
3002 struct window *
3003 allocate_window ()
3005 EMACS_INT len = VECSIZE (struct window);
3006 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
3007 EMACS_INT i;
3009 for (i = 0; i < len; ++i)
3010 v->contents[i] = Qnil;
3011 v->size = len;
3013 return (struct window *) v;
3017 struct frame *
3018 allocate_frame ()
3020 EMACS_INT len = VECSIZE (struct frame);
3021 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
3022 EMACS_INT i;
3024 for (i = 0; i < len; ++i)
3025 v->contents[i] = make_number (0);
3026 v->size = len;
3027 return (struct frame *) v;
3031 struct Lisp_Process *
3032 allocate_process ()
3034 /* Memory-footprint of the object in nb of Lisp_Object fields. */
3035 EMACS_INT memlen = VECSIZE (struct Lisp_Process);
3036 /* Size if we only count the actual Lisp_Object fields (which need to be
3037 traced by the GC). */
3038 EMACS_INT lisplen = PSEUDOVECSIZE (struct Lisp_Process, pid);
3039 struct Lisp_Vector *v = allocate_vectorlike (memlen, MEM_TYPE_PROCESS);
3040 EMACS_INT i;
3042 for (i = 0; i < lisplen; ++i)
3043 v->contents[i] = Qnil;
3044 v->size = lisplen;
3046 return (struct Lisp_Process *) v;
3050 struct Lisp_Vector *
3051 allocate_other_vector (len)
3052 EMACS_INT len;
3054 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
3055 EMACS_INT i;
3057 for (i = 0; i < len; ++i)
3058 v->contents[i] = Qnil;
3059 v->size = len;
3061 return v;
3065 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3066 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3067 See also the function `vector'. */)
3068 (length, init)
3069 register Lisp_Object length, init;
3071 Lisp_Object vector;
3072 register EMACS_INT sizei;
3073 register int index;
3074 register struct Lisp_Vector *p;
3076 CHECK_NATNUM (length);
3077 sizei = XFASTINT (length);
3079 p = allocate_vector (sizei);
3080 for (index = 0; index < sizei; index++)
3081 p->contents[index] = init;
3083 XSETVECTOR (vector, p);
3084 return vector;
3088 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3089 doc: /* Return a newly created vector with specified arguments as elements.
3090 Any number of arguments, even zero arguments, are allowed.
3091 usage: (vector &rest OBJECTS) */)
3092 (nargs, args)
3093 register int nargs;
3094 Lisp_Object *args;
3096 register Lisp_Object len, val;
3097 register int index;
3098 register struct Lisp_Vector *p;
3100 XSETFASTINT (len, nargs);
3101 val = Fmake_vector (len, Qnil);
3102 p = XVECTOR (val);
3103 for (index = 0; index < nargs; index++)
3104 p->contents[index] = args[index];
3105 return val;
3109 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3110 doc: /* Create a byte-code object with specified arguments as elements.
3111 The arguments should be the arglist, bytecode-string, constant vector,
3112 stack size, (optional) doc string, and (optional) interactive spec.
3113 The first four arguments are required; at most six have any
3114 significance.
3115 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3116 (nargs, args)
3117 register int nargs;
3118 Lisp_Object *args;
3120 register Lisp_Object len, val;
3121 register int index;
3122 register struct Lisp_Vector *p;
3124 XSETFASTINT (len, nargs);
3125 if (!NILP (Vpurify_flag))
3126 val = make_pure_vector ((EMACS_INT) nargs);
3127 else
3128 val = Fmake_vector (len, Qnil);
3130 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3131 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3132 earlier because they produced a raw 8-bit string for byte-code
3133 and now such a byte-code string is loaded as multibyte while
3134 raw 8-bit characters converted to multibyte form. Thus, now we
3135 must convert them back to the original unibyte form. */
3136 args[1] = Fstring_as_unibyte (args[1]);
3138 p = XVECTOR (val);
3139 for (index = 0; index < nargs; index++)
3141 if (!NILP (Vpurify_flag))
3142 args[index] = Fpurecopy (args[index]);
3143 p->contents[index] = args[index];
3145 XSETCOMPILED (val, p);
3146 return val;
3151 /***********************************************************************
3152 Symbol Allocation
3153 ***********************************************************************/
3155 /* Each symbol_block is just under 1020 bytes long, since malloc
3156 really allocates in units of powers of two and uses 4 bytes for its
3157 own overhead. */
3159 #define SYMBOL_BLOCK_SIZE \
3160 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3162 struct symbol_block
3164 /* Place `symbols' first, to preserve alignment. */
3165 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3166 struct symbol_block *next;
3169 /* Current symbol block and index of first unused Lisp_Symbol
3170 structure in it. */
3172 struct symbol_block *symbol_block;
3173 int symbol_block_index;
3175 /* List of free symbols. */
3177 struct Lisp_Symbol *symbol_free_list;
3179 /* Total number of symbol blocks now in use. */
3181 int n_symbol_blocks;
3184 /* Initialize symbol allocation. */
3186 void
3187 init_symbol ()
3189 symbol_block = NULL;
3190 symbol_block_index = SYMBOL_BLOCK_SIZE;
3191 symbol_free_list = 0;
3192 n_symbol_blocks = 0;
3196 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3197 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3198 Its value and function definition are void, and its property list is nil. */)
3199 (name)
3200 Lisp_Object name;
3202 register Lisp_Object val;
3203 register struct Lisp_Symbol *p;
3205 CHECK_STRING (name);
3207 /* eassert (!handling_signal); */
3209 #ifndef SYNC_INPUT
3210 BLOCK_INPUT;
3211 #endif
3213 if (symbol_free_list)
3215 XSETSYMBOL (val, symbol_free_list);
3216 symbol_free_list = symbol_free_list->next;
3218 else
3220 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3222 struct symbol_block *new;
3223 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3224 MEM_TYPE_SYMBOL);
3225 new->next = symbol_block;
3226 symbol_block = new;
3227 symbol_block_index = 0;
3228 n_symbol_blocks++;
3230 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3231 symbol_block_index++;
3234 #ifndef SYNC_INPUT
3235 UNBLOCK_INPUT;
3236 #endif
3238 p = XSYMBOL (val);
3239 p->xname = name;
3240 p->plist = Qnil;
3241 p->value = Qunbound;
3242 p->function = Qunbound;
3243 p->next = NULL;
3244 p->gcmarkbit = 0;
3245 p->interned = SYMBOL_UNINTERNED;
3246 p->constant = 0;
3247 p->indirect_variable = 0;
3248 consing_since_gc += sizeof (struct Lisp_Symbol);
3249 symbols_consed++;
3250 return val;
3255 /***********************************************************************
3256 Marker (Misc) Allocation
3257 ***********************************************************************/
3259 /* Allocation of markers and other objects that share that structure.
3260 Works like allocation of conses. */
3262 #define MARKER_BLOCK_SIZE \
3263 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3265 struct marker_block
3267 /* Place `markers' first, to preserve alignment. */
3268 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3269 struct marker_block *next;
3272 struct marker_block *marker_block;
3273 int marker_block_index;
3275 union Lisp_Misc *marker_free_list;
3277 /* Total number of marker blocks now in use. */
3279 int n_marker_blocks;
3281 void
3282 init_marker ()
3284 marker_block = NULL;
3285 marker_block_index = MARKER_BLOCK_SIZE;
3286 marker_free_list = 0;
3287 n_marker_blocks = 0;
3290 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3292 Lisp_Object
3293 allocate_misc ()
3295 Lisp_Object val;
3297 /* eassert (!handling_signal); */
3299 #ifndef SYNC_INPUT
3300 BLOCK_INPUT;
3301 #endif
3303 if (marker_free_list)
3305 XSETMISC (val, marker_free_list);
3306 marker_free_list = marker_free_list->u_free.chain;
3308 else
3310 if (marker_block_index == MARKER_BLOCK_SIZE)
3312 struct marker_block *new;
3313 new = (struct marker_block *) lisp_malloc (sizeof *new,
3314 MEM_TYPE_MISC);
3315 new->next = marker_block;
3316 marker_block = new;
3317 marker_block_index = 0;
3318 n_marker_blocks++;
3319 total_free_markers += MARKER_BLOCK_SIZE;
3321 XSETMISC (val, &marker_block->markers[marker_block_index]);
3322 marker_block_index++;
3325 #ifndef SYNC_INPUT
3326 UNBLOCK_INPUT;
3327 #endif
3329 --total_free_markers;
3330 consing_since_gc += sizeof (union Lisp_Misc);
3331 misc_objects_consed++;
3332 XMARKER (val)->gcmarkbit = 0;
3333 return val;
3336 /* Free a Lisp_Misc object */
3338 void
3339 free_misc (misc)
3340 Lisp_Object misc;
3342 XMISC (misc)->u_marker.type = Lisp_Misc_Free;
3343 XMISC (misc)->u_free.chain = marker_free_list;
3344 marker_free_list = XMISC (misc);
3346 total_free_markers++;
3349 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3350 INTEGER. This is used to package C values to call record_unwind_protect.
3351 The unwind function can get the C values back using XSAVE_VALUE. */
3353 Lisp_Object
3354 make_save_value (pointer, integer)
3355 void *pointer;
3356 int integer;
3358 register Lisp_Object val;
3359 register struct Lisp_Save_Value *p;
3361 val = allocate_misc ();
3362 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3363 p = XSAVE_VALUE (val);
3364 p->pointer = pointer;
3365 p->integer = integer;
3366 p->dogc = 0;
3367 return val;
3370 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3371 doc: /* Return a newly allocated marker which does not point at any place. */)
3374 register Lisp_Object val;
3375 register struct Lisp_Marker *p;
3377 val = allocate_misc ();
3378 XMISCTYPE (val) = Lisp_Misc_Marker;
3379 p = XMARKER (val);
3380 p->buffer = 0;
3381 p->bytepos = 0;
3382 p->charpos = 0;
3383 p->next = NULL;
3384 p->insertion_type = 0;
3385 return val;
3388 /* Put MARKER back on the free list after using it temporarily. */
3390 void
3391 free_marker (marker)
3392 Lisp_Object marker;
3394 unchain_marker (XMARKER (marker));
3395 free_misc (marker);
3399 /* Return a newly created vector or string with specified arguments as
3400 elements. If all the arguments are characters that can fit
3401 in a string of events, make a string; otherwise, make a vector.
3403 Any number of arguments, even zero arguments, are allowed. */
3405 Lisp_Object
3406 make_event_array (nargs, args)
3407 register int nargs;
3408 Lisp_Object *args;
3410 int i;
3412 for (i = 0; i < nargs; i++)
3413 /* The things that fit in a string
3414 are characters that are in 0...127,
3415 after discarding the meta bit and all the bits above it. */
3416 if (!INTEGERP (args[i])
3417 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3418 return Fvector (nargs, args);
3420 /* Since the loop exited, we know that all the things in it are
3421 characters, so we can make a string. */
3423 Lisp_Object result;
3425 result = Fmake_string (make_number (nargs), make_number (0));
3426 for (i = 0; i < nargs; i++)
3428 SSET (result, i, XINT (args[i]));
3429 /* Move the meta bit to the right place for a string char. */
3430 if (XINT (args[i]) & CHAR_META)
3431 SSET (result, i, SREF (result, i) | 0x80);
3434 return result;
3440 /************************************************************************
3441 Memory Full Handling
3442 ************************************************************************/
3445 /* Called if malloc returns zero. */
3447 void
3448 memory_full ()
3450 int i;
3452 Vmemory_full = Qt;
3454 memory_full_cons_threshold = sizeof (struct cons_block);
3456 /* The first time we get here, free the spare memory. */
3457 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3458 if (spare_memory[i])
3460 if (i == 0)
3461 free (spare_memory[i]);
3462 else if (i >= 1 && i <= 4)
3463 lisp_align_free (spare_memory[i]);
3464 else
3465 lisp_free (spare_memory[i]);
3466 spare_memory[i] = 0;
3469 /* Record the space now used. When it decreases substantially,
3470 we can refill the memory reserve. */
3471 #ifndef SYSTEM_MALLOC
3472 bytes_used_when_full = BYTES_USED;
3473 #endif
3475 /* This used to call error, but if we've run out of memory, we could
3476 get infinite recursion trying to build the string. */
3477 xsignal (Qnil, Vmemory_signal_data);
3480 /* If we released our reserve (due to running out of memory),
3481 and we have a fair amount free once again,
3482 try to set aside another reserve in case we run out once more.
3484 This is called when a relocatable block is freed in ralloc.c,
3485 and also directly from this file, in case we're not using ralloc.c. */
3487 void
3488 refill_memory_reserve ()
3490 #ifndef SYSTEM_MALLOC
3491 if (spare_memory[0] == 0)
3492 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3493 if (spare_memory[1] == 0)
3494 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3495 MEM_TYPE_CONS);
3496 if (spare_memory[2] == 0)
3497 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3498 MEM_TYPE_CONS);
3499 if (spare_memory[3] == 0)
3500 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3501 MEM_TYPE_CONS);
3502 if (spare_memory[4] == 0)
3503 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3504 MEM_TYPE_CONS);
3505 if (spare_memory[5] == 0)
3506 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3507 MEM_TYPE_STRING);
3508 if (spare_memory[6] == 0)
3509 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3510 MEM_TYPE_STRING);
3511 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3512 Vmemory_full = Qnil;
3513 #endif
3516 /************************************************************************
3517 C Stack Marking
3518 ************************************************************************/
3520 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3522 /* Conservative C stack marking requires a method to identify possibly
3523 live Lisp objects given a pointer value. We do this by keeping
3524 track of blocks of Lisp data that are allocated in a red-black tree
3525 (see also the comment of mem_node which is the type of nodes in
3526 that tree). Function lisp_malloc adds information for an allocated
3527 block to the red-black tree with calls to mem_insert, and function
3528 lisp_free removes it with mem_delete. Functions live_string_p etc
3529 call mem_find to lookup information about a given pointer in the
3530 tree, and use that to determine if the pointer points to a Lisp
3531 object or not. */
3533 /* Initialize this part of alloc.c. */
3535 static void
3536 mem_init ()
3538 mem_z.left = mem_z.right = MEM_NIL;
3539 mem_z.parent = NULL;
3540 mem_z.color = MEM_BLACK;
3541 mem_z.start = mem_z.end = NULL;
3542 mem_root = MEM_NIL;
3546 /* Value is a pointer to the mem_node containing START. Value is
3547 MEM_NIL if there is no node in the tree containing START. */
3549 static INLINE struct mem_node *
3550 mem_find (start)
3551 void *start;
3553 struct mem_node *p;
3555 if (start < min_heap_address || start > max_heap_address)
3556 return MEM_NIL;
3558 /* Make the search always successful to speed up the loop below. */
3559 mem_z.start = start;
3560 mem_z.end = (char *) start + 1;
3562 p = mem_root;
3563 while (start < p->start || start >= p->end)
3564 p = start < p->start ? p->left : p->right;
3565 return p;
3569 /* Insert a new node into the tree for a block of memory with start
3570 address START, end address END, and type TYPE. Value is a
3571 pointer to the node that was inserted. */
3573 static struct mem_node *
3574 mem_insert (start, end, type)
3575 void *start, *end;
3576 enum mem_type type;
3578 struct mem_node *c, *parent, *x;
3580 if (min_heap_address == NULL || start < min_heap_address)
3581 min_heap_address = start;
3582 if (max_heap_address == NULL || end > max_heap_address)
3583 max_heap_address = end;
3585 /* See where in the tree a node for START belongs. In this
3586 particular application, it shouldn't happen that a node is already
3587 present. For debugging purposes, let's check that. */
3588 c = mem_root;
3589 parent = NULL;
3591 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3593 while (c != MEM_NIL)
3595 if (start >= c->start && start < c->end)
3596 abort ();
3597 parent = c;
3598 c = start < c->start ? c->left : c->right;
3601 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3603 while (c != MEM_NIL)
3605 parent = c;
3606 c = start < c->start ? c->left : c->right;
3609 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3611 /* Create a new node. */
3612 #ifdef GC_MALLOC_CHECK
3613 x = (struct mem_node *) _malloc_internal (sizeof *x);
3614 if (x == NULL)
3615 abort ();
3616 #else
3617 x = (struct mem_node *) xmalloc (sizeof *x);
3618 #endif
3619 x->start = start;
3620 x->end = end;
3621 x->type = type;
3622 x->parent = parent;
3623 x->left = x->right = MEM_NIL;
3624 x->color = MEM_RED;
3626 /* Insert it as child of PARENT or install it as root. */
3627 if (parent)
3629 if (start < parent->start)
3630 parent->left = x;
3631 else
3632 parent->right = x;
3634 else
3635 mem_root = x;
3637 /* Re-establish red-black tree properties. */
3638 mem_insert_fixup (x);
3640 return x;
3644 /* Re-establish the red-black properties of the tree, and thereby
3645 balance the tree, after node X has been inserted; X is always red. */
3647 static void
3648 mem_insert_fixup (x)
3649 struct mem_node *x;
3651 while (x != mem_root && x->parent->color == MEM_RED)
3653 /* X is red and its parent is red. This is a violation of
3654 red-black tree property #3. */
3656 if (x->parent == x->parent->parent->left)
3658 /* We're on the left side of our grandparent, and Y is our
3659 "uncle". */
3660 struct mem_node *y = x->parent->parent->right;
3662 if (y->color == MEM_RED)
3664 /* Uncle and parent are red but should be black because
3665 X is red. Change the colors accordingly and proceed
3666 with the grandparent. */
3667 x->parent->color = MEM_BLACK;
3668 y->color = MEM_BLACK;
3669 x->parent->parent->color = MEM_RED;
3670 x = x->parent->parent;
3672 else
3674 /* Parent and uncle have different colors; parent is
3675 red, uncle is black. */
3676 if (x == x->parent->right)
3678 x = x->parent;
3679 mem_rotate_left (x);
3682 x->parent->color = MEM_BLACK;
3683 x->parent->parent->color = MEM_RED;
3684 mem_rotate_right (x->parent->parent);
3687 else
3689 /* This is the symmetrical case of above. */
3690 struct mem_node *y = x->parent->parent->left;
3692 if (y->color == MEM_RED)
3694 x->parent->color = MEM_BLACK;
3695 y->color = MEM_BLACK;
3696 x->parent->parent->color = MEM_RED;
3697 x = x->parent->parent;
3699 else
3701 if (x == x->parent->left)
3703 x = x->parent;
3704 mem_rotate_right (x);
3707 x->parent->color = MEM_BLACK;
3708 x->parent->parent->color = MEM_RED;
3709 mem_rotate_left (x->parent->parent);
3714 /* The root may have been changed to red due to the algorithm. Set
3715 it to black so that property #5 is satisfied. */
3716 mem_root->color = MEM_BLACK;
3720 /* (x) (y)
3721 / \ / \
3722 a (y) ===> (x) c
3723 / \ / \
3724 b c a b */
3726 static void
3727 mem_rotate_left (x)
3728 struct mem_node *x;
3730 struct mem_node *y;
3732 /* Turn y's left sub-tree into x's right sub-tree. */
3733 y = x->right;
3734 x->right = y->left;
3735 if (y->left != MEM_NIL)
3736 y->left->parent = x;
3738 /* Y's parent was x's parent. */
3739 if (y != MEM_NIL)
3740 y->parent = x->parent;
3742 /* Get the parent to point to y instead of x. */
3743 if (x->parent)
3745 if (x == x->parent->left)
3746 x->parent->left = y;
3747 else
3748 x->parent->right = y;
3750 else
3751 mem_root = y;
3753 /* Put x on y's left. */
3754 y->left = x;
3755 if (x != MEM_NIL)
3756 x->parent = y;
3760 /* (x) (Y)
3761 / \ / \
3762 (y) c ===> a (x)
3763 / \ / \
3764 a b b c */
3766 static void
3767 mem_rotate_right (x)
3768 struct mem_node *x;
3770 struct mem_node *y = x->left;
3772 x->left = y->right;
3773 if (y->right != MEM_NIL)
3774 y->right->parent = x;
3776 if (y != MEM_NIL)
3777 y->parent = x->parent;
3778 if (x->parent)
3780 if (x == x->parent->right)
3781 x->parent->right = y;
3782 else
3783 x->parent->left = y;
3785 else
3786 mem_root = y;
3788 y->right = x;
3789 if (x != MEM_NIL)
3790 x->parent = y;
3794 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3796 static void
3797 mem_delete (z)
3798 struct mem_node *z;
3800 struct mem_node *x, *y;
3802 if (!z || z == MEM_NIL)
3803 return;
3805 if (z->left == MEM_NIL || z->right == MEM_NIL)
3806 y = z;
3807 else
3809 y = z->right;
3810 while (y->left != MEM_NIL)
3811 y = y->left;
3814 if (y->left != MEM_NIL)
3815 x = y->left;
3816 else
3817 x = y->right;
3819 x->parent = y->parent;
3820 if (y->parent)
3822 if (y == y->parent->left)
3823 y->parent->left = x;
3824 else
3825 y->parent->right = x;
3827 else
3828 mem_root = x;
3830 if (y != z)
3832 z->start = y->start;
3833 z->end = y->end;
3834 z->type = y->type;
3837 if (y->color == MEM_BLACK)
3838 mem_delete_fixup (x);
3840 #ifdef GC_MALLOC_CHECK
3841 _free_internal (y);
3842 #else
3843 xfree (y);
3844 #endif
3848 /* Re-establish the red-black properties of the tree, after a
3849 deletion. */
3851 static void
3852 mem_delete_fixup (x)
3853 struct mem_node *x;
3855 while (x != mem_root && x->color == MEM_BLACK)
3857 if (x == x->parent->left)
3859 struct mem_node *w = x->parent->right;
3861 if (w->color == MEM_RED)
3863 w->color = MEM_BLACK;
3864 x->parent->color = MEM_RED;
3865 mem_rotate_left (x->parent);
3866 w = x->parent->right;
3869 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3871 w->color = MEM_RED;
3872 x = x->parent;
3874 else
3876 if (w->right->color == MEM_BLACK)
3878 w->left->color = MEM_BLACK;
3879 w->color = MEM_RED;
3880 mem_rotate_right (w);
3881 w = x->parent->right;
3883 w->color = x->parent->color;
3884 x->parent->color = MEM_BLACK;
3885 w->right->color = MEM_BLACK;
3886 mem_rotate_left (x->parent);
3887 x = mem_root;
3890 else
3892 struct mem_node *w = x->parent->left;
3894 if (w->color == MEM_RED)
3896 w->color = MEM_BLACK;
3897 x->parent->color = MEM_RED;
3898 mem_rotate_right (x->parent);
3899 w = x->parent->left;
3902 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3904 w->color = MEM_RED;
3905 x = x->parent;
3907 else
3909 if (w->left->color == MEM_BLACK)
3911 w->right->color = MEM_BLACK;
3912 w->color = MEM_RED;
3913 mem_rotate_left (w);
3914 w = x->parent->left;
3917 w->color = x->parent->color;
3918 x->parent->color = MEM_BLACK;
3919 w->left->color = MEM_BLACK;
3920 mem_rotate_right (x->parent);
3921 x = mem_root;
3926 x->color = MEM_BLACK;
3930 /* Value is non-zero if P is a pointer to a live Lisp string on
3931 the heap. M is a pointer to the mem_block for P. */
3933 static INLINE int
3934 live_string_p (m, p)
3935 struct mem_node *m;
3936 void *p;
3938 if (m->type == MEM_TYPE_STRING)
3940 struct string_block *b = (struct string_block *) m->start;
3941 int offset = (char *) p - (char *) &b->strings[0];
3943 /* P must point to the start of a Lisp_String structure, and it
3944 must not be on the free-list. */
3945 return (offset >= 0
3946 && offset % sizeof b->strings[0] == 0
3947 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3948 && ((struct Lisp_String *) p)->data != NULL);
3950 else
3951 return 0;
3955 /* Value is non-zero if P is a pointer to a live Lisp cons on
3956 the heap. M is a pointer to the mem_block for P. */
3958 static INLINE int
3959 live_cons_p (m, p)
3960 struct mem_node *m;
3961 void *p;
3963 if (m->type == MEM_TYPE_CONS)
3965 struct cons_block *b = (struct cons_block *) m->start;
3966 int offset = (char *) p - (char *) &b->conses[0];
3968 /* P must point to the start of a Lisp_Cons, not be
3969 one of the unused cells in the current cons block,
3970 and not be on the free-list. */
3971 return (offset >= 0
3972 && offset % sizeof b->conses[0] == 0
3973 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3974 && (b != cons_block
3975 || offset / sizeof b->conses[0] < cons_block_index)
3976 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3978 else
3979 return 0;
3983 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3984 the heap. M is a pointer to the mem_block for P. */
3986 static INLINE int
3987 live_symbol_p (m, p)
3988 struct mem_node *m;
3989 void *p;
3991 if (m->type == MEM_TYPE_SYMBOL)
3993 struct symbol_block *b = (struct symbol_block *) m->start;
3994 int offset = (char *) p - (char *) &b->symbols[0];
3996 /* P must point to the start of a Lisp_Symbol, not be
3997 one of the unused cells in the current symbol block,
3998 and not be on the free-list. */
3999 return (offset >= 0
4000 && offset % sizeof b->symbols[0] == 0
4001 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4002 && (b != symbol_block
4003 || offset / sizeof b->symbols[0] < symbol_block_index)
4004 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
4006 else
4007 return 0;
4011 /* Value is non-zero if P is a pointer to a live Lisp float on
4012 the heap. M is a pointer to the mem_block for P. */
4014 static INLINE int
4015 live_float_p (m, p)
4016 struct mem_node *m;
4017 void *p;
4019 if (m->type == MEM_TYPE_FLOAT)
4021 struct float_block *b = (struct float_block *) m->start;
4022 int offset = (char *) p - (char *) &b->floats[0];
4024 /* P must point to the start of a Lisp_Float and not be
4025 one of the unused cells in the current float block. */
4026 return (offset >= 0
4027 && offset % sizeof b->floats[0] == 0
4028 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4029 && (b != float_block
4030 || offset / sizeof b->floats[0] < float_block_index));
4032 else
4033 return 0;
4037 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4038 the heap. M is a pointer to the mem_block for P. */
4040 static INLINE int
4041 live_misc_p (m, p)
4042 struct mem_node *m;
4043 void *p;
4045 if (m->type == MEM_TYPE_MISC)
4047 struct marker_block *b = (struct marker_block *) m->start;
4048 int offset = (char *) p - (char *) &b->markers[0];
4050 /* P must point to the start of a Lisp_Misc, not be
4051 one of the unused cells in the current misc block,
4052 and not be on the free-list. */
4053 return (offset >= 0
4054 && offset % sizeof b->markers[0] == 0
4055 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4056 && (b != marker_block
4057 || offset / sizeof b->markers[0] < marker_block_index)
4058 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
4060 else
4061 return 0;
4065 /* Value is non-zero if P is a pointer to a live vector-like object.
4066 M is a pointer to the mem_block for P. */
4068 static INLINE int
4069 live_vector_p (m, p)
4070 struct mem_node *m;
4071 void *p;
4073 return (p == m->start
4074 && m->type >= MEM_TYPE_VECTOR
4075 && m->type <= MEM_TYPE_WINDOW);
4079 /* Value is non-zero if P is a pointer to a live buffer. M is a
4080 pointer to the mem_block for P. */
4082 static INLINE int
4083 live_buffer_p (m, p)
4084 struct mem_node *m;
4085 void *p;
4087 /* P must point to the start of the block, and the buffer
4088 must not have been killed. */
4089 return (m->type == MEM_TYPE_BUFFER
4090 && p == m->start
4091 && !NILP (((struct buffer *) p)->name));
4094 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4096 #if GC_MARK_STACK
4098 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4100 /* Array of objects that are kept alive because the C stack contains
4101 a pattern that looks like a reference to them . */
4103 #define MAX_ZOMBIES 10
4104 static Lisp_Object zombies[MAX_ZOMBIES];
4106 /* Number of zombie objects. */
4108 static int nzombies;
4110 /* Number of garbage collections. */
4112 static int ngcs;
4114 /* Average percentage of zombies per collection. */
4116 static double avg_zombies;
4118 /* Max. number of live and zombie objects. */
4120 static int max_live, max_zombies;
4122 /* Average number of live objects per GC. */
4124 static double avg_live;
4126 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4127 doc: /* Show information about live and zombie objects. */)
4130 Lisp_Object args[8], zombie_list = Qnil;
4131 int i;
4132 for (i = 0; i < nzombies; i++)
4133 zombie_list = Fcons (zombies[i], zombie_list);
4134 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4135 args[1] = make_number (ngcs);
4136 args[2] = make_float (avg_live);
4137 args[3] = make_float (avg_zombies);
4138 args[4] = make_float (avg_zombies / avg_live / 100);
4139 args[5] = make_number (max_live);
4140 args[6] = make_number (max_zombies);
4141 args[7] = zombie_list;
4142 return Fmessage (8, args);
4145 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4148 /* Mark OBJ if we can prove it's a Lisp_Object. */
4150 static INLINE void
4151 mark_maybe_object (obj)
4152 Lisp_Object obj;
4154 void *po = (void *) XPNTR (obj);
4155 struct mem_node *m = mem_find (po);
4157 if (m != MEM_NIL)
4159 int mark_p = 0;
4161 switch (XTYPE (obj))
4163 case Lisp_String:
4164 mark_p = (live_string_p (m, po)
4165 && !STRING_MARKED_P ((struct Lisp_String *) po));
4166 break;
4168 case Lisp_Cons:
4169 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4170 break;
4172 case Lisp_Symbol:
4173 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4174 break;
4176 case Lisp_Float:
4177 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4178 break;
4180 case Lisp_Vectorlike:
4181 /* Note: can't check BUFFERP before we know it's a
4182 buffer because checking that dereferences the pointer
4183 PO which might point anywhere. */
4184 if (live_vector_p (m, po))
4185 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4186 else if (live_buffer_p (m, po))
4187 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4188 break;
4190 case Lisp_Misc:
4191 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
4192 break;
4194 case Lisp_Int:
4195 case Lisp_Type_Limit:
4196 break;
4199 if (mark_p)
4201 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4202 if (nzombies < MAX_ZOMBIES)
4203 zombies[nzombies] = obj;
4204 ++nzombies;
4205 #endif
4206 mark_object (obj);
4212 /* If P points to Lisp data, mark that as live if it isn't already
4213 marked. */
4215 static INLINE void
4216 mark_maybe_pointer (p)
4217 void *p;
4219 struct mem_node *m;
4221 /* Quickly rule out some values which can't point to Lisp data. */
4222 if ((EMACS_INT) p %
4223 #ifdef USE_LSB_TAG
4224 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4225 #else
4226 2 /* We assume that Lisp data is aligned on even addresses. */
4227 #endif
4229 return;
4231 m = mem_find (p);
4232 if (m != MEM_NIL)
4234 Lisp_Object obj = Qnil;
4236 switch (m->type)
4238 case MEM_TYPE_NON_LISP:
4239 /* Nothing to do; not a pointer to Lisp memory. */
4240 break;
4242 case MEM_TYPE_BUFFER:
4243 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4244 XSETVECTOR (obj, p);
4245 break;
4247 case MEM_TYPE_CONS:
4248 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4249 XSETCONS (obj, p);
4250 break;
4252 case MEM_TYPE_STRING:
4253 if (live_string_p (m, p)
4254 && !STRING_MARKED_P ((struct Lisp_String *) p))
4255 XSETSTRING (obj, p);
4256 break;
4258 case MEM_TYPE_MISC:
4259 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4260 XSETMISC (obj, p);
4261 break;
4263 case MEM_TYPE_SYMBOL:
4264 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4265 XSETSYMBOL (obj, p);
4266 break;
4268 case MEM_TYPE_FLOAT:
4269 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4270 XSETFLOAT (obj, p);
4271 break;
4273 case MEM_TYPE_VECTOR:
4274 case MEM_TYPE_PROCESS:
4275 case MEM_TYPE_HASH_TABLE:
4276 case MEM_TYPE_FRAME:
4277 case MEM_TYPE_WINDOW:
4278 if (live_vector_p (m, p))
4280 Lisp_Object tem;
4281 XSETVECTOR (tem, p);
4282 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4283 obj = tem;
4285 break;
4287 default:
4288 abort ();
4291 if (!NILP (obj))
4292 mark_object (obj);
4297 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4298 or END+OFFSET..START. */
4300 static void
4301 mark_memory (start, end, offset)
4302 void *start, *end;
4303 int offset;
4305 Lisp_Object *p;
4306 void **pp;
4308 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4309 nzombies = 0;
4310 #endif
4312 /* Make START the pointer to the start of the memory region,
4313 if it isn't already. */
4314 if (end < start)
4316 void *tem = start;
4317 start = end;
4318 end = tem;
4321 /* Mark Lisp_Objects. */
4322 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4323 mark_maybe_object (*p);
4325 /* Mark Lisp data pointed to. This is necessary because, in some
4326 situations, the C compiler optimizes Lisp objects away, so that
4327 only a pointer to them remains. Example:
4329 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4332 Lisp_Object obj = build_string ("test");
4333 struct Lisp_String *s = XSTRING (obj);
4334 Fgarbage_collect ();
4335 fprintf (stderr, "test `%s'\n", s->data);
4336 return Qnil;
4339 Here, `obj' isn't really used, and the compiler optimizes it
4340 away. The only reference to the life string is through the
4341 pointer `s'. */
4343 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4344 mark_maybe_pointer (*pp);
4347 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4348 the GCC system configuration. In gcc 3.2, the only systems for
4349 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4350 by others?) and ns32k-pc532-min. */
4352 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4354 static int setjmp_tested_p, longjmps_done;
4356 #define SETJMP_WILL_LIKELY_WORK "\
4358 Emacs garbage collector has been changed to use conservative stack\n\
4359 marking. Emacs has determined that the method it uses to do the\n\
4360 marking will likely work on your system, but this isn't sure.\n\
4362 If you are a system-programmer, or can get the help of a local wizard\n\
4363 who is, please take a look at the function mark_stack in alloc.c, and\n\
4364 verify that the methods used are appropriate for your system.\n\
4366 Please mail the result to <emacs-devel@gnu.org>.\n\
4369 #define SETJMP_WILL_NOT_WORK "\
4371 Emacs garbage collector has been changed to use conservative stack\n\
4372 marking. Emacs has determined that the default method it uses to do the\n\
4373 marking will not work on your system. We will need a system-dependent\n\
4374 solution for your system.\n\
4376 Please take a look at the function mark_stack in alloc.c, and\n\
4377 try to find a way to make it work on your system.\n\
4379 Note that you may get false negatives, depending on the compiler.\n\
4380 In particular, you need to use -O with GCC for this test.\n\
4382 Please mail the result to <emacs-devel@gnu.org>.\n\
4386 /* Perform a quick check if it looks like setjmp saves registers in a
4387 jmp_buf. Print a message to stderr saying so. When this test
4388 succeeds, this is _not_ a proof that setjmp is sufficient for
4389 conservative stack marking. Only the sources or a disassembly
4390 can prove that. */
4392 static void
4393 test_setjmp ()
4395 char buf[10];
4396 register int x;
4397 jmp_buf jbuf;
4398 int result = 0;
4400 /* Arrange for X to be put in a register. */
4401 sprintf (buf, "1");
4402 x = strlen (buf);
4403 x = 2 * x - 1;
4405 setjmp (jbuf);
4406 if (longjmps_done == 1)
4408 /* Came here after the longjmp at the end of the function.
4410 If x == 1, the longjmp has restored the register to its
4411 value before the setjmp, and we can hope that setjmp
4412 saves all such registers in the jmp_buf, although that
4413 isn't sure.
4415 For other values of X, either something really strange is
4416 taking place, or the setjmp just didn't save the register. */
4418 if (x == 1)
4419 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4420 else
4422 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4423 exit (1);
4427 ++longjmps_done;
4428 x = 2;
4429 if (longjmps_done == 1)
4430 longjmp (jbuf, 1);
4433 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4436 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4438 /* Abort if anything GCPRO'd doesn't survive the GC. */
4440 static void
4441 check_gcpros ()
4443 struct gcpro *p;
4444 int i;
4446 for (p = gcprolist; p; p = p->next)
4447 for (i = 0; i < p->nvars; ++i)
4448 if (!survives_gc_p (p->var[i]))
4449 /* FIXME: It's not necessarily a bug. It might just be that the
4450 GCPRO is unnecessary or should release the object sooner. */
4451 abort ();
4454 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4456 static void
4457 dump_zombies ()
4459 int i;
4461 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4462 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4464 fprintf (stderr, " %d = ", i);
4465 debug_print (zombies[i]);
4469 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4472 /* Mark live Lisp objects on the C stack.
4474 There are several system-dependent problems to consider when
4475 porting this to new architectures:
4477 Processor Registers
4479 We have to mark Lisp objects in CPU registers that can hold local
4480 variables or are used to pass parameters.
4482 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4483 something that either saves relevant registers on the stack, or
4484 calls mark_maybe_object passing it each register's contents.
4486 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4487 implementation assumes that calling setjmp saves registers we need
4488 to see in a jmp_buf which itself lies on the stack. This doesn't
4489 have to be true! It must be verified for each system, possibly
4490 by taking a look at the source code of setjmp.
4492 Stack Layout
4494 Architectures differ in the way their processor stack is organized.
4495 For example, the stack might look like this
4497 +----------------+
4498 | Lisp_Object | size = 4
4499 +----------------+
4500 | something else | size = 2
4501 +----------------+
4502 | Lisp_Object | size = 4
4503 +----------------+
4504 | ... |
4506 In such a case, not every Lisp_Object will be aligned equally. To
4507 find all Lisp_Object on the stack it won't be sufficient to walk
4508 the stack in steps of 4 bytes. Instead, two passes will be
4509 necessary, one starting at the start of the stack, and a second
4510 pass starting at the start of the stack + 2. Likewise, if the
4511 minimal alignment of Lisp_Objects on the stack is 1, four passes
4512 would be necessary, each one starting with one byte more offset
4513 from the stack start.
4515 The current code assumes by default that Lisp_Objects are aligned
4516 equally on the stack. */
4518 static void
4519 mark_stack ()
4521 int i;
4522 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4523 union aligned_jmpbuf {
4524 Lisp_Object o;
4525 jmp_buf j;
4526 } j;
4527 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4528 void *end;
4530 /* This trick flushes the register windows so that all the state of
4531 the process is contained in the stack. */
4532 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4533 needed on ia64 too. See mach_dep.c, where it also says inline
4534 assembler doesn't work with relevant proprietary compilers. */
4535 #ifdef sparc
4536 asm ("ta 3");
4537 #endif
4539 /* Save registers that we need to see on the stack. We need to see
4540 registers used to hold register variables and registers used to
4541 pass parameters. */
4542 #ifdef GC_SAVE_REGISTERS_ON_STACK
4543 GC_SAVE_REGISTERS_ON_STACK (end);
4544 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4546 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4547 setjmp will definitely work, test it
4548 and print a message with the result
4549 of the test. */
4550 if (!setjmp_tested_p)
4552 setjmp_tested_p = 1;
4553 test_setjmp ();
4555 #endif /* GC_SETJMP_WORKS */
4557 setjmp (j.j);
4558 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4559 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4561 /* This assumes that the stack is a contiguous region in memory. If
4562 that's not the case, something has to be done here to iterate
4563 over the stack segments. */
4564 #ifndef GC_LISP_OBJECT_ALIGNMENT
4565 #ifdef __GNUC__
4566 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4567 #else
4568 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4569 #endif
4570 #endif
4571 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4572 mark_memory (stack_base, end, i);
4573 /* Allow for marking a secondary stack, like the register stack on the
4574 ia64. */
4575 #ifdef GC_MARK_SECONDARY_STACK
4576 GC_MARK_SECONDARY_STACK ();
4577 #endif
4579 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4580 check_gcpros ();
4581 #endif
4584 #endif /* GC_MARK_STACK != 0 */
4587 /* Determine whether it is safe to access memory at address P. */
4589 valid_pointer_p (p)
4590 void *p;
4592 #ifdef WINDOWSNT
4593 return w32_valid_pointer_p (p, 16);
4594 #else
4595 int fd;
4597 /* Obviously, we cannot just access it (we would SEGV trying), so we
4598 trick the o/s to tell us whether p is a valid pointer.
4599 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4600 not validate p in that case. */
4602 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4604 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4605 emacs_close (fd);
4606 unlink ("__Valid__Lisp__Object__");
4607 return valid;
4610 return -1;
4611 #endif
4614 /* Return 1 if OBJ is a valid lisp object.
4615 Return 0 if OBJ is NOT a valid lisp object.
4616 Return -1 if we cannot validate OBJ.
4617 This function can be quite slow,
4618 so it should only be used in code for manual debugging. */
4621 valid_lisp_object_p (obj)
4622 Lisp_Object obj;
4624 void *p;
4625 #if GC_MARK_STACK
4626 struct mem_node *m;
4627 #endif
4629 if (INTEGERP (obj))
4630 return 1;
4632 p = (void *) XPNTR (obj);
4633 if (PURE_POINTER_P (p))
4634 return 1;
4636 #if !GC_MARK_STACK
4637 return valid_pointer_p (p);
4638 #else
4640 m = mem_find (p);
4642 if (m == MEM_NIL)
4644 int valid = valid_pointer_p (p);
4645 if (valid <= 0)
4646 return valid;
4648 if (SUBRP (obj))
4649 return 1;
4651 return 0;
4654 switch (m->type)
4656 case MEM_TYPE_NON_LISP:
4657 return 0;
4659 case MEM_TYPE_BUFFER:
4660 return live_buffer_p (m, p);
4662 case MEM_TYPE_CONS:
4663 return live_cons_p (m, p);
4665 case MEM_TYPE_STRING:
4666 return live_string_p (m, p);
4668 case MEM_TYPE_MISC:
4669 return live_misc_p (m, p);
4671 case MEM_TYPE_SYMBOL:
4672 return live_symbol_p (m, p);
4674 case MEM_TYPE_FLOAT:
4675 return live_float_p (m, p);
4677 case MEM_TYPE_VECTOR:
4678 case MEM_TYPE_PROCESS:
4679 case MEM_TYPE_HASH_TABLE:
4680 case MEM_TYPE_FRAME:
4681 case MEM_TYPE_WINDOW:
4682 return live_vector_p (m, p);
4684 default:
4685 break;
4688 return 0;
4689 #endif
4695 /***********************************************************************
4696 Pure Storage Management
4697 ***********************************************************************/
4699 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4700 pointer to it. TYPE is the Lisp type for which the memory is
4701 allocated. TYPE < 0 means it's not used for a Lisp object. */
4703 static POINTER_TYPE *
4704 pure_alloc (size, type)
4705 size_t size;
4706 int type;
4708 POINTER_TYPE *result;
4709 #ifdef USE_LSB_TAG
4710 size_t alignment = (1 << GCTYPEBITS);
4711 #else
4712 size_t alignment = sizeof (EMACS_INT);
4714 /* Give Lisp_Floats an extra alignment. */
4715 if (type == Lisp_Float)
4717 #if defined __GNUC__ && __GNUC__ >= 2
4718 alignment = __alignof (struct Lisp_Float);
4719 #else
4720 alignment = sizeof (struct Lisp_Float);
4721 #endif
4723 #endif
4725 again:
4726 if (type >= 0)
4728 /* Allocate space for a Lisp object from the beginning of the free
4729 space with taking account of alignment. */
4730 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4731 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4733 else
4735 /* Allocate space for a non-Lisp object from the end of the free
4736 space. */
4737 pure_bytes_used_non_lisp += size;
4738 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4740 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4742 if (pure_bytes_used <= pure_size)
4743 return result;
4745 /* Don't allocate a large amount here,
4746 because it might get mmap'd and then its address
4747 might not be usable. */
4748 purebeg = (char *) xmalloc (10000);
4749 pure_size = 10000;
4750 pure_bytes_used_before_overflow += pure_bytes_used - size;
4751 pure_bytes_used = 0;
4752 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4753 goto again;
4757 /* Print a warning if PURESIZE is too small. */
4759 void
4760 check_pure_size ()
4762 if (pure_bytes_used_before_overflow)
4763 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4764 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4768 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4769 the non-Lisp data pool of the pure storage, and return its start
4770 address. Return NULL if not found. */
4772 static char *
4773 find_string_data_in_pure (data, nbytes)
4774 char *data;
4775 int nbytes;
4777 int i, skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4778 unsigned char *p;
4779 char *non_lisp_beg;
4781 if (pure_bytes_used_non_lisp < nbytes + 1)
4782 return NULL;
4784 /* Set up the Boyer-Moore table. */
4785 skip = nbytes + 1;
4786 for (i = 0; i < 256; i++)
4787 bm_skip[i] = skip;
4789 p = (unsigned char *) data;
4790 while (--skip > 0)
4791 bm_skip[*p++] = skip;
4793 last_char_skip = bm_skip['\0'];
4795 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4796 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4798 /* See the comments in the function `boyer_moore' (search.c) for the
4799 use of `infinity'. */
4800 infinity = pure_bytes_used_non_lisp + 1;
4801 bm_skip['\0'] = infinity;
4803 p = (unsigned char *) non_lisp_beg + nbytes;
4804 start = 0;
4807 /* Check the last character (== '\0'). */
4810 start += bm_skip[*(p + start)];
4812 while (start <= start_max);
4814 if (start < infinity)
4815 /* Couldn't find the last character. */
4816 return NULL;
4818 /* No less than `infinity' means we could find the last
4819 character at `p[start - infinity]'. */
4820 start -= infinity;
4822 /* Check the remaining characters. */
4823 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4824 /* Found. */
4825 return non_lisp_beg + start;
4827 start += last_char_skip;
4829 while (start <= start_max);
4831 return NULL;
4835 /* Return a string allocated in pure space. DATA is a buffer holding
4836 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4837 non-zero means make the result string multibyte.
4839 Must get an error if pure storage is full, since if it cannot hold
4840 a large string it may be able to hold conses that point to that
4841 string; then the string is not protected from gc. */
4843 Lisp_Object
4844 make_pure_string (data, nchars, nbytes, multibyte)
4845 char *data;
4846 int nchars, nbytes;
4847 int multibyte;
4849 Lisp_Object string;
4850 struct Lisp_String *s;
4852 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4853 s->data = find_string_data_in_pure (data, nbytes);
4854 if (s->data == NULL)
4856 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4857 bcopy (data, s->data, nbytes);
4858 s->data[nbytes] = '\0';
4860 s->size = nchars;
4861 s->size_byte = multibyte ? nbytes : -1;
4862 s->intervals = NULL_INTERVAL;
4863 XSETSTRING (string, s);
4864 return string;
4868 /* Return a cons allocated from pure space. Give it pure copies
4869 of CAR as car and CDR as cdr. */
4871 Lisp_Object
4872 pure_cons (car, cdr)
4873 Lisp_Object car, cdr;
4875 register Lisp_Object new;
4876 struct Lisp_Cons *p;
4878 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4879 XSETCONS (new, p);
4880 XSETCAR (new, Fpurecopy (car));
4881 XSETCDR (new, Fpurecopy (cdr));
4882 return new;
4886 /* Value is a float object with value NUM allocated from pure space. */
4888 Lisp_Object
4889 make_pure_float (num)
4890 double num;
4892 register Lisp_Object new;
4893 struct Lisp_Float *p;
4895 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4896 XSETFLOAT (new, p);
4897 XFLOAT_DATA (new) = num;
4898 return new;
4902 /* Return a vector with room for LEN Lisp_Objects allocated from
4903 pure space. */
4905 Lisp_Object
4906 make_pure_vector (len)
4907 EMACS_INT len;
4909 Lisp_Object new;
4910 struct Lisp_Vector *p;
4911 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4913 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4914 XSETVECTOR (new, p);
4915 XVECTOR (new)->size = len;
4916 return new;
4920 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4921 doc: /* Make a copy of object OBJ in pure storage.
4922 Recursively copies contents of vectors and cons cells.
4923 Does not copy symbols. Copies strings without text properties. */)
4924 (obj)
4925 register Lisp_Object obj;
4927 if (NILP (Vpurify_flag))
4928 return obj;
4930 if (PURE_POINTER_P (XPNTR (obj)))
4931 return obj;
4933 if (CONSP (obj))
4934 return pure_cons (XCAR (obj), XCDR (obj));
4935 else if (FLOATP (obj))
4936 return make_pure_float (XFLOAT_DATA (obj));
4937 else if (STRINGP (obj))
4938 return make_pure_string (SDATA (obj), SCHARS (obj),
4939 SBYTES (obj),
4940 STRING_MULTIBYTE (obj));
4941 else if (COMPILEDP (obj) || VECTORP (obj))
4943 register struct Lisp_Vector *vec;
4944 register int i;
4945 EMACS_INT size;
4947 size = XVECTOR (obj)->size;
4948 if (size & PSEUDOVECTOR_FLAG)
4949 size &= PSEUDOVECTOR_SIZE_MASK;
4950 vec = XVECTOR (make_pure_vector (size));
4951 for (i = 0; i < size; i++)
4952 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4953 if (COMPILEDP (obj))
4954 XSETCOMPILED (obj, vec);
4955 else
4956 XSETVECTOR (obj, vec);
4957 return obj;
4959 else if (MARKERP (obj))
4960 error ("Attempt to copy a marker to pure storage");
4962 return obj;
4967 /***********************************************************************
4968 Protection from GC
4969 ***********************************************************************/
4971 /* Put an entry in staticvec, pointing at the variable with address
4972 VARADDRESS. */
4974 void
4975 staticpro (varaddress)
4976 Lisp_Object *varaddress;
4978 staticvec[staticidx++] = varaddress;
4979 if (staticidx >= NSTATICS)
4980 abort ();
4983 struct catchtag
4985 Lisp_Object tag;
4986 Lisp_Object val;
4987 struct catchtag *next;
4991 /***********************************************************************
4992 Protection from GC
4993 ***********************************************************************/
4995 /* Temporarily prevent garbage collection. */
4998 inhibit_garbage_collection ()
5000 int count = SPECPDL_INDEX ();
5001 int nbits = min (VALBITS, BITS_PER_INT);
5003 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
5004 return count;
5008 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5009 doc: /* Reclaim storage for Lisp objects no longer needed.
5010 Garbage collection happens automatically if you cons more than
5011 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5012 `garbage-collect' normally returns a list with info on amount of space in use:
5013 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
5014 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
5015 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
5016 (USED-STRINGS . FREE-STRINGS))
5017 However, if there was overflow in pure space, `garbage-collect'
5018 returns nil, because real GC can't be done. */)
5021 register struct specbinding *bind;
5022 struct catchtag *catch;
5023 struct handler *handler;
5024 char stack_top_variable;
5025 register int i;
5026 int message_p;
5027 Lisp_Object total[8];
5028 int count = SPECPDL_INDEX ();
5029 EMACS_TIME t1, t2, t3;
5031 if (abort_on_gc)
5032 abort ();
5034 /* Can't GC if pure storage overflowed because we can't determine
5035 if something is a pure object or not. */
5036 if (pure_bytes_used_before_overflow)
5037 return Qnil;
5039 CHECK_CONS_LIST ();
5041 /* Don't keep undo information around forever.
5042 Do this early on, so it is no problem if the user quits. */
5044 register struct buffer *nextb = all_buffers;
5046 while (nextb)
5048 /* If a buffer's undo list is Qt, that means that undo is
5049 turned off in that buffer. Calling truncate_undo_list on
5050 Qt tends to return NULL, which effectively turns undo back on.
5051 So don't call truncate_undo_list if undo_list is Qt. */
5052 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
5053 truncate_undo_list (nextb);
5055 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5056 if (nextb->base_buffer == 0 && !NILP (nextb->name)
5057 && ! nextb->text->inhibit_shrinking)
5059 /* If a buffer's gap size is more than 10% of the buffer
5060 size, or larger than 2000 bytes, then shrink it
5061 accordingly. Keep a minimum size of 20 bytes. */
5062 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5064 if (nextb->text->gap_size > size)
5066 struct buffer *save_current = current_buffer;
5067 current_buffer = nextb;
5068 make_gap (-(nextb->text->gap_size - size));
5069 current_buffer = save_current;
5073 nextb = nextb->next;
5077 EMACS_GET_TIME (t1);
5079 /* In case user calls debug_print during GC,
5080 don't let that cause a recursive GC. */
5081 consing_since_gc = 0;
5083 /* Save what's currently displayed in the echo area. */
5084 message_p = push_message ();
5085 record_unwind_protect (pop_message_unwind, Qnil);
5087 /* Save a copy of the contents of the stack, for debugging. */
5088 #if MAX_SAVE_STACK > 0
5089 if (NILP (Vpurify_flag))
5091 i = &stack_top_variable - stack_bottom;
5092 if (i < 0) i = -i;
5093 if (i < MAX_SAVE_STACK)
5095 if (stack_copy == 0)
5096 stack_copy = (char *) xmalloc (stack_copy_size = i);
5097 else if (stack_copy_size < i)
5098 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
5099 if (stack_copy)
5101 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
5102 bcopy (stack_bottom, stack_copy, i);
5103 else
5104 bcopy (&stack_top_variable, stack_copy, i);
5108 #endif /* MAX_SAVE_STACK > 0 */
5110 if (garbage_collection_messages)
5111 message1_nolog ("Garbage collecting...");
5113 BLOCK_INPUT;
5115 shrink_regexp_cache ();
5117 gc_in_progress = 1;
5119 /* clear_marks (); */
5121 /* Mark all the special slots that serve as the roots of accessibility. */
5123 for (i = 0; i < staticidx; i++)
5124 mark_object (*staticvec[i]);
5126 for (bind = specpdl; bind != specpdl_ptr; bind++)
5128 mark_object (bind->symbol);
5129 mark_object (bind->old_value);
5131 mark_kboards ();
5133 #ifdef USE_GTK
5135 extern void xg_mark_data ();
5136 xg_mark_data ();
5138 #endif
5140 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5141 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5142 mark_stack ();
5143 #else
5145 register struct gcpro *tail;
5146 for (tail = gcprolist; tail; tail = tail->next)
5147 for (i = 0; i < tail->nvars; i++)
5148 mark_object (tail->var[i]);
5150 #endif
5152 mark_byte_stack ();
5153 for (catch = catchlist; catch; catch = catch->next)
5155 mark_object (catch->tag);
5156 mark_object (catch->val);
5158 for (handler = handlerlist; handler; handler = handler->next)
5160 mark_object (handler->handler);
5161 mark_object (handler->var);
5163 mark_backtrace ();
5165 #ifdef HAVE_WINDOW_SYSTEM
5166 mark_fringe_data ();
5167 #endif
5169 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5170 mark_stack ();
5171 #endif
5173 /* Everything is now marked, except for the things that require special
5174 finalization, i.e. the undo_list.
5175 Look thru every buffer's undo list
5176 for elements that update markers that were not marked,
5177 and delete them. */
5179 register struct buffer *nextb = all_buffers;
5181 while (nextb)
5183 /* If a buffer's undo list is Qt, that means that undo is
5184 turned off in that buffer. Calling truncate_undo_list on
5185 Qt tends to return NULL, which effectively turns undo back on.
5186 So don't call truncate_undo_list if undo_list is Qt. */
5187 if (! EQ (nextb->undo_list, Qt))
5189 Lisp_Object tail, prev;
5190 tail = nextb->undo_list;
5191 prev = Qnil;
5192 while (CONSP (tail))
5194 if (CONSP (XCAR (tail))
5195 && MARKERP (XCAR (XCAR (tail)))
5196 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5198 if (NILP (prev))
5199 nextb->undo_list = tail = XCDR (tail);
5200 else
5202 tail = XCDR (tail);
5203 XSETCDR (prev, tail);
5206 else
5208 prev = tail;
5209 tail = XCDR (tail);
5213 /* Now that we have stripped the elements that need not be in the
5214 undo_list any more, we can finally mark the list. */
5215 mark_object (nextb->undo_list);
5217 nextb = nextb->next;
5221 gc_sweep ();
5223 /* Clear the mark bits that we set in certain root slots. */
5225 unmark_byte_stack ();
5226 VECTOR_UNMARK (&buffer_defaults);
5227 VECTOR_UNMARK (&buffer_local_symbols);
5229 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5230 dump_zombies ();
5231 #endif
5233 UNBLOCK_INPUT;
5235 CHECK_CONS_LIST ();
5237 /* clear_marks (); */
5238 gc_in_progress = 0;
5240 consing_since_gc = 0;
5241 if (gc_cons_threshold < 10000)
5242 gc_cons_threshold = 10000;
5244 if (FLOATP (Vgc_cons_percentage))
5245 { /* Set gc_cons_combined_threshold. */
5246 EMACS_INT total = 0;
5248 total += total_conses * sizeof (struct Lisp_Cons);
5249 total += total_symbols * sizeof (struct Lisp_Symbol);
5250 total += total_markers * sizeof (union Lisp_Misc);
5251 total += total_string_size;
5252 total += total_vector_size * sizeof (Lisp_Object);
5253 total += total_floats * sizeof (struct Lisp_Float);
5254 total += total_intervals * sizeof (struct interval);
5255 total += total_strings * sizeof (struct Lisp_String);
5257 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
5259 else
5260 gc_relative_threshold = 0;
5262 if (garbage_collection_messages)
5264 if (message_p || minibuf_level > 0)
5265 restore_message ();
5266 else
5267 message1_nolog ("Garbage collecting...done");
5270 unbind_to (count, Qnil);
5272 total[0] = Fcons (make_number (total_conses),
5273 make_number (total_free_conses));
5274 total[1] = Fcons (make_number (total_symbols),
5275 make_number (total_free_symbols));
5276 total[2] = Fcons (make_number (total_markers),
5277 make_number (total_free_markers));
5278 total[3] = make_number (total_string_size);
5279 total[4] = make_number (total_vector_size);
5280 total[5] = Fcons (make_number (total_floats),
5281 make_number (total_free_floats));
5282 total[6] = Fcons (make_number (total_intervals),
5283 make_number (total_free_intervals));
5284 total[7] = Fcons (make_number (total_strings),
5285 make_number (total_free_strings));
5287 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5289 /* Compute average percentage of zombies. */
5290 double nlive = 0;
5292 for (i = 0; i < 7; ++i)
5293 if (CONSP (total[i]))
5294 nlive += XFASTINT (XCAR (total[i]));
5296 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5297 max_live = max (nlive, max_live);
5298 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5299 max_zombies = max (nzombies, max_zombies);
5300 ++ngcs;
5302 #endif
5304 if (!NILP (Vpost_gc_hook))
5306 int count = inhibit_garbage_collection ();
5307 safe_run_hooks (Qpost_gc_hook);
5308 unbind_to (count, Qnil);
5311 /* Accumulate statistics. */
5312 EMACS_GET_TIME (t2);
5313 EMACS_SUB_TIME (t3, t2, t1);
5314 if (FLOATP (Vgc_elapsed))
5315 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5316 EMACS_SECS (t3) +
5317 EMACS_USECS (t3) * 1.0e-6);
5318 gcs_done++;
5320 return Flist (sizeof total / sizeof *total, total);
5324 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5325 only interesting objects referenced from glyphs are strings. */
5327 static void
5328 mark_glyph_matrix (matrix)
5329 struct glyph_matrix *matrix;
5331 struct glyph_row *row = matrix->rows;
5332 struct glyph_row *end = row + matrix->nrows;
5334 for (; row < end; ++row)
5335 if (row->enabled_p)
5337 int area;
5338 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5340 struct glyph *glyph = row->glyphs[area];
5341 struct glyph *end_glyph = glyph + row->used[area];
5343 for (; glyph < end_glyph; ++glyph)
5344 if (STRINGP (glyph->object)
5345 && !STRING_MARKED_P (XSTRING (glyph->object)))
5346 mark_object (glyph->object);
5352 /* Mark Lisp faces in the face cache C. */
5354 static void
5355 mark_face_cache (c)
5356 struct face_cache *c;
5358 if (c)
5360 int i, j;
5361 for (i = 0; i < c->used; ++i)
5363 struct face *face = FACE_FROM_ID (c->f, i);
5365 if (face)
5367 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5368 mark_object (face->lface[j]);
5375 #ifdef HAVE_WINDOW_SYSTEM
5377 /* Mark Lisp objects in image IMG. */
5379 static void
5380 mark_image (img)
5381 struct image *img;
5383 mark_object (img->spec);
5385 if (!NILP (img->data.lisp_val))
5386 mark_object (img->data.lisp_val);
5390 /* Mark Lisp objects in image cache of frame F. It's done this way so
5391 that we don't have to include xterm.h here. */
5393 static void
5394 mark_image_cache (f)
5395 struct frame *f;
5397 forall_images_in_image_cache (f, mark_image);
5400 #endif /* HAVE_X_WINDOWS */
5404 /* Mark reference to a Lisp_Object.
5405 If the object referred to has not been seen yet, recursively mark
5406 all the references contained in it. */
5408 #define LAST_MARKED_SIZE 500
5409 Lisp_Object last_marked[LAST_MARKED_SIZE];
5410 int last_marked_index;
5412 /* For debugging--call abort when we cdr down this many
5413 links of a list, in mark_object. In debugging,
5414 the call to abort will hit a breakpoint.
5415 Normally this is zero and the check never goes off. */
5416 int mark_object_loop_halt;
5418 void
5419 mark_object (arg)
5420 Lisp_Object arg;
5422 register Lisp_Object obj = arg;
5423 #ifdef GC_CHECK_MARKED_OBJECTS
5424 void *po;
5425 struct mem_node *m;
5426 #endif
5427 int cdr_count = 0;
5429 loop:
5431 if (PURE_POINTER_P (XPNTR (obj)))
5432 return;
5434 last_marked[last_marked_index++] = obj;
5435 if (last_marked_index == LAST_MARKED_SIZE)
5436 last_marked_index = 0;
5438 /* Perform some sanity checks on the objects marked here. Abort if
5439 we encounter an object we know is bogus. This increases GC time
5440 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5441 #ifdef GC_CHECK_MARKED_OBJECTS
5443 po = (void *) XPNTR (obj);
5445 /* Check that the object pointed to by PO is known to be a Lisp
5446 structure allocated from the heap. */
5447 #define CHECK_ALLOCATED() \
5448 do { \
5449 m = mem_find (po); \
5450 if (m == MEM_NIL) \
5451 abort (); \
5452 } while (0)
5454 /* Check that the object pointed to by PO is live, using predicate
5455 function LIVEP. */
5456 #define CHECK_LIVE(LIVEP) \
5457 do { \
5458 if (!LIVEP (m, po)) \
5459 abort (); \
5460 } while (0)
5462 /* Check both of the above conditions. */
5463 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5464 do { \
5465 CHECK_ALLOCATED (); \
5466 CHECK_LIVE (LIVEP); \
5467 } while (0) \
5469 #else /* not GC_CHECK_MARKED_OBJECTS */
5471 #define CHECK_ALLOCATED() (void) 0
5472 #define CHECK_LIVE(LIVEP) (void) 0
5473 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5475 #endif /* not GC_CHECK_MARKED_OBJECTS */
5477 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5479 case Lisp_String:
5481 register struct Lisp_String *ptr = XSTRING (obj);
5482 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5483 MARK_INTERVAL_TREE (ptr->intervals);
5484 MARK_STRING (ptr);
5485 #ifdef GC_CHECK_STRING_BYTES
5486 /* Check that the string size recorded in the string is the
5487 same as the one recorded in the sdata structure. */
5488 CHECK_STRING_BYTES (ptr);
5489 #endif /* GC_CHECK_STRING_BYTES */
5491 break;
5493 case Lisp_Vectorlike:
5494 #ifdef GC_CHECK_MARKED_OBJECTS
5495 m = mem_find (po);
5496 if (m == MEM_NIL && !SUBRP (obj)
5497 && po != &buffer_defaults
5498 && po != &buffer_local_symbols)
5499 abort ();
5500 #endif /* GC_CHECK_MARKED_OBJECTS */
5502 if (BUFFERP (obj))
5504 if (!VECTOR_MARKED_P (XBUFFER (obj)))
5506 #ifdef GC_CHECK_MARKED_OBJECTS
5507 if (po != &buffer_defaults && po != &buffer_local_symbols)
5509 struct buffer *b;
5510 for (b = all_buffers; b && b != po; b = b->next)
5512 if (b == NULL)
5513 abort ();
5515 #endif /* GC_CHECK_MARKED_OBJECTS */
5516 mark_buffer (obj);
5519 else if (SUBRP (obj))
5520 break;
5521 else if (COMPILEDP (obj))
5522 /* We could treat this just like a vector, but it is better to
5523 save the COMPILED_CONSTANTS element for last and avoid
5524 recursion there. */
5526 register struct Lisp_Vector *ptr = XVECTOR (obj);
5527 register EMACS_INT size = ptr->size;
5528 register int i;
5530 if (VECTOR_MARKED_P (ptr))
5531 break; /* Already marked */
5533 CHECK_LIVE (live_vector_p);
5534 VECTOR_MARK (ptr); /* Else mark it */
5535 size &= PSEUDOVECTOR_SIZE_MASK;
5536 for (i = 0; i < size; i++) /* and then mark its elements */
5538 if (i != COMPILED_CONSTANTS)
5539 mark_object (ptr->contents[i]);
5541 obj = ptr->contents[COMPILED_CONSTANTS];
5542 goto loop;
5544 else if (FRAMEP (obj))
5546 register struct frame *ptr = XFRAME (obj);
5548 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
5549 VECTOR_MARK (ptr); /* Else mark it */
5551 CHECK_LIVE (live_vector_p);
5552 mark_object (ptr->name);
5553 mark_object (ptr->icon_name);
5554 mark_object (ptr->title);
5555 mark_object (ptr->focus_frame);
5556 mark_object (ptr->selected_window);
5557 mark_object (ptr->minibuffer_window);
5558 mark_object (ptr->param_alist);
5559 mark_object (ptr->scroll_bars);
5560 mark_object (ptr->condemned_scroll_bars);
5561 mark_object (ptr->menu_bar_items);
5562 mark_object (ptr->face_alist);
5563 mark_object (ptr->menu_bar_vector);
5564 mark_object (ptr->buffer_predicate);
5565 mark_object (ptr->buffer_list);
5566 mark_object (ptr->menu_bar_window);
5567 mark_object (ptr->tool_bar_window);
5568 mark_face_cache (ptr->face_cache);
5569 #ifdef HAVE_WINDOW_SYSTEM
5570 mark_image_cache (ptr);
5571 mark_object (ptr->tool_bar_items);
5572 mark_object (ptr->desired_tool_bar_string);
5573 mark_object (ptr->current_tool_bar_string);
5574 #endif /* HAVE_WINDOW_SYSTEM */
5576 else if (BOOL_VECTOR_P (obj))
5578 register struct Lisp_Vector *ptr = XVECTOR (obj);
5580 if (VECTOR_MARKED_P (ptr))
5581 break; /* Already marked */
5582 CHECK_LIVE (live_vector_p);
5583 VECTOR_MARK (ptr); /* Else mark it */
5585 else if (WINDOWP (obj))
5587 register struct Lisp_Vector *ptr = XVECTOR (obj);
5588 struct window *w = XWINDOW (obj);
5589 register int i;
5591 /* Stop if already marked. */
5592 if (VECTOR_MARKED_P (ptr))
5593 break;
5595 /* Mark it. */
5596 CHECK_LIVE (live_vector_p);
5597 VECTOR_MARK (ptr);
5599 /* There is no Lisp data above The member CURRENT_MATRIX in
5600 struct WINDOW. Stop marking when that slot is reached. */
5601 for (i = 0;
5602 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
5603 i++)
5604 mark_object (ptr->contents[i]);
5606 /* Mark glyphs for leaf windows. Marking window matrices is
5607 sufficient because frame matrices use the same glyph
5608 memory. */
5609 if (NILP (w->hchild)
5610 && NILP (w->vchild)
5611 && w->current_matrix)
5613 mark_glyph_matrix (w->current_matrix);
5614 mark_glyph_matrix (w->desired_matrix);
5617 else if (HASH_TABLE_P (obj))
5619 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5621 /* Stop if already marked. */
5622 if (VECTOR_MARKED_P (h))
5623 break;
5625 /* Mark it. */
5626 CHECK_LIVE (live_vector_p);
5627 VECTOR_MARK (h);
5629 /* Mark contents. */
5630 /* Do not mark next_free or next_weak.
5631 Being in the next_weak chain
5632 should not keep the hash table alive.
5633 No need to mark `count' since it is an integer. */
5634 mark_object (h->test);
5635 mark_object (h->weak);
5636 mark_object (h->rehash_size);
5637 mark_object (h->rehash_threshold);
5638 mark_object (h->hash);
5639 mark_object (h->next);
5640 mark_object (h->index);
5641 mark_object (h->user_hash_function);
5642 mark_object (h->user_cmp_function);
5644 /* If hash table is not weak, mark all keys and values.
5645 For weak tables, mark only the vector. */
5646 if (NILP (h->weak))
5647 mark_object (h->key_and_value);
5648 else
5649 VECTOR_MARK (XVECTOR (h->key_and_value));
5651 else
5653 register struct Lisp_Vector *ptr = XVECTOR (obj);
5654 register EMACS_INT size = ptr->size;
5655 register int i;
5657 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
5658 CHECK_LIVE (live_vector_p);
5659 VECTOR_MARK (ptr); /* Else mark it */
5660 if (size & PSEUDOVECTOR_FLAG)
5661 size &= PSEUDOVECTOR_SIZE_MASK;
5663 /* Note that this size is not the memory-footprint size, but only
5664 the number of Lisp_Object fields that we should trace.
5665 The distinction is used e.g. by Lisp_Process which places extra
5666 non-Lisp_Object fields at the end of the structure. */
5667 for (i = 0; i < size; i++) /* and then mark its elements */
5668 mark_object (ptr->contents[i]);
5670 break;
5672 case Lisp_Symbol:
5674 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5675 struct Lisp_Symbol *ptrx;
5677 if (ptr->gcmarkbit) break;
5678 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5679 ptr->gcmarkbit = 1;
5680 mark_object (ptr->value);
5681 mark_object (ptr->function);
5682 mark_object (ptr->plist);
5684 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5685 MARK_STRING (XSTRING (ptr->xname));
5686 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5688 /* Note that we do not mark the obarray of the symbol.
5689 It is safe not to do so because nothing accesses that
5690 slot except to check whether it is nil. */
5691 ptr = ptr->next;
5692 if (ptr)
5694 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5695 XSETSYMBOL (obj, ptrx);
5696 goto loop;
5699 break;
5701 case Lisp_Misc:
5702 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5703 if (XMARKER (obj)->gcmarkbit)
5704 break;
5705 XMARKER (obj)->gcmarkbit = 1;
5707 switch (XMISCTYPE (obj))
5709 case Lisp_Misc_Buffer_Local_Value:
5710 case Lisp_Misc_Some_Buffer_Local_Value:
5712 register struct Lisp_Buffer_Local_Value *ptr
5713 = XBUFFER_LOCAL_VALUE (obj);
5714 /* If the cdr is nil, avoid recursion for the car. */
5715 if (EQ (ptr->cdr, Qnil))
5717 obj = ptr->realvalue;
5718 goto loop;
5720 mark_object (ptr->realvalue);
5721 mark_object (ptr->buffer);
5722 mark_object (ptr->frame);
5723 obj = ptr->cdr;
5724 goto loop;
5727 case Lisp_Misc_Marker:
5728 /* DO NOT mark thru the marker's chain.
5729 The buffer's markers chain does not preserve markers from gc;
5730 instead, markers are removed from the chain when freed by gc. */
5731 break;
5733 case Lisp_Misc_Intfwd:
5734 case Lisp_Misc_Boolfwd:
5735 case Lisp_Misc_Objfwd:
5736 case Lisp_Misc_Buffer_Objfwd:
5737 case Lisp_Misc_Kboard_Objfwd:
5738 /* Don't bother with Lisp_Buffer_Objfwd,
5739 since all markable slots in current buffer marked anyway. */
5740 /* Don't need to do Lisp_Objfwd, since the places they point
5741 are protected with staticpro. */
5742 break;
5744 case Lisp_Misc_Save_Value:
5745 #if GC_MARK_STACK
5747 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5748 /* If DOGC is set, POINTER is the address of a memory
5749 area containing INTEGER potential Lisp_Objects. */
5750 if (ptr->dogc)
5752 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5753 int nelt;
5754 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5755 mark_maybe_object (*p);
5758 #endif
5759 break;
5761 case Lisp_Misc_Overlay:
5763 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5764 mark_object (ptr->start);
5765 mark_object (ptr->end);
5766 mark_object (ptr->plist);
5767 if (ptr->next)
5769 XSETMISC (obj, ptr->next);
5770 goto loop;
5773 break;
5775 default:
5776 abort ();
5778 break;
5780 case Lisp_Cons:
5782 register struct Lisp_Cons *ptr = XCONS (obj);
5783 if (CONS_MARKED_P (ptr)) break;
5784 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5785 CONS_MARK (ptr);
5786 /* If the cdr is nil, avoid recursion for the car. */
5787 if (EQ (ptr->u.cdr, Qnil))
5789 obj = ptr->car;
5790 cdr_count = 0;
5791 goto loop;
5793 mark_object (ptr->car);
5794 obj = ptr->u.cdr;
5795 cdr_count++;
5796 if (cdr_count == mark_object_loop_halt)
5797 abort ();
5798 goto loop;
5801 case Lisp_Float:
5802 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5803 FLOAT_MARK (XFLOAT (obj));
5804 break;
5806 case Lisp_Int:
5807 break;
5809 default:
5810 abort ();
5813 #undef CHECK_LIVE
5814 #undef CHECK_ALLOCATED
5815 #undef CHECK_ALLOCATED_AND_LIVE
5818 /* Mark the pointers in a buffer structure. */
5820 static void
5821 mark_buffer (buf)
5822 Lisp_Object buf;
5824 register struct buffer *buffer = XBUFFER (buf);
5825 register Lisp_Object *ptr, tmp;
5826 Lisp_Object base_buffer;
5828 VECTOR_MARK (buffer);
5830 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5832 /* For now, we just don't mark the undo_list. It's done later in
5833 a special way just before the sweep phase, and after stripping
5834 some of its elements that are not needed any more. */
5836 if (buffer->overlays_before)
5838 XSETMISC (tmp, buffer->overlays_before);
5839 mark_object (tmp);
5841 if (buffer->overlays_after)
5843 XSETMISC (tmp, buffer->overlays_after);
5844 mark_object (tmp);
5847 for (ptr = &buffer->name;
5848 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5849 ptr++)
5850 mark_object (*ptr);
5852 /* If this is an indirect buffer, mark its base buffer. */
5853 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5855 XSETBUFFER (base_buffer, buffer->base_buffer);
5856 mark_buffer (base_buffer);
5861 /* Value is non-zero if OBJ will survive the current GC because it's
5862 either marked or does not need to be marked to survive. */
5865 survives_gc_p (obj)
5866 Lisp_Object obj;
5868 int survives_p;
5870 switch (XTYPE (obj))
5872 case Lisp_Int:
5873 survives_p = 1;
5874 break;
5876 case Lisp_Symbol:
5877 survives_p = XSYMBOL (obj)->gcmarkbit;
5878 break;
5880 case Lisp_Misc:
5881 survives_p = XMARKER (obj)->gcmarkbit;
5882 break;
5884 case Lisp_String:
5885 survives_p = STRING_MARKED_P (XSTRING (obj));
5886 break;
5888 case Lisp_Vectorlike:
5889 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5890 break;
5892 case Lisp_Cons:
5893 survives_p = CONS_MARKED_P (XCONS (obj));
5894 break;
5896 case Lisp_Float:
5897 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5898 break;
5900 default:
5901 abort ();
5904 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5909 /* Sweep: find all structures not marked, and free them. */
5911 static void
5912 gc_sweep ()
5914 /* Remove or mark entries in weak hash tables.
5915 This must be done before any object is unmarked. */
5916 sweep_weak_hash_tables ();
5918 sweep_strings ();
5919 #ifdef GC_CHECK_STRING_BYTES
5920 if (!noninteractive)
5921 check_string_bytes (1);
5922 #endif
5924 /* Put all unmarked conses on free list */
5926 register struct cons_block *cblk;
5927 struct cons_block **cprev = &cons_block;
5928 register int lim = cons_block_index;
5929 register int num_free = 0, num_used = 0;
5931 cons_free_list = 0;
5933 for (cblk = cons_block; cblk; cblk = *cprev)
5935 register int i;
5936 int this_free = 0;
5937 for (i = 0; i < lim; i++)
5938 if (!CONS_MARKED_P (&cblk->conses[i]))
5940 this_free++;
5941 cblk->conses[i].u.chain = cons_free_list;
5942 cons_free_list = &cblk->conses[i];
5943 #if GC_MARK_STACK
5944 cons_free_list->car = Vdead;
5945 #endif
5947 else
5949 num_used++;
5950 CONS_UNMARK (&cblk->conses[i]);
5952 lim = CONS_BLOCK_SIZE;
5953 /* If this block contains only free conses and we have already
5954 seen more than two blocks worth of free conses then deallocate
5955 this block. */
5956 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5958 *cprev = cblk->next;
5959 /* Unhook from the free list. */
5960 cons_free_list = cblk->conses[0].u.chain;
5961 lisp_align_free (cblk);
5962 n_cons_blocks--;
5964 else
5966 num_free += this_free;
5967 cprev = &cblk->next;
5970 total_conses = num_used;
5971 total_free_conses = num_free;
5974 /* Put all unmarked floats on free list */
5976 register struct float_block *fblk;
5977 struct float_block **fprev = &float_block;
5978 register int lim = float_block_index;
5979 register int num_free = 0, num_used = 0;
5981 float_free_list = 0;
5983 for (fblk = float_block; fblk; fblk = *fprev)
5985 register int i;
5986 int this_free = 0;
5987 for (i = 0; i < lim; i++)
5988 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5990 this_free++;
5991 fblk->floats[i].u.chain = float_free_list;
5992 float_free_list = &fblk->floats[i];
5994 else
5996 num_used++;
5997 FLOAT_UNMARK (&fblk->floats[i]);
5999 lim = FLOAT_BLOCK_SIZE;
6000 /* If this block contains only free floats and we have already
6001 seen more than two blocks worth of free floats then deallocate
6002 this block. */
6003 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6005 *fprev = fblk->next;
6006 /* Unhook from the free list. */
6007 float_free_list = fblk->floats[0].u.chain;
6008 lisp_align_free (fblk);
6009 n_float_blocks--;
6011 else
6013 num_free += this_free;
6014 fprev = &fblk->next;
6017 total_floats = num_used;
6018 total_free_floats = num_free;
6021 /* Put all unmarked intervals on free list */
6023 register struct interval_block *iblk;
6024 struct interval_block **iprev = &interval_block;
6025 register int lim = interval_block_index;
6026 register int num_free = 0, num_used = 0;
6028 interval_free_list = 0;
6030 for (iblk = interval_block; iblk; iblk = *iprev)
6032 register int i;
6033 int this_free = 0;
6035 for (i = 0; i < lim; i++)
6037 if (!iblk->intervals[i].gcmarkbit)
6039 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
6040 interval_free_list = &iblk->intervals[i];
6041 this_free++;
6043 else
6045 num_used++;
6046 iblk->intervals[i].gcmarkbit = 0;
6049 lim = INTERVAL_BLOCK_SIZE;
6050 /* If this block contains only free intervals and we have already
6051 seen more than two blocks worth of free intervals then
6052 deallocate this block. */
6053 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6055 *iprev = iblk->next;
6056 /* Unhook from the free list. */
6057 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6058 lisp_free (iblk);
6059 n_interval_blocks--;
6061 else
6063 num_free += this_free;
6064 iprev = &iblk->next;
6067 total_intervals = num_used;
6068 total_free_intervals = num_free;
6071 /* Put all unmarked symbols on free list */
6073 register struct symbol_block *sblk;
6074 struct symbol_block **sprev = &symbol_block;
6075 register int lim = symbol_block_index;
6076 register int num_free = 0, num_used = 0;
6078 symbol_free_list = NULL;
6080 for (sblk = symbol_block; sblk; sblk = *sprev)
6082 int this_free = 0;
6083 struct Lisp_Symbol *sym = sblk->symbols;
6084 struct Lisp_Symbol *end = sym + lim;
6086 for (; sym < end; ++sym)
6088 /* Check if the symbol was created during loadup. In such a case
6089 it might be pointed to by pure bytecode which we don't trace,
6090 so we conservatively assume that it is live. */
6091 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
6093 if (!sym->gcmarkbit && !pure_p)
6095 sym->next = symbol_free_list;
6096 symbol_free_list = sym;
6097 #if GC_MARK_STACK
6098 symbol_free_list->function = Vdead;
6099 #endif
6100 ++this_free;
6102 else
6104 ++num_used;
6105 if (!pure_p)
6106 UNMARK_STRING (XSTRING (sym->xname));
6107 sym->gcmarkbit = 0;
6111 lim = SYMBOL_BLOCK_SIZE;
6112 /* If this block contains only free symbols and we have already
6113 seen more than two blocks worth of free symbols then deallocate
6114 this block. */
6115 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6117 *sprev = sblk->next;
6118 /* Unhook from the free list. */
6119 symbol_free_list = sblk->symbols[0].next;
6120 lisp_free (sblk);
6121 n_symbol_blocks--;
6123 else
6125 num_free += this_free;
6126 sprev = &sblk->next;
6129 total_symbols = num_used;
6130 total_free_symbols = num_free;
6133 /* Put all unmarked misc's on free list.
6134 For a marker, first unchain it from the buffer it points into. */
6136 register struct marker_block *mblk;
6137 struct marker_block **mprev = &marker_block;
6138 register int lim = marker_block_index;
6139 register int num_free = 0, num_used = 0;
6141 marker_free_list = 0;
6143 for (mblk = marker_block; mblk; mblk = *mprev)
6145 register int i;
6146 int this_free = 0;
6148 for (i = 0; i < lim; i++)
6150 if (!mblk->markers[i].u_marker.gcmarkbit)
6152 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
6153 unchain_marker (&mblk->markers[i].u_marker);
6154 /* Set the type of the freed object to Lisp_Misc_Free.
6155 We could leave the type alone, since nobody checks it,
6156 but this might catch bugs faster. */
6157 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
6158 mblk->markers[i].u_free.chain = marker_free_list;
6159 marker_free_list = &mblk->markers[i];
6160 this_free++;
6162 else
6164 num_used++;
6165 mblk->markers[i].u_marker.gcmarkbit = 0;
6168 lim = MARKER_BLOCK_SIZE;
6169 /* If this block contains only free markers and we have already
6170 seen more than two blocks worth of free markers then deallocate
6171 this block. */
6172 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6174 *mprev = mblk->next;
6175 /* Unhook from the free list. */
6176 marker_free_list = mblk->markers[0].u_free.chain;
6177 lisp_free (mblk);
6178 n_marker_blocks--;
6180 else
6182 num_free += this_free;
6183 mprev = &mblk->next;
6187 total_markers = num_used;
6188 total_free_markers = num_free;
6191 /* Free all unmarked buffers */
6193 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6195 while (buffer)
6196 if (!VECTOR_MARKED_P (buffer))
6198 if (prev)
6199 prev->next = buffer->next;
6200 else
6201 all_buffers = buffer->next;
6202 next = buffer->next;
6203 lisp_free (buffer);
6204 buffer = next;
6206 else
6208 VECTOR_UNMARK (buffer);
6209 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6210 prev = buffer, buffer = buffer->next;
6214 /* Free all unmarked vectors */
6216 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6217 total_vector_size = 0;
6219 while (vector)
6220 if (!VECTOR_MARKED_P (vector))
6222 if (prev)
6223 prev->next = vector->next;
6224 else
6225 all_vectors = vector->next;
6226 next = vector->next;
6227 lisp_free (vector);
6228 n_vectors--;
6229 vector = next;
6232 else
6234 VECTOR_UNMARK (vector);
6235 if (vector->size & PSEUDOVECTOR_FLAG)
6236 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6237 else
6238 total_vector_size += vector->size;
6239 prev = vector, vector = vector->next;
6243 #ifdef GC_CHECK_STRING_BYTES
6244 if (!noninteractive)
6245 check_string_bytes (1);
6246 #endif
6252 /* Debugging aids. */
6254 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6255 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6256 This may be helpful in debugging Emacs's memory usage.
6257 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6260 Lisp_Object end;
6262 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
6264 return end;
6267 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6268 doc: /* Return a list of counters that measure how much consing there has been.
6269 Each of these counters increments for a certain kind of object.
6270 The counters wrap around from the largest positive integer to zero.
6271 Garbage collection does not decrease them.
6272 The elements of the value are as follows:
6273 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6274 All are in units of 1 = one object consed
6275 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6276 objects consed.
6277 MISCS include overlays, markers, and some internal types.
6278 Frames, windows, buffers, and subprocesses count as vectors
6279 (but the contents of a buffer's text do not count here). */)
6282 Lisp_Object consed[8];
6284 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6285 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6286 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6287 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6288 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6289 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6290 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6291 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6293 return Flist (8, consed);
6296 int suppress_checking;
6297 void
6298 die (msg, file, line)
6299 const char *msg;
6300 const char *file;
6301 int line;
6303 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
6304 file, line, msg);
6305 abort ();
6308 /* Initialization */
6310 void
6311 init_alloc_once ()
6313 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6314 purebeg = PUREBEG;
6315 pure_size = PURESIZE;
6316 pure_bytes_used = 0;
6317 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6318 pure_bytes_used_before_overflow = 0;
6320 /* Initialize the list of free aligned blocks. */
6321 free_ablock = NULL;
6323 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6324 mem_init ();
6325 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6326 #endif
6328 all_vectors = 0;
6329 ignore_warnings = 1;
6330 #ifdef DOUG_LEA_MALLOC
6331 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6332 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6333 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6334 #endif
6335 init_strings ();
6336 init_cons ();
6337 init_symbol ();
6338 init_marker ();
6339 init_float ();
6340 init_intervals ();
6342 #ifdef REL_ALLOC
6343 malloc_hysteresis = 32;
6344 #else
6345 malloc_hysteresis = 0;
6346 #endif
6348 refill_memory_reserve ();
6350 ignore_warnings = 0;
6351 gcprolist = 0;
6352 byte_stack_list = 0;
6353 staticidx = 0;
6354 consing_since_gc = 0;
6355 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6356 gc_relative_threshold = 0;
6358 #ifdef VIRT_ADDR_VARIES
6359 malloc_sbrk_unused = 1<<22; /* A large number */
6360 malloc_sbrk_used = 100000; /* as reasonable as any number */
6361 #endif /* VIRT_ADDR_VARIES */
6364 void
6365 init_alloc ()
6367 gcprolist = 0;
6368 byte_stack_list = 0;
6369 #if GC_MARK_STACK
6370 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6371 setjmp_tested_p = longjmps_done = 0;
6372 #endif
6373 #endif
6374 Vgc_elapsed = make_float (0.0);
6375 gcs_done = 0;
6378 void
6379 syms_of_alloc ()
6381 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
6382 doc: /* *Number of bytes of consing between garbage collections.
6383 Garbage collection can happen automatically once this many bytes have been
6384 allocated since the last garbage collection. All data types count.
6386 Garbage collection happens automatically only when `eval' is called.
6388 By binding this temporarily to a large number, you can effectively
6389 prevent garbage collection during a part of the program.
6390 See also `gc-cons-percentage'. */);
6392 DEFVAR_LISP ("gc-cons-percentage", &Vgc_cons_percentage,
6393 doc: /* *Portion of the heap used for allocation.
6394 Garbage collection can happen automatically once this portion of the heap
6395 has been allocated since the last garbage collection.
6396 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6397 Vgc_cons_percentage = make_float (0.1);
6399 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
6400 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6402 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
6403 doc: /* Number of cons cells that have been consed so far. */);
6405 DEFVAR_INT ("floats-consed", &floats_consed,
6406 doc: /* Number of floats that have been consed so far. */);
6408 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
6409 doc: /* Number of vector cells that have been consed so far. */);
6411 DEFVAR_INT ("symbols-consed", &symbols_consed,
6412 doc: /* Number of symbols that have been consed so far. */);
6414 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
6415 doc: /* Number of string characters that have been consed so far. */);
6417 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
6418 doc: /* Number of miscellaneous objects that have been consed so far. */);
6420 DEFVAR_INT ("intervals-consed", &intervals_consed,
6421 doc: /* Number of intervals that have been consed so far. */);
6423 DEFVAR_INT ("strings-consed", &strings_consed,
6424 doc: /* Number of strings that have been consed so far. */);
6426 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
6427 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6428 This means that certain objects should be allocated in shared (pure) space. */);
6430 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
6431 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6432 garbage_collection_messages = 0;
6434 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
6435 doc: /* Hook run after garbage collection has finished. */);
6436 Vpost_gc_hook = Qnil;
6437 Qpost_gc_hook = intern ("post-gc-hook");
6438 staticpro (&Qpost_gc_hook);
6440 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6441 doc: /* Precomputed `signal' argument for memory-full error. */);
6442 /* We build this in advance because if we wait until we need it, we might
6443 not be able to allocate the memory to hold it. */
6444 Vmemory_signal_data
6445 = list2 (Qerror,
6446 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6448 DEFVAR_LISP ("memory-full", &Vmemory_full,
6449 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6450 Vmemory_full = Qnil;
6452 staticpro (&Qgc_cons_threshold);
6453 Qgc_cons_threshold = intern ("gc-cons-threshold");
6455 staticpro (&Qchar_table_extra_slots);
6456 Qchar_table_extra_slots = intern ("char-table-extra-slots");
6458 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6459 doc: /* Accumulated time elapsed in garbage collections.
6460 The time is in seconds as a floating point value. */);
6461 DEFVAR_INT ("gcs-done", &gcs_done,
6462 doc: /* Accumulated number of garbage collections done. */);
6464 defsubr (&Scons);
6465 defsubr (&Slist);
6466 defsubr (&Svector);
6467 defsubr (&Smake_byte_code);
6468 defsubr (&Smake_list);
6469 defsubr (&Smake_vector);
6470 defsubr (&Smake_string);
6471 defsubr (&Smake_bool_vector);
6472 defsubr (&Smake_symbol);
6473 defsubr (&Smake_marker);
6474 defsubr (&Spurecopy);
6475 defsubr (&Sgarbage_collect);
6476 defsubr (&Smemory_limit);
6477 defsubr (&Smemory_use_counts);
6479 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6480 defsubr (&Sgc_status);
6481 #endif
6484 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6485 (do not change this comment) */