Whitespace change.
[emacs.git] / lisp / emacs-lisp / byte-opt.el
blobda8e7583438b47a5d155e091f3d4c5d767191dcb
1 ;;; byte-opt.el --- the optimization passes of the emacs-lisp byte compiler
3 ;; Copyright (c) 1991,1994,2000,01,02,2004 Free Software Foundation, Inc.
5 ;; Author: Jamie Zawinski <jwz@lucid.com>
6 ;; Hallvard Furuseth <hbf@ulrik.uio.no>
7 ;; Maintainer: FSF
8 ;; Keywords: internal
10 ;; This file is part of GNU Emacs.
12 ;; GNU Emacs is free software; you can redistribute it and/or modify
13 ;; it under the terms of the GNU General Public License as published by
14 ;; the Free Software Foundation; either version 2, or (at your option)
15 ;; any later version.
17 ;; GNU Emacs is distributed in the hope that it will be useful,
18 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
19 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 ;; GNU General Public License for more details.
22 ;; You should have received a copy of the GNU General Public License
23 ;; along with GNU Emacs; see the file COPYING. If not, write to the
24 ;; Free Software Foundation, Inc., 59 Temple Place - Suite 330,
25 ;; Boston, MA 02111-1307, USA.
27 ;;; Commentary:
29 ;; ========================================================================
30 ;; "No matter how hard you try, you can't make a racehorse out of a pig.
31 ;; You can, however, make a faster pig."
33 ;; Or, to put it another way, the emacs byte compiler is a VW Bug. This code
34 ;; makes it be a VW Bug with fuel injection and a turbocharger... You're
35 ;; still not going to make it go faster than 70 mph, but it might be easier
36 ;; to get it there.
39 ;; TO DO:
41 ;; (apply (lambda (x &rest y) ...) 1 (foo))
43 ;; maintain a list of functions known not to access any global variables
44 ;; (actually, give them a 'dynamically-safe property) and then
45 ;; (let ( v1 v2 ... vM vN ) <...dynamically-safe...> ) ==>
46 ;; (let ( v1 v2 ... vM ) vN <...dynamically-safe...> )
47 ;; by recursing on this, we might be able to eliminate the entire let.
48 ;; However certain variables should never have their bindings optimized
49 ;; away, because they affect everything.
50 ;; (put 'debug-on-error 'binding-is-magic t)
51 ;; (put 'debug-on-abort 'binding-is-magic t)
52 ;; (put 'debug-on-next-call 'binding-is-magic t)
53 ;; (put 'inhibit-quit 'binding-is-magic t)
54 ;; (put 'quit-flag 'binding-is-magic t)
55 ;; (put 't 'binding-is-magic t)
56 ;; (put 'nil 'binding-is-magic t)
57 ;; possibly also
58 ;; (put 'gc-cons-threshold 'binding-is-magic t)
59 ;; (put 'track-mouse 'binding-is-magic t)
60 ;; others?
62 ;; Simple defsubsts often produce forms like
63 ;; (let ((v1 (f1)) (v2 (f2)) ...)
64 ;; (FN v1 v2 ...))
65 ;; It would be nice if we could optimize this to
66 ;; (FN (f1) (f2) ...)
67 ;; but we can't unless FN is dynamically-safe (it might be dynamically
68 ;; referring to the bindings that the lambda arglist established.)
69 ;; One of the uncountable lossages introduced by dynamic scope...
71 ;; Maybe there should be a control-structure that says "turn on
72 ;; fast-and-loose type-assumptive optimizations here." Then when
73 ;; we see a form like (car foo) we can from then on assume that
74 ;; the variable foo is of type cons, and optimize based on that.
75 ;; But, this won't win much because of (you guessed it) dynamic
76 ;; scope. Anything down the stack could change the value.
77 ;; (Another reason it doesn't work is that it is perfectly valid
78 ;; to call car with a null argument.) A better approach might
79 ;; be to allow type-specification of the form
80 ;; (put 'foo 'arg-types '(float (list integer) dynamic))
81 ;; (put 'foo 'result-type 'bool)
82 ;; It should be possible to have these types checked to a certain
83 ;; degree.
85 ;; collapse common subexpressions
87 ;; It would be nice if redundant sequences could be factored out as well,
88 ;; when they are known to have no side-effects:
89 ;; (list (+ a b c) (+ a b c)) --> a b add c add dup list-2
90 ;; but beware of traps like
91 ;; (cons (list x y) (list x y))
93 ;; Tail-recursion elimination is not really possible in Emacs Lisp.
94 ;; Tail-recursion elimination is almost always impossible when all variables
95 ;; have dynamic scope, but given that the "return" byteop requires the
96 ;; binding stack to be empty (rather than emptying it itself), there can be
97 ;; no truly tail-recursive Emacs Lisp functions that take any arguments or
98 ;; make any bindings.
100 ;; Here is an example of an Emacs Lisp function which could safely be
101 ;; byte-compiled tail-recursively:
103 ;; (defun tail-map (fn list)
104 ;; (cond (list
105 ;; (funcall fn (car list))
106 ;; (tail-map fn (cdr list)))))
108 ;; However, if there was even a single let-binding around the COND,
109 ;; it could not be byte-compiled, because there would be an "unbind"
110 ;; byte-op between the final "call" and "return." Adding a
111 ;; Bunbind_all byteop would fix this.
113 ;; (defun foo (x y z) ... (foo a b c))
114 ;; ... (const foo) (varref a) (varref b) (varref c) (call 3) END: (return)
115 ;; ... (varref a) (varbind x) (varref b) (varbind y) (varref c) (varbind z) (goto 0) END: (unbind-all) (return)
116 ;; ... (varref a) (varset x) (varref b) (varset y) (varref c) (varset z) (goto 0) END: (return)
118 ;; this also can be considered tail recursion:
120 ;; ... (const foo) (varref a) (call 1) (goto X) ... X: (return)
121 ;; could generalize this by doing the optimization
122 ;; (goto X) ... X: (return) --> (return)
124 ;; But this doesn't solve all of the problems: although by doing tail-
125 ;; recursion elimination in this way, the call-stack does not grow, the
126 ;; binding-stack would grow with each recursive step, and would eventually
127 ;; overflow. I don't believe there is any way around this without lexical
128 ;; scope.
130 ;; Wouldn't it be nice if Emacs Lisp had lexical scope.
132 ;; Idea: the form (lexical-scope) in a file means that the file may be
133 ;; compiled lexically. This proclamation is file-local. Then, within
134 ;; that file, "let" would establish lexical bindings, and "let-dynamic"
135 ;; would do things the old way. (Or we could use CL "declare" forms.)
136 ;; We'd have to notice defvars and defconsts, since those variables should
137 ;; always be dynamic, and attempting to do a lexical binding of them
138 ;; should simply do a dynamic binding instead.
139 ;; But! We need to know about variables that were not necessarily defvarred
140 ;; in the file being compiled (doing a boundp check isn't good enough.)
141 ;; Fdefvar() would have to be modified to add something to the plist.
143 ;; A major disadvantage of this scheme is that the interpreter and compiler
144 ;; would have different semantics for files compiled with (dynamic-scope).
145 ;; Since this would be a file-local optimization, there would be no way to
146 ;; modify the interpreter to obey this (unless the loader was hacked
147 ;; in some grody way, but that's a really bad idea.)
149 ;; Other things to consider:
151 ;; ;; Associative math should recognize subcalls to identical function:
152 ;; (disassemble (lambda (x) (+ (+ (foo) 1) (+ (bar) 2))))
153 ;; ;; This should generate the same as (1+ x) and (1- x)
155 ;; (disassemble (lambda (x) (cons (+ x 1) (- x 1))))
156 ;; ;; An awful lot of functions always return a non-nil value. If they're
157 ;; ;; error free also they may act as true-constants.
159 ;; (disassemble (lambda (x) (and (point) (foo))))
160 ;; ;; When
161 ;; ;; - all but one arguments to a function are constant
162 ;; ;; - the non-constant argument is an if-expression (cond-expression?)
163 ;; ;; then the outer function can be distributed. If the guarding
164 ;; ;; condition is side-effect-free [assignment-free] then the other
165 ;; ;; arguments may be any expressions. Since, however, the code size
166 ;; ;; can increase this way they should be "simple". Compare:
168 ;; (disassemble (lambda (x) (eq (if (point) 'a 'b) 'c)))
169 ;; (disassemble (lambda (x) (if (point) (eq 'a 'c) (eq 'b 'c))))
171 ;; ;; (car (cons A B)) -> (prog1 A B)
172 ;; (disassemble (lambda (x) (car (cons (foo) 42))))
174 ;; ;; (cdr (cons A B)) -> (progn A B)
175 ;; (disassemble (lambda (x) (cdr (cons 42 (foo)))))
177 ;; ;; (car (list A B ...)) -> (prog1 A B ...)
178 ;; (disassemble (lambda (x) (car (list (foo) 42 (bar)))))
180 ;; ;; (cdr (list A B ...)) -> (progn A (list B ...))
181 ;; (disassemble (lambda (x) (cdr (list 42 (foo) (bar)))))
184 ;;; Code:
186 (require 'bytecomp)
188 (defun byte-compile-log-lap-1 (format &rest args)
189 (if (aref byte-code-vector 0)
190 (error "The old version of the disassembler is loaded. Reload new-bytecomp as well"))
191 (byte-compile-log-1
192 (apply 'format format
193 (let (c a)
194 (mapcar (lambda (arg)
195 (if (not (consp arg))
196 (if (and (symbolp arg)
197 (string-match "^byte-" (symbol-name arg)))
198 (intern (substring (symbol-name arg) 5))
199 arg)
200 (if (integerp (setq c (car arg)))
201 (error "non-symbolic byte-op %s" c))
202 (if (eq c 'TAG)
203 (setq c arg)
204 (setq a (cond ((memq c byte-goto-ops)
205 (car (cdr (cdr arg))))
206 ((memq c byte-constref-ops)
207 (car (cdr arg)))
208 (t (cdr arg))))
209 (setq c (symbol-name c))
210 (if (string-match "^byte-." c)
211 (setq c (intern (substring c 5)))))
212 (if (eq c 'constant) (setq c 'const))
213 (if (and (eq (cdr arg) 0)
214 (not (memq c '(unbind call const))))
216 (format "(%s %s)" c a))))
217 args)))))
219 (defmacro byte-compile-log-lap (format-string &rest args)
220 `(and (memq byte-optimize-log '(t byte))
221 (byte-compile-log-lap-1 ,format-string ,@args)))
224 ;;; byte-compile optimizers to support inlining
226 (put 'inline 'byte-optimizer 'byte-optimize-inline-handler)
228 (defun byte-optimize-inline-handler (form)
229 "byte-optimize-handler for the `inline' special-form."
230 (cons 'progn
231 (mapcar
232 (lambda (sexp)
233 (let ((fn (car-safe sexp)))
234 (if (and (symbolp fn)
235 (or (cdr (assq fn byte-compile-function-environment))
236 (and (fboundp fn)
237 (not (or (cdr (assq fn byte-compile-macro-environment))
238 (and (consp (setq fn (symbol-function fn)))
239 (eq (car fn) 'macro))
240 (subrp fn))))))
241 (byte-compile-inline-expand sexp)
242 sexp)))
243 (cdr form))))
246 ;; Splice the given lap code into the current instruction stream.
247 ;; If it has any labels in it, you're responsible for making sure there
248 ;; are no collisions, and that byte-compile-tag-number is reasonable
249 ;; after this is spliced in. The provided list is destroyed.
250 (defun byte-inline-lapcode (lap)
251 (setq byte-compile-output (nconc (nreverse lap) byte-compile-output)))
253 (defun byte-compile-inline-expand (form)
254 (let* ((name (car form))
255 (fn (or (cdr (assq name byte-compile-function-environment))
256 (and (fboundp name) (symbol-function name)))))
257 (if (null fn)
258 (progn
259 (byte-compile-warn "attempt to inline `%s' before it was defined"
260 name)
261 form)
262 ;; else
263 (when (and (consp fn) (eq (car fn) 'autoload))
264 (load (nth 1 fn))
265 (setq fn (or (and (fboundp name) (symbol-function name))
266 (cdr (assq name byte-compile-function-environment)))))
267 (if (and (consp fn) (eq (car fn) 'autoload))
268 (error "File `%s' didn't define `%s'" (nth 1 fn) name))
269 (if (symbolp fn)
270 (byte-compile-inline-expand (cons fn (cdr form)))
271 (if (byte-code-function-p fn)
272 (let (string)
273 (fetch-bytecode fn)
274 (setq string (aref fn 1))
275 ;; Isn't it an error for `string' not to be unibyte?? --stef
276 (if (fboundp 'string-as-unibyte)
277 (setq string (string-as-unibyte string)))
278 (cons `(lambda ,(aref fn 0)
279 (byte-code ,string ,(aref fn 2) ,(aref fn 3)))
280 (cdr form)))
281 (if (eq (car-safe fn) 'lambda)
282 (cons fn (cdr form))
283 ;; Give up on inlining.
284 form))))))
286 ;; ((lambda ...) ...)
287 (defun byte-compile-unfold-lambda (form &optional name)
288 (or name (setq name "anonymous lambda"))
289 (let ((lambda (car form))
290 (values (cdr form)))
291 (if (byte-code-function-p lambda)
292 (setq lambda (list 'lambda (aref lambda 0)
293 (list 'byte-code (aref lambda 1)
294 (aref lambda 2) (aref lambda 3)))))
295 (let ((arglist (nth 1 lambda))
296 (body (cdr (cdr lambda)))
297 optionalp restp
298 bindings)
299 (if (and (stringp (car body)) (cdr body))
300 (setq body (cdr body)))
301 (if (and (consp (car body)) (eq 'interactive (car (car body))))
302 (setq body (cdr body)))
303 (while arglist
304 (cond ((eq (car arglist) '&optional)
305 ;; ok, I'll let this slide because funcall_lambda() does...
306 ;; (if optionalp (error "multiple &optional keywords in %s" name))
307 (if restp (error "&optional found after &rest in %s" name))
308 (if (null (cdr arglist))
309 (error "nothing after &optional in %s" name))
310 (setq optionalp t))
311 ((eq (car arglist) '&rest)
312 ;; ...but it is by no stretch of the imagination a reasonable
313 ;; thing that funcall_lambda() allows (&rest x y) and
314 ;; (&rest x &optional y) in arglists.
315 (if (null (cdr arglist))
316 (error "nothing after &rest in %s" name))
317 (if (cdr (cdr arglist))
318 (error "multiple vars after &rest in %s" name))
319 (setq restp t))
320 (restp
321 (setq bindings (cons (list (car arglist)
322 (and values (cons 'list values)))
323 bindings)
324 values nil))
325 ((and (not optionalp) (null values))
326 (byte-compile-warn "attempt to open-code `%s' with too few arguments" name)
327 (setq arglist nil values 'too-few))
329 (setq bindings (cons (list (car arglist) (car values))
330 bindings)
331 values (cdr values))))
332 (setq arglist (cdr arglist)))
333 (if values
334 (progn
335 (or (eq values 'too-few)
336 (byte-compile-warn
337 "attempt to open-code `%s' with too many arguments" name))
338 form)
340 ;; The following leads to infinite recursion when loading a
341 ;; file containing `(defsubst f () (f))', and then trying to
342 ;; byte-compile that file.
343 ;(setq body (mapcar 'byte-optimize-form body)))
345 (let ((newform
346 (if bindings
347 (cons 'let (cons (nreverse bindings) body))
348 (cons 'progn body))))
349 (byte-compile-log " %s\t==>\t%s" form newform)
350 newform)))))
353 ;;; implementing source-level optimizers
355 (defun byte-optimize-form-code-walker (form for-effect)
357 ;; For normal function calls, We can just mapcar the optimizer the cdr. But
358 ;; we need to have special knowledge of the syntax of the special forms
359 ;; like let and defun (that's why they're special forms :-). (Actually,
360 ;; the important aspect is that they are subrs that don't evaluate all of
361 ;; their args.)
363 (let ((fn (car-safe form))
364 tmp)
365 (cond ((not (consp form))
366 (if (not (and for-effect
367 (or byte-compile-delete-errors
368 (not (symbolp form))
369 (eq form t))))
370 form))
371 ((eq fn 'quote)
372 (if (cdr (cdr form))
373 (byte-compile-warn "malformed quote form: `%s'"
374 (prin1-to-string form)))
375 ;; map (quote nil) to nil to simplify optimizer logic.
376 ;; map quoted constants to nil if for-effect (just because).
377 (and (nth 1 form)
378 (not for-effect)
379 form))
380 ((or (byte-code-function-p fn)
381 (eq 'lambda (car-safe fn)))
382 (byte-compile-unfold-lambda form))
383 ((memq fn '(let let*))
384 ;; recursively enter the optimizer for the bindings and body
385 ;; of a let or let*. This for depth-firstness: forms that
386 ;; are more deeply nested are optimized first.
387 (cons fn
388 (cons
389 (mapcar (lambda (binding)
390 (if (symbolp binding)
391 binding
392 (if (cdr (cdr binding))
393 (byte-compile-warn "malformed let binding: `%s'"
394 (prin1-to-string binding)))
395 (list (car binding)
396 (byte-optimize-form (nth 1 binding) nil))))
397 (nth 1 form))
398 (byte-optimize-body (cdr (cdr form)) for-effect))))
399 ((eq fn 'cond)
400 (cons fn
401 (mapcar (lambda (clause)
402 (if (consp clause)
403 (cons
404 (byte-optimize-form (car clause) nil)
405 (byte-optimize-body (cdr clause) for-effect))
406 (byte-compile-warn "malformed cond form: `%s'"
407 (prin1-to-string clause))
408 clause))
409 (cdr form))))
410 ((eq fn 'progn)
411 ;; as an extra added bonus, this simplifies (progn <x>) --> <x>
412 (if (cdr (cdr form))
413 (progn
414 (setq tmp (byte-optimize-body (cdr form) for-effect))
415 (if (cdr tmp) (cons 'progn tmp) (car tmp)))
416 (byte-optimize-form (nth 1 form) for-effect)))
417 ((eq fn 'prog1)
418 (if (cdr (cdr form))
419 (cons 'prog1
420 (cons (byte-optimize-form (nth 1 form) for-effect)
421 (byte-optimize-body (cdr (cdr form)) t)))
422 (byte-optimize-form (nth 1 form) for-effect)))
423 ((eq fn 'prog2)
424 (cons 'prog2
425 (cons (byte-optimize-form (nth 1 form) t)
426 (cons (byte-optimize-form (nth 2 form) for-effect)
427 (byte-optimize-body (cdr (cdr (cdr form))) t)))))
429 ((memq fn '(save-excursion save-restriction save-current-buffer))
430 ;; those subrs which have an implicit progn; it's not quite good
431 ;; enough to treat these like normal function calls.
432 ;; This can turn (save-excursion ...) into (save-excursion) which
433 ;; will be optimized away in the lap-optimize pass.
434 (cons fn (byte-optimize-body (cdr form) for-effect)))
436 ((eq fn 'with-output-to-temp-buffer)
437 ;; this is just like the above, except for the first argument.
438 (cons fn
439 (cons
440 (byte-optimize-form (nth 1 form) nil)
441 (byte-optimize-body (cdr (cdr form)) for-effect))))
443 ((eq fn 'if)
444 (when (< (length form) 3)
445 (byte-compile-warn "too few arguments for `if'"))
446 (cons fn
447 (cons (byte-optimize-form (nth 1 form) nil)
448 (cons
449 (byte-optimize-form (nth 2 form) for-effect)
450 (byte-optimize-body (nthcdr 3 form) for-effect)))))
452 ((memq fn '(and or)) ; remember, and/or are control structures.
453 ;; take forms off the back until we can't any more.
454 ;; In the future it could conceivably be a problem that the
455 ;; subexpressions of these forms are optimized in the reverse
456 ;; order, but it's ok for now.
457 (if for-effect
458 (let ((backwards (reverse (cdr form))))
459 (while (and backwards
460 (null (setcar backwards
461 (byte-optimize-form (car backwards)
462 for-effect))))
463 (setq backwards (cdr backwards)))
464 (if (and (cdr form) (null backwards))
465 (byte-compile-log
466 " all subforms of %s called for effect; deleted" form))
467 (and backwards
468 (cons fn (nreverse (mapcar 'byte-optimize-form backwards)))))
469 (cons fn (mapcar 'byte-optimize-form (cdr form)))))
471 ((eq fn 'interactive)
472 (byte-compile-warn "misplaced interactive spec: `%s'"
473 (prin1-to-string form))
474 nil)
476 ((memq fn '(defun defmacro function
477 condition-case save-window-excursion))
478 ;; These forms are compiled as constants or by breaking out
479 ;; all the subexpressions and compiling them separately.
480 form)
482 ((eq fn 'unwind-protect)
483 ;; the "protected" part of an unwind-protect is compiled (and thus
484 ;; optimized) as a top-level form, so don't do it here. But the
485 ;; non-protected part has the same for-effect status as the
486 ;; unwind-protect itself. (The protected part is always for effect,
487 ;; but that isn't handled properly yet.)
488 (cons fn
489 (cons (byte-optimize-form (nth 1 form) for-effect)
490 (cdr (cdr form)))))
492 ((eq fn 'catch)
493 ;; the body of a catch is compiled (and thus optimized) as a
494 ;; top-level form, so don't do it here. The tag is never
495 ;; for-effect. The body should have the same for-effect status
496 ;; as the catch form itself, but that isn't handled properly yet.
497 (cons fn
498 (cons (byte-optimize-form (nth 1 form) nil)
499 (cdr (cdr form)))))
501 ((eq fn 'ignore)
502 ;; Don't treat the args to `ignore' as being
503 ;; computed for effect. We want to avoid the warnings
504 ;; that might occur if they were treated that way.
505 ;; However, don't actually bother calling `ignore'.
506 `(prog1 nil . ,(mapcar 'byte-optimize-form (cdr form))))
508 ;; If optimization is on, this is the only place that macros are
509 ;; expanded. If optimization is off, then macroexpansion happens
510 ;; in byte-compile-form. Otherwise, the macros are already expanded
511 ;; by the time that is reached.
512 ((not (eq form
513 (setq form (macroexpand form
514 byte-compile-macro-environment))))
515 (byte-optimize-form form for-effect))
517 ;; Support compiler macros as in cl.el.
518 ((and (fboundp 'compiler-macroexpand)
519 (symbolp (car-safe form))
520 (get (car-safe form) 'cl-compiler-macro)
521 (not (eq form
522 (setq form (compiler-macroexpand form)))))
523 (byte-optimize-form form for-effect))
525 ((not (symbolp fn))
526 (byte-compile-warn "`%s' is a malformed function"
527 (prin1-to-string fn))
528 form)
530 ((and for-effect (setq tmp (get fn 'side-effect-free))
531 (or byte-compile-delete-errors
532 (eq tmp 'error-free)
533 ;; Detect the expansion of (pop foo).
534 ;; There is no need to compile the call to `car' there.
535 (and (eq fn 'car)
536 (eq (car-safe (cadr form)) 'prog1)
537 (let ((var (cadr (cadr form)))
538 (last (nth 2 (cadr form))))
539 (and (symbolp var)
540 (null (nthcdr 3 (cadr form)))
541 (eq (car-safe last) 'setq)
542 (eq (cadr last) var)
543 (eq (car-safe (nth 2 last)) 'cdr)
544 (eq (cadr (nth 2 last)) var))))
545 (progn
546 (byte-compile-warn "`%s' called for effect"
547 (prin1-to-string (car form)))
548 nil)))
549 (byte-compile-log " %s called for effect; deleted" fn)
550 ;; appending a nil here might not be necessary, but it can't hurt.
551 (byte-optimize-form
552 (cons 'progn (append (cdr form) '(nil))) t))
555 ;; Otherwise, no args can be considered to be for-effect,
556 ;; even if the called function is for-effect, because we
557 ;; don't know anything about that function.
558 (cons fn (mapcar 'byte-optimize-form (cdr form)))))))
561 (defun byte-optimize-form (form &optional for-effect)
562 "The source-level pass of the optimizer."
564 ;; First, optimize all sub-forms of this one.
565 (setq form (byte-optimize-form-code-walker form for-effect))
567 ;; after optimizing all subforms, optimize this form until it doesn't
568 ;; optimize any further. This means that some forms will be passed through
569 ;; the optimizer many times, but that's necessary to make the for-effect
570 ;; processing do as much as possible.
572 (let (opt new)
573 (if (and (consp form)
574 (symbolp (car form))
575 (or (and for-effect
576 ;; we don't have any of these yet, but we might.
577 (setq opt (get (car form) 'byte-for-effect-optimizer)))
578 (setq opt (get (car form) 'byte-optimizer)))
579 (not (eq form (setq new (funcall opt form)))))
580 (progn
581 ;; (if (equal form new) (error "bogus optimizer -- %s" opt))
582 (byte-compile-log " %s\t==>\t%s" form new)
583 (setq new (byte-optimize-form new for-effect))
584 new)
585 form)))
588 (defun byte-optimize-body (forms all-for-effect)
589 ;; optimize the cdr of a progn or implicit progn; all forms is a list of
590 ;; forms, all but the last of which are optimized with the assumption that
591 ;; they are being called for effect. the last is for-effect as well if
592 ;; all-for-effect is true. returns a new list of forms.
593 (let ((rest forms)
594 (result nil)
595 fe new)
596 (while rest
597 (setq fe (or all-for-effect (cdr rest)))
598 (setq new (and (car rest) (byte-optimize-form (car rest) fe)))
599 (if (or new (not fe))
600 (setq result (cons new result)))
601 (setq rest (cdr rest)))
602 (nreverse result)))
605 ;; some source-level optimizers
607 ;; when writing optimizers, be VERY careful that the optimizer returns
608 ;; something not EQ to its argument if and ONLY if it has made a change.
609 ;; This implies that you cannot simply destructively modify the list;
610 ;; you must return something not EQ to it if you make an optimization.
612 ;; It is now safe to optimize code such that it introduces new bindings.
614 ;; I'd like this to be a defsubst, but let's not be self-referential...
615 (defmacro byte-compile-trueconstp (form)
616 ;; Returns non-nil if FORM is a non-nil constant.
617 `(cond ((consp ,form) (eq (car ,form) 'quote))
618 ((not (symbolp ,form)))
619 ((eq ,form t))
620 ((keywordp ,form))))
622 ;; If the function is being called with constant numeric args,
623 ;; evaluate as much as possible at compile-time. This optimizer
624 ;; assumes that the function is associative, like + or *.
625 (defun byte-optimize-associative-math (form)
626 (let ((args nil)
627 (constants nil)
628 (rest (cdr form)))
629 (while rest
630 (if (numberp (car rest))
631 (setq constants (cons (car rest) constants))
632 (setq args (cons (car rest) args)))
633 (setq rest (cdr rest)))
634 (if (cdr constants)
635 (if args
636 (list (car form)
637 (apply (car form) constants)
638 (if (cdr args)
639 (cons (car form) (nreverse args))
640 (car args)))
641 (apply (car form) constants))
642 form)))
644 ;; If the function is being called with constant numeric args,
645 ;; evaluate as much as possible at compile-time. This optimizer
646 ;; assumes that the function satisfies
647 ;; (op x1 x2 ... xn) == (op ...(op (op x1 x2) x3) ...xn)
648 ;; like - and /.
649 (defun byte-optimize-nonassociative-math (form)
650 (if (or (not (numberp (car (cdr form))))
651 (not (numberp (car (cdr (cdr form))))))
652 form
653 (let ((constant (car (cdr form)))
654 (rest (cdr (cdr form))))
655 (while (numberp (car rest))
656 (setq constant (funcall (car form) constant (car rest))
657 rest (cdr rest)))
658 (if rest
659 (cons (car form) (cons constant rest))
660 constant))))
662 ;;(defun byte-optimize-associative-two-args-math (form)
663 ;; (setq form (byte-optimize-associative-math form))
664 ;; (if (consp form)
665 ;; (byte-optimize-two-args-left form)
666 ;; form))
668 ;;(defun byte-optimize-nonassociative-two-args-math (form)
669 ;; (setq form (byte-optimize-nonassociative-math form))
670 ;; (if (consp form)
671 ;; (byte-optimize-two-args-right form)
672 ;; form))
674 (defun byte-optimize-approx-equal (x y)
675 (<= (* (abs (- x y)) 100) (abs (+ x y))))
677 ;; Collect all the constants from FORM, after the STARTth arg,
678 ;; and apply FUN to them to make one argument at the end.
679 ;; For functions that can handle floats, that optimization
680 ;; can be incorrect because reordering can cause an overflow
681 ;; that would otherwise be avoided by encountering an arg that is a float.
682 ;; We avoid this problem by (1) not moving float constants and
683 ;; (2) not moving anything if it would cause an overflow.
684 (defun byte-optimize-delay-constants-math (form start fun)
685 ;; Merge all FORM's constants from number START, call FUN on them
686 ;; and put the result at the end.
687 (let ((rest (nthcdr (1- start) form))
688 (orig form)
689 ;; t means we must check for overflow.
690 (overflow (memq fun '(+ *))))
691 (while (cdr (setq rest (cdr rest)))
692 (if (integerp (car rest))
693 (let (constants)
694 (setq form (copy-sequence form)
695 rest (nthcdr (1- start) form))
696 (while (setq rest (cdr rest))
697 (cond ((integerp (car rest))
698 (setq constants (cons (car rest) constants))
699 (setcar rest nil))))
700 ;; If necessary, check now for overflow
701 ;; that might be caused by reordering.
702 (if (and overflow
703 ;; We have overflow if the result of doing the arithmetic
704 ;; on floats is not even close to the result
705 ;; of doing it on integers.
706 (not (byte-optimize-approx-equal
707 (apply fun (mapcar 'float constants))
708 (float (apply fun constants)))))
709 (setq form orig)
710 (setq form (nconc (delq nil form)
711 (list (apply fun (nreverse constants)))))))))
712 form))
714 (defun byte-optimize-plus (form)
715 (setq form (byte-optimize-delay-constants-math form 1 '+))
716 (if (memq 0 form) (setq form (delq 0 (copy-sequence form))))
717 ;;(setq form (byte-optimize-associative-two-args-math form))
718 (cond ((null (cdr form))
719 (condition-case ()
720 (eval form)
721 (error form)))
722 ;;; It is not safe to delete the function entirely
723 ;;; (actually, it would be safe if we know the sole arg
724 ;;; is not a marker).
725 ;;; ((null (cdr (cdr form))) (nth 1 form))
726 ((null (cddr form))
727 (if (numberp (nth 1 form))
728 (nth 1 form)
729 form))
730 ((and (null (nthcdr 3 form))
731 (or (memq (nth 1 form) '(1 -1))
732 (memq (nth 2 form) '(1 -1))))
733 ;; Optimize (+ x 1) into (1+ x) and (+ x -1) into (1- x).
734 (let ((integer
735 (if (memq (nth 1 form) '(1 -1))
736 (nth 1 form)
737 (nth 2 form)))
738 (other
739 (if (memq (nth 1 form) '(1 -1))
740 (nth 2 form)
741 (nth 1 form))))
742 (list (if (eq integer 1) '1+ '1-)
743 other)))
744 (t form)))
746 (defun byte-optimize-minus (form)
747 ;; Put constants at the end, except the last constant.
748 (setq form (byte-optimize-delay-constants-math form 2 '+))
749 ;; Now only first and last element can be a number.
750 (let ((last (car (reverse (nthcdr 3 form)))))
751 (cond ((eq 0 last)
752 ;; (- x y ... 0) --> (- x y ...)
753 (setq form (copy-sequence form))
754 (setcdr (cdr (cdr form)) (delq 0 (nthcdr 3 form))))
755 ((equal (nthcdr 2 form) '(1))
756 (setq form (list '1- (nth 1 form))))
757 ((equal (nthcdr 2 form) '(-1))
758 (setq form (list '1+ (nth 1 form))))
759 ;; If form is (- CONST foo... CONST), merge first and last.
760 ((and (numberp (nth 1 form))
761 (numberp last))
762 (setq form (nconc (list '- (- (nth 1 form) last) (nth 2 form))
763 (delq last (copy-sequence (nthcdr 3 form))))))))
764 ;;; It is not safe to delete the function entirely
765 ;;; (actually, it would be safe if we know the sole arg
766 ;;; is not a marker).
767 ;;; (if (eq (nth 2 form) 0)
768 ;;; (nth 1 form) ; (- x 0) --> x
769 (byte-optimize-predicate
770 (if (and (null (cdr (cdr (cdr form))))
771 (eq (nth 1 form) 0)) ; (- 0 x) --> (- x)
772 (cons (car form) (cdr (cdr form)))
773 form))
774 ;;; )
777 (defun byte-optimize-multiply (form)
778 (setq form (byte-optimize-delay-constants-math form 1 '*))
779 ;; If there is a constant in FORM, it is now the last element.
780 (cond ((null (cdr form)) 1)
781 ;;; It is not safe to delete the function entirely
782 ;;; (actually, it would be safe if we know the sole arg
783 ;;; is not a marker or if it appears in other arithmetic).
784 ;;; ((null (cdr (cdr form))) (nth 1 form))
785 ((let ((last (car (reverse form))))
786 (cond ((eq 0 last) (cons 'progn (cdr form)))
787 ((eq 1 last) (delq 1 (copy-sequence form)))
788 ((eq -1 last) (list '- (delq -1 (copy-sequence form))))
789 ((and (eq 2 last)
790 (memq t (mapcar 'symbolp (cdr form))))
791 (prog1 (setq form (delq 2 (copy-sequence form)))
792 (while (not (symbolp (car (setq form (cdr form))))))
793 (setcar form (list '+ (car form) (car form)))))
794 (form))))))
796 (defsubst byte-compile-butlast (form)
797 (nreverse (cdr (reverse form))))
799 (defun byte-optimize-divide (form)
800 (setq form (byte-optimize-delay-constants-math form 2 '*))
801 (let ((last (car (reverse (cdr (cdr form))))))
802 (if (numberp last)
803 (cond ((= (length form) 3)
804 (if (and (numberp (nth 1 form))
805 (not (zerop last))
806 (condition-case nil
807 (/ (nth 1 form) last)
808 (error nil)))
809 (setq form (list 'progn (/ (nth 1 form) last)))))
810 ((= last 1)
811 (setq form (byte-compile-butlast form)))
812 ((numberp (nth 1 form))
813 (setq form (cons (car form)
814 (cons (/ (nth 1 form) last)
815 (byte-compile-butlast (cdr (cdr form)))))
816 last nil))))
817 (cond
818 ;;; ((null (cdr (cdr form)))
819 ;;; (nth 1 form))
820 ((eq (nth 1 form) 0)
821 (append '(progn) (cdr (cdr form)) '(0)))
822 ((eq last -1)
823 (list '- (if (nthcdr 3 form)
824 (byte-compile-butlast form)
825 (nth 1 form))))
826 (form))))
828 (defun byte-optimize-logmumble (form)
829 (setq form (byte-optimize-delay-constants-math form 1 (car form)))
830 (byte-optimize-predicate
831 (cond ((memq 0 form)
832 (setq form (if (eq (car form) 'logand)
833 (cons 'progn (cdr form))
834 (delq 0 (copy-sequence form)))))
835 ((and (eq (car-safe form) 'logior)
836 (memq -1 form))
837 (cons 'progn (cdr form)))
838 (form))))
841 (defun byte-optimize-binary-predicate (form)
842 (if (byte-compile-constp (nth 1 form))
843 (if (byte-compile-constp (nth 2 form))
844 (condition-case ()
845 (list 'quote (eval form))
846 (error form))
847 ;; This can enable some lapcode optimizations.
848 (list (car form) (nth 2 form) (nth 1 form)))
849 form))
851 (defun byte-optimize-predicate (form)
852 (let ((ok t)
853 (rest (cdr form)))
854 (while (and rest ok)
855 (setq ok (byte-compile-constp (car rest))
856 rest (cdr rest)))
857 (if ok
858 (condition-case ()
859 (list 'quote (eval form))
860 (error form))
861 form)))
863 (defun byte-optimize-identity (form)
864 (if (and (cdr form) (null (cdr (cdr form))))
865 (nth 1 form)
866 (byte-compile-warn "identity called with %d arg%s, but requires 1"
867 (length (cdr form))
868 (if (= 1 (length (cdr form))) "" "s"))
869 form))
871 (put 'identity 'byte-optimizer 'byte-optimize-identity)
873 (put '+ 'byte-optimizer 'byte-optimize-plus)
874 (put '* 'byte-optimizer 'byte-optimize-multiply)
875 (put '- 'byte-optimizer 'byte-optimize-minus)
876 (put '/ 'byte-optimizer 'byte-optimize-divide)
877 (put 'max 'byte-optimizer 'byte-optimize-associative-math)
878 (put 'min 'byte-optimizer 'byte-optimize-associative-math)
880 (put '= 'byte-optimizer 'byte-optimize-binary-predicate)
881 (put 'eq 'byte-optimizer 'byte-optimize-binary-predicate)
882 (put 'equal 'byte-optimizer 'byte-optimize-binary-predicate)
883 (put 'string= 'byte-optimizer 'byte-optimize-binary-predicate)
884 (put 'string-equal 'byte-optimizer 'byte-optimize-binary-predicate)
886 (put '< 'byte-optimizer 'byte-optimize-predicate)
887 (put '> 'byte-optimizer 'byte-optimize-predicate)
888 (put '<= 'byte-optimizer 'byte-optimize-predicate)
889 (put '>= 'byte-optimizer 'byte-optimize-predicate)
890 (put '1+ 'byte-optimizer 'byte-optimize-predicate)
891 (put '1- 'byte-optimizer 'byte-optimize-predicate)
892 (put 'not 'byte-optimizer 'byte-optimize-predicate)
893 (put 'null 'byte-optimizer 'byte-optimize-predicate)
894 (put 'memq 'byte-optimizer 'byte-optimize-predicate)
895 (put 'consp 'byte-optimizer 'byte-optimize-predicate)
896 (put 'listp 'byte-optimizer 'byte-optimize-predicate)
897 (put 'symbolp 'byte-optimizer 'byte-optimize-predicate)
898 (put 'stringp 'byte-optimizer 'byte-optimize-predicate)
899 (put 'string< 'byte-optimizer 'byte-optimize-predicate)
900 (put 'string-lessp 'byte-optimizer 'byte-optimize-predicate)
902 (put 'logand 'byte-optimizer 'byte-optimize-logmumble)
903 (put 'logior 'byte-optimizer 'byte-optimize-logmumble)
904 (put 'logxor 'byte-optimizer 'byte-optimize-logmumble)
905 (put 'lognot 'byte-optimizer 'byte-optimize-predicate)
907 (put 'car 'byte-optimizer 'byte-optimize-predicate)
908 (put 'cdr 'byte-optimizer 'byte-optimize-predicate)
909 (put 'car-safe 'byte-optimizer 'byte-optimize-predicate)
910 (put 'cdr-safe 'byte-optimizer 'byte-optimize-predicate)
913 ;; I'm not convinced that this is necessary. Doesn't the optimizer loop
914 ;; take care of this? - Jamie
915 ;; I think this may some times be necessary to reduce ie (quote 5) to 5,
916 ;; so arithmetic optimizers recognize the numeric constant. - Hallvard
917 (put 'quote 'byte-optimizer 'byte-optimize-quote)
918 (defun byte-optimize-quote (form)
919 (if (or (consp (nth 1 form))
920 (and (symbolp (nth 1 form))
921 (not (byte-compile-const-symbol-p form))))
922 form
923 (nth 1 form)))
925 (defun byte-optimize-zerop (form)
926 (cond ((numberp (nth 1 form))
927 (eval form))
928 (byte-compile-delete-errors
929 (list '= (nth 1 form) 0))
930 (form)))
932 (put 'zerop 'byte-optimizer 'byte-optimize-zerop)
934 (defun byte-optimize-and (form)
935 ;; Simplify if less than 2 args.
936 ;; if there is a literal nil in the args to `and', throw it and following
937 ;; forms away, and surround the `and' with (progn ... nil).
938 (cond ((null (cdr form)))
939 ((memq nil form)
940 (list 'progn
941 (byte-optimize-and
942 (prog1 (setq form (copy-sequence form))
943 (while (nth 1 form)
944 (setq form (cdr form)))
945 (setcdr form nil)))
946 nil))
947 ((null (cdr (cdr form)))
948 (nth 1 form))
949 ((byte-optimize-predicate form))))
951 (defun byte-optimize-or (form)
952 ;; Throw away nil's, and simplify if less than 2 args.
953 ;; If there is a literal non-nil constant in the args to `or', throw away all
954 ;; following forms.
955 (if (memq nil form)
956 (setq form (delq nil (copy-sequence form))))
957 (let ((rest form))
958 (while (cdr (setq rest (cdr rest)))
959 (if (byte-compile-trueconstp (car rest))
960 (setq form (copy-sequence form)
961 rest (setcdr (memq (car rest) form) nil))))
962 (if (cdr (cdr form))
963 (byte-optimize-predicate form)
964 (nth 1 form))))
966 (defun byte-optimize-cond (form)
967 ;; if any clauses have a literal nil as their test, throw them away.
968 ;; if any clause has a literal non-nil constant as its test, throw
969 ;; away all following clauses.
970 (let (rest)
971 ;; This must be first, to reduce (cond (t ...) (nil)) to (progn t ...)
972 (while (setq rest (assq nil (cdr form)))
973 (setq form (delq rest (copy-sequence form))))
974 (if (memq nil (cdr form))
975 (setq form (delq nil (copy-sequence form))))
976 (setq rest form)
977 (while (setq rest (cdr rest))
978 (cond ((byte-compile-trueconstp (car-safe (car rest)))
979 (cond ((eq rest (cdr form))
980 (setq form
981 (if (cdr (car rest))
982 (if (cdr (cdr (car rest)))
983 (cons 'progn (cdr (car rest)))
984 (nth 1 (car rest)))
985 (car (car rest)))))
986 ((cdr rest)
987 (setq form (copy-sequence form))
988 (setcdr (memq (car rest) form) nil)))
989 (setq rest nil)))))
991 ;; Turn (cond (( <x> )) ... ) into (or <x> (cond ... ))
992 (if (eq 'cond (car-safe form))
993 (let ((clauses (cdr form)))
994 (if (and (consp (car clauses))
995 (null (cdr (car clauses))))
996 (list 'or (car (car clauses))
997 (byte-optimize-cond
998 (cons (car form) (cdr (cdr form)))))
999 form))
1000 form))
1002 (defun byte-optimize-if (form)
1003 ;; (if <true-constant> <then> <else...>) ==> <then>
1004 ;; (if <false-constant> <then> <else...>) ==> (progn <else...>)
1005 ;; (if <test> nil <else...>) ==> (if (not <test>) (progn <else...>))
1006 ;; (if <test> <then> nil) ==> (if <test> <then>)
1007 (let ((clause (nth 1 form)))
1008 (cond ((byte-compile-trueconstp clause)
1009 (nth 2 form))
1010 ((null clause)
1011 (if (nthcdr 4 form)
1012 (cons 'progn (nthcdr 3 form))
1013 (nth 3 form)))
1014 ((nth 2 form)
1015 (if (equal '(nil) (nthcdr 3 form))
1016 (list 'if clause (nth 2 form))
1017 form))
1018 ((or (nth 3 form) (nthcdr 4 form))
1019 (list 'if
1020 ;; Don't make a double negative;
1021 ;; instead, take away the one that is there.
1022 (if (and (consp clause) (memq (car clause) '(not null))
1023 (= (length clause) 2)) ; (not xxxx) or (not (xxxx))
1024 (nth 1 clause)
1025 (list 'not clause))
1026 (if (nthcdr 4 form)
1027 (cons 'progn (nthcdr 3 form))
1028 (nth 3 form))))
1030 (list 'progn clause nil)))))
1032 (defun byte-optimize-while (form)
1033 (when (< (length form) 2)
1034 (byte-compile-warn "too few arguments for `while'"))
1035 (if (nth 1 form)
1036 form))
1038 (put 'and 'byte-optimizer 'byte-optimize-and)
1039 (put 'or 'byte-optimizer 'byte-optimize-or)
1040 (put 'cond 'byte-optimizer 'byte-optimize-cond)
1041 (put 'if 'byte-optimizer 'byte-optimize-if)
1042 (put 'while 'byte-optimizer 'byte-optimize-while)
1044 ;; byte-compile-negation-optimizer lives in bytecomp.el
1045 (put '/= 'byte-optimizer 'byte-compile-negation-optimizer)
1046 (put 'atom 'byte-optimizer 'byte-compile-negation-optimizer)
1047 (put 'nlistp 'byte-optimizer 'byte-compile-negation-optimizer)
1050 (defun byte-optimize-funcall (form)
1051 ;; (funcall (lambda ...) ...) ==> ((lambda ...) ...)
1052 ;; (funcall foo ...) ==> (foo ...)
1053 (let ((fn (nth 1 form)))
1054 (if (memq (car-safe fn) '(quote function))
1055 (cons (nth 1 fn) (cdr (cdr form)))
1056 form)))
1058 (defun byte-optimize-apply (form)
1059 ;; If the last arg is a literal constant, turn this into a funcall.
1060 ;; The funcall optimizer can then transform (funcall 'foo ...) -> (foo ...).
1061 (let ((fn (nth 1 form))
1062 (last (nth (1- (length form)) form))) ; I think this really is fastest
1063 (or (if (or (null last)
1064 (eq (car-safe last) 'quote))
1065 (if (listp (nth 1 last))
1066 (let ((butlast (nreverse (cdr (reverse (cdr (cdr form)))))))
1067 (nconc (list 'funcall fn) butlast
1068 (mapcar (lambda (x) (list 'quote x)) (nth 1 last))))
1069 (byte-compile-warn
1070 "last arg to apply can't be a literal atom: `%s'"
1071 (prin1-to-string last))
1072 nil))
1073 form)))
1075 (put 'funcall 'byte-optimizer 'byte-optimize-funcall)
1076 (put 'apply 'byte-optimizer 'byte-optimize-apply)
1079 (put 'let 'byte-optimizer 'byte-optimize-letX)
1080 (put 'let* 'byte-optimizer 'byte-optimize-letX)
1081 (defun byte-optimize-letX (form)
1082 (cond ((null (nth 1 form))
1083 ;; No bindings
1084 (cons 'progn (cdr (cdr form))))
1085 ((or (nth 2 form) (nthcdr 3 form))
1086 form)
1087 ;; The body is nil
1088 ((eq (car form) 'let)
1089 (append '(progn) (mapcar 'car-safe (mapcar 'cdr-safe (nth 1 form)))
1090 '(nil)))
1092 (let ((binds (reverse (nth 1 form))))
1093 (list 'let* (reverse (cdr binds)) (nth 1 (car binds)) nil)))))
1096 (put 'nth 'byte-optimizer 'byte-optimize-nth)
1097 (defun byte-optimize-nth (form)
1098 (if (= (safe-length form) 3)
1099 (if (memq (nth 1 form) '(0 1))
1100 (list 'car (if (zerop (nth 1 form))
1101 (nth 2 form)
1102 (list 'cdr (nth 2 form))))
1103 (byte-optimize-predicate form))
1104 form))
1106 (put 'nthcdr 'byte-optimizer 'byte-optimize-nthcdr)
1107 (defun byte-optimize-nthcdr (form)
1108 (if (= (safe-length form) 3)
1109 (if (memq (nth 1 form) '(0 1 2))
1110 (let ((count (nth 1 form)))
1111 (setq form (nth 2 form))
1112 (while (>= (setq count (1- count)) 0)
1113 (setq form (list 'cdr form)))
1114 form)
1115 (byte-optimize-predicate form))
1116 form))
1118 (put 'concat 'byte-optimizer 'byte-optimize-pure-func)
1119 (put 'symbol-name 'byte-optimizer 'byte-optimize-pure-func)
1120 (put 'regexp-opt 'byte-optimizer 'byte-optimize-pure-func)
1121 (put 'regexp-quote 'byte-optimizer 'byte-optimize-pure-func)
1122 (defun byte-optimize-pure-func (form)
1123 "Do constant folding for pure functions.
1124 This assumes that the function will not have any side-effects and that
1125 its return value depends solely on its arguments.
1126 If the function can signal an error, this might change the semantics
1127 of FORM by signalling the error at compile-time."
1128 (let ((args (cdr form))
1129 (constant t))
1130 (while (and args constant)
1131 (or (byte-compile-constp (car args))
1132 (setq constant nil))
1133 (setq args (cdr args)))
1134 (if constant
1135 (eval form)
1136 form)))
1138 ;; Avoid having to write forward-... with a negative arg for speed.
1139 ;; Fixme: don't be limited to constant args.
1140 (put 'backward-char 'byte-optimizer 'byte-optimize-backward-char)
1141 (defun byte-optimize-backward-char (form)
1142 (cond ((and (= 2 (safe-length form))
1143 (numberp (nth 1 form)))
1144 (list 'forward-char (eval (- (nth 1 form)))))
1145 ((= 1 (safe-length form))
1146 '(forward-char -1))
1147 (t form)))
1149 (put 'backward-word 'byte-optimizer 'byte-optimize-backward-word)
1150 (defun byte-optimize-backward-word (form)
1151 (cond ((and (= 2 (safe-length form))
1152 (numberp (nth 1 form)))
1153 (list 'forward-word (eval (- (nth 1 form)))))
1154 ((= 1 (safe-length form))
1155 '(forward-char -1))
1156 (t form)))
1158 (put 'char-before 'byte-optimizer 'byte-optimize-char-before)
1159 (defun byte-optimize-char-before (form)
1160 (cond ((= 2 (safe-length form))
1161 `(char-after (1- ,(nth 1 form))))
1162 ((= 1 (safe-length form))
1163 '(char-after (1- (point))))
1164 (t form)))
1166 ;; Fixme: delete-char -> delete-region (byte-coded)
1167 ;; optimize string-as-unibyte, string-as-multibyte, string-make-unibyte,
1168 ;; string-make-multibyte for constant args.
1170 (put 'featurep 'byte-optimizer 'byte-optimize-featurep)
1171 (defun byte-optimize-featurep (form)
1172 ;; Emacs-21's byte-code doesn't run under XEmacs anyway, so we can
1173 ;; safely optimize away this test.
1174 (if (equal '((quote xemacs)) (cdr-safe form))
1176 form))
1178 (put 'set 'byte-optimizer 'byte-optimize-set)
1179 (defun byte-optimize-set (form)
1180 (let ((var (car-safe (cdr-safe form))))
1181 (cond
1182 ((and (eq (car-safe var) 'quote) (consp (cdr var)))
1183 `(setq ,(cadr var) ,@(cddr form)))
1184 ((and (eq (car-safe var) 'make-local-variable)
1185 (eq (car-safe (setq var (car-safe (cdr var)))) 'quote)
1186 (consp (cdr var)))
1187 `(progn ,(cadr form) (setq ,(cadr var) ,@(cddr form))))
1188 (t form))))
1190 ;; enumerating those functions which need not be called if the returned
1191 ;; value is not used. That is, something like
1192 ;; (progn (list (something-with-side-effects) (yow))
1193 ;; (foo))
1194 ;; may safely be turned into
1195 ;; (progn (progn (something-with-side-effects) (yow))
1196 ;; (foo))
1197 ;; Further optimizations will turn (progn (list 1 2 3) 'foo) into 'foo.
1199 ;; Some of these functions have the side effect of allocating memory
1200 ;; and it would be incorrect to replace two calls with one.
1201 ;; But we don't try to do those kinds of optimizations,
1202 ;; so it is safe to list such functions here.
1203 ;; Some of these functions return values that depend on environment
1204 ;; state, so that constant folding them would be wrong,
1205 ;; but we don't do constant folding based on this list.
1207 ;; However, at present the only optimization we normally do
1208 ;; is delete calls that need not occur, and we only do that
1209 ;; with the error-free functions.
1211 ;; I wonder if I missed any :-\)
1212 (let ((side-effect-free-fns
1213 '(% * + - / /= 1+ 1- < <= = > >= abs acos append aref ash asin atan
1214 assoc assq
1215 boundp buffer-file-name buffer-local-variables buffer-modified-p
1216 buffer-substring byte-code-function-p
1217 capitalize car-less-than-car car cdr ceiling char-after char-before
1218 char-equal char-to-string char-width
1219 compare-strings concat coordinates-in-window-p
1220 copy-alist copy-sequence copy-marker cos count-lines
1221 decode-time default-boundp default-value documentation downcase
1222 elt exp expt encode-time error-message-string
1223 fboundp fceiling featurep ffloor
1224 file-directory-p file-exists-p file-locked-p file-name-absolute-p
1225 file-newer-than-file-p file-readable-p file-symlink-p file-writable-p
1226 float float-time floor format format-time-string frame-visible-p
1227 fround ftruncate
1228 get gethash get-buffer get-buffer-window getenv get-file-buffer
1229 hash-table-count
1230 int-to-string intern-soft
1231 keymap-parent
1232 length local-variable-if-set-p local-variable-p log log10 logand
1233 logb logior lognot logxor lsh
1234 make-list make-string make-symbol
1235 marker-buffer max member memq min mod multibyte-char-to-unibyte
1236 next-window nth nthcdr number-to-string
1237 parse-colon-path plist-get plist-member
1238 prefix-numeric-value previous-window prin1-to-string propertize
1239 radians-to-degrees rassq rassoc read-from-string regexp-quote
1240 region-beginning region-end reverse round
1241 sin sqrt string string< string= string-equal string-lessp string-to-char
1242 string-to-int string-to-number substring sxhash symbol-function
1243 symbol-name symbol-plist symbol-value string-make-unibyte
1244 string-make-multibyte string-as-multibyte string-as-unibyte
1245 tan truncate
1246 unibyte-char-to-multibyte upcase user-full-name
1247 user-login-name user-original-login-name user-variable-p
1248 vconcat
1249 window-buffer window-dedicated-p window-edges window-height
1250 window-hscroll window-minibuffer-p window-width
1251 zerop))
1252 (side-effect-and-error-free-fns
1253 '(arrayp atom
1254 bobp bolp bool-vector-p
1255 buffer-end buffer-list buffer-size buffer-string bufferp
1256 car-safe case-table-p cdr-safe char-or-string-p commandp cons consp
1257 current-buffer current-global-map current-indentation
1258 current-local-map current-minor-mode-maps current-time
1259 current-time-string current-time-zone
1260 eobp eolp eq equal eventp
1261 floatp following-char framep
1262 get-largest-window get-lru-window
1263 hash-table-p
1264 identity ignore integerp integer-or-marker-p interactive-p
1265 invocation-directory invocation-name
1266 keymapp
1267 line-beginning-position line-end-position list listp
1268 make-marker mark mark-marker markerp memory-limit minibuffer-window
1269 mouse-movement-p
1270 natnump nlistp not null number-or-marker-p numberp
1271 one-window-p overlayp
1272 point point-marker point-min point-max preceding-char processp
1273 recent-keys recursion-depth
1274 safe-length selected-frame selected-window sequencep
1275 standard-case-table standard-syntax-table stringp subrp symbolp
1276 syntax-table syntax-table-p
1277 this-command-keys this-command-keys-vector this-single-command-keys
1278 this-single-command-raw-keys
1279 user-real-login-name user-real-uid user-uid
1280 vector vectorp visible-frame-list
1281 wholenump window-configuration-p window-live-p windowp)))
1282 (while side-effect-free-fns
1283 (put (car side-effect-free-fns) 'side-effect-free t)
1284 (setq side-effect-free-fns (cdr side-effect-free-fns)))
1285 (while side-effect-and-error-free-fns
1286 (put (car side-effect-and-error-free-fns) 'side-effect-free 'error-free)
1287 (setq side-effect-and-error-free-fns (cdr side-effect-and-error-free-fns)))
1288 nil)
1291 (defun byte-compile-splice-in-already-compiled-code (form)
1292 ;; form is (byte-code "..." [...] n)
1293 (if (not (memq byte-optimize '(t lap)))
1294 (byte-compile-normal-call form)
1295 (byte-inline-lapcode
1296 (byte-decompile-bytecode-1 (nth 1 form) (nth 2 form) t))
1297 (setq byte-compile-maxdepth (max (+ byte-compile-depth (nth 3 form))
1298 byte-compile-maxdepth))
1299 (setq byte-compile-depth (1+ byte-compile-depth))))
1301 (put 'byte-code 'byte-compile 'byte-compile-splice-in-already-compiled-code)
1304 (defconst byte-constref-ops
1305 '(byte-constant byte-constant2 byte-varref byte-varset byte-varbind))
1307 ;; This function extracts the bitfields from variable-length opcodes.
1308 ;; Originally defined in disass.el (which no longer uses it.)
1310 (defun disassemble-offset ()
1311 "Don't call this!"
1312 ;; fetch and return the offset for the current opcode.
1313 ;; return nil if this opcode has no offset
1314 ;; OP, PTR and BYTES are used and set dynamically
1315 (defvar op)
1316 (defvar ptr)
1317 (defvar bytes)
1318 (cond ((< op byte-nth)
1319 (let ((tem (logand op 7)))
1320 (setq op (logand op 248))
1321 (cond ((eq tem 6)
1322 (setq ptr (1+ ptr)) ;offset in next byte
1323 (aref bytes ptr))
1324 ((eq tem 7)
1325 (setq ptr (1+ ptr)) ;offset in next 2 bytes
1326 (+ (aref bytes ptr)
1327 (progn (setq ptr (1+ ptr))
1328 (lsh (aref bytes ptr) 8))))
1329 (t tem)))) ;offset was in opcode
1330 ((>= op byte-constant)
1331 (prog1 (- op byte-constant) ;offset in opcode
1332 (setq op byte-constant)))
1333 ((and (>= op byte-constant2)
1334 (<= op byte-goto-if-not-nil-else-pop))
1335 (setq ptr (1+ ptr)) ;offset in next 2 bytes
1336 (+ (aref bytes ptr)
1337 (progn (setq ptr (1+ ptr))
1338 (lsh (aref bytes ptr) 8))))
1339 ((and (>= op byte-listN)
1340 (<= op byte-insertN))
1341 (setq ptr (1+ ptr)) ;offset in next byte
1342 (aref bytes ptr))))
1345 ;; This de-compiler is used for inline expansion of compiled functions,
1346 ;; and by the disassembler.
1348 ;; This list contains numbers, which are pc values,
1349 ;; before each instruction.
1350 (defun byte-decompile-bytecode (bytes constvec)
1351 "Turns BYTECODE into lapcode, referring to CONSTVEC."
1352 (let ((byte-compile-constants nil)
1353 (byte-compile-variables nil)
1354 (byte-compile-tag-number 0))
1355 (byte-decompile-bytecode-1 bytes constvec)))
1357 ;; As byte-decompile-bytecode, but updates
1358 ;; byte-compile-{constants, variables, tag-number}.
1359 ;; If MAKE-SPLICEABLE is true, then `return' opcodes are replaced
1360 ;; with `goto's destined for the end of the code.
1361 ;; That is for use by the compiler.
1362 ;; If MAKE-SPLICEABLE is nil, we are being called for the disassembler.
1363 ;; In that case, we put a pc value into the list
1364 ;; before each insn (or its label).
1365 (defun byte-decompile-bytecode-1 (bytes constvec &optional make-spliceable)
1366 (let ((length (length bytes))
1367 (ptr 0) optr tag tags op offset
1368 lap tmp
1369 endtag
1370 (retcount 0))
1371 (while (not (= ptr length))
1372 (or make-spliceable
1373 (setq lap (cons ptr lap)))
1374 (setq op (aref bytes ptr)
1375 optr ptr
1376 offset (disassemble-offset)) ; this does dynamic-scope magic
1377 (setq op (aref byte-code-vector op))
1378 (cond ((memq op byte-goto-ops)
1379 ;; it's a pc
1380 (setq offset
1381 (cdr (or (assq offset tags)
1382 (car (setq tags
1383 (cons (cons offset
1384 (byte-compile-make-tag))
1385 tags)))))))
1386 ((cond ((eq op 'byte-constant2) (setq op 'byte-constant) t)
1387 ((memq op byte-constref-ops)))
1388 (setq tmp (if (>= offset (length constvec))
1389 (list 'out-of-range offset)
1390 (aref constvec offset))
1391 offset (if (eq op 'byte-constant)
1392 (byte-compile-get-constant tmp)
1393 (or (assq tmp byte-compile-variables)
1394 (car (setq byte-compile-variables
1395 (cons (list tmp)
1396 byte-compile-variables)))))))
1397 ((and make-spliceable
1398 (eq op 'byte-return))
1399 (if (= ptr (1- length))
1400 (setq op nil)
1401 (setq offset (or endtag (setq endtag (byte-compile-make-tag)))
1402 op 'byte-goto))))
1403 ;; lap = ( [ (pc . (op . arg)) ]* )
1404 (setq lap (cons (cons optr (cons op (or offset 0)))
1405 lap))
1406 (setq ptr (1+ ptr)))
1407 ;; take off the dummy nil op that we replaced a trailing "return" with.
1408 (let ((rest lap))
1409 (while rest
1410 (cond ((numberp (car rest)))
1411 ((setq tmp (assq (car (car rest)) tags))
1412 ;; this addr is jumped to
1413 (setcdr rest (cons (cons nil (cdr tmp))
1414 (cdr rest)))
1415 (setq tags (delq tmp tags))
1416 (setq rest (cdr rest))))
1417 (setq rest (cdr rest))))
1418 (if tags (error "optimizer error: missed tags %s" tags))
1419 (if (null (car (cdr (car lap))))
1420 (setq lap (cdr lap)))
1421 (if endtag
1422 (setq lap (cons (cons nil endtag) lap)))
1423 ;; remove addrs, lap = ( [ (op . arg) | (TAG tagno) ]* )
1424 (mapcar (function (lambda (elt)
1425 (if (numberp elt)
1427 (cdr elt))))
1428 (nreverse lap))))
1431 ;;; peephole optimizer
1433 (defconst byte-tagref-ops (cons 'TAG byte-goto-ops))
1435 (defconst byte-conditional-ops
1436 '(byte-goto-if-nil byte-goto-if-not-nil byte-goto-if-nil-else-pop
1437 byte-goto-if-not-nil-else-pop))
1439 (defconst byte-after-unbind-ops
1440 '(byte-constant byte-dup
1441 byte-symbolp byte-consp byte-stringp byte-listp byte-numberp byte-integerp
1442 byte-eq byte-not
1443 byte-cons byte-list1 byte-list2 ; byte-list3 byte-list4
1444 byte-interactive-p)
1445 ;; How about other side-effect-free-ops? Is it safe to move an
1446 ;; error invocation (such as from nth) out of an unwind-protect?
1447 ;; No, it is not, because the unwind-protect forms can alter
1448 ;; the inside of the object to which nth would apply.
1449 ;; For the same reason, byte-equal was deleted from this list.
1450 "Byte-codes that can be moved past an unbind.")
1452 (defconst byte-compile-side-effect-and-error-free-ops
1453 '(byte-constant byte-dup byte-symbolp byte-consp byte-stringp byte-listp
1454 byte-integerp byte-numberp byte-eq byte-equal byte-not byte-car-safe
1455 byte-cdr-safe byte-cons byte-list1 byte-list2 byte-point byte-point-max
1456 byte-point-min byte-following-char byte-preceding-char
1457 byte-current-column byte-eolp byte-eobp byte-bolp byte-bobp
1458 byte-current-buffer byte-interactive-p))
1460 (defconst byte-compile-side-effect-free-ops
1461 (nconc
1462 '(byte-varref byte-nth byte-memq byte-car byte-cdr byte-length byte-aref
1463 byte-symbol-value byte-get byte-concat2 byte-concat3 byte-sub1 byte-add1
1464 byte-eqlsign byte-gtr byte-lss byte-leq byte-geq byte-diff byte-negate
1465 byte-plus byte-max byte-min byte-mult byte-char-after byte-char-syntax
1466 byte-buffer-substring byte-string= byte-string< byte-nthcdr byte-elt
1467 byte-member byte-assq byte-quo byte-rem)
1468 byte-compile-side-effect-and-error-free-ops))
1470 ;; This crock is because of the way DEFVAR_BOOL variables work.
1471 ;; Consider the code
1473 ;; (defun foo (flag)
1474 ;; (let ((old-pop-ups pop-up-windows)
1475 ;; (pop-up-windows flag))
1476 ;; (cond ((not (eq pop-up-windows old-pop-ups))
1477 ;; (setq old-pop-ups pop-up-windows)
1478 ;; ...))))
1480 ;; Uncompiled, old-pop-ups will always be set to nil or t, even if FLAG is
1481 ;; something else. But if we optimize
1483 ;; varref flag
1484 ;; varbind pop-up-windows
1485 ;; varref pop-up-windows
1486 ;; not
1487 ;; to
1488 ;; varref flag
1489 ;; dup
1490 ;; varbind pop-up-windows
1491 ;; not
1493 ;; we break the program, because it will appear that pop-up-windows and
1494 ;; old-pop-ups are not EQ when really they are. So we have to know what
1495 ;; the BOOL variables are, and not perform this optimization on them.
1497 ;; The variable `byte-boolean-vars' is now primitive and updated
1498 ;; automatically by DEFVAR_BOOL.
1500 (defun byte-optimize-lapcode (lap &optional for-effect)
1501 "Simple peephole optimizer. LAP is both modified and returned.
1502 If FOR-EFFECT is non-nil, the return value is assumed to be of no importance."
1503 (let (lap0
1504 lap1
1505 lap2
1506 (keep-going 'first-time)
1507 (add-depth 0)
1508 rest tmp tmp2 tmp3
1509 (side-effect-free (if byte-compile-delete-errors
1510 byte-compile-side-effect-free-ops
1511 byte-compile-side-effect-and-error-free-ops)))
1512 (while keep-going
1513 (or (eq keep-going 'first-time)
1514 (byte-compile-log-lap " ---- next pass"))
1515 (setq rest lap
1516 keep-going nil)
1517 (while rest
1518 (setq lap0 (car rest)
1519 lap1 (nth 1 rest)
1520 lap2 (nth 2 rest))
1522 ;; You may notice that sequences like "dup varset discard" are
1523 ;; optimized but sequences like "dup varset TAG1: discard" are not.
1524 ;; You may be tempted to change this; resist that temptation.
1525 (cond ;;
1526 ;; <side-effect-free> pop --> <deleted>
1527 ;; ...including:
1528 ;; const-X pop --> <deleted>
1529 ;; varref-X pop --> <deleted>
1530 ;; dup pop --> <deleted>
1532 ((and (eq 'byte-discard (car lap1))
1533 (memq (car lap0) side-effect-free))
1534 (setq keep-going t)
1535 (setq tmp (aref byte-stack+-info (symbol-value (car lap0))))
1536 (setq rest (cdr rest))
1537 (cond ((= tmp 1)
1538 (byte-compile-log-lap
1539 " %s discard\t-->\t<deleted>" lap0)
1540 (setq lap (delq lap0 (delq lap1 lap))))
1541 ((= tmp 0)
1542 (byte-compile-log-lap
1543 " %s discard\t-->\t<deleted> discard" lap0)
1544 (setq lap (delq lap0 lap)))
1545 ((= tmp -1)
1546 (byte-compile-log-lap
1547 " %s discard\t-->\tdiscard discard" lap0)
1548 (setcar lap0 'byte-discard)
1549 (setcdr lap0 0))
1550 ((error "Optimizer error: too much on the stack"))))
1552 ;; goto*-X X: --> X:
1554 ((and (memq (car lap0) byte-goto-ops)
1555 (eq (cdr lap0) lap1))
1556 (cond ((eq (car lap0) 'byte-goto)
1557 (setq lap (delq lap0 lap))
1558 (setq tmp "<deleted>"))
1559 ((memq (car lap0) byte-goto-always-pop-ops)
1560 (setcar lap0 (setq tmp 'byte-discard))
1561 (setcdr lap0 0))
1562 ((error "Depth conflict at tag %d" (nth 2 lap0))))
1563 (and (memq byte-optimize-log '(t byte))
1564 (byte-compile-log " (goto %s) %s:\t-->\t%s %s:"
1565 (nth 1 lap1) (nth 1 lap1)
1566 tmp (nth 1 lap1)))
1567 (setq keep-going t))
1569 ;; varset-X varref-X --> dup varset-X
1570 ;; varbind-X varref-X --> dup varbind-X
1571 ;; const/dup varset-X varref-X --> const/dup varset-X const/dup
1572 ;; const/dup varbind-X varref-X --> const/dup varbind-X const/dup
1573 ;; The latter two can enable other optimizations.
1575 ((and (eq 'byte-varref (car lap2))
1576 (eq (cdr lap1) (cdr lap2))
1577 (memq (car lap1) '(byte-varset byte-varbind)))
1578 (if (and (setq tmp (memq (car (cdr lap2)) byte-boolean-vars))
1579 (not (eq (car lap0) 'byte-constant)))
1581 (setq keep-going t)
1582 (if (memq (car lap0) '(byte-constant byte-dup))
1583 (progn
1584 (setq tmp (if (or (not tmp)
1585 (byte-compile-const-symbol-p
1586 (car (cdr lap0))))
1587 (cdr lap0)
1588 (byte-compile-get-constant t)))
1589 (byte-compile-log-lap " %s %s %s\t-->\t%s %s %s"
1590 lap0 lap1 lap2 lap0 lap1
1591 (cons (car lap0) tmp))
1592 (setcar lap2 (car lap0))
1593 (setcdr lap2 tmp))
1594 (byte-compile-log-lap " %s %s\t-->\tdup %s" lap1 lap2 lap1)
1595 (setcar lap2 (car lap1))
1596 (setcar lap1 'byte-dup)
1597 (setcdr lap1 0)
1598 ;; The stack depth gets locally increased, so we will
1599 ;; increase maxdepth in case depth = maxdepth here.
1600 ;; This can cause the third argument to byte-code to
1601 ;; be larger than necessary.
1602 (setq add-depth 1))))
1604 ;; dup varset-X discard --> varset-X
1605 ;; dup varbind-X discard --> varbind-X
1606 ;; (the varbind variant can emerge from other optimizations)
1608 ((and (eq 'byte-dup (car lap0))
1609 (eq 'byte-discard (car lap2))
1610 (memq (car lap1) '(byte-varset byte-varbind)))
1611 (byte-compile-log-lap " dup %s discard\t-->\t%s" lap1 lap1)
1612 (setq keep-going t
1613 rest (cdr rest))
1614 (setq lap (delq lap0 (delq lap2 lap))))
1616 ;; not goto-X-if-nil --> goto-X-if-non-nil
1617 ;; not goto-X-if-non-nil --> goto-X-if-nil
1619 ;; it is wrong to do the same thing for the -else-pop variants.
1621 ((and (eq 'byte-not (car lap0))
1622 (or (eq 'byte-goto-if-nil (car lap1))
1623 (eq 'byte-goto-if-not-nil (car lap1))))
1624 (byte-compile-log-lap " not %s\t-->\t%s"
1625 lap1
1626 (cons
1627 (if (eq (car lap1) 'byte-goto-if-nil)
1628 'byte-goto-if-not-nil
1629 'byte-goto-if-nil)
1630 (cdr lap1)))
1631 (setcar lap1 (if (eq (car lap1) 'byte-goto-if-nil)
1632 'byte-goto-if-not-nil
1633 'byte-goto-if-nil))
1634 (setq lap (delq lap0 lap))
1635 (setq keep-going t))
1637 ;; goto-X-if-nil goto-Y X: --> goto-Y-if-non-nil X:
1638 ;; goto-X-if-non-nil goto-Y X: --> goto-Y-if-nil X:
1640 ;; it is wrong to do the same thing for the -else-pop variants.
1642 ((and (or (eq 'byte-goto-if-nil (car lap0))
1643 (eq 'byte-goto-if-not-nil (car lap0))) ; gotoX
1644 (eq 'byte-goto (car lap1)) ; gotoY
1645 (eq (cdr lap0) lap2)) ; TAG X
1646 (let ((inverse (if (eq 'byte-goto-if-nil (car lap0))
1647 'byte-goto-if-not-nil 'byte-goto-if-nil)))
1648 (byte-compile-log-lap " %s %s %s:\t-->\t%s %s:"
1649 lap0 lap1 lap2
1650 (cons inverse (cdr lap1)) lap2)
1651 (setq lap (delq lap0 lap))
1652 (setcar lap1 inverse)
1653 (setq keep-going t)))
1655 ;; const goto-if-* --> whatever
1657 ((and (eq 'byte-constant (car lap0))
1658 (memq (car lap1) byte-conditional-ops))
1659 (cond ((if (or (eq (car lap1) 'byte-goto-if-nil)
1660 (eq (car lap1) 'byte-goto-if-nil-else-pop))
1661 (car (cdr lap0))
1662 (not (car (cdr lap0))))
1663 (byte-compile-log-lap " %s %s\t-->\t<deleted>"
1664 lap0 lap1)
1665 (setq rest (cdr rest)
1666 lap (delq lap0 (delq lap1 lap))))
1668 (if (memq (car lap1) byte-goto-always-pop-ops)
1669 (progn
1670 (byte-compile-log-lap " %s %s\t-->\t%s"
1671 lap0 lap1 (cons 'byte-goto (cdr lap1)))
1672 (setq lap (delq lap0 lap)))
1673 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
1674 (cons 'byte-goto (cdr lap1))))
1675 (setcar lap1 'byte-goto)))
1676 (setq keep-going t))
1678 ;; varref-X varref-X --> varref-X dup
1679 ;; varref-X [dup ...] varref-X --> varref-X [dup ...] dup
1680 ;; We don't optimize the const-X variations on this here,
1681 ;; because that would inhibit some goto optimizations; we
1682 ;; optimize the const-X case after all other optimizations.
1684 ((and (eq 'byte-varref (car lap0))
1685 (progn
1686 (setq tmp (cdr rest))
1687 (while (eq (car (car tmp)) 'byte-dup)
1688 (setq tmp (cdr tmp)))
1690 (eq (cdr lap0) (cdr (car tmp)))
1691 (eq 'byte-varref (car (car tmp))))
1692 (if (memq byte-optimize-log '(t byte))
1693 (let ((str ""))
1694 (setq tmp2 (cdr rest))
1695 (while (not (eq tmp tmp2))
1696 (setq tmp2 (cdr tmp2)
1697 str (concat str " dup")))
1698 (byte-compile-log-lap " %s%s %s\t-->\t%s%s dup"
1699 lap0 str lap0 lap0 str)))
1700 (setq keep-going t)
1701 (setcar (car tmp) 'byte-dup)
1702 (setcdr (car tmp) 0)
1703 (setq rest tmp))
1705 ;; TAG1: TAG2: --> TAG1: <deleted>
1706 ;; (and other references to TAG2 are replaced with TAG1)
1708 ((and (eq (car lap0) 'TAG)
1709 (eq (car lap1) 'TAG))
1710 (and (memq byte-optimize-log '(t byte))
1711 (byte-compile-log " adjacent tags %d and %d merged"
1712 (nth 1 lap1) (nth 1 lap0)))
1713 (setq tmp3 lap)
1714 (while (setq tmp2 (rassq lap0 tmp3))
1715 (setcdr tmp2 lap1)
1716 (setq tmp3 (cdr (memq tmp2 tmp3))))
1717 (setq lap (delq lap0 lap)
1718 keep-going t))
1720 ;; unused-TAG: --> <deleted>
1722 ((and (eq 'TAG (car lap0))
1723 (not (rassq lap0 lap)))
1724 (and (memq byte-optimize-log '(t byte))
1725 (byte-compile-log " unused tag %d removed" (nth 1 lap0)))
1726 (setq lap (delq lap0 lap)
1727 keep-going t))
1729 ;; goto ... --> goto <delete until TAG or end>
1730 ;; return ... --> return <delete until TAG or end>
1732 ((and (memq (car lap0) '(byte-goto byte-return))
1733 (not (memq (car lap1) '(TAG nil))))
1734 (setq tmp rest)
1735 (let ((i 0)
1736 (opt-p (memq byte-optimize-log '(t lap)))
1737 str deleted)
1738 (while (and (setq tmp (cdr tmp))
1739 (not (eq 'TAG (car (car tmp)))))
1740 (if opt-p (setq deleted (cons (car tmp) deleted)
1741 str (concat str " %s")
1742 i (1+ i))))
1743 (if opt-p
1744 (let ((tagstr
1745 (if (eq 'TAG (car (car tmp)))
1746 (format "%d:" (car (cdr (car tmp))))
1747 (or (car tmp) ""))))
1748 (if (< i 6)
1749 (apply 'byte-compile-log-lap-1
1750 (concat " %s" str
1751 " %s\t-->\t%s <deleted> %s")
1752 lap0
1753 (nconc (nreverse deleted)
1754 (list tagstr lap0 tagstr)))
1755 (byte-compile-log-lap
1756 " %s <%d unreachable op%s> %s\t-->\t%s <deleted> %s"
1757 lap0 i (if (= i 1) "" "s")
1758 tagstr lap0 tagstr))))
1759 (rplacd rest tmp))
1760 (setq keep-going t))
1762 ;; <safe-op> unbind --> unbind <safe-op>
1763 ;; (this may enable other optimizations.)
1765 ((and (eq 'byte-unbind (car lap1))
1766 (memq (car lap0) byte-after-unbind-ops))
1767 (byte-compile-log-lap " %s %s\t-->\t%s %s" lap0 lap1 lap1 lap0)
1768 (setcar rest lap1)
1769 (setcar (cdr rest) lap0)
1770 (setq keep-going t))
1772 ;; varbind-X unbind-N --> discard unbind-(N-1)
1773 ;; save-excursion unbind-N --> unbind-(N-1)
1774 ;; save-restriction unbind-N --> unbind-(N-1)
1776 ((and (eq 'byte-unbind (car lap1))
1777 (memq (car lap0) '(byte-varbind byte-save-excursion
1778 byte-save-restriction))
1779 (< 0 (cdr lap1)))
1780 (if (zerop (setcdr lap1 (1- (cdr lap1))))
1781 (delq lap1 rest))
1782 (if (eq (car lap0) 'byte-varbind)
1783 (setcar rest (cons 'byte-discard 0))
1784 (setq lap (delq lap0 lap)))
1785 (byte-compile-log-lap " %s %s\t-->\t%s %s"
1786 lap0 (cons (car lap1) (1+ (cdr lap1)))
1787 (if (eq (car lap0) 'byte-varbind)
1788 (car rest)
1789 (car (cdr rest)))
1790 (if (and (/= 0 (cdr lap1))
1791 (eq (car lap0) 'byte-varbind))
1792 (car (cdr rest))
1793 ""))
1794 (setq keep-going t))
1796 ;; goto*-X ... X: goto-Y --> goto*-Y
1797 ;; goto-X ... X: return --> return
1799 ((and (memq (car lap0) byte-goto-ops)
1800 (memq (car (setq tmp (nth 1 (memq (cdr lap0) lap))))
1801 '(byte-goto byte-return)))
1802 (cond ((and (not (eq tmp lap0))
1803 (or (eq (car lap0) 'byte-goto)
1804 (eq (car tmp) 'byte-goto)))
1805 (byte-compile-log-lap " %s [%s]\t-->\t%s"
1806 (car lap0) tmp tmp)
1807 (if (eq (car tmp) 'byte-return)
1808 (setcar lap0 'byte-return))
1809 (setcdr lap0 (cdr tmp))
1810 (setq keep-going t))))
1812 ;; goto-*-else-pop X ... X: goto-if-* --> whatever
1813 ;; goto-*-else-pop X ... X: discard --> whatever
1815 ((and (memq (car lap0) '(byte-goto-if-nil-else-pop
1816 byte-goto-if-not-nil-else-pop))
1817 (memq (car (car (setq tmp (cdr (memq (cdr lap0) lap)))))
1818 (eval-when-compile
1819 (cons 'byte-discard byte-conditional-ops)))
1820 (not (eq lap0 (car tmp))))
1821 (setq tmp2 (car tmp))
1822 (setq tmp3 (assq (car lap0) '((byte-goto-if-nil-else-pop
1823 byte-goto-if-nil)
1824 (byte-goto-if-not-nil-else-pop
1825 byte-goto-if-not-nil))))
1826 (if (memq (car tmp2) tmp3)
1827 (progn (setcar lap0 (car tmp2))
1828 (setcdr lap0 (cdr tmp2))
1829 (byte-compile-log-lap " %s-else-pop [%s]\t-->\t%s"
1830 (car lap0) tmp2 lap0))
1831 ;; Get rid of the -else-pop's and jump one step further.
1832 (or (eq 'TAG (car (nth 1 tmp)))
1833 (setcdr tmp (cons (byte-compile-make-tag)
1834 (cdr tmp))))
1835 (byte-compile-log-lap " %s [%s]\t-->\t%s <skip>"
1836 (car lap0) tmp2 (nth 1 tmp3))
1837 (setcar lap0 (nth 1 tmp3))
1838 (setcdr lap0 (nth 1 tmp)))
1839 (setq keep-going t))
1841 ;; const goto-X ... X: goto-if-* --> whatever
1842 ;; const goto-X ... X: discard --> whatever
1844 ((and (eq (car lap0) 'byte-constant)
1845 (eq (car lap1) 'byte-goto)
1846 (memq (car (car (setq tmp (cdr (memq (cdr lap1) lap)))))
1847 (eval-when-compile
1848 (cons 'byte-discard byte-conditional-ops)))
1849 (not (eq lap1 (car tmp))))
1850 (setq tmp2 (car tmp))
1851 (cond ((memq (car tmp2)
1852 (if (null (car (cdr lap0)))
1853 '(byte-goto-if-nil byte-goto-if-nil-else-pop)
1854 '(byte-goto-if-not-nil
1855 byte-goto-if-not-nil-else-pop)))
1856 (byte-compile-log-lap " %s goto [%s]\t-->\t%s %s"
1857 lap0 tmp2 lap0 tmp2)
1858 (setcar lap1 (car tmp2))
1859 (setcdr lap1 (cdr tmp2))
1860 ;; Let next step fix the (const,goto-if*) sequence.
1861 (setq rest (cons nil rest)))
1863 ;; Jump one step further
1864 (byte-compile-log-lap
1865 " %s goto [%s]\t-->\t<deleted> goto <skip>"
1866 lap0 tmp2)
1867 (or (eq 'TAG (car (nth 1 tmp)))
1868 (setcdr tmp (cons (byte-compile-make-tag)
1869 (cdr tmp))))
1870 (setcdr lap1 (car (cdr tmp)))
1871 (setq lap (delq lap0 lap))))
1872 (setq keep-going t))
1874 ;; X: varref-Y ... varset-Y goto-X -->
1875 ;; X: varref-Y Z: ... dup varset-Y goto-Z
1876 ;; (varset-X goto-BACK, BACK: varref-X --> copy the varref down.)
1877 ;; (This is so usual for while loops that it is worth handling).
1879 ((and (eq (car lap1) 'byte-varset)
1880 (eq (car lap2) 'byte-goto)
1881 (not (memq (cdr lap2) rest)) ;Backwards jump
1882 (eq (car (car (setq tmp (cdr (memq (cdr lap2) lap)))))
1883 'byte-varref)
1884 (eq (cdr (car tmp)) (cdr lap1))
1885 (not (memq (car (cdr lap1)) byte-boolean-vars)))
1886 ;;(byte-compile-log-lap " Pulled %s to end of loop" (car tmp))
1887 (let ((newtag (byte-compile-make-tag)))
1888 (byte-compile-log-lap
1889 " %s: %s ... %s %s\t-->\t%s: %s %s: ... %s %s %s"
1890 (nth 1 (cdr lap2)) (car tmp)
1891 lap1 lap2
1892 (nth 1 (cdr lap2)) (car tmp)
1893 (nth 1 newtag) 'byte-dup lap1
1894 (cons 'byte-goto newtag)
1896 (setcdr rest (cons (cons 'byte-dup 0) (cdr rest)))
1897 (setcdr tmp (cons (setcdr lap2 newtag) (cdr tmp))))
1898 (setq add-depth 1)
1899 (setq keep-going t))
1901 ;; goto-X Y: ... X: goto-if*-Y --> goto-if-not-*-X+1 Y:
1902 ;; (This can pull the loop test to the end of the loop)
1904 ((and (eq (car lap0) 'byte-goto)
1905 (eq (car lap1) 'TAG)
1906 (eq lap1
1907 (cdr (car (setq tmp (cdr (memq (cdr lap0) lap))))))
1908 (memq (car (car tmp))
1909 '(byte-goto byte-goto-if-nil byte-goto-if-not-nil
1910 byte-goto-if-nil-else-pop)))
1911 ;; (byte-compile-log-lap " %s %s, %s %s --> moved conditional"
1912 ;; lap0 lap1 (cdr lap0) (car tmp))
1913 (let ((newtag (byte-compile-make-tag)))
1914 (byte-compile-log-lap
1915 "%s %s: ... %s: %s\t-->\t%s ... %s:"
1916 lap0 (nth 1 lap1) (nth 1 (cdr lap0)) (car tmp)
1917 (cons (cdr (assq (car (car tmp))
1918 '((byte-goto-if-nil . byte-goto-if-not-nil)
1919 (byte-goto-if-not-nil . byte-goto-if-nil)
1920 (byte-goto-if-nil-else-pop .
1921 byte-goto-if-not-nil-else-pop)
1922 (byte-goto-if-not-nil-else-pop .
1923 byte-goto-if-nil-else-pop))))
1924 newtag)
1926 (nth 1 newtag)
1928 (setcdr tmp (cons (setcdr lap0 newtag) (cdr tmp)))
1929 (if (eq (car (car tmp)) 'byte-goto-if-nil-else-pop)
1930 ;; We can handle this case but not the -if-not-nil case,
1931 ;; because we won't know which non-nil constant to push.
1932 (setcdr rest (cons (cons 'byte-constant
1933 (byte-compile-get-constant nil))
1934 (cdr rest))))
1935 (setcar lap0 (nth 1 (memq (car (car tmp))
1936 '(byte-goto-if-nil-else-pop
1937 byte-goto-if-not-nil
1938 byte-goto-if-nil
1939 byte-goto-if-not-nil
1940 byte-goto byte-goto))))
1942 (setq keep-going t))
1944 (setq rest (cdr rest)))
1946 ;; Cleanup stage:
1947 ;; Rebuild byte-compile-constants / byte-compile-variables.
1948 ;; Simple optimizations that would inhibit other optimizations if they
1949 ;; were done in the optimizing loop, and optimizations which there is no
1950 ;; need to do more than once.
1951 (setq byte-compile-constants nil
1952 byte-compile-variables nil)
1953 (setq rest lap)
1954 (while rest
1955 (setq lap0 (car rest)
1956 lap1 (nth 1 rest))
1957 (if (memq (car lap0) byte-constref-ops)
1958 (if (or (eq (car lap0) 'byte-constant)
1959 (eq (car lap0) 'byte-constant2))
1960 (unless (memq (cdr lap0) byte-compile-constants)
1961 (setq byte-compile-constants (cons (cdr lap0)
1962 byte-compile-constants)))
1963 (unless (memq (cdr lap0) byte-compile-variables)
1964 (setq byte-compile-variables (cons (cdr lap0)
1965 byte-compile-variables)))))
1966 (cond (;;
1967 ;; const-C varset-X const-C --> const-C dup varset-X
1968 ;; const-C varbind-X const-C --> const-C dup varbind-X
1970 (and (eq (car lap0) 'byte-constant)
1971 (eq (car (nth 2 rest)) 'byte-constant)
1972 (eq (cdr lap0) (cdr (nth 2 rest)))
1973 (memq (car lap1) '(byte-varbind byte-varset)))
1974 (byte-compile-log-lap " %s %s %s\t-->\t%s dup %s"
1975 lap0 lap1 lap0 lap0 lap1)
1976 (setcar (cdr (cdr rest)) (cons (car lap1) (cdr lap1)))
1977 (setcar (cdr rest) (cons 'byte-dup 0))
1978 (setq add-depth 1))
1980 ;; const-X [dup/const-X ...] --> const-X [dup ...] dup
1981 ;; varref-X [dup/varref-X ...] --> varref-X [dup ...] dup
1983 ((memq (car lap0) '(byte-constant byte-varref))
1984 (setq tmp rest
1985 tmp2 nil)
1986 (while (progn
1987 (while (eq 'byte-dup (car (car (setq tmp (cdr tmp))))))
1988 (and (eq (cdr lap0) (cdr (car tmp)))
1989 (eq (car lap0) (car (car tmp)))))
1990 (setcar tmp (cons 'byte-dup 0))
1991 (setq tmp2 t))
1992 (if tmp2
1993 (byte-compile-log-lap
1994 " %s [dup/%s]...\t-->\t%s dup..." lap0 lap0 lap0)))
1996 ;; unbind-N unbind-M --> unbind-(N+M)
1998 ((and (eq 'byte-unbind (car lap0))
1999 (eq 'byte-unbind (car lap1)))
2000 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
2001 (cons 'byte-unbind
2002 (+ (cdr lap0) (cdr lap1))))
2003 (setq keep-going t)
2004 (setq lap (delq lap0 lap))
2005 (setcdr lap1 (+ (cdr lap1) (cdr lap0))))
2007 (setq rest (cdr rest)))
2008 (setq byte-compile-maxdepth (+ byte-compile-maxdepth add-depth)))
2009 lap)
2011 (provide 'byte-opt)
2014 ;; To avoid "lisp nesting exceeds max-lisp-eval-depth" when this file compiles
2015 ;; itself, compile some of its most used recursive functions (at load time).
2017 (eval-when-compile
2018 (or (byte-code-function-p (symbol-function 'byte-optimize-form))
2019 (assq 'byte-code (symbol-function 'byte-optimize-form))
2020 (let ((byte-optimize nil)
2021 (byte-compile-warnings nil))
2022 (mapcar (lambda (x)
2023 (or noninteractive (message "compiling %s..." x))
2024 (byte-compile x)
2025 (or noninteractive (message "compiling %s...done" x)))
2026 '(byte-optimize-form
2027 byte-optimize-body
2028 byte-optimize-predicate
2029 byte-optimize-binary-predicate
2030 ;; Inserted some more than necessary, to speed it up.
2031 byte-optimize-form-code-walker
2032 byte-optimize-lapcode))))
2033 nil)
2035 ;;; arch-tag: 0f14076b-737e-4bef-aae6-908826ec1ff1
2036 ;;; byte-opt.el ends here