Added gud-speedbar-buttons, and support for GDB buttons.
[emacs.git] / lispref / numbers.texi
blob6189e3da42fea2e8eb9b44f4132bea972ce36ce7
1 @c -*-texinfo-*-
2 @c This is part of the GNU Emacs Lisp Reference Manual.
3 @c Copyright (C) 1990, 1991, 1992, 1993, 1994 Free Software Foundation, Inc. 
4 @c See the file elisp.texi for copying conditions.
5 @setfilename ../info/numbers
6 @node Numbers, Strings and Characters, Lisp Data Types, Top
7 @chapter Numbers
8 @cindex integers
9 @cindex numbers
11   GNU Emacs supports two numeric data types: @dfn{integers} and
12 @dfn{floating point numbers}.  Integers are whole numbers such as
13 @minus{}3, 0, 7, 13, and 511.  Their values are exact.  Floating point
14 numbers are numbers with fractional parts, such as @minus{}4.5, 0.0, or
15 2.71828.  They can also be expressed in exponential notation:
16 1.5e2 equals 150; in this example, @samp{e2} stands for ten to the
17 second power, and is multiplied by 1.5.  Floating point values are not
18 exact; they have a fixed, limited amount of precision.
20   Support for floating point numbers is a new feature in Emacs 19, and it
21 is controlled by a separate compilation option, so you may encounter a site
22 where Emacs does not support them.
24 @menu
25 * Integer Basics::            Representation and range of integers.
26 * Float Basics::              Representation and range of floating point.
27 * Predicates on Numbers::     Testing for numbers.
28 * Comparison of Numbers::     Equality and inequality predicates.
29 * Numeric Conversions::       Converting float to integer and vice versa.
30 * Arithmetic Operations::     How to add, subtract, multiply and divide.
31 * Rounding Operations::       Explicitly rounding floating point numbers.
32 * Bitwise Operations::        Logical and, or, not, shifting.
33 * Math Functions::            Trig, exponential and logarithmic functions.
34 * Random Numbers::            Obtaining random integers, predictable or not.
35 @end menu
37 @node Integer Basics
38 @comment  node-name,  next,  previous,  up
39 @section Integer Basics
41   The range of values for an integer depends on the machine.  The
42 minimum range is @minus{}134217728 to 134217727 (28 bits; i.e.,
43 @ifinfo 
44 -2**27
45 @end ifinfo
46 @tex 
47 $-2^{27}$
48 @end tex
49 to 
50 @ifinfo 
51 2**27 - 1),
52 @end ifinfo
53 @tex 
54 $2^{27}-1$),
55 @end tex
56 but some machines may provide a wider range.  Many examples in this
57 chapter assume an integer has 28 bits.
58 @cindex overflow
60   The Lisp reader reads an integer as a sequence of digits with optional
61 initial sign and optional final period.
63 @example
64  1               ; @r{The integer 1.}
65  1.              ; @r{The integer 1.}
66 +1               ; @r{Also the integer 1.}
67 -1               ; @r{The integer @minus{}1.}
68  268435457       ; @r{Also the integer 1, due to overflow.}
69  0               ; @r{The integer 0.}
70 -0               ; @r{The integer 0.}
71 @end example
73   To understand how various functions work on integers, especially the
74 bitwise operators (@pxref{Bitwise Operations}), it is often helpful to
75 view the numbers in their binary form.
77   In 28-bit binary, the decimal integer 5 looks like this:
79 @example
80 0000  0000 0000  0000 0000  0000 0101
81 @end example
83 @noindent
84 (We have inserted spaces between groups of 4 bits, and two spaces
85 between groups of 8 bits, to make the binary integer easier to read.)
87   The integer @minus{}1 looks like this:
89 @example
90 1111  1111 1111  1111 1111  1111 1111
91 @end example
93 @noindent
94 @cindex two's complement
95 @minus{}1 is represented as 28 ones.  (This is called @dfn{two's
96 complement} notation.)
98   The negative integer, @minus{}5, is creating by subtracting 4 from
99 @minus{}1.  In binary, the decimal integer 4 is 100.  Consequently,
100 @minus{}5 looks like this:
102 @example
103 1111  1111 1111  1111 1111  1111 1011
104 @end example
106   In this implementation, the largest 28-bit binary integer value is
107 134,217,727 in decimal.  In binary, it looks like this:
109 @example
110 0111  1111 1111  1111 1111  1111 1111
111 @end example
113   Since the arithmetic functions do not check whether integers go
114 outside their range, when you add 1 to 134,217,727, the value is the
115 negative integer @minus{}134,217,728:
117 @example
118 (+ 1 134217727)
119      @result{} -134217728
120      @result{} 1000  0000 0000  0000 0000  0000 0000
121 @end example
123   Many of the following functions accept markers for arguments as well
124 as integers.  (@xref{Markers}.)  More precisely, the actual arguments to
125 such functions may be either integers or markers, which is why we often
126 give these arguments the name @var{int-or-marker}.  When the argument
127 value is a marker, its position value is used and its buffer is ignored.
129 @ignore
130   In version 19, except where @emph{integer} is specified as an
131 argument, all of the functions for markers and integers also work for
132 floating point numbers.
133 @end ignore
135 @node Float Basics
136 @section Floating Point Basics
138 @cindex @code{LISP_FLOAT_TYPE} configuration macro
139   Emacs version 19 supports floating point numbers, if compiled with the
140 macro @code{LISP_FLOAT_TYPE} defined.  The precise range of floating
141 point numbers is machine-specific; it is the same as the range of the C
142 data type @code{double} on the machine in question.
144   The printed representation for floating point numbers requires either
145 a decimal point (with at least one digit following), an exponent, or
146 both.  For example, @samp{1500.0}, @samp{15e2}, @samp{15.0e2},
147 @samp{1.5e3}, and @samp{.15e4} are five ways of writing a floating point
148 number whose value is 1500.  They are all equivalent.  You can also use
149 a minus sign to write negative floating point numbers, as in
150 @samp{-1.0}.
152 @cindex IEEE floating point
153 @cindex positive infinity
154 @cindex negative infinity
155 @cindex infinity
156 @cindex NaN
157    Most modern computers support the IEEE floating point standard, which
158 provides for positive infinity and negative infinity as floating point
159 values.  It also provides for a class of values called NaN or
160 ``not-a-number''; numerical functions return such values in cases where
161 there is no correct answer.  For example, @code{(sqrt -1.0)} returns a
162 NaN.  For practical purposes, there's no significant difference between
163 different NaN values in Emacs Lisp, and there's no rule for precisely
164 which NaN value should be used in a particular case, so this manual
165 doesn't try to distinguish them.  Emacs Lisp has no read syntax for NaNs
166 or infinities; perhaps we should create a syntax in the future.
168   You can use @code{logb} to extract the binary exponent of a floating
169 point number (or estimate the logarithm of an integer):
171 @defun logb number
172 This function returns the binary exponent of @var{number}.  More
173 precisely, the value is the logarithm of @var{number} base 2, rounded
174 down to an integer.
175 @end defun
177 @node Predicates on Numbers
178 @section Type Predicates for Numbers
180   The functions in this section test whether the argument is a number or
181 whether it is a certain sort of number.  The functions @code{integerp}
182 and @code{floatp} can take any type of Lisp object as argument (the
183 predicates would not be of much use otherwise); but the @code{zerop}
184 predicate requires a number as its argument.  See also
185 @code{integer-or-marker-p} and @code{number-or-marker-p}, in
186 @ref{Predicates on Markers}.
188 @defun floatp object
189 This predicate tests whether its argument is a floating point
190 number and returns @code{t} if so, @code{nil} otherwise.
192 @code{floatp} does not exist in Emacs versions 18 and earlier.
193 @end defun
195 @defun integerp object
196 This predicate tests whether its argument is an integer, and returns
197 @code{t} if so, @code{nil} otherwise.
198 @end defun
200 @defun numberp object
201 This predicate tests whether its argument is a number (either integer or
202 floating point), and returns @code{t} if so, @code{nil} otherwise.
203 @end defun
205 @defun wholenump object
206 @cindex natural numbers
207 The @code{wholenump} predicate (whose name comes from the phrase
208 ``whole-number-p'') tests to see whether its argument is a nonnegative
209 integer, and returns @code{t} if so, @code{nil} otherwise.  0 is
210 considered non-negative.
212 @findex natnump
213 @code{natnump} is an obsolete synonym for @code{wholenump}.
214 @end defun
216 @defun zerop number
217 This predicate tests whether its argument is zero, and returns @code{t}
218 if so, @code{nil} otherwise.  The argument must be a number.
220 These two forms are equivalent: @code{(zerop x)} @equiv{} @code{(= x 0)}.
221 @end defun
223 @node Comparison of Numbers
224 @section Comparison of Numbers
225 @cindex number equality
227   To test numbers for numerical equality, you should normally use
228 @code{=}, not @code{eq}.  There can be many distinct floating point
229 number objects with the same numeric value.  If you use @code{eq} to
230 compare them, then you test whether two values are the same
231 @emph{object}.  By contrast, @code{=} compares only the numeric values
232 of the objects.
234   At present, each integer value has a unique Lisp object in Emacs Lisp.
235 Therefore, @code{eq} is equivalent @code{=} where integers are
236 concerned.  It is sometimes convenient to use @code{eq} for comparing an
237 unknown value with an integer, because @code{eq} does not report an
238 error if the unknown value is not a number---it accepts arguments of any
239 type.  By contrast, @code{=} signals an error if the arguments are not
240 numbers or markers.  However, it is a good idea to use @code{=} if you
241 can, even for comparing integers, just in case we change the
242 representation of integers in a future Emacs version.
244   There is another wrinkle: because floating point arithmetic is not
245 exact, it is often a bad idea to check for equality of two floating
246 point values.  Usually it is better to test for approximate equality.
247 Here's a function to do this:
249 @example
250 (defvar fuzz-factor 1.0e-6)
251 (defun approx-equal (x y)
252   (or (and (= x 0) (= y 0))
253       (< (/ (abs (- x y))
254             (max (abs x) (abs y)))
255          fuzz-factor)))
256 @end example
258 @cindex CL note---integers vrs @code{eq}
259 @quotation
260 @b{Common Lisp note:} Comparing numbers in Common Lisp always requires
261 @code{=} because Common Lisp implements multi-word integers, and two
262 distinct integer objects can have the same numeric value.  Emacs Lisp
263 can have just one integer object for any given value because it has a
264 limited range of integer values.
265 @end quotation
267 @defun = number-or-marker1 number-or-marker2
268 This function tests whether its arguments are numerically equal, and
269 returns @code{t} if so, @code{nil} otherwise.
270 @end defun
272 @defun /= number-or-marker1 number-or-marker2
273 This function tests whether its arguments are numerically equal, and
274 returns @code{t} if they are not, and @code{nil} if they are.
275 @end defun
277 @defun <  number-or-marker1 number-or-marker2
278 This function tests whether its first argument is strictly less than
279 its second argument.  It returns @code{t} if so, @code{nil} otherwise.
280 @end defun
282 @defun <=  number-or-marker1 number-or-marker2
283 This function tests whether its first argument is less than or equal
284 to its second argument.  It returns @code{t} if so, @code{nil}
285 otherwise.
286 @end defun
288 @defun >  number-or-marker1 number-or-marker2
289 This function tests whether its first argument is strictly greater
290 than its second argument.  It returns @code{t} if so, @code{nil}
291 otherwise.
292 @end defun
294 @defun >=  number-or-marker1 number-or-marker2
295 This function tests whether its first argument is greater than or
296 equal to its second argument.  It returns @code{t} if so, @code{nil}
297 otherwise.
298 @end defun
300 @defun max number-or-marker &rest numbers-or-markers
301 This function returns the largest of its arguments.
303 @example
304 (max 20)
305      @result{} 20
306 (max 1 2.5)
307      @result{} 2.5
308 (max 1 3 2.5)
309      @result{} 3
310 @end example
311 @end defun
313 @defun min number-or-marker &rest numbers-or-markers
314 This function returns the smallest of its arguments.
316 @example
317 (min -4 1)
318      @result{} -4
319 @end example
320 @end defun
322 @node Numeric Conversions
323 @section Numeric Conversions
324 @cindex rounding in conversions
326 To convert an integer to floating point, use the function @code{float}.
328 @defun float number
329 This returns @var{number} converted to floating point.
330 If @var{number} is already a floating point number, @code{float} returns
331 it unchanged.
332 @end defun
334 There are four functions to convert floating point numbers to integers;
335 they differ in how they round.  These functions accept integer arguments
336 also, and return such arguments unchanged.
338 @defun truncate number
339 This returns @var{number}, converted to an integer by rounding towards
340 zero.
341 @end defun
343 @defun floor number &optional divisor
344 This returns @var{number}, converted to an integer by rounding downward
345 (towards negative infinity).
347 If @var{divisor} is specified, @var{number} is divided by @var{divisor}
348 before the floor is taken; this is the division operation that
349 corresponds to @code{mod}.  An @code{arith-error} results if
350 @var{divisor} is 0.
351 @end defun
353 @defun ceiling number
354 This returns @var{number}, converted to an integer by rounding upward
355 (towards positive infinity).
356 @end defun
358 @defun round number
359 This returns @var{number}, converted to an integer by rounding towards the
360 nearest integer.  Rounding a value equidistant between two integers
361 may choose the integer closer to zero, or it may prefer an even integer,
362 depending on your machine.
363 @end defun
365 @node Arithmetic Operations
366 @section Arithmetic Operations
368   Emacs Lisp provides the traditional four arithmetic operations:
369 addition, subtraction, multiplication, and division.  Remainder and modulus
370 functions supplement the division functions.  The functions to
371 add or subtract 1 are provided because they are traditional in Lisp and
372 commonly used.
374   All of these functions except @code{%} return a floating point value
375 if any argument is floating.
377   It is important to note that in GNU Emacs Lisp, arithmetic functions
378 do not check for overflow.  Thus @code{(1+ 134217727)} may evaluate to
379 @minus{}134217728, depending on your hardware.
381 @defun 1+ number-or-marker
382 This function returns @var{number-or-marker} plus 1.
383 For example,
385 @example
386 (setq foo 4)
387      @result{} 4
388 (1+ foo)
389      @result{} 5
390 @end example
392 This function is not analogous to the C operator @code{++}---it does not
393 increment a variable.  It just computes a sum.  Thus, if we continue,
395 @example
397      @result{} 4
398 @end example
400 If you want to increment the variable, you must use @code{setq},
401 like this:
403 @example
404 (setq foo (1+ foo))
405      @result{} 5
406 @end example
407 @end defun
409 @defun 1- number-or-marker
410 This function returns @var{number-or-marker} minus 1.
411 @end defun
413 @defun abs number
414 This returns the absolute value of @var{number}.
415 @end defun
417 @defun + &rest numbers-or-markers
418 This function adds its arguments together.  When given no arguments,
419 @code{+} returns 0.
421 @example
423      @result{} 0
424 (+ 1)
425      @result{} 1
426 (+ 1 2 3 4)
427      @result{} 10
428 @end example
429 @end defun
431 @defun - &optional number-or-marker &rest other-numbers-or-markers
432 The @code{-} function serves two purposes: negation and subtraction.
433 When @code{-} has a single argument, the value is the negative of the
434 argument.  When there are multiple arguments, @code{-} subtracts each of
435 the @var{other-numbers-or-markers} from @var{number-or-marker},
436 cumulatively.  If there are no arguments, the result is 0.
438 @example
439 (- 10 1 2 3 4)
440      @result{} 0
441 (- 10)
442      @result{} -10
444      @result{} 0
445 @end example
446 @end defun
448 @defun * &rest numbers-or-markers
449 This function multiplies its arguments together, and returns the
450 product.  When given no arguments, @code{*} returns 1.
452 @example
454      @result{} 1
455 (* 1)
456      @result{} 1
457 (* 1 2 3 4)
458      @result{} 24
459 @end example
460 @end defun
462 @defun / dividend divisor &rest divisors
463 This function divides @var{dividend} by @var{divisor} and returns the
464 quotient.  If there are additional arguments @var{divisors}, then it
465 divides @var{dividend} by each divisor in turn.  Each argument may be a
466 number or a marker.
468 If all the arguments are integers, then the result is an integer too.
469 This means the result has to be rounded.  On most machines, the result
470 is rounded towards zero after each division, but some machines may round
471 differently with negative arguments.  This is because the Lisp function
472 @code{/} is implemented using the C division operator, which also
473 permits machine-dependent rounding.  As a practical matter, all known
474 machines round in the standard fashion.
476 @cindex @code{arith-error} in division
477 If you divide by 0, an @code{arith-error} error is signaled.
478 (@xref{Errors}.)
480 @example
481 @group
482 (/ 6 2)
483      @result{} 3
484 @end group
485 (/ 5 2)
486      @result{} 2
487 (/ 25 3 2)
488      @result{} 4
489 (/ -17 6)
490      @result{} -2
491 @end example
493 The result of @code{(/ -17 6)} could in principle be -3 on some
494 machines.
495 @end defun
497 @defun % dividend divisor
498 @cindex remainder
499 This function returns the integer remainder after division of @var{dividend}
500 by @var{divisor}.  The arguments must be integers or markers.
502 For negative arguments, the remainder is in principle machine-dependent
503 since the quotient is; but in practice, all known machines behave alike.
505 An @code{arith-error} results if @var{divisor} is 0.
507 @example
508 (% 9 4)
509      @result{} 1
510 (% -9 4)
511      @result{} -1
512 (% 9 -4)
513      @result{} 1
514 (% -9 -4)
515      @result{} -1
516 @end example
518 For any two integers @var{dividend} and @var{divisor},
520 @example
521 @group
522 (+ (% @var{dividend} @var{divisor})
523    (* (/ @var{dividend} @var{divisor}) @var{divisor}))
524 @end group
525 @end example
527 @noindent
528 always equals @var{dividend}.
529 @end defun
531 @defun mod dividend divisor
532 @cindex modulus
533 This function returns the value of @var{dividend} modulo @var{divisor};
534 in other words, the remainder after division of @var{dividend}
535 by @var{divisor}, but with the same sign as @var{divisor}.
536 The arguments must be numbers or markers.
538 Unlike @code{%}, @code{mod} returns a well-defined result for negative
539 arguments.  It also permits floating point arguments; it rounds the
540 quotient downward (towards minus infinity) to an integer, and uses that
541 quotient to compute the remainder.
543 An @code{arith-error} results if @var{divisor} is 0.
545 @example
546 @group
547 (mod 9 4)
548      @result{} 1
549 @end group
550 @group
551 (mod -9 4)
552      @result{} 3
553 @end group
554 @group
555 (mod 9 -4)
556      @result{} -3
557 @end group
558 @group
559 (mod -9 -4)
560      @result{} -1
561 @end group
562 @group
563 (mod 5.5 2.5)
564      @result{} .5
565 @end group
566 @end example
568 For any two numbers @var{dividend} and @var{divisor},
570 @example
571 @group
572 (+ (mod @var{dividend} @var{divisor})
573    (* (floor @var{dividend} @var{divisor}) @var{divisor}))
574 @end group
575 @end example
577 @noindent
578 always equals @var{dividend}, subject to rounding error if either
579 argument is floating point.  For @code{floor}, see @ref{Numeric
580 Conversions}.
581 @end defun
583 @node Rounding Operations
584 @section Rounding Operations
585 @cindex rounding without conversion
587 The functions @code{ffloor}, @code{fceiling}, @code{fround} and
588 @code{ftruncate} take a floating point argument and return a floating
589 point result whose value is a nearby integer.  @code{ffloor} returns the
590 nearest integer below; @code{fceiling}, the nearest integer above;
591 @code{ftruncate}, the nearest integer in the direction towards zero;
592 @code{fround}, the nearest integer.
594 @defun ffloor float
595 This function rounds @var{float} to the next lower integral value, and
596 returns that value as a floating point number.
597 @end defun
599 @defun fceiling float
600 This function rounds @var{float} to the next higher integral value, and
601 returns that value as a floating point number.
602 @end defun
604 @defun ftruncate float
605 This function rounds @var{float} towards zero to an integral value, and
606 returns that value as a floating point number.
607 @end defun
609 @defun fround float
610 This function rounds @var{float} to the nearest integral value,
611 and returns that value as a floating point number.
612 @end defun
614 @node Bitwise Operations
615 @section Bitwise Operations on Integers
617   In a computer, an integer is represented as a binary number, a
618 sequence of @dfn{bits} (digits which are either zero or one).  A bitwise
619 operation acts on the individual bits of such a sequence.  For example,
620 @dfn{shifting} moves the whole sequence left or right one or more places,
621 reproducing the same pattern ``moved over''.
623   The bitwise operations in Emacs Lisp apply only to integers.
625 @defun lsh integer1 count
626 @cindex logical shift
627 @code{lsh}, which is an abbreviation for @dfn{logical shift}, shifts the
628 bits in @var{integer1} to the left @var{count} places, or to the right
629 if @var{count} is negative, bringing zeros into the vacated bits.  If
630 @var{count} is negative, @code{lsh} shifts zeros into the leftmost
631 (most-significant) bit, producing a positive result even if
632 @var{integer1} is negative.  Contrast this with @code{ash}, below.
634 Here are two examples of @code{lsh}, shifting a pattern of bits one
635 place to the left.  We show only the low-order eight bits of the binary
636 pattern; the rest are all zero.
638 @example
639 @group
640 (lsh 5 1)
641      @result{} 10
642 ;; @r{Decimal 5 becomes decimal 10.}
643 00000101 @result{} 00001010
645 (lsh 7 1)
646      @result{} 14
647 ;; @r{Decimal 7 becomes decimal 14.}
648 00000111 @result{} 00001110
649 @end group
650 @end example
652 @noindent
653 As the examples illustrate, shifting the pattern of bits one place to
654 the left produces a number that is twice the value of the previous
655 number.
657 Shifting a pattern of bits two places to the left produces results
658 like this (with 8-bit binary numbers):
660 @example
661 @group
662 (lsh 3 2)
663      @result{} 12
664 ;; @r{Decimal 3 becomes decimal 12.}
665 00000011 @result{} 00001100       
666 @end group
667 @end example
669 On the other hand, shifting one place to the right looks like this:
671 @example
672 @group
673 (lsh 6 -1)
674      @result{} 3
675 ;; @r{Decimal 6 becomes decimal 3.}
676 00000110 @result{} 00000011       
677 @end group
679 @group
680 (lsh 5 -1)
681      @result{} 2
682 ;; @r{Decimal 5 becomes decimal 2.}
683 00000101 @result{} 00000010       
684 @end group
685 @end example
687 @noindent
688 As the example illustrates, shifting one place to the right divides the
689 value of a positive integer by two, rounding downward.
691 The function @code{lsh}, like all Emacs Lisp arithmetic functions, does
692 not check for overflow, so shifting left can discard significant bits
693 and change the sign of the number.  For example, left shifting
694 134,217,727 produces @minus{}2 on a 28-bit machine:
696 @example
697 (lsh 134217727 1)          ; @r{left shift}
698      @result{} -2
699 @end example
701 In binary, in the 28-bit implementation, the argument looks like this:
703 @example
704 @group
705 ;; @r{Decimal 134,217,727}
706 0111  1111 1111  1111 1111  1111 1111         
707 @end group
708 @end example
710 @noindent
711 which becomes the following when left shifted:
713 @example
714 @group
715 ;; @r{Decimal @minus{}2}
716 1111  1111 1111  1111 1111  1111 1110         
717 @end group
718 @end example
719 @end defun
721 @defun ash integer1 count
722 @cindex arithmetic shift
723 @code{ash} (@dfn{arithmetic shift}) shifts the bits in @var{integer1}
724 to the left @var{count} places, or to the right if @var{count}
725 is negative.
727 @code{ash} gives the same results as @code{lsh} except when
728 @var{integer1} and @var{count} are both negative.  In that case,
729 @code{ash} puts ones in the empty bit positions on the left, while
730 @code{lsh} puts zeros in those bit positions.
732 Thus, with @code{ash}, shifting the pattern of bits one place to the right
733 looks like this:
735 @example
736 @group
737 (ash -6 -1) @result{} -3            
738 ;; @r{Decimal @minus{}6 becomes decimal @minus{}3.}
739 1111  1111 1111  1111 1111  1111 1010
740      @result{} 
741 1111  1111 1111  1111 1111  1111 1101
742 @end group
743 @end example
745 In contrast, shifting the pattern of bits one place to the right with
746 @code{lsh} looks like this:
748 @example
749 @group
750 (lsh -6 -1) @result{} 134217725
751 ;; @r{Decimal @minus{}6 becomes decimal 134,217,725.}
752 1111  1111 1111  1111 1111  1111 1010
753      @result{} 
754 0111  1111 1111  1111 1111  1111 1101
755 @end group
756 @end example
758 Here are other examples:
760 @c !!! Check if lined up in smallbook format!  XDVI shows problem
761 @c     with smallbook but not with regular book! --rjc 16mar92
762 @smallexample
763 @group
764                    ;  @r{             28-bit binary values}
766 (lsh 5 2)          ;   5  =  @r{0000  0000 0000  0000 0000  0000 0101}
767      @result{} 20         ;      =  @r{0000  0000 0000  0000 0000  0001 0100}
768 @end group
769 @group
770 (ash 5 2)
771      @result{} 20
772 (lsh -5 2)         ;  -5  =  @r{1111  1111 1111  1111 1111  1111 1011}
773      @result{} -20        ;      =  @r{1111  1111 1111  1111 1111  1110 1100}
774 (ash -5 2)
775      @result{} -20
776 @end group
777 @group
778 (lsh 5 -2)         ;   5  =  @r{0000  0000 0000  0000 0000  0000 0101}
779      @result{} 1          ;      =  @r{0000  0000 0000  0000 0000  0000 0001}
780 @end group
781 @group
782 (ash 5 -2)
783      @result{} 1
784 @end group
785 @group
786 (lsh -5 -2)        ;  -5  =  @r{1111  1111 1111  1111 1111  1111 1011}
787      @result{} 4194302    ;      =  @r{0011  1111 1111  1111 1111  1111 1110}
788 @end group
789 @group
790 (ash -5 -2)        ;  -5  =  @r{1111  1111 1111  1111 1111  1111 1011}
791      @result{} -2         ;      =  @r{1111  1111 1111  1111 1111  1111 1110}
792 @end group
793 @end smallexample
794 @end defun
796 @defun logand &rest ints-or-markers
797 @cindex logical and
798 @cindex bitwise and
799 This function returns the ``logical and'' of the arguments: the
800 @var{n}th bit is set in the result if, and only if, the @var{n}th bit is
801 set in all the arguments.  (``Set'' means that the value of the bit is 1
802 rather than 0.)
804 For example, using 4-bit binary numbers, the ``logical and'' of 13 and
805 12 is 12: 1101 combined with 1100 produces 1100.
806 In both the binary numbers, the leftmost two bits are set (i.e., they
807 are 1's), so the leftmost two bits of the returned value are set.
808 However, for the rightmost two bits, each is zero in at least one of
809 the arguments, so the rightmost two bits of the returned value are 0's.
811 @noindent
812 Therefore,
814 @example
815 @group
816 (logand 13 12)
817      @result{} 12
818 @end group
819 @end example
821 If @code{logand} is not passed any argument, it returns a value of
822 @minus{}1.  This number is an identity element for @code{logand}
823 because its binary representation consists entirely of ones.  If
824 @code{logand} is passed just one argument, it returns that argument.
826 @smallexample
827 @group
828                    ; @r{               28-bit binary values}
830 (logand 14 13)     ; 14  =  @r{0000  0000 0000  0000 0000  0000 1110}
831                    ; 13  =  @r{0000  0000 0000  0000 0000  0000 1101}
832      @result{} 12         ; 12  =  @r{0000  0000 0000  0000 0000  0000 1100}
833 @end group
835 @group
836 (logand 14 13 4)   ; 14  =  @r{0000  0000 0000  0000 0000  0000 1110}
837                    ; 13  =  @r{0000  0000 0000  0000 0000  0000 1101}
838                    ;  4  =  @r{0000  0000 0000  0000 0000  0000 0100}
839      @result{} 4          ;  4  =  @r{0000  0000 0000  0000 0000  0000 0100}
840 @end group
842 @group
843 (logand)
844      @result{} -1         ; -1  =  @r{1111  1111 1111  1111 1111  1111 1111}
845 @end group
846 @end smallexample
847 @end defun
849 @defun logior &rest ints-or-markers
850 @cindex logical inclusive or
851 @cindex bitwise or
852 This function returns the ``inclusive or'' of its arguments: the @var{n}th bit
853 is set in the result if, and only if, the @var{n}th bit is set in at least
854 one of the arguments.  If there are no arguments, the result is zero,
855 which is an identity element for this operation.  If @code{logior} is
856 passed just one argument, it returns that argument.
858 @smallexample
859 @group
860                    ; @r{              28-bit binary values}
862 (logior 12 5)      ; 12  =  @r{0000  0000 0000  0000 0000  0000 1100}
863                    ;  5  =  @r{0000  0000 0000  0000 0000  0000 0101}
864      @result{} 13         ; 13  =  @r{0000  0000 0000  0000 0000  0000 1101}
865 @end group
867 @group
868 (logior 12 5 7)    ; 12  =  @r{0000  0000 0000  0000 0000  0000 1100}
869                    ;  5  =  @r{0000  0000 0000  0000 0000  0000 0101}
870                    ;  7  =  @r{0000  0000 0000  0000 0000  0000 0111}
871      @result{} 15         ; 15  =  @r{0000  0000 0000  0000 0000  0000 1111}
872 @end group
873 @end smallexample
874 @end defun
876 @defun logxor &rest ints-or-markers
877 @cindex bitwise exclusive or
878 @cindex logical exclusive or
879 This function returns the ``exclusive or'' of its arguments: the
880 @var{n}th bit is set in the result if, and only if, the @var{n}th bit is
881 set in an odd number of the arguments.  If there are no arguments, the
882 result is 0, which is an identity element for this operation.  If
883 @code{logxor} is passed just one argument, it returns that argument.
885 @smallexample
886 @group
887                    ; @r{              28-bit binary values}
889 (logxor 12 5)      ; 12  =  @r{0000  0000 0000  0000 0000  0000 1100}
890                    ;  5  =  @r{0000  0000 0000  0000 0000  0000 0101}
891      @result{} 9          ;  9  =  @r{0000  0000 0000  0000 0000  0000 1001}
892 @end group
894 @group
895 (logxor 12 5 7)    ; 12  =  @r{0000  0000 0000  0000 0000  0000 1100}
896                    ;  5  =  @r{0000  0000 0000  0000 0000  0000 0101}
897                    ;  7  =  @r{0000  0000 0000  0000 0000  0000 0111}
898      @result{} 14         ; 14  =  @r{0000  0000 0000  0000 0000  0000 1110}
899 @end group
900 @end smallexample
901 @end defun
903 @defun lognot integer
904 @cindex logical not
905 @cindex bitwise not
906 This function returns the logical complement of its argument: the @var{n}th
907 bit is one in the result if, and only if, the @var{n}th bit is zero in
908 @var{integer}, and vice-versa.
910 @example
911 (lognot 5)             
912      @result{} -6
913 ;;  5  =  @r{0000  0000 0000  0000 0000  0000 0101}
914 ;; @r{becomes}
915 ;; -6  =  @r{1111  1111 1111  1111 1111  1111 1010}
916 @end example
917 @end defun
919 @node Math Functions
920 @section Standard Mathematical Functions
921 @cindex transcendental functions
922 @cindex mathematical functions
924 These mathematical functions are available if floating point is
925 supported.  They allow integers as well as floating point numbers
926 as arguments.
928 @defun sin arg
929 @defunx cos arg
930 @defunx tan arg
931 These are the ordinary trigonometric functions, with argument measured
932 in radians.
933 @end defun
935 @defun asin arg
936 The value of @code{(asin @var{arg})} is a number between @minus{}pi/2
937 and pi/2 (inclusive) whose sine is @var{arg}; if, however, @var{arg}
938 is out of range (outside [-1, 1]), then the result is a NaN.
939 @end defun
941 @defun acos arg
942 The value of @code{(acos @var{arg})} is a number between 0 and pi
943 (inclusive) whose cosine is @var{arg}; if, however, @var{arg}
944 is out of range (outside [-1, 1]), then the result is a NaN.
945 @end defun
947 @defun atan arg
948 The value of @code{(atan @var{arg})} is a number between @minus{}pi/2
949 and pi/2 (exclusive) whose tangent is @var{arg}.
950 @end defun
952 @defun exp arg
953 This is the exponential function; it returns @i{e} to the power
954 @var{arg}.  @i{e} is a fundamental mathematical constant also called the
955 base of natural logarithms.
956 @end defun
958 @defun log arg &optional base
959 This function returns the logarithm of @var{arg}, with base @var{base}.
960 If you don't specify @var{base}, the base @var{e} is used.  If @var{arg}
961 is negative, the result is a NaN.
962 @end defun
964 @ignore
965 @defun expm1 arg
966 This function returns @code{(1- (exp @var{arg}))}, but it is more
967 accurate than that when @var{arg} is negative and @code{(exp @var{arg})}
968 is close to 1.
969 @end defun
971 @defun log1p arg
972 This function returns @code{(log (1+ @var{arg}))}, but it is more
973 accurate than that when @var{arg} is so small that adding 1 to it would
974 lose accuracy.
975 @end defun
976 @end ignore
978 @defun log10 arg
979 This function returns the logarithm of @var{arg}, with base 10.  If
980 @var{arg} is negative, the result is a NaN.  @code{(log10 @var{x})}
981 @equiv{} @code{(log @var{x} 10)}, at least approximately.
982 @end defun
984 @defun expt x y
985 This function returns @var{x} raised to power @var{y}.  If both
986 arguments are integers and @var{y} is positive, the result is an
987 integer; in this case, it is truncated to fit the range of possible
988 integer values.
989 @end defun
991 @defun sqrt arg
992 This returns the square root of @var{arg}.  If @var{arg} is negative,
993 the value is a NaN.
994 @end defun
996 @node Random Numbers
997 @section Random Numbers
998 @cindex random numbers
1000 A deterministic computer program cannot generate true random numbers.
1001 For most purposes, @dfn{pseudo-random numbers} suffice.  A series of
1002 pseudo-random numbers is generated in a deterministic fashion.  The
1003 numbers are not truly random, but they have certain properties that
1004 mimic a random series.  For example, all possible values occur equally
1005 often in a pseudo-random series.
1007 In Emacs, pseudo-random numbers are generated from a ``seed'' number.
1008 Starting from any given seed, the @code{random} function always
1009 generates the same sequence of numbers.  Emacs always starts with the
1010 same seed value, so the sequence of values of @code{random} is actually
1011 the same in each Emacs run!  For example, in one operating system, the
1012 first call to @code{(random)} after you start Emacs always returns
1013 -1457731, and the second one always returns -7692030.  This
1014 repeatability is helpful for debugging.
1016 If you want truly unpredictable random numbers, execute @code{(random
1017 t)}.  This chooses a new seed based on the current time of day and on
1018 Emacs's process @sc{id} number.
1020 @defun random &optional limit
1021 This function returns a pseudo-random integer.  Repeated calls return a
1022 series of pseudo-random integers.
1024 If @var{limit} is a positive integer, the value is chosen to be
1025 nonnegative and less than @var{limit}.
1027 If @var{limit} is @code{t}, it means to choose a new seed based on the
1028 current time of day and on Emacs's process @sc{id} number.
1029 @c "Emacs'" is incorrect usage!
1031 On some machines, any integer representable in Lisp may be the result
1032 of @code{random}.  On other machines, the result can never be larger
1033 than a certain maximum or less than a certain (negative) minimum.
1034 @end defun