1 ;;; regexp-opt.el --- generate efficient regexps to match strings
3 ;; Copyright (C) 1994-2012 Free Software Foundation, Inc.
5 ;; Author: Simon Marshall <simon@gnu.org>
7 ;; Keywords: strings, regexps, extensions
9 ;; This file is part of GNU Emacs.
11 ;; GNU Emacs is free software: you can redistribute it and/or modify
12 ;; it under the terms of the GNU General Public License as published by
13 ;; the Free Software Foundation, either version 3 of the License, or
14 ;; (at your option) any later version.
16 ;; GNU Emacs is distributed in the hope that it will be useful,
17 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
18 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 ;; GNU General Public License for more details.
21 ;; You should have received a copy of the GNU General Public License
22 ;; along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>.
26 ;; The "opt" in "regexp-opt" stands for "optim\\(al\\|i[sz]e\\)".
28 ;; This package generates a regexp from a given list of strings (which matches
29 ;; one of those strings) so that the regexp generated by:
31 ;; (regexp-opt strings)
33 ;; is equivalent to, but more efficient than, the regexp generated by:
35 ;; (mapconcat 'regexp-quote strings "\\|")
39 ;; (let ((strings '("cond" "if" "when" "unless" "while"
40 ;; "let" "let*" "progn" "prog1" "prog2"
41 ;; "save-restriction" "save-excursion" "save-window-excursion"
42 ;; "save-current-buffer" "save-match-data"
43 ;; "catch" "throw" "unwind-protect" "condition-case")))
44 ;; (concat "(" (regexp-opt strings t) "\\>"))
45 ;; => "(\\(c\\(atch\\|ond\\(ition-case\\)?\\)\\|if\\|let\\*?\\|prog[12n]\\|save-\\(current-buffer\\|excursion\\|match-data\\|restriction\\|window-excursion\\)\\|throw\\|un\\(less\\|wind-protect\\)\\|wh\\(en\\|ile\\)\\)\\>"
47 ;; Searching using the above example `regexp-opt' regexp takes approximately
48 ;; two-thirds of the time taken using the equivalent `mapconcat' regexp.
50 ;; Since this package was written to produce efficient regexps, not regexps
51 ;; efficiently, it is probably not a good idea to in-line too many calls in
52 ;; your code, unless you use the following trick with `eval-when-compile':
54 ;; (defvar definition-regexp
57 ;; (regexp-opt '("defun" "defsubst" "defmacro" "defalias"
58 ;; "defvar" "defconst") t)
61 ;; The `byte-compile' code will be as if you had defined the variable thus:
63 ;; (defvar definition-regexp
64 ;; "^(\\(def\\(alias\\|const\\|macro\\|subst\\|un\\|var\\)\\)\\>")
66 ;; Note that if you use this trick for all instances of `regexp-opt' and
67 ;; `regexp-opt-depth' in your code, regexp-opt.el would only have to be loaded
68 ;; at compile time. But note also that using this trick means that should
69 ;; regexp-opt.el be changed, perhaps to fix a bug or to add a feature to
70 ;; improve the efficiency of `regexp-opt' regexps, you would have to recompile
71 ;; your code for such changes to have effect in your code.
73 ;; Originally written for font-lock.el, from an idea from Stig's hl319.el, with
74 ;; thanks for ideas also to Michael Ernst, Bob Glickstein, Dan Nicolaescu and
76 ;; No doubt `regexp-opt' doesn't always produce optimal regexps, so code, ideas
77 ;; or any other information to improve things are welcome.
79 ;; One possible improvement would be to compile '("aa" "ab" "ba" "bb")
80 ;; into "[ab][ab]" rather than "a[ab]\\|b[ab]". I'm not sure it's worth
81 ;; it but if someone knows how to do it without going through too many
82 ;; contortions, I'm all ears.
87 (defun regexp-opt (strings &optional paren
)
88 "Return a regexp to match a string in the list STRINGS.
89 Each string should be unique in STRINGS and should not contain any regexps,
90 quoted or not. If optional PAREN is non-nil, ensure that the returned regexp
91 is enclosed by at least one regexp grouping construct.
92 The returned regexp is typically more efficient than the equivalent regexp:
94 (let ((open (if PAREN \"\\\\(\" \"\")) (close (if PAREN \"\\\\)\" \"\")))
95 (concat open (mapconcat 'regexp-quote STRINGS \"\\\\|\") close))
97 If PAREN is `words', then the resulting regexp is additionally surrounded
99 If PAREN is `symbols', then the resulting regexp is additionally surrounded
100 by \\=\\_< and \\_>."
102 ;; Recurse on the sorted list.
103 (let* ((max-lisp-eval-depth 10000)
104 (max-specpdl-size 10000)
105 (completion-ignore-case nil
)
106 (completion-regexp-list nil
)
107 (open (cond ((stringp paren
) paren
) (paren "\\(")))
108 (sorted-strings (delete-dups
109 (sort (copy-sequence strings
) 'string-lessp
)))
110 (re (regexp-opt-group sorted-strings
(or open t
) (not open
))))
111 (cond ((eq paren
'words
)
112 (concat "\\<" re
"\\>"))
114 (concat "\\_<" re
"\\_>"))
118 (defun regexp-opt-depth (regexp)
119 "Return the depth of REGEXP.
120 This means the number of non-shy regexp grouping constructs
121 \(parenthesized expressions) in REGEXP."
123 ;; Hack to signal an error if REGEXP does not have balanced parentheses.
124 (string-match regexp
"")
125 ;; Count the number of open parentheses in REGEXP.
126 (let ((count 0) start last
)
127 (while (string-match "\\\\(\\(\\?[0-9]*:\\)?" regexp start
)
128 (setq start
(match-end 0)) ; Start of next search.
129 (when (and (not (match-beginning 1))
130 (subregexp-context-p regexp
(match-beginning 0) last
))
131 ;; It's not a shy group and it's not inside brackets or after
132 ;; a backslash: it's really a group-open marker.
133 (setq last start
) ; Speed up next regexp-opt-re-context-p.
134 (setq count
(1+ count
))))
137 ;;; Workhorse functions.
139 (defun regexp-opt-group (strings &optional paren lax
)
140 "Return a regexp to match a string in the sorted list STRINGS.
141 If PAREN non-nil, output regexp parentheses around returned regexp.
142 If LAX non-nil, don't output parentheses if it doesn't require them.
143 Merges keywords to avoid backtracking in Emacs's regexp matcher."
144 ;; The basic idea is to find the shortest common prefix or suffix, remove it
145 ;; and recurse. If there is no prefix, we divide the list into two so that
146 ;; \(at least) one half will have at least a one-character common prefix.
148 ;; Also we delay the addition of grouping parenthesis as long as possible
149 ;; until we're sure we need them, and try to remove one-character sequences
150 ;; so we can use character sets rather than grouping parenthesis.
151 (let* ((open-group (cond ((stringp paren
) paren
) (paren "\\(?:") (t "")))
152 (close-group (if paren
"\\)" ""))
153 (open-charset (if lax
"" open-group
))
154 (close-charset (if lax
"" close-group
)))
157 ;; If there are no strings, just return the empty string.
158 ((= (length strings
) 0)
161 ;; If there is only one string, just return it.
162 ((= (length strings
) 1)
163 (if (= (length (car strings
)) 1)
164 (concat open-charset
(regexp-quote (car strings
)) close-charset
)
165 (concat open-group
(regexp-quote (car strings
)) close-group
)))
167 ;; If there is an empty string, remove it and recurse on the rest.
168 ((= (length (car strings
)) 0)
170 (regexp-opt-group (cdr strings
) t t
) "?"
173 ;; If there are several one-char strings, use charsets
174 ((and (= (length (car strings
)) 1)
175 (let ((strs (cdr strings
)))
176 (while (and strs
(/= (length (car strs
)) 1))
180 ;; Collect one-char strings
182 (if (= (length s
) 1) (push (string-to-char s
) letters
) (push s rest
)))
185 ;; several one-char strings: take them and recurse
186 ;; on the rest (first so as to match the longest).
188 (regexp-opt-group (nreverse rest
))
189 "\\|" (regexp-opt-charset letters
)
191 ;; all are one-char strings: just return a character set.
193 (regexp-opt-charset letters
)
196 ;; We have a list of different length strings.
198 (let ((prefix (try-completion "" strings
)))
199 (if (> (length prefix
) 0)
200 ;; common prefix: take it and recurse on the suffixes.
201 (let* ((n (length prefix
))
202 (suffixes (mapcar (lambda (s) (substring s n
)) strings
)))
204 (regexp-quote prefix
)
205 (regexp-opt-group suffixes t t
)
208 (let* ((sgnirts (mapcar (lambda (s)
209 (concat (nreverse (string-to-list s
))))
211 (xiffus (try-completion "" sgnirts
)))
212 (if (> (length xiffus
) 0)
213 ;; common suffix: take it and recurse on the prefixes.
214 (let* ((n (- (length xiffus
)))
216 ;; Sorting is necessary in cases such as ("ad" "d").
217 (sort (mapcar (lambda (s) (substring s
0 n
)) strings
)
220 (regexp-opt-group prefixes t t
)
222 (concat (nreverse (string-to-list xiffus
))))
225 ;; Otherwise, divide the list into those that start with a
226 ;; particular letter and those that do not, and recurse on them.
227 (let* ((char (substring-no-properties (car strings
) 0 1))
228 (half1 (all-completions char strings
))
229 (half2 (nthcdr (length half1
) strings
)))
231 (regexp-opt-group half1
)
232 "\\|" (regexp-opt-group half2
)
233 close-group
))))))))))
236 (defun regexp-opt-charset (chars)
237 "Return a regexp to match a character in CHARS.
238 CHARS should be a list of characters."
239 ;; The basic idea is to find character ranges. Also we take care in the
240 ;; position of character set meta characters in the character set regexp.
242 (let* ((charmap (make-char-table 'case-table
))
245 (bracket "") (dash "") (caret ""))
247 ;; Make a character map but extract character set meta characters.
257 (aset charmap char t
))))
259 ;; Make a character set from the map using ranges where applicable.
264 (if (= (1- (car c
)) end
) (setq end
(cdr c
))
265 (if (> end
(+ start
2))
266 (setq charset
(format "%s%c-%c" charset start end
))
267 (while (>= end start
)
268 (setq charset
(format "%s%c" charset start
))
269 (setq start
(1+ start
))))
270 (setq start
(car c
) end
(cdr c
)))
271 (if (= (1- c
) end
) (setq end c
)
272 (if (> end
(+ start
2))
273 (setq charset
(format "%s%c-%c" charset start end
))
274 (while (>= end start
)
275 (setq charset
(format "%s%c" charset start
))
276 (setq start
(1+ start
))))
277 (setq start c end c
)))))
280 (if (> end
(+ start
2))
281 (setq charset
(format "%s%c-%c" charset start end
))
282 (while (>= end start
)
283 (setq charset
(format "%s%c" charset start
))
284 (setq start
(1+ start
)))))
286 ;; Make sure a caret is not first and a dash is first or last.
287 (if (and (string-equal charset
"") (string-equal bracket
""))
288 (concat "[" dash caret
"]")
289 (concat "[" bracket charset caret dash
"]"))))
291 (provide 'regexp-opt
)
293 ;;; regexp-opt.el ends here