1 ;;; rx.el --- sexp notation for regular expressions
3 ;; Copyright (C) 2001-2012 Free Software Foundation, Inc.
5 ;; Author: Gerd Moellmann <gerd@gnu.org>
7 ;; Keywords: strings, regexps, extensions
9 ;; This file is part of GNU Emacs.
11 ;; GNU Emacs is free software: you can redistribute it and/or modify
12 ;; it under the terms of the GNU General Public License as published by
13 ;; the Free Software Foundation, either version 3 of the License, or
14 ;; (at your option) any later version.
16 ;; GNU Emacs is distributed in the hope that it will be useful,
17 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
18 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 ;; GNU General Public License for more details.
21 ;; You should have received a copy of the GNU General Public License
22 ;; along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>.
26 ;; This is another implementation of sexp-form regular expressions.
27 ;; It was unfortunately written without being aware of the Sregex
28 ;; package coming with Emacs, but as things stand, Rx completely
29 ;; covers all regexp features, which Sregex doesn't, doesn't suffer
30 ;; from the bugs mentioned in the commentary section of Sregex, and
31 ;; uses a nicer syntax (IMHO, of course :-).
33 ;; This significantly extended version of the original, is almost
34 ;; compatible with Sregex. The only incompatibility I (fx) know of is
35 ;; that the `repeat' form can't have multiple regexp args.
37 ;; Now alternative forms are provided for a degree of compatibility
38 ;; with Olin Shivers' attempted definitive SRE notation. SRE forms
39 ;; not catered for include: dsm, uncase, w/case, w/nocase, ,@<exp>,
40 ;; ,<exp>, (word ...), word+, posix-string, and character class forms.
41 ;; Some forms are inconsistent with SRE, either for historical reasons
42 ;; or because of the implementation -- simple translation into Emacs
43 ;; regexp strings. These include: any, word. Also, case-sensitivity
44 ;; and greediness are controlled by variables external to the regexp,
45 ;; and you need to feed the forms to the `posix-' functions to get
46 ;; SRE's POSIX semantics. There are probably more difficulties.
48 ;; Rx translates a sexp notation for regular expressions into the
49 ;; usual string notation. The translation can be done at compile-time
50 ;; by using the `rx' macro. It can be done at run-time by calling
51 ;; function `rx-to-string'. See the documentation of `rx' for a
52 ;; complete description of the sexp notation.
54 ;; Some examples of string regexps and their sexp counterparts:
57 ;; (rx (and line-start (0+ (in "a-z"))))
60 ;; (rx (and "\n" (not blank))), or
61 ;; (rx (and "\n" (not (any " \t"))))
63 ;; "\\*\\*\\* EOOH \\*\\*\\*\n"
64 ;; (rx "*** EOOH ***\n")
66 ;; "\\<\\(catch\\|finally\\)\\>[^_]"
67 ;; (rx (and word-start (submatch (or "catch" "finally")) word-end
70 ;; "[ \t\n]*:\\([^:]+\\|$\\)"
71 ;; (rx (and (zero-or-more (in " \t\n")) ":"
72 ;; (submatch (or line-end (one-or-more (not (any ?:)))))))
74 ;; "^content-transfer-encoding:\\(\n?[\t ]\\)*quoted-printable\\(\n?[\t ]\\)*"
75 ;; (rx (and line-start
76 ;; "content-transfer-encoding:"
79 ;; (+ (? ?\n)) blank))
81 ;; (concat "^\\(?:" something-else "\\)")
82 ;; (rx (and line-start (eval something-else))), statically or
83 ;; (rx-to-string '(and line-start ,something-else)), dynamically.
85 ;; (regexp-opt '(STRING1 STRING2 ...))
86 ;; (rx (or STRING1 STRING2 ...)), or in other words, `or' automatically
87 ;; calls `regexp-opt' as needed.
90 ;; (rx (or (and line-start ";;" (0+ space) ?\n)
91 ;; (and line-start ?\n)))
93 ;; "\\$[I]d: [^ ]+ \\([^ ]+\\) "
95 ;; (1+ (not (in " ")))
97 ;; (submatch (1+ (not (in " "))))
101 ;; (rx (and ?\\ ?\\ ?\[ (1+ word)))
110 ;; FIXME: support macros.
112 (defvar rx-constituents
;Not `const' because some modes extend it.
113 '((and .
(rx-and 1 nil
))
116 (sequence . and
) ; sregex
120 (nonl . not-newline
) ; SRE
121 (anything .
(rx-anything 0 nil
))
122 (any .
(rx-any 1 nil rx-check-any
)) ; inconsistent with SRE
125 (char . any
) ; sregex
126 (not-char .
(rx-not-char 1 nil rx-check-any
)) ; sregex
127 (not .
(rx-not 1 1 rx-check-not
))
128 (repeat .
(rx-repeat 2 nil
))
129 (= .
(rx-= 2 nil
)) ; SRE
130 (>= .
(rx->= 2 nil
)) ; SRE
131 (** .
(rx-** 2 nil
)) ; SRE
132 (submatch .
(rx-submatch 1 nil
)) ; SRE
133 (group . submatch
) ; sregex
134 (submatch-n .
(rx-submatch-n 2 nil
))
135 (group-n . submatch-n
)
136 (zero-or-more .
(rx-kleene 1 nil
))
137 (one-or-more .
(rx-kleene 1 nil
))
138 (zero-or-one .
(rx-kleene 1 nil
))
139 (\? . zero-or-one
) ; SRE
141 (* . zero-or-more
) ; SRE
144 (+ . one-or-more
) ; SRE
147 (optional . zero-or-one
)
148 (opt . zero-or-one
) ; sregex
149 (minimal-match .
(rx-greedy 1 1))
150 (maximal-match .
(rx-greedy 1 1))
151 (backref .
(rx-backref 1 1 rx-check-backref
))
153 (bol . line-start
) ; SRE
155 (eol . line-end
) ; SRE
156 (string-start .
"\\`")
157 (bos . string-start
) ; SRE
158 (bot . string-start
) ; sregex
160 (eos . string-end
) ; SRE
161 (eot . string-end
) ; sregex
162 (buffer-start .
"\\`")
166 (bow . word-start
) ; SRE
168 (eow . word-end
) ; SRE
169 (word-boundary .
"\\b")
170 (not-word-boundary .
"\\B") ; sregex
171 (symbol-start .
"\\_<")
172 (symbol-end .
"\\_>")
173 (syntax .
(rx-syntax 1 1))
174 (not-syntax .
(rx-not-syntax 1 1)) ; sregex
175 (category .
(rx-category 1 1 rx-check-category
))
176 (eval .
(rx-eval 1 1))
177 (regexp .
(rx-regexp 1 1 stringp
))
178 (regex . regexp
) ; sregex
179 (digit .
"[[:digit:]]")
180 (numeric . digit
) ; SRE
182 (control .
"[[:cntrl:]]") ; SRE
183 (cntrl . control
) ; SRE
184 (hex-digit .
"[[:xdigit:]]") ; SRE
185 (hex . hex-digit
) ; SRE
186 (xdigit . hex-digit
) ; SRE
187 (blank .
"[[:blank:]]") ; SRE
188 (graphic .
"[[:graph:]]") ; SRE
189 (graph . graphic
) ; SRE
190 (printing .
"[[:print:]]") ; SRE
191 (print . printing
) ; SRE
192 (alphanumeric .
"[[:alnum:]]") ; SRE
193 (alnum . alphanumeric
) ; SRE
194 (letter .
"[[:alpha:]]")
195 (alphabetic . letter
) ; SRE
196 (alpha . letter
) ; SRE
197 (ascii .
"[[:ascii:]]") ; SRE
198 (nonascii .
"[[:nonascii:]]")
199 (lower .
"[[:lower:]]") ; SRE
200 (lower-case . lower
) ; SRE
201 (punctuation .
"[[:punct:]]") ; SRE
202 (punct . punctuation
) ; SRE
203 (space .
"[[:space:]]") ; SRE
204 (whitespace . space
) ; SRE
205 (white . space
) ; SRE
206 (upper .
"[[:upper:]]") ; SRE
207 (upper-case . upper
) ; SRE
208 (word .
"[[:word:]]") ; inconsistent with SRE
209 (wordchar . word
) ; sregex
210 (not-wordchar .
"\\W"))
211 "Alist of sexp form regexp constituents.
212 Each element of the alist has the form (SYMBOL . DEFN).
213 SYMBOL is a valid constituent of sexp regular expressions.
214 If DEFN is a string, SYMBOL is translated into DEFN.
215 If DEFN is a symbol, use the definition of DEFN, recursively.
216 Otherwise, DEFN must be a list (FUNCTION MIN-ARGS MAX-ARGS PREDICATE).
217 FUNCTION is used to produce code for SYMBOL. MIN-ARGS and MAX-ARGS
218 are the minimum and maximum number of arguments the function-form
219 sexp constituent SYMBOL may have in sexp regular expressions.
220 MAX-ARGS nil means no limit. PREDICATE, if specified, means that
221 all arguments must satisfy PREDICATE.")
229 (open-parenthesis . ?\
()
230 (close-parenthesis . ?\
))
231 (expression-prefix . ?
\')
233 (paired-delimiter . ?$
)
235 (character-quote . ?
/)
238 (string-delimiter . ?|
)
239 (comment-delimiter . ?
!))
240 "Alist mapping Rx syntax symbols to syntax characters.
241 Each entry has the form (SYMBOL . CHAR), where SYMBOL is a valid
242 symbol in `(syntax SYMBOL)', and CHAR is the syntax character
243 corresponding to SYMBOL, as it would be used with \\s or \\S in
244 regular expressions.")
247 (defconst rx-categories
250 (upper-diacritical-mark . ?
2)
251 (lower-diacritical-mark . ?
3)
255 (vowel-modifying-diacritical-mark . ?
7)
257 (semivowel-lower . ?
9)
258 (not-at-end-of-line . ?
<)
259 (not-at-beginning-of-line . ?
>)
260 (alpha-numeric-two-byte . ?A
)
261 (chinse-two-byte . ?C
)
262 (greek-two-byte . ?G
)
263 (japanese-hiragana-two-byte . ?H
)
264 (indian-two-byte . ?I
)
265 (japanese-katakana-two-byte . ?K
)
266 (korean-hangul-two-byte . ?N
)
267 (cyrillic-two-byte . ?Y
)
268 (combining-diacritic . ?^
)
277 (japanese-katakana . ?k
)
281 (japanese-roman . ?r
)
287 "Alist mapping symbols to category characters.
288 Each entry has the form (SYMBOL . CHAR), where SYMBOL is a valid
289 symbol in `(category SYMBOL)', and CHAR is the category character
290 corresponding to SYMBOL, as it would be used with `\\c' or `\\C' in
291 regular expression strings.")
294 (defvar rx-greedy-flag t
295 "Non-nil means produce greedy regular expressions for `zero-or-one',
296 `zero-or-more', and `one-or-more'. Dynamically bound.")
299 (defun rx-info (op head
)
300 "Return parsing/code generation info for OP.
301 If OP is the space character ASCII 32, return info for the symbol `?'.
302 If OP is the character `?', return info for the symbol `??'.
303 See also `rx-constituents'.
304 If HEAD is non-nil, then OP is the head of a sexp, otherwise it's
305 a standalone symbol."
306 (cond ((eq op ?
) (setq op
'\?))
307 ((eq op ??
) (setq op
'\??
)))
309 (while (and (not (null op
)) (symbolp op
))
311 (setq op
(cdr (assq op rx-constituents
)))
312 (when (if head
(stringp op
) (consp op
))
313 ;; We found something but of the wrong kind. Let's look for an
314 ;; alternate definition for the other case.
316 (cdr (assq old-op
(cdr (memq (assq old-op rx-constituents
)
317 rx-constituents
))))))
318 (if (and new-op
(not (if head
(stringp new-op
) (consp new-op
))))
319 (setq op new-op
))))))
323 (defun rx-check (form)
324 "Check FORM according to its car's parsing info."
326 (error "rx `%s' needs argument(s)" form
))
327 (let* ((rx (rx-info (car form
) 'head
))
328 (nargs (1- (length form
)))
329 (min-args (nth 1 rx
))
330 (max-args (nth 2 rx
))
331 (type-pred (nth 3 rx
)))
332 (when (and (not (null min-args
))
334 (error "rx form `%s' requires at least %d args"
335 (car form
) min-args
))
336 (when (and (not (null max-args
))
338 (error "rx form `%s' accepts at most %d args"
339 (car form
) max-args
))
340 (when (not (null type-pred
))
341 (dolist (sub-form (cdr form
))
342 (unless (funcall type-pred sub-form
)
343 (error "rx form `%s' requires args satisfying `%s'"
344 (car form
) type-pred
))))))
347 (defun rx-group-if (regexp group
)
348 "Put shy groups around REGEXP if seemingly necessary when GROUP
351 ;; for some repetition
352 ((eq group
'*) (if (rx-atomic-p regexp
) (setq group nil
)))
357 "\\(?:[?*+]\\??\\|\\\\{[0-9]*,?[0-9]*\\\\}\\)\\'" regexp
)
358 (substring regexp
0 (match-beginning 0))
362 ((eq group
'|
) (setq group nil
))
365 ((rx-atomic-p regexp t
) (setq group nil
)))
367 (concat "\\(?:" regexp
"\\)")
372 ;; dynamically bound in some functions.
376 "Parse and produce code from FORM.
377 FORM is of the form `(and FORM1 ...)'."
380 (mapconcat (lambda (x) (rx-form x
':)) (cdr form
) nil
)
381 (and (memq rx-parent
'(* t
)) rx-parent
)))
385 "Parse and produce code from FORM, which is `(or FORM1 ...)'."
388 (if (memq nil
(mapcar 'stringp
(cdr form
)))
389 (mapconcat (lambda (x) (rx-form x
'|
)) (cdr form
) "\\|")
390 (regexp-opt (cdr form
)))
391 (and (memq rx-parent
'(: * t
)) rx-parent
)))
394 (defun rx-anything (form)
395 "Match any character."
397 (error "rx `anything' syntax error: %s" form
))
398 (rx-or (list 'or
'not-newline ?
\n)))
401 (defun rx-any-delete-from-range (char ranges
)
402 "Delete by side effect character CHAR from RANGES.
403 Only both edges of each range is checked."
406 ((memq char ranges
) (setq ranges
(delq char ranges
)))
407 ((setq m
(assq char ranges
))
408 (if (eq (1+ char
) (cdr m
))
409 (setcar (memq m ranges
) (1+ char
))
410 (setcar m
(1+ char
))))
411 ((setq m
(rassq char ranges
))
412 (if (eq (1- char
) (car m
))
413 (setcar (memq m ranges
) (1- char
))
414 (setcdr m
(1- char
)))))
418 (defun rx-any-condense-range (args)
419 "Condense by side effect ARGS as range for Rx `any'."
422 ;; set STR list of all strings
423 ;; set L list of all ranges
424 (mapc (lambda (e) (cond ((stringp e
) (push e str
))
425 ((numberp e
) (push (cons e e
) l
))
428 ;; condense overlapped ranges in L
429 (let ((tail (setq l
(sort l
#'car-less-than-car
)))
431 (while (setq d
(cdr tail
))
432 (if (>= (cdar tail
) (1- (caar d
)))
434 (setcdr (car tail
) (max (cdar tail
) (cdar d
)))
435 (setcdr tail
(cdr d
)))
437 ;; Separate small ranges to single number, and delete dups.
442 ((= (car e
) (cdr e
)) (list (car e
)))
443 ((= (1+ (car e
)) (cdr e
)) (list (car e
) (cdr e
)))
449 (defun rx-check-any-string (str)
450 "Check string argument STR for Rx `any'."
453 (if (= 0 (length str
))
454 (error "String arg for Rx `any' must not be empty"))
455 (while (string-match ".-." str i
)
456 ;; string before range: convert it to characters
457 (if (< i
(match-beginning 0))
460 (append (substring str i
(match-beginning 0)) nil
))))
462 (setq i
(match-end 0)
463 c1
(aref str
(match-beginning 0))
464 c2
(aref str
(1- i
)))
466 ((< c1 c2
) (setq l
(nconc l
(list (cons c1 c2
)))))
467 ((= c1 c2
) (setq l
(nconc l
(list c1
))))))
469 (if (< i
(length str
))
470 (setq l
(nconc l
(append (substring str i
) nil
))))
474 (defun rx-check-any (arg)
475 "Check arg ARG for Rx `any'."
477 ((integerp arg
) (list arg
))
479 (let ((translation (condition-case nil
482 (if (or (null translation
)
483 (null (string-match "\\`\\[\\[:[-a-z]+:\\]\\]\\'" translation
)))
484 (error "Invalid char class `%s' in Rx `any'" arg
))
485 (list (substring translation
1 -
1)))) ; strip outer brackets
486 ((and (integerp (car-safe arg
)) (integerp (cdr-safe arg
)))
488 ((stringp arg
) (rx-check-any-string arg
))
490 "rx `any' requires string, character, char pair or char class args"))))
494 "Parse and produce code from FORM, which is `(any ARG ...)'.
497 (let* ((args (rx-any-condense-range
500 (mapcar #'rx-check-any
(cdr form
)))))
504 ;; single close bracket
505 ;; => "[]...-]" or "[]...--.]"
507 ;; set ] at the beginning
508 (setq args
(cons ?\
] (delq ?\
] args
)))
510 (if (or (memq ?- args
) (assq ?- args
))
511 (setq args
(nconc (rx-any-delete-from-range ?- args
)
513 ;; close bracket starts a range
514 ;; => "[]-....-]" or "[]-.--....]"
515 ((setq m
(assq ?\
] args
))
516 ;; bring it to the beginning
517 (setq args
(cons m
(delq m args
)))
518 (cond ((memq ?- args
)
520 (setq args
(nconc (delq ?- args
) (list ?-
))))
521 ((setq m
(assq ?- args
))
522 ;; next to the bracket's range, make the second range
523 (setcdr args
(cons m
(delq m args
))))))
524 ;; bracket in the end range
526 ((setq m
(rassq ?\
] args
))
527 ;; set ] at the beginning
528 (setq args
(cons ?\
] (rx-any-delete-from-range ?\
] args
)))
530 (if (or (memq ?- args
) (assq ?- args
))
531 (setq args
(nconc (rx-any-delete-from-range ?- args
)
533 ;; {no close bracket appears}
535 ;; bring single bar to the beginning
537 (setq args
(cons ?-
(delq ?- args
))))
538 ;; bar start a range, bring it to the beginning
539 ((setq m
(assq ?- args
))
540 (setq args
(cons m
(delq m args
))))
542 ;; hat at the beginning?
543 ((or (eq (car args
) ?^
) (eq (car-safe (car args
)) ?^
))
544 (setq args
(if (cdr args
)
545 `(,(cadr args
) ,(car args
) ,@(cddr args
))
546 (nconc (rx-any-delete-from-range ?^ args
)
549 (if (and (null (cdr args
)) (numberp (car args
))
551 (setq s
(regexp-quote (string (car args
))))))
552 (and (equal (car args
) ?^
) ;; unnecessary predicate?
553 (null (eq rx-parent
'!)))))
558 ((numberp e
) (string e
))
560 (if (and (= (1+ (car e
)) (cdr e
))
561 ;; rx-any-condense-range should
562 ;; prevent this case from happening.
563 (null (memq (car e
) '(?\
] ?-
)))
564 (null (memq (cdr e
) '(?\
] ?-
))))
565 (string (car e
) (cdr e
))
566 (string (car e
) ?-
(cdr e
))))
573 (defun rx-check-not (arg)
574 "Check arg ARG for Rx `not'."
575 (unless (or (and (symbolp arg
)
576 (string-match "\\`\\[\\[:[-a-z]+:\\]\\]\\'"
580 (eq arg
'word-boundary
)
582 (memq (car arg
) '(not any in syntax category
))))
583 (error "rx `not' syntax error: %s" arg
))
588 "Parse and produce code from FORM. FORM is `(not ...)'."
590 (let ((result (rx-form (cadr form
) '!))
592 (cond ((string-match "\\`\\[^" result
)
594 ((equal result
"[^]") "[^^]")
595 ((and (= (length result
) 4) (null (eq rx-parent
'!)))
596 (regexp-quote (substring result
2 3)))
597 ((concat "[" (substring result
2)))))
598 ((eq ?\
[ (aref result
0))
599 (concat "[^" (substring result
1)))
600 ((string-match "\\`\\\\[scbw]" result
)
601 (concat (upcase (substring result
0 2))
602 (substring result
2)))
603 ((string-match "\\`\\\\[SCBW]" result
)
604 (concat (downcase (substring result
0 2))
605 (substring result
2)))
607 (concat "[^" result
"]")))))
610 (defun rx-not-char (form)
611 "Parse and produce code from FORM. FORM is `(not-char ...)'."
613 (rx-not `(not (in ,@(cdr form
)))))
616 (defun rx-not-syntax (form)
617 "Parse and produce code from FORM. FORM is `(not-syntax SYNTAX)'."
619 (rx-not `(not (syntax ,@(cdr form
)))))
622 (defun rx-trans-forms (form &optional skip
)
623 "If FORM's length is greater than two, transform it to length two.
624 A form (HEAD REST ...) becomes (HEAD (and REST ...)).
625 If SKIP is non-nil, allow that number of items after the head, i.e.
626 `(= N REST ...)' becomes `(= N (and REST ...))' if SKIP is 1."
627 (unless skip
(setq skip
0))
628 (let ((tail (nthcdr (1+ skip
) form
)))
629 (if (= (length tail
) 1)
631 (let ((form (copy-sequence form
)))
632 (setcdr (nthcdr skip form
) (list (cons 'and tail
)))
637 "Parse and produce code from FORM `(= N ...)'."
639 (setq form
(rx-trans-forms form
1))
640 (unless (and (integerp (nth 1 form
))
642 (error "rx `=' requires positive integer first arg"))
643 (format "%s\\{%d\\}" (rx-form (nth 2 form
) '*) (nth 1 form
)))
647 "Parse and produce code from FORM `(>= N ...)'."
649 (setq form
(rx-trans-forms form
1))
650 (unless (and (integerp (nth 1 form
))
652 (error "rx `>=' requires positive integer first arg"))
653 (format "%s\\{%d,\\}" (rx-form (nth 2 form
) '*) (nth 1 form
)))
657 "Parse and produce code from FORM `(** N M ...)'."
659 (rx-form (cons 'repeat
(cdr (rx-trans-forms form
2))) '*))
662 (defun rx-repeat (form)
663 "Parse and produce code from FORM.
664 FORM is either `(repeat N FORM1)' or `(repeat N M FORMS...)'."
666 (if (> (length form
) 4)
667 (setq form
(rx-trans-forms form
2)))
668 (if (null (nth 2 form
))
669 (setq form
(cons (nth 0 form
) (cons (nth 1 form
) (nthcdr 3 form
)))))
670 (cond ((= (length form
) 3)
671 (unless (and (integerp (nth 1 form
))
673 (error "rx `repeat' requires positive integer first arg"))
674 (format "%s\\{%d\\}" (rx-form (nth 2 form
) '*) (nth 1 form
)))
675 ((or (not (integerp (nth 2 form
)))
677 (not (integerp (nth 1 form
)))
679 (< (nth 2 form
) (nth 1 form
)))
680 (error "rx `repeat' range error"))
682 (format "%s\\{%d,%d\\}" (rx-form (nth 3 form
) '*)
683 (nth 1 form
) (nth 2 form
)))))
686 (defun rx-submatch (form)
687 "Parse and produce code from FORM, which is `(submatch ...)'."
689 (if (= 2 (length form
))
690 ;; Only one sub-form.
691 (rx-form (cadr form
))
692 ;; Several sub-forms implicitly concatenated.
693 (mapconcat (lambda (re) (rx-form re
':)) (cdr form
) nil
))
696 (defun rx-submatch-n (form)
697 "Parse and produce code from FORM, which is `(submatch-n N ...)'."
698 (let ((n (nth 1 form
)))
699 (concat "\\(?" (number-to-string n
) ":"
700 (if (= 3 (length form
))
701 ;; Only one sub-form.
702 (rx-form (nth 2 form
))
703 ;; Several sub-forms implicitly concatenated.
704 (mapconcat (lambda (re) (rx-form re
':)) (cddr form
) nil
))
707 (defun rx-backref (form)
708 "Parse and produce code from FORM, which is `(backref N)'."
710 (format "\\%d" (nth 1 form
)))
712 (defun rx-check-backref (arg)
713 "Check arg ARG for Rx `backref'."
714 (or (and (integerp arg
) (>= arg
1) (<= arg
9))
715 (error "rx `backref' requires numeric 1<=arg<=9: %s" arg
)))
717 (defun rx-kleene (form)
718 "Parse and produce code from FORM.
719 FORM is `(OP FORM1)', where OP is one of the `zero-or-one',
720 `zero-or-more' etc. operators.
721 If OP is one of `*', `+', `?', produce a greedy regexp.
722 If OP is one of `*?', `+?', `??', produce a non-greedy regexp.
723 If OP is anything else, produce a greedy regexp if `rx-greedy-flag'
726 (setq form
(rx-trans-forms form
))
727 (let ((suffix (cond ((memq (car form
) '(* + ?\s
)) "")
728 ((memq (car form
) '(*?
+? ??
)) "?")
731 (op (cond ((memq (car form
) '(* *?
0+ zero-or-more
)) "*")
732 ((memq (car form
) '(+ +?
1+ one-or-more
)) "+")
735 (concat (rx-form (cadr form
) '*) op suffix
)
736 (and (memq rx-parent
'(t *)) rx-parent
))))
739 (defun rx-atomic-p (r &optional lax
)
740 "Return non-nil if regexp string R is atomic.
741 An atomic regexp R is one such that a suffix operator
742 appended to R will apply to all of R. For example, \"a\"
743 \"[abc]\" and \"\\(ab\\|ab*c\\)\" are atomic and \"ab\",
744 \"[ab]c\", and \"ab\\|ab*c\" are not atomic.
746 This function may return false negatives, but it will not
747 return false positives. It is nevertheless useful in
748 situations where an efficiency shortcut can be taken only if a
749 regexp is atomic. The function can be improved to detect
750 more cases of atomic regexps. Presently, this function
751 detects the following categories of atomic regexp;
753 a group or shy group: \\(...\\)
754 a character class: [...]
755 a single character: a
757 On the other hand, false negatives will be returned for
758 regexps that are atomic but end in operators, such as
759 \"a+\". I think these are rare. Probably such cases could
760 be detected without much effort. A guarantee of no false
761 negatives would require a theoretic specification of the set
762 of all atomic regexps."
763 (let ((l (length r
)))
766 ((= l
2) (= (aref r
0) ?
\\))
767 ((= l
3) (string-match "\\`\\(?:\\\\[cCsS_]\\|\\[[^^]\\]\\)" r
))
770 ((string-match "\\`\\[^?\]?\\(?:\\[:[a-z]+:]\\|[^\]]\\)*\\]\\'" r
))
771 ((string-match "\\`\\\\(\\(?:[^\\]\\|\\\\[^\)]\\)*\\\\)\\'" r
)))))))
774 (defun rx-syntax (form)
775 "Parse and produce code from FORM, which is `(syntax SYMBOL)'."
777 (let* ((sym (cadr form
))
778 (syntax (cdr (assq sym rx-syntax
))))
780 ;; Try sregex compatibility.
782 ((characterp sym
) (setq syntax sym
))
784 (let ((name (symbol-name sym
)))
785 (if (= 1 (length name
))
786 (setq syntax
(aref name
0))))))
788 (error "Unknown rx syntax `%s'" sym
)))
789 (format "\\s%c" syntax
)))
792 (defun rx-check-category (form)
793 "Check the argument FORM of a `(category FORM)'."
794 (unless (or (integerp form
)
795 (cdr (assq form rx-categories
)))
796 (error "Unknown category `%s'" form
))
800 (defun rx-category (form)
801 "Parse and produce code from FORM, which is `(category SYMBOL)'."
803 (let ((char (if (integerp (cadr form
))
805 (cdr (assq (cadr form
) rx-categories
)))))
806 (format "\\c%c" char
)))
809 (defun rx-eval (form)
810 "Parse and produce code from FORM, which is `(eval FORM)'."
812 (rx-form (eval (cadr form
)) rx-parent
))
815 (defun rx-greedy (form)
816 "Parse and produce code from FORM.
817 If FORM is '(minimal-match FORM1)', non-greedy versions of `*',
818 `+', and `?' operators will be used in FORM1. If FORM is
819 '(maximal-match FORM1)', greedy operators will be used."
821 (let ((rx-greedy-flag (eq (car form
) 'maximal-match
)))
822 (rx-form (cadr form
) rx-parent
)))
825 (defun rx-regexp (form)
826 "Parse and produce code from FORM, which is `(regexp STRING)'."
828 (rx-group-if (cadr form
) rx-parent
))
831 (defun rx-form (form &optional rx-parent
)
832 "Parse and produce code for regular expression FORM.
833 FORM is a regular expression in sexp form.
834 RX-PARENT shows which type of expression calls and controls putting of
835 shy groups around the result and some more in other functions."
838 (rx-group-if (regexp-quote form
)
839 (if (and (eq rx-parent
'*) (< 1 (length form
)))
842 (regexp-quote (char-to-string form
)))
844 (let ((info (rx-info form nil
)))
845 (cond ((stringp info
)
848 (error "Unknown rx form `%s'" form
))
850 (funcall (nth 0 info
) form
)))))
852 (let ((info (rx-info (car form
) 'head
)))
854 (error "Unknown rx form `%s'" (car form
)))
855 (funcall (nth 0 info
) form
)))
857 (error "rx syntax error at `%s'" form
))))
861 (defun rx-to-string (form &optional no-group
)
862 "Parse and produce code for regular expression FORM.
863 FORM is a regular expression in sexp form.
864 NO-GROUP non-nil means don't put shy groups around the result."
865 (rx-group-if (rx-form form
) (null no-group
)))
869 (defmacro rx
(&rest regexps
)
870 "Translate regular expressions REGEXPS in sexp form to a regexp string.
871 REGEXPS is a non-empty sequence of forms of the sort listed below.
873 Note that `rx' is a Lisp macro; when used in a Lisp program being
874 compiled, the translation is performed by the compiler.
875 See `rx-to-string' for how to do such a translation at run-time.
877 The following are valid subforms of regular expressions in sexp
881 matches string STRING literally.
884 matches character CHAR literally.
886 `not-newline', `nonl'
887 matches any character except a newline.
890 matches any character
895 matches any character in SET .... SET may be a character or string.
896 Ranges of characters can be specified as `A-Z' in strings.
897 Ranges may also be specified as conses like `(?A . ?Z)'.
899 SET may also be the name of a character class: `digit',
900 `control', `hex-digit', `blank', `graph', `print', `alnum',
901 `alpha', `ascii', `nonascii', `lower', `punct', `space', `upper',
902 `word', or one of their synonyms.
904 `(not (any SET ...))'
905 matches any character not in SET ...
908 matches the empty string, but only at the beginning of a line
909 in the text being matched
912 is similar to `line-start' but matches only at the end of a line
914 `string-start', `bos', `bot'
915 matches the empty string, but only at the beginning of the
916 string being matched against.
918 `string-end', `eos', `eot'
919 matches the empty string, but only at the end of the
920 string being matched against.
923 matches the empty string, but only at the beginning of the
924 buffer being matched against. Actually equivalent to `string-start'.
927 matches the empty string, but only at the end of the
928 buffer being matched against. Actually equivalent to `string-end'.
931 matches the empty string, but only at point.
934 matches the empty string, but only at the beginning of a word.
937 matches the empty string, but only at the end of a word.
940 matches the empty string, but only at the beginning or end of a
943 `(not word-boundary)'
945 matches the empty string, but not at the beginning or end of a
949 matches the empty string, but only at the beginning of a symbol.
952 matches the empty string, but only at the end of a symbol.
954 `digit', `numeric', `num'
958 matches ASCII control characters.
960 `hex-digit', `hex', `xdigit'
961 matches 0 through 9, a through f and A through F.
964 matches space and tab only.
967 matches graphic characters--everything except ASCII control chars,
971 matches printing characters--everything except ASCII control chars
974 `alphanumeric', `alnum'
975 matches letters and digits. (But at present, for multibyte characters,
976 it matches anything that has word syntax.)
978 `letter', `alphabetic', `alpha'
979 matches letters. (But at present, for multibyte characters,
980 it matches anything that has word syntax.)
983 matches ASCII (unibyte) characters.
986 matches non-ASCII (multibyte) characters.
988 `lower', `lower-case'
989 matches anything lower-case.
991 `upper', `upper-case'
992 matches anything upper-case.
994 `punctuation', `punct'
995 matches punctuation. (But at present, for multibyte characters,
996 it matches anything that has non-word syntax.)
998 `space', `whitespace', `white'
999 matches anything that has whitespace syntax.
1002 matches anything that has word syntax.
1005 matches anything that has non-word syntax.
1008 matches a character with syntax SYNTAX. SYNTAX must be one
1009 of the following symbols, or a symbol corresponding to the syntax
1010 character, e.g. `\\.' for `\\s.'.
1012 `whitespace' (\\s- in string notation)
1013 `punctuation' (\\s.)
1016 `open-parenthesis' (\\s()
1017 `close-parenthesis' (\\s))
1018 `expression-prefix' (\\s')
1019 `string-quote' (\\s\")
1020 `paired-delimiter' (\\s$)
1022 `character-quote' (\\s/)
1023 `comment-start' (\\s<)
1024 `comment-end' (\\s>)
1025 `string-delimiter' (\\s|)
1026 `comment-delimiter' (\\s!)
1028 `(not (syntax SYNTAX))'
1029 matches a character that doesn't have syntax SYNTAX.
1031 `(category CATEGORY)'
1032 matches a character with category CATEGORY. CATEGORY must be
1033 either a character to use for C, or one of the following symbols.
1035 `consonant' (\\c0 in string notation)
1037 `upper-diacritical-mark' (\\c2)
1038 `lower-diacritical-mark' (\\c3)
1042 `vowel-modifying-diacritical-mark' (\\c7)
1044 `semivowel-lower' (\\c9)
1045 `not-at-end-of-line' (\\c<)
1046 `not-at-beginning-of-line' (\\c>)
1047 `alpha-numeric-two-byte' (\\cA)
1048 `chinse-two-byte' (\\cC)
1049 `greek-two-byte' (\\cG)
1050 `japanese-hiragana-two-byte' (\\cH)
1051 `indian-tow-byte' (\\cI)
1052 `japanese-katakana-two-byte' (\\cK)
1053 `korean-hangul-two-byte' (\\cN)
1054 `cyrillic-two-byte' (\\cY)
1055 `combining-diacritic' (\\c^)
1064 `japanese-katakana' (\\ck)
1068 `japanese-roman' (\\cr)
1075 `(not (category CATEGORY))'
1076 matches a character that doesn't have category CATEGORY.
1078 `(and SEXP1 SEXP2 ...)'
1079 `(: SEXP1 SEXP2 ...)'
1080 `(seq SEXP1 SEXP2 ...)'
1081 `(sequence SEXP1 SEXP2 ...)'
1082 matches what SEXP1 matches, followed by what SEXP2 matches, etc.
1084 `(submatch SEXP1 SEXP2 ...)'
1085 `(group SEXP1 SEXP2 ...)'
1086 like `and', but makes the match accessible with `match-end',
1087 `match-beginning', and `match-string'.
1089 `(submatch-n N SEXP1 SEXP2 ...)'
1090 `(group-n N SEXP1 SEXP2 ...)'
1091 like `group', but make it an explicitly-numbered group with
1094 `(or SEXP1 SEXP2 ...)'
1095 `(| SEXP1 SEXP2 ...)'
1096 matches anything that matches SEXP1 or SEXP2, etc. If all
1097 args are strings, use `regexp-opt' to optimize the resulting
1100 `(minimal-match SEXP)'
1101 produce a non-greedy regexp for SEXP. Normally, regexps matching
1102 zero or more occurrences of something are \"greedy\" in that they
1103 match as much as they can, as long as the overall regexp can
1104 still match. A non-greedy regexp matches as little as possible.
1106 `(maximal-match SEXP)'
1107 produce a greedy regexp for SEXP. This is the default.
1109 Below, `SEXP ...' represents a sequence of regexp forms, treated as if
1110 enclosed in `(and ...)'.
1112 `(zero-or-more SEXP ...)'
1114 matches zero or more occurrences of what SEXP ... matches.
1117 like `zero-or-more', but always produces a greedy regexp, independent
1118 of `rx-greedy-flag'.
1121 like `zero-or-more', but always produces a non-greedy regexp,
1122 independent of `rx-greedy-flag'.
1124 `(one-or-more SEXP ...)'
1126 matches one or more occurrences of SEXP ...
1129 like `one-or-more', but always produces a greedy regexp.
1132 like `one-or-more', but always produces a non-greedy regexp.
1134 `(zero-or-one SEXP ...)'
1135 `(optional SEXP ...)'
1137 matches zero or one occurrences of A.
1140 like `zero-or-one', but always produces a greedy regexp.
1143 like `zero-or-one', but always produces a non-greedy regexp.
1147 matches N occurrences.
1150 matches N or more occurrences.
1154 matches N to M occurrences.
1157 matches what was matched previously by submatch N.
1160 evaluate FORM and insert result. If result is a string,
1164 include REGEXP in string notation in the result."
1165 (cond ((null regexps
)
1166 (error "No regexp"))
1168 (rx-to-string `(and ,@regexps
) t
))
1170 (rx-to-string (car regexps
) t
))))
1172 ;; ;; sregex.el replacement
1174 ;; ;;;###autoload (provide 'sregex)
1175 ;; ;;;###autoload (autoload 'sregex "rx")
1176 ;; (defalias 'sregex 'rx-to-string)
1177 ;; ;;;###autoload (autoload 'sregexq "rx" nil nil 'macro)
1178 ;; (defalias 'sregexq 'rx)