Merge from origin/emacs-25
[emacs.git] / src / alloc.c
blobae3e1519c04fe26e7affc63265dcb9ed725aa5f1
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2017 Free Software
4 Foundation, Inc.
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or (at
11 your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
21 #include <config.h>
23 #include <errno.h>
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <limits.h> /* For CHAR_BIT. */
27 #include <signal.h> /* For SIGABRT, SIGDANGER. */
29 #ifdef HAVE_PTHREAD
30 #include <pthread.h>
31 #endif
33 #include "lisp.h"
34 #include "dispextern.h"
35 #include "intervals.h"
36 #include "puresize.h"
37 #include "sheap.h"
38 #include "systime.h"
39 #include "character.h"
40 #include "buffer.h"
41 #include "window.h"
42 #include "keyboard.h"
43 #include "frame.h"
44 #include "blockinput.h"
45 #include "termhooks.h" /* For struct terminal. */
46 #ifdef HAVE_WINDOW_SYSTEM
47 #include TERM_HEADER
48 #endif /* HAVE_WINDOW_SYSTEM */
50 #include <flexmember.h>
51 #include <verify.h>
52 #include <execinfo.h> /* For backtrace. */
54 #ifdef HAVE_LINUX_SYSINFO
55 #include <sys/sysinfo.h>
56 #endif
58 #ifdef MSDOS
59 #include "dosfns.h" /* For dos_memory_info. */
60 #endif
62 #ifdef HAVE_MALLOC_H
63 # include <malloc.h>
64 #endif
66 #if (defined ENABLE_CHECKING \
67 && defined HAVE_VALGRIND_VALGRIND_H \
68 && !defined USE_VALGRIND)
69 # define USE_VALGRIND 1
70 #endif
72 #if USE_VALGRIND
73 #include <valgrind/valgrind.h>
74 #include <valgrind/memcheck.h>
75 static bool valgrind_p;
76 #endif
78 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects. */
80 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
81 memory. Can do this only if using gmalloc.c and if not checking
82 marked objects. */
84 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
85 || defined HYBRID_MALLOC || defined GC_CHECK_MARKED_OBJECTS)
86 #undef GC_MALLOC_CHECK
87 #endif
89 #include <unistd.h>
90 #include <fcntl.h>
92 #ifdef USE_GTK
93 # include "gtkutil.h"
94 #endif
95 #ifdef WINDOWSNT
96 #include "w32.h"
97 #include "w32heap.h" /* for sbrk */
98 #endif
100 #ifdef GNU_LINUX
101 /* The address where the heap starts. */
102 void *
103 my_heap_start (void)
105 static void *start;
106 if (! start)
107 start = sbrk (0);
108 return start;
110 #endif
112 #ifdef DOUG_LEA_MALLOC
114 /* Specify maximum number of areas to mmap. It would be nice to use a
115 value that explicitly means "no limit". */
117 #define MMAP_MAX_AREAS 100000000
119 /* A pointer to the memory allocated that copies that static data
120 inside glibc's malloc. */
121 static void *malloc_state_ptr;
123 /* Restore the dumped malloc state. Because malloc can be invoked
124 even before main (e.g. by the dynamic linker), the dumped malloc
125 state must be restored as early as possible using this special hook. */
126 static void
127 malloc_initialize_hook (void)
129 static bool malloc_using_checking;
131 if (! initialized)
133 #ifdef GNU_LINUX
134 my_heap_start ();
135 #endif
136 malloc_using_checking = getenv ("MALLOC_CHECK_") != NULL;
138 else
140 if (!malloc_using_checking)
142 /* Work around a bug in glibc's malloc. MALLOC_CHECK_ must be
143 ignored if the heap to be restored was constructed without
144 malloc checking. Can't use unsetenv, since that calls malloc. */
145 char **p = environ;
146 if (p)
147 for (; *p; p++)
148 if (strncmp (*p, "MALLOC_CHECK_=", 14) == 0)
151 *p = p[1];
152 while (*++p);
154 break;
158 if (malloc_set_state (malloc_state_ptr) != 0)
159 emacs_abort ();
160 # ifndef XMALLOC_OVERRUN_CHECK
161 alloc_unexec_post ();
162 # endif
166 /* Declare the malloc initialization hook, which runs before 'main' starts.
167 EXTERNALLY_VISIBLE works around Bug#22522. */
168 # ifndef __MALLOC_HOOK_VOLATILE
169 # define __MALLOC_HOOK_VOLATILE
170 # endif
171 voidfuncptr __MALLOC_HOOK_VOLATILE __malloc_initialize_hook EXTERNALLY_VISIBLE
172 = malloc_initialize_hook;
174 #endif
176 #if defined DOUG_LEA_MALLOC || !defined CANNOT_DUMP
178 /* Allocator-related actions to do just before and after unexec. */
180 void
181 alloc_unexec_pre (void)
183 # ifdef DOUG_LEA_MALLOC
184 malloc_state_ptr = malloc_get_state ();
185 if (!malloc_state_ptr)
186 fatal ("malloc_get_state: %s", strerror (errno));
187 # endif
188 # ifdef HYBRID_MALLOC
189 bss_sbrk_did_unexec = true;
190 # endif
193 void
194 alloc_unexec_post (void)
196 # ifdef DOUG_LEA_MALLOC
197 free (malloc_state_ptr);
198 # endif
199 # ifdef HYBRID_MALLOC
200 bss_sbrk_did_unexec = false;
201 # endif
203 #endif
205 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
206 to a struct Lisp_String. */
208 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
209 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
210 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
212 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
213 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
214 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
216 /* Default value of gc_cons_threshold (see below). */
218 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
220 /* Global variables. */
221 struct emacs_globals globals;
223 /* Number of bytes of consing done since the last gc. */
225 EMACS_INT consing_since_gc;
227 /* Similar minimum, computed from Vgc_cons_percentage. */
229 EMACS_INT gc_relative_threshold;
231 /* Minimum number of bytes of consing since GC before next GC,
232 when memory is full. */
234 EMACS_INT memory_full_cons_threshold;
236 /* True during GC. */
238 bool gc_in_progress;
240 /* Number of live and free conses etc. */
242 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
243 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
244 static EMACS_INT total_free_floats, total_floats;
246 /* Points to memory space allocated as "spare", to be freed if we run
247 out of memory. We keep one large block, four cons-blocks, and
248 two string blocks. */
250 static char *spare_memory[7];
252 /* Amount of spare memory to keep in large reserve block, or to see
253 whether this much is available when malloc fails on a larger request. */
255 #define SPARE_MEMORY (1 << 14)
257 /* Initialize it to a nonzero value to force it into data space
258 (rather than bss space). That way unexec will remap it into text
259 space (pure), on some systems. We have not implemented the
260 remapping on more recent systems because this is less important
261 nowadays than in the days of small memories and timesharing. */
263 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
264 #define PUREBEG (char *) pure
266 /* Pointer to the pure area, and its size. */
268 static char *purebeg;
269 static ptrdiff_t pure_size;
271 /* Number of bytes of pure storage used before pure storage overflowed.
272 If this is non-zero, this implies that an overflow occurred. */
274 static ptrdiff_t pure_bytes_used_before_overflow;
276 /* Index in pure at which next pure Lisp object will be allocated.. */
278 static ptrdiff_t pure_bytes_used_lisp;
280 /* Number of bytes allocated for non-Lisp objects in pure storage. */
282 static ptrdiff_t pure_bytes_used_non_lisp;
284 /* If nonzero, this is a warning delivered by malloc and not yet
285 displayed. */
287 const char *pending_malloc_warning;
289 #if 0 /* Normally, pointer sanity only on request... */
290 #ifdef ENABLE_CHECKING
291 #define SUSPICIOUS_OBJECT_CHECKING 1
292 #endif
293 #endif
295 /* ... but unconditionally use SUSPICIOUS_OBJECT_CHECKING while the GC
296 bug is unresolved. */
297 #define SUSPICIOUS_OBJECT_CHECKING 1
299 #ifdef SUSPICIOUS_OBJECT_CHECKING
300 struct suspicious_free_record
302 void *suspicious_object;
303 void *backtrace[128];
305 static void *suspicious_objects[32];
306 static int suspicious_object_index;
307 struct suspicious_free_record suspicious_free_history[64] EXTERNALLY_VISIBLE;
308 static int suspicious_free_history_index;
309 /* Find the first currently-monitored suspicious pointer in range
310 [begin,end) or NULL if no such pointer exists. */
311 static void *find_suspicious_object_in_range (void *begin, void *end);
312 static void detect_suspicious_free (void *ptr);
313 #else
314 # define find_suspicious_object_in_range(begin, end) NULL
315 # define detect_suspicious_free(ptr) (void)
316 #endif
318 /* Maximum amount of C stack to save when a GC happens. */
320 #ifndef MAX_SAVE_STACK
321 #define MAX_SAVE_STACK 16000
322 #endif
324 /* Buffer in which we save a copy of the C stack at each GC. */
326 #if MAX_SAVE_STACK > 0
327 static char *stack_copy;
328 static ptrdiff_t stack_copy_size;
330 /* Copy to DEST a block of memory from SRC of size SIZE bytes,
331 avoiding any address sanitization. */
333 static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
334 no_sanitize_memcpy (void *dest, void const *src, size_t size)
336 if (! ADDRESS_SANITIZER)
337 return memcpy (dest, src, size);
338 else
340 size_t i;
341 char *d = dest;
342 char const *s = src;
343 for (i = 0; i < size; i++)
344 d[i] = s[i];
345 return dest;
349 #endif /* MAX_SAVE_STACK > 0 */
351 static void mark_terminals (void);
352 static void gc_sweep (void);
353 static Lisp_Object make_pure_vector (ptrdiff_t);
354 static void mark_buffer (struct buffer *);
356 #if !defined REL_ALLOC || defined SYSTEM_MALLOC || defined HYBRID_MALLOC
357 static void refill_memory_reserve (void);
358 #endif
359 static void compact_small_strings (void);
360 static void free_large_strings (void);
361 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
363 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
364 what memory allocated via lisp_malloc and lisp_align_malloc is intended
365 for what purpose. This enumeration specifies the type of memory. */
367 enum mem_type
369 MEM_TYPE_NON_LISP,
370 MEM_TYPE_BUFFER,
371 MEM_TYPE_CONS,
372 MEM_TYPE_STRING,
373 MEM_TYPE_MISC,
374 MEM_TYPE_SYMBOL,
375 MEM_TYPE_FLOAT,
376 /* Since all non-bool pseudovectors are small enough to be
377 allocated from vector blocks, this memory type denotes
378 large regular vectors and large bool pseudovectors. */
379 MEM_TYPE_VECTORLIKE,
380 /* Special type to denote vector blocks. */
381 MEM_TYPE_VECTOR_BLOCK,
382 /* Special type to denote reserved memory. */
383 MEM_TYPE_SPARE
386 /* A unique object in pure space used to make some Lisp objects
387 on free lists recognizable in O(1). */
389 static Lisp_Object Vdead;
390 #define DEADP(x) EQ (x, Vdead)
392 #ifdef GC_MALLOC_CHECK
394 enum mem_type allocated_mem_type;
396 #endif /* GC_MALLOC_CHECK */
398 /* A node in the red-black tree describing allocated memory containing
399 Lisp data. Each such block is recorded with its start and end
400 address when it is allocated, and removed from the tree when it
401 is freed.
403 A red-black tree is a balanced binary tree with the following
404 properties:
406 1. Every node is either red or black.
407 2. Every leaf is black.
408 3. If a node is red, then both of its children are black.
409 4. Every simple path from a node to a descendant leaf contains
410 the same number of black nodes.
411 5. The root is always black.
413 When nodes are inserted into the tree, or deleted from the tree,
414 the tree is "fixed" so that these properties are always true.
416 A red-black tree with N internal nodes has height at most 2
417 log(N+1). Searches, insertions and deletions are done in O(log N).
418 Please see a text book about data structures for a detailed
419 description of red-black trees. Any book worth its salt should
420 describe them. */
422 struct mem_node
424 /* Children of this node. These pointers are never NULL. When there
425 is no child, the value is MEM_NIL, which points to a dummy node. */
426 struct mem_node *left, *right;
428 /* The parent of this node. In the root node, this is NULL. */
429 struct mem_node *parent;
431 /* Start and end of allocated region. */
432 void *start, *end;
434 /* Node color. */
435 enum {MEM_BLACK, MEM_RED} color;
437 /* Memory type. */
438 enum mem_type type;
441 /* Root of the tree describing allocated Lisp memory. */
443 static struct mem_node *mem_root;
445 /* Lowest and highest known address in the heap. */
447 static void *min_heap_address, *max_heap_address;
449 /* Sentinel node of the tree. */
451 static struct mem_node mem_z;
452 #define MEM_NIL &mem_z
454 static struct mem_node *mem_insert (void *, void *, enum mem_type);
455 static void mem_insert_fixup (struct mem_node *);
456 static void mem_rotate_left (struct mem_node *);
457 static void mem_rotate_right (struct mem_node *);
458 static void mem_delete (struct mem_node *);
459 static void mem_delete_fixup (struct mem_node *);
460 static struct mem_node *mem_find (void *);
462 #ifndef DEADP
463 # define DEADP(x) 0
464 #endif
466 /* Addresses of staticpro'd variables. Initialize it to a nonzero
467 value; otherwise some compilers put it into BSS. */
469 enum { NSTATICS = 2048 };
470 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
472 /* Index of next unused slot in staticvec. */
474 static int staticidx;
476 static void *pure_alloc (size_t, int);
478 /* True if N is a power of 2. N should be positive. */
480 #define POWER_OF_2(n) (((n) & ((n) - 1)) == 0)
482 /* Return X rounded to the next multiple of Y. Y should be positive,
483 and Y - 1 + X should not overflow. Arguments should not have side
484 effects, as they are evaluated more than once. Tune for Y being a
485 power of 2. */
487 #define ROUNDUP(x, y) (POWER_OF_2 (y) \
488 ? ((y) - 1 + (x)) & ~ ((y) - 1) \
489 : ((y) - 1 + (x)) - ((y) - 1 + (x)) % (y))
491 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
493 static void *
494 pointer_align (void *ptr, int alignment)
496 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
499 /* Extract the pointer hidden within A, if A is not a symbol.
500 If A is a symbol, extract the hidden pointer's offset from lispsym,
501 converted to void *. */
503 #define macro_XPNTR_OR_SYMBOL_OFFSET(a) \
504 ((void *) (intptr_t) (USE_LSB_TAG ? XLI (a) - XTYPE (a) : XLI (a) & VALMASK))
506 /* Extract the pointer hidden within A. */
508 #define macro_XPNTR(a) \
509 ((void *) ((intptr_t) XPNTR_OR_SYMBOL_OFFSET (a) \
510 + (SYMBOLP (a) ? (char *) lispsym : NULL)))
512 /* For pointer access, define XPNTR and XPNTR_OR_SYMBOL_OFFSET as
513 functions, as functions are cleaner and can be used in debuggers.
514 Also, define them as macros if being compiled with GCC without
515 optimization, for performance in that case. The macro_* names are
516 private to this section of code. */
518 static ATTRIBUTE_UNUSED void *
519 XPNTR_OR_SYMBOL_OFFSET (Lisp_Object a)
521 return macro_XPNTR_OR_SYMBOL_OFFSET (a);
523 static ATTRIBUTE_UNUSED void *
524 XPNTR (Lisp_Object a)
526 return macro_XPNTR (a);
529 #if DEFINE_KEY_OPS_AS_MACROS
530 # define XPNTR_OR_SYMBOL_OFFSET(a) macro_XPNTR_OR_SYMBOL_OFFSET (a)
531 # define XPNTR(a) macro_XPNTR (a)
532 #endif
534 static void
535 XFLOAT_INIT (Lisp_Object f, double n)
537 XFLOAT (f)->u.data = n;
540 #ifdef DOUG_LEA_MALLOC
541 static bool
542 pointers_fit_in_lispobj_p (void)
544 return (UINTPTR_MAX <= VAL_MAX) || USE_LSB_TAG;
547 static bool
548 mmap_lisp_allowed_p (void)
550 /* If we can't store all memory addresses in our lisp objects, it's
551 risky to let the heap use mmap and give us addresses from all
552 over our address space. We also can't use mmap for lisp objects
553 if we might dump: unexec doesn't preserve the contents of mmapped
554 regions. */
555 return pointers_fit_in_lispobj_p () && !might_dump;
557 #endif
559 /* Head of a circularly-linked list of extant finalizers. */
560 static struct Lisp_Finalizer finalizers;
562 /* Head of a circularly-linked list of finalizers that must be invoked
563 because we deemed them unreachable. This list must be global, and
564 not a local inside garbage_collect_1, in case we GC again while
565 running finalizers. */
566 static struct Lisp_Finalizer doomed_finalizers;
569 /************************************************************************
570 Malloc
571 ************************************************************************/
573 #if defined SIGDANGER || (!defined SYSTEM_MALLOC && !defined HYBRID_MALLOC)
575 /* Function malloc calls this if it finds we are near exhausting storage. */
577 void
578 malloc_warning (const char *str)
580 pending_malloc_warning = str;
583 #endif
585 /* Display an already-pending malloc warning. */
587 void
588 display_malloc_warning (void)
590 call3 (intern ("display-warning"),
591 intern ("alloc"),
592 build_string (pending_malloc_warning),
593 intern ("emergency"));
594 pending_malloc_warning = 0;
597 /* Called if we can't allocate relocatable space for a buffer. */
599 void
600 buffer_memory_full (ptrdiff_t nbytes)
602 /* If buffers use the relocating allocator, no need to free
603 spare_memory, because we may have plenty of malloc space left
604 that we could get, and if we don't, the malloc that fails will
605 itself cause spare_memory to be freed. If buffers don't use the
606 relocating allocator, treat this like any other failing
607 malloc. */
609 #ifndef REL_ALLOC
610 memory_full (nbytes);
611 #else
612 /* This used to call error, but if we've run out of memory, we could
613 get infinite recursion trying to build the string. */
614 xsignal (Qnil, Vmemory_signal_data);
615 #endif
618 /* A common multiple of the positive integers A and B. Ideally this
619 would be the least common multiple, but there's no way to do that
620 as a constant expression in C, so do the best that we can easily do. */
621 #define COMMON_MULTIPLE(a, b) \
622 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
624 #ifndef XMALLOC_OVERRUN_CHECK
625 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
626 #else
628 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
629 around each block.
631 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
632 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
633 block size in little-endian order. The trailer consists of
634 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
636 The header is used to detect whether this block has been allocated
637 through these functions, as some low-level libc functions may
638 bypass the malloc hooks. */
640 #define XMALLOC_OVERRUN_CHECK_SIZE 16
641 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
642 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
644 #define XMALLOC_BASE_ALIGNMENT alignof (max_align_t)
646 #define XMALLOC_HEADER_ALIGNMENT \
647 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
649 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
650 hold a size_t value and (2) the header size is a multiple of the
651 alignment that Emacs needs for C types and for USE_LSB_TAG. */
652 #define XMALLOC_OVERRUN_SIZE_SIZE \
653 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
654 + XMALLOC_HEADER_ALIGNMENT - 1) \
655 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
656 - XMALLOC_OVERRUN_CHECK_SIZE)
658 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
659 { '\x9a', '\x9b', '\xae', '\xaf',
660 '\xbf', '\xbe', '\xce', '\xcf',
661 '\xea', '\xeb', '\xec', '\xed',
662 '\xdf', '\xde', '\x9c', '\x9d' };
664 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
665 { '\xaa', '\xab', '\xac', '\xad',
666 '\xba', '\xbb', '\xbc', '\xbd',
667 '\xca', '\xcb', '\xcc', '\xcd',
668 '\xda', '\xdb', '\xdc', '\xdd' };
670 /* Insert and extract the block size in the header. */
672 static void
673 xmalloc_put_size (unsigned char *ptr, size_t size)
675 int i;
676 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
678 *--ptr = size & ((1 << CHAR_BIT) - 1);
679 size >>= CHAR_BIT;
683 static size_t
684 xmalloc_get_size (unsigned char *ptr)
686 size_t size = 0;
687 int i;
688 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
689 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
691 size <<= CHAR_BIT;
692 size += *ptr++;
694 return size;
698 /* Like malloc, but wraps allocated block with header and trailer. */
700 static void *
701 overrun_check_malloc (size_t size)
703 register unsigned char *val;
704 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
705 emacs_abort ();
707 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
708 if (val)
710 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
711 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
712 xmalloc_put_size (val, size);
713 memcpy (val + size, xmalloc_overrun_check_trailer,
714 XMALLOC_OVERRUN_CHECK_SIZE);
716 return val;
720 /* Like realloc, but checks old block for overrun, and wraps new block
721 with header and trailer. */
723 static void *
724 overrun_check_realloc (void *block, size_t size)
726 register unsigned char *val = (unsigned char *) block;
727 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
728 emacs_abort ();
730 if (val
731 && memcmp (xmalloc_overrun_check_header,
732 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
733 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
735 size_t osize = xmalloc_get_size (val);
736 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
737 XMALLOC_OVERRUN_CHECK_SIZE))
738 emacs_abort ();
739 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
740 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
741 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
744 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
746 if (val)
748 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
749 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
750 xmalloc_put_size (val, size);
751 memcpy (val + size, xmalloc_overrun_check_trailer,
752 XMALLOC_OVERRUN_CHECK_SIZE);
754 return val;
757 /* Like free, but checks block for overrun. */
759 static void
760 overrun_check_free (void *block)
762 unsigned char *val = (unsigned char *) block;
764 if (val
765 && memcmp (xmalloc_overrun_check_header,
766 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
767 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
769 size_t osize = xmalloc_get_size (val);
770 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
771 XMALLOC_OVERRUN_CHECK_SIZE))
772 emacs_abort ();
773 #ifdef XMALLOC_CLEAR_FREE_MEMORY
774 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
775 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
776 #else
777 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
778 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
779 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
780 #endif
783 free (val);
786 #undef malloc
787 #undef realloc
788 #undef free
789 #define malloc overrun_check_malloc
790 #define realloc overrun_check_realloc
791 #define free overrun_check_free
792 #endif
794 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
795 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
796 If that variable is set, block input while in one of Emacs's memory
797 allocation functions. There should be no need for this debugging
798 option, since signal handlers do not allocate memory, but Emacs
799 formerly allocated memory in signal handlers and this compile-time
800 option remains as a way to help debug the issue should it rear its
801 ugly head again. */
802 #ifdef XMALLOC_BLOCK_INPUT_CHECK
803 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
804 static void
805 malloc_block_input (void)
807 if (block_input_in_memory_allocators)
808 block_input ();
810 static void
811 malloc_unblock_input (void)
813 if (block_input_in_memory_allocators)
814 unblock_input ();
816 # define MALLOC_BLOCK_INPUT malloc_block_input ()
817 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
818 #else
819 # define MALLOC_BLOCK_INPUT ((void) 0)
820 # define MALLOC_UNBLOCK_INPUT ((void) 0)
821 #endif
823 #define MALLOC_PROBE(size) \
824 do { \
825 if (profiler_memory_running) \
826 malloc_probe (size); \
827 } while (0)
829 static void *lmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
830 static void *lrealloc (void *, size_t);
832 /* Like malloc but check for no memory and block interrupt input. */
834 void *
835 xmalloc (size_t size)
837 void *val;
839 MALLOC_BLOCK_INPUT;
840 val = lmalloc (size);
841 MALLOC_UNBLOCK_INPUT;
843 if (!val && size)
844 memory_full (size);
845 MALLOC_PROBE (size);
846 return val;
849 /* Like the above, but zeroes out the memory just allocated. */
851 void *
852 xzalloc (size_t size)
854 void *val;
856 MALLOC_BLOCK_INPUT;
857 val = lmalloc (size);
858 MALLOC_UNBLOCK_INPUT;
860 if (!val && size)
861 memory_full (size);
862 memset (val, 0, size);
863 MALLOC_PROBE (size);
864 return val;
867 /* Like realloc but check for no memory and block interrupt input.. */
869 void *
870 xrealloc (void *block, size_t size)
872 void *val;
874 MALLOC_BLOCK_INPUT;
875 /* We must call malloc explicitly when BLOCK is 0, since some
876 reallocs don't do this. */
877 if (! block)
878 val = lmalloc (size);
879 else
880 val = lrealloc (block, size);
881 MALLOC_UNBLOCK_INPUT;
883 if (!val && size)
884 memory_full (size);
885 MALLOC_PROBE (size);
886 return val;
890 /* Like free but block interrupt input. */
892 void
893 xfree (void *block)
895 if (!block)
896 return;
897 MALLOC_BLOCK_INPUT;
898 free (block);
899 MALLOC_UNBLOCK_INPUT;
900 /* We don't call refill_memory_reserve here
901 because in practice the call in r_alloc_free seems to suffice. */
905 /* Other parts of Emacs pass large int values to allocator functions
906 expecting ptrdiff_t. This is portable in practice, but check it to
907 be safe. */
908 verify (INT_MAX <= PTRDIFF_MAX);
911 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
912 Signal an error on memory exhaustion, and block interrupt input. */
914 void *
915 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
917 eassert (0 <= nitems && 0 < item_size);
918 ptrdiff_t nbytes;
919 if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
920 memory_full (SIZE_MAX);
921 return xmalloc (nbytes);
925 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
926 Signal an error on memory exhaustion, and block interrupt input. */
928 void *
929 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
931 eassert (0 <= nitems && 0 < item_size);
932 ptrdiff_t nbytes;
933 if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
934 memory_full (SIZE_MAX);
935 return xrealloc (pa, nbytes);
939 /* Grow PA, which points to an array of *NITEMS items, and return the
940 location of the reallocated array, updating *NITEMS to reflect its
941 new size. The new array will contain at least NITEMS_INCR_MIN more
942 items, but will not contain more than NITEMS_MAX items total.
943 ITEM_SIZE is the size of each item, in bytes.
945 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
946 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
947 infinity.
949 If PA is null, then allocate a new array instead of reallocating
950 the old one.
952 Block interrupt input as needed. If memory exhaustion occurs, set
953 *NITEMS to zero if PA is null, and signal an error (i.e., do not
954 return).
956 Thus, to grow an array A without saving its old contents, do
957 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
958 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
959 and signals an error, and later this code is reexecuted and
960 attempts to free A. */
962 void *
963 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
964 ptrdiff_t nitems_max, ptrdiff_t item_size)
966 ptrdiff_t n0 = *nitems;
967 eassume (0 < item_size && 0 < nitems_incr_min && 0 <= n0 && -1 <= nitems_max);
969 /* The approximate size to use for initial small allocation
970 requests. This is the largest "small" request for the GNU C
971 library malloc. */
972 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
974 /* If the array is tiny, grow it to about (but no greater than)
975 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%.
976 Adjust the growth according to three constraints: NITEMS_INCR_MIN,
977 NITEMS_MAX, and what the C language can represent safely. */
979 ptrdiff_t n, nbytes;
980 if (INT_ADD_WRAPV (n0, n0 >> 1, &n))
981 n = PTRDIFF_MAX;
982 if (0 <= nitems_max && nitems_max < n)
983 n = nitems_max;
985 ptrdiff_t adjusted_nbytes
986 = ((INT_MULTIPLY_WRAPV (n, item_size, &nbytes) || SIZE_MAX < nbytes)
987 ? min (PTRDIFF_MAX, SIZE_MAX)
988 : nbytes < DEFAULT_MXFAST ? DEFAULT_MXFAST : 0);
989 if (adjusted_nbytes)
991 n = adjusted_nbytes / item_size;
992 nbytes = adjusted_nbytes - adjusted_nbytes % item_size;
995 if (! pa)
996 *nitems = 0;
997 if (n - n0 < nitems_incr_min
998 && (INT_ADD_WRAPV (n0, nitems_incr_min, &n)
999 || (0 <= nitems_max && nitems_max < n)
1000 || INT_MULTIPLY_WRAPV (n, item_size, &nbytes)))
1001 memory_full (SIZE_MAX);
1002 pa = xrealloc (pa, nbytes);
1003 *nitems = n;
1004 return pa;
1008 /* Like strdup, but uses xmalloc. */
1010 char *
1011 xstrdup (const char *s)
1013 ptrdiff_t size;
1014 eassert (s);
1015 size = strlen (s) + 1;
1016 return memcpy (xmalloc (size), s, size);
1019 /* Like above, but duplicates Lisp string to C string. */
1021 char *
1022 xlispstrdup (Lisp_Object string)
1024 ptrdiff_t size = SBYTES (string) + 1;
1025 return memcpy (xmalloc (size), SSDATA (string), size);
1028 /* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
1029 pointed to. If STRING is null, assign it without copying anything.
1030 Allocate before freeing, to avoid a dangling pointer if allocation
1031 fails. */
1033 void
1034 dupstring (char **ptr, char const *string)
1036 char *old = *ptr;
1037 *ptr = string ? xstrdup (string) : 0;
1038 xfree (old);
1042 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
1043 argument is a const pointer. */
1045 void
1046 xputenv (char const *string)
1048 if (putenv ((char *) string) != 0)
1049 memory_full (0);
1052 /* Return a newly allocated memory block of SIZE bytes, remembering
1053 to free it when unwinding. */
1054 void *
1055 record_xmalloc (size_t size)
1057 void *p = xmalloc (size);
1058 record_unwind_protect_ptr (xfree, p);
1059 return p;
1063 /* Like malloc but used for allocating Lisp data. NBYTES is the
1064 number of bytes to allocate, TYPE describes the intended use of the
1065 allocated memory block (for strings, for conses, ...). */
1067 #if ! USE_LSB_TAG
1068 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
1069 #endif
1071 static void *
1072 lisp_malloc (size_t nbytes, enum mem_type type)
1074 register void *val;
1076 MALLOC_BLOCK_INPUT;
1078 #ifdef GC_MALLOC_CHECK
1079 allocated_mem_type = type;
1080 #endif
1082 val = lmalloc (nbytes);
1084 #if ! USE_LSB_TAG
1085 /* If the memory just allocated cannot be addressed thru a Lisp
1086 object's pointer, and it needs to be,
1087 that's equivalent to running out of memory. */
1088 if (val && type != MEM_TYPE_NON_LISP)
1090 Lisp_Object tem;
1091 XSETCONS (tem, (char *) val + nbytes - 1);
1092 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
1094 lisp_malloc_loser = val;
1095 free (val);
1096 val = 0;
1099 #endif
1101 #ifndef GC_MALLOC_CHECK
1102 if (val && type != MEM_TYPE_NON_LISP)
1103 mem_insert (val, (char *) val + nbytes, type);
1104 #endif
1106 MALLOC_UNBLOCK_INPUT;
1107 if (!val && nbytes)
1108 memory_full (nbytes);
1109 MALLOC_PROBE (nbytes);
1110 return val;
1113 /* Free BLOCK. This must be called to free memory allocated with a
1114 call to lisp_malloc. */
1116 static void
1117 lisp_free (void *block)
1119 MALLOC_BLOCK_INPUT;
1120 free (block);
1121 #ifndef GC_MALLOC_CHECK
1122 mem_delete (mem_find (block));
1123 #endif
1124 MALLOC_UNBLOCK_INPUT;
1127 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
1129 /* The entry point is lisp_align_malloc which returns blocks of at most
1130 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
1132 /* Byte alignment of storage blocks. */
1133 #define BLOCK_ALIGN (1 << 10)
1134 verify (POWER_OF_2 (BLOCK_ALIGN));
1136 /* Use aligned_alloc if it or a simple substitute is available.
1137 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
1138 clang 3.3 anyway. Aligned allocation is incompatible with
1139 unexmacosx.c, so don't use it on Darwin. */
1141 #if ! ADDRESS_SANITIZER && !defined DARWIN_OS
1142 # if (defined HAVE_ALIGNED_ALLOC \
1143 || (defined HYBRID_MALLOC \
1144 ? defined HAVE_POSIX_MEMALIGN \
1145 : !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC))
1146 # define USE_ALIGNED_ALLOC 1
1147 # elif !defined HYBRID_MALLOC && defined HAVE_POSIX_MEMALIGN
1148 # define USE_ALIGNED_ALLOC 1
1149 # define aligned_alloc my_aligned_alloc /* Avoid collision with lisp.h. */
1150 static void *
1151 aligned_alloc (size_t alignment, size_t size)
1153 /* POSIX says the alignment must be a power-of-2 multiple of sizeof (void *).
1154 Verify this for all arguments this function is given. */
1155 verify (BLOCK_ALIGN % sizeof (void *) == 0
1156 && POWER_OF_2 (BLOCK_ALIGN / sizeof (void *)));
1157 verify (GCALIGNMENT % sizeof (void *) == 0
1158 && POWER_OF_2 (GCALIGNMENT / sizeof (void *)));
1159 eassert (alignment == BLOCK_ALIGN || alignment == GCALIGNMENT);
1161 void *p;
1162 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
1164 # endif
1165 #endif
1167 /* Padding to leave at the end of a malloc'd block. This is to give
1168 malloc a chance to minimize the amount of memory wasted to alignment.
1169 It should be tuned to the particular malloc library used.
1170 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
1171 aligned_alloc on the other hand would ideally prefer a value of 4
1172 because otherwise, there's 1020 bytes wasted between each ablocks.
1173 In Emacs, testing shows that those 1020 can most of the time be
1174 efficiently used by malloc to place other objects, so a value of 0 can
1175 still preferable unless you have a lot of aligned blocks and virtually
1176 nothing else. */
1177 #define BLOCK_PADDING 0
1178 #define BLOCK_BYTES \
1179 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1181 /* Internal data structures and constants. */
1183 #define ABLOCKS_SIZE 16
1185 /* An aligned block of memory. */
1186 struct ablock
1188 union
1190 char payload[BLOCK_BYTES];
1191 struct ablock *next_free;
1192 } x;
1194 /* ABASE is the aligned base of the ablocks. It is overloaded to
1195 hold a virtual "busy" field that counts twice the number of used
1196 ablock values in the parent ablocks, plus one if the real base of
1197 the parent ablocks is ABASE (if the "busy" field is even, the
1198 word before the first ablock holds a pointer to the real base).
1199 The first ablock has a "busy" ABASE, and the others have an
1200 ordinary pointer ABASE. To tell the difference, the code assumes
1201 that pointers, when cast to uintptr_t, are at least 2 *
1202 ABLOCKS_SIZE + 1. */
1203 struct ablocks *abase;
1205 /* The padding of all but the last ablock is unused. The padding of
1206 the last ablock in an ablocks is not allocated. */
1207 #if BLOCK_PADDING
1208 char padding[BLOCK_PADDING];
1209 #endif
1212 /* A bunch of consecutive aligned blocks. */
1213 struct ablocks
1215 struct ablock blocks[ABLOCKS_SIZE];
1218 /* Size of the block requested from malloc or aligned_alloc. */
1219 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1221 #define ABLOCK_ABASE(block) \
1222 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1223 ? (struct ablocks *) (block) \
1224 : (block)->abase)
1226 /* Virtual `busy' field. */
1227 #define ABLOCKS_BUSY(a_base) ((a_base)->blocks[0].abase)
1229 /* Pointer to the (not necessarily aligned) malloc block. */
1230 #ifdef USE_ALIGNED_ALLOC
1231 #define ABLOCKS_BASE(abase) (abase)
1232 #else
1233 #define ABLOCKS_BASE(abase) \
1234 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **) (abase))[-1])
1235 #endif
1237 /* The list of free ablock. */
1238 static struct ablock *free_ablock;
1240 /* Allocate an aligned block of nbytes.
1241 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1242 smaller or equal to BLOCK_BYTES. */
1243 static void *
1244 lisp_align_malloc (size_t nbytes, enum mem_type type)
1246 void *base, *val;
1247 struct ablocks *abase;
1249 eassert (nbytes <= BLOCK_BYTES);
1251 MALLOC_BLOCK_INPUT;
1253 #ifdef GC_MALLOC_CHECK
1254 allocated_mem_type = type;
1255 #endif
1257 if (!free_ablock)
1259 int i;
1260 bool aligned;
1262 #ifdef DOUG_LEA_MALLOC
1263 if (!mmap_lisp_allowed_p ())
1264 mallopt (M_MMAP_MAX, 0);
1265 #endif
1267 #ifdef USE_ALIGNED_ALLOC
1268 verify (ABLOCKS_BYTES % BLOCK_ALIGN == 0);
1269 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
1270 #else
1271 base = malloc (ABLOCKS_BYTES);
1272 abase = pointer_align (base, BLOCK_ALIGN);
1273 #endif
1275 if (base == 0)
1277 MALLOC_UNBLOCK_INPUT;
1278 memory_full (ABLOCKS_BYTES);
1281 aligned = (base == abase);
1282 if (!aligned)
1283 ((void **) abase)[-1] = base;
1285 #ifdef DOUG_LEA_MALLOC
1286 if (!mmap_lisp_allowed_p ())
1287 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1288 #endif
1290 #if ! USE_LSB_TAG
1291 /* If the memory just allocated cannot be addressed thru a Lisp
1292 object's pointer, and it needs to be, that's equivalent to
1293 running out of memory. */
1294 if (type != MEM_TYPE_NON_LISP)
1296 Lisp_Object tem;
1297 char *end = (char *) base + ABLOCKS_BYTES - 1;
1298 XSETCONS (tem, end);
1299 if ((char *) XCONS (tem) != end)
1301 lisp_malloc_loser = base;
1302 free (base);
1303 MALLOC_UNBLOCK_INPUT;
1304 memory_full (SIZE_MAX);
1307 #endif
1309 /* Initialize the blocks and put them on the free list.
1310 If `base' was not properly aligned, we can't use the last block. */
1311 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1313 abase->blocks[i].abase = abase;
1314 abase->blocks[i].x.next_free = free_ablock;
1315 free_ablock = &abase->blocks[i];
1317 intptr_t ialigned = aligned;
1318 ABLOCKS_BUSY (abase) = (struct ablocks *) ialigned;
1320 eassert ((uintptr_t) abase % BLOCK_ALIGN == 0);
1321 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1322 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1323 eassert (ABLOCKS_BASE (abase) == base);
1324 eassert ((intptr_t) ABLOCKS_BUSY (abase) == aligned);
1327 abase = ABLOCK_ABASE (free_ablock);
1328 ABLOCKS_BUSY (abase)
1329 = (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1330 val = free_ablock;
1331 free_ablock = free_ablock->x.next_free;
1333 #ifndef GC_MALLOC_CHECK
1334 if (type != MEM_TYPE_NON_LISP)
1335 mem_insert (val, (char *) val + nbytes, type);
1336 #endif
1338 MALLOC_UNBLOCK_INPUT;
1340 MALLOC_PROBE (nbytes);
1342 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1343 return val;
1346 static void
1347 lisp_align_free (void *block)
1349 struct ablock *ablock = block;
1350 struct ablocks *abase = ABLOCK_ABASE (ablock);
1352 MALLOC_BLOCK_INPUT;
1353 #ifndef GC_MALLOC_CHECK
1354 mem_delete (mem_find (block));
1355 #endif
1356 /* Put on free list. */
1357 ablock->x.next_free = free_ablock;
1358 free_ablock = ablock;
1359 /* Update busy count. */
1360 intptr_t busy = (intptr_t) ABLOCKS_BUSY (abase) - 2;
1361 eassume (0 <= busy && busy <= 2 * ABLOCKS_SIZE - 1);
1362 ABLOCKS_BUSY (abase) = (struct ablocks *) busy;
1364 if (busy < 2)
1365 { /* All the blocks are free. */
1366 int i = 0;
1367 bool aligned = busy;
1368 struct ablock **tem = &free_ablock;
1369 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1371 while (*tem)
1373 if (*tem >= (struct ablock *) abase && *tem < atop)
1375 i++;
1376 *tem = (*tem)->x.next_free;
1378 else
1379 tem = &(*tem)->x.next_free;
1381 eassert ((aligned & 1) == aligned);
1382 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1383 #ifdef USE_POSIX_MEMALIGN
1384 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1385 #endif
1386 free (ABLOCKS_BASE (abase));
1388 MALLOC_UNBLOCK_INPUT;
1391 #if !defined __GNUC__ && !defined __alignof__
1392 # define __alignof__(type) alignof (type)
1393 #endif
1395 /* True if malloc (N) is known to return a multiple of GCALIGNMENT
1396 whenever N is also a multiple. In practice this is true if
1397 __alignof__ (max_align_t) is a multiple as well, assuming
1398 GCALIGNMENT is 8; other values of GCALIGNMENT have not been looked
1399 into. Use __alignof__ if available, as otherwise
1400 MALLOC_IS_GC_ALIGNED would be false on GCC x86 even though the
1401 alignment is OK there.
1403 This is a macro, not an enum constant, for portability to HP-UX
1404 10.20 cc and AIX 3.2.5 xlc. */
1405 #define MALLOC_IS_GC_ALIGNED \
1406 (GCALIGNMENT == 8 && __alignof__ (max_align_t) % GCALIGNMENT == 0)
1408 /* True if a malloc-returned pointer P is suitably aligned for SIZE,
1409 where Lisp alignment may be needed if SIZE is Lisp-aligned. */
1411 static bool
1412 laligned (void *p, size_t size)
1414 return (MALLOC_IS_GC_ALIGNED || (intptr_t) p % GCALIGNMENT == 0
1415 || size % GCALIGNMENT != 0);
1418 /* Like malloc and realloc except that if SIZE is Lisp-aligned, make
1419 sure the result is too, if necessary by reallocating (typically
1420 with larger and larger sizes) until the allocator returns a
1421 Lisp-aligned pointer. Code that needs to allocate C heap memory
1422 for a Lisp object should use one of these functions to obtain a
1423 pointer P; that way, if T is an enum Lisp_Type value and L ==
1424 make_lisp_ptr (P, T), then XPNTR (L) == P and XTYPE (L) == T.
1426 On typical modern platforms these functions' loops do not iterate.
1427 On now-rare (and perhaps nonexistent) platforms, the loops in
1428 theory could repeat forever. If an infinite loop is possible on a
1429 platform, a build would surely loop and the builder can then send
1430 us a bug report. Adding a counter to try to detect any such loop
1431 would complicate the code (and possibly introduce bugs, in code
1432 that's never really exercised) for little benefit. */
1434 static void *
1435 lmalloc (size_t size)
1437 #if USE_ALIGNED_ALLOC
1438 if (! MALLOC_IS_GC_ALIGNED && size % GCALIGNMENT == 0)
1439 return aligned_alloc (GCALIGNMENT, size);
1440 #endif
1442 while (true)
1444 void *p = malloc (size);
1445 if (laligned (p, size))
1446 return p;
1447 free (p);
1448 size_t bigger = size + GCALIGNMENT;
1449 if (size < bigger)
1450 size = bigger;
1454 static void *
1455 lrealloc (void *p, size_t size)
1457 while (true)
1459 p = realloc (p, size);
1460 if (laligned (p, size))
1461 return p;
1462 size_t bigger = size + GCALIGNMENT;
1463 if (size < bigger)
1464 size = bigger;
1469 /***********************************************************************
1470 Interval Allocation
1471 ***********************************************************************/
1473 /* Number of intervals allocated in an interval_block structure.
1474 The 1020 is 1024 minus malloc overhead. */
1476 #define INTERVAL_BLOCK_SIZE \
1477 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1479 /* Intervals are allocated in chunks in the form of an interval_block
1480 structure. */
1482 struct interval_block
1484 /* Place `intervals' first, to preserve alignment. */
1485 struct interval intervals[INTERVAL_BLOCK_SIZE];
1486 struct interval_block *next;
1489 /* Current interval block. Its `next' pointer points to older
1490 blocks. */
1492 static struct interval_block *interval_block;
1494 /* Index in interval_block above of the next unused interval
1495 structure. */
1497 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1499 /* Number of free and live intervals. */
1501 static EMACS_INT total_free_intervals, total_intervals;
1503 /* List of free intervals. */
1505 static INTERVAL interval_free_list;
1507 /* Return a new interval. */
1509 INTERVAL
1510 make_interval (void)
1512 INTERVAL val;
1514 MALLOC_BLOCK_INPUT;
1516 if (interval_free_list)
1518 val = interval_free_list;
1519 interval_free_list = INTERVAL_PARENT (interval_free_list);
1521 else
1523 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1525 struct interval_block *newi
1526 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1528 newi->next = interval_block;
1529 interval_block = newi;
1530 interval_block_index = 0;
1531 total_free_intervals += INTERVAL_BLOCK_SIZE;
1533 val = &interval_block->intervals[interval_block_index++];
1536 MALLOC_UNBLOCK_INPUT;
1538 consing_since_gc += sizeof (struct interval);
1539 intervals_consed++;
1540 total_free_intervals--;
1541 RESET_INTERVAL (val);
1542 val->gcmarkbit = 0;
1543 return val;
1547 /* Mark Lisp objects in interval I. */
1549 static void
1550 mark_interval (register INTERVAL i, Lisp_Object dummy)
1552 /* Intervals should never be shared. So, if extra internal checking is
1553 enabled, GC aborts if it seems to have visited an interval twice. */
1554 eassert (!i->gcmarkbit);
1555 i->gcmarkbit = 1;
1556 mark_object (i->plist);
1559 /* Mark the interval tree rooted in I. */
1561 #define MARK_INTERVAL_TREE(i) \
1562 do { \
1563 if (i && !i->gcmarkbit) \
1564 traverse_intervals_noorder (i, mark_interval, Qnil); \
1565 } while (0)
1567 /***********************************************************************
1568 String Allocation
1569 ***********************************************************************/
1571 /* Lisp_Strings are allocated in string_block structures. When a new
1572 string_block is allocated, all the Lisp_Strings it contains are
1573 added to a free-list string_free_list. When a new Lisp_String is
1574 needed, it is taken from that list. During the sweep phase of GC,
1575 string_blocks that are entirely free are freed, except two which
1576 we keep.
1578 String data is allocated from sblock structures. Strings larger
1579 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1580 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1582 Sblocks consist internally of sdata structures, one for each
1583 Lisp_String. The sdata structure points to the Lisp_String it
1584 belongs to. The Lisp_String points back to the `u.data' member of
1585 its sdata structure.
1587 When a Lisp_String is freed during GC, it is put back on
1588 string_free_list, and its `data' member and its sdata's `string'
1589 pointer is set to null. The size of the string is recorded in the
1590 `n.nbytes' member of the sdata. So, sdata structures that are no
1591 longer used, can be easily recognized, and it's easy to compact the
1592 sblocks of small strings which we do in compact_small_strings. */
1594 /* Size in bytes of an sblock structure used for small strings. This
1595 is 8192 minus malloc overhead. */
1597 #define SBLOCK_SIZE 8188
1599 /* Strings larger than this are considered large strings. String data
1600 for large strings is allocated from individual sblocks. */
1602 #define LARGE_STRING_BYTES 1024
1604 /* The SDATA typedef is a struct or union describing string memory
1605 sub-allocated from an sblock. This is where the contents of Lisp
1606 strings are stored. */
1608 struct sdata
1610 /* Back-pointer to the string this sdata belongs to. If null, this
1611 structure is free, and NBYTES (in this structure or in the union below)
1612 contains the string's byte size (the same value that STRING_BYTES
1613 would return if STRING were non-null). If non-null, STRING_BYTES
1614 (STRING) is the size of the data, and DATA contains the string's
1615 contents. */
1616 struct Lisp_String *string;
1618 #ifdef GC_CHECK_STRING_BYTES
1619 ptrdiff_t nbytes;
1620 #endif
1622 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1625 #ifdef GC_CHECK_STRING_BYTES
1627 typedef struct sdata sdata;
1628 #define SDATA_NBYTES(S) (S)->nbytes
1629 #define SDATA_DATA(S) (S)->data
1631 #else
1633 typedef union
1635 struct Lisp_String *string;
1637 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1638 which has a flexible array member. However, if implemented by
1639 giving this union a member of type 'struct sdata', the union
1640 could not be the last (flexible) member of 'struct sblock',
1641 because C99 prohibits a flexible array member from having a type
1642 that is itself a flexible array. So, comment this member out here,
1643 but remember that the option's there when using this union. */
1644 #if 0
1645 struct sdata u;
1646 #endif
1648 /* When STRING is null. */
1649 struct
1651 struct Lisp_String *string;
1652 ptrdiff_t nbytes;
1653 } n;
1654 } sdata;
1656 #define SDATA_NBYTES(S) (S)->n.nbytes
1657 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1659 #endif /* not GC_CHECK_STRING_BYTES */
1661 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1663 /* Structure describing a block of memory which is sub-allocated to
1664 obtain string data memory for strings. Blocks for small strings
1665 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1666 as large as needed. */
1668 struct sblock
1670 /* Next in list. */
1671 struct sblock *next;
1673 /* Pointer to the next free sdata block. This points past the end
1674 of the sblock if there isn't any space left in this block. */
1675 sdata *next_free;
1677 /* String data. */
1678 sdata data[FLEXIBLE_ARRAY_MEMBER];
1681 /* Number of Lisp strings in a string_block structure. The 1020 is
1682 1024 minus malloc overhead. */
1684 #define STRING_BLOCK_SIZE \
1685 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1687 /* Structure describing a block from which Lisp_String structures
1688 are allocated. */
1690 struct string_block
1692 /* Place `strings' first, to preserve alignment. */
1693 struct Lisp_String strings[STRING_BLOCK_SIZE];
1694 struct string_block *next;
1697 /* Head and tail of the list of sblock structures holding Lisp string
1698 data. We always allocate from current_sblock. The NEXT pointers
1699 in the sblock structures go from oldest_sblock to current_sblock. */
1701 static struct sblock *oldest_sblock, *current_sblock;
1703 /* List of sblocks for large strings. */
1705 static struct sblock *large_sblocks;
1707 /* List of string_block structures. */
1709 static struct string_block *string_blocks;
1711 /* Free-list of Lisp_Strings. */
1713 static struct Lisp_String *string_free_list;
1715 /* Number of live and free Lisp_Strings. */
1717 static EMACS_INT total_strings, total_free_strings;
1719 /* Number of bytes used by live strings. */
1721 static EMACS_INT total_string_bytes;
1723 /* Given a pointer to a Lisp_String S which is on the free-list
1724 string_free_list, return a pointer to its successor in the
1725 free-list. */
1727 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1729 /* Return a pointer to the sdata structure belonging to Lisp string S.
1730 S must be live, i.e. S->data must not be null. S->data is actually
1731 a pointer to the `u.data' member of its sdata structure; the
1732 structure starts at a constant offset in front of that. */
1734 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1737 #ifdef GC_CHECK_STRING_OVERRUN
1739 /* We check for overrun in string data blocks by appending a small
1740 "cookie" after each allocated string data block, and check for the
1741 presence of this cookie during GC. */
1743 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1744 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1745 { '\xde', '\xad', '\xbe', '\xef' };
1747 #else
1748 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1749 #endif
1751 /* Value is the size of an sdata structure large enough to hold NBYTES
1752 bytes of string data. The value returned includes a terminating
1753 NUL byte, the size of the sdata structure, and padding. */
1755 #ifdef GC_CHECK_STRING_BYTES
1757 #define SDATA_SIZE(NBYTES) FLEXSIZEOF (struct sdata, data, NBYTES)
1759 #else /* not GC_CHECK_STRING_BYTES */
1761 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1762 less than the size of that member. The 'max' is not needed when
1763 SDATA_DATA_OFFSET is a multiple of FLEXALIGNOF (struct sdata),
1764 because then the alignment code reserves enough space. */
1766 #define SDATA_SIZE(NBYTES) \
1767 ((SDATA_DATA_OFFSET \
1768 + (SDATA_DATA_OFFSET % FLEXALIGNOF (struct sdata) == 0 \
1769 ? NBYTES \
1770 : max (NBYTES, FLEXALIGNOF (struct sdata) - 1)) \
1771 + 1 \
1772 + FLEXALIGNOF (struct sdata) - 1) \
1773 & ~(FLEXALIGNOF (struct sdata) - 1))
1775 #endif /* not GC_CHECK_STRING_BYTES */
1777 /* Extra bytes to allocate for each string. */
1779 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1781 /* Exact bound on the number of bytes in a string, not counting the
1782 terminating null. A string cannot contain more bytes than
1783 STRING_BYTES_BOUND, nor can it be so long that the size_t
1784 arithmetic in allocate_string_data would overflow while it is
1785 calculating a value to be passed to malloc. */
1786 static ptrdiff_t const STRING_BYTES_MAX =
1787 min (STRING_BYTES_BOUND,
1788 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1789 - GC_STRING_EXTRA
1790 - offsetof (struct sblock, data)
1791 - SDATA_DATA_OFFSET)
1792 & ~(sizeof (EMACS_INT) - 1)));
1794 /* Initialize string allocation. Called from init_alloc_once. */
1796 static void
1797 init_strings (void)
1799 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1800 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1804 #ifdef GC_CHECK_STRING_BYTES
1806 static int check_string_bytes_count;
1808 /* Like STRING_BYTES, but with debugging check. Can be
1809 called during GC, so pay attention to the mark bit. */
1811 ptrdiff_t
1812 string_bytes (struct Lisp_String *s)
1814 ptrdiff_t nbytes =
1815 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1817 if (!PURE_P (s) && s->data && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1818 emacs_abort ();
1819 return nbytes;
1822 /* Check validity of Lisp strings' string_bytes member in B. */
1824 static void
1825 check_sblock (struct sblock *b)
1827 sdata *from, *end, *from_end;
1829 end = b->next_free;
1831 for (from = b->data; from < end; from = from_end)
1833 /* Compute the next FROM here because copying below may
1834 overwrite data we need to compute it. */
1835 ptrdiff_t nbytes;
1837 /* Check that the string size recorded in the string is the
1838 same as the one recorded in the sdata structure. */
1839 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1840 : SDATA_NBYTES (from));
1841 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1846 /* Check validity of Lisp strings' string_bytes member. ALL_P
1847 means check all strings, otherwise check only most
1848 recently allocated strings. Used for hunting a bug. */
1850 static void
1851 check_string_bytes (bool all_p)
1853 if (all_p)
1855 struct sblock *b;
1857 for (b = large_sblocks; b; b = b->next)
1859 struct Lisp_String *s = b->data[0].string;
1860 if (s)
1861 string_bytes (s);
1864 for (b = oldest_sblock; b; b = b->next)
1865 check_sblock (b);
1867 else if (current_sblock)
1868 check_sblock (current_sblock);
1871 #else /* not GC_CHECK_STRING_BYTES */
1873 #define check_string_bytes(all) ((void) 0)
1875 #endif /* GC_CHECK_STRING_BYTES */
1877 #ifdef GC_CHECK_STRING_FREE_LIST
1879 /* Walk through the string free list looking for bogus next pointers.
1880 This may catch buffer overrun from a previous string. */
1882 static void
1883 check_string_free_list (void)
1885 struct Lisp_String *s;
1887 /* Pop a Lisp_String off the free-list. */
1888 s = string_free_list;
1889 while (s != NULL)
1891 if ((uintptr_t) s < 1024)
1892 emacs_abort ();
1893 s = NEXT_FREE_LISP_STRING (s);
1896 #else
1897 #define check_string_free_list()
1898 #endif
1900 /* Return a new Lisp_String. */
1902 static struct Lisp_String *
1903 allocate_string (void)
1905 struct Lisp_String *s;
1907 MALLOC_BLOCK_INPUT;
1909 /* If the free-list is empty, allocate a new string_block, and
1910 add all the Lisp_Strings in it to the free-list. */
1911 if (string_free_list == NULL)
1913 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1914 int i;
1916 b->next = string_blocks;
1917 string_blocks = b;
1919 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1921 s = b->strings + i;
1922 /* Every string on a free list should have NULL data pointer. */
1923 s->data = NULL;
1924 NEXT_FREE_LISP_STRING (s) = string_free_list;
1925 string_free_list = s;
1928 total_free_strings += STRING_BLOCK_SIZE;
1931 check_string_free_list ();
1933 /* Pop a Lisp_String off the free-list. */
1934 s = string_free_list;
1935 string_free_list = NEXT_FREE_LISP_STRING (s);
1937 MALLOC_UNBLOCK_INPUT;
1939 --total_free_strings;
1940 ++total_strings;
1941 ++strings_consed;
1942 consing_since_gc += sizeof *s;
1944 #ifdef GC_CHECK_STRING_BYTES
1945 if (!noninteractive)
1947 if (++check_string_bytes_count == 200)
1949 check_string_bytes_count = 0;
1950 check_string_bytes (1);
1952 else
1953 check_string_bytes (0);
1955 #endif /* GC_CHECK_STRING_BYTES */
1957 return s;
1961 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1962 plus a NUL byte at the end. Allocate an sdata structure for S, and
1963 set S->data to its `u.data' member. Store a NUL byte at the end of
1964 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1965 S->data if it was initially non-null. */
1967 void
1968 allocate_string_data (struct Lisp_String *s,
1969 EMACS_INT nchars, EMACS_INT nbytes)
1971 sdata *data, *old_data;
1972 struct sblock *b;
1973 ptrdiff_t needed, old_nbytes;
1975 if (STRING_BYTES_MAX < nbytes)
1976 string_overflow ();
1978 /* Determine the number of bytes needed to store NBYTES bytes
1979 of string data. */
1980 needed = SDATA_SIZE (nbytes);
1981 if (s->data)
1983 old_data = SDATA_OF_STRING (s);
1984 old_nbytes = STRING_BYTES (s);
1986 else
1987 old_data = NULL;
1989 MALLOC_BLOCK_INPUT;
1991 if (nbytes > LARGE_STRING_BYTES)
1993 size_t size = FLEXSIZEOF (struct sblock, data, needed);
1995 #ifdef DOUG_LEA_MALLOC
1996 if (!mmap_lisp_allowed_p ())
1997 mallopt (M_MMAP_MAX, 0);
1998 #endif
2000 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
2002 #ifdef DOUG_LEA_MALLOC
2003 if (!mmap_lisp_allowed_p ())
2004 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2005 #endif
2007 data = b->data;
2008 b->next = large_sblocks;
2009 b->next_free = data;
2010 large_sblocks = b;
2012 else if (current_sblock == NULL
2013 || (((char *) current_sblock + SBLOCK_SIZE
2014 - (char *) current_sblock->next_free)
2015 < (needed + GC_STRING_EXTRA)))
2017 /* Not enough room in the current sblock. */
2018 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2019 data = b->data;
2020 b->next = NULL;
2021 b->next_free = data;
2023 if (current_sblock)
2024 current_sblock->next = b;
2025 else
2026 oldest_sblock = b;
2027 current_sblock = b;
2029 else
2031 b = current_sblock;
2032 data = b->next_free;
2035 data->string = s;
2036 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2038 MALLOC_UNBLOCK_INPUT;
2040 s->data = SDATA_DATA (data);
2041 #ifdef GC_CHECK_STRING_BYTES
2042 SDATA_NBYTES (data) = nbytes;
2043 #endif
2044 s->size = nchars;
2045 s->size_byte = nbytes;
2046 s->data[nbytes] = '\0';
2047 #ifdef GC_CHECK_STRING_OVERRUN
2048 memcpy ((char *) data + needed, string_overrun_cookie,
2049 GC_STRING_OVERRUN_COOKIE_SIZE);
2050 #endif
2052 /* Note that Faset may call to this function when S has already data
2053 assigned. In this case, mark data as free by setting it's string
2054 back-pointer to null, and record the size of the data in it. */
2055 if (old_data)
2057 SDATA_NBYTES (old_data) = old_nbytes;
2058 old_data->string = NULL;
2061 consing_since_gc += needed;
2065 /* Sweep and compact strings. */
2067 NO_INLINE /* For better stack traces */
2068 static void
2069 sweep_strings (void)
2071 struct string_block *b, *next;
2072 struct string_block *live_blocks = NULL;
2074 string_free_list = NULL;
2075 total_strings = total_free_strings = 0;
2076 total_string_bytes = 0;
2078 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2079 for (b = string_blocks; b; b = next)
2081 int i, nfree = 0;
2082 struct Lisp_String *free_list_before = string_free_list;
2084 next = b->next;
2086 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2088 struct Lisp_String *s = b->strings + i;
2090 if (s->data)
2092 /* String was not on free-list before. */
2093 if (STRING_MARKED_P (s))
2095 /* String is live; unmark it and its intervals. */
2096 UNMARK_STRING (s);
2098 /* Do not use string_(set|get)_intervals here. */
2099 s->intervals = balance_intervals (s->intervals);
2101 ++total_strings;
2102 total_string_bytes += STRING_BYTES (s);
2104 else
2106 /* String is dead. Put it on the free-list. */
2107 sdata *data = SDATA_OF_STRING (s);
2109 /* Save the size of S in its sdata so that we know
2110 how large that is. Reset the sdata's string
2111 back-pointer so that we know it's free. */
2112 #ifdef GC_CHECK_STRING_BYTES
2113 if (string_bytes (s) != SDATA_NBYTES (data))
2114 emacs_abort ();
2115 #else
2116 data->n.nbytes = STRING_BYTES (s);
2117 #endif
2118 data->string = NULL;
2120 /* Reset the strings's `data' member so that we
2121 know it's free. */
2122 s->data = NULL;
2124 /* Put the string on the free-list. */
2125 NEXT_FREE_LISP_STRING (s) = string_free_list;
2126 string_free_list = s;
2127 ++nfree;
2130 else
2132 /* S was on the free-list before. Put it there again. */
2133 NEXT_FREE_LISP_STRING (s) = string_free_list;
2134 string_free_list = s;
2135 ++nfree;
2139 /* Free blocks that contain free Lisp_Strings only, except
2140 the first two of them. */
2141 if (nfree == STRING_BLOCK_SIZE
2142 && total_free_strings > STRING_BLOCK_SIZE)
2144 lisp_free (b);
2145 string_free_list = free_list_before;
2147 else
2149 total_free_strings += nfree;
2150 b->next = live_blocks;
2151 live_blocks = b;
2155 check_string_free_list ();
2157 string_blocks = live_blocks;
2158 free_large_strings ();
2159 compact_small_strings ();
2161 check_string_free_list ();
2165 /* Free dead large strings. */
2167 static void
2168 free_large_strings (void)
2170 struct sblock *b, *next;
2171 struct sblock *live_blocks = NULL;
2173 for (b = large_sblocks; b; b = next)
2175 next = b->next;
2177 if (b->data[0].string == NULL)
2178 lisp_free (b);
2179 else
2181 b->next = live_blocks;
2182 live_blocks = b;
2186 large_sblocks = live_blocks;
2190 /* Compact data of small strings. Free sblocks that don't contain
2191 data of live strings after compaction. */
2193 static void
2194 compact_small_strings (void)
2196 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2197 to, and TB_END is the end of TB. */
2198 struct sblock *tb = oldest_sblock;
2199 if (tb)
2201 sdata *tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2202 sdata *to = tb->data;
2204 /* Step through the blocks from the oldest to the youngest. We
2205 expect that old blocks will stabilize over time, so that less
2206 copying will happen this way. */
2207 struct sblock *b = tb;
2210 sdata *end = b->next_free;
2211 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2213 for (sdata *from = b->data; from < end; )
2215 /* Compute the next FROM here because copying below may
2216 overwrite data we need to compute it. */
2217 ptrdiff_t nbytes;
2218 struct Lisp_String *s = from->string;
2220 #ifdef GC_CHECK_STRING_BYTES
2221 /* Check that the string size recorded in the string is the
2222 same as the one recorded in the sdata structure. */
2223 if (s && string_bytes (s) != SDATA_NBYTES (from))
2224 emacs_abort ();
2225 #endif /* GC_CHECK_STRING_BYTES */
2227 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
2228 eassert (nbytes <= LARGE_STRING_BYTES);
2230 nbytes = SDATA_SIZE (nbytes);
2231 sdata *from_end = (sdata *) ((char *) from
2232 + nbytes + GC_STRING_EXTRA);
2234 #ifdef GC_CHECK_STRING_OVERRUN
2235 if (memcmp (string_overrun_cookie,
2236 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2237 GC_STRING_OVERRUN_COOKIE_SIZE))
2238 emacs_abort ();
2239 #endif
2241 /* Non-NULL S means it's alive. Copy its data. */
2242 if (s)
2244 /* If TB is full, proceed with the next sblock. */
2245 sdata *to_end = (sdata *) ((char *) to
2246 + nbytes + GC_STRING_EXTRA);
2247 if (to_end > tb_end)
2249 tb->next_free = to;
2250 tb = tb->next;
2251 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2252 to = tb->data;
2253 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2256 /* Copy, and update the string's `data' pointer. */
2257 if (from != to)
2259 eassert (tb != b || to < from);
2260 memmove (to, from, nbytes + GC_STRING_EXTRA);
2261 to->string->data = SDATA_DATA (to);
2264 /* Advance past the sdata we copied to. */
2265 to = to_end;
2267 from = from_end;
2269 b = b->next;
2271 while (b);
2273 /* The rest of the sblocks following TB don't contain live data, so
2274 we can free them. */
2275 for (b = tb->next; b; )
2277 struct sblock *next = b->next;
2278 lisp_free (b);
2279 b = next;
2282 tb->next_free = to;
2283 tb->next = NULL;
2286 current_sblock = tb;
2289 void
2290 string_overflow (void)
2292 error ("Maximum string size exceeded");
2295 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2296 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2297 LENGTH must be an integer.
2298 INIT must be an integer that represents a character. */)
2299 (Lisp_Object length, Lisp_Object init)
2301 register Lisp_Object val;
2302 int c;
2303 EMACS_INT nbytes;
2305 CHECK_NATNUM (length);
2306 CHECK_CHARACTER (init);
2308 c = XFASTINT (init);
2309 if (ASCII_CHAR_P (c))
2311 nbytes = XINT (length);
2312 val = make_uninit_string (nbytes);
2313 if (nbytes)
2315 memset (SDATA (val), c, nbytes);
2316 SDATA (val)[nbytes] = 0;
2319 else
2321 unsigned char str[MAX_MULTIBYTE_LENGTH];
2322 ptrdiff_t len = CHAR_STRING (c, str);
2323 EMACS_INT string_len = XINT (length);
2324 unsigned char *p, *beg, *end;
2326 if (INT_MULTIPLY_WRAPV (len, string_len, &nbytes))
2327 string_overflow ();
2328 val = make_uninit_multibyte_string (string_len, nbytes);
2329 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2331 /* First time we just copy `str' to the data of `val'. */
2332 if (p == beg)
2333 memcpy (p, str, len);
2334 else
2336 /* Next time we copy largest possible chunk from
2337 initialized to uninitialized part of `val'. */
2338 len = min (p - beg, end - p);
2339 memcpy (p, beg, len);
2342 if (nbytes)
2343 *p = 0;
2346 return val;
2349 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2350 Return A. */
2352 Lisp_Object
2353 bool_vector_fill (Lisp_Object a, Lisp_Object init)
2355 EMACS_INT nbits = bool_vector_size (a);
2356 if (0 < nbits)
2358 unsigned char *data = bool_vector_uchar_data (a);
2359 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2360 ptrdiff_t nbytes = bool_vector_bytes (nbits);
2361 int last_mask = ~ (~0u << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2362 memset (data, pattern, nbytes - 1);
2363 data[nbytes - 1] = pattern & last_mask;
2365 return a;
2368 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2370 Lisp_Object
2371 make_uninit_bool_vector (EMACS_INT nbits)
2373 Lisp_Object val;
2374 EMACS_INT words = bool_vector_words (nbits);
2375 EMACS_INT word_bytes = words * sizeof (bits_word);
2376 EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
2377 + word_size - 1)
2378 / word_size);
2379 struct Lisp_Bool_Vector *p
2380 = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2381 XSETVECTOR (val, p);
2382 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2383 p->size = nbits;
2385 /* Clear padding at the end. */
2386 if (words)
2387 p->data[words - 1] = 0;
2389 return val;
2392 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2393 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2394 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2395 (Lisp_Object length, Lisp_Object init)
2397 Lisp_Object val;
2399 CHECK_NATNUM (length);
2400 val = make_uninit_bool_vector (XFASTINT (length));
2401 return bool_vector_fill (val, init);
2404 DEFUN ("bool-vector", Fbool_vector, Sbool_vector, 0, MANY, 0,
2405 doc: /* Return a new bool-vector with specified arguments as elements.
2406 Any number of arguments, even zero arguments, are allowed.
2407 usage: (bool-vector &rest OBJECTS) */)
2408 (ptrdiff_t nargs, Lisp_Object *args)
2410 ptrdiff_t i;
2411 Lisp_Object vector;
2413 vector = make_uninit_bool_vector (nargs);
2414 for (i = 0; i < nargs; i++)
2415 bool_vector_set (vector, i, !NILP (args[i]));
2417 return vector;
2420 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2421 of characters from the contents. This string may be unibyte or
2422 multibyte, depending on the contents. */
2424 Lisp_Object
2425 make_string (const char *contents, ptrdiff_t nbytes)
2427 register Lisp_Object val;
2428 ptrdiff_t nchars, multibyte_nbytes;
2430 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2431 &nchars, &multibyte_nbytes);
2432 if (nbytes == nchars || nbytes != multibyte_nbytes)
2433 /* CONTENTS contains no multibyte sequences or contains an invalid
2434 multibyte sequence. We must make unibyte string. */
2435 val = make_unibyte_string (contents, nbytes);
2436 else
2437 val = make_multibyte_string (contents, nchars, nbytes);
2438 return val;
2441 /* Make a unibyte string from LENGTH bytes at CONTENTS. */
2443 Lisp_Object
2444 make_unibyte_string (const char *contents, ptrdiff_t length)
2446 register Lisp_Object val;
2447 val = make_uninit_string (length);
2448 memcpy (SDATA (val), contents, length);
2449 return val;
2453 /* Make a multibyte string from NCHARS characters occupying NBYTES
2454 bytes at CONTENTS. */
2456 Lisp_Object
2457 make_multibyte_string (const char *contents,
2458 ptrdiff_t nchars, ptrdiff_t nbytes)
2460 register Lisp_Object val;
2461 val = make_uninit_multibyte_string (nchars, nbytes);
2462 memcpy (SDATA (val), contents, nbytes);
2463 return val;
2467 /* Make a string from NCHARS characters occupying NBYTES bytes at
2468 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2470 Lisp_Object
2471 make_string_from_bytes (const char *contents,
2472 ptrdiff_t nchars, ptrdiff_t nbytes)
2474 register Lisp_Object val;
2475 val = make_uninit_multibyte_string (nchars, nbytes);
2476 memcpy (SDATA (val), contents, nbytes);
2477 if (SBYTES (val) == SCHARS (val))
2478 STRING_SET_UNIBYTE (val);
2479 return val;
2483 /* Make a string from NCHARS characters occupying NBYTES bytes at
2484 CONTENTS. The argument MULTIBYTE controls whether to label the
2485 string as multibyte. If NCHARS is negative, it counts the number of
2486 characters by itself. */
2488 Lisp_Object
2489 make_specified_string (const char *contents,
2490 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2492 Lisp_Object val;
2494 if (nchars < 0)
2496 if (multibyte)
2497 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2498 nbytes);
2499 else
2500 nchars = nbytes;
2502 val = make_uninit_multibyte_string (nchars, nbytes);
2503 memcpy (SDATA (val), contents, nbytes);
2504 if (!multibyte)
2505 STRING_SET_UNIBYTE (val);
2506 return val;
2510 /* Return a unibyte Lisp_String set up to hold LENGTH characters
2511 occupying LENGTH bytes. */
2513 Lisp_Object
2514 make_uninit_string (EMACS_INT length)
2516 Lisp_Object val;
2518 if (!length)
2519 return empty_unibyte_string;
2520 val = make_uninit_multibyte_string (length, length);
2521 STRING_SET_UNIBYTE (val);
2522 return val;
2526 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2527 which occupy NBYTES bytes. */
2529 Lisp_Object
2530 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2532 Lisp_Object string;
2533 struct Lisp_String *s;
2535 if (nchars < 0)
2536 emacs_abort ();
2537 if (!nbytes)
2538 return empty_multibyte_string;
2540 s = allocate_string ();
2541 s->intervals = NULL;
2542 allocate_string_data (s, nchars, nbytes);
2543 XSETSTRING (string, s);
2544 string_chars_consed += nbytes;
2545 return string;
2548 /* Print arguments to BUF according to a FORMAT, then return
2549 a Lisp_String initialized with the data from BUF. */
2551 Lisp_Object
2552 make_formatted_string (char *buf, const char *format, ...)
2554 va_list ap;
2555 int length;
2557 va_start (ap, format);
2558 length = vsprintf (buf, format, ap);
2559 va_end (ap);
2560 return make_string (buf, length);
2564 /***********************************************************************
2565 Float Allocation
2566 ***********************************************************************/
2568 /* We store float cells inside of float_blocks, allocating a new
2569 float_block with malloc whenever necessary. Float cells reclaimed
2570 by GC are put on a free list to be reallocated before allocating
2571 any new float cells from the latest float_block. */
2573 #define FLOAT_BLOCK_SIZE \
2574 (((BLOCK_BYTES - sizeof (struct float_block *) \
2575 /* The compiler might add padding at the end. */ \
2576 - (sizeof (struct Lisp_Float) - sizeof (bits_word))) * CHAR_BIT) \
2577 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2579 #define GETMARKBIT(block,n) \
2580 (((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2581 >> ((n) % BITS_PER_BITS_WORD)) \
2582 & 1)
2584 #define SETMARKBIT(block,n) \
2585 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2586 |= (bits_word) 1 << ((n) % BITS_PER_BITS_WORD))
2588 #define UNSETMARKBIT(block,n) \
2589 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2590 &= ~((bits_word) 1 << ((n) % BITS_PER_BITS_WORD)))
2592 #define FLOAT_BLOCK(fptr) \
2593 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2595 #define FLOAT_INDEX(fptr) \
2596 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2598 struct float_block
2600 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2601 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2602 bits_word gcmarkbits[1 + FLOAT_BLOCK_SIZE / BITS_PER_BITS_WORD];
2603 struct float_block *next;
2606 #define FLOAT_MARKED_P(fptr) \
2607 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2609 #define FLOAT_MARK(fptr) \
2610 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2612 #define FLOAT_UNMARK(fptr) \
2613 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2615 /* Current float_block. */
2617 static struct float_block *float_block;
2619 /* Index of first unused Lisp_Float in the current float_block. */
2621 static int float_block_index = FLOAT_BLOCK_SIZE;
2623 /* Free-list of Lisp_Floats. */
2625 static struct Lisp_Float *float_free_list;
2627 /* Return a new float object with value FLOAT_VALUE. */
2629 Lisp_Object
2630 make_float (double float_value)
2632 register Lisp_Object val;
2634 MALLOC_BLOCK_INPUT;
2636 if (float_free_list)
2638 /* We use the data field for chaining the free list
2639 so that we won't use the same field that has the mark bit. */
2640 XSETFLOAT (val, float_free_list);
2641 float_free_list = float_free_list->u.chain;
2643 else
2645 if (float_block_index == FLOAT_BLOCK_SIZE)
2647 struct float_block *new
2648 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2649 new->next = float_block;
2650 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2651 float_block = new;
2652 float_block_index = 0;
2653 total_free_floats += FLOAT_BLOCK_SIZE;
2655 XSETFLOAT (val, &float_block->floats[float_block_index]);
2656 float_block_index++;
2659 MALLOC_UNBLOCK_INPUT;
2661 XFLOAT_INIT (val, float_value);
2662 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2663 consing_since_gc += sizeof (struct Lisp_Float);
2664 floats_consed++;
2665 total_free_floats--;
2666 return val;
2671 /***********************************************************************
2672 Cons Allocation
2673 ***********************************************************************/
2675 /* We store cons cells inside of cons_blocks, allocating a new
2676 cons_block with malloc whenever necessary. Cons cells reclaimed by
2677 GC are put on a free list to be reallocated before allocating
2678 any new cons cells from the latest cons_block. */
2680 #define CONS_BLOCK_SIZE \
2681 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2682 /* The compiler might add padding at the end. */ \
2683 - (sizeof (struct Lisp_Cons) - sizeof (bits_word))) * CHAR_BIT) \
2684 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2686 #define CONS_BLOCK(fptr) \
2687 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2689 #define CONS_INDEX(fptr) \
2690 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2692 struct cons_block
2694 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2695 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2696 bits_word gcmarkbits[1 + CONS_BLOCK_SIZE / BITS_PER_BITS_WORD];
2697 struct cons_block *next;
2700 #define CONS_MARKED_P(fptr) \
2701 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2703 #define CONS_MARK(fptr) \
2704 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2706 #define CONS_UNMARK(fptr) \
2707 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2709 /* Current cons_block. */
2711 static struct cons_block *cons_block;
2713 /* Index of first unused Lisp_Cons in the current block. */
2715 static int cons_block_index = CONS_BLOCK_SIZE;
2717 /* Free-list of Lisp_Cons structures. */
2719 static struct Lisp_Cons *cons_free_list;
2721 /* Explicitly free a cons cell by putting it on the free-list. */
2723 void
2724 free_cons (struct Lisp_Cons *ptr)
2726 ptr->u.chain = cons_free_list;
2727 ptr->car = Vdead;
2728 cons_free_list = ptr;
2729 consing_since_gc -= sizeof *ptr;
2730 total_free_conses++;
2733 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2734 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2735 (Lisp_Object car, Lisp_Object cdr)
2737 register Lisp_Object val;
2739 MALLOC_BLOCK_INPUT;
2741 if (cons_free_list)
2743 /* We use the cdr for chaining the free list
2744 so that we won't use the same field that has the mark bit. */
2745 XSETCONS (val, cons_free_list);
2746 cons_free_list = cons_free_list->u.chain;
2748 else
2750 if (cons_block_index == CONS_BLOCK_SIZE)
2752 struct cons_block *new
2753 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2754 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2755 new->next = cons_block;
2756 cons_block = new;
2757 cons_block_index = 0;
2758 total_free_conses += CONS_BLOCK_SIZE;
2760 XSETCONS (val, &cons_block->conses[cons_block_index]);
2761 cons_block_index++;
2764 MALLOC_UNBLOCK_INPUT;
2766 XSETCAR (val, car);
2767 XSETCDR (val, cdr);
2768 eassert (!CONS_MARKED_P (XCONS (val)));
2769 consing_since_gc += sizeof (struct Lisp_Cons);
2770 total_free_conses--;
2771 cons_cells_consed++;
2772 return val;
2775 #ifdef GC_CHECK_CONS_LIST
2776 /* Get an error now if there's any junk in the cons free list. */
2777 void
2778 check_cons_list (void)
2780 struct Lisp_Cons *tail = cons_free_list;
2782 while (tail)
2783 tail = tail->u.chain;
2785 #endif
2787 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2789 Lisp_Object
2790 list1 (Lisp_Object arg1)
2792 return Fcons (arg1, Qnil);
2795 Lisp_Object
2796 list2 (Lisp_Object arg1, Lisp_Object arg2)
2798 return Fcons (arg1, Fcons (arg2, Qnil));
2802 Lisp_Object
2803 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2805 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2809 Lisp_Object
2810 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2812 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2816 Lisp_Object
2817 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2819 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2820 Fcons (arg5, Qnil)))));
2823 /* Make a list of COUNT Lisp_Objects, where ARG is the
2824 first one. Allocate conses from pure space if TYPE
2825 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2827 Lisp_Object
2828 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2830 Lisp_Object (*cons) (Lisp_Object, Lisp_Object);
2831 switch (type)
2833 case CONSTYPE_PURE: cons = pure_cons; break;
2834 case CONSTYPE_HEAP: cons = Fcons; break;
2835 default: emacs_abort ();
2838 eassume (0 < count);
2839 Lisp_Object val = cons (arg, Qnil);
2840 Lisp_Object tail = val;
2842 va_list ap;
2843 va_start (ap, arg);
2844 for (ptrdiff_t i = 1; i < count; i++)
2846 Lisp_Object elem = cons (va_arg (ap, Lisp_Object), Qnil);
2847 XSETCDR (tail, elem);
2848 tail = elem;
2850 va_end (ap);
2852 return val;
2855 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2856 doc: /* Return a newly created list with specified arguments as elements.
2857 Any number of arguments, even zero arguments, are allowed.
2858 usage: (list &rest OBJECTS) */)
2859 (ptrdiff_t nargs, Lisp_Object *args)
2861 register Lisp_Object val;
2862 val = Qnil;
2864 while (nargs > 0)
2866 nargs--;
2867 val = Fcons (args[nargs], val);
2869 return val;
2873 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2874 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2875 (Lisp_Object length, Lisp_Object init)
2877 Lisp_Object val = Qnil;
2878 CHECK_NATNUM (length);
2880 for (EMACS_INT size = XFASTINT (length); 0 < size; size--)
2882 val = Fcons (init, val);
2883 rarely_quit (size);
2886 return val;
2891 /***********************************************************************
2892 Vector Allocation
2893 ***********************************************************************/
2895 /* Sometimes a vector's contents are merely a pointer internally used
2896 in vector allocation code. On the rare platforms where a null
2897 pointer cannot be tagged, represent it with a Lisp 0.
2898 Usually you don't want to touch this. */
2900 static struct Lisp_Vector *
2901 next_vector (struct Lisp_Vector *v)
2903 return XUNTAG (v->contents[0], Lisp_Int0);
2906 static void
2907 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2909 v->contents[0] = make_lisp_ptr (p, Lisp_Int0);
2912 /* This value is balanced well enough to avoid too much internal overhead
2913 for the most common cases; it's not required to be a power of two, but
2914 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2916 #define VECTOR_BLOCK_SIZE 4096
2918 enum
2920 /* Alignment of struct Lisp_Vector objects. */
2921 vector_alignment = COMMON_MULTIPLE (FLEXALIGNOF (struct Lisp_Vector),
2922 GCALIGNMENT),
2924 /* Vector size requests are a multiple of this. */
2925 roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
2928 /* Verify assumptions described above. */
2929 verify (VECTOR_BLOCK_SIZE % roundup_size == 0);
2930 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2932 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2933 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2934 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2935 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2937 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2939 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2941 /* Size of the minimal vector allocated from block. */
2943 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2945 /* Size of the largest vector allocated from block. */
2947 #define VBLOCK_BYTES_MAX \
2948 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2950 /* We maintain one free list for each possible block-allocated
2951 vector size, and this is the number of free lists we have. */
2953 #define VECTOR_MAX_FREE_LIST_INDEX \
2954 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2956 /* Common shortcut to advance vector pointer over a block data. */
2958 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2960 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2962 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2964 /* Common shortcut to setup vector on a free list. */
2966 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2967 do { \
2968 (tmp) = ((nbytes - header_size) / word_size); \
2969 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2970 eassert ((nbytes) % roundup_size == 0); \
2971 (tmp) = VINDEX (nbytes); \
2972 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2973 set_next_vector (v, vector_free_lists[tmp]); \
2974 vector_free_lists[tmp] = (v); \
2975 total_free_vector_slots += (nbytes) / word_size; \
2976 } while (0)
2978 /* This internal type is used to maintain the list of large vectors
2979 which are allocated at their own, e.g. outside of vector blocks.
2981 struct large_vector itself cannot contain a struct Lisp_Vector, as
2982 the latter contains a flexible array member and C99 does not allow
2983 such structs to be nested. Instead, each struct large_vector
2984 object LV is followed by a struct Lisp_Vector, which is at offset
2985 large_vector_offset from LV, and whose address is therefore
2986 large_vector_vec (&LV). */
2988 struct large_vector
2990 struct large_vector *next;
2993 enum
2995 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
2998 static struct Lisp_Vector *
2999 large_vector_vec (struct large_vector *p)
3001 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
3004 /* This internal type is used to maintain an underlying storage
3005 for small vectors. */
3007 struct vector_block
3009 char data[VECTOR_BLOCK_BYTES];
3010 struct vector_block *next;
3013 /* Chain of vector blocks. */
3015 static struct vector_block *vector_blocks;
3017 /* Vector free lists, where NTH item points to a chain of free
3018 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
3020 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
3022 /* Singly-linked list of large vectors. */
3024 static struct large_vector *large_vectors;
3026 /* The only vector with 0 slots, allocated from pure space. */
3028 Lisp_Object zero_vector;
3030 /* Number of live vectors. */
3032 static EMACS_INT total_vectors;
3034 /* Total size of live and free vectors, in Lisp_Object units. */
3036 static EMACS_INT total_vector_slots, total_free_vector_slots;
3038 /* Get a new vector block. */
3040 static struct vector_block *
3041 allocate_vector_block (void)
3043 struct vector_block *block = xmalloc (sizeof *block);
3045 #ifndef GC_MALLOC_CHECK
3046 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
3047 MEM_TYPE_VECTOR_BLOCK);
3048 #endif
3050 block->next = vector_blocks;
3051 vector_blocks = block;
3052 return block;
3055 /* Called once to initialize vector allocation. */
3057 static void
3058 init_vectors (void)
3060 zero_vector = make_pure_vector (0);
3063 /* Allocate vector from a vector block. */
3065 static struct Lisp_Vector *
3066 allocate_vector_from_block (size_t nbytes)
3068 struct Lisp_Vector *vector;
3069 struct vector_block *block;
3070 size_t index, restbytes;
3072 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
3073 eassert (nbytes % roundup_size == 0);
3075 /* First, try to allocate from a free list
3076 containing vectors of the requested size. */
3077 index = VINDEX (nbytes);
3078 if (vector_free_lists[index])
3080 vector = vector_free_lists[index];
3081 vector_free_lists[index] = next_vector (vector);
3082 total_free_vector_slots -= nbytes / word_size;
3083 return vector;
3086 /* Next, check free lists containing larger vectors. Since
3087 we will split the result, we should have remaining space
3088 large enough to use for one-slot vector at least. */
3089 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3090 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3091 if (vector_free_lists[index])
3093 /* This vector is larger than requested. */
3094 vector = vector_free_lists[index];
3095 vector_free_lists[index] = next_vector (vector);
3096 total_free_vector_slots -= nbytes / word_size;
3098 /* Excess bytes are used for the smaller vector,
3099 which should be set on an appropriate free list. */
3100 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3101 eassert (restbytes % roundup_size == 0);
3102 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
3103 return vector;
3106 /* Finally, need a new vector block. */
3107 block = allocate_vector_block ();
3109 /* New vector will be at the beginning of this block. */
3110 vector = (struct Lisp_Vector *) block->data;
3112 /* If the rest of space from this block is large enough
3113 for one-slot vector at least, set up it on a free list. */
3114 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3115 if (restbytes >= VBLOCK_BYTES_MIN)
3117 eassert (restbytes % roundup_size == 0);
3118 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
3120 return vector;
3123 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3125 #define VECTOR_IN_BLOCK(vector, block) \
3126 ((char *) (vector) <= (block)->data \
3127 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3129 /* Return the memory footprint of V in bytes. */
3131 static ptrdiff_t
3132 vector_nbytes (struct Lisp_Vector *v)
3134 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
3135 ptrdiff_t nwords;
3137 if (size & PSEUDOVECTOR_FLAG)
3139 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
3141 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
3142 ptrdiff_t word_bytes = (bool_vector_words (bv->size)
3143 * sizeof (bits_word));
3144 ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
3145 verify (header_size <= bool_header_size);
3146 nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
3148 else
3149 nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
3150 + ((size & PSEUDOVECTOR_REST_MASK)
3151 >> PSEUDOVECTOR_SIZE_BITS));
3153 else
3154 nwords = size;
3155 return vroundup (header_size + word_size * nwords);
3158 /* Release extra resources still in use by VECTOR, which may be any
3159 vector-like object. */
3161 static void
3162 cleanup_vector (struct Lisp_Vector *vector)
3164 detect_suspicious_free (vector);
3165 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
3166 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
3167 == FONT_OBJECT_MAX))
3169 struct font_driver const *drv = ((struct font *) vector)->driver;
3171 /* The font driver might sometimes be NULL, e.g. if Emacs was
3172 interrupted before it had time to set it up. */
3173 if (drv)
3175 /* Attempt to catch subtle bugs like Bug#16140. */
3176 eassert (valid_font_driver (drv));
3177 drv->close ((struct font *) vector);
3181 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_THREAD))
3182 finalize_one_thread ((struct thread_state *) vector);
3183 else if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_MUTEX))
3184 finalize_one_mutex ((struct Lisp_Mutex *) vector);
3185 else if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_CONDVAR))
3186 finalize_one_condvar ((struct Lisp_CondVar *) vector);
3189 /* Reclaim space used by unmarked vectors. */
3191 NO_INLINE /* For better stack traces */
3192 static void
3193 sweep_vectors (void)
3195 struct vector_block *block, **bprev = &vector_blocks;
3196 struct large_vector *lv, **lvprev = &large_vectors;
3197 struct Lisp_Vector *vector, *next;
3199 total_vectors = total_vector_slots = total_free_vector_slots = 0;
3200 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3202 /* Looking through vector blocks. */
3204 for (block = vector_blocks; block; block = *bprev)
3206 bool free_this_block = 0;
3207 ptrdiff_t nbytes;
3209 for (vector = (struct Lisp_Vector *) block->data;
3210 VECTOR_IN_BLOCK (vector, block); vector = next)
3212 if (VECTOR_MARKED_P (vector))
3214 VECTOR_UNMARK (vector);
3215 total_vectors++;
3216 nbytes = vector_nbytes (vector);
3217 total_vector_slots += nbytes / word_size;
3218 next = ADVANCE (vector, nbytes);
3220 else
3222 ptrdiff_t total_bytes;
3224 cleanup_vector (vector);
3225 nbytes = vector_nbytes (vector);
3226 total_bytes = nbytes;
3227 next = ADVANCE (vector, nbytes);
3229 /* While NEXT is not marked, try to coalesce with VECTOR,
3230 thus making VECTOR of the largest possible size. */
3232 while (VECTOR_IN_BLOCK (next, block))
3234 if (VECTOR_MARKED_P (next))
3235 break;
3236 cleanup_vector (next);
3237 nbytes = vector_nbytes (next);
3238 total_bytes += nbytes;
3239 next = ADVANCE (next, nbytes);
3242 eassert (total_bytes % roundup_size == 0);
3244 if (vector == (struct Lisp_Vector *) block->data
3245 && !VECTOR_IN_BLOCK (next, block))
3246 /* This block should be freed because all of its
3247 space was coalesced into the only free vector. */
3248 free_this_block = 1;
3249 else
3251 size_t tmp;
3252 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3257 if (free_this_block)
3259 *bprev = block->next;
3260 #ifndef GC_MALLOC_CHECK
3261 mem_delete (mem_find (block->data));
3262 #endif
3263 xfree (block);
3265 else
3266 bprev = &block->next;
3269 /* Sweep large vectors. */
3271 for (lv = large_vectors; lv; lv = *lvprev)
3273 vector = large_vector_vec (lv);
3274 if (VECTOR_MARKED_P (vector))
3276 VECTOR_UNMARK (vector);
3277 total_vectors++;
3278 if (vector->header.size & PSEUDOVECTOR_FLAG)
3279 total_vector_slots += vector_nbytes (vector) / word_size;
3280 else
3281 total_vector_slots
3282 += header_size / word_size + vector->header.size;
3283 lvprev = &lv->next;
3285 else
3287 *lvprev = lv->next;
3288 lisp_free (lv);
3293 /* Value is a pointer to a newly allocated Lisp_Vector structure
3294 with room for LEN Lisp_Objects. */
3296 static struct Lisp_Vector *
3297 allocate_vectorlike (ptrdiff_t len)
3299 struct Lisp_Vector *p;
3301 MALLOC_BLOCK_INPUT;
3303 if (len == 0)
3304 p = XVECTOR (zero_vector);
3305 else
3307 size_t nbytes = header_size + len * word_size;
3309 #ifdef DOUG_LEA_MALLOC
3310 if (!mmap_lisp_allowed_p ())
3311 mallopt (M_MMAP_MAX, 0);
3312 #endif
3314 if (nbytes <= VBLOCK_BYTES_MAX)
3315 p = allocate_vector_from_block (vroundup (nbytes));
3316 else
3318 struct large_vector *lv
3319 = lisp_malloc ((large_vector_offset + header_size
3320 + len * word_size),
3321 MEM_TYPE_VECTORLIKE);
3322 lv->next = large_vectors;
3323 large_vectors = lv;
3324 p = large_vector_vec (lv);
3327 #ifdef DOUG_LEA_MALLOC
3328 if (!mmap_lisp_allowed_p ())
3329 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3330 #endif
3332 if (find_suspicious_object_in_range (p, (char *) p + nbytes))
3333 emacs_abort ();
3335 consing_since_gc += nbytes;
3336 vector_cells_consed += len;
3339 MALLOC_UNBLOCK_INPUT;
3341 return p;
3345 /* Allocate a vector with LEN slots. */
3347 struct Lisp_Vector *
3348 allocate_vector (EMACS_INT len)
3350 struct Lisp_Vector *v;
3351 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3353 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3354 memory_full (SIZE_MAX);
3355 v = allocate_vectorlike (len);
3356 if (len)
3357 v->header.size = len;
3358 return v;
3362 /* Allocate other vector-like structures. */
3364 struct Lisp_Vector *
3365 allocate_pseudovector (int memlen, int lisplen,
3366 int zerolen, enum pvec_type tag)
3368 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3370 /* Catch bogus values. */
3371 eassert (0 <= tag && tag <= PVEC_FONT);
3372 eassert (0 <= lisplen && lisplen <= zerolen && zerolen <= memlen);
3373 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3374 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3376 /* Only the first LISPLEN slots will be traced normally by the GC. */
3377 memclear (v->contents, zerolen * word_size);
3378 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3379 return v;
3382 struct buffer *
3383 allocate_buffer (void)
3385 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3387 BUFFER_PVEC_INIT (b);
3388 /* Put B on the chain of all buffers including killed ones. */
3389 b->next = all_buffers;
3390 all_buffers = b;
3391 /* Note that the rest fields of B are not initialized. */
3392 return b;
3395 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3396 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3397 See also the function `vector'. */)
3398 (Lisp_Object length, Lisp_Object init)
3400 CHECK_NATNUM (length);
3401 struct Lisp_Vector *p = allocate_vector (XFASTINT (length));
3402 for (ptrdiff_t i = 0; i < XFASTINT (length); i++)
3403 p->contents[i] = init;
3404 return make_lisp_ptr (p, Lisp_Vectorlike);
3407 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3408 doc: /* Return a newly created vector with specified arguments as elements.
3409 Any number of arguments, even zero arguments, are allowed.
3410 usage: (vector &rest OBJECTS) */)
3411 (ptrdiff_t nargs, Lisp_Object *args)
3413 Lisp_Object val = make_uninit_vector (nargs);
3414 struct Lisp_Vector *p = XVECTOR (val);
3415 memcpy (p->contents, args, nargs * sizeof *args);
3416 return val;
3419 void
3420 make_byte_code (struct Lisp_Vector *v)
3422 /* Don't allow the global zero_vector to become a byte code object. */
3423 eassert (0 < v->header.size);
3425 if (v->header.size > 1 && STRINGP (v->contents[1])
3426 && STRING_MULTIBYTE (v->contents[1]))
3427 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3428 earlier because they produced a raw 8-bit string for byte-code
3429 and now such a byte-code string is loaded as multibyte while
3430 raw 8-bit characters converted to multibyte form. Thus, now we
3431 must convert them back to the original unibyte form. */
3432 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3433 XSETPVECTYPE (v, PVEC_COMPILED);
3436 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3437 doc: /* Create a byte-code object with specified arguments as elements.
3438 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3439 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3440 and (optional) INTERACTIVE-SPEC.
3441 The first four arguments are required; at most six have any
3442 significance.
3443 The ARGLIST can be either like the one of `lambda', in which case the arguments
3444 will be dynamically bound before executing the byte code, or it can be an
3445 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3446 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3447 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3448 argument to catch the left-over arguments. If such an integer is used, the
3449 arguments will not be dynamically bound but will be instead pushed on the
3450 stack before executing the byte-code.
3451 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3452 (ptrdiff_t nargs, Lisp_Object *args)
3454 Lisp_Object val = make_uninit_vector (nargs);
3455 struct Lisp_Vector *p = XVECTOR (val);
3457 /* We used to purecopy everything here, if purify-flag was set. This worked
3458 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3459 dangerous, since make-byte-code is used during execution to build
3460 closures, so any closure built during the preload phase would end up
3461 copied into pure space, including its free variables, which is sometimes
3462 just wasteful and other times plainly wrong (e.g. those free vars may want
3463 to be setcar'd). */
3465 memcpy (p->contents, args, nargs * sizeof *args);
3466 make_byte_code (p);
3467 XSETCOMPILED (val, p);
3468 return val;
3473 /***********************************************************************
3474 Symbol Allocation
3475 ***********************************************************************/
3477 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3478 of the required alignment. */
3480 union aligned_Lisp_Symbol
3482 struct Lisp_Symbol s;
3483 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3484 & -GCALIGNMENT];
3487 /* Each symbol_block is just under 1020 bytes long, since malloc
3488 really allocates in units of powers of two and uses 4 bytes for its
3489 own overhead. */
3491 #define SYMBOL_BLOCK_SIZE \
3492 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3494 struct symbol_block
3496 /* Place `symbols' first, to preserve alignment. */
3497 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3498 struct symbol_block *next;
3501 /* Current symbol block and index of first unused Lisp_Symbol
3502 structure in it. */
3504 static struct symbol_block *symbol_block;
3505 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3506 /* Pointer to the first symbol_block that contains pinned symbols.
3507 Tests for 24.4 showed that at dump-time, Emacs contains about 15K symbols,
3508 10K of which are pinned (and all but 250 of them are interned in obarray),
3509 whereas a "typical session" has in the order of 30K symbols.
3510 `symbol_block_pinned' lets mark_pinned_symbols scan only 15K symbols rather
3511 than 30K to find the 10K symbols we need to mark. */
3512 static struct symbol_block *symbol_block_pinned;
3514 /* List of free symbols. */
3516 static struct Lisp_Symbol *symbol_free_list;
3518 static void
3519 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3521 XSYMBOL (sym)->name = name;
3524 void
3525 init_symbol (Lisp_Object val, Lisp_Object name)
3527 struct Lisp_Symbol *p = XSYMBOL (val);
3528 set_symbol_name (val, name);
3529 set_symbol_plist (val, Qnil);
3530 p->redirect = SYMBOL_PLAINVAL;
3531 SET_SYMBOL_VAL (p, Qunbound);
3532 set_symbol_function (val, Qnil);
3533 set_symbol_next (val, NULL);
3534 p->gcmarkbit = false;
3535 p->interned = SYMBOL_UNINTERNED;
3536 p->trapped_write = SYMBOL_UNTRAPPED_WRITE;
3537 p->declared_special = false;
3538 p->pinned = false;
3541 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3542 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3543 Its value is void, and its function definition and property list are nil. */)
3544 (Lisp_Object name)
3546 Lisp_Object val;
3548 CHECK_STRING (name);
3550 MALLOC_BLOCK_INPUT;
3552 if (symbol_free_list)
3554 XSETSYMBOL (val, symbol_free_list);
3555 symbol_free_list = symbol_free_list->next;
3557 else
3559 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3561 struct symbol_block *new
3562 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3563 new->next = symbol_block;
3564 symbol_block = new;
3565 symbol_block_index = 0;
3566 total_free_symbols += SYMBOL_BLOCK_SIZE;
3568 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3569 symbol_block_index++;
3572 MALLOC_UNBLOCK_INPUT;
3574 init_symbol (val, name);
3575 consing_since_gc += sizeof (struct Lisp_Symbol);
3576 symbols_consed++;
3577 total_free_symbols--;
3578 return val;
3583 /***********************************************************************
3584 Marker (Misc) Allocation
3585 ***********************************************************************/
3587 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3588 the required alignment. */
3590 union aligned_Lisp_Misc
3592 union Lisp_Misc m;
3593 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3594 & -GCALIGNMENT];
3597 /* Allocation of markers and other objects that share that structure.
3598 Works like allocation of conses. */
3600 #define MARKER_BLOCK_SIZE \
3601 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3603 struct marker_block
3605 /* Place `markers' first, to preserve alignment. */
3606 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3607 struct marker_block *next;
3610 static struct marker_block *marker_block;
3611 static int marker_block_index = MARKER_BLOCK_SIZE;
3613 static union Lisp_Misc *marker_free_list;
3615 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3617 static Lisp_Object
3618 allocate_misc (enum Lisp_Misc_Type type)
3620 Lisp_Object val;
3622 MALLOC_BLOCK_INPUT;
3624 if (marker_free_list)
3626 XSETMISC (val, marker_free_list);
3627 marker_free_list = marker_free_list->u_free.chain;
3629 else
3631 if (marker_block_index == MARKER_BLOCK_SIZE)
3633 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3634 new->next = marker_block;
3635 marker_block = new;
3636 marker_block_index = 0;
3637 total_free_markers += MARKER_BLOCK_SIZE;
3639 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3640 marker_block_index++;
3643 MALLOC_UNBLOCK_INPUT;
3645 --total_free_markers;
3646 consing_since_gc += sizeof (union Lisp_Misc);
3647 misc_objects_consed++;
3648 XMISCANY (val)->type = type;
3649 XMISCANY (val)->gcmarkbit = 0;
3650 return val;
3653 /* Free a Lisp_Misc object. */
3655 void
3656 free_misc (Lisp_Object misc)
3658 XMISCANY (misc)->type = Lisp_Misc_Free;
3659 XMISC (misc)->u_free.chain = marker_free_list;
3660 marker_free_list = XMISC (misc);
3661 consing_since_gc -= sizeof (union Lisp_Misc);
3662 total_free_markers++;
3665 /* Verify properties of Lisp_Save_Value's representation
3666 that are assumed here and elsewhere. */
3668 verify (SAVE_UNUSED == 0);
3669 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3670 >> SAVE_SLOT_BITS)
3671 == 0);
3673 /* Return Lisp_Save_Value objects for the various combinations
3674 that callers need. */
3676 Lisp_Object
3677 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3679 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3680 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3681 p->save_type = SAVE_TYPE_INT_INT_INT;
3682 p->data[0].integer = a;
3683 p->data[1].integer = b;
3684 p->data[2].integer = c;
3685 return val;
3688 Lisp_Object
3689 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3690 Lisp_Object d)
3692 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3693 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3694 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3695 p->data[0].object = a;
3696 p->data[1].object = b;
3697 p->data[2].object = c;
3698 p->data[3].object = d;
3699 return val;
3702 Lisp_Object
3703 make_save_ptr (void *a)
3705 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3706 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3707 p->save_type = SAVE_POINTER;
3708 p->data[0].pointer = a;
3709 return val;
3712 Lisp_Object
3713 make_save_ptr_int (void *a, ptrdiff_t b)
3715 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3716 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3717 p->save_type = SAVE_TYPE_PTR_INT;
3718 p->data[0].pointer = a;
3719 p->data[1].integer = b;
3720 return val;
3723 Lisp_Object
3724 make_save_ptr_ptr (void *a, void *b)
3726 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3727 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3728 p->save_type = SAVE_TYPE_PTR_PTR;
3729 p->data[0].pointer = a;
3730 p->data[1].pointer = b;
3731 return val;
3734 Lisp_Object
3735 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3737 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3738 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3739 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3740 p->data[0].funcpointer = a;
3741 p->data[1].pointer = b;
3742 p->data[2].object = c;
3743 return val;
3746 /* Return a Lisp_Save_Value object that represents an array A
3747 of N Lisp objects. */
3749 Lisp_Object
3750 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3752 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3753 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3754 p->save_type = SAVE_TYPE_MEMORY;
3755 p->data[0].pointer = a;
3756 p->data[1].integer = n;
3757 return val;
3760 /* Free a Lisp_Save_Value object. Do not use this function
3761 if SAVE contains pointer other than returned by xmalloc. */
3763 void
3764 free_save_value (Lisp_Object save)
3766 xfree (XSAVE_POINTER (save, 0));
3767 free_misc (save);
3770 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3772 Lisp_Object
3773 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3775 register Lisp_Object overlay;
3777 overlay = allocate_misc (Lisp_Misc_Overlay);
3778 OVERLAY_START (overlay) = start;
3779 OVERLAY_END (overlay) = end;
3780 set_overlay_plist (overlay, plist);
3781 XOVERLAY (overlay)->next = NULL;
3782 return overlay;
3785 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3786 doc: /* Return a newly allocated marker which does not point at any place. */)
3787 (void)
3789 register Lisp_Object val;
3790 register struct Lisp_Marker *p;
3792 val = allocate_misc (Lisp_Misc_Marker);
3793 p = XMARKER (val);
3794 p->buffer = 0;
3795 p->bytepos = 0;
3796 p->charpos = 0;
3797 p->next = NULL;
3798 p->insertion_type = 0;
3799 p->need_adjustment = 0;
3800 return val;
3803 /* Return a newly allocated marker which points into BUF
3804 at character position CHARPOS and byte position BYTEPOS. */
3806 Lisp_Object
3807 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3809 Lisp_Object obj;
3810 struct Lisp_Marker *m;
3812 /* No dead buffers here. */
3813 eassert (BUFFER_LIVE_P (buf));
3815 /* Every character is at least one byte. */
3816 eassert (charpos <= bytepos);
3818 obj = allocate_misc (Lisp_Misc_Marker);
3819 m = XMARKER (obj);
3820 m->buffer = buf;
3821 m->charpos = charpos;
3822 m->bytepos = bytepos;
3823 m->insertion_type = 0;
3824 m->need_adjustment = 0;
3825 m->next = BUF_MARKERS (buf);
3826 BUF_MARKERS (buf) = m;
3827 return obj;
3830 /* Put MARKER back on the free list after using it temporarily. */
3832 void
3833 free_marker (Lisp_Object marker)
3835 unchain_marker (XMARKER (marker));
3836 free_misc (marker);
3840 /* Return a newly created vector or string with specified arguments as
3841 elements. If all the arguments are characters that can fit
3842 in a string of events, make a string; otherwise, make a vector.
3844 Any number of arguments, even zero arguments, are allowed. */
3846 Lisp_Object
3847 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3849 ptrdiff_t i;
3851 for (i = 0; i < nargs; i++)
3852 /* The things that fit in a string
3853 are characters that are in 0...127,
3854 after discarding the meta bit and all the bits above it. */
3855 if (!INTEGERP (args[i])
3856 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3857 return Fvector (nargs, args);
3859 /* Since the loop exited, we know that all the things in it are
3860 characters, so we can make a string. */
3862 Lisp_Object result;
3864 result = Fmake_string (make_number (nargs), make_number (0));
3865 for (i = 0; i < nargs; i++)
3867 SSET (result, i, XINT (args[i]));
3868 /* Move the meta bit to the right place for a string char. */
3869 if (XINT (args[i]) & CHAR_META)
3870 SSET (result, i, SREF (result, i) | 0x80);
3873 return result;
3877 #ifdef HAVE_MODULES
3878 /* Create a new module user ptr object. */
3879 Lisp_Object
3880 make_user_ptr (void (*finalizer) (void *), void *p)
3882 Lisp_Object obj;
3883 struct Lisp_User_Ptr *uptr;
3885 obj = allocate_misc (Lisp_Misc_User_Ptr);
3886 uptr = XUSER_PTR (obj);
3887 uptr->finalizer = finalizer;
3888 uptr->p = p;
3889 return obj;
3892 #endif
3894 static void
3895 init_finalizer_list (struct Lisp_Finalizer *head)
3897 head->prev = head->next = head;
3900 /* Insert FINALIZER before ELEMENT. */
3902 static void
3903 finalizer_insert (struct Lisp_Finalizer *element,
3904 struct Lisp_Finalizer *finalizer)
3906 eassert (finalizer->prev == NULL);
3907 eassert (finalizer->next == NULL);
3908 finalizer->next = element;
3909 finalizer->prev = element->prev;
3910 finalizer->prev->next = finalizer;
3911 element->prev = finalizer;
3914 static void
3915 unchain_finalizer (struct Lisp_Finalizer *finalizer)
3917 if (finalizer->prev != NULL)
3919 eassert (finalizer->next != NULL);
3920 finalizer->prev->next = finalizer->next;
3921 finalizer->next->prev = finalizer->prev;
3922 finalizer->prev = finalizer->next = NULL;
3926 static void
3927 mark_finalizer_list (struct Lisp_Finalizer *head)
3929 for (struct Lisp_Finalizer *finalizer = head->next;
3930 finalizer != head;
3931 finalizer = finalizer->next)
3933 finalizer->base.gcmarkbit = true;
3934 mark_object (finalizer->function);
3938 /* Move doomed finalizers to list DEST from list SRC. A doomed
3939 finalizer is one that is not GC-reachable and whose
3940 finalizer->function is non-nil. */
3942 static void
3943 queue_doomed_finalizers (struct Lisp_Finalizer *dest,
3944 struct Lisp_Finalizer *src)
3946 struct Lisp_Finalizer *finalizer = src->next;
3947 while (finalizer != src)
3949 struct Lisp_Finalizer *next = finalizer->next;
3950 if (!finalizer->base.gcmarkbit && !NILP (finalizer->function))
3952 unchain_finalizer (finalizer);
3953 finalizer_insert (dest, finalizer);
3956 finalizer = next;
3960 static Lisp_Object
3961 run_finalizer_handler (Lisp_Object args)
3963 add_to_log ("finalizer failed: %S", args);
3964 return Qnil;
3967 static void
3968 run_finalizer_function (Lisp_Object function)
3970 ptrdiff_t count = SPECPDL_INDEX ();
3972 specbind (Qinhibit_quit, Qt);
3973 internal_condition_case_1 (call0, function, Qt, run_finalizer_handler);
3974 unbind_to (count, Qnil);
3977 static void
3978 run_finalizers (struct Lisp_Finalizer *finalizers)
3980 struct Lisp_Finalizer *finalizer;
3981 Lisp_Object function;
3983 while (finalizers->next != finalizers)
3985 finalizer = finalizers->next;
3986 eassert (finalizer->base.type == Lisp_Misc_Finalizer);
3987 unchain_finalizer (finalizer);
3988 function = finalizer->function;
3989 if (!NILP (function))
3991 finalizer->function = Qnil;
3992 run_finalizer_function (function);
3997 DEFUN ("make-finalizer", Fmake_finalizer, Smake_finalizer, 1, 1, 0,
3998 doc: /* Make a finalizer that will run FUNCTION.
3999 FUNCTION will be called after garbage collection when the returned
4000 finalizer object becomes unreachable. If the finalizer object is
4001 reachable only through references from finalizer objects, it does not
4002 count as reachable for the purpose of deciding whether to run
4003 FUNCTION. FUNCTION will be run once per finalizer object. */)
4004 (Lisp_Object function)
4006 Lisp_Object val = allocate_misc (Lisp_Misc_Finalizer);
4007 struct Lisp_Finalizer *finalizer = XFINALIZER (val);
4008 finalizer->function = function;
4009 finalizer->prev = finalizer->next = NULL;
4010 finalizer_insert (&finalizers, finalizer);
4011 return val;
4015 /************************************************************************
4016 Memory Full Handling
4017 ************************************************************************/
4020 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
4021 there may have been size_t overflow so that malloc was never
4022 called, or perhaps malloc was invoked successfully but the
4023 resulting pointer had problems fitting into a tagged EMACS_INT. In
4024 either case this counts as memory being full even though malloc did
4025 not fail. */
4027 void
4028 memory_full (size_t nbytes)
4030 /* Do not go into hysterics merely because a large request failed. */
4031 bool enough_free_memory = 0;
4032 if (SPARE_MEMORY < nbytes)
4034 void *p;
4036 MALLOC_BLOCK_INPUT;
4037 p = malloc (SPARE_MEMORY);
4038 if (p)
4040 free (p);
4041 enough_free_memory = 1;
4043 MALLOC_UNBLOCK_INPUT;
4046 if (! enough_free_memory)
4048 int i;
4050 Vmemory_full = Qt;
4052 memory_full_cons_threshold = sizeof (struct cons_block);
4054 /* The first time we get here, free the spare memory. */
4055 for (i = 0; i < ARRAYELTS (spare_memory); i++)
4056 if (spare_memory[i])
4058 if (i == 0)
4059 free (spare_memory[i]);
4060 else if (i >= 1 && i <= 4)
4061 lisp_align_free (spare_memory[i]);
4062 else
4063 lisp_free (spare_memory[i]);
4064 spare_memory[i] = 0;
4068 /* This used to call error, but if we've run out of memory, we could
4069 get infinite recursion trying to build the string. */
4070 xsignal (Qnil, Vmemory_signal_data);
4073 /* If we released our reserve (due to running out of memory),
4074 and we have a fair amount free once again,
4075 try to set aside another reserve in case we run out once more.
4077 This is called when a relocatable block is freed in ralloc.c,
4078 and also directly from this file, in case we're not using ralloc.c. */
4080 void
4081 refill_memory_reserve (void)
4083 #if !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
4084 if (spare_memory[0] == 0)
4085 spare_memory[0] = malloc (SPARE_MEMORY);
4086 if (spare_memory[1] == 0)
4087 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
4088 MEM_TYPE_SPARE);
4089 if (spare_memory[2] == 0)
4090 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
4091 MEM_TYPE_SPARE);
4092 if (spare_memory[3] == 0)
4093 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
4094 MEM_TYPE_SPARE);
4095 if (spare_memory[4] == 0)
4096 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
4097 MEM_TYPE_SPARE);
4098 if (spare_memory[5] == 0)
4099 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
4100 MEM_TYPE_SPARE);
4101 if (spare_memory[6] == 0)
4102 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
4103 MEM_TYPE_SPARE);
4104 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
4105 Vmemory_full = Qnil;
4106 #endif
4109 /************************************************************************
4110 C Stack Marking
4111 ************************************************************************/
4113 /* Conservative C stack marking requires a method to identify possibly
4114 live Lisp objects given a pointer value. We do this by keeping
4115 track of blocks of Lisp data that are allocated in a red-black tree
4116 (see also the comment of mem_node which is the type of nodes in
4117 that tree). Function lisp_malloc adds information for an allocated
4118 block to the red-black tree with calls to mem_insert, and function
4119 lisp_free removes it with mem_delete. Functions live_string_p etc
4120 call mem_find to lookup information about a given pointer in the
4121 tree, and use that to determine if the pointer points to a Lisp
4122 object or not. */
4124 /* Initialize this part of alloc.c. */
4126 static void
4127 mem_init (void)
4129 mem_z.left = mem_z.right = MEM_NIL;
4130 mem_z.parent = NULL;
4131 mem_z.color = MEM_BLACK;
4132 mem_z.start = mem_z.end = NULL;
4133 mem_root = MEM_NIL;
4137 /* Value is a pointer to the mem_node containing START. Value is
4138 MEM_NIL if there is no node in the tree containing START. */
4140 static struct mem_node *
4141 mem_find (void *start)
4143 struct mem_node *p;
4145 if (start < min_heap_address || start > max_heap_address)
4146 return MEM_NIL;
4148 /* Make the search always successful to speed up the loop below. */
4149 mem_z.start = start;
4150 mem_z.end = (char *) start + 1;
4152 p = mem_root;
4153 while (start < p->start || start >= p->end)
4154 p = start < p->start ? p->left : p->right;
4155 return p;
4159 /* Insert a new node into the tree for a block of memory with start
4160 address START, end address END, and type TYPE. Value is a
4161 pointer to the node that was inserted. */
4163 static struct mem_node *
4164 mem_insert (void *start, void *end, enum mem_type type)
4166 struct mem_node *c, *parent, *x;
4168 if (min_heap_address == NULL || start < min_heap_address)
4169 min_heap_address = start;
4170 if (max_heap_address == NULL || end > max_heap_address)
4171 max_heap_address = end;
4173 /* See where in the tree a node for START belongs. In this
4174 particular application, it shouldn't happen that a node is already
4175 present. For debugging purposes, let's check that. */
4176 c = mem_root;
4177 parent = NULL;
4179 while (c != MEM_NIL)
4181 parent = c;
4182 c = start < c->start ? c->left : c->right;
4185 /* Create a new node. */
4186 #ifdef GC_MALLOC_CHECK
4187 x = malloc (sizeof *x);
4188 if (x == NULL)
4189 emacs_abort ();
4190 #else
4191 x = xmalloc (sizeof *x);
4192 #endif
4193 x->start = start;
4194 x->end = end;
4195 x->type = type;
4196 x->parent = parent;
4197 x->left = x->right = MEM_NIL;
4198 x->color = MEM_RED;
4200 /* Insert it as child of PARENT or install it as root. */
4201 if (parent)
4203 if (start < parent->start)
4204 parent->left = x;
4205 else
4206 parent->right = x;
4208 else
4209 mem_root = x;
4211 /* Re-establish red-black tree properties. */
4212 mem_insert_fixup (x);
4214 return x;
4218 /* Re-establish the red-black properties of the tree, and thereby
4219 balance the tree, after node X has been inserted; X is always red. */
4221 static void
4222 mem_insert_fixup (struct mem_node *x)
4224 while (x != mem_root && x->parent->color == MEM_RED)
4226 /* X is red and its parent is red. This is a violation of
4227 red-black tree property #3. */
4229 if (x->parent == x->parent->parent->left)
4231 /* We're on the left side of our grandparent, and Y is our
4232 "uncle". */
4233 struct mem_node *y = x->parent->parent->right;
4235 if (y->color == MEM_RED)
4237 /* Uncle and parent are red but should be black because
4238 X is red. Change the colors accordingly and proceed
4239 with the grandparent. */
4240 x->parent->color = MEM_BLACK;
4241 y->color = MEM_BLACK;
4242 x->parent->parent->color = MEM_RED;
4243 x = x->parent->parent;
4245 else
4247 /* Parent and uncle have different colors; parent is
4248 red, uncle is black. */
4249 if (x == x->parent->right)
4251 x = x->parent;
4252 mem_rotate_left (x);
4255 x->parent->color = MEM_BLACK;
4256 x->parent->parent->color = MEM_RED;
4257 mem_rotate_right (x->parent->parent);
4260 else
4262 /* This is the symmetrical case of above. */
4263 struct mem_node *y = x->parent->parent->left;
4265 if (y->color == MEM_RED)
4267 x->parent->color = MEM_BLACK;
4268 y->color = MEM_BLACK;
4269 x->parent->parent->color = MEM_RED;
4270 x = x->parent->parent;
4272 else
4274 if (x == x->parent->left)
4276 x = x->parent;
4277 mem_rotate_right (x);
4280 x->parent->color = MEM_BLACK;
4281 x->parent->parent->color = MEM_RED;
4282 mem_rotate_left (x->parent->parent);
4287 /* The root may have been changed to red due to the algorithm. Set
4288 it to black so that property #5 is satisfied. */
4289 mem_root->color = MEM_BLACK;
4293 /* (x) (y)
4294 / \ / \
4295 a (y) ===> (x) c
4296 / \ / \
4297 b c a b */
4299 static void
4300 mem_rotate_left (struct mem_node *x)
4302 struct mem_node *y;
4304 /* Turn y's left sub-tree into x's right sub-tree. */
4305 y = x->right;
4306 x->right = y->left;
4307 if (y->left != MEM_NIL)
4308 y->left->parent = x;
4310 /* Y's parent was x's parent. */
4311 if (y != MEM_NIL)
4312 y->parent = x->parent;
4314 /* Get the parent to point to y instead of x. */
4315 if (x->parent)
4317 if (x == x->parent->left)
4318 x->parent->left = y;
4319 else
4320 x->parent->right = y;
4322 else
4323 mem_root = y;
4325 /* Put x on y's left. */
4326 y->left = x;
4327 if (x != MEM_NIL)
4328 x->parent = y;
4332 /* (x) (Y)
4333 / \ / \
4334 (y) c ===> a (x)
4335 / \ / \
4336 a b b c */
4338 static void
4339 mem_rotate_right (struct mem_node *x)
4341 struct mem_node *y = x->left;
4343 x->left = y->right;
4344 if (y->right != MEM_NIL)
4345 y->right->parent = x;
4347 if (y != MEM_NIL)
4348 y->parent = x->parent;
4349 if (x->parent)
4351 if (x == x->parent->right)
4352 x->parent->right = y;
4353 else
4354 x->parent->left = y;
4356 else
4357 mem_root = y;
4359 y->right = x;
4360 if (x != MEM_NIL)
4361 x->parent = y;
4365 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4367 static void
4368 mem_delete (struct mem_node *z)
4370 struct mem_node *x, *y;
4372 if (!z || z == MEM_NIL)
4373 return;
4375 if (z->left == MEM_NIL || z->right == MEM_NIL)
4376 y = z;
4377 else
4379 y = z->right;
4380 while (y->left != MEM_NIL)
4381 y = y->left;
4384 if (y->left != MEM_NIL)
4385 x = y->left;
4386 else
4387 x = y->right;
4389 x->parent = y->parent;
4390 if (y->parent)
4392 if (y == y->parent->left)
4393 y->parent->left = x;
4394 else
4395 y->parent->right = x;
4397 else
4398 mem_root = x;
4400 if (y != z)
4402 z->start = y->start;
4403 z->end = y->end;
4404 z->type = y->type;
4407 if (y->color == MEM_BLACK)
4408 mem_delete_fixup (x);
4410 #ifdef GC_MALLOC_CHECK
4411 free (y);
4412 #else
4413 xfree (y);
4414 #endif
4418 /* Re-establish the red-black properties of the tree, after a
4419 deletion. */
4421 static void
4422 mem_delete_fixup (struct mem_node *x)
4424 while (x != mem_root && x->color == MEM_BLACK)
4426 if (x == x->parent->left)
4428 struct mem_node *w = x->parent->right;
4430 if (w->color == MEM_RED)
4432 w->color = MEM_BLACK;
4433 x->parent->color = MEM_RED;
4434 mem_rotate_left (x->parent);
4435 w = x->parent->right;
4438 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4440 w->color = MEM_RED;
4441 x = x->parent;
4443 else
4445 if (w->right->color == MEM_BLACK)
4447 w->left->color = MEM_BLACK;
4448 w->color = MEM_RED;
4449 mem_rotate_right (w);
4450 w = x->parent->right;
4452 w->color = x->parent->color;
4453 x->parent->color = MEM_BLACK;
4454 w->right->color = MEM_BLACK;
4455 mem_rotate_left (x->parent);
4456 x = mem_root;
4459 else
4461 struct mem_node *w = x->parent->left;
4463 if (w->color == MEM_RED)
4465 w->color = MEM_BLACK;
4466 x->parent->color = MEM_RED;
4467 mem_rotate_right (x->parent);
4468 w = x->parent->left;
4471 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4473 w->color = MEM_RED;
4474 x = x->parent;
4476 else
4478 if (w->left->color == MEM_BLACK)
4480 w->right->color = MEM_BLACK;
4481 w->color = MEM_RED;
4482 mem_rotate_left (w);
4483 w = x->parent->left;
4486 w->color = x->parent->color;
4487 x->parent->color = MEM_BLACK;
4488 w->left->color = MEM_BLACK;
4489 mem_rotate_right (x->parent);
4490 x = mem_root;
4495 x->color = MEM_BLACK;
4499 /* Value is non-zero if P is a pointer to a live Lisp string on
4500 the heap. M is a pointer to the mem_block for P. */
4502 static bool
4503 live_string_p (struct mem_node *m, void *p)
4505 if (m->type == MEM_TYPE_STRING)
4507 struct string_block *b = m->start;
4508 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4510 /* P must point to the start of a Lisp_String structure, and it
4511 must not be on the free-list. */
4512 return (offset >= 0
4513 && offset % sizeof b->strings[0] == 0
4514 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4515 && ((struct Lisp_String *) p)->data != NULL);
4517 else
4518 return 0;
4522 /* Value is non-zero if P is a pointer to a live Lisp cons on
4523 the heap. M is a pointer to the mem_block for P. */
4525 static bool
4526 live_cons_p (struct mem_node *m, void *p)
4528 if (m->type == MEM_TYPE_CONS)
4530 struct cons_block *b = m->start;
4531 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4533 /* P must point to the start of a Lisp_Cons, not be
4534 one of the unused cells in the current cons block,
4535 and not be on the free-list. */
4536 return (offset >= 0
4537 && offset % sizeof b->conses[0] == 0
4538 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4539 && (b != cons_block
4540 || offset / sizeof b->conses[0] < cons_block_index)
4541 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4543 else
4544 return 0;
4548 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4549 the heap. M is a pointer to the mem_block for P. */
4551 static bool
4552 live_symbol_p (struct mem_node *m, void *p)
4554 if (m->type == MEM_TYPE_SYMBOL)
4556 struct symbol_block *b = m->start;
4557 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4559 /* P must point to the start of a Lisp_Symbol, not be
4560 one of the unused cells in the current symbol block,
4561 and not be on the free-list. */
4562 return (offset >= 0
4563 && offset % sizeof b->symbols[0] == 0
4564 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4565 && (b != symbol_block
4566 || offset / sizeof b->symbols[0] < symbol_block_index)
4567 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4569 else
4570 return 0;
4574 /* Value is non-zero if P is a pointer to a live Lisp float on
4575 the heap. M is a pointer to the mem_block for P. */
4577 static bool
4578 live_float_p (struct mem_node *m, void *p)
4580 if (m->type == MEM_TYPE_FLOAT)
4582 struct float_block *b = m->start;
4583 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4585 /* P must point to the start of a Lisp_Float and not be
4586 one of the unused cells in the current float block. */
4587 return (offset >= 0
4588 && offset % sizeof b->floats[0] == 0
4589 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4590 && (b != float_block
4591 || offset / sizeof b->floats[0] < float_block_index));
4593 else
4594 return 0;
4598 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4599 the heap. M is a pointer to the mem_block for P. */
4601 static bool
4602 live_misc_p (struct mem_node *m, void *p)
4604 if (m->type == MEM_TYPE_MISC)
4606 struct marker_block *b = m->start;
4607 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4609 /* P must point to the start of a Lisp_Misc, not be
4610 one of the unused cells in the current misc block,
4611 and not be on the free-list. */
4612 return (offset >= 0
4613 && offset % sizeof b->markers[0] == 0
4614 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4615 && (b != marker_block
4616 || offset / sizeof b->markers[0] < marker_block_index)
4617 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4619 else
4620 return 0;
4624 /* Value is non-zero if P is a pointer to a live vector-like object.
4625 M is a pointer to the mem_block for P. */
4627 static bool
4628 live_vector_p (struct mem_node *m, void *p)
4630 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4632 /* This memory node corresponds to a vector block. */
4633 struct vector_block *block = m->start;
4634 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4636 /* P is in the block's allocation range. Scan the block
4637 up to P and see whether P points to the start of some
4638 vector which is not on a free list. FIXME: check whether
4639 some allocation patterns (probably a lot of short vectors)
4640 may cause a substantial overhead of this loop. */
4641 while (VECTOR_IN_BLOCK (vector, block)
4642 && vector <= (struct Lisp_Vector *) p)
4644 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4645 return true;
4646 else
4647 vector = ADVANCE (vector, vector_nbytes (vector));
4650 else if (m->type == MEM_TYPE_VECTORLIKE && p == large_vector_vec (m->start))
4651 /* This memory node corresponds to a large vector. */
4652 return 1;
4653 return 0;
4657 /* Value is non-zero if P is a pointer to a live buffer. M is a
4658 pointer to the mem_block for P. */
4660 static bool
4661 live_buffer_p (struct mem_node *m, void *p)
4663 /* P must point to the start of the block, and the buffer
4664 must not have been killed. */
4665 return (m->type == MEM_TYPE_BUFFER
4666 && p == m->start
4667 && !NILP (((struct buffer *) p)->name_));
4670 /* Mark OBJ if we can prove it's a Lisp_Object. */
4672 static void
4673 mark_maybe_object (Lisp_Object obj)
4675 #if USE_VALGRIND
4676 if (valgrind_p)
4677 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4678 #endif
4680 if (INTEGERP (obj))
4681 return;
4683 void *po = XPNTR (obj);
4684 struct mem_node *m = mem_find (po);
4686 if (m != MEM_NIL)
4688 bool mark_p = false;
4690 switch (XTYPE (obj))
4692 case Lisp_String:
4693 mark_p = (live_string_p (m, po)
4694 && !STRING_MARKED_P ((struct Lisp_String *) po));
4695 break;
4697 case Lisp_Cons:
4698 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4699 break;
4701 case Lisp_Symbol:
4702 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4703 break;
4705 case Lisp_Float:
4706 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4707 break;
4709 case Lisp_Vectorlike:
4710 /* Note: can't check BUFFERP before we know it's a
4711 buffer because checking that dereferences the pointer
4712 PO which might point anywhere. */
4713 if (live_vector_p (m, po))
4714 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4715 else if (live_buffer_p (m, po))
4716 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4717 break;
4719 case Lisp_Misc:
4720 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4721 break;
4723 default:
4724 break;
4727 if (mark_p)
4728 mark_object (obj);
4732 /* Return true if P can point to Lisp data, and false otherwise.
4733 Symbols are implemented via offsets not pointers, but the offsets
4734 are also multiples of GCALIGNMENT. */
4736 static bool
4737 maybe_lisp_pointer (void *p)
4739 return (uintptr_t) p % GCALIGNMENT == 0;
4742 #ifndef HAVE_MODULES
4743 enum { HAVE_MODULES = false };
4744 #endif
4746 /* If P points to Lisp data, mark that as live if it isn't already
4747 marked. */
4749 static void
4750 mark_maybe_pointer (void *p)
4752 struct mem_node *m;
4754 #if USE_VALGRIND
4755 if (valgrind_p)
4756 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4757 #endif
4759 if (sizeof (Lisp_Object) == sizeof (void *) || !HAVE_MODULES)
4761 if (!maybe_lisp_pointer (p))
4762 return;
4764 else
4766 /* For the wide-int case, also mark emacs_value tagged pointers,
4767 which can be generated by emacs-module.c's value_to_lisp. */
4768 p = (void *) ((uintptr_t) p & ~(GCALIGNMENT - 1));
4771 m = mem_find (p);
4772 if (m != MEM_NIL)
4774 Lisp_Object obj = Qnil;
4776 switch (m->type)
4778 case MEM_TYPE_NON_LISP:
4779 case MEM_TYPE_SPARE:
4780 /* Nothing to do; not a pointer to Lisp memory. */
4781 break;
4783 case MEM_TYPE_BUFFER:
4784 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4785 XSETVECTOR (obj, p);
4786 break;
4788 case MEM_TYPE_CONS:
4789 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4790 XSETCONS (obj, p);
4791 break;
4793 case MEM_TYPE_STRING:
4794 if (live_string_p (m, p)
4795 && !STRING_MARKED_P ((struct Lisp_String *) p))
4796 XSETSTRING (obj, p);
4797 break;
4799 case MEM_TYPE_MISC:
4800 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4801 XSETMISC (obj, p);
4802 break;
4804 case MEM_TYPE_SYMBOL:
4805 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4806 XSETSYMBOL (obj, p);
4807 break;
4809 case MEM_TYPE_FLOAT:
4810 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4811 XSETFLOAT (obj, p);
4812 break;
4814 case MEM_TYPE_VECTORLIKE:
4815 case MEM_TYPE_VECTOR_BLOCK:
4816 if (live_vector_p (m, p))
4818 Lisp_Object tem;
4819 XSETVECTOR (tem, p);
4820 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4821 obj = tem;
4823 break;
4825 default:
4826 emacs_abort ();
4829 if (!NILP (obj))
4830 mark_object (obj);
4835 /* Alignment of pointer values. Use alignof, as it sometimes returns
4836 a smaller alignment than GCC's __alignof__ and mark_memory might
4837 miss objects if __alignof__ were used. */
4838 #define GC_POINTER_ALIGNMENT alignof (void *)
4840 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4841 or END+OFFSET..START. */
4843 static void ATTRIBUTE_NO_SANITIZE_ADDRESS
4844 mark_memory (void *start, void *end)
4846 char *pp;
4848 /* Make START the pointer to the start of the memory region,
4849 if it isn't already. */
4850 if (end < start)
4852 void *tem = start;
4853 start = end;
4854 end = tem;
4857 eassert (((uintptr_t) start) % GC_POINTER_ALIGNMENT == 0);
4859 /* Mark Lisp data pointed to. This is necessary because, in some
4860 situations, the C compiler optimizes Lisp objects away, so that
4861 only a pointer to them remains. Example:
4863 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4866 Lisp_Object obj = build_string ("test");
4867 struct Lisp_String *s = XSTRING (obj);
4868 Fgarbage_collect ();
4869 fprintf (stderr, "test '%s'\n", s->data);
4870 return Qnil;
4873 Here, `obj' isn't really used, and the compiler optimizes it
4874 away. The only reference to the life string is through the
4875 pointer `s'. */
4877 for (pp = start; (void *) pp < end; pp += GC_POINTER_ALIGNMENT)
4879 mark_maybe_pointer (*(void **) pp);
4880 mark_maybe_object (*(Lisp_Object *) pp);
4884 #ifndef HAVE___BUILTIN_UNWIND_INIT
4886 # ifdef GC_SETJMP_WORKS
4887 static void
4888 test_setjmp (void)
4891 # else
4893 static bool setjmp_tested_p;
4894 static int longjmps_done;
4896 # define SETJMP_WILL_LIKELY_WORK "\
4898 Emacs garbage collector has been changed to use conservative stack\n\
4899 marking. Emacs has determined that the method it uses to do the\n\
4900 marking will likely work on your system, but this isn't sure.\n\
4902 If you are a system-programmer, or can get the help of a local wizard\n\
4903 who is, please take a look at the function mark_stack in alloc.c, and\n\
4904 verify that the methods used are appropriate for your system.\n\
4906 Please mail the result to <emacs-devel@gnu.org>.\n\
4909 # define SETJMP_WILL_NOT_WORK "\
4911 Emacs garbage collector has been changed to use conservative stack\n\
4912 marking. Emacs has determined that the default method it uses to do the\n\
4913 marking will not work on your system. We will need a system-dependent\n\
4914 solution for your system.\n\
4916 Please take a look at the function mark_stack in alloc.c, and\n\
4917 try to find a way to make it work on your system.\n\
4919 Note that you may get false negatives, depending on the compiler.\n\
4920 In particular, you need to use -O with GCC for this test.\n\
4922 Please mail the result to <emacs-devel@gnu.org>.\n\
4926 /* Perform a quick check if it looks like setjmp saves registers in a
4927 jmp_buf. Print a message to stderr saying so. When this test
4928 succeeds, this is _not_ a proof that setjmp is sufficient for
4929 conservative stack marking. Only the sources or a disassembly
4930 can prove that. */
4932 static void
4933 test_setjmp (void)
4935 if (setjmp_tested_p)
4936 return;
4937 setjmp_tested_p = true;
4938 char buf[10];
4939 register int x;
4940 sys_jmp_buf jbuf;
4942 /* Arrange for X to be put in a register. */
4943 sprintf (buf, "1");
4944 x = strlen (buf);
4945 x = 2 * x - 1;
4947 sys_setjmp (jbuf);
4948 if (longjmps_done == 1)
4950 /* Came here after the longjmp at the end of the function.
4952 If x == 1, the longjmp has restored the register to its
4953 value before the setjmp, and we can hope that setjmp
4954 saves all such registers in the jmp_buf, although that
4955 isn't sure.
4957 For other values of X, either something really strange is
4958 taking place, or the setjmp just didn't save the register. */
4960 if (x == 1)
4961 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4962 else
4964 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4965 exit (1);
4969 ++longjmps_done;
4970 x = 2;
4971 if (longjmps_done == 1)
4972 sys_longjmp (jbuf, 1);
4974 # endif /* ! GC_SETJMP_WORKS */
4975 #endif /* ! HAVE___BUILTIN_UNWIND_INIT */
4977 /* The type of an object near the stack top, whose address can be used
4978 as a stack scan limit. */
4979 typedef union
4981 /* Align the stack top properly. Even if !HAVE___BUILTIN_UNWIND_INIT,
4982 jmp_buf may not be aligned enough on darwin-ppc64. */
4983 max_align_t o;
4984 #ifndef HAVE___BUILTIN_UNWIND_INIT
4985 sys_jmp_buf j;
4986 char c;
4987 #endif
4988 } stacktop_sentry;
4990 /* Force callee-saved registers and register windows onto the stack.
4991 Use the platform-defined __builtin_unwind_init if available,
4992 obviating the need for machine dependent methods. */
4993 #ifndef HAVE___BUILTIN_UNWIND_INIT
4994 # ifdef __sparc__
4995 /* This trick flushes the register windows so that all the state of
4996 the process is contained in the stack.
4997 FreeBSD does not have a ta 3 handler, so handle it specially.
4998 FIXME: Code in the Boehm GC suggests flushing (with 'flushrs') is
4999 needed on ia64 too. See mach_dep.c, where it also says inline
5000 assembler doesn't work with relevant proprietary compilers. */
5001 # if defined __sparc64__ && defined __FreeBSD__
5002 # define __builtin_unwind_init() asm ("flushw")
5003 # else
5004 # define __builtin_unwind_init() asm ("ta 3")
5005 # endif
5006 # else
5007 # define __builtin_unwind_init() ((void) 0)
5008 # endif
5009 #endif
5011 /* Set *P to the address of the top of the stack. This must be a
5012 macro, not a function, so that it is executed in the caller’s
5013 environment. It is not inside a do-while so that its storage
5014 survives the macro. */
5015 #ifdef HAVE___BUILTIN_UNWIND_INIT
5016 # define SET_STACK_TOP_ADDRESS(p) \
5017 stacktop_sentry sentry; \
5018 __builtin_unwind_init (); \
5019 *(p) = &sentry
5020 #else
5021 # define SET_STACK_TOP_ADDRESS(p) \
5022 stacktop_sentry sentry; \
5023 __builtin_unwind_init (); \
5024 test_setjmp (); \
5025 sys_setjmp (sentry.j); \
5026 *(p) = &sentry + (stack_bottom < &sentry.c)
5027 #endif
5029 /* Mark live Lisp objects on the C stack.
5031 There are several system-dependent problems to consider when
5032 porting this to new architectures:
5034 Processor Registers
5036 We have to mark Lisp objects in CPU registers that can hold local
5037 variables or are used to pass parameters.
5039 This code assumes that calling setjmp saves registers we need
5040 to see in a jmp_buf which itself lies on the stack. This doesn't
5041 have to be true! It must be verified for each system, possibly
5042 by taking a look at the source code of setjmp.
5044 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
5045 can use it as a machine independent method to store all registers
5046 to the stack. In this case the macros described in the previous
5047 two paragraphs are not used.
5049 Stack Layout
5051 Architectures differ in the way their processor stack is organized.
5052 For example, the stack might look like this
5054 +----------------+
5055 | Lisp_Object | size = 4
5056 +----------------+
5057 | something else | size = 2
5058 +----------------+
5059 | Lisp_Object | size = 4
5060 +----------------+
5061 | ... |
5063 In such a case, not every Lisp_Object will be aligned equally. To
5064 find all Lisp_Object on the stack it won't be sufficient to walk
5065 the stack in steps of 4 bytes. Instead, two passes will be
5066 necessary, one starting at the start of the stack, and a second
5067 pass starting at the start of the stack + 2. Likewise, if the
5068 minimal alignment of Lisp_Objects on the stack is 1, four passes
5069 would be necessary, each one starting with one byte more offset
5070 from the stack start. */
5072 void
5073 mark_stack (char *bottom, char *end)
5075 /* This assumes that the stack is a contiguous region in memory. If
5076 that's not the case, something has to be done here to iterate
5077 over the stack segments. */
5078 mark_memory (bottom, end);
5080 /* Allow for marking a secondary stack, like the register stack on the
5081 ia64. */
5082 #ifdef GC_MARK_SECONDARY_STACK
5083 GC_MARK_SECONDARY_STACK ();
5084 #endif
5087 /* This is a trampoline function that flushes registers to the stack,
5088 and then calls FUNC. ARG is passed through to FUNC verbatim.
5090 This function must be called whenever Emacs is about to release the
5091 global interpreter lock. This lets the garbage collector easily
5092 find roots in registers on threads that are not actively running
5093 Lisp.
5095 It is invalid to run any Lisp code or to allocate any GC memory
5096 from FUNC. */
5098 void
5099 flush_stack_call_func (void (*func) (void *arg), void *arg)
5101 void *end;
5102 struct thread_state *self = current_thread;
5103 SET_STACK_TOP_ADDRESS (&end);
5104 self->stack_top = end;
5105 func (arg);
5106 eassert (current_thread == self);
5109 static bool
5110 c_symbol_p (struct Lisp_Symbol *sym)
5112 char *lispsym_ptr = (char *) lispsym;
5113 char *sym_ptr = (char *) sym;
5114 ptrdiff_t lispsym_offset = sym_ptr - lispsym_ptr;
5115 return 0 <= lispsym_offset && lispsym_offset < sizeof lispsym;
5118 /* Determine whether it is safe to access memory at address P. */
5119 static int
5120 valid_pointer_p (void *p)
5122 #ifdef WINDOWSNT
5123 return w32_valid_pointer_p (p, 16);
5124 #else
5126 if (ADDRESS_SANITIZER)
5127 return p ? -1 : 0;
5129 int fd[2];
5131 /* Obviously, we cannot just access it (we would SEGV trying), so we
5132 trick the o/s to tell us whether p is a valid pointer.
5133 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
5134 not validate p in that case. */
5136 if (emacs_pipe (fd) == 0)
5138 bool valid = emacs_write (fd[1], p, 16) == 16;
5139 emacs_close (fd[1]);
5140 emacs_close (fd[0]);
5141 return valid;
5144 return -1;
5145 #endif
5148 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
5149 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
5150 cannot validate OBJ. This function can be quite slow, so its primary
5151 use is the manual debugging. The only exception is print_object, where
5152 we use it to check whether the memory referenced by the pointer of
5153 Lisp_Save_Value object contains valid objects. */
5156 valid_lisp_object_p (Lisp_Object obj)
5158 if (INTEGERP (obj))
5159 return 1;
5161 void *p = XPNTR (obj);
5162 if (PURE_P (p))
5163 return 1;
5165 if (SYMBOLP (obj) && c_symbol_p (p))
5166 return ((char *) p - (char *) lispsym) % sizeof lispsym[0] == 0;
5168 if (p == &buffer_defaults || p == &buffer_local_symbols)
5169 return 2;
5171 struct mem_node *m = mem_find (p);
5173 if (m == MEM_NIL)
5175 int valid = valid_pointer_p (p);
5176 if (valid <= 0)
5177 return valid;
5179 if (SUBRP (obj))
5180 return 1;
5182 return 0;
5185 switch (m->type)
5187 case MEM_TYPE_NON_LISP:
5188 case MEM_TYPE_SPARE:
5189 return 0;
5191 case MEM_TYPE_BUFFER:
5192 return live_buffer_p (m, p) ? 1 : 2;
5194 case MEM_TYPE_CONS:
5195 return live_cons_p (m, p);
5197 case MEM_TYPE_STRING:
5198 return live_string_p (m, p);
5200 case MEM_TYPE_MISC:
5201 return live_misc_p (m, p);
5203 case MEM_TYPE_SYMBOL:
5204 return live_symbol_p (m, p);
5206 case MEM_TYPE_FLOAT:
5207 return live_float_p (m, p);
5209 case MEM_TYPE_VECTORLIKE:
5210 case MEM_TYPE_VECTOR_BLOCK:
5211 return live_vector_p (m, p);
5213 default:
5214 break;
5217 return 0;
5220 /***********************************************************************
5221 Pure Storage Management
5222 ***********************************************************************/
5224 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5225 pointer to it. TYPE is the Lisp type for which the memory is
5226 allocated. TYPE < 0 means it's not used for a Lisp object. */
5228 static void *
5229 pure_alloc (size_t size, int type)
5231 void *result;
5233 again:
5234 if (type >= 0)
5236 /* Allocate space for a Lisp object from the beginning of the free
5237 space with taking account of alignment. */
5238 result = pointer_align (purebeg + pure_bytes_used_lisp, GCALIGNMENT);
5239 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5241 else
5243 /* Allocate space for a non-Lisp object from the end of the free
5244 space. */
5245 pure_bytes_used_non_lisp += size;
5246 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5248 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5250 if (pure_bytes_used <= pure_size)
5251 return result;
5253 /* Don't allocate a large amount here,
5254 because it might get mmap'd and then its address
5255 might not be usable. */
5256 purebeg = xmalloc (10000);
5257 pure_size = 10000;
5258 pure_bytes_used_before_overflow += pure_bytes_used - size;
5259 pure_bytes_used = 0;
5260 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5261 goto again;
5265 #ifndef CANNOT_DUMP
5267 /* Print a warning if PURESIZE is too small. */
5269 void
5270 check_pure_size (void)
5272 if (pure_bytes_used_before_overflow)
5273 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5274 " bytes needed)"),
5275 pure_bytes_used + pure_bytes_used_before_overflow);
5277 #endif
5280 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5281 the non-Lisp data pool of the pure storage, and return its start
5282 address. Return NULL if not found. */
5284 static char *
5285 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5287 int i;
5288 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5289 const unsigned char *p;
5290 char *non_lisp_beg;
5292 if (pure_bytes_used_non_lisp <= nbytes)
5293 return NULL;
5295 /* Set up the Boyer-Moore table. */
5296 skip = nbytes + 1;
5297 for (i = 0; i < 256; i++)
5298 bm_skip[i] = skip;
5300 p = (const unsigned char *) data;
5301 while (--skip > 0)
5302 bm_skip[*p++] = skip;
5304 last_char_skip = bm_skip['\0'];
5306 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5307 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5309 /* See the comments in the function `boyer_moore' (search.c) for the
5310 use of `infinity'. */
5311 infinity = pure_bytes_used_non_lisp + 1;
5312 bm_skip['\0'] = infinity;
5314 p = (const unsigned char *) non_lisp_beg + nbytes;
5315 start = 0;
5318 /* Check the last character (== '\0'). */
5321 start += bm_skip[*(p + start)];
5323 while (start <= start_max);
5325 if (start < infinity)
5326 /* Couldn't find the last character. */
5327 return NULL;
5329 /* No less than `infinity' means we could find the last
5330 character at `p[start - infinity]'. */
5331 start -= infinity;
5333 /* Check the remaining characters. */
5334 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5335 /* Found. */
5336 return non_lisp_beg + start;
5338 start += last_char_skip;
5340 while (start <= start_max);
5342 return NULL;
5346 /* Return a string allocated in pure space. DATA is a buffer holding
5347 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5348 means make the result string multibyte.
5350 Must get an error if pure storage is full, since if it cannot hold
5351 a large string it may be able to hold conses that point to that
5352 string; then the string is not protected from gc. */
5354 Lisp_Object
5355 make_pure_string (const char *data,
5356 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5358 Lisp_Object string;
5359 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5360 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5361 if (s->data == NULL)
5363 s->data = pure_alloc (nbytes + 1, -1);
5364 memcpy (s->data, data, nbytes);
5365 s->data[nbytes] = '\0';
5367 s->size = nchars;
5368 s->size_byte = multibyte ? nbytes : -1;
5369 s->intervals = NULL;
5370 XSETSTRING (string, s);
5371 return string;
5374 /* Return a string allocated in pure space. Do not
5375 allocate the string data, just point to DATA. */
5377 Lisp_Object
5378 make_pure_c_string (const char *data, ptrdiff_t nchars)
5380 Lisp_Object string;
5381 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5382 s->size = nchars;
5383 s->size_byte = -1;
5384 s->data = (unsigned char *) data;
5385 s->intervals = NULL;
5386 XSETSTRING (string, s);
5387 return string;
5390 static Lisp_Object purecopy (Lisp_Object obj);
5392 /* Return a cons allocated from pure space. Give it pure copies
5393 of CAR as car and CDR as cdr. */
5395 Lisp_Object
5396 pure_cons (Lisp_Object car, Lisp_Object cdr)
5398 Lisp_Object new;
5399 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5400 XSETCONS (new, p);
5401 XSETCAR (new, purecopy (car));
5402 XSETCDR (new, purecopy (cdr));
5403 return new;
5407 /* Value is a float object with value NUM allocated from pure space. */
5409 static Lisp_Object
5410 make_pure_float (double num)
5412 Lisp_Object new;
5413 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5414 XSETFLOAT (new, p);
5415 XFLOAT_INIT (new, num);
5416 return new;
5420 /* Return a vector with room for LEN Lisp_Objects allocated from
5421 pure space. */
5423 static Lisp_Object
5424 make_pure_vector (ptrdiff_t len)
5426 Lisp_Object new;
5427 size_t size = header_size + len * word_size;
5428 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5429 XSETVECTOR (new, p);
5430 XVECTOR (new)->header.size = len;
5431 return new;
5434 /* Copy all contents and parameters of TABLE to a new table allocated
5435 from pure space, return the purified table. */
5436 static struct Lisp_Hash_Table *
5437 purecopy_hash_table (struct Lisp_Hash_Table *table)
5439 eassert (NILP (table->weak));
5440 eassert (table->pure);
5442 struct Lisp_Hash_Table *pure = pure_alloc (sizeof *pure, Lisp_Vectorlike);
5443 struct hash_table_test pure_test = table->test;
5445 /* Purecopy the hash table test. */
5446 pure_test.name = purecopy (table->test.name);
5447 pure_test.user_hash_function = purecopy (table->test.user_hash_function);
5448 pure_test.user_cmp_function = purecopy (table->test.user_cmp_function);
5450 pure->header = table->header;
5451 pure->weak = purecopy (Qnil);
5452 pure->hash = purecopy (table->hash);
5453 pure->next = purecopy (table->next);
5454 pure->index = purecopy (table->index);
5455 pure->count = table->count;
5456 pure->next_free = table->next_free;
5457 pure->pure = table->pure;
5458 pure->rehash_threshold = table->rehash_threshold;
5459 pure->rehash_size = table->rehash_size;
5460 pure->key_and_value = purecopy (table->key_and_value);
5461 pure->test = pure_test;
5463 return pure;
5466 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5467 doc: /* Make a copy of object OBJ in pure storage.
5468 Recursively copies contents of vectors and cons cells.
5469 Does not copy symbols. Copies strings without text properties. */)
5470 (register Lisp_Object obj)
5472 if (NILP (Vpurify_flag))
5473 return obj;
5474 else if (MARKERP (obj) || OVERLAYP (obj) || SYMBOLP (obj))
5475 /* Can't purify those. */
5476 return obj;
5477 else
5478 return purecopy (obj);
5481 /* Pinned objects are marked before every GC cycle. */
5482 static struct pinned_object
5484 Lisp_Object object;
5485 struct pinned_object *next;
5486 } *pinned_objects;
5488 static Lisp_Object
5489 purecopy (Lisp_Object obj)
5491 if (INTEGERP (obj)
5492 || (! SYMBOLP (obj) && PURE_P (XPNTR_OR_SYMBOL_OFFSET (obj)))
5493 || SUBRP (obj))
5494 return obj; /* Already pure. */
5496 if (STRINGP (obj) && XSTRING (obj)->intervals)
5497 message_with_string ("Dropping text-properties while making string `%s' pure",
5498 obj, true);
5500 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5502 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5503 if (!NILP (tmp))
5504 return tmp;
5507 if (CONSP (obj))
5508 obj = pure_cons (XCAR (obj), XCDR (obj));
5509 else if (FLOATP (obj))
5510 obj = make_pure_float (XFLOAT_DATA (obj));
5511 else if (STRINGP (obj))
5512 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5513 SBYTES (obj),
5514 STRING_MULTIBYTE (obj));
5515 else if (HASH_TABLE_P (obj))
5517 struct Lisp_Hash_Table *table = XHASH_TABLE (obj);
5518 /* Do not purify hash tables which haven't been defined with
5519 :purecopy as non-nil or are weak - they aren't guaranteed to
5520 not change. */
5521 if (!NILP (table->weak) || !table->pure)
5523 /* Instead, add the hash table to the list of pinned objects,
5524 so that it will be marked during GC. */
5525 struct pinned_object *o = xmalloc (sizeof *o);
5526 o->object = obj;
5527 o->next = pinned_objects;
5528 pinned_objects = o;
5529 return obj; /* Don't hash cons it. */
5532 struct Lisp_Hash_Table *h = purecopy_hash_table (table);
5533 XSET_HASH_TABLE (obj, h);
5535 else if (COMPILEDP (obj) || VECTORP (obj))
5537 struct Lisp_Vector *objp = XVECTOR (obj);
5538 ptrdiff_t nbytes = vector_nbytes (objp);
5539 struct Lisp_Vector *vec = pure_alloc (nbytes, Lisp_Vectorlike);
5540 register ptrdiff_t i;
5541 ptrdiff_t size = ASIZE (obj);
5542 if (size & PSEUDOVECTOR_FLAG)
5543 size &= PSEUDOVECTOR_SIZE_MASK;
5544 memcpy (vec, objp, nbytes);
5545 for (i = 0; i < size; i++)
5546 vec->contents[i] = purecopy (vec->contents[i]);
5547 XSETVECTOR (obj, vec);
5549 else if (SYMBOLP (obj))
5551 if (!XSYMBOL (obj)->pinned && !c_symbol_p (XSYMBOL (obj)))
5552 { /* We can't purify them, but they appear in many pure objects.
5553 Mark them as `pinned' so we know to mark them at every GC cycle. */
5554 XSYMBOL (obj)->pinned = true;
5555 symbol_block_pinned = symbol_block;
5557 /* Don't hash-cons it. */
5558 return obj;
5560 else
5562 AUTO_STRING (fmt, "Don't know how to purify: %S");
5563 Fsignal (Qerror, list1 (CALLN (Fformat, fmt, obj)));
5566 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5567 Fputhash (obj, obj, Vpurify_flag);
5569 return obj;
5574 /***********************************************************************
5575 Protection from GC
5576 ***********************************************************************/
5578 /* Put an entry in staticvec, pointing at the variable with address
5579 VARADDRESS. */
5581 void
5582 staticpro (Lisp_Object *varaddress)
5584 if (staticidx >= NSTATICS)
5585 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5586 staticvec[staticidx++] = varaddress;
5590 /***********************************************************************
5591 Protection from GC
5592 ***********************************************************************/
5594 /* Temporarily prevent garbage collection. */
5596 ptrdiff_t
5597 inhibit_garbage_collection (void)
5599 ptrdiff_t count = SPECPDL_INDEX ();
5601 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5602 return count;
5605 /* Used to avoid possible overflows when
5606 converting from C to Lisp integers. */
5608 static Lisp_Object
5609 bounded_number (EMACS_INT number)
5611 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5614 /* Calculate total bytes of live objects. */
5616 static size_t
5617 total_bytes_of_live_objects (void)
5619 size_t tot = 0;
5620 tot += total_conses * sizeof (struct Lisp_Cons);
5621 tot += total_symbols * sizeof (struct Lisp_Symbol);
5622 tot += total_markers * sizeof (union Lisp_Misc);
5623 tot += total_string_bytes;
5624 tot += total_vector_slots * word_size;
5625 tot += total_floats * sizeof (struct Lisp_Float);
5626 tot += total_intervals * sizeof (struct interval);
5627 tot += total_strings * sizeof (struct Lisp_String);
5628 return tot;
5631 #ifdef HAVE_WINDOW_SYSTEM
5633 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5634 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5636 static Lisp_Object
5637 compact_font_cache_entry (Lisp_Object entry)
5639 Lisp_Object tail, *prev = &entry;
5641 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5643 bool drop = 0;
5644 Lisp_Object obj = XCAR (tail);
5646 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5647 if (CONSP (obj) && GC_FONT_SPEC_P (XCAR (obj))
5648 && !VECTOR_MARKED_P (GC_XFONT_SPEC (XCAR (obj)))
5649 /* Don't use VECTORP here, as that calls ASIZE, which could
5650 hit assertion violation during GC. */
5651 && (VECTORLIKEP (XCDR (obj))
5652 && ! (gc_asize (XCDR (obj)) & PSEUDOVECTOR_FLAG)))
5654 ptrdiff_t i, size = gc_asize (XCDR (obj));
5655 Lisp_Object obj_cdr = XCDR (obj);
5657 /* If font-spec is not marked, most likely all font-entities
5658 are not marked too. But we must be sure that nothing is
5659 marked within OBJ before we really drop it. */
5660 for (i = 0; i < size; i++)
5662 Lisp_Object objlist;
5664 if (VECTOR_MARKED_P (GC_XFONT_ENTITY (AREF (obj_cdr, i))))
5665 break;
5667 objlist = AREF (AREF (obj_cdr, i), FONT_OBJLIST_INDEX);
5668 for (; CONSP (objlist); objlist = XCDR (objlist))
5670 Lisp_Object val = XCAR (objlist);
5671 struct font *font = GC_XFONT_OBJECT (val);
5673 if (!NILP (AREF (val, FONT_TYPE_INDEX))
5674 && VECTOR_MARKED_P(font))
5675 break;
5677 if (CONSP (objlist))
5679 /* Found a marked font, bail out. */
5680 break;
5684 if (i == size)
5686 /* No marked fonts were found, so this entire font
5687 entity can be dropped. */
5688 drop = 1;
5691 if (drop)
5692 *prev = XCDR (tail);
5693 else
5694 prev = xcdr_addr (tail);
5696 return entry;
5699 /* Compact font caches on all terminals and mark
5700 everything which is still here after compaction. */
5702 static void
5703 compact_font_caches (void)
5705 struct terminal *t;
5707 for (t = terminal_list; t; t = t->next_terminal)
5709 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5710 /* Inhibit compacting the caches if the user so wishes. Some of
5711 the users don't mind a larger memory footprint, but do mind
5712 slower redisplay. */
5713 if (!inhibit_compacting_font_caches
5714 && CONSP (cache))
5716 Lisp_Object entry;
5718 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5719 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5721 mark_object (cache);
5725 #else /* not HAVE_WINDOW_SYSTEM */
5727 #define compact_font_caches() (void)(0)
5729 #endif /* HAVE_WINDOW_SYSTEM */
5731 /* Remove (MARKER . DATA) entries with unmarked MARKER
5732 from buffer undo LIST and return changed list. */
5734 static Lisp_Object
5735 compact_undo_list (Lisp_Object list)
5737 Lisp_Object tail, *prev = &list;
5739 for (tail = list; CONSP (tail); tail = XCDR (tail))
5741 if (CONSP (XCAR (tail))
5742 && MARKERP (XCAR (XCAR (tail)))
5743 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5744 *prev = XCDR (tail);
5745 else
5746 prev = xcdr_addr (tail);
5748 return list;
5751 static void
5752 mark_pinned_objects (void)
5754 for (struct pinned_object *pobj = pinned_objects; pobj; pobj = pobj->next)
5755 mark_object (pobj->object);
5758 static void
5759 mark_pinned_symbols (void)
5761 struct symbol_block *sblk;
5762 int lim = (symbol_block_pinned == symbol_block
5763 ? symbol_block_index : SYMBOL_BLOCK_SIZE);
5765 for (sblk = symbol_block_pinned; sblk; sblk = sblk->next)
5767 union aligned_Lisp_Symbol *sym = sblk->symbols, *end = sym + lim;
5768 for (; sym < end; ++sym)
5769 if (sym->s.pinned)
5770 mark_object (make_lisp_symbol (&sym->s));
5772 lim = SYMBOL_BLOCK_SIZE;
5776 /* Subroutine of Fgarbage_collect that does most of the work. It is a
5777 separate function so that we could limit mark_stack in searching
5778 the stack frames below this function, thus avoiding the rare cases
5779 where mark_stack finds values that look like live Lisp objects on
5780 portions of stack that couldn't possibly contain such live objects.
5781 For more details of this, see the discussion at
5782 http://lists.gnu.org/archive/html/emacs-devel/2014-05/msg00270.html. */
5783 static Lisp_Object
5784 garbage_collect_1 (void *end)
5786 struct buffer *nextb;
5787 char stack_top_variable;
5788 ptrdiff_t i;
5789 bool message_p;
5790 ptrdiff_t count = SPECPDL_INDEX ();
5791 struct timespec start;
5792 Lisp_Object retval = Qnil;
5793 size_t tot_before = 0;
5795 /* Can't GC if pure storage overflowed because we can't determine
5796 if something is a pure object or not. */
5797 if (pure_bytes_used_before_overflow)
5798 return Qnil;
5800 /* Record this function, so it appears on the profiler's backtraces. */
5801 record_in_backtrace (QAutomatic_GC, 0, 0);
5803 check_cons_list ();
5805 /* Don't keep undo information around forever.
5806 Do this early on, so it is no problem if the user quits. */
5807 FOR_EACH_BUFFER (nextb)
5808 compact_buffer (nextb);
5810 if (profiler_memory_running)
5811 tot_before = total_bytes_of_live_objects ();
5813 start = current_timespec ();
5815 /* In case user calls debug_print during GC,
5816 don't let that cause a recursive GC. */
5817 consing_since_gc = 0;
5819 /* Save what's currently displayed in the echo area. Don't do that
5820 if we are GC'ing because we've run out of memory, since
5821 push_message will cons, and we might have no memory for that. */
5822 if (NILP (Vmemory_full))
5824 message_p = push_message ();
5825 record_unwind_protect_void (pop_message_unwind);
5827 else
5828 message_p = false;
5830 /* Save a copy of the contents of the stack, for debugging. */
5831 #if MAX_SAVE_STACK > 0
5832 if (NILP (Vpurify_flag))
5834 char *stack;
5835 ptrdiff_t stack_size;
5836 if (&stack_top_variable < stack_bottom)
5838 stack = &stack_top_variable;
5839 stack_size = stack_bottom - &stack_top_variable;
5841 else
5843 stack = stack_bottom;
5844 stack_size = &stack_top_variable - stack_bottom;
5846 if (stack_size <= MAX_SAVE_STACK)
5848 if (stack_copy_size < stack_size)
5850 stack_copy = xrealloc (stack_copy, stack_size);
5851 stack_copy_size = stack_size;
5853 no_sanitize_memcpy (stack_copy, stack, stack_size);
5856 #endif /* MAX_SAVE_STACK > 0 */
5858 if (garbage_collection_messages)
5859 message1_nolog ("Garbage collecting...");
5861 block_input ();
5863 shrink_regexp_cache ();
5865 gc_in_progress = 1;
5867 /* Mark all the special slots that serve as the roots of accessibility. */
5869 mark_buffer (&buffer_defaults);
5870 mark_buffer (&buffer_local_symbols);
5872 for (i = 0; i < ARRAYELTS (lispsym); i++)
5873 mark_object (builtin_lisp_symbol (i));
5875 for (i = 0; i < staticidx; i++)
5876 mark_object (*staticvec[i]);
5878 mark_pinned_objects ();
5879 mark_pinned_symbols ();
5880 mark_terminals ();
5881 mark_kboards ();
5882 mark_threads ();
5884 #ifdef USE_GTK
5885 xg_mark_data ();
5886 #endif
5888 #ifdef HAVE_WINDOW_SYSTEM
5889 mark_fringe_data ();
5890 #endif
5892 /* Everything is now marked, except for the data in font caches,
5893 undo lists, and finalizers. The first two are compacted by
5894 removing an items which aren't reachable otherwise. */
5896 compact_font_caches ();
5898 FOR_EACH_BUFFER (nextb)
5900 if (!EQ (BVAR (nextb, undo_list), Qt))
5901 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
5902 /* Now that we have stripped the elements that need not be
5903 in the undo_list any more, we can finally mark the list. */
5904 mark_object (BVAR (nextb, undo_list));
5907 /* Now pre-sweep finalizers. Here, we add any unmarked finalizers
5908 to doomed_finalizers so we can run their associated functions
5909 after GC. It's important to scan finalizers at this stage so
5910 that we can be sure that unmarked finalizers are really
5911 unreachable except for references from their associated functions
5912 and from other finalizers. */
5914 queue_doomed_finalizers (&doomed_finalizers, &finalizers);
5915 mark_finalizer_list (&doomed_finalizers);
5917 gc_sweep ();
5919 /* Clear the mark bits that we set in certain root slots. */
5920 VECTOR_UNMARK (&buffer_defaults);
5921 VECTOR_UNMARK (&buffer_local_symbols);
5923 check_cons_list ();
5925 gc_in_progress = 0;
5927 unblock_input ();
5929 consing_since_gc = 0;
5930 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5931 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5933 gc_relative_threshold = 0;
5934 if (FLOATP (Vgc_cons_percentage))
5935 { /* Set gc_cons_combined_threshold. */
5936 double tot = total_bytes_of_live_objects ();
5938 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5939 if (0 < tot)
5941 if (tot < TYPE_MAXIMUM (EMACS_INT))
5942 gc_relative_threshold = tot;
5943 else
5944 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5948 if (garbage_collection_messages && NILP (Vmemory_full))
5950 if (message_p || minibuf_level > 0)
5951 restore_message ();
5952 else
5953 message1_nolog ("Garbage collecting...done");
5956 unbind_to (count, Qnil);
5958 Lisp_Object total[] = {
5959 list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5960 bounded_number (total_conses),
5961 bounded_number (total_free_conses)),
5962 list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5963 bounded_number (total_symbols),
5964 bounded_number (total_free_symbols)),
5965 list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5966 bounded_number (total_markers),
5967 bounded_number (total_free_markers)),
5968 list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5969 bounded_number (total_strings),
5970 bounded_number (total_free_strings)),
5971 list3 (Qstring_bytes, make_number (1),
5972 bounded_number (total_string_bytes)),
5973 list3 (Qvectors,
5974 make_number (header_size + sizeof (Lisp_Object)),
5975 bounded_number (total_vectors)),
5976 list4 (Qvector_slots, make_number (word_size),
5977 bounded_number (total_vector_slots),
5978 bounded_number (total_free_vector_slots)),
5979 list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5980 bounded_number (total_floats),
5981 bounded_number (total_free_floats)),
5982 list4 (Qintervals, make_number (sizeof (struct interval)),
5983 bounded_number (total_intervals),
5984 bounded_number (total_free_intervals)),
5985 list3 (Qbuffers, make_number (sizeof (struct buffer)),
5986 bounded_number (total_buffers)),
5988 #ifdef DOUG_LEA_MALLOC
5989 list4 (Qheap, make_number (1024),
5990 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5991 bounded_number ((mallinfo ().fordblks + 1023) >> 10)),
5992 #endif
5994 retval = CALLMANY (Flist, total);
5996 /* GC is complete: now we can run our finalizer callbacks. */
5997 run_finalizers (&doomed_finalizers);
5999 if (!NILP (Vpost_gc_hook))
6001 ptrdiff_t gc_count = inhibit_garbage_collection ();
6002 safe_run_hooks (Qpost_gc_hook);
6003 unbind_to (gc_count, Qnil);
6006 /* Accumulate statistics. */
6007 if (FLOATP (Vgc_elapsed))
6009 struct timespec since_start = timespec_sub (current_timespec (), start);
6010 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
6011 + timespectod (since_start));
6014 gcs_done++;
6016 /* Collect profiling data. */
6017 if (profiler_memory_running)
6019 size_t swept = 0;
6020 size_t tot_after = total_bytes_of_live_objects ();
6021 if (tot_before > tot_after)
6022 swept = tot_before - tot_after;
6023 malloc_probe (swept);
6026 return retval;
6029 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
6030 doc: /* Reclaim storage for Lisp objects no longer needed.
6031 Garbage collection happens automatically if you cons more than
6032 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
6033 `garbage-collect' normally returns a list with info on amount of space in use,
6034 where each entry has the form (NAME SIZE USED FREE), where:
6035 - NAME is a symbol describing the kind of objects this entry represents,
6036 - SIZE is the number of bytes used by each one,
6037 - USED is the number of those objects that were found live in the heap,
6038 - FREE is the number of those objects that are not live but that Emacs
6039 keeps around for future allocations (maybe because it does not know how
6040 to return them to the OS).
6041 However, if there was overflow in pure space, `garbage-collect'
6042 returns nil, because real GC can't be done.
6043 See Info node `(elisp)Garbage Collection'. */)
6044 (void)
6046 void *end;
6047 SET_STACK_TOP_ADDRESS (&end);
6048 return garbage_collect_1 (end);
6051 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
6052 only interesting objects referenced from glyphs are strings. */
6054 static void
6055 mark_glyph_matrix (struct glyph_matrix *matrix)
6057 struct glyph_row *row = matrix->rows;
6058 struct glyph_row *end = row + matrix->nrows;
6060 for (; row < end; ++row)
6061 if (row->enabled_p)
6063 int area;
6064 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
6066 struct glyph *glyph = row->glyphs[area];
6067 struct glyph *end_glyph = glyph + row->used[area];
6069 for (; glyph < end_glyph; ++glyph)
6070 if (STRINGP (glyph->object)
6071 && !STRING_MARKED_P (XSTRING (glyph->object)))
6072 mark_object (glyph->object);
6077 /* Mark reference to a Lisp_Object.
6078 If the object referred to has not been seen yet, recursively mark
6079 all the references contained in it. */
6081 #define LAST_MARKED_SIZE 500
6082 Lisp_Object last_marked[LAST_MARKED_SIZE] EXTERNALLY_VISIBLE;
6083 static int last_marked_index;
6085 /* For debugging--call abort when we cdr down this many
6086 links of a list, in mark_object. In debugging,
6087 the call to abort will hit a breakpoint.
6088 Normally this is zero and the check never goes off. */
6089 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
6091 static void
6092 mark_vectorlike (struct Lisp_Vector *ptr)
6094 ptrdiff_t size = ptr->header.size;
6095 ptrdiff_t i;
6097 eassert (!VECTOR_MARKED_P (ptr));
6098 VECTOR_MARK (ptr); /* Else mark it. */
6099 if (size & PSEUDOVECTOR_FLAG)
6100 size &= PSEUDOVECTOR_SIZE_MASK;
6102 /* Note that this size is not the memory-footprint size, but only
6103 the number of Lisp_Object fields that we should trace.
6104 The distinction is used e.g. by Lisp_Process which places extra
6105 non-Lisp_Object fields at the end of the structure... */
6106 for (i = 0; i < size; i++) /* ...and then mark its elements. */
6107 mark_object (ptr->contents[i]);
6110 /* Like mark_vectorlike but optimized for char-tables (and
6111 sub-char-tables) assuming that the contents are mostly integers or
6112 symbols. */
6114 static void
6115 mark_char_table (struct Lisp_Vector *ptr, enum pvec_type pvectype)
6117 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6118 /* Consult the Lisp_Sub_Char_Table layout before changing this. */
6119 int i, idx = (pvectype == PVEC_SUB_CHAR_TABLE ? SUB_CHAR_TABLE_OFFSET : 0);
6121 eassert (!VECTOR_MARKED_P (ptr));
6122 VECTOR_MARK (ptr);
6123 for (i = idx; i < size; i++)
6125 Lisp_Object val = ptr->contents[i];
6127 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
6128 continue;
6129 if (SUB_CHAR_TABLE_P (val))
6131 if (! VECTOR_MARKED_P (XVECTOR (val)))
6132 mark_char_table (XVECTOR (val), PVEC_SUB_CHAR_TABLE);
6134 else
6135 mark_object (val);
6139 NO_INLINE /* To reduce stack depth in mark_object. */
6140 static Lisp_Object
6141 mark_compiled (struct Lisp_Vector *ptr)
6143 int i, size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6145 VECTOR_MARK (ptr);
6146 for (i = 0; i < size; i++)
6147 if (i != COMPILED_CONSTANTS)
6148 mark_object (ptr->contents[i]);
6149 return size > COMPILED_CONSTANTS ? ptr->contents[COMPILED_CONSTANTS] : Qnil;
6152 /* Mark the chain of overlays starting at PTR. */
6154 static void
6155 mark_overlay (struct Lisp_Overlay *ptr)
6157 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
6159 ptr->gcmarkbit = 1;
6160 /* These two are always markers and can be marked fast. */
6161 XMARKER (ptr->start)->gcmarkbit = 1;
6162 XMARKER (ptr->end)->gcmarkbit = 1;
6163 mark_object (ptr->plist);
6167 /* Mark Lisp_Objects and special pointers in BUFFER. */
6169 static void
6170 mark_buffer (struct buffer *buffer)
6172 /* This is handled much like other pseudovectors... */
6173 mark_vectorlike ((struct Lisp_Vector *) buffer);
6175 /* ...but there are some buffer-specific things. */
6177 MARK_INTERVAL_TREE (buffer_intervals (buffer));
6179 /* For now, we just don't mark the undo_list. It's done later in
6180 a special way just before the sweep phase, and after stripping
6181 some of its elements that are not needed any more. */
6183 mark_overlay (buffer->overlays_before);
6184 mark_overlay (buffer->overlays_after);
6186 /* If this is an indirect buffer, mark its base buffer. */
6187 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
6188 mark_buffer (buffer->base_buffer);
6191 /* Mark Lisp faces in the face cache C. */
6193 NO_INLINE /* To reduce stack depth in mark_object. */
6194 static void
6195 mark_face_cache (struct face_cache *c)
6197 if (c)
6199 int i, j;
6200 for (i = 0; i < c->used; ++i)
6202 struct face *face = FACE_FROM_ID_OR_NULL (c->f, i);
6204 if (face)
6206 if (face->font && !VECTOR_MARKED_P (face->font))
6207 mark_vectorlike ((struct Lisp_Vector *) face->font);
6209 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
6210 mark_object (face->lface[j]);
6216 NO_INLINE /* To reduce stack depth in mark_object. */
6217 static void
6218 mark_localized_symbol (struct Lisp_Symbol *ptr)
6220 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6221 Lisp_Object where = blv->where;
6222 /* If the value is set up for a killed buffer or deleted
6223 frame, restore its global binding. If the value is
6224 forwarded to a C variable, either it's not a Lisp_Object
6225 var, or it's staticpro'd already. */
6226 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
6227 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
6228 swap_in_global_binding (ptr);
6229 mark_object (blv->where);
6230 mark_object (blv->valcell);
6231 mark_object (blv->defcell);
6234 NO_INLINE /* To reduce stack depth in mark_object. */
6235 static void
6236 mark_save_value (struct Lisp_Save_Value *ptr)
6238 /* If `save_type' is zero, `data[0].pointer' is the address
6239 of a memory area containing `data[1].integer' potential
6240 Lisp_Objects. */
6241 if (ptr->save_type == SAVE_TYPE_MEMORY)
6243 Lisp_Object *p = ptr->data[0].pointer;
6244 ptrdiff_t nelt;
6245 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6246 mark_maybe_object (*p);
6248 else
6250 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6251 int i;
6252 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6253 if (save_type (ptr, i) == SAVE_OBJECT)
6254 mark_object (ptr->data[i].object);
6258 /* Remove killed buffers or items whose car is a killed buffer from
6259 LIST, and mark other items. Return changed LIST, which is marked. */
6261 static Lisp_Object
6262 mark_discard_killed_buffers (Lisp_Object list)
6264 Lisp_Object tail, *prev = &list;
6266 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
6267 tail = XCDR (tail))
6269 Lisp_Object tem = XCAR (tail);
6270 if (CONSP (tem))
6271 tem = XCAR (tem);
6272 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
6273 *prev = XCDR (tail);
6274 else
6276 CONS_MARK (XCONS (tail));
6277 mark_object (XCAR (tail));
6278 prev = xcdr_addr (tail);
6281 mark_object (tail);
6282 return list;
6285 /* Determine type of generic Lisp_Object and mark it accordingly.
6287 This function implements a straightforward depth-first marking
6288 algorithm and so the recursion depth may be very high (a few
6289 tens of thousands is not uncommon). To minimize stack usage,
6290 a few cold paths are moved out to NO_INLINE functions above.
6291 In general, inlining them doesn't help you to gain more speed. */
6293 void
6294 mark_object (Lisp_Object arg)
6296 register Lisp_Object obj;
6297 void *po;
6298 #ifdef GC_CHECK_MARKED_OBJECTS
6299 struct mem_node *m;
6300 #endif
6301 ptrdiff_t cdr_count = 0;
6303 obj = arg;
6304 loop:
6306 po = XPNTR (obj);
6307 if (PURE_P (po))
6308 return;
6310 last_marked[last_marked_index++] = obj;
6311 if (last_marked_index == LAST_MARKED_SIZE)
6312 last_marked_index = 0;
6314 /* Perform some sanity checks on the objects marked here. Abort if
6315 we encounter an object we know is bogus. This increases GC time
6316 by ~80%. */
6317 #ifdef GC_CHECK_MARKED_OBJECTS
6319 /* Check that the object pointed to by PO is known to be a Lisp
6320 structure allocated from the heap. */
6321 #define CHECK_ALLOCATED() \
6322 do { \
6323 m = mem_find (po); \
6324 if (m == MEM_NIL) \
6325 emacs_abort (); \
6326 } while (0)
6328 /* Check that the object pointed to by PO is live, using predicate
6329 function LIVEP. */
6330 #define CHECK_LIVE(LIVEP) \
6331 do { \
6332 if (!LIVEP (m, po)) \
6333 emacs_abort (); \
6334 } while (0)
6336 /* Check both of the above conditions, for non-symbols. */
6337 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
6338 do { \
6339 CHECK_ALLOCATED (); \
6340 CHECK_LIVE (LIVEP); \
6341 } while (0) \
6343 /* Check both of the above conditions, for symbols. */
6344 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() \
6345 do { \
6346 if (!c_symbol_p (ptr)) \
6348 CHECK_ALLOCATED (); \
6349 CHECK_LIVE (live_symbol_p); \
6351 } while (0) \
6353 #else /* not GC_CHECK_MARKED_OBJECTS */
6355 #define CHECK_LIVE(LIVEP) ((void) 0)
6356 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) ((void) 0)
6357 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() ((void) 0)
6359 #endif /* not GC_CHECK_MARKED_OBJECTS */
6361 switch (XTYPE (obj))
6363 case Lisp_String:
6365 register struct Lisp_String *ptr = XSTRING (obj);
6366 if (STRING_MARKED_P (ptr))
6367 break;
6368 CHECK_ALLOCATED_AND_LIVE (live_string_p);
6369 MARK_STRING (ptr);
6370 MARK_INTERVAL_TREE (ptr->intervals);
6371 #ifdef GC_CHECK_STRING_BYTES
6372 /* Check that the string size recorded in the string is the
6373 same as the one recorded in the sdata structure. */
6374 string_bytes (ptr);
6375 #endif /* GC_CHECK_STRING_BYTES */
6377 break;
6379 case Lisp_Vectorlike:
6381 register struct Lisp_Vector *ptr = XVECTOR (obj);
6383 if (VECTOR_MARKED_P (ptr))
6384 break;
6386 #ifdef GC_CHECK_MARKED_OBJECTS
6387 m = mem_find (po);
6388 if (m == MEM_NIL && !SUBRP (obj) && !main_thread_p (po))
6389 emacs_abort ();
6390 #endif /* GC_CHECK_MARKED_OBJECTS */
6392 enum pvec_type pvectype
6393 = PSEUDOVECTOR_TYPE (ptr);
6395 if (pvectype != PVEC_SUBR
6396 && pvectype != PVEC_BUFFER
6397 && !main_thread_p (po))
6398 CHECK_LIVE (live_vector_p);
6400 switch (pvectype)
6402 case PVEC_BUFFER:
6403 #ifdef GC_CHECK_MARKED_OBJECTS
6405 struct buffer *b;
6406 FOR_EACH_BUFFER (b)
6407 if (b == po)
6408 break;
6409 if (b == NULL)
6410 emacs_abort ();
6412 #endif /* GC_CHECK_MARKED_OBJECTS */
6413 mark_buffer ((struct buffer *) ptr);
6414 break;
6416 case PVEC_COMPILED:
6417 /* Although we could treat this just like a vector, mark_compiled
6418 returns the COMPILED_CONSTANTS element, which is marked at the
6419 next iteration of goto-loop here. This is done to avoid a few
6420 recursive calls to mark_object. */
6421 obj = mark_compiled (ptr);
6422 if (!NILP (obj))
6423 goto loop;
6424 break;
6426 case PVEC_FRAME:
6428 struct frame *f = (struct frame *) ptr;
6430 mark_vectorlike (ptr);
6431 mark_face_cache (f->face_cache);
6432 #ifdef HAVE_WINDOW_SYSTEM
6433 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6435 struct font *font = FRAME_FONT (f);
6437 if (font && !VECTOR_MARKED_P (font))
6438 mark_vectorlike ((struct Lisp_Vector *) font);
6440 #endif
6442 break;
6444 case PVEC_WINDOW:
6446 struct window *w = (struct window *) ptr;
6448 mark_vectorlike (ptr);
6450 /* Mark glyph matrices, if any. Marking window
6451 matrices is sufficient because frame matrices
6452 use the same glyph memory. */
6453 if (w->current_matrix)
6455 mark_glyph_matrix (w->current_matrix);
6456 mark_glyph_matrix (w->desired_matrix);
6459 /* Filter out killed buffers from both buffer lists
6460 in attempt to help GC to reclaim killed buffers faster.
6461 We can do it elsewhere for live windows, but this is the
6462 best place to do it for dead windows. */
6463 wset_prev_buffers
6464 (w, mark_discard_killed_buffers (w->prev_buffers));
6465 wset_next_buffers
6466 (w, mark_discard_killed_buffers (w->next_buffers));
6468 break;
6470 case PVEC_HASH_TABLE:
6472 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6474 mark_vectorlike (ptr);
6475 mark_object (h->test.name);
6476 mark_object (h->test.user_hash_function);
6477 mark_object (h->test.user_cmp_function);
6478 /* If hash table is not weak, mark all keys and values.
6479 For weak tables, mark only the vector. */
6480 if (NILP (h->weak))
6481 mark_object (h->key_and_value);
6482 else
6483 VECTOR_MARK (XVECTOR (h->key_and_value));
6485 break;
6487 case PVEC_CHAR_TABLE:
6488 case PVEC_SUB_CHAR_TABLE:
6489 mark_char_table (ptr, (enum pvec_type) pvectype);
6490 break;
6492 case PVEC_BOOL_VECTOR:
6493 /* No Lisp_Objects to mark in a bool vector. */
6494 VECTOR_MARK (ptr);
6495 break;
6497 case PVEC_SUBR:
6498 break;
6500 case PVEC_FREE:
6501 emacs_abort ();
6503 default:
6504 mark_vectorlike (ptr);
6507 break;
6509 case Lisp_Symbol:
6511 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6512 nextsym:
6513 if (ptr->gcmarkbit)
6514 break;
6515 CHECK_ALLOCATED_AND_LIVE_SYMBOL ();
6516 ptr->gcmarkbit = 1;
6517 /* Attempt to catch bogus objects. */
6518 eassert (valid_lisp_object_p (ptr->function));
6519 mark_object (ptr->function);
6520 mark_object (ptr->plist);
6521 switch (ptr->redirect)
6523 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6524 case SYMBOL_VARALIAS:
6526 Lisp_Object tem;
6527 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6528 mark_object (tem);
6529 break;
6531 case SYMBOL_LOCALIZED:
6532 mark_localized_symbol (ptr);
6533 break;
6534 case SYMBOL_FORWARDED:
6535 /* If the value is forwarded to a buffer or keyboard field,
6536 these are marked when we see the corresponding object.
6537 And if it's forwarded to a C variable, either it's not
6538 a Lisp_Object var, or it's staticpro'd already. */
6539 break;
6540 default: emacs_abort ();
6542 if (!PURE_P (XSTRING (ptr->name)))
6543 MARK_STRING (XSTRING (ptr->name));
6544 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6545 /* Inner loop to mark next symbol in this bucket, if any. */
6546 po = ptr = ptr->next;
6547 if (ptr)
6548 goto nextsym;
6550 break;
6552 case Lisp_Misc:
6553 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6555 if (XMISCANY (obj)->gcmarkbit)
6556 break;
6558 switch (XMISCTYPE (obj))
6560 case Lisp_Misc_Marker:
6561 /* DO NOT mark thru the marker's chain.
6562 The buffer's markers chain does not preserve markers from gc;
6563 instead, markers are removed from the chain when freed by gc. */
6564 XMISCANY (obj)->gcmarkbit = 1;
6565 break;
6567 case Lisp_Misc_Save_Value:
6568 XMISCANY (obj)->gcmarkbit = 1;
6569 mark_save_value (XSAVE_VALUE (obj));
6570 break;
6572 case Lisp_Misc_Overlay:
6573 mark_overlay (XOVERLAY (obj));
6574 break;
6576 case Lisp_Misc_Finalizer:
6577 XMISCANY (obj)->gcmarkbit = true;
6578 mark_object (XFINALIZER (obj)->function);
6579 break;
6581 #ifdef HAVE_MODULES
6582 case Lisp_Misc_User_Ptr:
6583 XMISCANY (obj)->gcmarkbit = true;
6584 break;
6585 #endif
6587 default:
6588 emacs_abort ();
6590 break;
6592 case Lisp_Cons:
6594 register struct Lisp_Cons *ptr = XCONS (obj);
6595 if (CONS_MARKED_P (ptr))
6596 break;
6597 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6598 CONS_MARK (ptr);
6599 /* If the cdr is nil, avoid recursion for the car. */
6600 if (EQ (ptr->u.cdr, Qnil))
6602 obj = ptr->car;
6603 cdr_count = 0;
6604 goto loop;
6606 mark_object (ptr->car);
6607 obj = ptr->u.cdr;
6608 cdr_count++;
6609 if (cdr_count == mark_object_loop_halt)
6610 emacs_abort ();
6611 goto loop;
6614 case Lisp_Float:
6615 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6616 FLOAT_MARK (XFLOAT (obj));
6617 break;
6619 case_Lisp_Int:
6620 break;
6622 default:
6623 emacs_abort ();
6626 #undef CHECK_LIVE
6627 #undef CHECK_ALLOCATED
6628 #undef CHECK_ALLOCATED_AND_LIVE
6630 /* Mark the Lisp pointers in the terminal objects.
6631 Called by Fgarbage_collect. */
6633 static void
6634 mark_terminals (void)
6636 struct terminal *t;
6637 for (t = terminal_list; t; t = t->next_terminal)
6639 eassert (t->name != NULL);
6640 #ifdef HAVE_WINDOW_SYSTEM
6641 /* If a terminal object is reachable from a stacpro'ed object,
6642 it might have been marked already. Make sure the image cache
6643 gets marked. */
6644 mark_image_cache (t->image_cache);
6645 #endif /* HAVE_WINDOW_SYSTEM */
6646 if (!VECTOR_MARKED_P (t))
6647 mark_vectorlike ((struct Lisp_Vector *)t);
6653 /* Value is non-zero if OBJ will survive the current GC because it's
6654 either marked or does not need to be marked to survive. */
6656 bool
6657 survives_gc_p (Lisp_Object obj)
6659 bool survives_p;
6661 switch (XTYPE (obj))
6663 case_Lisp_Int:
6664 survives_p = 1;
6665 break;
6667 case Lisp_Symbol:
6668 survives_p = XSYMBOL (obj)->gcmarkbit;
6669 break;
6671 case Lisp_Misc:
6672 survives_p = XMISCANY (obj)->gcmarkbit;
6673 break;
6675 case Lisp_String:
6676 survives_p = STRING_MARKED_P (XSTRING (obj));
6677 break;
6679 case Lisp_Vectorlike:
6680 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6681 break;
6683 case Lisp_Cons:
6684 survives_p = CONS_MARKED_P (XCONS (obj));
6685 break;
6687 case Lisp_Float:
6688 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6689 break;
6691 default:
6692 emacs_abort ();
6695 return survives_p || PURE_P (XPNTR (obj));
6701 NO_INLINE /* For better stack traces */
6702 static void
6703 sweep_conses (void)
6705 struct cons_block *cblk;
6706 struct cons_block **cprev = &cons_block;
6707 int lim = cons_block_index;
6708 EMACS_INT num_free = 0, num_used = 0;
6710 cons_free_list = 0;
6712 for (cblk = cons_block; cblk; cblk = *cprev)
6714 int i = 0;
6715 int this_free = 0;
6716 int ilim = (lim + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
6718 /* Scan the mark bits an int at a time. */
6719 for (i = 0; i < ilim; i++)
6721 if (cblk->gcmarkbits[i] == BITS_WORD_MAX)
6723 /* Fast path - all cons cells for this int are marked. */
6724 cblk->gcmarkbits[i] = 0;
6725 num_used += BITS_PER_BITS_WORD;
6727 else
6729 /* Some cons cells for this int are not marked.
6730 Find which ones, and free them. */
6731 int start, pos, stop;
6733 start = i * BITS_PER_BITS_WORD;
6734 stop = lim - start;
6735 if (stop > BITS_PER_BITS_WORD)
6736 stop = BITS_PER_BITS_WORD;
6737 stop += start;
6739 for (pos = start; pos < stop; pos++)
6741 if (!CONS_MARKED_P (&cblk->conses[pos]))
6743 this_free++;
6744 cblk->conses[pos].u.chain = cons_free_list;
6745 cons_free_list = &cblk->conses[pos];
6746 cons_free_list->car = Vdead;
6748 else
6750 num_used++;
6751 CONS_UNMARK (&cblk->conses[pos]);
6757 lim = CONS_BLOCK_SIZE;
6758 /* If this block contains only free conses and we have already
6759 seen more than two blocks worth of free conses then deallocate
6760 this block. */
6761 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6763 *cprev = cblk->next;
6764 /* Unhook from the free list. */
6765 cons_free_list = cblk->conses[0].u.chain;
6766 lisp_align_free (cblk);
6768 else
6770 num_free += this_free;
6771 cprev = &cblk->next;
6774 total_conses = num_used;
6775 total_free_conses = num_free;
6778 NO_INLINE /* For better stack traces */
6779 static void
6780 sweep_floats (void)
6782 register struct float_block *fblk;
6783 struct float_block **fprev = &float_block;
6784 register int lim = float_block_index;
6785 EMACS_INT num_free = 0, num_used = 0;
6787 float_free_list = 0;
6789 for (fblk = float_block; fblk; fblk = *fprev)
6791 register int i;
6792 int this_free = 0;
6793 for (i = 0; i < lim; i++)
6794 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6796 this_free++;
6797 fblk->floats[i].u.chain = float_free_list;
6798 float_free_list = &fblk->floats[i];
6800 else
6802 num_used++;
6803 FLOAT_UNMARK (&fblk->floats[i]);
6805 lim = FLOAT_BLOCK_SIZE;
6806 /* If this block contains only free floats and we have already
6807 seen more than two blocks worth of free floats then deallocate
6808 this block. */
6809 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6811 *fprev = fblk->next;
6812 /* Unhook from the free list. */
6813 float_free_list = fblk->floats[0].u.chain;
6814 lisp_align_free (fblk);
6816 else
6818 num_free += this_free;
6819 fprev = &fblk->next;
6822 total_floats = num_used;
6823 total_free_floats = num_free;
6826 NO_INLINE /* For better stack traces */
6827 static void
6828 sweep_intervals (void)
6830 register struct interval_block *iblk;
6831 struct interval_block **iprev = &interval_block;
6832 register int lim = interval_block_index;
6833 EMACS_INT num_free = 0, num_used = 0;
6835 interval_free_list = 0;
6837 for (iblk = interval_block; iblk; iblk = *iprev)
6839 register int i;
6840 int this_free = 0;
6842 for (i = 0; i < lim; i++)
6844 if (!iblk->intervals[i].gcmarkbit)
6846 set_interval_parent (&iblk->intervals[i], interval_free_list);
6847 interval_free_list = &iblk->intervals[i];
6848 this_free++;
6850 else
6852 num_used++;
6853 iblk->intervals[i].gcmarkbit = 0;
6856 lim = INTERVAL_BLOCK_SIZE;
6857 /* If this block contains only free intervals and we have already
6858 seen more than two blocks worth of free intervals then
6859 deallocate this block. */
6860 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6862 *iprev = iblk->next;
6863 /* Unhook from the free list. */
6864 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6865 lisp_free (iblk);
6867 else
6869 num_free += this_free;
6870 iprev = &iblk->next;
6873 total_intervals = num_used;
6874 total_free_intervals = num_free;
6877 NO_INLINE /* For better stack traces */
6878 static void
6879 sweep_symbols (void)
6881 struct symbol_block *sblk;
6882 struct symbol_block **sprev = &symbol_block;
6883 int lim = symbol_block_index;
6884 EMACS_INT num_free = 0, num_used = ARRAYELTS (lispsym);
6886 symbol_free_list = NULL;
6888 for (int i = 0; i < ARRAYELTS (lispsym); i++)
6889 lispsym[i].gcmarkbit = 0;
6891 for (sblk = symbol_block; sblk; sblk = *sprev)
6893 int this_free = 0;
6894 union aligned_Lisp_Symbol *sym = sblk->symbols;
6895 union aligned_Lisp_Symbol *end = sym + lim;
6897 for (; sym < end; ++sym)
6899 if (!sym->s.gcmarkbit)
6901 if (sym->s.redirect == SYMBOL_LOCALIZED)
6902 xfree (SYMBOL_BLV (&sym->s));
6903 sym->s.next = symbol_free_list;
6904 symbol_free_list = &sym->s;
6905 symbol_free_list->function = Vdead;
6906 ++this_free;
6908 else
6910 ++num_used;
6911 sym->s.gcmarkbit = 0;
6912 /* Attempt to catch bogus objects. */
6913 eassert (valid_lisp_object_p (sym->s.function));
6917 lim = SYMBOL_BLOCK_SIZE;
6918 /* If this block contains only free symbols and we have already
6919 seen more than two blocks worth of free symbols then deallocate
6920 this block. */
6921 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6923 *sprev = sblk->next;
6924 /* Unhook from the free list. */
6925 symbol_free_list = sblk->symbols[0].s.next;
6926 lisp_free (sblk);
6928 else
6930 num_free += this_free;
6931 sprev = &sblk->next;
6934 total_symbols = num_used;
6935 total_free_symbols = num_free;
6938 NO_INLINE /* For better stack traces. */
6939 static void
6940 sweep_misc (void)
6942 register struct marker_block *mblk;
6943 struct marker_block **mprev = &marker_block;
6944 register int lim = marker_block_index;
6945 EMACS_INT num_free = 0, num_used = 0;
6947 /* Put all unmarked misc's on free list. For a marker, first
6948 unchain it from the buffer it points into. */
6950 marker_free_list = 0;
6952 for (mblk = marker_block; mblk; mblk = *mprev)
6954 register int i;
6955 int this_free = 0;
6957 for (i = 0; i < lim; i++)
6959 if (!mblk->markers[i].m.u_any.gcmarkbit)
6961 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6962 unchain_marker (&mblk->markers[i].m.u_marker);
6963 else if (mblk->markers[i].m.u_any.type == Lisp_Misc_Finalizer)
6964 unchain_finalizer (&mblk->markers[i].m.u_finalizer);
6965 #ifdef HAVE_MODULES
6966 else if (mblk->markers[i].m.u_any.type == Lisp_Misc_User_Ptr)
6968 struct Lisp_User_Ptr *uptr = &mblk->markers[i].m.u_user_ptr;
6969 if (uptr->finalizer)
6970 uptr->finalizer (uptr->p);
6972 #endif
6973 /* Set the type of the freed object to Lisp_Misc_Free.
6974 We could leave the type alone, since nobody checks it,
6975 but this might catch bugs faster. */
6976 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6977 mblk->markers[i].m.u_free.chain = marker_free_list;
6978 marker_free_list = &mblk->markers[i].m;
6979 this_free++;
6981 else
6983 num_used++;
6984 mblk->markers[i].m.u_any.gcmarkbit = 0;
6987 lim = MARKER_BLOCK_SIZE;
6988 /* If this block contains only free markers and we have already
6989 seen more than two blocks worth of free markers then deallocate
6990 this block. */
6991 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6993 *mprev = mblk->next;
6994 /* Unhook from the free list. */
6995 marker_free_list = mblk->markers[0].m.u_free.chain;
6996 lisp_free (mblk);
6998 else
7000 num_free += this_free;
7001 mprev = &mblk->next;
7005 total_markers = num_used;
7006 total_free_markers = num_free;
7009 NO_INLINE /* For better stack traces */
7010 static void
7011 sweep_buffers (void)
7013 register struct buffer *buffer, **bprev = &all_buffers;
7015 total_buffers = 0;
7016 for (buffer = all_buffers; buffer; buffer = *bprev)
7017 if (!VECTOR_MARKED_P (buffer))
7019 *bprev = buffer->next;
7020 lisp_free (buffer);
7022 else
7024 VECTOR_UNMARK (buffer);
7025 /* Do not use buffer_(set|get)_intervals here. */
7026 buffer->text->intervals = balance_intervals (buffer->text->intervals);
7027 total_buffers++;
7028 bprev = &buffer->next;
7032 /* Sweep: find all structures not marked, and free them. */
7033 static void
7034 gc_sweep (void)
7036 /* Remove or mark entries in weak hash tables.
7037 This must be done before any object is unmarked. */
7038 sweep_weak_hash_tables ();
7040 sweep_strings ();
7041 check_string_bytes (!noninteractive);
7042 sweep_conses ();
7043 sweep_floats ();
7044 sweep_intervals ();
7045 sweep_symbols ();
7046 sweep_misc ();
7047 sweep_buffers ();
7048 sweep_vectors ();
7049 check_string_bytes (!noninteractive);
7052 DEFUN ("memory-info", Fmemory_info, Smemory_info, 0, 0, 0,
7053 doc: /* Return a list of (TOTAL-RAM FREE-RAM TOTAL-SWAP FREE-SWAP).
7054 All values are in Kbytes. If there is no swap space,
7055 last two values are zero. If the system is not supported
7056 or memory information can't be obtained, return nil. */)
7057 (void)
7059 #if defined HAVE_LINUX_SYSINFO
7060 struct sysinfo si;
7061 uintmax_t units;
7063 if (sysinfo (&si))
7064 return Qnil;
7065 #ifdef LINUX_SYSINFO_UNIT
7066 units = si.mem_unit;
7067 #else
7068 units = 1;
7069 #endif
7070 return list4i ((uintmax_t) si.totalram * units / 1024,
7071 (uintmax_t) si.freeram * units / 1024,
7072 (uintmax_t) si.totalswap * units / 1024,
7073 (uintmax_t) si.freeswap * units / 1024);
7074 #elif defined WINDOWSNT
7075 unsigned long long totalram, freeram, totalswap, freeswap;
7077 if (w32_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
7078 return list4i ((uintmax_t) totalram / 1024,
7079 (uintmax_t) freeram / 1024,
7080 (uintmax_t) totalswap / 1024,
7081 (uintmax_t) freeswap / 1024);
7082 else
7083 return Qnil;
7084 #elif defined MSDOS
7085 unsigned long totalram, freeram, totalswap, freeswap;
7087 if (dos_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
7088 return list4i ((uintmax_t) totalram / 1024,
7089 (uintmax_t) freeram / 1024,
7090 (uintmax_t) totalswap / 1024,
7091 (uintmax_t) freeswap / 1024);
7092 else
7093 return Qnil;
7094 #else /* not HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
7095 /* FIXME: add more systems. */
7096 return Qnil;
7097 #endif /* HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
7100 /* Debugging aids. */
7102 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
7103 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
7104 This may be helpful in debugging Emacs's memory usage.
7105 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
7106 (void)
7108 Lisp_Object end;
7110 #if defined HAVE_NS || !HAVE_SBRK
7111 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
7112 XSETINT (end, 0);
7113 #else
7114 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
7115 #endif
7117 return end;
7120 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
7121 doc: /* Return a list of counters that measure how much consing there has been.
7122 Each of these counters increments for a certain kind of object.
7123 The counters wrap around from the largest positive integer to zero.
7124 Garbage collection does not decrease them.
7125 The elements of the value are as follows:
7126 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
7127 All are in units of 1 = one object consed
7128 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
7129 objects consed.
7130 MISCS include overlays, markers, and some internal types.
7131 Frames, windows, buffers, and subprocesses count as vectors
7132 (but the contents of a buffer's text do not count here). */)
7133 (void)
7135 return listn (CONSTYPE_HEAP, 8,
7136 bounded_number (cons_cells_consed),
7137 bounded_number (floats_consed),
7138 bounded_number (vector_cells_consed),
7139 bounded_number (symbols_consed),
7140 bounded_number (string_chars_consed),
7141 bounded_number (misc_objects_consed),
7142 bounded_number (intervals_consed),
7143 bounded_number (strings_consed));
7146 static bool
7147 symbol_uses_obj (Lisp_Object symbol, Lisp_Object obj)
7149 struct Lisp_Symbol *sym = XSYMBOL (symbol);
7150 Lisp_Object val = find_symbol_value (symbol);
7151 return (EQ (val, obj)
7152 || EQ (sym->function, obj)
7153 || (!NILP (sym->function)
7154 && COMPILEDP (sym->function)
7155 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
7156 || (!NILP (val)
7157 && COMPILEDP (val)
7158 && EQ (AREF (val, COMPILED_BYTECODE), obj)));
7161 /* Find at most FIND_MAX symbols which have OBJ as their value or
7162 function. This is used in gdbinit's `xwhichsymbols' command. */
7164 Lisp_Object
7165 which_symbols (Lisp_Object obj, EMACS_INT find_max)
7167 struct symbol_block *sblk;
7168 ptrdiff_t gc_count = inhibit_garbage_collection ();
7169 Lisp_Object found = Qnil;
7171 if (! DEADP (obj))
7173 for (int i = 0; i < ARRAYELTS (lispsym); i++)
7175 Lisp_Object sym = builtin_lisp_symbol (i);
7176 if (symbol_uses_obj (sym, obj))
7178 found = Fcons (sym, found);
7179 if (--find_max == 0)
7180 goto out;
7184 for (sblk = symbol_block; sblk; sblk = sblk->next)
7186 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
7187 int bn;
7189 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
7191 if (sblk == symbol_block && bn >= symbol_block_index)
7192 break;
7194 Lisp_Object sym = make_lisp_symbol (&aligned_sym->s);
7195 if (symbol_uses_obj (sym, obj))
7197 found = Fcons (sym, found);
7198 if (--find_max == 0)
7199 goto out;
7205 out:
7206 unbind_to (gc_count, Qnil);
7207 return found;
7210 #ifdef SUSPICIOUS_OBJECT_CHECKING
7212 static void *
7213 find_suspicious_object_in_range (void *begin, void *end)
7215 char *begin_a = begin;
7216 char *end_a = end;
7217 int i;
7219 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7221 char *suspicious_object = suspicious_objects[i];
7222 if (begin_a <= suspicious_object && suspicious_object < end_a)
7223 return suspicious_object;
7226 return NULL;
7229 static void
7230 note_suspicious_free (void *ptr)
7232 struct suspicious_free_record *rec;
7234 rec = &suspicious_free_history[suspicious_free_history_index++];
7235 if (suspicious_free_history_index ==
7236 ARRAYELTS (suspicious_free_history))
7238 suspicious_free_history_index = 0;
7241 memset (rec, 0, sizeof (*rec));
7242 rec->suspicious_object = ptr;
7243 backtrace (&rec->backtrace[0], ARRAYELTS (rec->backtrace));
7246 static void
7247 detect_suspicious_free (void *ptr)
7249 int i;
7251 eassert (ptr != NULL);
7253 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7254 if (suspicious_objects[i] == ptr)
7256 note_suspicious_free (ptr);
7257 suspicious_objects[i] = NULL;
7261 #endif /* SUSPICIOUS_OBJECT_CHECKING */
7263 DEFUN ("suspicious-object", Fsuspicious_object, Ssuspicious_object, 1, 1, 0,
7264 doc: /* Return OBJ, maybe marking it for extra scrutiny.
7265 If Emacs is compiled with suspicious object checking, capture
7266 a stack trace when OBJ is freed in order to help track down
7267 garbage collection bugs. Otherwise, do nothing and return OBJ. */)
7268 (Lisp_Object obj)
7270 #ifdef SUSPICIOUS_OBJECT_CHECKING
7271 /* Right now, we care only about vectors. */
7272 if (VECTORLIKEP (obj))
7274 suspicious_objects[suspicious_object_index++] = XVECTOR (obj);
7275 if (suspicious_object_index == ARRAYELTS (suspicious_objects))
7276 suspicious_object_index = 0;
7278 #endif
7279 return obj;
7282 #ifdef ENABLE_CHECKING
7284 bool suppress_checking;
7286 void
7287 die (const char *msg, const char *file, int line)
7289 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
7290 file, line, msg);
7291 terminate_due_to_signal (SIGABRT, INT_MAX);
7294 #endif /* ENABLE_CHECKING */
7296 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
7298 /* Stress alloca with inconveniently sized requests and check
7299 whether all allocated areas may be used for Lisp_Object. */
7301 NO_INLINE static void
7302 verify_alloca (void)
7304 int i;
7305 enum { ALLOCA_CHECK_MAX = 256 };
7306 /* Start from size of the smallest Lisp object. */
7307 for (i = sizeof (struct Lisp_Cons); i <= ALLOCA_CHECK_MAX; i++)
7309 void *ptr = alloca (i);
7310 make_lisp_ptr (ptr, Lisp_Cons);
7314 #else /* not ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7316 #define verify_alloca() ((void) 0)
7318 #endif /* ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7320 /* Initialization. */
7322 void
7323 init_alloc_once (void)
7325 /* Even though Qt's contents are not set up, its address is known. */
7326 Vpurify_flag = Qt;
7328 purebeg = PUREBEG;
7329 pure_size = PURESIZE;
7331 verify_alloca ();
7332 init_finalizer_list (&finalizers);
7333 init_finalizer_list (&doomed_finalizers);
7335 mem_init ();
7336 Vdead = make_pure_string ("DEAD", 4, 4, 0);
7338 #ifdef DOUG_LEA_MALLOC
7339 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
7340 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
7341 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
7342 #endif
7343 init_strings ();
7344 init_vectors ();
7346 refill_memory_reserve ();
7347 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
7350 void
7351 init_alloc (void)
7353 Vgc_elapsed = make_float (0.0);
7354 gcs_done = 0;
7356 #if USE_VALGRIND
7357 valgrind_p = RUNNING_ON_VALGRIND != 0;
7358 #endif
7361 void
7362 syms_of_alloc (void)
7364 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
7365 doc: /* Number of bytes of consing between garbage collections.
7366 Garbage collection can happen automatically once this many bytes have been
7367 allocated since the last garbage collection. All data types count.
7369 Garbage collection happens automatically only when `eval' is called.
7371 By binding this temporarily to a large number, you can effectively
7372 prevent garbage collection during a part of the program.
7373 See also `gc-cons-percentage'. */);
7375 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
7376 doc: /* Portion of the heap used for allocation.
7377 Garbage collection can happen automatically once this portion of the heap
7378 has been allocated since the last garbage collection.
7379 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
7380 Vgc_cons_percentage = make_float (0.1);
7382 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
7383 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
7385 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
7386 doc: /* Number of cons cells that have been consed so far. */);
7388 DEFVAR_INT ("floats-consed", floats_consed,
7389 doc: /* Number of floats that have been consed so far. */);
7391 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
7392 doc: /* Number of vector cells that have been consed so far. */);
7394 DEFVAR_INT ("symbols-consed", symbols_consed,
7395 doc: /* Number of symbols that have been consed so far. */);
7396 symbols_consed += ARRAYELTS (lispsym);
7398 DEFVAR_INT ("string-chars-consed", string_chars_consed,
7399 doc: /* Number of string characters that have been consed so far. */);
7401 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
7402 doc: /* Number of miscellaneous objects that have been consed so far.
7403 These include markers and overlays, plus certain objects not visible
7404 to users. */);
7406 DEFVAR_INT ("intervals-consed", intervals_consed,
7407 doc: /* Number of intervals that have been consed so far. */);
7409 DEFVAR_INT ("strings-consed", strings_consed,
7410 doc: /* Number of strings that have been consed so far. */);
7412 DEFVAR_LISP ("purify-flag", Vpurify_flag,
7413 doc: /* Non-nil means loading Lisp code in order to dump an executable.
7414 This means that certain objects should be allocated in shared (pure) space.
7415 It can also be set to a hash-table, in which case this table is used to
7416 do hash-consing of the objects allocated to pure space. */);
7418 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
7419 doc: /* Non-nil means display messages at start and end of garbage collection. */);
7420 garbage_collection_messages = 0;
7422 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
7423 doc: /* Hook run after garbage collection has finished. */);
7424 Vpost_gc_hook = Qnil;
7425 DEFSYM (Qpost_gc_hook, "post-gc-hook");
7427 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
7428 doc: /* Precomputed `signal' argument for memory-full error. */);
7429 /* We build this in advance because if we wait until we need it, we might
7430 not be able to allocate the memory to hold it. */
7431 Vmemory_signal_data
7432 = listn (CONSTYPE_PURE, 2, Qerror,
7433 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
7435 DEFVAR_LISP ("memory-full", Vmemory_full,
7436 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
7437 Vmemory_full = Qnil;
7439 DEFSYM (Qconses, "conses");
7440 DEFSYM (Qsymbols, "symbols");
7441 DEFSYM (Qmiscs, "miscs");
7442 DEFSYM (Qstrings, "strings");
7443 DEFSYM (Qvectors, "vectors");
7444 DEFSYM (Qfloats, "floats");
7445 DEFSYM (Qintervals, "intervals");
7446 DEFSYM (Qbuffers, "buffers");
7447 DEFSYM (Qstring_bytes, "string-bytes");
7448 DEFSYM (Qvector_slots, "vector-slots");
7449 DEFSYM (Qheap, "heap");
7450 DEFSYM (QAutomatic_GC, "Automatic GC");
7452 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
7453 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
7455 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
7456 doc: /* Accumulated time elapsed in garbage collections.
7457 The time is in seconds as a floating point value. */);
7458 DEFVAR_INT ("gcs-done", gcs_done,
7459 doc: /* Accumulated number of garbage collections done. */);
7461 defsubr (&Scons);
7462 defsubr (&Slist);
7463 defsubr (&Svector);
7464 defsubr (&Sbool_vector);
7465 defsubr (&Smake_byte_code);
7466 defsubr (&Smake_list);
7467 defsubr (&Smake_vector);
7468 defsubr (&Smake_string);
7469 defsubr (&Smake_bool_vector);
7470 defsubr (&Smake_symbol);
7471 defsubr (&Smake_marker);
7472 defsubr (&Smake_finalizer);
7473 defsubr (&Spurecopy);
7474 defsubr (&Sgarbage_collect);
7475 defsubr (&Smemory_limit);
7476 defsubr (&Smemory_info);
7477 defsubr (&Smemory_use_counts);
7478 defsubr (&Ssuspicious_object);
7481 /* When compiled with GCC, GDB might say "No enum type named
7482 pvec_type" if we don't have at least one symbol with that type, and
7483 then xbacktrace could fail. Similarly for the other enums and
7484 their values. Some non-GCC compilers don't like these constructs. */
7485 #ifdef __GNUC__
7486 union
7488 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
7489 enum char_table_specials char_table_specials;
7490 enum char_bits char_bits;
7491 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
7492 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
7493 enum Lisp_Bits Lisp_Bits;
7494 enum Lisp_Compiled Lisp_Compiled;
7495 enum maxargs maxargs;
7496 enum MAX_ALLOCA MAX_ALLOCA;
7497 enum More_Lisp_Bits More_Lisp_Bits;
7498 enum pvec_type pvec_type;
7499 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
7500 #endif /* __GNUC__ */