Define with-new-thread macro.
[emacs.git] / lisp / calc / calc-arith.el
blob6de2408050ac7b0001f814c551cc65f764bc8cfa
1 ;;; calc-arith.el --- arithmetic functions for Calc
3 ;; Copyright (C) 1990, 1991, 1992, 1993, 2001, 2002, 2003, 2004,
4 ;; 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
6 ;; Author: David Gillespie <daveg@synaptics.com>
7 ;; Maintainer: Jay Belanger <jay.p.belanger@gmail.com>
9 ;; This file is part of GNU Emacs.
11 ;; GNU Emacs is free software: you can redistribute it and/or modify
12 ;; it under the terms of the GNU General Public License as published by
13 ;; the Free Software Foundation, either version 3 of the License, or
14 ;; (at your option) any later version.
16 ;; GNU Emacs is distributed in the hope that it will be useful,
17 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
18 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 ;; GNU General Public License for more details.
21 ;; You should have received a copy of the GNU General Public License
22 ;; along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>.
24 ;;; Commentary:
26 ;;; Code:
28 ;; This file is autoloaded from calc-ext.el.
30 (require 'calc-ext)
31 (require 'calc-macs)
33 ;;; The following lists are not exhaustive.
34 (defvar math-scalar-functions '(calcFunc-det
35 calcFunc-cnorm calcFunc-rnorm
36 calcFunc-vlen calcFunc-vcount
37 calcFunc-vsum calcFunc-vprod
38 calcFunc-vmin calcFunc-vmax))
40 (defvar math-nonscalar-functions '(vec calcFunc-idn calcFunc-diag
41 calcFunc-cvec calcFunc-index
42 calcFunc-trn
43 | calcFunc-append
44 calcFunc-cons calcFunc-rcons
45 calcFunc-tail calcFunc-rhead))
47 (defvar math-scalar-if-args-functions '(+ - * / neg))
49 (defvar math-real-functions '(calcFunc-arg
50 calcFunc-re calcFunc-im
51 calcFunc-floor calcFunc-ceil
52 calcFunc-trunc calcFunc-round
53 calcFunc-rounde calcFunc-roundu
54 calcFunc-ffloor calcFunc-fceil
55 calcFunc-ftrunc calcFunc-fround
56 calcFunc-frounde calcFunc-froundu))
58 (defvar math-positive-functions '())
60 (defvar math-nonnegative-functions '(calcFunc-cnorm calcFunc-rnorm
61 calcFunc-vlen calcFunc-vcount))
63 (defvar math-real-scalar-functions '(% calcFunc-idiv calcFunc-abs
64 calcFunc-choose calcFunc-perm
65 calcFunc-eq calcFunc-neq
66 calcFunc-lt calcFunc-gt
67 calcFunc-leq calcFunc-geq
68 calcFunc-lnot
69 calcFunc-max calcFunc-min))
71 (defvar math-real-if-arg-functions '(calcFunc-sin calcFunc-cos
72 calcFunc-tan calcFunc-sec
73 calcFunc-csc calcFunc-cot
74 calcFunc-arctan
75 calcFunc-sinh calcFunc-cosh
76 calcFunc-tanh calcFunc-sech
77 calcFunc-csch calcFunc-coth
78 calcFunc-exp
79 calcFunc-gamma calcFunc-fact))
81 (defvar math-integer-functions '(calcFunc-idiv
82 calcFunc-isqrt calcFunc-ilog
83 calcFunc-vlen calcFunc-vcount))
85 (defvar math-num-integer-functions '())
87 (defvar math-rounding-functions '(calcFunc-floor
88 calcFunc-ceil
89 calcFunc-round calcFunc-trunc
90 calcFunc-rounde calcFunc-roundu))
92 (defvar math-float-rounding-functions '(calcFunc-ffloor
93 calcFunc-fceil
94 calcFunc-fround calcFunc-ftrunc
95 calcFunc-frounde calcFunc-froundu))
97 (defvar math-integer-if-args-functions '(+ - * % neg calcFunc-abs
98 calcFunc-min calcFunc-max
99 calcFunc-choose calcFunc-perm))
102 ;;; Arithmetic.
104 (defun calc-min (arg)
105 (interactive "P")
106 (calc-slow-wrapper
107 (calc-binary-op "min" 'calcFunc-min arg '(var inf var-inf))))
109 (defun calc-max (arg)
110 (interactive "P")
111 (calc-slow-wrapper
112 (calc-binary-op "max" 'calcFunc-max arg '(neg (var inf var-inf)))))
114 (defun calc-abs (arg)
115 (interactive "P")
116 (calc-slow-wrapper
117 (calc-unary-op "abs" 'calcFunc-abs arg)))
120 (defun calc-idiv (arg)
121 (interactive "P")
122 (calc-slow-wrapper
123 (calc-binary-op "\\" 'calcFunc-idiv arg 1)))
126 (defun calc-floor (arg)
127 (interactive "P")
128 (calc-slow-wrapper
129 (if (calc-is-inverse)
130 (if (calc-is-hyperbolic)
131 (calc-unary-op "ceil" 'calcFunc-fceil arg)
132 (calc-unary-op "ceil" 'calcFunc-ceil arg))
133 (if (calc-is-hyperbolic)
134 (calc-unary-op "flor" 'calcFunc-ffloor arg)
135 (calc-unary-op "flor" 'calcFunc-floor arg)))))
137 (defun calc-ceiling (arg)
138 (interactive "P")
139 (calc-invert-func)
140 (calc-floor arg))
142 (defun calc-round (arg)
143 (interactive "P")
144 (calc-slow-wrapper
145 (if (calc-is-inverse)
146 (if (calc-is-hyperbolic)
147 (calc-unary-op "trnc" 'calcFunc-ftrunc arg)
148 (calc-unary-op "trnc" 'calcFunc-trunc arg))
149 (if (calc-is-hyperbolic)
150 (calc-unary-op "rond" 'calcFunc-fround arg)
151 (calc-unary-op "rond" 'calcFunc-round arg)))))
153 (defun calc-trunc (arg)
154 (interactive "P")
155 (calc-invert-func)
156 (calc-round arg))
158 (defun calc-mant-part (arg)
159 (interactive "P")
160 (calc-slow-wrapper
161 (calc-unary-op "mant" 'calcFunc-mant arg)))
163 (defun calc-xpon-part (arg)
164 (interactive "P")
165 (calc-slow-wrapper
166 (calc-unary-op "xpon" 'calcFunc-xpon arg)))
168 (defun calc-scale-float (arg)
169 (interactive "P")
170 (calc-slow-wrapper
171 (calc-binary-op "scal" 'calcFunc-scf arg)))
173 (defun calc-abssqr (arg)
174 (interactive "P")
175 (calc-slow-wrapper
176 (calc-unary-op "absq" 'calcFunc-abssqr arg)))
178 (defun calc-sign (arg)
179 (interactive "P")
180 (calc-slow-wrapper
181 (calc-unary-op "sign" 'calcFunc-sign arg)))
183 (defun calc-increment (arg)
184 (interactive "p")
185 (calc-wrapper
186 (calc-enter-result 1 "incr" (list 'calcFunc-incr (calc-top-n 1) arg))))
188 (defun calc-decrement (arg)
189 (interactive "p")
190 (calc-wrapper
191 (calc-enter-result 1 "decr" (list 'calcFunc-decr (calc-top-n 1) arg))))
194 (defun math-abs-approx (a)
195 (cond ((Math-negp a)
196 (math-neg a))
197 ((Math-anglep a)
199 ((eq (car a) 'cplx)
200 (math-add (math-abs (nth 1 a)) (math-abs (nth 2 a))))
201 ((eq (car a) 'polar)
202 (nth 1 a))
203 ((eq (car a) 'sdev)
204 (math-abs-approx (nth 1 a)))
205 ((eq (car a) 'intv)
206 (math-max (math-abs (nth 2 a)) (math-abs (nth 3 a))))
207 ((eq (car a) 'date)
209 ((eq (car a) 'vec)
210 (math-reduce-vec 'math-add-abs-approx a))
211 ((eq (car a) 'calcFunc-abs)
212 (car a))
213 (t a)))
215 (defun math-add-abs-approx (a b)
216 (math-add (math-abs-approx a) (math-abs-approx b)))
219 ;;;; Declarations.
221 (defvar math-decls-cache-tag nil)
222 (defvar math-decls-cache nil)
223 (defvar math-decls-all nil)
225 ;;; Math-decls-cache is an a-list where each entry is a list of the form:
226 ;;; (VAR TYPES RANGE)
227 ;;; where VAR is a variable name (with var- prefix) or function name;
228 ;;; TYPES is a list of type symbols (any, int, frac, ...)
229 ;;; RANGE is a sorted vector of intervals describing the range.
231 (defvar math-super-types
232 '((int numint rat real number)
233 (numint real number)
234 (frac rat real number)
235 (rat real number)
236 (float real number)
237 (real number)
238 (number)
239 (scalar)
240 (sqmatrix matrix vector)
241 (matrix vector)
242 (vector)
243 (const)))
245 (defun math-setup-declarations ()
246 (or (eq math-decls-cache-tag (calc-var-value 'var-Decls))
247 (let ((p (calc-var-value 'var-Decls))
248 vec type range)
249 (setq math-decls-cache-tag p
250 math-decls-cache nil)
251 (and (eq (car-safe p) 'vec)
252 (while (setq p (cdr p))
253 (and (eq (car-safe (car p)) 'vec)
254 (setq vec (nth 2 (car p)))
255 (condition-case err
256 (let ((v (nth 1 (car p))))
257 (setq type nil range nil)
258 (or (eq (car-safe vec) 'vec)
259 (setq vec (list 'vec vec)))
260 (while (and (setq vec (cdr vec))
261 (not (Math-objectp (car vec))))
262 (and (eq (car-safe (car vec)) 'var)
263 (let ((st (assq (nth 1 (car vec))
264 math-super-types)))
265 (cond (st (setq type (append type st)))
266 ((eq (nth 1 (car vec)) 'pos)
267 (setq type (append type
268 '(real number))
269 range
270 '(intv 1 0 (var inf var-inf))))
271 ((eq (nth 1 (car vec)) 'nonneg)
272 (setq type (append type
273 '(real number))
274 range
275 '(intv 3 0
276 (var inf var-inf))))))))
277 (if vec
278 (setq type (append type '(real number))
279 range (math-prepare-set (cons 'vec vec))))
280 (setq type (list type range))
281 (or (eq (car-safe v) 'vec)
282 (setq v (list 'vec v)))
283 (while (setq v (cdr v))
284 (if (or (eq (car-safe (car v)) 'var)
285 (not (Math-primp (car v))))
286 (setq math-decls-cache
287 (cons (cons (if (eq (car (car v)) 'var)
288 (nth 2 (car v))
289 (car (car v)))
290 type)
291 math-decls-cache)))))
292 (error nil)))))
293 (setq math-decls-all (assq 'var-All math-decls-cache)))))
295 (defun math-known-scalarp (a &optional assume-scalar)
296 (math-setup-declarations)
297 (if (if calc-matrix-mode
298 (eq calc-matrix-mode 'scalar)
299 assume-scalar)
300 (not (math-check-known-matrixp a))
301 (math-check-known-scalarp a)))
303 (defun math-known-matrixp (a)
304 (and (not (Math-scalarp a))
305 (not (math-known-scalarp a t))))
307 (defun math-known-square-matrixp (a)
308 (and (math-known-matrixp a)
309 (math-check-known-square-matrixp a)))
311 ;;; Try to prove that A is a scalar (i.e., a non-vector).
312 (defun math-check-known-scalarp (a)
313 (cond ((Math-objectp a) t)
314 ((memq (car a) math-scalar-functions)
316 ((memq (car a) math-real-scalar-functions)
318 ((memq (car a) math-scalar-if-args-functions)
319 (while (and (setq a (cdr a))
320 (math-check-known-scalarp (car a))))
321 (null a))
322 ((eq (car a) '^)
323 (math-check-known-scalarp (nth 1 a)))
324 ((math-const-var a) t)
326 (let ((decl (if (eq (car a) 'var)
327 (or (assq (nth 2 a) math-decls-cache)
328 math-decls-all)
329 (assq (car a) math-decls-cache)))
330 val)
331 (cond
332 ((memq 'scalar (nth 1 decl))
334 ((and (eq (car a) 'var)
335 (symbolp (nth 2 a))
336 (boundp (nth 2 a))
337 (setq val (symbol-value (nth 2 a))))
338 (math-check-known-scalarp val))
340 nil))))))
342 ;;; Try to prove that A is *not* a scalar.
343 (defun math-check-known-matrixp (a)
344 (cond ((Math-objectp a) nil)
345 ((memq (car a) math-nonscalar-functions)
347 ((memq (car a) math-scalar-if-args-functions)
348 (while (and (setq a (cdr a))
349 (not (math-check-known-matrixp (car a)))))
351 ((eq (car a) '^)
352 (math-check-known-matrixp (nth 1 a)))
353 ((math-const-var a) nil)
355 (let ((decl (if (eq (car a) 'var)
356 (or (assq (nth 2 a) math-decls-cache)
357 math-decls-all)
358 (assq (car a) math-decls-cache)))
359 val)
360 (cond
361 ((memq 'matrix (nth 1 decl))
363 ((and (eq (car a) 'var)
364 (symbolp (nth 2 a))
365 (boundp (nth 2 a))
366 (setq val (symbol-value (nth 2 a))))
367 (math-check-known-matrixp val))
369 nil))))))
371 ;;; Given that A is a matrix, try to prove that it is a square matrix.
372 (defun math-check-known-square-matrixp (a)
373 (cond ((math-square-matrixp a)
375 ((eq (car-safe a) '^)
376 (math-check-known-square-matrixp (nth 1 a)))
377 ((or
378 (eq (car-safe a) '*)
379 (eq (car-safe a) '+)
380 (eq (car-safe a) '-))
381 (and
382 (math-check-known-square-matrixp (nth 1 a))
383 (math-check-known-square-matrixp (nth 2 a))))
385 (let ((decl (if (eq (car a) 'var)
386 (or (assq (nth 2 a) math-decls-cache)
387 math-decls-all)
388 (assq (car a) math-decls-cache)))
389 val)
390 (cond
391 ((memq 'sqmatrix (nth 1 decl))
393 ((and (eq (car a) 'var)
394 (boundp (nth 2 a))
395 (setq val (symbol-value (nth 2 a))))
396 (math-check-known-square-matrixp val))
397 ((and (or
398 (integerp calc-matrix-mode)
399 (eq calc-matrix-mode 'sqmatrix))
400 (eq (car-safe a) 'var))
402 ((memq 'matrix (nth 1 decl))
403 nil)
405 nil))))))
407 ;;; Try to prove that A is a real (i.e., not complex).
408 (defun math-known-realp (a)
409 (< (math-possible-signs a) 8))
411 ;;; Try to prove that A is real and positive.
412 (defun math-known-posp (a)
413 (eq (math-possible-signs a) 4))
415 ;;; Try to prove that A is real and negative.
416 (defun math-known-negp (a)
417 (eq (math-possible-signs a) 1))
419 ;;; Try to prove that A is real and nonnegative.
420 (defun math-known-nonnegp (a)
421 (memq (math-possible-signs a) '(2 4 6)))
423 ;;; Try to prove that A is real and nonpositive.
424 (defun math-known-nonposp (a)
425 (memq (math-possible-signs a) '(1 2 3)))
427 ;;; Try to prove that A is nonzero.
428 (defun math-known-nonzerop (a)
429 (memq (math-possible-signs a) '(1 4 5 8 9 12 13)))
431 ;;; Return true if A is negative, or looks negative but we don't know.
432 (defun math-guess-if-neg (a)
433 (let ((sgn (math-possible-signs a)))
434 (if (memq sgn '(1 3))
436 (if (memq sgn '(2 4 6))
438 (math-looks-negp a)))))
440 ;;; Find the possible signs of A, assuming A is a number of some kind.
441 ;;; Returns an integer with bits: 1 may be negative,
442 ;;; 2 may be zero,
443 ;;; 4 may be positive,
444 ;;; 8 may be nonreal.
446 (defun math-possible-signs (a &optional origin)
447 (cond ((Math-objectp a)
448 (if origin (setq a (math-sub a origin)))
449 (cond ((Math-posp a) 4)
450 ((Math-negp a) 1)
451 ((Math-zerop a) 2)
452 ((eq (car a) 'intv)
453 (cond
454 ((math-known-posp (nth 2 a)) 4)
455 ((math-known-negp (nth 3 a)) 1)
456 ((Math-zerop (nth 2 a)) 6)
457 ((Math-zerop (nth 3 a)) 3)
458 (t 7)))
459 ((eq (car a) 'sdev)
460 (if (math-known-realp (nth 1 a)) 7 15))
461 (t 8)))
462 ((memq (car a) '(+ -))
463 (cond ((Math-realp (nth 1 a))
464 (if (eq (car a) '-)
465 (math-neg-signs
466 (math-possible-signs (nth 2 a)
467 (if origin
468 (math-add origin (nth 1 a))
469 (nth 1 a))))
470 (math-possible-signs (nth 2 a)
471 (if origin
472 (math-sub origin (nth 1 a))
473 (math-neg (nth 1 a))))))
474 ((Math-realp (nth 2 a))
475 (let ((org (if (eq (car a) '-)
476 (nth 2 a)
477 (math-neg (nth 2 a)))))
478 (math-possible-signs (nth 1 a)
479 (if origin
480 (math-add origin org)
481 org))))
483 (let ((s1 (math-possible-signs (nth 1 a) origin))
484 (s2 (math-possible-signs (nth 2 a))))
485 (if (eq (car a) '-) (setq s2 (math-neg-signs s2)))
486 (cond ((eq s1 s2) s1)
487 ((eq s1 2) s2)
488 ((eq s2 2) s1)
489 ((>= s1 8) 15)
490 ((>= s2 8) 15)
491 ((and (eq s1 4) (eq s2 6)) 4)
492 ((and (eq s2 4) (eq s1 6)) 4)
493 ((and (eq s1 1) (eq s2 3)) 1)
494 ((and (eq s2 1) (eq s1 3)) 1)
495 (t 7))))))
496 ((eq (car a) 'neg)
497 (math-neg-signs (math-possible-signs
498 (nth 1 a)
499 (and origin (math-neg origin)))))
500 ((and origin (Math-zerop origin) (setq origin nil)
501 nil))
502 ((and (or (eq (car a) '*)
503 (and (eq (car a) '/) origin))
504 (Math-realp (nth 1 a)))
505 (let ((s (if (eq (car a) '*)
506 (if (Math-zerop (nth 1 a))
507 (math-possible-signs 0 origin)
508 (math-possible-signs (nth 2 a)
509 (math-div (or origin 0)
510 (nth 1 a))))
511 (math-neg-signs
512 (math-possible-signs (nth 2 a)
513 (math-div (nth 1 a)
514 origin))))))
515 (if (Math-negp (nth 1 a)) (math-neg-signs s) s)))
516 ((and (memq (car a) '(* /)) (Math-realp (nth 2 a)))
517 (let ((s (math-possible-signs (nth 1 a)
518 (if (eq (car a) '*)
519 (math-mul (or origin 0) (nth 2 a))
520 (math-div (or origin 0) (nth 2 a))))))
521 (if (Math-negp (nth 2 a)) (math-neg-signs s) s)))
522 ((eq (car a) 'vec)
523 (let ((signs 0))
524 (while (and (setq a (cdr a)) (< signs 15))
525 (setq signs (logior signs (math-possible-signs
526 (car a) origin))))
527 signs))
528 (t (let ((sign
529 (cond
530 ((memq (car a) '(* /))
531 (let ((s1 (math-possible-signs (nth 1 a)))
532 (s2 (math-possible-signs (nth 2 a))))
533 (cond ((>= s1 8) 15)
534 ((>= s2 8) 15)
535 ((and (eq (car a) '/) (memq s2 '(2 3 6 7))) 15)
537 (logior (if (memq s1 '(4 5 6 7)) s2 0)
538 (if (memq s1 '(2 3 6 7)) 2 0)
539 (if (memq s1 '(1 3 5 7))
540 (math-neg-signs s2) 0))))))
541 ((eq (car a) '^)
542 (let ((s1 (math-possible-signs (nth 1 a)))
543 (s2 (math-possible-signs (nth 2 a))))
544 (cond ((>= s1 8) 15)
545 ((>= s2 8) 15)
546 ((eq s1 4) 4)
547 ((eq s1 2) (if (eq s2 4) 2 15))
548 ((eq s2 2) (if (memq s1 '(1 5)) 2 15))
549 ((Math-integerp (nth 2 a))
550 (if (math-evenp (nth 2 a))
551 (if (memq s1 '(3 6 7)) 6 4)
552 s1))
553 ((eq s1 6) (if (eq s2 4) 6 15))
554 (t 7))))
555 ((eq (car a) '%)
556 (let ((s2 (math-possible-signs (nth 2 a))))
557 (cond ((>= s2 8) 7)
558 ((eq s2 2) 2)
559 ((memq s2 '(4 6)) 6)
560 ((memq s2 '(1 3)) 3)
561 (t 7))))
562 ((and (memq (car a) '(calcFunc-abs calcFunc-abssqr))
563 (= (length a) 2))
564 (let ((s1 (math-possible-signs (nth 1 a))))
565 (cond ((eq s1 2) 2)
566 ((memq s1 '(1 4 5)) 4)
567 (t 6))))
568 ((and (eq (car a) 'calcFunc-exp) (= (length a) 2))
569 (let ((s1 (math-possible-signs (nth 1 a))))
570 (if (>= s1 8)
572 (if (or (not origin) (math-negp origin))
574 (setq origin (math-sub (or origin 0) 1))
575 (if (Math-zerop origin) (setq origin nil))
576 s1))))
577 ((or (and (memq (car a) '(calcFunc-ln calcFunc-log10))
578 (= (length a) 2))
579 (and (eq (car a) 'calcFunc-log)
580 (= (length a) 3)
581 (math-known-posp (nth 2 a))))
582 (if (math-known-nonnegp (nth 1 a))
583 (math-possible-signs (nth 1 a) 1)
584 15))
585 ((and (eq (car a) 'calcFunc-sqrt) (= (length a) 2))
586 (let ((s1 (math-possible-signs (nth 1 a))))
587 (if (memq s1 '(2 4 6)) s1 15)))
588 ((memq (car a) math-nonnegative-functions) 6)
589 ((memq (car a) math-positive-functions) 4)
590 ((memq (car a) math-real-functions) 7)
591 ((memq (car a) math-real-scalar-functions) 7)
592 ((and (memq (car a) math-real-if-arg-functions)
593 (= (length a) 2))
594 (if (math-known-realp (nth 1 a)) 7 15)))))
595 (cond (sign
596 (if origin
597 (+ (logand sign 8)
598 (if (Math-posp origin)
599 (if (memq sign '(1 2 3 8 9 10 11)) 1 7)
600 (if (memq sign '(2 4 6 8 10 12 14)) 4 7)))
601 sign))
602 ((math-const-var a)
603 (cond ((eq (nth 2 a) 'var-pi)
604 (if origin
605 (math-possible-signs (math-pi) origin)
607 ((eq (nth 2 a) 'var-e)
608 (if origin
609 (math-possible-signs (math-e) origin)
611 ((eq (nth 2 a) 'var-inf) 4)
612 ((eq (nth 2 a) 'var-uinf) 13)
613 ((eq (nth 2 a) 'var-i) 8)
614 (t 15)))
616 (math-setup-declarations)
617 (let ((decl (if (eq (car a) 'var)
618 (or (assq (nth 2 a) math-decls-cache)
619 math-decls-all)
620 (assq (car a) math-decls-cache))))
621 (if (and origin
622 (memq 'int (nth 1 decl))
623 (not (Math-num-integerp origin)))
625 (if (nth 2 decl)
626 (math-possible-signs (nth 2 decl) origin)
627 (if (memq 'real (nth 1 decl))
629 15))))))))))
631 (defun math-neg-signs (s1)
632 (if (>= s1 8)
633 (+ 8 (math-neg-signs (- s1 8)))
634 (+ (if (memq s1 '(1 3 5 7)) 4 0)
635 (if (memq s1 '(2 3 6 7)) 2 0)
636 (if (memq s1 '(4 5 6 7)) 1 0))))
639 ;;; Try to prove that A is an integer.
640 (defun math-known-integerp (a)
641 (eq (math-possible-types a) 1))
643 (defun math-known-num-integerp (a)
644 (<= (math-possible-types a t) 3))
646 (defun math-known-imagp (a)
647 (= (math-possible-types a) 16))
650 ;;; Find the possible types of A.
651 ;;; Returns an integer with bits: 1 may be integer.
652 ;;; 2 may be integer-valued float.
653 ;;; 4 may be fraction.
654 ;;; 8 may be non-integer-valued float.
655 ;;; 16 may be imaginary.
656 ;;; 32 may be non-real, non-imaginary.
657 ;;; Real infinities count as integers for the purposes of this function.
658 (defun math-possible-types (a &optional num)
659 (cond ((Math-objectp a)
660 (cond ((Math-integerp a) (if num 3 1))
661 ((Math-messy-integerp a) (if num 3 2))
662 ((eq (car a) 'frac) (if num 12 4))
663 ((eq (car a) 'float) (if num 12 8))
664 ((eq (car a) 'intv)
665 (if (equal (nth 2 a) (nth 3 a))
666 (math-possible-types (nth 2 a))
667 15))
668 ((eq (car a) 'sdev)
669 (if (math-known-realp (nth 1 a)) 15 63))
670 ((eq (car a) 'cplx)
671 (if (math-zerop (nth 1 a)) 16 32))
672 ((eq (car a) 'polar)
673 (if (or (Math-equal (nth 2 a) (math-quarter-circle nil))
674 (Math-equal (nth 2 a)
675 (math-neg (math-quarter-circle nil))))
676 16 48))
677 (t 63)))
678 ((eq (car a) '/)
679 (let* ((t1 (math-possible-types (nth 1 a) num))
680 (t2 (math-possible-types (nth 2 a) num))
681 (t12 (logior t1 t2)))
682 (if (< t12 16)
683 (if (> (logand t12 10) 0)
685 (if (or (= t1 4) (= t2 4) calc-prefer-frac)
687 15))
688 (if (< t12 32)
689 (if (= t1 16)
690 (if (= t2 16) 15
691 (if (< t2 16) 16 31))
692 (if (= t2 16)
693 (if (< t1 16) 16 31)
694 31))
695 63))))
696 ((memq (car a) '(+ - * %))
697 (let* ((t1 (math-possible-types (nth 1 a) num))
698 (t2 (math-possible-types (nth 2 a) num))
699 (t12 (logior t1 t2)))
700 (if (eq (car a) '%)
701 (setq t1 (logand t1 15) t2 (logand t2 15) t12 (logand t12 15)))
702 (if (< t12 16)
703 (let ((mask (if (<= t12 3)
705 (if (and (or (and (<= t1 3) (= (logand t2 3) 0))
706 (and (<= t2 3) (= (logand t1 3) 0)))
707 (memq (car a) '(+ -)))
709 5))))
710 (if num
711 (* mask 3)
712 (logior (if (and (> (logand t1 5) 0) (> (logand t2 5) 0))
713 mask 0)
714 (if (> (logand t12 10) 0)
715 (* mask 2) 0))))
716 (if (< t12 32)
717 (if (eq (car a) '*)
718 (if (= t1 16)
719 (if (= t2 16) 15
720 (if (< t2 16) 16 31))
721 (if (= t2 16)
722 (if (< t1 16) 16 31)
723 31))
724 (if (= t12 16) 16
725 (if (or (and (= t1 16) (< t2 16))
726 (and (= t2 16) (< t1 16))) 32 63)))
727 63))))
728 ((eq (car a) 'neg)
729 (math-possible-types (nth 1 a)))
730 ((eq (car a) '^)
731 (let* ((t1 (math-possible-types (nth 1 a) num))
732 (t2 (math-possible-types (nth 2 a) num))
733 (t12 (logior t1 t2)))
734 (if (and (<= t2 3) (math-known-nonnegp (nth 2 a)) (< t1 16))
735 (let ((mask (logior (if (> (logand t1 3) 0) 1 0)
736 (logand t1 4)
737 (if (> (logand t1 12) 0) 5 0))))
738 (if num
739 (* mask 3)
740 (logior (if (and (> (logand t1 5) 0) (> (logand t2 5) 0))
741 mask 0)
742 (if (> (logand t12 10) 0)
743 (* mask 2) 0))))
744 (if (and (math-known-nonnegp (nth 1 a))
745 (math-known-posp (nth 2 a)))
747 63))))
748 ((eq (car a) 'calcFunc-sqrt)
749 (let ((t1 (math-possible-signs (nth 1 a))))
750 (logior (if (> (logand t1 2) 0) 3 0)
751 (if (> (logand t1 1) 0) 16 0)
752 (if (> (logand t1 4) 0) 15 0)
753 (if (> (logand t1 8) 0) 32 0))))
754 ((eq (car a) 'vec)
755 (let ((types 0))
756 (while (and (setq a (cdr a)) (< types 63))
757 (setq types (logior types (math-possible-types (car a) t))))
758 types))
759 ((or (memq (car a) math-integer-functions)
760 (and (memq (car a) math-rounding-functions)
761 (math-known-nonnegp (or (nth 2 a) 0))))
763 ((or (memq (car a) math-num-integer-functions)
764 (and (memq (car a) math-float-rounding-functions)
765 (math-known-nonnegp (or (nth 2 a) 0))))
767 ((eq (car a) 'calcFunc-frac)
769 ((and (eq (car a) 'calcFunc-float) (= (length a) 2))
770 (let ((t1 (math-possible-types (nth 1 a))))
771 (logior (if (> (logand t1 3) 0) 2 0)
772 (if (> (logand t1 12) 0) 8 0)
773 (logand t1 48))))
774 ((and (memq (car a) '(calcFunc-abs calcFunc-abssqr))
775 (= (length a) 2))
776 (let ((t1 (math-possible-types (nth 1 a))))
777 (if (>= t1 16)
779 t1)))
780 ((math-const-var a)
781 (cond ((memq (nth 2 a) '(var-e var-pi var-phi var-gamma)) 8)
782 ((eq (nth 2 a) 'var-inf) 1)
783 ((eq (nth 2 a) 'var-i) 16)
784 (t 63)))
786 (math-setup-declarations)
787 (let ((decl (if (eq (car a) 'var)
788 (or (assq (nth 2 a) math-decls-cache)
789 math-decls-all)
790 (assq (car a) math-decls-cache))))
791 (cond ((memq 'int (nth 1 decl))
793 ((memq 'numint (nth 1 decl))
795 ((memq 'frac (nth 1 decl))
797 ((memq 'rat (nth 1 decl))
799 ((memq 'float (nth 1 decl))
801 ((nth 2 decl)
802 (math-possible-types (nth 2 decl)))
803 ((memq 'real (nth 1 decl))
805 (t 63))))))
807 (defun math-known-evenp (a)
808 (cond ((Math-integerp a)
809 (math-evenp a))
810 ((Math-messy-integerp a)
811 (or (> (nth 2 a) 0)
812 (math-evenp (math-trunc a))))
813 ((eq (car a) '*)
814 (if (math-known-evenp (nth 1 a))
815 (math-known-num-integerp (nth 2 a))
816 (if (math-known-num-integerp (nth 1 a))
817 (math-known-evenp (nth 2 a)))))
818 ((memq (car a) '(+ -))
819 (or (and (math-known-evenp (nth 1 a))
820 (math-known-evenp (nth 2 a)))
821 (and (math-known-oddp (nth 1 a))
822 (math-known-oddp (nth 2 a)))))
823 ((eq (car a) 'neg)
824 (math-known-evenp (nth 1 a)))))
826 (defun math-known-oddp (a)
827 (cond ((Math-integerp a)
828 (math-oddp a))
829 ((Math-messy-integerp a)
830 (and (<= (nth 2 a) 0)
831 (math-oddp (math-trunc a))))
832 ((memq (car a) '(+ -))
833 (or (and (math-known-evenp (nth 1 a))
834 (math-known-oddp (nth 2 a)))
835 (and (math-known-oddp (nth 1 a))
836 (math-known-evenp (nth 2 a)))))
837 ((eq (car a) 'neg)
838 (math-known-oddp (nth 1 a)))))
841 (defun calcFunc-dreal (expr)
842 (let ((types (math-possible-types expr)))
843 (if (< types 16) 1
844 (if (= (logand types 15) 0) 0
845 (math-reject-arg expr 'realp 'quiet)))))
847 (defun calcFunc-dimag (expr)
848 (let ((types (math-possible-types expr)))
849 (if (= types 16) 1
850 (if (= (logand types 16) 0) 0
851 (math-reject-arg expr "Expected an imaginary number")))))
853 (defun calcFunc-dpos (expr)
854 (let ((signs (math-possible-signs expr)))
855 (if (eq signs 4) 1
856 (if (memq signs '(1 2 3)) 0
857 (math-reject-arg expr 'posp 'quiet)))))
859 (defun calcFunc-dneg (expr)
860 (let ((signs (math-possible-signs expr)))
861 (if (eq signs 1) 1
862 (if (memq signs '(2 4 6)) 0
863 (math-reject-arg expr 'negp 'quiet)))))
865 (defun calcFunc-dnonneg (expr)
866 (let ((signs (math-possible-signs expr)))
867 (if (memq signs '(2 4 6)) 1
868 (if (eq signs 1) 0
869 (math-reject-arg expr 'posp 'quiet)))))
871 (defun calcFunc-dnonzero (expr)
872 (let ((signs (math-possible-signs expr)))
873 (if (memq signs '(1 4 5 8 9 12 13)) 1
874 (if (eq signs 2) 0
875 (math-reject-arg expr 'nonzerop 'quiet)))))
877 (defun calcFunc-dint (expr)
878 (let ((types (math-possible-types expr)))
879 (if (= types 1) 1
880 (if (= (logand types 1) 0) 0
881 (math-reject-arg expr 'integerp 'quiet)))))
883 (defun calcFunc-dnumint (expr)
884 (let ((types (math-possible-types expr t)))
885 (if (<= types 3) 1
886 (if (= (logand types 3) 0) 0
887 (math-reject-arg expr 'integerp 'quiet)))))
889 (defun calcFunc-dnatnum (expr)
890 (let ((res (calcFunc-dint expr)))
891 (if (eq res 1)
892 (calcFunc-dnonneg expr)
893 res)))
895 (defun calcFunc-deven (expr)
896 (if (math-known-evenp expr)
898 (if (or (math-known-oddp expr)
899 (= (logand (math-possible-types expr) 3) 0))
901 (math-reject-arg expr "Can't tell if expression is odd or even"))))
903 (defun calcFunc-dodd (expr)
904 (if (math-known-oddp expr)
906 (if (or (math-known-evenp expr)
907 (= (logand (math-possible-types expr) 3) 0))
909 (math-reject-arg expr "Can't tell if expression is odd or even"))))
911 (defun calcFunc-drat (expr)
912 (let ((types (math-possible-types expr)))
913 (if (memq types '(1 4 5)) 1
914 (if (= (logand types 5) 0) 0
915 (math-reject-arg expr "Rational number expected")))))
917 (defun calcFunc-drange (expr)
918 (math-setup-declarations)
919 (let (range)
920 (if (Math-realp expr)
921 (list 'vec expr)
922 (if (eq (car-safe expr) 'intv)
923 expr
924 (if (eq (car-safe expr) 'var)
925 (setq range (nth 2 (or (assq (nth 2 expr) math-decls-cache)
926 math-decls-all)))
927 (setq range (nth 2 (assq (car-safe expr) math-decls-cache))))
928 (if range
929 (math-clean-set (copy-sequence range))
930 (setq range (math-possible-signs expr))
931 (if (< range 8)
932 (aref [(vec)
933 (intv 2 (neg (var inf var-inf)) 0)
934 (vec 0)
935 (intv 3 (neg (var inf var-inf)) 0)
936 (intv 1 0 (var inf var-inf))
937 (vec (intv 2 (neg (var inf var-inf)) 0)
938 (intv 1 0 (var inf var-inf)))
939 (intv 3 0 (var inf var-inf))
940 (intv 3 (neg (var inf var-inf)) (var inf var-inf))] range)
941 (math-reject-arg expr 'realp 'quiet)))))))
943 (defun calcFunc-dscalar (a)
944 (if (math-known-scalarp a) 1
945 (if (math-known-matrixp a) 0
946 (math-reject-arg a 'objectp 'quiet))))
949 ;;;; Arithmetic.
951 (defsubst calcFunc-neg (a)
952 (math-normalize (list 'neg a)))
954 (defun math-neg-fancy (a)
955 (cond ((eq (car a) 'polar)
956 (list 'polar
957 (nth 1 a)
958 (if (math-posp (nth 2 a))
959 (math-sub (nth 2 a) (math-half-circle nil))
960 (math-add (nth 2 a) (math-half-circle nil)))))
961 ((eq (car a) 'mod)
962 (if (math-zerop (nth 1 a))
964 (list 'mod (math-sub (nth 2 a) (nth 1 a)) (nth 2 a))))
965 ((eq (car a) 'sdev)
966 (list 'sdev (math-neg (nth 1 a)) (nth 2 a)))
967 ((eq (car a) 'intv)
968 (math-make-intv (aref [0 2 1 3] (nth 1 a))
969 (math-neg (nth 3 a))
970 (math-neg (nth 2 a))))
971 ((and math-simplify-only
972 (not (equal a math-simplify-only)))
973 (list 'neg a))
974 ((eq (car a) '+)
975 (math-sub (math-neg (nth 1 a)) (nth 2 a)))
976 ((eq (car a) '-)
977 (math-sub (nth 2 a) (nth 1 a)))
978 ((and (memq (car a) '(* /))
979 (math-okay-neg (nth 1 a)))
980 (list (car a) (math-neg (nth 1 a)) (nth 2 a)))
981 ((and (memq (car a) '(* /))
982 (math-okay-neg (nth 2 a)))
983 (list (car a) (nth 1 a) (math-neg (nth 2 a))))
984 ((and (memq (car a) '(* /))
985 (or (math-objectp (nth 1 a))
986 (and (eq (car (nth 1 a)) '*)
987 (math-objectp (nth 1 (nth 1 a))))))
988 (list (car a) (math-neg (nth 1 a)) (nth 2 a)))
989 ((and (eq (car a) '/)
990 (or (math-objectp (nth 2 a))
991 (and (eq (car (nth 2 a)) '*)
992 (math-objectp (nth 1 (nth 2 a))))))
993 (list (car a) (nth 1 a) (math-neg (nth 2 a))))
994 ((and (eq (car a) 'var) (memq (nth 2 a) '(var-uinf var-nan)))
996 ((eq (car a) 'neg)
997 (nth 1 a))
998 (t (list 'neg a))))
1000 (defun math-okay-neg (a)
1001 (or (math-looks-negp a)
1002 (eq (car-safe a) '-)))
1004 (defun math-neg-float (a)
1005 (list 'float (Math-integer-neg (nth 1 a)) (nth 2 a)))
1008 (defun calcFunc-add (&rest rest)
1009 (if rest
1010 (let ((a (car rest)))
1011 (while (setq rest (cdr rest))
1012 (setq a (list '+ a (car rest))))
1013 (math-normalize a))
1016 (defun calcFunc-sub (&rest rest)
1017 (if rest
1018 (let ((a (car rest)))
1019 (while (setq rest (cdr rest))
1020 (setq a (list '- a (car rest))))
1021 (math-normalize a))
1024 (defun math-add-objects-fancy (a b)
1025 (cond ((and (Math-numberp a) (Math-numberp b))
1026 (let ((aa (math-complex a))
1027 (bb (math-complex b)))
1028 (math-normalize
1029 (let ((res (list 'cplx
1030 (math-add (nth 1 aa) (nth 1 bb))
1031 (math-add (nth 2 aa) (nth 2 bb)))))
1032 (if (math-want-polar a b)
1033 (math-polar res)
1034 res)))))
1035 ((or (Math-vectorp a) (Math-vectorp b))
1036 (math-map-vec-2 'math-add a b))
1037 ((eq (car-safe a) 'sdev)
1038 (if (eq (car-safe b) 'sdev)
1039 (math-make-sdev (math-add (nth 1 a) (nth 1 b))
1040 (math-hypot (nth 2 a) (nth 2 b)))
1041 (and (or (Math-scalarp b)
1042 (not (Math-objvecp b)))
1043 (math-make-sdev (math-add (nth 1 a) b) (nth 2 a)))))
1044 ((and (eq (car-safe b) 'sdev)
1045 (or (Math-scalarp a)
1046 (not (Math-objvecp a))))
1047 (math-make-sdev (math-add a (nth 1 b)) (nth 2 b)))
1048 ((eq (car-safe a) 'intv)
1049 (if (eq (car-safe b) 'intv)
1050 (math-make-intv (logior (logand (nth 1 a) (nth 1 b))
1051 (if (equal (nth 2 a)
1052 '(neg (var inf var-inf)))
1053 (logand (nth 1 a) 2) 0)
1054 (if (equal (nth 2 b)
1055 '(neg (var inf var-inf)))
1056 (logand (nth 1 b) 2) 0)
1057 (if (equal (nth 3 a) '(var inf var-inf))
1058 (logand (nth 1 a) 1) 0)
1059 (if (equal (nth 3 b) '(var inf var-inf))
1060 (logand (nth 1 b) 1) 0))
1061 (math-add (nth 2 a) (nth 2 b))
1062 (math-add (nth 3 a) (nth 3 b)))
1063 (and (or (Math-anglep b)
1064 (eq (car b) 'date)
1065 (not (Math-objvecp b)))
1066 (math-make-intv (nth 1 a)
1067 (math-add (nth 2 a) b)
1068 (math-add (nth 3 a) b)))))
1069 ((and (eq (car-safe b) 'intv)
1070 (or (Math-anglep a)
1071 (eq (car a) 'date)
1072 (not (Math-objvecp a))))
1073 (math-make-intv (nth 1 b)
1074 (math-add a (nth 2 b))
1075 (math-add a (nth 3 b))))
1076 ((eq (car-safe a) 'date)
1077 (cond ((eq (car-safe b) 'date)
1078 (math-add (nth 1 a) (nth 1 b)))
1079 ((eq (car-safe b) 'hms)
1080 (let ((parts (math-date-parts (nth 1 a))))
1081 (list 'date
1082 (math-add (car parts) ; this minimizes roundoff
1083 (math-div (math-add
1084 (math-add (nth 1 parts)
1085 (nth 2 parts))
1086 (math-add
1087 (math-mul (nth 1 b) 3600)
1088 (math-add (math-mul (nth 2 b) 60)
1089 (nth 3 b))))
1090 86400)))))
1091 ((Math-realp b)
1092 (list 'date (math-add (nth 1 a) b)))
1093 (t nil)))
1094 ((eq (car-safe b) 'date)
1095 (math-add-objects-fancy b a))
1096 ((and (eq (car-safe a) 'mod)
1097 (eq (car-safe b) 'mod)
1098 (equal (nth 2 a) (nth 2 b)))
1099 (math-make-mod (math-add (nth 1 a) (nth 1 b)) (nth 2 a)))
1100 ((and (eq (car-safe a) 'mod)
1101 (Math-anglep b))
1102 (math-make-mod (math-add (nth 1 a) b) (nth 2 a)))
1103 ((and (eq (car-safe b) 'mod)
1104 (Math-anglep a))
1105 (math-make-mod (math-add a (nth 1 b)) (nth 2 b)))
1106 ((and (or (eq (car-safe a) 'hms) (eq (car-safe b) 'hms))
1107 (and (Math-anglep a) (Math-anglep b)))
1108 (or (eq (car-safe a) 'hms) (setq a (math-to-hms a)))
1109 (or (eq (car-safe b) 'hms) (setq b (math-to-hms b)))
1110 (math-normalize
1111 (if (math-negp a)
1112 (math-neg (math-add (math-neg a) (math-neg b)))
1113 (if (math-negp b)
1114 (let* ((s (math-add (nth 3 a) (nth 3 b)))
1115 (m (math-add (nth 2 a) (nth 2 b)))
1116 (h (math-add (nth 1 a) (nth 1 b))))
1117 (if (math-negp s)
1118 (setq s (math-add s 60)
1119 m (math-add m -1)))
1120 (if (math-negp m)
1121 (setq m (math-add m 60)
1122 h (math-add h -1)))
1123 (if (math-negp h)
1124 (math-add b a)
1125 (list 'hms h m s)))
1126 (let* ((s (math-add (nth 3 a) (nth 3 b)))
1127 (m (math-add (nth 2 a) (nth 2 b)))
1128 (h (math-add (nth 1 a) (nth 1 b))))
1129 (list 'hms h m s))))))
1130 (t (calc-record-why "*Incompatible arguments for +" a b))))
1132 (defun math-add-symb-fancy (a b)
1133 (or (and math-simplify-only
1134 (not (equal a math-simplify-only))
1135 (list '+ a b))
1136 (and (eq (car-safe b) '+)
1137 (math-add (math-add a (nth 1 b))
1138 (nth 2 b)))
1139 (and (eq (car-safe b) '-)
1140 (math-sub (math-add a (nth 1 b))
1141 (nth 2 b)))
1142 (and (eq (car-safe b) 'neg)
1143 (eq (car-safe (nth 1 b)) '+)
1144 (math-sub (math-sub a (nth 1 (nth 1 b)))
1145 (nth 2 (nth 1 b))))
1146 (and (or (and (Math-vectorp a) (math-known-scalarp b))
1147 (and (Math-vectorp b) (math-known-scalarp a)))
1148 (math-map-vec-2 'math-add a b))
1149 (let ((inf (math-infinitep a)))
1150 (cond
1151 (inf
1152 (let ((inf2 (math-infinitep b)))
1153 (if inf2
1154 (if (or (memq (nth 2 inf) '(var-uinf var-nan))
1155 (memq (nth 2 inf2) '(var-uinf var-nan)))
1156 '(var nan var-nan)
1157 (let ((dir (math-infinite-dir a inf))
1158 (dir2 (math-infinite-dir b inf2)))
1159 (if (and (Math-objectp dir) (Math-objectp dir2))
1160 (if (Math-equal dir dir2)
1162 '(var nan var-nan)))))
1163 (if (and (equal a '(var inf var-inf))
1164 (eq (car-safe b) 'intv)
1165 (memq (nth 1 b) '(2 3))
1166 (equal (nth 2 b) '(neg (var inf var-inf))))
1167 (list 'intv 3 (nth 2 b) a)
1168 (if (and (equal a '(neg (var inf var-inf)))
1169 (eq (car-safe b) 'intv)
1170 (memq (nth 1 b) '(1 3))
1171 (equal (nth 3 b) '(var inf var-inf)))
1172 (list 'intv 3 a (nth 3 b))
1173 a)))))
1174 ((math-infinitep b)
1175 (if (eq (car-safe a) 'intv)
1176 (math-add b a)
1178 ((eq (car-safe a) '+)
1179 (let ((temp (math-combine-sum (nth 2 a) b nil nil t)))
1180 (and temp
1181 (math-add (nth 1 a) temp))))
1182 ((eq (car-safe a) '-)
1183 (let ((temp (math-combine-sum (nth 2 a) b t nil t)))
1184 (and temp
1185 (math-add (nth 1 a) temp))))
1186 ((and (Math-objectp a) (Math-objectp b))
1187 nil)
1189 (math-combine-sum a b nil nil nil))))
1190 (and (Math-looks-negp b)
1191 (list '- a (math-neg b)))
1192 (and (Math-looks-negp a)
1193 (list '- b (math-neg a)))
1194 (and (eq (car-safe a) 'calcFunc-idn)
1195 (= (length a) 2)
1196 (or (and (eq (car-safe b) 'calcFunc-idn)
1197 (= (length b) 2)
1198 (list 'calcFunc-idn (math-add (nth 1 a) (nth 1 b))))
1199 (and (math-square-matrixp b)
1200 (math-add (math-mimic-ident (nth 1 a) b) b))
1201 (and (math-known-scalarp b)
1202 (math-add (nth 1 a) b))))
1203 (and (eq (car-safe b) 'calcFunc-idn)
1204 (= (length b) 2)
1205 (or (and (math-square-matrixp a)
1206 (math-add a (math-mimic-ident (nth 1 b) a)))
1207 (and (math-known-scalarp a)
1208 (math-add a (nth 1 b)))))
1209 (list '+ a b)))
1212 (defun calcFunc-mul (&rest rest)
1213 (if rest
1214 (let ((a (car rest)))
1215 (while (setq rest (cdr rest))
1216 (setq a (list '* a (car rest))))
1217 (math-normalize a))
1220 (defun math-mul-objects-fancy (a b)
1221 (cond ((and (Math-numberp a) (Math-numberp b))
1222 (math-normalize
1223 (if (math-want-polar a b)
1224 (let ((a (math-polar a))
1225 (b (math-polar b)))
1226 (list 'polar
1227 (math-mul (nth 1 a) (nth 1 b))
1228 (math-fix-circular (math-add (nth 2 a) (nth 2 b)))))
1229 (setq a (math-complex a)
1230 b (math-complex b))
1231 (list 'cplx
1232 (math-sub (math-mul (nth 1 a) (nth 1 b))
1233 (math-mul (nth 2 a) (nth 2 b)))
1234 (math-add (math-mul (nth 1 a) (nth 2 b))
1235 (math-mul (nth 2 a) (nth 1 b)))))))
1236 ((Math-vectorp a)
1237 (if (Math-vectorp b)
1238 (if (math-matrixp a)
1239 (if (math-matrixp b)
1240 (if (= (length (nth 1 a)) (length b))
1241 (math-mul-mats a b)
1242 (math-dimension-error))
1243 (if (= (length (nth 1 a)) 2)
1244 (if (= (length a) (length b))
1245 (math-mul-mats a (list 'vec b))
1246 (math-dimension-error))
1247 (if (= (length (nth 1 a)) (length b))
1248 (math-mul-mat-vec a b)
1249 (math-dimension-error))))
1250 (if (math-matrixp b)
1251 (if (= (length a) (length b))
1252 (nth 1 (math-mul-mats (list 'vec a) b))
1253 (math-dimension-error))
1254 (if (= (length a) (length b))
1255 (math-dot-product a b)
1256 (math-dimension-error))))
1257 (math-map-vec-2 'math-mul a b)))
1258 ((Math-vectorp b)
1259 (math-map-vec-2 'math-mul a b))
1260 ((eq (car-safe a) 'sdev)
1261 (if (eq (car-safe b) 'sdev)
1262 (math-make-sdev (math-mul (nth 1 a) (nth 1 b))
1263 (math-hypot (math-mul (nth 2 a) (nth 1 b))
1264 (math-mul (nth 2 b) (nth 1 a))))
1265 (and (or (Math-scalarp b)
1266 (not (Math-objvecp b)))
1267 (math-make-sdev (math-mul (nth 1 a) b)
1268 (math-mul (nth 2 a) b)))))
1269 ((and (eq (car-safe b) 'sdev)
1270 (or (Math-scalarp a)
1271 (not (Math-objvecp a))))
1272 (math-make-sdev (math-mul a (nth 1 b)) (math-mul a (nth 2 b))))
1273 ((and (eq (car-safe a) 'intv) (Math-anglep b))
1274 (if (Math-negp b)
1275 (math-neg (math-mul a (math-neg b)))
1276 (math-make-intv (nth 1 a)
1277 (math-mul (nth 2 a) b)
1278 (math-mul (nth 3 a) b))))
1279 ((and (eq (car-safe b) 'intv) (Math-anglep a))
1280 (math-mul b a))
1281 ((and (eq (car-safe a) 'intv) (math-intv-constp a)
1282 (eq (car-safe b) 'intv) (math-intv-constp b))
1283 (let ((lo (math-mul a (nth 2 b)))
1284 (hi (math-mul a (nth 3 b))))
1285 (or (eq (car-safe lo) 'intv)
1286 (setq lo (list 'intv (if (memq (nth 1 b) '(2 3)) 3 0) lo lo)))
1287 (or (eq (car-safe hi) 'intv)
1288 (setq hi (list 'intv (if (memq (nth 1 b) '(1 3)) 3 0) hi hi)))
1289 (math-combine-intervals
1290 (nth 2 lo) (and (or (memq (nth 1 b) '(2 3))
1291 (math-infinitep (nth 2 lo)))
1292 (memq (nth 1 lo) '(2 3)))
1293 (nth 3 lo) (and (or (memq (nth 1 b) '(2 3))
1294 (math-infinitep (nth 3 lo)))
1295 (memq (nth 1 lo) '(1 3)))
1296 (nth 2 hi) (and (or (memq (nth 1 b) '(1 3))
1297 (math-infinitep (nth 2 hi)))
1298 (memq (nth 1 hi) '(2 3)))
1299 (nth 3 hi) (and (or (memq (nth 1 b) '(1 3))
1300 (math-infinitep (nth 3 hi)))
1301 (memq (nth 1 hi) '(1 3))))))
1302 ((and (eq (car-safe a) 'mod)
1303 (eq (car-safe b) 'mod)
1304 (equal (nth 2 a) (nth 2 b)))
1305 (math-make-mod (math-mul (nth 1 a) (nth 1 b)) (nth 2 a)))
1306 ((and (eq (car-safe a) 'mod)
1307 (Math-anglep b))
1308 (math-make-mod (math-mul (nth 1 a) b) (nth 2 a)))
1309 ((and (eq (car-safe b) 'mod)
1310 (Math-anglep a))
1311 (math-make-mod (math-mul a (nth 1 b)) (nth 2 b)))
1312 ((and (eq (car-safe a) 'hms) (Math-realp b))
1313 (math-with-extra-prec 2
1314 (math-to-hms (math-mul (math-from-hms a 'deg) b) 'deg)))
1315 ((and (eq (car-safe b) 'hms) (Math-realp a))
1316 (math-mul b a))
1317 (t (calc-record-why "*Incompatible arguments for *" a b))))
1319 ;;; Fast function to multiply floating-point numbers.
1320 (defun math-mul-float (a b) ; [F F F]
1321 (math-make-float (math-mul (nth 1 a) (nth 1 b))
1322 (+ (nth 2 a) (nth 2 b))))
1324 (defun math-sqr-float (a) ; [F F]
1325 (math-make-float (math-mul (nth 1 a) (nth 1 a))
1326 (+ (nth 2 a) (nth 2 a))))
1328 (defun math-intv-constp (a &optional finite)
1329 (and (or (Math-anglep (nth 2 a))
1330 (and (equal (nth 2 a) '(neg (var inf var-inf)))
1331 (or (not finite)
1332 (memq (nth 1 a) '(0 1)))))
1333 (or (Math-anglep (nth 3 a))
1334 (and (equal (nth 3 a) '(var inf var-inf))
1335 (or (not finite)
1336 (memq (nth 1 a) '(0 2)))))))
1338 (defun math-mul-zero (a b)
1339 (if (math-known-matrixp b)
1340 (if (math-vectorp b)
1341 (math-map-vec-2 'math-mul a b)
1342 (math-mimic-ident 0 b))
1343 (if (math-infinitep b)
1344 '(var nan var-nan)
1345 (let ((aa nil) (bb nil))
1346 (if (and (eq (car-safe b) 'intv)
1347 (progn
1348 (and (equal (nth 2 b) '(neg (var inf var-inf)))
1349 (memq (nth 1 b) '(2 3))
1350 (setq aa (nth 2 b)))
1351 (and (equal (nth 3 b) '(var inf var-inf))
1352 (memq (nth 1 b) '(1 3))
1353 (setq bb (nth 3 b)))
1354 (or aa bb)))
1355 (if (or (math-posp a)
1356 (and (math-zerop a)
1357 (or (memq calc-infinite-mode '(-1 1))
1358 (setq aa '(neg (var inf var-inf))
1359 bb '(var inf var-inf)))))
1360 (list 'intv 3 (or aa 0) (or bb 0))
1361 (if (math-negp a)
1362 (math-neg (list 'intv 3 (or aa 0) (or bb 0)))
1363 '(var nan var-nan)))
1364 (if (or (math-floatp a) (math-floatp b)) '(float 0 0) 0))))))
1367 (defun math-mul-symb-fancy (a b)
1368 (or (and math-simplify-only
1369 (not (equal a math-simplify-only))
1370 (list '* a b))
1371 (and (Math-equal-int a 1)
1373 (and (Math-equal-int a -1)
1374 (math-neg b))
1375 (and (or (and (Math-vectorp a) (math-known-scalarp b))
1376 (and (Math-vectorp b) (math-known-scalarp a)))
1377 (math-map-vec-2 'math-mul a b))
1378 (and (Math-objectp b) (not (Math-objectp a))
1379 (math-mul b a))
1380 (and (eq (car-safe a) 'neg)
1381 (math-neg (math-mul (nth 1 a) b)))
1382 (and (eq (car-safe b) 'neg)
1383 (math-neg (math-mul a (nth 1 b))))
1384 (and (eq (car-safe a) '*)
1385 (math-mul (nth 1 a)
1386 (math-mul (nth 2 a) b)))
1387 (and (eq (car-safe a) '^)
1388 (Math-looks-negp (nth 2 a))
1389 (not (and (eq (car-safe b) '^) (Math-looks-negp (nth 2 b))))
1390 (math-known-scalarp b t)
1391 (math-div b (math-normalize
1392 (list '^ (nth 1 a) (math-neg (nth 2 a))))))
1393 (and (eq (car-safe b) '^)
1394 (Math-looks-negp (nth 2 b))
1395 (not (and (eq (car-safe a) '^) (Math-looks-negp (nth 2 a))))
1396 (not (math-known-matrixp (nth 1 b)))
1397 (math-div a (math-normalize
1398 (list '^ (nth 1 b) (math-neg (nth 2 b))))))
1399 (and (eq (car-safe a) '/)
1400 (or (math-known-scalarp a t) (math-known-scalarp b t))
1401 (let ((temp (math-combine-prod (nth 2 a) b t nil t)))
1402 (if temp
1403 (math-mul (nth 1 a) temp)
1404 (math-div (math-mul (nth 1 a) b) (nth 2 a)))))
1405 (and (eq (car-safe b) '/)
1406 (math-div (math-mul a (nth 1 b)) (nth 2 b)))
1407 (and (eq (car-safe b) '+)
1408 (Math-numberp a)
1409 (or (Math-numberp (nth 1 b))
1410 (Math-numberp (nth 2 b)))
1411 (math-add (math-mul a (nth 1 b))
1412 (math-mul a (nth 2 b))))
1413 (and (eq (car-safe b) '-)
1414 (Math-numberp a)
1415 (or (Math-numberp (nth 1 b))
1416 (Math-numberp (nth 2 b)))
1417 (math-sub (math-mul a (nth 1 b))
1418 (math-mul a (nth 2 b))))
1419 (and (eq (car-safe b) '*)
1420 (Math-numberp (nth 1 b))
1421 (not (Math-numberp a))
1422 (math-mul (nth 1 b) (math-mul a (nth 2 b))))
1423 (and (eq (car-safe a) 'calcFunc-idn)
1424 (= (length a) 2)
1425 (or (and (eq (car-safe b) 'calcFunc-idn)
1426 (= (length b) 2)
1427 (list 'calcFunc-idn (math-mul (nth 1 a) (nth 1 b))))
1428 (and (math-known-scalarp b)
1429 (list 'calcFunc-idn (math-mul (nth 1 a) b)))
1430 (and (math-known-matrixp b)
1431 (math-mul (nth 1 a) b))))
1432 (and (eq (car-safe b) 'calcFunc-idn)
1433 (= (length b) 2)
1434 (or (and (math-known-scalarp a)
1435 (list 'calcFunc-idn (math-mul a (nth 1 b))))
1436 (and (math-known-matrixp a)
1437 (math-mul a (nth 1 b)))))
1438 (and (math-identity-matrix-p a t)
1439 (or (and (eq (car-safe b) 'calcFunc-idn)
1440 (= (length b) 2)
1441 (list 'calcFunc-idn (math-mul
1442 (nth 1 (nth 1 a))
1443 (nth 1 b))
1444 (1- (length a))))
1445 (and (math-known-scalarp b)
1446 (list 'calcFunc-idn (math-mul
1447 (nth 1 (nth 1 a)) b)
1448 (1- (length a))))
1449 (and (math-known-matrixp b)
1450 (math-mul (nth 1 (nth 1 a)) b))))
1451 (and (math-identity-matrix-p b t)
1452 (or (and (eq (car-safe a) 'calcFunc-idn)
1453 (= (length a) 2)
1454 (list 'calcFunc-idn (math-mul (nth 1 a)
1455 (nth 1 (nth 1 b)))
1456 (1- (length b))))
1457 (and (math-known-scalarp a)
1458 (list 'calcFunc-idn (math-mul a (nth 1 (nth 1 b)))
1459 (1- (length b))))
1460 (and (math-known-matrixp a)
1461 (math-mul a (nth 1 (nth 1 b))))))
1462 (and (math-looks-negp b)
1463 (math-mul (math-neg a) (math-neg b)))
1464 (and (eq (car-safe b) '-)
1465 (math-looks-negp a)
1466 (math-mul (math-neg a) (math-neg b)))
1467 (cond
1468 ((eq (car-safe b) '*)
1469 (let ((temp (math-combine-prod a (nth 1 b) nil nil t)))
1470 (and temp
1471 (math-mul temp (nth 2 b)))))
1473 (math-combine-prod a b nil nil nil)))
1474 (and (equal a '(var nan var-nan))
1476 (and (equal b '(var nan var-nan))
1478 (and (equal a '(var uinf var-uinf))
1480 (and (equal b '(var uinf var-uinf))
1482 (and (equal b '(var inf var-inf))
1483 (let ((s1 (math-possible-signs a)))
1484 (cond ((eq s1 4)
1486 ((eq s1 6)
1487 '(intv 3 0 (var inf var-inf)))
1488 ((eq s1 1)
1489 (math-neg b))
1490 ((eq s1 3)
1491 '(intv 3 (neg (var inf var-inf)) 0))
1492 ((and (eq (car a) 'intv) (math-intv-constp a))
1493 '(intv 3 (neg (var inf var-inf)) (var inf var-inf)))
1494 ((and (eq (car a) 'cplx)
1495 (math-zerop (nth 1 a)))
1496 (list '* (list 'cplx 0 (calcFunc-sign (nth 2 a))) b))
1497 ((eq (car a) 'polar)
1498 (list '* (list 'polar 1 (nth 2 a)) b)))))
1499 (and (equal a '(var inf var-inf))
1500 (math-mul b a))
1501 (list '* a b)))
1504 (defun calcFunc-div (a &rest rest)
1505 (while rest
1506 (setq a (list '/ a (car rest))
1507 rest (cdr rest)))
1508 (math-normalize a))
1510 (defun math-div-objects-fancy (a b)
1511 (cond ((and (Math-numberp a) (Math-numberp b))
1512 (math-normalize
1513 (cond ((math-want-polar a b)
1514 (let ((a (math-polar a))
1515 (b (math-polar b)))
1516 (list 'polar
1517 (math-div (nth 1 a) (nth 1 b))
1518 (math-fix-circular (math-sub (nth 2 a)
1519 (nth 2 b))))))
1520 ((Math-realp b)
1521 (setq a (math-complex a))
1522 (list 'cplx (math-div (nth 1 a) b)
1523 (math-div (nth 2 a) b)))
1525 (setq a (math-complex a)
1526 b (math-complex b))
1527 (math-div
1528 (list 'cplx
1529 (math-add (math-mul (nth 1 a) (nth 1 b))
1530 (math-mul (nth 2 a) (nth 2 b)))
1531 (math-sub (math-mul (nth 2 a) (nth 1 b))
1532 (math-mul (nth 1 a) (nth 2 b))))
1533 (math-add (math-sqr (nth 1 b))
1534 (math-sqr (nth 2 b))))))))
1535 ((math-matrixp b)
1536 (if (math-square-matrixp b)
1537 (let ((n1 (length b)))
1538 (if (Math-vectorp a)
1539 (if (math-matrixp a)
1540 (if (= (length a) n1)
1541 (math-lud-solve (math-matrix-lud b) a b)
1542 (if (= (length (nth 1 a)) n1)
1543 (math-transpose
1544 (math-lud-solve (math-matrix-lud
1545 (math-transpose b))
1546 (math-transpose a) b))
1547 (math-dimension-error)))
1548 (if (= (length a) n1)
1549 (math-mat-col (math-lud-solve (math-matrix-lud b)
1550 (math-col-matrix a) b)
1552 (math-dimension-error)))
1553 (if (Math-equal-int a 1)
1554 (calcFunc-inv b)
1555 (math-mul a (calcFunc-inv b)))))
1556 (math-reject-arg b 'square-matrixp)))
1557 ((and (Math-vectorp a) (Math-objectp b))
1558 (math-map-vec-2 'math-div a b))
1559 ((eq (car-safe a) 'sdev)
1560 (if (eq (car-safe b) 'sdev)
1561 (let ((x (math-div (nth 1 a) (nth 1 b))))
1562 (math-make-sdev x
1563 (math-div (math-hypot (nth 2 a)
1564 (math-mul (nth 2 b) x))
1565 (nth 1 b))))
1566 (if (or (Math-scalarp b)
1567 (not (Math-objvecp b)))
1568 (math-make-sdev (math-div (nth 1 a) b) (math-div (nth 2 a) b))
1569 (math-reject-arg 'realp b))))
1570 ((and (eq (car-safe b) 'sdev)
1571 (or (Math-scalarp a)
1572 (not (Math-objvecp a))))
1573 (let ((x (math-div a (nth 1 b))))
1574 (math-make-sdev x
1575 (math-div (math-mul (nth 2 b) x) (nth 1 b)))))
1576 ((and (eq (car-safe a) 'intv) (Math-anglep b))
1577 (if (Math-negp b)
1578 (math-neg (math-div a (math-neg b)))
1579 (math-make-intv (nth 1 a)
1580 (math-div (nth 2 a) b)
1581 (math-div (nth 3 a) b))))
1582 ((and (eq (car-safe b) 'intv) (Math-anglep a))
1583 (if (or (Math-posp (nth 2 b))
1584 (and (Math-zerop (nth 2 b)) (or (memq (nth 1 b) '(0 1))
1585 calc-infinite-mode)))
1586 (if (Math-negp a)
1587 (math-neg (math-div (math-neg a) b))
1588 (let ((calc-infinite-mode 1))
1589 (math-make-intv (aref [0 2 1 3] (nth 1 b))
1590 (math-div a (nth 3 b))
1591 (math-div a (nth 2 b)))))
1592 (if (or (Math-negp (nth 3 b))
1593 (and (Math-zerop (nth 3 b)) (or (memq (nth 1 b) '(0 2))
1594 calc-infinite-mode)))
1595 (math-neg (math-div a (math-neg b)))
1596 (if calc-infinite-mode
1597 '(intv 3 (neg (var inf var-inf)) (var inf var-inf))
1598 (math-reject-arg b "*Division by zero")))))
1599 ((and (eq (car-safe a) 'intv) (math-intv-constp a)
1600 (eq (car-safe b) 'intv) (math-intv-constp b))
1601 (if (or (Math-posp (nth 2 b))
1602 (and (Math-zerop (nth 2 b)) (or (memq (nth 1 b) '(0 1))
1603 calc-infinite-mode)))
1604 (let* ((calc-infinite-mode 1)
1605 (lo (math-div a (nth 2 b)))
1606 (hi (math-div a (nth 3 b))))
1607 (or (eq (car-safe lo) 'intv)
1608 (setq lo (list 'intv (if (memq (nth 1 b) '(2 3)) 3 0)
1609 lo lo)))
1610 (or (eq (car-safe hi) 'intv)
1611 (setq hi (list 'intv (if (memq (nth 1 b) '(1 3)) 3 0)
1612 hi hi)))
1613 (math-combine-intervals
1614 (nth 2 lo) (and (or (memq (nth 1 b) '(2 3))
1615 (and (math-infinitep (nth 2 lo))
1616 (not (math-zerop (nth 2 b)))))
1617 (memq (nth 1 lo) '(2 3)))
1618 (nth 3 lo) (and (or (memq (nth 1 b) '(2 3))
1619 (and (math-infinitep (nth 3 lo))
1620 (not (math-zerop (nth 2 b)))))
1621 (memq (nth 1 lo) '(1 3)))
1622 (nth 2 hi) (and (or (memq (nth 1 b) '(1 3))
1623 (and (math-infinitep (nth 2 hi))
1624 (not (math-zerop (nth 3 b)))))
1625 (memq (nth 1 hi) '(2 3)))
1626 (nth 3 hi) (and (or (memq (nth 1 b) '(1 3))
1627 (and (math-infinitep (nth 3 hi))
1628 (not (math-zerop (nth 3 b)))))
1629 (memq (nth 1 hi) '(1 3)))))
1630 (if (or (Math-negp (nth 3 b))
1631 (and (Math-zerop (nth 3 b)) (or (memq (nth 1 b) '(0 2))
1632 calc-infinite-mode)))
1633 (math-neg (math-div a (math-neg b)))
1634 (if calc-infinite-mode
1635 '(intv 3 (neg (var inf var-inf)) (var inf var-inf))
1636 (math-reject-arg b "*Division by zero")))))
1637 ((and (eq (car-safe a) 'mod)
1638 (eq (car-safe b) 'mod)
1639 (equal (nth 2 a) (nth 2 b)))
1640 (math-make-mod (math-div-mod (nth 1 a) (nth 1 b) (nth 2 a))
1641 (nth 2 a)))
1642 ((and (eq (car-safe a) 'mod)
1643 (Math-anglep b))
1644 (math-make-mod (math-div-mod (nth 1 a) b (nth 2 a)) (nth 2 a)))
1645 ((and (eq (car-safe b) 'mod)
1646 (Math-anglep a))
1647 (math-make-mod (math-div-mod a (nth 1 b) (nth 2 b)) (nth 2 b)))
1648 ((eq (car-safe a) 'hms)
1649 (if (eq (car-safe b) 'hms)
1650 (math-with-extra-prec 1
1651 (math-div (math-from-hms a 'deg)
1652 (math-from-hms b 'deg)))
1653 (math-with-extra-prec 2
1654 (math-to-hms (math-div (math-from-hms a 'deg) b) 'deg))))
1655 (t (calc-record-why "*Incompatible arguments for /" a b))))
1657 (defun math-div-by-zero (a b)
1658 (if (math-infinitep a)
1659 (if (or (equal a '(var nan var-nan))
1660 (equal b '(var uinf var-uinf))
1661 (memq calc-infinite-mode '(-1 1)))
1663 '(var uinf var-uinf))
1664 (if calc-infinite-mode
1665 (if (math-zerop a)
1666 '(var nan var-nan)
1667 (if (eq calc-infinite-mode 1)
1668 (math-mul a '(var inf var-inf))
1669 (if (eq calc-infinite-mode -1)
1670 (math-mul a '(neg (var inf var-inf)))
1671 (if (eq (car-safe a) 'intv)
1672 '(intv 3 (neg (var inf var-inf)) (var inf var-inf))
1673 '(var uinf var-uinf)))))
1674 (math-reject-arg a "*Division by zero"))))
1676 (defun math-div-zero (a b)
1677 (if (math-known-matrixp b)
1678 (if (math-vectorp b)
1679 (math-map-vec-2 'math-div a b)
1680 (math-mimic-ident 0 b))
1681 (if (equal b '(var nan var-nan))
1683 (if (and (eq (car-safe b) 'intv) (math-intv-constp b)
1684 (not (math-posp b)) (not (math-negp b)))
1685 (if calc-infinite-mode
1686 (list 'intv 3
1687 (if (and (math-zerop (nth 2 b))
1688 (memq calc-infinite-mode '(1 -1)))
1689 (nth 2 b) '(neg (var inf var-inf)))
1690 (if (and (math-zerop (nth 3 b))
1691 (memq calc-infinite-mode '(1 -1)))
1692 (nth 3 b) '(var inf var-inf)))
1693 (math-reject-arg b "*Division by zero"))
1694 a))))
1696 ;; For math-div-symb-fancy
1697 (defvar math-trig-inverses
1698 '((calcFunc-sin . calcFunc-csc)
1699 (calcFunc-cos . calcFunc-sec)
1700 (calcFunc-tan . calcFunc-cot)
1701 (calcFunc-sec . calcFunc-cos)
1702 (calcFunc-csc . calcFunc-sin)
1703 (calcFunc-cot . calcFunc-tan)
1704 (calcFunc-sinh . calcFunc-csch)
1705 (calcFunc-cosh . calcFunc-sech)
1706 (calcFunc-tanh . calcFunc-coth)
1707 (calcFunc-sech . calcFunc-cosh)
1708 (calcFunc-csch . calcFunc-sinh)
1709 (calcFunc-coth . calcFunc-tanh)))
1711 (defvar math-div-trig)
1712 (defvar math-div-non-trig)
1714 (defun math-div-new-trig (tr)
1715 (if math-div-trig
1716 (setq math-div-trig
1717 (list '* tr math-div-trig))
1718 (setq math-div-trig tr)))
1720 (defun math-div-new-non-trig (ntr)
1721 (if math-div-non-trig
1722 (setq math-div-non-trig
1723 (list '* ntr math-div-non-trig))
1724 (setq math-div-non-trig ntr)))
1726 (defun math-div-isolate-trig (expr)
1727 (if (eq (car-safe expr) '*)
1728 (progn
1729 (math-div-isolate-trig-term (nth 1 expr))
1730 (math-div-isolate-trig (nth 2 expr)))
1731 (math-div-isolate-trig-term expr)))
1733 (defun math-div-isolate-trig-term (term)
1734 (let ((fn (assoc (car-safe term) math-trig-inverses)))
1735 (if fn
1736 (math-div-new-trig
1737 (cons (cdr fn) (cdr term)))
1738 (math-div-new-non-trig term))))
1740 (defun math-div-symb-fancy (a b)
1741 (or (and (math-known-matrixp b)
1742 (math-mul a (math-pow b -1)))
1743 (and math-simplify-only
1744 (not (equal a math-simplify-only))
1745 (list '/ a b))
1746 (and (Math-equal-int b 1) a)
1747 (and (Math-equal-int b -1) (math-neg a))
1748 (and (Math-vectorp a) (math-known-scalarp b)
1749 (math-map-vec-2 'math-div a b))
1750 (and (eq (car-safe b) '^)
1751 (or (Math-looks-negp (nth 2 b)) (Math-equal-int a 1))
1752 (math-mul a (math-normalize
1753 (list '^ (nth 1 b) (math-neg (nth 2 b))))))
1754 (and (eq (car-safe a) 'neg)
1755 (math-neg (math-div (nth 1 a) b)))
1756 (and (eq (car-safe b) 'neg)
1757 (math-neg (math-div a (nth 1 b))))
1758 (and (eq (car-safe a) '/)
1759 (math-div (nth 1 a) (math-mul (nth 2 a) b)))
1760 (and (eq (car-safe b) '/)
1761 (or (math-known-scalarp (nth 1 b) t)
1762 (math-known-scalarp (nth 2 b) t))
1763 (math-div (math-mul a (nth 2 b)) (nth 1 b)))
1764 (and (eq (car-safe b) 'frac)
1765 (math-mul (math-make-frac (nth 2 b) (nth 1 b)) a))
1766 (and (eq (car-safe a) '+)
1767 (or (Math-numberp (nth 1 a))
1768 (Math-numberp (nth 2 a)))
1769 (Math-numberp b)
1770 (math-add (math-div (nth 1 a) b)
1771 (math-div (nth 2 a) b)))
1772 (and (eq (car-safe a) '-)
1773 (or (Math-numberp (nth 1 a))
1774 (Math-numberp (nth 2 a)))
1775 (Math-numberp b)
1776 (math-sub (math-div (nth 1 a) b)
1777 (math-div (nth 2 a) b)))
1778 (and (or (eq (car-safe a) '-)
1779 (math-looks-negp a))
1780 (math-looks-negp b)
1781 (math-div (math-neg a) (math-neg b)))
1782 (and (eq (car-safe b) '-)
1783 (math-looks-negp a)
1784 (math-div (math-neg a) (math-neg b)))
1785 (and (eq (car-safe a) 'calcFunc-idn)
1786 (= (length a) 2)
1787 (or (and (eq (car-safe b) 'calcFunc-idn)
1788 (= (length b) 2)
1789 (list 'calcFunc-idn (math-div (nth 1 a) (nth 1 b))))
1790 (and (math-known-scalarp b)
1791 (list 'calcFunc-idn (math-div (nth 1 a) b)))
1792 (and (math-known-matrixp b)
1793 (math-div (nth 1 a) b))))
1794 (and (eq (car-safe b) 'calcFunc-idn)
1795 (= (length b) 2)
1796 (or (and (math-known-scalarp a)
1797 (list 'calcFunc-idn (math-div a (nth 1 b))))
1798 (and (math-known-matrixp a)
1799 (math-div a (nth 1 b)))))
1800 (and math-simplifying
1801 (let ((math-div-trig nil)
1802 (math-div-non-trig nil))
1803 (math-div-isolate-trig b)
1804 (if math-div-trig
1805 (if math-div-non-trig
1806 (math-div (math-mul a math-div-trig) math-div-non-trig)
1807 (math-mul a math-div-trig))
1808 nil)))
1809 (if (and calc-matrix-mode
1810 (or (math-known-matrixp a) (math-known-matrixp b)))
1811 (math-combine-prod a b nil t nil)
1812 (if (eq (car-safe a) '*)
1813 (if (eq (car-safe b) '*)
1814 (let ((c (math-combine-prod (nth 1 a) (nth 1 b) nil t t)))
1815 (and c
1816 (math-div (math-mul c (nth 2 a)) (nth 2 b))))
1817 (let ((c (math-combine-prod (nth 1 a) b nil t t)))
1818 (and c
1819 (math-mul c (nth 2 a)))))
1820 (if (eq (car-safe b) '*)
1821 (let ((c (math-combine-prod a (nth 1 b) nil t t)))
1822 (and c
1823 (math-div c (nth 2 b))))
1824 (math-combine-prod a b nil t nil))))
1825 (and (math-infinitep a)
1826 (if (math-infinitep b)
1827 '(var nan var-nan)
1828 (if (or (equal a '(var nan var-nan))
1829 (equal a '(var uinf var-uinf)))
1831 (if (equal a '(var inf var-inf))
1832 (if (or (math-posp b)
1833 (and (eq (car-safe b) 'intv)
1834 (math-zerop (nth 2 b))))
1835 (if (and (eq (car-safe b) 'intv)
1836 (not (math-intv-constp b t)))
1837 '(intv 3 0 (var inf var-inf))
1839 (if (or (math-negp b)
1840 (and (eq (car-safe b) 'intv)
1841 (math-zerop (nth 3 b))))
1842 (if (and (eq (car-safe b) 'intv)
1843 (not (math-intv-constp b t)))
1844 '(intv 3 (neg (var inf var-inf)) 0)
1845 (math-neg a))
1846 (if (and (eq (car-safe b) 'intv)
1847 (math-negp (nth 2 b)) (math-posp (nth 3 b)))
1848 '(intv 3 (neg (var inf var-inf))
1849 (var inf var-inf)))))))))
1850 (and (math-infinitep b)
1851 (if (equal b '(var nan var-nan))
1853 (let ((calc-infinite-mode 1))
1854 (math-mul-zero b a))))
1855 (list '/ a b)))
1857 ;;; Division from the left.
1858 (defun calcFunc-ldiv (a b)
1859 (if (math-known-scalarp a)
1860 (math-div b a)
1861 (math-mul (math-pow a -1) b)))
1863 (defun calcFunc-mod (a b)
1864 (math-normalize (list '% a b)))
1866 (defun math-mod-fancy (a b)
1867 (cond ((equal b '(var inf var-inf))
1868 (if (or (math-posp a) (math-zerop a))
1870 (if (math-negp a)
1872 (if (eq (car-safe a) 'intv)
1873 (if (math-negp (nth 2 a))
1874 '(intv 3 0 (var inf var-inf))
1876 (list '% a b)))))
1877 ((and (eq (car-safe a) 'mod) (Math-realp b) (math-posp b))
1878 (math-make-mod (nth 1 a) b))
1879 ((and (eq (car-safe a) 'intv) (math-intv-constp a t) (math-posp b))
1880 (math-mod-intv a b))
1882 (if (Math-anglep a)
1883 (calc-record-why 'anglep b)
1884 (calc-record-why 'anglep a))
1885 (list '% a b))))
1888 (defun calcFunc-pow (a b)
1889 (math-normalize (list '^ a b)))
1891 (defun math-pow-of-zero (a b)
1892 "Raise A to the power of B, where A is a form of zero."
1893 (if (math-floatp b) (setq a (math-float a)))
1894 (cond
1895 ;; 0^0 = 1
1896 ((eq b 0)
1898 ;; 0^0.0, etc., are undetermined
1899 ((Math-zerop b)
1900 (if calc-infinite-mode
1901 '(var nan var-nan)
1902 (math-reject-arg (list '^ a b) "*Indeterminate form")))
1903 ;; 0^positive = 0
1904 ((math-known-posp b)
1906 ;; 0^negative is undefined (let math-div handle it)
1907 ((math-known-negp b)
1908 (math-div 1 a))
1909 ;; 0^infinity is undefined
1910 ((math-infinitep b)
1911 '(var nan var-nan))
1912 ;; Some intervals
1913 ((and (eq (car b) 'intv)
1914 calc-infinite-mode
1915 (math-negp (nth 2 b))
1916 (math-posp (nth 3 b)))
1917 '(intv 3 (neg (var inf var-inf)) (var inf var-inf)))
1918 ;; If none of the above, leave it alone.
1920 (list '^ a b))))
1922 (defun math-pow-zero (a b)
1923 (if (eq (car-safe a) 'mod)
1924 (math-make-mod 1 (nth 2 a))
1925 (if (math-known-matrixp a)
1926 (math-mimic-ident 1 a)
1927 (if (math-infinitep a)
1928 '(var nan var-nan)
1929 (if (and (eq (car a) 'intv) (math-intv-constp a)
1930 (or (and (not (math-posp a)) (not (math-negp a)))
1931 (not (math-intv-constp a t))))
1932 '(intv 3 (neg (var inf var-inf)) (var inf var-inf))
1933 (if (or (math-floatp a) (math-floatp b))
1934 '(float 1 0) 1))))))
1936 (defun math-pow-fancy (a b)
1937 (cond ((and (Math-numberp a) (Math-numberp b))
1938 (or (if (memq (math-quarter-integer b) '(1 2 3))
1939 (let ((sqrt (math-sqrt (if (math-floatp b)
1940 (math-float a) a))))
1941 (and (Math-numberp sqrt)
1942 (math-pow sqrt (math-mul 2 b))))
1943 (and (eq (car b) 'frac)
1944 (integerp (nth 2 b))
1945 (<= (nth 2 b) 10)
1946 (let ((root (math-nth-root a (nth 2 b))))
1947 (and root (math-ipow root (nth 1 b))))))
1948 (and (or (eq a 10) (equal a '(float 1 1)))
1949 (math-num-integerp b)
1950 (calcFunc-scf '(float 1 0) b))
1951 (and calc-symbolic-mode
1952 (list '^ a b))
1953 (math-with-extra-prec 2
1954 (math-exp-raw
1955 (math-float (math-mul b (math-ln-raw (math-float a))))))))
1956 ((or (not (Math-objvecp a))
1957 (not (Math-objectp b)))
1958 (let (temp)
1959 (cond ((and math-simplify-only
1960 (not (equal a math-simplify-only)))
1961 (list '^ a b))
1962 ((and (eq (car-safe a) '*)
1963 (or
1964 (and
1965 (math-known-matrixp (nth 1 a))
1966 (math-known-matrixp (nth 2 a)))
1967 (and
1968 calc-matrix-mode
1969 (not (eq calc-matrix-mode 'scalar))
1970 (and (not (math-known-scalarp (nth 1 a)))
1971 (not (math-known-scalarp (nth 2 a)))))))
1972 (if (and (= b -1)
1973 (math-known-square-matrixp (nth 1 a))
1974 (math-known-square-matrixp (nth 2 a)))
1975 (math-mul (math-pow-fancy (nth 2 a) -1)
1976 (math-pow-fancy (nth 1 a) -1))
1977 (list '^ a b)))
1978 ((and (eq (car-safe a) '*)
1979 (or (math-known-num-integerp b)
1980 (math-known-nonnegp (nth 1 a))
1981 (math-known-nonnegp (nth 2 a))))
1982 (math-mul (math-pow (nth 1 a) b)
1983 (math-pow (nth 2 a) b)))
1984 ((and (eq (car-safe a) '/)
1985 (or (math-known-num-integerp b)
1986 (math-known-nonnegp (nth 2 a))))
1987 (math-div (math-pow (nth 1 a) b)
1988 (math-pow (nth 2 a) b)))
1989 ((and (eq (car-safe a) '/)
1990 (math-known-nonnegp (nth 1 a))
1991 (not (math-equal-int (nth 1 a) 1)))
1992 (math-mul (math-pow (nth 1 a) b)
1993 (math-pow (math-div 1 (nth 2 a)) b)))
1994 ((and (eq (car-safe a) '^)
1995 (or (math-known-num-integerp b)
1996 (math-known-nonnegp (nth 1 a))))
1997 (math-pow (nth 1 a) (math-mul (nth 2 a) b)))
1998 ((and (eq (car-safe a) 'calcFunc-sqrt)
1999 (or (math-known-num-integerp b)
2000 (math-known-nonnegp (nth 1 a))))
2001 (math-pow (nth 1 a) (math-div b 2)))
2002 ((and (eq (car-safe a) '^)
2003 (math-known-evenp (nth 2 a))
2004 (memq (math-quarter-integer b) '(1 2 3))
2005 (math-known-realp (nth 1 a)))
2006 (math-abs (math-pow (nth 1 a) (math-mul (nth 2 a) b))))
2007 ((and (math-looks-negp a)
2008 (math-known-integerp b)
2009 (setq temp (or (and (math-known-evenp b)
2010 (math-pow (math-neg a) b))
2011 (and (math-known-oddp b)
2012 (math-neg (math-pow (math-neg a)
2013 b))))))
2014 temp)
2015 ((and (eq (car-safe a) 'calcFunc-abs)
2016 (math-known-realp (nth 1 a))
2017 (math-known-evenp b))
2018 (math-pow (nth 1 a) b))
2019 ((math-infinitep a)
2020 (cond ((equal a '(var nan var-nan))
2022 ((eq (car a) 'neg)
2023 (math-mul (math-pow -1 b) (math-pow (nth 1 a) b)))
2024 ((math-posp b)
2026 ((math-negp b)
2027 (if (math-floatp b) '(float 0 0) 0))
2028 ((and (eq (car-safe b) 'intv)
2029 (math-intv-constp b))
2030 '(intv 3 0 (var inf var-inf)))
2032 '(var nan var-nan))))
2033 ((math-infinitep b)
2034 (let (scale)
2035 (cond ((math-negp b)
2036 (math-pow (math-div 1 a) (math-neg b)))
2037 ((not (math-posp b))
2038 '(var nan var-nan))
2039 ((math-equal-int (setq scale (calcFunc-abssqr a)) 1)
2040 '(var nan var-nan))
2041 ((Math-lessp scale 1)
2042 (if (math-floatp a) '(float 0 0) 0))
2043 ((Math-lessp 1 a)
2045 ((Math-lessp a -1)
2046 '(var uinf var-uinf))
2047 ((and (eq (car a) 'intv)
2048 (math-intv-constp a))
2049 (if (Math-lessp -1 a)
2050 (if (math-equal-int (nth 3 a) 1)
2051 '(intv 3 0 1)
2052 '(intv 3 0 (var inf var-inf)))
2053 '(intv 3 (neg (var inf var-inf))
2054 (var inf var-inf))))
2055 (t (list '^ a b)))))
2056 ((and (eq (car-safe a) 'calcFunc-idn)
2057 (= (length a) 2)
2058 (math-known-num-integerp b))
2059 (list 'calcFunc-idn (math-pow (nth 1 a) b)))
2060 (t (if (Math-objectp a)
2061 (calc-record-why 'objectp b)
2062 (calc-record-why 'objectp a))
2063 (list '^ a b)))))
2064 ((and (eq (car-safe a) 'sdev) (eq (car-safe b) 'sdev))
2065 (if (and (math-constp a) (math-constp b))
2066 (math-with-extra-prec 2
2067 (let* ((ln (math-ln-raw (math-float (nth 1 a))))
2068 (pow (math-exp-raw
2069 (math-float (math-mul (nth 1 b) ln)))))
2070 (math-make-sdev
2072 (math-mul
2074 (math-hypot (math-mul (nth 2 a)
2075 (math-div (nth 1 b) (nth 1 a)))
2076 (math-mul (nth 2 b) ln))))))
2077 (let ((pow (math-pow (nth 1 a) (nth 1 b))))
2078 (math-make-sdev
2080 (math-mul pow
2081 (math-hypot (math-mul (nth 2 a)
2082 (math-div (nth 1 b) (nth 1 a)))
2083 (math-mul (nth 2 b) (calcFunc-ln
2084 (nth 1 a)))))))))
2085 ((and (eq (car-safe a) 'sdev) (Math-numberp b))
2086 (if (math-constp a)
2087 (math-with-extra-prec 2
2088 (let ((pow (math-pow (nth 1 a) (math-sub b 1))))
2089 (math-make-sdev (math-mul pow (nth 1 a))
2090 (math-mul pow (math-mul (nth 2 a) b)))))
2091 (math-make-sdev (math-pow (nth 1 a) b)
2092 (math-mul (math-pow (nth 1 a) (math-add b -1))
2093 (math-mul (nth 2 a) b)))))
2094 ((and (eq (car-safe b) 'sdev) (Math-numberp a))
2095 (math-with-extra-prec 2
2096 (let* ((ln (math-ln-raw (math-float a)))
2097 (pow (calcFunc-exp (math-mul (nth 1 b) ln))))
2098 (math-make-sdev pow (math-mul pow (math-mul (nth 2 b) ln))))))
2099 ((and (eq (car-safe a) 'intv) (math-intv-constp a)
2100 (Math-realp b)
2101 (or (Math-natnump b)
2102 (Math-posp (nth 2 a))
2103 (and (math-zerop (nth 2 a))
2104 (or (Math-posp b)
2105 (and (Math-integerp b) calc-infinite-mode)))
2106 (Math-negp (nth 3 a))
2107 (and (math-zerop (nth 3 a))
2108 (or (Math-posp b)
2109 (and (Math-integerp b) calc-infinite-mode)))))
2110 (if (math-evenp b)
2111 (setq a (math-abs a)))
2112 (let ((calc-infinite-mode (if (math-zerop (nth 3 a)) -1 1)))
2113 (math-sort-intv (nth 1 a)
2114 (math-pow (nth 2 a) b)
2115 (math-pow (nth 3 a) b))))
2116 ((and (eq (car-safe b) 'intv) (math-intv-constp b)
2117 (Math-realp a) (Math-posp a))
2118 (math-sort-intv (nth 1 b)
2119 (math-pow a (nth 2 b))
2120 (math-pow a (nth 3 b))))
2121 ((and (eq (car-safe a) 'intv) (math-intv-constp a)
2122 (eq (car-safe b) 'intv) (math-intv-constp b)
2123 (or (and (not (Math-negp (nth 2 a)))
2124 (not (Math-negp (nth 2 b))))
2125 (and (Math-posp (nth 2 a))
2126 (not (Math-posp (nth 3 b))))))
2127 (let ((lo (math-pow a (nth 2 b)))
2128 (hi (math-pow a (nth 3 b))))
2129 (or (eq (car-safe lo) 'intv)
2130 (setq lo (list 'intv (if (memq (nth 1 b) '(2 3)) 3 0) lo lo)))
2131 (or (eq (car-safe hi) 'intv)
2132 (setq hi (list 'intv (if (memq (nth 1 b) '(1 3)) 3 0) hi hi)))
2133 (math-combine-intervals
2134 (nth 2 lo) (and (or (memq (nth 1 b) '(2 3))
2135 (math-infinitep (nth 2 lo)))
2136 (memq (nth 1 lo) '(2 3)))
2137 (nth 3 lo) (and (or (memq (nth 1 b) '(2 3))
2138 (math-infinitep (nth 3 lo)))
2139 (memq (nth 1 lo) '(1 3)))
2140 (nth 2 hi) (and (or (memq (nth 1 b) '(1 3))
2141 (math-infinitep (nth 2 hi)))
2142 (memq (nth 1 hi) '(2 3)))
2143 (nth 3 hi) (and (or (memq (nth 1 b) '(1 3))
2144 (math-infinitep (nth 3 hi)))
2145 (memq (nth 1 hi) '(1 3))))))
2146 ((and (eq (car-safe a) 'mod) (eq (car-safe b) 'mod)
2147 (equal (nth 2 a) (nth 2 b)))
2148 (math-make-mod (math-pow-mod (nth 1 a) (nth 1 b) (nth 2 a))
2149 (nth 2 a)))
2150 ((and (eq (car-safe a) 'mod) (Math-anglep b))
2151 (math-make-mod (math-pow-mod (nth 1 a) b (nth 2 a)) (nth 2 a)))
2152 ((and (eq (car-safe b) 'mod) (Math-anglep a))
2153 (math-make-mod (math-pow-mod a (nth 1 b) (nth 2 b)) (nth 2 b)))
2154 ((not (Math-numberp a))
2155 (math-reject-arg a 'numberp))
2157 (math-reject-arg b 'numberp))))
2159 (defun math-quarter-integer (x)
2160 (if (Math-integerp x)
2162 (if (math-negp x)
2163 (progn
2164 (setq x (math-quarter-integer (math-neg x)))
2165 (and x (- 4 x)))
2166 (if (eq (car x) 'frac)
2167 (if (eq (nth 2 x) 2)
2169 (and (eq (nth 2 x) 4)
2170 (progn
2171 (setq x (nth 1 x))
2172 (% (if (consp x) (nth 1 x) x) 4))))
2173 (if (eq (car x) 'float)
2174 (if (>= (nth 2 x) 0)
2176 (if (= (nth 2 x) -1)
2177 (progn
2178 (setq x (nth 1 x))
2179 (and (= (% (if (consp x) (nth 1 x) x) 10) 5) 2))
2180 (if (= (nth 2 x) -2)
2181 (progn
2182 (setq x (nth 1 x)
2183 x (% (if (consp x) (nth 1 x) x) 100))
2184 (if (= x 25) 1
2185 (if (= x 75) 3)))))))))))
2187 ;;; This assumes A < M and M > 0.
2188 (defun math-pow-mod (a b m) ; [R R R R]
2189 (if (and (Math-integerp a) (Math-integerp b) (Math-integerp m))
2190 (if (Math-negp b)
2191 (math-div-mod 1 (math-pow-mod a (Math-integer-neg b) m) m)
2192 (if (eq m 1)
2194 (math-pow-mod-step a b m)))
2195 (math-mod (math-pow a b) m)))
2197 (defun math-pow-mod-step (a n m) ; [I I I I]
2198 (math-working "pow" a)
2199 (let ((val (cond
2200 ((eq n 0) 1)
2201 ((eq n 1) a)
2203 (let ((rest (math-pow-mod-step
2204 (math-imod (math-mul a a) m)
2205 (math-div2 n)
2206 m)))
2207 (if (math-evenp n)
2208 rest
2209 (math-mod (math-mul a rest) m)))))))
2210 (math-working "pow" val)
2211 val))
2214 ;;; Compute the minimum of two real numbers. [R R R] [Public]
2215 (defun math-min (a b)
2216 (if (and (consp a) (eq (car a) 'intv))
2217 (if (and (consp b) (eq (car b) 'intv))
2218 (let ((lo (nth 2 a))
2219 (lom (memq (nth 1 a) '(2 3)))
2220 (hi (nth 3 a))
2221 (him (memq (nth 1 a) '(1 3)))
2222 res)
2223 (if (= (setq res (math-compare (nth 2 b) lo)) -1)
2224 (setq lo (nth 2 b) lom (memq (nth 1 b) '(2 3)))
2225 (if (= res 0)
2226 (setq lom (or lom (memq (nth 1 b) '(2 3))))))
2227 (if (= (setq res (math-compare (nth 3 b) hi)) -1)
2228 (setq hi (nth 3 b) him (memq (nth 1 b) '(1 3)))
2229 (if (= res 0)
2230 (setq him (or him (memq (nth 1 b) '(1 3))))))
2231 (math-make-intv (+ (if lom 2 0) (if him 1 0)) lo hi))
2232 (math-min a (list 'intv 3 b b)))
2233 (if (and (consp b) (eq (car b) 'intv))
2234 (math-min (list 'intv 3 a a) b)
2235 (let ((res (math-compare a b)))
2236 (if (= res 1)
2238 (if (= res 2)
2239 '(var nan var-nan)
2240 a))))))
2242 (defun calcFunc-min (&optional a &rest b)
2243 (if (not a)
2244 '(var inf var-inf)
2245 (if (not (or (Math-anglep a) (eq (car a) 'date)
2246 (and (eq (car a) 'intv) (math-intv-constp a))
2247 (math-infinitep a)))
2248 (math-reject-arg a 'anglep))
2249 (math-min-list a b)))
2251 (defun math-min-list (a b)
2252 (if b
2253 (if (or (Math-anglep (car b)) (eq (car b) 'date)
2254 (and (eq (car (car b)) 'intv) (math-intv-constp (car b)))
2255 (math-infinitep (car b)))
2256 (math-min-list (math-min a (car b)) (cdr b))
2257 (math-reject-arg (car b) 'anglep))
2260 ;;; Compute the maximum of two real numbers. [R R R] [Public]
2261 (defun math-max (a b)
2262 (if (or (and (consp a) (eq (car a) 'intv))
2263 (and (consp b) (eq (car b) 'intv)))
2264 (math-neg (math-min (math-neg a) (math-neg b)))
2265 (let ((res (math-compare a b)))
2266 (if (= res -1)
2268 (if (= res 2)
2269 '(var nan var-nan)
2270 a)))))
2272 (defun calcFunc-max (&optional a &rest b)
2273 (if (not a)
2274 '(neg (var inf var-inf))
2275 (if (not (or (Math-anglep a) (eq (car a) 'date)
2276 (and (eq (car a) 'intv) (math-intv-constp a))
2277 (math-infinitep a)))
2278 (math-reject-arg a 'anglep))
2279 (math-max-list a b)))
2281 (defun math-max-list (a b)
2282 (if b
2283 (if (or (Math-anglep (car b)) (eq (car b) 'date)
2284 (and (eq (car (car b)) 'intv) (math-intv-constp (car b)))
2285 (math-infinitep (car b)))
2286 (math-max-list (math-max a (car b)) (cdr b))
2287 (math-reject-arg (car b) 'anglep))
2291 ;;; Compute the absolute value of A. [O O; r r] [Public]
2292 (defun math-abs (a)
2293 (cond ((Math-negp a)
2294 (math-neg a))
2295 ((Math-anglep a)
2297 ((eq (car a) 'cplx)
2298 (math-hypot (nth 1 a) (nth 2 a)))
2299 ((eq (car a) 'polar)
2300 (nth 1 a))
2301 ((eq (car a) 'vec)
2302 (if (cdr (cdr (cdr a)))
2303 (math-sqrt (calcFunc-abssqr a))
2304 (if (cdr (cdr a))
2305 (math-hypot (nth 1 a) (nth 2 a))
2306 (if (cdr a)
2307 (math-abs (nth 1 a))
2308 a))))
2309 ((eq (car a) 'sdev)
2310 (list 'sdev (math-abs (nth 1 a)) (nth 2 a)))
2311 ((and (eq (car a) 'intv) (math-intv-constp a))
2312 (if (Math-posp a)
2314 (let* ((nlo (math-neg (nth 2 a)))
2315 (res (math-compare nlo (nth 3 a))))
2316 (cond ((= res 1)
2317 (math-make-intv (if (memq (nth 1 a) '(0 1)) 2 3) 0 nlo))
2318 ((= res 0)
2319 (math-make-intv (if (eq (nth 1 a) 0) 2 3) 0 nlo))
2321 (math-make-intv (if (memq (nth 1 a) '(0 2)) 2 3)
2322 0 (nth 3 a)))))))
2323 ((math-looks-negp a)
2324 (list 'calcFunc-abs (math-neg a)))
2325 ((let ((signs (math-possible-signs a)))
2326 (or (and (memq signs '(2 4 6)) a)
2327 (and (memq signs '(1 3)) (math-neg a)))))
2328 ((let ((inf (math-infinitep a)))
2329 (and inf
2330 (if (equal inf '(var nan var-nan))
2332 '(var inf var-inf)))))
2333 (t (calc-record-why 'numvecp a)
2334 (list 'calcFunc-abs a))))
2336 (defalias 'calcFunc-abs 'math-abs)
2338 (defun math-float-fancy (a)
2339 (cond ((eq (car a) 'intv)
2340 (cons (car a) (cons (nth 1 a) (mapcar 'math-float (nthcdr 2 a)))))
2341 ((and (memq (car a) '(* /))
2342 (math-numberp (nth 1 a)))
2343 (list (car a) (math-float (nth 1 a))
2344 (list 'calcFunc-float (nth 2 a))))
2345 ((and (eq (car a) '/)
2346 (eq (car (nth 1 a)) '*)
2347 (math-numberp (nth 1 (nth 1 a))))
2348 (list '* (math-float (nth 1 (nth 1 a)))
2349 (list 'calcFunc-float (list '/ (nth 2 (nth 1 a)) (nth 2 a)))))
2350 ((math-infinitep a) a)
2351 ((eq (car a) 'calcFunc-float) a)
2352 ((let ((func (assq (car a) '((calcFunc-floor . calcFunc-ffloor)
2353 (calcFunc-ceil . calcFunc-fceil)
2354 (calcFunc-trunc . calcFunc-ftrunc)
2355 (calcFunc-round . calcFunc-fround)
2356 (calcFunc-rounde . calcFunc-frounde)
2357 (calcFunc-roundu . calcFunc-froundu)))))
2358 (and func (cons (cdr func) (cdr a)))))
2359 (t (math-reject-arg a 'objectp))))
2361 (defalias 'calcFunc-float 'math-float)
2363 ;; The variable math-trunc-prec is local to math-trunc in calc-misc.el,
2364 ;; but used by math-trunc-fancy which is called by math-trunc.
2365 (defvar math-trunc-prec)
2367 (defun math-trunc-fancy (a)
2368 (cond ((eq (car a) 'frac) (math-quotient (nth 1 a) (nth 2 a)))
2369 ((eq (car a) 'cplx) (math-trunc (nth 1 a)))
2370 ((eq (car a) 'polar) (math-trunc (math-complex a)))
2371 ((eq (car a) 'hms) (list 'hms (nth 1 a) 0 0))
2372 ((eq (car a) 'date) (list 'date (math-trunc (nth 1 a))))
2373 ((eq (car a) 'mod)
2374 (if (math-messy-integerp (nth 2 a))
2375 (math-trunc (math-make-mod (nth 1 a) (math-trunc (nth 2 a))))
2376 (math-make-mod (math-trunc (nth 1 a)) (nth 2 a))))
2377 ((eq (car a) 'intv)
2378 (math-make-intv (+ (if (and (equal (nth 2 a) '(neg (var inf var-inf)))
2379 (memq (nth 1 a) '(0 1)))
2380 0 2)
2381 (if (and (equal (nth 3 a) '(var inf var-inf))
2382 (memq (nth 1 a) '(0 2)))
2383 0 1))
2384 (if (and (Math-negp (nth 2 a))
2385 (Math-num-integerp (nth 2 a))
2386 (memq (nth 1 a) '(0 1)))
2387 (math-add (math-trunc (nth 2 a)) 1)
2388 (math-trunc (nth 2 a)))
2389 (if (and (Math-posp (nth 3 a))
2390 (Math-num-integerp (nth 3 a))
2391 (memq (nth 1 a) '(0 2)))
2392 (math-add (math-trunc (nth 3 a)) -1)
2393 (math-trunc (nth 3 a)))))
2394 ((math-provably-integerp a) a)
2395 ((Math-vectorp a)
2396 (math-map-vec (function (lambda (x) (math-trunc x math-trunc-prec))) a))
2397 ((math-infinitep a)
2398 (if (or (math-posp a) (math-negp a))
2400 '(var nan var-nan)))
2401 ((math-to-integer a))
2402 (t (math-reject-arg a 'numberp))))
2404 (defun math-trunc-special (a prec)
2405 (if (Math-messy-integerp prec)
2406 (setq prec (math-trunc prec)))
2407 (or (integerp prec)
2408 (math-reject-arg prec 'fixnump))
2409 (if (and (<= prec 0)
2410 (math-provably-integerp a))
2412 (calcFunc-scf (math-trunc (let ((calc-prefer-frac t))
2413 (calcFunc-scf a prec)))
2414 (- prec))))
2416 (defun math-to-integer (a)
2417 (let ((func (assq (car-safe a) '((calcFunc-ffloor . calcFunc-floor)
2418 (calcFunc-fceil . calcFunc-ceil)
2419 (calcFunc-ftrunc . calcFunc-trunc)
2420 (calcFunc-fround . calcFunc-round)
2421 (calcFunc-frounde . calcFunc-rounde)
2422 (calcFunc-froundu . calcFunc-roundu)))))
2423 (and func (= (length a) 2)
2424 (cons (cdr func) (cdr a)))))
2426 (defun calcFunc-ftrunc (a &optional prec)
2427 (if (and (Math-messy-integerp a)
2428 (or (not prec) (and (integerp prec)
2429 (<= prec 0))))
2431 (math-float (math-trunc a prec))))
2433 ;; The variable math-floor-prec is local to math-floor in calc-misc.el,
2434 ;; but used by math-floor-fancy which is called by math-floor.
2435 (defvar math-floor-prec)
2437 (defun math-floor-fancy (a)
2438 (cond ((math-provably-integerp a) a)
2439 ((eq (car a) 'hms)
2440 (if (or (math-posp a)
2441 (and (math-zerop (nth 2 a))
2442 (math-zerop (nth 3 a))))
2443 (math-trunc a)
2444 (math-add (math-trunc a) -1)))
2445 ((eq (car a) 'date) (list 'date (math-floor (nth 1 a))))
2446 ((eq (car a) 'intv)
2447 (math-make-intv (+ (if (and (equal (nth 2 a) '(neg (var inf var-inf)))
2448 (memq (nth 1 a) '(0 1)))
2449 0 2)
2450 (if (and (equal (nth 3 a) '(var inf var-inf))
2451 (memq (nth 1 a) '(0 2)))
2452 0 1))
2453 (math-floor (nth 2 a))
2454 (if (and (Math-num-integerp (nth 3 a))
2455 (memq (nth 1 a) '(0 2)))
2456 (math-add (math-floor (nth 3 a)) -1)
2457 (math-floor (nth 3 a)))))
2458 ((Math-vectorp a)
2459 (math-map-vec (function (lambda (x) (math-floor x math-floor-prec))) a))
2460 ((math-infinitep a)
2461 (if (or (math-posp a) (math-negp a))
2463 '(var nan var-nan)))
2464 ((math-to-integer a))
2465 (t (math-reject-arg a 'anglep))))
2467 (defun math-floor-special (a prec)
2468 (if (Math-messy-integerp prec)
2469 (setq prec (math-trunc prec)))
2470 (or (integerp prec)
2471 (math-reject-arg prec 'fixnump))
2472 (if (and (<= prec 0)
2473 (math-provably-integerp a))
2475 (calcFunc-scf (math-floor (let ((calc-prefer-frac t))
2476 (calcFunc-scf a prec)))
2477 (- prec))))
2479 (defun calcFunc-ffloor (a &optional prec)
2480 (if (and (Math-messy-integerp a)
2481 (or (not prec) (and (integerp prec)
2482 (<= prec 0))))
2484 (math-float (math-floor a prec))))
2486 ;;; Coerce A to be an integer (by truncation toward plus infinity). [I N]
2487 (defun math-ceiling (a &optional prec) ; [Public]
2488 (cond (prec
2489 (if (Math-messy-integerp prec)
2490 (setq prec (math-trunc prec)))
2491 (or (integerp prec)
2492 (math-reject-arg prec 'fixnump))
2493 (if (and (<= prec 0)
2494 (math-provably-integerp a))
2496 (calcFunc-scf (math-ceiling (let ((calc-prefer-frac t))
2497 (calcFunc-scf a prec)))
2498 (- prec))))
2499 ((Math-integerp a) a)
2500 ((Math-messy-integerp a) (math-trunc a))
2501 ((Math-realp a)
2502 (if (Math-posp a)
2503 (math-add (math-trunc a) 1)
2504 (math-trunc a)))
2505 ((math-provably-integerp a) a)
2506 ((eq (car a) 'hms)
2507 (if (or (math-negp a)
2508 (and (math-zerop (nth 2 a))
2509 (math-zerop (nth 3 a))))
2510 (math-trunc a)
2511 (math-add (math-trunc a) 1)))
2512 ((eq (car a) 'date) (list 'date (math-ceiling (nth 1 a))))
2513 ((eq (car a) 'intv)
2514 (math-make-intv (+ (if (and (equal (nth 2 a) '(neg (var inf var-inf)))
2515 (memq (nth 1 a) '(0 1)))
2516 0 2)
2517 (if (and (equal (nth 3 a) '(var inf var-inf))
2518 (memq (nth 1 a) '(0 2)))
2519 0 1))
2520 (if (and (Math-num-integerp (nth 2 a))
2521 (memq (nth 1 a) '(0 1)))
2522 (math-add (math-floor (nth 2 a)) 1)
2523 (math-ceiling (nth 2 a)))
2524 (math-ceiling (nth 3 a))))
2525 ((Math-vectorp a)
2526 (math-map-vec (function (lambda (x) (math-ceiling x prec))) a))
2527 ((math-infinitep a)
2528 (if (or (math-posp a) (math-negp a))
2530 '(var nan var-nan)))
2531 ((math-to-integer a))
2532 (t (math-reject-arg a 'anglep))))
2534 (defalias 'calcFunc-ceil 'math-ceiling)
2536 (defun calcFunc-fceil (a &optional prec)
2537 (if (and (Math-messy-integerp a)
2538 (or (not prec) (and (integerp prec)
2539 (<= prec 0))))
2541 (math-float (math-ceiling a prec))))
2543 (defvar math-rounding-mode nil)
2545 ;;; Coerce A to be an integer (by rounding to nearest integer). [I N] [Public]
2546 (defun math-round (a &optional prec)
2547 (cond (prec
2548 (if (Math-messy-integerp prec)
2549 (setq prec (math-trunc prec)))
2550 (or (integerp prec)
2551 (math-reject-arg prec 'fixnump))
2552 (if (and (<= prec 0)
2553 (math-provably-integerp a))
2555 (calcFunc-scf (math-round (let ((calc-prefer-frac t))
2556 (calcFunc-scf a prec)))
2557 (- prec))))
2558 ((Math-anglep a)
2559 (if (Math-num-integerp a)
2560 (math-trunc a)
2561 (if (and (Math-negp a) (not (eq math-rounding-mode 'up)))
2562 (math-neg (math-round (math-neg a)))
2563 (setq a (let ((calc-angle-mode 'deg)) ; in case of HMS forms
2564 (math-add a (if (Math-ratp a)
2565 '(frac 1 2)
2566 '(float 5 -1)))))
2567 (if (and (Math-num-integerp a) (eq math-rounding-mode 'even))
2568 (progn
2569 (setq a (math-floor a))
2570 (or (math-evenp a)
2571 (setq a (math-sub a 1)))
2573 (math-floor a)))))
2574 ((math-provably-integerp a) a)
2575 ((eq (car a) 'date) (list 'date (math-round (nth 1 a))))
2576 ((eq (car a) 'intv)
2577 (math-floor (math-add a '(frac 1 2))))
2578 ((Math-vectorp a)
2579 (math-map-vec (function (lambda (x) (math-round x prec))) a))
2580 ((math-infinitep a)
2581 (if (or (math-posp a) (math-negp a))
2583 '(var nan var-nan)))
2584 ((math-to-integer a))
2585 (t (math-reject-arg a 'anglep))))
2587 (defalias 'calcFunc-round 'math-round)
2589 (defsubst calcFunc-rounde (a &optional prec)
2590 (let ((math-rounding-mode 'even))
2591 (math-round a prec)))
2593 (defsubst calcFunc-roundu (a &optional prec)
2594 (let ((math-rounding-mode 'up))
2595 (math-round a prec)))
2597 (defun calcFunc-fround (a &optional prec)
2598 (if (and (Math-messy-integerp a)
2599 (or (not prec) (and (integerp prec)
2600 (<= prec 0))))
2602 (math-float (math-round a prec))))
2604 (defsubst calcFunc-frounde (a &optional prec)
2605 (let ((math-rounding-mode 'even))
2606 (calcFunc-fround a prec)))
2608 (defsubst calcFunc-froundu (a &optional prec)
2609 (let ((math-rounding-mode 'up))
2610 (calcFunc-fround a prec)))
2612 ;;; Pull floating-point values apart into mantissa and exponent.
2613 (defun calcFunc-mant (x)
2614 (if (Math-realp x)
2615 (if (or (Math-ratp x)
2616 (eq (nth 1 x) 0))
2618 (list 'float (nth 1 x) (- 1 (math-numdigs (nth 1 x)))))
2619 (calc-record-why 'realp x)
2620 (list 'calcFunc-mant x)))
2622 (defun calcFunc-xpon (x)
2623 (if (Math-realp x)
2624 (if (or (Math-ratp x)
2625 (eq (nth 1 x) 0))
2627 (math-normalize (+ (nth 2 x) (1- (math-numdigs (nth 1 x))))))
2628 (calc-record-why 'realp x)
2629 (list 'calcFunc-xpon x)))
2631 (defun calcFunc-scf (x n)
2632 (if (integerp n)
2633 (cond ((eq n 0)
2635 ((Math-integerp x)
2636 (if (> n 0)
2637 (math-scale-int x n)
2638 (math-div x (math-scale-int 1 (- n)))))
2639 ((eq (car x) 'frac)
2640 (if (> n 0)
2641 (math-make-frac (math-scale-int (nth 1 x) n) (nth 2 x))
2642 (math-make-frac (nth 1 x) (math-scale-int (nth 2 x) (- n)))))
2643 ((eq (car x) 'float)
2644 (math-make-float (nth 1 x) (+ (nth 2 x) n)))
2645 ((memq (car x) '(cplx sdev))
2646 (math-normalize
2647 (list (car x)
2648 (calcFunc-scf (nth 1 x) n)
2649 (calcFunc-scf (nth 2 x) n))))
2650 ((memq (car x) '(polar mod))
2651 (math-normalize
2652 (list (car x)
2653 (calcFunc-scf (nth 1 x) n)
2654 (nth 2 x))))
2655 ((eq (car x) 'intv)
2656 (math-normalize
2657 (list (car x)
2658 (nth 1 x)
2659 (calcFunc-scf (nth 2 x) n)
2660 (calcFunc-scf (nth 3 x) n))))
2661 ((eq (car x) 'vec)
2662 (math-map-vec (function (lambda (x) (calcFunc-scf x n))) x))
2663 ((math-infinitep x)
2666 (calc-record-why 'realp x)
2667 (list 'calcFunc-scf x n)))
2668 (if (math-messy-integerp n)
2669 (if (< (nth 2 n) 10)
2670 (calcFunc-scf x (math-trunc n))
2671 (math-overflow n))
2672 (if (math-integerp n)
2673 (math-overflow n)
2674 (calc-record-why 'integerp n)
2675 (list 'calcFunc-scf x n)))))
2678 (defun calcFunc-incr (x &optional step relative-to)
2679 (or step (setq step 1))
2680 (cond ((not (Math-integerp step))
2681 (math-reject-arg step 'integerp))
2682 ((Math-integerp x)
2683 (math-add x step))
2684 ((eq (car x) 'float)
2685 (if (and (math-zerop x)
2686 (eq (car-safe relative-to) 'float))
2687 (math-mul step
2688 (calcFunc-scf relative-to (- 1 calc-internal-prec)))
2689 (math-add-float x (math-make-float
2690 step
2691 (+ (nth 2 x)
2692 (- (math-numdigs (nth 1 x))
2693 calc-internal-prec))))))
2694 ((eq (car x) 'date)
2695 (if (Math-integerp (nth 1 x))
2696 (math-add x step)
2697 (math-add x (list 'hms 0 0 step))))
2699 (math-reject-arg x 'realp))))
2701 (defsubst calcFunc-decr (x &optional step relative-to)
2702 (calcFunc-incr x (math-neg (or step 1)) relative-to))
2704 (defun calcFunc-percent (x)
2705 (if (math-objectp x)
2706 (let ((calc-prefer-frac nil))
2707 (math-div x 100))
2708 (list 'calcFunc-percent x)))
2710 (defun calcFunc-relch (x y)
2711 (if (and (math-objectp x) (math-objectp y))
2712 (math-div (math-sub y x) x)
2713 (list 'calcFunc-relch x y)))
2715 ;;; Compute the absolute value squared of A. [F N] [Public]
2716 (defun calcFunc-abssqr (a)
2717 (cond ((Math-realp a)
2718 (math-mul a a))
2719 ((eq (car a) 'cplx)
2720 (math-add (math-sqr (nth 1 a))
2721 (math-sqr (nth 2 a))))
2722 ((eq (car a) 'polar)
2723 (math-sqr (nth 1 a)))
2724 ((and (memq (car a) '(sdev intv)) (math-constp a))
2725 (math-sqr (math-abs a)))
2726 ((eq (car a) 'vec)
2727 (math-reduce-vec 'math-add (math-map-vec 'calcFunc-abssqr a)))
2728 ((math-known-realp a)
2729 (math-pow a 2))
2730 ((let ((inf (math-infinitep a)))
2731 (and inf
2732 (math-mul (calcFunc-abssqr (math-infinite-dir a inf)) inf))))
2733 (t (calc-record-why 'numvecp a)
2734 (list 'calcFunc-abssqr a))))
2736 (defsubst math-sqr (a)
2737 (math-mul a a))
2739 ;;;; Number theory.
2741 (defun calcFunc-idiv (a b) ; [I I I] [Public]
2742 (cond ((and (Math-natnump a) (Math-natnump b) (not (eq b 0)))
2743 (math-quotient a b))
2744 ((Math-realp a)
2745 (if (Math-realp b)
2746 (let ((calc-prefer-frac t))
2747 (math-floor (math-div a b)))
2748 (math-reject-arg b 'realp)))
2749 ((eq (car-safe a) 'hms)
2750 (if (eq (car-safe b) 'hms)
2751 (let ((calc-prefer-frac t))
2752 (math-floor (math-div a b)))
2753 (math-reject-arg b 'hmsp)))
2754 ((and (or (eq (car-safe a) 'intv) (Math-realp a))
2755 (or (eq (car-safe b) 'intv) (Math-realp b)))
2756 (math-floor (math-div a b)))
2757 ((or (math-infinitep a)
2758 (math-infinitep b))
2759 (math-div a b))
2760 (t (math-reject-arg a 'anglep))))
2763 ;;; Combine two terms being added, if possible.
2764 (defun math-combine-sum (a b nega negb scalar-okay)
2765 (if (and scalar-okay (Math-objvecp a) (Math-objvecp b))
2766 (math-add-or-sub a b nega negb)
2767 (let ((amult 1) (bmult 1))
2768 (and (consp a)
2769 (cond ((and (eq (car a) '*)
2770 (Math-objectp (nth 1 a)))
2771 (setq amult (nth 1 a)
2772 a (nth 2 a)))
2773 ((and (eq (car a) '/)
2774 (Math-objectp (nth 2 a)))
2775 (setq amult (if (Math-integerp (nth 2 a))
2776 (list 'frac 1 (nth 2 a))
2777 (math-div 1 (nth 2 a)))
2778 a (nth 1 a)))
2779 ((eq (car a) 'neg)
2780 (setq amult -1
2781 a (nth 1 a)))))
2782 (and (consp b)
2783 (cond ((and (eq (car b) '*)
2784 (Math-objectp (nth 1 b)))
2785 (setq bmult (nth 1 b)
2786 b (nth 2 b)))
2787 ((and (eq (car b) '/)
2788 (Math-objectp (nth 2 b)))
2789 (setq bmult (if (Math-integerp (nth 2 b))
2790 (list 'frac 1 (nth 2 b))
2791 (math-div 1 (nth 2 b)))
2792 b (nth 1 b)))
2793 ((eq (car b) 'neg)
2794 (setq bmult -1
2795 b (nth 1 b)))))
2796 (and (if math-simplifying
2797 (Math-equal a b)
2798 (equal a b))
2799 (progn
2800 (if nega (setq amult (math-neg amult)))
2801 (if negb (setq bmult (math-neg bmult)))
2802 (setq amult (math-add amult bmult))
2803 (math-mul amult a))))))
2805 (defun math-add-or-sub (a b aneg bneg)
2806 (if aneg (setq a (math-neg a)))
2807 (if bneg (setq b (math-neg b)))
2808 (if (or (Math-vectorp a) (Math-vectorp b))
2809 (math-normalize (list '+ a b))
2810 (math-add a b)))
2812 (defvar math-combine-prod-e '(var e var-e))
2814 ;;; The following is expanded out four ways for speed.
2816 ;; math-unit-prefixes is defined in calc-units.el,
2817 ;; but used here.
2818 (defvar math-unit-prefixes)
2820 (defun math-combine-prod (a b inva invb scalar-okay)
2821 (cond
2822 ((or (and inva (Math-zerop a))
2823 (and invb (Math-zerop b)))
2824 nil)
2825 ((and scalar-okay (Math-objvecp a) (Math-objvecp b))
2826 (setq a (math-mul-or-div a b inva invb))
2827 (and (Math-objvecp a)
2829 ((and (eq (car-safe a) '^)
2830 inva
2831 (math-looks-negp (nth 2 a)))
2832 (math-mul (math-pow (nth 1 a) (math-neg (nth 2 a))) b))
2833 ((and (eq (car-safe b) '^)
2834 invb
2835 (math-looks-negp (nth 2 b)))
2836 (math-mul a (math-pow (nth 1 b) (math-neg (nth 2 b)))))
2837 ((and math-simplifying
2838 (math-combine-prod-trig a b)))
2839 (t (let ((apow 1) (bpow 1))
2840 (and (consp a)
2841 (cond ((and (eq (car a) '^)
2842 (or math-simplifying
2843 (Math-numberp (nth 2 a))))
2844 (setq apow (nth 2 a)
2845 a (nth 1 a)))
2846 ((eq (car a) 'calcFunc-sqrt)
2847 (setq apow '(frac 1 2)
2848 a (nth 1 a)))
2849 ((and (eq (car a) 'calcFunc-exp)
2850 (or math-simplifying
2851 (Math-numberp (nth 1 a))))
2852 (setq apow (nth 1 a)
2853 a math-combine-prod-e))))
2854 (and (consp a) (eq (car a) 'frac)
2855 (Math-lessp (nth 1 a) (nth 2 a))
2856 (setq a (math-div 1 a) apow (math-neg apow)))
2857 (and (consp b)
2858 (cond ((and (eq (car b) '^)
2859 (or math-simplifying
2860 (Math-numberp (nth 2 b))))
2861 (setq bpow (nth 2 b)
2862 b (nth 1 b)))
2863 ((eq (car b) 'calcFunc-sqrt)
2864 (setq bpow '(frac 1 2)
2865 b (nth 1 b)))
2866 ((and (eq (car b) 'calcFunc-exp)
2867 (or math-simplifying
2868 (Math-numberp (nth 1 b))))
2869 (setq bpow (nth 1 b)
2870 b math-combine-prod-e))))
2871 (and (consp b) (eq (car b) 'frac)
2872 (Math-lessp (nth 1 b) (nth 2 b))
2873 (setq b (math-div 1 b) bpow (math-neg bpow)))
2874 (if inva (setq apow (math-neg apow)))
2875 (if invb (setq bpow (math-neg bpow)))
2876 (or (and (if math-simplifying
2877 (math-commutative-equal a b)
2878 (equal a b))
2879 (let ((sumpow (math-add apow bpow)))
2880 (and (or (not (Math-integerp a))
2881 (Math-zerop sumpow)
2882 (eq (eq (car-safe apow) 'frac)
2883 (eq (car-safe bpow) 'frac)))
2884 (progn
2885 (and (math-looks-negp sumpow)
2886 (Math-ratp a) (Math-posp a)
2887 (setq a (math-div 1 a)
2888 sumpow (math-neg sumpow)))
2889 (cond ((equal sumpow '(frac 1 2))
2890 (list 'calcFunc-sqrt a))
2891 ((equal sumpow '(frac -1 2))
2892 (math-div 1 (list 'calcFunc-sqrt a)))
2893 ((and (eq a math-combine-prod-e)
2894 (eq a b))
2895 (list 'calcFunc-exp sumpow))
2897 (condition-case err
2898 (math-pow a sumpow)
2899 (inexact-result (list '^ a sumpow)))))))))
2900 (and math-simplifying-units
2901 math-combining-units
2902 (let* ((ua (math-check-unit-name a))
2904 (and ua
2905 (eq ua (setq ub (math-check-unit-name b)))
2906 (progn
2907 (setq ua (if (eq (nth 1 a) (car ua))
2909 (nth 1 (assq (aref (symbol-name (nth 1 a))
2911 math-unit-prefixes)))
2912 ub (if (eq (nth 1 b) (car ub))
2914 (nth 1 (assq (aref (symbol-name (nth 1 b))
2916 math-unit-prefixes))))
2917 (if (Math-lessp ua ub)
2918 (let (temp)
2919 (setq temp a a b b temp
2920 temp ua ua ub ub temp
2921 temp apow apow bpow bpow temp)))
2922 (math-mul (math-pow (math-div ua ub) apow)
2923 (math-pow b (math-add apow bpow)))))))
2924 (and (equal apow bpow)
2925 (Math-natnump a) (Math-natnump b)
2926 (cond ((equal apow '(frac 1 2))
2927 (list 'calcFunc-sqrt (math-mul a b)))
2928 ((equal apow '(frac -1 2))
2929 (math-div 1 (list 'calcFunc-sqrt (math-mul a b))))
2931 (setq a (math-mul a b))
2932 (condition-case err
2933 (math-pow a apow)
2934 (inexact-result (list '^ a apow)))))))))))
2936 (defun math-combine-prod-trig (a b)
2937 (cond
2938 ((and (eq (car-safe a) 'calcFunc-sin)
2939 (eq (car-safe b) 'calcFunc-csc)
2940 (= 0 (math-simplify (math-sub (cdr a) (cdr b)))))
2942 ((and (eq (car-safe a) 'calcFunc-sin)
2943 (eq (car-safe b) 'calcFunc-sec)
2944 (= 0 (math-simplify (math-sub (cdr a) (cdr b)))))
2945 (cons 'calcFunc-tan (cdr a)))
2946 ((and (eq (car-safe a) 'calcFunc-sin)
2947 (eq (car-safe b) 'calcFunc-cot)
2948 (= 0 (math-simplify (math-sub (cdr a) (cdr b)))))
2949 (cons 'calcFunc-cos (cdr a)))
2950 ((and (eq (car-safe a) 'calcFunc-cos)
2951 (eq (car-safe b) 'calcFunc-sec)
2952 (= 0 (math-simplify (math-sub (cdr a) (cdr b)))))
2954 ((and (eq (car-safe a) 'calcFunc-cos)
2955 (eq (car-safe b) 'calcFunc-csc)
2956 (= 0 (math-simplify (math-sub (cdr a) (cdr b)))))
2957 (cons 'calcFunc-cot (cdr a)))
2958 ((and (eq (car-safe a) 'calcFunc-cos)
2959 (eq (car-safe b) 'calcFunc-tan)
2960 (= 0 (math-simplify (math-sub (cdr a) (cdr b)))))
2961 (cons 'calcFunc-sin (cdr a)))
2962 ((and (eq (car-safe a) 'calcFunc-tan)
2963 (eq (car-safe b) 'calcFunc-cot)
2964 (= 0 (math-simplify (math-sub (cdr a) (cdr b)))))
2966 ((and (eq (car-safe a) 'calcFunc-tan)
2967 (eq (car-safe b) 'calcFunc-csc)
2968 (= 0 (math-simplify (math-sub (cdr a) (cdr b)))))
2969 (cons 'calcFunc-sec (cdr a)))
2970 ((and (eq (car-safe a) 'calcFunc-sec)
2971 (eq (car-safe b) 'calcFunc-cot)
2972 (= 0 (math-simplify (math-sub (cdr a) (cdr b)))))
2973 (cons 'calcFunc-csc (cdr a)))
2974 ((and (eq (car-safe a) 'calcFunc-sinh)
2975 (eq (car-safe b) 'calcFunc-csch)
2976 (= 0 (math-simplify (math-sub (cdr a) (cdr b)))))
2978 ((and (eq (car-safe a) 'calcFunc-sinh)
2979 (eq (car-safe b) 'calcFunc-sech)
2980 (= 0 (math-simplify (math-sub (cdr a) (cdr b)))))
2981 (cons 'calcFunc-tanh (cdr a)))
2982 ((and (eq (car-safe a) 'calcFunc-sinh)
2983 (eq (car-safe b) 'calcFunc-coth)
2984 (= 0 (math-simplify (math-sub (cdr a) (cdr b)))))
2985 (cons 'calcFunc-cosh (cdr a)))
2986 ((and (eq (car-safe a) 'calcFunc-cosh)
2987 (eq (car-safe b) 'calcFunc-sech)
2988 (= 0 (math-simplify (math-sub (cdr a) (cdr b)))))
2990 ((and (eq (car-safe a) 'calcFunc-cosh)
2991 (eq (car-safe b) 'calcFunc-csch)
2992 (= 0 (math-simplify (math-sub (cdr a) (cdr b)))))
2993 (cons 'calcFunc-coth (cdr a)))
2994 ((and (eq (car-safe a) 'calcFunc-cosh)
2995 (eq (car-safe b) 'calcFunc-tanh)
2996 (= 0 (math-simplify (math-sub (cdr a) (cdr b)))))
2997 (cons 'calcFunc-sinh (cdr a)))
2998 ((and (eq (car-safe a) 'calcFunc-tanh)
2999 (eq (car-safe b) 'calcFunc-coth)
3000 (= 0 (math-simplify (math-sub (cdr a) (cdr b)))))
3002 ((and (eq (car-safe a) 'calcFunc-tanh)
3003 (eq (car-safe b) 'calcFunc-csch)
3004 (= 0 (math-simplify (math-sub (cdr a) (cdr b)))))
3005 (cons 'calcFunc-sech (cdr a)))
3006 ((and (eq (car-safe a) 'calcFunc-sech)
3007 (eq (car-safe b) 'calcFunc-coth)
3008 (= 0 (math-simplify (math-sub (cdr a) (cdr b)))))
3009 (cons 'calcFunc-csch (cdr a)))
3011 nil)))
3013 (defun math-mul-or-div (a b ainv binv)
3014 (if (or (Math-vectorp a) (Math-vectorp b))
3015 (math-normalize
3016 (if ainv
3017 (if binv
3018 (list '/ (math-div 1 a) b)
3019 (list '/ b a))
3020 (if binv
3021 (list '/ a b)
3022 (list '* a b))))
3023 (if ainv
3024 (if binv
3025 (math-div (math-div 1 a) b)
3026 (math-div b a))
3027 (if binv
3028 (math-div a b)
3029 (math-mul a b)))))
3031 ;; The variable math-com-bterms is local to math-commutative-equal,
3032 ;; but is used by math-commutative collect, which is called by
3033 ;; math-commutative-equal.
3034 (defvar math-com-bterms)
3036 (defun math-commutative-equal (a b)
3037 (if (memq (car-safe a) '(+ -))
3038 (and (memq (car-safe b) '(+ -))
3039 (let ((math-com-bterms nil) aterms p)
3040 (math-commutative-collect b nil)
3041 (setq aterms math-com-bterms math-com-bterms nil)
3042 (math-commutative-collect a nil)
3043 (and (= (length aterms) (length math-com-bterms))
3044 (progn
3045 (while (and aterms
3046 (progn
3047 (setq p math-com-bterms)
3048 (while (and p (not (equal (car aterms)
3049 (car p))))
3050 (setq p (cdr p)))
3052 (setq math-com-bterms (delq (car p) math-com-bterms)
3053 aterms (cdr aterms)))
3054 (not aterms)))))
3055 (equal a b)))
3057 (defun math-commutative-collect (b neg)
3058 (if (eq (car-safe b) '+)
3059 (progn
3060 (math-commutative-collect (nth 1 b) neg)
3061 (math-commutative-collect (nth 2 b) neg))
3062 (if (eq (car-safe b) '-)
3063 (progn
3064 (math-commutative-collect (nth 1 b) neg)
3065 (math-commutative-collect (nth 2 b) (not neg)))
3066 (setq math-com-bterms (cons (if neg (math-neg b) b) math-com-bterms)))))
3068 (provide 'calc-arith)
3070 ;; arch-tag: 6c396b5b-14c6-40ed-bb2a-7cc2e8111465
3071 ;;; calc-arith.el ends here