1 /* Dump Emacs in Mach-O format for use on macOS.
2 Copyright (C) 2001-2017 Free Software Foundation, Inc.
4 This file is part of GNU Emacs.
6 GNU Emacs is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 3 of the License, or (at
9 your option) any later version.
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19 /* Contributed by Andrew Choi (akochoi@mac.com). */
21 /* Documentation note.
23 Consult the following documents/files for a description of the
24 Mach-O format: the file loader.h, man pages for Mach-O and ld, old
25 NEXTSTEP documents of the Mach-O format. The tool otool dumps the
26 mach header (-h option) and the load commands (-l option) in a
27 Mach-O file. The tool nm on macOS displays the symbol table in
28 a Mach-O file. For examples of unexec for the Mach-O format, see
29 the file unexnext.c in the GNU Emacs distribution, the file
30 unexdyld.c in the Darwin port of GNU Emacs 20.7, and unexdyld.c in
31 the Darwin port of XEmacs 21.1. Also the Darwin Libc source
32 contains the source code for malloc_freezedry and malloc_jumpstart.
33 Read that to see what they do. This file was written completely
34 from scratch, making use of information from the above sources. */
36 /* The macOS implementation of unexec makes use of Darwin's `zone'
37 memory allocator. All calls to malloc, realloc, and free in Emacs
38 are redirected to unexec_malloc, unexec_realloc, and unexec_free in
39 this file. When temacs is run, all memory requests are handled in
40 the zone EmacsZone. The Darwin memory allocator library calls
41 maintain the data structures to manage this zone. Dumping writes
42 its contents to data segments of the executable file. When emacs
43 is run, the loader recreates the contents of the zone in memory.
44 However since the initialization routine of the zone memory
45 allocator is run again, this `zone' can no longer be used as a
46 heap. That is why emacs uses the ordinary malloc system call to
47 allocate memory. Also, when a block of memory needs to be
48 reallocated and the new size is larger than the old one, a new
49 block must be obtained by malloc and the old contents copied to
52 /* Peculiarity of the Mach-O files generated by ld in macOS
53 (possible causes of future bugs if changed).
55 The file offset of the start of the __TEXT segment is zero. Since
56 the Mach header and load commands are located at the beginning of a
57 Mach-O file, copying the contents of the __TEXT segment from the
58 input file overwrites them in the output file. Despite this,
59 unexec works fine as written below because the segment load command
60 for __TEXT appears, and is therefore processed, before all other
61 load commands except the segment load command for __PAGEZERO, which
64 Although the file offset of the start of the __TEXT segment is
65 zero, none of the sections it contains actually start there. In
66 fact, the earliest one starts a few hundred bytes beyond the end of
67 the last load command. The linker option -headerpad controls the
68 minimum size of this padding. Its setting can be changed in
69 s/darwin.h. A value of 0x690, e.g., leaves room for 30 additional
70 load commands for the newly created __DATA segments (at 56 bytes
71 each). Unexec fails if there is not enough room for these new
74 The __TEXT segment contains the sections __text, __cstring,
75 __picsymbol_stub, and __const and the __DATA segment contains the
76 sections __data, __la_symbol_ptr, __nl_symbol_ptr, __dyld, __bss,
77 and __common. The other segments do not contain any sections.
78 These sections are copied from the input file to the output file,
79 except for __data, __bss, and __common, which are dumped from
80 memory. The types of the sections __bss and __common are changed
81 from S_ZEROFILL to S_REGULAR. Note that the number of sections and
82 their relative order in the input and output files remain
83 unchanged. Otherwise all n_sect fields in the nlist records in the
84 symbol table (specified by the LC_SYMTAB load command) will have to
85 be changed accordingly.
90 /* Although <config.h> redefines malloc to unexec_malloc, etc., this
91 file wants stdlib.h to declare the originals. */
106 #include <sys/types.h>
108 #include <mach/mach.h>
109 #include <mach/vm_map.h>
110 #include <mach-o/loader.h>
111 #include <mach-o/reloc.h>
112 #ifdef HAVE_MALLOC_MALLOC_H
113 #include <malloc/malloc.h>
115 #include <objc/malloc.h>
120 /* LC_DATA_IN_CODE is not defined in mach-o/loader.h on Mac OS X 10.7.
121 But it is used if we build with "Command Line Tools for Xcode 4.5
122 (Mac OS X Lion) - September 2012". */
123 #ifndef LC_DATA_IN_CODE
124 #define LC_DATA_IN_CODE 0x29 /* table of non-instructions in __text */
128 #define mach_header mach_header_64
129 #define segment_command segment_command_64
130 #undef VM_REGION_BASIC_INFO_COUNT
131 #define VM_REGION_BASIC_INFO_COUNT VM_REGION_BASIC_INFO_COUNT_64
132 #undef VM_REGION_BASIC_INFO
133 #define VM_REGION_BASIC_INFO VM_REGION_BASIC_INFO_64
135 #define LC_SEGMENT LC_SEGMENT_64
136 #define vm_region vm_region_64
137 #define section section_64
139 #define MH_MAGIC MH_MAGIC_64
144 /* Size of buffer used to copy data from the input file to the output
145 file in function unexec_copy. */
146 #define UNEXEC_COPY_BUFSZ 1024
148 /* Regions with memory addresses above this value are assumed to be
149 mapped to dynamically loaded libraries and will not be dumped. */
150 #define VM_DATA_TOP (20 * 1024 * 1024)
152 /* Type of an element on the list of regions to be dumped. */
154 vm_address_t address
;
156 vm_prot_t protection
;
157 vm_prot_t max_protection
;
159 struct region_t
*next
;
162 /* Head and tail of the list of regions to be dumped. */
163 static struct region_t
*region_list_head
= 0;
164 static struct region_t
*region_list_tail
= 0;
166 /* Pointer to array of load commands. */
167 static struct load_command
**lca
;
169 /* Number of load commands. */
172 /* The highest VM address of segments loaded by the input file.
173 Regions with addresses beyond this are assumed to be allocated
174 dynamically and thus require dumping. */
175 static vm_address_t infile_lc_highest_addr
= 0;
177 /* The lowest file offset used by the all sections in the __TEXT
178 segments. This leaves room at the beginning of the file to store
179 the Mach-O header. Check this value against header size to ensure
180 the added load commands for the new __DATA segments did not
181 overwrite any of the sections in the __TEXT segment. */
182 static unsigned long text_seg_lowest_offset
= 0x10000000;
185 static struct mach_header mh
;
187 /* Offset at which the next load command should be written. */
188 static unsigned long curr_header_offset
= sizeof (struct mach_header
);
190 /* Offset at which the next segment should be written. */
191 static unsigned long curr_file_offset
= 0;
193 static unsigned long pagesize
;
194 #define ROUNDUP_TO_PAGE_BOUNDARY(x) (((x) + pagesize - 1) & ~(pagesize - 1))
196 static int infd
, outfd
;
198 static int in_dumped_exec
= 0;
200 static malloc_zone_t
*emacs_zone
;
202 /* file offset of input file's data segment */
203 static off_t data_segment_old_fileoff
= 0;
205 static struct segment_command
*data_segment_scp
;
207 /* Read N bytes from infd into memory starting at address DEST.
208 Return true if successful, false otherwise. */
210 unexec_read (void *dest
, size_t n
)
212 return n
== read (infd
, dest
, n
);
215 /* Write COUNT bytes from memory starting at address SRC to outfd
216 starting at offset DEST. Return true if successful, false
219 unexec_write (off_t dest
, const void *src
, size_t count
)
221 task_t task
= mach_task_self();
222 if (task
== MACH_PORT_NULL
|| task
== MACH_PORT_DEAD
)
225 if (lseek (outfd
, dest
, SEEK_SET
) != dest
)
228 /* We use the Mach virtual memory API to read our process memory
229 because using src directly would be undefined behavior and fails
230 under Address Sanitizer. */
231 bool success
= false;
233 mach_msg_type_number_t data_count
;
234 if (vm_read (task
, (uintptr_t) src
, count
, &data
, &data_count
)
238 write (outfd
, (const void *) (uintptr_t) data
, data_count
) == count
;
239 vm_deallocate (task
, data
, data_count
);
244 /* Write COUNT bytes of zeros to outfd starting at offset DEST.
245 Return true if successful, false otherwise. */
247 unexec_write_zero (off_t dest
, size_t count
)
249 char buf
[UNEXEC_COPY_BUFSZ
];
252 memset (buf
, 0, UNEXEC_COPY_BUFSZ
);
253 if (lseek (outfd
, dest
, SEEK_SET
) != dest
)
258 bytes
= count
> UNEXEC_COPY_BUFSZ
? UNEXEC_COPY_BUFSZ
: count
;
259 if (write (outfd
, buf
, bytes
) != bytes
)
267 /* Copy COUNT bytes from starting offset SRC in infd to starting
268 offset DEST in outfd. Return true if successful, false
271 unexec_copy (off_t dest
, off_t src
, ssize_t count
)
274 ssize_t bytes_to_read
;
276 char buf
[UNEXEC_COPY_BUFSZ
];
278 if (lseek (infd
, src
, SEEK_SET
) != src
)
281 if (lseek (outfd
, dest
, SEEK_SET
) != dest
)
286 bytes_to_read
= count
> UNEXEC_COPY_BUFSZ
? UNEXEC_COPY_BUFSZ
: count
;
287 bytes_read
= read (infd
, buf
, bytes_to_read
);
290 if (write (outfd
, buf
, bytes_read
) != bytes_read
)
298 /* Debugging and informational messages routines. */
300 static _Noreturn
void
301 unexec_error (const char *format
, ...)
305 va_start (ap
, format
);
306 fprintf (stderr
, "unexec: ");
307 vfprintf (stderr
, format
, ap
);
308 fprintf (stderr
, "\n");
314 print_prot (vm_prot_t prot
)
316 if (prot
== VM_PROT_NONE
)
320 putchar (prot
& VM_PROT_READ
? 'r' : ' ');
321 putchar (prot
& VM_PROT_WRITE
? 'w' : ' ');
322 putchar (prot
& VM_PROT_EXECUTE
? 'x' : ' ');
328 print_region (vm_address_t address
, vm_size_t size
, vm_prot_t prot
,
331 printf ("%#10lx %#8lx ", (long) address
, (long) size
);
334 print_prot (max_prot
);
339 print_region_list (void)
343 printf (" address size prot maxp\n");
345 for (r
= region_list_head
; r
; r
= r
->next
)
346 print_region (r
->address
, r
->size
, r
->protection
, r
->max_protection
);
349 /* Build the list of regions that need to be dumped. Regions with
350 addresses above VM_DATA_TOP are omitted. Adjacent regions with
351 identical protection are merged. Note that non-writable regions
352 cannot be omitted because they some regions created at run time are
355 build_region_list (void)
357 task_t target_task
= mach_task_self ();
358 vm_address_t address
= (vm_address_t
) 0;
360 struct vm_region_basic_info info
;
361 mach_msg_type_number_t info_count
= VM_REGION_BASIC_INFO_COUNT
;
362 mach_port_t object_name
;
366 printf ("--- List of All Regions ---\n");
367 printf (" address size prot maxp\n");
370 while (vm_region (target_task
, &address
, &size
, VM_REGION_BASIC_INFO
,
371 (vm_region_info_t
) &info
, &info_count
, &object_name
)
372 == KERN_SUCCESS
&& info_count
== VM_REGION_BASIC_INFO_COUNT
)
374 /* Done when we reach addresses of shared libraries, which are
375 loaded in high memory. */
376 if (address
>= VM_DATA_TOP
)
380 print_region (address
, size
, info
.protection
, info
.max_protection
);
383 /* If a region immediately follows the previous one (the one
384 most recently added to the list) and has identical
385 protection, merge it with the latter. Otherwise create a
386 new list element for it. */
388 && info
.protection
== region_list_tail
->protection
389 && info
.max_protection
== region_list_tail
->max_protection
390 && region_list_tail
->address
+ region_list_tail
->size
== address
)
392 region_list_tail
->size
+= size
;
396 r
= malloc (sizeof *r
);
399 unexec_error ("cannot allocate region structure");
401 r
->address
= address
;
403 r
->protection
= info
.protection
;
404 r
->max_protection
= info
.max_protection
;
407 if (region_list_head
== 0)
409 region_list_head
= r
;
410 region_list_tail
= r
;
414 region_list_tail
->next
= r
;
415 region_list_tail
= r
;
418 /* Deallocate (unused) object name returned by
420 if (object_name
!= MACH_PORT_NULL
)
421 mach_port_deallocate (target_task
, object_name
);
427 printf ("--- List of Regions to be Dumped ---\n");
428 print_region_list ();
432 #define MAX_UNEXEC_REGIONS 400
434 static int num_unexec_regions
;
438 } unexec_region_info
;
439 static unexec_region_info unexec_regions
[MAX_UNEXEC_REGIONS
];
442 unexec_regions_recorder (task_t task
, void *rr
, unsigned type
,
443 vm_range_t
*ranges
, unsigned num
)
448 while (num
&& num_unexec_regions
< MAX_UNEXEC_REGIONS
)
450 /* Subtract the size of trailing null bytes from filesize. It
451 can be smaller than vmsize in segment commands. In such a
452 case, trailing bytes are initialized with zeros. */
453 for (p
= ranges
->address
+ ranges
->size
; p
> ranges
->address
; p
--)
454 if (*(((char *) p
)-1))
456 filesize
= p
- ranges
->address
;
458 unexec_regions
[num_unexec_regions
].filesize
= filesize
;
459 unexec_regions
[num_unexec_regions
++].range
= *ranges
;
460 printf ("%#10lx (sz: %#8lx/%#8lx)\n", (long) (ranges
->address
),
461 (long) filesize
, (long) (ranges
->size
));
467 unexec_reader (task_t task
, vm_address_t address
, vm_size_t size
, void **ptr
)
469 *ptr
= (void *) address
;
474 find_emacs_zone_regions (void)
476 num_unexec_regions
= 0;
478 emacs_zone
->introspect
->enumerator (mach_task_self (), 0,
479 MALLOC_PTR_REGION_RANGE_TYPE
480 | MALLOC_ADMIN_REGION_RANGE_TYPE
,
481 (vm_address_t
) emacs_zone
,
483 unexec_regions_recorder
);
485 if (num_unexec_regions
== MAX_UNEXEC_REGIONS
)
486 unexec_error ("find_emacs_zone_regions: too many regions");
490 unexec_regions_sort_compare (const void *a
, const void *b
)
492 vm_address_t aa
= ((unexec_region_info
*) a
)->range
.address
;
493 vm_address_t bb
= ((unexec_region_info
*) b
)->range
.address
;
504 unexec_regions_merge (void)
507 unexec_region_info r
;
510 qsort (unexec_regions
, num_unexec_regions
, sizeof (unexec_regions
[0]),
511 &unexec_regions_sort_compare
);
513 r
= unexec_regions
[0];
514 padsize
= r
.range
.address
& (pagesize
- 1);
517 r
.range
.address
-= padsize
;
518 r
.range
.size
+= padsize
;
519 r
.filesize
+= padsize
;
521 for (i
= 1; i
< num_unexec_regions
; i
++)
523 if (r
.range
.address
+ r
.range
.size
== unexec_regions
[i
].range
.address
524 && r
.range
.size
- r
.filesize
< 2 * pagesize
)
526 r
.filesize
= r
.range
.size
+ unexec_regions
[i
].filesize
;
527 r
.range
.size
+= unexec_regions
[i
].range
.size
;
531 unexec_regions
[n
++] = r
;
532 r
= unexec_regions
[i
];
533 padsize
= r
.range
.address
& (pagesize
- 1);
536 if ((unexec_regions
[n
-1].range
.address
537 + unexec_regions
[n
-1].range
.size
) == r
.range
.address
)
538 unexec_regions
[n
-1].range
.size
-= padsize
;
540 r
.range
.address
-= padsize
;
541 r
.range
.size
+= padsize
;
542 r
.filesize
+= padsize
;
546 unexec_regions
[n
++] = r
;
547 num_unexec_regions
= n
;
551 /* More informational messages routines. */
554 print_load_command_name (int lc
)
560 printf ("LC_SEGMENT ");
562 printf ("LC_SEGMENT_64 ");
565 case LC_LOAD_DYLINKER
:
566 printf ("LC_LOAD_DYLINKER ");
569 printf ("LC_LOAD_DYLIB ");
572 printf ("LC_SYMTAB ");
575 printf ("LC_DYSYMTAB ");
578 printf ("LC_UNIXTHREAD ");
580 case LC_PREBOUND_DYLIB
:
581 printf ("LC_PREBOUND_DYLIB");
583 case LC_TWOLEVEL_HINTS
:
584 printf ("LC_TWOLEVEL_HINTS");
593 printf ("LC_DYLD_INFO ");
595 case LC_DYLD_INFO_ONLY
:
596 printf ("LC_DYLD_INFO_ONLY");
599 #ifdef LC_VERSION_MIN_MACOSX
600 case LC_VERSION_MIN_MACOSX
:
601 printf ("LC_VERSION_MIN_MACOSX");
604 #ifdef LC_FUNCTION_STARTS
605 case LC_FUNCTION_STARTS
:
606 printf ("LC_FUNCTION_STARTS");
614 #ifdef LC_DATA_IN_CODE
615 case LC_DATA_IN_CODE
:
616 printf ("LC_DATA_IN_CODE ");
619 #ifdef LC_SOURCE_VERSION
620 case LC_SOURCE_VERSION
:
621 printf ("LC_SOURCE_VERSION");
624 #ifdef LC_DYLIB_CODE_SIGN_DRS
625 case LC_DYLIB_CODE_SIGN_DRS
:
626 printf ("LC_DYLIB_CODE_SIGN_DRS");
635 print_load_command (struct load_command
*lc
)
637 print_load_command_name (lc
->cmd
);
638 printf ("%8d", lc
->cmdsize
);
640 if (lc
->cmd
== LC_SEGMENT
)
642 struct segment_command
*scp
;
643 struct section
*sectp
;
646 scp
= (struct segment_command
*) lc
;
647 printf (" %-16.16s %#10lx %#8lx\n",
648 scp
->segname
, (long) (scp
->vmaddr
), (long) (scp
->vmsize
));
650 sectp
= (struct section
*) (scp
+ 1);
651 for (j
= 0; j
< scp
->nsects
; j
++)
653 printf (" %-16.16s %#10lx %#8lx\n",
654 sectp
->sectname
, (long) (sectp
->addr
), (long) (sectp
->size
));
662 /* Read header and load commands from input file. Store the latter in
663 the global array lca. Store the total number of load commands in
664 global variable nlc. */
666 read_load_commands (void)
670 if (!unexec_read (&mh
, sizeof (struct mach_header
)))
671 unexec_error ("cannot read mach-o header");
673 if (mh
.magic
!= MH_MAGIC
)
674 unexec_error ("input file not in Mach-O format");
676 if (mh
.filetype
!= MH_EXECUTE
)
677 unexec_error ("input Mach-O file is not an executable object file");
680 printf ("--- Header Information ---\n");
681 printf ("Magic = 0x%08x\n", mh
.magic
);
682 printf ("CPUType = %d\n", mh
.cputype
);
683 printf ("CPUSubType = %d\n", mh
.cpusubtype
);
684 printf ("FileType = 0x%x\n", mh
.filetype
);
685 printf ("NCmds = %d\n", mh
.ncmds
);
686 printf ("SizeOfCmds = %d\n", mh
.sizeofcmds
);
687 printf ("Flags = 0x%08x\n", mh
.flags
);
691 lca
= malloc (nlc
* sizeof *lca
);
693 for (i
= 0; i
< nlc
; i
++)
695 struct load_command lc
;
696 /* Load commands are variable-size: so read the command type and
697 size first and then read the rest. */
698 if (!unexec_read (&lc
, sizeof (struct load_command
)))
699 unexec_error ("cannot read load command");
700 lca
[i
] = malloc (lc
.cmdsize
);
701 memcpy (lca
[i
], &lc
, sizeof (struct load_command
));
702 if (!unexec_read (lca
[i
] + 1, lc
.cmdsize
- sizeof (struct load_command
)))
703 unexec_error ("cannot read content of load command");
704 if (lc
.cmd
== LC_SEGMENT
)
706 struct segment_command
*scp
= (struct segment_command
*) lca
[i
];
708 if (scp
->vmaddr
+ scp
->vmsize
> infile_lc_highest_addr
)
709 infile_lc_highest_addr
= scp
->vmaddr
+ scp
->vmsize
;
711 if (strncmp (scp
->segname
, SEG_TEXT
, 16) == 0)
713 struct section
*sectp
= (struct section
*) (scp
+ 1);
716 for (j
= 0; j
< scp
->nsects
; j
++)
717 if (sectp
->offset
< text_seg_lowest_offset
)
718 text_seg_lowest_offset
= sectp
->offset
;
723 printf ("Highest address of load commands in input file: %#8lx\n",
724 (unsigned long)infile_lc_highest_addr
);
726 printf ("Lowest offset of all sections in __TEXT segment: %#8lx\n",
727 text_seg_lowest_offset
);
729 printf ("--- List of Load Commands in Input File ---\n");
730 printf ("# cmd cmdsize name address size\n");
732 for (i
= 0; i
< nlc
; i
++)
735 print_load_command (lca
[i
]);
739 /* Copy a LC_SEGMENT load command other than the __DATA segment from
740 the input file to the output file, adjusting the file offset of the
741 segment and the file offsets of sections contained in it. */
743 copy_segment (struct load_command
*lc
)
745 struct segment_command
*scp
= (struct segment_command
*) lc
;
746 unsigned long old_fileoff
= scp
->fileoff
;
747 struct section
*sectp
;
750 scp
->fileoff
= curr_file_offset
;
752 sectp
= (struct section
*) (scp
+ 1);
753 for (j
= 0; j
< scp
->nsects
; j
++)
755 sectp
->offset
+= curr_file_offset
- old_fileoff
;
759 printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
760 scp
->segname
, (long) (scp
->fileoff
), (long) (scp
->filesize
),
761 (long) (scp
->vmsize
), (long) (scp
->vmaddr
));
763 if (!unexec_copy (scp
->fileoff
, old_fileoff
, scp
->filesize
))
764 unexec_error ("cannot copy segment from input to output file");
765 curr_file_offset
+= ROUNDUP_TO_PAGE_BOUNDARY (scp
->filesize
);
767 if (!unexec_write (curr_header_offset
, lc
, lc
->cmdsize
))
768 unexec_error ("cannot write load command to header");
770 curr_header_offset
+= lc
->cmdsize
;
773 /* Copy a LC_SEGMENT load command for the __DATA segment in the input
774 file to the output file. We assume that only one such segment load
775 command exists in the input file and it contains the sections
776 __data, __bss, __common, __la_symbol_ptr, __nl_symbol_ptr, and
777 __dyld. The first three of these should be dumped from memory and
778 the rest should be copied from the input file. Note that the
779 sections __bss and __common contain no data in the input file
780 because their flag fields have the value S_ZEROFILL. Dumping these
781 from memory makes it necessary to adjust file offset fields in
782 subsequently dumped load commands. Then, create new __DATA segment
783 load commands for regions on the region list other than the one
784 corresponding to the __DATA segment in the input file. */
786 copy_data_segment (struct load_command
*lc
)
788 struct segment_command
*scp
= (struct segment_command
*) lc
;
789 struct section
*sectp
;
791 unsigned long header_offset
, old_file_offset
;
793 /* The new filesize of the segment is set to its vmsize because data
794 blocks for segments must start at region boundaries. Note that
795 this may leave unused locations at the end of the segment data
796 block because the total of the sizes of all sections in the
797 segment is generally smaller than vmsize. */
798 scp
->filesize
= scp
->vmsize
;
800 printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
801 scp
->segname
, curr_file_offset
, (long)(scp
->filesize
),
802 (long)(scp
->vmsize
), (long) (scp
->vmaddr
));
804 /* Offsets in the output file for writing the next section structure
805 and segment data block, respectively. */
806 header_offset
= curr_header_offset
+ sizeof (struct segment_command
);
808 sectp
= (struct section
*) (scp
+ 1);
809 for (j
= 0; j
< scp
->nsects
; j
++)
811 old_file_offset
= sectp
->offset
;
812 sectp
->offset
= sectp
->addr
- scp
->vmaddr
+ curr_file_offset
;
813 /* The __data section is dumped from memory. The __bss and
814 __common sections are also dumped from memory but their flag
815 fields require changing (from S_ZEROFILL to S_REGULAR). The
816 other three kinds of sections are just copied from the input
818 if (strncmp (sectp
->sectname
, SECT_DATA
, 16) == 0)
820 unsigned long my_size
;
822 /* The __data section is basically dumped from memory. But
823 initialized data in statically linked libraries are
824 copied from the input file. In particular,
825 add_image_hook.names and add_image_hook.pointers stored
826 by libarclite_macosx.a, are restored so that they will be
827 reinitialized when the dumped binary is executed. */
828 my_size
= (unsigned long)my_edata
- sectp
->addr
;
829 if (!(sectp
->addr
<= (unsigned long)my_edata
830 && my_size
<= sectp
->size
))
831 unexec_error ("my_edata is not in section %s", SECT_DATA
);
832 if (!unexec_write (sectp
->offset
, (void *) sectp
->addr
, my_size
))
833 unexec_error ("cannot write section %s", SECT_DATA
);
834 if (!unexec_copy (sectp
->offset
+ my_size
, old_file_offset
+ my_size
,
835 sectp
->size
- my_size
))
836 unexec_error ("cannot copy section %s", SECT_DATA
);
837 if (!unexec_write (header_offset
, sectp
, sizeof (struct section
)))
838 unexec_error ("cannot write section %s's header", SECT_DATA
);
840 else if (strncmp (sectp
->sectname
, SECT_COMMON
, 16) == 0)
842 sectp
->flags
= S_REGULAR
;
843 if (!unexec_write (sectp
->offset
, (void *) sectp
->addr
, sectp
->size
))
844 unexec_error ("cannot write section %.16s", sectp
->sectname
);
845 if (!unexec_write (header_offset
, sectp
, sizeof (struct section
)))
846 unexec_error ("cannot write section %.16s's header", sectp
->sectname
);
848 else if (strncmp (sectp
->sectname
, SECT_BSS
, 16) == 0)
850 unsigned long my_size
;
852 sectp
->flags
= S_REGULAR
;
854 /* Clear uninitialized local variables in statically linked
855 libraries. In particular, function pointers stored by
856 libSystemStub.a, which is introduced in Mac OS X 10.4 for
857 binary compatibility with respect to long double, are
858 cleared so that they will be reinitialized when the
859 dumped binary is executed on other versions of OS. */
860 my_size
= (unsigned long)my_endbss_static
- sectp
->addr
;
861 if (!(sectp
->addr
<= (unsigned long)my_endbss_static
862 && my_size
<= sectp
->size
))
863 unexec_error ("my_endbss_static is not in section %.16s",
865 if (!unexec_write (sectp
->offset
, (void *) sectp
->addr
, my_size
))
866 unexec_error ("cannot write section %.16s", sectp
->sectname
);
867 if (!unexec_write_zero (sectp
->offset
+ my_size
,
868 sectp
->size
- my_size
))
869 unexec_error ("cannot write section %.16s", sectp
->sectname
);
870 if (!unexec_write (header_offset
, sectp
, sizeof (struct section
)))
871 unexec_error ("cannot write section %.16s's header", sectp
->sectname
);
873 else if (strncmp (sectp
->sectname
, "__bss", 5) == 0
874 || strncmp (sectp
->sectname
, "__pu_bss", 8) == 0)
876 sectp
->flags
= S_REGULAR
;
878 /* These sections are produced by GCC 4.6+.
880 FIXME: We possibly ought to clear uninitialized local
881 variables in statically linked libraries like for
882 SECT_BSS (__bss) above, but setting up the markers we
883 need in lastfile.c would be rather messy. See
884 darwin_output_aligned_bss () in gcc/config/darwin.c for
885 the root of the problem, keeping in mind that the
886 sections are numbered by their alignment in GCC 4.6, but
887 by log2(alignment) in GCC 4.7. */
889 if (!unexec_write (sectp
->offset
, (void *) sectp
->addr
, sectp
->size
))
890 unexec_error ("cannot copy section %.16s", sectp
->sectname
);
891 if (!unexec_write (header_offset
, sectp
, sizeof (struct section
)))
892 unexec_error ("cannot write section %.16s's header", sectp
->sectname
);
894 else if (strncmp (sectp
->sectname
, "__la_symbol_ptr", 16) == 0
895 || strncmp (sectp
->sectname
, "__nl_symbol_ptr", 16) == 0
896 || strncmp (sectp
->sectname
, "__got", 16) == 0
897 || strncmp (sectp
->sectname
, "__la_sym_ptr2", 16) == 0
898 || strncmp (sectp
->sectname
, "__dyld", 16) == 0
899 || strncmp (sectp
->sectname
, "__const", 16) == 0
900 || strncmp (sectp
->sectname
, "__cfstring", 16) == 0
901 || strncmp (sectp
->sectname
, "__gcc_except_tab", 16) == 0
902 || strncmp (sectp
->sectname
, "__program_vars", 16) == 0
903 || strncmp (sectp
->sectname
, "__mod_init_func", 16) == 0
904 || strncmp (sectp
->sectname
, "__mod_term_func", 16) == 0
905 || strncmp (sectp
->sectname
, "__static_data", 16) == 0
906 || strncmp (sectp
->sectname
, "__objc_", 7) == 0)
908 if (!unexec_copy (sectp
->offset
, old_file_offset
, sectp
->size
))
909 unexec_error ("cannot copy section %.16s", sectp
->sectname
);
910 if (!unexec_write (header_offset
, sectp
, sizeof (struct section
)))
911 unexec_error ("cannot write section %.16s's header", sectp
->sectname
);
914 unexec_error ("unrecognized section %.16s in __DATA segment",
917 printf (" section %-16.16s at %#8lx - %#8lx (sz: %#8lx)\n",
918 sectp
->sectname
, (long) (sectp
->offset
),
919 (long) (sectp
->offset
+ sectp
->size
), (long) (sectp
->size
));
921 header_offset
+= sizeof (struct section
);
925 curr_file_offset
+= ROUNDUP_TO_PAGE_BOUNDARY (scp
->filesize
);
927 if (!unexec_write (curr_header_offset
, scp
, sizeof (struct segment_command
)))
928 unexec_error ("cannot write header of __DATA segment");
929 curr_header_offset
+= lc
->cmdsize
;
931 /* Create new __DATA segment load commands for regions on the region
932 list that do not corresponding to any segment load commands in
935 for (j
= 0; j
< num_unexec_regions
; j
++)
937 struct segment_command sc
;
940 sc
.cmdsize
= sizeof (struct segment_command
);
941 strncpy (sc
.segname
, SEG_DATA
, 16);
942 sc
.vmaddr
= unexec_regions
[j
].range
.address
;
943 sc
.vmsize
= unexec_regions
[j
].range
.size
;
944 sc
.fileoff
= curr_file_offset
;
945 sc
.filesize
= unexec_regions
[j
].filesize
;
946 sc
.maxprot
= VM_PROT_READ
| VM_PROT_WRITE
;
947 sc
.initprot
= VM_PROT_READ
| VM_PROT_WRITE
;
951 printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
952 sc
.segname
, (long) (sc
.fileoff
), (long) (sc
.filesize
),
953 (long) (sc
.vmsize
), (long) (sc
.vmaddr
));
955 if (!unexec_write (sc
.fileoff
, (void *) sc
.vmaddr
, sc
.filesize
))
956 unexec_error ("cannot write new __DATA segment");
957 curr_file_offset
+= ROUNDUP_TO_PAGE_BOUNDARY (sc
.filesize
);
959 if (!unexec_write (curr_header_offset
, &sc
, sc
.cmdsize
))
960 unexec_error ("cannot write new __DATA segment's header");
961 curr_header_offset
+= sc
.cmdsize
;
966 /* Copy a LC_SYMTAB load command from the input file to the output
967 file, adjusting the file offset fields. */
969 copy_symtab (struct load_command
*lc
, long delta
)
971 struct symtab_command
*stp
= (struct symtab_command
*) lc
;
973 stp
->symoff
+= delta
;
974 stp
->stroff
+= delta
;
976 printf ("Writing LC_SYMTAB command\n");
978 if (!unexec_write (curr_header_offset
, lc
, lc
->cmdsize
))
979 unexec_error ("cannot write symtab command to header");
981 curr_header_offset
+= lc
->cmdsize
;
984 /* Fix up relocation entries. */
986 unrelocate (const char *name
, off_t reloff
, int nrel
, vm_address_t base
)
988 int i
, unreloc_count
;
989 struct relocation_info reloc_info
;
990 struct scattered_relocation_info
*sc_reloc_info
991 = (struct scattered_relocation_info
*) &reloc_info
;
992 vm_address_t location
;
994 for (unreloc_count
= 0, i
= 0; i
< nrel
; i
++)
996 if (lseek (infd
, reloff
, L_SET
) != reloff
)
997 unexec_error ("unrelocate: %s:%d cannot seek to reloc_info", name
, i
);
998 if (!unexec_read (&reloc_info
, sizeof (reloc_info
)))
999 unexec_error ("unrelocate: %s:%d cannot read reloc_info", name
, i
);
1000 reloff
+= sizeof (reloc_info
);
1002 if (sc_reloc_info
->r_scattered
== 0)
1003 switch (reloc_info
.r_type
)
1005 case GENERIC_RELOC_VANILLA
:
1006 location
= base
+ reloc_info
.r_address
;
1007 if (location
>= data_segment_scp
->vmaddr
1008 && location
< (data_segment_scp
->vmaddr
1009 + data_segment_scp
->vmsize
))
1011 off_t src_off
= data_segment_old_fileoff
1012 + (location
- data_segment_scp
->vmaddr
);
1013 off_t dst_off
= data_segment_scp
->fileoff
1014 + (location
- data_segment_scp
->vmaddr
);
1016 if (!unexec_copy (dst_off
, src_off
, 1 << reloc_info
.r_length
))
1017 unexec_error ("unrelocate: %s:%d cannot copy original value",
1023 unexec_error ("unrelocate: %s:%d cannot handle type = %d",
1024 name
, i
, reloc_info
.r_type
);
1027 unexec_error ("unrelocate: %s:%d cannot handle scattered type = %d",
1028 name
, i
, sc_reloc_info
->r_type
);
1032 printf ("Fixed up %d/%d %s relocation entries in data segment.\n",
1033 unreloc_count
, nrel
, name
);
1036 /* Copy a LC_DYSYMTAB load command from the input file to the output
1037 file, adjusting the file offset fields. */
1039 copy_dysymtab (struct load_command
*lc
, long delta
)
1041 struct dysymtab_command
*dstp
= (struct dysymtab_command
*) lc
;
1045 /* First writable segment address. */
1046 base
= data_segment_scp
->vmaddr
;
1048 /* First segment address in the file (unless MH_SPLIT_SEGS set). */
1052 unrelocate ("local", dstp
->locreloff
, dstp
->nlocrel
, base
);
1053 unrelocate ("external", dstp
->extreloff
, dstp
->nextrel
, base
);
1055 if (dstp
->nextrel
> 0) {
1056 dstp
->extreloff
+= delta
;
1059 if (dstp
->nlocrel
> 0) {
1060 dstp
->locreloff
+= delta
;
1063 if (dstp
->nindirectsyms
> 0)
1064 dstp
->indirectsymoff
+= delta
;
1066 printf ("Writing LC_DYSYMTAB command\n");
1068 if (!unexec_write (curr_header_offset
, lc
, lc
->cmdsize
))
1069 unexec_error ("cannot write symtab command to header");
1071 curr_header_offset
+= lc
->cmdsize
;
1074 /* Copy a LC_TWOLEVEL_HINTS load command from the input file to the output
1075 file, adjusting the file offset fields. */
1077 copy_twolevelhints (struct load_command
*lc
, long delta
)
1079 struct twolevel_hints_command
*tlhp
= (struct twolevel_hints_command
*) lc
;
1081 if (tlhp
->nhints
> 0) {
1082 tlhp
->offset
+= delta
;
1085 printf ("Writing LC_TWOLEVEL_HINTS command\n");
1087 if (!unexec_write (curr_header_offset
, lc
, lc
->cmdsize
))
1088 unexec_error ("cannot write two level hint command to header");
1090 curr_header_offset
+= lc
->cmdsize
;
1094 /* Copy a LC_DYLD_INFO(_ONLY) load command from the input file to the output
1095 file, adjusting the file offset fields. */
1097 copy_dyld_info (struct load_command
*lc
, long delta
)
1099 struct dyld_info_command
*dip
= (struct dyld_info_command
*) lc
;
1101 if (dip
->rebase_off
> 0)
1102 dip
->rebase_off
+= delta
;
1103 if (dip
->bind_off
> 0)
1104 dip
->bind_off
+= delta
;
1105 if (dip
->weak_bind_off
> 0)
1106 dip
->weak_bind_off
+= delta
;
1107 if (dip
->lazy_bind_off
> 0)
1108 dip
->lazy_bind_off
+= delta
;
1109 if (dip
->export_off
> 0)
1110 dip
->export_off
+= delta
;
1112 printf ("Writing ");
1113 print_load_command_name (lc
->cmd
);
1114 printf (" command\n");
1116 if (!unexec_write (curr_header_offset
, lc
, lc
->cmdsize
))
1117 unexec_error ("cannot write dyld info command to header");
1119 curr_header_offset
+= lc
->cmdsize
;
1123 #ifdef LC_FUNCTION_STARTS
1124 /* Copy a LC_FUNCTION_STARTS/LC_DATA_IN_CODE/LC_DYLIB_CODE_SIGN_DRS
1125 load command from the input file to the output file, adjusting the
1126 data offset field. */
1128 copy_linkedit_data (struct load_command
*lc
, long delta
)
1130 struct linkedit_data_command
*ldp
= (struct linkedit_data_command
*) lc
;
1132 if (ldp
->dataoff
> 0)
1133 ldp
->dataoff
+= delta
;
1135 printf ("Writing ");
1136 print_load_command_name (lc
->cmd
);
1137 printf (" command\n");
1139 if (!unexec_write (curr_header_offset
, lc
, lc
->cmdsize
))
1140 unexec_error ("cannot write linkedit data command to header");
1142 curr_header_offset
+= lc
->cmdsize
;
1146 /* Copy other kinds of load commands from the input file to the output
1147 file, ones that do not require adjustments of file offsets. */
1149 copy_other (struct load_command
*lc
)
1151 printf ("Writing ");
1152 print_load_command_name (lc
->cmd
);
1153 printf (" command\n");
1155 if (!unexec_write (curr_header_offset
, lc
, lc
->cmdsize
))
1156 unexec_error ("cannot write symtab command to header");
1158 curr_header_offset
+= lc
->cmdsize
;
1161 /* Loop through all load commands and dump them. Then write the Mach
1167 long linkedit_delta
= 0;
1169 printf ("--- Load Commands written to Output File ---\n");
1171 for (i
= 0; i
< nlc
; i
++)
1172 switch (lca
[i
]->cmd
)
1176 struct segment_command
*scp
= (struct segment_command
*) lca
[i
];
1177 if (strncmp (scp
->segname
, SEG_DATA
, 16) == 0)
1179 /* save data segment file offset and segment_command for
1181 if (data_segment_old_fileoff
)
1182 unexec_error ("cannot handle multiple DATA segments"
1184 data_segment_old_fileoff
= scp
->fileoff
;
1185 data_segment_scp
= scp
;
1187 copy_data_segment (lca
[i
]);
1191 if (strncmp (scp
->segname
, SEG_LINKEDIT
, 16) == 0)
1194 unexec_error ("cannot handle multiple LINKEDIT segments"
1196 linkedit_delta
= curr_file_offset
- scp
->fileoff
;
1199 copy_segment (lca
[i
]);
1204 copy_symtab (lca
[i
], linkedit_delta
);
1207 copy_dysymtab (lca
[i
], linkedit_delta
);
1209 case LC_TWOLEVEL_HINTS
:
1210 copy_twolevelhints (lca
[i
], linkedit_delta
);
1214 case LC_DYLD_INFO_ONLY
:
1215 copy_dyld_info (lca
[i
], linkedit_delta
);
1218 #ifdef LC_FUNCTION_STARTS
1219 case LC_FUNCTION_STARTS
:
1220 #ifdef LC_DATA_IN_CODE
1221 case LC_DATA_IN_CODE
:
1223 #ifdef LC_DYLIB_CODE_SIGN_DRS
1224 case LC_DYLIB_CODE_SIGN_DRS
:
1226 copy_linkedit_data (lca
[i
], linkedit_delta
);
1230 copy_other (lca
[i
]);
1234 if (curr_header_offset
> text_seg_lowest_offset
)
1235 unexec_error ("not enough room for load commands for new __DATA segments"
1236 " (increase headerpad_extra in configure.in to at least %lX)",
1237 num_unexec_regions
* sizeof (struct segment_command
));
1239 printf ("%ld unused bytes follow Mach-O header\n",
1240 text_seg_lowest_offset
- curr_header_offset
);
1242 mh
.sizeofcmds
= curr_header_offset
- sizeof (struct mach_header
);
1243 if (!unexec_write (0, &mh
, sizeof (struct mach_header
)))
1244 unexec_error ("cannot write final header contents");
1247 /* Take a snapshot of Emacs and make a Mach-O format executable file
1248 from it. The file names of the output and input files are outfile
1249 and infile, respectively. The three other parameters are
1252 unexec (const char *outfile
, const char *infile
)
1255 unexec_error ("Unexec from a dumped executable is not supported.");
1257 pagesize
= getpagesize ();
1258 infd
= emacs_open (infile
, O_RDONLY
, 0);
1261 unexec_error ("%s: %s", infile
, strerror (errno
));
1264 outfd
= emacs_open (outfile
, O_WRONLY
| O_TRUNC
| O_CREAT
, 0777);
1268 unexec_error ("%s: %s", outfile
, strerror (errno
));
1271 build_region_list ();
1272 read_load_commands ();
1274 find_emacs_zone_regions ();
1275 unexec_regions_merge ();
1281 emacs_close (outfd
);
1286 unexec_init_emacs_zone (void)
1288 emacs_zone
= malloc_create_zone (0, 0);
1289 malloc_set_zone_name (emacs_zone
, "EmacsZone");
1292 #ifndef MACOSX_MALLOC_MULT16
1293 #define MACOSX_MALLOC_MULT16 1
1296 typedef struct unexec_malloc_header
{
1301 } unexec_malloc_header_t
;
1303 #if MACOSX_MALLOC_MULT16
1305 #define ptr_in_unexec_regions(p) ((((vm_address_t) (p)) & 8) != 0)
1310 ptr_in_unexec_regions (void *ptr
)
1314 for (i
= 0; i
< num_unexec_regions
; i
++)
1315 if ((vm_address_t
) ptr
- unexec_regions
[i
].range
.address
1316 < unexec_regions
[i
].range
.size
)
1325 unexec_malloc (size_t size
)
1332 #if MACOSX_MALLOC_MULT16
1333 assert (((vm_address_t
) p
% 16) == 0);
1339 unexec_malloc_header_t
*ptr
;
1341 ptr
= (unexec_malloc_header_t
*)
1342 malloc_zone_malloc (emacs_zone
, size
+ sizeof (unexec_malloc_header_t
));
1345 #if MACOSX_MALLOC_MULT16
1346 assert (((vm_address_t
) ptr
% 16) == 8);
1348 return (void *) ptr
;
1353 unexec_realloc (void *old_ptr
, size_t new_size
)
1359 if (ptr_in_unexec_regions (old_ptr
))
1361 size_t old_size
= ((unexec_malloc_header_t
*) old_ptr
)[-1].u
.size
;
1362 size_t size
= new_size
> old_size
? old_size
: new_size
;
1364 p
= malloc (new_size
);
1366 memcpy (p
, old_ptr
, size
);
1370 p
= realloc (old_ptr
, new_size
);
1372 #if MACOSX_MALLOC_MULT16
1373 assert (((vm_address_t
) p
% 16) == 0);
1379 unexec_malloc_header_t
*ptr
;
1381 ptr
= (unexec_malloc_header_t
*)
1382 malloc_zone_realloc (emacs_zone
, (unexec_malloc_header_t
*) old_ptr
- 1,
1383 new_size
+ sizeof (unexec_malloc_header_t
));
1384 ptr
->u
.size
= new_size
;
1386 #if MACOSX_MALLOC_MULT16
1387 assert (((vm_address_t
) ptr
% 16) == 8);
1389 return (void *) ptr
;
1394 unexec_free (void *ptr
)
1400 if (!ptr_in_unexec_regions (ptr
))
1404 malloc_zone_free (emacs_zone
, (unexec_malloc_header_t
*) ptr
- 1);