Use 'header-line-highlight' face in proced and erc
[emacs.git] / src / floatfns.c
blob47553f27e827c1b1dd201f1458e6caaf0e750ad1
1 /* Primitive operations on floating point for GNU Emacs Lisp interpreter.
3 Copyright (C) 1988, 1993-1994, 1999, 2001-2017 Free Software Foundation,
4 Inc.
6 Author: Wolfgang Rupprecht (according to ack.texi)
8 This file is part of GNU Emacs.
10 GNU Emacs is free software: you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation, either version 3 of the License, or (at
13 your option) any later version.
15 GNU Emacs is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
24 /* C89 requires only the following math.h functions, and Emacs omits
25 the starred functions since we haven't found a use for them:
26 acos, asin, atan, atan2, ceil, cos, *cosh, exp, fabs, floor, fmod,
27 frexp, ldexp, log, log10 [via (log X 10)], *modf, pow, sin, *sinh,
28 sqrt, tan, *tanh.
30 C99 and C11 require the following math.h functions in addition to
31 the C89 functions. Of these, Emacs currently exports only the
32 starred ones to Lisp, since we haven't found a use for the others:
33 acosh, atanh, cbrt, *copysign, erf, erfc, exp2, expm1, fdim, fma,
34 fmax, fmin, fpclassify, hypot, ilogb, isfinite, isgreater,
35 isgreaterequal, isinf, isless, islessequal, islessgreater, *isnan,
36 isnormal, isunordered, lgamma, log1p, *log2 [via (log X 2)], *logb
37 (approximately), lrint/llrint, lround/llround, nan, nearbyint,
38 nextafter, nexttoward, remainder, remquo, *rint, round, scalbln,
39 scalbn, signbit, tgamma, *trunc.
42 #include <config.h>
44 #include "lisp.h"
46 #include <math.h>
48 #include <count-leading-zeros.h>
50 #ifndef isfinite
51 # define isfinite(x) ((x) - (x) == 0)
52 #endif
53 #ifndef isnan
54 # define isnan(x) ((x) != (x))
55 #endif
57 /* Check that X is a floating point number. */
59 static void
60 CHECK_FLOAT (Lisp_Object x)
62 CHECK_TYPE (FLOATP (x), Qfloatp, x);
65 /* Extract a Lisp number as a `double', or signal an error. */
67 double
68 extract_float (Lisp_Object num)
70 CHECK_NUMBER_OR_FLOAT (num);
71 return XFLOATINT (num);
74 /* Trig functions. */
76 DEFUN ("acos", Facos, Sacos, 1, 1, 0,
77 doc: /* Return the inverse cosine of ARG. */)
78 (Lisp_Object arg)
80 double d = extract_float (arg);
81 d = acos (d);
82 return make_float (d);
85 DEFUN ("asin", Fasin, Sasin, 1, 1, 0,
86 doc: /* Return the inverse sine of ARG. */)
87 (Lisp_Object arg)
89 double d = extract_float (arg);
90 d = asin (d);
91 return make_float (d);
94 DEFUN ("atan", Fatan, Satan, 1, 2, 0,
95 doc: /* Return the inverse tangent of the arguments.
96 If only one argument Y is given, return the inverse tangent of Y.
97 If two arguments Y and X are given, return the inverse tangent of Y
98 divided by X, i.e. the angle in radians between the vector (X, Y)
99 and the x-axis. */)
100 (Lisp_Object y, Lisp_Object x)
102 double d = extract_float (y);
104 if (NILP (x))
105 d = atan (d);
106 else
108 double d2 = extract_float (x);
109 d = atan2 (d, d2);
111 return make_float (d);
114 DEFUN ("cos", Fcos, Scos, 1, 1, 0,
115 doc: /* Return the cosine of ARG. */)
116 (Lisp_Object arg)
118 double d = extract_float (arg);
119 d = cos (d);
120 return make_float (d);
123 DEFUN ("sin", Fsin, Ssin, 1, 1, 0,
124 doc: /* Return the sine of ARG. */)
125 (Lisp_Object arg)
127 double d = extract_float (arg);
128 d = sin (d);
129 return make_float (d);
132 DEFUN ("tan", Ftan, Stan, 1, 1, 0,
133 doc: /* Return the tangent of ARG. */)
134 (Lisp_Object arg)
136 double d = extract_float (arg);
137 d = tan (d);
138 return make_float (d);
141 DEFUN ("isnan", Fisnan, Sisnan, 1, 1, 0,
142 doc: /* Return non nil if argument X is a NaN. */)
143 (Lisp_Object x)
145 CHECK_FLOAT (x);
146 return isnan (XFLOAT_DATA (x)) ? Qt : Qnil;
149 /* Although the substitute does not work on NaNs, it is good enough
150 for platforms lacking the signbit macro. */
151 #ifndef signbit
152 # define signbit(x) ((x) < 0 || (IEEE_FLOATING_POINT && !(x) && 1 / (x) < 0))
153 #endif
155 DEFUN ("copysign", Fcopysign, Scopysign, 2, 2, 0,
156 doc: /* Copy sign of X2 to value of X1, and return the result.
157 Cause an error if X1 or X2 is not a float. */)
158 (Lisp_Object x1, Lisp_Object x2)
160 double f1, f2;
162 CHECK_FLOAT (x1);
163 CHECK_FLOAT (x2);
165 f1 = XFLOAT_DATA (x1);
166 f2 = XFLOAT_DATA (x2);
168 /* Use signbit instead of copysign, to avoid calling make_float when
169 the result is X1. */
170 return signbit (f1) != signbit (f2) ? make_float (-f1) : x1;
173 DEFUN ("frexp", Ffrexp, Sfrexp, 1, 1, 0,
174 doc: /* Get significand and exponent of a floating point number.
175 Breaks the floating point number X into its binary significand SGNFCAND
176 \(a floating point value between 0.5 (included) and 1.0 (excluded))
177 and an integral exponent EXP for 2, such that:
179 X = SGNFCAND * 2^EXP
181 The function returns the cons cell (SGNFCAND . EXP).
182 If X is zero, both parts (SGNFCAND and EXP) are zero. */)
183 (Lisp_Object x)
185 double f = extract_float (x);
186 int exponent;
187 double sgnfcand = frexp (f, &exponent);
188 return Fcons (make_float (sgnfcand), make_number (exponent));
191 DEFUN ("ldexp", Fldexp, Sldexp, 2, 2, 0,
192 doc: /* Return SGNFCAND * 2**EXPONENT, as a floating point number.
193 EXPONENT must be an integer. */)
194 (Lisp_Object sgnfcand, Lisp_Object exponent)
196 CHECK_NUMBER (exponent);
197 int e = min (max (INT_MIN, XINT (exponent)), INT_MAX);
198 return make_float (ldexp (extract_float (sgnfcand), e));
201 DEFUN ("exp", Fexp, Sexp, 1, 1, 0,
202 doc: /* Return the exponential base e of ARG. */)
203 (Lisp_Object arg)
205 double d = extract_float (arg);
206 d = exp (d);
207 return make_float (d);
210 DEFUN ("expt", Fexpt, Sexpt, 2, 2, 0,
211 doc: /* Return the exponential ARG1 ** ARG2. */)
212 (Lisp_Object arg1, Lisp_Object arg2)
214 CHECK_NUMBER_OR_FLOAT (arg1);
215 CHECK_NUMBER_OR_FLOAT (arg2);
216 if (INTEGERP (arg1) /* common lisp spec */
217 && INTEGERP (arg2) /* don't promote, if both are ints, and */
218 && XINT (arg2) >= 0) /* we are sure the result is not fractional */
219 { /* this can be improved by pre-calculating */
220 EMACS_INT y; /* some binary powers of x then accumulating */
221 EMACS_UINT acc, x; /* Unsigned so that overflow is well defined. */
222 Lisp_Object val;
224 x = XINT (arg1);
225 y = XINT (arg2);
226 acc = (y & 1 ? x : 1);
228 while ((y >>= 1) != 0)
230 x *= x;
231 if (y & 1)
232 acc *= x;
234 XSETINT (val, acc);
235 return val;
237 return make_float (pow (XFLOATINT (arg1), XFLOATINT (arg2)));
240 DEFUN ("log", Flog, Slog, 1, 2, 0,
241 doc: /* Return the natural logarithm of ARG.
242 If the optional argument BASE is given, return log ARG using that base. */)
243 (Lisp_Object arg, Lisp_Object base)
245 double d = extract_float (arg);
247 if (NILP (base))
248 d = log (d);
249 else
251 double b = extract_float (base);
253 if (b == 10.0)
254 d = log10 (d);
255 #if HAVE_LOG2
256 else if (b == 2.0)
257 d = log2 (d);
258 #endif
259 else
260 d = log (d) / log (b);
262 return make_float (d);
265 DEFUN ("sqrt", Fsqrt, Ssqrt, 1, 1, 0,
266 doc: /* Return the square root of ARG. */)
267 (Lisp_Object arg)
269 double d = extract_float (arg);
270 d = sqrt (d);
271 return make_float (d);
274 DEFUN ("abs", Fabs, Sabs, 1, 1, 0,
275 doc: /* Return the absolute value of ARG. */)
276 (register Lisp_Object arg)
278 CHECK_NUMBER_OR_FLOAT (arg);
280 if (FLOATP (arg))
281 arg = make_float (fabs (XFLOAT_DATA (arg)));
282 else if (XINT (arg) < 0)
283 XSETINT (arg, - XINT (arg));
285 return arg;
288 DEFUN ("float", Ffloat, Sfloat, 1, 1, 0,
289 doc: /* Return the floating point number equal to ARG. */)
290 (register Lisp_Object arg)
292 CHECK_NUMBER_OR_FLOAT (arg);
294 if (INTEGERP (arg))
295 return make_float ((double) XINT (arg));
296 else /* give 'em the same float back */
297 return arg;
300 static int
301 ecount_leading_zeros (EMACS_UINT x)
303 return (EMACS_UINT_WIDTH == UINT_WIDTH ? count_leading_zeros (x)
304 : EMACS_UINT_WIDTH == ULONG_WIDTH ? count_leading_zeros_l (x)
305 : count_leading_zeros_ll (x));
308 DEFUN ("logb", Flogb, Slogb, 1, 1, 0,
309 doc: /* Returns largest integer <= the base 2 log of the magnitude of ARG.
310 This is the same as the exponent of a float. */)
311 (Lisp_Object arg)
313 EMACS_INT value;
314 CHECK_NUMBER_OR_FLOAT (arg);
316 if (FLOATP (arg))
318 double f = XFLOAT_DATA (arg);
320 if (f == 0)
321 value = MOST_NEGATIVE_FIXNUM;
322 else if (isfinite (f))
324 int ivalue;
325 frexp (f, &ivalue);
326 value = ivalue - 1;
328 else
329 value = MOST_POSITIVE_FIXNUM;
331 else
333 EMACS_INT i = eabs (XINT (arg));
334 value = (i == 0
335 ? MOST_NEGATIVE_FIXNUM
336 : EMACS_UINT_WIDTH - 1 - ecount_leading_zeros (i));
339 return make_number (value);
343 /* the rounding functions */
345 static Lisp_Object
346 rounding_driver (Lisp_Object arg, Lisp_Object divisor,
347 double (*double_round) (double),
348 EMACS_INT (*int_round2) (EMACS_INT, EMACS_INT),
349 const char *name)
351 CHECK_NUMBER_OR_FLOAT (arg);
353 double d;
354 if (NILP (divisor))
356 if (! FLOATP (arg))
357 return arg;
358 d = XFLOAT_DATA (arg);
360 else
362 CHECK_NUMBER_OR_FLOAT (divisor);
363 if (!FLOATP (arg) && !FLOATP (divisor))
365 if (XINT (divisor) == 0)
366 xsignal0 (Qarith_error);
367 return make_number (int_round2 (XINT (arg), XINT (divisor)));
370 double f1 = FLOATP (arg) ? XFLOAT_DATA (arg) : XINT (arg);
371 double f2 = FLOATP (divisor) ? XFLOAT_DATA (divisor) : XINT (divisor);
372 if (! IEEE_FLOATING_POINT && f2 == 0)
373 xsignal0 (Qarith_error);
374 d = f1 / f2;
377 /* Round, coarsely test for fixnum overflow before converting to
378 EMACS_INT (to avoid undefined C behavior), and then exactly test
379 for overflow after converting (as FIXNUM_OVERFLOW_P is inaccurate
380 on floats). */
381 double dr = double_round (d);
382 if (fabs (dr) < 2 * (MOST_POSITIVE_FIXNUM + 1))
384 EMACS_INT ir = dr;
385 if (! FIXNUM_OVERFLOW_P (ir))
386 return make_number (ir);
388 xsignal2 (Qrange_error, build_string (name), arg);
391 static EMACS_INT
392 ceiling2 (EMACS_INT i1, EMACS_INT i2)
394 return i1 / i2 + ((i1 % i2 != 0) & ((i1 < 0) == (i2 < 0)));
397 static EMACS_INT
398 floor2 (EMACS_INT i1, EMACS_INT i2)
400 return i1 / i2 - ((i1 % i2 != 0) & ((i1 < 0) != (i2 < 0)));
403 static EMACS_INT
404 truncate2 (EMACS_INT i1, EMACS_INT i2)
406 return i1 / i2;
409 static EMACS_INT
410 round2 (EMACS_INT i1, EMACS_INT i2)
412 /* The C language's division operator gives us one remainder R, but
413 we want the remainder R1 on the other side of 0 if R1 is closer
414 to 0 than R is; because we want to round to even, we also want R1
415 if R and R1 are the same distance from 0 and if C's quotient is
416 odd. */
417 EMACS_INT q = i1 / i2;
418 EMACS_INT r = i1 % i2;
419 EMACS_INT abs_r = eabs (r);
420 EMACS_INT abs_r1 = eabs (i2) - abs_r;
421 return q + (abs_r + (q & 1) <= abs_r1 ? 0 : (i2 ^ r) < 0 ? -1 : 1);
424 /* The code uses emacs_rint, so that it works to undefine HAVE_RINT
425 if `rint' exists but does not work right. */
426 #ifdef HAVE_RINT
427 #define emacs_rint rint
428 #else
429 static double
430 emacs_rint (double d)
432 double d1 = d + 0.5;
433 double r = floor (d1);
434 return r - (r == d1 && fmod (r, 2) != 0);
436 #endif
438 #ifdef HAVE_TRUNC
439 #define emacs_trunc trunc
440 #else
441 static double
442 emacs_trunc (double d)
444 return (d < 0 ? ceil : floor) (d);
446 #endif
448 DEFUN ("ceiling", Fceiling, Sceiling, 1, 2, 0,
449 doc: /* Return the smallest integer no less than ARG.
450 This rounds the value towards +inf.
451 With optional DIVISOR, return the smallest integer no less than ARG/DIVISOR. */)
452 (Lisp_Object arg, Lisp_Object divisor)
454 return rounding_driver (arg, divisor, ceil, ceiling2, "ceiling");
457 DEFUN ("floor", Ffloor, Sfloor, 1, 2, 0,
458 doc: /* Return the largest integer no greater than ARG.
459 This rounds the value towards -inf.
460 With optional DIVISOR, return the largest integer no greater than ARG/DIVISOR. */)
461 (Lisp_Object arg, Lisp_Object divisor)
463 return rounding_driver (arg, divisor, floor, floor2, "floor");
466 DEFUN ("round", Fround, Sround, 1, 2, 0,
467 doc: /* Return the nearest integer to ARG.
468 With optional DIVISOR, return the nearest integer to ARG/DIVISOR.
470 Rounding a value equidistant between two integers may choose the
471 integer closer to zero, or it may prefer an even integer, depending on
472 your machine. For example, (round 2.5) can return 3 on some
473 systems, but 2 on others. */)
474 (Lisp_Object arg, Lisp_Object divisor)
476 return rounding_driver (arg, divisor, emacs_rint, round2, "round");
479 DEFUN ("truncate", Ftruncate, Struncate, 1, 2, 0,
480 doc: /* Truncate a floating point number to an int.
481 Rounds ARG toward zero.
482 With optional DIVISOR, truncate ARG/DIVISOR. */)
483 (Lisp_Object arg, Lisp_Object divisor)
485 return rounding_driver (arg, divisor, emacs_trunc, truncate2,
486 "truncate");
490 Lisp_Object
491 fmod_float (Lisp_Object x, Lisp_Object y)
493 double f1, f2;
495 f1 = FLOATP (x) ? XFLOAT_DATA (x) : XINT (x);
496 f2 = FLOATP (y) ? XFLOAT_DATA (y) : XINT (y);
498 f1 = fmod (f1, f2);
500 /* If the "remainder" comes out with the wrong sign, fix it. */
501 if (f2 < 0 ? f1 > 0 : f1 < 0)
502 f1 += f2;
504 return make_float (f1);
507 DEFUN ("fceiling", Ffceiling, Sfceiling, 1, 1, 0,
508 doc: /* Return the smallest integer no less than ARG, as a float.
509 \(Round toward +inf.) */)
510 (Lisp_Object arg)
512 CHECK_FLOAT (arg);
513 double d = XFLOAT_DATA (arg);
514 d = ceil (d);
515 return make_float (d);
518 DEFUN ("ffloor", Fffloor, Sffloor, 1, 1, 0,
519 doc: /* Return the largest integer no greater than ARG, as a float.
520 \(Round toward -inf.) */)
521 (Lisp_Object arg)
523 CHECK_FLOAT (arg);
524 double d = XFLOAT_DATA (arg);
525 d = floor (d);
526 return make_float (d);
529 DEFUN ("fround", Ffround, Sfround, 1, 1, 0,
530 doc: /* Return the nearest integer to ARG, as a float. */)
531 (Lisp_Object arg)
533 CHECK_FLOAT (arg);
534 double d = XFLOAT_DATA (arg);
535 d = emacs_rint (d);
536 return make_float (d);
539 DEFUN ("ftruncate", Fftruncate, Sftruncate, 1, 1, 0,
540 doc: /* Truncate a floating point number to an integral float value.
541 \(Round toward zero.) */)
542 (Lisp_Object arg)
544 CHECK_FLOAT (arg);
545 double d = XFLOAT_DATA (arg);
546 d = emacs_trunc (d);
547 return make_float (d);
550 void
551 syms_of_floatfns (void)
553 defsubr (&Sacos);
554 defsubr (&Sasin);
555 defsubr (&Satan);
556 defsubr (&Scos);
557 defsubr (&Ssin);
558 defsubr (&Stan);
559 defsubr (&Sisnan);
560 defsubr (&Scopysign);
561 defsubr (&Sfrexp);
562 defsubr (&Sldexp);
563 defsubr (&Sfceiling);
564 defsubr (&Sffloor);
565 defsubr (&Sfround);
566 defsubr (&Sftruncate);
567 defsubr (&Sexp);
568 defsubr (&Sexpt);
569 defsubr (&Slog);
570 defsubr (&Ssqrt);
572 defsubr (&Sabs);
573 defsubr (&Sfloat);
574 defsubr (&Slogb);
575 defsubr (&Sceiling);
576 defsubr (&Sfloor);
577 defsubr (&Sround);
578 defsubr (&Struncate);