Fix pcase memoizing; change lexbound byte-code marker.
[emacs.git] / src / alloc.c
blobc7fd8747f7462ec1abed30f09195441f72ed9511
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2011
3 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20 #include <config.h>
21 #include <stdio.h>
22 #include <limits.h> /* For CHAR_BIT. */
23 #include <setjmp.h>
25 #ifdef ALLOC_DEBUG
26 #undef INLINE
27 #endif
29 #include <signal.h>
31 #ifdef HAVE_GTK_AND_PTHREAD
32 #include <pthread.h>
33 #endif
35 /* This file is part of the core Lisp implementation, and thus must
36 deal with the real data structures. If the Lisp implementation is
37 replaced, this file likely will not be used. */
39 #undef HIDE_LISP_IMPLEMENTATION
40 #include "lisp.h"
41 #include "process.h"
42 #include "intervals.h"
43 #include "puresize.h"
44 #include "buffer.h"
45 #include "window.h"
46 #include "keyboard.h"
47 #include "frame.h"
48 #include "blockinput.h"
49 #include "character.h"
50 #include "syssignal.h"
51 #include "termhooks.h" /* For struct terminal. */
52 #include <setjmp.h>
54 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
55 memory. Can do this only if using gmalloc.c. */
57 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
58 #undef GC_MALLOC_CHECK
59 #endif
61 #include <unistd.h>
62 #ifndef HAVE_UNISTD_H
63 extern POINTER_TYPE *sbrk ();
64 #endif
66 #include <fcntl.h>
68 #ifdef WINDOWSNT
69 #include "w32.h"
70 #endif
72 #ifdef DOUG_LEA_MALLOC
74 #include <malloc.h>
75 /* malloc.h #defines this as size_t, at least in glibc2. */
76 #ifndef __malloc_size_t
77 #define __malloc_size_t int
78 #endif
80 /* Specify maximum number of areas to mmap. It would be nice to use a
81 value that explicitly means "no limit". */
83 #define MMAP_MAX_AREAS 100000000
85 #else /* not DOUG_LEA_MALLOC */
87 /* The following come from gmalloc.c. */
89 #define __malloc_size_t size_t
90 extern __malloc_size_t _bytes_used;
91 extern __malloc_size_t __malloc_extra_blocks;
93 #endif /* not DOUG_LEA_MALLOC */
95 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
97 /* When GTK uses the file chooser dialog, different backends can be loaded
98 dynamically. One such a backend is the Gnome VFS backend that gets loaded
99 if you run Gnome. That backend creates several threads and also allocates
100 memory with malloc.
102 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
103 functions below are called from malloc, there is a chance that one
104 of these threads preempts the Emacs main thread and the hook variables
105 end up in an inconsistent state. So we have a mutex to prevent that (note
106 that the backend handles concurrent access to malloc within its own threads
107 but Emacs code running in the main thread is not included in that control).
109 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
110 happens in one of the backend threads we will have two threads that tries
111 to run Emacs code at once, and the code is not prepared for that.
112 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
114 static pthread_mutex_t alloc_mutex;
116 #define BLOCK_INPUT_ALLOC \
117 do \
119 if (pthread_equal (pthread_self (), main_thread)) \
120 BLOCK_INPUT; \
121 pthread_mutex_lock (&alloc_mutex); \
123 while (0)
124 #define UNBLOCK_INPUT_ALLOC \
125 do \
127 pthread_mutex_unlock (&alloc_mutex); \
128 if (pthread_equal (pthread_self (), main_thread)) \
129 UNBLOCK_INPUT; \
131 while (0)
133 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
135 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
136 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
138 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
140 /* Value of _bytes_used, when spare_memory was freed. */
142 static __malloc_size_t bytes_used_when_full;
144 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
145 to a struct Lisp_String. */
147 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
148 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
149 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
151 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
152 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
153 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
155 /* Value is the number of bytes/chars of S, a pointer to a struct
156 Lisp_String. This must be used instead of STRING_BYTES (S) or
157 S->size during GC, because S->size contains the mark bit for
158 strings. */
160 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
161 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
163 /* Global variables. */
164 struct emacs_globals globals;
166 /* Number of bytes of consing done since the last gc. */
168 int consing_since_gc;
170 /* Similar minimum, computed from Vgc_cons_percentage. */
172 EMACS_INT gc_relative_threshold;
174 /* Minimum number of bytes of consing since GC before next GC,
175 when memory is full. */
177 EMACS_INT memory_full_cons_threshold;
179 /* Nonzero during GC. */
181 int gc_in_progress;
183 /* Nonzero means abort if try to GC.
184 This is for code which is written on the assumption that
185 no GC will happen, so as to verify that assumption. */
187 int abort_on_gc;
189 /* Number of live and free conses etc. */
191 static int total_conses, total_markers, total_symbols, total_vector_size;
192 static int total_free_conses, total_free_markers, total_free_symbols;
193 static int total_free_floats, total_floats;
195 /* Points to memory space allocated as "spare", to be freed if we run
196 out of memory. We keep one large block, four cons-blocks, and
197 two string blocks. */
199 static char *spare_memory[7];
201 /* Amount of spare memory to keep in large reserve block. */
203 #define SPARE_MEMORY (1 << 14)
205 /* Number of extra blocks malloc should get when it needs more core. */
207 static int malloc_hysteresis;
209 /* Initialize it to a nonzero value to force it into data space
210 (rather than bss space). That way unexec will remap it into text
211 space (pure), on some systems. We have not implemented the
212 remapping on more recent systems because this is less important
213 nowadays than in the days of small memories and timesharing. */
215 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
216 #define PUREBEG (char *) pure
218 /* Pointer to the pure area, and its size. */
220 static char *purebeg;
221 static size_t pure_size;
223 /* Number of bytes of pure storage used before pure storage overflowed.
224 If this is non-zero, this implies that an overflow occurred. */
226 static size_t pure_bytes_used_before_overflow;
228 /* Value is non-zero if P points into pure space. */
230 #define PURE_POINTER_P(P) \
231 (((PNTR_COMPARISON_TYPE) (P) \
232 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
233 && ((PNTR_COMPARISON_TYPE) (P) \
234 >= (PNTR_COMPARISON_TYPE) purebeg))
236 /* Index in pure at which next pure Lisp object will be allocated.. */
238 static EMACS_INT pure_bytes_used_lisp;
240 /* Number of bytes allocated for non-Lisp objects in pure storage. */
242 static EMACS_INT pure_bytes_used_non_lisp;
244 /* If nonzero, this is a warning delivered by malloc and not yet
245 displayed. */
247 const char *pending_malloc_warning;
249 /* Maximum amount of C stack to save when a GC happens. */
251 #ifndef MAX_SAVE_STACK
252 #define MAX_SAVE_STACK 16000
253 #endif
255 /* Buffer in which we save a copy of the C stack at each GC. */
257 static char *stack_copy;
258 static int stack_copy_size;
260 /* Non-zero means ignore malloc warnings. Set during initialization.
261 Currently not used. */
263 static int ignore_warnings;
265 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
267 /* Hook run after GC has finished. */
269 Lisp_Object Qpost_gc_hook;
271 static void mark_buffer (Lisp_Object);
272 static void mark_terminals (void);
273 extern void mark_kboards (void);
274 extern void mark_ttys (void);
275 extern void mark_backtrace (void);
276 static void gc_sweep (void);
277 static void mark_glyph_matrix (struct glyph_matrix *);
278 static void mark_face_cache (struct face_cache *);
280 #ifdef HAVE_WINDOW_SYSTEM
281 extern void mark_fringe_data (void);
282 #endif /* HAVE_WINDOW_SYSTEM */
284 static struct Lisp_String *allocate_string (void);
285 static void compact_small_strings (void);
286 static void free_large_strings (void);
287 static void sweep_strings (void);
289 extern int message_enable_multibyte;
291 /* When scanning the C stack for live Lisp objects, Emacs keeps track
292 of what memory allocated via lisp_malloc is intended for what
293 purpose. This enumeration specifies the type of memory. */
295 enum mem_type
297 MEM_TYPE_NON_LISP,
298 MEM_TYPE_BUFFER,
299 MEM_TYPE_CONS,
300 MEM_TYPE_STRING,
301 MEM_TYPE_MISC,
302 MEM_TYPE_SYMBOL,
303 MEM_TYPE_FLOAT,
304 /* We used to keep separate mem_types for subtypes of vectors such as
305 process, hash_table, frame, terminal, and window, but we never made
306 use of the distinction, so it only caused source-code complexity
307 and runtime slowdown. Minor but pointless. */
308 MEM_TYPE_VECTORLIKE
311 static POINTER_TYPE *lisp_align_malloc (size_t, enum mem_type);
312 static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
315 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
317 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
318 #include <stdio.h> /* For fprintf. */
319 #endif
321 /* A unique object in pure space used to make some Lisp objects
322 on free lists recognizable in O(1). */
324 static Lisp_Object Vdead;
326 #ifdef GC_MALLOC_CHECK
328 enum mem_type allocated_mem_type;
329 static int dont_register_blocks;
331 #endif /* GC_MALLOC_CHECK */
333 /* A node in the red-black tree describing allocated memory containing
334 Lisp data. Each such block is recorded with its start and end
335 address when it is allocated, and removed from the tree when it
336 is freed.
338 A red-black tree is a balanced binary tree with the following
339 properties:
341 1. Every node is either red or black.
342 2. Every leaf is black.
343 3. If a node is red, then both of its children are black.
344 4. Every simple path from a node to a descendant leaf contains
345 the same number of black nodes.
346 5. The root is always black.
348 When nodes are inserted into the tree, or deleted from the tree,
349 the tree is "fixed" so that these properties are always true.
351 A red-black tree with N internal nodes has height at most 2
352 log(N+1). Searches, insertions and deletions are done in O(log N).
353 Please see a text book about data structures for a detailed
354 description of red-black trees. Any book worth its salt should
355 describe them. */
357 struct mem_node
359 /* Children of this node. These pointers are never NULL. When there
360 is no child, the value is MEM_NIL, which points to a dummy node. */
361 struct mem_node *left, *right;
363 /* The parent of this node. In the root node, this is NULL. */
364 struct mem_node *parent;
366 /* Start and end of allocated region. */
367 void *start, *end;
369 /* Node color. */
370 enum {MEM_BLACK, MEM_RED} color;
372 /* Memory type. */
373 enum mem_type type;
376 /* Base address of stack. Set in main. */
378 Lisp_Object *stack_base;
380 /* Root of the tree describing allocated Lisp memory. */
382 static struct mem_node *mem_root;
384 /* Lowest and highest known address in the heap. */
386 static void *min_heap_address, *max_heap_address;
388 /* Sentinel node of the tree. */
390 static struct mem_node mem_z;
391 #define MEM_NIL &mem_z
393 static struct Lisp_Vector *allocate_vectorlike (EMACS_INT);
394 static void lisp_free (POINTER_TYPE *);
395 static void mark_stack (void);
396 static int live_vector_p (struct mem_node *, void *);
397 static int live_buffer_p (struct mem_node *, void *);
398 static int live_string_p (struct mem_node *, void *);
399 static int live_cons_p (struct mem_node *, void *);
400 static int live_symbol_p (struct mem_node *, void *);
401 static int live_float_p (struct mem_node *, void *);
402 static int live_misc_p (struct mem_node *, void *);
403 static void mark_maybe_object (Lisp_Object);
404 static void mark_memory (void *, void *, int);
405 static void mem_init (void);
406 static struct mem_node *mem_insert (void *, void *, enum mem_type);
407 static void mem_insert_fixup (struct mem_node *);
408 static void mem_rotate_left (struct mem_node *);
409 static void mem_rotate_right (struct mem_node *);
410 static void mem_delete (struct mem_node *);
411 static void mem_delete_fixup (struct mem_node *);
412 static INLINE struct mem_node *mem_find (void *);
415 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
416 static void check_gcpros (void);
417 #endif
419 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
421 /* Recording what needs to be marked for gc. */
423 struct gcpro *gcprolist;
425 /* Addresses of staticpro'd variables. Initialize it to a nonzero
426 value; otherwise some compilers put it into BSS. */
428 #define NSTATICS 0x640
429 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
431 /* Index of next unused slot in staticvec. */
433 static int staticidx = 0;
435 static POINTER_TYPE *pure_alloc (size_t, int);
438 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
439 ALIGNMENT must be a power of 2. */
441 #define ALIGN(ptr, ALIGNMENT) \
442 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
443 & ~((ALIGNMENT) - 1)))
447 /************************************************************************
448 Malloc
449 ************************************************************************/
451 /* Function malloc calls this if it finds we are near exhausting storage. */
453 void
454 malloc_warning (const char *str)
456 pending_malloc_warning = str;
460 /* Display an already-pending malloc warning. */
462 void
463 display_malloc_warning (void)
465 call3 (intern ("display-warning"),
466 intern ("alloc"),
467 build_string (pending_malloc_warning),
468 intern ("emergency"));
469 pending_malloc_warning = 0;
473 #ifdef DOUG_LEA_MALLOC
474 # define BYTES_USED (mallinfo ().uordblks)
475 #else
476 # define BYTES_USED _bytes_used
477 #endif
479 /* Called if we can't allocate relocatable space for a buffer. */
481 void
482 buffer_memory_full (void)
484 /* If buffers use the relocating allocator, no need to free
485 spare_memory, because we may have plenty of malloc space left
486 that we could get, and if we don't, the malloc that fails will
487 itself cause spare_memory to be freed. If buffers don't use the
488 relocating allocator, treat this like any other failing
489 malloc. */
491 #ifndef REL_ALLOC
492 memory_full ();
493 #endif
495 /* This used to call error, but if we've run out of memory, we could
496 get infinite recursion trying to build the string. */
497 xsignal (Qnil, Vmemory_signal_data);
501 #ifdef XMALLOC_OVERRUN_CHECK
503 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
504 and a 16 byte trailer around each block.
506 The header consists of 12 fixed bytes + a 4 byte integer contaning the
507 original block size, while the trailer consists of 16 fixed bytes.
509 The header is used to detect whether this block has been allocated
510 through these functions -- as it seems that some low-level libc
511 functions may bypass the malloc hooks.
515 #define XMALLOC_OVERRUN_CHECK_SIZE 16
517 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
518 { 0x9a, 0x9b, 0xae, 0xaf,
519 0xbf, 0xbe, 0xce, 0xcf,
520 0xea, 0xeb, 0xec, 0xed };
522 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
523 { 0xaa, 0xab, 0xac, 0xad,
524 0xba, 0xbb, 0xbc, 0xbd,
525 0xca, 0xcb, 0xcc, 0xcd,
526 0xda, 0xdb, 0xdc, 0xdd };
528 /* Macros to insert and extract the block size in the header. */
530 #define XMALLOC_PUT_SIZE(ptr, size) \
531 (ptr[-1] = (size & 0xff), \
532 ptr[-2] = ((size >> 8) & 0xff), \
533 ptr[-3] = ((size >> 16) & 0xff), \
534 ptr[-4] = ((size >> 24) & 0xff))
536 #define XMALLOC_GET_SIZE(ptr) \
537 (size_t)((unsigned)(ptr[-1]) | \
538 ((unsigned)(ptr[-2]) << 8) | \
539 ((unsigned)(ptr[-3]) << 16) | \
540 ((unsigned)(ptr[-4]) << 24))
543 /* The call depth in overrun_check functions. For example, this might happen:
544 xmalloc()
545 overrun_check_malloc()
546 -> malloc -> (via hook)_-> emacs_blocked_malloc
547 -> overrun_check_malloc
548 call malloc (hooks are NULL, so real malloc is called).
549 malloc returns 10000.
550 add overhead, return 10016.
551 <- (back in overrun_check_malloc)
552 add overhead again, return 10032
553 xmalloc returns 10032.
555 (time passes).
557 xfree(10032)
558 overrun_check_free(10032)
559 decrease overhed
560 free(10016) <- crash, because 10000 is the original pointer. */
562 static int check_depth;
564 /* Like malloc, but wraps allocated block with header and trailer. */
566 POINTER_TYPE *
567 overrun_check_malloc (size)
568 size_t size;
570 register unsigned char *val;
571 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
573 val = (unsigned char *) malloc (size + overhead);
574 if (val && check_depth == 1)
576 memcpy (val, xmalloc_overrun_check_header,
577 XMALLOC_OVERRUN_CHECK_SIZE - 4);
578 val += XMALLOC_OVERRUN_CHECK_SIZE;
579 XMALLOC_PUT_SIZE(val, size);
580 memcpy (val + size, xmalloc_overrun_check_trailer,
581 XMALLOC_OVERRUN_CHECK_SIZE);
583 --check_depth;
584 return (POINTER_TYPE *)val;
588 /* Like realloc, but checks old block for overrun, and wraps new block
589 with header and trailer. */
591 POINTER_TYPE *
592 overrun_check_realloc (block, size)
593 POINTER_TYPE *block;
594 size_t size;
596 register unsigned char *val = (unsigned char *)block;
597 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
599 if (val
600 && check_depth == 1
601 && memcmp (xmalloc_overrun_check_header,
602 val - XMALLOC_OVERRUN_CHECK_SIZE,
603 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
605 size_t osize = XMALLOC_GET_SIZE (val);
606 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
607 XMALLOC_OVERRUN_CHECK_SIZE))
608 abort ();
609 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
610 val -= XMALLOC_OVERRUN_CHECK_SIZE;
611 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
614 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
616 if (val && check_depth == 1)
618 memcpy (val, xmalloc_overrun_check_header,
619 XMALLOC_OVERRUN_CHECK_SIZE - 4);
620 val += XMALLOC_OVERRUN_CHECK_SIZE;
621 XMALLOC_PUT_SIZE(val, size);
622 memcpy (val + size, xmalloc_overrun_check_trailer,
623 XMALLOC_OVERRUN_CHECK_SIZE);
625 --check_depth;
626 return (POINTER_TYPE *)val;
629 /* Like free, but checks block for overrun. */
631 void
632 overrun_check_free (block)
633 POINTER_TYPE *block;
635 unsigned char *val = (unsigned char *)block;
637 ++check_depth;
638 if (val
639 && check_depth == 1
640 && memcmp (xmalloc_overrun_check_header,
641 val - XMALLOC_OVERRUN_CHECK_SIZE,
642 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
644 size_t osize = XMALLOC_GET_SIZE (val);
645 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
646 XMALLOC_OVERRUN_CHECK_SIZE))
647 abort ();
648 #ifdef XMALLOC_CLEAR_FREE_MEMORY
649 val -= XMALLOC_OVERRUN_CHECK_SIZE;
650 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
651 #else
652 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
653 val -= XMALLOC_OVERRUN_CHECK_SIZE;
654 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
655 #endif
658 free (val);
659 --check_depth;
662 #undef malloc
663 #undef realloc
664 #undef free
665 #define malloc overrun_check_malloc
666 #define realloc overrun_check_realloc
667 #define free overrun_check_free
668 #endif
670 #ifdef SYNC_INPUT
671 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
672 there's no need to block input around malloc. */
673 #define MALLOC_BLOCK_INPUT ((void)0)
674 #define MALLOC_UNBLOCK_INPUT ((void)0)
675 #else
676 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
677 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
678 #endif
680 /* Like malloc but check for no memory and block interrupt input.. */
682 POINTER_TYPE *
683 xmalloc (size_t size)
685 register POINTER_TYPE *val;
687 MALLOC_BLOCK_INPUT;
688 val = (POINTER_TYPE *) malloc (size);
689 MALLOC_UNBLOCK_INPUT;
691 if (!val && size)
692 memory_full ();
693 return val;
697 /* Like realloc but check for no memory and block interrupt input.. */
699 POINTER_TYPE *
700 xrealloc (POINTER_TYPE *block, size_t size)
702 register POINTER_TYPE *val;
704 MALLOC_BLOCK_INPUT;
705 /* We must call malloc explicitly when BLOCK is 0, since some
706 reallocs don't do this. */
707 if (! block)
708 val = (POINTER_TYPE *) malloc (size);
709 else
710 val = (POINTER_TYPE *) realloc (block, size);
711 MALLOC_UNBLOCK_INPUT;
713 if (!val && size) memory_full ();
714 return val;
718 /* Like free but block interrupt input. */
720 void
721 xfree (POINTER_TYPE *block)
723 if (!block)
724 return;
725 MALLOC_BLOCK_INPUT;
726 free (block);
727 MALLOC_UNBLOCK_INPUT;
728 /* We don't call refill_memory_reserve here
729 because that duplicates doing so in emacs_blocked_free
730 and the criterion should go there. */
734 /* Like strdup, but uses xmalloc. */
736 char *
737 xstrdup (const char *s)
739 size_t len = strlen (s) + 1;
740 char *p = (char *) xmalloc (len);
741 memcpy (p, s, len);
742 return p;
746 /* Unwind for SAFE_ALLOCA */
748 Lisp_Object
749 safe_alloca_unwind (Lisp_Object arg)
751 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
753 p->dogc = 0;
754 xfree (p->pointer);
755 p->pointer = 0;
756 free_misc (arg);
757 return Qnil;
761 /* Like malloc but used for allocating Lisp data. NBYTES is the
762 number of bytes to allocate, TYPE describes the intended use of the
763 allcated memory block (for strings, for conses, ...). */
765 #ifndef USE_LSB_TAG
766 static void *lisp_malloc_loser;
767 #endif
769 static POINTER_TYPE *
770 lisp_malloc (size_t nbytes, enum mem_type type)
772 register void *val;
774 MALLOC_BLOCK_INPUT;
776 #ifdef GC_MALLOC_CHECK
777 allocated_mem_type = type;
778 #endif
780 val = (void *) malloc (nbytes);
782 #ifndef USE_LSB_TAG
783 /* If the memory just allocated cannot be addressed thru a Lisp
784 object's pointer, and it needs to be,
785 that's equivalent to running out of memory. */
786 if (val && type != MEM_TYPE_NON_LISP)
788 Lisp_Object tem;
789 XSETCONS (tem, (char *) val + nbytes - 1);
790 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
792 lisp_malloc_loser = val;
793 free (val);
794 val = 0;
797 #endif
799 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
800 if (val && type != MEM_TYPE_NON_LISP)
801 mem_insert (val, (char *) val + nbytes, type);
802 #endif
804 MALLOC_UNBLOCK_INPUT;
805 if (!val && nbytes)
806 memory_full ();
807 return val;
810 /* Free BLOCK. This must be called to free memory allocated with a
811 call to lisp_malloc. */
813 static void
814 lisp_free (POINTER_TYPE *block)
816 MALLOC_BLOCK_INPUT;
817 free (block);
818 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
819 mem_delete (mem_find (block));
820 #endif
821 MALLOC_UNBLOCK_INPUT;
824 /* Allocation of aligned blocks of memory to store Lisp data. */
825 /* The entry point is lisp_align_malloc which returns blocks of at most */
826 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
828 /* Use posix_memalloc if the system has it and we're using the system's
829 malloc (because our gmalloc.c routines don't have posix_memalign although
830 its memalloc could be used). */
831 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
832 #define USE_POSIX_MEMALIGN 1
833 #endif
835 /* BLOCK_ALIGN has to be a power of 2. */
836 #define BLOCK_ALIGN (1 << 10)
838 /* Padding to leave at the end of a malloc'd block. This is to give
839 malloc a chance to minimize the amount of memory wasted to alignment.
840 It should be tuned to the particular malloc library used.
841 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
842 posix_memalign on the other hand would ideally prefer a value of 4
843 because otherwise, there's 1020 bytes wasted between each ablocks.
844 In Emacs, testing shows that those 1020 can most of the time be
845 efficiently used by malloc to place other objects, so a value of 0 can
846 still preferable unless you have a lot of aligned blocks and virtually
847 nothing else. */
848 #define BLOCK_PADDING 0
849 #define BLOCK_BYTES \
850 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
852 /* Internal data structures and constants. */
854 #define ABLOCKS_SIZE 16
856 /* An aligned block of memory. */
857 struct ablock
859 union
861 char payload[BLOCK_BYTES];
862 struct ablock *next_free;
863 } x;
864 /* `abase' is the aligned base of the ablocks. */
865 /* It is overloaded to hold the virtual `busy' field that counts
866 the number of used ablock in the parent ablocks.
867 The first ablock has the `busy' field, the others have the `abase'
868 field. To tell the difference, we assume that pointers will have
869 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
870 is used to tell whether the real base of the parent ablocks is `abase'
871 (if not, the word before the first ablock holds a pointer to the
872 real base). */
873 struct ablocks *abase;
874 /* The padding of all but the last ablock is unused. The padding of
875 the last ablock in an ablocks is not allocated. */
876 #if BLOCK_PADDING
877 char padding[BLOCK_PADDING];
878 #endif
881 /* A bunch of consecutive aligned blocks. */
882 struct ablocks
884 struct ablock blocks[ABLOCKS_SIZE];
887 /* Size of the block requested from malloc or memalign. */
888 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
890 #define ABLOCK_ABASE(block) \
891 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
892 ? (struct ablocks *)(block) \
893 : (block)->abase)
895 /* Virtual `busy' field. */
896 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
898 /* Pointer to the (not necessarily aligned) malloc block. */
899 #ifdef USE_POSIX_MEMALIGN
900 #define ABLOCKS_BASE(abase) (abase)
901 #else
902 #define ABLOCKS_BASE(abase) \
903 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
904 #endif
906 /* The list of free ablock. */
907 static struct ablock *free_ablock;
909 /* Allocate an aligned block of nbytes.
910 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
911 smaller or equal to BLOCK_BYTES. */
912 static POINTER_TYPE *
913 lisp_align_malloc (size_t nbytes, enum mem_type type)
915 void *base, *val;
916 struct ablocks *abase;
918 eassert (nbytes <= BLOCK_BYTES);
920 MALLOC_BLOCK_INPUT;
922 #ifdef GC_MALLOC_CHECK
923 allocated_mem_type = type;
924 #endif
926 if (!free_ablock)
928 int i;
929 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
931 #ifdef DOUG_LEA_MALLOC
932 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
933 because mapped region contents are not preserved in
934 a dumped Emacs. */
935 mallopt (M_MMAP_MAX, 0);
936 #endif
938 #ifdef USE_POSIX_MEMALIGN
940 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
941 if (err)
942 base = NULL;
943 abase = base;
945 #else
946 base = malloc (ABLOCKS_BYTES);
947 abase = ALIGN (base, BLOCK_ALIGN);
948 #endif
950 if (base == 0)
952 MALLOC_UNBLOCK_INPUT;
953 memory_full ();
956 aligned = (base == abase);
957 if (!aligned)
958 ((void**)abase)[-1] = base;
960 #ifdef DOUG_LEA_MALLOC
961 /* Back to a reasonable maximum of mmap'ed areas. */
962 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
963 #endif
965 #ifndef USE_LSB_TAG
966 /* If the memory just allocated cannot be addressed thru a Lisp
967 object's pointer, and it needs to be, that's equivalent to
968 running out of memory. */
969 if (type != MEM_TYPE_NON_LISP)
971 Lisp_Object tem;
972 char *end = (char *) base + ABLOCKS_BYTES - 1;
973 XSETCONS (tem, end);
974 if ((char *) XCONS (tem) != end)
976 lisp_malloc_loser = base;
977 free (base);
978 MALLOC_UNBLOCK_INPUT;
979 memory_full ();
982 #endif
984 /* Initialize the blocks and put them on the free list.
985 Is `base' was not properly aligned, we can't use the last block. */
986 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
988 abase->blocks[i].abase = abase;
989 abase->blocks[i].x.next_free = free_ablock;
990 free_ablock = &abase->blocks[i];
992 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
994 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
995 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
996 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
997 eassert (ABLOCKS_BASE (abase) == base);
998 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1001 abase = ABLOCK_ABASE (free_ablock);
1002 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1003 val = free_ablock;
1004 free_ablock = free_ablock->x.next_free;
1006 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1007 if (val && type != MEM_TYPE_NON_LISP)
1008 mem_insert (val, (char *) val + nbytes, type);
1009 #endif
1011 MALLOC_UNBLOCK_INPUT;
1012 if (!val && nbytes)
1013 memory_full ();
1015 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1016 return val;
1019 static void
1020 lisp_align_free (POINTER_TYPE *block)
1022 struct ablock *ablock = block;
1023 struct ablocks *abase = ABLOCK_ABASE (ablock);
1025 MALLOC_BLOCK_INPUT;
1026 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1027 mem_delete (mem_find (block));
1028 #endif
1029 /* Put on free list. */
1030 ablock->x.next_free = free_ablock;
1031 free_ablock = ablock;
1032 /* Update busy count. */
1033 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1035 if (2 > (long) ABLOCKS_BUSY (abase))
1036 { /* All the blocks are free. */
1037 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1038 struct ablock **tem = &free_ablock;
1039 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1041 while (*tem)
1043 if (*tem >= (struct ablock *) abase && *tem < atop)
1045 i++;
1046 *tem = (*tem)->x.next_free;
1048 else
1049 tem = &(*tem)->x.next_free;
1051 eassert ((aligned & 1) == aligned);
1052 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1053 #ifdef USE_POSIX_MEMALIGN
1054 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1055 #endif
1056 free (ABLOCKS_BASE (abase));
1058 MALLOC_UNBLOCK_INPUT;
1061 /* Return a new buffer structure allocated from the heap with
1062 a call to lisp_malloc. */
1064 struct buffer *
1065 allocate_buffer (void)
1067 struct buffer *b
1068 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1069 MEM_TYPE_BUFFER);
1070 b->size = sizeof (struct buffer) / sizeof (EMACS_INT);
1071 XSETPVECTYPE (b, PVEC_BUFFER);
1072 return b;
1076 #ifndef SYSTEM_MALLOC
1078 /* Arranging to disable input signals while we're in malloc.
1080 This only works with GNU malloc. To help out systems which can't
1081 use GNU malloc, all the calls to malloc, realloc, and free
1082 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1083 pair; unfortunately, we have no idea what C library functions
1084 might call malloc, so we can't really protect them unless you're
1085 using GNU malloc. Fortunately, most of the major operating systems
1086 can use GNU malloc. */
1088 #ifndef SYNC_INPUT
1089 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1090 there's no need to block input around malloc. */
1092 #ifndef DOUG_LEA_MALLOC
1093 extern void * (*__malloc_hook) (size_t, const void *);
1094 extern void * (*__realloc_hook) (void *, size_t, const void *);
1095 extern void (*__free_hook) (void *, const void *);
1096 /* Else declared in malloc.h, perhaps with an extra arg. */
1097 #endif /* DOUG_LEA_MALLOC */
1098 static void * (*old_malloc_hook) (size_t, const void *);
1099 static void * (*old_realloc_hook) (void *, size_t, const void*);
1100 static void (*old_free_hook) (void*, const void*);
1102 static __malloc_size_t bytes_used_when_reconsidered;
1104 /* This function is used as the hook for free to call. */
1106 static void
1107 emacs_blocked_free (void *ptr, const void *ptr2)
1109 BLOCK_INPUT_ALLOC;
1111 #ifdef GC_MALLOC_CHECK
1112 if (ptr)
1114 struct mem_node *m;
1116 m = mem_find (ptr);
1117 if (m == MEM_NIL || m->start != ptr)
1119 fprintf (stderr,
1120 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1121 abort ();
1123 else
1125 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1126 mem_delete (m);
1129 #endif /* GC_MALLOC_CHECK */
1131 __free_hook = old_free_hook;
1132 free (ptr);
1134 /* If we released our reserve (due to running out of memory),
1135 and we have a fair amount free once again,
1136 try to set aside another reserve in case we run out once more. */
1137 if (! NILP (Vmemory_full)
1138 /* Verify there is enough space that even with the malloc
1139 hysteresis this call won't run out again.
1140 The code here is correct as long as SPARE_MEMORY
1141 is substantially larger than the block size malloc uses. */
1142 && (bytes_used_when_full
1143 > ((bytes_used_when_reconsidered = BYTES_USED)
1144 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1145 refill_memory_reserve ();
1147 __free_hook = emacs_blocked_free;
1148 UNBLOCK_INPUT_ALLOC;
1152 /* This function is the malloc hook that Emacs uses. */
1154 static void *
1155 emacs_blocked_malloc (size_t size, const void *ptr)
1157 void *value;
1159 BLOCK_INPUT_ALLOC;
1160 __malloc_hook = old_malloc_hook;
1161 #ifdef DOUG_LEA_MALLOC
1162 /* Segfaults on my system. --lorentey */
1163 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1164 #else
1165 __malloc_extra_blocks = malloc_hysteresis;
1166 #endif
1168 value = (void *) malloc (size);
1170 #ifdef GC_MALLOC_CHECK
1172 struct mem_node *m = mem_find (value);
1173 if (m != MEM_NIL)
1175 fprintf (stderr, "Malloc returned %p which is already in use\n",
1176 value);
1177 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1178 m->start, m->end, (char *) m->end - (char *) m->start,
1179 m->type);
1180 abort ();
1183 if (!dont_register_blocks)
1185 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1186 allocated_mem_type = MEM_TYPE_NON_LISP;
1189 #endif /* GC_MALLOC_CHECK */
1191 __malloc_hook = emacs_blocked_malloc;
1192 UNBLOCK_INPUT_ALLOC;
1194 /* fprintf (stderr, "%p malloc\n", value); */
1195 return value;
1199 /* This function is the realloc hook that Emacs uses. */
1201 static void *
1202 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1204 void *value;
1206 BLOCK_INPUT_ALLOC;
1207 __realloc_hook = old_realloc_hook;
1209 #ifdef GC_MALLOC_CHECK
1210 if (ptr)
1212 struct mem_node *m = mem_find (ptr);
1213 if (m == MEM_NIL || m->start != ptr)
1215 fprintf (stderr,
1216 "Realloc of %p which wasn't allocated with malloc\n",
1217 ptr);
1218 abort ();
1221 mem_delete (m);
1224 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1226 /* Prevent malloc from registering blocks. */
1227 dont_register_blocks = 1;
1228 #endif /* GC_MALLOC_CHECK */
1230 value = (void *) realloc (ptr, size);
1232 #ifdef GC_MALLOC_CHECK
1233 dont_register_blocks = 0;
1236 struct mem_node *m = mem_find (value);
1237 if (m != MEM_NIL)
1239 fprintf (stderr, "Realloc returns memory that is already in use\n");
1240 abort ();
1243 /* Can't handle zero size regions in the red-black tree. */
1244 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1247 /* fprintf (stderr, "%p <- realloc\n", value); */
1248 #endif /* GC_MALLOC_CHECK */
1250 __realloc_hook = emacs_blocked_realloc;
1251 UNBLOCK_INPUT_ALLOC;
1253 return value;
1257 #ifdef HAVE_GTK_AND_PTHREAD
1258 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1259 normal malloc. Some thread implementations need this as they call
1260 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1261 calls malloc because it is the first call, and we have an endless loop. */
1263 void
1264 reset_malloc_hooks ()
1266 __free_hook = old_free_hook;
1267 __malloc_hook = old_malloc_hook;
1268 __realloc_hook = old_realloc_hook;
1270 #endif /* HAVE_GTK_AND_PTHREAD */
1273 /* Called from main to set up malloc to use our hooks. */
1275 void
1276 uninterrupt_malloc (void)
1278 #ifdef HAVE_GTK_AND_PTHREAD
1279 #ifdef DOUG_LEA_MALLOC
1280 pthread_mutexattr_t attr;
1282 /* GLIBC has a faster way to do this, but lets keep it portable.
1283 This is according to the Single UNIX Specification. */
1284 pthread_mutexattr_init (&attr);
1285 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1286 pthread_mutex_init (&alloc_mutex, &attr);
1287 #else /* !DOUG_LEA_MALLOC */
1288 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1289 and the bundled gmalloc.c doesn't require it. */
1290 pthread_mutex_init (&alloc_mutex, NULL);
1291 #endif /* !DOUG_LEA_MALLOC */
1292 #endif /* HAVE_GTK_AND_PTHREAD */
1294 if (__free_hook != emacs_blocked_free)
1295 old_free_hook = __free_hook;
1296 __free_hook = emacs_blocked_free;
1298 if (__malloc_hook != emacs_blocked_malloc)
1299 old_malloc_hook = __malloc_hook;
1300 __malloc_hook = emacs_blocked_malloc;
1302 if (__realloc_hook != emacs_blocked_realloc)
1303 old_realloc_hook = __realloc_hook;
1304 __realloc_hook = emacs_blocked_realloc;
1307 #endif /* not SYNC_INPUT */
1308 #endif /* not SYSTEM_MALLOC */
1312 /***********************************************************************
1313 Interval Allocation
1314 ***********************************************************************/
1316 /* Number of intervals allocated in an interval_block structure.
1317 The 1020 is 1024 minus malloc overhead. */
1319 #define INTERVAL_BLOCK_SIZE \
1320 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1322 /* Intervals are allocated in chunks in form of an interval_block
1323 structure. */
1325 struct interval_block
1327 /* Place `intervals' first, to preserve alignment. */
1328 struct interval intervals[INTERVAL_BLOCK_SIZE];
1329 struct interval_block *next;
1332 /* Current interval block. Its `next' pointer points to older
1333 blocks. */
1335 static struct interval_block *interval_block;
1337 /* Index in interval_block above of the next unused interval
1338 structure. */
1340 static int interval_block_index;
1342 /* Number of free and live intervals. */
1344 static int total_free_intervals, total_intervals;
1346 /* List of free intervals. */
1348 INTERVAL interval_free_list;
1350 /* Total number of interval blocks now in use. */
1352 static int n_interval_blocks;
1355 /* Initialize interval allocation. */
1357 static void
1358 init_intervals (void)
1360 interval_block = NULL;
1361 interval_block_index = INTERVAL_BLOCK_SIZE;
1362 interval_free_list = 0;
1363 n_interval_blocks = 0;
1367 /* Return a new interval. */
1369 INTERVAL
1370 make_interval (void)
1372 INTERVAL val;
1374 /* eassert (!handling_signal); */
1376 MALLOC_BLOCK_INPUT;
1378 if (interval_free_list)
1380 val = interval_free_list;
1381 interval_free_list = INTERVAL_PARENT (interval_free_list);
1383 else
1385 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1387 register struct interval_block *newi;
1389 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1390 MEM_TYPE_NON_LISP);
1392 newi->next = interval_block;
1393 interval_block = newi;
1394 interval_block_index = 0;
1395 n_interval_blocks++;
1397 val = &interval_block->intervals[interval_block_index++];
1400 MALLOC_UNBLOCK_INPUT;
1402 consing_since_gc += sizeof (struct interval);
1403 intervals_consed++;
1404 RESET_INTERVAL (val);
1405 val->gcmarkbit = 0;
1406 return val;
1410 /* Mark Lisp objects in interval I. */
1412 static void
1413 mark_interval (register INTERVAL i, Lisp_Object dummy)
1415 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1416 i->gcmarkbit = 1;
1417 mark_object (i->plist);
1421 /* Mark the interval tree rooted in TREE. Don't call this directly;
1422 use the macro MARK_INTERVAL_TREE instead. */
1424 static void
1425 mark_interval_tree (register INTERVAL tree)
1427 /* No need to test if this tree has been marked already; this
1428 function is always called through the MARK_INTERVAL_TREE macro,
1429 which takes care of that. */
1431 traverse_intervals_noorder (tree, mark_interval, Qnil);
1435 /* Mark the interval tree rooted in I. */
1437 #define MARK_INTERVAL_TREE(i) \
1438 do { \
1439 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1440 mark_interval_tree (i); \
1441 } while (0)
1444 #define UNMARK_BALANCE_INTERVALS(i) \
1445 do { \
1446 if (! NULL_INTERVAL_P (i)) \
1447 (i) = balance_intervals (i); \
1448 } while (0)
1451 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1452 can't create number objects in macros. */
1453 #ifndef make_number
1454 Lisp_Object
1455 make_number (EMACS_INT n)
1457 Lisp_Object obj;
1458 obj.s.val = n;
1459 obj.s.type = Lisp_Int;
1460 return obj;
1462 #endif
1464 /***********************************************************************
1465 String Allocation
1466 ***********************************************************************/
1468 /* Lisp_Strings are allocated in string_block structures. When a new
1469 string_block is allocated, all the Lisp_Strings it contains are
1470 added to a free-list string_free_list. When a new Lisp_String is
1471 needed, it is taken from that list. During the sweep phase of GC,
1472 string_blocks that are entirely free are freed, except two which
1473 we keep.
1475 String data is allocated from sblock structures. Strings larger
1476 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1477 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1479 Sblocks consist internally of sdata structures, one for each
1480 Lisp_String. The sdata structure points to the Lisp_String it
1481 belongs to. The Lisp_String points back to the `u.data' member of
1482 its sdata structure.
1484 When a Lisp_String is freed during GC, it is put back on
1485 string_free_list, and its `data' member and its sdata's `string'
1486 pointer is set to null. The size of the string is recorded in the
1487 `u.nbytes' member of the sdata. So, sdata structures that are no
1488 longer used, can be easily recognized, and it's easy to compact the
1489 sblocks of small strings which we do in compact_small_strings. */
1491 /* Size in bytes of an sblock structure used for small strings. This
1492 is 8192 minus malloc overhead. */
1494 #define SBLOCK_SIZE 8188
1496 /* Strings larger than this are considered large strings. String data
1497 for large strings is allocated from individual sblocks. */
1499 #define LARGE_STRING_BYTES 1024
1501 /* Structure describing string memory sub-allocated from an sblock.
1502 This is where the contents of Lisp strings are stored. */
1504 struct sdata
1506 /* Back-pointer to the string this sdata belongs to. If null, this
1507 structure is free, and the NBYTES member of the union below
1508 contains the string's byte size (the same value that STRING_BYTES
1509 would return if STRING were non-null). If non-null, STRING_BYTES
1510 (STRING) is the size of the data, and DATA contains the string's
1511 contents. */
1512 struct Lisp_String *string;
1514 #ifdef GC_CHECK_STRING_BYTES
1516 EMACS_INT nbytes;
1517 unsigned char data[1];
1519 #define SDATA_NBYTES(S) (S)->nbytes
1520 #define SDATA_DATA(S) (S)->data
1522 #else /* not GC_CHECK_STRING_BYTES */
1524 union
1526 /* When STRING in non-null. */
1527 unsigned char data[1];
1529 /* When STRING is null. */
1530 EMACS_INT nbytes;
1531 } u;
1534 #define SDATA_NBYTES(S) (S)->u.nbytes
1535 #define SDATA_DATA(S) (S)->u.data
1537 #endif /* not GC_CHECK_STRING_BYTES */
1541 /* Structure describing a block of memory which is sub-allocated to
1542 obtain string data memory for strings. Blocks for small strings
1543 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1544 as large as needed. */
1546 struct sblock
1548 /* Next in list. */
1549 struct sblock *next;
1551 /* Pointer to the next free sdata block. This points past the end
1552 of the sblock if there isn't any space left in this block. */
1553 struct sdata *next_free;
1555 /* Start of data. */
1556 struct sdata first_data;
1559 /* Number of Lisp strings in a string_block structure. The 1020 is
1560 1024 minus malloc overhead. */
1562 #define STRING_BLOCK_SIZE \
1563 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1565 /* Structure describing a block from which Lisp_String structures
1566 are allocated. */
1568 struct string_block
1570 /* Place `strings' first, to preserve alignment. */
1571 struct Lisp_String strings[STRING_BLOCK_SIZE];
1572 struct string_block *next;
1575 /* Head and tail of the list of sblock structures holding Lisp string
1576 data. We always allocate from current_sblock. The NEXT pointers
1577 in the sblock structures go from oldest_sblock to current_sblock. */
1579 static struct sblock *oldest_sblock, *current_sblock;
1581 /* List of sblocks for large strings. */
1583 static struct sblock *large_sblocks;
1585 /* List of string_block structures, and how many there are. */
1587 static struct string_block *string_blocks;
1588 static int n_string_blocks;
1590 /* Free-list of Lisp_Strings. */
1592 static struct Lisp_String *string_free_list;
1594 /* Number of live and free Lisp_Strings. */
1596 static int total_strings, total_free_strings;
1598 /* Number of bytes used by live strings. */
1600 static EMACS_INT total_string_size;
1602 /* Given a pointer to a Lisp_String S which is on the free-list
1603 string_free_list, return a pointer to its successor in the
1604 free-list. */
1606 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1608 /* Return a pointer to the sdata structure belonging to Lisp string S.
1609 S must be live, i.e. S->data must not be null. S->data is actually
1610 a pointer to the `u.data' member of its sdata structure; the
1611 structure starts at a constant offset in front of that. */
1613 #ifdef GC_CHECK_STRING_BYTES
1615 #define SDATA_OF_STRING(S) \
1616 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1617 - sizeof (EMACS_INT)))
1619 #else /* not GC_CHECK_STRING_BYTES */
1621 #define SDATA_OF_STRING(S) \
1622 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1624 #endif /* not GC_CHECK_STRING_BYTES */
1627 #ifdef GC_CHECK_STRING_OVERRUN
1629 /* We check for overrun in string data blocks by appending a small
1630 "cookie" after each allocated string data block, and check for the
1631 presence of this cookie during GC. */
1633 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1634 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1635 { 0xde, 0xad, 0xbe, 0xef };
1637 #else
1638 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1639 #endif
1641 /* Value is the size of an sdata structure large enough to hold NBYTES
1642 bytes of string data. The value returned includes a terminating
1643 NUL byte, the size of the sdata structure, and padding. */
1645 #ifdef GC_CHECK_STRING_BYTES
1647 #define SDATA_SIZE(NBYTES) \
1648 ((sizeof (struct Lisp_String *) \
1649 + (NBYTES) + 1 \
1650 + sizeof (EMACS_INT) \
1651 + sizeof (EMACS_INT) - 1) \
1652 & ~(sizeof (EMACS_INT) - 1))
1654 #else /* not GC_CHECK_STRING_BYTES */
1656 #define SDATA_SIZE(NBYTES) \
1657 ((sizeof (struct Lisp_String *) \
1658 + (NBYTES) + 1 \
1659 + sizeof (EMACS_INT) - 1) \
1660 & ~(sizeof (EMACS_INT) - 1))
1662 #endif /* not GC_CHECK_STRING_BYTES */
1664 /* Extra bytes to allocate for each string. */
1666 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1668 /* Initialize string allocation. Called from init_alloc_once. */
1670 static void
1671 init_strings (void)
1673 total_strings = total_free_strings = total_string_size = 0;
1674 oldest_sblock = current_sblock = large_sblocks = NULL;
1675 string_blocks = NULL;
1676 n_string_blocks = 0;
1677 string_free_list = NULL;
1678 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1679 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1683 #ifdef GC_CHECK_STRING_BYTES
1685 static int check_string_bytes_count;
1687 static void check_string_bytes (int);
1688 static void check_sblock (struct sblock *);
1690 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1693 /* Like GC_STRING_BYTES, but with debugging check. */
1695 EMACS_INT
1696 string_bytes (struct Lisp_String *s)
1698 EMACS_INT nbytes =
1699 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1701 if (!PURE_POINTER_P (s)
1702 && s->data
1703 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1704 abort ();
1705 return nbytes;
1708 /* Check validity of Lisp strings' string_bytes member in B. */
1710 static void
1711 check_sblock (b)
1712 struct sblock *b;
1714 struct sdata *from, *end, *from_end;
1716 end = b->next_free;
1718 for (from = &b->first_data; from < end; from = from_end)
1720 /* Compute the next FROM here because copying below may
1721 overwrite data we need to compute it. */
1722 EMACS_INT nbytes;
1724 /* Check that the string size recorded in the string is the
1725 same as the one recorded in the sdata structure. */
1726 if (from->string)
1727 CHECK_STRING_BYTES (from->string);
1729 if (from->string)
1730 nbytes = GC_STRING_BYTES (from->string);
1731 else
1732 nbytes = SDATA_NBYTES (from);
1734 nbytes = SDATA_SIZE (nbytes);
1735 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1740 /* Check validity of Lisp strings' string_bytes member. ALL_P
1741 non-zero means check all strings, otherwise check only most
1742 recently allocated strings. Used for hunting a bug. */
1744 static void
1745 check_string_bytes (all_p)
1746 int all_p;
1748 if (all_p)
1750 struct sblock *b;
1752 for (b = large_sblocks; b; b = b->next)
1754 struct Lisp_String *s = b->first_data.string;
1755 if (s)
1756 CHECK_STRING_BYTES (s);
1759 for (b = oldest_sblock; b; b = b->next)
1760 check_sblock (b);
1762 else
1763 check_sblock (current_sblock);
1766 #endif /* GC_CHECK_STRING_BYTES */
1768 #ifdef GC_CHECK_STRING_FREE_LIST
1770 /* Walk through the string free list looking for bogus next pointers.
1771 This may catch buffer overrun from a previous string. */
1773 static void
1774 check_string_free_list ()
1776 struct Lisp_String *s;
1778 /* Pop a Lisp_String off the free-list. */
1779 s = string_free_list;
1780 while (s != NULL)
1782 if ((unsigned long)s < 1024)
1783 abort();
1784 s = NEXT_FREE_LISP_STRING (s);
1787 #else
1788 #define check_string_free_list()
1789 #endif
1791 /* Return a new Lisp_String. */
1793 static struct Lisp_String *
1794 allocate_string (void)
1796 struct Lisp_String *s;
1798 /* eassert (!handling_signal); */
1800 MALLOC_BLOCK_INPUT;
1802 /* If the free-list is empty, allocate a new string_block, and
1803 add all the Lisp_Strings in it to the free-list. */
1804 if (string_free_list == NULL)
1806 struct string_block *b;
1807 int i;
1809 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1810 memset (b, 0, sizeof *b);
1811 b->next = string_blocks;
1812 string_blocks = b;
1813 ++n_string_blocks;
1815 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1817 s = b->strings + i;
1818 NEXT_FREE_LISP_STRING (s) = string_free_list;
1819 string_free_list = s;
1822 total_free_strings += STRING_BLOCK_SIZE;
1825 check_string_free_list ();
1827 /* Pop a Lisp_String off the free-list. */
1828 s = string_free_list;
1829 string_free_list = NEXT_FREE_LISP_STRING (s);
1831 MALLOC_UNBLOCK_INPUT;
1833 /* Probably not strictly necessary, but play it safe. */
1834 memset (s, 0, sizeof *s);
1836 --total_free_strings;
1837 ++total_strings;
1838 ++strings_consed;
1839 consing_since_gc += sizeof *s;
1841 #ifdef GC_CHECK_STRING_BYTES
1842 if (!noninteractive)
1844 if (++check_string_bytes_count == 200)
1846 check_string_bytes_count = 0;
1847 check_string_bytes (1);
1849 else
1850 check_string_bytes (0);
1852 #endif /* GC_CHECK_STRING_BYTES */
1854 return s;
1858 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1859 plus a NUL byte at the end. Allocate an sdata structure for S, and
1860 set S->data to its `u.data' member. Store a NUL byte at the end of
1861 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1862 S->data if it was initially non-null. */
1864 void
1865 allocate_string_data (struct Lisp_String *s,
1866 EMACS_INT nchars, EMACS_INT nbytes)
1868 struct sdata *data, *old_data;
1869 struct sblock *b;
1870 EMACS_INT needed, old_nbytes;
1872 /* Determine the number of bytes needed to store NBYTES bytes
1873 of string data. */
1874 needed = SDATA_SIZE (nbytes);
1875 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1876 old_nbytes = GC_STRING_BYTES (s);
1878 MALLOC_BLOCK_INPUT;
1880 if (nbytes > LARGE_STRING_BYTES)
1882 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1884 #ifdef DOUG_LEA_MALLOC
1885 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1886 because mapped region contents are not preserved in
1887 a dumped Emacs.
1889 In case you think of allowing it in a dumped Emacs at the
1890 cost of not being able to re-dump, there's another reason:
1891 mmap'ed data typically have an address towards the top of the
1892 address space, which won't fit into an EMACS_INT (at least on
1893 32-bit systems with the current tagging scheme). --fx */
1894 mallopt (M_MMAP_MAX, 0);
1895 #endif
1897 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1899 #ifdef DOUG_LEA_MALLOC
1900 /* Back to a reasonable maximum of mmap'ed areas. */
1901 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1902 #endif
1904 b->next_free = &b->first_data;
1905 b->first_data.string = NULL;
1906 b->next = large_sblocks;
1907 large_sblocks = b;
1909 else if (current_sblock == NULL
1910 || (((char *) current_sblock + SBLOCK_SIZE
1911 - (char *) current_sblock->next_free)
1912 < (needed + GC_STRING_EXTRA)))
1914 /* Not enough room in the current sblock. */
1915 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1916 b->next_free = &b->first_data;
1917 b->first_data.string = NULL;
1918 b->next = NULL;
1920 if (current_sblock)
1921 current_sblock->next = b;
1922 else
1923 oldest_sblock = b;
1924 current_sblock = b;
1926 else
1927 b = current_sblock;
1929 data = b->next_free;
1930 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1932 MALLOC_UNBLOCK_INPUT;
1934 data->string = s;
1935 s->data = SDATA_DATA (data);
1936 #ifdef GC_CHECK_STRING_BYTES
1937 SDATA_NBYTES (data) = nbytes;
1938 #endif
1939 s->size = nchars;
1940 s->size_byte = nbytes;
1941 s->data[nbytes] = '\0';
1942 #ifdef GC_CHECK_STRING_OVERRUN
1943 memcpy (data + needed, string_overrun_cookie, GC_STRING_OVERRUN_COOKIE_SIZE);
1944 #endif
1946 /* If S had already data assigned, mark that as free by setting its
1947 string back-pointer to null, and recording the size of the data
1948 in it. */
1949 if (old_data)
1951 SDATA_NBYTES (old_data) = old_nbytes;
1952 old_data->string = NULL;
1955 consing_since_gc += needed;
1959 /* Sweep and compact strings. */
1961 static void
1962 sweep_strings (void)
1964 struct string_block *b, *next;
1965 struct string_block *live_blocks = NULL;
1967 string_free_list = NULL;
1968 total_strings = total_free_strings = 0;
1969 total_string_size = 0;
1971 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1972 for (b = string_blocks; b; b = next)
1974 int i, nfree = 0;
1975 struct Lisp_String *free_list_before = string_free_list;
1977 next = b->next;
1979 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1981 struct Lisp_String *s = b->strings + i;
1983 if (s->data)
1985 /* String was not on free-list before. */
1986 if (STRING_MARKED_P (s))
1988 /* String is live; unmark it and its intervals. */
1989 UNMARK_STRING (s);
1991 if (!NULL_INTERVAL_P (s->intervals))
1992 UNMARK_BALANCE_INTERVALS (s->intervals);
1994 ++total_strings;
1995 total_string_size += STRING_BYTES (s);
1997 else
1999 /* String is dead. Put it on the free-list. */
2000 struct sdata *data = SDATA_OF_STRING (s);
2002 /* Save the size of S in its sdata so that we know
2003 how large that is. Reset the sdata's string
2004 back-pointer so that we know it's free. */
2005 #ifdef GC_CHECK_STRING_BYTES
2006 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2007 abort ();
2008 #else
2009 data->u.nbytes = GC_STRING_BYTES (s);
2010 #endif
2011 data->string = NULL;
2013 /* Reset the strings's `data' member so that we
2014 know it's free. */
2015 s->data = NULL;
2017 /* Put the string on the free-list. */
2018 NEXT_FREE_LISP_STRING (s) = string_free_list;
2019 string_free_list = s;
2020 ++nfree;
2023 else
2025 /* S was on the free-list before. Put it there again. */
2026 NEXT_FREE_LISP_STRING (s) = string_free_list;
2027 string_free_list = s;
2028 ++nfree;
2032 /* Free blocks that contain free Lisp_Strings only, except
2033 the first two of them. */
2034 if (nfree == STRING_BLOCK_SIZE
2035 && total_free_strings > STRING_BLOCK_SIZE)
2037 lisp_free (b);
2038 --n_string_blocks;
2039 string_free_list = free_list_before;
2041 else
2043 total_free_strings += nfree;
2044 b->next = live_blocks;
2045 live_blocks = b;
2049 check_string_free_list ();
2051 string_blocks = live_blocks;
2052 free_large_strings ();
2053 compact_small_strings ();
2055 check_string_free_list ();
2059 /* Free dead large strings. */
2061 static void
2062 free_large_strings (void)
2064 struct sblock *b, *next;
2065 struct sblock *live_blocks = NULL;
2067 for (b = large_sblocks; b; b = next)
2069 next = b->next;
2071 if (b->first_data.string == NULL)
2072 lisp_free (b);
2073 else
2075 b->next = live_blocks;
2076 live_blocks = b;
2080 large_sblocks = live_blocks;
2084 /* Compact data of small strings. Free sblocks that don't contain
2085 data of live strings after compaction. */
2087 static void
2088 compact_small_strings (void)
2090 struct sblock *b, *tb, *next;
2091 struct sdata *from, *to, *end, *tb_end;
2092 struct sdata *to_end, *from_end;
2094 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2095 to, and TB_END is the end of TB. */
2096 tb = oldest_sblock;
2097 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2098 to = &tb->first_data;
2100 /* Step through the blocks from the oldest to the youngest. We
2101 expect that old blocks will stabilize over time, so that less
2102 copying will happen this way. */
2103 for (b = oldest_sblock; b; b = b->next)
2105 end = b->next_free;
2106 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2108 for (from = &b->first_data; from < end; from = from_end)
2110 /* Compute the next FROM here because copying below may
2111 overwrite data we need to compute it. */
2112 EMACS_INT nbytes;
2114 #ifdef GC_CHECK_STRING_BYTES
2115 /* Check that the string size recorded in the string is the
2116 same as the one recorded in the sdata structure. */
2117 if (from->string
2118 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2119 abort ();
2120 #endif /* GC_CHECK_STRING_BYTES */
2122 if (from->string)
2123 nbytes = GC_STRING_BYTES (from->string);
2124 else
2125 nbytes = SDATA_NBYTES (from);
2127 if (nbytes > LARGE_STRING_BYTES)
2128 abort ();
2130 nbytes = SDATA_SIZE (nbytes);
2131 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2133 #ifdef GC_CHECK_STRING_OVERRUN
2134 if (memcmp (string_overrun_cookie,
2135 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2136 GC_STRING_OVERRUN_COOKIE_SIZE))
2137 abort ();
2138 #endif
2140 /* FROM->string non-null means it's alive. Copy its data. */
2141 if (from->string)
2143 /* If TB is full, proceed with the next sblock. */
2144 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2145 if (to_end > tb_end)
2147 tb->next_free = to;
2148 tb = tb->next;
2149 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2150 to = &tb->first_data;
2151 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2154 /* Copy, and update the string's `data' pointer. */
2155 if (from != to)
2157 xassert (tb != b || to <= from);
2158 memmove (to, from, nbytes + GC_STRING_EXTRA);
2159 to->string->data = SDATA_DATA (to);
2162 /* Advance past the sdata we copied to. */
2163 to = to_end;
2168 /* The rest of the sblocks following TB don't contain live data, so
2169 we can free them. */
2170 for (b = tb->next; b; b = next)
2172 next = b->next;
2173 lisp_free (b);
2176 tb->next_free = to;
2177 tb->next = NULL;
2178 current_sblock = tb;
2182 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2183 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2184 LENGTH must be an integer.
2185 INIT must be an integer that represents a character. */)
2186 (Lisp_Object length, Lisp_Object init)
2188 register Lisp_Object val;
2189 register unsigned char *p, *end;
2190 int c;
2191 EMACS_INT nbytes;
2193 CHECK_NATNUM (length);
2194 CHECK_NUMBER (init);
2196 c = XINT (init);
2197 if (ASCII_CHAR_P (c))
2199 nbytes = XINT (length);
2200 val = make_uninit_string (nbytes);
2201 p = SDATA (val);
2202 end = p + SCHARS (val);
2203 while (p != end)
2204 *p++ = c;
2206 else
2208 unsigned char str[MAX_MULTIBYTE_LENGTH];
2209 int len = CHAR_STRING (c, str);
2210 EMACS_INT string_len = XINT (length);
2212 if (string_len > MOST_POSITIVE_FIXNUM / len)
2213 error ("Maximum string size exceeded");
2214 nbytes = len * string_len;
2215 val = make_uninit_multibyte_string (string_len, nbytes);
2216 p = SDATA (val);
2217 end = p + nbytes;
2218 while (p != end)
2220 memcpy (p, str, len);
2221 p += len;
2225 *p = 0;
2226 return val;
2230 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2231 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2232 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2233 (Lisp_Object length, Lisp_Object init)
2235 register Lisp_Object val;
2236 struct Lisp_Bool_Vector *p;
2237 int real_init, i;
2238 EMACS_INT length_in_chars, length_in_elts;
2239 int bits_per_value;
2241 CHECK_NATNUM (length);
2243 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2245 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2246 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2247 / BOOL_VECTOR_BITS_PER_CHAR);
2249 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2250 slot `size' of the struct Lisp_Bool_Vector. */
2251 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2253 /* Get rid of any bits that would cause confusion. */
2254 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
2255 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
2256 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2258 p = XBOOL_VECTOR (val);
2259 p->size = XFASTINT (length);
2261 real_init = (NILP (init) ? 0 : -1);
2262 for (i = 0; i < length_in_chars ; i++)
2263 p->data[i] = real_init;
2265 /* Clear the extraneous bits in the last byte. */
2266 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2267 p->data[length_in_chars - 1]
2268 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2270 return val;
2274 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2275 of characters from the contents. This string may be unibyte or
2276 multibyte, depending on the contents. */
2278 Lisp_Object
2279 make_string (const char *contents, EMACS_INT nbytes)
2281 register Lisp_Object val;
2282 EMACS_INT nchars, multibyte_nbytes;
2284 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2285 &nchars, &multibyte_nbytes);
2286 if (nbytes == nchars || nbytes != multibyte_nbytes)
2287 /* CONTENTS contains no multibyte sequences or contains an invalid
2288 multibyte sequence. We must make unibyte string. */
2289 val = make_unibyte_string (contents, nbytes);
2290 else
2291 val = make_multibyte_string (contents, nchars, nbytes);
2292 return val;
2296 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2298 Lisp_Object
2299 make_unibyte_string (const char *contents, EMACS_INT length)
2301 register Lisp_Object val;
2302 val = make_uninit_string (length);
2303 memcpy (SDATA (val), contents, length);
2304 return val;
2308 /* Make a multibyte string from NCHARS characters occupying NBYTES
2309 bytes at CONTENTS. */
2311 Lisp_Object
2312 make_multibyte_string (const char *contents,
2313 EMACS_INT nchars, EMACS_INT nbytes)
2315 register Lisp_Object val;
2316 val = make_uninit_multibyte_string (nchars, nbytes);
2317 memcpy (SDATA (val), contents, nbytes);
2318 return val;
2322 /* Make a string from NCHARS characters occupying NBYTES bytes at
2323 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2325 Lisp_Object
2326 make_string_from_bytes (const char *contents,
2327 EMACS_INT nchars, EMACS_INT nbytes)
2329 register Lisp_Object val;
2330 val = make_uninit_multibyte_string (nchars, nbytes);
2331 memcpy (SDATA (val), contents, nbytes);
2332 if (SBYTES (val) == SCHARS (val))
2333 STRING_SET_UNIBYTE (val);
2334 return val;
2338 /* Make a string from NCHARS characters occupying NBYTES bytes at
2339 CONTENTS. The argument MULTIBYTE controls whether to label the
2340 string as multibyte. If NCHARS is negative, it counts the number of
2341 characters by itself. */
2343 Lisp_Object
2344 make_specified_string (const char *contents,
2345 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
2347 register Lisp_Object val;
2349 if (nchars < 0)
2351 if (multibyte)
2352 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2353 nbytes);
2354 else
2355 nchars = nbytes;
2357 val = make_uninit_multibyte_string (nchars, nbytes);
2358 memcpy (SDATA (val), contents, nbytes);
2359 if (!multibyte)
2360 STRING_SET_UNIBYTE (val);
2361 return val;
2365 /* Make a string from the data at STR, treating it as multibyte if the
2366 data warrants. */
2368 Lisp_Object
2369 build_string (const char *str)
2371 return make_string (str, strlen (str));
2375 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2376 occupying LENGTH bytes. */
2378 Lisp_Object
2379 make_uninit_string (EMACS_INT length)
2381 Lisp_Object val;
2383 if (!length)
2384 return empty_unibyte_string;
2385 val = make_uninit_multibyte_string (length, length);
2386 STRING_SET_UNIBYTE (val);
2387 return val;
2391 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2392 which occupy NBYTES bytes. */
2394 Lisp_Object
2395 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2397 Lisp_Object string;
2398 struct Lisp_String *s;
2400 if (nchars < 0)
2401 abort ();
2402 if (!nbytes)
2403 return empty_multibyte_string;
2405 s = allocate_string ();
2406 allocate_string_data (s, nchars, nbytes);
2407 XSETSTRING (string, s);
2408 string_chars_consed += nbytes;
2409 return string;
2414 /***********************************************************************
2415 Float Allocation
2416 ***********************************************************************/
2418 /* We store float cells inside of float_blocks, allocating a new
2419 float_block with malloc whenever necessary. Float cells reclaimed
2420 by GC are put on a free list to be reallocated before allocating
2421 any new float cells from the latest float_block. */
2423 #define FLOAT_BLOCK_SIZE \
2424 (((BLOCK_BYTES - sizeof (struct float_block *) \
2425 /* The compiler might add padding at the end. */ \
2426 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2427 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2429 #define GETMARKBIT(block,n) \
2430 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2431 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2432 & 1)
2434 #define SETMARKBIT(block,n) \
2435 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2436 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2438 #define UNSETMARKBIT(block,n) \
2439 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2440 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2442 #define FLOAT_BLOCK(fptr) \
2443 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2445 #define FLOAT_INDEX(fptr) \
2446 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2448 struct float_block
2450 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2451 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2452 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2453 struct float_block *next;
2456 #define FLOAT_MARKED_P(fptr) \
2457 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2459 #define FLOAT_MARK(fptr) \
2460 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2462 #define FLOAT_UNMARK(fptr) \
2463 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2465 /* Current float_block. */
2467 struct float_block *float_block;
2469 /* Index of first unused Lisp_Float in the current float_block. */
2471 int float_block_index;
2473 /* Total number of float blocks now in use. */
2475 int n_float_blocks;
2477 /* Free-list of Lisp_Floats. */
2479 struct Lisp_Float *float_free_list;
2482 /* Initialize float allocation. */
2484 static void
2485 init_float (void)
2487 float_block = NULL;
2488 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2489 float_free_list = 0;
2490 n_float_blocks = 0;
2494 /* Return a new float object with value FLOAT_VALUE. */
2496 Lisp_Object
2497 make_float (double float_value)
2499 register Lisp_Object val;
2501 /* eassert (!handling_signal); */
2503 MALLOC_BLOCK_INPUT;
2505 if (float_free_list)
2507 /* We use the data field for chaining the free list
2508 so that we won't use the same field that has the mark bit. */
2509 XSETFLOAT (val, float_free_list);
2510 float_free_list = float_free_list->u.chain;
2512 else
2514 if (float_block_index == FLOAT_BLOCK_SIZE)
2516 register struct float_block *new;
2518 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2519 MEM_TYPE_FLOAT);
2520 new->next = float_block;
2521 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2522 float_block = new;
2523 float_block_index = 0;
2524 n_float_blocks++;
2526 XSETFLOAT (val, &float_block->floats[float_block_index]);
2527 float_block_index++;
2530 MALLOC_UNBLOCK_INPUT;
2532 XFLOAT_INIT (val, float_value);
2533 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2534 consing_since_gc += sizeof (struct Lisp_Float);
2535 floats_consed++;
2536 return val;
2541 /***********************************************************************
2542 Cons Allocation
2543 ***********************************************************************/
2545 /* We store cons cells inside of cons_blocks, allocating a new
2546 cons_block with malloc whenever necessary. Cons cells reclaimed by
2547 GC are put on a free list to be reallocated before allocating
2548 any new cons cells from the latest cons_block. */
2550 #define CONS_BLOCK_SIZE \
2551 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2552 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2554 #define CONS_BLOCK(fptr) \
2555 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2557 #define CONS_INDEX(fptr) \
2558 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2560 struct cons_block
2562 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2563 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2564 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2565 struct cons_block *next;
2568 #define CONS_MARKED_P(fptr) \
2569 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2571 #define CONS_MARK(fptr) \
2572 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2574 #define CONS_UNMARK(fptr) \
2575 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2577 /* Current cons_block. */
2579 struct cons_block *cons_block;
2581 /* Index of first unused Lisp_Cons in the current block. */
2583 int cons_block_index;
2585 /* Free-list of Lisp_Cons structures. */
2587 struct Lisp_Cons *cons_free_list;
2589 /* Total number of cons blocks now in use. */
2591 static int n_cons_blocks;
2594 /* Initialize cons allocation. */
2596 static void
2597 init_cons (void)
2599 cons_block = NULL;
2600 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2601 cons_free_list = 0;
2602 n_cons_blocks = 0;
2606 /* Explicitly free a cons cell by putting it on the free-list. */
2608 void
2609 free_cons (struct Lisp_Cons *ptr)
2611 ptr->u.chain = cons_free_list;
2612 #if GC_MARK_STACK
2613 ptr->car = Vdead;
2614 #endif
2615 cons_free_list = ptr;
2618 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2619 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2620 (Lisp_Object car, Lisp_Object cdr)
2622 register Lisp_Object val;
2624 /* eassert (!handling_signal); */
2626 MALLOC_BLOCK_INPUT;
2628 if (cons_free_list)
2630 /* We use the cdr for chaining the free list
2631 so that we won't use the same field that has the mark bit. */
2632 XSETCONS (val, cons_free_list);
2633 cons_free_list = cons_free_list->u.chain;
2635 else
2637 if (cons_block_index == CONS_BLOCK_SIZE)
2639 register struct cons_block *new;
2640 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2641 MEM_TYPE_CONS);
2642 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2643 new->next = cons_block;
2644 cons_block = new;
2645 cons_block_index = 0;
2646 n_cons_blocks++;
2648 XSETCONS (val, &cons_block->conses[cons_block_index]);
2649 cons_block_index++;
2652 MALLOC_UNBLOCK_INPUT;
2654 XSETCAR (val, car);
2655 XSETCDR (val, cdr);
2656 eassert (!CONS_MARKED_P (XCONS (val)));
2657 consing_since_gc += sizeof (struct Lisp_Cons);
2658 cons_cells_consed++;
2659 return val;
2662 /* Get an error now if there's any junk in the cons free list. */
2663 void
2664 check_cons_list (void)
2666 #ifdef GC_CHECK_CONS_LIST
2667 struct Lisp_Cons *tail = cons_free_list;
2669 while (tail)
2670 tail = tail->u.chain;
2671 #endif
2674 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2676 Lisp_Object
2677 list1 (Lisp_Object arg1)
2679 return Fcons (arg1, Qnil);
2682 Lisp_Object
2683 list2 (Lisp_Object arg1, Lisp_Object arg2)
2685 return Fcons (arg1, Fcons (arg2, Qnil));
2689 Lisp_Object
2690 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2692 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2696 Lisp_Object
2697 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2699 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2703 Lisp_Object
2704 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2706 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2707 Fcons (arg5, Qnil)))));
2711 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2712 doc: /* Return a newly created list with specified arguments as elements.
2713 Any number of arguments, even zero arguments, are allowed.
2714 usage: (list &rest OBJECTS) */)
2715 (int nargs, register Lisp_Object *args)
2717 register Lisp_Object val;
2718 val = Qnil;
2720 while (nargs > 0)
2722 nargs--;
2723 val = Fcons (args[nargs], val);
2725 return val;
2729 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2730 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2731 (register Lisp_Object length, Lisp_Object init)
2733 register Lisp_Object val;
2734 register EMACS_INT size;
2736 CHECK_NATNUM (length);
2737 size = XFASTINT (length);
2739 val = Qnil;
2740 while (size > 0)
2742 val = Fcons (init, val);
2743 --size;
2745 if (size > 0)
2747 val = Fcons (init, val);
2748 --size;
2750 if (size > 0)
2752 val = Fcons (init, val);
2753 --size;
2755 if (size > 0)
2757 val = Fcons (init, val);
2758 --size;
2760 if (size > 0)
2762 val = Fcons (init, val);
2763 --size;
2769 QUIT;
2772 return val;
2777 /***********************************************************************
2778 Vector Allocation
2779 ***********************************************************************/
2781 /* Singly-linked list of all vectors. */
2783 static struct Lisp_Vector *all_vectors;
2785 /* Total number of vector-like objects now in use. */
2787 static int n_vectors;
2790 /* Value is a pointer to a newly allocated Lisp_Vector structure
2791 with room for LEN Lisp_Objects. */
2793 static struct Lisp_Vector *
2794 allocate_vectorlike (EMACS_INT len)
2796 struct Lisp_Vector *p;
2797 size_t nbytes;
2799 MALLOC_BLOCK_INPUT;
2801 #ifdef DOUG_LEA_MALLOC
2802 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2803 because mapped region contents are not preserved in
2804 a dumped Emacs. */
2805 mallopt (M_MMAP_MAX, 0);
2806 #endif
2808 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2809 /* eassert (!handling_signal); */
2811 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2812 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2814 #ifdef DOUG_LEA_MALLOC
2815 /* Back to a reasonable maximum of mmap'ed areas. */
2816 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2817 #endif
2819 consing_since_gc += nbytes;
2820 vector_cells_consed += len;
2822 p->next = all_vectors;
2823 all_vectors = p;
2825 MALLOC_UNBLOCK_INPUT;
2827 ++n_vectors;
2828 return p;
2832 /* Allocate a vector with NSLOTS slots. */
2834 struct Lisp_Vector *
2835 allocate_vector (EMACS_INT nslots)
2837 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2838 v->size = nslots;
2839 return v;
2843 /* Allocate other vector-like structures. */
2845 struct Lisp_Vector *
2846 allocate_pseudovector (int memlen, int lisplen, EMACS_INT tag)
2848 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2849 EMACS_INT i;
2851 /* Only the first lisplen slots will be traced normally by the GC. */
2852 v->size = lisplen;
2853 for (i = 0; i < lisplen; ++i)
2854 v->contents[i] = Qnil;
2856 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2857 return v;
2860 struct Lisp_Hash_Table *
2861 allocate_hash_table (void)
2863 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2867 struct window *
2868 allocate_window (void)
2870 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
2874 struct terminal *
2875 allocate_terminal (void)
2877 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
2878 next_terminal, PVEC_TERMINAL);
2879 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2880 memset (&t->next_terminal, 0,
2881 (char*) (t + 1) - (char*) &t->next_terminal);
2883 return t;
2886 struct frame *
2887 allocate_frame (void)
2889 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
2890 face_cache, PVEC_FRAME);
2891 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2892 memset (&f->face_cache, 0,
2893 (char *) (f + 1) - (char *) &f->face_cache);
2894 return f;
2898 struct Lisp_Process *
2899 allocate_process (void)
2901 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
2905 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2906 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2907 See also the function `vector'. */)
2908 (register Lisp_Object length, Lisp_Object init)
2910 Lisp_Object vector;
2911 register EMACS_INT sizei;
2912 register EMACS_INT index;
2913 register struct Lisp_Vector *p;
2915 CHECK_NATNUM (length);
2916 sizei = XFASTINT (length);
2918 p = allocate_vector (sizei);
2919 for (index = 0; index < sizei; index++)
2920 p->contents[index] = init;
2922 XSETVECTOR (vector, p);
2923 return vector;
2927 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2928 doc: /* Return a newly created vector with specified arguments as elements.
2929 Any number of arguments, even zero arguments, are allowed.
2930 usage: (vector &rest OBJECTS) */)
2931 (register int nargs, Lisp_Object *args)
2933 register Lisp_Object len, val;
2934 register int index;
2935 register struct Lisp_Vector *p;
2937 XSETFASTINT (len, nargs);
2938 val = Fmake_vector (len, Qnil);
2939 p = XVECTOR (val);
2940 for (index = 0; index < nargs; index++)
2941 p->contents[index] = args[index];
2942 return val;
2946 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2947 doc: /* Create a byte-code object with specified arguments as elements.
2948 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
2949 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
2950 and (optional) INTERACTIVE-SPEC.
2951 The first four arguments are required; at most six have any
2952 significance.
2953 The ARGLIST can be either like the one of `lambda', in which case the arguments
2954 will be dynamically bound before executing the byte code, or it can be an
2955 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
2956 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
2957 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
2958 argument to catch the left-over arguments. If such an integer is used, the
2959 arguments will not be dynamically bound but will be instead pushed on the
2960 stack before executing the byte-code.
2961 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2962 (register int nargs, Lisp_Object *args)
2964 register Lisp_Object len, val;
2965 register int index;
2966 register struct Lisp_Vector *p;
2968 XSETFASTINT (len, nargs);
2969 if (!NILP (Vpurify_flag))
2970 val = make_pure_vector ((EMACS_INT) nargs);
2971 else
2972 val = Fmake_vector (len, Qnil);
2974 if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2975 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2976 earlier because they produced a raw 8-bit string for byte-code
2977 and now such a byte-code string is loaded as multibyte while
2978 raw 8-bit characters converted to multibyte form. Thus, now we
2979 must convert them back to the original unibyte form. */
2980 args[1] = Fstring_as_unibyte (args[1]);
2982 p = XVECTOR (val);
2983 for (index = 0; index < nargs; index++)
2985 if (!NILP (Vpurify_flag))
2986 args[index] = Fpurecopy (args[index]);
2987 p->contents[index] = args[index];
2989 XSETPVECTYPE (p, PVEC_COMPILED);
2990 XSETCOMPILED (val, p);
2991 return val;
2996 /***********************************************************************
2997 Symbol Allocation
2998 ***********************************************************************/
3000 /* Each symbol_block is just under 1020 bytes long, since malloc
3001 really allocates in units of powers of two and uses 4 bytes for its
3002 own overhead. */
3004 #define SYMBOL_BLOCK_SIZE \
3005 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3007 struct symbol_block
3009 /* Place `symbols' first, to preserve alignment. */
3010 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3011 struct symbol_block *next;
3014 /* Current symbol block and index of first unused Lisp_Symbol
3015 structure in it. */
3017 static struct symbol_block *symbol_block;
3018 static int symbol_block_index;
3020 /* List of free symbols. */
3022 static struct Lisp_Symbol *symbol_free_list;
3024 /* Total number of symbol blocks now in use. */
3026 static int n_symbol_blocks;
3029 /* Initialize symbol allocation. */
3031 static void
3032 init_symbol (void)
3034 symbol_block = NULL;
3035 symbol_block_index = SYMBOL_BLOCK_SIZE;
3036 symbol_free_list = 0;
3037 n_symbol_blocks = 0;
3041 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3042 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3043 Its value and function definition are void, and its property list is nil. */)
3044 (Lisp_Object name)
3046 register Lisp_Object val;
3047 register struct Lisp_Symbol *p;
3049 CHECK_STRING (name);
3051 /* eassert (!handling_signal); */
3053 MALLOC_BLOCK_INPUT;
3055 if (symbol_free_list)
3057 XSETSYMBOL (val, symbol_free_list);
3058 symbol_free_list = symbol_free_list->next;
3060 else
3062 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3064 struct symbol_block *new;
3065 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3066 MEM_TYPE_SYMBOL);
3067 new->next = symbol_block;
3068 symbol_block = new;
3069 symbol_block_index = 0;
3070 n_symbol_blocks++;
3072 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3073 symbol_block_index++;
3076 MALLOC_UNBLOCK_INPUT;
3078 p = XSYMBOL (val);
3079 p->xname = name;
3080 p->plist = Qnil;
3081 p->redirect = SYMBOL_PLAINVAL;
3082 SET_SYMBOL_VAL (p, Qunbound);
3083 p->function = Qunbound;
3084 p->next = NULL;
3085 p->gcmarkbit = 0;
3086 p->interned = SYMBOL_UNINTERNED;
3087 p->constant = 0;
3088 p->declared_special = 0;
3089 consing_since_gc += sizeof (struct Lisp_Symbol);
3090 symbols_consed++;
3091 return val;
3096 /***********************************************************************
3097 Marker (Misc) Allocation
3098 ***********************************************************************/
3100 /* Allocation of markers and other objects that share that structure.
3101 Works like allocation of conses. */
3103 #define MARKER_BLOCK_SIZE \
3104 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3106 struct marker_block
3108 /* Place `markers' first, to preserve alignment. */
3109 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3110 struct marker_block *next;
3113 static struct marker_block *marker_block;
3114 static int marker_block_index;
3116 static union Lisp_Misc *marker_free_list;
3118 /* Total number of marker blocks now in use. */
3120 static int n_marker_blocks;
3122 static void
3123 init_marker (void)
3125 marker_block = NULL;
3126 marker_block_index = MARKER_BLOCK_SIZE;
3127 marker_free_list = 0;
3128 n_marker_blocks = 0;
3131 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3133 Lisp_Object
3134 allocate_misc (void)
3136 Lisp_Object val;
3138 /* eassert (!handling_signal); */
3140 MALLOC_BLOCK_INPUT;
3142 if (marker_free_list)
3144 XSETMISC (val, marker_free_list);
3145 marker_free_list = marker_free_list->u_free.chain;
3147 else
3149 if (marker_block_index == MARKER_BLOCK_SIZE)
3151 struct marker_block *new;
3152 new = (struct marker_block *) lisp_malloc (sizeof *new,
3153 MEM_TYPE_MISC);
3154 new->next = marker_block;
3155 marker_block = new;
3156 marker_block_index = 0;
3157 n_marker_blocks++;
3158 total_free_markers += MARKER_BLOCK_SIZE;
3160 XSETMISC (val, &marker_block->markers[marker_block_index]);
3161 marker_block_index++;
3164 MALLOC_UNBLOCK_INPUT;
3166 --total_free_markers;
3167 consing_since_gc += sizeof (union Lisp_Misc);
3168 misc_objects_consed++;
3169 XMISCANY (val)->gcmarkbit = 0;
3170 return val;
3173 /* Free a Lisp_Misc object */
3175 void
3176 free_misc (Lisp_Object misc)
3178 XMISCTYPE (misc) = Lisp_Misc_Free;
3179 XMISC (misc)->u_free.chain = marker_free_list;
3180 marker_free_list = XMISC (misc);
3182 total_free_markers++;
3185 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3186 INTEGER. This is used to package C values to call record_unwind_protect.
3187 The unwind function can get the C values back using XSAVE_VALUE. */
3189 Lisp_Object
3190 make_save_value (void *pointer, int integer)
3192 register Lisp_Object val;
3193 register struct Lisp_Save_Value *p;
3195 val = allocate_misc ();
3196 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3197 p = XSAVE_VALUE (val);
3198 p->pointer = pointer;
3199 p->integer = integer;
3200 p->dogc = 0;
3201 return val;
3204 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3205 doc: /* Return a newly allocated marker which does not point at any place. */)
3206 (void)
3208 register Lisp_Object val;
3209 register struct Lisp_Marker *p;
3211 val = allocate_misc ();
3212 XMISCTYPE (val) = Lisp_Misc_Marker;
3213 p = XMARKER (val);
3214 p->buffer = 0;
3215 p->bytepos = 0;
3216 p->charpos = 0;
3217 p->next = NULL;
3218 p->insertion_type = 0;
3219 return val;
3222 /* Put MARKER back on the free list after using it temporarily. */
3224 void
3225 free_marker (Lisp_Object marker)
3227 unchain_marker (XMARKER (marker));
3228 free_misc (marker);
3232 /* Return a newly created vector or string with specified arguments as
3233 elements. If all the arguments are characters that can fit
3234 in a string of events, make a string; otherwise, make a vector.
3236 Any number of arguments, even zero arguments, are allowed. */
3238 Lisp_Object
3239 make_event_array (register int nargs, Lisp_Object *args)
3241 int i;
3243 for (i = 0; i < nargs; i++)
3244 /* The things that fit in a string
3245 are characters that are in 0...127,
3246 after discarding the meta bit and all the bits above it. */
3247 if (!INTEGERP (args[i])
3248 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3249 return Fvector (nargs, args);
3251 /* Since the loop exited, we know that all the things in it are
3252 characters, so we can make a string. */
3254 Lisp_Object result;
3256 result = Fmake_string (make_number (nargs), make_number (0));
3257 for (i = 0; i < nargs; i++)
3259 SSET (result, i, XINT (args[i]));
3260 /* Move the meta bit to the right place for a string char. */
3261 if (XINT (args[i]) & CHAR_META)
3262 SSET (result, i, SREF (result, i) | 0x80);
3265 return result;
3271 /************************************************************************
3272 Memory Full Handling
3273 ************************************************************************/
3276 /* Called if malloc returns zero. */
3278 void
3279 memory_full (void)
3281 int i;
3283 Vmemory_full = Qt;
3285 memory_full_cons_threshold = sizeof (struct cons_block);
3287 /* The first time we get here, free the spare memory. */
3288 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3289 if (spare_memory[i])
3291 if (i == 0)
3292 free (spare_memory[i]);
3293 else if (i >= 1 && i <= 4)
3294 lisp_align_free (spare_memory[i]);
3295 else
3296 lisp_free (spare_memory[i]);
3297 spare_memory[i] = 0;
3300 /* Record the space now used. When it decreases substantially,
3301 we can refill the memory reserve. */
3302 #ifndef SYSTEM_MALLOC
3303 bytes_used_when_full = BYTES_USED;
3304 #endif
3306 /* This used to call error, but if we've run out of memory, we could
3307 get infinite recursion trying to build the string. */
3308 xsignal (Qnil, Vmemory_signal_data);
3311 /* If we released our reserve (due to running out of memory),
3312 and we have a fair amount free once again,
3313 try to set aside another reserve in case we run out once more.
3315 This is called when a relocatable block is freed in ralloc.c,
3316 and also directly from this file, in case we're not using ralloc.c. */
3318 void
3319 refill_memory_reserve (void)
3321 #ifndef SYSTEM_MALLOC
3322 if (spare_memory[0] == 0)
3323 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3324 if (spare_memory[1] == 0)
3325 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3326 MEM_TYPE_CONS);
3327 if (spare_memory[2] == 0)
3328 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3329 MEM_TYPE_CONS);
3330 if (spare_memory[3] == 0)
3331 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3332 MEM_TYPE_CONS);
3333 if (spare_memory[4] == 0)
3334 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3335 MEM_TYPE_CONS);
3336 if (spare_memory[5] == 0)
3337 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3338 MEM_TYPE_STRING);
3339 if (spare_memory[6] == 0)
3340 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3341 MEM_TYPE_STRING);
3342 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3343 Vmemory_full = Qnil;
3344 #endif
3347 /************************************************************************
3348 C Stack Marking
3349 ************************************************************************/
3351 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3353 /* Conservative C stack marking requires a method to identify possibly
3354 live Lisp objects given a pointer value. We do this by keeping
3355 track of blocks of Lisp data that are allocated in a red-black tree
3356 (see also the comment of mem_node which is the type of nodes in
3357 that tree). Function lisp_malloc adds information for an allocated
3358 block to the red-black tree with calls to mem_insert, and function
3359 lisp_free removes it with mem_delete. Functions live_string_p etc
3360 call mem_find to lookup information about a given pointer in the
3361 tree, and use that to determine if the pointer points to a Lisp
3362 object or not. */
3364 /* Initialize this part of alloc.c. */
3366 static void
3367 mem_init (void)
3369 mem_z.left = mem_z.right = MEM_NIL;
3370 mem_z.parent = NULL;
3371 mem_z.color = MEM_BLACK;
3372 mem_z.start = mem_z.end = NULL;
3373 mem_root = MEM_NIL;
3377 /* Value is a pointer to the mem_node containing START. Value is
3378 MEM_NIL if there is no node in the tree containing START. */
3380 static INLINE struct mem_node *
3381 mem_find (void *start)
3383 struct mem_node *p;
3385 if (start < min_heap_address || start > max_heap_address)
3386 return MEM_NIL;
3388 /* Make the search always successful to speed up the loop below. */
3389 mem_z.start = start;
3390 mem_z.end = (char *) start + 1;
3392 p = mem_root;
3393 while (start < p->start || start >= p->end)
3394 p = start < p->start ? p->left : p->right;
3395 return p;
3399 /* Insert a new node into the tree for a block of memory with start
3400 address START, end address END, and type TYPE. Value is a
3401 pointer to the node that was inserted. */
3403 static struct mem_node *
3404 mem_insert (void *start, void *end, enum mem_type type)
3406 struct mem_node *c, *parent, *x;
3408 if (min_heap_address == NULL || start < min_heap_address)
3409 min_heap_address = start;
3410 if (max_heap_address == NULL || end > max_heap_address)
3411 max_heap_address = end;
3413 /* See where in the tree a node for START belongs. In this
3414 particular application, it shouldn't happen that a node is already
3415 present. For debugging purposes, let's check that. */
3416 c = mem_root;
3417 parent = NULL;
3419 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3421 while (c != MEM_NIL)
3423 if (start >= c->start && start < c->end)
3424 abort ();
3425 parent = c;
3426 c = start < c->start ? c->left : c->right;
3429 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3431 while (c != MEM_NIL)
3433 parent = c;
3434 c = start < c->start ? c->left : c->right;
3437 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3439 /* Create a new node. */
3440 #ifdef GC_MALLOC_CHECK
3441 x = (struct mem_node *) _malloc_internal (sizeof *x);
3442 if (x == NULL)
3443 abort ();
3444 #else
3445 x = (struct mem_node *) xmalloc (sizeof *x);
3446 #endif
3447 x->start = start;
3448 x->end = end;
3449 x->type = type;
3450 x->parent = parent;
3451 x->left = x->right = MEM_NIL;
3452 x->color = MEM_RED;
3454 /* Insert it as child of PARENT or install it as root. */
3455 if (parent)
3457 if (start < parent->start)
3458 parent->left = x;
3459 else
3460 parent->right = x;
3462 else
3463 mem_root = x;
3465 /* Re-establish red-black tree properties. */
3466 mem_insert_fixup (x);
3468 return x;
3472 /* Re-establish the red-black properties of the tree, and thereby
3473 balance the tree, after node X has been inserted; X is always red. */
3475 static void
3476 mem_insert_fixup (struct mem_node *x)
3478 while (x != mem_root && x->parent->color == MEM_RED)
3480 /* X is red and its parent is red. This is a violation of
3481 red-black tree property #3. */
3483 if (x->parent == x->parent->parent->left)
3485 /* We're on the left side of our grandparent, and Y is our
3486 "uncle". */
3487 struct mem_node *y = x->parent->parent->right;
3489 if (y->color == MEM_RED)
3491 /* Uncle and parent are red but should be black because
3492 X is red. Change the colors accordingly and proceed
3493 with the grandparent. */
3494 x->parent->color = MEM_BLACK;
3495 y->color = MEM_BLACK;
3496 x->parent->parent->color = MEM_RED;
3497 x = x->parent->parent;
3499 else
3501 /* Parent and uncle have different colors; parent is
3502 red, uncle is black. */
3503 if (x == x->parent->right)
3505 x = x->parent;
3506 mem_rotate_left (x);
3509 x->parent->color = MEM_BLACK;
3510 x->parent->parent->color = MEM_RED;
3511 mem_rotate_right (x->parent->parent);
3514 else
3516 /* This is the symmetrical case of above. */
3517 struct mem_node *y = x->parent->parent->left;
3519 if (y->color == MEM_RED)
3521 x->parent->color = MEM_BLACK;
3522 y->color = MEM_BLACK;
3523 x->parent->parent->color = MEM_RED;
3524 x = x->parent->parent;
3526 else
3528 if (x == x->parent->left)
3530 x = x->parent;
3531 mem_rotate_right (x);
3534 x->parent->color = MEM_BLACK;
3535 x->parent->parent->color = MEM_RED;
3536 mem_rotate_left (x->parent->parent);
3541 /* The root may have been changed to red due to the algorithm. Set
3542 it to black so that property #5 is satisfied. */
3543 mem_root->color = MEM_BLACK;
3547 /* (x) (y)
3548 / \ / \
3549 a (y) ===> (x) c
3550 / \ / \
3551 b c a b */
3553 static void
3554 mem_rotate_left (struct mem_node *x)
3556 struct mem_node *y;
3558 /* Turn y's left sub-tree into x's right sub-tree. */
3559 y = x->right;
3560 x->right = y->left;
3561 if (y->left != MEM_NIL)
3562 y->left->parent = x;
3564 /* Y's parent was x's parent. */
3565 if (y != MEM_NIL)
3566 y->parent = x->parent;
3568 /* Get the parent to point to y instead of x. */
3569 if (x->parent)
3571 if (x == x->parent->left)
3572 x->parent->left = y;
3573 else
3574 x->parent->right = y;
3576 else
3577 mem_root = y;
3579 /* Put x on y's left. */
3580 y->left = x;
3581 if (x != MEM_NIL)
3582 x->parent = y;
3586 /* (x) (Y)
3587 / \ / \
3588 (y) c ===> a (x)
3589 / \ / \
3590 a b b c */
3592 static void
3593 mem_rotate_right (struct mem_node *x)
3595 struct mem_node *y = x->left;
3597 x->left = y->right;
3598 if (y->right != MEM_NIL)
3599 y->right->parent = x;
3601 if (y != MEM_NIL)
3602 y->parent = x->parent;
3603 if (x->parent)
3605 if (x == x->parent->right)
3606 x->parent->right = y;
3607 else
3608 x->parent->left = y;
3610 else
3611 mem_root = y;
3613 y->right = x;
3614 if (x != MEM_NIL)
3615 x->parent = y;
3619 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3621 static void
3622 mem_delete (struct mem_node *z)
3624 struct mem_node *x, *y;
3626 if (!z || z == MEM_NIL)
3627 return;
3629 if (z->left == MEM_NIL || z->right == MEM_NIL)
3630 y = z;
3631 else
3633 y = z->right;
3634 while (y->left != MEM_NIL)
3635 y = y->left;
3638 if (y->left != MEM_NIL)
3639 x = y->left;
3640 else
3641 x = y->right;
3643 x->parent = y->parent;
3644 if (y->parent)
3646 if (y == y->parent->left)
3647 y->parent->left = x;
3648 else
3649 y->parent->right = x;
3651 else
3652 mem_root = x;
3654 if (y != z)
3656 z->start = y->start;
3657 z->end = y->end;
3658 z->type = y->type;
3661 if (y->color == MEM_BLACK)
3662 mem_delete_fixup (x);
3664 #ifdef GC_MALLOC_CHECK
3665 _free_internal (y);
3666 #else
3667 xfree (y);
3668 #endif
3672 /* Re-establish the red-black properties of the tree, after a
3673 deletion. */
3675 static void
3676 mem_delete_fixup (struct mem_node *x)
3678 while (x != mem_root && x->color == MEM_BLACK)
3680 if (x == x->parent->left)
3682 struct mem_node *w = x->parent->right;
3684 if (w->color == MEM_RED)
3686 w->color = MEM_BLACK;
3687 x->parent->color = MEM_RED;
3688 mem_rotate_left (x->parent);
3689 w = x->parent->right;
3692 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3694 w->color = MEM_RED;
3695 x = x->parent;
3697 else
3699 if (w->right->color == MEM_BLACK)
3701 w->left->color = MEM_BLACK;
3702 w->color = MEM_RED;
3703 mem_rotate_right (w);
3704 w = x->parent->right;
3706 w->color = x->parent->color;
3707 x->parent->color = MEM_BLACK;
3708 w->right->color = MEM_BLACK;
3709 mem_rotate_left (x->parent);
3710 x = mem_root;
3713 else
3715 struct mem_node *w = x->parent->left;
3717 if (w->color == MEM_RED)
3719 w->color = MEM_BLACK;
3720 x->parent->color = MEM_RED;
3721 mem_rotate_right (x->parent);
3722 w = x->parent->left;
3725 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3727 w->color = MEM_RED;
3728 x = x->parent;
3730 else
3732 if (w->left->color == MEM_BLACK)
3734 w->right->color = MEM_BLACK;
3735 w->color = MEM_RED;
3736 mem_rotate_left (w);
3737 w = x->parent->left;
3740 w->color = x->parent->color;
3741 x->parent->color = MEM_BLACK;
3742 w->left->color = MEM_BLACK;
3743 mem_rotate_right (x->parent);
3744 x = mem_root;
3749 x->color = MEM_BLACK;
3753 /* Value is non-zero if P is a pointer to a live Lisp string on
3754 the heap. M is a pointer to the mem_block for P. */
3756 static INLINE int
3757 live_string_p (struct mem_node *m, void *p)
3759 if (m->type == MEM_TYPE_STRING)
3761 struct string_block *b = (struct string_block *) m->start;
3762 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
3764 /* P must point to the start of a Lisp_String structure, and it
3765 must not be on the free-list. */
3766 return (offset >= 0
3767 && offset % sizeof b->strings[0] == 0
3768 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3769 && ((struct Lisp_String *) p)->data != NULL);
3771 else
3772 return 0;
3776 /* Value is non-zero if P is a pointer to a live Lisp cons on
3777 the heap. M is a pointer to the mem_block for P. */
3779 static INLINE int
3780 live_cons_p (struct mem_node *m, void *p)
3782 if (m->type == MEM_TYPE_CONS)
3784 struct cons_block *b = (struct cons_block *) m->start;
3785 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
3787 /* P must point to the start of a Lisp_Cons, not be
3788 one of the unused cells in the current cons block,
3789 and not be on the free-list. */
3790 return (offset >= 0
3791 && offset % sizeof b->conses[0] == 0
3792 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3793 && (b != cons_block
3794 || offset / sizeof b->conses[0] < cons_block_index)
3795 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3797 else
3798 return 0;
3802 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3803 the heap. M is a pointer to the mem_block for P. */
3805 static INLINE int
3806 live_symbol_p (struct mem_node *m, void *p)
3808 if (m->type == MEM_TYPE_SYMBOL)
3810 struct symbol_block *b = (struct symbol_block *) m->start;
3811 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
3813 /* P must point to the start of a Lisp_Symbol, not be
3814 one of the unused cells in the current symbol block,
3815 and not be on the free-list. */
3816 return (offset >= 0
3817 && offset % sizeof b->symbols[0] == 0
3818 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3819 && (b != symbol_block
3820 || offset / sizeof b->symbols[0] < symbol_block_index)
3821 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3823 else
3824 return 0;
3828 /* Value is non-zero if P is a pointer to a live Lisp float on
3829 the heap. M is a pointer to the mem_block for P. */
3831 static INLINE int
3832 live_float_p (struct mem_node *m, void *p)
3834 if (m->type == MEM_TYPE_FLOAT)
3836 struct float_block *b = (struct float_block *) m->start;
3837 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
3839 /* P must point to the start of a Lisp_Float and not be
3840 one of the unused cells in the current float block. */
3841 return (offset >= 0
3842 && offset % sizeof b->floats[0] == 0
3843 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3844 && (b != float_block
3845 || offset / sizeof b->floats[0] < float_block_index));
3847 else
3848 return 0;
3852 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3853 the heap. M is a pointer to the mem_block for P. */
3855 static INLINE int
3856 live_misc_p (struct mem_node *m, void *p)
3858 if (m->type == MEM_TYPE_MISC)
3860 struct marker_block *b = (struct marker_block *) m->start;
3861 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
3863 /* P must point to the start of a Lisp_Misc, not be
3864 one of the unused cells in the current misc block,
3865 and not be on the free-list. */
3866 return (offset >= 0
3867 && offset % sizeof b->markers[0] == 0
3868 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3869 && (b != marker_block
3870 || offset / sizeof b->markers[0] < marker_block_index)
3871 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
3873 else
3874 return 0;
3878 /* Value is non-zero if P is a pointer to a live vector-like object.
3879 M is a pointer to the mem_block for P. */
3881 static INLINE int
3882 live_vector_p (struct mem_node *m, void *p)
3884 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
3888 /* Value is non-zero if P is a pointer to a live buffer. M is a
3889 pointer to the mem_block for P. */
3891 static INLINE int
3892 live_buffer_p (struct mem_node *m, void *p)
3894 /* P must point to the start of the block, and the buffer
3895 must not have been killed. */
3896 return (m->type == MEM_TYPE_BUFFER
3897 && p == m->start
3898 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
3901 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3903 #if GC_MARK_STACK
3905 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3907 /* Array of objects that are kept alive because the C stack contains
3908 a pattern that looks like a reference to them . */
3910 #define MAX_ZOMBIES 10
3911 static Lisp_Object zombies[MAX_ZOMBIES];
3913 /* Number of zombie objects. */
3915 static int nzombies;
3917 /* Number of garbage collections. */
3919 static int ngcs;
3921 /* Average percentage of zombies per collection. */
3923 static double avg_zombies;
3925 /* Max. number of live and zombie objects. */
3927 static int max_live, max_zombies;
3929 /* Average number of live objects per GC. */
3931 static double avg_live;
3933 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3934 doc: /* Show information about live and zombie objects. */)
3935 (void)
3937 Lisp_Object args[8], zombie_list = Qnil;
3938 int i;
3939 for (i = 0; i < nzombies; i++)
3940 zombie_list = Fcons (zombies[i], zombie_list);
3941 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3942 args[1] = make_number (ngcs);
3943 args[2] = make_float (avg_live);
3944 args[3] = make_float (avg_zombies);
3945 args[4] = make_float (avg_zombies / avg_live / 100);
3946 args[5] = make_number (max_live);
3947 args[6] = make_number (max_zombies);
3948 args[7] = zombie_list;
3949 return Fmessage (8, args);
3952 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3955 /* Mark OBJ if we can prove it's a Lisp_Object. */
3957 static INLINE void
3958 mark_maybe_object (Lisp_Object obj)
3960 void *po;
3961 struct mem_node *m;
3963 if (INTEGERP (obj))
3964 return;
3966 po = (void *) XPNTR (obj);
3967 m = mem_find (po);
3969 if (m != MEM_NIL)
3971 int mark_p = 0;
3973 switch (XTYPE (obj))
3975 case Lisp_String:
3976 mark_p = (live_string_p (m, po)
3977 && !STRING_MARKED_P ((struct Lisp_String *) po));
3978 break;
3980 case Lisp_Cons:
3981 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
3982 break;
3984 case Lisp_Symbol:
3985 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
3986 break;
3988 case Lisp_Float:
3989 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
3990 break;
3992 case Lisp_Vectorlike:
3993 /* Note: can't check BUFFERP before we know it's a
3994 buffer because checking that dereferences the pointer
3995 PO which might point anywhere. */
3996 if (live_vector_p (m, po))
3997 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
3998 else if (live_buffer_p (m, po))
3999 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4000 break;
4002 case Lisp_Misc:
4003 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4004 break;
4006 default:
4007 break;
4010 if (mark_p)
4012 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4013 if (nzombies < MAX_ZOMBIES)
4014 zombies[nzombies] = obj;
4015 ++nzombies;
4016 #endif
4017 mark_object (obj);
4023 /* If P points to Lisp data, mark that as live if it isn't already
4024 marked. */
4026 static INLINE void
4027 mark_maybe_pointer (void *p)
4029 struct mem_node *m;
4031 /* Quickly rule out some values which can't point to Lisp data. */
4032 if ((EMACS_INT) p %
4033 #ifdef USE_LSB_TAG
4034 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4035 #else
4036 2 /* We assume that Lisp data is aligned on even addresses. */
4037 #endif
4039 return;
4041 m = mem_find (p);
4042 if (m != MEM_NIL)
4044 Lisp_Object obj = Qnil;
4046 switch (m->type)
4048 case MEM_TYPE_NON_LISP:
4049 /* Nothing to do; not a pointer to Lisp memory. */
4050 break;
4052 case MEM_TYPE_BUFFER:
4053 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4054 XSETVECTOR (obj, p);
4055 break;
4057 case MEM_TYPE_CONS:
4058 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4059 XSETCONS (obj, p);
4060 break;
4062 case MEM_TYPE_STRING:
4063 if (live_string_p (m, p)
4064 && !STRING_MARKED_P ((struct Lisp_String *) p))
4065 XSETSTRING (obj, p);
4066 break;
4068 case MEM_TYPE_MISC:
4069 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4070 XSETMISC (obj, p);
4071 break;
4073 case MEM_TYPE_SYMBOL:
4074 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4075 XSETSYMBOL (obj, p);
4076 break;
4078 case MEM_TYPE_FLOAT:
4079 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4080 XSETFLOAT (obj, p);
4081 break;
4083 case MEM_TYPE_VECTORLIKE:
4084 if (live_vector_p (m, p))
4086 Lisp_Object tem;
4087 XSETVECTOR (tem, p);
4088 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4089 obj = tem;
4091 break;
4093 default:
4094 abort ();
4097 if (!NILP (obj))
4098 mark_object (obj);
4103 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4104 or END+OFFSET..START. */
4106 static void
4107 mark_memory (void *start, void *end, int offset)
4109 Lisp_Object *p;
4110 void **pp;
4112 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4113 nzombies = 0;
4114 #endif
4116 /* Make START the pointer to the start of the memory region,
4117 if it isn't already. */
4118 if (end < start)
4120 void *tem = start;
4121 start = end;
4122 end = tem;
4125 /* Mark Lisp_Objects. */
4126 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4127 mark_maybe_object (*p);
4129 /* Mark Lisp data pointed to. This is necessary because, in some
4130 situations, the C compiler optimizes Lisp objects away, so that
4131 only a pointer to them remains. Example:
4133 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4136 Lisp_Object obj = build_string ("test");
4137 struct Lisp_String *s = XSTRING (obj);
4138 Fgarbage_collect ();
4139 fprintf (stderr, "test `%s'\n", s->data);
4140 return Qnil;
4143 Here, `obj' isn't really used, and the compiler optimizes it
4144 away. The only reference to the life string is through the
4145 pointer `s'. */
4147 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4148 mark_maybe_pointer (*pp);
4151 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4152 the GCC system configuration. In gcc 3.2, the only systems for
4153 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4154 by others?) and ns32k-pc532-min. */
4156 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4158 static int setjmp_tested_p, longjmps_done;
4160 #define SETJMP_WILL_LIKELY_WORK "\
4162 Emacs garbage collector has been changed to use conservative stack\n\
4163 marking. Emacs has determined that the method it uses to do the\n\
4164 marking will likely work on your system, but this isn't sure.\n\
4166 If you are a system-programmer, or can get the help of a local wizard\n\
4167 who is, please take a look at the function mark_stack in alloc.c, and\n\
4168 verify that the methods used are appropriate for your system.\n\
4170 Please mail the result to <emacs-devel@gnu.org>.\n\
4173 #define SETJMP_WILL_NOT_WORK "\
4175 Emacs garbage collector has been changed to use conservative stack\n\
4176 marking. Emacs has determined that the default method it uses to do the\n\
4177 marking will not work on your system. We will need a system-dependent\n\
4178 solution for your system.\n\
4180 Please take a look at the function mark_stack in alloc.c, and\n\
4181 try to find a way to make it work on your system.\n\
4183 Note that you may get false negatives, depending on the compiler.\n\
4184 In particular, you need to use -O with GCC for this test.\n\
4186 Please mail the result to <emacs-devel@gnu.org>.\n\
4190 /* Perform a quick check if it looks like setjmp saves registers in a
4191 jmp_buf. Print a message to stderr saying so. When this test
4192 succeeds, this is _not_ a proof that setjmp is sufficient for
4193 conservative stack marking. Only the sources or a disassembly
4194 can prove that. */
4196 static void
4197 test_setjmp (void)
4199 char buf[10];
4200 register int x;
4201 jmp_buf jbuf;
4202 int result = 0;
4204 /* Arrange for X to be put in a register. */
4205 sprintf (buf, "1");
4206 x = strlen (buf);
4207 x = 2 * x - 1;
4209 setjmp (jbuf);
4210 if (longjmps_done == 1)
4212 /* Came here after the longjmp at the end of the function.
4214 If x == 1, the longjmp has restored the register to its
4215 value before the setjmp, and we can hope that setjmp
4216 saves all such registers in the jmp_buf, although that
4217 isn't sure.
4219 For other values of X, either something really strange is
4220 taking place, or the setjmp just didn't save the register. */
4222 if (x == 1)
4223 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4224 else
4226 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4227 exit (1);
4231 ++longjmps_done;
4232 x = 2;
4233 if (longjmps_done == 1)
4234 longjmp (jbuf, 1);
4237 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4240 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4242 /* Abort if anything GCPRO'd doesn't survive the GC. */
4244 static void
4245 check_gcpros (void)
4247 struct gcpro *p;
4248 int i;
4250 for (p = gcprolist; p; p = p->next)
4251 for (i = 0; i < p->nvars; ++i)
4252 if (!survives_gc_p (p->var[i]))
4253 /* FIXME: It's not necessarily a bug. It might just be that the
4254 GCPRO is unnecessary or should release the object sooner. */
4255 abort ();
4258 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4260 static void
4261 dump_zombies (void)
4263 int i;
4265 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4266 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4268 fprintf (stderr, " %d = ", i);
4269 debug_print (zombies[i]);
4273 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4276 /* Mark live Lisp objects on the C stack.
4278 There are several system-dependent problems to consider when
4279 porting this to new architectures:
4281 Processor Registers
4283 We have to mark Lisp objects in CPU registers that can hold local
4284 variables or are used to pass parameters.
4286 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4287 something that either saves relevant registers on the stack, or
4288 calls mark_maybe_object passing it each register's contents.
4290 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4291 implementation assumes that calling setjmp saves registers we need
4292 to see in a jmp_buf which itself lies on the stack. This doesn't
4293 have to be true! It must be verified for each system, possibly
4294 by taking a look at the source code of setjmp.
4296 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4297 can use it as a machine independent method to store all registers
4298 to the stack. In this case the macros described in the previous
4299 two paragraphs are not used.
4301 Stack Layout
4303 Architectures differ in the way their processor stack is organized.
4304 For example, the stack might look like this
4306 +----------------+
4307 | Lisp_Object | size = 4
4308 +----------------+
4309 | something else | size = 2
4310 +----------------+
4311 | Lisp_Object | size = 4
4312 +----------------+
4313 | ... |
4315 In such a case, not every Lisp_Object will be aligned equally. To
4316 find all Lisp_Object on the stack it won't be sufficient to walk
4317 the stack in steps of 4 bytes. Instead, two passes will be
4318 necessary, one starting at the start of the stack, and a second
4319 pass starting at the start of the stack + 2. Likewise, if the
4320 minimal alignment of Lisp_Objects on the stack is 1, four passes
4321 would be necessary, each one starting with one byte more offset
4322 from the stack start.
4324 The current code assumes by default that Lisp_Objects are aligned
4325 equally on the stack. */
4327 static void
4328 mark_stack (void)
4330 int i;
4331 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4332 union aligned_jmpbuf {
4333 Lisp_Object o;
4334 jmp_buf j;
4335 } j;
4336 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4337 void *end;
4339 #ifdef HAVE___BUILTIN_UNWIND_INIT
4340 /* Force callee-saved registers and register windows onto the stack.
4341 This is the preferred method if available, obviating the need for
4342 machine dependent methods. */
4343 __builtin_unwind_init ();
4344 end = &end;
4345 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4346 /* This trick flushes the register windows so that all the state of
4347 the process is contained in the stack. */
4348 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4349 needed on ia64 too. See mach_dep.c, where it also says inline
4350 assembler doesn't work with relevant proprietary compilers. */
4351 #ifdef __sparc__
4352 #if defined (__sparc64__) && defined (__FreeBSD__)
4353 /* FreeBSD does not have a ta 3 handler. */
4354 asm ("flushw");
4355 #else
4356 asm ("ta 3");
4357 #endif
4358 #endif
4360 /* Save registers that we need to see on the stack. We need to see
4361 registers used to hold register variables and registers used to
4362 pass parameters. */
4363 #ifdef GC_SAVE_REGISTERS_ON_STACK
4364 GC_SAVE_REGISTERS_ON_STACK (end);
4365 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4367 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4368 setjmp will definitely work, test it
4369 and print a message with the result
4370 of the test. */
4371 if (!setjmp_tested_p)
4373 setjmp_tested_p = 1;
4374 test_setjmp ();
4376 #endif /* GC_SETJMP_WORKS */
4378 setjmp (j.j);
4379 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4380 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4381 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4383 /* This assumes that the stack is a contiguous region in memory. If
4384 that's not the case, something has to be done here to iterate
4385 over the stack segments. */
4386 #ifndef GC_LISP_OBJECT_ALIGNMENT
4387 #ifdef __GNUC__
4388 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4389 #else
4390 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4391 #endif
4392 #endif
4393 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4394 mark_memory (stack_base, end, i);
4395 /* Allow for marking a secondary stack, like the register stack on the
4396 ia64. */
4397 #ifdef GC_MARK_SECONDARY_STACK
4398 GC_MARK_SECONDARY_STACK ();
4399 #endif
4401 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4402 check_gcpros ();
4403 #endif
4406 #endif /* GC_MARK_STACK != 0 */
4409 /* Determine whether it is safe to access memory at address P. */
4410 static int
4411 valid_pointer_p (void *p)
4413 #ifdef WINDOWSNT
4414 return w32_valid_pointer_p (p, 16);
4415 #else
4416 int fd;
4418 /* Obviously, we cannot just access it (we would SEGV trying), so we
4419 trick the o/s to tell us whether p is a valid pointer.
4420 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4421 not validate p in that case. */
4423 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4425 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4426 emacs_close (fd);
4427 unlink ("__Valid__Lisp__Object__");
4428 return valid;
4431 return -1;
4432 #endif
4435 /* Return 1 if OBJ is a valid lisp object.
4436 Return 0 if OBJ is NOT a valid lisp object.
4437 Return -1 if we cannot validate OBJ.
4438 This function can be quite slow,
4439 so it should only be used in code for manual debugging. */
4442 valid_lisp_object_p (Lisp_Object obj)
4444 void *p;
4445 #if GC_MARK_STACK
4446 struct mem_node *m;
4447 #endif
4449 if (INTEGERP (obj))
4450 return 1;
4452 p = (void *) XPNTR (obj);
4453 if (PURE_POINTER_P (p))
4454 return 1;
4456 #if !GC_MARK_STACK
4457 return valid_pointer_p (p);
4458 #else
4460 m = mem_find (p);
4462 if (m == MEM_NIL)
4464 int valid = valid_pointer_p (p);
4465 if (valid <= 0)
4466 return valid;
4468 if (SUBRP (obj))
4469 return 1;
4471 return 0;
4474 switch (m->type)
4476 case MEM_TYPE_NON_LISP:
4477 return 0;
4479 case MEM_TYPE_BUFFER:
4480 return live_buffer_p (m, p);
4482 case MEM_TYPE_CONS:
4483 return live_cons_p (m, p);
4485 case MEM_TYPE_STRING:
4486 return live_string_p (m, p);
4488 case MEM_TYPE_MISC:
4489 return live_misc_p (m, p);
4491 case MEM_TYPE_SYMBOL:
4492 return live_symbol_p (m, p);
4494 case MEM_TYPE_FLOAT:
4495 return live_float_p (m, p);
4497 case MEM_TYPE_VECTORLIKE:
4498 return live_vector_p (m, p);
4500 default:
4501 break;
4504 return 0;
4505 #endif
4511 /***********************************************************************
4512 Pure Storage Management
4513 ***********************************************************************/
4515 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4516 pointer to it. TYPE is the Lisp type for which the memory is
4517 allocated. TYPE < 0 means it's not used for a Lisp object. */
4519 static POINTER_TYPE *
4520 pure_alloc (size_t size, int type)
4522 POINTER_TYPE *result;
4523 #ifdef USE_LSB_TAG
4524 size_t alignment = (1 << GCTYPEBITS);
4525 #else
4526 size_t alignment = sizeof (EMACS_INT);
4528 /* Give Lisp_Floats an extra alignment. */
4529 if (type == Lisp_Float)
4531 #if defined __GNUC__ && __GNUC__ >= 2
4532 alignment = __alignof (struct Lisp_Float);
4533 #else
4534 alignment = sizeof (struct Lisp_Float);
4535 #endif
4537 #endif
4539 again:
4540 if (type >= 0)
4542 /* Allocate space for a Lisp object from the beginning of the free
4543 space with taking account of alignment. */
4544 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4545 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4547 else
4549 /* Allocate space for a non-Lisp object from the end of the free
4550 space. */
4551 pure_bytes_used_non_lisp += size;
4552 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4554 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4556 if (pure_bytes_used <= pure_size)
4557 return result;
4559 /* Don't allocate a large amount here,
4560 because it might get mmap'd and then its address
4561 might not be usable. */
4562 purebeg = (char *) xmalloc (10000);
4563 pure_size = 10000;
4564 pure_bytes_used_before_overflow += pure_bytes_used - size;
4565 pure_bytes_used = 0;
4566 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4567 goto again;
4571 /* Print a warning if PURESIZE is too small. */
4573 void
4574 check_pure_size (void)
4576 if (pure_bytes_used_before_overflow)
4577 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4578 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4582 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4583 the non-Lisp data pool of the pure storage, and return its start
4584 address. Return NULL if not found. */
4586 static char *
4587 find_string_data_in_pure (const char *data, EMACS_INT nbytes)
4589 int i;
4590 EMACS_INT skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4591 const unsigned char *p;
4592 char *non_lisp_beg;
4594 if (pure_bytes_used_non_lisp < nbytes + 1)
4595 return NULL;
4597 /* Set up the Boyer-Moore table. */
4598 skip = nbytes + 1;
4599 for (i = 0; i < 256; i++)
4600 bm_skip[i] = skip;
4602 p = (const unsigned char *) data;
4603 while (--skip > 0)
4604 bm_skip[*p++] = skip;
4606 last_char_skip = bm_skip['\0'];
4608 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4609 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4611 /* See the comments in the function `boyer_moore' (search.c) for the
4612 use of `infinity'. */
4613 infinity = pure_bytes_used_non_lisp + 1;
4614 bm_skip['\0'] = infinity;
4616 p = (const unsigned char *) non_lisp_beg + nbytes;
4617 start = 0;
4620 /* Check the last character (== '\0'). */
4623 start += bm_skip[*(p + start)];
4625 while (start <= start_max);
4627 if (start < infinity)
4628 /* Couldn't find the last character. */
4629 return NULL;
4631 /* No less than `infinity' means we could find the last
4632 character at `p[start - infinity]'. */
4633 start -= infinity;
4635 /* Check the remaining characters. */
4636 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4637 /* Found. */
4638 return non_lisp_beg + start;
4640 start += last_char_skip;
4642 while (start <= start_max);
4644 return NULL;
4648 /* Return a string allocated in pure space. DATA is a buffer holding
4649 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4650 non-zero means make the result string multibyte.
4652 Must get an error if pure storage is full, since if it cannot hold
4653 a large string it may be able to hold conses that point to that
4654 string; then the string is not protected from gc. */
4656 Lisp_Object
4657 make_pure_string (const char *data,
4658 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
4660 Lisp_Object string;
4661 struct Lisp_String *s;
4663 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4664 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
4665 if (s->data == NULL)
4667 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4668 memcpy (s->data, data, nbytes);
4669 s->data[nbytes] = '\0';
4671 s->size = nchars;
4672 s->size_byte = multibyte ? nbytes : -1;
4673 s->intervals = NULL_INTERVAL;
4674 XSETSTRING (string, s);
4675 return string;
4678 /* Return a string a string allocated in pure space. Do not allocate
4679 the string data, just point to DATA. */
4681 Lisp_Object
4682 make_pure_c_string (const char *data)
4684 Lisp_Object string;
4685 struct Lisp_String *s;
4686 EMACS_INT nchars = strlen (data);
4688 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4689 s->size = nchars;
4690 s->size_byte = -1;
4691 s->data = (unsigned char *) data;
4692 s->intervals = NULL_INTERVAL;
4693 XSETSTRING (string, s);
4694 return string;
4697 /* Return a cons allocated from pure space. Give it pure copies
4698 of CAR as car and CDR as cdr. */
4700 Lisp_Object
4701 pure_cons (Lisp_Object car, Lisp_Object cdr)
4703 register Lisp_Object new;
4704 struct Lisp_Cons *p;
4706 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4707 XSETCONS (new, p);
4708 XSETCAR (new, Fpurecopy (car));
4709 XSETCDR (new, Fpurecopy (cdr));
4710 return new;
4714 /* Value is a float object with value NUM allocated from pure space. */
4716 static Lisp_Object
4717 make_pure_float (double num)
4719 register Lisp_Object new;
4720 struct Lisp_Float *p;
4722 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4723 XSETFLOAT (new, p);
4724 XFLOAT_INIT (new, num);
4725 return new;
4729 /* Return a vector with room for LEN Lisp_Objects allocated from
4730 pure space. */
4732 Lisp_Object
4733 make_pure_vector (EMACS_INT len)
4735 Lisp_Object new;
4736 struct Lisp_Vector *p;
4737 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4739 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4740 XSETVECTOR (new, p);
4741 XVECTOR (new)->size = len;
4742 return new;
4746 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4747 doc: /* Make a copy of object OBJ in pure storage.
4748 Recursively copies contents of vectors and cons cells.
4749 Does not copy symbols. Copies strings without text properties. */)
4750 (register Lisp_Object obj)
4752 if (NILP (Vpurify_flag))
4753 return obj;
4755 if (PURE_POINTER_P (XPNTR (obj)))
4756 return obj;
4758 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4760 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4761 if (!NILP (tmp))
4762 return tmp;
4765 if (CONSP (obj))
4766 obj = pure_cons (XCAR (obj), XCDR (obj));
4767 else if (FLOATP (obj))
4768 obj = make_pure_float (XFLOAT_DATA (obj));
4769 else if (STRINGP (obj))
4770 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
4771 SBYTES (obj),
4772 STRING_MULTIBYTE (obj));
4773 else if (COMPILEDP (obj) || VECTORP (obj))
4775 register struct Lisp_Vector *vec;
4776 register EMACS_INT i;
4777 EMACS_INT size;
4779 size = XVECTOR (obj)->size;
4780 if (size & PSEUDOVECTOR_FLAG)
4781 size &= PSEUDOVECTOR_SIZE_MASK;
4782 vec = XVECTOR (make_pure_vector (size));
4783 for (i = 0; i < size; i++)
4784 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4785 if (COMPILEDP (obj))
4787 XSETPVECTYPE (vec, PVEC_COMPILED);
4788 XSETCOMPILED (obj, vec);
4790 else
4791 XSETVECTOR (obj, vec);
4793 else if (MARKERP (obj))
4794 error ("Attempt to copy a marker to pure storage");
4795 else
4796 /* Not purified, don't hash-cons. */
4797 return obj;
4799 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4800 Fputhash (obj, obj, Vpurify_flag);
4802 return obj;
4807 /***********************************************************************
4808 Protection from GC
4809 ***********************************************************************/
4811 /* Put an entry in staticvec, pointing at the variable with address
4812 VARADDRESS. */
4814 void
4815 staticpro (Lisp_Object *varaddress)
4817 staticvec[staticidx++] = varaddress;
4818 if (staticidx >= NSTATICS)
4819 abort ();
4823 /***********************************************************************
4824 Protection from GC
4825 ***********************************************************************/
4827 /* Temporarily prevent garbage collection. */
4830 inhibit_garbage_collection (void)
4832 int count = SPECPDL_INDEX ();
4833 int nbits = min (VALBITS, BITS_PER_INT);
4835 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4836 return count;
4840 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4841 doc: /* Reclaim storage for Lisp objects no longer needed.
4842 Garbage collection happens automatically if you cons more than
4843 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4844 `garbage-collect' normally returns a list with info on amount of space in use:
4845 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4846 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4847 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4848 (USED-STRINGS . FREE-STRINGS))
4849 However, if there was overflow in pure space, `garbage-collect'
4850 returns nil, because real GC can't be done. */)
4851 (void)
4853 register struct specbinding *bind;
4854 char stack_top_variable;
4855 register int i;
4856 int message_p;
4857 Lisp_Object total[8];
4858 int count = SPECPDL_INDEX ();
4859 EMACS_TIME t1, t2, t3;
4861 if (abort_on_gc)
4862 abort ();
4864 /* Can't GC if pure storage overflowed because we can't determine
4865 if something is a pure object or not. */
4866 if (pure_bytes_used_before_overflow)
4867 return Qnil;
4869 CHECK_CONS_LIST ();
4871 /* Don't keep undo information around forever.
4872 Do this early on, so it is no problem if the user quits. */
4874 register struct buffer *nextb = all_buffers;
4876 while (nextb)
4878 /* If a buffer's undo list is Qt, that means that undo is
4879 turned off in that buffer. Calling truncate_undo_list on
4880 Qt tends to return NULL, which effectively turns undo back on.
4881 So don't call truncate_undo_list if undo_list is Qt. */
4882 if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name)) && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
4883 truncate_undo_list (nextb);
4885 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4886 if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
4887 && ! nextb->text->inhibit_shrinking)
4889 /* If a buffer's gap size is more than 10% of the buffer
4890 size, or larger than 2000 bytes, then shrink it
4891 accordingly. Keep a minimum size of 20 bytes. */
4892 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4894 if (nextb->text->gap_size > size)
4896 struct buffer *save_current = current_buffer;
4897 current_buffer = nextb;
4898 make_gap (-(nextb->text->gap_size - size));
4899 current_buffer = save_current;
4903 nextb = nextb->next;
4907 EMACS_GET_TIME (t1);
4909 /* In case user calls debug_print during GC,
4910 don't let that cause a recursive GC. */
4911 consing_since_gc = 0;
4913 /* Save what's currently displayed in the echo area. */
4914 message_p = push_message ();
4915 record_unwind_protect (pop_message_unwind, Qnil);
4917 /* Save a copy of the contents of the stack, for debugging. */
4918 #if MAX_SAVE_STACK > 0
4919 if (NILP (Vpurify_flag))
4921 i = &stack_top_variable - stack_bottom;
4922 if (i < 0) i = -i;
4923 if (i < MAX_SAVE_STACK)
4925 if (stack_copy == 0)
4926 stack_copy = (char *) xmalloc (stack_copy_size = i);
4927 else if (stack_copy_size < i)
4928 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4929 if (stack_copy)
4931 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4932 memcpy (stack_copy, stack_bottom, i);
4933 else
4934 memcpy (stack_copy, &stack_top_variable, i);
4938 #endif /* MAX_SAVE_STACK > 0 */
4940 if (garbage_collection_messages)
4941 message1_nolog ("Garbage collecting...");
4943 BLOCK_INPUT;
4945 shrink_regexp_cache ();
4947 gc_in_progress = 1;
4949 /* clear_marks (); */
4951 /* Mark all the special slots that serve as the roots of accessibility. */
4953 for (i = 0; i < staticidx; i++)
4954 mark_object (*staticvec[i]);
4956 for (bind = specpdl; bind != specpdl_ptr; bind++)
4958 mark_object (bind->symbol);
4959 mark_object (bind->old_value);
4961 mark_terminals ();
4962 mark_kboards ();
4963 mark_ttys ();
4965 #ifdef USE_GTK
4967 extern void xg_mark_data (void);
4968 xg_mark_data ();
4970 #endif
4972 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4973 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4974 mark_stack ();
4975 #else
4977 register struct gcpro *tail;
4978 for (tail = gcprolist; tail; tail = tail->next)
4979 for (i = 0; i < tail->nvars; i++)
4980 mark_object (tail->var[i]);
4982 mark_byte_stack ();
4984 struct catchtag *catch;
4985 struct handler *handler;
4987 for (catch = catchlist; catch; catch = catch->next)
4989 mark_object (catch->tag);
4990 mark_object (catch->val);
4992 for (handler = handlerlist; handler; handler = handler->next)
4994 mark_object (handler->handler);
4995 mark_object (handler->var);
4998 mark_backtrace ();
4999 #endif
5001 #ifdef HAVE_WINDOW_SYSTEM
5002 mark_fringe_data ();
5003 #endif
5005 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5006 mark_stack ();
5007 #endif
5009 /* Everything is now marked, except for the things that require special
5010 finalization, i.e. the undo_list.
5011 Look thru every buffer's undo list
5012 for elements that update markers that were not marked,
5013 and delete them. */
5015 register struct buffer *nextb = all_buffers;
5017 while (nextb)
5019 /* If a buffer's undo list is Qt, that means that undo is
5020 turned off in that buffer. Calling truncate_undo_list on
5021 Qt tends to return NULL, which effectively turns undo back on.
5022 So don't call truncate_undo_list if undo_list is Qt. */
5023 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5025 Lisp_Object tail, prev;
5026 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
5027 prev = Qnil;
5028 while (CONSP (tail))
5030 if (CONSP (XCAR (tail))
5031 && MARKERP (XCAR (XCAR (tail)))
5032 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5034 if (NILP (prev))
5035 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5036 else
5038 tail = XCDR (tail);
5039 XSETCDR (prev, tail);
5042 else
5044 prev = tail;
5045 tail = XCDR (tail);
5049 /* Now that we have stripped the elements that need not be in the
5050 undo_list any more, we can finally mark the list. */
5051 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
5053 nextb = nextb->next;
5057 gc_sweep ();
5059 /* Clear the mark bits that we set in certain root slots. */
5061 unmark_byte_stack ();
5062 VECTOR_UNMARK (&buffer_defaults);
5063 VECTOR_UNMARK (&buffer_local_symbols);
5065 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5066 dump_zombies ();
5067 #endif
5069 UNBLOCK_INPUT;
5071 CHECK_CONS_LIST ();
5073 /* clear_marks (); */
5074 gc_in_progress = 0;
5076 consing_since_gc = 0;
5077 if (gc_cons_threshold < 10000)
5078 gc_cons_threshold = 10000;
5080 if (FLOATP (Vgc_cons_percentage))
5081 { /* Set gc_cons_combined_threshold. */
5082 EMACS_INT total = 0;
5084 total += total_conses * sizeof (struct Lisp_Cons);
5085 total += total_symbols * sizeof (struct Lisp_Symbol);
5086 total += total_markers * sizeof (union Lisp_Misc);
5087 total += total_string_size;
5088 total += total_vector_size * sizeof (Lisp_Object);
5089 total += total_floats * sizeof (struct Lisp_Float);
5090 total += total_intervals * sizeof (struct interval);
5091 total += total_strings * sizeof (struct Lisp_String);
5093 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
5095 else
5096 gc_relative_threshold = 0;
5098 if (garbage_collection_messages)
5100 if (message_p || minibuf_level > 0)
5101 restore_message ();
5102 else
5103 message1_nolog ("Garbage collecting...done");
5106 unbind_to (count, Qnil);
5108 total[0] = Fcons (make_number (total_conses),
5109 make_number (total_free_conses));
5110 total[1] = Fcons (make_number (total_symbols),
5111 make_number (total_free_symbols));
5112 total[2] = Fcons (make_number (total_markers),
5113 make_number (total_free_markers));
5114 total[3] = make_number (total_string_size);
5115 total[4] = make_number (total_vector_size);
5116 total[5] = Fcons (make_number (total_floats),
5117 make_number (total_free_floats));
5118 total[6] = Fcons (make_number (total_intervals),
5119 make_number (total_free_intervals));
5120 total[7] = Fcons (make_number (total_strings),
5121 make_number (total_free_strings));
5123 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5125 /* Compute average percentage of zombies. */
5126 double nlive = 0;
5128 for (i = 0; i < 7; ++i)
5129 if (CONSP (total[i]))
5130 nlive += XFASTINT (XCAR (total[i]));
5132 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5133 max_live = max (nlive, max_live);
5134 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5135 max_zombies = max (nzombies, max_zombies);
5136 ++ngcs;
5138 #endif
5140 if (!NILP (Vpost_gc_hook))
5142 int count = inhibit_garbage_collection ();
5143 safe_run_hooks (Qpost_gc_hook);
5144 unbind_to (count, Qnil);
5147 /* Accumulate statistics. */
5148 EMACS_GET_TIME (t2);
5149 EMACS_SUB_TIME (t3, t2, t1);
5150 if (FLOATP (Vgc_elapsed))
5151 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5152 EMACS_SECS (t3) +
5153 EMACS_USECS (t3) * 1.0e-6);
5154 gcs_done++;
5156 return Flist (sizeof total / sizeof *total, total);
5160 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5161 only interesting objects referenced from glyphs are strings. */
5163 static void
5164 mark_glyph_matrix (struct glyph_matrix *matrix)
5166 struct glyph_row *row = matrix->rows;
5167 struct glyph_row *end = row + matrix->nrows;
5169 for (; row < end; ++row)
5170 if (row->enabled_p)
5172 int area;
5173 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5175 struct glyph *glyph = row->glyphs[area];
5176 struct glyph *end_glyph = glyph + row->used[area];
5178 for (; glyph < end_glyph; ++glyph)
5179 if (STRINGP (glyph->object)
5180 && !STRING_MARKED_P (XSTRING (glyph->object)))
5181 mark_object (glyph->object);
5187 /* Mark Lisp faces in the face cache C. */
5189 static void
5190 mark_face_cache (struct face_cache *c)
5192 if (c)
5194 int i, j;
5195 for (i = 0; i < c->used; ++i)
5197 struct face *face = FACE_FROM_ID (c->f, i);
5199 if (face)
5201 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5202 mark_object (face->lface[j]);
5210 /* Mark reference to a Lisp_Object.
5211 If the object referred to has not been seen yet, recursively mark
5212 all the references contained in it. */
5214 #define LAST_MARKED_SIZE 500
5215 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5216 int last_marked_index;
5218 /* For debugging--call abort when we cdr down this many
5219 links of a list, in mark_object. In debugging,
5220 the call to abort will hit a breakpoint.
5221 Normally this is zero and the check never goes off. */
5222 static int mark_object_loop_halt;
5224 static void
5225 mark_vectorlike (struct Lisp_Vector *ptr)
5227 register EMACS_UINT size = ptr->size;
5228 register EMACS_UINT i;
5230 eassert (!VECTOR_MARKED_P (ptr));
5231 VECTOR_MARK (ptr); /* Else mark it */
5232 if (size & PSEUDOVECTOR_FLAG)
5233 size &= PSEUDOVECTOR_SIZE_MASK;
5235 /* Note that this size is not the memory-footprint size, but only
5236 the number of Lisp_Object fields that we should trace.
5237 The distinction is used e.g. by Lisp_Process which places extra
5238 non-Lisp_Object fields at the end of the structure. */
5239 for (i = 0; i < size; i++) /* and then mark its elements */
5240 mark_object (ptr->contents[i]);
5243 /* Like mark_vectorlike but optimized for char-tables (and
5244 sub-char-tables) assuming that the contents are mostly integers or
5245 symbols. */
5247 static void
5248 mark_char_table (struct Lisp_Vector *ptr)
5250 register EMACS_UINT size = ptr->size & PSEUDOVECTOR_SIZE_MASK;
5251 register EMACS_UINT i;
5253 eassert (!VECTOR_MARKED_P (ptr));
5254 VECTOR_MARK (ptr);
5255 for (i = 0; i < size; i++)
5257 Lisp_Object val = ptr->contents[i];
5259 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5260 continue;
5261 if (SUB_CHAR_TABLE_P (val))
5263 if (! VECTOR_MARKED_P (XVECTOR (val)))
5264 mark_char_table (XVECTOR (val));
5266 else
5267 mark_object (val);
5271 void
5272 mark_object (Lisp_Object arg)
5274 register Lisp_Object obj = arg;
5275 #ifdef GC_CHECK_MARKED_OBJECTS
5276 void *po;
5277 struct mem_node *m;
5278 #endif
5279 int cdr_count = 0;
5281 loop:
5283 if (PURE_POINTER_P (XPNTR (obj)))
5284 return;
5286 last_marked[last_marked_index++] = obj;
5287 if (last_marked_index == LAST_MARKED_SIZE)
5288 last_marked_index = 0;
5290 /* Perform some sanity checks on the objects marked here. Abort if
5291 we encounter an object we know is bogus. This increases GC time
5292 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5293 #ifdef GC_CHECK_MARKED_OBJECTS
5295 po = (void *) XPNTR (obj);
5297 /* Check that the object pointed to by PO is known to be a Lisp
5298 structure allocated from the heap. */
5299 #define CHECK_ALLOCATED() \
5300 do { \
5301 m = mem_find (po); \
5302 if (m == MEM_NIL) \
5303 abort (); \
5304 } while (0)
5306 /* Check that the object pointed to by PO is live, using predicate
5307 function LIVEP. */
5308 #define CHECK_LIVE(LIVEP) \
5309 do { \
5310 if (!LIVEP (m, po)) \
5311 abort (); \
5312 } while (0)
5314 /* Check both of the above conditions. */
5315 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5316 do { \
5317 CHECK_ALLOCATED (); \
5318 CHECK_LIVE (LIVEP); \
5319 } while (0) \
5321 #else /* not GC_CHECK_MARKED_OBJECTS */
5323 #define CHECK_ALLOCATED() (void) 0
5324 #define CHECK_LIVE(LIVEP) (void) 0
5325 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5327 #endif /* not GC_CHECK_MARKED_OBJECTS */
5329 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5331 case Lisp_String:
5333 register struct Lisp_String *ptr = XSTRING (obj);
5334 if (STRING_MARKED_P (ptr))
5335 break;
5336 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5337 MARK_INTERVAL_TREE (ptr->intervals);
5338 MARK_STRING (ptr);
5339 #ifdef GC_CHECK_STRING_BYTES
5340 /* Check that the string size recorded in the string is the
5341 same as the one recorded in the sdata structure. */
5342 CHECK_STRING_BYTES (ptr);
5343 #endif /* GC_CHECK_STRING_BYTES */
5345 break;
5347 case Lisp_Vectorlike:
5348 if (VECTOR_MARKED_P (XVECTOR (obj)))
5349 break;
5350 #ifdef GC_CHECK_MARKED_OBJECTS
5351 m = mem_find (po);
5352 if (m == MEM_NIL && !SUBRP (obj)
5353 && po != &buffer_defaults
5354 && po != &buffer_local_symbols)
5355 abort ();
5356 #endif /* GC_CHECK_MARKED_OBJECTS */
5358 if (BUFFERP (obj))
5360 #ifdef GC_CHECK_MARKED_OBJECTS
5361 if (po != &buffer_defaults && po != &buffer_local_symbols)
5363 struct buffer *b;
5364 for (b = all_buffers; b && b != po; b = b->next)
5366 if (b == NULL)
5367 abort ();
5369 #endif /* GC_CHECK_MARKED_OBJECTS */
5370 mark_buffer (obj);
5372 else if (SUBRP (obj))
5373 break;
5374 else if (COMPILEDP (obj))
5375 /* We could treat this just like a vector, but it is better to
5376 save the COMPILED_CONSTANTS element for last and avoid
5377 recursion there. */
5379 register struct Lisp_Vector *ptr = XVECTOR (obj);
5380 register EMACS_UINT size = ptr->size;
5381 register EMACS_UINT i;
5383 CHECK_LIVE (live_vector_p);
5384 VECTOR_MARK (ptr); /* Else mark it */
5385 size &= PSEUDOVECTOR_SIZE_MASK;
5386 for (i = 0; i < size; i++) /* and then mark its elements */
5388 if (i != COMPILED_CONSTANTS)
5389 mark_object (ptr->contents[i]);
5391 obj = ptr->contents[COMPILED_CONSTANTS];
5392 goto loop;
5394 else if (FRAMEP (obj))
5396 register struct frame *ptr = XFRAME (obj);
5397 mark_vectorlike (XVECTOR (obj));
5398 mark_face_cache (ptr->face_cache);
5400 else if (WINDOWP (obj))
5402 register struct Lisp_Vector *ptr = XVECTOR (obj);
5403 struct window *w = XWINDOW (obj);
5404 mark_vectorlike (ptr);
5405 /* Mark glyphs for leaf windows. Marking window matrices is
5406 sufficient because frame matrices use the same glyph
5407 memory. */
5408 if (NILP (w->hchild)
5409 && NILP (w->vchild)
5410 && w->current_matrix)
5412 mark_glyph_matrix (w->current_matrix);
5413 mark_glyph_matrix (w->desired_matrix);
5416 else if (HASH_TABLE_P (obj))
5418 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5419 mark_vectorlike ((struct Lisp_Vector *)h);
5420 /* If hash table is not weak, mark all keys and values.
5421 For weak tables, mark only the vector. */
5422 if (NILP (h->weak))
5423 mark_object (h->key_and_value);
5424 else
5425 VECTOR_MARK (XVECTOR (h->key_and_value));
5427 else if (CHAR_TABLE_P (obj))
5428 mark_char_table (XVECTOR (obj));
5429 else
5430 mark_vectorlike (XVECTOR (obj));
5431 break;
5433 case Lisp_Symbol:
5435 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5436 struct Lisp_Symbol *ptrx;
5438 if (ptr->gcmarkbit)
5439 break;
5440 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5441 ptr->gcmarkbit = 1;
5442 mark_object (ptr->function);
5443 mark_object (ptr->plist);
5444 switch (ptr->redirect)
5446 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5447 case SYMBOL_VARALIAS:
5449 Lisp_Object tem;
5450 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5451 mark_object (tem);
5452 break;
5454 case SYMBOL_LOCALIZED:
5456 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5457 /* If the value is forwarded to a buffer or keyboard field,
5458 these are marked when we see the corresponding object.
5459 And if it's forwarded to a C variable, either it's not
5460 a Lisp_Object var, or it's staticpro'd already. */
5461 mark_object (blv->where);
5462 mark_object (blv->valcell);
5463 mark_object (blv->defcell);
5464 break;
5466 case SYMBOL_FORWARDED:
5467 /* If the value is forwarded to a buffer or keyboard field,
5468 these are marked when we see the corresponding object.
5469 And if it's forwarded to a C variable, either it's not
5470 a Lisp_Object var, or it's staticpro'd already. */
5471 break;
5472 default: abort ();
5474 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5475 MARK_STRING (XSTRING (ptr->xname));
5476 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5478 ptr = ptr->next;
5479 if (ptr)
5481 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5482 XSETSYMBOL (obj, ptrx);
5483 goto loop;
5486 break;
5488 case Lisp_Misc:
5489 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5490 if (XMISCANY (obj)->gcmarkbit)
5491 break;
5492 XMISCANY (obj)->gcmarkbit = 1;
5494 switch (XMISCTYPE (obj))
5497 case Lisp_Misc_Marker:
5498 /* DO NOT mark thru the marker's chain.
5499 The buffer's markers chain does not preserve markers from gc;
5500 instead, markers are removed from the chain when freed by gc. */
5501 break;
5503 case Lisp_Misc_Save_Value:
5504 #if GC_MARK_STACK
5506 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5507 /* If DOGC is set, POINTER is the address of a memory
5508 area containing INTEGER potential Lisp_Objects. */
5509 if (ptr->dogc)
5511 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5512 int nelt;
5513 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5514 mark_maybe_object (*p);
5517 #endif
5518 break;
5520 case Lisp_Misc_Overlay:
5522 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5523 mark_object (ptr->start);
5524 mark_object (ptr->end);
5525 mark_object (ptr->plist);
5526 if (ptr->next)
5528 XSETMISC (obj, ptr->next);
5529 goto loop;
5532 break;
5534 default:
5535 abort ();
5537 break;
5539 case Lisp_Cons:
5541 register struct Lisp_Cons *ptr = XCONS (obj);
5542 if (CONS_MARKED_P (ptr))
5543 break;
5544 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5545 CONS_MARK (ptr);
5546 /* If the cdr is nil, avoid recursion for the car. */
5547 if (EQ (ptr->u.cdr, Qnil))
5549 obj = ptr->car;
5550 cdr_count = 0;
5551 goto loop;
5553 mark_object (ptr->car);
5554 obj = ptr->u.cdr;
5555 cdr_count++;
5556 if (cdr_count == mark_object_loop_halt)
5557 abort ();
5558 goto loop;
5561 case Lisp_Float:
5562 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5563 FLOAT_MARK (XFLOAT (obj));
5564 break;
5566 case_Lisp_Int:
5567 break;
5569 default:
5570 abort ();
5573 #undef CHECK_LIVE
5574 #undef CHECK_ALLOCATED
5575 #undef CHECK_ALLOCATED_AND_LIVE
5578 /* Mark the pointers in a buffer structure. */
5580 static void
5581 mark_buffer (Lisp_Object buf)
5583 register struct buffer *buffer = XBUFFER (buf);
5584 register Lisp_Object *ptr, tmp;
5585 Lisp_Object base_buffer;
5587 eassert (!VECTOR_MARKED_P (buffer));
5588 VECTOR_MARK (buffer);
5590 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5592 /* For now, we just don't mark the undo_list. It's done later in
5593 a special way just before the sweep phase, and after stripping
5594 some of its elements that are not needed any more. */
5596 if (buffer->overlays_before)
5598 XSETMISC (tmp, buffer->overlays_before);
5599 mark_object (tmp);
5601 if (buffer->overlays_after)
5603 XSETMISC (tmp, buffer->overlays_after);
5604 mark_object (tmp);
5607 /* buffer-local Lisp variables start at `undo_list',
5608 tho only the ones from `name' on are GC'd normally. */
5609 for (ptr = &buffer->BUFFER_INTERNAL_FIELD (name);
5610 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5611 ptr++)
5612 mark_object (*ptr);
5614 /* If this is an indirect buffer, mark its base buffer. */
5615 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5617 XSETBUFFER (base_buffer, buffer->base_buffer);
5618 mark_buffer (base_buffer);
5622 /* Mark the Lisp pointers in the terminal objects.
5623 Called by the Fgarbage_collector. */
5625 static void
5626 mark_terminals (void)
5628 struct terminal *t;
5629 for (t = terminal_list; t; t = t->next_terminal)
5631 eassert (t->name != NULL);
5632 #ifdef HAVE_WINDOW_SYSTEM
5633 /* If a terminal object is reachable from a stacpro'ed object,
5634 it might have been marked already. Make sure the image cache
5635 gets marked. */
5636 mark_image_cache (t->image_cache);
5637 #endif /* HAVE_WINDOW_SYSTEM */
5638 if (!VECTOR_MARKED_P (t))
5639 mark_vectorlike ((struct Lisp_Vector *)t);
5645 /* Value is non-zero if OBJ will survive the current GC because it's
5646 either marked or does not need to be marked to survive. */
5649 survives_gc_p (Lisp_Object obj)
5651 int survives_p;
5653 switch (XTYPE (obj))
5655 case_Lisp_Int:
5656 survives_p = 1;
5657 break;
5659 case Lisp_Symbol:
5660 survives_p = XSYMBOL (obj)->gcmarkbit;
5661 break;
5663 case Lisp_Misc:
5664 survives_p = XMISCANY (obj)->gcmarkbit;
5665 break;
5667 case Lisp_String:
5668 survives_p = STRING_MARKED_P (XSTRING (obj));
5669 break;
5671 case Lisp_Vectorlike:
5672 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5673 break;
5675 case Lisp_Cons:
5676 survives_p = CONS_MARKED_P (XCONS (obj));
5677 break;
5679 case Lisp_Float:
5680 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5681 break;
5683 default:
5684 abort ();
5687 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5692 /* Sweep: find all structures not marked, and free them. */
5694 static void
5695 gc_sweep (void)
5697 /* Remove or mark entries in weak hash tables.
5698 This must be done before any object is unmarked. */
5699 sweep_weak_hash_tables ();
5701 sweep_strings ();
5702 #ifdef GC_CHECK_STRING_BYTES
5703 if (!noninteractive)
5704 check_string_bytes (1);
5705 #endif
5707 /* Put all unmarked conses on free list */
5709 register struct cons_block *cblk;
5710 struct cons_block **cprev = &cons_block;
5711 register int lim = cons_block_index;
5712 register int num_free = 0, num_used = 0;
5714 cons_free_list = 0;
5716 for (cblk = cons_block; cblk; cblk = *cprev)
5718 register int i = 0;
5719 int this_free = 0;
5720 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5722 /* Scan the mark bits an int at a time. */
5723 for (i = 0; i <= ilim; i++)
5725 if (cblk->gcmarkbits[i] == -1)
5727 /* Fast path - all cons cells for this int are marked. */
5728 cblk->gcmarkbits[i] = 0;
5729 num_used += BITS_PER_INT;
5731 else
5733 /* Some cons cells for this int are not marked.
5734 Find which ones, and free them. */
5735 int start, pos, stop;
5737 start = i * BITS_PER_INT;
5738 stop = lim - start;
5739 if (stop > BITS_PER_INT)
5740 stop = BITS_PER_INT;
5741 stop += start;
5743 for (pos = start; pos < stop; pos++)
5745 if (!CONS_MARKED_P (&cblk->conses[pos]))
5747 this_free++;
5748 cblk->conses[pos].u.chain = cons_free_list;
5749 cons_free_list = &cblk->conses[pos];
5750 #if GC_MARK_STACK
5751 cons_free_list->car = Vdead;
5752 #endif
5754 else
5756 num_used++;
5757 CONS_UNMARK (&cblk->conses[pos]);
5763 lim = CONS_BLOCK_SIZE;
5764 /* If this block contains only free conses and we have already
5765 seen more than two blocks worth of free conses then deallocate
5766 this block. */
5767 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5769 *cprev = cblk->next;
5770 /* Unhook from the free list. */
5771 cons_free_list = cblk->conses[0].u.chain;
5772 lisp_align_free (cblk);
5773 n_cons_blocks--;
5775 else
5777 num_free += this_free;
5778 cprev = &cblk->next;
5781 total_conses = num_used;
5782 total_free_conses = num_free;
5785 /* Put all unmarked floats on free list */
5787 register struct float_block *fblk;
5788 struct float_block **fprev = &float_block;
5789 register int lim = float_block_index;
5790 register int num_free = 0, num_used = 0;
5792 float_free_list = 0;
5794 for (fblk = float_block; fblk; fblk = *fprev)
5796 register int i;
5797 int this_free = 0;
5798 for (i = 0; i < lim; i++)
5799 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5801 this_free++;
5802 fblk->floats[i].u.chain = float_free_list;
5803 float_free_list = &fblk->floats[i];
5805 else
5807 num_used++;
5808 FLOAT_UNMARK (&fblk->floats[i]);
5810 lim = FLOAT_BLOCK_SIZE;
5811 /* If this block contains only free floats and we have already
5812 seen more than two blocks worth of free floats then deallocate
5813 this block. */
5814 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5816 *fprev = fblk->next;
5817 /* Unhook from the free list. */
5818 float_free_list = fblk->floats[0].u.chain;
5819 lisp_align_free (fblk);
5820 n_float_blocks--;
5822 else
5824 num_free += this_free;
5825 fprev = &fblk->next;
5828 total_floats = num_used;
5829 total_free_floats = num_free;
5832 /* Put all unmarked intervals on free list */
5834 register struct interval_block *iblk;
5835 struct interval_block **iprev = &interval_block;
5836 register int lim = interval_block_index;
5837 register int num_free = 0, num_used = 0;
5839 interval_free_list = 0;
5841 for (iblk = interval_block; iblk; iblk = *iprev)
5843 register int i;
5844 int this_free = 0;
5846 for (i = 0; i < lim; i++)
5848 if (!iblk->intervals[i].gcmarkbit)
5850 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5851 interval_free_list = &iblk->intervals[i];
5852 this_free++;
5854 else
5856 num_used++;
5857 iblk->intervals[i].gcmarkbit = 0;
5860 lim = INTERVAL_BLOCK_SIZE;
5861 /* If this block contains only free intervals and we have already
5862 seen more than two blocks worth of free intervals then
5863 deallocate this block. */
5864 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5866 *iprev = iblk->next;
5867 /* Unhook from the free list. */
5868 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5869 lisp_free (iblk);
5870 n_interval_blocks--;
5872 else
5874 num_free += this_free;
5875 iprev = &iblk->next;
5878 total_intervals = num_used;
5879 total_free_intervals = num_free;
5882 /* Put all unmarked symbols on free list */
5884 register struct symbol_block *sblk;
5885 struct symbol_block **sprev = &symbol_block;
5886 register int lim = symbol_block_index;
5887 register int num_free = 0, num_used = 0;
5889 symbol_free_list = NULL;
5891 for (sblk = symbol_block; sblk; sblk = *sprev)
5893 int this_free = 0;
5894 struct Lisp_Symbol *sym = sblk->symbols;
5895 struct Lisp_Symbol *end = sym + lim;
5897 for (; sym < end; ++sym)
5899 /* Check if the symbol was created during loadup. In such a case
5900 it might be pointed to by pure bytecode which we don't trace,
5901 so we conservatively assume that it is live. */
5902 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5904 if (!sym->gcmarkbit && !pure_p)
5906 if (sym->redirect == SYMBOL_LOCALIZED)
5907 xfree (SYMBOL_BLV (sym));
5908 sym->next = symbol_free_list;
5909 symbol_free_list = sym;
5910 #if GC_MARK_STACK
5911 symbol_free_list->function = Vdead;
5912 #endif
5913 ++this_free;
5915 else
5917 ++num_used;
5918 if (!pure_p)
5919 UNMARK_STRING (XSTRING (sym->xname));
5920 sym->gcmarkbit = 0;
5924 lim = SYMBOL_BLOCK_SIZE;
5925 /* If this block contains only free symbols and we have already
5926 seen more than two blocks worth of free symbols then deallocate
5927 this block. */
5928 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5930 *sprev = sblk->next;
5931 /* Unhook from the free list. */
5932 symbol_free_list = sblk->symbols[0].next;
5933 lisp_free (sblk);
5934 n_symbol_blocks--;
5936 else
5938 num_free += this_free;
5939 sprev = &sblk->next;
5942 total_symbols = num_used;
5943 total_free_symbols = num_free;
5946 /* Put all unmarked misc's on free list.
5947 For a marker, first unchain it from the buffer it points into. */
5949 register struct marker_block *mblk;
5950 struct marker_block **mprev = &marker_block;
5951 register int lim = marker_block_index;
5952 register int num_free = 0, num_used = 0;
5954 marker_free_list = 0;
5956 for (mblk = marker_block; mblk; mblk = *mprev)
5958 register int i;
5959 int this_free = 0;
5961 for (i = 0; i < lim; i++)
5963 if (!mblk->markers[i].u_any.gcmarkbit)
5965 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
5966 unchain_marker (&mblk->markers[i].u_marker);
5967 /* Set the type of the freed object to Lisp_Misc_Free.
5968 We could leave the type alone, since nobody checks it,
5969 but this might catch bugs faster. */
5970 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5971 mblk->markers[i].u_free.chain = marker_free_list;
5972 marker_free_list = &mblk->markers[i];
5973 this_free++;
5975 else
5977 num_used++;
5978 mblk->markers[i].u_any.gcmarkbit = 0;
5981 lim = MARKER_BLOCK_SIZE;
5982 /* If this block contains only free markers and we have already
5983 seen more than two blocks worth of free markers then deallocate
5984 this block. */
5985 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5987 *mprev = mblk->next;
5988 /* Unhook from the free list. */
5989 marker_free_list = mblk->markers[0].u_free.chain;
5990 lisp_free (mblk);
5991 n_marker_blocks--;
5993 else
5995 num_free += this_free;
5996 mprev = &mblk->next;
6000 total_markers = num_used;
6001 total_free_markers = num_free;
6004 /* Free all unmarked buffers */
6006 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6008 while (buffer)
6009 if (!VECTOR_MARKED_P (buffer))
6011 if (prev)
6012 prev->next = buffer->next;
6013 else
6014 all_buffers = buffer->next;
6015 next = buffer->next;
6016 lisp_free (buffer);
6017 buffer = next;
6019 else
6021 VECTOR_UNMARK (buffer);
6022 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6023 prev = buffer, buffer = buffer->next;
6027 /* Free all unmarked vectors */
6029 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6030 total_vector_size = 0;
6032 while (vector)
6033 if (!VECTOR_MARKED_P (vector))
6035 if (prev)
6036 prev->next = vector->next;
6037 else
6038 all_vectors = vector->next;
6039 next = vector->next;
6040 lisp_free (vector);
6041 n_vectors--;
6042 vector = next;
6045 else
6047 VECTOR_UNMARK (vector);
6048 if (vector->size & PSEUDOVECTOR_FLAG)
6049 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6050 else
6051 total_vector_size += vector->size;
6052 prev = vector, vector = vector->next;
6056 #ifdef GC_CHECK_STRING_BYTES
6057 if (!noninteractive)
6058 check_string_bytes (1);
6059 #endif
6065 /* Debugging aids. */
6067 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6068 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6069 This may be helpful in debugging Emacs's memory usage.
6070 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6071 (void)
6073 Lisp_Object end;
6075 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
6077 return end;
6080 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6081 doc: /* Return a list of counters that measure how much consing there has been.
6082 Each of these counters increments for a certain kind of object.
6083 The counters wrap around from the largest positive integer to zero.
6084 Garbage collection does not decrease them.
6085 The elements of the value are as follows:
6086 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6087 All are in units of 1 = one object consed
6088 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6089 objects consed.
6090 MISCS include overlays, markers, and some internal types.
6091 Frames, windows, buffers, and subprocesses count as vectors
6092 (but the contents of a buffer's text do not count here). */)
6093 (void)
6095 Lisp_Object consed[8];
6097 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6098 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6099 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6100 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6101 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6102 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6103 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6104 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6106 return Flist (8, consed);
6109 int suppress_checking;
6111 void
6112 die (const char *msg, const char *file, int line)
6114 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6115 file, line, msg);
6116 abort ();
6119 /* Initialization */
6121 void
6122 init_alloc_once (void)
6124 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6125 purebeg = PUREBEG;
6126 pure_size = PURESIZE;
6127 pure_bytes_used = 0;
6128 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6129 pure_bytes_used_before_overflow = 0;
6131 /* Initialize the list of free aligned blocks. */
6132 free_ablock = NULL;
6134 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6135 mem_init ();
6136 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6137 #endif
6139 all_vectors = 0;
6140 ignore_warnings = 1;
6141 #ifdef DOUG_LEA_MALLOC
6142 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6143 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6144 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6145 #endif
6146 init_strings ();
6147 init_cons ();
6148 init_symbol ();
6149 init_marker ();
6150 init_float ();
6151 init_intervals ();
6152 init_weak_hash_tables ();
6154 #ifdef REL_ALLOC
6155 malloc_hysteresis = 32;
6156 #else
6157 malloc_hysteresis = 0;
6158 #endif
6160 refill_memory_reserve ();
6162 ignore_warnings = 0;
6163 gcprolist = 0;
6164 byte_stack_list = 0;
6165 staticidx = 0;
6166 consing_since_gc = 0;
6167 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6168 gc_relative_threshold = 0;
6171 void
6172 init_alloc (void)
6174 gcprolist = 0;
6175 byte_stack_list = 0;
6176 #if GC_MARK_STACK
6177 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6178 setjmp_tested_p = longjmps_done = 0;
6179 #endif
6180 #endif
6181 Vgc_elapsed = make_float (0.0);
6182 gcs_done = 0;
6185 void
6186 syms_of_alloc (void)
6188 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6189 doc: /* *Number of bytes of consing between garbage collections.
6190 Garbage collection can happen automatically once this many bytes have been
6191 allocated since the last garbage collection. All data types count.
6193 Garbage collection happens automatically only when `eval' is called.
6195 By binding this temporarily to a large number, you can effectively
6196 prevent garbage collection during a part of the program.
6197 See also `gc-cons-percentage'. */);
6199 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6200 doc: /* *Portion of the heap used for allocation.
6201 Garbage collection can happen automatically once this portion of the heap
6202 has been allocated since the last garbage collection.
6203 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6204 Vgc_cons_percentage = make_float (0.1);
6206 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6207 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6209 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6210 doc: /* Number of cons cells that have been consed so far. */);
6212 DEFVAR_INT ("floats-consed", floats_consed,
6213 doc: /* Number of floats that have been consed so far. */);
6215 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6216 doc: /* Number of vector cells that have been consed so far. */);
6218 DEFVAR_INT ("symbols-consed", symbols_consed,
6219 doc: /* Number of symbols that have been consed so far. */);
6221 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6222 doc: /* Number of string characters that have been consed so far. */);
6224 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6225 doc: /* Number of miscellaneous objects that have been consed so far. */);
6227 DEFVAR_INT ("intervals-consed", intervals_consed,
6228 doc: /* Number of intervals that have been consed so far. */);
6230 DEFVAR_INT ("strings-consed", strings_consed,
6231 doc: /* Number of strings that have been consed so far. */);
6233 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6234 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6235 This means that certain objects should be allocated in shared (pure) space.
6236 It can also be set to a hash-table, in which case this table is used to
6237 do hash-consing of the objects allocated to pure space. */);
6239 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6240 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6241 garbage_collection_messages = 0;
6243 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6244 doc: /* Hook run after garbage collection has finished. */);
6245 Vpost_gc_hook = Qnil;
6246 Qpost_gc_hook = intern_c_string ("post-gc-hook");
6247 staticpro (&Qpost_gc_hook);
6249 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6250 doc: /* Precomputed `signal' argument for memory-full error. */);
6251 /* We build this in advance because if we wait until we need it, we might
6252 not be able to allocate the memory to hold it. */
6253 Vmemory_signal_data
6254 = pure_cons (Qerror,
6255 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6257 DEFVAR_LISP ("memory-full", Vmemory_full,
6258 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6259 Vmemory_full = Qnil;
6261 staticpro (&Qgc_cons_threshold);
6262 Qgc_cons_threshold = intern_c_string ("gc-cons-threshold");
6264 staticpro (&Qchar_table_extra_slots);
6265 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
6267 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6268 doc: /* Accumulated time elapsed in garbage collections.
6269 The time is in seconds as a floating point value. */);
6270 DEFVAR_INT ("gcs-done", gcs_done,
6271 doc: /* Accumulated number of garbage collections done. */);
6273 defsubr (&Scons);
6274 defsubr (&Slist);
6275 defsubr (&Svector);
6276 defsubr (&Smake_byte_code);
6277 defsubr (&Smake_list);
6278 defsubr (&Smake_vector);
6279 defsubr (&Smake_string);
6280 defsubr (&Smake_bool_vector);
6281 defsubr (&Smake_symbol);
6282 defsubr (&Smake_marker);
6283 defsubr (&Spurecopy);
6284 defsubr (&Sgarbage_collect);
6285 defsubr (&Smemory_limit);
6286 defsubr (&Smemory_use_counts);
6288 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6289 defsubr (&Sgc_status);
6290 #endif