* alloc.c (mark_stack): Move local variables into the #ifdef region where
[emacs.git] / src / alloc.c
blobfd1334a6ef7b69c42bace2ee9afb285585228001
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2011
3 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20 #include <config.h>
21 #include <stdio.h>
22 #include <limits.h> /* For CHAR_BIT. */
23 #include <setjmp.h>
25 #ifdef ALLOC_DEBUG
26 #undef INLINE
27 #endif
29 #include <signal.h>
31 #ifdef HAVE_GTK_AND_PTHREAD
32 #include <pthread.h>
33 #endif
35 /* This file is part of the core Lisp implementation, and thus must
36 deal with the real data structures. If the Lisp implementation is
37 replaced, this file likely will not be used. */
39 #undef HIDE_LISP_IMPLEMENTATION
40 #include "lisp.h"
41 #include "process.h"
42 #include "intervals.h"
43 #include "puresize.h"
44 #include "buffer.h"
45 #include "window.h"
46 #include "keyboard.h"
47 #include "frame.h"
48 #include "blockinput.h"
49 #include "character.h"
50 #include "syssignal.h"
51 #include "termhooks.h" /* For struct terminal. */
52 #include <setjmp.h>
54 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
55 memory. Can do this only if using gmalloc.c. */
57 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
58 #undef GC_MALLOC_CHECK
59 #endif
61 #include <unistd.h>
62 #ifndef HAVE_UNISTD_H
63 extern POINTER_TYPE *sbrk ();
64 #endif
66 #include <fcntl.h>
68 #ifdef WINDOWSNT
69 #include "w32.h"
70 #endif
72 #ifdef DOUG_LEA_MALLOC
74 #include <malloc.h>
75 /* malloc.h #defines this as size_t, at least in glibc2. */
76 #ifndef __malloc_size_t
77 #define __malloc_size_t int
78 #endif
80 /* Specify maximum number of areas to mmap. It would be nice to use a
81 value that explicitly means "no limit". */
83 #define MMAP_MAX_AREAS 100000000
85 #else /* not DOUG_LEA_MALLOC */
87 /* The following come from gmalloc.c. */
89 #define __malloc_size_t size_t
90 extern __malloc_size_t _bytes_used;
91 extern __malloc_size_t __malloc_extra_blocks;
93 #endif /* not DOUG_LEA_MALLOC */
95 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
97 /* When GTK uses the file chooser dialog, different backends can be loaded
98 dynamically. One such a backend is the Gnome VFS backend that gets loaded
99 if you run Gnome. That backend creates several threads and also allocates
100 memory with malloc.
102 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
103 functions below are called from malloc, there is a chance that one
104 of these threads preempts the Emacs main thread and the hook variables
105 end up in an inconsistent state. So we have a mutex to prevent that (note
106 that the backend handles concurrent access to malloc within its own threads
107 but Emacs code running in the main thread is not included in that control).
109 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
110 happens in one of the backend threads we will have two threads that tries
111 to run Emacs code at once, and the code is not prepared for that.
112 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
114 static pthread_mutex_t alloc_mutex;
116 #define BLOCK_INPUT_ALLOC \
117 do \
119 if (pthread_equal (pthread_self (), main_thread)) \
120 BLOCK_INPUT; \
121 pthread_mutex_lock (&alloc_mutex); \
123 while (0)
124 #define UNBLOCK_INPUT_ALLOC \
125 do \
127 pthread_mutex_unlock (&alloc_mutex); \
128 if (pthread_equal (pthread_self (), main_thread)) \
129 UNBLOCK_INPUT; \
131 while (0)
133 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
135 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
136 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
138 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
140 /* Value of _bytes_used, when spare_memory was freed. */
142 static __malloc_size_t bytes_used_when_full;
144 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
145 to a struct Lisp_String. */
147 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
148 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
149 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
151 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
152 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
153 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
155 /* Value is the number of bytes/chars of S, a pointer to a struct
156 Lisp_String. This must be used instead of STRING_BYTES (S) or
157 S->size during GC, because S->size contains the mark bit for
158 strings. */
160 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
161 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
163 /* Global variables. */
164 struct emacs_globals globals;
166 /* Number of bytes of consing done since the last gc. */
168 int consing_since_gc;
170 /* Similar minimum, computed from Vgc_cons_percentage. */
172 EMACS_INT gc_relative_threshold;
174 /* Minimum number of bytes of consing since GC before next GC,
175 when memory is full. */
177 EMACS_INT memory_full_cons_threshold;
179 /* Nonzero during GC. */
181 int gc_in_progress;
183 /* Nonzero means abort if try to GC.
184 This is for code which is written on the assumption that
185 no GC will happen, so as to verify that assumption. */
187 int abort_on_gc;
189 /* Number of live and free conses etc. */
191 static int total_conses, total_markers, total_symbols, total_vector_size;
192 static int total_free_conses, total_free_markers, total_free_symbols;
193 static int total_free_floats, total_floats;
195 /* Points to memory space allocated as "spare", to be freed if we run
196 out of memory. We keep one large block, four cons-blocks, and
197 two string blocks. */
199 static char *spare_memory[7];
201 /* Amount of spare memory to keep in large reserve block. */
203 #define SPARE_MEMORY (1 << 14)
205 /* Number of extra blocks malloc should get when it needs more core. */
207 static int malloc_hysteresis;
209 /* Initialize it to a nonzero value to force it into data space
210 (rather than bss space). That way unexec will remap it into text
211 space (pure), on some systems. We have not implemented the
212 remapping on more recent systems because this is less important
213 nowadays than in the days of small memories and timesharing. */
215 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
216 #define PUREBEG (char *) pure
218 /* Pointer to the pure area, and its size. */
220 static char *purebeg;
221 static size_t pure_size;
223 /* Number of bytes of pure storage used before pure storage overflowed.
224 If this is non-zero, this implies that an overflow occurred. */
226 static size_t pure_bytes_used_before_overflow;
228 /* Value is non-zero if P points into pure space. */
230 #define PURE_POINTER_P(P) \
231 (((PNTR_COMPARISON_TYPE) (P) \
232 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
233 && ((PNTR_COMPARISON_TYPE) (P) \
234 >= (PNTR_COMPARISON_TYPE) purebeg))
236 /* Index in pure at which next pure Lisp object will be allocated.. */
238 static EMACS_INT pure_bytes_used_lisp;
240 /* Number of bytes allocated for non-Lisp objects in pure storage. */
242 static EMACS_INT pure_bytes_used_non_lisp;
244 /* If nonzero, this is a warning delivered by malloc and not yet
245 displayed. */
247 const char *pending_malloc_warning;
249 /* Maximum amount of C stack to save when a GC happens. */
251 #ifndef MAX_SAVE_STACK
252 #define MAX_SAVE_STACK 16000
253 #endif
255 /* Buffer in which we save a copy of the C stack at each GC. */
257 static char *stack_copy;
258 static int stack_copy_size;
260 /* Non-zero means ignore malloc warnings. Set during initialization.
261 Currently not used. */
263 static int ignore_warnings;
265 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
267 /* Hook run after GC has finished. */
269 Lisp_Object Qpost_gc_hook;
271 static void mark_buffer (Lisp_Object);
272 static void mark_terminals (void);
273 extern void mark_backtrace (void);
274 static void gc_sweep (void);
275 static void mark_glyph_matrix (struct glyph_matrix *);
276 static void mark_face_cache (struct face_cache *);
278 static struct Lisp_String *allocate_string (void);
279 static void compact_small_strings (void);
280 static void free_large_strings (void);
281 static void sweep_strings (void);
283 extern int message_enable_multibyte;
285 /* When scanning the C stack for live Lisp objects, Emacs keeps track
286 of what memory allocated via lisp_malloc is intended for what
287 purpose. This enumeration specifies the type of memory. */
289 enum mem_type
291 MEM_TYPE_NON_LISP,
292 MEM_TYPE_BUFFER,
293 MEM_TYPE_CONS,
294 MEM_TYPE_STRING,
295 MEM_TYPE_MISC,
296 MEM_TYPE_SYMBOL,
297 MEM_TYPE_FLOAT,
298 /* We used to keep separate mem_types for subtypes of vectors such as
299 process, hash_table, frame, terminal, and window, but we never made
300 use of the distinction, so it only caused source-code complexity
301 and runtime slowdown. Minor but pointless. */
302 MEM_TYPE_VECTORLIKE
305 static POINTER_TYPE *lisp_align_malloc (size_t, enum mem_type);
306 static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
309 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
311 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
312 #include <stdio.h> /* For fprintf. */
313 #endif
315 /* A unique object in pure space used to make some Lisp objects
316 on free lists recognizable in O(1). */
318 static Lisp_Object Vdead;
320 #ifdef GC_MALLOC_CHECK
322 enum mem_type allocated_mem_type;
323 static int dont_register_blocks;
325 #endif /* GC_MALLOC_CHECK */
327 /* A node in the red-black tree describing allocated memory containing
328 Lisp data. Each such block is recorded with its start and end
329 address when it is allocated, and removed from the tree when it
330 is freed.
332 A red-black tree is a balanced binary tree with the following
333 properties:
335 1. Every node is either red or black.
336 2. Every leaf is black.
337 3. If a node is red, then both of its children are black.
338 4. Every simple path from a node to a descendant leaf contains
339 the same number of black nodes.
340 5. The root is always black.
342 When nodes are inserted into the tree, or deleted from the tree,
343 the tree is "fixed" so that these properties are always true.
345 A red-black tree with N internal nodes has height at most 2
346 log(N+1). Searches, insertions and deletions are done in O(log N).
347 Please see a text book about data structures for a detailed
348 description of red-black trees. Any book worth its salt should
349 describe them. */
351 struct mem_node
353 /* Children of this node. These pointers are never NULL. When there
354 is no child, the value is MEM_NIL, which points to a dummy node. */
355 struct mem_node *left, *right;
357 /* The parent of this node. In the root node, this is NULL. */
358 struct mem_node *parent;
360 /* Start and end of allocated region. */
361 void *start, *end;
363 /* Node color. */
364 enum {MEM_BLACK, MEM_RED} color;
366 /* Memory type. */
367 enum mem_type type;
370 /* Base address of stack. Set in main. */
372 Lisp_Object *stack_base;
374 /* Root of the tree describing allocated Lisp memory. */
376 static struct mem_node *mem_root;
378 /* Lowest and highest known address in the heap. */
380 static void *min_heap_address, *max_heap_address;
382 /* Sentinel node of the tree. */
384 static struct mem_node mem_z;
385 #define MEM_NIL &mem_z
387 static struct Lisp_Vector *allocate_vectorlike (EMACS_INT);
388 static void lisp_free (POINTER_TYPE *);
389 static void mark_stack (void);
390 static int live_vector_p (struct mem_node *, void *);
391 static int live_buffer_p (struct mem_node *, void *);
392 static int live_string_p (struct mem_node *, void *);
393 static int live_cons_p (struct mem_node *, void *);
394 static int live_symbol_p (struct mem_node *, void *);
395 static int live_float_p (struct mem_node *, void *);
396 static int live_misc_p (struct mem_node *, void *);
397 static void mark_maybe_object (Lisp_Object);
398 static void mark_memory (void *, void *, int);
399 static void mem_init (void);
400 static struct mem_node *mem_insert (void *, void *, enum mem_type);
401 static void mem_insert_fixup (struct mem_node *);
402 static void mem_rotate_left (struct mem_node *);
403 static void mem_rotate_right (struct mem_node *);
404 static void mem_delete (struct mem_node *);
405 static void mem_delete_fixup (struct mem_node *);
406 static INLINE struct mem_node *mem_find (void *);
409 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
410 static void check_gcpros (void);
411 #endif
413 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
415 /* Recording what needs to be marked for gc. */
417 struct gcpro *gcprolist;
419 /* Addresses of staticpro'd variables. Initialize it to a nonzero
420 value; otherwise some compilers put it into BSS. */
422 #define NSTATICS 0x640
423 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
425 /* Index of next unused slot in staticvec. */
427 static int staticidx = 0;
429 static POINTER_TYPE *pure_alloc (size_t, int);
432 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
433 ALIGNMENT must be a power of 2. */
435 #define ALIGN(ptr, ALIGNMENT) \
436 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
437 & ~((ALIGNMENT) - 1)))
441 /************************************************************************
442 Malloc
443 ************************************************************************/
445 /* Function malloc calls this if it finds we are near exhausting storage. */
447 void
448 malloc_warning (const char *str)
450 pending_malloc_warning = str;
454 /* Display an already-pending malloc warning. */
456 void
457 display_malloc_warning (void)
459 call3 (intern ("display-warning"),
460 intern ("alloc"),
461 build_string (pending_malloc_warning),
462 intern ("emergency"));
463 pending_malloc_warning = 0;
467 #ifdef DOUG_LEA_MALLOC
468 # define BYTES_USED (mallinfo ().uordblks)
469 #else
470 # define BYTES_USED _bytes_used
471 #endif
473 /* Called if we can't allocate relocatable space for a buffer. */
475 void
476 buffer_memory_full (void)
478 /* If buffers use the relocating allocator, no need to free
479 spare_memory, because we may have plenty of malloc space left
480 that we could get, and if we don't, the malloc that fails will
481 itself cause spare_memory to be freed. If buffers don't use the
482 relocating allocator, treat this like any other failing
483 malloc. */
485 #ifndef REL_ALLOC
486 memory_full ();
487 #endif
489 /* This used to call error, but if we've run out of memory, we could
490 get infinite recursion trying to build the string. */
491 xsignal (Qnil, Vmemory_signal_data);
495 #ifdef XMALLOC_OVERRUN_CHECK
497 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
498 and a 16 byte trailer around each block.
500 The header consists of 12 fixed bytes + a 4 byte integer contaning the
501 original block size, while the trailer consists of 16 fixed bytes.
503 The header is used to detect whether this block has been allocated
504 through these functions -- as it seems that some low-level libc
505 functions may bypass the malloc hooks.
509 #define XMALLOC_OVERRUN_CHECK_SIZE 16
511 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
512 { 0x9a, 0x9b, 0xae, 0xaf,
513 0xbf, 0xbe, 0xce, 0xcf,
514 0xea, 0xeb, 0xec, 0xed };
516 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
517 { 0xaa, 0xab, 0xac, 0xad,
518 0xba, 0xbb, 0xbc, 0xbd,
519 0xca, 0xcb, 0xcc, 0xcd,
520 0xda, 0xdb, 0xdc, 0xdd };
522 /* Macros to insert and extract the block size in the header. */
524 #define XMALLOC_PUT_SIZE(ptr, size) \
525 (ptr[-1] = (size & 0xff), \
526 ptr[-2] = ((size >> 8) & 0xff), \
527 ptr[-3] = ((size >> 16) & 0xff), \
528 ptr[-4] = ((size >> 24) & 0xff))
530 #define XMALLOC_GET_SIZE(ptr) \
531 (size_t)((unsigned)(ptr[-1]) | \
532 ((unsigned)(ptr[-2]) << 8) | \
533 ((unsigned)(ptr[-3]) << 16) | \
534 ((unsigned)(ptr[-4]) << 24))
537 /* The call depth in overrun_check functions. For example, this might happen:
538 xmalloc()
539 overrun_check_malloc()
540 -> malloc -> (via hook)_-> emacs_blocked_malloc
541 -> overrun_check_malloc
542 call malloc (hooks are NULL, so real malloc is called).
543 malloc returns 10000.
544 add overhead, return 10016.
545 <- (back in overrun_check_malloc)
546 add overhead again, return 10032
547 xmalloc returns 10032.
549 (time passes).
551 xfree(10032)
552 overrun_check_free(10032)
553 decrease overhed
554 free(10016) <- crash, because 10000 is the original pointer. */
556 static int check_depth;
558 /* Like malloc, but wraps allocated block with header and trailer. */
560 POINTER_TYPE *
561 overrun_check_malloc (size)
562 size_t size;
564 register unsigned char *val;
565 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
567 val = (unsigned char *) malloc (size + overhead);
568 if (val && check_depth == 1)
570 memcpy (val, xmalloc_overrun_check_header,
571 XMALLOC_OVERRUN_CHECK_SIZE - 4);
572 val += XMALLOC_OVERRUN_CHECK_SIZE;
573 XMALLOC_PUT_SIZE(val, size);
574 memcpy (val + size, xmalloc_overrun_check_trailer,
575 XMALLOC_OVERRUN_CHECK_SIZE);
577 --check_depth;
578 return (POINTER_TYPE *)val;
582 /* Like realloc, but checks old block for overrun, and wraps new block
583 with header and trailer. */
585 POINTER_TYPE *
586 overrun_check_realloc (block, size)
587 POINTER_TYPE *block;
588 size_t size;
590 register unsigned char *val = (unsigned char *)block;
591 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
593 if (val
594 && check_depth == 1
595 && memcmp (xmalloc_overrun_check_header,
596 val - XMALLOC_OVERRUN_CHECK_SIZE,
597 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
599 size_t osize = XMALLOC_GET_SIZE (val);
600 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
601 XMALLOC_OVERRUN_CHECK_SIZE))
602 abort ();
603 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
604 val -= XMALLOC_OVERRUN_CHECK_SIZE;
605 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
608 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
610 if (val && check_depth == 1)
612 memcpy (val, xmalloc_overrun_check_header,
613 XMALLOC_OVERRUN_CHECK_SIZE - 4);
614 val += XMALLOC_OVERRUN_CHECK_SIZE;
615 XMALLOC_PUT_SIZE(val, size);
616 memcpy (val + size, xmalloc_overrun_check_trailer,
617 XMALLOC_OVERRUN_CHECK_SIZE);
619 --check_depth;
620 return (POINTER_TYPE *)val;
623 /* Like free, but checks block for overrun. */
625 void
626 overrun_check_free (block)
627 POINTER_TYPE *block;
629 unsigned char *val = (unsigned char *)block;
631 ++check_depth;
632 if (val
633 && check_depth == 1
634 && memcmp (xmalloc_overrun_check_header,
635 val - XMALLOC_OVERRUN_CHECK_SIZE,
636 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
638 size_t osize = XMALLOC_GET_SIZE (val);
639 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
640 XMALLOC_OVERRUN_CHECK_SIZE))
641 abort ();
642 #ifdef XMALLOC_CLEAR_FREE_MEMORY
643 val -= XMALLOC_OVERRUN_CHECK_SIZE;
644 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
645 #else
646 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
647 val -= XMALLOC_OVERRUN_CHECK_SIZE;
648 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
649 #endif
652 free (val);
653 --check_depth;
656 #undef malloc
657 #undef realloc
658 #undef free
659 #define malloc overrun_check_malloc
660 #define realloc overrun_check_realloc
661 #define free overrun_check_free
662 #endif
664 #ifdef SYNC_INPUT
665 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
666 there's no need to block input around malloc. */
667 #define MALLOC_BLOCK_INPUT ((void)0)
668 #define MALLOC_UNBLOCK_INPUT ((void)0)
669 #else
670 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
671 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
672 #endif
674 /* Like malloc but check for no memory and block interrupt input.. */
676 POINTER_TYPE *
677 xmalloc (size_t size)
679 register POINTER_TYPE *val;
681 MALLOC_BLOCK_INPUT;
682 val = (POINTER_TYPE *) malloc (size);
683 MALLOC_UNBLOCK_INPUT;
685 if (!val && size)
686 memory_full ();
687 return val;
691 /* Like realloc but check for no memory and block interrupt input.. */
693 POINTER_TYPE *
694 xrealloc (POINTER_TYPE *block, size_t size)
696 register POINTER_TYPE *val;
698 MALLOC_BLOCK_INPUT;
699 /* We must call malloc explicitly when BLOCK is 0, since some
700 reallocs don't do this. */
701 if (! block)
702 val = (POINTER_TYPE *) malloc (size);
703 else
704 val = (POINTER_TYPE *) realloc (block, size);
705 MALLOC_UNBLOCK_INPUT;
707 if (!val && size) memory_full ();
708 return val;
712 /* Like free but block interrupt input. */
714 void
715 xfree (POINTER_TYPE *block)
717 if (!block)
718 return;
719 MALLOC_BLOCK_INPUT;
720 free (block);
721 MALLOC_UNBLOCK_INPUT;
722 /* We don't call refill_memory_reserve here
723 because that duplicates doing so in emacs_blocked_free
724 and the criterion should go there. */
728 /* Like strdup, but uses xmalloc. */
730 char *
731 xstrdup (const char *s)
733 size_t len = strlen (s) + 1;
734 char *p = (char *) xmalloc (len);
735 memcpy (p, s, len);
736 return p;
740 /* Unwind for SAFE_ALLOCA */
742 Lisp_Object
743 safe_alloca_unwind (Lisp_Object arg)
745 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
747 p->dogc = 0;
748 xfree (p->pointer);
749 p->pointer = 0;
750 free_misc (arg);
751 return Qnil;
755 /* Like malloc but used for allocating Lisp data. NBYTES is the
756 number of bytes to allocate, TYPE describes the intended use of the
757 allcated memory block (for strings, for conses, ...). */
759 #ifndef USE_LSB_TAG
760 static void *lisp_malloc_loser;
761 #endif
763 static POINTER_TYPE *
764 lisp_malloc (size_t nbytes, enum mem_type type)
766 register void *val;
768 MALLOC_BLOCK_INPUT;
770 #ifdef GC_MALLOC_CHECK
771 allocated_mem_type = type;
772 #endif
774 val = (void *) malloc (nbytes);
776 #ifndef USE_LSB_TAG
777 /* If the memory just allocated cannot be addressed thru a Lisp
778 object's pointer, and it needs to be,
779 that's equivalent to running out of memory. */
780 if (val && type != MEM_TYPE_NON_LISP)
782 Lisp_Object tem;
783 XSETCONS (tem, (char *) val + nbytes - 1);
784 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
786 lisp_malloc_loser = val;
787 free (val);
788 val = 0;
791 #endif
793 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
794 if (val && type != MEM_TYPE_NON_LISP)
795 mem_insert (val, (char *) val + nbytes, type);
796 #endif
798 MALLOC_UNBLOCK_INPUT;
799 if (!val && nbytes)
800 memory_full ();
801 return val;
804 /* Free BLOCK. This must be called to free memory allocated with a
805 call to lisp_malloc. */
807 static void
808 lisp_free (POINTER_TYPE *block)
810 MALLOC_BLOCK_INPUT;
811 free (block);
812 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
813 mem_delete (mem_find (block));
814 #endif
815 MALLOC_UNBLOCK_INPUT;
818 /* Allocation of aligned blocks of memory to store Lisp data. */
819 /* The entry point is lisp_align_malloc which returns blocks of at most */
820 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
822 /* Use posix_memalloc if the system has it and we're using the system's
823 malloc (because our gmalloc.c routines don't have posix_memalign although
824 its memalloc could be used). */
825 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
826 #define USE_POSIX_MEMALIGN 1
827 #endif
829 /* BLOCK_ALIGN has to be a power of 2. */
830 #define BLOCK_ALIGN (1 << 10)
832 /* Padding to leave at the end of a malloc'd block. This is to give
833 malloc a chance to minimize the amount of memory wasted to alignment.
834 It should be tuned to the particular malloc library used.
835 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
836 posix_memalign on the other hand would ideally prefer a value of 4
837 because otherwise, there's 1020 bytes wasted between each ablocks.
838 In Emacs, testing shows that those 1020 can most of the time be
839 efficiently used by malloc to place other objects, so a value of 0 can
840 still preferable unless you have a lot of aligned blocks and virtually
841 nothing else. */
842 #define BLOCK_PADDING 0
843 #define BLOCK_BYTES \
844 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
846 /* Internal data structures and constants. */
848 #define ABLOCKS_SIZE 16
850 /* An aligned block of memory. */
851 struct ablock
853 union
855 char payload[BLOCK_BYTES];
856 struct ablock *next_free;
857 } x;
858 /* `abase' is the aligned base of the ablocks. */
859 /* It is overloaded to hold the virtual `busy' field that counts
860 the number of used ablock in the parent ablocks.
861 The first ablock has the `busy' field, the others have the `abase'
862 field. To tell the difference, we assume that pointers will have
863 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
864 is used to tell whether the real base of the parent ablocks is `abase'
865 (if not, the word before the first ablock holds a pointer to the
866 real base). */
867 struct ablocks *abase;
868 /* The padding of all but the last ablock is unused. The padding of
869 the last ablock in an ablocks is not allocated. */
870 #if BLOCK_PADDING
871 char padding[BLOCK_PADDING];
872 #endif
875 /* A bunch of consecutive aligned blocks. */
876 struct ablocks
878 struct ablock blocks[ABLOCKS_SIZE];
881 /* Size of the block requested from malloc or memalign. */
882 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
884 #define ABLOCK_ABASE(block) \
885 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
886 ? (struct ablocks *)(block) \
887 : (block)->abase)
889 /* Virtual `busy' field. */
890 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
892 /* Pointer to the (not necessarily aligned) malloc block. */
893 #ifdef USE_POSIX_MEMALIGN
894 #define ABLOCKS_BASE(abase) (abase)
895 #else
896 #define ABLOCKS_BASE(abase) \
897 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
898 #endif
900 /* The list of free ablock. */
901 static struct ablock *free_ablock;
903 /* Allocate an aligned block of nbytes.
904 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
905 smaller or equal to BLOCK_BYTES. */
906 static POINTER_TYPE *
907 lisp_align_malloc (size_t nbytes, enum mem_type type)
909 void *base, *val;
910 struct ablocks *abase;
912 eassert (nbytes <= BLOCK_BYTES);
914 MALLOC_BLOCK_INPUT;
916 #ifdef GC_MALLOC_CHECK
917 allocated_mem_type = type;
918 #endif
920 if (!free_ablock)
922 int i;
923 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
925 #ifdef DOUG_LEA_MALLOC
926 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
927 because mapped region contents are not preserved in
928 a dumped Emacs. */
929 mallopt (M_MMAP_MAX, 0);
930 #endif
932 #ifdef USE_POSIX_MEMALIGN
934 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
935 if (err)
936 base = NULL;
937 abase = base;
939 #else
940 base = malloc (ABLOCKS_BYTES);
941 abase = ALIGN (base, BLOCK_ALIGN);
942 #endif
944 if (base == 0)
946 MALLOC_UNBLOCK_INPUT;
947 memory_full ();
950 aligned = (base == abase);
951 if (!aligned)
952 ((void**)abase)[-1] = base;
954 #ifdef DOUG_LEA_MALLOC
955 /* Back to a reasonable maximum of mmap'ed areas. */
956 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
957 #endif
959 #ifndef USE_LSB_TAG
960 /* If the memory just allocated cannot be addressed thru a Lisp
961 object's pointer, and it needs to be, that's equivalent to
962 running out of memory. */
963 if (type != MEM_TYPE_NON_LISP)
965 Lisp_Object tem;
966 char *end = (char *) base + ABLOCKS_BYTES - 1;
967 XSETCONS (tem, end);
968 if ((char *) XCONS (tem) != end)
970 lisp_malloc_loser = base;
971 free (base);
972 MALLOC_UNBLOCK_INPUT;
973 memory_full ();
976 #endif
978 /* Initialize the blocks and put them on the free list.
979 Is `base' was not properly aligned, we can't use the last block. */
980 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
982 abase->blocks[i].abase = abase;
983 abase->blocks[i].x.next_free = free_ablock;
984 free_ablock = &abase->blocks[i];
986 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
988 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
989 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
990 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
991 eassert (ABLOCKS_BASE (abase) == base);
992 eassert (aligned == (long) ABLOCKS_BUSY (abase));
995 abase = ABLOCK_ABASE (free_ablock);
996 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
997 val = free_ablock;
998 free_ablock = free_ablock->x.next_free;
1000 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1001 if (val && type != MEM_TYPE_NON_LISP)
1002 mem_insert (val, (char *) val + nbytes, type);
1003 #endif
1005 MALLOC_UNBLOCK_INPUT;
1006 if (!val && nbytes)
1007 memory_full ();
1009 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1010 return val;
1013 static void
1014 lisp_align_free (POINTER_TYPE *block)
1016 struct ablock *ablock = block;
1017 struct ablocks *abase = ABLOCK_ABASE (ablock);
1019 MALLOC_BLOCK_INPUT;
1020 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1021 mem_delete (mem_find (block));
1022 #endif
1023 /* Put on free list. */
1024 ablock->x.next_free = free_ablock;
1025 free_ablock = ablock;
1026 /* Update busy count. */
1027 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1029 if (2 > (long) ABLOCKS_BUSY (abase))
1030 { /* All the blocks are free. */
1031 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1032 struct ablock **tem = &free_ablock;
1033 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1035 while (*tem)
1037 if (*tem >= (struct ablock *) abase && *tem < atop)
1039 i++;
1040 *tem = (*tem)->x.next_free;
1042 else
1043 tem = &(*tem)->x.next_free;
1045 eassert ((aligned & 1) == aligned);
1046 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1047 #ifdef USE_POSIX_MEMALIGN
1048 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1049 #endif
1050 free (ABLOCKS_BASE (abase));
1052 MALLOC_UNBLOCK_INPUT;
1055 /* Return a new buffer structure allocated from the heap with
1056 a call to lisp_malloc. */
1058 struct buffer *
1059 allocate_buffer (void)
1061 struct buffer *b
1062 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1063 MEM_TYPE_BUFFER);
1064 b->size = sizeof (struct buffer) / sizeof (EMACS_INT);
1065 XSETPVECTYPE (b, PVEC_BUFFER);
1066 return b;
1070 #ifndef SYSTEM_MALLOC
1072 /* Arranging to disable input signals while we're in malloc.
1074 This only works with GNU malloc. To help out systems which can't
1075 use GNU malloc, all the calls to malloc, realloc, and free
1076 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1077 pair; unfortunately, we have no idea what C library functions
1078 might call malloc, so we can't really protect them unless you're
1079 using GNU malloc. Fortunately, most of the major operating systems
1080 can use GNU malloc. */
1082 #ifndef SYNC_INPUT
1083 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1084 there's no need to block input around malloc. */
1086 #ifndef DOUG_LEA_MALLOC
1087 extern void * (*__malloc_hook) (size_t, const void *);
1088 extern void * (*__realloc_hook) (void *, size_t, const void *);
1089 extern void (*__free_hook) (void *, const void *);
1090 /* Else declared in malloc.h, perhaps with an extra arg. */
1091 #endif /* DOUG_LEA_MALLOC */
1092 static void * (*old_malloc_hook) (size_t, const void *);
1093 static void * (*old_realloc_hook) (void *, size_t, const void*);
1094 static void (*old_free_hook) (void*, const void*);
1096 static __malloc_size_t bytes_used_when_reconsidered;
1098 /* This function is used as the hook for free to call. */
1100 static void
1101 emacs_blocked_free (void *ptr, const void *ptr2)
1103 BLOCK_INPUT_ALLOC;
1105 #ifdef GC_MALLOC_CHECK
1106 if (ptr)
1108 struct mem_node *m;
1110 m = mem_find (ptr);
1111 if (m == MEM_NIL || m->start != ptr)
1113 fprintf (stderr,
1114 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1115 abort ();
1117 else
1119 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1120 mem_delete (m);
1123 #endif /* GC_MALLOC_CHECK */
1125 __free_hook = old_free_hook;
1126 free (ptr);
1128 /* If we released our reserve (due to running out of memory),
1129 and we have a fair amount free once again,
1130 try to set aside another reserve in case we run out once more. */
1131 if (! NILP (Vmemory_full)
1132 /* Verify there is enough space that even with the malloc
1133 hysteresis this call won't run out again.
1134 The code here is correct as long as SPARE_MEMORY
1135 is substantially larger than the block size malloc uses. */
1136 && (bytes_used_when_full
1137 > ((bytes_used_when_reconsidered = BYTES_USED)
1138 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1139 refill_memory_reserve ();
1141 __free_hook = emacs_blocked_free;
1142 UNBLOCK_INPUT_ALLOC;
1146 /* This function is the malloc hook that Emacs uses. */
1148 static void *
1149 emacs_blocked_malloc (size_t size, const void *ptr)
1151 void *value;
1153 BLOCK_INPUT_ALLOC;
1154 __malloc_hook = old_malloc_hook;
1155 #ifdef DOUG_LEA_MALLOC
1156 /* Segfaults on my system. --lorentey */
1157 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1158 #else
1159 __malloc_extra_blocks = malloc_hysteresis;
1160 #endif
1162 value = (void *) malloc (size);
1164 #ifdef GC_MALLOC_CHECK
1166 struct mem_node *m = mem_find (value);
1167 if (m != MEM_NIL)
1169 fprintf (stderr, "Malloc returned %p which is already in use\n",
1170 value);
1171 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1172 m->start, m->end, (char *) m->end - (char *) m->start,
1173 m->type);
1174 abort ();
1177 if (!dont_register_blocks)
1179 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1180 allocated_mem_type = MEM_TYPE_NON_LISP;
1183 #endif /* GC_MALLOC_CHECK */
1185 __malloc_hook = emacs_blocked_malloc;
1186 UNBLOCK_INPUT_ALLOC;
1188 /* fprintf (stderr, "%p malloc\n", value); */
1189 return value;
1193 /* This function is the realloc hook that Emacs uses. */
1195 static void *
1196 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1198 void *value;
1200 BLOCK_INPUT_ALLOC;
1201 __realloc_hook = old_realloc_hook;
1203 #ifdef GC_MALLOC_CHECK
1204 if (ptr)
1206 struct mem_node *m = mem_find (ptr);
1207 if (m == MEM_NIL || m->start != ptr)
1209 fprintf (stderr,
1210 "Realloc of %p which wasn't allocated with malloc\n",
1211 ptr);
1212 abort ();
1215 mem_delete (m);
1218 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1220 /* Prevent malloc from registering blocks. */
1221 dont_register_blocks = 1;
1222 #endif /* GC_MALLOC_CHECK */
1224 value = (void *) realloc (ptr, size);
1226 #ifdef GC_MALLOC_CHECK
1227 dont_register_blocks = 0;
1230 struct mem_node *m = mem_find (value);
1231 if (m != MEM_NIL)
1233 fprintf (stderr, "Realloc returns memory that is already in use\n");
1234 abort ();
1237 /* Can't handle zero size regions in the red-black tree. */
1238 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1241 /* fprintf (stderr, "%p <- realloc\n", value); */
1242 #endif /* GC_MALLOC_CHECK */
1244 __realloc_hook = emacs_blocked_realloc;
1245 UNBLOCK_INPUT_ALLOC;
1247 return value;
1251 #ifdef HAVE_GTK_AND_PTHREAD
1252 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1253 normal malloc. Some thread implementations need this as they call
1254 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1255 calls malloc because it is the first call, and we have an endless loop. */
1257 void
1258 reset_malloc_hooks ()
1260 __free_hook = old_free_hook;
1261 __malloc_hook = old_malloc_hook;
1262 __realloc_hook = old_realloc_hook;
1264 #endif /* HAVE_GTK_AND_PTHREAD */
1267 /* Called from main to set up malloc to use our hooks. */
1269 void
1270 uninterrupt_malloc (void)
1272 #ifdef HAVE_GTK_AND_PTHREAD
1273 #ifdef DOUG_LEA_MALLOC
1274 pthread_mutexattr_t attr;
1276 /* GLIBC has a faster way to do this, but lets keep it portable.
1277 This is according to the Single UNIX Specification. */
1278 pthread_mutexattr_init (&attr);
1279 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1280 pthread_mutex_init (&alloc_mutex, &attr);
1281 #else /* !DOUG_LEA_MALLOC */
1282 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1283 and the bundled gmalloc.c doesn't require it. */
1284 pthread_mutex_init (&alloc_mutex, NULL);
1285 #endif /* !DOUG_LEA_MALLOC */
1286 #endif /* HAVE_GTK_AND_PTHREAD */
1288 if (__free_hook != emacs_blocked_free)
1289 old_free_hook = __free_hook;
1290 __free_hook = emacs_blocked_free;
1292 if (__malloc_hook != emacs_blocked_malloc)
1293 old_malloc_hook = __malloc_hook;
1294 __malloc_hook = emacs_blocked_malloc;
1296 if (__realloc_hook != emacs_blocked_realloc)
1297 old_realloc_hook = __realloc_hook;
1298 __realloc_hook = emacs_blocked_realloc;
1301 #endif /* not SYNC_INPUT */
1302 #endif /* not SYSTEM_MALLOC */
1306 /***********************************************************************
1307 Interval Allocation
1308 ***********************************************************************/
1310 /* Number of intervals allocated in an interval_block structure.
1311 The 1020 is 1024 minus malloc overhead. */
1313 #define INTERVAL_BLOCK_SIZE \
1314 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1316 /* Intervals are allocated in chunks in form of an interval_block
1317 structure. */
1319 struct interval_block
1321 /* Place `intervals' first, to preserve alignment. */
1322 struct interval intervals[INTERVAL_BLOCK_SIZE];
1323 struct interval_block *next;
1326 /* Current interval block. Its `next' pointer points to older
1327 blocks. */
1329 static struct interval_block *interval_block;
1331 /* Index in interval_block above of the next unused interval
1332 structure. */
1334 static int interval_block_index;
1336 /* Number of free and live intervals. */
1338 static int total_free_intervals, total_intervals;
1340 /* List of free intervals. */
1342 INTERVAL interval_free_list;
1344 /* Total number of interval blocks now in use. */
1346 static int n_interval_blocks;
1349 /* Initialize interval allocation. */
1351 static void
1352 init_intervals (void)
1354 interval_block = NULL;
1355 interval_block_index = INTERVAL_BLOCK_SIZE;
1356 interval_free_list = 0;
1357 n_interval_blocks = 0;
1361 /* Return a new interval. */
1363 INTERVAL
1364 make_interval (void)
1366 INTERVAL val;
1368 /* eassert (!handling_signal); */
1370 MALLOC_BLOCK_INPUT;
1372 if (interval_free_list)
1374 val = interval_free_list;
1375 interval_free_list = INTERVAL_PARENT (interval_free_list);
1377 else
1379 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1381 register struct interval_block *newi;
1383 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1384 MEM_TYPE_NON_LISP);
1386 newi->next = interval_block;
1387 interval_block = newi;
1388 interval_block_index = 0;
1389 n_interval_blocks++;
1391 val = &interval_block->intervals[interval_block_index++];
1394 MALLOC_UNBLOCK_INPUT;
1396 consing_since_gc += sizeof (struct interval);
1397 intervals_consed++;
1398 RESET_INTERVAL (val);
1399 val->gcmarkbit = 0;
1400 return val;
1404 /* Mark Lisp objects in interval I. */
1406 static void
1407 mark_interval (register INTERVAL i, Lisp_Object dummy)
1409 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1410 i->gcmarkbit = 1;
1411 mark_object (i->plist);
1415 /* Mark the interval tree rooted in TREE. Don't call this directly;
1416 use the macro MARK_INTERVAL_TREE instead. */
1418 static void
1419 mark_interval_tree (register INTERVAL tree)
1421 /* No need to test if this tree has been marked already; this
1422 function is always called through the MARK_INTERVAL_TREE macro,
1423 which takes care of that. */
1425 traverse_intervals_noorder (tree, mark_interval, Qnil);
1429 /* Mark the interval tree rooted in I. */
1431 #define MARK_INTERVAL_TREE(i) \
1432 do { \
1433 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1434 mark_interval_tree (i); \
1435 } while (0)
1438 #define UNMARK_BALANCE_INTERVALS(i) \
1439 do { \
1440 if (! NULL_INTERVAL_P (i)) \
1441 (i) = balance_intervals (i); \
1442 } while (0)
1445 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1446 can't create number objects in macros. */
1447 #ifndef make_number
1448 Lisp_Object
1449 make_number (EMACS_INT n)
1451 Lisp_Object obj;
1452 obj.s.val = n;
1453 obj.s.type = Lisp_Int;
1454 return obj;
1456 #endif
1458 /***********************************************************************
1459 String Allocation
1460 ***********************************************************************/
1462 /* Lisp_Strings are allocated in string_block structures. When a new
1463 string_block is allocated, all the Lisp_Strings it contains are
1464 added to a free-list string_free_list. When a new Lisp_String is
1465 needed, it is taken from that list. During the sweep phase of GC,
1466 string_blocks that are entirely free are freed, except two which
1467 we keep.
1469 String data is allocated from sblock structures. Strings larger
1470 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1471 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1473 Sblocks consist internally of sdata structures, one for each
1474 Lisp_String. The sdata structure points to the Lisp_String it
1475 belongs to. The Lisp_String points back to the `u.data' member of
1476 its sdata structure.
1478 When a Lisp_String is freed during GC, it is put back on
1479 string_free_list, and its `data' member and its sdata's `string'
1480 pointer is set to null. The size of the string is recorded in the
1481 `u.nbytes' member of the sdata. So, sdata structures that are no
1482 longer used, can be easily recognized, and it's easy to compact the
1483 sblocks of small strings which we do in compact_small_strings. */
1485 /* Size in bytes of an sblock structure used for small strings. This
1486 is 8192 minus malloc overhead. */
1488 #define SBLOCK_SIZE 8188
1490 /* Strings larger than this are considered large strings. String data
1491 for large strings is allocated from individual sblocks. */
1493 #define LARGE_STRING_BYTES 1024
1495 /* Structure describing string memory sub-allocated from an sblock.
1496 This is where the contents of Lisp strings are stored. */
1498 struct sdata
1500 /* Back-pointer to the string this sdata belongs to. If null, this
1501 structure is free, and the NBYTES member of the union below
1502 contains the string's byte size (the same value that STRING_BYTES
1503 would return if STRING were non-null). If non-null, STRING_BYTES
1504 (STRING) is the size of the data, and DATA contains the string's
1505 contents. */
1506 struct Lisp_String *string;
1508 #ifdef GC_CHECK_STRING_BYTES
1510 EMACS_INT nbytes;
1511 unsigned char data[1];
1513 #define SDATA_NBYTES(S) (S)->nbytes
1514 #define SDATA_DATA(S) (S)->data
1516 #else /* not GC_CHECK_STRING_BYTES */
1518 union
1520 /* When STRING in non-null. */
1521 unsigned char data[1];
1523 /* When STRING is null. */
1524 EMACS_INT nbytes;
1525 } u;
1528 #define SDATA_NBYTES(S) (S)->u.nbytes
1529 #define SDATA_DATA(S) (S)->u.data
1531 #endif /* not GC_CHECK_STRING_BYTES */
1535 /* Structure describing a block of memory which is sub-allocated to
1536 obtain string data memory for strings. Blocks for small strings
1537 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1538 as large as needed. */
1540 struct sblock
1542 /* Next in list. */
1543 struct sblock *next;
1545 /* Pointer to the next free sdata block. This points past the end
1546 of the sblock if there isn't any space left in this block. */
1547 struct sdata *next_free;
1549 /* Start of data. */
1550 struct sdata first_data;
1553 /* Number of Lisp strings in a string_block structure. The 1020 is
1554 1024 minus malloc overhead. */
1556 #define STRING_BLOCK_SIZE \
1557 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1559 /* Structure describing a block from which Lisp_String structures
1560 are allocated. */
1562 struct string_block
1564 /* Place `strings' first, to preserve alignment. */
1565 struct Lisp_String strings[STRING_BLOCK_SIZE];
1566 struct string_block *next;
1569 /* Head and tail of the list of sblock structures holding Lisp string
1570 data. We always allocate from current_sblock. The NEXT pointers
1571 in the sblock structures go from oldest_sblock to current_sblock. */
1573 static struct sblock *oldest_sblock, *current_sblock;
1575 /* List of sblocks for large strings. */
1577 static struct sblock *large_sblocks;
1579 /* List of string_block structures, and how many there are. */
1581 static struct string_block *string_blocks;
1582 static int n_string_blocks;
1584 /* Free-list of Lisp_Strings. */
1586 static struct Lisp_String *string_free_list;
1588 /* Number of live and free Lisp_Strings. */
1590 static int total_strings, total_free_strings;
1592 /* Number of bytes used by live strings. */
1594 static EMACS_INT total_string_size;
1596 /* Given a pointer to a Lisp_String S which is on the free-list
1597 string_free_list, return a pointer to its successor in the
1598 free-list. */
1600 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1602 /* Return a pointer to the sdata structure belonging to Lisp string S.
1603 S must be live, i.e. S->data must not be null. S->data is actually
1604 a pointer to the `u.data' member of its sdata structure; the
1605 structure starts at a constant offset in front of that. */
1607 #ifdef GC_CHECK_STRING_BYTES
1609 #define SDATA_OF_STRING(S) \
1610 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1611 - sizeof (EMACS_INT)))
1613 #else /* not GC_CHECK_STRING_BYTES */
1615 #define SDATA_OF_STRING(S) \
1616 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1618 #endif /* not GC_CHECK_STRING_BYTES */
1621 #ifdef GC_CHECK_STRING_OVERRUN
1623 /* We check for overrun in string data blocks by appending a small
1624 "cookie" after each allocated string data block, and check for the
1625 presence of this cookie during GC. */
1627 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1628 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1629 { 0xde, 0xad, 0xbe, 0xef };
1631 #else
1632 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1633 #endif
1635 /* Value is the size of an sdata structure large enough to hold NBYTES
1636 bytes of string data. The value returned includes a terminating
1637 NUL byte, the size of the sdata structure, and padding. */
1639 #ifdef GC_CHECK_STRING_BYTES
1641 #define SDATA_SIZE(NBYTES) \
1642 ((sizeof (struct Lisp_String *) \
1643 + (NBYTES) + 1 \
1644 + sizeof (EMACS_INT) \
1645 + sizeof (EMACS_INT) - 1) \
1646 & ~(sizeof (EMACS_INT) - 1))
1648 #else /* not GC_CHECK_STRING_BYTES */
1650 #define SDATA_SIZE(NBYTES) \
1651 ((sizeof (struct Lisp_String *) \
1652 + (NBYTES) + 1 \
1653 + sizeof (EMACS_INT) - 1) \
1654 & ~(sizeof (EMACS_INT) - 1))
1656 #endif /* not GC_CHECK_STRING_BYTES */
1658 /* Extra bytes to allocate for each string. */
1660 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1662 /* Initialize string allocation. Called from init_alloc_once. */
1664 static void
1665 init_strings (void)
1667 total_strings = total_free_strings = total_string_size = 0;
1668 oldest_sblock = current_sblock = large_sblocks = NULL;
1669 string_blocks = NULL;
1670 n_string_blocks = 0;
1671 string_free_list = NULL;
1672 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1673 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1677 #ifdef GC_CHECK_STRING_BYTES
1679 static int check_string_bytes_count;
1681 static void check_string_bytes (int);
1682 static void check_sblock (struct sblock *);
1684 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1687 /* Like GC_STRING_BYTES, but with debugging check. */
1689 EMACS_INT
1690 string_bytes (struct Lisp_String *s)
1692 EMACS_INT nbytes =
1693 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1695 if (!PURE_POINTER_P (s)
1696 && s->data
1697 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1698 abort ();
1699 return nbytes;
1702 /* Check validity of Lisp strings' string_bytes member in B. */
1704 static void
1705 check_sblock (b)
1706 struct sblock *b;
1708 struct sdata *from, *end, *from_end;
1710 end = b->next_free;
1712 for (from = &b->first_data; from < end; from = from_end)
1714 /* Compute the next FROM here because copying below may
1715 overwrite data we need to compute it. */
1716 EMACS_INT nbytes;
1718 /* Check that the string size recorded in the string is the
1719 same as the one recorded in the sdata structure. */
1720 if (from->string)
1721 CHECK_STRING_BYTES (from->string);
1723 if (from->string)
1724 nbytes = GC_STRING_BYTES (from->string);
1725 else
1726 nbytes = SDATA_NBYTES (from);
1728 nbytes = SDATA_SIZE (nbytes);
1729 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1734 /* Check validity of Lisp strings' string_bytes member. ALL_P
1735 non-zero means check all strings, otherwise check only most
1736 recently allocated strings. Used for hunting a bug. */
1738 static void
1739 check_string_bytes (all_p)
1740 int all_p;
1742 if (all_p)
1744 struct sblock *b;
1746 for (b = large_sblocks; b; b = b->next)
1748 struct Lisp_String *s = b->first_data.string;
1749 if (s)
1750 CHECK_STRING_BYTES (s);
1753 for (b = oldest_sblock; b; b = b->next)
1754 check_sblock (b);
1756 else
1757 check_sblock (current_sblock);
1760 #endif /* GC_CHECK_STRING_BYTES */
1762 #ifdef GC_CHECK_STRING_FREE_LIST
1764 /* Walk through the string free list looking for bogus next pointers.
1765 This may catch buffer overrun from a previous string. */
1767 static void
1768 check_string_free_list ()
1770 struct Lisp_String *s;
1772 /* Pop a Lisp_String off the free-list. */
1773 s = string_free_list;
1774 while (s != NULL)
1776 if ((unsigned long)s < 1024)
1777 abort();
1778 s = NEXT_FREE_LISP_STRING (s);
1781 #else
1782 #define check_string_free_list()
1783 #endif
1785 /* Return a new Lisp_String. */
1787 static struct Lisp_String *
1788 allocate_string (void)
1790 struct Lisp_String *s;
1792 /* eassert (!handling_signal); */
1794 MALLOC_BLOCK_INPUT;
1796 /* If the free-list is empty, allocate a new string_block, and
1797 add all the Lisp_Strings in it to the free-list. */
1798 if (string_free_list == NULL)
1800 struct string_block *b;
1801 int i;
1803 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1804 memset (b, 0, sizeof *b);
1805 b->next = string_blocks;
1806 string_blocks = b;
1807 ++n_string_blocks;
1809 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1811 s = b->strings + i;
1812 NEXT_FREE_LISP_STRING (s) = string_free_list;
1813 string_free_list = s;
1816 total_free_strings += STRING_BLOCK_SIZE;
1819 check_string_free_list ();
1821 /* Pop a Lisp_String off the free-list. */
1822 s = string_free_list;
1823 string_free_list = NEXT_FREE_LISP_STRING (s);
1825 MALLOC_UNBLOCK_INPUT;
1827 /* Probably not strictly necessary, but play it safe. */
1828 memset (s, 0, sizeof *s);
1830 --total_free_strings;
1831 ++total_strings;
1832 ++strings_consed;
1833 consing_since_gc += sizeof *s;
1835 #ifdef GC_CHECK_STRING_BYTES
1836 if (!noninteractive)
1838 if (++check_string_bytes_count == 200)
1840 check_string_bytes_count = 0;
1841 check_string_bytes (1);
1843 else
1844 check_string_bytes (0);
1846 #endif /* GC_CHECK_STRING_BYTES */
1848 return s;
1852 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1853 plus a NUL byte at the end. Allocate an sdata structure for S, and
1854 set S->data to its `u.data' member. Store a NUL byte at the end of
1855 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1856 S->data if it was initially non-null. */
1858 void
1859 allocate_string_data (struct Lisp_String *s,
1860 EMACS_INT nchars, EMACS_INT nbytes)
1862 struct sdata *data, *old_data;
1863 struct sblock *b;
1864 EMACS_INT needed, old_nbytes;
1866 /* Determine the number of bytes needed to store NBYTES bytes
1867 of string data. */
1868 needed = SDATA_SIZE (nbytes);
1869 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1870 old_nbytes = GC_STRING_BYTES (s);
1872 MALLOC_BLOCK_INPUT;
1874 if (nbytes > LARGE_STRING_BYTES)
1876 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1878 #ifdef DOUG_LEA_MALLOC
1879 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1880 because mapped region contents are not preserved in
1881 a dumped Emacs.
1883 In case you think of allowing it in a dumped Emacs at the
1884 cost of not being able to re-dump, there's another reason:
1885 mmap'ed data typically have an address towards the top of the
1886 address space, which won't fit into an EMACS_INT (at least on
1887 32-bit systems with the current tagging scheme). --fx */
1888 mallopt (M_MMAP_MAX, 0);
1889 #endif
1891 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1893 #ifdef DOUG_LEA_MALLOC
1894 /* Back to a reasonable maximum of mmap'ed areas. */
1895 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1896 #endif
1898 b->next_free = &b->first_data;
1899 b->first_data.string = NULL;
1900 b->next = large_sblocks;
1901 large_sblocks = b;
1903 else if (current_sblock == NULL
1904 || (((char *) current_sblock + SBLOCK_SIZE
1905 - (char *) current_sblock->next_free)
1906 < (needed + GC_STRING_EXTRA)))
1908 /* Not enough room in the current sblock. */
1909 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1910 b->next_free = &b->first_data;
1911 b->first_data.string = NULL;
1912 b->next = NULL;
1914 if (current_sblock)
1915 current_sblock->next = b;
1916 else
1917 oldest_sblock = b;
1918 current_sblock = b;
1920 else
1921 b = current_sblock;
1923 data = b->next_free;
1924 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1926 MALLOC_UNBLOCK_INPUT;
1928 data->string = s;
1929 s->data = SDATA_DATA (data);
1930 #ifdef GC_CHECK_STRING_BYTES
1931 SDATA_NBYTES (data) = nbytes;
1932 #endif
1933 s->size = nchars;
1934 s->size_byte = nbytes;
1935 s->data[nbytes] = '\0';
1936 #ifdef GC_CHECK_STRING_OVERRUN
1937 memcpy (data + needed, string_overrun_cookie, GC_STRING_OVERRUN_COOKIE_SIZE);
1938 #endif
1940 /* If S had already data assigned, mark that as free by setting its
1941 string back-pointer to null, and recording the size of the data
1942 in it. */
1943 if (old_data)
1945 SDATA_NBYTES (old_data) = old_nbytes;
1946 old_data->string = NULL;
1949 consing_since_gc += needed;
1953 /* Sweep and compact strings. */
1955 static void
1956 sweep_strings (void)
1958 struct string_block *b, *next;
1959 struct string_block *live_blocks = NULL;
1961 string_free_list = NULL;
1962 total_strings = total_free_strings = 0;
1963 total_string_size = 0;
1965 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1966 for (b = string_blocks; b; b = next)
1968 int i, nfree = 0;
1969 struct Lisp_String *free_list_before = string_free_list;
1971 next = b->next;
1973 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1975 struct Lisp_String *s = b->strings + i;
1977 if (s->data)
1979 /* String was not on free-list before. */
1980 if (STRING_MARKED_P (s))
1982 /* String is live; unmark it and its intervals. */
1983 UNMARK_STRING (s);
1985 if (!NULL_INTERVAL_P (s->intervals))
1986 UNMARK_BALANCE_INTERVALS (s->intervals);
1988 ++total_strings;
1989 total_string_size += STRING_BYTES (s);
1991 else
1993 /* String is dead. Put it on the free-list. */
1994 struct sdata *data = SDATA_OF_STRING (s);
1996 /* Save the size of S in its sdata so that we know
1997 how large that is. Reset the sdata's string
1998 back-pointer so that we know it's free. */
1999 #ifdef GC_CHECK_STRING_BYTES
2000 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2001 abort ();
2002 #else
2003 data->u.nbytes = GC_STRING_BYTES (s);
2004 #endif
2005 data->string = NULL;
2007 /* Reset the strings's `data' member so that we
2008 know it's free. */
2009 s->data = NULL;
2011 /* Put the string on the free-list. */
2012 NEXT_FREE_LISP_STRING (s) = string_free_list;
2013 string_free_list = s;
2014 ++nfree;
2017 else
2019 /* S was on the free-list before. Put it there again. */
2020 NEXT_FREE_LISP_STRING (s) = string_free_list;
2021 string_free_list = s;
2022 ++nfree;
2026 /* Free blocks that contain free Lisp_Strings only, except
2027 the first two of them. */
2028 if (nfree == STRING_BLOCK_SIZE
2029 && total_free_strings > STRING_BLOCK_SIZE)
2031 lisp_free (b);
2032 --n_string_blocks;
2033 string_free_list = free_list_before;
2035 else
2037 total_free_strings += nfree;
2038 b->next = live_blocks;
2039 live_blocks = b;
2043 check_string_free_list ();
2045 string_blocks = live_blocks;
2046 free_large_strings ();
2047 compact_small_strings ();
2049 check_string_free_list ();
2053 /* Free dead large strings. */
2055 static void
2056 free_large_strings (void)
2058 struct sblock *b, *next;
2059 struct sblock *live_blocks = NULL;
2061 for (b = large_sblocks; b; b = next)
2063 next = b->next;
2065 if (b->first_data.string == NULL)
2066 lisp_free (b);
2067 else
2069 b->next = live_blocks;
2070 live_blocks = b;
2074 large_sblocks = live_blocks;
2078 /* Compact data of small strings. Free sblocks that don't contain
2079 data of live strings after compaction. */
2081 static void
2082 compact_small_strings (void)
2084 struct sblock *b, *tb, *next;
2085 struct sdata *from, *to, *end, *tb_end;
2086 struct sdata *to_end, *from_end;
2088 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2089 to, and TB_END is the end of TB. */
2090 tb = oldest_sblock;
2091 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2092 to = &tb->first_data;
2094 /* Step through the blocks from the oldest to the youngest. We
2095 expect that old blocks will stabilize over time, so that less
2096 copying will happen this way. */
2097 for (b = oldest_sblock; b; b = b->next)
2099 end = b->next_free;
2100 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2102 for (from = &b->first_data; from < end; from = from_end)
2104 /* Compute the next FROM here because copying below may
2105 overwrite data we need to compute it. */
2106 EMACS_INT nbytes;
2108 #ifdef GC_CHECK_STRING_BYTES
2109 /* Check that the string size recorded in the string is the
2110 same as the one recorded in the sdata structure. */
2111 if (from->string
2112 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2113 abort ();
2114 #endif /* GC_CHECK_STRING_BYTES */
2116 if (from->string)
2117 nbytes = GC_STRING_BYTES (from->string);
2118 else
2119 nbytes = SDATA_NBYTES (from);
2121 if (nbytes > LARGE_STRING_BYTES)
2122 abort ();
2124 nbytes = SDATA_SIZE (nbytes);
2125 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2127 #ifdef GC_CHECK_STRING_OVERRUN
2128 if (memcmp (string_overrun_cookie,
2129 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2130 GC_STRING_OVERRUN_COOKIE_SIZE))
2131 abort ();
2132 #endif
2134 /* FROM->string non-null means it's alive. Copy its data. */
2135 if (from->string)
2137 /* If TB is full, proceed with the next sblock. */
2138 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2139 if (to_end > tb_end)
2141 tb->next_free = to;
2142 tb = tb->next;
2143 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2144 to = &tb->first_data;
2145 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2148 /* Copy, and update the string's `data' pointer. */
2149 if (from != to)
2151 xassert (tb != b || to <= from);
2152 memmove (to, from, nbytes + GC_STRING_EXTRA);
2153 to->string->data = SDATA_DATA (to);
2156 /* Advance past the sdata we copied to. */
2157 to = to_end;
2162 /* The rest of the sblocks following TB don't contain live data, so
2163 we can free them. */
2164 for (b = tb->next; b; b = next)
2166 next = b->next;
2167 lisp_free (b);
2170 tb->next_free = to;
2171 tb->next = NULL;
2172 current_sblock = tb;
2176 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2177 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2178 LENGTH must be an integer.
2179 INIT must be an integer that represents a character. */)
2180 (Lisp_Object length, Lisp_Object init)
2182 register Lisp_Object val;
2183 register unsigned char *p, *end;
2184 int c;
2185 EMACS_INT nbytes;
2187 CHECK_NATNUM (length);
2188 CHECK_NUMBER (init);
2190 c = XINT (init);
2191 if (ASCII_CHAR_P (c))
2193 nbytes = XINT (length);
2194 val = make_uninit_string (nbytes);
2195 p = SDATA (val);
2196 end = p + SCHARS (val);
2197 while (p != end)
2198 *p++ = c;
2200 else
2202 unsigned char str[MAX_MULTIBYTE_LENGTH];
2203 int len = CHAR_STRING (c, str);
2204 EMACS_INT string_len = XINT (length);
2206 if (string_len > MOST_POSITIVE_FIXNUM / len)
2207 error ("Maximum string size exceeded");
2208 nbytes = len * string_len;
2209 val = make_uninit_multibyte_string (string_len, nbytes);
2210 p = SDATA (val);
2211 end = p + nbytes;
2212 while (p != end)
2214 memcpy (p, str, len);
2215 p += len;
2219 *p = 0;
2220 return val;
2224 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2225 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2226 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2227 (Lisp_Object length, Lisp_Object init)
2229 register Lisp_Object val;
2230 struct Lisp_Bool_Vector *p;
2231 int real_init, i;
2232 EMACS_INT length_in_chars, length_in_elts;
2233 int bits_per_value;
2235 CHECK_NATNUM (length);
2237 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2239 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2240 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2241 / BOOL_VECTOR_BITS_PER_CHAR);
2243 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2244 slot `size' of the struct Lisp_Bool_Vector. */
2245 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2247 /* Get rid of any bits that would cause confusion. */
2248 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
2249 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
2250 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2252 p = XBOOL_VECTOR (val);
2253 p->size = XFASTINT (length);
2255 real_init = (NILP (init) ? 0 : -1);
2256 for (i = 0; i < length_in_chars ; i++)
2257 p->data[i] = real_init;
2259 /* Clear the extraneous bits in the last byte. */
2260 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2261 p->data[length_in_chars - 1]
2262 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2264 return val;
2268 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2269 of characters from the contents. This string may be unibyte or
2270 multibyte, depending on the contents. */
2272 Lisp_Object
2273 make_string (const char *contents, EMACS_INT nbytes)
2275 register Lisp_Object val;
2276 EMACS_INT nchars, multibyte_nbytes;
2278 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2279 &nchars, &multibyte_nbytes);
2280 if (nbytes == nchars || nbytes != multibyte_nbytes)
2281 /* CONTENTS contains no multibyte sequences or contains an invalid
2282 multibyte sequence. We must make unibyte string. */
2283 val = make_unibyte_string (contents, nbytes);
2284 else
2285 val = make_multibyte_string (contents, nchars, nbytes);
2286 return val;
2290 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2292 Lisp_Object
2293 make_unibyte_string (const char *contents, EMACS_INT length)
2295 register Lisp_Object val;
2296 val = make_uninit_string (length);
2297 memcpy (SDATA (val), contents, length);
2298 return val;
2302 /* Make a multibyte string from NCHARS characters occupying NBYTES
2303 bytes at CONTENTS. */
2305 Lisp_Object
2306 make_multibyte_string (const char *contents,
2307 EMACS_INT nchars, EMACS_INT nbytes)
2309 register Lisp_Object val;
2310 val = make_uninit_multibyte_string (nchars, nbytes);
2311 memcpy (SDATA (val), contents, nbytes);
2312 return val;
2316 /* Make a string from NCHARS characters occupying NBYTES bytes at
2317 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2319 Lisp_Object
2320 make_string_from_bytes (const char *contents,
2321 EMACS_INT nchars, EMACS_INT nbytes)
2323 register Lisp_Object val;
2324 val = make_uninit_multibyte_string (nchars, nbytes);
2325 memcpy (SDATA (val), contents, nbytes);
2326 if (SBYTES (val) == SCHARS (val))
2327 STRING_SET_UNIBYTE (val);
2328 return val;
2332 /* Make a string from NCHARS characters occupying NBYTES bytes at
2333 CONTENTS. The argument MULTIBYTE controls whether to label the
2334 string as multibyte. If NCHARS is negative, it counts the number of
2335 characters by itself. */
2337 Lisp_Object
2338 make_specified_string (const char *contents,
2339 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
2341 register Lisp_Object val;
2343 if (nchars < 0)
2345 if (multibyte)
2346 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2347 nbytes);
2348 else
2349 nchars = nbytes;
2351 val = make_uninit_multibyte_string (nchars, nbytes);
2352 memcpy (SDATA (val), contents, nbytes);
2353 if (!multibyte)
2354 STRING_SET_UNIBYTE (val);
2355 return val;
2359 /* Make a string from the data at STR, treating it as multibyte if the
2360 data warrants. */
2362 Lisp_Object
2363 build_string (const char *str)
2365 return make_string (str, strlen (str));
2369 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2370 occupying LENGTH bytes. */
2372 Lisp_Object
2373 make_uninit_string (EMACS_INT length)
2375 Lisp_Object val;
2377 if (!length)
2378 return empty_unibyte_string;
2379 val = make_uninit_multibyte_string (length, length);
2380 STRING_SET_UNIBYTE (val);
2381 return val;
2385 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2386 which occupy NBYTES bytes. */
2388 Lisp_Object
2389 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2391 Lisp_Object string;
2392 struct Lisp_String *s;
2394 if (nchars < 0)
2395 abort ();
2396 if (!nbytes)
2397 return empty_multibyte_string;
2399 s = allocate_string ();
2400 allocate_string_data (s, nchars, nbytes);
2401 XSETSTRING (string, s);
2402 string_chars_consed += nbytes;
2403 return string;
2408 /***********************************************************************
2409 Float Allocation
2410 ***********************************************************************/
2412 /* We store float cells inside of float_blocks, allocating a new
2413 float_block with malloc whenever necessary. Float cells reclaimed
2414 by GC are put on a free list to be reallocated before allocating
2415 any new float cells from the latest float_block. */
2417 #define FLOAT_BLOCK_SIZE \
2418 (((BLOCK_BYTES - sizeof (struct float_block *) \
2419 /* The compiler might add padding at the end. */ \
2420 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2421 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2423 #define GETMARKBIT(block,n) \
2424 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2425 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2426 & 1)
2428 #define SETMARKBIT(block,n) \
2429 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2430 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2432 #define UNSETMARKBIT(block,n) \
2433 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2434 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2436 #define FLOAT_BLOCK(fptr) \
2437 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2439 #define FLOAT_INDEX(fptr) \
2440 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2442 struct float_block
2444 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2445 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2446 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2447 struct float_block *next;
2450 #define FLOAT_MARKED_P(fptr) \
2451 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2453 #define FLOAT_MARK(fptr) \
2454 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2456 #define FLOAT_UNMARK(fptr) \
2457 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2459 /* Current float_block. */
2461 struct float_block *float_block;
2463 /* Index of first unused Lisp_Float in the current float_block. */
2465 int float_block_index;
2467 /* Total number of float blocks now in use. */
2469 int n_float_blocks;
2471 /* Free-list of Lisp_Floats. */
2473 struct Lisp_Float *float_free_list;
2476 /* Initialize float allocation. */
2478 static void
2479 init_float (void)
2481 float_block = NULL;
2482 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2483 float_free_list = 0;
2484 n_float_blocks = 0;
2488 /* Return a new float object with value FLOAT_VALUE. */
2490 Lisp_Object
2491 make_float (double float_value)
2493 register Lisp_Object val;
2495 /* eassert (!handling_signal); */
2497 MALLOC_BLOCK_INPUT;
2499 if (float_free_list)
2501 /* We use the data field for chaining the free list
2502 so that we won't use the same field that has the mark bit. */
2503 XSETFLOAT (val, float_free_list);
2504 float_free_list = float_free_list->u.chain;
2506 else
2508 if (float_block_index == FLOAT_BLOCK_SIZE)
2510 register struct float_block *new;
2512 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2513 MEM_TYPE_FLOAT);
2514 new->next = float_block;
2515 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2516 float_block = new;
2517 float_block_index = 0;
2518 n_float_blocks++;
2520 XSETFLOAT (val, &float_block->floats[float_block_index]);
2521 float_block_index++;
2524 MALLOC_UNBLOCK_INPUT;
2526 XFLOAT_INIT (val, float_value);
2527 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2528 consing_since_gc += sizeof (struct Lisp_Float);
2529 floats_consed++;
2530 return val;
2535 /***********************************************************************
2536 Cons Allocation
2537 ***********************************************************************/
2539 /* We store cons cells inside of cons_blocks, allocating a new
2540 cons_block with malloc whenever necessary. Cons cells reclaimed by
2541 GC are put on a free list to be reallocated before allocating
2542 any new cons cells from the latest cons_block. */
2544 #define CONS_BLOCK_SIZE \
2545 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2546 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2548 #define CONS_BLOCK(fptr) \
2549 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2551 #define CONS_INDEX(fptr) \
2552 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2554 struct cons_block
2556 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2557 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2558 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2559 struct cons_block *next;
2562 #define CONS_MARKED_P(fptr) \
2563 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2565 #define CONS_MARK(fptr) \
2566 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2568 #define CONS_UNMARK(fptr) \
2569 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2571 /* Current cons_block. */
2573 struct cons_block *cons_block;
2575 /* Index of first unused Lisp_Cons in the current block. */
2577 int cons_block_index;
2579 /* Free-list of Lisp_Cons structures. */
2581 struct Lisp_Cons *cons_free_list;
2583 /* Total number of cons blocks now in use. */
2585 static int n_cons_blocks;
2588 /* Initialize cons allocation. */
2590 static void
2591 init_cons (void)
2593 cons_block = NULL;
2594 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2595 cons_free_list = 0;
2596 n_cons_blocks = 0;
2600 /* Explicitly free a cons cell by putting it on the free-list. */
2602 void
2603 free_cons (struct Lisp_Cons *ptr)
2605 ptr->u.chain = cons_free_list;
2606 #if GC_MARK_STACK
2607 ptr->car = Vdead;
2608 #endif
2609 cons_free_list = ptr;
2612 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2613 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2614 (Lisp_Object car, Lisp_Object cdr)
2616 register Lisp_Object val;
2618 /* eassert (!handling_signal); */
2620 MALLOC_BLOCK_INPUT;
2622 if (cons_free_list)
2624 /* We use the cdr for chaining the free list
2625 so that we won't use the same field that has the mark bit. */
2626 XSETCONS (val, cons_free_list);
2627 cons_free_list = cons_free_list->u.chain;
2629 else
2631 if (cons_block_index == CONS_BLOCK_SIZE)
2633 register struct cons_block *new;
2634 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2635 MEM_TYPE_CONS);
2636 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2637 new->next = cons_block;
2638 cons_block = new;
2639 cons_block_index = 0;
2640 n_cons_blocks++;
2642 XSETCONS (val, &cons_block->conses[cons_block_index]);
2643 cons_block_index++;
2646 MALLOC_UNBLOCK_INPUT;
2648 XSETCAR (val, car);
2649 XSETCDR (val, cdr);
2650 eassert (!CONS_MARKED_P (XCONS (val)));
2651 consing_since_gc += sizeof (struct Lisp_Cons);
2652 cons_cells_consed++;
2653 return val;
2656 #ifdef GC_CHECK_CONS_LIST
2657 /* Get an error now if there's any junk in the cons free list. */
2658 void
2659 check_cons_list (void)
2661 struct Lisp_Cons *tail = cons_free_list;
2663 while (tail)
2664 tail = tail->u.chain;
2666 #endif
2668 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2670 Lisp_Object
2671 list1 (Lisp_Object arg1)
2673 return Fcons (arg1, Qnil);
2676 Lisp_Object
2677 list2 (Lisp_Object arg1, Lisp_Object arg2)
2679 return Fcons (arg1, Fcons (arg2, Qnil));
2683 Lisp_Object
2684 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2686 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2690 Lisp_Object
2691 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2693 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2697 Lisp_Object
2698 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2700 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2701 Fcons (arg5, Qnil)))));
2705 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2706 doc: /* Return a newly created list with specified arguments as elements.
2707 Any number of arguments, even zero arguments, are allowed.
2708 usage: (list &rest OBJECTS) */)
2709 (int nargs, register Lisp_Object *args)
2711 register Lisp_Object val;
2712 val = Qnil;
2714 while (nargs > 0)
2716 nargs--;
2717 val = Fcons (args[nargs], val);
2719 return val;
2723 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2724 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2725 (register Lisp_Object length, Lisp_Object init)
2727 register Lisp_Object val;
2728 register EMACS_INT size;
2730 CHECK_NATNUM (length);
2731 size = XFASTINT (length);
2733 val = Qnil;
2734 while (size > 0)
2736 val = Fcons (init, val);
2737 --size;
2739 if (size > 0)
2741 val = Fcons (init, val);
2742 --size;
2744 if (size > 0)
2746 val = Fcons (init, val);
2747 --size;
2749 if (size > 0)
2751 val = Fcons (init, val);
2752 --size;
2754 if (size > 0)
2756 val = Fcons (init, val);
2757 --size;
2763 QUIT;
2766 return val;
2771 /***********************************************************************
2772 Vector Allocation
2773 ***********************************************************************/
2775 /* Singly-linked list of all vectors. */
2777 static struct Lisp_Vector *all_vectors;
2779 /* Total number of vector-like objects now in use. */
2781 static int n_vectors;
2784 /* Value is a pointer to a newly allocated Lisp_Vector structure
2785 with room for LEN Lisp_Objects. */
2787 static struct Lisp_Vector *
2788 allocate_vectorlike (EMACS_INT len)
2790 struct Lisp_Vector *p;
2791 size_t nbytes;
2793 MALLOC_BLOCK_INPUT;
2795 #ifdef DOUG_LEA_MALLOC
2796 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2797 because mapped region contents are not preserved in
2798 a dumped Emacs. */
2799 mallopt (M_MMAP_MAX, 0);
2800 #endif
2802 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2803 /* eassert (!handling_signal); */
2805 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2806 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2808 #ifdef DOUG_LEA_MALLOC
2809 /* Back to a reasonable maximum of mmap'ed areas. */
2810 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2811 #endif
2813 consing_since_gc += nbytes;
2814 vector_cells_consed += len;
2816 p->next = all_vectors;
2817 all_vectors = p;
2819 MALLOC_UNBLOCK_INPUT;
2821 ++n_vectors;
2822 return p;
2826 /* Allocate a vector with NSLOTS slots. */
2828 struct Lisp_Vector *
2829 allocate_vector (EMACS_INT nslots)
2831 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2832 v->size = nslots;
2833 return v;
2837 /* Allocate other vector-like structures. */
2839 struct Lisp_Vector *
2840 allocate_pseudovector (int memlen, int lisplen, EMACS_INT tag)
2842 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2843 EMACS_INT i;
2845 /* Only the first lisplen slots will be traced normally by the GC. */
2846 v->size = lisplen;
2847 for (i = 0; i < lisplen; ++i)
2848 v->contents[i] = Qnil;
2850 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2851 return v;
2854 struct Lisp_Hash_Table *
2855 allocate_hash_table (void)
2857 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2861 struct window *
2862 allocate_window (void)
2864 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
2868 struct terminal *
2869 allocate_terminal (void)
2871 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
2872 next_terminal, PVEC_TERMINAL);
2873 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2874 memset (&t->next_terminal, 0,
2875 (char*) (t + 1) - (char*) &t->next_terminal);
2877 return t;
2880 struct frame *
2881 allocate_frame (void)
2883 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
2884 face_cache, PVEC_FRAME);
2885 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2886 memset (&f->face_cache, 0,
2887 (char *) (f + 1) - (char *) &f->face_cache);
2888 return f;
2892 struct Lisp_Process *
2893 allocate_process (void)
2895 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
2899 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2900 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2901 See also the function `vector'. */)
2902 (register Lisp_Object length, Lisp_Object init)
2904 Lisp_Object vector;
2905 register EMACS_INT sizei;
2906 register EMACS_INT i;
2907 register struct Lisp_Vector *p;
2909 CHECK_NATNUM (length);
2910 sizei = XFASTINT (length);
2912 p = allocate_vector (sizei);
2913 for (i = 0; i < sizei; i++)
2914 p->contents[i] = init;
2916 XSETVECTOR (vector, p);
2917 return vector;
2921 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2922 doc: /* Return a newly created vector with specified arguments as elements.
2923 Any number of arguments, even zero arguments, are allowed.
2924 usage: (vector &rest OBJECTS) */)
2925 (register int nargs, Lisp_Object *args)
2927 register Lisp_Object len, val;
2928 register int i;
2929 register struct Lisp_Vector *p;
2931 XSETFASTINT (len, nargs);
2932 val = Fmake_vector (len, Qnil);
2933 p = XVECTOR (val);
2934 for (i = 0; i < nargs; i++)
2935 p->contents[i] = args[i];
2936 return val;
2940 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2941 doc: /* Create a byte-code object with specified arguments as elements.
2942 The arguments should be the arglist, bytecode-string, constant vector,
2943 stack size, (optional) doc string, and (optional) interactive spec.
2944 The first four arguments are required; at most six have any
2945 significance.
2946 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2947 (register int nargs, Lisp_Object *args)
2949 register Lisp_Object len, val;
2950 register int i;
2951 register struct Lisp_Vector *p;
2953 XSETFASTINT (len, nargs);
2954 if (!NILP (Vpurify_flag))
2955 val = make_pure_vector ((EMACS_INT) nargs);
2956 else
2957 val = Fmake_vector (len, Qnil);
2959 if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2960 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2961 earlier because they produced a raw 8-bit string for byte-code
2962 and now such a byte-code string is loaded as multibyte while
2963 raw 8-bit characters converted to multibyte form. Thus, now we
2964 must convert them back to the original unibyte form. */
2965 args[1] = Fstring_as_unibyte (args[1]);
2967 p = XVECTOR (val);
2968 for (i = 0; i < nargs; i++)
2970 if (!NILP (Vpurify_flag))
2971 args[i] = Fpurecopy (args[i]);
2972 p->contents[i] = args[i];
2974 XSETPVECTYPE (p, PVEC_COMPILED);
2975 XSETCOMPILED (val, p);
2976 return val;
2981 /***********************************************************************
2982 Symbol Allocation
2983 ***********************************************************************/
2985 /* Each symbol_block is just under 1020 bytes long, since malloc
2986 really allocates in units of powers of two and uses 4 bytes for its
2987 own overhead. */
2989 #define SYMBOL_BLOCK_SIZE \
2990 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2992 struct symbol_block
2994 /* Place `symbols' first, to preserve alignment. */
2995 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
2996 struct symbol_block *next;
2999 /* Current symbol block and index of first unused Lisp_Symbol
3000 structure in it. */
3002 static struct symbol_block *symbol_block;
3003 static int symbol_block_index;
3005 /* List of free symbols. */
3007 static struct Lisp_Symbol *symbol_free_list;
3009 /* Total number of symbol blocks now in use. */
3011 static int n_symbol_blocks;
3014 /* Initialize symbol allocation. */
3016 static void
3017 init_symbol (void)
3019 symbol_block = NULL;
3020 symbol_block_index = SYMBOL_BLOCK_SIZE;
3021 symbol_free_list = 0;
3022 n_symbol_blocks = 0;
3026 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3027 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3028 Its value and function definition are void, and its property list is nil. */)
3029 (Lisp_Object name)
3031 register Lisp_Object val;
3032 register struct Lisp_Symbol *p;
3034 CHECK_STRING (name);
3036 /* eassert (!handling_signal); */
3038 MALLOC_BLOCK_INPUT;
3040 if (symbol_free_list)
3042 XSETSYMBOL (val, symbol_free_list);
3043 symbol_free_list = symbol_free_list->next;
3045 else
3047 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3049 struct symbol_block *new;
3050 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3051 MEM_TYPE_SYMBOL);
3052 new->next = symbol_block;
3053 symbol_block = new;
3054 symbol_block_index = 0;
3055 n_symbol_blocks++;
3057 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3058 symbol_block_index++;
3061 MALLOC_UNBLOCK_INPUT;
3063 p = XSYMBOL (val);
3064 p->xname = name;
3065 p->plist = Qnil;
3066 p->redirect = SYMBOL_PLAINVAL;
3067 SET_SYMBOL_VAL (p, Qunbound);
3068 p->function = Qunbound;
3069 p->next = NULL;
3070 p->gcmarkbit = 0;
3071 p->interned = SYMBOL_UNINTERNED;
3072 p->constant = 0;
3073 consing_since_gc += sizeof (struct Lisp_Symbol);
3074 symbols_consed++;
3075 return val;
3080 /***********************************************************************
3081 Marker (Misc) Allocation
3082 ***********************************************************************/
3084 /* Allocation of markers and other objects that share that structure.
3085 Works like allocation of conses. */
3087 #define MARKER_BLOCK_SIZE \
3088 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3090 struct marker_block
3092 /* Place `markers' first, to preserve alignment. */
3093 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3094 struct marker_block *next;
3097 static struct marker_block *marker_block;
3098 static int marker_block_index;
3100 static union Lisp_Misc *marker_free_list;
3102 /* Total number of marker blocks now in use. */
3104 static int n_marker_blocks;
3106 static void
3107 init_marker (void)
3109 marker_block = NULL;
3110 marker_block_index = MARKER_BLOCK_SIZE;
3111 marker_free_list = 0;
3112 n_marker_blocks = 0;
3115 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3117 Lisp_Object
3118 allocate_misc (void)
3120 Lisp_Object val;
3122 /* eassert (!handling_signal); */
3124 MALLOC_BLOCK_INPUT;
3126 if (marker_free_list)
3128 XSETMISC (val, marker_free_list);
3129 marker_free_list = marker_free_list->u_free.chain;
3131 else
3133 if (marker_block_index == MARKER_BLOCK_SIZE)
3135 struct marker_block *new;
3136 new = (struct marker_block *) lisp_malloc (sizeof *new,
3137 MEM_TYPE_MISC);
3138 new->next = marker_block;
3139 marker_block = new;
3140 marker_block_index = 0;
3141 n_marker_blocks++;
3142 total_free_markers += MARKER_BLOCK_SIZE;
3144 XSETMISC (val, &marker_block->markers[marker_block_index]);
3145 marker_block_index++;
3148 MALLOC_UNBLOCK_INPUT;
3150 --total_free_markers;
3151 consing_since_gc += sizeof (union Lisp_Misc);
3152 misc_objects_consed++;
3153 XMISCANY (val)->gcmarkbit = 0;
3154 return val;
3157 /* Free a Lisp_Misc object */
3159 void
3160 free_misc (Lisp_Object misc)
3162 XMISCTYPE (misc) = Lisp_Misc_Free;
3163 XMISC (misc)->u_free.chain = marker_free_list;
3164 marker_free_list = XMISC (misc);
3166 total_free_markers++;
3169 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3170 INTEGER. This is used to package C values to call record_unwind_protect.
3171 The unwind function can get the C values back using XSAVE_VALUE. */
3173 Lisp_Object
3174 make_save_value (void *pointer, int integer)
3176 register Lisp_Object val;
3177 register struct Lisp_Save_Value *p;
3179 val = allocate_misc ();
3180 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3181 p = XSAVE_VALUE (val);
3182 p->pointer = pointer;
3183 p->integer = integer;
3184 p->dogc = 0;
3185 return val;
3188 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3189 doc: /* Return a newly allocated marker which does not point at any place. */)
3190 (void)
3192 register Lisp_Object val;
3193 register struct Lisp_Marker *p;
3195 val = allocate_misc ();
3196 XMISCTYPE (val) = Lisp_Misc_Marker;
3197 p = XMARKER (val);
3198 p->buffer = 0;
3199 p->bytepos = 0;
3200 p->charpos = 0;
3201 p->next = NULL;
3202 p->insertion_type = 0;
3203 return val;
3206 /* Put MARKER back on the free list after using it temporarily. */
3208 void
3209 free_marker (Lisp_Object marker)
3211 unchain_marker (XMARKER (marker));
3212 free_misc (marker);
3216 /* Return a newly created vector or string with specified arguments as
3217 elements. If all the arguments are characters that can fit
3218 in a string of events, make a string; otherwise, make a vector.
3220 Any number of arguments, even zero arguments, are allowed. */
3222 Lisp_Object
3223 make_event_array (register int nargs, Lisp_Object *args)
3225 int i;
3227 for (i = 0; i < nargs; i++)
3228 /* The things that fit in a string
3229 are characters that are in 0...127,
3230 after discarding the meta bit and all the bits above it. */
3231 if (!INTEGERP (args[i])
3232 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3233 return Fvector (nargs, args);
3235 /* Since the loop exited, we know that all the things in it are
3236 characters, so we can make a string. */
3238 Lisp_Object result;
3240 result = Fmake_string (make_number (nargs), make_number (0));
3241 for (i = 0; i < nargs; i++)
3243 SSET (result, i, XINT (args[i]));
3244 /* Move the meta bit to the right place for a string char. */
3245 if (XINT (args[i]) & CHAR_META)
3246 SSET (result, i, SREF (result, i) | 0x80);
3249 return result;
3255 /************************************************************************
3256 Memory Full Handling
3257 ************************************************************************/
3260 /* Called if malloc returns zero. */
3262 void
3263 memory_full (void)
3265 int i;
3267 Vmemory_full = Qt;
3269 memory_full_cons_threshold = sizeof (struct cons_block);
3271 /* The first time we get here, free the spare memory. */
3272 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3273 if (spare_memory[i])
3275 if (i == 0)
3276 free (spare_memory[i]);
3277 else if (i >= 1 && i <= 4)
3278 lisp_align_free (spare_memory[i]);
3279 else
3280 lisp_free (spare_memory[i]);
3281 spare_memory[i] = 0;
3284 /* Record the space now used. When it decreases substantially,
3285 we can refill the memory reserve. */
3286 #ifndef SYSTEM_MALLOC
3287 bytes_used_when_full = BYTES_USED;
3288 #endif
3290 /* This used to call error, but if we've run out of memory, we could
3291 get infinite recursion trying to build the string. */
3292 xsignal (Qnil, Vmemory_signal_data);
3295 /* If we released our reserve (due to running out of memory),
3296 and we have a fair amount free once again,
3297 try to set aside another reserve in case we run out once more.
3299 This is called when a relocatable block is freed in ralloc.c,
3300 and also directly from this file, in case we're not using ralloc.c. */
3302 void
3303 refill_memory_reserve (void)
3305 #ifndef SYSTEM_MALLOC
3306 if (spare_memory[0] == 0)
3307 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3308 if (spare_memory[1] == 0)
3309 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3310 MEM_TYPE_CONS);
3311 if (spare_memory[2] == 0)
3312 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3313 MEM_TYPE_CONS);
3314 if (spare_memory[3] == 0)
3315 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3316 MEM_TYPE_CONS);
3317 if (spare_memory[4] == 0)
3318 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3319 MEM_TYPE_CONS);
3320 if (spare_memory[5] == 0)
3321 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3322 MEM_TYPE_STRING);
3323 if (spare_memory[6] == 0)
3324 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3325 MEM_TYPE_STRING);
3326 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3327 Vmemory_full = Qnil;
3328 #endif
3331 /************************************************************************
3332 C Stack Marking
3333 ************************************************************************/
3335 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3337 /* Conservative C stack marking requires a method to identify possibly
3338 live Lisp objects given a pointer value. We do this by keeping
3339 track of blocks of Lisp data that are allocated in a red-black tree
3340 (see also the comment of mem_node which is the type of nodes in
3341 that tree). Function lisp_malloc adds information for an allocated
3342 block to the red-black tree with calls to mem_insert, and function
3343 lisp_free removes it with mem_delete. Functions live_string_p etc
3344 call mem_find to lookup information about a given pointer in the
3345 tree, and use that to determine if the pointer points to a Lisp
3346 object or not. */
3348 /* Initialize this part of alloc.c. */
3350 static void
3351 mem_init (void)
3353 mem_z.left = mem_z.right = MEM_NIL;
3354 mem_z.parent = NULL;
3355 mem_z.color = MEM_BLACK;
3356 mem_z.start = mem_z.end = NULL;
3357 mem_root = MEM_NIL;
3361 /* Value is a pointer to the mem_node containing START. Value is
3362 MEM_NIL if there is no node in the tree containing START. */
3364 static INLINE struct mem_node *
3365 mem_find (void *start)
3367 struct mem_node *p;
3369 if (start < min_heap_address || start > max_heap_address)
3370 return MEM_NIL;
3372 /* Make the search always successful to speed up the loop below. */
3373 mem_z.start = start;
3374 mem_z.end = (char *) start + 1;
3376 p = mem_root;
3377 while (start < p->start || start >= p->end)
3378 p = start < p->start ? p->left : p->right;
3379 return p;
3383 /* Insert a new node into the tree for a block of memory with start
3384 address START, end address END, and type TYPE. Value is a
3385 pointer to the node that was inserted. */
3387 static struct mem_node *
3388 mem_insert (void *start, void *end, enum mem_type type)
3390 struct mem_node *c, *parent, *x;
3392 if (min_heap_address == NULL || start < min_heap_address)
3393 min_heap_address = start;
3394 if (max_heap_address == NULL || end > max_heap_address)
3395 max_heap_address = end;
3397 /* See where in the tree a node for START belongs. In this
3398 particular application, it shouldn't happen that a node is already
3399 present. For debugging purposes, let's check that. */
3400 c = mem_root;
3401 parent = NULL;
3403 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3405 while (c != MEM_NIL)
3407 if (start >= c->start && start < c->end)
3408 abort ();
3409 parent = c;
3410 c = start < c->start ? c->left : c->right;
3413 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3415 while (c != MEM_NIL)
3417 parent = c;
3418 c = start < c->start ? c->left : c->right;
3421 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3423 /* Create a new node. */
3424 #ifdef GC_MALLOC_CHECK
3425 x = (struct mem_node *) _malloc_internal (sizeof *x);
3426 if (x == NULL)
3427 abort ();
3428 #else
3429 x = (struct mem_node *) xmalloc (sizeof *x);
3430 #endif
3431 x->start = start;
3432 x->end = end;
3433 x->type = type;
3434 x->parent = parent;
3435 x->left = x->right = MEM_NIL;
3436 x->color = MEM_RED;
3438 /* Insert it as child of PARENT or install it as root. */
3439 if (parent)
3441 if (start < parent->start)
3442 parent->left = x;
3443 else
3444 parent->right = x;
3446 else
3447 mem_root = x;
3449 /* Re-establish red-black tree properties. */
3450 mem_insert_fixup (x);
3452 return x;
3456 /* Re-establish the red-black properties of the tree, and thereby
3457 balance the tree, after node X has been inserted; X is always red. */
3459 static void
3460 mem_insert_fixup (struct mem_node *x)
3462 while (x != mem_root && x->parent->color == MEM_RED)
3464 /* X is red and its parent is red. This is a violation of
3465 red-black tree property #3. */
3467 if (x->parent == x->parent->parent->left)
3469 /* We're on the left side of our grandparent, and Y is our
3470 "uncle". */
3471 struct mem_node *y = x->parent->parent->right;
3473 if (y->color == MEM_RED)
3475 /* Uncle and parent are red but should be black because
3476 X is red. Change the colors accordingly and proceed
3477 with the grandparent. */
3478 x->parent->color = MEM_BLACK;
3479 y->color = MEM_BLACK;
3480 x->parent->parent->color = MEM_RED;
3481 x = x->parent->parent;
3483 else
3485 /* Parent and uncle have different colors; parent is
3486 red, uncle is black. */
3487 if (x == x->parent->right)
3489 x = x->parent;
3490 mem_rotate_left (x);
3493 x->parent->color = MEM_BLACK;
3494 x->parent->parent->color = MEM_RED;
3495 mem_rotate_right (x->parent->parent);
3498 else
3500 /* This is the symmetrical case of above. */
3501 struct mem_node *y = x->parent->parent->left;
3503 if (y->color == MEM_RED)
3505 x->parent->color = MEM_BLACK;
3506 y->color = MEM_BLACK;
3507 x->parent->parent->color = MEM_RED;
3508 x = x->parent->parent;
3510 else
3512 if (x == x->parent->left)
3514 x = x->parent;
3515 mem_rotate_right (x);
3518 x->parent->color = MEM_BLACK;
3519 x->parent->parent->color = MEM_RED;
3520 mem_rotate_left (x->parent->parent);
3525 /* The root may have been changed to red due to the algorithm. Set
3526 it to black so that property #5 is satisfied. */
3527 mem_root->color = MEM_BLACK;
3531 /* (x) (y)
3532 / \ / \
3533 a (y) ===> (x) c
3534 / \ / \
3535 b c a b */
3537 static void
3538 mem_rotate_left (struct mem_node *x)
3540 struct mem_node *y;
3542 /* Turn y's left sub-tree into x's right sub-tree. */
3543 y = x->right;
3544 x->right = y->left;
3545 if (y->left != MEM_NIL)
3546 y->left->parent = x;
3548 /* Y's parent was x's parent. */
3549 if (y != MEM_NIL)
3550 y->parent = x->parent;
3552 /* Get the parent to point to y instead of x. */
3553 if (x->parent)
3555 if (x == x->parent->left)
3556 x->parent->left = y;
3557 else
3558 x->parent->right = y;
3560 else
3561 mem_root = y;
3563 /* Put x on y's left. */
3564 y->left = x;
3565 if (x != MEM_NIL)
3566 x->parent = y;
3570 /* (x) (Y)
3571 / \ / \
3572 (y) c ===> a (x)
3573 / \ / \
3574 a b b c */
3576 static void
3577 mem_rotate_right (struct mem_node *x)
3579 struct mem_node *y = x->left;
3581 x->left = y->right;
3582 if (y->right != MEM_NIL)
3583 y->right->parent = x;
3585 if (y != MEM_NIL)
3586 y->parent = x->parent;
3587 if (x->parent)
3589 if (x == x->parent->right)
3590 x->parent->right = y;
3591 else
3592 x->parent->left = y;
3594 else
3595 mem_root = y;
3597 y->right = x;
3598 if (x != MEM_NIL)
3599 x->parent = y;
3603 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3605 static void
3606 mem_delete (struct mem_node *z)
3608 struct mem_node *x, *y;
3610 if (!z || z == MEM_NIL)
3611 return;
3613 if (z->left == MEM_NIL || z->right == MEM_NIL)
3614 y = z;
3615 else
3617 y = z->right;
3618 while (y->left != MEM_NIL)
3619 y = y->left;
3622 if (y->left != MEM_NIL)
3623 x = y->left;
3624 else
3625 x = y->right;
3627 x->parent = y->parent;
3628 if (y->parent)
3630 if (y == y->parent->left)
3631 y->parent->left = x;
3632 else
3633 y->parent->right = x;
3635 else
3636 mem_root = x;
3638 if (y != z)
3640 z->start = y->start;
3641 z->end = y->end;
3642 z->type = y->type;
3645 if (y->color == MEM_BLACK)
3646 mem_delete_fixup (x);
3648 #ifdef GC_MALLOC_CHECK
3649 _free_internal (y);
3650 #else
3651 xfree (y);
3652 #endif
3656 /* Re-establish the red-black properties of the tree, after a
3657 deletion. */
3659 static void
3660 mem_delete_fixup (struct mem_node *x)
3662 while (x != mem_root && x->color == MEM_BLACK)
3664 if (x == x->parent->left)
3666 struct mem_node *w = x->parent->right;
3668 if (w->color == MEM_RED)
3670 w->color = MEM_BLACK;
3671 x->parent->color = MEM_RED;
3672 mem_rotate_left (x->parent);
3673 w = x->parent->right;
3676 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3678 w->color = MEM_RED;
3679 x = x->parent;
3681 else
3683 if (w->right->color == MEM_BLACK)
3685 w->left->color = MEM_BLACK;
3686 w->color = MEM_RED;
3687 mem_rotate_right (w);
3688 w = x->parent->right;
3690 w->color = x->parent->color;
3691 x->parent->color = MEM_BLACK;
3692 w->right->color = MEM_BLACK;
3693 mem_rotate_left (x->parent);
3694 x = mem_root;
3697 else
3699 struct mem_node *w = x->parent->left;
3701 if (w->color == MEM_RED)
3703 w->color = MEM_BLACK;
3704 x->parent->color = MEM_RED;
3705 mem_rotate_right (x->parent);
3706 w = x->parent->left;
3709 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3711 w->color = MEM_RED;
3712 x = x->parent;
3714 else
3716 if (w->left->color == MEM_BLACK)
3718 w->right->color = MEM_BLACK;
3719 w->color = MEM_RED;
3720 mem_rotate_left (w);
3721 w = x->parent->left;
3724 w->color = x->parent->color;
3725 x->parent->color = MEM_BLACK;
3726 w->left->color = MEM_BLACK;
3727 mem_rotate_right (x->parent);
3728 x = mem_root;
3733 x->color = MEM_BLACK;
3737 /* Value is non-zero if P is a pointer to a live Lisp string on
3738 the heap. M is a pointer to the mem_block for P. */
3740 static INLINE int
3741 live_string_p (struct mem_node *m, void *p)
3743 if (m->type == MEM_TYPE_STRING)
3745 struct string_block *b = (struct string_block *) m->start;
3746 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
3748 /* P must point to the start of a Lisp_String structure, and it
3749 must not be on the free-list. */
3750 return (offset >= 0
3751 && offset % sizeof b->strings[0] == 0
3752 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3753 && ((struct Lisp_String *) p)->data != NULL);
3755 else
3756 return 0;
3760 /* Value is non-zero if P is a pointer to a live Lisp cons on
3761 the heap. M is a pointer to the mem_block for P. */
3763 static INLINE int
3764 live_cons_p (struct mem_node *m, void *p)
3766 if (m->type == MEM_TYPE_CONS)
3768 struct cons_block *b = (struct cons_block *) m->start;
3769 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
3771 /* P must point to the start of a Lisp_Cons, not be
3772 one of the unused cells in the current cons block,
3773 and not be on the free-list. */
3774 return (offset >= 0
3775 && offset % sizeof b->conses[0] == 0
3776 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3777 && (b != cons_block
3778 || offset / sizeof b->conses[0] < cons_block_index)
3779 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3781 else
3782 return 0;
3786 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3787 the heap. M is a pointer to the mem_block for P. */
3789 static INLINE int
3790 live_symbol_p (struct mem_node *m, void *p)
3792 if (m->type == MEM_TYPE_SYMBOL)
3794 struct symbol_block *b = (struct symbol_block *) m->start;
3795 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
3797 /* P must point to the start of a Lisp_Symbol, not be
3798 one of the unused cells in the current symbol block,
3799 and not be on the free-list. */
3800 return (offset >= 0
3801 && offset % sizeof b->symbols[0] == 0
3802 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3803 && (b != symbol_block
3804 || offset / sizeof b->symbols[0] < symbol_block_index)
3805 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3807 else
3808 return 0;
3812 /* Value is non-zero if P is a pointer to a live Lisp float on
3813 the heap. M is a pointer to the mem_block for P. */
3815 static INLINE int
3816 live_float_p (struct mem_node *m, void *p)
3818 if (m->type == MEM_TYPE_FLOAT)
3820 struct float_block *b = (struct float_block *) m->start;
3821 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
3823 /* P must point to the start of a Lisp_Float and not be
3824 one of the unused cells in the current float block. */
3825 return (offset >= 0
3826 && offset % sizeof b->floats[0] == 0
3827 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3828 && (b != float_block
3829 || offset / sizeof b->floats[0] < float_block_index));
3831 else
3832 return 0;
3836 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3837 the heap. M is a pointer to the mem_block for P. */
3839 static INLINE int
3840 live_misc_p (struct mem_node *m, void *p)
3842 if (m->type == MEM_TYPE_MISC)
3844 struct marker_block *b = (struct marker_block *) m->start;
3845 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
3847 /* P must point to the start of a Lisp_Misc, not be
3848 one of the unused cells in the current misc block,
3849 and not be on the free-list. */
3850 return (offset >= 0
3851 && offset % sizeof b->markers[0] == 0
3852 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3853 && (b != marker_block
3854 || offset / sizeof b->markers[0] < marker_block_index)
3855 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
3857 else
3858 return 0;
3862 /* Value is non-zero if P is a pointer to a live vector-like object.
3863 M is a pointer to the mem_block for P. */
3865 static INLINE int
3866 live_vector_p (struct mem_node *m, void *p)
3868 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
3872 /* Value is non-zero if P is a pointer to a live buffer. M is a
3873 pointer to the mem_block for P. */
3875 static INLINE int
3876 live_buffer_p (struct mem_node *m, void *p)
3878 /* P must point to the start of the block, and the buffer
3879 must not have been killed. */
3880 return (m->type == MEM_TYPE_BUFFER
3881 && p == m->start
3882 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
3885 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3887 #if GC_MARK_STACK
3889 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3891 /* Array of objects that are kept alive because the C stack contains
3892 a pattern that looks like a reference to them . */
3894 #define MAX_ZOMBIES 10
3895 static Lisp_Object zombies[MAX_ZOMBIES];
3897 /* Number of zombie objects. */
3899 static int nzombies;
3901 /* Number of garbage collections. */
3903 static int ngcs;
3905 /* Average percentage of zombies per collection. */
3907 static double avg_zombies;
3909 /* Max. number of live and zombie objects. */
3911 static int max_live, max_zombies;
3913 /* Average number of live objects per GC. */
3915 static double avg_live;
3917 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3918 doc: /* Show information about live and zombie objects. */)
3919 (void)
3921 Lisp_Object args[8], zombie_list = Qnil;
3922 int i;
3923 for (i = 0; i < nzombies; i++)
3924 zombie_list = Fcons (zombies[i], zombie_list);
3925 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3926 args[1] = make_number (ngcs);
3927 args[2] = make_float (avg_live);
3928 args[3] = make_float (avg_zombies);
3929 args[4] = make_float (avg_zombies / avg_live / 100);
3930 args[5] = make_number (max_live);
3931 args[6] = make_number (max_zombies);
3932 args[7] = zombie_list;
3933 return Fmessage (8, args);
3936 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3939 /* Mark OBJ if we can prove it's a Lisp_Object. */
3941 static INLINE void
3942 mark_maybe_object (Lisp_Object obj)
3944 void *po;
3945 struct mem_node *m;
3947 if (INTEGERP (obj))
3948 return;
3950 po = (void *) XPNTR (obj);
3951 m = mem_find (po);
3953 if (m != MEM_NIL)
3955 int mark_p = 0;
3957 switch (XTYPE (obj))
3959 case Lisp_String:
3960 mark_p = (live_string_p (m, po)
3961 && !STRING_MARKED_P ((struct Lisp_String *) po));
3962 break;
3964 case Lisp_Cons:
3965 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
3966 break;
3968 case Lisp_Symbol:
3969 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
3970 break;
3972 case Lisp_Float:
3973 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
3974 break;
3976 case Lisp_Vectorlike:
3977 /* Note: can't check BUFFERP before we know it's a
3978 buffer because checking that dereferences the pointer
3979 PO which might point anywhere. */
3980 if (live_vector_p (m, po))
3981 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
3982 else if (live_buffer_p (m, po))
3983 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
3984 break;
3986 case Lisp_Misc:
3987 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
3988 break;
3990 default:
3991 break;
3994 if (mark_p)
3996 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3997 if (nzombies < MAX_ZOMBIES)
3998 zombies[nzombies] = obj;
3999 ++nzombies;
4000 #endif
4001 mark_object (obj);
4007 /* If P points to Lisp data, mark that as live if it isn't already
4008 marked. */
4010 static INLINE void
4011 mark_maybe_pointer (void *p)
4013 struct mem_node *m;
4015 /* Quickly rule out some values which can't point to Lisp data. */
4016 if ((EMACS_INT) p %
4017 #ifdef USE_LSB_TAG
4018 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4019 #else
4020 2 /* We assume that Lisp data is aligned on even addresses. */
4021 #endif
4023 return;
4025 m = mem_find (p);
4026 if (m != MEM_NIL)
4028 Lisp_Object obj = Qnil;
4030 switch (m->type)
4032 case MEM_TYPE_NON_LISP:
4033 /* Nothing to do; not a pointer to Lisp memory. */
4034 break;
4036 case MEM_TYPE_BUFFER:
4037 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4038 XSETVECTOR (obj, p);
4039 break;
4041 case MEM_TYPE_CONS:
4042 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4043 XSETCONS (obj, p);
4044 break;
4046 case MEM_TYPE_STRING:
4047 if (live_string_p (m, p)
4048 && !STRING_MARKED_P ((struct Lisp_String *) p))
4049 XSETSTRING (obj, p);
4050 break;
4052 case MEM_TYPE_MISC:
4053 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4054 XSETMISC (obj, p);
4055 break;
4057 case MEM_TYPE_SYMBOL:
4058 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4059 XSETSYMBOL (obj, p);
4060 break;
4062 case MEM_TYPE_FLOAT:
4063 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4064 XSETFLOAT (obj, p);
4065 break;
4067 case MEM_TYPE_VECTORLIKE:
4068 if (live_vector_p (m, p))
4070 Lisp_Object tem;
4071 XSETVECTOR (tem, p);
4072 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4073 obj = tem;
4075 break;
4077 default:
4078 abort ();
4081 if (!NILP (obj))
4082 mark_object (obj);
4087 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4088 or END+OFFSET..START. */
4090 static void
4091 mark_memory (void *start, void *end, int offset)
4093 Lisp_Object *p;
4094 void **pp;
4096 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4097 nzombies = 0;
4098 #endif
4100 /* Make START the pointer to the start of the memory region,
4101 if it isn't already. */
4102 if (end < start)
4104 void *tem = start;
4105 start = end;
4106 end = tem;
4109 /* Mark Lisp_Objects. */
4110 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4111 mark_maybe_object (*p);
4113 /* Mark Lisp data pointed to. This is necessary because, in some
4114 situations, the C compiler optimizes Lisp objects away, so that
4115 only a pointer to them remains. Example:
4117 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4120 Lisp_Object obj = build_string ("test");
4121 struct Lisp_String *s = XSTRING (obj);
4122 Fgarbage_collect ();
4123 fprintf (stderr, "test `%s'\n", s->data);
4124 return Qnil;
4127 Here, `obj' isn't really used, and the compiler optimizes it
4128 away. The only reference to the life string is through the
4129 pointer `s'. */
4131 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4132 mark_maybe_pointer (*pp);
4135 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4136 the GCC system configuration. In gcc 3.2, the only systems for
4137 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4138 by others?) and ns32k-pc532-min. */
4140 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4142 static int setjmp_tested_p, longjmps_done;
4144 #define SETJMP_WILL_LIKELY_WORK "\
4146 Emacs garbage collector has been changed to use conservative stack\n\
4147 marking. Emacs has determined that the method it uses to do the\n\
4148 marking will likely work on your system, but this isn't sure.\n\
4150 If you are a system-programmer, or can get the help of a local wizard\n\
4151 who is, please take a look at the function mark_stack in alloc.c, and\n\
4152 verify that the methods used are appropriate for your system.\n\
4154 Please mail the result to <emacs-devel@gnu.org>.\n\
4157 #define SETJMP_WILL_NOT_WORK "\
4159 Emacs garbage collector has been changed to use conservative stack\n\
4160 marking. Emacs has determined that the default method it uses to do the\n\
4161 marking will not work on your system. We will need a system-dependent\n\
4162 solution for your system.\n\
4164 Please take a look at the function mark_stack in alloc.c, and\n\
4165 try to find a way to make it work on your system.\n\
4167 Note that you may get false negatives, depending on the compiler.\n\
4168 In particular, you need to use -O with GCC for this test.\n\
4170 Please mail the result to <emacs-devel@gnu.org>.\n\
4174 /* Perform a quick check if it looks like setjmp saves registers in a
4175 jmp_buf. Print a message to stderr saying so. When this test
4176 succeeds, this is _not_ a proof that setjmp is sufficient for
4177 conservative stack marking. Only the sources or a disassembly
4178 can prove that. */
4180 static void
4181 test_setjmp (void)
4183 char buf[10];
4184 register int x;
4185 jmp_buf jbuf;
4186 int result = 0;
4188 /* Arrange for X to be put in a register. */
4189 sprintf (buf, "1");
4190 x = strlen (buf);
4191 x = 2 * x - 1;
4193 setjmp (jbuf);
4194 if (longjmps_done == 1)
4196 /* Came here after the longjmp at the end of the function.
4198 If x == 1, the longjmp has restored the register to its
4199 value before the setjmp, and we can hope that setjmp
4200 saves all such registers in the jmp_buf, although that
4201 isn't sure.
4203 For other values of X, either something really strange is
4204 taking place, or the setjmp just didn't save the register. */
4206 if (x == 1)
4207 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4208 else
4210 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4211 exit (1);
4215 ++longjmps_done;
4216 x = 2;
4217 if (longjmps_done == 1)
4218 longjmp (jbuf, 1);
4221 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4224 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4226 /* Abort if anything GCPRO'd doesn't survive the GC. */
4228 static void
4229 check_gcpros (void)
4231 struct gcpro *p;
4232 int i;
4234 for (p = gcprolist; p; p = p->next)
4235 for (i = 0; i < p->nvars; ++i)
4236 if (!survives_gc_p (p->var[i]))
4237 /* FIXME: It's not necessarily a bug. It might just be that the
4238 GCPRO is unnecessary or should release the object sooner. */
4239 abort ();
4242 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4244 static void
4245 dump_zombies (void)
4247 int i;
4249 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4250 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4252 fprintf (stderr, " %d = ", i);
4253 debug_print (zombies[i]);
4257 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4260 /* Mark live Lisp objects on the C stack.
4262 There are several system-dependent problems to consider when
4263 porting this to new architectures:
4265 Processor Registers
4267 We have to mark Lisp objects in CPU registers that can hold local
4268 variables or are used to pass parameters.
4270 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4271 something that either saves relevant registers on the stack, or
4272 calls mark_maybe_object passing it each register's contents.
4274 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4275 implementation assumes that calling setjmp saves registers we need
4276 to see in a jmp_buf which itself lies on the stack. This doesn't
4277 have to be true! It must be verified for each system, possibly
4278 by taking a look at the source code of setjmp.
4280 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4281 can use it as a machine independent method to store all registers
4282 to the stack. In this case the macros described in the previous
4283 two paragraphs are not used.
4285 Stack Layout
4287 Architectures differ in the way their processor stack is organized.
4288 For example, the stack might look like this
4290 +----------------+
4291 | Lisp_Object | size = 4
4292 +----------------+
4293 | something else | size = 2
4294 +----------------+
4295 | Lisp_Object | size = 4
4296 +----------------+
4297 | ... |
4299 In such a case, not every Lisp_Object will be aligned equally. To
4300 find all Lisp_Object on the stack it won't be sufficient to walk
4301 the stack in steps of 4 bytes. Instead, two passes will be
4302 necessary, one starting at the start of the stack, and a second
4303 pass starting at the start of the stack + 2. Likewise, if the
4304 minimal alignment of Lisp_Objects on the stack is 1, four passes
4305 would be necessary, each one starting with one byte more offset
4306 from the stack start.
4308 The current code assumes by default that Lisp_Objects are aligned
4309 equally on the stack. */
4311 static void
4312 mark_stack (void)
4314 int i;
4315 void *end;
4317 #ifdef HAVE___BUILTIN_UNWIND_INIT
4318 /* Force callee-saved registers and register windows onto the stack.
4319 This is the preferred method if available, obviating the need for
4320 machine dependent methods. */
4321 __builtin_unwind_init ();
4322 end = &end;
4323 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4324 #ifndef GC_SAVE_REGISTERS_ON_STACK
4325 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4326 union aligned_jmpbuf {
4327 Lisp_Object o;
4328 jmp_buf j;
4329 } j;
4330 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4331 #endif
4332 /* This trick flushes the register windows so that all the state of
4333 the process is contained in the stack. */
4334 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4335 needed on ia64 too. See mach_dep.c, where it also says inline
4336 assembler doesn't work with relevant proprietary compilers. */
4337 #ifdef __sparc__
4338 #if defined (__sparc64__) && defined (__FreeBSD__)
4339 /* FreeBSD does not have a ta 3 handler. */
4340 asm ("flushw");
4341 #else
4342 asm ("ta 3");
4343 #endif
4344 #endif
4346 /* Save registers that we need to see on the stack. We need to see
4347 registers used to hold register variables and registers used to
4348 pass parameters. */
4349 #ifdef GC_SAVE_REGISTERS_ON_STACK
4350 GC_SAVE_REGISTERS_ON_STACK (end);
4351 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4353 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4354 setjmp will definitely work, test it
4355 and print a message with the result
4356 of the test. */
4357 if (!setjmp_tested_p)
4359 setjmp_tested_p = 1;
4360 test_setjmp ();
4362 #endif /* GC_SETJMP_WORKS */
4364 setjmp (j.j);
4365 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4366 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4367 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4369 /* This assumes that the stack is a contiguous region in memory. If
4370 that's not the case, something has to be done here to iterate
4371 over the stack segments. */
4372 #ifndef GC_LISP_OBJECT_ALIGNMENT
4373 #ifdef __GNUC__
4374 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4375 #else
4376 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4377 #endif
4378 #endif
4379 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4380 mark_memory (stack_base, end, i);
4381 /* Allow for marking a secondary stack, like the register stack on the
4382 ia64. */
4383 #ifdef GC_MARK_SECONDARY_STACK
4384 GC_MARK_SECONDARY_STACK ();
4385 #endif
4387 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4388 check_gcpros ();
4389 #endif
4392 #endif /* GC_MARK_STACK != 0 */
4395 /* Determine whether it is safe to access memory at address P. */
4396 static int
4397 valid_pointer_p (void *p)
4399 #ifdef WINDOWSNT
4400 return w32_valid_pointer_p (p, 16);
4401 #else
4402 int fd;
4404 /* Obviously, we cannot just access it (we would SEGV trying), so we
4405 trick the o/s to tell us whether p is a valid pointer.
4406 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4407 not validate p in that case. */
4409 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4411 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4412 emacs_close (fd);
4413 unlink ("__Valid__Lisp__Object__");
4414 return valid;
4417 return -1;
4418 #endif
4421 /* Return 1 if OBJ is a valid lisp object.
4422 Return 0 if OBJ is NOT a valid lisp object.
4423 Return -1 if we cannot validate OBJ.
4424 This function can be quite slow,
4425 so it should only be used in code for manual debugging. */
4428 valid_lisp_object_p (Lisp_Object obj)
4430 void *p;
4431 #if GC_MARK_STACK
4432 struct mem_node *m;
4433 #endif
4435 if (INTEGERP (obj))
4436 return 1;
4438 p = (void *) XPNTR (obj);
4439 if (PURE_POINTER_P (p))
4440 return 1;
4442 #if !GC_MARK_STACK
4443 return valid_pointer_p (p);
4444 #else
4446 m = mem_find (p);
4448 if (m == MEM_NIL)
4450 int valid = valid_pointer_p (p);
4451 if (valid <= 0)
4452 return valid;
4454 if (SUBRP (obj))
4455 return 1;
4457 return 0;
4460 switch (m->type)
4462 case MEM_TYPE_NON_LISP:
4463 return 0;
4465 case MEM_TYPE_BUFFER:
4466 return live_buffer_p (m, p);
4468 case MEM_TYPE_CONS:
4469 return live_cons_p (m, p);
4471 case MEM_TYPE_STRING:
4472 return live_string_p (m, p);
4474 case MEM_TYPE_MISC:
4475 return live_misc_p (m, p);
4477 case MEM_TYPE_SYMBOL:
4478 return live_symbol_p (m, p);
4480 case MEM_TYPE_FLOAT:
4481 return live_float_p (m, p);
4483 case MEM_TYPE_VECTORLIKE:
4484 return live_vector_p (m, p);
4486 default:
4487 break;
4490 return 0;
4491 #endif
4497 /***********************************************************************
4498 Pure Storage Management
4499 ***********************************************************************/
4501 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4502 pointer to it. TYPE is the Lisp type for which the memory is
4503 allocated. TYPE < 0 means it's not used for a Lisp object. */
4505 static POINTER_TYPE *
4506 pure_alloc (size_t size, int type)
4508 POINTER_TYPE *result;
4509 #ifdef USE_LSB_TAG
4510 size_t alignment = (1 << GCTYPEBITS);
4511 #else
4512 size_t alignment = sizeof (EMACS_INT);
4514 /* Give Lisp_Floats an extra alignment. */
4515 if (type == Lisp_Float)
4517 #if defined __GNUC__ && __GNUC__ >= 2
4518 alignment = __alignof (struct Lisp_Float);
4519 #else
4520 alignment = sizeof (struct Lisp_Float);
4521 #endif
4523 #endif
4525 again:
4526 if (type >= 0)
4528 /* Allocate space for a Lisp object from the beginning of the free
4529 space with taking account of alignment. */
4530 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4531 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4533 else
4535 /* Allocate space for a non-Lisp object from the end of the free
4536 space. */
4537 pure_bytes_used_non_lisp += size;
4538 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4540 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4542 if (pure_bytes_used <= pure_size)
4543 return result;
4545 /* Don't allocate a large amount here,
4546 because it might get mmap'd and then its address
4547 might not be usable. */
4548 purebeg = (char *) xmalloc (10000);
4549 pure_size = 10000;
4550 pure_bytes_used_before_overflow += pure_bytes_used - size;
4551 pure_bytes_used = 0;
4552 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4553 goto again;
4557 /* Print a warning if PURESIZE is too small. */
4559 void
4560 check_pure_size (void)
4562 if (pure_bytes_used_before_overflow)
4563 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4564 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4568 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4569 the non-Lisp data pool of the pure storage, and return its start
4570 address. Return NULL if not found. */
4572 static char *
4573 find_string_data_in_pure (const char *data, EMACS_INT nbytes)
4575 int i;
4576 EMACS_INT skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4577 const unsigned char *p;
4578 char *non_lisp_beg;
4580 if (pure_bytes_used_non_lisp < nbytes + 1)
4581 return NULL;
4583 /* Set up the Boyer-Moore table. */
4584 skip = nbytes + 1;
4585 for (i = 0; i < 256; i++)
4586 bm_skip[i] = skip;
4588 p = (const unsigned char *) data;
4589 while (--skip > 0)
4590 bm_skip[*p++] = skip;
4592 last_char_skip = bm_skip['\0'];
4594 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4595 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4597 /* See the comments in the function `boyer_moore' (search.c) for the
4598 use of `infinity'. */
4599 infinity = pure_bytes_used_non_lisp + 1;
4600 bm_skip['\0'] = infinity;
4602 p = (const unsigned char *) non_lisp_beg + nbytes;
4603 start = 0;
4606 /* Check the last character (== '\0'). */
4609 start += bm_skip[*(p + start)];
4611 while (start <= start_max);
4613 if (start < infinity)
4614 /* Couldn't find the last character. */
4615 return NULL;
4617 /* No less than `infinity' means we could find the last
4618 character at `p[start - infinity]'. */
4619 start -= infinity;
4621 /* Check the remaining characters. */
4622 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4623 /* Found. */
4624 return non_lisp_beg + start;
4626 start += last_char_skip;
4628 while (start <= start_max);
4630 return NULL;
4634 /* Return a string allocated in pure space. DATA is a buffer holding
4635 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4636 non-zero means make the result string multibyte.
4638 Must get an error if pure storage is full, since if it cannot hold
4639 a large string it may be able to hold conses that point to that
4640 string; then the string is not protected from gc. */
4642 Lisp_Object
4643 make_pure_string (const char *data,
4644 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
4646 Lisp_Object string;
4647 struct Lisp_String *s;
4649 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4650 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
4651 if (s->data == NULL)
4653 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4654 memcpy (s->data, data, nbytes);
4655 s->data[nbytes] = '\0';
4657 s->size = nchars;
4658 s->size_byte = multibyte ? nbytes : -1;
4659 s->intervals = NULL_INTERVAL;
4660 XSETSTRING (string, s);
4661 return string;
4664 /* Return a string a string allocated in pure space. Do not allocate
4665 the string data, just point to DATA. */
4667 Lisp_Object
4668 make_pure_c_string (const char *data)
4670 Lisp_Object string;
4671 struct Lisp_String *s;
4672 EMACS_INT nchars = strlen (data);
4674 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4675 s->size = nchars;
4676 s->size_byte = -1;
4677 s->data = (unsigned char *) data;
4678 s->intervals = NULL_INTERVAL;
4679 XSETSTRING (string, s);
4680 return string;
4683 /* Return a cons allocated from pure space. Give it pure copies
4684 of CAR as car and CDR as cdr. */
4686 Lisp_Object
4687 pure_cons (Lisp_Object car, Lisp_Object cdr)
4689 register Lisp_Object new;
4690 struct Lisp_Cons *p;
4692 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4693 XSETCONS (new, p);
4694 XSETCAR (new, Fpurecopy (car));
4695 XSETCDR (new, Fpurecopy (cdr));
4696 return new;
4700 /* Value is a float object with value NUM allocated from pure space. */
4702 static Lisp_Object
4703 make_pure_float (double num)
4705 register Lisp_Object new;
4706 struct Lisp_Float *p;
4708 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4709 XSETFLOAT (new, p);
4710 XFLOAT_INIT (new, num);
4711 return new;
4715 /* Return a vector with room for LEN Lisp_Objects allocated from
4716 pure space. */
4718 Lisp_Object
4719 make_pure_vector (EMACS_INT len)
4721 Lisp_Object new;
4722 struct Lisp_Vector *p;
4723 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4725 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4726 XSETVECTOR (new, p);
4727 XVECTOR (new)->size = len;
4728 return new;
4732 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4733 doc: /* Make a copy of object OBJ in pure storage.
4734 Recursively copies contents of vectors and cons cells.
4735 Does not copy symbols. Copies strings without text properties. */)
4736 (register Lisp_Object obj)
4738 if (NILP (Vpurify_flag))
4739 return obj;
4741 if (PURE_POINTER_P (XPNTR (obj)))
4742 return obj;
4744 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4746 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4747 if (!NILP (tmp))
4748 return tmp;
4751 if (CONSP (obj))
4752 obj = pure_cons (XCAR (obj), XCDR (obj));
4753 else if (FLOATP (obj))
4754 obj = make_pure_float (XFLOAT_DATA (obj));
4755 else if (STRINGP (obj))
4756 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
4757 SBYTES (obj),
4758 STRING_MULTIBYTE (obj));
4759 else if (COMPILEDP (obj) || VECTORP (obj))
4761 register struct Lisp_Vector *vec;
4762 register EMACS_INT i;
4763 EMACS_INT size;
4765 size = XVECTOR (obj)->size;
4766 if (size & PSEUDOVECTOR_FLAG)
4767 size &= PSEUDOVECTOR_SIZE_MASK;
4768 vec = XVECTOR (make_pure_vector (size));
4769 for (i = 0; i < size; i++)
4770 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4771 if (COMPILEDP (obj))
4773 XSETPVECTYPE (vec, PVEC_COMPILED);
4774 XSETCOMPILED (obj, vec);
4776 else
4777 XSETVECTOR (obj, vec);
4779 else if (MARKERP (obj))
4780 error ("Attempt to copy a marker to pure storage");
4781 else
4782 /* Not purified, don't hash-cons. */
4783 return obj;
4785 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4786 Fputhash (obj, obj, Vpurify_flag);
4788 return obj;
4793 /***********************************************************************
4794 Protection from GC
4795 ***********************************************************************/
4797 /* Put an entry in staticvec, pointing at the variable with address
4798 VARADDRESS. */
4800 void
4801 staticpro (Lisp_Object *varaddress)
4803 staticvec[staticidx++] = varaddress;
4804 if (staticidx >= NSTATICS)
4805 abort ();
4809 /***********************************************************************
4810 Protection from GC
4811 ***********************************************************************/
4813 /* Temporarily prevent garbage collection. */
4816 inhibit_garbage_collection (void)
4818 int count = SPECPDL_INDEX ();
4819 int nbits = min (VALBITS, BITS_PER_INT);
4821 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4822 return count;
4826 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4827 doc: /* Reclaim storage for Lisp objects no longer needed.
4828 Garbage collection happens automatically if you cons more than
4829 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4830 `garbage-collect' normally returns a list with info on amount of space in use:
4831 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4832 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4833 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4834 (USED-STRINGS . FREE-STRINGS))
4835 However, if there was overflow in pure space, `garbage-collect'
4836 returns nil, because real GC can't be done. */)
4837 (void)
4839 register struct specbinding *bind;
4840 char stack_top_variable;
4841 register int i;
4842 int message_p;
4843 Lisp_Object total[8];
4844 int count = SPECPDL_INDEX ();
4845 EMACS_TIME t1, t2, t3;
4847 if (abort_on_gc)
4848 abort ();
4850 /* Can't GC if pure storage overflowed because we can't determine
4851 if something is a pure object or not. */
4852 if (pure_bytes_used_before_overflow)
4853 return Qnil;
4855 CHECK_CONS_LIST ();
4857 /* Don't keep undo information around forever.
4858 Do this early on, so it is no problem if the user quits. */
4860 register struct buffer *nextb = all_buffers;
4862 while (nextb)
4864 /* If a buffer's undo list is Qt, that means that undo is
4865 turned off in that buffer. Calling truncate_undo_list on
4866 Qt tends to return NULL, which effectively turns undo back on.
4867 So don't call truncate_undo_list if undo_list is Qt. */
4868 if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name)) && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
4869 truncate_undo_list (nextb);
4871 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4872 if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
4873 && ! nextb->text->inhibit_shrinking)
4875 /* If a buffer's gap size is more than 10% of the buffer
4876 size, or larger than 2000 bytes, then shrink it
4877 accordingly. Keep a minimum size of 20 bytes. */
4878 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4880 if (nextb->text->gap_size > size)
4882 struct buffer *save_current = current_buffer;
4883 current_buffer = nextb;
4884 make_gap (-(nextb->text->gap_size - size));
4885 current_buffer = save_current;
4889 nextb = nextb->next;
4893 EMACS_GET_TIME (t1);
4895 /* In case user calls debug_print during GC,
4896 don't let that cause a recursive GC. */
4897 consing_since_gc = 0;
4899 /* Save what's currently displayed in the echo area. */
4900 message_p = push_message ();
4901 record_unwind_protect (pop_message_unwind, Qnil);
4903 /* Save a copy of the contents of the stack, for debugging. */
4904 #if MAX_SAVE_STACK > 0
4905 if (NILP (Vpurify_flag))
4907 i = &stack_top_variable - stack_bottom;
4908 if (i < 0) i = -i;
4909 if (i < MAX_SAVE_STACK)
4911 if (stack_copy == 0)
4912 stack_copy = (char *) xmalloc (stack_copy_size = i);
4913 else if (stack_copy_size < i)
4914 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4915 if (stack_copy)
4917 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4918 memcpy (stack_copy, stack_bottom, i);
4919 else
4920 memcpy (stack_copy, &stack_top_variable, i);
4924 #endif /* MAX_SAVE_STACK > 0 */
4926 if (garbage_collection_messages)
4927 message1_nolog ("Garbage collecting...");
4929 BLOCK_INPUT;
4931 shrink_regexp_cache ();
4933 gc_in_progress = 1;
4935 /* clear_marks (); */
4937 /* Mark all the special slots that serve as the roots of accessibility. */
4939 for (i = 0; i < staticidx; i++)
4940 mark_object (*staticvec[i]);
4942 for (bind = specpdl; bind != specpdl_ptr; bind++)
4944 mark_object (bind->symbol);
4945 mark_object (bind->old_value);
4947 mark_terminals ();
4948 mark_kboards ();
4949 mark_ttys ();
4951 #ifdef USE_GTK
4953 extern void xg_mark_data (void);
4954 xg_mark_data ();
4956 #endif
4958 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4959 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4960 mark_stack ();
4961 #else
4963 register struct gcpro *tail;
4964 for (tail = gcprolist; tail; tail = tail->next)
4965 for (i = 0; i < tail->nvars; i++)
4966 mark_object (tail->var[i]);
4968 mark_byte_stack ();
4970 struct catchtag *catch;
4971 struct handler *handler;
4973 for (catch = catchlist; catch; catch = catch->next)
4975 mark_object (catch->tag);
4976 mark_object (catch->val);
4978 for (handler = handlerlist; handler; handler = handler->next)
4980 mark_object (handler->handler);
4981 mark_object (handler->var);
4984 mark_backtrace ();
4985 #endif
4987 #ifdef HAVE_WINDOW_SYSTEM
4988 mark_fringe_data ();
4989 #endif
4991 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4992 mark_stack ();
4993 #endif
4995 /* Everything is now marked, except for the things that require special
4996 finalization, i.e. the undo_list.
4997 Look thru every buffer's undo list
4998 for elements that update markers that were not marked,
4999 and delete them. */
5001 register struct buffer *nextb = all_buffers;
5003 while (nextb)
5005 /* If a buffer's undo list is Qt, that means that undo is
5006 turned off in that buffer. Calling truncate_undo_list on
5007 Qt tends to return NULL, which effectively turns undo back on.
5008 So don't call truncate_undo_list if undo_list is Qt. */
5009 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5011 Lisp_Object tail, prev;
5012 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
5013 prev = Qnil;
5014 while (CONSP (tail))
5016 if (CONSP (XCAR (tail))
5017 && MARKERP (XCAR (XCAR (tail)))
5018 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5020 if (NILP (prev))
5021 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5022 else
5024 tail = XCDR (tail);
5025 XSETCDR (prev, tail);
5028 else
5030 prev = tail;
5031 tail = XCDR (tail);
5035 /* Now that we have stripped the elements that need not be in the
5036 undo_list any more, we can finally mark the list. */
5037 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
5039 nextb = nextb->next;
5043 gc_sweep ();
5045 /* Clear the mark bits that we set in certain root slots. */
5047 unmark_byte_stack ();
5048 VECTOR_UNMARK (&buffer_defaults);
5049 VECTOR_UNMARK (&buffer_local_symbols);
5051 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5052 dump_zombies ();
5053 #endif
5055 UNBLOCK_INPUT;
5057 CHECK_CONS_LIST ();
5059 /* clear_marks (); */
5060 gc_in_progress = 0;
5062 consing_since_gc = 0;
5063 if (gc_cons_threshold < 10000)
5064 gc_cons_threshold = 10000;
5066 if (FLOATP (Vgc_cons_percentage))
5067 { /* Set gc_cons_combined_threshold. */
5068 EMACS_INT tot = 0;
5070 tot += total_conses * sizeof (struct Lisp_Cons);
5071 tot += total_symbols * sizeof (struct Lisp_Symbol);
5072 tot += total_markers * sizeof (union Lisp_Misc);
5073 tot += total_string_size;
5074 tot += total_vector_size * sizeof (Lisp_Object);
5075 tot += total_floats * sizeof (struct Lisp_Float);
5076 tot += total_intervals * sizeof (struct interval);
5077 tot += total_strings * sizeof (struct Lisp_String);
5079 gc_relative_threshold = tot * XFLOAT_DATA (Vgc_cons_percentage);
5081 else
5082 gc_relative_threshold = 0;
5084 if (garbage_collection_messages)
5086 if (message_p || minibuf_level > 0)
5087 restore_message ();
5088 else
5089 message1_nolog ("Garbage collecting...done");
5092 unbind_to (count, Qnil);
5094 total[0] = Fcons (make_number (total_conses),
5095 make_number (total_free_conses));
5096 total[1] = Fcons (make_number (total_symbols),
5097 make_number (total_free_symbols));
5098 total[2] = Fcons (make_number (total_markers),
5099 make_number (total_free_markers));
5100 total[3] = make_number (total_string_size);
5101 total[4] = make_number (total_vector_size);
5102 total[5] = Fcons (make_number (total_floats),
5103 make_number (total_free_floats));
5104 total[6] = Fcons (make_number (total_intervals),
5105 make_number (total_free_intervals));
5106 total[7] = Fcons (make_number (total_strings),
5107 make_number (total_free_strings));
5109 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5111 /* Compute average percentage of zombies. */
5112 double nlive = 0;
5114 for (i = 0; i < 7; ++i)
5115 if (CONSP (total[i]))
5116 nlive += XFASTINT (XCAR (total[i]));
5118 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5119 max_live = max (nlive, max_live);
5120 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5121 max_zombies = max (nzombies, max_zombies);
5122 ++ngcs;
5124 #endif
5126 if (!NILP (Vpost_gc_hook))
5128 int gc_count = inhibit_garbage_collection ();
5129 safe_run_hooks (Qpost_gc_hook);
5130 unbind_to (gc_count, Qnil);
5133 /* Accumulate statistics. */
5134 EMACS_GET_TIME (t2);
5135 EMACS_SUB_TIME (t3, t2, t1);
5136 if (FLOATP (Vgc_elapsed))
5137 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5138 EMACS_SECS (t3) +
5139 EMACS_USECS (t3) * 1.0e-6);
5140 gcs_done++;
5142 return Flist (sizeof total / sizeof *total, total);
5146 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5147 only interesting objects referenced from glyphs are strings. */
5149 static void
5150 mark_glyph_matrix (struct glyph_matrix *matrix)
5152 struct glyph_row *row = matrix->rows;
5153 struct glyph_row *end = row + matrix->nrows;
5155 for (; row < end; ++row)
5156 if (row->enabled_p)
5158 int area;
5159 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5161 struct glyph *glyph = row->glyphs[area];
5162 struct glyph *end_glyph = glyph + row->used[area];
5164 for (; glyph < end_glyph; ++glyph)
5165 if (STRINGP (glyph->object)
5166 && !STRING_MARKED_P (XSTRING (glyph->object)))
5167 mark_object (glyph->object);
5173 /* Mark Lisp faces in the face cache C. */
5175 static void
5176 mark_face_cache (struct face_cache *c)
5178 if (c)
5180 int i, j;
5181 for (i = 0; i < c->used; ++i)
5183 struct face *face = FACE_FROM_ID (c->f, i);
5185 if (face)
5187 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5188 mark_object (face->lface[j]);
5196 /* Mark reference to a Lisp_Object.
5197 If the object referred to has not been seen yet, recursively mark
5198 all the references contained in it. */
5200 #define LAST_MARKED_SIZE 500
5201 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5202 int last_marked_index;
5204 /* For debugging--call abort when we cdr down this many
5205 links of a list, in mark_object. In debugging,
5206 the call to abort will hit a breakpoint.
5207 Normally this is zero and the check never goes off. */
5208 static int mark_object_loop_halt;
5210 static void
5211 mark_vectorlike (struct Lisp_Vector *ptr)
5213 register EMACS_UINT size = ptr->size;
5214 register EMACS_UINT i;
5216 eassert (!VECTOR_MARKED_P (ptr));
5217 VECTOR_MARK (ptr); /* Else mark it */
5218 if (size & PSEUDOVECTOR_FLAG)
5219 size &= PSEUDOVECTOR_SIZE_MASK;
5221 /* Note that this size is not the memory-footprint size, but only
5222 the number of Lisp_Object fields that we should trace.
5223 The distinction is used e.g. by Lisp_Process which places extra
5224 non-Lisp_Object fields at the end of the structure. */
5225 for (i = 0; i < size; i++) /* and then mark its elements */
5226 mark_object (ptr->contents[i]);
5229 /* Like mark_vectorlike but optimized for char-tables (and
5230 sub-char-tables) assuming that the contents are mostly integers or
5231 symbols. */
5233 static void
5234 mark_char_table (struct Lisp_Vector *ptr)
5236 register EMACS_UINT size = ptr->size & PSEUDOVECTOR_SIZE_MASK;
5237 register EMACS_UINT i;
5239 eassert (!VECTOR_MARKED_P (ptr));
5240 VECTOR_MARK (ptr);
5241 for (i = 0; i < size; i++)
5243 Lisp_Object val = ptr->contents[i];
5245 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5246 continue;
5247 if (SUB_CHAR_TABLE_P (val))
5249 if (! VECTOR_MARKED_P (XVECTOR (val)))
5250 mark_char_table (XVECTOR (val));
5252 else
5253 mark_object (val);
5257 void
5258 mark_object (Lisp_Object arg)
5260 register Lisp_Object obj = arg;
5261 #ifdef GC_CHECK_MARKED_OBJECTS
5262 void *po;
5263 struct mem_node *m;
5264 #endif
5265 int cdr_count = 0;
5267 loop:
5269 if (PURE_POINTER_P (XPNTR (obj)))
5270 return;
5272 last_marked[last_marked_index++] = obj;
5273 if (last_marked_index == LAST_MARKED_SIZE)
5274 last_marked_index = 0;
5276 /* Perform some sanity checks on the objects marked here. Abort if
5277 we encounter an object we know is bogus. This increases GC time
5278 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5279 #ifdef GC_CHECK_MARKED_OBJECTS
5281 po = (void *) XPNTR (obj);
5283 /* Check that the object pointed to by PO is known to be a Lisp
5284 structure allocated from the heap. */
5285 #define CHECK_ALLOCATED() \
5286 do { \
5287 m = mem_find (po); \
5288 if (m == MEM_NIL) \
5289 abort (); \
5290 } while (0)
5292 /* Check that the object pointed to by PO is live, using predicate
5293 function LIVEP. */
5294 #define CHECK_LIVE(LIVEP) \
5295 do { \
5296 if (!LIVEP (m, po)) \
5297 abort (); \
5298 } while (0)
5300 /* Check both of the above conditions. */
5301 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5302 do { \
5303 CHECK_ALLOCATED (); \
5304 CHECK_LIVE (LIVEP); \
5305 } while (0) \
5307 #else /* not GC_CHECK_MARKED_OBJECTS */
5309 #define CHECK_ALLOCATED() (void) 0
5310 #define CHECK_LIVE(LIVEP) (void) 0
5311 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5313 #endif /* not GC_CHECK_MARKED_OBJECTS */
5315 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5317 case Lisp_String:
5319 register struct Lisp_String *ptr = XSTRING (obj);
5320 if (STRING_MARKED_P (ptr))
5321 break;
5322 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5323 MARK_INTERVAL_TREE (ptr->intervals);
5324 MARK_STRING (ptr);
5325 #ifdef GC_CHECK_STRING_BYTES
5326 /* Check that the string size recorded in the string is the
5327 same as the one recorded in the sdata structure. */
5328 CHECK_STRING_BYTES (ptr);
5329 #endif /* GC_CHECK_STRING_BYTES */
5331 break;
5333 case Lisp_Vectorlike:
5334 if (VECTOR_MARKED_P (XVECTOR (obj)))
5335 break;
5336 #ifdef GC_CHECK_MARKED_OBJECTS
5337 m = mem_find (po);
5338 if (m == MEM_NIL && !SUBRP (obj)
5339 && po != &buffer_defaults
5340 && po != &buffer_local_symbols)
5341 abort ();
5342 #endif /* GC_CHECK_MARKED_OBJECTS */
5344 if (BUFFERP (obj))
5346 #ifdef GC_CHECK_MARKED_OBJECTS
5347 if (po != &buffer_defaults && po != &buffer_local_symbols)
5349 struct buffer *b;
5350 for (b = all_buffers; b && b != po; b = b->next)
5352 if (b == NULL)
5353 abort ();
5355 #endif /* GC_CHECK_MARKED_OBJECTS */
5356 mark_buffer (obj);
5358 else if (SUBRP (obj))
5359 break;
5360 else if (COMPILEDP (obj))
5361 /* We could treat this just like a vector, but it is better to
5362 save the COMPILED_CONSTANTS element for last and avoid
5363 recursion there. */
5365 register struct Lisp_Vector *ptr = XVECTOR (obj);
5366 register EMACS_UINT size = ptr->size;
5367 register EMACS_UINT i;
5369 CHECK_LIVE (live_vector_p);
5370 VECTOR_MARK (ptr); /* Else mark it */
5371 size &= PSEUDOVECTOR_SIZE_MASK;
5372 for (i = 0; i < size; i++) /* and then mark its elements */
5374 if (i != COMPILED_CONSTANTS)
5375 mark_object (ptr->contents[i]);
5377 obj = ptr->contents[COMPILED_CONSTANTS];
5378 goto loop;
5380 else if (FRAMEP (obj))
5382 register struct frame *ptr = XFRAME (obj);
5383 mark_vectorlike (XVECTOR (obj));
5384 mark_face_cache (ptr->face_cache);
5386 else if (WINDOWP (obj))
5388 register struct Lisp_Vector *ptr = XVECTOR (obj);
5389 struct window *w = XWINDOW (obj);
5390 mark_vectorlike (ptr);
5391 /* Mark glyphs for leaf windows. Marking window matrices is
5392 sufficient because frame matrices use the same glyph
5393 memory. */
5394 if (NILP (w->hchild)
5395 && NILP (w->vchild)
5396 && w->current_matrix)
5398 mark_glyph_matrix (w->current_matrix);
5399 mark_glyph_matrix (w->desired_matrix);
5402 else if (HASH_TABLE_P (obj))
5404 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5405 mark_vectorlike ((struct Lisp_Vector *)h);
5406 /* If hash table is not weak, mark all keys and values.
5407 For weak tables, mark only the vector. */
5408 if (NILP (h->weak))
5409 mark_object (h->key_and_value);
5410 else
5411 VECTOR_MARK (XVECTOR (h->key_and_value));
5413 else if (CHAR_TABLE_P (obj))
5414 mark_char_table (XVECTOR (obj));
5415 else
5416 mark_vectorlike (XVECTOR (obj));
5417 break;
5419 case Lisp_Symbol:
5421 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5422 struct Lisp_Symbol *ptrx;
5424 if (ptr->gcmarkbit)
5425 break;
5426 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5427 ptr->gcmarkbit = 1;
5428 mark_object (ptr->function);
5429 mark_object (ptr->plist);
5430 switch (ptr->redirect)
5432 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5433 case SYMBOL_VARALIAS:
5435 Lisp_Object tem;
5436 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5437 mark_object (tem);
5438 break;
5440 case SYMBOL_LOCALIZED:
5442 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5443 /* If the value is forwarded to a buffer or keyboard field,
5444 these are marked when we see the corresponding object.
5445 And if it's forwarded to a C variable, either it's not
5446 a Lisp_Object var, or it's staticpro'd already. */
5447 mark_object (blv->where);
5448 mark_object (blv->valcell);
5449 mark_object (blv->defcell);
5450 break;
5452 case SYMBOL_FORWARDED:
5453 /* If the value is forwarded to a buffer or keyboard field,
5454 these are marked when we see the corresponding object.
5455 And if it's forwarded to a C variable, either it's not
5456 a Lisp_Object var, or it's staticpro'd already. */
5457 break;
5458 default: abort ();
5460 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5461 MARK_STRING (XSTRING (ptr->xname));
5462 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5464 ptr = ptr->next;
5465 if (ptr)
5467 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5468 XSETSYMBOL (obj, ptrx);
5469 goto loop;
5472 break;
5474 case Lisp_Misc:
5475 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5476 if (XMISCANY (obj)->gcmarkbit)
5477 break;
5478 XMISCANY (obj)->gcmarkbit = 1;
5480 switch (XMISCTYPE (obj))
5483 case Lisp_Misc_Marker:
5484 /* DO NOT mark thru the marker's chain.
5485 The buffer's markers chain does not preserve markers from gc;
5486 instead, markers are removed from the chain when freed by gc. */
5487 break;
5489 case Lisp_Misc_Save_Value:
5490 #if GC_MARK_STACK
5492 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5493 /* If DOGC is set, POINTER is the address of a memory
5494 area containing INTEGER potential Lisp_Objects. */
5495 if (ptr->dogc)
5497 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5498 int nelt;
5499 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5500 mark_maybe_object (*p);
5503 #endif
5504 break;
5506 case Lisp_Misc_Overlay:
5508 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5509 mark_object (ptr->start);
5510 mark_object (ptr->end);
5511 mark_object (ptr->plist);
5512 if (ptr->next)
5514 XSETMISC (obj, ptr->next);
5515 goto loop;
5518 break;
5520 default:
5521 abort ();
5523 break;
5525 case Lisp_Cons:
5527 register struct Lisp_Cons *ptr = XCONS (obj);
5528 if (CONS_MARKED_P (ptr))
5529 break;
5530 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5531 CONS_MARK (ptr);
5532 /* If the cdr is nil, avoid recursion for the car. */
5533 if (EQ (ptr->u.cdr, Qnil))
5535 obj = ptr->car;
5536 cdr_count = 0;
5537 goto loop;
5539 mark_object (ptr->car);
5540 obj = ptr->u.cdr;
5541 cdr_count++;
5542 if (cdr_count == mark_object_loop_halt)
5543 abort ();
5544 goto loop;
5547 case Lisp_Float:
5548 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5549 FLOAT_MARK (XFLOAT (obj));
5550 break;
5552 case_Lisp_Int:
5553 break;
5555 default:
5556 abort ();
5559 #undef CHECK_LIVE
5560 #undef CHECK_ALLOCATED
5561 #undef CHECK_ALLOCATED_AND_LIVE
5564 /* Mark the pointers in a buffer structure. */
5566 static void
5567 mark_buffer (Lisp_Object buf)
5569 register struct buffer *buffer = XBUFFER (buf);
5570 register Lisp_Object *ptr, tmp;
5571 Lisp_Object base_buffer;
5573 eassert (!VECTOR_MARKED_P (buffer));
5574 VECTOR_MARK (buffer);
5576 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5578 /* For now, we just don't mark the undo_list. It's done later in
5579 a special way just before the sweep phase, and after stripping
5580 some of its elements that are not needed any more. */
5582 if (buffer->overlays_before)
5584 XSETMISC (tmp, buffer->overlays_before);
5585 mark_object (tmp);
5587 if (buffer->overlays_after)
5589 XSETMISC (tmp, buffer->overlays_after);
5590 mark_object (tmp);
5593 /* buffer-local Lisp variables start at `undo_list',
5594 tho only the ones from `name' on are GC'd normally. */
5595 for (ptr = &buffer->BUFFER_INTERNAL_FIELD (name);
5596 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5597 ptr++)
5598 mark_object (*ptr);
5600 /* If this is an indirect buffer, mark its base buffer. */
5601 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5603 XSETBUFFER (base_buffer, buffer->base_buffer);
5604 mark_buffer (base_buffer);
5608 /* Mark the Lisp pointers in the terminal objects.
5609 Called by the Fgarbage_collector. */
5611 static void
5612 mark_terminals (void)
5614 struct terminal *t;
5615 for (t = terminal_list; t; t = t->next_terminal)
5617 eassert (t->name != NULL);
5618 #ifdef HAVE_WINDOW_SYSTEM
5619 /* If a terminal object is reachable from a stacpro'ed object,
5620 it might have been marked already. Make sure the image cache
5621 gets marked. */
5622 mark_image_cache (t->image_cache);
5623 #endif /* HAVE_WINDOW_SYSTEM */
5624 if (!VECTOR_MARKED_P (t))
5625 mark_vectorlike ((struct Lisp_Vector *)t);
5631 /* Value is non-zero if OBJ will survive the current GC because it's
5632 either marked or does not need to be marked to survive. */
5635 survives_gc_p (Lisp_Object obj)
5637 int survives_p;
5639 switch (XTYPE (obj))
5641 case_Lisp_Int:
5642 survives_p = 1;
5643 break;
5645 case Lisp_Symbol:
5646 survives_p = XSYMBOL (obj)->gcmarkbit;
5647 break;
5649 case Lisp_Misc:
5650 survives_p = XMISCANY (obj)->gcmarkbit;
5651 break;
5653 case Lisp_String:
5654 survives_p = STRING_MARKED_P (XSTRING (obj));
5655 break;
5657 case Lisp_Vectorlike:
5658 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5659 break;
5661 case Lisp_Cons:
5662 survives_p = CONS_MARKED_P (XCONS (obj));
5663 break;
5665 case Lisp_Float:
5666 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5667 break;
5669 default:
5670 abort ();
5673 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5678 /* Sweep: find all structures not marked, and free them. */
5680 static void
5681 gc_sweep (void)
5683 /* Remove or mark entries in weak hash tables.
5684 This must be done before any object is unmarked. */
5685 sweep_weak_hash_tables ();
5687 sweep_strings ();
5688 #ifdef GC_CHECK_STRING_BYTES
5689 if (!noninteractive)
5690 check_string_bytes (1);
5691 #endif
5693 /* Put all unmarked conses on free list */
5695 register struct cons_block *cblk;
5696 struct cons_block **cprev = &cons_block;
5697 register int lim = cons_block_index;
5698 register int num_free = 0, num_used = 0;
5700 cons_free_list = 0;
5702 for (cblk = cons_block; cblk; cblk = *cprev)
5704 register int i = 0;
5705 int this_free = 0;
5706 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5708 /* Scan the mark bits an int at a time. */
5709 for (i = 0; i <= ilim; i++)
5711 if (cblk->gcmarkbits[i] == -1)
5713 /* Fast path - all cons cells for this int are marked. */
5714 cblk->gcmarkbits[i] = 0;
5715 num_used += BITS_PER_INT;
5717 else
5719 /* Some cons cells for this int are not marked.
5720 Find which ones, and free them. */
5721 int start, pos, stop;
5723 start = i * BITS_PER_INT;
5724 stop = lim - start;
5725 if (stop > BITS_PER_INT)
5726 stop = BITS_PER_INT;
5727 stop += start;
5729 for (pos = start; pos < stop; pos++)
5731 if (!CONS_MARKED_P (&cblk->conses[pos]))
5733 this_free++;
5734 cblk->conses[pos].u.chain = cons_free_list;
5735 cons_free_list = &cblk->conses[pos];
5736 #if GC_MARK_STACK
5737 cons_free_list->car = Vdead;
5738 #endif
5740 else
5742 num_used++;
5743 CONS_UNMARK (&cblk->conses[pos]);
5749 lim = CONS_BLOCK_SIZE;
5750 /* If this block contains only free conses and we have already
5751 seen more than two blocks worth of free conses then deallocate
5752 this block. */
5753 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5755 *cprev = cblk->next;
5756 /* Unhook from the free list. */
5757 cons_free_list = cblk->conses[0].u.chain;
5758 lisp_align_free (cblk);
5759 n_cons_blocks--;
5761 else
5763 num_free += this_free;
5764 cprev = &cblk->next;
5767 total_conses = num_used;
5768 total_free_conses = num_free;
5771 /* Put all unmarked floats on free list */
5773 register struct float_block *fblk;
5774 struct float_block **fprev = &float_block;
5775 register int lim = float_block_index;
5776 register int num_free = 0, num_used = 0;
5778 float_free_list = 0;
5780 for (fblk = float_block; fblk; fblk = *fprev)
5782 register int i;
5783 int this_free = 0;
5784 for (i = 0; i < lim; i++)
5785 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5787 this_free++;
5788 fblk->floats[i].u.chain = float_free_list;
5789 float_free_list = &fblk->floats[i];
5791 else
5793 num_used++;
5794 FLOAT_UNMARK (&fblk->floats[i]);
5796 lim = FLOAT_BLOCK_SIZE;
5797 /* If this block contains only free floats and we have already
5798 seen more than two blocks worth of free floats then deallocate
5799 this block. */
5800 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5802 *fprev = fblk->next;
5803 /* Unhook from the free list. */
5804 float_free_list = fblk->floats[0].u.chain;
5805 lisp_align_free (fblk);
5806 n_float_blocks--;
5808 else
5810 num_free += this_free;
5811 fprev = &fblk->next;
5814 total_floats = num_used;
5815 total_free_floats = num_free;
5818 /* Put all unmarked intervals on free list */
5820 register struct interval_block *iblk;
5821 struct interval_block **iprev = &interval_block;
5822 register int lim = interval_block_index;
5823 register int num_free = 0, num_used = 0;
5825 interval_free_list = 0;
5827 for (iblk = interval_block; iblk; iblk = *iprev)
5829 register int i;
5830 int this_free = 0;
5832 for (i = 0; i < lim; i++)
5834 if (!iblk->intervals[i].gcmarkbit)
5836 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5837 interval_free_list = &iblk->intervals[i];
5838 this_free++;
5840 else
5842 num_used++;
5843 iblk->intervals[i].gcmarkbit = 0;
5846 lim = INTERVAL_BLOCK_SIZE;
5847 /* If this block contains only free intervals and we have already
5848 seen more than two blocks worth of free intervals then
5849 deallocate this block. */
5850 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5852 *iprev = iblk->next;
5853 /* Unhook from the free list. */
5854 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5855 lisp_free (iblk);
5856 n_interval_blocks--;
5858 else
5860 num_free += this_free;
5861 iprev = &iblk->next;
5864 total_intervals = num_used;
5865 total_free_intervals = num_free;
5868 /* Put all unmarked symbols on free list */
5870 register struct symbol_block *sblk;
5871 struct symbol_block **sprev = &symbol_block;
5872 register int lim = symbol_block_index;
5873 register int num_free = 0, num_used = 0;
5875 symbol_free_list = NULL;
5877 for (sblk = symbol_block; sblk; sblk = *sprev)
5879 int this_free = 0;
5880 struct Lisp_Symbol *sym = sblk->symbols;
5881 struct Lisp_Symbol *end = sym + lim;
5883 for (; sym < end; ++sym)
5885 /* Check if the symbol was created during loadup. In such a case
5886 it might be pointed to by pure bytecode which we don't trace,
5887 so we conservatively assume that it is live. */
5888 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5890 if (!sym->gcmarkbit && !pure_p)
5892 if (sym->redirect == SYMBOL_LOCALIZED)
5893 xfree (SYMBOL_BLV (sym));
5894 sym->next = symbol_free_list;
5895 symbol_free_list = sym;
5896 #if GC_MARK_STACK
5897 symbol_free_list->function = Vdead;
5898 #endif
5899 ++this_free;
5901 else
5903 ++num_used;
5904 if (!pure_p)
5905 UNMARK_STRING (XSTRING (sym->xname));
5906 sym->gcmarkbit = 0;
5910 lim = SYMBOL_BLOCK_SIZE;
5911 /* If this block contains only free symbols and we have already
5912 seen more than two blocks worth of free symbols then deallocate
5913 this block. */
5914 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5916 *sprev = sblk->next;
5917 /* Unhook from the free list. */
5918 symbol_free_list = sblk->symbols[0].next;
5919 lisp_free (sblk);
5920 n_symbol_blocks--;
5922 else
5924 num_free += this_free;
5925 sprev = &sblk->next;
5928 total_symbols = num_used;
5929 total_free_symbols = num_free;
5932 /* Put all unmarked misc's on free list.
5933 For a marker, first unchain it from the buffer it points into. */
5935 register struct marker_block *mblk;
5936 struct marker_block **mprev = &marker_block;
5937 register int lim = marker_block_index;
5938 register int num_free = 0, num_used = 0;
5940 marker_free_list = 0;
5942 for (mblk = marker_block; mblk; mblk = *mprev)
5944 register int i;
5945 int this_free = 0;
5947 for (i = 0; i < lim; i++)
5949 if (!mblk->markers[i].u_any.gcmarkbit)
5951 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
5952 unchain_marker (&mblk->markers[i].u_marker);
5953 /* Set the type of the freed object to Lisp_Misc_Free.
5954 We could leave the type alone, since nobody checks it,
5955 but this might catch bugs faster. */
5956 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5957 mblk->markers[i].u_free.chain = marker_free_list;
5958 marker_free_list = &mblk->markers[i];
5959 this_free++;
5961 else
5963 num_used++;
5964 mblk->markers[i].u_any.gcmarkbit = 0;
5967 lim = MARKER_BLOCK_SIZE;
5968 /* If this block contains only free markers and we have already
5969 seen more than two blocks worth of free markers then deallocate
5970 this block. */
5971 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5973 *mprev = mblk->next;
5974 /* Unhook from the free list. */
5975 marker_free_list = mblk->markers[0].u_free.chain;
5976 lisp_free (mblk);
5977 n_marker_blocks--;
5979 else
5981 num_free += this_free;
5982 mprev = &mblk->next;
5986 total_markers = num_used;
5987 total_free_markers = num_free;
5990 /* Free all unmarked buffers */
5992 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5994 while (buffer)
5995 if (!VECTOR_MARKED_P (buffer))
5997 if (prev)
5998 prev->next = buffer->next;
5999 else
6000 all_buffers = buffer->next;
6001 next = buffer->next;
6002 lisp_free (buffer);
6003 buffer = next;
6005 else
6007 VECTOR_UNMARK (buffer);
6008 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6009 prev = buffer, buffer = buffer->next;
6013 /* Free all unmarked vectors */
6015 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6016 total_vector_size = 0;
6018 while (vector)
6019 if (!VECTOR_MARKED_P (vector))
6021 if (prev)
6022 prev->next = vector->next;
6023 else
6024 all_vectors = vector->next;
6025 next = vector->next;
6026 lisp_free (vector);
6027 n_vectors--;
6028 vector = next;
6031 else
6033 VECTOR_UNMARK (vector);
6034 if (vector->size & PSEUDOVECTOR_FLAG)
6035 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6036 else
6037 total_vector_size += vector->size;
6038 prev = vector, vector = vector->next;
6042 #ifdef GC_CHECK_STRING_BYTES
6043 if (!noninteractive)
6044 check_string_bytes (1);
6045 #endif
6051 /* Debugging aids. */
6053 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6054 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6055 This may be helpful in debugging Emacs's memory usage.
6056 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6057 (void)
6059 Lisp_Object end;
6061 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
6063 return end;
6066 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6067 doc: /* Return a list of counters that measure how much consing there has been.
6068 Each of these counters increments for a certain kind of object.
6069 The counters wrap around from the largest positive integer to zero.
6070 Garbage collection does not decrease them.
6071 The elements of the value are as follows:
6072 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6073 All are in units of 1 = one object consed
6074 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6075 objects consed.
6076 MISCS include overlays, markers, and some internal types.
6077 Frames, windows, buffers, and subprocesses count as vectors
6078 (but the contents of a buffer's text do not count here). */)
6079 (void)
6081 Lisp_Object consed[8];
6083 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6084 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6085 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6086 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6087 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6088 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6089 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6090 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6092 return Flist (8, consed);
6095 int suppress_checking;
6097 void
6098 die (const char *msg, const char *file, int line)
6100 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6101 file, line, msg);
6102 abort ();
6105 /* Initialization */
6107 void
6108 init_alloc_once (void)
6110 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6111 purebeg = PUREBEG;
6112 pure_size = PURESIZE;
6113 pure_bytes_used = 0;
6114 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6115 pure_bytes_used_before_overflow = 0;
6117 /* Initialize the list of free aligned blocks. */
6118 free_ablock = NULL;
6120 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6121 mem_init ();
6122 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6123 #endif
6125 all_vectors = 0;
6126 ignore_warnings = 1;
6127 #ifdef DOUG_LEA_MALLOC
6128 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6129 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6130 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6131 #endif
6132 init_strings ();
6133 init_cons ();
6134 init_symbol ();
6135 init_marker ();
6136 init_float ();
6137 init_intervals ();
6138 init_weak_hash_tables ();
6140 #ifdef REL_ALLOC
6141 malloc_hysteresis = 32;
6142 #else
6143 malloc_hysteresis = 0;
6144 #endif
6146 refill_memory_reserve ();
6148 ignore_warnings = 0;
6149 gcprolist = 0;
6150 byte_stack_list = 0;
6151 staticidx = 0;
6152 consing_since_gc = 0;
6153 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6154 gc_relative_threshold = 0;
6157 void
6158 init_alloc (void)
6160 gcprolist = 0;
6161 byte_stack_list = 0;
6162 #if GC_MARK_STACK
6163 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6164 setjmp_tested_p = longjmps_done = 0;
6165 #endif
6166 #endif
6167 Vgc_elapsed = make_float (0.0);
6168 gcs_done = 0;
6171 void
6172 syms_of_alloc (void)
6174 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6175 doc: /* *Number of bytes of consing between garbage collections.
6176 Garbage collection can happen automatically once this many bytes have been
6177 allocated since the last garbage collection. All data types count.
6179 Garbage collection happens automatically only when `eval' is called.
6181 By binding this temporarily to a large number, you can effectively
6182 prevent garbage collection during a part of the program.
6183 See also `gc-cons-percentage'. */);
6185 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6186 doc: /* *Portion of the heap used for allocation.
6187 Garbage collection can happen automatically once this portion of the heap
6188 has been allocated since the last garbage collection.
6189 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6190 Vgc_cons_percentage = make_float (0.1);
6192 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6193 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6195 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6196 doc: /* Number of cons cells that have been consed so far. */);
6198 DEFVAR_INT ("floats-consed", floats_consed,
6199 doc: /* Number of floats that have been consed so far. */);
6201 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6202 doc: /* Number of vector cells that have been consed so far. */);
6204 DEFVAR_INT ("symbols-consed", symbols_consed,
6205 doc: /* Number of symbols that have been consed so far. */);
6207 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6208 doc: /* Number of string characters that have been consed so far. */);
6210 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6211 doc: /* Number of miscellaneous objects that have been consed so far. */);
6213 DEFVAR_INT ("intervals-consed", intervals_consed,
6214 doc: /* Number of intervals that have been consed so far. */);
6216 DEFVAR_INT ("strings-consed", strings_consed,
6217 doc: /* Number of strings that have been consed so far. */);
6219 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6220 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6221 This means that certain objects should be allocated in shared (pure) space.
6222 It can also be set to a hash-table, in which case this table is used to
6223 do hash-consing of the objects allocated to pure space. */);
6225 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6226 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6227 garbage_collection_messages = 0;
6229 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6230 doc: /* Hook run after garbage collection has finished. */);
6231 Vpost_gc_hook = Qnil;
6232 Qpost_gc_hook = intern_c_string ("post-gc-hook");
6233 staticpro (&Qpost_gc_hook);
6235 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6236 doc: /* Precomputed `signal' argument for memory-full error. */);
6237 /* We build this in advance because if we wait until we need it, we might
6238 not be able to allocate the memory to hold it. */
6239 Vmemory_signal_data
6240 = pure_cons (Qerror,
6241 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6243 DEFVAR_LISP ("memory-full", Vmemory_full,
6244 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6245 Vmemory_full = Qnil;
6247 staticpro (&Qgc_cons_threshold);
6248 Qgc_cons_threshold = intern_c_string ("gc-cons-threshold");
6250 staticpro (&Qchar_table_extra_slots);
6251 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
6253 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6254 doc: /* Accumulated time elapsed in garbage collections.
6255 The time is in seconds as a floating point value. */);
6256 DEFVAR_INT ("gcs-done", gcs_done,
6257 doc: /* Accumulated number of garbage collections done. */);
6259 defsubr (&Scons);
6260 defsubr (&Slist);
6261 defsubr (&Svector);
6262 defsubr (&Smake_byte_code);
6263 defsubr (&Smake_list);
6264 defsubr (&Smake_vector);
6265 defsubr (&Smake_string);
6266 defsubr (&Smake_bool_vector);
6267 defsubr (&Smake_symbol);
6268 defsubr (&Smake_marker);
6269 defsubr (&Spurecopy);
6270 defsubr (&Sgarbage_collect);
6271 defsubr (&Smemory_limit);
6272 defsubr (&Smemory_use_counts);
6274 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6275 defsubr (&Sgc_status);
6276 #endif