Enable resize-minibuffer-mode when this file is loaded.
[emacs.git] / src / regex.c
blob9e7145d2f63287b53cefb50b317b38afa72b8707
1 /* Extended regular expression matching and search library,
2 version 0.12.
3 (Implements POSIX draft P10003.2/D11.2, except for
4 internationalization features.)
6 Copyright (C) 1993, 1994 Free Software Foundation, Inc.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
22 /* AIX requires this to be the first thing in the file. */
23 #if defined (_AIX) && !defined (REGEX_MALLOC)
24 #pragma alloca
25 #endif
27 #define _GNU_SOURCE
29 #ifdef HAVE_CONFIG_H
30 #if defined (emacs) || defined (CONFIG_BROKETS)
31 /* We use <config.h> instead of "config.h" so that a compilation
32 using -I. -I$srcdir will use ./config.h rather than $srcdir/config.h
33 (which it would do because it found this file in $srcdir). */
34 #include <config.h>
35 #else
36 #include "config.h"
37 #endif
38 #endif
40 /* We need this for `regex.h', and perhaps for the Emacs include files. */
41 #include <sys/types.h>
43 /* The `emacs' switch turns on certain matching commands
44 that make sense only in Emacs. */
45 #ifdef emacs
47 #include "lisp.h"
48 #include "buffer.h"
49 #include "syntax.h"
51 /* Emacs uses `NULL' as a predicate. */
52 #undef NULL
54 #else /* not emacs */
56 #ifdef STDC_HEADERS
57 #include <stdlib.h>
58 #else
59 char *malloc ();
60 char *realloc ();
61 #endif
64 /* We used to test for `BSTRING' here, but only GCC and Emacs define
65 `BSTRING', as far as I know, and neither of them use this code. */
66 #ifndef INHIBIT_STRING_HEADER
67 #if HAVE_STRING_H || STDC_HEADERS
68 #include <string.h>
69 #ifndef bcmp
70 #define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
71 #endif
72 #ifndef bcopy
73 #define bcopy(s, d, n) memcpy ((d), (s), (n))
74 #endif
75 #ifndef bzero
76 #define bzero(s, n) memset ((s), 0, (n))
77 #endif
78 #else
79 #include <strings.h>
80 #endif
81 #endif
83 /* Define the syntax stuff for \<, \>, etc. */
85 /* This must be nonzero for the wordchar and notwordchar pattern
86 commands in re_match_2. */
87 #ifndef Sword
88 #define Sword 1
89 #endif
91 #ifdef SYNTAX_TABLE
93 extern char *re_syntax_table;
95 #else /* not SYNTAX_TABLE */
97 /* How many characters in the character set. */
98 #define CHAR_SET_SIZE 256
100 static char re_syntax_table[CHAR_SET_SIZE];
102 static void
103 init_syntax_once ()
105 register int c;
106 static int done = 0;
108 if (done)
109 return;
111 bzero (re_syntax_table, sizeof re_syntax_table);
113 for (c = 'a'; c <= 'z'; c++)
114 re_syntax_table[c] = Sword;
116 for (c = 'A'; c <= 'Z'; c++)
117 re_syntax_table[c] = Sword;
119 for (c = '0'; c <= '9'; c++)
120 re_syntax_table[c] = Sword;
122 re_syntax_table['_'] = Sword;
124 done = 1;
127 #endif /* not SYNTAX_TABLE */
129 #define SYNTAX(c) re_syntax_table[c]
131 #endif /* not emacs */
133 /* Get the interface, including the syntax bits. */
134 #include "regex.h"
136 /* isalpha etc. are used for the character classes. */
137 #include <ctype.h>
139 /* Jim Meyering writes:
141 "... Some ctype macros are valid only for character codes that
142 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
143 using /bin/cc or gcc but without giving an ansi option). So, all
144 ctype uses should be through macros like ISPRINT... If
145 STDC_HEADERS is defined, then autoconf has verified that the ctype
146 macros don't need to be guarded with references to isascii. ...
147 Defining isascii to 1 should let any compiler worth its salt
148 eliminate the && through constant folding." */
150 #if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
151 #define ISASCII(c) 1
152 #else
153 #define ISASCII(c) isascii(c)
154 #endif
156 #ifdef isblank
157 #define ISBLANK(c) (ISASCII (c) && isblank (c))
158 #else
159 #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
160 #endif
161 #ifdef isgraph
162 #define ISGRAPH(c) (ISASCII (c) && isgraph (c))
163 #else
164 #define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
165 #endif
167 #define ISPRINT(c) (ISASCII (c) && isprint (c))
168 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
169 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
170 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
171 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
172 #define ISLOWER(c) (ISASCII (c) && islower (c))
173 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
174 #define ISSPACE(c) (ISASCII (c) && isspace (c))
175 #define ISUPPER(c) (ISASCII (c) && isupper (c))
176 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
178 #ifndef NULL
179 #define NULL 0
180 #endif
182 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
183 since ours (we hope) works properly with all combinations of
184 machines, compilers, `char' and `unsigned char' argument types.
185 (Per Bothner suggested the basic approach.) */
186 #undef SIGN_EXTEND_CHAR
187 #if __STDC__
188 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
189 #else /* not __STDC__ */
190 /* As in Harbison and Steele. */
191 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
192 #endif
194 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
195 use `alloca' instead of `malloc'. This is because using malloc in
196 re_search* or re_match* could cause memory leaks when C-g is used in
197 Emacs; also, malloc is slower and causes storage fragmentation. On
198 the other hand, malloc is more portable, and easier to debug.
200 Because we sometimes use alloca, some routines have to be macros,
201 not functions -- `alloca'-allocated space disappears at the end of the
202 function it is called in. */
204 #ifdef REGEX_MALLOC
206 #define REGEX_ALLOCATE malloc
207 #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
209 #else /* not REGEX_MALLOC */
211 /* Emacs already defines alloca, sometimes. */
212 #ifndef alloca
214 /* Make alloca work the best possible way. */
215 #ifdef __GNUC__
216 #define alloca __builtin_alloca
217 #else /* not __GNUC__ */
218 #if HAVE_ALLOCA_H
219 #include <alloca.h>
220 #else /* not __GNUC__ or HAVE_ALLOCA_H */
221 #ifndef _AIX /* Already did AIX, up at the top. */
222 char *alloca ();
223 #endif /* not _AIX */
224 #endif /* not HAVE_ALLOCA_H */
225 #endif /* not __GNUC__ */
227 #endif /* not alloca */
229 #define REGEX_ALLOCATE alloca
231 /* Assumes a `char *destination' variable. */
232 #define REGEX_REALLOCATE(source, osize, nsize) \
233 (destination = (char *) alloca (nsize), \
234 bcopy (source, destination, osize), \
235 destination)
237 #endif /* not REGEX_MALLOC */
240 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
241 `string1' or just past its end. This works if PTR is NULL, which is
242 a good thing. */
243 #define FIRST_STRING_P(ptr) \
244 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
246 /* (Re)Allocate N items of type T using malloc, or fail. */
247 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
248 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
249 #define RETALLOC_IF(addr, n, t) \
250 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
251 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
253 #define BYTEWIDTH 8 /* In bits. */
255 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
257 #undef MAX
258 #undef MIN
259 #define MAX(a, b) ((a) > (b) ? (a) : (b))
260 #define MIN(a, b) ((a) < (b) ? (a) : (b))
262 typedef char boolean;
263 #define false 0
264 #define true 1
266 static int re_match_2_internal ();
268 /* These are the command codes that appear in compiled regular
269 expressions. Some opcodes are followed by argument bytes. A
270 command code can specify any interpretation whatsoever for its
271 arguments. Zero bytes may appear in the compiled regular expression.
273 The value of `exactn' is needed in search.c (search_buffer) in Emacs.
274 So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of
275 `exactn' we use here must also be 1. */
277 typedef enum
279 no_op = 0,
281 /* Followed by one byte giving n, then by n literal bytes. */
282 exactn = 1,
284 /* Matches any (more or less) character. */
285 anychar,
287 /* Matches any one char belonging to specified set. First
288 following byte is number of bitmap bytes. Then come bytes
289 for a bitmap saying which chars are in. Bits in each byte
290 are ordered low-bit-first. A character is in the set if its
291 bit is 1. A character too large to have a bit in the map is
292 automatically not in the set. */
293 charset,
295 /* Same parameters as charset, but match any character that is
296 not one of those specified. */
297 charset_not,
299 /* Start remembering the text that is matched, for storing in a
300 register. Followed by one byte with the register number, in
301 the range 0 to one less than the pattern buffer's re_nsub
302 field. Then followed by one byte with the number of groups
303 inner to this one. (This last has to be part of the
304 start_memory only because we need it in the on_failure_jump
305 of re_match_2.) */
306 start_memory,
308 /* Stop remembering the text that is matched and store it in a
309 memory register. Followed by one byte with the register
310 number, in the range 0 to one less than `re_nsub' in the
311 pattern buffer, and one byte with the number of inner groups,
312 just like `start_memory'. (We need the number of inner
313 groups here because we don't have any easy way of finding the
314 corresponding start_memory when we're at a stop_memory.) */
315 stop_memory,
317 /* Match a duplicate of something remembered. Followed by one
318 byte containing the register number. */
319 duplicate,
321 /* Fail unless at beginning of line. */
322 begline,
324 /* Fail unless at end of line. */
325 endline,
327 /* Succeeds if at beginning of buffer (if emacs) or at beginning
328 of string to be matched (if not). */
329 begbuf,
331 /* Analogously, for end of buffer/string. */
332 endbuf,
334 /* Followed by two byte relative address to which to jump. */
335 jump,
337 /* Same as jump, but marks the end of an alternative. */
338 jump_past_alt,
340 /* Followed by two-byte relative address of place to resume at
341 in case of failure. */
342 on_failure_jump,
344 /* Like on_failure_jump, but pushes a placeholder instead of the
345 current string position when executed. */
346 on_failure_keep_string_jump,
348 /* Throw away latest failure point and then jump to following
349 two-byte relative address. */
350 pop_failure_jump,
352 /* Change to pop_failure_jump if know won't have to backtrack to
353 match; otherwise change to jump. This is used to jump
354 back to the beginning of a repeat. If what follows this jump
355 clearly won't match what the repeat does, such that we can be
356 sure that there is no use backtracking out of repetitions
357 already matched, then we change it to a pop_failure_jump.
358 Followed by two-byte address. */
359 maybe_pop_jump,
361 /* Jump to following two-byte address, and push a dummy failure
362 point. This failure point will be thrown away if an attempt
363 is made to use it for a failure. A `+' construct makes this
364 before the first repeat. Also used as an intermediary kind
365 of jump when compiling an alternative. */
366 dummy_failure_jump,
368 /* Push a dummy failure point and continue. Used at the end of
369 alternatives. */
370 push_dummy_failure,
372 /* Followed by two-byte relative address and two-byte number n.
373 After matching N times, jump to the address upon failure. */
374 succeed_n,
376 /* Followed by two-byte relative address, and two-byte number n.
377 Jump to the address N times, then fail. */
378 jump_n,
380 /* Set the following two-byte relative address to the
381 subsequent two-byte number. The address *includes* the two
382 bytes of number. */
383 set_number_at,
385 wordchar, /* Matches any word-constituent character. */
386 notwordchar, /* Matches any char that is not a word-constituent. */
388 wordbeg, /* Succeeds if at word beginning. */
389 wordend, /* Succeeds if at word end. */
391 wordbound, /* Succeeds if at a word boundary. */
392 notwordbound /* Succeeds if not at a word boundary. */
394 #ifdef emacs
395 ,before_dot, /* Succeeds if before point. */
396 at_dot, /* Succeeds if at point. */
397 after_dot, /* Succeeds if after point. */
399 /* Matches any character whose syntax is specified. Followed by
400 a byte which contains a syntax code, e.g., Sword. */
401 syntaxspec,
403 /* Matches any character whose syntax is not that specified. */
404 notsyntaxspec
405 #endif /* emacs */
406 } re_opcode_t;
408 /* Common operations on the compiled pattern. */
410 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
412 #define STORE_NUMBER(destination, number) \
413 do { \
414 (destination)[0] = (number) & 0377; \
415 (destination)[1] = (number) >> 8; \
416 } while (0)
418 /* Same as STORE_NUMBER, except increment DESTINATION to
419 the byte after where the number is stored. Therefore, DESTINATION
420 must be an lvalue. */
422 #define STORE_NUMBER_AND_INCR(destination, number) \
423 do { \
424 STORE_NUMBER (destination, number); \
425 (destination) += 2; \
426 } while (0)
428 /* Put into DESTINATION a number stored in two contiguous bytes starting
429 at SOURCE. */
431 #define EXTRACT_NUMBER(destination, source) \
432 do { \
433 (destination) = *(source) & 0377; \
434 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
435 } while (0)
437 #ifdef DEBUG
438 static void
439 extract_number (dest, source)
440 int *dest;
441 unsigned char *source;
443 int temp = SIGN_EXTEND_CHAR (*(source + 1));
444 *dest = *source & 0377;
445 *dest += temp << 8;
448 #ifndef EXTRACT_MACROS /* To debug the macros. */
449 #undef EXTRACT_NUMBER
450 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
451 #endif /* not EXTRACT_MACROS */
453 #endif /* DEBUG */
455 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
456 SOURCE must be an lvalue. */
458 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
459 do { \
460 EXTRACT_NUMBER (destination, source); \
461 (source) += 2; \
462 } while (0)
464 #ifdef DEBUG
465 static void
466 extract_number_and_incr (destination, source)
467 int *destination;
468 unsigned char **source;
470 extract_number (destination, *source);
471 *source += 2;
474 #ifndef EXTRACT_MACROS
475 #undef EXTRACT_NUMBER_AND_INCR
476 #define EXTRACT_NUMBER_AND_INCR(dest, src) \
477 extract_number_and_incr (&dest, &src)
478 #endif /* not EXTRACT_MACROS */
480 #endif /* DEBUG */
482 /* If DEBUG is defined, Regex prints many voluminous messages about what
483 it is doing (if the variable `debug' is nonzero). If linked with the
484 main program in `iregex.c', you can enter patterns and strings
485 interactively. And if linked with the main program in `main.c' and
486 the other test files, you can run the already-written tests. */
488 #ifdef DEBUG
490 /* We use standard I/O for debugging. */
491 #include <stdio.h>
493 /* It is useful to test things that ``must'' be true when debugging. */
494 #include <assert.h>
496 static int debug = 0;
498 #define DEBUG_STATEMENT(e) e
499 #define DEBUG_PRINT1(x) if (debug) printf (x)
500 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
501 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
502 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
503 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
504 if (debug) print_partial_compiled_pattern (s, e)
505 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
506 if (debug) print_double_string (w, s1, sz1, s2, sz2)
509 extern void printchar ();
511 /* Print the fastmap in human-readable form. */
513 void
514 print_fastmap (fastmap)
515 char *fastmap;
517 unsigned was_a_range = 0;
518 unsigned i = 0;
520 while (i < (1 << BYTEWIDTH))
522 if (fastmap[i++])
524 was_a_range = 0;
525 printchar (i - 1);
526 while (i < (1 << BYTEWIDTH) && fastmap[i])
528 was_a_range = 1;
529 i++;
531 if (was_a_range)
533 printf ("-");
534 printchar (i - 1);
538 putchar ('\n');
542 /* Print a compiled pattern string in human-readable form, starting at
543 the START pointer into it and ending just before the pointer END. */
545 void
546 print_partial_compiled_pattern (start, end)
547 unsigned char *start;
548 unsigned char *end;
550 int mcnt, mcnt2;
551 unsigned char *p = start;
552 unsigned char *pend = end;
554 if (start == NULL)
556 printf ("(null)\n");
557 return;
560 /* Loop over pattern commands. */
561 while (p < pend)
563 printf ("%d:\t", p - start);
565 switch ((re_opcode_t) *p++)
567 case no_op:
568 printf ("/no_op");
569 break;
571 case exactn:
572 mcnt = *p++;
573 printf ("/exactn/%d", mcnt);
576 putchar ('/');
577 printchar (*p++);
579 while (--mcnt);
580 break;
582 case start_memory:
583 mcnt = *p++;
584 printf ("/start_memory/%d/%d", mcnt, *p++);
585 break;
587 case stop_memory:
588 mcnt = *p++;
589 printf ("/stop_memory/%d/%d", mcnt, *p++);
590 break;
592 case duplicate:
593 printf ("/duplicate/%d", *p++);
594 break;
596 case anychar:
597 printf ("/anychar");
598 break;
600 case charset:
601 case charset_not:
603 register int c, last = -100;
604 register int in_range = 0;
606 printf ("/charset [%s",
607 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
609 assert (p + *p < pend);
611 for (c = 0; c < 256; c++)
612 if (c / 8 < *p
613 && (p[1 + (c/8)] & (1 << (c % 8))))
615 /* Are we starting a range? */
616 if (last + 1 == c && ! in_range)
618 putchar ('-');
619 in_range = 1;
621 /* Have we broken a range? */
622 else if (last + 1 != c && in_range)
624 printchar (last);
625 in_range = 0;
628 if (! in_range)
629 printchar (c);
631 last = c;
634 if (in_range)
635 printchar (last);
637 putchar (']');
639 p += 1 + *p;
641 break;
643 case begline:
644 printf ("/begline");
645 break;
647 case endline:
648 printf ("/endline");
649 break;
651 case on_failure_jump:
652 extract_number_and_incr (&mcnt, &p);
653 printf ("/on_failure_jump to %d", p + mcnt - start);
654 break;
656 case on_failure_keep_string_jump:
657 extract_number_and_incr (&mcnt, &p);
658 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
659 break;
661 case dummy_failure_jump:
662 extract_number_and_incr (&mcnt, &p);
663 printf ("/dummy_failure_jump to %d", p + mcnt - start);
664 break;
666 case push_dummy_failure:
667 printf ("/push_dummy_failure");
668 break;
670 case maybe_pop_jump:
671 extract_number_and_incr (&mcnt, &p);
672 printf ("/maybe_pop_jump to %d", p + mcnt - start);
673 break;
675 case pop_failure_jump:
676 extract_number_and_incr (&mcnt, &p);
677 printf ("/pop_failure_jump to %d", p + mcnt - start);
678 break;
680 case jump_past_alt:
681 extract_number_and_incr (&mcnt, &p);
682 printf ("/jump_past_alt to %d", p + mcnt - start);
683 break;
685 case jump:
686 extract_number_and_incr (&mcnt, &p);
687 printf ("/jump to %d", p + mcnt - start);
688 break;
690 case succeed_n:
691 extract_number_and_incr (&mcnt, &p);
692 extract_number_and_incr (&mcnt2, &p);
693 printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2);
694 break;
696 case jump_n:
697 extract_number_and_incr (&mcnt, &p);
698 extract_number_and_incr (&mcnt2, &p);
699 printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2);
700 break;
702 case set_number_at:
703 extract_number_and_incr (&mcnt, &p);
704 extract_number_and_incr (&mcnt2, &p);
705 printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2);
706 break;
708 case wordbound:
709 printf ("/wordbound");
710 break;
712 case notwordbound:
713 printf ("/notwordbound");
714 break;
716 case wordbeg:
717 printf ("/wordbeg");
718 break;
720 case wordend:
721 printf ("/wordend");
723 #ifdef emacs
724 case before_dot:
725 printf ("/before_dot");
726 break;
728 case at_dot:
729 printf ("/at_dot");
730 break;
732 case after_dot:
733 printf ("/after_dot");
734 break;
736 case syntaxspec:
737 printf ("/syntaxspec");
738 mcnt = *p++;
739 printf ("/%d", mcnt);
740 break;
742 case notsyntaxspec:
743 printf ("/notsyntaxspec");
744 mcnt = *p++;
745 printf ("/%d", mcnt);
746 break;
747 #endif /* emacs */
749 case wordchar:
750 printf ("/wordchar");
751 break;
753 case notwordchar:
754 printf ("/notwordchar");
755 break;
757 case begbuf:
758 printf ("/begbuf");
759 break;
761 case endbuf:
762 printf ("/endbuf");
763 break;
765 default:
766 printf ("?%d", *(p-1));
769 putchar ('\n');
772 printf ("%d:\tend of pattern.\n", p - start);
776 void
777 print_compiled_pattern (bufp)
778 struct re_pattern_buffer *bufp;
780 unsigned char *buffer = bufp->buffer;
782 print_partial_compiled_pattern (buffer, buffer + bufp->used);
783 printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
785 if (bufp->fastmap_accurate && bufp->fastmap)
787 printf ("fastmap: ");
788 print_fastmap (bufp->fastmap);
791 printf ("re_nsub: %d\t", bufp->re_nsub);
792 printf ("regs_alloc: %d\t", bufp->regs_allocated);
793 printf ("can_be_null: %d\t", bufp->can_be_null);
794 printf ("newline_anchor: %d\n", bufp->newline_anchor);
795 printf ("no_sub: %d\t", bufp->no_sub);
796 printf ("not_bol: %d\t", bufp->not_bol);
797 printf ("not_eol: %d\t", bufp->not_eol);
798 printf ("syntax: %d\n", bufp->syntax);
799 /* Perhaps we should print the translate table? */
803 void
804 print_double_string (where, string1, size1, string2, size2)
805 const char *where;
806 const char *string1;
807 const char *string2;
808 int size1;
809 int size2;
811 unsigned this_char;
813 if (where == NULL)
814 printf ("(null)");
815 else
817 if (FIRST_STRING_P (where))
819 for (this_char = where - string1; this_char < size1; this_char++)
820 printchar (string1[this_char]);
822 where = string2;
825 for (this_char = where - string2; this_char < size2; this_char++)
826 printchar (string2[this_char]);
830 #else /* not DEBUG */
832 #undef assert
833 #define assert(e)
835 #define DEBUG_STATEMENT(e)
836 #define DEBUG_PRINT1(x)
837 #define DEBUG_PRINT2(x1, x2)
838 #define DEBUG_PRINT3(x1, x2, x3)
839 #define DEBUG_PRINT4(x1, x2, x3, x4)
840 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
841 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
843 #endif /* not DEBUG */
845 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
846 also be assigned to arbitrarily: each pattern buffer stores its own
847 syntax, so it can be changed between regex compilations. */
848 reg_syntax_t re_syntax_options = RE_SYNTAX_EMACS;
851 /* Specify the precise syntax of regexps for compilation. This provides
852 for compatibility for various utilities which historically have
853 different, incompatible syntaxes.
855 The argument SYNTAX is a bit mask comprised of the various bits
856 defined in regex.h. We return the old syntax. */
858 reg_syntax_t
859 re_set_syntax (syntax)
860 reg_syntax_t syntax;
862 reg_syntax_t ret = re_syntax_options;
864 re_syntax_options = syntax;
865 return ret;
868 /* This table gives an error message for each of the error codes listed
869 in regex.h. Obviously the order here has to be same as there. */
871 static const char *re_error_msg[] =
872 { NULL, /* REG_NOERROR */
873 "No match", /* REG_NOMATCH */
874 "Invalid regular expression", /* REG_BADPAT */
875 "Invalid collation character", /* REG_ECOLLATE */
876 "Invalid character class name", /* REG_ECTYPE */
877 "Trailing backslash", /* REG_EESCAPE */
878 "Invalid back reference", /* REG_ESUBREG */
879 "Unmatched [ or [^", /* REG_EBRACK */
880 "Unmatched ( or \\(", /* REG_EPAREN */
881 "Unmatched \\{", /* REG_EBRACE */
882 "Invalid content of \\{\\}", /* REG_BADBR */
883 "Invalid range end", /* REG_ERANGE */
884 "Memory exhausted", /* REG_ESPACE */
885 "Invalid preceding regular expression", /* REG_BADRPT */
886 "Premature end of regular expression", /* REG_EEND */
887 "Regular expression too big", /* REG_ESIZE */
888 "Unmatched ) or \\)", /* REG_ERPAREN */
891 /* Avoiding alloca during matching, to placate r_alloc. */
893 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
894 searching and matching functions should not call alloca. On some
895 systems, alloca is implemented in terms of malloc, and if we're
896 using the relocating allocator routines, then malloc could cause a
897 relocation, which might (if the strings being searched are in the
898 ralloc heap) shift the data out from underneath the regexp
899 routines.
901 Here's another reason to avoid allocation: Emacs insists on
902 processing input from X in a signal handler; processing X input may
903 call malloc; if input arrives while a matching routine is calling
904 malloc, then we're scrod. But Emacs can't just block input while
905 calling matching routines; then we don't notice interrupts when
906 they come in. So, Emacs blocks input around all regexp calls
907 except the matching calls, which it leaves unprotected, in the
908 faith that they will not malloc. */
910 /* Normally, this is fine. */
911 #define MATCH_MAY_ALLOCATE
913 /* But under some circumstances, it's not. */
914 #if defined (emacs) || (defined (REL_ALLOC) && defined (C_ALLOCA))
915 #undef MATCH_MAY_ALLOCATE
916 #endif
919 /* Failure stack declarations and macros; both re_compile_fastmap and
920 re_match_2 use a failure stack. These have to be macros because of
921 REGEX_ALLOCATE. */
924 /* Number of failure points for which to initially allocate space
925 when matching. If this number is exceeded, we allocate more
926 space, so it is not a hard limit. */
927 #ifndef INIT_FAILURE_ALLOC
928 #define INIT_FAILURE_ALLOC 5
929 #endif
931 /* Roughly the maximum number of failure points on the stack. Would be
932 exactly that if always used MAX_FAILURE_SPACE each time we failed.
933 This is a variable only so users of regex can assign to it; we never
934 change it ourselves. */
935 int re_max_failures = 2000;
937 typedef unsigned char *fail_stack_elt_t;
939 typedef struct
941 fail_stack_elt_t *stack;
942 unsigned size;
943 unsigned avail; /* Offset of next open position. */
944 } fail_stack_type;
946 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
947 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
948 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
949 #define FAIL_STACK_TOP() (fail_stack.stack[fail_stack.avail])
952 /* Initialize `fail_stack'. Do `return -2' if the alloc fails. */
954 #ifdef MATCH_MAY_ALLOCATE
955 #define INIT_FAIL_STACK() \
956 do { \
957 fail_stack.stack = (fail_stack_elt_t *) \
958 REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
960 if (fail_stack.stack == NULL) \
961 return -2; \
963 fail_stack.size = INIT_FAILURE_ALLOC; \
964 fail_stack.avail = 0; \
965 } while (0)
966 #else
967 #define INIT_FAIL_STACK() \
968 do { \
969 fail_stack.avail = 0; \
970 } while (0)
971 #endif
974 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
976 Return 1 if succeeds, and 0 if either ran out of memory
977 allocating space for it or it was already too large.
979 REGEX_REALLOCATE requires `destination' be declared. */
981 #define DOUBLE_FAIL_STACK(fail_stack) \
982 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
983 ? 0 \
984 : ((fail_stack).stack = (fail_stack_elt_t *) \
985 REGEX_REALLOCATE ((fail_stack).stack, \
986 (fail_stack).size * sizeof (fail_stack_elt_t), \
987 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
989 (fail_stack).stack == NULL \
990 ? 0 \
991 : ((fail_stack).size <<= 1, \
992 1)))
995 /* Push PATTERN_OP on FAIL_STACK.
997 Return 1 if was able to do so and 0 if ran out of memory allocating
998 space to do so. */
999 #define PUSH_PATTERN_OP(pattern_op, fail_stack) \
1000 ((FAIL_STACK_FULL () \
1001 && !DOUBLE_FAIL_STACK (fail_stack)) \
1002 ? 0 \
1003 : ((fail_stack).stack[(fail_stack).avail++] = pattern_op, \
1006 /* This pushes an item onto the failure stack. Must be a four-byte
1007 value. Assumes the variable `fail_stack'. Probably should only
1008 be called from within `PUSH_FAILURE_POINT'. */
1009 #define PUSH_FAILURE_ITEM(item) \
1010 fail_stack.stack[fail_stack.avail++] = (fail_stack_elt_t) item
1012 /* The complement operation. Assumes `fail_stack' is nonempty. */
1013 #define POP_FAILURE_ITEM() fail_stack.stack[--fail_stack.avail]
1015 /* Used to omit pushing failure point id's when we're not debugging. */
1016 #ifdef DEBUG
1017 #define DEBUG_PUSH PUSH_FAILURE_ITEM
1018 #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_ITEM ()
1019 #else
1020 #define DEBUG_PUSH(item)
1021 #define DEBUG_POP(item_addr)
1022 #endif
1025 /* Push the information about the state we will need
1026 if we ever fail back to it.
1028 Requires variables fail_stack, regstart, regend, reg_info, and
1029 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
1030 declared.
1032 Does `return FAILURE_CODE' if runs out of memory. */
1034 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1035 do { \
1036 char *destination; \
1037 /* Must be int, so when we don't save any registers, the arithmetic \
1038 of 0 + -1 isn't done as unsigned. */ \
1039 int this_reg; \
1041 DEBUG_STATEMENT (failure_id++); \
1042 DEBUG_STATEMENT (nfailure_points_pushed++); \
1043 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1044 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1045 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1047 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
1048 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1050 /* Ensure we have enough space allocated for what we will push. */ \
1051 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1053 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1054 return failure_code; \
1056 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1057 (fail_stack).size); \
1058 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1061 /* Push the info, starting with the registers. */ \
1062 DEBUG_PRINT1 ("\n"); \
1064 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1065 this_reg++) \
1067 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
1068 DEBUG_STATEMENT (num_regs_pushed++); \
1070 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1071 PUSH_FAILURE_ITEM (regstart[this_reg]); \
1073 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1074 PUSH_FAILURE_ITEM (regend[this_reg]); \
1076 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
1077 DEBUG_PRINT2 (" match_null=%d", \
1078 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1079 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1080 DEBUG_PRINT2 (" matched_something=%d", \
1081 MATCHED_SOMETHING (reg_info[this_reg])); \
1082 DEBUG_PRINT2 (" ever_matched=%d", \
1083 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1084 DEBUG_PRINT1 ("\n"); \
1085 PUSH_FAILURE_ITEM (reg_info[this_reg].word); \
1088 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
1089 PUSH_FAILURE_ITEM (lowest_active_reg); \
1091 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
1092 PUSH_FAILURE_ITEM (highest_active_reg); \
1094 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
1095 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1096 PUSH_FAILURE_ITEM (pattern_place); \
1098 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
1099 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1100 size2); \
1101 DEBUG_PRINT1 ("'\n"); \
1102 PUSH_FAILURE_ITEM (string_place); \
1104 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1105 DEBUG_PUSH (failure_id); \
1106 } while (0)
1108 /* This is the number of items that are pushed and popped on the stack
1109 for each register. */
1110 #define NUM_REG_ITEMS 3
1112 /* Individual items aside from the registers. */
1113 #ifdef DEBUG
1114 #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1115 #else
1116 #define NUM_NONREG_ITEMS 4
1117 #endif
1119 /* We push at most this many items on the stack. */
1120 #define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1122 /* We actually push this many items. */
1123 #define NUM_FAILURE_ITEMS \
1124 ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \
1125 + NUM_NONREG_ITEMS)
1127 /* How many items can still be added to the stack without overflowing it. */
1128 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1131 /* Pops what PUSH_FAIL_STACK pushes.
1133 We restore into the parameters, all of which should be lvalues:
1134 STR -- the saved data position.
1135 PAT -- the saved pattern position.
1136 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1137 REGSTART, REGEND -- arrays of string positions.
1138 REG_INFO -- array of information about each subexpression.
1140 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1141 `pend', `string1', `size1', `string2', and `size2'. */
1143 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1145 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
1146 int this_reg; \
1147 const unsigned char *string_temp; \
1149 assert (!FAIL_STACK_EMPTY ()); \
1151 /* Remove failure points and point to how many regs pushed. */ \
1152 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1153 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1154 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1156 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1158 DEBUG_POP (&failure_id); \
1159 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1161 /* If the saved string location is NULL, it came from an \
1162 on_failure_keep_string_jump opcode, and we want to throw away the \
1163 saved NULL, thus retaining our current position in the string. */ \
1164 string_temp = POP_FAILURE_ITEM (); \
1165 if (string_temp != NULL) \
1166 str = (const char *) string_temp; \
1168 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
1169 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1170 DEBUG_PRINT1 ("'\n"); \
1172 pat = (unsigned char *) POP_FAILURE_ITEM (); \
1173 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
1174 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1176 /* Restore register info. */ \
1177 high_reg = (unsigned) POP_FAILURE_ITEM (); \
1178 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
1180 low_reg = (unsigned) POP_FAILURE_ITEM (); \
1181 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
1183 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1185 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
1187 reg_info[this_reg].word = POP_FAILURE_ITEM (); \
1188 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
1190 regend[this_reg] = (const char *) POP_FAILURE_ITEM (); \
1191 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1193 regstart[this_reg] = (const char *) POP_FAILURE_ITEM (); \
1194 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1197 DEBUG_STATEMENT (nfailure_points_popped++); \
1198 } /* POP_FAILURE_POINT */
1202 /* Structure for per-register (a.k.a. per-group) information.
1203 This must not be longer than one word, because we push this value
1204 onto the failure stack. Other register information, such as the
1205 starting and ending positions (which are addresses), and the list of
1206 inner groups (which is a bits list) are maintained in separate
1207 variables.
1209 We are making a (strictly speaking) nonportable assumption here: that
1210 the compiler will pack our bit fields into something that fits into
1211 the type of `word', i.e., is something that fits into one item on the
1212 failure stack. */
1213 typedef union
1215 fail_stack_elt_t word;
1216 struct
1218 /* This field is one if this group can match the empty string,
1219 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1220 #define MATCH_NULL_UNSET_VALUE 3
1221 unsigned match_null_string_p : 2;
1222 unsigned is_active : 1;
1223 unsigned matched_something : 1;
1224 unsigned ever_matched_something : 1;
1225 } bits;
1226 } register_info_type;
1228 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1229 #define IS_ACTIVE(R) ((R).bits.is_active)
1230 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1231 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1234 /* Call this when have matched a real character; it sets `matched' flags
1235 for the subexpressions which we are currently inside. Also records
1236 that those subexprs have matched. */
1237 #define SET_REGS_MATCHED() \
1238 do \
1240 unsigned r; \
1241 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1243 MATCHED_SOMETHING (reg_info[r]) \
1244 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1245 = 1; \
1248 while (0)
1251 /* Registers are set to a sentinel when they haven't yet matched. */
1252 #define REG_UNSET_VALUE ((char *) -1)
1253 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1257 /* How do we implement a missing MATCH_MAY_ALLOCATE?
1258 We make the fail stack a global thing, and then grow it to
1259 re_max_failures when we compile. */
1260 #ifndef MATCH_MAY_ALLOCATE
1261 static fail_stack_type fail_stack;
1263 static const char ** regstart, ** regend;
1264 static const char ** old_regstart, ** old_regend;
1265 static const char **best_regstart, **best_regend;
1266 static register_info_type *reg_info;
1267 static const char **reg_dummy;
1268 static register_info_type *reg_info_dummy;
1269 #endif
1272 /* Subroutine declarations and macros for regex_compile. */
1274 static void store_op1 (), store_op2 ();
1275 static void insert_op1 (), insert_op2 ();
1276 static boolean at_begline_loc_p (), at_endline_loc_p ();
1277 static boolean group_in_compile_stack ();
1278 static reg_errcode_t compile_range ();
1280 /* Fetch the next character in the uncompiled pattern---translating it
1281 if necessary. Also cast from a signed character in the constant
1282 string passed to us by the user to an unsigned char that we can use
1283 as an array index (in, e.g., `translate'). */
1284 #define PATFETCH(c) \
1285 do {if (p == pend) return REG_EEND; \
1286 c = (unsigned char) *p++; \
1287 if (translate) c = translate[c]; \
1288 } while (0)
1290 /* Fetch the next character in the uncompiled pattern, with no
1291 translation. */
1292 #define PATFETCH_RAW(c) \
1293 do {if (p == pend) return REG_EEND; \
1294 c = (unsigned char) *p++; \
1295 } while (0)
1297 /* Go backwards one character in the pattern. */
1298 #define PATUNFETCH p--
1301 /* If `translate' is non-null, return translate[D], else just D. We
1302 cast the subscript to translate because some data is declared as
1303 `char *', to avoid warnings when a string constant is passed. But
1304 when we use a character as a subscript we must make it unsigned. */
1305 #define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d))
1308 /* Macros for outputting the compiled pattern into `buffer'. */
1310 /* If the buffer isn't allocated when it comes in, use this. */
1311 #define INIT_BUF_SIZE 32
1313 /* Make sure we have at least N more bytes of space in buffer. */
1314 #define GET_BUFFER_SPACE(n) \
1315 while (b - bufp->buffer + (n) > bufp->allocated) \
1316 EXTEND_BUFFER ()
1318 /* Make sure we have one more byte of buffer space and then add C to it. */
1319 #define BUF_PUSH(c) \
1320 do { \
1321 GET_BUFFER_SPACE (1); \
1322 *b++ = (unsigned char) (c); \
1323 } while (0)
1326 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1327 #define BUF_PUSH_2(c1, c2) \
1328 do { \
1329 GET_BUFFER_SPACE (2); \
1330 *b++ = (unsigned char) (c1); \
1331 *b++ = (unsigned char) (c2); \
1332 } while (0)
1335 /* As with BUF_PUSH_2, except for three bytes. */
1336 #define BUF_PUSH_3(c1, c2, c3) \
1337 do { \
1338 GET_BUFFER_SPACE (3); \
1339 *b++ = (unsigned char) (c1); \
1340 *b++ = (unsigned char) (c2); \
1341 *b++ = (unsigned char) (c3); \
1342 } while (0)
1345 /* Store a jump with opcode OP at LOC to location TO. We store a
1346 relative address offset by the three bytes the jump itself occupies. */
1347 #define STORE_JUMP(op, loc, to) \
1348 store_op1 (op, loc, (to) - (loc) - 3)
1350 /* Likewise, for a two-argument jump. */
1351 #define STORE_JUMP2(op, loc, to, arg) \
1352 store_op2 (op, loc, (to) - (loc) - 3, arg)
1354 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1355 #define INSERT_JUMP(op, loc, to) \
1356 insert_op1 (op, loc, (to) - (loc) - 3, b)
1358 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1359 #define INSERT_JUMP2(op, loc, to, arg) \
1360 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1363 /* This is not an arbitrary limit: the arguments which represent offsets
1364 into the pattern are two bytes long. So if 2^16 bytes turns out to
1365 be too small, many things would have to change. */
1366 #define MAX_BUF_SIZE (1L << 16)
1369 /* Extend the buffer by twice its current size via realloc and
1370 reset the pointers that pointed into the old block to point to the
1371 correct places in the new one. If extending the buffer results in it
1372 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1373 #define EXTEND_BUFFER() \
1374 do { \
1375 unsigned char *old_buffer = bufp->buffer; \
1376 if (bufp->allocated == MAX_BUF_SIZE) \
1377 return REG_ESIZE; \
1378 bufp->allocated <<= 1; \
1379 if (bufp->allocated > MAX_BUF_SIZE) \
1380 bufp->allocated = MAX_BUF_SIZE; \
1381 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
1382 if (bufp->buffer == NULL) \
1383 return REG_ESPACE; \
1384 /* If the buffer moved, move all the pointers into it. */ \
1385 if (old_buffer != bufp->buffer) \
1387 b = (b - old_buffer) + bufp->buffer; \
1388 begalt = (begalt - old_buffer) + bufp->buffer; \
1389 if (fixup_alt_jump) \
1390 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1391 if (laststart) \
1392 laststart = (laststart - old_buffer) + bufp->buffer; \
1393 if (pending_exact) \
1394 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1396 } while (0)
1399 /* Since we have one byte reserved for the register number argument to
1400 {start,stop}_memory, the maximum number of groups we can report
1401 things about is what fits in that byte. */
1402 #define MAX_REGNUM 255
1404 /* But patterns can have more than `MAX_REGNUM' registers. We just
1405 ignore the excess. */
1406 typedef unsigned regnum_t;
1409 /* Macros for the compile stack. */
1411 /* Since offsets can go either forwards or backwards, this type needs to
1412 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1413 typedef int pattern_offset_t;
1415 typedef struct
1417 pattern_offset_t begalt_offset;
1418 pattern_offset_t fixup_alt_jump;
1419 pattern_offset_t inner_group_offset;
1420 pattern_offset_t laststart_offset;
1421 regnum_t regnum;
1422 } compile_stack_elt_t;
1425 typedef struct
1427 compile_stack_elt_t *stack;
1428 unsigned size;
1429 unsigned avail; /* Offset of next open position. */
1430 } compile_stack_type;
1433 #define INIT_COMPILE_STACK_SIZE 32
1435 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1436 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1438 /* The next available element. */
1439 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1442 /* Set the bit for character C in a list. */
1443 #define SET_LIST_BIT(c) \
1444 (b[((unsigned char) (c)) / BYTEWIDTH] \
1445 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1448 /* Get the next unsigned number in the uncompiled pattern. */
1449 #define GET_UNSIGNED_NUMBER(num) \
1450 { if (p != pend) \
1452 PATFETCH (c); \
1453 while (ISDIGIT (c)) \
1455 if (num < 0) \
1456 num = 0; \
1457 num = num * 10 + c - '0'; \
1458 if (p == pend) \
1459 break; \
1460 PATFETCH (c); \
1465 #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1467 #define IS_CHAR_CLASS(string) \
1468 (STREQ (string, "alpha") || STREQ (string, "upper") \
1469 || STREQ (string, "lower") || STREQ (string, "digit") \
1470 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1471 || STREQ (string, "space") || STREQ (string, "print") \
1472 || STREQ (string, "punct") || STREQ (string, "graph") \
1473 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1475 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1476 Returns one of error codes defined in `regex.h', or zero for success.
1478 Assumes the `allocated' (and perhaps `buffer') and `translate'
1479 fields are set in BUFP on entry.
1481 If it succeeds, results are put in BUFP (if it returns an error, the
1482 contents of BUFP are undefined):
1483 `buffer' is the compiled pattern;
1484 `syntax' is set to SYNTAX;
1485 `used' is set to the length of the compiled pattern;
1486 `fastmap_accurate' is zero;
1487 `re_nsub' is the number of subexpressions in PATTERN;
1488 `not_bol' and `not_eol' are zero;
1490 The `fastmap' and `newline_anchor' fields are neither
1491 examined nor set. */
1493 static reg_errcode_t
1494 regex_compile (pattern, size, syntax, bufp)
1495 const char *pattern;
1496 int size;
1497 reg_syntax_t syntax;
1498 struct re_pattern_buffer *bufp;
1500 /* We fetch characters from PATTERN here. Even though PATTERN is
1501 `char *' (i.e., signed), we declare these variables as unsigned, so
1502 they can be reliably used as array indices. */
1503 register unsigned char c, c1;
1505 /* A random temporary spot in PATTERN. */
1506 const char *p1;
1508 /* Points to the end of the buffer, where we should append. */
1509 register unsigned char *b;
1511 /* Keeps track of unclosed groups. */
1512 compile_stack_type compile_stack;
1514 /* Points to the current (ending) position in the pattern. */
1515 const char *p = pattern;
1516 const char *pend = pattern + size;
1518 /* How to translate the characters in the pattern. */
1519 char *translate = bufp->translate;
1521 /* Address of the count-byte of the most recently inserted `exactn'
1522 command. This makes it possible to tell if a new exact-match
1523 character can be added to that command or if the character requires
1524 a new `exactn' command. */
1525 unsigned char *pending_exact = 0;
1527 /* Address of start of the most recently finished expression.
1528 This tells, e.g., postfix * where to find the start of its
1529 operand. Reset at the beginning of groups and alternatives. */
1530 unsigned char *laststart = 0;
1532 /* Address of beginning of regexp, or inside of last group. */
1533 unsigned char *begalt;
1535 /* Place in the uncompiled pattern (i.e., the {) to
1536 which to go back if the interval is invalid. */
1537 const char *beg_interval;
1539 /* Address of the place where a forward jump should go to the end of
1540 the containing expression. Each alternative of an `or' -- except the
1541 last -- ends with a forward jump of this sort. */
1542 unsigned char *fixup_alt_jump = 0;
1544 /* Counts open-groups as they are encountered. Remembered for the
1545 matching close-group on the compile stack, so the same register
1546 number is put in the stop_memory as the start_memory. */
1547 regnum_t regnum = 0;
1549 #ifdef DEBUG
1550 DEBUG_PRINT1 ("\nCompiling pattern: ");
1551 if (debug)
1553 unsigned debug_count;
1555 for (debug_count = 0; debug_count < size; debug_count++)
1556 printchar (pattern[debug_count]);
1557 putchar ('\n');
1559 #endif /* DEBUG */
1561 /* Initialize the compile stack. */
1562 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1563 if (compile_stack.stack == NULL)
1564 return REG_ESPACE;
1566 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1567 compile_stack.avail = 0;
1569 /* Initialize the pattern buffer. */
1570 bufp->syntax = syntax;
1571 bufp->fastmap_accurate = 0;
1572 bufp->not_bol = bufp->not_eol = 0;
1574 /* Set `used' to zero, so that if we return an error, the pattern
1575 printer (for debugging) will think there's no pattern. We reset it
1576 at the end. */
1577 bufp->used = 0;
1579 /* Always count groups, whether or not bufp->no_sub is set. */
1580 bufp->re_nsub = 0;
1582 #if !defined (emacs) && !defined (SYNTAX_TABLE)
1583 /* Initialize the syntax table. */
1584 init_syntax_once ();
1585 #endif
1587 if (bufp->allocated == 0)
1589 if (bufp->buffer)
1590 { /* If zero allocated, but buffer is non-null, try to realloc
1591 enough space. This loses if buffer's address is bogus, but
1592 that is the user's responsibility. */
1593 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1595 else
1596 { /* Caller did not allocate a buffer. Do it for them. */
1597 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1599 if (!bufp->buffer) return REG_ESPACE;
1601 bufp->allocated = INIT_BUF_SIZE;
1604 begalt = b = bufp->buffer;
1606 /* Loop through the uncompiled pattern until we're at the end. */
1607 while (p != pend)
1609 PATFETCH (c);
1611 switch (c)
1613 case '^':
1615 if ( /* If at start of pattern, it's an operator. */
1616 p == pattern + 1
1617 /* If context independent, it's an operator. */
1618 || syntax & RE_CONTEXT_INDEP_ANCHORS
1619 /* Otherwise, depends on what's come before. */
1620 || at_begline_loc_p (pattern, p, syntax))
1621 BUF_PUSH (begline);
1622 else
1623 goto normal_char;
1625 break;
1628 case '$':
1630 if ( /* If at end of pattern, it's an operator. */
1631 p == pend
1632 /* If context independent, it's an operator. */
1633 || syntax & RE_CONTEXT_INDEP_ANCHORS
1634 /* Otherwise, depends on what's next. */
1635 || at_endline_loc_p (p, pend, syntax))
1636 BUF_PUSH (endline);
1637 else
1638 goto normal_char;
1640 break;
1643 case '+':
1644 case '?':
1645 if ((syntax & RE_BK_PLUS_QM)
1646 || (syntax & RE_LIMITED_OPS))
1647 goto normal_char;
1648 handle_plus:
1649 case '*':
1650 /* If there is no previous pattern... */
1651 if (!laststart)
1653 if (syntax & RE_CONTEXT_INVALID_OPS)
1654 return REG_BADRPT;
1655 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1656 goto normal_char;
1660 /* Are we optimizing this jump? */
1661 boolean keep_string_p = false;
1663 /* 1 means zero (many) matches is allowed. */
1664 char zero_times_ok = 0, many_times_ok = 0;
1666 /* If there is a sequence of repetition chars, collapse it
1667 down to just one (the right one). We can't combine
1668 interval operators with these because of, e.g., `a{2}*',
1669 which should only match an even number of `a's. */
1671 for (;;)
1673 zero_times_ok |= c != '+';
1674 many_times_ok |= c != '?';
1676 if (p == pend)
1677 break;
1679 PATFETCH (c);
1681 if (c == '*'
1682 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
1685 else if (syntax & RE_BK_PLUS_QM && c == '\\')
1687 if (p == pend) return REG_EESCAPE;
1689 PATFETCH (c1);
1690 if (!(c1 == '+' || c1 == '?'))
1692 PATUNFETCH;
1693 PATUNFETCH;
1694 break;
1697 c = c1;
1699 else
1701 PATUNFETCH;
1702 break;
1705 /* If we get here, we found another repeat character. */
1708 /* Star, etc. applied to an empty pattern is equivalent
1709 to an empty pattern. */
1710 if (!laststart)
1711 break;
1713 /* Now we know whether or not zero matches is allowed
1714 and also whether or not two or more matches is allowed. */
1715 if (many_times_ok)
1716 { /* More than one repetition is allowed, so put in at the
1717 end a backward relative jump from `b' to before the next
1718 jump we're going to put in below (which jumps from
1719 laststart to after this jump).
1721 But if we are at the `*' in the exact sequence `.*\n',
1722 insert an unconditional jump backwards to the .,
1723 instead of the beginning of the loop. This way we only
1724 push a failure point once, instead of every time
1725 through the loop. */
1726 assert (p - 1 > pattern);
1728 /* Allocate the space for the jump. */
1729 GET_BUFFER_SPACE (3);
1731 /* We know we are not at the first character of the pattern,
1732 because laststart was nonzero. And we've already
1733 incremented `p', by the way, to be the character after
1734 the `*'. Do we have to do something analogous here
1735 for null bytes, because of RE_DOT_NOT_NULL? */
1736 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
1737 && zero_times_ok
1738 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
1739 && !(syntax & RE_DOT_NEWLINE))
1740 { /* We have .*\n. */
1741 STORE_JUMP (jump, b, laststart);
1742 keep_string_p = true;
1744 else
1745 /* Anything else. */
1746 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
1748 /* We've added more stuff to the buffer. */
1749 b += 3;
1752 /* On failure, jump from laststart to b + 3, which will be the
1753 end of the buffer after this jump is inserted. */
1754 GET_BUFFER_SPACE (3);
1755 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
1756 : on_failure_jump,
1757 laststart, b + 3);
1758 pending_exact = 0;
1759 b += 3;
1761 if (!zero_times_ok)
1763 /* At least one repetition is required, so insert a
1764 `dummy_failure_jump' before the initial
1765 `on_failure_jump' instruction of the loop. This
1766 effects a skip over that instruction the first time
1767 we hit that loop. */
1768 GET_BUFFER_SPACE (3);
1769 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
1770 b += 3;
1773 break;
1776 case '.':
1777 laststart = b;
1778 BUF_PUSH (anychar);
1779 break;
1782 case '[':
1784 boolean had_char_class = false;
1786 if (p == pend) return REG_EBRACK;
1788 /* Ensure that we have enough space to push a charset: the
1789 opcode, the length count, and the bitset; 34 bytes in all. */
1790 GET_BUFFER_SPACE (34);
1792 laststart = b;
1794 /* We test `*p == '^' twice, instead of using an if
1795 statement, so we only need one BUF_PUSH. */
1796 BUF_PUSH (*p == '^' ? charset_not : charset);
1797 if (*p == '^')
1798 p++;
1800 /* Remember the first position in the bracket expression. */
1801 p1 = p;
1803 /* Push the number of bytes in the bitmap. */
1804 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
1806 /* Clear the whole map. */
1807 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
1809 /* charset_not matches newline according to a syntax bit. */
1810 if ((re_opcode_t) b[-2] == charset_not
1811 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
1812 SET_LIST_BIT ('\n');
1814 /* Read in characters and ranges, setting map bits. */
1815 for (;;)
1817 if (p == pend) return REG_EBRACK;
1819 PATFETCH (c);
1821 /* \ might escape characters inside [...] and [^...]. */
1822 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
1824 if (p == pend) return REG_EESCAPE;
1826 PATFETCH (c1);
1827 SET_LIST_BIT (c1);
1828 continue;
1831 /* Could be the end of the bracket expression. If it's
1832 not (i.e., when the bracket expression is `[]' so
1833 far), the ']' character bit gets set way below. */
1834 if (c == ']' && p != p1 + 1)
1835 break;
1837 /* Look ahead to see if it's a range when the last thing
1838 was a character class. */
1839 if (had_char_class && c == '-' && *p != ']')
1840 return REG_ERANGE;
1842 /* Look ahead to see if it's a range when the last thing
1843 was a character: if this is a hyphen not at the
1844 beginning or the end of a list, then it's the range
1845 operator. */
1846 if (c == '-'
1847 && !(p - 2 >= pattern && p[-2] == '[')
1848 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
1849 && *p != ']')
1851 reg_errcode_t ret
1852 = compile_range (&p, pend, translate, syntax, b);
1853 if (ret != REG_NOERROR) return ret;
1856 else if (p[0] == '-' && p[1] != ']')
1857 { /* This handles ranges made up of characters only. */
1858 reg_errcode_t ret;
1860 /* Move past the `-'. */
1861 PATFETCH (c1);
1863 ret = compile_range (&p, pend, translate, syntax, b);
1864 if (ret != REG_NOERROR) return ret;
1867 /* See if we're at the beginning of a possible character
1868 class. */
1870 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
1871 { /* Leave room for the null. */
1872 char str[CHAR_CLASS_MAX_LENGTH + 1];
1874 PATFETCH (c);
1875 c1 = 0;
1877 /* If pattern is `[[:'. */
1878 if (p == pend) return REG_EBRACK;
1880 for (;;)
1882 PATFETCH (c);
1883 if (c == ':' || c == ']' || p == pend
1884 || c1 == CHAR_CLASS_MAX_LENGTH)
1885 break;
1886 str[c1++] = c;
1888 str[c1] = '\0';
1890 /* If isn't a word bracketed by `[:' and:`]':
1891 undo the ending character, the letters, and leave
1892 the leading `:' and `[' (but set bits for them). */
1893 if (c == ':' && *p == ']')
1895 int ch;
1896 boolean is_alnum = STREQ (str, "alnum");
1897 boolean is_alpha = STREQ (str, "alpha");
1898 boolean is_blank = STREQ (str, "blank");
1899 boolean is_cntrl = STREQ (str, "cntrl");
1900 boolean is_digit = STREQ (str, "digit");
1901 boolean is_graph = STREQ (str, "graph");
1902 boolean is_lower = STREQ (str, "lower");
1903 boolean is_print = STREQ (str, "print");
1904 boolean is_punct = STREQ (str, "punct");
1905 boolean is_space = STREQ (str, "space");
1906 boolean is_upper = STREQ (str, "upper");
1907 boolean is_xdigit = STREQ (str, "xdigit");
1909 if (!IS_CHAR_CLASS (str)) return REG_ECTYPE;
1911 /* Throw away the ] at the end of the character
1912 class. */
1913 PATFETCH (c);
1915 if (p == pend) return REG_EBRACK;
1917 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
1919 if ( (is_alnum && ISALNUM (ch))
1920 || (is_alpha && ISALPHA (ch))
1921 || (is_blank && ISBLANK (ch))
1922 || (is_cntrl && ISCNTRL (ch))
1923 || (is_digit && ISDIGIT (ch))
1924 || (is_graph && ISGRAPH (ch))
1925 || (is_lower && ISLOWER (ch))
1926 || (is_print && ISPRINT (ch))
1927 || (is_punct && ISPUNCT (ch))
1928 || (is_space && ISSPACE (ch))
1929 || (is_upper && ISUPPER (ch))
1930 || (is_xdigit && ISXDIGIT (ch)))
1931 SET_LIST_BIT (ch);
1933 had_char_class = true;
1935 else
1937 c1++;
1938 while (c1--)
1939 PATUNFETCH;
1940 SET_LIST_BIT ('[');
1941 SET_LIST_BIT (':');
1942 had_char_class = false;
1945 else
1947 had_char_class = false;
1948 SET_LIST_BIT (c);
1952 /* Discard any (non)matching list bytes that are all 0 at the
1953 end of the map. Decrease the map-length byte too. */
1954 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
1955 b[-1]--;
1956 b += b[-1];
1958 break;
1961 case '(':
1962 if (syntax & RE_NO_BK_PARENS)
1963 goto handle_open;
1964 else
1965 goto normal_char;
1968 case ')':
1969 if (syntax & RE_NO_BK_PARENS)
1970 goto handle_close;
1971 else
1972 goto normal_char;
1975 case '\n':
1976 if (syntax & RE_NEWLINE_ALT)
1977 goto handle_alt;
1978 else
1979 goto normal_char;
1982 case '|':
1983 if (syntax & RE_NO_BK_VBAR)
1984 goto handle_alt;
1985 else
1986 goto normal_char;
1989 case '{':
1990 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
1991 goto handle_interval;
1992 else
1993 goto normal_char;
1996 case '\\':
1997 if (p == pend) return REG_EESCAPE;
1999 /* Do not translate the character after the \, so that we can
2000 distinguish, e.g., \B from \b, even if we normally would
2001 translate, e.g., B to b. */
2002 PATFETCH_RAW (c);
2004 switch (c)
2006 case '(':
2007 if (syntax & RE_NO_BK_PARENS)
2008 goto normal_backslash;
2010 handle_open:
2011 bufp->re_nsub++;
2012 regnum++;
2014 if (COMPILE_STACK_FULL)
2016 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2017 compile_stack_elt_t);
2018 if (compile_stack.stack == NULL) return REG_ESPACE;
2020 compile_stack.size <<= 1;
2023 /* These are the values to restore when we hit end of this
2024 group. They are all relative offsets, so that if the
2025 whole pattern moves because of realloc, they will still
2026 be valid. */
2027 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2028 COMPILE_STACK_TOP.fixup_alt_jump
2029 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2030 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2031 COMPILE_STACK_TOP.regnum = regnum;
2033 /* We will eventually replace the 0 with the number of
2034 groups inner to this one. But do not push a
2035 start_memory for groups beyond the last one we can
2036 represent in the compiled pattern. */
2037 if (regnum <= MAX_REGNUM)
2039 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2040 BUF_PUSH_3 (start_memory, regnum, 0);
2043 compile_stack.avail++;
2045 fixup_alt_jump = 0;
2046 laststart = 0;
2047 begalt = b;
2048 /* If we've reached MAX_REGNUM groups, then this open
2049 won't actually generate any code, so we'll have to
2050 clear pending_exact explicitly. */
2051 pending_exact = 0;
2052 break;
2055 case ')':
2056 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2058 if (COMPILE_STACK_EMPTY)
2059 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2060 goto normal_backslash;
2061 else
2062 return REG_ERPAREN;
2064 handle_close:
2065 if (fixup_alt_jump)
2066 { /* Push a dummy failure point at the end of the
2067 alternative for a possible future
2068 `pop_failure_jump' to pop. See comments at
2069 `push_dummy_failure' in `re_match_2'. */
2070 BUF_PUSH (push_dummy_failure);
2072 /* We allocated space for this jump when we assigned
2073 to `fixup_alt_jump', in the `handle_alt' case below. */
2074 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2077 /* See similar code for backslashed left paren above. */
2078 if (COMPILE_STACK_EMPTY)
2079 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2080 goto normal_char;
2081 else
2082 return REG_ERPAREN;
2084 /* Since we just checked for an empty stack above, this
2085 ``can't happen''. */
2086 assert (compile_stack.avail != 0);
2088 /* We don't just want to restore into `regnum', because
2089 later groups should continue to be numbered higher,
2090 as in `(ab)c(de)' -- the second group is #2. */
2091 regnum_t this_group_regnum;
2093 compile_stack.avail--;
2094 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2095 fixup_alt_jump
2096 = COMPILE_STACK_TOP.fixup_alt_jump
2097 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2098 : 0;
2099 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2100 this_group_regnum = COMPILE_STACK_TOP.regnum;
2101 /* If we've reached MAX_REGNUM groups, then this open
2102 won't actually generate any code, so we'll have to
2103 clear pending_exact explicitly. */
2104 pending_exact = 0;
2106 /* We're at the end of the group, so now we know how many
2107 groups were inside this one. */
2108 if (this_group_regnum <= MAX_REGNUM)
2110 unsigned char *inner_group_loc
2111 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2113 *inner_group_loc = regnum - this_group_regnum;
2114 BUF_PUSH_3 (stop_memory, this_group_regnum,
2115 regnum - this_group_regnum);
2118 break;
2121 case '|': /* `\|'. */
2122 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2123 goto normal_backslash;
2124 handle_alt:
2125 if (syntax & RE_LIMITED_OPS)
2126 goto normal_char;
2128 /* Insert before the previous alternative a jump which
2129 jumps to this alternative if the former fails. */
2130 GET_BUFFER_SPACE (3);
2131 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2132 pending_exact = 0;
2133 b += 3;
2135 /* The alternative before this one has a jump after it
2136 which gets executed if it gets matched. Adjust that
2137 jump so it will jump to this alternative's analogous
2138 jump (put in below, which in turn will jump to the next
2139 (if any) alternative's such jump, etc.). The last such
2140 jump jumps to the correct final destination. A picture:
2141 _____ _____
2142 | | | |
2143 | v | v
2144 a | b | c
2146 If we are at `b', then fixup_alt_jump right now points to a
2147 three-byte space after `a'. We'll put in the jump, set
2148 fixup_alt_jump to right after `b', and leave behind three
2149 bytes which we'll fill in when we get to after `c'. */
2151 if (fixup_alt_jump)
2152 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2154 /* Mark and leave space for a jump after this alternative,
2155 to be filled in later either by next alternative or
2156 when know we're at the end of a series of alternatives. */
2157 fixup_alt_jump = b;
2158 GET_BUFFER_SPACE (3);
2159 b += 3;
2161 laststart = 0;
2162 begalt = b;
2163 break;
2166 case '{':
2167 /* If \{ is a literal. */
2168 if (!(syntax & RE_INTERVALS)
2169 /* If we're at `\{' and it's not the open-interval
2170 operator. */
2171 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2172 || (p - 2 == pattern && p == pend))
2173 goto normal_backslash;
2175 handle_interval:
2177 /* If got here, then the syntax allows intervals. */
2179 /* At least (most) this many matches must be made. */
2180 int lower_bound = -1, upper_bound = -1;
2182 beg_interval = p - 1;
2184 if (p == pend)
2186 if (syntax & RE_NO_BK_BRACES)
2187 goto unfetch_interval;
2188 else
2189 return REG_EBRACE;
2192 GET_UNSIGNED_NUMBER (lower_bound);
2194 if (c == ',')
2196 GET_UNSIGNED_NUMBER (upper_bound);
2197 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2199 else
2200 /* Interval such as `{1}' => match exactly once. */
2201 upper_bound = lower_bound;
2203 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2204 || lower_bound > upper_bound)
2206 if (syntax & RE_NO_BK_BRACES)
2207 goto unfetch_interval;
2208 else
2209 return REG_BADBR;
2212 if (!(syntax & RE_NO_BK_BRACES))
2214 if (c != '\\') return REG_EBRACE;
2216 PATFETCH (c);
2219 if (c != '}')
2221 if (syntax & RE_NO_BK_BRACES)
2222 goto unfetch_interval;
2223 else
2224 return REG_BADBR;
2227 /* We just parsed a valid interval. */
2229 /* If it's invalid to have no preceding re. */
2230 if (!laststart)
2232 if (syntax & RE_CONTEXT_INVALID_OPS)
2233 return REG_BADRPT;
2234 else if (syntax & RE_CONTEXT_INDEP_OPS)
2235 laststart = b;
2236 else
2237 goto unfetch_interval;
2240 /* If the upper bound is zero, don't want to succeed at
2241 all; jump from `laststart' to `b + 3', which will be
2242 the end of the buffer after we insert the jump. */
2243 if (upper_bound == 0)
2245 GET_BUFFER_SPACE (3);
2246 INSERT_JUMP (jump, laststart, b + 3);
2247 b += 3;
2250 /* Otherwise, we have a nontrivial interval. When
2251 we're all done, the pattern will look like:
2252 set_number_at <jump count> <upper bound>
2253 set_number_at <succeed_n count> <lower bound>
2254 succeed_n <after jump addr> <succeed_n count>
2255 <body of loop>
2256 jump_n <succeed_n addr> <jump count>
2257 (The upper bound and `jump_n' are omitted if
2258 `upper_bound' is 1, though.) */
2259 else
2260 { /* If the upper bound is > 1, we need to insert
2261 more at the end of the loop. */
2262 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2264 GET_BUFFER_SPACE (nbytes);
2266 /* Initialize lower bound of the `succeed_n', even
2267 though it will be set during matching by its
2268 attendant `set_number_at' (inserted next),
2269 because `re_compile_fastmap' needs to know.
2270 Jump to the `jump_n' we might insert below. */
2271 INSERT_JUMP2 (succeed_n, laststart,
2272 b + 5 + (upper_bound > 1) * 5,
2273 lower_bound);
2274 b += 5;
2276 /* Code to initialize the lower bound. Insert
2277 before the `succeed_n'. The `5' is the last two
2278 bytes of this `set_number_at', plus 3 bytes of
2279 the following `succeed_n'. */
2280 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2281 b += 5;
2283 if (upper_bound > 1)
2284 { /* More than one repetition is allowed, so
2285 append a backward jump to the `succeed_n'
2286 that starts this interval.
2288 When we've reached this during matching,
2289 we'll have matched the interval once, so
2290 jump back only `upper_bound - 1' times. */
2291 STORE_JUMP2 (jump_n, b, laststart + 5,
2292 upper_bound - 1);
2293 b += 5;
2295 /* The location we want to set is the second
2296 parameter of the `jump_n'; that is `b-2' as
2297 an absolute address. `laststart' will be
2298 the `set_number_at' we're about to insert;
2299 `laststart+3' the number to set, the source
2300 for the relative address. But we are
2301 inserting into the middle of the pattern --
2302 so everything is getting moved up by 5.
2303 Conclusion: (b - 2) - (laststart + 3) + 5,
2304 i.e., b - laststart.
2306 We insert this at the beginning of the loop
2307 so that if we fail during matching, we'll
2308 reinitialize the bounds. */
2309 insert_op2 (set_number_at, laststart, b - laststart,
2310 upper_bound - 1, b);
2311 b += 5;
2314 pending_exact = 0;
2315 beg_interval = NULL;
2317 break;
2319 unfetch_interval:
2320 /* If an invalid interval, match the characters as literals. */
2321 assert (beg_interval);
2322 p = beg_interval;
2323 beg_interval = NULL;
2325 /* normal_char and normal_backslash need `c'. */
2326 PATFETCH (c);
2328 if (!(syntax & RE_NO_BK_BRACES))
2330 if (p > pattern && p[-1] == '\\')
2331 goto normal_backslash;
2333 goto normal_char;
2335 #ifdef emacs
2336 /* There is no way to specify the before_dot and after_dot
2337 operators. rms says this is ok. --karl */
2338 case '=':
2339 BUF_PUSH (at_dot);
2340 break;
2342 case 's':
2343 laststart = b;
2344 PATFETCH (c);
2345 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2346 break;
2348 case 'S':
2349 laststart = b;
2350 PATFETCH (c);
2351 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2352 break;
2353 #endif /* emacs */
2356 case 'w':
2357 laststart = b;
2358 BUF_PUSH (wordchar);
2359 break;
2362 case 'W':
2363 laststart = b;
2364 BUF_PUSH (notwordchar);
2365 break;
2368 case '<':
2369 BUF_PUSH (wordbeg);
2370 break;
2372 case '>':
2373 BUF_PUSH (wordend);
2374 break;
2376 case 'b':
2377 BUF_PUSH (wordbound);
2378 break;
2380 case 'B':
2381 BUF_PUSH (notwordbound);
2382 break;
2384 case '`':
2385 BUF_PUSH (begbuf);
2386 break;
2388 case '\'':
2389 BUF_PUSH (endbuf);
2390 break;
2392 case '1': case '2': case '3': case '4': case '5':
2393 case '6': case '7': case '8': case '9':
2394 if (syntax & RE_NO_BK_REFS)
2395 goto normal_char;
2397 c1 = c - '0';
2399 if (c1 > regnum)
2400 return REG_ESUBREG;
2402 /* Can't back reference to a subexpression if inside of it. */
2403 if (group_in_compile_stack (compile_stack, c1))
2404 goto normal_char;
2406 laststart = b;
2407 BUF_PUSH_2 (duplicate, c1);
2408 break;
2411 case '+':
2412 case '?':
2413 if (syntax & RE_BK_PLUS_QM)
2414 goto handle_plus;
2415 else
2416 goto normal_backslash;
2418 default:
2419 normal_backslash:
2420 /* You might think it would be useful for \ to mean
2421 not to translate; but if we don't translate it
2422 it will never match anything. */
2423 c = TRANSLATE (c);
2424 goto normal_char;
2426 break;
2429 default:
2430 /* Expects the character in `c'. */
2431 normal_char:
2432 /* If no exactn currently being built. */
2433 if (!pending_exact
2435 /* If last exactn not at current position. */
2436 || pending_exact + *pending_exact + 1 != b
2438 /* We have only one byte following the exactn for the count. */
2439 || *pending_exact == (1 << BYTEWIDTH) - 1
2441 /* If followed by a repetition operator. */
2442 || *p == '*' || *p == '^'
2443 || ((syntax & RE_BK_PLUS_QM)
2444 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2445 : (*p == '+' || *p == '?'))
2446 || ((syntax & RE_INTERVALS)
2447 && ((syntax & RE_NO_BK_BRACES)
2448 ? *p == '{'
2449 : (p[0] == '\\' && p[1] == '{'))))
2451 /* Start building a new exactn. */
2453 laststart = b;
2455 BUF_PUSH_2 (exactn, 0);
2456 pending_exact = b - 1;
2459 BUF_PUSH (c);
2460 (*pending_exact)++;
2461 break;
2462 } /* switch (c) */
2463 } /* while p != pend */
2466 /* Through the pattern now. */
2468 if (fixup_alt_jump)
2469 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2471 if (!COMPILE_STACK_EMPTY)
2472 return REG_EPAREN;
2474 free (compile_stack.stack);
2476 /* We have succeeded; set the length of the buffer. */
2477 bufp->used = b - bufp->buffer;
2479 #ifdef DEBUG
2480 if (debug)
2482 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2483 print_compiled_pattern (bufp);
2485 #endif /* DEBUG */
2487 #ifndef MATCH_MAY_ALLOCATE
2488 /* Initialize the failure stack to the largest possible stack. This
2489 isn't necessary unless we're trying to avoid calling alloca in
2490 the search and match routines. */
2492 int num_regs = bufp->re_nsub + 1;
2494 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2495 is strictly greater than re_max_failures, the largest possible stack
2496 is 2 * re_max_failures failure points. */
2497 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
2499 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
2501 #ifdef emacs
2502 if (! fail_stack.stack)
2503 fail_stack.stack
2504 = (fail_stack_elt_t *) xmalloc (fail_stack.size
2505 * sizeof (fail_stack_elt_t));
2506 else
2507 fail_stack.stack
2508 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2509 (fail_stack.size
2510 * sizeof (fail_stack_elt_t)));
2511 #else /* not emacs */
2512 if (! fail_stack.stack)
2513 fail_stack.stack
2514 = (fail_stack_elt_t *) malloc (fail_stack.size
2515 * sizeof (fail_stack_elt_t));
2516 else
2517 fail_stack.stack
2518 = (fail_stack_elt_t *) realloc (fail_stack.stack,
2519 (fail_stack.size
2520 * sizeof (fail_stack_elt_t)));
2521 #endif /* not emacs */
2524 /* Initialize some other variables the matcher uses. */
2525 RETALLOC_IF (regstart, num_regs, const char *);
2526 RETALLOC_IF (regend, num_regs, const char *);
2527 RETALLOC_IF (old_regstart, num_regs, const char *);
2528 RETALLOC_IF (old_regend, num_regs, const char *);
2529 RETALLOC_IF (best_regstart, num_regs, const char *);
2530 RETALLOC_IF (best_regend, num_regs, const char *);
2531 RETALLOC_IF (reg_info, num_regs, register_info_type);
2532 RETALLOC_IF (reg_dummy, num_regs, const char *);
2533 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
2535 #endif
2537 return REG_NOERROR;
2538 } /* regex_compile */
2540 /* Subroutines for `regex_compile'. */
2542 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2544 static void
2545 store_op1 (op, loc, arg)
2546 re_opcode_t op;
2547 unsigned char *loc;
2548 int arg;
2550 *loc = (unsigned char) op;
2551 STORE_NUMBER (loc + 1, arg);
2555 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2557 static void
2558 store_op2 (op, loc, arg1, arg2)
2559 re_opcode_t op;
2560 unsigned char *loc;
2561 int arg1, arg2;
2563 *loc = (unsigned char) op;
2564 STORE_NUMBER (loc + 1, arg1);
2565 STORE_NUMBER (loc + 3, arg2);
2569 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2570 for OP followed by two-byte integer parameter ARG. */
2572 static void
2573 insert_op1 (op, loc, arg, end)
2574 re_opcode_t op;
2575 unsigned char *loc;
2576 int arg;
2577 unsigned char *end;
2579 register unsigned char *pfrom = end;
2580 register unsigned char *pto = end + 3;
2582 while (pfrom != loc)
2583 *--pto = *--pfrom;
2585 store_op1 (op, loc, arg);
2589 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2591 static void
2592 insert_op2 (op, loc, arg1, arg2, end)
2593 re_opcode_t op;
2594 unsigned char *loc;
2595 int arg1, arg2;
2596 unsigned char *end;
2598 register unsigned char *pfrom = end;
2599 register unsigned char *pto = end + 5;
2601 while (pfrom != loc)
2602 *--pto = *--pfrom;
2604 store_op2 (op, loc, arg1, arg2);
2608 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
2609 after an alternative or a begin-subexpression. We assume there is at
2610 least one character before the ^. */
2612 static boolean
2613 at_begline_loc_p (pattern, p, syntax)
2614 const char *pattern, *p;
2615 reg_syntax_t syntax;
2617 const char *prev = p - 2;
2618 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
2620 return
2621 /* After a subexpression? */
2622 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
2623 /* After an alternative? */
2624 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
2628 /* The dual of at_begline_loc_p. This one is for $. We assume there is
2629 at least one character after the $, i.e., `P < PEND'. */
2631 static boolean
2632 at_endline_loc_p (p, pend, syntax)
2633 const char *p, *pend;
2634 int syntax;
2636 const char *next = p;
2637 boolean next_backslash = *next == '\\';
2638 const char *next_next = p + 1 < pend ? p + 1 : NULL;
2640 return
2641 /* Before a subexpression? */
2642 (syntax & RE_NO_BK_PARENS ? *next == ')'
2643 : next_backslash && next_next && *next_next == ')')
2644 /* Before an alternative? */
2645 || (syntax & RE_NO_BK_VBAR ? *next == '|'
2646 : next_backslash && next_next && *next_next == '|');
2650 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
2651 false if it's not. */
2653 static boolean
2654 group_in_compile_stack (compile_stack, regnum)
2655 compile_stack_type compile_stack;
2656 regnum_t regnum;
2658 int this_element;
2660 for (this_element = compile_stack.avail - 1;
2661 this_element >= 0;
2662 this_element--)
2663 if (compile_stack.stack[this_element].regnum == regnum)
2664 return true;
2666 return false;
2670 /* Read the ending character of a range (in a bracket expression) from the
2671 uncompiled pattern *P_PTR (which ends at PEND). We assume the
2672 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
2673 Then we set the translation of all bits between the starting and
2674 ending characters (inclusive) in the compiled pattern B.
2676 Return an error code.
2678 We use these short variable names so we can use the same macros as
2679 `regex_compile' itself. */
2681 static reg_errcode_t
2682 compile_range (p_ptr, pend, translate, syntax, b)
2683 const char **p_ptr, *pend;
2684 char *translate;
2685 reg_syntax_t syntax;
2686 unsigned char *b;
2688 unsigned this_char;
2690 const char *p = *p_ptr;
2691 int range_start, range_end;
2693 if (p == pend)
2694 return REG_ERANGE;
2696 /* Even though the pattern is a signed `char *', we need to fetch
2697 with unsigned char *'s; if the high bit of the pattern character
2698 is set, the range endpoints will be negative if we fetch using a
2699 signed char *.
2701 We also want to fetch the endpoints without translating them; the
2702 appropriate translation is done in the bit-setting loop below. */
2703 range_start = ((unsigned char *) p)[-2];
2704 range_end = ((unsigned char *) p)[0];
2706 /* Have to increment the pointer into the pattern string, so the
2707 caller isn't still at the ending character. */
2708 (*p_ptr)++;
2710 /* If the start is after the end, the range is empty. */
2711 if (range_start > range_end)
2712 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
2714 /* Here we see why `this_char' has to be larger than an `unsigned
2715 char' -- the range is inclusive, so if `range_end' == 0xff
2716 (assuming 8-bit characters), we would otherwise go into an infinite
2717 loop, since all characters <= 0xff. */
2718 for (this_char = range_start; this_char <= range_end; this_char++)
2720 SET_LIST_BIT (TRANSLATE (this_char));
2723 return REG_NOERROR;
2726 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
2727 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
2728 characters can start a string that matches the pattern. This fastmap
2729 is used by re_search to skip quickly over impossible starting points.
2731 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
2732 area as BUFP->fastmap.
2734 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
2735 the pattern buffer.
2737 Returns 0 if we succeed, -2 if an internal error. */
2740 re_compile_fastmap (bufp)
2741 struct re_pattern_buffer *bufp;
2743 int j, k;
2744 #ifdef MATCH_MAY_ALLOCATE
2745 fail_stack_type fail_stack;
2746 #endif
2747 #ifndef REGEX_MALLOC
2748 char *destination;
2749 #endif
2750 /* We don't push any register information onto the failure stack. */
2751 unsigned num_regs = 0;
2753 register char *fastmap = bufp->fastmap;
2754 unsigned char *pattern = bufp->buffer;
2755 unsigned long size = bufp->used;
2756 unsigned char *p = pattern;
2757 register unsigned char *pend = pattern + size;
2759 /* Assume that each path through the pattern can be null until
2760 proven otherwise. We set this false at the bottom of switch
2761 statement, to which we get only if a particular path doesn't
2762 match the empty string. */
2763 boolean path_can_be_null = true;
2765 /* We aren't doing a `succeed_n' to begin with. */
2766 boolean succeed_n_p = false;
2768 assert (fastmap != NULL && p != NULL);
2770 INIT_FAIL_STACK ();
2771 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
2772 bufp->fastmap_accurate = 1; /* It will be when we're done. */
2773 bufp->can_be_null = 0;
2775 while (p != pend || !FAIL_STACK_EMPTY ())
2777 if (p == pend)
2779 bufp->can_be_null |= path_can_be_null;
2781 /* Reset for next path. */
2782 path_can_be_null = true;
2784 p = fail_stack.stack[--fail_stack.avail];
2787 /* We should never be about to go beyond the end of the pattern. */
2788 assert (p < pend);
2790 #ifdef SWITCH_ENUM_BUG
2791 switch ((int) ((re_opcode_t) *p++))
2792 #else
2793 switch ((re_opcode_t) *p++)
2794 #endif
2797 /* I guess the idea here is to simply not bother with a fastmap
2798 if a backreference is used, since it's too hard to figure out
2799 the fastmap for the corresponding group. Setting
2800 `can_be_null' stops `re_search_2' from using the fastmap, so
2801 that is all we do. */
2802 case duplicate:
2803 bufp->can_be_null = 1;
2804 return 0;
2807 /* Following are the cases which match a character. These end
2808 with `break'. */
2810 case exactn:
2811 fastmap[p[1]] = 1;
2812 break;
2815 case charset:
2816 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2817 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
2818 fastmap[j] = 1;
2819 break;
2822 case charset_not:
2823 /* Chars beyond end of map must be allowed. */
2824 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
2825 fastmap[j] = 1;
2827 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2828 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
2829 fastmap[j] = 1;
2830 break;
2833 case wordchar:
2834 for (j = 0; j < (1 << BYTEWIDTH); j++)
2835 if (SYNTAX (j) == Sword)
2836 fastmap[j] = 1;
2837 break;
2840 case notwordchar:
2841 for (j = 0; j < (1 << BYTEWIDTH); j++)
2842 if (SYNTAX (j) != Sword)
2843 fastmap[j] = 1;
2844 break;
2847 case anychar:
2848 /* `.' matches anything ... */
2849 for (j = 0; j < (1 << BYTEWIDTH); j++)
2850 fastmap[j] = 1;
2852 /* ... except perhaps newline. */
2853 if (!(bufp->syntax & RE_DOT_NEWLINE))
2854 fastmap['\n'] = 0;
2856 /* Return if we have already set `can_be_null'; if we have,
2857 then the fastmap is irrelevant. Something's wrong here. */
2858 else if (bufp->can_be_null)
2859 return 0;
2861 /* Otherwise, have to check alternative paths. */
2862 break;
2865 #ifdef emacs
2866 case syntaxspec:
2867 k = *p++;
2868 for (j = 0; j < (1 << BYTEWIDTH); j++)
2869 if (SYNTAX (j) == (enum syntaxcode) k)
2870 fastmap[j] = 1;
2871 break;
2874 case notsyntaxspec:
2875 k = *p++;
2876 for (j = 0; j < (1 << BYTEWIDTH); j++)
2877 if (SYNTAX (j) != (enum syntaxcode) k)
2878 fastmap[j] = 1;
2879 break;
2882 /* All cases after this match the empty string. These end with
2883 `continue'. */
2886 case before_dot:
2887 case at_dot:
2888 case after_dot:
2889 continue;
2890 #endif /* not emacs */
2893 case no_op:
2894 case begline:
2895 case endline:
2896 case begbuf:
2897 case endbuf:
2898 case wordbound:
2899 case notwordbound:
2900 case wordbeg:
2901 case wordend:
2902 case push_dummy_failure:
2903 continue;
2906 case jump_n:
2907 case pop_failure_jump:
2908 case maybe_pop_jump:
2909 case jump:
2910 case jump_past_alt:
2911 case dummy_failure_jump:
2912 EXTRACT_NUMBER_AND_INCR (j, p);
2913 p += j;
2914 if (j > 0)
2915 continue;
2917 /* Jump backward implies we just went through the body of a
2918 loop and matched nothing. Opcode jumped to should be
2919 `on_failure_jump' or `succeed_n'. Just treat it like an
2920 ordinary jump. For a * loop, it has pushed its failure
2921 point already; if so, discard that as redundant. */
2922 if ((re_opcode_t) *p != on_failure_jump
2923 && (re_opcode_t) *p != succeed_n)
2924 continue;
2926 p++;
2927 EXTRACT_NUMBER_AND_INCR (j, p);
2928 p += j;
2930 /* If what's on the stack is where we are now, pop it. */
2931 if (!FAIL_STACK_EMPTY ()
2932 && fail_stack.stack[fail_stack.avail - 1] == p)
2933 fail_stack.avail--;
2935 continue;
2938 case on_failure_jump:
2939 case on_failure_keep_string_jump:
2940 handle_on_failure_jump:
2941 EXTRACT_NUMBER_AND_INCR (j, p);
2943 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
2944 end of the pattern. We don't want to push such a point,
2945 since when we restore it above, entering the switch will
2946 increment `p' past the end of the pattern. We don't need
2947 to push such a point since we obviously won't find any more
2948 fastmap entries beyond `pend'. Such a pattern can match
2949 the null string, though. */
2950 if (p + j < pend)
2952 if (!PUSH_PATTERN_OP (p + j, fail_stack))
2953 return -2;
2955 else
2956 bufp->can_be_null = 1;
2958 if (succeed_n_p)
2960 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
2961 succeed_n_p = false;
2964 continue;
2967 case succeed_n:
2968 /* Get to the number of times to succeed. */
2969 p += 2;
2971 /* Increment p past the n for when k != 0. */
2972 EXTRACT_NUMBER_AND_INCR (k, p);
2973 if (k == 0)
2975 p -= 4;
2976 succeed_n_p = true; /* Spaghetti code alert. */
2977 goto handle_on_failure_jump;
2979 continue;
2982 case set_number_at:
2983 p += 4;
2984 continue;
2987 case start_memory:
2988 case stop_memory:
2989 p += 2;
2990 continue;
2993 default:
2994 abort (); /* We have listed all the cases. */
2995 } /* switch *p++ */
2997 /* Getting here means we have found the possible starting
2998 characters for one path of the pattern -- and that the empty
2999 string does not match. We need not follow this path further.
3000 Instead, look at the next alternative (remembered on the
3001 stack), or quit if no more. The test at the top of the loop
3002 does these things. */
3003 path_can_be_null = false;
3004 p = pend;
3005 } /* while p */
3007 /* Set `can_be_null' for the last path (also the first path, if the
3008 pattern is empty). */
3009 bufp->can_be_null |= path_can_be_null;
3010 return 0;
3011 } /* re_compile_fastmap */
3013 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3014 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3015 this memory for recording register information. STARTS and ENDS
3016 must be allocated using the malloc library routine, and must each
3017 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3019 If NUM_REGS == 0, then subsequent matches should allocate their own
3020 register data.
3022 Unless this function is called, the first search or match using
3023 PATTERN_BUFFER will allocate its own register data, without
3024 freeing the old data. */
3026 void
3027 re_set_registers (bufp, regs, num_regs, starts, ends)
3028 struct re_pattern_buffer *bufp;
3029 struct re_registers *regs;
3030 unsigned num_regs;
3031 regoff_t *starts, *ends;
3033 if (num_regs)
3035 bufp->regs_allocated = REGS_REALLOCATE;
3036 regs->num_regs = num_regs;
3037 regs->start = starts;
3038 regs->end = ends;
3040 else
3042 bufp->regs_allocated = REGS_UNALLOCATED;
3043 regs->num_regs = 0;
3044 regs->start = regs->end = (regoff_t *) 0;
3048 /* Searching routines. */
3050 /* Like re_search_2, below, but only one string is specified, and
3051 doesn't let you say where to stop matching. */
3054 re_search (bufp, string, size, startpos, range, regs)
3055 struct re_pattern_buffer *bufp;
3056 const char *string;
3057 int size, startpos, range;
3058 struct re_registers *regs;
3060 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3061 regs, size);
3065 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3066 virtual concatenation of STRING1 and STRING2, starting first at index
3067 STARTPOS, then at STARTPOS + 1, and so on.
3069 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3071 RANGE is how far to scan while trying to match. RANGE = 0 means try
3072 only at STARTPOS; in general, the last start tried is STARTPOS +
3073 RANGE.
3075 In REGS, return the indices of the virtual concatenation of STRING1
3076 and STRING2 that matched the entire BUFP->buffer and its contained
3077 subexpressions.
3079 Do not consider matching one past the index STOP in the virtual
3080 concatenation of STRING1 and STRING2.
3082 We return either the position in the strings at which the match was
3083 found, -1 if no match, or -2 if error (such as failure
3084 stack overflow). */
3087 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3088 struct re_pattern_buffer *bufp;
3089 const char *string1, *string2;
3090 int size1, size2;
3091 int startpos;
3092 int range;
3093 struct re_registers *regs;
3094 int stop;
3096 int val;
3097 register char *fastmap = bufp->fastmap;
3098 register char *translate = bufp->translate;
3099 int total_size = size1 + size2;
3100 int endpos = startpos + range;
3102 /* Check for out-of-range STARTPOS. */
3103 if (startpos < 0 || startpos > total_size)
3104 return -1;
3106 /* Fix up RANGE if it might eventually take us outside
3107 the virtual concatenation of STRING1 and STRING2. */
3108 if (endpos < -1)
3109 range = -1 - startpos;
3110 else if (endpos > total_size)
3111 range = total_size - startpos;
3113 /* If the search isn't to be a backwards one, don't waste time in a
3114 search for a pattern that must be anchored. */
3115 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3117 if (startpos > 0)
3118 return -1;
3119 else
3120 range = 1;
3123 /* Update the fastmap now if not correct already. */
3124 if (fastmap && !bufp->fastmap_accurate)
3125 if (re_compile_fastmap (bufp) == -2)
3126 return -2;
3128 /* Loop through the string, looking for a place to start matching. */
3129 for (;;)
3131 /* If a fastmap is supplied, skip quickly over characters that
3132 cannot be the start of a match. If the pattern can match the
3133 null string, however, we don't need to skip characters; we want
3134 the first null string. */
3135 if (fastmap && startpos < total_size && !bufp->can_be_null)
3137 if (range > 0) /* Searching forwards. */
3139 register const char *d;
3140 register int lim = 0;
3141 int irange = range;
3143 if (startpos < size1 && startpos + range >= size1)
3144 lim = range - (size1 - startpos);
3146 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
3148 /* Written out as an if-else to avoid testing `translate'
3149 inside the loop. */
3150 if (translate)
3151 while (range > lim
3152 && !fastmap[(unsigned char)
3153 translate[(unsigned char) *d++]])
3154 range--;
3155 else
3156 while (range > lim && !fastmap[(unsigned char) *d++])
3157 range--;
3159 startpos += irange - range;
3161 else /* Searching backwards. */
3163 register char c = (size1 == 0 || startpos >= size1
3164 ? string2[startpos - size1]
3165 : string1[startpos]);
3167 if (!fastmap[(unsigned char) TRANSLATE (c)])
3168 goto advance;
3172 /* If can't match the null string, and that's all we have left, fail. */
3173 if (range >= 0 && startpos == total_size && fastmap
3174 && !bufp->can_be_null)
3175 return -1;
3177 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3178 startpos, regs, stop);
3179 #ifndef REGEX_MALLOC
3180 #ifdef C_ALLOCA
3181 alloca (0);
3182 #endif
3183 #endif
3185 if (val >= 0)
3186 return startpos;
3188 if (val == -2)
3189 return -2;
3191 advance:
3192 if (!range)
3193 break;
3194 else if (range > 0)
3196 range--;
3197 startpos++;
3199 else
3201 range++;
3202 startpos--;
3205 return -1;
3206 } /* re_search_2 */
3208 /* Declarations and macros for re_match_2. */
3210 static int bcmp_translate ();
3211 static boolean alt_match_null_string_p (),
3212 common_op_match_null_string_p (),
3213 group_match_null_string_p ();
3215 /* This converts PTR, a pointer into one of the search strings `string1'
3216 and `string2' into an offset from the beginning of that string. */
3217 #define POINTER_TO_OFFSET(ptr) \
3218 (FIRST_STRING_P (ptr) \
3219 ? ((regoff_t) ((ptr) - string1)) \
3220 : ((regoff_t) ((ptr) - string2 + size1)))
3222 /* Macros for dealing with the split strings in re_match_2. */
3224 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3226 /* Call before fetching a character with *d. This switches over to
3227 string2 if necessary. */
3228 #define PREFETCH() \
3229 while (d == dend) \
3231 /* End of string2 => fail. */ \
3232 if (dend == end_match_2) \
3233 goto fail; \
3234 /* End of string1 => advance to string2. */ \
3235 d = string2; \
3236 dend = end_match_2; \
3240 /* Test if at very beginning or at very end of the virtual concatenation
3241 of `string1' and `string2'. If only one string, it's `string2'. */
3242 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3243 #define AT_STRINGS_END(d) ((d) == end2)
3246 /* Test if D points to a character which is word-constituent. We have
3247 two special cases to check for: if past the end of string1, look at
3248 the first character in string2; and if before the beginning of
3249 string2, look at the last character in string1. */
3250 #define WORDCHAR_P(d) \
3251 (SYNTAX ((d) == end1 ? *string2 \
3252 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3253 == Sword)
3255 /* Test if the character before D and the one at D differ with respect
3256 to being word-constituent. */
3257 #define AT_WORD_BOUNDARY(d) \
3258 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3259 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3262 /* Free everything we malloc. */
3263 #ifdef MATCH_MAY_ALLOCATE
3264 #ifdef REGEX_MALLOC
3265 #define FREE_VAR(var) if (var) free (var); var = NULL
3266 #define FREE_VARIABLES() \
3267 do { \
3268 FREE_VAR (fail_stack.stack); \
3269 FREE_VAR (regstart); \
3270 FREE_VAR (regend); \
3271 FREE_VAR (old_regstart); \
3272 FREE_VAR (old_regend); \
3273 FREE_VAR (best_regstart); \
3274 FREE_VAR (best_regend); \
3275 FREE_VAR (reg_info); \
3276 FREE_VAR (reg_dummy); \
3277 FREE_VAR (reg_info_dummy); \
3278 } while (0)
3279 #else /* not REGEX_MALLOC */
3280 /* This used to do alloca (0), but now we do that in the caller. */
3281 #define FREE_VARIABLES() /* Nothing */
3282 #endif /* not REGEX_MALLOC */
3283 #else
3284 #define FREE_VARIABLES() /* Do nothing! */
3285 #endif /* not MATCH_MAY_ALLOCATE */
3287 /* These values must meet several constraints. They must not be valid
3288 register values; since we have a limit of 255 registers (because
3289 we use only one byte in the pattern for the register number), we can
3290 use numbers larger than 255. They must differ by 1, because of
3291 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3292 be larger than the value for the highest register, so we do not try
3293 to actually save any registers when none are active. */
3294 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3295 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3297 /* Matching routines. */
3299 #ifndef emacs /* Emacs never uses this. */
3300 /* re_match is like re_match_2 except it takes only a single string. */
3303 re_match (bufp, string, size, pos, regs)
3304 struct re_pattern_buffer *bufp;
3305 const char *string;
3306 int size, pos;
3307 struct re_registers *regs;
3309 int result = re_match_2_internal (bufp, NULL, 0, string, size,
3310 pos, regs, size);
3311 alloca (0);
3312 return result;
3314 #endif /* not emacs */
3317 /* re_match_2 matches the compiled pattern in BUFP against the
3318 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3319 and SIZE2, respectively). We start matching at POS, and stop
3320 matching at STOP.
3322 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3323 store offsets for the substring each group matched in REGS. See the
3324 documentation for exactly how many groups we fill.
3326 We return -1 if no match, -2 if an internal error (such as the
3327 failure stack overflowing). Otherwise, we return the length of the
3328 matched substring. */
3331 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3332 struct re_pattern_buffer *bufp;
3333 const char *string1, *string2;
3334 int size1, size2;
3335 int pos;
3336 struct re_registers *regs;
3337 int stop;
3339 int result = re_match_2_internal (bufp, string1, size1, string2, size2,
3340 pos, regs, stop);
3341 alloca (0);
3342 return result;
3345 /* This is a separate function so that we can force an alloca cleanup
3346 afterwards. */
3347 static int
3348 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
3349 struct re_pattern_buffer *bufp;
3350 const char *string1, *string2;
3351 int size1, size2;
3352 int pos;
3353 struct re_registers *regs;
3354 int stop;
3356 /* General temporaries. */
3357 int mcnt;
3358 unsigned char *p1;
3360 /* Just past the end of the corresponding string. */
3361 const char *end1, *end2;
3363 /* Pointers into string1 and string2, just past the last characters in
3364 each to consider matching. */
3365 const char *end_match_1, *end_match_2;
3367 /* Where we are in the data, and the end of the current string. */
3368 const char *d, *dend;
3370 /* Where we are in the pattern, and the end of the pattern. */
3371 unsigned char *p = bufp->buffer;
3372 register unsigned char *pend = p + bufp->used;
3374 /* Mark the opcode just after a start_memory, so we can test for an
3375 empty subpattern when we get to the stop_memory. */
3376 unsigned char *just_past_start_mem = 0;
3378 /* We use this to map every character in the string. */
3379 char *translate = bufp->translate;
3381 /* Failure point stack. Each place that can handle a failure further
3382 down the line pushes a failure point on this stack. It consists of
3383 restart, regend, and reg_info for all registers corresponding to
3384 the subexpressions we're currently inside, plus the number of such
3385 registers, and, finally, two char *'s. The first char * is where
3386 to resume scanning the pattern; the second one is where to resume
3387 scanning the strings. If the latter is zero, the failure point is
3388 a ``dummy''; if a failure happens and the failure point is a dummy,
3389 it gets discarded and the next next one is tried. */
3390 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3391 fail_stack_type fail_stack;
3392 #endif
3393 #ifdef DEBUG
3394 static unsigned failure_id = 0;
3395 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3396 #endif
3398 /* We fill all the registers internally, independent of what we
3399 return, for use in backreferences. The number here includes
3400 an element for register zero. */
3401 unsigned num_regs = bufp->re_nsub + 1;
3403 /* The currently active registers. */
3404 unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3405 unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3407 /* Information on the contents of registers. These are pointers into
3408 the input strings; they record just what was matched (on this
3409 attempt) by a subexpression part of the pattern, that is, the
3410 regnum-th regstart pointer points to where in the pattern we began
3411 matching and the regnum-th regend points to right after where we
3412 stopped matching the regnum-th subexpression. (The zeroth register
3413 keeps track of what the whole pattern matches.) */
3414 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3415 const char **regstart, **regend;
3416 #endif
3418 /* If a group that's operated upon by a repetition operator fails to
3419 match anything, then the register for its start will need to be
3420 restored because it will have been set to wherever in the string we
3421 are when we last see its open-group operator. Similarly for a
3422 register's end. */
3423 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3424 const char **old_regstart, **old_regend;
3425 #endif
3427 /* The is_active field of reg_info helps us keep track of which (possibly
3428 nested) subexpressions we are currently in. The matched_something
3429 field of reg_info[reg_num] helps us tell whether or not we have
3430 matched any of the pattern so far this time through the reg_num-th
3431 subexpression. These two fields get reset each time through any
3432 loop their register is in. */
3433 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3434 register_info_type *reg_info;
3435 #endif
3437 /* The following record the register info as found in the above
3438 variables when we find a match better than any we've seen before.
3439 This happens as we backtrack through the failure points, which in
3440 turn happens only if we have not yet matched the entire string. */
3441 unsigned best_regs_set = false;
3442 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3443 const char **best_regstart, **best_regend;
3444 #endif
3446 /* Logically, this is `best_regend[0]'. But we don't want to have to
3447 allocate space for that if we're not allocating space for anything
3448 else (see below). Also, we never need info about register 0 for
3449 any of the other register vectors, and it seems rather a kludge to
3450 treat `best_regend' differently than the rest. So we keep track of
3451 the end of the best match so far in a separate variable. We
3452 initialize this to NULL so that when we backtrack the first time
3453 and need to test it, it's not garbage. */
3454 const char *match_end = NULL;
3456 /* Used when we pop values we don't care about. */
3457 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3458 const char **reg_dummy;
3459 register_info_type *reg_info_dummy;
3460 #endif
3462 #ifdef DEBUG
3463 /* Counts the total number of registers pushed. */
3464 unsigned num_regs_pushed = 0;
3465 #endif
3467 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3469 INIT_FAIL_STACK ();
3471 #ifdef MATCH_MAY_ALLOCATE
3472 /* Do not bother to initialize all the register variables if there are
3473 no groups in the pattern, as it takes a fair amount of time. If
3474 there are groups, we include space for register 0 (the whole
3475 pattern), even though we never use it, since it simplifies the
3476 array indexing. We should fix this. */
3477 if (bufp->re_nsub)
3479 regstart = REGEX_TALLOC (num_regs, const char *);
3480 regend = REGEX_TALLOC (num_regs, const char *);
3481 old_regstart = REGEX_TALLOC (num_regs, const char *);
3482 old_regend = REGEX_TALLOC (num_regs, const char *);
3483 best_regstart = REGEX_TALLOC (num_regs, const char *);
3484 best_regend = REGEX_TALLOC (num_regs, const char *);
3485 reg_info = REGEX_TALLOC (num_regs, register_info_type);
3486 reg_dummy = REGEX_TALLOC (num_regs, const char *);
3487 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3489 if (!(regstart && regend && old_regstart && old_regend && reg_info
3490 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3492 FREE_VARIABLES ();
3493 return -2;
3496 #if defined (REGEX_MALLOC)
3497 else
3499 /* We must initialize all our variables to NULL, so that
3500 `FREE_VARIABLES' doesn't try to free them. */
3501 regstart = regend = old_regstart = old_regend = best_regstart
3502 = best_regend = reg_dummy = NULL;
3503 reg_info = reg_info_dummy = (register_info_type *) NULL;
3505 #endif /* REGEX_MALLOC */
3506 #endif /* MATCH_MAY_ALLOCATE */
3508 /* The starting position is bogus. */
3509 if (pos < 0 || pos > size1 + size2)
3511 FREE_VARIABLES ();
3512 return -1;
3515 /* Initialize subexpression text positions to -1 to mark ones that no
3516 start_memory/stop_memory has been seen for. Also initialize the
3517 register information struct. */
3518 for (mcnt = 1; mcnt < num_regs; mcnt++)
3520 regstart[mcnt] = regend[mcnt]
3521 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3523 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3524 IS_ACTIVE (reg_info[mcnt]) = 0;
3525 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3526 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3529 /* We move `string1' into `string2' if the latter's empty -- but not if
3530 `string1' is null. */
3531 if (size2 == 0 && string1 != NULL)
3533 string2 = string1;
3534 size2 = size1;
3535 string1 = 0;
3536 size1 = 0;
3538 end1 = string1 + size1;
3539 end2 = string2 + size2;
3541 /* Compute where to stop matching, within the two strings. */
3542 if (stop <= size1)
3544 end_match_1 = string1 + stop;
3545 end_match_2 = string2;
3547 else
3549 end_match_1 = end1;
3550 end_match_2 = string2 + stop - size1;
3553 /* `p' scans through the pattern as `d' scans through the data.
3554 `dend' is the end of the input string that `d' points within. `d'
3555 is advanced into the following input string whenever necessary, but
3556 this happens before fetching; therefore, at the beginning of the
3557 loop, `d' can be pointing at the end of a string, but it cannot
3558 equal `string2'. */
3559 if (size1 > 0 && pos <= size1)
3561 d = string1 + pos;
3562 dend = end_match_1;
3564 else
3566 d = string2 + pos - size1;
3567 dend = end_match_2;
3570 DEBUG_PRINT1 ("The compiled pattern is: ");
3571 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
3572 DEBUG_PRINT1 ("The string to match is: `");
3573 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
3574 DEBUG_PRINT1 ("'\n");
3576 /* This loops over pattern commands. It exits by returning from the
3577 function if the match is complete, or it drops through if the match
3578 fails at this starting point in the input data. */
3579 for (;;)
3581 DEBUG_PRINT2 ("\n0x%x: ", p);
3583 if (p == pend)
3584 { /* End of pattern means we might have succeeded. */
3585 DEBUG_PRINT1 ("end of pattern ... ");
3587 /* If we haven't matched the entire string, and we want the
3588 longest match, try backtracking. */
3589 if (d != end_match_2)
3591 DEBUG_PRINT1 ("backtracking.\n");
3593 if (!FAIL_STACK_EMPTY ())
3594 { /* More failure points to try. */
3595 boolean same_str_p = (FIRST_STRING_P (match_end)
3596 == MATCHING_IN_FIRST_STRING);
3598 /* If exceeds best match so far, save it. */
3599 if (!best_regs_set
3600 || (same_str_p && d > match_end)
3601 || (!same_str_p && !MATCHING_IN_FIRST_STRING))
3603 best_regs_set = true;
3604 match_end = d;
3606 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
3608 for (mcnt = 1; mcnt < num_regs; mcnt++)
3610 best_regstart[mcnt] = regstart[mcnt];
3611 best_regend[mcnt] = regend[mcnt];
3614 goto fail;
3617 /* If no failure points, don't restore garbage. */
3618 else if (best_regs_set)
3620 restore_best_regs:
3621 /* Restore best match. It may happen that `dend ==
3622 end_match_1' while the restored d is in string2.
3623 For example, the pattern `x.*y.*z' against the
3624 strings `x-' and `y-z-', if the two strings are
3625 not consecutive in memory. */
3626 DEBUG_PRINT1 ("Restoring best registers.\n");
3628 d = match_end;
3629 dend = ((d >= string1 && d <= end1)
3630 ? end_match_1 : end_match_2);
3632 for (mcnt = 1; mcnt < num_regs; mcnt++)
3634 regstart[mcnt] = best_regstart[mcnt];
3635 regend[mcnt] = best_regend[mcnt];
3638 } /* d != end_match_2 */
3640 DEBUG_PRINT1 ("Accepting match.\n");
3642 /* If caller wants register contents data back, do it. */
3643 if (regs && !bufp->no_sub)
3645 /* Have the register data arrays been allocated? */
3646 if (bufp->regs_allocated == REGS_UNALLOCATED)
3647 { /* No. So allocate them with malloc. We need one
3648 extra element beyond `num_regs' for the `-1' marker
3649 GNU code uses. */
3650 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
3651 regs->start = TALLOC (regs->num_regs, regoff_t);
3652 regs->end = TALLOC (regs->num_regs, regoff_t);
3653 if (regs->start == NULL || regs->end == NULL)
3654 return -2;
3655 bufp->regs_allocated = REGS_REALLOCATE;
3657 else if (bufp->regs_allocated == REGS_REALLOCATE)
3658 { /* Yes. If we need more elements than were already
3659 allocated, reallocate them. If we need fewer, just
3660 leave it alone. */
3661 if (regs->num_regs < num_regs + 1)
3663 regs->num_regs = num_regs + 1;
3664 RETALLOC (regs->start, regs->num_regs, regoff_t);
3665 RETALLOC (regs->end, regs->num_regs, regoff_t);
3666 if (regs->start == NULL || regs->end == NULL)
3667 return -2;
3670 else
3672 /* These braces fend off a "empty body in an else-statement"
3673 warning under GCC when assert expands to nothing. */
3674 assert (bufp->regs_allocated == REGS_FIXED);
3677 /* Convert the pointer data in `regstart' and `regend' to
3678 indices. Register zero has to be set differently,
3679 since we haven't kept track of any info for it. */
3680 if (regs->num_regs > 0)
3682 regs->start[0] = pos;
3683 regs->end[0] = (MATCHING_IN_FIRST_STRING
3684 ? ((regoff_t) (d - string1))
3685 : ((regoff_t) (d - string2 + size1)));
3688 /* Go through the first `min (num_regs, regs->num_regs)'
3689 registers, since that is all we initialized. */
3690 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
3692 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
3693 regs->start[mcnt] = regs->end[mcnt] = -1;
3694 else
3696 regs->start[mcnt]
3697 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
3698 regs->end[mcnt]
3699 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
3703 /* If the regs structure we return has more elements than
3704 were in the pattern, set the extra elements to -1. If
3705 we (re)allocated the registers, this is the case,
3706 because we always allocate enough to have at least one
3707 -1 at the end. */
3708 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
3709 regs->start[mcnt] = regs->end[mcnt] = -1;
3710 } /* regs && !bufp->no_sub */
3712 FREE_VARIABLES ();
3713 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
3714 nfailure_points_pushed, nfailure_points_popped,
3715 nfailure_points_pushed - nfailure_points_popped);
3716 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
3718 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
3719 ? string1
3720 : string2 - size1);
3722 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
3724 return mcnt;
3727 /* Otherwise match next pattern command. */
3728 #ifdef SWITCH_ENUM_BUG
3729 switch ((int) ((re_opcode_t) *p++))
3730 #else
3731 switch ((re_opcode_t) *p++)
3732 #endif
3734 /* Ignore these. Used to ignore the n of succeed_n's which
3735 currently have n == 0. */
3736 case no_op:
3737 DEBUG_PRINT1 ("EXECUTING no_op.\n");
3738 break;
3741 /* Match the next n pattern characters exactly. The following
3742 byte in the pattern defines n, and the n bytes after that
3743 are the characters to match. */
3744 case exactn:
3745 mcnt = *p++;
3746 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
3748 /* This is written out as an if-else so we don't waste time
3749 testing `translate' inside the loop. */
3750 if (translate)
3754 PREFETCH ();
3755 if (translate[(unsigned char) *d++] != (char) *p++)
3756 goto fail;
3758 while (--mcnt);
3760 else
3764 PREFETCH ();
3765 if (*d++ != (char) *p++) goto fail;
3767 while (--mcnt);
3769 SET_REGS_MATCHED ();
3770 break;
3773 /* Match any character except possibly a newline or a null. */
3774 case anychar:
3775 DEBUG_PRINT1 ("EXECUTING anychar.\n");
3777 PREFETCH ();
3779 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
3780 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
3781 goto fail;
3783 SET_REGS_MATCHED ();
3784 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
3785 d++;
3786 break;
3789 case charset:
3790 case charset_not:
3792 register unsigned char c;
3793 boolean not = (re_opcode_t) *(p - 1) == charset_not;
3795 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
3797 PREFETCH ();
3798 c = TRANSLATE (*d); /* The character to match. */
3800 /* Cast to `unsigned' instead of `unsigned char' in case the
3801 bit list is a full 32 bytes long. */
3802 if (c < (unsigned) (*p * BYTEWIDTH)
3803 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
3804 not = !not;
3806 p += 1 + *p;
3808 if (!not) goto fail;
3810 SET_REGS_MATCHED ();
3811 d++;
3812 break;
3816 /* The beginning of a group is represented by start_memory.
3817 The arguments are the register number in the next byte, and the
3818 number of groups inner to this one in the next. The text
3819 matched within the group is recorded (in the internal
3820 registers data structure) under the register number. */
3821 case start_memory:
3822 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
3824 /* Find out if this group can match the empty string. */
3825 p1 = p; /* To send to group_match_null_string_p. */
3827 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
3828 REG_MATCH_NULL_STRING_P (reg_info[*p])
3829 = group_match_null_string_p (&p1, pend, reg_info);
3831 /* Save the position in the string where we were the last time
3832 we were at this open-group operator in case the group is
3833 operated upon by a repetition operator, e.g., with `(a*)*b'
3834 against `ab'; then we want to ignore where we are now in
3835 the string in case this attempt to match fails. */
3836 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
3837 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
3838 : regstart[*p];
3839 DEBUG_PRINT2 (" old_regstart: %d\n",
3840 POINTER_TO_OFFSET (old_regstart[*p]));
3842 regstart[*p] = d;
3843 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
3845 IS_ACTIVE (reg_info[*p]) = 1;
3846 MATCHED_SOMETHING (reg_info[*p]) = 0;
3848 /* This is the new highest active register. */
3849 highest_active_reg = *p;
3851 /* If nothing was active before, this is the new lowest active
3852 register. */
3853 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
3854 lowest_active_reg = *p;
3856 /* Move past the register number and inner group count. */
3857 p += 2;
3858 just_past_start_mem = p;
3859 break;
3862 /* The stop_memory opcode represents the end of a group. Its
3863 arguments are the same as start_memory's: the register
3864 number, and the number of inner groups. */
3865 case stop_memory:
3866 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
3868 /* We need to save the string position the last time we were at
3869 this close-group operator in case the group is operated
3870 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
3871 against `aba'; then we want to ignore where we are now in
3872 the string in case this attempt to match fails. */
3873 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
3874 ? REG_UNSET (regend[*p]) ? d : regend[*p]
3875 : regend[*p];
3876 DEBUG_PRINT2 (" old_regend: %d\n",
3877 POINTER_TO_OFFSET (old_regend[*p]));
3879 regend[*p] = d;
3880 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
3882 /* This register isn't active anymore. */
3883 IS_ACTIVE (reg_info[*p]) = 0;
3885 /* If this was the only register active, nothing is active
3886 anymore. */
3887 if (lowest_active_reg == highest_active_reg)
3889 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3890 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3892 else
3893 { /* We must scan for the new highest active register, since
3894 it isn't necessarily one less than now: consider
3895 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
3896 new highest active register is 1. */
3897 unsigned char r = *p - 1;
3898 while (r > 0 && !IS_ACTIVE (reg_info[r]))
3899 r--;
3901 /* If we end up at register zero, that means that we saved
3902 the registers as the result of an `on_failure_jump', not
3903 a `start_memory', and we jumped to past the innermost
3904 `stop_memory'. For example, in ((.)*) we save
3905 registers 1 and 2 as a result of the *, but when we pop
3906 back to the second ), we are at the stop_memory 1.
3907 Thus, nothing is active. */
3908 if (r == 0)
3910 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3911 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3913 else
3914 highest_active_reg = r;
3917 /* If just failed to match something this time around with a
3918 group that's operated on by a repetition operator, try to
3919 force exit from the ``loop'', and restore the register
3920 information for this group that we had before trying this
3921 last match. */
3922 if ((!MATCHED_SOMETHING (reg_info[*p])
3923 || just_past_start_mem == p - 1)
3924 && (p + 2) < pend)
3926 boolean is_a_jump_n = false;
3928 p1 = p + 2;
3929 mcnt = 0;
3930 switch ((re_opcode_t) *p1++)
3932 case jump_n:
3933 is_a_jump_n = true;
3934 case pop_failure_jump:
3935 case maybe_pop_jump:
3936 case jump:
3937 case dummy_failure_jump:
3938 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
3939 if (is_a_jump_n)
3940 p1 += 2;
3941 break;
3943 default:
3944 /* do nothing */ ;
3946 p1 += mcnt;
3948 /* If the next operation is a jump backwards in the pattern
3949 to an on_failure_jump right before the start_memory
3950 corresponding to this stop_memory, exit from the loop
3951 by forcing a failure after pushing on the stack the
3952 on_failure_jump's jump in the pattern, and d. */
3953 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
3954 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
3956 /* If this group ever matched anything, then restore
3957 what its registers were before trying this last
3958 failed match, e.g., with `(a*)*b' against `ab' for
3959 regstart[1], and, e.g., with `((a*)*(b*)*)*'
3960 against `aba' for regend[3].
3962 Also restore the registers for inner groups for,
3963 e.g., `((a*)(b*))*' against `aba' (register 3 would
3964 otherwise get trashed). */
3966 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
3968 unsigned r;
3970 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
3972 /* Restore this and inner groups' (if any) registers. */
3973 for (r = *p; r < *p + *(p + 1); r++)
3975 regstart[r] = old_regstart[r];
3977 /* xx why this test? */
3978 if ((int) old_regend[r] >= (int) regstart[r])
3979 regend[r] = old_regend[r];
3982 p1++;
3983 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
3984 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
3986 goto fail;
3990 /* Move past the register number and the inner group count. */
3991 p += 2;
3992 break;
3995 /* \<digit> has been turned into a `duplicate' command which is
3996 followed by the numeric value of <digit> as the register number. */
3997 case duplicate:
3999 register const char *d2, *dend2;
4000 int regno = *p++; /* Get which register to match against. */
4001 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4003 /* Can't back reference a group which we've never matched. */
4004 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4005 goto fail;
4007 /* Where in input to try to start matching. */
4008 d2 = regstart[regno];
4010 /* Where to stop matching; if both the place to start and
4011 the place to stop matching are in the same string, then
4012 set to the place to stop, otherwise, for now have to use
4013 the end of the first string. */
4015 dend2 = ((FIRST_STRING_P (regstart[regno])
4016 == FIRST_STRING_P (regend[regno]))
4017 ? regend[regno] : end_match_1);
4018 for (;;)
4020 /* If necessary, advance to next segment in register
4021 contents. */
4022 while (d2 == dend2)
4024 if (dend2 == end_match_2) break;
4025 if (dend2 == regend[regno]) break;
4027 /* End of string1 => advance to string2. */
4028 d2 = string2;
4029 dend2 = regend[regno];
4031 /* At end of register contents => success */
4032 if (d2 == dend2) break;
4034 /* If necessary, advance to next segment in data. */
4035 PREFETCH ();
4037 /* How many characters left in this segment to match. */
4038 mcnt = dend - d;
4040 /* Want how many consecutive characters we can match in
4041 one shot, so, if necessary, adjust the count. */
4042 if (mcnt > dend2 - d2)
4043 mcnt = dend2 - d2;
4045 /* Compare that many; failure if mismatch, else move
4046 past them. */
4047 if (translate
4048 ? bcmp_translate (d, d2, mcnt, translate)
4049 : bcmp (d, d2, mcnt))
4050 goto fail;
4051 d += mcnt, d2 += mcnt;
4054 break;
4057 /* begline matches the empty string at the beginning of the string
4058 (unless `not_bol' is set in `bufp'), and, if
4059 `newline_anchor' is set, after newlines. */
4060 case begline:
4061 DEBUG_PRINT1 ("EXECUTING begline.\n");
4063 if (AT_STRINGS_BEG (d))
4065 if (!bufp->not_bol) break;
4067 else if (d[-1] == '\n' && bufp->newline_anchor)
4069 break;
4071 /* In all other cases, we fail. */
4072 goto fail;
4075 /* endline is the dual of begline. */
4076 case endline:
4077 DEBUG_PRINT1 ("EXECUTING endline.\n");
4079 if (AT_STRINGS_END (d))
4081 if (!bufp->not_eol) break;
4084 /* We have to ``prefetch'' the next character. */
4085 else if ((d == end1 ? *string2 : *d) == '\n'
4086 && bufp->newline_anchor)
4088 break;
4090 goto fail;
4093 /* Match at the very beginning of the data. */
4094 case begbuf:
4095 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4096 if (AT_STRINGS_BEG (d))
4097 break;
4098 goto fail;
4101 /* Match at the very end of the data. */
4102 case endbuf:
4103 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4104 if (AT_STRINGS_END (d))
4105 break;
4106 goto fail;
4109 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4110 pushes NULL as the value for the string on the stack. Then
4111 `pop_failure_point' will keep the current value for the
4112 string, instead of restoring it. To see why, consider
4113 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4114 then the . fails against the \n. But the next thing we want
4115 to do is match the \n against the \n; if we restored the
4116 string value, we would be back at the foo.
4118 Because this is used only in specific cases, we don't need to
4119 check all the things that `on_failure_jump' does, to make
4120 sure the right things get saved on the stack. Hence we don't
4121 share its code. The only reason to push anything on the
4122 stack at all is that otherwise we would have to change
4123 `anychar's code to do something besides goto fail in this
4124 case; that seems worse than this. */
4125 case on_failure_keep_string_jump:
4126 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4128 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4129 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4131 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4132 break;
4135 /* Uses of on_failure_jump:
4137 Each alternative starts with an on_failure_jump that points
4138 to the beginning of the next alternative. Each alternative
4139 except the last ends with a jump that in effect jumps past
4140 the rest of the alternatives. (They really jump to the
4141 ending jump of the following alternative, because tensioning
4142 these jumps is a hassle.)
4144 Repeats start with an on_failure_jump that points past both
4145 the repetition text and either the following jump or
4146 pop_failure_jump back to this on_failure_jump. */
4147 case on_failure_jump:
4148 on_failure:
4149 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4151 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4152 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4154 /* If this on_failure_jump comes right before a group (i.e.,
4155 the original * applied to a group), save the information
4156 for that group and all inner ones, so that if we fail back
4157 to this point, the group's information will be correct.
4158 For example, in \(a*\)*\1, we need the preceding group,
4159 and in \(\(a*\)b*\)\2, we need the inner group. */
4161 /* We can't use `p' to check ahead because we push
4162 a failure point to `p + mcnt' after we do this. */
4163 p1 = p;
4165 /* We need to skip no_op's before we look for the
4166 start_memory in case this on_failure_jump is happening as
4167 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4168 against aba. */
4169 while (p1 < pend && (re_opcode_t) *p1 == no_op)
4170 p1++;
4172 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4174 /* We have a new highest active register now. This will
4175 get reset at the start_memory we are about to get to,
4176 but we will have saved all the registers relevant to
4177 this repetition op, as described above. */
4178 highest_active_reg = *(p1 + 1) + *(p1 + 2);
4179 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4180 lowest_active_reg = *(p1 + 1);
4183 DEBUG_PRINT1 (":\n");
4184 PUSH_FAILURE_POINT (p + mcnt, d, -2);
4185 break;
4188 /* A smart repeat ends with `maybe_pop_jump'.
4189 We change it to either `pop_failure_jump' or `jump'. */
4190 case maybe_pop_jump:
4191 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4192 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4194 register unsigned char *p2 = p;
4196 /* Compare the beginning of the repeat with what in the
4197 pattern follows its end. If we can establish that there
4198 is nothing that they would both match, i.e., that we
4199 would have to backtrack because of (as in, e.g., `a*a')
4200 then we can change to pop_failure_jump, because we'll
4201 never have to backtrack.
4203 This is not true in the case of alternatives: in
4204 `(a|ab)*' we do need to backtrack to the `ab' alternative
4205 (e.g., if the string was `ab'). But instead of trying to
4206 detect that here, the alternative has put on a dummy
4207 failure point which is what we will end up popping. */
4209 /* Skip over open/close-group commands.
4210 If what follows this loop is a ...+ construct,
4211 look at what begins its body, since we will have to
4212 match at least one of that. */
4213 while (1)
4215 if (p2 + 2 < pend
4216 && ((re_opcode_t) *p2 == stop_memory
4217 || (re_opcode_t) *p2 == start_memory))
4218 p2 += 3;
4219 else if (p2 + 6 < pend
4220 && (re_opcode_t) *p2 == dummy_failure_jump)
4221 p2 += 6;
4222 else
4223 break;
4226 p1 = p + mcnt;
4227 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4228 to the `maybe_finalize_jump' of this case. Examine what
4229 follows. */
4231 /* If we're at the end of the pattern, we can change. */
4232 if (p2 == pend)
4234 /* Consider what happens when matching ":\(.*\)"
4235 against ":/". I don't really understand this code
4236 yet. */
4237 p[-3] = (unsigned char) pop_failure_jump;
4238 DEBUG_PRINT1
4239 (" End of pattern: change to `pop_failure_jump'.\n");
4242 else if ((re_opcode_t) *p2 == exactn
4243 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4245 register unsigned char c
4246 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4248 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4250 p[-3] = (unsigned char) pop_failure_jump;
4251 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4252 c, p1[5]);
4255 else if ((re_opcode_t) p1[3] == charset
4256 || (re_opcode_t) p1[3] == charset_not)
4258 int not = (re_opcode_t) p1[3] == charset_not;
4260 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4261 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4262 not = !not;
4264 /* `not' is equal to 1 if c would match, which means
4265 that we can't change to pop_failure_jump. */
4266 if (!not)
4268 p[-3] = (unsigned char) pop_failure_jump;
4269 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4273 else if ((re_opcode_t) *p2 == charset)
4275 #ifdef DEBUG
4276 register unsigned char c
4277 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4278 #endif
4280 if ((re_opcode_t) p1[3] == exactn
4281 && ! (p2[1] * BYTEWIDTH > p1[4]
4282 && (p2[1 + p1[4] / BYTEWIDTH]
4283 & (1 << (p1[4] % BYTEWIDTH)))))
4285 p[-3] = (unsigned char) pop_failure_jump;
4286 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4287 c, p1[5]);
4290 else if ((re_opcode_t) p1[3] == charset_not)
4292 int idx;
4293 /* We win if the charset_not inside the loop
4294 lists every character listed in the charset after. */
4295 for (idx = 0; idx < p2[1]; idx++)
4296 if (! (p2[2 + idx] == 0
4297 || (idx < p1[4]
4298 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
4299 break;
4301 if (idx == p2[1])
4303 p[-3] = (unsigned char) pop_failure_jump;
4304 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4307 else if ((re_opcode_t) p1[3] == charset)
4309 int idx;
4310 /* We win if the charset inside the loop
4311 has no overlap with the one after the loop. */
4312 for (idx = 0; idx < p2[1] && idx < p1[4]; idx++)
4313 if ((p2[2 + idx] & p1[5 + idx]) != 0)
4314 break;
4316 if (idx == p2[1] || idx == p1[4])
4318 p[-3] = (unsigned char) pop_failure_jump;
4319 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4324 p -= 2; /* Point at relative address again. */
4325 if ((re_opcode_t) p[-1] != pop_failure_jump)
4327 p[-1] = (unsigned char) jump;
4328 DEBUG_PRINT1 (" Match => jump.\n");
4329 goto unconditional_jump;
4331 /* Note fall through. */
4334 /* The end of a simple repeat has a pop_failure_jump back to
4335 its matching on_failure_jump, where the latter will push a
4336 failure point. The pop_failure_jump takes off failure
4337 points put on by this pop_failure_jump's matching
4338 on_failure_jump; we got through the pattern to here from the
4339 matching on_failure_jump, so didn't fail. */
4340 case pop_failure_jump:
4342 /* We need to pass separate storage for the lowest and
4343 highest registers, even though we don't care about the
4344 actual values. Otherwise, we will restore only one
4345 register from the stack, since lowest will == highest in
4346 `pop_failure_point'. */
4347 unsigned dummy_low_reg, dummy_high_reg;
4348 unsigned char *pdummy;
4349 const char *sdummy;
4351 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4352 POP_FAILURE_POINT (sdummy, pdummy,
4353 dummy_low_reg, dummy_high_reg,
4354 reg_dummy, reg_dummy, reg_info_dummy);
4356 /* Note fall through. */
4359 /* Unconditionally jump (without popping any failure points). */
4360 case jump:
4361 unconditional_jump:
4362 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
4363 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4364 p += mcnt; /* Do the jump. */
4365 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4366 break;
4369 /* We need this opcode so we can detect where alternatives end
4370 in `group_match_null_string_p' et al. */
4371 case jump_past_alt:
4372 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4373 goto unconditional_jump;
4376 /* Normally, the on_failure_jump pushes a failure point, which
4377 then gets popped at pop_failure_jump. We will end up at
4378 pop_failure_jump, also, and with a pattern of, say, `a+', we
4379 are skipping over the on_failure_jump, so we have to push
4380 something meaningless for pop_failure_jump to pop. */
4381 case dummy_failure_jump:
4382 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4383 /* It doesn't matter what we push for the string here. What
4384 the code at `fail' tests is the value for the pattern. */
4385 PUSH_FAILURE_POINT (0, 0, -2);
4386 goto unconditional_jump;
4389 /* At the end of an alternative, we need to push a dummy failure
4390 point in case we are followed by a `pop_failure_jump', because
4391 we don't want the failure point for the alternative to be
4392 popped. For example, matching `(a|ab)*' against `aab'
4393 requires that we match the `ab' alternative. */
4394 case push_dummy_failure:
4395 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4396 /* See comments just above at `dummy_failure_jump' about the
4397 two zeroes. */
4398 PUSH_FAILURE_POINT (0, 0, -2);
4399 break;
4401 /* Have to succeed matching what follows at least n times.
4402 After that, handle like `on_failure_jump'. */
4403 case succeed_n:
4404 EXTRACT_NUMBER (mcnt, p + 2);
4405 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4407 assert (mcnt >= 0);
4408 /* Originally, this is how many times we HAVE to succeed. */
4409 if (mcnt > 0)
4411 mcnt--;
4412 p += 2;
4413 STORE_NUMBER_AND_INCR (p, mcnt);
4414 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt);
4416 else if (mcnt == 0)
4418 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
4419 p[2] = (unsigned char) no_op;
4420 p[3] = (unsigned char) no_op;
4421 goto on_failure;
4423 break;
4425 case jump_n:
4426 EXTRACT_NUMBER (mcnt, p + 2);
4427 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4429 /* Originally, this is how many times we CAN jump. */
4430 if (mcnt)
4432 mcnt--;
4433 STORE_NUMBER (p + 2, mcnt);
4434 goto unconditional_jump;
4436 /* If don't have to jump any more, skip over the rest of command. */
4437 else
4438 p += 4;
4439 break;
4441 case set_number_at:
4443 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4445 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4446 p1 = p + mcnt;
4447 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4448 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
4449 STORE_NUMBER (p1, mcnt);
4450 break;
4453 case wordbound:
4454 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4455 if (AT_WORD_BOUNDARY (d))
4456 break;
4457 goto fail;
4459 case notwordbound:
4460 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4461 if (AT_WORD_BOUNDARY (d))
4462 goto fail;
4463 break;
4465 case wordbeg:
4466 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
4467 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
4468 break;
4469 goto fail;
4471 case wordend:
4472 DEBUG_PRINT1 ("EXECUTING wordend.\n");
4473 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
4474 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
4475 break;
4476 goto fail;
4478 #ifdef emacs
4479 case before_dot:
4480 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
4481 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
4482 goto fail;
4483 break;
4485 case at_dot:
4486 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4487 if (PTR_CHAR_POS ((unsigned char *) d) != point)
4488 goto fail;
4489 break;
4491 case after_dot:
4492 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
4493 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
4494 goto fail;
4495 break;
4496 #if 0 /* not emacs19 */
4497 case at_dot:
4498 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4499 if (PTR_CHAR_POS ((unsigned char *) d) + 1 != point)
4500 goto fail;
4501 break;
4502 #endif /* not emacs19 */
4504 case syntaxspec:
4505 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
4506 mcnt = *p++;
4507 goto matchsyntax;
4509 case wordchar:
4510 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
4511 mcnt = (int) Sword;
4512 matchsyntax:
4513 PREFETCH ();
4514 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
4515 d++;
4516 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
4517 goto fail;
4518 SET_REGS_MATCHED ();
4519 break;
4521 case notsyntaxspec:
4522 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
4523 mcnt = *p++;
4524 goto matchnotsyntax;
4526 case notwordchar:
4527 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
4528 mcnt = (int) Sword;
4529 matchnotsyntax:
4530 PREFETCH ();
4531 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
4532 d++;
4533 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
4534 goto fail;
4535 SET_REGS_MATCHED ();
4536 break;
4538 #else /* not emacs */
4539 case wordchar:
4540 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
4541 PREFETCH ();
4542 if (!WORDCHAR_P (d))
4543 goto fail;
4544 SET_REGS_MATCHED ();
4545 d++;
4546 break;
4548 case notwordchar:
4549 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
4550 PREFETCH ();
4551 if (WORDCHAR_P (d))
4552 goto fail;
4553 SET_REGS_MATCHED ();
4554 d++;
4555 break;
4556 #endif /* not emacs */
4558 default:
4559 abort ();
4561 continue; /* Successfully executed one pattern command; keep going. */
4564 /* We goto here if a matching operation fails. */
4565 fail:
4566 if (!FAIL_STACK_EMPTY ())
4567 { /* A restart point is known. Restore to that state. */
4568 DEBUG_PRINT1 ("\nFAIL:\n");
4569 POP_FAILURE_POINT (d, p,
4570 lowest_active_reg, highest_active_reg,
4571 regstart, regend, reg_info);
4573 /* If this failure point is a dummy, try the next one. */
4574 if (!p)
4575 goto fail;
4577 /* If we failed to the end of the pattern, don't examine *p. */
4578 assert (p <= pend);
4579 if (p < pend)
4581 boolean is_a_jump_n = false;
4583 /* If failed to a backwards jump that's part of a repetition
4584 loop, need to pop this failure point and use the next one. */
4585 switch ((re_opcode_t) *p)
4587 case jump_n:
4588 is_a_jump_n = true;
4589 case maybe_pop_jump:
4590 case pop_failure_jump:
4591 case jump:
4592 p1 = p + 1;
4593 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4594 p1 += mcnt;
4596 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
4597 || (!is_a_jump_n
4598 && (re_opcode_t) *p1 == on_failure_jump))
4599 goto fail;
4600 break;
4601 default:
4602 /* do nothing */ ;
4606 if (d >= string1 && d <= end1)
4607 dend = end_match_1;
4609 else
4610 break; /* Matching at this starting point really fails. */
4611 } /* for (;;) */
4613 if (best_regs_set)
4614 goto restore_best_regs;
4616 FREE_VARIABLES ();
4618 return -1; /* Failure to match. */
4619 } /* re_match_2 */
4621 /* Subroutine definitions for re_match_2. */
4624 /* We are passed P pointing to a register number after a start_memory.
4626 Return true if the pattern up to the corresponding stop_memory can
4627 match the empty string, and false otherwise.
4629 If we find the matching stop_memory, sets P to point to one past its number.
4630 Otherwise, sets P to an undefined byte less than or equal to END.
4632 We don't handle duplicates properly (yet). */
4634 static boolean
4635 group_match_null_string_p (p, end, reg_info)
4636 unsigned char **p, *end;
4637 register_info_type *reg_info;
4639 int mcnt;
4640 /* Point to after the args to the start_memory. */
4641 unsigned char *p1 = *p + 2;
4643 while (p1 < end)
4645 /* Skip over opcodes that can match nothing, and return true or
4646 false, as appropriate, when we get to one that can't, or to the
4647 matching stop_memory. */
4649 switch ((re_opcode_t) *p1)
4651 /* Could be either a loop or a series of alternatives. */
4652 case on_failure_jump:
4653 p1++;
4654 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4656 /* If the next operation is not a jump backwards in the
4657 pattern. */
4659 if (mcnt >= 0)
4661 /* Go through the on_failure_jumps of the alternatives,
4662 seeing if any of the alternatives cannot match nothing.
4663 The last alternative starts with only a jump,
4664 whereas the rest start with on_failure_jump and end
4665 with a jump, e.g., here is the pattern for `a|b|c':
4667 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
4668 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
4669 /exactn/1/c
4671 So, we have to first go through the first (n-1)
4672 alternatives and then deal with the last one separately. */
4675 /* Deal with the first (n-1) alternatives, which start
4676 with an on_failure_jump (see above) that jumps to right
4677 past a jump_past_alt. */
4679 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
4681 /* `mcnt' holds how many bytes long the alternative
4682 is, including the ending `jump_past_alt' and
4683 its number. */
4685 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
4686 reg_info))
4687 return false;
4689 /* Move to right after this alternative, including the
4690 jump_past_alt. */
4691 p1 += mcnt;
4693 /* Break if it's the beginning of an n-th alternative
4694 that doesn't begin with an on_failure_jump. */
4695 if ((re_opcode_t) *p1 != on_failure_jump)
4696 break;
4698 /* Still have to check that it's not an n-th
4699 alternative that starts with an on_failure_jump. */
4700 p1++;
4701 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4702 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
4704 /* Get to the beginning of the n-th alternative. */
4705 p1 -= 3;
4706 break;
4710 /* Deal with the last alternative: go back and get number
4711 of the `jump_past_alt' just before it. `mcnt' contains
4712 the length of the alternative. */
4713 EXTRACT_NUMBER (mcnt, p1 - 2);
4715 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
4716 return false;
4718 p1 += mcnt; /* Get past the n-th alternative. */
4719 } /* if mcnt > 0 */
4720 break;
4723 case stop_memory:
4724 assert (p1[1] == **p);
4725 *p = p1 + 2;
4726 return true;
4729 default:
4730 if (!common_op_match_null_string_p (&p1, end, reg_info))
4731 return false;
4733 } /* while p1 < end */
4735 return false;
4736 } /* group_match_null_string_p */
4739 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
4740 It expects P to be the first byte of a single alternative and END one
4741 byte past the last. The alternative can contain groups. */
4743 static boolean
4744 alt_match_null_string_p (p, end, reg_info)
4745 unsigned char *p, *end;
4746 register_info_type *reg_info;
4748 int mcnt;
4749 unsigned char *p1 = p;
4751 while (p1 < end)
4753 /* Skip over opcodes that can match nothing, and break when we get
4754 to one that can't. */
4756 switch ((re_opcode_t) *p1)
4758 /* It's a loop. */
4759 case on_failure_jump:
4760 p1++;
4761 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4762 p1 += mcnt;
4763 break;
4765 default:
4766 if (!common_op_match_null_string_p (&p1, end, reg_info))
4767 return false;
4769 } /* while p1 < end */
4771 return true;
4772 } /* alt_match_null_string_p */
4775 /* Deals with the ops common to group_match_null_string_p and
4776 alt_match_null_string_p.
4778 Sets P to one after the op and its arguments, if any. */
4780 static boolean
4781 common_op_match_null_string_p (p, end, reg_info)
4782 unsigned char **p, *end;
4783 register_info_type *reg_info;
4785 int mcnt;
4786 boolean ret;
4787 int reg_no;
4788 unsigned char *p1 = *p;
4790 switch ((re_opcode_t) *p1++)
4792 case no_op:
4793 case begline:
4794 case endline:
4795 case begbuf:
4796 case endbuf:
4797 case wordbeg:
4798 case wordend:
4799 case wordbound:
4800 case notwordbound:
4801 #ifdef emacs
4802 case before_dot:
4803 case at_dot:
4804 case after_dot:
4805 #endif
4806 break;
4808 case start_memory:
4809 reg_no = *p1;
4810 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
4811 ret = group_match_null_string_p (&p1, end, reg_info);
4813 /* Have to set this here in case we're checking a group which
4814 contains a group and a back reference to it. */
4816 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
4817 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
4819 if (!ret)
4820 return false;
4821 break;
4823 /* If this is an optimized succeed_n for zero times, make the jump. */
4824 case jump:
4825 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4826 if (mcnt >= 0)
4827 p1 += mcnt;
4828 else
4829 return false;
4830 break;
4832 case succeed_n:
4833 /* Get to the number of times to succeed. */
4834 p1 += 2;
4835 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4837 if (mcnt == 0)
4839 p1 -= 4;
4840 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4841 p1 += mcnt;
4843 else
4844 return false;
4845 break;
4847 case duplicate:
4848 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
4849 return false;
4850 break;
4852 case set_number_at:
4853 p1 += 4;
4855 default:
4856 /* All other opcodes mean we cannot match the empty string. */
4857 return false;
4860 *p = p1;
4861 return true;
4862 } /* common_op_match_null_string_p */
4865 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
4866 bytes; nonzero otherwise. */
4868 static int
4869 bcmp_translate (s1, s2, len, translate)
4870 unsigned char *s1, *s2;
4871 register int len;
4872 char *translate;
4874 register unsigned char *p1 = s1, *p2 = s2;
4875 while (len)
4877 if (translate[*p1++] != translate[*p2++]) return 1;
4878 len--;
4880 return 0;
4883 /* Entry points for GNU code. */
4885 /* re_compile_pattern is the GNU regular expression compiler: it
4886 compiles PATTERN (of length SIZE) and puts the result in BUFP.
4887 Returns 0 if the pattern was valid, otherwise an error string.
4889 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
4890 are set in BUFP on entry.
4892 We call regex_compile to do the actual compilation. */
4894 const char *
4895 re_compile_pattern (pattern, length, bufp)
4896 const char *pattern;
4897 int length;
4898 struct re_pattern_buffer *bufp;
4900 reg_errcode_t ret;
4902 /* GNU code is written to assume at least RE_NREGS registers will be set
4903 (and at least one extra will be -1). */
4904 bufp->regs_allocated = REGS_UNALLOCATED;
4906 /* And GNU code determines whether or not to get register information
4907 by passing null for the REGS argument to re_match, etc., not by
4908 setting no_sub. */
4909 bufp->no_sub = 0;
4911 /* Match anchors at newline. */
4912 bufp->newline_anchor = 1;
4914 ret = regex_compile (pattern, length, re_syntax_options, bufp);
4916 return re_error_msg[(int) ret];
4919 /* Entry points compatible with 4.2 BSD regex library. We don't define
4920 them if this is an Emacs or POSIX compilation. */
4922 #if !defined (emacs) && !defined (_POSIX_SOURCE)
4924 /* BSD has one and only one pattern buffer. */
4925 static struct re_pattern_buffer re_comp_buf;
4927 char *
4928 re_comp (s)
4929 const char *s;
4931 reg_errcode_t ret;
4933 if (!s)
4935 if (!re_comp_buf.buffer)
4936 return "No previous regular expression";
4937 return 0;
4940 if (!re_comp_buf.buffer)
4942 re_comp_buf.buffer = (unsigned char *) malloc (200);
4943 if (re_comp_buf.buffer == NULL)
4944 return "Memory exhausted";
4945 re_comp_buf.allocated = 200;
4947 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
4948 if (re_comp_buf.fastmap == NULL)
4949 return "Memory exhausted";
4952 /* Since `re_exec' always passes NULL for the `regs' argument, we
4953 don't need to initialize the pattern buffer fields which affect it. */
4955 /* Match anchors at newlines. */
4956 re_comp_buf.newline_anchor = 1;
4958 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
4960 /* Yes, we're discarding `const' here. */
4961 return (char *) re_error_msg[(int) ret];
4966 re_exec (s)
4967 const char *s;
4969 const int len = strlen (s);
4970 return
4971 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
4973 #endif /* not emacs and not _POSIX_SOURCE */
4975 /* POSIX.2 functions. Don't define these for Emacs. */
4977 #ifndef emacs
4979 /* regcomp takes a regular expression as a string and compiles it.
4981 PREG is a regex_t *. We do not expect any fields to be initialized,
4982 since POSIX says we shouldn't. Thus, we set
4984 `buffer' to the compiled pattern;
4985 `used' to the length of the compiled pattern;
4986 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
4987 REG_EXTENDED bit in CFLAGS is set; otherwise, to
4988 RE_SYNTAX_POSIX_BASIC;
4989 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
4990 `fastmap' and `fastmap_accurate' to zero;
4991 `re_nsub' to the number of subexpressions in PATTERN.
4993 PATTERN is the address of the pattern string.
4995 CFLAGS is a series of bits which affect compilation.
4997 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
4998 use POSIX basic syntax.
5000 If REG_NEWLINE is set, then . and [^...] don't match newline.
5001 Also, regexec will try a match beginning after every newline.
5003 If REG_ICASE is set, then we considers upper- and lowercase
5004 versions of letters to be equivalent when matching.
5006 If REG_NOSUB is set, then when PREG is passed to regexec, that
5007 routine will report only success or failure, and nothing about the
5008 registers.
5010 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
5011 the return codes and their meanings.) */
5014 regcomp (preg, pattern, cflags)
5015 regex_t *preg;
5016 const char *pattern;
5017 int cflags;
5019 reg_errcode_t ret;
5020 unsigned syntax
5021 = (cflags & REG_EXTENDED) ?
5022 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
5024 /* regex_compile will allocate the space for the compiled pattern. */
5025 preg->buffer = 0;
5026 preg->allocated = 0;
5027 preg->used = 0;
5029 /* Don't bother to use a fastmap when searching. This simplifies the
5030 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
5031 characters after newlines into the fastmap. This way, we just try
5032 every character. */
5033 preg->fastmap = 0;
5035 if (cflags & REG_ICASE)
5037 unsigned i;
5039 preg->translate = (char *) malloc (CHAR_SET_SIZE);
5040 if (preg->translate == NULL)
5041 return (int) REG_ESPACE;
5043 /* Map uppercase characters to corresponding lowercase ones. */
5044 for (i = 0; i < CHAR_SET_SIZE; i++)
5045 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
5047 else
5048 preg->translate = NULL;
5050 /* If REG_NEWLINE is set, newlines are treated differently. */
5051 if (cflags & REG_NEWLINE)
5052 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5053 syntax &= ~RE_DOT_NEWLINE;
5054 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
5055 /* It also changes the matching behavior. */
5056 preg->newline_anchor = 1;
5058 else
5059 preg->newline_anchor = 0;
5061 preg->no_sub = !!(cflags & REG_NOSUB);
5063 /* POSIX says a null character in the pattern terminates it, so we
5064 can use strlen here in compiling the pattern. */
5065 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5067 /* POSIX doesn't distinguish between an unmatched open-group and an
5068 unmatched close-group: both are REG_EPAREN. */
5069 if (ret == REG_ERPAREN) ret = REG_EPAREN;
5071 return (int) ret;
5075 /* regexec searches for a given pattern, specified by PREG, in the
5076 string STRING.
5078 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5079 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5080 least NMATCH elements, and we set them to the offsets of the
5081 corresponding matched substrings.
5083 EFLAGS specifies `execution flags' which affect matching: if
5084 REG_NOTBOL is set, then ^ does not match at the beginning of the
5085 string; if REG_NOTEOL is set, then $ does not match at the end.
5087 We return 0 if we find a match and REG_NOMATCH if not. */
5090 regexec (preg, string, nmatch, pmatch, eflags)
5091 const regex_t *preg;
5092 const char *string;
5093 size_t nmatch;
5094 regmatch_t pmatch[];
5095 int eflags;
5097 int ret;
5098 struct re_registers regs;
5099 regex_t private_preg;
5100 int len = strlen (string);
5101 boolean want_reg_info = !preg->no_sub && nmatch > 0;
5103 private_preg = *preg;
5105 private_preg.not_bol = !!(eflags & REG_NOTBOL);
5106 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5108 /* The user has told us exactly how many registers to return
5109 information about, via `nmatch'. We have to pass that on to the
5110 matching routines. */
5111 private_preg.regs_allocated = REGS_FIXED;
5113 if (want_reg_info)
5115 regs.num_regs = nmatch;
5116 regs.start = TALLOC (nmatch, regoff_t);
5117 regs.end = TALLOC (nmatch, regoff_t);
5118 if (regs.start == NULL || regs.end == NULL)
5119 return (int) REG_NOMATCH;
5122 /* Perform the searching operation. */
5123 ret = re_search (&private_preg, string, len,
5124 /* start: */ 0, /* range: */ len,
5125 want_reg_info ? &regs : (struct re_registers *) 0);
5127 /* Copy the register information to the POSIX structure. */
5128 if (want_reg_info)
5130 if (ret >= 0)
5132 unsigned r;
5134 for (r = 0; r < nmatch; r++)
5136 pmatch[r].rm_so = regs.start[r];
5137 pmatch[r].rm_eo = regs.end[r];
5141 /* If we needed the temporary register info, free the space now. */
5142 free (regs.start);
5143 free (regs.end);
5146 /* We want zero return to mean success, unlike `re_search'. */
5147 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
5151 /* Returns a message corresponding to an error code, ERRCODE, returned
5152 from either regcomp or regexec. We don't use PREG here. */
5154 size_t
5155 regerror (errcode, preg, errbuf, errbuf_size)
5156 int errcode;
5157 const regex_t *preg;
5158 char *errbuf;
5159 size_t errbuf_size;
5161 const char *msg;
5162 size_t msg_size;
5164 if (errcode < 0
5165 || errcode >= (sizeof (re_error_msg) / sizeof (re_error_msg[0])))
5166 /* Only error codes returned by the rest of the code should be passed
5167 to this routine. If we are given anything else, or if other regex
5168 code generates an invalid error code, then the program has a bug.
5169 Dump core so we can fix it. */
5170 abort ();
5172 msg = re_error_msg[errcode];
5174 /* POSIX doesn't require that we do anything in this case, but why
5175 not be nice. */
5176 if (! msg)
5177 msg = "Success";
5179 msg_size = strlen (msg) + 1; /* Includes the null. */
5181 if (errbuf_size != 0)
5183 if (msg_size > errbuf_size)
5185 strncpy (errbuf, msg, errbuf_size - 1);
5186 errbuf[errbuf_size - 1] = 0;
5188 else
5189 strcpy (errbuf, msg);
5192 return msg_size;
5196 /* Free dynamically allocated space used by PREG. */
5198 void
5199 regfree (preg)
5200 regex_t *preg;
5202 if (preg->buffer != NULL)
5203 free (preg->buffer);
5204 preg->buffer = NULL;
5206 preg->allocated = 0;
5207 preg->used = 0;
5209 if (preg->fastmap != NULL)
5210 free (preg->fastmap);
5211 preg->fastmap = NULL;
5212 preg->fastmap_accurate = 0;
5214 if (preg->translate != NULL)
5215 free (preg->translate);
5216 preg->translate = NULL;
5219 #endif /* not emacs */
5222 Local variables:
5223 make-backup-files: t
5224 version-control: t
5225 trim-versions-without-asking: nil
5226 End: