(Standard Hooks): Add some hooks. Add cross references and/or
[emacs.git] / man / calc.texi
blob087cdbe645720f521117f5ff6452aea6a7e694b2
1 \input texinfo                  @c -*-texinfo-*-
2 @comment %**start of header (This is for running Texinfo on a region.)
3 @c smallbook
4 @setfilename ../info/calc
5 @c [title]
6 @settitle GNU Emacs Calc 2.02g Manual
7 @setchapternewpage odd
8 @comment %**end of header (This is for running Texinfo on a region.)
10 @c The following macros are used for conditional output for single lines.
11 @c @texline foo
12 @c    `foo' will appear only in TeX output
13 @c @infoline foo
14 @c    `foo' will appear only in non-TeX output
16 @c @expr{expr} will typeset an expression;
17 @c $x$ in TeX, @samp{x} otherwise.
19 @iftex
20 @macro texline
21 @end macro
22 @alias infoline=comment
23 @alias expr=math
24 @alias tfn=code
25 @alias mathit=expr
26 @macro cpi{}
27 @math{@pi{}}
28 @end macro
29 @macro cpiover{den}
30 @math{@pi/\den\}
31 @end macro
32 @end iftex
34 @ifnottex
35 @alias texline=comment
36 @macro infoline{stuff}
37 \stuff\
38 @end macro
39 @alias expr=samp
40 @alias tfn=t
41 @alias mathit=i
42 @macro cpi{}
43 @expr{pi}
44 @end macro
45 @macro cpiover{den}
46 @expr{pi/\den\}
47 @end macro
48 @end ifnottex
51 @tex
52 % Suggested by Karl Berry <karl@@freefriends.org>
53 \gdef\!{\mskip-\thinmuskip}
54 @end tex
56 @c Fix some other things specifically for this manual.
57 @iftex
58 @finalout
59 @mathcode`@:=`@:  @c Make Calc fractions come out right in math mode
60 @tex
61 \gdef\coloneq{\mathrel{\mathord:\mathord=}}
63 \gdef\beforedisplay{\vskip-10pt}
64 \gdef\afterdisplay{\vskip-5pt}
65 \gdef\beforedisplayh{\vskip-25pt}
66 \gdef\afterdisplayh{\vskip-10pt}
67 @end tex
68 @newdimen@kyvpos @kyvpos=0pt
69 @newdimen@kyhpos @kyhpos=0pt
70 @newcount@calcclubpenalty @calcclubpenalty=1000
71 @ignore
72 @newcount@calcpageno
73 @newtoks@calcoldeverypar @calcoldeverypar=@everypar
74 @everypar={@calceverypar@the@calcoldeverypar}
75 @ifx@turnoffactive@undefinedzzz@def@turnoffactive{}@fi
76 @ifx@ninett@undefinedzzz@font@ninett=cmtt9@fi
77 @catcode`@\=0 \catcode`\@=11
78 \r@ggedbottomtrue
79 \catcode`\@=0 @catcode`@\=@active
80 @end ignore
81 @end iftex
83 @copying
84 This file documents Calc, the GNU Emacs calculator.
86 Copyright (C) 1990, 1991, 2001, 2002, 2005 Free Software Foundation, Inc.
88 @quotation
89 Permission is granted to copy, distribute and/or modify this document
90 under the terms of the GNU Free Documentation License, Version 1.1 or
91 any later version published by the Free Software Foundation; with the
92 Invariant Sections being just ``GNU GENERAL PUBLIC LICENSE'', with the
93 Front-Cover texts being ``A GNU Manual,'' and with the Back-Cover
94 Texts as in (a) below.
96 (a) The FSF's Back-Cover Text is: ``You have freedom to copy and modify
97 this GNU Manual, like GNU software.  Copies published by the Free
98 Software Foundation raise funds for GNU development.''
99 @end quotation
100 @end copying
102 @dircategory Emacs
103 @direntry
104 * Calc: (calc).         Advanced desk calculator and mathematical tool.
105 @end direntry
107 @titlepage
108 @sp 6
109 @center @titlefont{Calc Manual}
110 @sp 4
111 @center GNU Emacs Calc Version 2.02g
112 @c [volume]
113 @sp 1
114 @center March 2005
115 @sp 5
116 @center Dave Gillespie
117 @center daveg@@synaptics.com
118 @page
120 @vskip 0pt plus 1filll
121 Copyright @copyright{} 1990, 1991, 2001, 2002, 2005
122 Free Software Foundation, Inc.
123 @insertcopying
124 @end titlepage
126 @c [begin]
127 @ifinfo
128 @node Top, , (dir), (dir)
129 @chapter The GNU Emacs Calculator
131 @noindent
132 @dfn{Calc} is an advanced desk calculator and mathematical tool
133 that runs as part of the GNU Emacs environment.
135 This manual is divided into three major parts: ``Getting Started,''
136 the ``Calc Tutorial,'' and the ``Calc Reference.''  The Tutorial
137 introduces all the major aspects of Calculator use in an easy,
138 hands-on way.  The remainder of the manual is a complete reference to
139 the features of the Calculator.
141 For help in the Emacs Info system (which you are using to read this
142 file), type @kbd{?}.  (You can also type @kbd{h} to run through a
143 longer Info tutorial.)
145 @end ifinfo
146 @menu
147 * Copying::               How you can copy and share Calc.
149 * Getting Started::       General description and overview.
150 * Interactive Tutorial::
151 * Tutorial::              A step-by-step introduction for beginners.
153 * Introduction::          Introduction to the Calc reference manual.
154 * Data Types::            Types of objects manipulated by Calc.
155 * Stack and Trail::       Manipulating the stack and trail buffers.
156 * Mode Settings::         Adjusting display format and other modes.
157 * Arithmetic::            Basic arithmetic functions.
158 * Scientific Functions::  Transcendentals and other scientific functions.
159 * Matrix Functions::      Operations on vectors and matrices.
160 * Algebra::               Manipulating expressions algebraically.
161 * Units::                 Operations on numbers with units.
162 * Store and Recall::      Storing and recalling variables.
163 * Graphics::              Commands for making graphs of data.
164 * Kill and Yank::         Moving data into and out of Calc.
165 * Embedded Mode::         Working with formulas embedded in a file.
166 * Programming::           Calc as a programmable calculator.
168 * Customizable Variables:: Customizable Variables.
169 * Reporting Bugs::        How to report bugs and make suggestions.
171 * Summary::               Summary of Calc commands and functions.
173 * Key Index::             The standard Calc key sequences.
174 * Command Index::         The interactive Calc commands.
175 * Function Index::        Functions (in algebraic formulas).
176 * Concept Index::         General concepts.
177 * Variable Index::        Variables used by Calc (both user and internal).
178 * Lisp Function Index::   Internal Lisp math functions.
179 @end menu
181 @node Copying, Getting Started, Top, Top
182 @unnumbered GNU GENERAL PUBLIC LICENSE
183 @center Version 1, February 1989
185 @display
186 Copyright @copyright{} 1989 Free Software Foundation, Inc.
187 675 Mass Ave, Cambridge, MA 02139, USA
189 Everyone is permitted to copy and distribute verbatim copies
190 of this license document, but changing it is not allowed.
191 @end display
193 @unnumberedsec Preamble
195   The license agreements of most software companies try to keep users
196 at the mercy of those companies.  By contrast, our General Public
197 License is intended to guarantee your freedom to share and change free
198 software---to make sure the software is free for all its users.  The
199 General Public License applies to the Free Software Foundation's
200 software and to any other program whose authors commit to using it.
201 You can use it for your programs, too.
203   When we speak of free software, we are referring to freedom, not
204 price.  Specifically, the General Public License is designed to make
205 sure that you have the freedom to give away or sell copies of free
206 software, that you receive source code or can get it if you want it,
207 that you can change the software or use pieces of it in new free
208 programs; and that you know you can do these things.
210   To protect your rights, we need to make restrictions that forbid
211 anyone to deny you these rights or to ask you to surrender the rights.
212 These restrictions translate to certain responsibilities for you if you
213 distribute copies of the software, or if you modify it.
215   For example, if you distribute copies of a such a program, whether
216 gratis or for a fee, you must give the recipients all the rights that
217 you have.  You must make sure that they, too, receive or can get the
218 source code.  And you must tell them their rights.
220   We protect your rights with two steps: (1) copyright the software, and
221 (2) offer you this license which gives you legal permission to copy,
222 distribute and/or modify the software.
224   Also, for each author's protection and ours, we want to make certain
225 that everyone understands that there is no warranty for this free
226 software.  If the software is modified by someone else and passed on, we
227 want its recipients to know that what they have is not the original, so
228 that any problems introduced by others will not reflect on the original
229 authors' reputations.
231   The precise terms and conditions for copying, distribution and
232 modification follow.
234 @iftex
235 @unnumberedsec TERMS AND CONDITIONS
236 @end iftex
237 @ifinfo
238 @center TERMS AND CONDITIONS
239 @end ifinfo
241 @enumerate
242 @item
243 This License Agreement applies to any program or other work which
244 contains a notice placed by the copyright holder saying it may be
245 distributed under the terms of this General Public License.  The
246 ``Program'', below, refers to any such program or work, and a ``work based
247 on the Program'' means either the Program or any work containing the
248 Program or a portion of it, either verbatim or with modifications.  Each
249 licensee is addressed as ``you''.
251 @item
252 You may copy and distribute verbatim copies of the Program's source
253 code as you receive it, in any medium, provided that you conspicuously and
254 appropriately publish on each copy an appropriate copyright notice and
255 disclaimer of warranty; keep intact all the notices that refer to this
256 General Public License and to the absence of any warranty; and give any
257 other recipients of the Program a copy of this General Public License
258 along with the Program.  You may charge a fee for the physical act of
259 transferring a copy.
261 @item
262 You may modify your copy or copies of the Program or any portion of
263 it, and copy and distribute such modifications under the terms of Paragraph
264 1 above, provided that you also do the following:
266 @itemize @bullet
267 @item
268 cause the modified files to carry prominent notices stating that
269 you changed the files and the date of any change; and
271 @item
272 cause the whole of any work that you distribute or publish, that
273 in whole or in part contains the Program or any part thereof, either
274 with or without modifications, to be licensed at no charge to all
275 third parties under the terms of this General Public License (except
276 that you may choose to grant warranty protection to some or all
277 third parties, at your option).
279 @item
280 If the modified program normally reads commands interactively when
281 run, you must cause it, when started running for such interactive use
282 in the simplest and most usual way, to print or display an
283 announcement including an appropriate copyright notice and a notice
284 that there is no warranty (or else, saying that you provide a
285 warranty) and that users may redistribute the program under these
286 conditions, and telling the user how to view a copy of this General
287 Public License.
289 @item
290 You may charge a fee for the physical act of transferring a
291 copy, and you may at your option offer warranty protection in
292 exchange for a fee.
293 @end itemize
295 Mere aggregation of another independent work with the Program (or its
296 derivative) on a volume of a storage or distribution medium does not bring
297 the other work under the scope of these terms.
299 @item
300 You may copy and distribute the Program (or a portion or derivative of
301 it, under Paragraph 2) in object code or executable form under the terms of
302 Paragraphs 1 and 2 above provided that you also do one of the following:
304 @itemize @bullet
305 @item
306 accompany it with the complete corresponding machine-readable
307 source code, which must be distributed under the terms of
308 Paragraphs 1 and 2 above; or,
310 @item
311 accompany it with a written offer, valid for at least three
312 years, to give any third party free (except for a nominal charge
313 for the cost of distribution) a complete machine-readable copy of the
314 corresponding source code, to be distributed under the terms of
315 Paragraphs 1 and 2 above; or,
317 @item
318 accompany it with the information you received as to where the
319 corresponding source code may be obtained.  (This alternative is
320 allowed only for noncommercial distribution and only if you
321 received the program in object code or executable form alone.)
322 @end itemize
324 Source code for a work means the preferred form of the work for making
325 modifications to it.  For an executable file, complete source code means
326 all the source code for all modules it contains; but, as a special
327 exception, it need not include source code for modules which are standard
328 libraries that accompany the operating system on which the executable
329 file runs, or for standard header files or definitions files that
330 accompany that operating system.
332 @item
333 You may not copy, modify, sublicense, distribute or transfer the
334 Program except as expressly provided under this General Public License.
335 Any attempt otherwise to copy, modify, sublicense, distribute or transfer
336 the Program is void, and will automatically terminate your rights to use
337 the Program under this License.  However, parties who have received
338 copies, or rights to use copies, from you under this General Public
339 License will not have their licenses terminated so long as such parties
340 remain in full compliance.
342 @item
343 By copying, distributing or modifying the Program (or any work based
344 on the Program) you indicate your acceptance of this license to do so,
345 and all its terms and conditions.
347 @item
348 Each time you redistribute the Program (or any work based on the
349 Program), the recipient automatically receives a license from the original
350 licensor to copy, distribute or modify the Program subject to these
351 terms and conditions.  You may not impose any further restrictions on the
352 recipients' exercise of the rights granted herein.
354 @item
355 The Free Software Foundation may publish revised and/or new versions
356 of the General Public License from time to time.  Such new versions will
357 be similar in spirit to the present version, but may differ in detail to
358 address new problems or concerns.
360 Each version is given a distinguishing version number.  If the Program
361 specifies a version number of the license which applies to it and ``any
362 later version'', you have the option of following the terms and conditions
363 either of that version or of any later version published by the Free
364 Software Foundation.  If the Program does not specify a version number of
365 the license, you may choose any version ever published by the Free Software
366 Foundation.
368 @item
369 If you wish to incorporate parts of the Program into other free
370 programs whose distribution conditions are different, write to the author
371 to ask for permission.  For software which is copyrighted by the Free
372 Software Foundation, write to the Free Software Foundation; we sometimes
373 make exceptions for this.  Our decision will be guided by the two goals
374 of preserving the free status of all derivatives of our free software and
375 of promoting the sharing and reuse of software generally.
377 @iftex
378 @heading NO WARRANTY
379 @end iftex
380 @ifinfo
381 @center NO WARRANTY
382 @end ifinfo
384 @item
385 BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
386 FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.  EXCEPT WHEN
387 OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
388 PROVIDE THE PROGRAM ``AS IS'' WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
389 OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
390 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE ENTIRE RISK AS
391 TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.  SHOULD THE
392 PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
393 REPAIR OR CORRECTION.
395 @item
396 IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
397 ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
398 REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
399 INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
400 ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
401 LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES
402 SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE
403 WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
404 ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
405 @end enumerate
407 @node Getting Started, Tutorial, Copying, Top
408 @chapter Getting Started
409 @noindent
410 This chapter provides a general overview of Calc, the GNU Emacs
411 Calculator:  What it is, how to start it and how to exit from it,
412 and what are the various ways that it can be used.
414 @menu
415 * What is Calc::
416 * About This Manual::
417 * Notations Used in This Manual::
418 * Using Calc::
419 * Demonstration of Calc::
420 * History and Acknowledgements::
421 @end menu
423 @node What is Calc, About This Manual, Getting Started, Getting Started
424 @section What is Calc?
426 @noindent
427 @dfn{Calc} is an advanced calculator and mathematical tool that runs as
428 part of the GNU Emacs environment.  Very roughly based on the HP-28/48
429 series of calculators, its many features include:
431 @itemize @bullet
432 @item
433 Choice of algebraic or RPN (stack-based) entry of calculations.
435 @item
436 Arbitrary precision integers and floating-point numbers.
438 @item
439 Arithmetic on rational numbers, complex numbers (rectangular and polar),
440 error forms with standard deviations, open and closed intervals, vectors
441 and matrices, dates and times, infinities, sets, quantities with units,
442 and algebraic formulas.
444 @item
445 Mathematical operations such as logarithms and trigonometric functions.
447 @item
448 Programmer's features (bitwise operations, non-decimal numbers).
450 @item
451 Financial functions such as future value and internal rate of return.
453 @item
454 Number theoretical features such as prime factorization and arithmetic
455 modulo @var{m} for any @var{m}.
457 @item
458 Algebraic manipulation features, including symbolic calculus.
460 @item
461 Moving data to and from regular editing buffers.
463 @item
464 Embedded mode for manipulating Calc formulas and data directly
465 inside any editing buffer.
467 @item
468 Graphics using GNUPLOT, a versatile (and free) plotting program.
470 @item
471 Easy programming using keyboard macros, algebraic formulas,
472 algebraic rewrite rules, or extended Emacs Lisp.
473 @end itemize
475 Calc tries to include a little something for everyone; as a result it is
476 large and might be intimidating to the first-time user.  If you plan to
477 use Calc only as a traditional desk calculator, all you really need to
478 read is the ``Getting Started'' chapter of this manual and possibly the
479 first few sections of the tutorial.  As you become more comfortable with
480 the program you can learn its additional features.  Calc does not
481 have the scope and depth of a fully-functional symbolic math package,
482 but Calc has the advantages of convenience, portability, and freedom.
484 @node About This Manual, Notations Used in This Manual, What is Calc, Getting Started
485 @section About This Manual
487 @noindent
488 This document serves as a complete description of the GNU Emacs
489 Calculator.  It works both as an introduction for novices, and as
490 a reference for experienced users.  While it helps to have some
491 experience with GNU Emacs in order to get the most out of Calc,
492 this manual ought to be readable even if you don't know or use Emacs
493 regularly.
495 @ifinfo
496 The manual is divided into three major parts:@: the ``Getting
497 Started'' chapter you are reading now, the Calc tutorial (chapter 2),
498 and the Calc reference manual (the remaining chapters and appendices).
499 @end ifinfo
500 @iftex
501 The manual is divided into three major parts:@: the ``Getting
502 Started'' chapter you are reading now, the Calc tutorial (chapter 2),
503 and the Calc reference manual (the remaining chapters and appendices).
504 @c [when-split]
505 @c This manual has been printed in two volumes, the @dfn{Tutorial} and the
506 @c @dfn{Reference}.  Both volumes include a copy of the ``Getting Started''
507 @c chapter.
508 @end iftex
510 If you are in a hurry to use Calc, there is a brief ``demonstration''
511 below which illustrates the major features of Calc in just a couple of
512 pages.  If you don't have time to go through the full tutorial, this
513 will show you everything you need to know to begin.
514 @xref{Demonstration of Calc}.
516 The tutorial chapter walks you through the various parts of Calc
517 with lots of hands-on examples and explanations.  If you are new
518 to Calc and you have some time, try going through at least the
519 beginning of the tutorial.  The tutorial includes about 70 exercises
520 with answers.  These exercises give you some guided practice with
521 Calc, as well as pointing out some interesting and unusual ways
522 to use its features.
524 The reference section discusses Calc in complete depth.  You can read
525 the reference from start to finish if you want to learn every aspect
526 of Calc.  Or, you can look in the table of contents or the Concept
527 Index to find the parts of the manual that discuss the things you
528 need to know.
530 @cindex Marginal notes
531 Every Calc keyboard command is listed in the Calc Summary, and also
532 in the Key Index.  Algebraic functions, @kbd{M-x} commands, and
533 variables also have their own indices.  
534 @texline Each
535 @infoline In the printed manual, each
536 paragraph that is referenced in the Key or Function Index is marked
537 in the margin with its index entry.
539 @c [fix-ref Help Commands]
540 You can access this manual on-line at any time within Calc by
541 pressing the @kbd{h i} key sequence.  Outside of the Calc window,
542 you can press @kbd{M-# i} to read the manual on-line.  Also, you
543 can jump directly to the Tutorial by pressing @kbd{h t} or @kbd{M-# t},
544 or to the Summary by pressing @kbd{h s} or @kbd{M-# s}.  Within Calc,
545 you can also go to the part of the manual describing any Calc key,
546 function, or variable using @w{@kbd{h k}}, @kbd{h f}, or @kbd{h v},
547 respectively.  @xref{Help Commands}.
549 The Calc manual can be printed, but because the manual is so large, you
550 should only make a printed copy if you really need it.  To print the
551 manual, you will need the @TeX{} typesetting program (this is a free
552 program by Donald Knuth at Stanford University) as well as the
553 @file{texindex} program and @file{texinfo.tex} file, both of which can
554 be obtained from the FSF as part of the @code{texinfo} package.
555 To print the Calc manual in one huge tome, you will need the
556 source code to this manual, @file{calc.texi}, available as part of the
557 Emacs source.  Once you have this file, type @kbd{texi2dvi calc.texi}.
558 Alternatively, change to the @file{man} subdirectory of the Emacs
559 source distribution, and type @kbd{make calc.dvi}. (Don't worry if you
560 get some ``overfull box'' warnings while @TeX{} runs.)
561 The result will be a device-independent output file called
562 @file{calc.dvi}, which you must print in whatever way is right
563 for your system.  On many systems, the command is
565 @example
566 lpr -d calc.dvi
567 @end example
569 @noindent
572 @example
573 dvips calc.dvi
574 @end example
576 @c Printed copies of this manual are also available from the Free Software
577 @c Foundation.
579 @node Notations Used in This Manual, Demonstration of Calc, About This Manual, Getting Started
580 @section Notations Used in This Manual
582 @noindent
583 This section describes the various notations that are used
584 throughout the Calc manual.
586 In keystroke sequences, uppercase letters mean you must hold down
587 the shift key while typing the letter.  Keys pressed with Control
588 held down are shown as @kbd{C-x}.  Keys pressed with Meta held down
589 are shown as @kbd{M-x}.  Other notations are @key{RET} for the
590 Return key, @key{SPC} for the space bar, @key{TAB} for the Tab key,
591 @key{DEL} for the Delete key, and @key{LFD} for the Line-Feed key.
592 The @key{DEL} key is called Backspace on some keyboards, it is
593 whatever key you would use to correct a simple typing error when
594 regularly using Emacs.
596 (If you don't have the @key{LFD} or @key{TAB} keys on your keyboard,
597 the @kbd{C-j} and @kbd{C-i} keys are equivalent to them, respectively.
598 If you don't have a Meta key, look for Alt or Extend Char.  You can
599 also press @key{ESC} or @key{C-[} first to get the same effect, so
600 that @kbd{M-x}, @kbd{@key{ESC} x}, and @kbd{C-[ x} are all equivalent.)
602 Sometimes the @key{RET} key is not shown when it is ``obvious''
603 that you must press @key{RET} to proceed.  For example, the @key{RET}
604 is usually omitted in key sequences like @kbd{M-x calc-keypad @key{RET}}.
606 Commands are generally shown like this:  @kbd{p} (@code{calc-precision})
607 or @kbd{M-# k} (@code{calc-keypad}).  This means that the command is
608 normally used by pressing the @kbd{p} key or @kbd{M-# k} key sequence,
609 but it also has the full-name equivalent shown, e.g., @kbd{M-x calc-precision}.
611 Commands that correspond to functions in algebraic notation
612 are written:  @kbd{C} (@code{calc-cos}) [@code{cos}].  This means
613 the @kbd{C} key is equivalent to @kbd{M-x calc-cos}, and that
614 the corresponding function in an algebraic-style formula would
615 be @samp{cos(@var{x})}.
617 A few commands don't have key equivalents:  @code{calc-sincos}
618 [@code{sincos}].
620 @node Demonstration of Calc, Using Calc, Notations Used in This Manual, Getting Started
621 @section A Demonstration of Calc
623 @noindent
624 @cindex Demonstration of Calc
625 This section will show some typical small problems being solved with
626 Calc.  The focus is more on demonstration than explanation, but
627 everything you see here will be covered more thoroughly in the
628 Tutorial.
630 To begin, start Emacs if necessary (usually the command @code{emacs}
631 does this), and type @kbd{M-# c} (or @kbd{@key{ESC} # c}) to start the
632 Calculator.  (@xref{Starting Calc}, if this doesn't work for you.)
634 Be sure to type all the sample input exactly, especially noting the
635 difference between lower-case and upper-case letters.  Remember,
636 @key{RET}, @key{TAB}, @key{DEL}, and @key{SPC} are the Return, Tab,
637 Delete, and Space keys.
639 @strong{RPN calculation.}  In RPN, you type the input number(s) first,
640 then the command to operate on the numbers.
642 @noindent
643 Type @kbd{2 @key{RET} 3 + Q} to compute 
644 @texline @math{\sqrt{2+3} = 2.2360679775}.
645 @infoline the square root of 2+3, which is 2.2360679775.
647 @noindent
648 Type @kbd{P 2 ^} to compute 
649 @texline @math{\pi^2 = 9.86960440109}.
650 @infoline the value of `pi' squared, 9.86960440109.
652 @noindent
653 Type @key{TAB} to exchange the order of these two results.
655 @noindent
656 Type @kbd{- I H S} to subtract these results and compute the Inverse
657 Hyperbolic sine of the difference, 2.72996136574.
659 @noindent
660 Type @key{DEL} to erase this result.
662 @strong{Algebraic calculation.}  You can also enter calculations using
663 conventional ``algebraic'' notation.  To enter an algebraic formula,
664 use the apostrophe key.
666 @noindent
667 Type @kbd{' sqrt(2+3) @key{RET}} to compute 
668 @texline @math{\sqrt{2+3}}.
669 @infoline the square root of 2+3.
671 @noindent
672 Type @kbd{' pi^2 @key{RET}} to enter 
673 @texline @math{\pi^2}.
674 @infoline `pi' squared.  
675 To evaluate this symbolic formula as a number, type @kbd{=}.
677 @noindent
678 Type @kbd{' arcsinh($ - $$) @key{RET}} to subtract the second-most-recent
679 result from the most-recent and compute the Inverse Hyperbolic sine.
681 @strong{Keypad mode.}  If you are using the X window system, press
682 @w{@kbd{M-# k}} to get Keypad mode.  (If you don't use X, skip to
683 the next section.)
685 @noindent
686 Click on the @key{2}, @key{ENTER}, @key{3}, @key{+}, and @key{SQRT}
687 ``buttons'' using your left mouse button.
689 @noindent
690 Click on @key{PI}, @key{2}, and @tfn{y^x}.
692 @noindent
693 Click on @key{INV}, then @key{ENTER} to swap the two results.
695 @noindent
696 Click on @key{-}, @key{INV}, @key{HYP}, and @key{SIN}.
698 @noindent
699 Click on @key{<-} to erase the result, then click @key{OFF} to turn
700 the Keypad Calculator off.
702 @strong{Grabbing data.}  Type @kbd{M-# x} if necessary to exit Calc.
703 Now select the following numbers as an Emacs region:  ``Mark'' the
704 front of the list by typing @kbd{C-@key{SPC}} or @kbd{C-@@} there,
705 then move to the other end of the list.  (Either get this list from
706 the on-line copy of this manual, accessed by @w{@kbd{M-# i}}, or just
707 type these numbers into a scratch file.)  Now type @kbd{M-# g} to
708 ``grab'' these numbers into Calc.
710 @example
711 @group
712 1.23  1.97
713 1.6   2
714 1.19  1.08
715 @end group
716 @end example
718 @noindent
719 The result @samp{[1.23, 1.97, 1.6, 2, 1.19, 1.08]} is a Calc ``vector.''
720 Type @w{@kbd{V R +}} to compute the sum of these numbers.
722 @noindent
723 Type @kbd{U} to Undo this command, then type @kbd{V R *} to compute
724 the product of the numbers.
726 @noindent
727 You can also grab data as a rectangular matrix.  Place the cursor on
728 the upper-leftmost @samp{1} and set the mark, then move to just after
729 the lower-right @samp{8} and press @kbd{M-# r}.
731 @noindent
732 Type @kbd{v t} to transpose this 
733 @texline @math{3\times2}
734 @infoline 3x2 
735 matrix into a 
736 @texline @math{2\times3}
737 @infoline 2x3
738 matrix.  Type @w{@kbd{v u}} to unpack the rows into two separate
739 vectors.  Now type @w{@kbd{V R + @key{TAB} V R +}} to compute the sums
740 of the two original columns. (There is also a special
741 grab-and-sum-columns command, @kbd{M-# :}.)
743 @strong{Units conversion.}  Units are entered algebraically.
744 Type @w{@kbd{' 43 mi/hr @key{RET}}} to enter the quantity 43 miles-per-hour.
745 Type @w{@kbd{u c km/hr @key{RET}}}.  Type @w{@kbd{u c m/s @key{RET}}}.
747 @strong{Date arithmetic.}  Type @kbd{t N} to get the current date and
748 time.  Type @kbd{90 +} to find the date 90 days from now.  Type
749 @kbd{' <25 dec 87> @key{RET}} to enter a date, then @kbd{- 7 /} to see how
750 many weeks have passed since then.
752 @strong{Algebra.}  Algebraic entries can also include formulas
753 or equations involving variables.  Type @kbd{@w{' [x + y} = a, x y = 1] @key{RET}}
754 to enter a pair of equations involving three variables.
755 (Note the leading apostrophe in this example; also, note that the space
756 between @samp{x y} is required.)  Type @w{@kbd{a S x,y @key{RET}}} to solve
757 these equations for the variables @expr{x} and @expr{y}.
759 @noindent
760 Type @kbd{d B} to view the solutions in more readable notation.
761 Type @w{@kbd{d C}} to view them in C language notation, @kbd{d T}
762 to view them in the notation for the @TeX{} typesetting system,
763 and @kbd{d L} to view them in the notation for the La@TeX{} typesetting
764 system.  Type @kbd{d N} to return to normal notation.
766 @noindent
767 Type @kbd{7.5}, then @kbd{s l a @key{RET}} to let @expr{a = 7.5} in these formulas.
768 (That's a letter @kbd{l}, not a numeral @kbd{1}.)
770 @iftex
771 @strong{Help functions.}  You can read about any command in the on-line
772 manual.  Type @kbd{M-# c} to return to Calc after each of these
773 commands: @kbd{h k t N} to read about the @kbd{t N} command,
774 @kbd{h f sqrt @key{RET}} to read about the @code{sqrt} function, and
775 @kbd{h s} to read the Calc summary.
776 @end iftex
777 @ifinfo
778 @strong{Help functions.}  You can read about any command in the on-line
779 manual.  Remember to type the letter @kbd{l}, then @kbd{M-# c}, to
780 return here after each of these commands: @w{@kbd{h k t N}} to read
781 about the @w{@kbd{t N}} command, @kbd{h f sqrt @key{RET}} to read about the
782 @code{sqrt} function, and @kbd{h s} to read the Calc summary.
783 @end ifinfo
785 Press @key{DEL} repeatedly to remove any leftover results from the stack.
786 To exit from Calc, press @kbd{q} or @kbd{M-# c} again.
788 @node Using Calc, History and Acknowledgements, Demonstration of Calc, Getting Started
789 @section Using Calc
791 @noindent
792 Calc has several user interfaces that are specialized for
793 different kinds of tasks.  As well as Calc's standard interface,
794 there are Quick mode, Keypad mode, and Embedded mode.
796 @menu
797 * Starting Calc::
798 * The Standard Interface::
799 * Quick Mode Overview::
800 * Keypad Mode Overview::
801 * Standalone Operation::
802 * Embedded Mode Overview::
803 * Other M-# Commands::
804 @end menu
806 @node Starting Calc, The Standard Interface, Using Calc, Using Calc
807 @subsection Starting Calc
809 @noindent
810 On most systems, you can type @kbd{M-#} to start the Calculator.
811 The notation @kbd{M-#} is short for Meta-@kbd{#}.  On most
812 keyboards this means holding down the Meta (or Alt) and
813 Shift keys while typing @kbd{3}.
815 @cindex META key
816 Once again, if you don't have a Meta key on your keyboard you can type
817 @key{ESC} first, then @kbd{#}, to accomplish the same thing.  If you
818 don't even have an @key{ESC} key, you can fake it by holding down
819 Control or @key{CTRL} while typing a left square bracket
820 (that's @kbd{C-[} in Emacs notation).
822 @kbd{M-#} is a @dfn{prefix key}; when you press it, Emacs waits for
823 you to press a second key to complete the command.  In this case,
824 you will follow @kbd{M-#} with a letter (upper- or lower-case, it
825 doesn't matter for @kbd{M-#}) that says which Calc interface you
826 want to use.
828 To get Calc's standard interface, type @kbd{M-# c}.  To get
829 Keypad mode, type @kbd{M-# k}.  Type @kbd{M-# ?} to get a brief
830 list of the available options, and type a second @kbd{?} to get
831 a complete list.
833 To ease typing, @kbd{M-# M-#} (or @kbd{M-# #} if that's easier)
834 also works to start Calc.  It starts the same interface (either
835 @kbd{M-# c} or @w{@kbd{M-# k}}) that you last used, selecting the
836 @kbd{M-# c} interface by default.  (If your installation has
837 a special function key set up to act like @kbd{M-#}, hitting that
838 function key twice is just like hitting @kbd{M-# M-#}.)
840 If @kbd{M-#} doesn't work for you, you can always type explicit
841 commands like @kbd{M-x calc} (for the standard user interface) or
842 @w{@kbd{M-x calc-keypad}} (for Keypad mode).  First type @kbd{M-x}
843 (that's Meta with the letter @kbd{x}), then, at the prompt,
844 type the full command (like @kbd{calc-keypad}) and press Return.
846 The same commands (like @kbd{M-# c} or @kbd{M-# M-#}) that start
847 the Calculator also turn it off if it is already on.
849 @node The Standard Interface, Quick Mode Overview, Starting Calc, Using Calc
850 @subsection The Standard Calc Interface
852 @noindent
853 @cindex Standard user interface
854 Calc's standard interface acts like a traditional RPN calculator,
855 operated by the normal Emacs keyboard.  When you type @kbd{M-# c}
856 to start the Calculator, the Emacs screen splits into two windows
857 with the file you were editing on top and Calc on the bottom.
859 @smallexample
860 @group
863 --**-Emacs: myfile             (Fundamental)----All----------------------
864 --- Emacs Calculator Mode ---                   |Emacs Calc Mode v2.00...
865 2:  17.3                                        |    17.3
866 1:  -5                                          |    3
867     .                                           |    2
868                                                 |    4
869                                                 |  * 8
870                                                 |  ->-5
871                                                 |
872 --%%-Calc: 12 Deg       (Calculator)----All----- --%%-Emacs: *Calc Trail*
873 @end group
874 @end smallexample
876 In this figure, the mode-line for @file{myfile} has moved up and the
877 ``Calculator'' window has appeared below it.  As you can see, Calc
878 actually makes two windows side-by-side.  The lefthand one is
879 called the @dfn{stack window} and the righthand one is called the
880 @dfn{trail window.}  The stack holds the numbers involved in the
881 calculation you are currently performing.  The trail holds a complete
882 record of all calculations you have done.  In a desk calculator with
883 a printer, the trail corresponds to the paper tape that records what
884 you do.
886 In this case, the trail shows that four numbers (17.3, 3, 2, and 4)
887 were first entered into the Calculator, then the 2 and 4 were
888 multiplied to get 8, then the 3 and 8 were subtracted to get @mathit{-5}.
889 (The @samp{>} symbol shows that this was the most recent calculation.)
890 The net result is the two numbers 17.3 and @mathit{-5} sitting on the stack.
892 Most Calculator commands deal explicitly with the stack only, but
893 there is a set of commands that allow you to search back through
894 the trail and retrieve any previous result.
896 Calc commands use the digits, letters, and punctuation keys.
897 Shifted (i.e., upper-case) letters are different from lowercase
898 letters.  Some letters are @dfn{prefix} keys that begin two-letter
899 commands.  For example, @kbd{e} means ``enter exponent'' and shifted
900 @kbd{E} means @expr{e^x}.  With the @kbd{d} (``display modes'') prefix
901 the letter ``e'' takes on very different meanings:  @kbd{d e} means
902 ``engineering notation'' and @kbd{d E} means ``@dfn{eqn} language mode.''
904 There is nothing stopping you from switching out of the Calc
905 window and back into your editing window, say by using the Emacs
906 @w{@kbd{C-x o}} (@code{other-window}) command.  When the cursor is
907 inside a regular window, Emacs acts just like normal.  When the
908 cursor is in the Calc stack or trail windows, keys are interpreted
909 as Calc commands.
911 When you quit by pressing @kbd{M-# c} a second time, the Calculator
912 windows go away but the actual Stack and Trail are not gone, just
913 hidden.  When you press @kbd{M-# c} once again you will get the
914 same stack and trail contents you had when you last used the
915 Calculator.
917 The Calculator does not remember its state between Emacs sessions.
918 Thus if you quit Emacs and start it again, @kbd{M-# c} will give you
919 a fresh stack and trail.  There is a command (@kbd{m m}) that lets
920 you save your favorite mode settings between sessions, though.
921 One of the things it saves is which user interface (standard or
922 Keypad) you last used; otherwise, a freshly started Emacs will
923 always treat @kbd{M-# M-#} the same as @kbd{M-# c}.
925 The @kbd{q} key is another equivalent way to turn the Calculator off.
927 If you type @kbd{M-# b} first and then @kbd{M-# c}, you get a
928 full-screen version of Calc (@code{full-calc}) in which the stack and
929 trail windows are still side-by-side but are now as tall as the whole
930 Emacs screen.  When you press @kbd{q} or @kbd{M-# c} again to quit,
931 the file you were editing before reappears.  The @kbd{M-# b} key
932 switches back and forth between ``big'' full-screen mode and the
933 normal partial-screen mode.
935 Finally, @kbd{M-# o} (@code{calc-other-window}) is like @kbd{M-# c}
936 except that the Calc window is not selected.  The buffer you were
937 editing before remains selected instead.  @kbd{M-# o} is a handy
938 way to switch out of Calc momentarily to edit your file; type
939 @kbd{M-# c} to switch back into Calc when you are done.
941 @node Quick Mode Overview, Keypad Mode Overview, The Standard Interface, Using Calc
942 @subsection Quick Mode (Overview)
944 @noindent
945 @dfn{Quick mode} is a quick way to use Calc when you don't need the
946 full complexity of the stack and trail.  To use it, type @kbd{M-# q}
947 (@code{quick-calc}) in any regular editing buffer.
949 Quick mode is very simple:  It prompts you to type any formula in
950 standard algebraic notation (like @samp{4 - 2/3}) and then displays
951 the result at the bottom of the Emacs screen (@mathit{3.33333333333}
952 in this case).  You are then back in the same editing buffer you
953 were in before, ready to continue editing or to type @kbd{M-# q}
954 again to do another quick calculation.  The result of the calculation
955 will also be in the Emacs ``kill ring'' so that a @kbd{C-y} command
956 at this point will yank the result into your editing buffer.
958 Calc mode settings affect Quick mode, too, though you will have to
959 go into regular Calc (with @kbd{M-# c}) to change the mode settings.
961 @c [fix-ref Quick Calculator mode]
962 @xref{Quick Calculator}, for further information.
964 @node Keypad Mode Overview, Standalone Operation, Quick Mode Overview, Using Calc
965 @subsection Keypad Mode (Overview)
967 @noindent
968 @dfn{Keypad mode} is a mouse-based interface to the Calculator.
969 It is designed for use with terminals that support a mouse.  If you
970 don't have a mouse, you will have to operate Keypad mode with your
971 arrow keys (which is probably more trouble than it's worth).
973 Type @kbd{M-# k} to turn Keypad mode on or off.  Once again you
974 get two new windows, this time on the righthand side of the screen
975 instead of at the bottom.  The upper window is the familiar Calc
976 Stack; the lower window is a picture of a typical calculator keypad.
978 @tex
979 \dimen0=\pagetotal%
980 \advance \dimen0 by 24\baselineskip%
981 \ifdim \dimen0>\pagegoal \vfill\eject \fi%
982 \medskip
983 @end tex
984 @smallexample
985                                         |--- Emacs Calculator Mode ---
986                                         |2:  17.3
987                                         |1:  -5
988                                         |    .
989                                         |--%%-Calc: 12 Deg       (Calcul
990                                         |----+-----Calc 2.00-----+----1
991                                         |FLR |CEIL|RND |TRNC|CLN2|FLT |
992                                         |----+----+----+----+----+----|
993                                         | LN |EXP |    |ABS |IDIV|MOD |
994                                         |----+----+----+----+----+----|
995                                         |SIN |COS |TAN |SQRT|y^x |1/x |
996                                         |----+----+----+----+----+----|
997                                         |  ENTER  |+/- |EEX |UNDO| <- |
998                                         |-----+---+-+--+--+-+---++----|
999                                         | INV |  7  |  8  |  9  |  /  |
1000                                         |-----+-----+-----+-----+-----|
1001                                         | HYP |  4  |  5  |  6  |  *  |
1002                                         |-----+-----+-----+-----+-----|
1003                                         |EXEC |  1  |  2  |  3  |  -  |
1004                                         |-----+-----+-----+-----+-----|
1005                                         | OFF |  0  |  .  | PI  |  +  |
1006                                         |-----+-----+-----+-----+-----+
1007 @end smallexample
1009 Keypad mode is much easier for beginners to learn, because there
1010 is no need to memorize lots of obscure key sequences.  But not all
1011 commands in regular Calc are available on the Keypad.  You can
1012 always switch the cursor into the Calc stack window to use
1013 standard Calc commands if you need.  Serious Calc users, though,
1014 often find they prefer the standard interface over Keypad mode.
1016 To operate the Calculator, just click on the ``buttons'' of the
1017 keypad using your left mouse button.  To enter the two numbers
1018 shown here you would click @w{@kbd{1 7 .@: 3 ENTER 5 +/- ENTER}}; to
1019 add them together you would then click @kbd{+} (to get 12.3 on
1020 the stack).
1022 If you click the right mouse button, the top three rows of the
1023 keypad change to show other sets of commands, such as advanced
1024 math functions, vector operations, and operations on binary
1025 numbers.
1027 Because Keypad mode doesn't use the regular keyboard, Calc leaves
1028 the cursor in your original editing buffer.  You can type in
1029 this buffer in the usual way while also clicking on the Calculator
1030 keypad.  One advantage of Keypad mode is that you don't need an
1031 explicit command to switch between editing and calculating.
1033 If you press @kbd{M-# b} first, you get a full-screen Keypad mode
1034 (@code{full-calc-keypad}) with three windows:  The keypad in the lower
1035 left, the stack in the lower right, and the trail on top.
1037 @c [fix-ref Keypad Mode]
1038 @xref{Keypad Mode}, for further information.
1040 @node Standalone Operation, Embedded Mode Overview, Keypad Mode Overview, Using Calc
1041 @subsection Standalone Operation
1043 @noindent
1044 @cindex Standalone Operation
1045 If you are not in Emacs at the moment but you wish to use Calc,
1046 you must start Emacs first.  If all you want is to run Calc, you
1047 can give the commands:
1049 @example
1050 emacs -f full-calc
1051 @end example
1053 @noindent
1056 @example
1057 emacs -f full-calc-keypad
1058 @end example
1060 @noindent
1061 which run a full-screen Calculator (as if by @kbd{M-# b M-# c}) or
1062 a full-screen X-based Calculator (as if by @kbd{M-# b M-# k}).
1063 In standalone operation, quitting the Calculator (by pressing
1064 @kbd{q} or clicking on the keypad @key{EXIT} button) quits Emacs
1065 itself.
1067 @node Embedded Mode Overview, Other M-# Commands, Standalone Operation, Using Calc
1068 @subsection Embedded Mode (Overview)
1070 @noindent
1071 @dfn{Embedded mode} is a way to use Calc directly from inside an
1072 editing buffer.  Suppose you have a formula written as part of a
1073 document like this:
1075 @smallexample
1076 @group
1077 The derivative of
1079                                    ln(ln(x))
1082 @end group
1083 @end smallexample
1085 @noindent
1086 and you wish to have Calc compute and format the derivative for
1087 you and store this derivative in the buffer automatically.  To
1088 do this with Embedded mode, first copy the formula down to where
1089 you want the result to be:
1091 @smallexample
1092 @group
1093 The derivative of
1095                                    ln(ln(x))
1099                                    ln(ln(x))
1100 @end group
1101 @end smallexample
1103 Now, move the cursor onto this new formula and press @kbd{M-# e}.
1104 Calc will read the formula (using the surrounding blank lines to
1105 tell how much text to read), then push this formula (invisibly)
1106 onto the Calc stack.  The cursor will stay on the formula in the
1107 editing buffer, but the buffer's mode line will change to look
1108 like the Calc mode line (with mode indicators like @samp{12 Deg}
1109 and so on).  Even though you are still in your editing buffer,
1110 the keyboard now acts like the Calc keyboard, and any new result
1111 you get is copied from the stack back into the buffer.  To take
1112 the derivative, you would type @kbd{a d x @key{RET}}.
1114 @smallexample
1115 @group
1116 The derivative of
1118                                    ln(ln(x))
1122 1 / ln(x) x
1123 @end group
1124 @end smallexample
1126 To make this look nicer, you might want to press @kbd{d =} to center
1127 the formula, and even @kbd{d B} to use Big display mode.
1129 @smallexample
1130 @group
1131 The derivative of
1133                                    ln(ln(x))
1136 % [calc-mode: justify: center]
1137 % [calc-mode: language: big]
1139                                        1
1140                                     -------
1141                                     ln(x) x
1142 @end group
1143 @end smallexample
1145 Calc has added annotations to the file to help it remember the modes
1146 that were used for this formula.  They are formatted like comments
1147 in the @TeX{} typesetting language, just in case you are using @TeX{} or
1148 La@TeX{}. (In this example @TeX{} is not being used, so you might want
1149 to move these comments up to the top of the file or otherwise put them
1150 out of the way.)
1152 As an extra flourish, we can add an equation number using a
1153 righthand label:  Type @kbd{d @} (1) @key{RET}}.
1155 @smallexample
1156 @group
1157 % [calc-mode: justify: center]
1158 % [calc-mode: language: big]
1159 % [calc-mode: right-label: " (1)"]
1161                                        1
1162                                     -------                      (1)
1163                                     ln(x) x
1164 @end group
1165 @end smallexample
1167 To leave Embedded mode, type @kbd{M-# e} again.  The mode line
1168 and keyboard will revert to the way they were before.  (If you have
1169 actually been trying this as you read along, you'll want to press
1170 @kbd{M-# 0} [with the digit zero] now to reset the modes you changed.)
1172 The related command @kbd{M-# w} operates on a single word, which
1173 generally means a single number, inside text.  It uses any
1174 non-numeric characters rather than blank lines to delimit the
1175 formula it reads.  Here's an example of its use:
1177 @smallexample
1178 A slope of one-third corresponds to an angle of 1 degrees.
1179 @end smallexample
1181 Place the cursor on the @samp{1}, then type @kbd{M-# w} to enable
1182 Embedded mode on that number.  Now type @kbd{3 /} (to get one-third),
1183 and @kbd{I T} (the Inverse Tangent converts a slope into an angle),
1184 then @w{@kbd{M-# w}} again to exit Embedded mode.
1186 @smallexample
1187 A slope of one-third corresponds to an angle of 18.4349488229 degrees.
1188 @end smallexample
1190 @c [fix-ref Embedded Mode]
1191 @xref{Embedded Mode}, for full details.
1193 @node Other M-# Commands, , Embedded Mode Overview, Using Calc
1194 @subsection Other @kbd{M-#} Commands
1196 @noindent
1197 Two more Calc-related commands are @kbd{M-# g} and @kbd{M-# r},
1198 which ``grab'' data from a selected region of a buffer into the
1199 Calculator.  The region is defined in the usual Emacs way, by
1200 a ``mark'' placed at one end of the region, and the Emacs
1201 cursor or ``point'' placed at the other.
1203 The @kbd{M-# g} command reads the region in the usual left-to-right,
1204 top-to-bottom order.  The result is packaged into a Calc vector
1205 of numbers and placed on the stack.  Calc (in its standard
1206 user interface) is then started.  Type @kbd{v u} if you want
1207 to unpack this vector into separate numbers on the stack.  Also,
1208 @kbd{C-u M-# g} interprets the region as a single number or
1209 formula.
1211 The @kbd{M-# r} command reads a rectangle, with the point and
1212 mark defining opposite corners of the rectangle.  The result
1213 is a matrix of numbers on the Calculator stack.
1215 Complementary to these is @kbd{M-# y}, which ``yanks'' the
1216 value at the top of the Calc stack back into an editing buffer.
1217 If you type @w{@kbd{M-# y}} while in such a buffer, the value is
1218 yanked at the current position.  If you type @kbd{M-# y} while
1219 in the Calc buffer, Calc makes an educated guess as to which
1220 editing buffer you want to use.  The Calc window does not have
1221 to be visible in order to use this command, as long as there
1222 is something on the Calc stack.
1224 Here, for reference, is the complete list of @kbd{M-#} commands.
1225 The shift, control, and meta keys are ignored for the keystroke
1226 following @kbd{M-#}.
1228 @noindent
1229 Commands for turning Calc on and off:
1231 @table @kbd
1232 @item #
1233 Turn Calc on or off, employing the same user interface as last time.
1235 @item C
1236 Turn Calc on or off using its standard bottom-of-the-screen
1237 interface.  If Calc is already turned on but the cursor is not
1238 in the Calc window, move the cursor into the window.
1240 @item O
1241 Same as @kbd{C}, but don't select the new Calc window.  If
1242 Calc is already turned on and the cursor is in the Calc window,
1243 move it out of that window.
1245 @item B
1246 Control whether @kbd{M-# c} and @kbd{M-# k} use the full screen.
1248 @item Q
1249 Use Quick mode for a single short calculation.
1251 @item K
1252 Turn Calc Keypad mode on or off.
1254 @item E
1255 Turn Calc Embedded mode on or off at the current formula.
1257 @item J
1258 Turn Calc Embedded mode on or off, select the interesting part.
1260 @item W
1261 Turn Calc Embedded mode on or off at the current word (number).
1263 @item Z
1264 Turn Calc on in a user-defined way, as defined by a @kbd{Z I} command.
1266 @item X
1267 Quit Calc; turn off standard, Keypad, or Embedded mode if on.
1268 (This is like @kbd{q} or @key{OFF} inside of Calc.)
1269 @end table
1270 @iftex
1271 @sp 2
1272 @end iftex
1274 @noindent
1275 Commands for moving data into and out of the Calculator:
1277 @table @kbd
1278 @item G
1279 Grab the region into the Calculator as a vector.
1281 @item R
1282 Grab the rectangular region into the Calculator as a matrix.
1284 @item :
1285 Grab the rectangular region and compute the sums of its columns.
1287 @item _
1288 Grab the rectangular region and compute the sums of its rows.
1290 @item Y
1291 Yank a value from the Calculator into the current editing buffer.
1292 @end table
1293 @iftex
1294 @sp 2
1295 @end iftex
1297 @noindent
1298 Commands for use with Embedded mode:
1300 @table @kbd
1301 @item A
1302 ``Activate'' the current buffer.  Locate all formulas that
1303 contain @samp{:=} or @samp{=>} symbols and record their locations
1304 so that they can be updated automatically as variables are changed.
1306 @item D
1307 Duplicate the current formula immediately below and select
1308 the duplicate.
1310 @item F
1311 Insert a new formula at the current point.
1313 @item N
1314 Move the cursor to the next active formula in the buffer.
1316 @item P
1317 Move the cursor to the previous active formula in the buffer.
1319 @item U
1320 Update (i.e., as if by the @kbd{=} key) the formula at the current point.
1322 @item `
1323 Edit (as if by @code{calc-edit}) the formula at the current point.
1324 @end table
1325 @iftex
1326 @sp 2
1327 @end iftex
1329 @noindent
1330 Miscellaneous commands:
1332 @table @kbd
1333 @item I
1334 Run the Emacs Info system to read the Calc manual.
1335 (This is the same as @kbd{h i} inside of Calc.)
1337 @item T
1338 Run the Emacs Info system to read the Calc Tutorial.
1340 @item S
1341 Run the Emacs Info system to read the Calc Summary.
1343 @item L
1344 Load Calc entirely into memory.  (Normally the various parts
1345 are loaded only as they are needed.)
1347 @item M
1348 Read a region of written keystroke names (like @kbd{C-n a b c @key{RET}})
1349 and record them as the current keyboard macro.
1351 @item 0
1352 (This is the ``zero'' digit key.)  Reset the Calculator to
1353 its default state:  Empty stack, and default mode settings.
1354 With any prefix argument, reset everything but the stack.
1355 @end table
1357 @node History and Acknowledgements, , Using Calc, Getting Started
1358 @section History and Acknowledgements
1360 @noindent
1361 Calc was originally started as a two-week project to occupy a lull
1362 in the author's schedule.  Basically, a friend asked if I remembered
1363 the value of 
1364 @texline @math{2^{32}}.
1365 @infoline @expr{2^32}.  
1366 I didn't offhand, but I said, ``that's easy, just call up an
1367 @code{xcalc}.''  @code{Xcalc} duly reported that the answer to our
1368 question was @samp{4.294967e+09}---with no way to see the full ten
1369 digits even though we knew they were there in the program's memory!  I
1370 was so annoyed, I vowed to write a calculator of my own, once and for
1371 all.
1373 I chose Emacs Lisp, a) because I had always been curious about it
1374 and b) because, being only a text editor extension language after
1375 all, Emacs Lisp would surely reach its limits long before the project
1376 got too far out of hand.
1378 To make a long story short, Emacs Lisp turned out to be a distressingly
1379 solid implementation of Lisp, and the humble task of calculating
1380 turned out to be more open-ended than one might have expected.
1382 Emacs Lisp doesn't have built-in floating point math, so it had to be
1383 simulated in software.  In fact, Emacs integers will only comfortably
1384 fit six decimal digits or so---not enough for a decent calculator.  So
1385 I had to write my own high-precision integer code as well, and once I had
1386 this I figured that arbitrary-size integers were just as easy as large
1387 integers.  Arbitrary floating-point precision was the logical next step.
1388 Also, since the large integer arithmetic was there anyway it seemed only
1389 fair to give the user direct access to it, which in turn made it practical
1390 to support fractions as well as floats.  All these features inspired me
1391 to look around for other data types that might be worth having.
1393 Around this time, my friend Rick Koshi showed me his nifty new HP-28
1394 calculator.  It allowed the user to manipulate formulas as well as
1395 numerical quantities, and it could also operate on matrices.  I
1396 decided that these would be good for Calc to have, too.  And once
1397 things had gone this far, I figured I might as well take a look at
1398 serious algebra systems for further ideas.  Since these systems did
1399 far more than I could ever hope to implement, I decided to focus on
1400 rewrite rules and other programming features so that users could
1401 implement what they needed for themselves.
1403 Rick complained that matrices were hard to read, so I put in code to
1404 format them in a 2D style.  Once these routines were in place, Big mode
1405 was obligatory.  Gee, what other language modes would be useful?
1407 Scott Hemphill and Allen Knutson, two friends with a strong mathematical
1408 bent, contributed ideas and algorithms for a number of Calc features
1409 including modulo forms, primality testing, and float-to-fraction conversion.
1411 Units were added at the eager insistence of Mass Sivilotti.  Later,
1412 Ulrich Mueller at CERN and Przemek Klosowski at NIST provided invaluable
1413 expert assistance with the units table.  As far as I can remember, the
1414 idea of using algebraic formulas and variables to represent units dates
1415 back to an ancient article in Byte magazine about muMath, an early
1416 algebra system for microcomputers.
1418 Many people have contributed to Calc by reporting bugs and suggesting
1419 features, large and small.  A few deserve special mention:  Tim Peters,
1420 who helped develop the ideas that led to the selection commands, rewrite
1421 rules, and many other algebra features; 
1422 @texline Fran\c cois
1423 @infoline Francois
1424 Pinard, who contributed an early prototype of the Calc Summary appendix
1425 as well as providing valuable suggestions in many other areas of Calc;
1426 Carl Witty, whose eagle eyes discovered many typographical and factual
1427 errors in the Calc manual; Tim Kay, who drove the development of
1428 Embedded mode; Ove Ewerlid, who made many suggestions relating to the
1429 algebra commands and contributed some code for polynomial operations;
1430 Randal Schwartz, who suggested the @code{calc-eval} function; Robert
1431 J. Chassell, who suggested the Calc Tutorial and exercises; and Juha
1432 Sarlin, who first worked out how to split Calc into quickly-loading
1433 parts.  Bob Weiner helped immensely with the Lucid Emacs port.
1435 @cindex Bibliography
1436 @cindex Knuth, Art of Computer Programming
1437 @cindex Numerical Recipes
1438 @c Should these be expanded into more complete references?
1439 Among the books used in the development of Calc were Knuth's @emph{Art
1440 of Computer Programming} (especially volume II, @emph{Seminumerical
1441 Algorithms}); @emph{Numerical Recipes} by Press, Flannery, Teukolsky,
1442 and Vetterling; Bevington's @emph{Data Reduction and Error Analysis
1443 for the Physical Sciences}; @emph{Concrete Mathematics} by Graham,
1444 Knuth, and Patashnik; Steele's @emph{Common Lisp, the Language}; the
1445 @emph{CRC Standard Math Tables} (William H. Beyer, ed.); and
1446 Abramowitz and Stegun's venerable @emph{Handbook of Mathematical
1447 Functions}.  Also, of course, Calc could not have been written without
1448 the excellent @emph{GNU Emacs Lisp Reference Manual}, by Bil Lewis and
1449 Dan LaLiberte.
1451 Final thanks go to Richard Stallman, without whose fine implementations
1452 of the Emacs editor, language, and environment, Calc would have been
1453 finished in two weeks.
1455 @c [tutorial]
1457 @ifinfo
1458 @c This node is accessed by the `M-# t' command.
1459 @node Interactive Tutorial, , , Top
1460 @chapter Tutorial
1462 @noindent
1463 Some brief instructions on using the Emacs Info system for this tutorial:
1465 Press the space bar and Delete keys to go forward and backward in a
1466 section by screenfuls (or use the regular Emacs scrolling commands
1467 for this).
1469 Press @kbd{n} or @kbd{p} to go to the Next or Previous section.
1470 If the section has a @dfn{menu}, press a digit key like @kbd{1}
1471 or @kbd{2} to go to a sub-section from the menu.  Press @kbd{u} to
1472 go back up from a sub-section to the menu it is part of.
1474 Exercises in the tutorial all have cross-references to the
1475 appropriate page of the ``answers'' section.  Press @kbd{f}, then
1476 the exercise number, to see the answer to an exercise.  After
1477 you have followed a cross-reference, you can press the letter
1478 @kbd{l} to return to where you were before.
1480 You can press @kbd{?} at any time for a brief summary of Info commands.
1482 Press @kbd{1} now to enter the first section of the Tutorial.
1484 @menu
1485 * Tutorial::
1486 @end menu
1487 @end ifinfo
1489 @node Tutorial, Introduction, Getting Started, Top
1490 @chapter Tutorial
1492 @noindent
1493 This chapter explains how to use Calc and its many features, in
1494 a step-by-step, tutorial way.  You are encouraged to run Calc and
1495 work along with the examples as you read (@pxref{Starting Calc}).
1496 If you are already familiar with advanced calculators, you may wish
1497 @c [not-split]
1498 to skip on to the rest of this manual.
1499 @c [when-split]
1500 @c to skip on to volume II of this manual, the @dfn{Calc Reference}.
1502 @c [fix-ref Embedded Mode]
1503 This tutorial describes the standard user interface of Calc only.
1504 The Quick mode and Keypad mode interfaces are fairly
1505 self-explanatory.  @xref{Embedded Mode}, for a description of
1506 the Embedded mode interface.
1508 @ifinfo
1509 The easiest way to read this tutorial on-line is to have two windows on
1510 your Emacs screen, one with Calc and one with the Info system.  (If you
1511 have a printed copy of the manual you can use that instead.)  Press
1512 @kbd{M-# c} to turn Calc on or to switch into the Calc window, and
1513 press @kbd{M-# i} to start the Info system or to switch into its window.
1514 Or, you may prefer to use the tutorial in printed form.
1515 @end ifinfo
1516 @iftex
1517 The easiest way to read this tutorial on-line is to have two windows on
1518 your Emacs screen, one with Calc and one with the Info system.  (If you
1519 have a printed copy of the manual you can use that instead.)  Press
1520 @kbd{M-# c} to turn Calc on or to switch into the Calc window, and
1521 press @kbd{M-# i} to start the Info system or to switch into its window.
1522 @end iftex
1524 This tutorial is designed to be done in sequence.  But the rest of this
1525 manual does not assume you have gone through the tutorial.  The tutorial
1526 does not cover everything in the Calculator, but it touches on most
1527 general areas.
1529 @ifinfo
1530 You may wish to print out a copy of the Calc Summary and keep notes on
1531 it as you learn Calc.  @xref{About This Manual}, to see how to make a
1532 printed summary.  @xref{Summary}.
1533 @end ifinfo
1534 @iftex
1535 The Calc Summary at the end of the reference manual includes some blank
1536 space for your own use.  You may wish to keep notes there as you learn
1537 Calc.
1538 @end iftex
1540 @menu
1541 * Basic Tutorial::
1542 * Arithmetic Tutorial::
1543 * Vector/Matrix Tutorial::
1544 * Types Tutorial::
1545 * Algebra Tutorial::
1546 * Programming Tutorial::
1548 * Answers to Exercises::
1549 @end menu
1551 @node Basic Tutorial, Arithmetic Tutorial, Tutorial, Tutorial
1552 @section Basic Tutorial
1554 @noindent
1555 In this section, we learn how RPN and algebraic-style calculations
1556 work, how to undo and redo an operation done by mistake, and how
1557 to control various modes of the Calculator.
1559 @menu
1560 * RPN Tutorial::            Basic operations with the stack.
1561 * Algebraic Tutorial::      Algebraic entry; variables.
1562 * Undo Tutorial::           If you make a mistake: Undo and the trail.
1563 * Modes Tutorial::          Common mode-setting commands.
1564 @end menu
1566 @node RPN Tutorial, Algebraic Tutorial, Basic Tutorial, Basic Tutorial
1567 @subsection RPN Calculations and the Stack
1569 @cindex RPN notation
1570 @ifinfo
1571 @noindent
1572 Calc normally uses RPN notation.  You may be familiar with the RPN
1573 system from Hewlett-Packard calculators, FORTH, or PostScript.
1574 (Reverse Polish Notation, RPN, is named after the Polish mathematician
1575 Jan Lukasiewicz.)
1576 @end ifinfo
1577 @tex
1578 \noindent
1579 Calc normally uses RPN notation.  You may be familiar with the RPN
1580 system from Hewlett-Packard calculators, FORTH, or PostScript.
1581 (Reverse Polish Notation, RPN, is named after the Polish mathematician
1582 Jan \L ukasiewicz.)
1583 @end tex
1585 The central component of an RPN calculator is the @dfn{stack}.  A
1586 calculator stack is like a stack of dishes.  New dishes (numbers) are
1587 added at the top of the stack, and numbers are normally only removed
1588 from the top of the stack.
1590 @cindex Operators
1591 @cindex Operands
1592 In an operation like @expr{2+3}, the 2 and 3 are called the @dfn{operands}
1593 and the @expr{+} is the @dfn{operator}.  In an RPN calculator you always
1594 enter the operands first, then the operator.  Each time you type a
1595 number, Calc adds or @dfn{pushes} it onto the top of the Stack.
1596 When you press an operator key like @kbd{+}, Calc @dfn{pops} the appropriate
1597 number of operands from the stack and pushes back the result.
1599 Thus we could add the numbers 2 and 3 in an RPN calculator by typing:
1600 @kbd{2 @key{RET} 3 @key{RET} +}.  (The @key{RET} key, Return, corresponds to
1601 the @key{ENTER} key on traditional RPN calculators.)  Try this now if
1602 you wish; type @kbd{M-# c} to switch into the Calc window (you can type
1603 @kbd{M-# c} again or @kbd{M-# o} to switch back to the Tutorial window).
1604 The first four keystrokes ``push'' the numbers 2 and 3 onto the stack.
1605 The @kbd{+} key ``pops'' the top two numbers from the stack, adds them,
1606 and pushes the result (5) back onto the stack.  Here's how the stack
1607 will look at various points throughout the calculation:
1609 @smallexample
1610 @group
1611     .          1:  2          2:  2          1:  5              .
1612                    .          1:  3              .
1613                                   .
1615   M-# c          2 @key{RET}          3 @key{RET}            +             @key{DEL}
1616 @end group
1617 @end smallexample
1619 The @samp{.} symbol is a marker that represents the top of the stack.
1620 Note that the ``top'' of the stack is really shown at the bottom of
1621 the Stack window.  This may seem backwards, but it turns out to be
1622 less distracting in regular use.
1624 @cindex Stack levels
1625 @cindex Levels of stack
1626 The numbers @samp{1:} and @samp{2:} on the left are @dfn{stack level
1627 numbers}.  Old RPN calculators always had four stack levels called
1628 @expr{x}, @expr{y}, @expr{z}, and @expr{t}.  Calc's stack can grow
1629 as large as you like, so it uses numbers instead of letters.  Some
1630 stack-manipulation commands accept a numeric argument that says
1631 which stack level to work on.  Normal commands like @kbd{+} always
1632 work on the top few levels of the stack.
1634 @c [fix-ref Truncating the Stack]
1635 The Stack buffer is just an Emacs buffer, and you can move around in
1636 it using the regular Emacs motion commands.  But no matter where the
1637 cursor is, even if you have scrolled the @samp{.} marker out of
1638 view, most Calc commands always move the cursor back down to level 1
1639 before doing anything.  It is possible to move the @samp{.} marker
1640 upwards through the stack, temporarily ``hiding'' some numbers from
1641 commands like @kbd{+}.  This is called @dfn{stack truncation} and
1642 we will not cover it in this tutorial; @pxref{Truncating the Stack},
1643 if you are interested.
1645 You don't really need the second @key{RET} in @kbd{2 @key{RET} 3
1646 @key{RET} +}.  That's because if you type any operator name or
1647 other non-numeric key when you are entering a number, the Calculator
1648 automatically enters that number and then does the requested command.
1649 Thus @kbd{2 @key{RET} 3 +} will work just as well.
1651 Examples in this tutorial will often omit @key{RET} even when the
1652 stack displays shown would only happen if you did press @key{RET}:
1654 @smallexample
1655 @group
1656 1:  2          2:  2          1:  5
1657     .          1:  3              .
1658                    .
1660   2 @key{RET}            3              +
1661 @end group
1662 @end smallexample
1664 @noindent
1665 Here, after pressing @kbd{3} the stack would really show @samp{1:  2}
1666 with @samp{Calc:@: 3} in the minibuffer.  In these situations, you can
1667 press the optional @key{RET} to see the stack as the figure shows.
1669 (@bullet{}) @strong{Exercise 1.}  (This tutorial will include exercises
1670 at various points.  Try them if you wish.  Answers to all the exercises
1671 are located at the end of the Tutorial chapter.  Each exercise will
1672 include a cross-reference to its particular answer.  If you are
1673 reading with the Emacs Info system, press @kbd{f} and the
1674 exercise number to go to the answer, then the letter @kbd{l} to
1675 return to where you were.)
1677 @noindent
1678 Here's the first exercise:  What will the keystrokes @kbd{1 @key{RET} 2
1679 @key{RET} 3 @key{RET} 4 + * -} compute?  (@samp{*} is the symbol for
1680 multiplication.)  Figure it out by hand, then try it with Calc to see
1681 if you're right.  @xref{RPN Answer 1, 1}. (@bullet{})
1683 (@bullet{}) @strong{Exercise 2.}  Compute 
1684 @texline @math{(2\times4) + (7\times9.4) + {5\over4}}
1685 @infoline @expr{2*4 + 7*9.5 + 5/4} 
1686 using the stack.  @xref{RPN Answer 2, 2}. (@bullet{})
1688 The @key{DEL} key is called Backspace on some keyboards.  It is
1689 whatever key you would use to correct a simple typing error when
1690 regularly using Emacs.  The @key{DEL} key pops and throws away the
1691 top value on the stack.  (You can still get that value back from
1692 the Trail if you should need it later on.)  There are many places
1693 in this tutorial where we assume you have used @key{DEL} to erase the
1694 results of the previous example at the beginning of a new example.
1695 In the few places where it is really important to use @key{DEL} to
1696 clear away old results, the text will remind you to do so.
1698 (It won't hurt to let things accumulate on the stack, except that
1699 whenever you give a display-mode-changing command Calc will have to
1700 spend a long time reformatting such a large stack.)
1702 Since the @kbd{-} key is also an operator (it subtracts the top two
1703 stack elements), how does one enter a negative number?  Calc uses
1704 the @kbd{_} (underscore) key to act like the minus sign in a number.
1705 So, typing @kbd{-5 @key{RET}} won't work because the @kbd{-} key
1706 will try to do a subtraction, but @kbd{_5 @key{RET}} works just fine.
1708 You can also press @kbd{n}, which means ``change sign.''  It changes
1709 the number at the top of the stack (or the number being entered)
1710 from positive to negative or vice-versa:  @kbd{5 n @key{RET}}.
1712 @cindex Duplicating a stack entry
1713 If you press @key{RET} when you're not entering a number, the effect
1714 is to duplicate the top number on the stack.  Consider this calculation:
1716 @smallexample
1717 @group
1718 1:  3          2:  3          1:  9          2:  9          1:  81
1719     .          1:  3              .          1:  9              .
1720                    .                             .
1722   3 @key{RET}           @key{RET}             *             @key{RET}             *
1723 @end group
1724 @end smallexample
1726 @noindent
1727 (Of course, an easier way to do this would be @kbd{3 @key{RET} 4 ^},
1728 to raise 3 to the fourth power.)
1730 The space-bar key (denoted @key{SPC} here) performs the same function
1731 as @key{RET}; you could replace all three occurrences of @key{RET} in
1732 the above example with @key{SPC} and the effect would be the same.
1734 @cindex Exchanging stack entries
1735 Another stack manipulation key is @key{TAB}.  This exchanges the top
1736 two stack entries.  Suppose you have computed @kbd{2 @key{RET} 3 +}
1737 to get 5, and then you realize what you really wanted to compute
1738 was @expr{20 / (2+3)}.
1740 @smallexample
1741 @group
1742 1:  5          2:  5          2:  20         1:  4
1743     .          1:  20         1:  5              .
1744                    .              .
1746  2 @key{RET} 3 +         20            @key{TAB}             /
1747 @end group
1748 @end smallexample
1750 @noindent
1751 Planning ahead, the calculation would have gone like this:
1753 @smallexample
1754 @group
1755 1:  20         2:  20         3:  20         2:  20         1:  4
1756     .          1:  2          2:  2          1:  5              .
1757                    .          1:  3              .
1758                                   .
1760   20 @key{RET}         2 @key{RET}            3              +              /
1761 @end group
1762 @end smallexample
1764 A related stack command is @kbd{M-@key{TAB}} (hold @key{META} and type
1765 @key{TAB}).  It rotates the top three elements of the stack upward,
1766 bringing the object in level 3 to the top.
1768 @smallexample
1769 @group
1770 1:  10         2:  10         3:  10         3:  20         3:  30
1771     .          1:  20         2:  20         2:  30         2:  10
1772                    .          1:  30         1:  10         1:  20
1773                                   .              .              .
1775   10 @key{RET}         20 @key{RET}         30 @key{RET}         M-@key{TAB}          M-@key{TAB}
1776 @end group
1777 @end smallexample
1779 (@bullet{}) @strong{Exercise 3.} Suppose the numbers 10, 20, and 30 are
1780 on the stack.  Figure out how to add one to the number in level 2
1781 without affecting the rest of the stack.  Also figure out how to add
1782 one to the number in level 3.  @xref{RPN Answer 3, 3}. (@bullet{})
1784 Operations like @kbd{+}, @kbd{-}, @kbd{*}, @kbd{/}, and @kbd{^} pop two
1785 arguments from the stack and push a result.  Operations like @kbd{n} and
1786 @kbd{Q} (square root) pop a single number and push the result.  You can
1787 think of them as simply operating on the top element of the stack.
1789 @smallexample
1790 @group
1791 1:  3          1:  9          2:  9          1:  25         1:  5
1792     .              .          1:  16             .              .
1793                                   .
1795   3 @key{RET}          @key{RET} *        4 @key{RET} @key{RET} *        +              Q
1796 @end group
1797 @end smallexample
1799 @noindent
1800 (Note that capital @kbd{Q} means to hold down the Shift key while
1801 typing @kbd{q}.  Remember, plain unshifted @kbd{q} is the Quit command.)
1803 @cindex Pythagorean Theorem
1804 Here we've used the Pythagorean Theorem to determine the hypotenuse of a
1805 right triangle.  Calc actually has a built-in command for that called
1806 @kbd{f h}, but let's suppose we can't remember the necessary keystrokes.
1807 We can still enter it by its full name using @kbd{M-x} notation:
1809 @smallexample
1810 @group
1811 1:  3          2:  3          1:  5
1812     .          1:  4              .
1813                    .
1815   3 @key{RET}          4 @key{RET}      M-x calc-hypot
1816 @end group
1817 @end smallexample
1819 All Calculator commands begin with the word @samp{calc-}.  Since it
1820 gets tiring to type this, Calc provides an @kbd{x} key which is just
1821 like the regular Emacs @kbd{M-x} key except that it types the @samp{calc-}
1822 prefix for you:
1824 @smallexample
1825 @group
1826 1:  3          2:  3          1:  5
1827     .          1:  4              .
1828                    .
1830   3 @key{RET}          4 @key{RET}         x hypot
1831 @end group
1832 @end smallexample
1834 What happens if you take the square root of a negative number?
1836 @smallexample
1837 @group
1838 1:  4          1:  -4         1:  (0, 2)
1839     .              .              .
1841   4 @key{RET}            n              Q
1842 @end group
1843 @end smallexample
1845 @noindent
1846 The notation @expr{(a, b)} represents a complex number.
1847 Complex numbers are more traditionally written @expr{a + b i};
1848 Calc can display in this format, too, but for now we'll stick to the
1849 @expr{(a, b)} notation.
1851 If you don't know how complex numbers work, you can safely ignore this
1852 feature.  Complex numbers only arise from operations that would be
1853 errors in a calculator that didn't have complex numbers.  (For example,
1854 taking the square root or logarithm of a negative number produces a
1855 complex result.)
1857 Complex numbers are entered in the notation shown.  The @kbd{(} and
1858 @kbd{,} and @kbd{)} keys manipulate ``incomplete complex numbers.''
1860 @smallexample
1861 @group
1862 1:  ( ...      2:  ( ...      1:  (2, ...    1:  (2, ...    1:  (2, 3)
1863     .          1:  2              .              3              .
1864                    .                             .
1866     (              2              ,              3              )
1867 @end group
1868 @end smallexample
1870 You can perform calculations while entering parts of incomplete objects.
1871 However, an incomplete object cannot actually participate in a calculation:
1873 @smallexample
1874 @group
1875 1:  ( ...      2:  ( ...      3:  ( ...      1:  ( ...      1:  ( ...
1876     .          1:  2          2:  2              5              5
1877                    .          1:  3              .              .
1878                                   .
1879                                                              (error)
1880     (             2 @key{RET}           3              +              +
1881 @end group
1882 @end smallexample
1884 @noindent
1885 Adding 5 to an incomplete object makes no sense, so the last command
1886 produces an error message and leaves the stack the same.
1888 Incomplete objects can't participate in arithmetic, but they can be
1889 moved around by the regular stack commands.
1891 @smallexample
1892 @group
1893 2:  2          3:  2          3:  3          1:  ( ...      1:  (2, 3)
1894 1:  3          2:  3          2:  ( ...          2              .
1895     .          1:  ( ...      1:  2              3
1896                    .              .              .
1898 2 @key{RET} 3 @key{RET}        (            M-@key{TAB}          M-@key{TAB}            )
1899 @end group
1900 @end smallexample
1902 @noindent
1903 Note that the @kbd{,} (comma) key did not have to be used here.
1904 When you press @kbd{)} all the stack entries between the incomplete
1905 entry and the top are collected, so there's never really a reason
1906 to use the comma.  It's up to you.
1908 (@bullet{}) @strong{Exercise 4.}  To enter the complex number @expr{(2, 3)},
1909 your friend Joe typed @kbd{( 2 , @key{SPC} 3 )}.  What happened?
1910 (Joe thought of a clever way to correct his mistake in only two
1911 keystrokes, but it didn't quite work.  Try it to find out why.)
1912 @xref{RPN Answer 4, 4}. (@bullet{})
1914 Vectors are entered the same way as complex numbers, but with square
1915 brackets in place of parentheses.  We'll meet vectors again later in
1916 the tutorial.
1918 Any Emacs command can be given a @dfn{numeric prefix argument} by
1919 typing a series of @key{META}-digits beforehand.  If @key{META} is
1920 awkward for you, you can instead type @kbd{C-u} followed by the
1921 necessary digits.  Numeric prefix arguments can be negative, as in
1922 @kbd{M-- M-3 M-5} or @w{@kbd{C-u - 3 5}}.  Calc commands use numeric
1923 prefix arguments in a variety of ways.  For example, a numeric prefix
1924 on the @kbd{+} operator adds any number of stack entries at once:
1926 @smallexample
1927 @group
1928 1:  10         2:  10         3:  10         3:  10         1:  60
1929     .          1:  20         2:  20         2:  20             .
1930                    .          1:  30         1:  30
1931                                   .              .
1933   10 @key{RET}         20 @key{RET}         30 @key{RET}         C-u 3            +
1934 @end group
1935 @end smallexample
1937 For stack manipulation commands like @key{RET}, a positive numeric
1938 prefix argument operates on the top @var{n} stack entries at once.  A
1939 negative argument operates on the entry in level @var{n} only.  An
1940 argument of zero operates on the entire stack.  In this example, we copy
1941 the second-to-top element of the stack:
1943 @smallexample
1944 @group
1945 1:  10         2:  10         3:  10         3:  10         4:  10
1946     .          1:  20         2:  20         2:  20         3:  20
1947                    .          1:  30         1:  30         2:  30
1948                                   .              .          1:  20
1949                                                                 .
1951   10 @key{RET}         20 @key{RET}         30 @key{RET}         C-u -2          @key{RET}
1952 @end group
1953 @end smallexample
1955 @cindex Clearing the stack
1956 @cindex Emptying the stack
1957 Another common idiom is @kbd{M-0 @key{DEL}}, which clears the stack.
1958 (The @kbd{M-0} numeric prefix tells @key{DEL} to operate on the
1959 entire stack.)
1961 @node Algebraic Tutorial, Undo Tutorial, RPN Tutorial, Basic Tutorial
1962 @subsection Algebraic-Style Calculations
1964 @noindent
1965 If you are not used to RPN notation, you may prefer to operate the
1966 Calculator in Algebraic mode, which is closer to the way
1967 non-RPN calculators work.  In Algebraic mode, you enter formulas
1968 in traditional @expr{2+3} notation.
1970 You don't really need any special ``mode'' to enter algebraic formulas.
1971 You can enter a formula at any time by pressing the apostrophe (@kbd{'})
1972 key.  Answer the prompt with the desired formula, then press @key{RET}.
1973 The formula is evaluated and the result is pushed onto the RPN stack.
1974 If you don't want to think in RPN at all, you can enter your whole
1975 computation as a formula, read the result from the stack, then press
1976 @key{DEL} to delete it from the stack.
1978 Try pressing the apostrophe key, then @kbd{2+3+4}, then @key{RET}.
1979 The result should be the number 9.
1981 Algebraic formulas use the operators @samp{+}, @samp{-}, @samp{*},
1982 @samp{/}, and @samp{^}.  You can use parentheses to make the order
1983 of evaluation clear.  In the absence of parentheses, @samp{^} is
1984 evaluated first, then @samp{*}, then @samp{/}, then finally
1985 @samp{+} and @samp{-}.  For example, the expression
1987 @example
1988 2 + 3*4*5 / 6*7^8 - 9
1989 @end example
1991 @noindent
1992 is equivalent to
1994 @example
1995 2 + ((3*4*5) / (6*(7^8)) - 9
1996 @end example
1998 @noindent
1999 or, in large mathematical notation,
2001 @ifinfo
2002 @example
2003 @group
2004     3 * 4 * 5
2005 2 + --------- - 9
2006           8
2007      6 * 7
2008 @end group
2009 @end example
2010 @end ifinfo
2011 @tex
2012 \turnoffactive
2013 \beforedisplay
2014 $$ 2 + { 3 \times 4 \times 5 \over 6 \times 7^8 } - 9 $$
2015 \afterdisplay
2016 @end tex
2018 @noindent
2019 The result of this expression will be the number @mathit{-6.99999826533}.
2021 Calc's order of evaluation is the same as for most computer languages,
2022 except that @samp{*} binds more strongly than @samp{/}, as the above
2023 example shows.  As in normal mathematical notation, the @samp{*} symbol
2024 can often be omitted:  @samp{2 a} is the same as @samp{2*a}.
2026 Operators at the same level are evaluated from left to right, except
2027 that @samp{^} is evaluated from right to left.  Thus, @samp{2-3-4} is
2028 equivalent to @samp{(2-3)-4} or @mathit{-5}, whereas @samp{2^3^4} is equivalent
2029 to @samp{2^(3^4)} (a very large integer; try it!).
2031 If you tire of typing the apostrophe all the time, there is
2032 Algebraic mode, where Calc automatically senses
2033 when you are about to type an algebraic expression.  To enter this
2034 mode, press the two letters @w{@kbd{m a}}.  (An @samp{Alg} indicator
2035 should appear in the Calc window's mode line.)
2037 Press @kbd{m a}, then @kbd{2+3+4} with no apostrophe, then @key{RET}.
2039 In Algebraic mode, when you press any key that would normally begin
2040 entering a number (such as a digit, a decimal point, or the @kbd{_}
2041 key), or if you press @kbd{(} or @kbd{[}, Calc automatically begins
2042 an algebraic entry.
2044 Functions which do not have operator symbols like @samp{+} and @samp{*}
2045 must be entered in formulas using function-call notation.  For example,
2046 the function name corresponding to the square-root key @kbd{Q} is
2047 @code{sqrt}.  To compute a square root in a formula, you would use
2048 the notation @samp{sqrt(@var{x})}.
2050 Press the apostrophe, then type @kbd{sqrt(5*2) - 3}.  The result should
2051 be @expr{0.16227766017}.
2053 Note that if the formula begins with a function name, you need to use
2054 the apostrophe even if you are in Algebraic mode.  If you type @kbd{arcsin}
2055 out of the blue, the @kbd{a r} will be taken as an Algebraic Rewrite
2056 command, and the @kbd{csin} will be taken as the name of the rewrite
2057 rule to use!
2059 Some people prefer to enter complex numbers and vectors in algebraic
2060 form because they find RPN entry with incomplete objects to be too
2061 distracting, even though they otherwise use Calc as an RPN calculator.
2063 Still in Algebraic mode, type:
2065 @smallexample
2066 @group
2067 1:  (2, 3)     2:  (2, 3)     1:  (8, -1)    2:  (8, -1)    1:  (9, -1)
2068     .          1:  (1, -2)        .          1:  1              .
2069                    .                             .
2071  (2,3) @key{RET}      (1,-2) @key{RET}        *              1 @key{RET}          +
2072 @end group
2073 @end smallexample
2075 Algebraic mode allows us to enter complex numbers without pressing
2076 an apostrophe first, but it also means we need to press @key{RET}
2077 after every entry, even for a simple number like @expr{1}.
2079 (You can type @kbd{C-u m a} to enable a special Incomplete Algebraic
2080 mode in which the @kbd{(} and @kbd{[} keys use algebraic entry even
2081 though regular numeric keys still use RPN numeric entry.  There is also
2082 Total Algebraic mode, started by typing @kbd{m t}, in which all
2083 normal keys begin algebraic entry.  You must then use the @key{META} key
2084 to type Calc commands:  @kbd{M-m t} to get back out of Total Algebraic
2085 mode, @kbd{M-q} to quit, etc.)
2087 If you're still in Algebraic mode, press @kbd{m a} again to turn it off.
2089 Actual non-RPN calculators use a mixture of algebraic and RPN styles.
2090 In general, operators of two numbers (like @kbd{+} and @kbd{*})
2091 use algebraic form, but operators of one number (like @kbd{n} and @kbd{Q})
2092 use RPN form.  Also, a non-RPN calculator allows you to see the
2093 intermediate results of a calculation as you go along.  You can
2094 accomplish this in Calc by performing your calculation as a series
2095 of algebraic entries, using the @kbd{$} sign to tie them together.
2096 In an algebraic formula, @kbd{$} represents the number on the top
2097 of the stack.  Here, we perform the calculation 
2098 @texline @math{\sqrt{2\times4+1}},
2099 @infoline @expr{sqrt(2*4+1)},
2100 which on a traditional calculator would be done by pressing
2101 @kbd{2 * 4 + 1 =} and then the square-root key.
2103 @smallexample
2104 @group
2105 1:  8          1:  9          1:  3
2106     .              .              .
2108   ' 2*4 @key{RET}        $+1 @key{RET}        Q
2109 @end group
2110 @end smallexample
2112 @noindent
2113 Notice that we didn't need to press an apostrophe for the @kbd{$+1},
2114 because the dollar sign always begins an algebraic entry.
2116 (@bullet{}) @strong{Exercise 1.}  How could you get the same effect as
2117 pressing @kbd{Q} but using an algebraic entry instead?  How about
2118 if the @kbd{Q} key on your keyboard were broken?
2119 @xref{Algebraic Answer 1, 1}. (@bullet{})
2121 The notations @kbd{$$}, @kbd{$$$}, and so on stand for higher stack
2122 entries.  For example, @kbd{' $$+$ @key{RET}} is just like typing @kbd{+}.
2124 Algebraic formulas can include @dfn{variables}.  To store in a
2125 variable, press @kbd{s s}, then type the variable name, then press
2126 @key{RET}.  (There are actually two flavors of store command:
2127 @kbd{s s} stores a number in a variable but also leaves the number
2128 on the stack, while @w{@kbd{s t}} removes a number from the stack and
2129 stores it in the variable.)  A variable name should consist of one
2130 or more letters or digits, beginning with a letter.
2132 @smallexample
2133 @group
2134 1:  17             .          1:  a + a^2    1:  306
2135     .                             .              .
2137     17          s t a @key{RET}      ' a+a^2 @key{RET}       =
2138 @end group
2139 @end smallexample
2141 @noindent
2142 The @kbd{=} key @dfn{evaluates} a formula by replacing all its
2143 variables by the values that were stored in them.
2145 For RPN calculations, you can recall a variable's value on the
2146 stack either by entering its name as a formula and pressing @kbd{=},
2147 or by using the @kbd{s r} command.
2149 @smallexample
2150 @group
2151 1:  17         2:  17         3:  17         2:  17         1:  306
2152     .          1:  17         2:  17         1:  289            .
2153                    .          1:  2              .
2154                                   .
2156   s r a @key{RET}     ' a @key{RET} =         2              ^              +
2157 @end group
2158 @end smallexample
2160 If you press a single digit for a variable name (as in @kbd{s t 3}, you
2161 get one of ten @dfn{quick variables} @code{q0} through @code{q9}.
2162 They are ``quick'' simply because you don't have to type the letter
2163 @code{q} or the @key{RET} after their names.  In fact, you can type
2164 simply @kbd{s 3} as a shorthand for @kbd{s s 3}, and likewise for
2165 @kbd{t 3} and @w{@kbd{r 3}}.
2167 Any variables in an algebraic formula for which you have not stored
2168 values are left alone, even when you evaluate the formula.
2170 @smallexample
2171 @group
2172 1:  2 a + 2 b     1:  34 + 2 b
2173     .                 .
2175  ' 2a+2b @key{RET}          =
2176 @end group
2177 @end smallexample
2179 Calls to function names which are undefined in Calc are also left
2180 alone, as are calls for which the value is undefined.
2182 @smallexample
2183 @group
2184 1:  2 + log10(0) + log10(x) + log10(5, 6) + foo(3)
2185     .
2187  ' log10(100) + log10(0) + log10(x) + log10(5,6) + foo(3) @key{RET}
2188 @end group
2189 @end smallexample
2191 @noindent
2192 In this example, the first call to @code{log10} works, but the other
2193 calls are not evaluated.  In the second call, the logarithm is
2194 undefined for that value of the argument; in the third, the argument
2195 is symbolic, and in the fourth, there are too many arguments.  In the
2196 fifth case, there is no function called @code{foo}.  You will see a
2197 ``Wrong number of arguments'' message referring to @samp{log10(5,6)}.
2198 Press the @kbd{w} (``why'') key to see any other messages that may
2199 have arisen from the last calculation.  In this case you will get
2200 ``logarithm of zero,'' then ``number expected: @code{x}''.  Calc
2201 automatically displays the first message only if the message is
2202 sufficiently important; for example, Calc considers ``wrong number
2203 of arguments'' and ``logarithm of zero'' to be important enough to
2204 report automatically, while a message like ``number expected: @code{x}''
2205 will only show up if you explicitly press the @kbd{w} key.
2207 (@bullet{}) @strong{Exercise 2.}  Joe entered the formula @samp{2 x y},
2208 stored 5 in @code{x}, pressed @kbd{=}, and got the expected result,
2209 @samp{10 y}.  He then tried the same for the formula @samp{2 x (1+y)},
2210 expecting @samp{10 (1+y)}, but it didn't work.  Why not?
2211 @xref{Algebraic Answer 2, 2}. (@bullet{})
2213 (@bullet{}) @strong{Exercise 3.}  What result would you expect
2214 @kbd{1 @key{RET} 0 /} to give?  What if you then type @kbd{0 *}?
2215 @xref{Algebraic Answer 3, 3}. (@bullet{})
2217 One interesting way to work with variables is to use the
2218 @dfn{evaluates-to} (@samp{=>}) operator.  It works like this:
2219 Enter a formula algebraically in the usual way, but follow
2220 the formula with an @samp{=>} symbol.  (There is also an @kbd{s =}
2221 command which builds an @samp{=>} formula using the stack.)  On
2222 the stack, you will see two copies of the formula with an @samp{=>}
2223 between them.  The lefthand formula is exactly like you typed it;
2224 the righthand formula has been evaluated as if by typing @kbd{=}.
2226 @smallexample
2227 @group
2228 2:  2 + 3 => 5                     2:  2 + 3 => 5
2229 1:  2 a + 2 b => 34 + 2 b          1:  2 a + 2 b => 20 + 2 b
2230     .                                  .
2232 ' 2+3 => @key{RET}  ' 2a+2b @key{RET} s =          10 s t a @key{RET}
2233 @end group
2234 @end smallexample
2236 @noindent
2237 Notice that the instant we stored a new value in @code{a}, all
2238 @samp{=>} operators already on the stack that referred to @expr{a}
2239 were updated to use the new value.  With @samp{=>}, you can push a
2240 set of formulas on the stack, then change the variables experimentally
2241 to see the effects on the formulas' values.
2243 You can also ``unstore'' a variable when you are through with it:
2245 @smallexample
2246 @group
2247 2:  2 + 5 => 5
2248 1:  2 a + 2 b => 2 a + 2 b
2249     .
2251     s u a @key{RET}
2252 @end group
2253 @end smallexample
2255 We will encounter formulas involving variables and functions again
2256 when we discuss the algebra and calculus features of the Calculator.
2258 @node Undo Tutorial, Modes Tutorial, Algebraic Tutorial, Basic Tutorial
2259 @subsection Undo and Redo
2261 @noindent
2262 If you make a mistake, you can usually correct it by pressing shift-@kbd{U},
2263 the ``undo'' command.  First, clear the stack (@kbd{M-0 @key{DEL}}) and exit
2264 and restart Calc (@kbd{M-# M-# M-# M-#}) to make sure things start off
2265 with a clean slate.  Now:
2267 @smallexample
2268 @group
2269 1:  2          2:  2          1:  8          2:  2          1:  6
2270     .          1:  3              .          1:  3              .
2271                    .                             .
2273    2 @key{RET}           3              ^              U              *
2274 @end group
2275 @end smallexample
2277 You can undo any number of times.  Calc keeps a complete record of
2278 all you have done since you last opened the Calc window.  After the
2279 above example, you could type:
2281 @smallexample
2282 @group
2283 1:  6          2:  2          1:  2              .              .
2284     .          1:  3              .
2285                    .
2286                                                              (error)
2287                    U              U              U              U
2288 @end group
2289 @end smallexample
2291 You can also type @kbd{D} to ``redo'' a command that you have undone
2292 mistakenly.
2294 @smallexample
2295 @group
2296     .          1:  2          2:  2          1:  6          1:  6
2297                    .          1:  3              .              .
2298                                   .
2299                                                              (error)
2300                    D              D              D              D
2301 @end group
2302 @end smallexample
2304 @noindent
2305 It was not possible to redo past the @expr{6}, since that was placed there
2306 by something other than an undo command.
2308 @cindex Time travel
2309 You can think of undo and redo as a sort of ``time machine.''  Press
2310 @kbd{U} to go backward in time, @kbd{D} to go forward.  If you go
2311 backward and do something (like @kbd{*}) then, as any science fiction
2312 reader knows, you have changed your future and you cannot go forward
2313 again.  Thus, the inability to redo past the @expr{6} even though there
2314 was an earlier undo command.
2316 You can always recall an earlier result using the Trail.  We've ignored
2317 the trail so far, but it has been faithfully recording everything we
2318 did since we loaded the Calculator.  If the Trail is not displayed,
2319 press @kbd{t d} now to turn it on.
2321 Let's try grabbing an earlier result.  The @expr{8} we computed was
2322 undone by a @kbd{U} command, and was lost even to Redo when we pressed
2323 @kbd{*}, but it's still there in the trail.  There should be a little
2324 @samp{>} arrow (the @dfn{trail pointer}) resting on the last trail
2325 entry.  If there isn't, press @kbd{t ]} to reset the trail pointer.
2326 Now, press @w{@kbd{t p}} to move the arrow onto the line containing
2327 @expr{8}, and press @w{@kbd{t y}} to ``yank'' that number back onto the
2328 stack.
2330 If you press @kbd{t ]} again, you will see that even our Yank command
2331 went into the trail.
2333 Let's go further back in time.  Earlier in the tutorial we computed
2334 a huge integer using the formula @samp{2^3^4}.  We don't remember
2335 what it was, but the first digits were ``241''.  Press @kbd{t r}
2336 (which stands for trail-search-reverse), then type @kbd{241}.
2337 The trail cursor will jump back to the next previous occurrence of
2338 the string ``241'' in the trail.  This is just a regular Emacs
2339 incremental search; you can now press @kbd{C-s} or @kbd{C-r} to
2340 continue the search forwards or backwards as you like.
2342 To finish the search, press @key{RET}.  This halts the incremental
2343 search and leaves the trail pointer at the thing we found.  Now we
2344 can type @kbd{t y} to yank that number onto the stack.  If we hadn't
2345 remembered the ``241'', we could simply have searched for @kbd{2^3^4},
2346 then pressed @kbd{@key{RET} t n} to halt and then move to the next item.
2348 You may have noticed that all the trail-related commands begin with
2349 the letter @kbd{t}.  (The store-and-recall commands, on the other hand,
2350 all began with @kbd{s}.)  Calc has so many commands that there aren't
2351 enough keys for all of them, so various commands are grouped into
2352 two-letter sequences where the first letter is called the @dfn{prefix}
2353 key.  If you type a prefix key by accident, you can press @kbd{C-g}
2354 to cancel it.  (In fact, you can press @kbd{C-g} to cancel almost
2355 anything in Emacs.)  To get help on a prefix key, press that key
2356 followed by @kbd{?}.  Some prefixes have several lines of help,
2357 so you need to press @kbd{?} repeatedly to see them all.  
2358 You can also type @kbd{h h} to see all the help at once.
2360 Try pressing @kbd{t ?} now.  You will see a line of the form,
2362 @smallexample
2363 trail/time: Display; Fwd, Back; Next, Prev, Here, [, ]; Yank:  [MORE]  t-
2364 @end smallexample
2366 @noindent
2367 The word ``trail'' indicates that the @kbd{t} prefix key contains
2368 trail-related commands.  Each entry on the line shows one command,
2369 with a single capital letter showing which letter you press to get
2370 that command.  We have used @kbd{t n}, @kbd{t p}, @kbd{t ]}, and
2371 @kbd{t y} so far.  The @samp{[MORE]} means you can press @kbd{?}
2372 again to see more @kbd{t}-prefix commands.  Notice that the commands
2373 are roughly divided (by semicolons) into related groups.
2375 When you are in the help display for a prefix key, the prefix is
2376 still active.  If you press another key, like @kbd{y} for example,
2377 it will be interpreted as a @kbd{t y} command.  If all you wanted
2378 was to look at the help messages, press @kbd{C-g} afterwards to cancel
2379 the prefix.
2381 One more way to correct an error is by editing the stack entries.
2382 The actual Stack buffer is marked read-only and must not be edited
2383 directly, but you can press @kbd{`} (the backquote or accent grave)
2384 to edit a stack entry.
2386 Try entering @samp{3.141439} now.  If this is supposed to represent
2387 @cpi{}, it's got several errors.  Press @kbd{`} to edit this number.
2388 Now use the normal Emacs cursor motion and editing keys to change
2389 the second 4 to a 5, and to transpose the 3 and the 9.  When you
2390 press @key{RET}, the number on the stack will be replaced by your
2391 new number.  This works for formulas, vectors, and all other types
2392 of values you can put on the stack.  The @kbd{`} key also works
2393 during entry of a number or algebraic formula.
2395 @node Modes Tutorial, , Undo Tutorial, Basic Tutorial
2396 @subsection Mode-Setting Commands
2398 @noindent
2399 Calc has many types of @dfn{modes} that affect the way it interprets
2400 your commands or the way it displays data.  We have already seen one
2401 mode, namely Algebraic mode.  There are many others, too; we'll
2402 try some of the most common ones here.
2404 Perhaps the most fundamental mode in Calc is the current @dfn{precision}.
2405 Notice the @samp{12} on the Calc window's mode line:
2407 @smallexample
2408 --%%-Calc: 12 Deg       (Calculator)----All------
2409 @end smallexample
2411 @noindent
2412 Most of the symbols there are Emacs things you don't need to worry
2413 about, but the @samp{12} and the @samp{Deg} are mode indicators.
2414 The @samp{12} means that calculations should always be carried to
2415 12 significant figures.  That is why, when we type @kbd{1 @key{RET} 7 /},
2416 we get @expr{0.142857142857} with exactly 12 digits, not counting
2417 leading and trailing zeros.
2419 You can set the precision to anything you like by pressing @kbd{p},
2420 then entering a suitable number.  Try pressing @kbd{p 30 @key{RET}},
2421 then doing @kbd{1 @key{RET} 7 /} again:
2423 @smallexample
2424 @group
2425 1:  0.142857142857
2426 2:  0.142857142857142857142857142857
2427     .
2428 @end group
2429 @end smallexample
2431 Although the precision can be set arbitrarily high, Calc always
2432 has to have @emph{some} value for the current precision.  After
2433 all, the true value @expr{1/7} is an infinitely repeating decimal;
2434 Calc has to stop somewhere.
2436 Of course, calculations are slower the more digits you request.
2437 Press @w{@kbd{p 12}} now to set the precision back down to the default.
2439 Calculations always use the current precision.  For example, even
2440 though we have a 30-digit value for @expr{1/7} on the stack, if
2441 we use it in a calculation in 12-digit mode it will be rounded
2442 down to 12 digits before it is used.  Try it; press @key{RET} to
2443 duplicate the number, then @w{@kbd{1 +}}.  Notice that the @key{RET}
2444 key didn't round the number, because it doesn't do any calculation.
2445 But the instant we pressed @kbd{+}, the number was rounded down.
2447 @smallexample
2448 @group
2449 1:  0.142857142857
2450 2:  0.142857142857142857142857142857
2451 3:  1.14285714286
2452     .
2453 @end group
2454 @end smallexample
2456 @noindent
2457 In fact, since we added a digit on the left, we had to lose one
2458 digit on the right from even the 12-digit value of @expr{1/7}.
2460 How did we get more than 12 digits when we computed @samp{2^3^4}?  The
2461 answer is that Calc makes a distinction between @dfn{integers} and
2462 @dfn{floating-point} numbers, or @dfn{floats}.  An integer is a number
2463 that does not contain a decimal point.  There is no such thing as an
2464 ``infinitely repeating fraction integer,'' so Calc doesn't have to limit
2465 itself.  If you asked for @samp{2^10000} (don't try this!), you would
2466 have to wait a long time but you would eventually get an exact answer.
2467 If you ask for @samp{2.^10000}, you will quickly get an answer which is
2468 correct only to 12 places.  The decimal point tells Calc that it should
2469 use floating-point arithmetic to get the answer, not exact integer
2470 arithmetic.
2472 You can use the @kbd{F} (@code{calc-floor}) command to convert a
2473 floating-point value to an integer, and @kbd{c f} (@code{calc-float})
2474 to convert an integer to floating-point form.
2476 Let's try entering that last calculation:
2478 @smallexample
2479 @group
2480 1:  2.         2:  2.         1:  1.99506311689e3010
2481     .          1:  10000          .
2482                    .
2484   2.0 @key{RET}          10000 @key{RET}      ^
2485 @end group
2486 @end smallexample
2488 @noindent
2489 @cindex Scientific notation, entry of
2490 Notice the letter @samp{e} in there.  It represents ``times ten to the
2491 power of,'' and is used by Calc automatically whenever writing the
2492 number out fully would introduce more extra zeros than you probably
2493 want to see.  You can enter numbers in this notation, too.
2495 @smallexample
2496 @group
2497 1:  2.         2:  2.         1:  1.99506311678e3010
2498     .          1:  10000.         .
2499                    .
2501   2.0 @key{RET}          1e4 @key{RET}        ^
2502 @end group
2503 @end smallexample
2505 @cindex Round-off errors
2506 @noindent
2507 Hey, the answer is different!  Look closely at the middle columns
2508 of the two examples.  In the first, the stack contained the
2509 exact integer @expr{10000}, but in the second it contained
2510 a floating-point value with a decimal point.  When you raise a
2511 number to an integer power, Calc uses repeated squaring and
2512 multiplication to get the answer.  When you use a floating-point
2513 power, Calc uses logarithms and exponentials.  As you can see,
2514 a slight error crept in during one of these methods.  Which
2515 one should we trust?  Let's raise the precision a bit and find
2516 out:
2518 @smallexample
2519 @group
2520     .          1:  2.         2:  2.         1:  1.995063116880828e3010
2521                    .          1:  10000.         .
2522                                   .
2524  p 16 @key{RET}        2. @key{RET}           1e4            ^    p 12 @key{RET}
2525 @end group
2526 @end smallexample
2528 @noindent
2529 @cindex Guard digits
2530 Presumably, it doesn't matter whether we do this higher-precision
2531 calculation using an integer or floating-point power, since we
2532 have added enough ``guard digits'' to trust the first 12 digits
2533 no matter what.  And the verdict is@dots{}  Integer powers were more
2534 accurate; in fact, the result was only off by one unit in the
2535 last place.
2537 @cindex Guard digits
2538 Calc does many of its internal calculations to a slightly higher
2539 precision, but it doesn't always bump the precision up enough.
2540 In each case, Calc added about two digits of precision during
2541 its calculation and then rounded back down to 12 digits
2542 afterward.  In one case, it was enough; in the other, it
2543 wasn't.  If you really need @var{x} digits of precision, it
2544 never hurts to do the calculation with a few extra guard digits.
2546 What if we want guard digits but don't want to look at them?
2547 We can set the @dfn{float format}.  Calc supports four major
2548 formats for floating-point numbers, called @dfn{normal},
2549 @dfn{fixed-point}, @dfn{scientific notation}, and @dfn{engineering
2550 notation}.  You get them by pressing @w{@kbd{d n}}, @kbd{d f},
2551 @kbd{d s}, and @kbd{d e}, respectively.  In each case, you can
2552 supply a numeric prefix argument which says how many digits
2553 should be displayed.  As an example, let's put a few numbers
2554 onto the stack and try some different display modes.  First,
2555 use @kbd{M-0 @key{DEL}} to clear the stack, then enter the four
2556 numbers shown here:
2558 @smallexample
2559 @group
2560 4:  12345      4:  12345      4:  12345      4:  12345      4:  12345
2561 3:  12345.     3:  12300.     3:  1.2345e4   3:  1.23e4     3:  12345.000
2562 2:  123.45     2:  123.       2:  1.2345e2   2:  1.23e2     2:  123.450
2563 1:  12.345     1:  12.3       1:  1.2345e1   1:  1.23e1     1:  12.345
2564     .              .              .              .              .
2566    d n          M-3 d n          d s          M-3 d s        M-3 d f
2567 @end group
2568 @end smallexample
2570 @noindent
2571 Notice that when we typed @kbd{M-3 d n}, the numbers were rounded down
2572 to three significant digits, but then when we typed @kbd{d s} all
2573 five significant figures reappeared.  The float format does not
2574 affect how numbers are stored, it only affects how they are
2575 displayed.  Only the current precision governs the actual rounding
2576 of numbers in the Calculator's memory.
2578 Engineering notation, not shown here, is like scientific notation
2579 except the exponent (the power-of-ten part) is always adjusted to be
2580 a multiple of three (as in ``kilo,'' ``micro,'' etc.).  As a result
2581 there will be one, two, or three digits before the decimal point.
2583 Whenever you change a display-related mode, Calc redraws everything
2584 in the stack.  This may be slow if there are many things on the stack,
2585 so Calc allows you to type shift-@kbd{H} before any mode command to
2586 prevent it from updating the stack.  Anything Calc displays after the
2587 mode-changing command will appear in the new format.
2589 @smallexample
2590 @group
2591 4:  12345      4:  12345      4:  12345      4:  12345      4:  12345
2592 3:  12345.000  3:  12345.000  3:  12345.000  3:  1.2345e4   3:  12345.
2593 2:  123.450    2:  123.450    2:  1.2345e1   2:  1.2345e1   2:  123.45
2594 1:  12.345     1:  1.2345e1   1:  1.2345e2   1:  1.2345e2   1:  12.345
2595     .              .              .              .              .
2597     H d s          @key{DEL} U          @key{TAB}            d @key{SPC}          d n
2598 @end group
2599 @end smallexample
2601 @noindent
2602 Here the @kbd{H d s} command changes to scientific notation but without
2603 updating the screen.  Deleting the top stack entry and undoing it back
2604 causes it to show up in the new format; swapping the top two stack
2605 entries reformats both entries.  The @kbd{d @key{SPC}} command refreshes the
2606 whole stack.  The @kbd{d n} command changes back to the normal float
2607 format; since it doesn't have an @kbd{H} prefix, it also updates all
2608 the stack entries to be in @kbd{d n} format.
2610 Notice that the integer @expr{12345} was not affected by any
2611 of the float formats.  Integers are integers, and are always
2612 displayed exactly.
2614 @cindex Large numbers, readability
2615 Large integers have their own problems.  Let's look back at
2616 the result of @kbd{2^3^4}.
2618 @example
2619 2417851639229258349412352
2620 @end example
2622 @noindent
2623 Quick---how many digits does this have?  Try typing @kbd{d g}:
2625 @example
2626 2,417,851,639,229,258,349,412,352
2627 @end example
2629 @noindent
2630 Now how many digits does this have?  It's much easier to tell!
2631 We can actually group digits into clumps of any size.  Some
2632 people prefer @kbd{M-5 d g}:
2634 @example
2635 24178,51639,22925,83494,12352
2636 @end example
2638 Let's see what happens to floating-point numbers when they are grouped.
2639 First, type @kbd{p 25 @key{RET}} to make sure we have enough precision
2640 to get ourselves into trouble.  Now, type @kbd{1e13 /}:
2642 @example
2643 24,17851,63922.9258349412352
2644 @end example
2646 @noindent
2647 The integer part is grouped but the fractional part isn't.  Now try
2648 @kbd{M-- M-5 d g} (that's meta-minus-sign, meta-five):
2650 @example
2651 24,17851,63922.92583,49412,352
2652 @end example
2654 If you find it hard to tell the decimal point from the commas, try
2655 changing the grouping character to a space with @kbd{d , @key{SPC}}:
2657 @example
2658 24 17851 63922.92583 49412 352
2659 @end example
2661 Type @kbd{d , ,} to restore the normal grouping character, then
2662 @kbd{d g} again to turn grouping off.  Also, press @kbd{p 12} to
2663 restore the default precision.
2665 Press @kbd{U} enough times to get the original big integer back.
2666 (Notice that @kbd{U} does not undo each mode-setting command; if
2667 you want to undo a mode-setting command, you have to do it yourself.)
2668 Now, type @kbd{d r 16 @key{RET}}:
2670 @example
2671 16#200000000000000000000
2672 @end example
2674 @noindent
2675 The number is now displayed in @dfn{hexadecimal}, or ``base-16'' form.
2676 Suddenly it looks pretty simple; this should be no surprise, since we
2677 got this number by computing a power of two, and 16 is a power of 2.
2678 In fact, we can use @w{@kbd{d r 2 @key{RET}}} to see it in actual binary
2679 form:
2681 @example
2682 2#1000000000000000000000000000000000000000000000000000000 @dots{}
2683 @end example
2685 @noindent
2686 We don't have enough space here to show all the zeros!  They won't
2687 fit on a typical screen, either, so you will have to use horizontal
2688 scrolling to see them all.  Press @kbd{<} and @kbd{>} to scroll the
2689 stack window left and right by half its width.  Another way to view
2690 something large is to press @kbd{`} (back-quote) to edit the top of
2691 stack in a separate window.  (Press @kbd{C-c C-c} when you are done.)
2693 You can enter non-decimal numbers using the @kbd{#} symbol, too.
2694 Let's see what the hexadecimal number @samp{5FE} looks like in
2695 binary.  Type @kbd{16#5FE} (the letters can be typed in upper or
2696 lower case; they will always appear in upper case).  It will also
2697 help to turn grouping on with @kbd{d g}:
2699 @example
2700 2#101,1111,1110
2701 @end example
2703 Notice that @kbd{d g} groups by fours by default if the display radix
2704 is binary or hexadecimal, but by threes if it is decimal, octal, or any
2705 other radix.
2707 Now let's see that number in decimal; type @kbd{d r 10}:
2709 @example
2710 1,534
2711 @end example
2713 Numbers are not @emph{stored} with any particular radix attached.  They're
2714 just numbers; they can be entered in any radix, and are always displayed
2715 in whatever radix you've chosen with @kbd{d r}.  The current radix applies
2716 to integers, fractions, and floats.
2718 @cindex Roundoff errors, in non-decimal numbers
2719 (@bullet{}) @strong{Exercise 1.}  Your friend Joe tried to enter one-third
2720 as @samp{3#0.1} in @kbd{d r 3} mode with a precision of 12.  He got
2721 @samp{3#0.0222222...} (with 25 2's) in the display.  When he multiplied
2722 that by three, he got @samp{3#0.222222...} instead of the expected
2723 @samp{3#1}.  Next, Joe entered @samp{3#0.2} and, to his great relief,
2724 saw @samp{3#0.2} on the screen.  But when he typed @kbd{2 /}, he got
2725 @samp{3#0.10000001} (some zeros omitted).  What's going on here?
2726 @xref{Modes Answer 1, 1}. (@bullet{})
2728 @cindex Scientific notation, in non-decimal numbers
2729 (@bullet{}) @strong{Exercise 2.}  Scientific notation works in non-decimal
2730 modes in the natural way (the exponent is a power of the radix instead of
2731 a power of ten, although the exponent itself is always written in decimal).
2732 Thus @samp{8#1.23e3 = 8#1230.0}.  Suppose we have the hexadecimal number
2733 @samp{f.e8f} times 16 to the 15th power:  We write @samp{16#f.e8fe15}.
2734 What is wrong with this picture?  What could we write instead that would
2735 work better?  @xref{Modes Answer 2, 2}. (@bullet{})
2737 The @kbd{m} prefix key has another set of modes, relating to the way
2738 Calc interprets your inputs and does computations.  Whereas @kbd{d}-prefix
2739 modes generally affect the way things look, @kbd{m}-prefix modes affect
2740 the way they are actually computed.
2742 The most popular @kbd{m}-prefix mode is the @dfn{angular mode}.  Notice
2743 the @samp{Deg} indicator in the mode line.  This means that if you use
2744 a command that interprets a number as an angle, it will assume the
2745 angle is measured in degrees.  For example,
2747 @smallexample
2748 @group
2749 1:  45         1:  0.707106781187   1:  0.500000000001    1:  0.5
2750     .              .                    .                     .
2752     45             S                    2 ^                   c 1
2753 @end group
2754 @end smallexample
2756 @noindent
2757 The shift-@kbd{S} command computes the sine of an angle.  The sine
2758 of 45 degrees is 
2759 @texline @math{\sqrt{2}/2};
2760 @infoline @expr{sqrt(2)/2}; 
2761 squaring this yields @expr{2/4 = 0.5}.  However, there has been a slight
2762 roundoff error because the representation of 
2763 @texline @math{\sqrt{2}/2}
2764 @infoline @expr{sqrt(2)/2} 
2765 wasn't exact.  The @kbd{c 1} command is a handy way to clean up numbers
2766 in this case; it temporarily reduces the precision by one digit while it
2767 re-rounds the number on the top of the stack.
2769 @cindex Roundoff errors, examples
2770 (@bullet{}) @strong{Exercise 3.}  Your friend Joe computed the sine
2771 of 45 degrees as shown above, then, hoping to avoid an inexact
2772 result, he increased the precision to 16 digits before squaring.
2773 What happened?  @xref{Modes Answer 3, 3}. (@bullet{})
2775 To do this calculation in radians, we would type @kbd{m r} first.
2776 (The indicator changes to @samp{Rad}.)  45 degrees corresponds to
2777 @cpiover{4} radians.  To get @cpi{}, press the @kbd{P} key.  (Once
2778 again, this is a shifted capital @kbd{P}.  Remember, unshifted
2779 @kbd{p} sets the precision.)
2781 @smallexample
2782 @group
2783 1:  3.14159265359   1:  0.785398163398   1:  0.707106781187
2784     .                   .                .
2786     P                   4 /       m r    S
2787 @end group
2788 @end smallexample
2790 Likewise, inverse trigonometric functions generate results in
2791 either radians or degrees, depending on the current angular mode.
2793 @smallexample
2794 @group
2795 1:  0.707106781187   1:  0.785398163398   1:  45.
2796     .                    .                    .
2798     .5 Q        m r      I S        m d       U I S
2799 @end group
2800 @end smallexample
2802 @noindent
2803 Here we compute the Inverse Sine of 
2804 @texline @math{\sqrt{0.5}},
2805 @infoline @expr{sqrt(0.5)}, 
2806 first in radians, then in degrees.
2808 Use @kbd{c d} and @kbd{c r} to convert a number from radians to degrees
2809 and vice-versa.
2811 @smallexample
2812 @group
2813 1:  45         1:  0.785398163397     1:  45.
2814     .              .                      .
2816     45             c r                    c d
2817 @end group
2818 @end smallexample
2820 Another interesting mode is @dfn{Fraction mode}.  Normally,
2821 dividing two integers produces a floating-point result if the
2822 quotient can't be expressed as an exact integer.  Fraction mode
2823 causes integer division to produce a fraction, i.e., a rational
2824 number, instead.
2826 @smallexample
2827 @group
2828 2:  12         1:  1.33333333333    1:  4:3
2829 1:  9              .                    .
2830     .
2832  12 @key{RET} 9          /          m f       U /      m f
2833 @end group
2834 @end smallexample
2836 @noindent
2837 In the first case, we get an approximate floating-point result.
2838 In the second case, we get an exact fractional result (four-thirds).
2840 You can enter a fraction at any time using @kbd{:} notation.
2841 (Calc uses @kbd{:} instead of @kbd{/} as the fraction separator
2842 because @kbd{/} is already used to divide the top two stack
2843 elements.)  Calculations involving fractions will always
2844 produce exact fractional results; Fraction mode only says
2845 what to do when dividing two integers.
2847 @cindex Fractions vs. floats
2848 @cindex Floats vs. fractions
2849 (@bullet{}) @strong{Exercise 4.}  If fractional arithmetic is exact,
2850 why would you ever use floating-point numbers instead?
2851 @xref{Modes Answer 4, 4}. (@bullet{})
2853 Typing @kbd{m f} doesn't change any existing values in the stack.
2854 In the above example, we had to Undo the division and do it over
2855 again when we changed to Fraction mode.  But if you use the
2856 evaluates-to operator you can get commands like @kbd{m f} to
2857 recompute for you.
2859 @smallexample
2860 @group
2861 1:  12 / 9 => 1.33333333333    1:  12 / 9 => 1.333    1:  12 / 9 => 4:3
2862     .                              .                      .
2864    ' 12/9 => @key{RET}                   p 4 @key{RET}                m f
2865 @end group
2866 @end smallexample
2868 @noindent
2869 In this example, the righthand side of the @samp{=>} operator
2870 on the stack is recomputed when we change the precision, then
2871 again when we change to Fraction mode.  All @samp{=>} expressions
2872 on the stack are recomputed every time you change any mode that
2873 might affect their values.
2875 @node Arithmetic Tutorial, Vector/Matrix Tutorial, Basic Tutorial, Tutorial
2876 @section Arithmetic Tutorial
2878 @noindent
2879 In this section, we explore the arithmetic and scientific functions
2880 available in the Calculator.
2882 The standard arithmetic commands are @kbd{+}, @kbd{-}, @kbd{*}, @kbd{/},
2883 and @kbd{^}.  Each normally takes two numbers from the top of the stack
2884 and pushes back a result.  The @kbd{n} and @kbd{&} keys perform
2885 change-sign and reciprocal operations, respectively.
2887 @smallexample
2888 @group
2889 1:  5          1:  0.2        1:  5.         1:  -5.        1:  5.
2890     .              .              .              .              .
2892     5              &              &              n              n
2893 @end group
2894 @end smallexample
2896 @cindex Binary operators
2897 You can apply a ``binary operator'' like @kbd{+} across any number of
2898 stack entries by giving it a numeric prefix.  You can also apply it
2899 pairwise to several stack elements along with the top one if you use
2900 a negative prefix.
2902 @smallexample
2903 @group
2904 3:  2          1:  9          3:  2          4:  2          3:  12
2905 2:  3              .          2:  3          3:  3          2:  13
2906 1:  4                         1:  4          2:  4          1:  14
2907     .                             .          1:  10             .
2908                                                  .
2910 2 @key{RET} 3 @key{RET} 4     M-3 +           U              10          M-- M-3 +
2911 @end group
2912 @end smallexample
2914 @cindex Unary operators
2915 You can apply a ``unary operator'' like @kbd{&} to the top @var{n}
2916 stack entries with a numeric prefix, too.
2918 @smallexample
2919 @group
2920 3:  2          3:  0.5                3:  0.5
2921 2:  3          2:  0.333333333333     2:  3.
2922 1:  4          1:  0.25               1:  4.
2923     .              .                      .
2925 2 @key{RET} 3 @key{RET} 4      M-3 &                  M-2 &
2926 @end group
2927 @end smallexample
2929 Notice that the results here are left in floating-point form.
2930 We can convert them back to integers by pressing @kbd{F}, the
2931 ``floor'' function.  This function rounds down to the next lower
2932 integer.  There is also @kbd{R}, which rounds to the nearest
2933 integer.
2935 @smallexample
2936 @group
2937 7:  2.         7:  2          7:  2
2938 6:  2.4        6:  2          6:  2
2939 5:  2.5        5:  2          5:  3
2940 4:  2.6        4:  2          4:  3
2941 3:  -2.        3:  -2         3:  -2
2942 2:  -2.4       2:  -3         2:  -2
2943 1:  -2.6       1:  -3         1:  -3
2944     .              .              .
2946                   M-7 F        U M-7 R
2947 @end group
2948 @end smallexample
2950 Since dividing-and-flooring (i.e., ``integer quotient'') is such a
2951 common operation, Calc provides a special command for that purpose, the
2952 backslash @kbd{\}.  Another common arithmetic operator is @kbd{%}, which
2953 computes the remainder that would arise from a @kbd{\} operation, i.e.,
2954 the ``modulo'' of two numbers.  For example,
2956 @smallexample
2957 @group
2958 2:  1234       1:  12         2:  1234       1:  34
2959 1:  100            .          1:  100            .
2960     .                             .
2962 1234 @key{RET} 100       \              U              %
2963 @end group
2964 @end smallexample
2966 These commands actually work for any real numbers, not just integers.
2968 @smallexample
2969 @group
2970 2:  3.1415     1:  3          2:  3.1415     1:  0.1415
2971 1:  1              .          1:  1              .
2972     .                             .
2974 3.1415 @key{RET} 1       \              U              %
2975 @end group
2976 @end smallexample
2978 (@bullet{}) @strong{Exercise 1.}  The @kbd{\} command would appear to be a
2979 frill, since you could always do the same thing with @kbd{/ F}.  Think
2980 of a situation where this is not true---@kbd{/ F} would be inadequate.
2981 Now think of a way you could get around the problem if Calc didn't
2982 provide a @kbd{\} command.  @xref{Arithmetic Answer 1, 1}. (@bullet{})
2984 We've already seen the @kbd{Q} (square root) and @kbd{S} (sine)
2985 commands.  Other commands along those lines are @kbd{C} (cosine),
2986 @kbd{T} (tangent), @kbd{E} (@expr{e^x}) and @kbd{L} (natural
2987 logarithm).  These can be modified by the @kbd{I} (inverse) and
2988 @kbd{H} (hyperbolic) prefix keys.
2990 Let's compute the sine and cosine of an angle, and verify the
2991 identity 
2992 @texline @math{\sin^2x + \cos^2x = 1}.
2993 @infoline @expr{sin(x)^2 + cos(x)^2 = 1}.  
2994 We'll arbitrarily pick @mathit{-64} degrees as a good value for @expr{x}.
2995 With the angular mode set to degrees (type @w{@kbd{m d}}), do:
2997 @smallexample
2998 @group
2999 2:  -64        2:  -64        2:  -0.89879   2:  -0.89879   1:  1.
3000 1:  -64        1:  -0.89879   1:  -64        1:  0.43837        .
3001     .              .              .              .
3003  64 n @key{RET} @key{RET}      S              @key{TAB}            C              f h
3004 @end group
3005 @end smallexample
3007 @noindent
3008 (For brevity, we're showing only five digits of the results here.
3009 You can of course do these calculations to any precision you like.)
3011 Remember, @kbd{f h} is the @code{calc-hypot}, or square-root of sum
3012 of squares, command.
3014 Another identity is 
3015 @texline @math{\displaystyle\tan x = {\sin x \over \cos x}}.
3016 @infoline @expr{tan(x) = sin(x) / cos(x)}.
3017 @smallexample
3018 @group
3020 2:  -0.89879   1:  -2.0503    1:  -64.
3021 1:  0.43837        .              .
3022     .
3024     U              /              I T
3025 @end group
3026 @end smallexample
3028 A physical interpretation of this calculation is that if you move
3029 @expr{0.89879} units downward and @expr{0.43837} units to the right,
3030 your direction of motion is @mathit{-64} degrees from horizontal.  Suppose
3031 we move in the opposite direction, up and to the left:
3033 @smallexample
3034 @group
3035 2:  -0.89879   2:  0.89879    1:  -2.0503    1:  -64.
3036 1:  0.43837    1:  -0.43837       .              .
3037     .              .
3039     U U            M-2 n          /              I T
3040 @end group
3041 @end smallexample
3043 @noindent
3044 How can the angle be the same?  The answer is that the @kbd{/} operation
3045 loses information about the signs of its inputs.  Because the quotient
3046 is negative, we know exactly one of the inputs was negative, but we
3047 can't tell which one.  There is an @kbd{f T} [@code{arctan2}] function which
3048 computes the inverse tangent of the quotient of a pair of numbers.
3049 Since you feed it the two original numbers, it has enough information
3050 to give you a full 360-degree answer.
3052 @smallexample
3053 @group
3054 2:  0.89879    1:  116.       3:  116.       2:  116.       1:  180.
3055 1:  -0.43837       .          2:  -0.89879   1:  -64.           .
3056     .                         1:  0.43837        .
3057                                   .
3059     U U            f T         M-@key{RET} M-2 n       f T            -
3060 @end group
3061 @end smallexample
3063 @noindent
3064 The resulting angles differ by 180 degrees; in other words, they
3065 point in opposite directions, just as we would expect.
3067 The @key{META}-@key{RET} we used in the third step is the
3068 ``last-arguments'' command.  It is sort of like Undo, except that it
3069 restores the arguments of the last command to the stack without removing
3070 the command's result.  It is useful in situations like this one,
3071 where we need to do several operations on the same inputs.  We could
3072 have accomplished the same thing by using @kbd{M-2 @key{RET}} to duplicate
3073 the top two stack elements right after the @kbd{U U}, then a pair of
3074 @kbd{M-@key{TAB}} commands to cycle the 116 up around the duplicates.
3076 A similar identity is supposed to hold for hyperbolic sines and cosines,
3077 except that it is the @emph{difference}
3078 @texline @math{\cosh^2x - \sinh^2x}
3079 @infoline @expr{cosh(x)^2 - sinh(x)^2} 
3080 that always equals one.  Let's try to verify this identity.
3082 @smallexample
3083 @group
3084 2:  -64        2:  -64        2:  -64        2:  9.7192e54  2:  9.7192e54
3085 1:  -64        1:  -3.1175e27 1:  9.7192e54  1:  -64        1:  9.7192e54
3086     .              .              .              .              .
3088  64 n @key{RET} @key{RET}      H C            2 ^            @key{TAB}            H S 2 ^
3089 @end group
3090 @end smallexample
3092 @noindent
3093 @cindex Roundoff errors, examples
3094 Something's obviously wrong, because when we subtract these numbers
3095 the answer will clearly be zero!  But if you think about it, if these
3096 numbers @emph{did} differ by one, it would be in the 55th decimal
3097 place.  The difference we seek has been lost entirely to roundoff
3098 error.
3100 We could verify this hypothesis by doing the actual calculation with,
3101 say, 60 decimal places of precision.  This will be slow, but not
3102 enormously so.  Try it if you wish; sure enough, the answer is
3103 0.99999, reasonably close to 1.
3105 Of course, a more reasonable way to verify the identity is to use
3106 a more reasonable value for @expr{x}!
3108 @cindex Common logarithm
3109 Some Calculator commands use the Hyperbolic prefix for other purposes.
3110 The logarithm and exponential functions, for example, work to the base
3111 @expr{e} normally but use base-10 instead if you use the Hyperbolic
3112 prefix.
3114 @smallexample
3115 @group
3116 1:  1000       1:  6.9077     1:  1000       1:  3
3117     .              .              .              .
3119     1000           L              U              H L
3120 @end group
3121 @end smallexample
3123 @noindent
3124 First, we mistakenly compute a natural logarithm.  Then we undo
3125 and compute a common logarithm instead.
3127 The @kbd{B} key computes a general base-@var{b} logarithm for any
3128 value of @var{b}.
3130 @smallexample
3131 @group
3132 2:  1000       1:  3          1:  1000.      2:  1000.      1:  6.9077
3133 1:  10             .              .          1:  2.71828        .
3134     .                                            .
3136  1000 @key{RET} 10       B              H E            H P            B
3137 @end group
3138 @end smallexample
3140 @noindent
3141 Here we first use @kbd{B} to compute the base-10 logarithm, then use
3142 the ``hyperbolic'' exponential as a cheap hack to recover the number
3143 1000, then use @kbd{B} again to compute the natural logarithm.  Note
3144 that @kbd{P} with the hyperbolic prefix pushes the constant @expr{e}
3145 onto the stack.
3147 You may have noticed that both times we took the base-10 logarithm
3148 of 1000, we got an exact integer result.  Calc always tries to give
3149 an exact rational result for calculations involving rational numbers
3150 where possible.  But when we used @kbd{H E}, the result was a
3151 floating-point number for no apparent reason.  In fact, if we had
3152 computed @kbd{10 @key{RET} 3 ^} we @emph{would} have gotten an
3153 exact integer 1000.  But the @kbd{H E} command is rigged to generate
3154 a floating-point result all of the time so that @kbd{1000 H E} will
3155 not waste time computing a thousand-digit integer when all you
3156 probably wanted was @samp{1e1000}.
3158 (@bullet{}) @strong{Exercise 2.}  Find a pair of integer inputs to
3159 the @kbd{B} command for which Calc could find an exact rational
3160 result but doesn't.  @xref{Arithmetic Answer 2, 2}. (@bullet{})
3162 The Calculator also has a set of functions relating to combinatorics
3163 and statistics.  You may be familiar with the @dfn{factorial} function,
3164 which computes the product of all the integers up to a given number.
3166 @smallexample
3167 @group
3168 1:  100        1:  93326215443...    1:  100.       1:  9.3326e157
3169     .              .                     .              .
3171     100            !                     U c f          !
3172 @end group
3173 @end smallexample
3175 @noindent
3176 Recall, the @kbd{c f} command converts the integer or fraction at the
3177 top of the stack to floating-point format.  If you take the factorial
3178 of a floating-point number, you get a floating-point result
3179 accurate to the current precision.  But if you give @kbd{!} an
3180 exact integer, you get an exact integer result (158 digits long
3181 in this case).
3183 If you take the factorial of a non-integer, Calc uses a generalized
3184 factorial function defined in terms of Euler's Gamma function
3185 @texline @math{\Gamma(n)}
3186 @infoline @expr{gamma(n)}
3187 (which is itself available as the @kbd{f g} command).
3189 @smallexample
3190 @group
3191 3:  4.         3:  24.               1:  5.5        1:  52.342777847
3192 2:  4.5        2:  52.3427777847         .              .
3193 1:  5.         1:  120.
3194     .              .
3196                    M-3 !              M-0 @key{DEL} 5.5       f g
3197 @end group
3198 @end smallexample
3200 @noindent
3201 Here we verify the identity 
3202 @texline @math{n! = \Gamma(n+1)}.
3203 @infoline @expr{@var{n}!@: = gamma(@var{n}+1)}.
3205 The binomial coefficient @var{n}-choose-@var{m}
3206 @texline or @math{\displaystyle {n \choose m}}
3207 is defined by
3208 @texline @math{\displaystyle {n! \over m! \, (n-m)!}}
3209 @infoline @expr{n!@: / m!@: (n-m)!}
3210 for all reals @expr{n} and @expr{m}.  The intermediate results in this
3211 formula can become quite large even if the final result is small; the
3212 @kbd{k c} command computes a binomial coefficient in a way that avoids
3213 large intermediate values.
3215 The @kbd{k} prefix key defines several common functions out of
3216 combinatorics and number theory.  Here we compute the binomial
3217 coefficient 30-choose-20, then determine its prime factorization.
3219 @smallexample
3220 @group
3221 2:  30         1:  30045015   1:  [3, 3, 5, 7, 11, 13, 23, 29]
3222 1:  20             .              .
3223     .
3225  30 @key{RET} 20         k c            k f
3226 @end group
3227 @end smallexample
3229 @noindent
3230 You can verify these prime factors by using @kbd{v u} to ``unpack''
3231 this vector into 8 separate stack entries, then @kbd{M-8 *} to
3232 multiply them back together.  The result is the original number,
3233 30045015.
3235 @cindex Hash tables
3236 Suppose a program you are writing needs a hash table with at least
3237 10000 entries.  It's best to use a prime number as the actual size
3238 of a hash table.  Calc can compute the next prime number after 10000:
3240 @smallexample
3241 @group
3242 1:  10000      1:  10007      1:  9973
3243     .              .              .
3245     10000          k n            I k n
3246 @end group
3247 @end smallexample
3249 @noindent
3250 Just for kicks we've also computed the next prime @emph{less} than
3251 10000.
3253 @c [fix-ref Financial Functions]
3254 @xref{Financial Functions}, for a description of the Calculator
3255 commands that deal with business and financial calculations (functions
3256 like @code{pv}, @code{rate}, and @code{sln}).
3258 @c [fix-ref Binary Number Functions]
3259 @xref{Binary Functions}, to read about the commands for operating
3260 on binary numbers (like @code{and}, @code{xor}, and @code{lsh}).
3262 @node Vector/Matrix Tutorial, Types Tutorial, Arithmetic Tutorial, Tutorial
3263 @section Vector/Matrix Tutorial
3265 @noindent
3266 A @dfn{vector} is a list of numbers or other Calc data objects.
3267 Calc provides a large set of commands that operate on vectors.  Some
3268 are familiar operations from vector analysis.  Others simply treat
3269 a vector as a list of objects.
3271 @menu
3272 * Vector Analysis Tutorial::
3273 * Matrix Tutorial::
3274 * List Tutorial::
3275 @end menu
3277 @node Vector Analysis Tutorial, Matrix Tutorial, Vector/Matrix Tutorial, Vector/Matrix Tutorial
3278 @subsection Vector Analysis
3280 @noindent
3281 If you add two vectors, the result is a vector of the sums of the
3282 elements, taken pairwise.
3284 @smallexample
3285 @group
3286 1:  [1, 2, 3]     2:  [1, 2, 3]     1:  [8, 8, 3]
3287     .             1:  [7, 6, 0]         .
3288                       .
3290     [1,2,3]  s 1      [7 6 0]  s 2      +
3291 @end group
3292 @end smallexample
3294 @noindent
3295 Note that we can separate the vector elements with either commas or
3296 spaces.  This is true whether we are using incomplete vectors or
3297 algebraic entry.  The @kbd{s 1} and @kbd{s 2} commands save these
3298 vectors so we can easily reuse them later.
3300 If you multiply two vectors, the result is the sum of the products
3301 of the elements taken pairwise.  This is called the @dfn{dot product}
3302 of the vectors.
3304 @smallexample
3305 @group
3306 2:  [1, 2, 3]     1:  19
3307 1:  [7, 6, 0]         .
3308     .
3310     r 1 r 2           *
3311 @end group
3312 @end smallexample
3314 @cindex Dot product
3315 The dot product of two vectors is equal to the product of their
3316 lengths times the cosine of the angle between them.  (Here the vector
3317 is interpreted as a line from the origin @expr{(0,0,0)} to the
3318 specified point in three-dimensional space.)  The @kbd{A}
3319 (absolute value) command can be used to compute the length of a
3320 vector.
3322 @smallexample
3323 @group
3324 3:  19            3:  19          1:  0.550782    1:  56.579
3325 2:  [1, 2, 3]     2:  3.741657        .               .
3326 1:  [7, 6, 0]     1:  9.219544
3327     .                 .
3329     M-@key{RET}             M-2 A          * /             I C
3330 @end group
3331 @end smallexample
3333 @noindent
3334 First we recall the arguments to the dot product command, then
3335 we compute the absolute values of the top two stack entries to
3336 obtain the lengths of the vectors, then we divide the dot product
3337 by the product of the lengths to get the cosine of the angle.
3338 The inverse cosine finds that the angle between the vectors
3339 is about 56 degrees.
3341 @cindex Cross product
3342 @cindex Perpendicular vectors
3343 The @dfn{cross product} of two vectors is a vector whose length
3344 is the product of the lengths of the inputs times the sine of the
3345 angle between them, and whose direction is perpendicular to both
3346 input vectors.  Unlike the dot product, the cross product is
3347 defined only for three-dimensional vectors.  Let's double-check
3348 our computation of the angle using the cross product.
3350 @smallexample
3351 @group
3352 2:  [1, 2, 3]  3:  [-18, 21, -8]  1:  [-0.52, 0.61, -0.23]  1:  56.579
3353 1:  [7, 6, 0]  2:  [1, 2, 3]          .                         .
3354     .          1:  [7, 6, 0]
3355                    .
3357     r 1 r 2        V C  s 3  M-@key{RET}    M-2 A * /                 A I S
3358 @end group
3359 @end smallexample
3361 @noindent
3362 First we recall the original vectors and compute their cross product,
3363 which we also store for later reference.  Now we divide the vector
3364 by the product of the lengths of the original vectors.  The length of
3365 this vector should be the sine of the angle; sure enough, it is!
3367 @c [fix-ref General Mode Commands]
3368 Vector-related commands generally begin with the @kbd{v} prefix key.
3369 Some are uppercase letters and some are lowercase.  To make it easier
3370 to type these commands, the shift-@kbd{V} prefix key acts the same as
3371 the @kbd{v} key.  (@xref{General Mode Commands}, for a way to make all
3372 prefix keys have this property.)
3374 If we take the dot product of two perpendicular vectors we expect
3375 to get zero, since the cosine of 90 degrees is zero.  Let's check
3376 that the cross product is indeed perpendicular to both inputs:
3378 @smallexample
3379 @group
3380 2:  [1, 2, 3]      1:  0          2:  [7, 6, 0]      1:  0
3381 1:  [-18, 21, -8]      .          1:  [-18, 21, -8]      .
3382     .                                 .
3384     r 1 r 3            *          @key{DEL} r 2 r 3            *
3385 @end group
3386 @end smallexample
3388 @cindex Normalizing a vector
3389 @cindex Unit vectors
3390 (@bullet{}) @strong{Exercise 1.}  Given a vector on the top of the
3391 stack, what keystrokes would you use to @dfn{normalize} the
3392 vector, i.e., to reduce its length to one without changing its
3393 direction?  @xref{Vector Answer 1, 1}. (@bullet{})
3395 (@bullet{}) @strong{Exercise 2.}  Suppose a certain particle can be
3396 at any of several positions along a ruler.  You have a list of
3397 those positions in the form of a vector, and another list of the
3398 probabilities for the particle to be at the corresponding positions.
3399 Find the average position of the particle.
3400 @xref{Vector Answer 2, 2}. (@bullet{})
3402 @node Matrix Tutorial, List Tutorial, Vector Analysis Tutorial, Vector/Matrix Tutorial
3403 @subsection Matrices
3405 @noindent
3406 A @dfn{matrix} is just a vector of vectors, all the same length.
3407 This means you can enter a matrix using nested brackets.  You can
3408 also use the semicolon character to enter a matrix.  We'll show
3409 both methods here:
3411 @smallexample
3412 @group
3413 1:  [ [ 1, 2, 3 ]             1:  [ [ 1, 2, 3 ]
3414       [ 4, 5, 6 ] ]                 [ 4, 5, 6 ] ]
3415     .                             .
3417   [[1 2 3] [4 5 6]]             ' [1 2 3; 4 5 6] @key{RET}
3418 @end group
3419 @end smallexample
3421 @noindent
3422 We'll be using this matrix again, so type @kbd{s 4} to save it now.
3424 Note that semicolons work with incomplete vectors, but they work
3425 better in algebraic entry.  That's why we use the apostrophe in
3426 the second example.
3428 When two matrices are multiplied, the lefthand matrix must have
3429 the same number of columns as the righthand matrix has rows.
3430 Row @expr{i}, column @expr{j} of the result is effectively the
3431 dot product of row @expr{i} of the left matrix by column @expr{j}
3432 of the right matrix.
3434 If we try to duplicate this matrix and multiply it by itself,
3435 the dimensions are wrong and the multiplication cannot take place:
3437 @smallexample
3438 @group
3439 1:  [ [ 1, 2, 3 ]   * [ [ 1, 2, 3 ]
3440       [ 4, 5, 6 ] ]     [ 4, 5, 6 ] ]
3441     .
3443     @key{RET} *
3444 @end group
3445 @end smallexample
3447 @noindent
3448 Though rather hard to read, this is a formula which shows the product
3449 of two matrices.  The @samp{*} function, having invalid arguments, has
3450 been left in symbolic form.
3452 We can multiply the matrices if we @dfn{transpose} one of them first.
3454 @smallexample
3455 @group
3456 2:  [ [ 1, 2, 3 ]       1:  [ [ 14, 32 ]      1:  [ [ 17, 22, 27 ]
3457       [ 4, 5, 6 ] ]           [ 32, 77 ] ]          [ 22, 29, 36 ]
3458 1:  [ [ 1, 4 ]              .                       [ 27, 36, 45 ] ]
3459       [ 2, 5 ]                                    .
3460       [ 3, 6 ] ]
3461     .
3463     U v t                   *                     U @key{TAB} *
3464 @end group
3465 @end smallexample
3467 Matrix multiplication is not commutative; indeed, switching the
3468 order of the operands can even change the dimensions of the result
3469 matrix, as happened here!
3471 If you multiply a plain vector by a matrix, it is treated as a
3472 single row or column depending on which side of the matrix it is
3473 on.  The result is a plain vector which should also be interpreted
3474 as a row or column as appropriate.
3476 @smallexample
3477 @group
3478 2:  [ [ 1, 2, 3 ]      1:  [14, 32]
3479       [ 4, 5, 6 ] ]        .
3480 1:  [1, 2, 3]
3481     .
3483     r 4 r 1                *
3484 @end group
3485 @end smallexample
3487 Multiplying in the other order wouldn't work because the number of
3488 rows in the matrix is different from the number of elements in the
3489 vector.
3491 (@bullet{}) @strong{Exercise 1.}  Use @samp{*} to sum along the rows
3492 of the above 
3493 @texline @math{2\times3}
3494 @infoline 2x3 
3495 matrix to get @expr{[6, 15]}.  Now use @samp{*} to sum along the columns
3496 to get @expr{[5, 7, 9]}. 
3497 @xref{Matrix Answer 1, 1}. (@bullet{})
3499 @cindex Identity matrix
3500 An @dfn{identity matrix} is a square matrix with ones along the
3501 diagonal and zeros elsewhere.  It has the property that multiplication
3502 by an identity matrix, on the left or on the right, always produces
3503 the original matrix.
3505 @smallexample
3506 @group
3507 1:  [ [ 1, 2, 3 ]      2:  [ [ 1, 2, 3 ]      1:  [ [ 1, 2, 3 ]
3508       [ 4, 5, 6 ] ]          [ 4, 5, 6 ] ]          [ 4, 5, 6 ] ]
3509     .                  1:  [ [ 1, 0, 0 ]          .
3510                              [ 0, 1, 0 ]
3511                              [ 0, 0, 1 ] ]
3512                            .
3514     r 4                    v i 3 @key{RET}              *
3515 @end group
3516 @end smallexample
3518 If a matrix is square, it is often possible to find its @dfn{inverse},
3519 that is, a matrix which, when multiplied by the original matrix, yields
3520 an identity matrix.  The @kbd{&} (reciprocal) key also computes the
3521 inverse of a matrix.
3523 @smallexample
3524 @group
3525 1:  [ [ 1, 2, 3 ]      1:  [ [   -2.4,     1.2,   -0.2 ]
3526       [ 4, 5, 6 ]            [    2.8,    -1.4,    0.4 ]
3527       [ 7, 6, 0 ] ]          [ -0.73333, 0.53333, -0.2 ] ]
3528     .                      .
3530     r 4 r 2 |  s 5         &
3531 @end group
3532 @end smallexample
3534 @noindent
3535 The vertical bar @kbd{|} @dfn{concatenates} numbers, vectors, and
3536 matrices together.  Here we have used it to add a new row onto
3537 our matrix to make it square.
3539 We can multiply these two matrices in either order to get an identity.
3541 @smallexample
3542 @group
3543 1:  [ [ 1., 0., 0. ]      1:  [ [ 1., 0., 0. ]
3544       [ 0., 1., 0. ]            [ 0., 1., 0. ]
3545       [ 0., 0., 1. ] ]          [ 0., 0., 1. ] ]
3546     .                         .
3548     M-@key{RET}  *                  U @key{TAB} *
3549 @end group
3550 @end smallexample
3552 @cindex Systems of linear equations
3553 @cindex Linear equations, systems of
3554 Matrix inverses are related to systems of linear equations in algebra.
3555 Suppose we had the following set of equations:
3557 @ifinfo
3558 @group
3559 @example
3560     a + 2b + 3c = 6
3561    4a + 5b + 6c = 2
3562    7a + 6b      = 3
3563 @end example
3564 @end group
3565 @end ifinfo
3566 @tex
3567 \turnoffactive
3568 \beforedisplayh
3569 $$ \openup1\jot \tabskip=0pt plus1fil
3570 \halign to\displaywidth{\tabskip=0pt
3571    $\hfil#$&$\hfil{}#{}$&
3572    $\hfil#$&$\hfil{}#{}$&
3573    $\hfil#$&${}#\hfil$\tabskip=0pt plus1fil\cr
3574   a&+&2b&+&3c&=6 \cr
3575  4a&+&5b&+&6c&=2 \cr
3576  7a&+&6b& &  &=3 \cr}
3578 \afterdisplayh
3579 @end tex
3581 @noindent
3582 This can be cast into the matrix equation,
3584 @ifinfo
3585 @group
3586 @example
3587    [ [ 1, 2, 3 ]     [ [ a ]     [ [ 6 ]
3588      [ 4, 5, 6 ]   *   [ b ]   =   [ 2 ]
3589      [ 7, 6, 0 ] ]     [ c ] ]     [ 3 ] ]
3590 @end example
3591 @end group
3592 @end ifinfo
3593 @tex
3594 \turnoffactive
3595 \beforedisplay
3596 $$ \pmatrix{ 1 & 2 & 3 \cr 4 & 5 & 6 \cr 7 & 6 & 0 }
3597    \times
3598    \pmatrix{ a \cr b \cr c } = \pmatrix{ 6 \cr 2 \cr 3 }
3600 \afterdisplay
3601 @end tex
3603 We can solve this system of equations by multiplying both sides by the
3604 inverse of the matrix.  Calc can do this all in one step:
3606 @smallexample
3607 @group
3608 2:  [6, 2, 3]          1:  [-12.6, 15.2, -3.93333]
3609 1:  [ [ 1, 2, 3 ]          .
3610       [ 4, 5, 6 ]
3611       [ 7, 6, 0 ] ]
3612     .
3614     [6,2,3] r 5            /
3615 @end group
3616 @end smallexample
3618 @noindent
3619 The result is the @expr{[a, b, c]} vector that solves the equations.
3620 (Dividing by a square matrix is equivalent to multiplying by its
3621 inverse.)
3623 Let's verify this solution:
3625 @smallexample
3626 @group
3627 2:  [ [ 1, 2, 3 ]                1:  [6., 2., 3.]
3628       [ 4, 5, 6 ]                    .
3629       [ 7, 6, 0 ] ]
3630 1:  [-12.6, 15.2, -3.93333]
3631     .
3633     r 5  @key{TAB}                         *
3634 @end group
3635 @end smallexample
3637 @noindent
3638 Note that we had to be careful about the order in which we multiplied
3639 the matrix and vector.  If we multiplied in the other order, Calc would
3640 assume the vector was a row vector in order to make the dimensions
3641 come out right, and the answer would be incorrect.  If you
3642 don't feel safe letting Calc take either interpretation of your
3643 vectors, use explicit 
3644 @texline @math{N\times1}
3645 @infoline Nx1
3647 @texline @math{1\times N}
3648 @infoline 1xN
3649 matrices instead.  In this case, you would enter the original column
3650 vector as @samp{[[6], [2], [3]]} or @samp{[6; 2; 3]}.
3652 (@bullet{}) @strong{Exercise 2.}  Algebraic entry allows you to make
3653 vectors and matrices that include variables.  Solve the following
3654 system of equations to get expressions for @expr{x} and @expr{y}
3655 in terms of @expr{a} and @expr{b}.
3657 @ifinfo
3658 @group
3659 @example
3660    x + a y = 6
3661    x + b y = 10
3662 @end example
3663 @end group
3664 @end ifinfo
3665 @tex
3666 \turnoffactive
3667 \beforedisplay
3668 $$ \eqalign{ x &+ a y = 6 \cr
3669              x &+ b y = 10}
3671 \afterdisplay
3672 @end tex
3674 @noindent
3675 @xref{Matrix Answer 2, 2}. (@bullet{})
3677 @cindex Least-squares for over-determined systems
3678 @cindex Over-determined systems of equations
3679 (@bullet{}) @strong{Exercise 3.}  A system of equations is ``over-determined''
3680 if it has more equations than variables.  It is often the case that
3681 there are no values for the variables that will satisfy all the
3682 equations at once, but it is still useful to find a set of values
3683 which ``nearly'' satisfy all the equations.  In terms of matrix equations,
3684 you can't solve @expr{A X = B} directly because the matrix @expr{A}
3685 is not square for an over-determined system.  Matrix inversion works
3686 only for square matrices.  One common trick is to multiply both sides
3687 on the left by the transpose of @expr{A}:
3688 @ifinfo
3689 @samp{trn(A)*A*X = trn(A)*B}.
3690 @end ifinfo
3691 @tex
3692 \turnoffactive
3693 $A^T A \, X = A^T B$, where $A^T$ is the transpose \samp{trn(A)}.
3694 @end tex
3695 Now 
3696 @texline @math{A^T A}
3697 @infoline @expr{trn(A)*A} 
3698 is a square matrix so a solution is possible.  It turns out that the
3699 @expr{X} vector you compute in this way will be a ``least-squares''
3700 solution, which can be regarded as the ``closest'' solution to the set
3701 of equations.  Use Calc to solve the following over-determined
3702 system:
3704 @ifinfo
3705 @group
3706 @example
3707     a + 2b + 3c = 6
3708    4a + 5b + 6c = 2
3709    7a + 6b      = 3
3710    2a + 4b + 6c = 11
3711 @end example
3712 @end group
3713 @end ifinfo
3714 @tex
3715 \turnoffactive
3716 \beforedisplayh
3717 $$ \openup1\jot \tabskip=0pt plus1fil
3718 \halign to\displaywidth{\tabskip=0pt
3719    $\hfil#$&$\hfil{}#{}$&
3720    $\hfil#$&$\hfil{}#{}$&
3721    $\hfil#$&${}#\hfil$\tabskip=0pt plus1fil\cr
3722   a&+&2b&+&3c&=6 \cr
3723  4a&+&5b&+&6c&=2 \cr
3724  7a&+&6b& &  &=3 \cr
3725  2a&+&4b&+&6c&=11 \cr}
3727 \afterdisplayh
3728 @end tex
3730 @noindent
3731 @xref{Matrix Answer 3, 3}. (@bullet{})
3733 @node List Tutorial, , Matrix Tutorial, Vector/Matrix Tutorial
3734 @subsection Vectors as Lists
3736 @noindent
3737 @cindex Lists
3738 Although Calc has a number of features for manipulating vectors and
3739 matrices as mathematical objects, you can also treat vectors as
3740 simple lists of values.  For example, we saw that the @kbd{k f}
3741 command returns a vector which is a list of the prime factors of a
3742 number.
3744 You can pack and unpack stack entries into vectors:
3746 @smallexample
3747 @group
3748 3:  10         1:  [10, 20, 30]     3:  10
3749 2:  20             .                2:  20
3750 1:  30                              1:  30
3751     .                                   .
3753                    M-3 v p              v u
3754 @end group
3755 @end smallexample
3757 You can also build vectors out of consecutive integers, or out
3758 of many copies of a given value:
3760 @smallexample
3761 @group
3762 1:  [1, 2, 3, 4]    2:  [1, 2, 3, 4]    2:  [1, 2, 3, 4]
3763     .               1:  17              1:  [17, 17, 17, 17]
3764                         .                   .
3766     v x 4 @key{RET}           17                  v b 4 @key{RET}
3767 @end group
3768 @end smallexample
3770 You can apply an operator to every element of a vector using the
3771 @dfn{map} command.
3773 @smallexample
3774 @group
3775 1:  [17, 34, 51, 68]   1:  [289, 1156, 2601, 4624]  1:  [17, 34, 51, 68]
3776     .                      .                            .
3778     V M *                  2 V M ^                      V M Q
3779 @end group
3780 @end smallexample
3782 @noindent
3783 In the first step, we multiply the vector of integers by the vector
3784 of 17's elementwise.  In the second step, we raise each element to
3785 the power two.  (The general rule is that both operands must be
3786 vectors of the same length, or else one must be a vector and the
3787 other a plain number.)  In the final step, we take the square root
3788 of each element.
3790 (@bullet{}) @strong{Exercise 1.}  Compute a vector of powers of two
3791 from 
3792 @texline @math{2^{-4}}
3793 @infoline @expr{2^-4} 
3794 to @expr{2^4}.  @xref{List Answer 1, 1}. (@bullet{})
3796 You can also @dfn{reduce} a binary operator across a vector.
3797 For example, reducing @samp{*} computes the product of all the
3798 elements in the vector:
3800 @smallexample
3801 @group
3802 1:  123123     1:  [3, 7, 11, 13, 41]      1:  123123
3803     .              .                           .
3805     123123         k f                         V R *
3806 @end group
3807 @end smallexample
3809 @noindent
3810 In this example, we decompose 123123 into its prime factors, then
3811 multiply those factors together again to yield the original number.
3813 We could compute a dot product ``by hand'' using mapping and
3814 reduction:
3816 @smallexample
3817 @group
3818 2:  [1, 2, 3]     1:  [7, 12, 0]     1:  19
3819 1:  [7, 6, 0]         .                  .
3820     .
3822     r 1 r 2           V M *              V R +
3823 @end group
3824 @end smallexample
3826 @noindent
3827 Recalling two vectors from the previous section, we compute the
3828 sum of pairwise products of the elements to get the same answer
3829 for the dot product as before.
3831 A slight variant of vector reduction is the @dfn{accumulate} operation,
3832 @kbd{V U}.  This produces a vector of the intermediate results from
3833 a corresponding reduction.  Here we compute a table of factorials:
3835 @smallexample
3836 @group
3837 1:  [1, 2, 3, 4, 5, 6]    1:  [1, 2, 6, 24, 120, 720]
3838     .                         .
3840     v x 6 @key{RET}                 V U *
3841 @end group
3842 @end smallexample
3844 Calc allows vectors to grow as large as you like, although it gets
3845 rather slow if vectors have more than about a hundred elements.
3846 Actually, most of the time is spent formatting these large vectors
3847 for display, not calculating on them.  Try the following experiment
3848 (if your computer is very fast you may need to substitute a larger
3849 vector size).
3851 @smallexample
3852 @group
3853 1:  [1, 2, 3, 4, ...      1:  [2, 3, 4, 5, ...
3854     .                         .
3856     v x 500 @key{RET}               1 V M +
3857 @end group
3858 @end smallexample
3860 Now press @kbd{v .} (the letter @kbd{v}, then a period) and try the
3861 experiment again.  In @kbd{v .} mode, long vectors are displayed
3862 ``abbreviated'' like this:
3864 @smallexample
3865 @group
3866 1:  [1, 2, 3, ..., 500]   1:  [2, 3, 4, ..., 501]
3867     .                         .
3869     v x 500 @key{RET}               1 V M +
3870 @end group
3871 @end smallexample
3873 @noindent
3874 (where now the @samp{...} is actually part of the Calc display).
3875 You will find both operations are now much faster.  But notice that
3876 even in @w{@kbd{v .}} mode, the full vectors are still shown in the Trail.
3877 Type @w{@kbd{t .}} to cause the trail to abbreviate as well, and try the
3878 experiment one more time.  Operations on long vectors are now quite
3879 fast!  (But of course if you use @kbd{t .} you will lose the ability
3880 to get old vectors back using the @kbd{t y} command.)
3882 An easy way to view a full vector when @kbd{v .} mode is active is
3883 to press @kbd{`} (back-quote) to edit the vector; editing always works
3884 with the full, unabbreviated value.
3886 @cindex Least-squares for fitting a straight line
3887 @cindex Fitting data to a line
3888 @cindex Line, fitting data to
3889 @cindex Data, extracting from buffers
3890 @cindex Columns of data, extracting
3891 As a larger example, let's try to fit a straight line to some data,
3892 using the method of least squares.  (Calc has a built-in command for
3893 least-squares curve fitting, but we'll do it by hand here just to
3894 practice working with vectors.)  Suppose we have the following list
3895 of values in a file we have loaded into Emacs:
3897 @smallexample
3898   x        y
3899  ---      ---
3900  1.34    0.234
3901  1.41    0.298
3902  1.49    0.402
3903  1.56    0.412
3904  1.64    0.466
3905  1.73    0.473
3906  1.82    0.601
3907  1.91    0.519
3908  2.01    0.603
3909  2.11    0.637
3910  2.22    0.645
3911  2.33    0.705
3912  2.45    0.917
3913  2.58    1.009
3914  2.71    0.971
3915  2.85    1.062
3916  3.00    1.148
3917  3.15    1.157
3918  3.32    1.354
3919 @end smallexample
3921 @noindent
3922 If you are reading this tutorial in printed form, you will find it
3923 easiest to press @kbd{M-# i} to enter the on-line Info version of
3924 the manual and find this table there.  (Press @kbd{g}, then type
3925 @kbd{List Tutorial}, to jump straight to this section.)
3927 Position the cursor at the upper-left corner of this table, just
3928 to the left of the @expr{1.34}.  Press @kbd{C-@@} to set the mark.
3929 (On your system this may be @kbd{C-2}, @kbd{C-@key{SPC}}, or @kbd{NUL}.)
3930 Now position the cursor to the lower-right, just after the @expr{1.354}.
3931 You have now defined this region as an Emacs ``rectangle.''  Still
3932 in the Info buffer, type @kbd{M-# r}.  This command
3933 (@code{calc-grab-rectangle}) will pop you back into the Calculator, with
3934 the contents of the rectangle you specified in the form of a matrix.
3936 @smallexample
3937 @group
3938 1:  [ [ 1.34, 0.234 ]
3939       [ 1.41, 0.298 ]
3940       @dots{}
3941 @end group
3942 @end smallexample
3944 @noindent
3945 (You may wish to use @kbd{v .} mode to abbreviate the display of this
3946 large matrix.)
3948 We want to treat this as a pair of lists.  The first step is to
3949 transpose this matrix into a pair of rows.  Remember, a matrix is
3950 just a vector of vectors.  So we can unpack the matrix into a pair
3951 of row vectors on the stack.
3953 @smallexample
3954 @group
3955 1:  [ [ 1.34,  1.41,  1.49,  ... ]     2:  [1.34, 1.41, 1.49, ... ]
3956       [ 0.234, 0.298, 0.402, ... ] ]   1:  [0.234, 0.298, 0.402, ... ]
3957     .                                      .
3959     v t                                    v u
3960 @end group
3961 @end smallexample
3963 @noindent
3964 Let's store these in quick variables 1 and 2, respectively.
3966 @smallexample
3967 @group
3968 1:  [1.34, 1.41, 1.49, ... ]        .
3969     .
3971     t 2                             t 1
3972 @end group
3973 @end smallexample
3975 @noindent
3976 (Recall that @kbd{t 2} is a variant of @kbd{s 2} that removes the
3977 stored value from the stack.)
3979 In a least squares fit, the slope @expr{m} is given by the formula
3981 @ifinfo
3982 @example
3983 m = (N sum(x y) - sum(x) sum(y)) / (N sum(x^2) - sum(x)^2)
3984 @end example
3985 @end ifinfo
3986 @tex
3987 \turnoffactive
3988 \beforedisplay
3989 $$ m = {N \sum x y - \sum x \sum y  \over
3990         N \sum x^2 - \left( \sum x \right)^2} $$
3991 \afterdisplay
3992 @end tex
3994 @noindent
3995 where 
3996 @texline @math{\sum x}
3997 @infoline @expr{sum(x)} 
3998 represents the sum of all the values of @expr{x}.  While there is an
3999 actual @code{sum} function in Calc, it's easier to sum a vector using a
4000 simple reduction.  First, let's compute the four different sums that
4001 this formula uses.
4003 @smallexample
4004 @group
4005 1:  41.63                 1:  98.0003
4006     .                         .
4008  r 1 V R +   t 3           r 1 2 V M ^ V R +   t 4
4010 @end group
4011 @end smallexample
4012 @noindent
4013 @smallexample
4014 @group
4015 1:  13.613                1:  33.36554
4016     .                         .
4018  r 2 V R +   t 5           r 1 r 2 V M * V R +   t 6
4019 @end group
4020 @end smallexample
4022 @ifinfo
4023 @noindent
4024 These are @samp{sum(x)}, @samp{sum(x^2)}, @samp{sum(y)}, and @samp{sum(x y)},
4025 respectively.  (We could have used @kbd{*} to compute @samp{sum(x^2)} and
4026 @samp{sum(x y)}.)
4027 @end ifinfo
4028 @tex
4029 \turnoffactive
4030 These are $\sum x$, $\sum x^2$, $\sum y$, and $\sum x y$,
4031 respectively.  (We could have used \kbd{*} to compute $\sum x^2$ and
4032 $\sum x y$.)
4033 @end tex
4035 Finally, we also need @expr{N}, the number of data points.  This is just
4036 the length of either of our lists.
4038 @smallexample
4039 @group
4040 1:  19
4041     .
4043  r 1 v l   t 7
4044 @end group
4045 @end smallexample
4047 @noindent
4048 (That's @kbd{v} followed by a lower-case @kbd{l}.)
4050 Now we grind through the formula:
4052 @smallexample
4053 @group
4054 1:  633.94526  2:  633.94526  1:  67.23607
4055     .          1:  566.70919      .
4056                    .
4058  r 7 r 6 *      r 3 r 5 *         -
4060 @end group
4061 @end smallexample
4062 @noindent
4063 @smallexample
4064 @group
4065 2:  67.23607   3:  67.23607   2:  67.23607   1:  0.52141679
4066 1:  1862.0057  2:  1862.0057  1:  128.9488       .
4067     .          1:  1733.0569      .
4068                    .
4070  r 7 r 4 *      r 3 2 ^           -              /   t 8
4071 @end group
4072 @end smallexample
4074 That gives us the slope @expr{m}.  The y-intercept @expr{b} can now
4075 be found with the simple formula,
4077 @ifinfo
4078 @example
4079 b = (sum(y) - m sum(x)) / N
4080 @end example
4081 @end ifinfo
4082 @tex
4083 \turnoffactive
4084 \beforedisplay
4085 $$ b = {\sum y - m \sum x \over N} $$
4086 \afterdisplay
4087 \vskip10pt
4088 @end tex
4090 @smallexample
4091 @group
4092 1:  13.613     2:  13.613     1:  -8.09358   1:  -0.425978
4093     .          1:  21.70658       .              .
4094                    .
4096    r 5            r 8 r 3 *       -              r 7 /   t 9
4097 @end group
4098 @end smallexample
4100 Let's ``plot'' this straight line approximation, 
4101 @texline @math{y \approx m x + b},
4102 @infoline @expr{m x + b}, 
4103 and compare it with the original data.
4105 @smallexample
4106 @group
4107 1:  [0.699, 0.735, ... ]    1:  [0.273, 0.309, ... ]
4108     .                           .
4110     r 1 r 8 *                   r 9 +    s 0
4111 @end group
4112 @end smallexample
4114 @noindent
4115 Notice that multiplying a vector by a constant, and adding a constant
4116 to a vector, can be done without mapping commands since these are
4117 common operations from vector algebra.  As far as Calc is concerned,
4118 we've just been doing geometry in 19-dimensional space!
4120 We can subtract this vector from our original @expr{y} vector to get
4121 a feel for the error of our fit.  Let's find the maximum error:
4123 @smallexample
4124 @group
4125 1:  [0.0387, 0.0112, ... ]   1:  [0.0387, 0.0112, ... ]   1:  0.0897
4126     .                            .                            .
4128     r 2 -                        V M A                        V R X
4129 @end group
4130 @end smallexample
4132 @noindent
4133 First we compute a vector of differences, then we take the absolute
4134 values of these differences, then we reduce the @code{max} function
4135 across the vector.  (The @code{max} function is on the two-key sequence
4136 @kbd{f x}; because it is so common to use @code{max} in a vector
4137 operation, the letters @kbd{X} and @kbd{N} are also accepted for
4138 @code{max} and @code{min} in this context.  In general, you answer
4139 the @kbd{V M} or @kbd{V R} prompt with the actual key sequence that
4140 invokes the function you want.  You could have typed @kbd{V R f x} or
4141 even @kbd{V R x max @key{RET}} if you had preferred.)
4143 If your system has the GNUPLOT program, you can see graphs of your
4144 data and your straight line to see how well they match.  (If you have
4145 GNUPLOT 3.0, the following instructions will work regardless of the
4146 kind of display you have.  Some GNUPLOT 2.0, non-X-windows systems
4147 may require additional steps to view the graphs.)
4149 Let's start by plotting the original data.  Recall the ``@var{x}'' and ``@var{y}''
4150 vectors onto the stack and press @kbd{g f}.  This ``fast'' graphing
4151 command does everything you need to do for simple, straightforward
4152 plotting of data.
4154 @smallexample
4155 @group
4156 2:  [1.34, 1.41, 1.49, ... ]
4157 1:  [0.234, 0.298, 0.402, ... ]
4158     .
4160     r 1 r 2    g f
4161 @end group
4162 @end smallexample
4164 If all goes well, you will shortly get a new window containing a graph
4165 of the data.  (If not, contact your GNUPLOT or Calc installer to find
4166 out what went wrong.)  In the X window system, this will be a separate
4167 graphics window.  For other kinds of displays, the default is to
4168 display the graph in Emacs itself using rough character graphics.
4169 Press @kbd{q} when you are done viewing the character graphics.
4171 Next, let's add the line we got from our least-squares fit.
4172 @ifinfo
4173 (If you are reading this tutorial on-line while running Calc, typing
4174 @kbd{g a} may cause the tutorial to disappear from its window and be
4175 replaced by a buffer named @samp{*Gnuplot Commands*}.  The tutorial
4176 will reappear when you terminate GNUPLOT by typing @kbd{g q}.) 
4177 @end ifinfo
4179 @smallexample
4180 @group
4181 2:  [1.34, 1.41, 1.49, ... ]
4182 1:  [0.273, 0.309, 0.351, ... ]
4183     .
4185     @key{DEL} r 0    g a  g p
4186 @end group
4187 @end smallexample
4189 It's not very useful to get symbols to mark the data points on this
4190 second curve; you can type @kbd{g S g p} to remove them.  Type @kbd{g q}
4191 when you are done to remove the X graphics window and terminate GNUPLOT.
4193 (@bullet{}) @strong{Exercise 2.}  An earlier exercise showed how to do
4194 least squares fitting to a general system of equations.  Our 19 data
4195 points are really 19 equations of the form @expr{y_i = m x_i + b} for
4196 different pairs of @expr{(x_i,y_i)}.  Use the matrix-transpose method
4197 to solve for @expr{m} and @expr{b}, duplicating the above result.
4198 @xref{List Answer 2, 2}. (@bullet{})
4200 @cindex Geometric mean
4201 (@bullet{}) @strong{Exercise 3.}  If the input data do not form a
4202 rectangle, you can use @w{@kbd{M-# g}} (@code{calc-grab-region})
4203 to grab the data the way Emacs normally works with regions---it reads
4204 left-to-right, top-to-bottom, treating line breaks the same as spaces.
4205 Use this command to find the geometric mean of the following numbers.
4206 (The geometric mean is the @var{n}th root of the product of @var{n} numbers.)
4208 @example
4209 2.3  6  22  15.1  7
4210   15  14  7.5
4211   2.5
4212 @end example
4214 @noindent
4215 The @kbd{M-# g} command accepts numbers separated by spaces or commas,
4216 with or without surrounding vector brackets.
4217 @xref{List Answer 3, 3}. (@bullet{})
4219 @ifinfo
4220 As another example, a theorem about binomial coefficients tells
4221 us that the alternating sum of binomial coefficients
4222 @var{n}-choose-0 minus @var{n}-choose-1 plus @var{n}-choose-2, and so
4223 on up to @var{n}-choose-@var{n},
4224 always comes out to zero.  Let's verify this
4225 for @expr{n=6}.
4226 @end ifinfo
4227 @tex
4228 As another example, a theorem about binomial coefficients tells
4229 us that the alternating sum of binomial coefficients
4230 ${n \choose 0} - {n \choose 1} + {n \choose 2} - \cdots \pm {n \choose n}$
4231 always comes out to zero.  Let's verify this
4232 for \cite{n=6}.
4233 @end tex
4235 @smallexample
4236 @group
4237 1:  [1, 2, 3, 4, 5, 6, 7]     1:  [0, 1, 2, 3, 4, 5, 6]
4238     .                             .
4240     v x 7 @key{RET}                     1 -
4242 @end group
4243 @end smallexample
4244 @noindent
4245 @smallexample
4246 @group
4247 1:  [1, -6, 15, -20, 15, -6, 1]          1:  0
4248     .                                        .
4250     V M ' (-1)^$ choose(6,$) @key{RET}             V R +
4251 @end group
4252 @end smallexample
4254 The @kbd{V M '} command prompts you to enter any algebraic expression
4255 to define the function to map over the vector.  The symbol @samp{$}
4256 inside this expression represents the argument to the function.
4257 The Calculator applies this formula to each element of the vector,
4258 substituting each element's value for the @samp{$} sign(s) in turn.
4260 To define a two-argument function, use @samp{$$} for the first
4261 argument and @samp{$} for the second:  @kbd{V M ' $$-$ @key{RET}} is
4262 equivalent to @kbd{V M -}.  This is analogous to regular algebraic
4263 entry, where @samp{$$} would refer to the next-to-top stack entry
4264 and @samp{$} would refer to the top stack entry, and @kbd{' $$-$ @key{RET}}
4265 would act exactly like @kbd{-}.
4267 Notice that the @kbd{V M '} command has recorded two things in the
4268 trail:  The result, as usual, and also a funny-looking thing marked
4269 @samp{oper} that represents the operator function you typed in.
4270 The function is enclosed in @samp{< >} brackets, and the argument is
4271 denoted by a @samp{#} sign.  If there were several arguments, they
4272 would be shown as @samp{#1}, @samp{#2}, and so on.  (For example,
4273 @kbd{V M ' $$-$} will put the function @samp{<#1 - #2>} on the
4274 trail.)  This object is a ``nameless function''; you can use nameless
4275 @w{@samp{< >}} notation to answer the @kbd{V M '} prompt if you like.
4276 Nameless function notation has the interesting, occasionally useful
4277 property that a nameless function is not actually evaluated until
4278 it is used.  For example, @kbd{V M ' $+random(2.0)} evaluates
4279 @samp{random(2.0)} once and adds that random number to all elements
4280 of the vector, but @kbd{V M ' <#+random(2.0)>} evaluates the
4281 @samp{random(2.0)} separately for each vector element.
4283 Another group of operators that are often useful with @kbd{V M} are
4284 the relational operators:  @kbd{a =}, for example, compares two numbers
4285 and gives the result 1 if they are equal, or 0 if not.  Similarly,
4286 @w{@kbd{a <}} checks for one number being less than another.
4288 Other useful vector operations include @kbd{v v}, to reverse a
4289 vector end-for-end; @kbd{V S}, to sort the elements of a vector
4290 into increasing order; and @kbd{v r} and @w{@kbd{v c}}, to extract
4291 one row or column of a matrix, or (in both cases) to extract one
4292 element of a plain vector.  With a negative argument, @kbd{v r}
4293 and @kbd{v c} instead delete one row, column, or vector element.
4295 @cindex Divisor functions
4296 (@bullet{}) @strong{Exercise 4.}  The @expr{k}th @dfn{divisor function}
4297 @tex
4298 $\sigma_k(n)$
4299 @end tex
4300 is the sum of the @expr{k}th powers of all the divisors of an
4301 integer @expr{n}.  Figure out a method for computing the divisor
4302 function for reasonably small values of @expr{n}.  As a test,
4303 the 0th and 1st divisor functions of 30 are 8 and 72, respectively.
4304 @xref{List Answer 4, 4}. (@bullet{})
4306 @cindex Square-free numbers
4307 @cindex Duplicate values in a list
4308 (@bullet{}) @strong{Exercise 5.}  The @kbd{k f} command produces a
4309 list of prime factors for a number.  Sometimes it is important to
4310 know that a number is @dfn{square-free}, i.e., that no prime occurs
4311 more than once in its list of prime factors.  Find a sequence of
4312 keystrokes to tell if a number is square-free; your method should
4313 leave 1 on the stack if it is, or 0 if it isn't.
4314 @xref{List Answer 5, 5}. (@bullet{})
4316 @cindex Triangular lists
4317 (@bullet{}) @strong{Exercise 6.}  Build a list of lists that looks
4318 like the following diagram.  (You may wish to use the @kbd{v /}
4319 command to enable multi-line display of vectors.)
4321 @smallexample
4322 @group
4323 1:  [ [1],
4324       [1, 2],
4325       [1, 2, 3],
4326       [1, 2, 3, 4],
4327       [1, 2, 3, 4, 5],
4328       [1, 2, 3, 4, 5, 6] ]
4329 @end group
4330 @end smallexample
4332 @noindent
4333 @xref{List Answer 6, 6}. (@bullet{})
4335 (@bullet{}) @strong{Exercise 7.}  Build the following list of lists.
4337 @smallexample
4338 @group
4339 1:  [ [0],
4340       [1, 2],
4341       [3, 4, 5],
4342       [6, 7, 8, 9],
4343       [10, 11, 12, 13, 14],
4344       [15, 16, 17, 18, 19, 20] ]
4345 @end group
4346 @end smallexample
4348 @noindent
4349 @xref{List Answer 7, 7}. (@bullet{})
4351 @cindex Maximizing a function over a list of values
4352 @c [fix-ref Numerical Solutions]
4353 (@bullet{}) @strong{Exercise 8.}  Compute a list of values of Bessel's
4354 @texline @math{J_1(x)}
4355 @infoline @expr{J1} 
4356 function @samp{besJ(1,x)} for @expr{x} from 0 to 5 in steps of 0.25.
4357 Find the value of @expr{x} (from among the above set of values) for
4358 which @samp{besJ(1,x)} is a maximum.  Use an ``automatic'' method,
4359 i.e., just reading along the list by hand to find the largest value
4360 is not allowed!  (There is an @kbd{a X} command which does this kind
4361 of thing automatically; @pxref{Numerical Solutions}.)
4362 @xref{List Answer 8, 8}. (@bullet{})
4364 @cindex Digits, vectors of
4365 (@bullet{}) @strong{Exercise 9.}  You are given an integer in the range
4366 @texline @math{0 \le N < 10^m}
4367 @infoline @expr{0 <= N < 10^m} 
4368 for @expr{m=12} (i.e., an integer of less than
4369 twelve digits).  Convert this integer into a vector of @expr{m}
4370 digits, each in the range from 0 to 9.  In vector-of-digits notation,
4371 add one to this integer to produce a vector of @expr{m+1} digits
4372 (since there could be a carry out of the most significant digit).
4373 Convert this vector back into a regular integer.  A good integer
4374 to try is 25129925999.  @xref{List Answer 9, 9}. (@bullet{})
4376 (@bullet{}) @strong{Exercise 10.}  Your friend Joe tried to use
4377 @kbd{V R a =} to test if all numbers in a list were equal.  What
4378 happened?  How would you do this test?  @xref{List Answer 10, 10}. (@bullet{})
4380 (@bullet{}) @strong{Exercise 11.}  The area of a circle of radius one
4381 is @cpi{}.  The area of the 
4382 @texline @math{2\times2}
4383 @infoline 2x2
4384 square that encloses that circle is 4.  So if we throw @var{n} darts at
4385 random points in the square, about @cpiover{4} of them will land inside
4386 the circle.  This gives us an entertaining way to estimate the value of 
4387 @cpi{}.  The @w{@kbd{k r}}
4388 command picks a random number between zero and the value on the stack.
4389 We could get a random floating-point number between @mathit{-1} and 1 by typing
4390 @w{@kbd{2.0 k r 1 -}}.  Build a vector of 100 random @expr{(x,y)} points in
4391 this square, then use vector mapping and reduction to count how many
4392 points lie inside the unit circle.  Hint:  Use the @kbd{v b} command.
4393 @xref{List Answer 11, 11}. (@bullet{})
4395 @cindex Matchstick problem
4396 (@bullet{}) @strong{Exercise 12.}  The @dfn{matchstick problem} provides
4397 another way to calculate @cpi{}.  Say you have an infinite field
4398 of vertical lines with a spacing of one inch.  Toss a one-inch matchstick
4399 onto the field.  The probability that the matchstick will land crossing
4400 a line turns out to be 
4401 @texline @math{2/\pi}.
4402 @infoline @expr{2/pi}.  
4403 Toss 100 matchsticks to estimate @cpi{}.  (If you want still more fun,
4404 the probability that the GCD (@w{@kbd{k g}}) of two large integers is
4405 one turns out to be 
4406 @texline @math{6/\pi^2}.
4407 @infoline @expr{6/pi^2}.
4408 That provides yet another way to estimate @cpi{}.)
4409 @xref{List Answer 12, 12}. (@bullet{})
4411 (@bullet{}) @strong{Exercise 13.}  An algebraic entry of a string in
4412 double-quote marks, @samp{"hello"}, creates a vector of the numerical
4413 (ASCII) codes of the characters (here, @expr{[104, 101, 108, 108, 111]}).
4414 Sometimes it is convenient to compute a @dfn{hash code} of a string,
4415 which is just an integer that represents the value of that string.
4416 Two equal strings have the same hash code; two different strings
4417 @dfn{probably} have different hash codes.  (For example, Calc has
4418 over 400 function names, but Emacs can quickly find the definition for
4419 any given name because it has sorted the functions into ``buckets'' by
4420 their hash codes.  Sometimes a few names will hash into the same bucket,
4421 but it is easier to search among a few names than among all the names.)
4422 One popular hash function is computed as follows:  First set @expr{h = 0}.
4423 Then, for each character from the string in turn, set @expr{h = 3h + c_i}
4424 where @expr{c_i} is the character's ASCII code.  If we have 511 buckets,
4425 we then take the hash code modulo 511 to get the bucket number.  Develop a
4426 simple command or commands for converting string vectors into hash codes.
4427 The hash code for @samp{"Testing, 1, 2, 3"} is 1960915098, which modulo
4428 511 is 121.  @xref{List Answer 13, 13}. (@bullet{})
4430 (@bullet{}) @strong{Exercise 14.}  The @kbd{H V R} and @kbd{H V U}
4431 commands do nested function evaluations.  @kbd{H V U} takes a starting
4432 value and a number of steps @var{n} from the stack; it then applies the
4433 function you give to the starting value 0, 1, 2, up to @var{n} times
4434 and returns a vector of the results.  Use this command to create a
4435 ``random walk'' of 50 steps.  Start with the two-dimensional point
4436 @expr{(0,0)}; then take one step a random distance between @mathit{-1} and 1
4437 in both @expr{x} and @expr{y}; then take another step, and so on.  Use the
4438 @kbd{g f} command to display this random walk.  Now modify your random
4439 walk to walk a unit distance, but in a random direction, at each step.
4440 (Hint:  The @code{sincos} function returns a vector of the cosine and
4441 sine of an angle.)  @xref{List Answer 14, 14}. (@bullet{})
4443 @node Types Tutorial, Algebra Tutorial, Vector/Matrix Tutorial, Tutorial
4444 @section Types Tutorial
4446 @noindent
4447 Calc understands a variety of data types as well as simple numbers.
4448 In this section, we'll experiment with each of these types in turn.
4450 The numbers we've been using so far have mainly been either @dfn{integers}
4451 or @dfn{floats}.  We saw that floats are usually a good approximation to
4452 the mathematical concept of real numbers, but they are only approximations
4453 and are susceptible to roundoff error.  Calc also supports @dfn{fractions},
4454 which can exactly represent any rational number.
4456 @smallexample
4457 @group
4458 1:  3628800    2:  3628800    1:  518400:7   1:  518414:7   1:  7:518414
4459     .          1:  49             .              .              .
4460                    .
4462     10 !           49 @key{RET}         :              2 +            &
4463 @end group
4464 @end smallexample
4466 @noindent
4467 The @kbd{:} command divides two integers to get a fraction; @kbd{/}
4468 would normally divide integers to get a floating-point result.
4469 Notice we had to type @key{RET} between the @kbd{49} and the @kbd{:}
4470 since the @kbd{:} would otherwise be interpreted as part of a
4471 fraction beginning with 49.
4473 You can convert between floating-point and fractional format using
4474 @kbd{c f} and @kbd{c F}:
4476 @smallexample
4477 @group
4478 1:  1.35027217629e-5    1:  7:518414
4479     .                       .
4481     c f                     c F
4482 @end group
4483 @end smallexample
4485 The @kbd{c F} command replaces a floating-point number with the
4486 ``simplest'' fraction whose floating-point representation is the
4487 same, to within the current precision.
4489 @smallexample
4490 @group
4491 1:  3.14159265359   1:  1146408:364913   1:  3.1416   1:  355:113
4492     .                   .                    .            .
4494     P                   c F      @key{DEL}       p 5 @key{RET} P      c F
4495 @end group
4496 @end smallexample
4498 (@bullet{}) @strong{Exercise 1.}  A calculation has produced the
4499 result 1.26508260337.  You suspect it is the square root of the
4500 product of @cpi{} and some rational number.  Is it?  (Be sure
4501 to allow for roundoff error!)  @xref{Types Answer 1, 1}. (@bullet{})
4503 @dfn{Complex numbers} can be stored in both rectangular and polar form.
4505 @smallexample
4506 @group
4507 1:  -9     1:  (0, 3)    1:  (3; 90.)   1:  (6; 90.)   1:  (2.4495; 45.)
4508     .          .             .              .              .
4510     9 n        Q             c p            2 *            Q
4511 @end group
4512 @end smallexample
4514 @noindent
4515 The square root of @mathit{-9} is by default rendered in rectangular form
4516 (@w{@expr{0 + 3i}}), but we can convert it to polar form (3 with a
4517 phase angle of 90 degrees).  All the usual arithmetic and scientific
4518 operations are defined on both types of complex numbers.
4520 Another generalized kind of number is @dfn{infinity}.  Infinity
4521 isn't really a number, but it can sometimes be treated like one.
4522 Calc uses the symbol @code{inf} to represent positive infinity,
4523 i.e., a value greater than any real number.  Naturally, you can
4524 also write @samp{-inf} for minus infinity, a value less than any
4525 real number.  The word @code{inf} can only be input using
4526 algebraic entry.
4528 @smallexample
4529 @group
4530 2:  inf        2:  -inf       2:  -inf       2:  -inf       1:  nan
4531 1:  -17        1:  -inf       1:  -inf       1:  inf            .
4532     .              .              .              .
4534 ' inf @key{RET} 17 n     *  @key{RET}         72 +           A              +
4535 @end group
4536 @end smallexample
4538 @noindent
4539 Since infinity is infinitely large, multiplying it by any finite
4540 number (like @mathit{-17}) has no effect, except that since @mathit{-17}
4541 is negative, it changes a plus infinity to a minus infinity.
4542 (``A huge positive number, multiplied by @mathit{-17}, yields a huge
4543 negative number.'')  Adding any finite number to infinity also
4544 leaves it unchanged.  Taking an absolute value gives us plus
4545 infinity again.  Finally, we add this plus infinity to the minus
4546 infinity we had earlier.  If you work it out, you might expect
4547 the answer to be @mathit{-72} for this.  But the 72 has been completely
4548 lost next to the infinities; by the time we compute @w{@samp{inf - inf}}
4549 the finite difference between them, if any, is undetectable.
4550 So we say the result is @dfn{indeterminate}, which Calc writes
4551 with the symbol @code{nan} (for Not A Number).
4553 Dividing by zero is normally treated as an error, but you can get
4554 Calc to write an answer in terms of infinity by pressing @kbd{m i}
4555 to turn on Infinite mode.
4557 @smallexample
4558 @group
4559 3:  nan        2:  nan        2:  nan        2:  nan        1:  nan
4560 2:  1          1:  1 / 0      1:  uinf       1:  uinf           .
4561 1:  0              .              .              .
4562     .
4564   1 @key{RET} 0          /       m i    U /            17 n *         +
4565 @end group
4566 @end smallexample
4568 @noindent
4569 Dividing by zero normally is left unevaluated, but after @kbd{m i}
4570 it instead gives an infinite result.  The answer is actually
4571 @code{uinf}, ``undirected infinity.''  If you look at a graph of
4572 @expr{1 / x} around @w{@expr{x = 0}}, you'll see that it goes toward
4573 plus infinity as you approach zero from above, but toward minus
4574 infinity as you approach from below.  Since we said only @expr{1 / 0},
4575 Calc knows that the answer is infinite but not in which direction.
4576 That's what @code{uinf} means.  Notice that multiplying @code{uinf}
4577 by a negative number still leaves plain @code{uinf}; there's no
4578 point in saying @samp{-uinf} because the sign of @code{uinf} is
4579 unknown anyway.  Finally, we add @code{uinf} to our @code{nan},
4580 yielding @code{nan} again.  It's easy to see that, because
4581 @code{nan} means ``totally unknown'' while @code{uinf} means
4582 ``unknown sign but known to be infinite,'' the more mysterious
4583 @code{nan} wins out when it is combined with @code{uinf}, or, for
4584 that matter, with anything else.
4586 (@bullet{}) @strong{Exercise 2.}  Predict what Calc will answer
4587 for each of these formulas:  @samp{inf / inf}, @samp{exp(inf)},
4588 @samp{exp(-inf)}, @samp{sqrt(-inf)}, @samp{sqrt(uinf)},
4589 @samp{abs(uinf)}, @samp{ln(0)}.
4590 @xref{Types Answer 2, 2}. (@bullet{})
4592 (@bullet{}) @strong{Exercise 3.}  We saw that @samp{inf - inf = nan},
4593 which stands for an unknown value.  Can @code{nan} stand for
4594 a complex number?  Can it stand for infinity?
4595 @xref{Types Answer 3, 3}. (@bullet{})
4597 @dfn{HMS forms} represent a value in terms of hours, minutes, and
4598 seconds.
4600 @smallexample
4601 @group
4602 1:  2@@ 30' 0"     1:  3@@ 30' 0"     2:  3@@ 30' 0"     1:  2.
4603     .                 .             1:  1@@ 45' 0."        .
4604                                         .
4606   2@@ 30' @key{RET}          1 +               @key{RET} 2 /           /
4607 @end group
4608 @end smallexample
4610 HMS forms can also be used to hold angles in degrees, minutes, and
4611 seconds.
4613 @smallexample
4614 @group
4615 1:  0.5        1:  26.56505   1:  26@@ 33' 54.18"    1:  0.44721
4616     .              .              .                     .
4618     0.5            I T            c h                   S
4619 @end group
4620 @end smallexample
4622 @noindent
4623 First we convert the inverse tangent of 0.5 to degrees-minutes-seconds
4624 form, then we take the sine of that angle.  Note that the trigonometric
4625 functions will accept HMS forms directly as input.
4627 @cindex Beatles
4628 (@bullet{}) @strong{Exercise 4.}  The Beatles' @emph{Abbey Road} is
4629 47 minutes and 26 seconds long, and contains 17 songs.  What is the
4630 average length of a song on @emph{Abbey Road}?  If the Extended Disco
4631 Version of @emph{Abbey Road} added 20 seconds to the length of each
4632 song, how long would the album be?  @xref{Types Answer 4, 4}. (@bullet{})
4634 A @dfn{date form} represents a date, or a date and time.  Dates must
4635 be entered using algebraic entry.  Date forms are surrounded by
4636 @samp{< >} symbols; most standard formats for dates are recognized.
4638 @smallexample
4639 @group
4640 2:  <Sun Jan 13, 1991>                    1:  2.25
4641 1:  <6:00pm Thu Jan 10, 1991>                 .
4642     .
4644 ' <13 Jan 1991>, <1/10/91, 6pm> @key{RET}           -
4645 @end group
4646 @end smallexample
4648 @noindent
4649 In this example, we enter two dates, then subtract to find the
4650 number of days between them.  It is also possible to add an
4651 HMS form or a number (of days) to a date form to get another
4652 date form.
4654 @smallexample
4655 @group
4656 1:  <4:45:59pm Mon Jan 14, 1991>     1:  <2:50:59am Thu Jan 17, 1991>
4657     .                                    .
4659     t N                                  2 + 10@@ 5' +
4660 @end group
4661 @end smallexample
4663 @c [fix-ref Date Arithmetic]
4664 @noindent
4665 The @kbd{t N} (``now'') command pushes the current date and time on the
4666 stack; then we add two days, ten hours and five minutes to the date and
4667 time.  Other date-and-time related commands include @kbd{t J}, which
4668 does Julian day conversions, @kbd{t W}, which finds the beginning of
4669 the week in which a date form lies, and @kbd{t I}, which increments a
4670 date by one or several months.  @xref{Date Arithmetic}, for more.
4672 (@bullet{}) @strong{Exercise 5.}  How many days until the next
4673 Friday the 13th?  @xref{Types Answer 5, 5}. (@bullet{})
4675 (@bullet{}) @strong{Exercise 6.}  How many leap years will there be
4676 between now and the year 10001 A.D.?  @xref{Types Answer 6, 6}. (@bullet{})
4678 @cindex Slope and angle of a line
4679 @cindex Angle and slope of a line
4680 An @dfn{error form} represents a mean value with an attached standard
4681 deviation, or error estimate.  Suppose our measurements indicate that
4682 a certain telephone pole is about 30 meters away, with an estimated
4683 error of 1 meter, and 8 meters tall, with an estimated error of 0.2
4684 meters.  What is the slope of a line from here to the top of the
4685 pole, and what is the equivalent angle in degrees?
4687 @smallexample
4688 @group
4689 1:  8 +/- 0.2    2:  8 +/- 0.2   1:  0.266 +/- 0.011   1:  14.93 +/- 0.594
4690     .            1:  30 +/- 1        .                     .
4691                      .
4693     8 p .2 @key{RET}       30 p 1          /                     I T
4694 @end group
4695 @end smallexample
4697 @noindent
4698 This means that the angle is about 15 degrees, and, assuming our
4699 original error estimates were valid standard deviations, there is about
4700 a 60% chance that the result is correct within 0.59 degrees.
4702 @cindex Torus, volume of
4703 (@bullet{}) @strong{Exercise 7.}  The volume of a torus (a donut shape) is
4704 @texline @math{2 \pi^2 R r^2}
4705 @infoline @w{@expr{2 pi^2 R r^2}} 
4706 where @expr{R} is the radius of the circle that
4707 defines the center of the tube and @expr{r} is the radius of the tube
4708 itself.  Suppose @expr{R} is 20 cm and @expr{r} is 4 cm, each known to
4709 within 5 percent.  What is the volume and the relative uncertainty of
4710 the volume?  @xref{Types Answer 7, 7}. (@bullet{})
4712 An @dfn{interval form} represents a range of values.  While an
4713 error form is best for making statistical estimates, intervals give
4714 you exact bounds on an answer.  Suppose we additionally know that
4715 our telephone pole is definitely between 28 and 31 meters away,
4716 and that it is between 7.7 and 8.1 meters tall.
4718 @smallexample
4719 @group
4720 1:  [7.7 .. 8.1]  2:  [7.7 .. 8.1]  1:  [0.24 .. 0.28]  1:  [13.9 .. 16.1]
4721     .             1:  [28 .. 31]        .                   .
4722                       .
4724   [ 7.7 .. 8.1 ]    [ 28 .. 31 ]        /                   I T
4725 @end group
4726 @end smallexample
4728 @noindent
4729 If our bounds were correct, then the angle to the top of the pole
4730 is sure to lie in the range shown.
4732 The square brackets around these intervals indicate that the endpoints
4733 themselves are allowable values.  In other words, the distance to the
4734 telephone pole is between 28 and 31, @emph{inclusive}.  You can also
4735 make an interval that is exclusive of its endpoints by writing
4736 parentheses instead of square brackets.  You can even make an interval
4737 which is inclusive (``closed'') on one end and exclusive (``open'') on
4738 the other.
4740 @smallexample
4741 @group
4742 1:  [1 .. 10)    1:  (0.1 .. 1]   2:  (0.1 .. 1]   1:  (0.2 .. 3)
4743     .                .            1:  [2 .. 3)         .
4744                                       .
4746   [ 1 .. 10 )        &              [ 2 .. 3 )         *
4747 @end group
4748 @end smallexample
4750 @noindent
4751 The Calculator automatically keeps track of which end values should
4752 be open and which should be closed.  You can also make infinite or
4753 semi-infinite intervals by using @samp{-inf} or @samp{inf} for one
4754 or both endpoints.
4756 (@bullet{}) @strong{Exercise 8.}  What answer would you expect from
4757 @samp{@w{1 /} @w{(0 .. 10)}}?  What about @samp{@w{1 /} @w{(-10 .. 0)}}?  What
4758 about @samp{@w{1 /} @w{[0 .. 10]}} (where the interval actually includes
4759 zero)?  What about @samp{@w{1 /} @w{(-10 .. 10)}}?
4760 @xref{Types Answer 8, 8}. (@bullet{})
4762 (@bullet{}) @strong{Exercise 9.}  Two easy ways of squaring a number
4763 are @kbd{@key{RET} *} and @w{@kbd{2 ^}}.  Normally these produce the same
4764 answer.  Would you expect this still to hold true for interval forms?
4765 If not, which of these will result in a larger interval?
4766 @xref{Types Answer 9, 9}. (@bullet{})
4768 A @dfn{modulo form} is used for performing arithmetic modulo @var{m}.
4769 For example, arithmetic involving time is generally done modulo 12
4770 or 24 hours.
4772 @smallexample
4773 @group
4774 1:  17 mod 24    1:  3 mod 24     1:  21 mod 24    1:  9 mod 24
4775     .                .                .                .
4777     17 M 24 @key{RET}      10 +             n                5 /
4778 @end group
4779 @end smallexample
4781 @noindent
4782 In this last step, Calc has divided by 5 modulo 24; i.e., it has found a
4783 new number which, when multiplied by 5 modulo 24, produces the original
4784 number, 21.  If @var{m} is prime and the divisor is not a multiple of
4785 @var{m}, it is always possible to find such a number.  For non-prime
4786 @var{m} like 24, it is only sometimes possible. 
4788 @smallexample
4789 @group
4790 1:  10 mod 24    1:  16 mod 24    1:  1000000...   1:  16
4791     .                .                .                .
4793     10 M 24 @key{RET}      100 ^            10 @key{RET} 100 ^     24 %
4794 @end group
4795 @end smallexample
4797 @noindent
4798 These two calculations get the same answer, but the first one is
4799 much more efficient because it avoids the huge intermediate value
4800 that arises in the second one.
4802 @cindex Fermat, primality test of
4803 (@bullet{}) @strong{Exercise 10.}  A theorem of Pierre de Fermat
4804 says that 
4805 @texline @w{@math{x^{n-1} \bmod n = 1}}
4806 @infoline @expr{x^(n-1) mod n = 1}
4807 if @expr{n} is a prime number and @expr{x} is an integer less than
4808 @expr{n}.  If @expr{n} is @emph{not} a prime number, this will
4809 @emph{not} be true for most values of @expr{x}.  Thus we can test
4810 informally if a number is prime by trying this formula for several
4811 values of @expr{x}.  Use this test to tell whether the following numbers
4812 are prime: 811749613, 15485863.  @xref{Types Answer 10, 10}. (@bullet{})
4814 It is possible to use HMS forms as parts of error forms, intervals,
4815 modulo forms, or as the phase part of a polar complex number.
4816 For example, the @code{calc-time} command pushes the current time
4817 of day on the stack as an HMS/modulo form.
4819 @smallexample
4820 @group
4821 1:  17@@ 34' 45" mod 24@@ 0' 0"     1:  6@@ 22' 15" mod 24@@ 0' 0"
4822     .                                 .
4824     x time @key{RET}                        n
4825 @end group
4826 @end smallexample
4828 @noindent
4829 This calculation tells me it is six hours and 22 minutes until midnight.
4831 (@bullet{}) @strong{Exercise 11.}  A rule of thumb is that one year
4832 is about 
4833 @texline @math{\pi \times 10^7}
4834 @infoline @w{@expr{pi * 10^7}} 
4835 seconds.  What time will it be that many seconds from right now?
4836 @xref{Types Answer 11, 11}. (@bullet{})
4838 (@bullet{}) @strong{Exercise 12.}  You are preparing to order packaging
4839 for the CD release of the Extended Disco Version of @emph{Abbey Road}.
4840 You are told that the songs will actually be anywhere from 20 to 60
4841 seconds longer than the originals.  One CD can hold about 75 minutes
4842 of music.  Should you order single or double packages?
4843 @xref{Types Answer 12, 12}. (@bullet{})
4845 Another kind of data the Calculator can manipulate is numbers with
4846 @dfn{units}.  This isn't strictly a new data type; it's simply an
4847 application of algebraic expressions, where we use variables with
4848 suggestive names like @samp{cm} and @samp{in} to represent units
4849 like centimeters and inches.
4851 @smallexample
4852 @group
4853 1:  2 in        1:  5.08 cm      1:  0.027778 fath   1:  0.0508 m
4854     .               .                .                   .
4856     ' 2in @key{RET}       u c cm @key{RET}       u c fath @key{RET}        u b
4857 @end group
4858 @end smallexample
4860 @noindent
4861 We enter the quantity ``2 inches'' (actually an algebraic expression
4862 which means two times the variable @samp{in}), then we convert it
4863 first to centimeters, then to fathoms, then finally to ``base'' units,
4864 which in this case means meters.
4866 @smallexample
4867 @group
4868 1:  9 acre     1:  3 sqrt(acre)   1:  190.84 m   1:  190.84 m + 30 cm
4869     .              .                  .              .
4871  ' 9 acre @key{RET}      Q                  u s            ' $+30 cm @key{RET}
4873 @end group
4874 @end smallexample
4875 @noindent
4876 @smallexample
4877 @group
4878 1:  191.14 m     1:  36536.3046 m^2    1:  365363046 cm^2
4879     .                .                     .
4881     u s              2 ^                   u c cgs
4882 @end group
4883 @end smallexample
4885 @noindent
4886 Since units expressions are really just formulas, taking the square
4887 root of @samp{acre} is undefined.  After all, @code{acre} might be an
4888 algebraic variable that you will someday assign a value.  We use the
4889 ``units-simplify'' command to simplify the expression with variables
4890 being interpreted as unit names.
4892 In the final step, we have converted not to a particular unit, but to a
4893 units system.  The ``cgs'' system uses centimeters instead of meters
4894 as its standard unit of length.
4896 There is a wide variety of units defined in the Calculator.
4898 @smallexample
4899 @group
4900 1:  55 mph     1:  88.5139 kph   1:   88.5139 km / hr   1:  8.201407e-8 c
4901     .              .                  .                     .
4903  ' 55 mph @key{RET}      u c kph @key{RET}        u c km/hr @key{RET}         u c c @key{RET}
4904 @end group
4905 @end smallexample
4907 @noindent
4908 We express a speed first in miles per hour, then in kilometers per
4909 hour, then again using a slightly more explicit notation, then
4910 finally in terms of fractions of the speed of light.
4912 Temperature conversions are a bit more tricky.  There are two ways to
4913 interpret ``20 degrees Fahrenheit''---it could mean an actual
4914 temperature, or it could mean a change in temperature.  For normal
4915 units there is no difference, but temperature units have an offset
4916 as well as a scale factor and so there must be two explicit commands
4917 for them.
4919 @smallexample
4920 @group
4921 1:  20 degF       1:  11.1111 degC     1:  -20:3 degC    1:  -6.666 degC
4922     .                 .                    .                 .
4924   ' 20 degF @key{RET}       u c degC @key{RET}         U u t degC @key{RET}    c f
4925 @end group
4926 @end smallexample
4928 @noindent
4929 First we convert a change of 20 degrees Fahrenheit into an equivalent
4930 change in degrees Celsius (or Centigrade).  Then, we convert the
4931 absolute temperature 20 degrees Fahrenheit into Celsius.  Since
4932 this comes out as an exact fraction, we then convert to floating-point
4933 for easier comparison with the other result.
4935 For simple unit conversions, you can put a plain number on the stack.
4936 Then @kbd{u c} and @kbd{u t} will prompt for both old and new units.
4937 When you use this method, you're responsible for remembering which
4938 numbers are in which units:
4940 @smallexample
4941 @group
4942 1:  55         1:  88.5139              1:  8.201407e-8
4943     .              .                        .
4945     55             u c mph @key{RET} kph @key{RET}      u c km/hr @key{RET} c @key{RET}
4946 @end group
4947 @end smallexample
4949 To see a complete list of built-in units, type @kbd{u v}.  Press
4950 @w{@kbd{M-# c}} again to re-enter the Calculator when you're done looking
4951 at the units table.
4953 (@bullet{}) @strong{Exercise 13.}  How many seconds are there really
4954 in a year?  @xref{Types Answer 13, 13}. (@bullet{})
4956 @cindex Speed of light
4957 (@bullet{}) @strong{Exercise 14.}  Supercomputer designs are limited by
4958 the speed of light (and of electricity, which is nearly as fast).
4959 Suppose a computer has a 4.1 ns (nanosecond) clock cycle, and its
4960 cabinet is one meter across.  Is speed of light going to be a
4961 significant factor in its design?  @xref{Types Answer 14, 14}. (@bullet{})
4963 (@bullet{}) @strong{Exercise 15.}  Sam the Slug normally travels about
4964 five yards in an hour.  He has obtained a supply of Power Pills; each
4965 Power Pill he eats doubles his speed.  How many Power Pills can he
4966 swallow and still travel legally on most US highways?
4967 @xref{Types Answer 15, 15}. (@bullet{})
4969 @node Algebra Tutorial, Programming Tutorial, Types Tutorial, Tutorial
4970 @section Algebra and Calculus Tutorial
4972 @noindent
4973 This section shows how to use Calc's algebra facilities to solve
4974 equations, do simple calculus problems, and manipulate algebraic
4975 formulas.
4977 @menu
4978 * Basic Algebra Tutorial::
4979 * Rewrites Tutorial::
4980 @end menu
4982 @node Basic Algebra Tutorial, Rewrites Tutorial, Algebra Tutorial, Algebra Tutorial
4983 @subsection Basic Algebra
4985 @noindent
4986 If you enter a formula in Algebraic mode that refers to variables,
4987 the formula itself is pushed onto the stack.  You can manipulate
4988 formulas as regular data objects.
4990 @smallexample
4991 @group
4992 1:  2 x^2 - 6       1:  6 - 2 x^2       1:  (6 - 2 x^2) (3 x^2 + y)
4993     .                   .                   .
4995     ' 2x^2-6 @key{RET}        n                   ' 3x^2+y @key{RET} *
4996 @end group
4997 @end smallexample
4999 (@bullet{}) @strong{Exercise 1.}  Do @kbd{' x @key{RET} Q 2 ^} and
5000 @kbd{' x @key{RET} 2 ^ Q} both wind up with the same result (@samp{x})?
5001 Why or why not?  @xref{Algebra Answer 1, 1}. (@bullet{})
5003 There are also commands for doing common algebraic operations on
5004 formulas.  Continuing with the formula from the last example,
5006 @smallexample
5007 @group
5008 1:  18 x^2 + 6 y - 6 x^4 - 2 x^2 y    1:  (18 - 2 y) x^2 - 6 x^4 + 6 y
5009     .                                     .
5011     a x                                   a c x @key{RET}
5012 @end group
5013 @end smallexample
5015 @noindent
5016 First we ``expand'' using the distributive law, then we ``collect''
5017 terms involving like powers of @expr{x}.
5019 Let's find the value of this expression when @expr{x} is 2 and @expr{y}
5020 is one-half.
5022 @smallexample
5023 @group
5024 1:  17 x^2 - 6 x^4 + 3      1:  -25
5025     .                           .
5027     1:2 s l y @key{RET}               2 s l x @key{RET}
5028 @end group
5029 @end smallexample
5031 @noindent
5032 The @kbd{s l} command means ``let''; it takes a number from the top of
5033 the stack and temporarily assigns it as the value of the variable
5034 you specify.  It then evaluates (as if by the @kbd{=} key) the
5035 next expression on the stack.  After this command, the variable goes
5036 back to its original value, if any.
5038 (An earlier exercise in this tutorial involved storing a value in the
5039 variable @code{x}; if this value is still there, you will have to
5040 unstore it with @kbd{s u x @key{RET}} before the above example will work
5041 properly.)
5043 @cindex Maximum of a function using Calculus
5044 Let's find the maximum value of our original expression when @expr{y}
5045 is one-half and @expr{x} ranges over all possible values.  We can
5046 do this by taking the derivative with respect to @expr{x} and examining
5047 values of @expr{x} for which the derivative is zero.  If the second
5048 derivative of the function at that value of @expr{x} is negative,
5049 the function has a local maximum there.
5051 @smallexample
5052 @group
5053 1:  17 x^2 - 6 x^4 + 3      1:  34 x - 24 x^3
5054     .                           .
5056     U @key{DEL}  s 1                  a d x @key{RET}   s 2
5057 @end group
5058 @end smallexample
5060 @noindent
5061 Well, the derivative is clearly zero when @expr{x} is zero.  To find
5062 the other root(s), let's divide through by @expr{x} and then solve:
5064 @smallexample
5065 @group
5066 1:  (34 x - 24 x^3) / x    1:  34 x / x - 24 x^3 / x    1:  34 - 24 x^2
5067     .                          .                            .
5069     ' x @key{RET} /                  a x                          a s
5071 @end group
5072 @end smallexample
5073 @noindent
5074 @smallexample
5075 @group
5076 1:  34 - 24 x^2 = 0        1:  x = 1.19023
5077     .                          .
5079     0 a =  s 3                 a S x @key{RET}
5080 @end group
5081 @end smallexample
5083 @noindent
5084 Notice the use of @kbd{a s} to ``simplify'' the formula.  When the
5085 default algebraic simplifications don't do enough, you can use
5086 @kbd{a s} to tell Calc to spend more time on the job.
5088 Now we compute the second derivative and plug in our values of @expr{x}:
5090 @smallexample
5091 @group
5092 1:  1.19023        2:  1.19023         2:  1.19023
5093     .              1:  34 x - 24 x^3   1:  34 - 72 x^2
5094                        .                   .
5096     a .                r 2                 a d x @key{RET} s 4
5097 @end group
5098 @end smallexample
5100 @noindent
5101 (The @kbd{a .} command extracts just the righthand side of an equation.
5102 Another method would have been to use @kbd{v u} to unpack the equation
5103 @w{@samp{x = 1.19}} to @samp{x} and @samp{1.19}, then use @kbd{M-- M-2 @key{DEL}}
5104 to delete the @samp{x}.)
5106 @smallexample
5107 @group
5108 2:  34 - 72 x^2   1:  -68.         2:  34 - 72 x^2     1:  34
5109 1:  1.19023           .            1:  0                   .
5110     .                                  .
5112     @key{TAB}               s l x @key{RET}        U @key{DEL} 0             s l x @key{RET}
5113 @end group
5114 @end smallexample
5116 @noindent
5117 The first of these second derivatives is negative, so we know the function
5118 has a maximum value at @expr{x = 1.19023}.  (The function also has a
5119 local @emph{minimum} at @expr{x = 0}.)
5121 When we solved for @expr{x}, we got only one value even though
5122 @expr{34 - 24 x^2 = 0} is a quadratic equation that ought to have
5123 two solutions.  The reason is that @w{@kbd{a S}} normally returns a
5124 single ``principal'' solution.  If it needs to come up with an
5125 arbitrary sign (as occurs in the quadratic formula) it picks @expr{+}.
5126 If it needs an arbitrary integer, it picks zero.  We can get a full
5127 solution by pressing @kbd{H} (the Hyperbolic flag) before @kbd{a S}.
5129 @smallexample
5130 @group
5131 1:  34 - 24 x^2 = 0    1:  x = 1.19023 s1      1:  x = -1.19023
5132     .                      .                       .
5134     r 3                    H a S x @key{RET}  s 5        1 n  s l s1 @key{RET}
5135 @end group
5136 @end smallexample
5138 @noindent
5139 Calc has invented the variable @samp{s1} to represent an unknown sign;
5140 it is supposed to be either @mathit{+1} or @mathit{-1}.  Here we have used
5141 the ``let'' command to evaluate the expression when the sign is negative.
5142 If we plugged this into our second derivative we would get the same,
5143 negative, answer, so @expr{x = -1.19023} is also a maximum.
5145 To find the actual maximum value, we must plug our two values of @expr{x}
5146 into the original formula.
5148 @smallexample
5149 @group
5150 2:  17 x^2 - 6 x^4 + 3    1:  24.08333 s1^2 - 12.04166 s1^4 + 3
5151 1:  x = 1.19023 s1            .
5152     .
5154     r 1 r 5                   s l @key{RET}
5155 @end group
5156 @end smallexample
5158 @noindent
5159 (Here we see another way to use @kbd{s l}; if its input is an equation
5160 with a variable on the lefthand side, then @kbd{s l} treats the equation
5161 like an assignment to that variable if you don't give a variable name.)
5163 It's clear that this will have the same value for either sign of
5164 @code{s1}, but let's work it out anyway, just for the exercise:
5166 @smallexample
5167 @group
5168 2:  [-1, 1]              1:  [15.04166, 15.04166]
5169 1:  24.08333 s1^2 ...        .
5170     .
5172   [ 1 n , 1 ] @key{TAB}            V M $ @key{RET}
5173 @end group
5174 @end smallexample
5176 @noindent
5177 Here we have used a vector mapping operation to evaluate the function
5178 at several values of @samp{s1} at once.  @kbd{V M $} is like @kbd{V M '}
5179 except that it takes the formula from the top of the stack.  The
5180 formula is interpreted as a function to apply across the vector at the
5181 next-to-top stack level.  Since a formula on the stack can't contain
5182 @samp{$} signs, Calc assumes the variables in the formula stand for
5183 different arguments.  It prompts you for an @dfn{argument list}, giving
5184 the list of all variables in the formula in alphabetical order as the
5185 default list.  In this case the default is @samp{(s1)}, which is just
5186 what we want so we simply press @key{RET} at the prompt.
5188 If there had been several different values, we could have used
5189 @w{@kbd{V R X}} to find the global maximum.
5191 Calc has a built-in @kbd{a P} command that solves an equation using
5192 @w{@kbd{H a S}} and returns a vector of all the solutions.  It simply
5193 automates the job we just did by hand.  Applied to our original
5194 cubic polynomial, it would produce the vector of solutions
5195 @expr{[1.19023, -1.19023, 0]}.  (There is also an @kbd{a X} command
5196 which finds a local maximum of a function.  It uses a numerical search
5197 method rather than examining the derivatives, and thus requires you
5198 to provide some kind of initial guess to show it where to look.)
5200 (@bullet{}) @strong{Exercise 2.}  Given a vector of the roots of a
5201 polynomial (such as the output of an @kbd{a P} command), what
5202 sequence of commands would you use to reconstruct the original
5203 polynomial?  (The answer will be unique to within a constant
5204 multiple; choose the solution where the leading coefficient is one.)
5205 @xref{Algebra Answer 2, 2}. (@bullet{})
5207 The @kbd{m s} command enables Symbolic mode, in which formulas
5208 like @samp{sqrt(5)} that can't be evaluated exactly are left in
5209 symbolic form rather than giving a floating-point approximate answer.
5210 Fraction mode (@kbd{m f}) is also useful when doing algebra.
5212 @smallexample
5213 @group
5214 2:  34 x - 24 x^3        2:  34 x - 24 x^3
5215 1:  34 x - 24 x^3        1:  [sqrt(51) / 6, sqrt(51) / -6, 0]
5216     .                        .
5218     r 2  @key{RET}     m s  m f    a P x @key{RET}
5219 @end group
5220 @end smallexample
5222 One more mode that makes reading formulas easier is Big mode.
5224 @smallexample
5225 @group
5226                3
5227 2:  34 x - 24 x
5229       ____   ____
5230      V 51   V 51
5231 1:  [-----, -----, 0]
5232        6     -6
5234     .
5236     d B
5237 @end group
5238 @end smallexample
5240 Here things like powers, square roots, and quotients and fractions
5241 are displayed in a two-dimensional pictorial form.  Calc has other
5242 language modes as well, such as C mode, FORTRAN mode, @TeX{} mode
5243 and La@TeX{} mode.
5245 @smallexample
5246 @group
5247 2:  34*x - 24*pow(x, 3)               2:  34*x - 24*x**3
5248 1:  @{sqrt(51) / 6, sqrt(51) / -6, 0@}  1:  /sqrt(51) / 6, sqrt(51) / -6, 0/
5249     .                                     .
5251     d C                                   d F
5253 @end group
5254 @end smallexample
5255 @noindent
5256 @smallexample
5257 @group
5258 3:  34 x - 24 x^3
5259 2:  [@{\sqrt@{51@} \over 6@}, @{\sqrt@{51@} \over -6@}, 0]
5260 1:  @{2 \over 3@} \sqrt@{5@}
5261     .
5263     d T   ' 2 \sqrt@{5@} \over 3 @key{RET}
5264 @end group
5265 @end smallexample
5267 @noindent
5268 As you can see, language modes affect both entry and display of
5269 formulas.  They affect such things as the names used for built-in
5270 functions, the set of arithmetic operators and their precedences,
5271 and notations for vectors and matrices.
5273 Notice that @samp{sqrt(51)} may cause problems with older
5274 implementations of C and FORTRAN, which would require something more
5275 like @samp{sqrt(51.0)}.  It is always wise to check over the formulas
5276 produced by the various language modes to make sure they are fully
5277 correct.
5279 Type @kbd{m s}, @kbd{m f}, and @kbd{d N} to reset these modes.  (You
5280 may prefer to remain in Big mode, but all the examples in the tutorial
5281 are shown in normal mode.)
5283 @cindex Area under a curve
5284 What is the area under the portion of this curve from @expr{x = 1} to @expr{2}?
5285 This is simply the integral of the function:
5287 @smallexample
5288 @group
5289 1:  17 x^2 - 6 x^4 + 3     1:  5.6666 x^3 - 1.2 x^5 + 3 x
5290     .                          .
5292     r 1                        a i x
5293 @end group
5294 @end smallexample
5296 @noindent
5297 We want to evaluate this at our two values for @expr{x} and subtract.
5298 One way to do it is again with vector mapping and reduction:
5300 @smallexample
5301 @group
5302 2:  [2, 1]            1:  [12.93333, 7.46666]    1:  5.46666
5303 1:  5.6666 x^3 ...        .                          .
5305    [ 2 , 1 ] @key{TAB}          V M $ @key{RET}                  V R -
5306 @end group
5307 @end smallexample
5309 (@bullet{}) @strong{Exercise 3.}  Find the integral from 1 to @expr{y}
5310 of 
5311 @texline @math{x \sin \pi x}
5312 @infoline @w{@expr{x sin(pi x)}} 
5313 (where the sine is calculated in radians).  Find the values of the
5314 integral for integers @expr{y} from 1 to 5.  @xref{Algebra Answer 3,
5315 3}. (@bullet{})
5317 Calc's integrator can do many simple integrals symbolically, but many
5318 others are beyond its capabilities.  Suppose we wish to find the area
5319 under the curve 
5320 @texline @math{\sin x \ln x}
5321 @infoline @expr{sin(x) ln(x)} 
5322 over the same range of @expr{x}.  If you entered this formula and typed
5323 @kbd{a i x @key{RET}} (don't bother to try this), Calc would work for a
5324 long time but would be unable to find a solution.  In fact, there is no
5325 closed-form solution to this integral.  Now what do we do?
5327 @cindex Integration, numerical
5328 @cindex Numerical integration
5329 One approach would be to do the integral numerically.  It is not hard
5330 to do this by hand using vector mapping and reduction.  It is rather
5331 slow, though, since the sine and logarithm functions take a long time.
5332 We can save some time by reducing the working precision.
5334 @smallexample
5335 @group
5336 3:  10                  1:  [1, 1.1, 1.2,  ...  , 1.8, 1.9]
5337 2:  1                       .
5338 1:  0.1
5339     .
5341  10 @key{RET} 1 @key{RET} .1 @key{RET}        C-u v x
5342 @end group
5343 @end smallexample
5345 @noindent
5346 (Note that we have used the extended version of @kbd{v x}; we could
5347 also have used plain @kbd{v x} as follows:  @kbd{v x 10 @key{RET} 9 + .1 *}.)
5349 @smallexample
5350 @group
5351 2:  [1, 1.1, ... ]              1:  [0., 0.084941, 0.16993, ... ]
5352 1:  sin(x) ln(x)                    .
5353     .
5355     ' sin(x) ln(x) @key{RET}  s 1    m r  p 5 @key{RET}   V M $ @key{RET}
5357 @end group
5358 @end smallexample
5359 @noindent
5360 @smallexample
5361 @group
5362 1:  3.4195     0.34195
5363     .          .
5365     V R +      0.1 *
5366 @end group
5367 @end smallexample
5369 @noindent
5370 (If you got wildly different results, did you remember to switch
5371 to Radians mode?)
5373 Here we have divided the curve into ten segments of equal width;
5374 approximating these segments as rectangular boxes (i.e., assuming
5375 the curve is nearly flat at that resolution), we compute the areas
5376 of the boxes (height times width), then sum the areas.  (It is
5377 faster to sum first, then multiply by the width, since the width
5378 is the same for every box.)
5380 The true value of this integral turns out to be about 0.374, so
5381 we're not doing too well.  Let's try another approach.
5383 @smallexample
5384 @group
5385 1:  sin(x) ln(x)    1:  0.84147 x - 0.84147 + 0.11957 (x - 1)^2 - ...
5386     .                   .
5388     r 1                 a t x=1 @key{RET} 4 @key{RET}
5389 @end group
5390 @end smallexample
5392 @noindent
5393 Here we have computed the Taylor series expansion of the function
5394 about the point @expr{x=1}.  We can now integrate this polynomial
5395 approximation, since polynomials are easy to integrate.
5397 @smallexample
5398 @group
5399 1:  0.42074 x^2 + ...    1:  [-0.0446, -0.42073]      1:  0.3761
5400     .                        .                            .
5402     a i x @key{RET}            [ 2 , 1 ] @key{TAB}  V M $ @key{RET}         V R -
5403 @end group
5404 @end smallexample
5406 @noindent
5407 Better!  By increasing the precision and/or asking for more terms
5408 in the Taylor series, we can get a result as accurate as we like.
5409 (Taylor series converge better away from singularities in the
5410 function such as the one at @code{ln(0)}, so it would also help to
5411 expand the series about the points @expr{x=2} or @expr{x=1.5} instead
5412 of @expr{x=1}.)
5414 @cindex Simpson's rule
5415 @cindex Integration by Simpson's rule
5416 (@bullet{}) @strong{Exercise 4.}  Our first method approximated the
5417 curve by stairsteps of width 0.1; the total area was then the sum
5418 of the areas of the rectangles under these stairsteps.  Our second
5419 method approximated the function by a polynomial, which turned out
5420 to be a better approximation than stairsteps.  A third method is
5421 @dfn{Simpson's rule}, which is like the stairstep method except
5422 that the steps are not required to be flat.  Simpson's rule boils
5423 down to the formula,
5425 @ifinfo
5426 @example
5427 (h/3) * (f(a) + 4 f(a+h) + 2 f(a+2h) + 4 f(a+3h) + ...
5428               + 2 f(a+(n-2)*h) + 4 f(a+(n-1)*h) + f(a+n*h))
5429 @end example
5430 @end ifinfo
5431 @tex
5432 \turnoffactive
5433 \beforedisplay
5434 $$ \displaylines{
5435       \qquad {h \over 3} (f(a) + 4 f(a+h) + 2 f(a+2h) + 4 f(a+3h) + \cdots
5436    \hfill \cr \hfill    {} + 2 f(a+(n-2)h) + 4 f(a+(n-1)h) + f(a+n h)) \qquad
5437 } $$
5438 \afterdisplay
5439 @end tex
5441 @noindent
5442 where @expr{n} (which must be even) is the number of slices and @expr{h}
5443 is the width of each slice.  These are 10 and 0.1 in our example.
5444 For reference, here is the corresponding formula for the stairstep
5445 method:
5447 @ifinfo
5448 @example
5449 h * (f(a) + f(a+h) + f(a+2h) + f(a+3h) + ...
5450           + f(a+(n-2)*h) + f(a+(n-1)*h))
5451 @end example
5452 @end ifinfo
5453 @tex
5454 \turnoffactive
5455 \beforedisplay
5456 $$ h (f(a) + f(a+h) + f(a+2h) + f(a+3h) + \cdots
5457            + f(a+(n-2)h) + f(a+(n-1)h)) $$
5458 \afterdisplay
5459 @end tex
5461 Compute the integral from 1 to 2 of 
5462 @texline @math{\sin x \ln x}
5463 @infoline @expr{sin(x) ln(x)} 
5464 using Simpson's rule with 10 slices.  
5465 @xref{Algebra Answer 4, 4}. (@bullet{})
5467 Calc has a built-in @kbd{a I} command for doing numerical integration.
5468 It uses @dfn{Romberg's method}, which is a more sophisticated cousin
5469 of Simpson's rule.  In particular, it knows how to keep refining the
5470 result until the current precision is satisfied.
5472 @c [fix-ref Selecting Sub-Formulas]
5473 Aside from the commands we've seen so far, Calc also provides a
5474 large set of commands for operating on parts of formulas.  You
5475 indicate the desired sub-formula by placing the cursor on any part
5476 of the formula before giving a @dfn{selection} command.  Selections won't
5477 be covered in the tutorial; @pxref{Selecting Subformulas}, for
5478 details and examples.
5480 @c hard exercise: simplify (2^(n r) - 2^(r*(n - 1))) / (2^r - 1) 2^(n - 1)
5481 @c                to 2^((n-1)*(r-1)).
5483 @node Rewrites Tutorial, , Basic Algebra Tutorial, Algebra Tutorial
5484 @subsection Rewrite Rules
5486 @noindent
5487 No matter how many built-in commands Calc provided for doing algebra,
5488 there would always be something you wanted to do that Calc didn't have
5489 in its repertoire.  So Calc also provides a @dfn{rewrite rule} system
5490 that you can use to define your own algebraic manipulations.
5492 Suppose we want to simplify this trigonometric formula:
5494 @smallexample
5495 @group
5496 1:  1 / cos(x) - sin(x) tan(x)
5497     .
5499     ' 1/cos(x) - sin(x) tan(x) @key{RET}   s 1
5500 @end group
5501 @end smallexample
5503 @noindent
5504 If we were simplifying this by hand, we'd probably replace the
5505 @samp{tan} with a @samp{sin/cos} first, then combine over a common
5506 denominator.  There is no Calc command to do the former; the @kbd{a n}
5507 algebra command will do the latter but we'll do both with rewrite
5508 rules just for practice.
5510 Rewrite rules are written with the @samp{:=} symbol.
5512 @smallexample
5513 @group
5514 1:  1 / cos(x) - sin(x)^2 / cos(x)
5515     .
5517     a r tan(a) := sin(a)/cos(a) @key{RET}
5518 @end group
5519 @end smallexample
5521 @noindent
5522 (The ``assignment operator'' @samp{:=} has several uses in Calc.  All
5523 by itself the formula @samp{tan(a) := sin(a)/cos(a)} doesn't do anything,
5524 but when it is given to the @kbd{a r} command, that command interprets
5525 it as a rewrite rule.)
5527 The lefthand side, @samp{tan(a)}, is called the @dfn{pattern} of the
5528 rewrite rule.  Calc searches the formula on the stack for parts that
5529 match the pattern.  Variables in a rewrite pattern are called
5530 @dfn{meta-variables}, and when matching the pattern each meta-variable
5531 can match any sub-formula.  Here, the meta-variable @samp{a} matched
5532 the actual variable @samp{x}.
5534 When the pattern part of a rewrite rule matches a part of the formula,
5535 that part is replaced by the righthand side with all the meta-variables
5536 substituted with the things they matched.  So the result is
5537 @samp{sin(x) / cos(x)}.  Calc's normal algebraic simplifications then
5538 mix this in with the rest of the original formula.
5540 To merge over a common denominator, we can use another simple rule:
5542 @smallexample
5543 @group
5544 1:  (1 - sin(x)^2) / cos(x)
5545     .
5547     a r a/x + b/x := (a+b)/x @key{RET}
5548 @end group
5549 @end smallexample
5551 This rule points out several interesting features of rewrite patterns.
5552 First, if a meta-variable appears several times in a pattern, it must
5553 match the same thing everywhere.  This rule detects common denominators
5554 because the same meta-variable @samp{x} is used in both of the
5555 denominators.
5557 Second, meta-variable names are independent from variables in the
5558 target formula.  Notice that the meta-variable @samp{x} here matches
5559 the subformula @samp{cos(x)}; Calc never confuses the two meanings of
5560 @samp{x}.
5562 And third, rewrite patterns know a little bit about the algebraic
5563 properties of formulas.  The pattern called for a sum of two quotients;
5564 Calc was able to match a difference of two quotients by matching
5565 @samp{a = 1}, @samp{b = -sin(x)^2}, and @samp{x = cos(x)}.
5567 @c [fix-ref Algebraic Properties of Rewrite Rules]
5568 We could just as easily have written @samp{a/x - b/x := (a-b)/x} for
5569 the rule.  It would have worked just the same in all cases.  (If we
5570 really wanted the rule to apply only to @samp{+} or only to @samp{-},
5571 we could have used the @code{plain} symbol.  @xref{Algebraic Properties
5572 of Rewrite Rules}, for some examples of this.)
5574 One more rewrite will complete the job.  We want to use the identity
5575 @samp{sin(x)^2 + cos(x)^2 = 1}, but of course we must first rearrange
5576 the identity in a way that matches our formula.  The obvious rule
5577 would be @samp{@w{1 - sin(x)^2} := cos(x)^2}, but a little thought shows
5578 that the rule @samp{sin(x)^2 := 1 - cos(x)^2} will also work.  The
5579 latter rule has a more general pattern so it will work in many other
5580 situations, too.
5582 @smallexample
5583 @group
5584 1:  (1 + cos(x)^2 - 1) / cos(x)           1:  cos(x)
5585     .                                         .
5587     a r sin(x)^2 := 1 - cos(x)^2 @key{RET}          a s
5588 @end group
5589 @end smallexample
5591 You may ask, what's the point of using the most general rule if you
5592 have to type it in every time anyway?  The answer is that Calc allows
5593 you to store a rewrite rule in a variable, then give the variable
5594 name in the @kbd{a r} command.  In fact, this is the preferred way to
5595 use rewrites.  For one, if you need a rule once you'll most likely
5596 need it again later.  Also, if the rule doesn't work quite right you
5597 can simply Undo, edit the variable, and run the rule again without
5598 having to retype it.
5600 @smallexample
5601 @group
5602 ' tan(x) := sin(x)/cos(x) @key{RET}      s t tsc @key{RET}
5603 ' a/x + b/x := (a+b)/x @key{RET}         s t merge @key{RET}
5604 ' sin(x)^2 := 1 - cos(x)^2 @key{RET}     s t sinsqr @key{RET}
5606 1:  1 / cos(x) - sin(x) tan(x)     1:  cos(x)
5607     .                                  .
5609     r 1                a r tsc @key{RET}  a r merge @key{RET}  a r sinsqr @key{RET}  a s
5610 @end group
5611 @end smallexample
5613 To edit a variable, type @kbd{s e} and the variable name, use regular
5614 Emacs editing commands as necessary, then type @kbd{C-c C-c} to store
5615 the edited value back into the variable. 
5616 You can also use @w{@kbd{s e}} to create a new variable if you wish.
5618 Notice that the first time you use each rule, Calc puts up a ``compiling''
5619 message briefly.  The pattern matcher converts rules into a special
5620 optimized pattern-matching language rather than using them directly.
5621 This allows @kbd{a r} to apply even rather complicated rules very
5622 efficiently.  If the rule is stored in a variable, Calc compiles it
5623 only once and stores the compiled form along with the variable.  That's
5624 another good reason to store your rules in variables rather than
5625 entering them on the fly.
5627 (@bullet{}) @strong{Exercise 1.}  Type @kbd{m s} to get Symbolic
5628 mode, then enter the formula @samp{@w{(2 + sqrt(2))} / @w{(1 + sqrt(2))}}.
5629 Using a rewrite rule, simplify this formula by multiplying the top and
5630 bottom by the conjugate @w{@samp{1 - sqrt(2)}}.  The result will have
5631 to be expanded by the distributive law; do this with another
5632 rewrite.  @xref{Rewrites Answer 1, 1}. (@bullet{})
5634 The @kbd{a r} command can also accept a vector of rewrite rules, or
5635 a variable containing a vector of rules.
5637 @smallexample
5638 @group
5639 1:  [tsc, merge, sinsqr]          1:  [tan(x) := sin(x) / cos(x), ... ]
5640     .                                 .
5642     ' [tsc,merge,sinsqr] @key{RET}          =
5644 @end group
5645 @end smallexample
5646 @noindent
5647 @smallexample
5648 @group
5649 1:  1 / cos(x) - sin(x) tan(x)    1:  cos(x)
5650     .                                 .
5652     s t trig @key{RET}  r 1                 a r trig @key{RET}  a s
5653 @end group
5654 @end smallexample
5656 @c [fix-ref Nested Formulas with Rewrite Rules]
5657 Calc tries all the rules you give against all parts of the formula,
5658 repeating until no further change is possible.  (The exact order in
5659 which things are tried is rather complex, but for simple rules like
5660 the ones we've used here the order doesn't really matter.
5661 @xref{Nested Formulas with Rewrite Rules}.)
5663 Calc actually repeats only up to 100 times, just in case your rule set
5664 has gotten into an infinite loop.  You can give a numeric prefix argument
5665 to @kbd{a r} to specify any limit.  In particular, @kbd{M-1 a r} does
5666 only one rewrite at a time.
5668 @smallexample
5669 @group
5670 1:  1 / cos(x) - sin(x)^2 / cos(x)    1:  (1 - sin(x)^2) / cos(x)
5671     .                                     .
5673     r 1  M-1 a r trig @key{RET}                 M-1 a r trig @key{RET}
5674 @end group
5675 @end smallexample
5677 You can type @kbd{M-0 a r} if you want no limit at all on the number
5678 of rewrites that occur.
5680 Rewrite rules can also be @dfn{conditional}.  Simply follow the rule
5681 with a @samp{::} symbol and the desired condition.  For example,
5683 @smallexample
5684 @group
5685 1:  exp(2 pi i) + exp(3 pi i) + exp(4 pi i)
5686     .
5688     ' exp(2 pi i) + exp(3 pi i) + exp(4 pi i) @key{RET}
5690 @end group
5691 @end smallexample
5692 @noindent
5693 @smallexample
5694 @group
5695 1:  1 + exp(3 pi i) + 1
5696     .
5698     a r exp(k pi i) := 1 :: k % 2 = 0 @key{RET}
5699 @end group
5700 @end smallexample
5702 @noindent
5703 (Recall, @samp{k % 2} is the remainder from dividing @samp{k} by 2,
5704 which will be zero only when @samp{k} is an even integer.)
5706 An interesting point is that the variables @samp{pi} and @samp{i}
5707 were matched literally rather than acting as meta-variables.
5708 This is because they are special-constant variables.  The special
5709 constants @samp{e}, @samp{phi}, and so on also match literally.
5710 A common error with rewrite
5711 rules is to write, say, @samp{f(a,b,c,d,e) := g(a+b+c+d+e)}, expecting
5712 to match any @samp{f} with five arguments but in fact matching
5713 only when the fifth argument is literally @samp{e}!
5715 @cindex Fibonacci numbers
5716 @ignore
5717 @starindex
5718 @end ignore
5719 @tindex fib
5720 Rewrite rules provide an interesting way to define your own functions.
5721 Suppose we want to define @samp{fib(n)} to produce the @var{n}th
5722 Fibonacci number.  The first two Fibonacci numbers are each 1;
5723 later numbers are formed by summing the two preceding numbers in
5724 the sequence.  This is easy to express in a set of three rules:
5726 @smallexample
5727 @group
5728 ' [fib(1) := 1, fib(2) := 1, fib(n) := fib(n-1) + fib(n-2)] @key{RET}  s t fib
5730 1:  fib(7)               1:  13
5731     .                        .
5733     ' fib(7) @key{RET}             a r fib @key{RET}
5734 @end group
5735 @end smallexample
5737 One thing that is guaranteed about the order that rewrites are tried
5738 is that, for any given subformula, earlier rules in the rule set will
5739 be tried for that subformula before later ones.  So even though the
5740 first and third rules both match @samp{fib(1)}, we know the first will
5741 be used preferentially.
5743 This rule set has one dangerous bug:  Suppose we apply it to the
5744 formula @samp{fib(x)}?  (Don't actually try this.)  The third rule
5745 will match @samp{fib(x)} and replace it with @w{@samp{fib(x-1) + fib(x-2)}}.
5746 Each of these will then be replaced to get @samp{fib(x-2) + 2 fib(x-3) +
5747 fib(x-4)}, and so on, expanding forever.  What we really want is to apply
5748 the third rule only when @samp{n} is an integer greater than two.  Type
5749 @w{@kbd{s e fib @key{RET}}}, then edit the third rule to:
5751 @smallexample
5752 fib(n) := fib(n-1) + fib(n-2) :: integer(n) :: n > 2
5753 @end smallexample
5755 @noindent
5756 Now:
5758 @smallexample
5759 @group
5760 1:  fib(6) + fib(x) + fib(0)      1:  8 + fib(x) + fib(0)
5761     .                                 .
5763     ' fib(6)+fib(x)+fib(0) @key{RET}        a r fib @key{RET}
5764 @end group
5765 @end smallexample
5767 @noindent
5768 We've created a new function, @code{fib}, and a new command,
5769 @w{@kbd{a r fib @key{RET}}}, which means ``evaluate all @code{fib} calls in
5770 this formula.''  To make things easier still, we can tell Calc to
5771 apply these rules automatically by storing them in the special
5772 variable @code{EvalRules}.
5774 @smallexample
5775 @group
5776 1:  [fib(1) := ...]    .                1:  [8, 13]
5777     .                                       .
5779     s r fib @key{RET}        s t EvalRules @key{RET}    ' [fib(6), fib(7)] @key{RET}
5780 @end group
5781 @end smallexample
5783 It turns out that this rule set has the problem that it does far
5784 more work than it needs to when @samp{n} is large.  Consider the
5785 first few steps of the computation of @samp{fib(6)}:
5787 @smallexample
5788 @group
5789 fib(6) =
5790 fib(5)              +               fib(4) =
5791 fib(4)     +      fib(3)     +      fib(3)     +      fib(2) =
5792 fib(3) + fib(2) + fib(2) + fib(1) + fib(2) + fib(1) + 1 = ...
5793 @end group
5794 @end smallexample
5796 @noindent
5797 Note that @samp{fib(3)} appears three times here.  Unless Calc's
5798 algebraic simplifier notices the multiple @samp{fib(3)}s and combines
5799 them (and, as it happens, it doesn't), this rule set does lots of
5800 needless recomputation.  To cure the problem, type @code{s e EvalRules}
5801 to edit the rules (or just @kbd{s E}, a shorthand command for editing
5802 @code{EvalRules}) and add another condition:
5804 @smallexample
5805 fib(n) := fib(n-1) + fib(n-2) :: integer(n) :: n > 2 :: remember
5806 @end smallexample
5808 @noindent
5809 If a @samp{:: remember} condition appears anywhere in a rule, then if
5810 that rule succeeds Calc will add another rule that describes that match
5811 to the front of the rule set.  (Remembering works in any rule set, but
5812 for technical reasons it is most effective in @code{EvalRules}.)  For
5813 example, if the rule rewrites @samp{fib(7)} to something that evaluates
5814 to 13, then the rule @samp{fib(7) := 13} will be added to the rule set.
5816 Type @kbd{' fib(8) @key{RET}} to compute the eighth Fibonacci number, then
5817 type @kbd{s E} again to see what has happened to the rule set.
5819 With the @code{remember} feature, our rule set can now compute
5820 @samp{fib(@var{n})} in just @var{n} steps.  In the process it builds
5821 up a table of all Fibonacci numbers up to @var{n}.  After we have
5822 computed the result for a particular @var{n}, we can get it back
5823 (and the results for all smaller @var{n}) later in just one step.
5825 All Calc operations will run somewhat slower whenever @code{EvalRules}
5826 contains any rules.  You should type @kbd{s u EvalRules @key{RET}} now to
5827 un-store the variable.
5829 (@bullet{}) @strong{Exercise 2.}  Sometimes it is possible to reformulate
5830 a problem to reduce the amount of recursion necessary to solve it.
5831 Create a rule that, in about @var{n} simple steps and without recourse
5832 to the @code{remember} option, replaces @samp{fib(@var{n}, 1, 1)} with
5833 @samp{fib(1, @var{x}, @var{y})} where @var{x} and @var{y} are the
5834 @var{n}th and @var{n+1}st Fibonacci numbers, respectively.  This rule is
5835 rather clunky to use, so add a couple more rules to make the ``user
5836 interface'' the same as for our first version: enter @samp{fib(@var{n})},
5837 get back a plain number.  @xref{Rewrites Answer 2, 2}. (@bullet{})
5839 There are many more things that rewrites can do.  For example, there
5840 are @samp{&&&} and @samp{|||} pattern operators that create ``and''
5841 and ``or'' combinations of rules.  As one really simple example, we
5842 could combine our first two Fibonacci rules thusly:
5844 @example
5845 [fib(1 ||| 2) := 1, fib(n) := ... ]
5846 @end example
5848 @noindent
5849 That means ``@code{fib} of something matching either 1 or 2 rewrites
5850 to 1.''
5852 You can also make meta-variables optional by enclosing them in @code{opt}.
5853 For example, the pattern @samp{a + b x} matches @samp{2 + 3 x} but not
5854 @samp{2 + x} or @samp{3 x} or @samp{x}.  The pattern @samp{opt(a) + opt(b) x}
5855 matches all of these forms, filling in a default of zero for @samp{a}
5856 and one for @samp{b}.
5858 (@bullet{}) @strong{Exercise 3.}  Your friend Joe had @samp{2 + 3 x}
5859 on the stack and tried to use the rule
5860 @samp{opt(a) + opt(b) x := f(a, b, x)}.  What happened?
5861 @xref{Rewrites Answer 3, 3}. (@bullet{})
5863 (@bullet{}) @strong{Exercise 4.}  Starting with a positive integer @expr{a},
5864 divide @expr{a} by two if it is even, otherwise compute @expr{3 a + 1}.
5865 Now repeat this step over and over.  A famous unproved conjecture
5866 is that for any starting @expr{a}, the sequence always eventually
5867 reaches 1.  Given the formula @samp{seq(@var{a}, 0)}, write a set of
5868 rules that convert this into @samp{seq(1, @var{n})} where @var{n}
5869 is the number of steps it took the sequence to reach the value 1.
5870 Now enhance the rules to accept @samp{seq(@var{a})} as a starting
5871 configuration, and to stop with just the number @var{n} by itself.
5872 Now make the result be a vector of values in the sequence, from @var{a}
5873 to 1.  (The formula @samp{@var{x}|@var{y}} appends the vectors @var{x}
5874 and @var{y}.)  For example, rewriting @samp{seq(6)} should yield the
5875 vector @expr{[6, 3, 10, 5, 16, 8, 4, 2, 1]}.
5876 @xref{Rewrites Answer 4, 4}. (@bullet{})
5878 (@bullet{}) @strong{Exercise 5.}  Define, using rewrite rules, a function
5879 @samp{nterms(@var{x})} that returns the number of terms in the sum
5880 @var{x}, or 1 if @var{x} is not a sum.  (A @dfn{sum} for our purposes
5881 is one or more non-sum terms separated by @samp{+} or @samp{-} signs,
5882 so that @expr{2 - 3 (x + y) + x y} is a sum of three terms.)
5883 @xref{Rewrites Answer 5, 5}. (@bullet{})
5885 (@bullet{}) @strong{Exercise 6.}  A Taylor series for a function is an
5886 infinite series that exactly equals the value of that function at
5887 values of @expr{x} near zero.
5889 @ifinfo
5890 @example
5891 cos(x) = 1 - x^2 / 2! + x^4 / 4! - x^6 / 6! + ...
5892 @end example
5893 @end ifinfo
5894 @tex
5895 \turnoffactive
5896 \beforedisplay
5897 $$ \cos x = 1 - {x^2 \over 2!} + {x^4 \over 4!} - {x^6 \over 6!} + \cdots $$
5898 \afterdisplay
5899 @end tex
5901 The @kbd{a t} command produces a @dfn{truncated Taylor series} which
5902 is obtained by dropping all the terms higher than, say, @expr{x^2}.
5903 Calc represents the truncated Taylor series as a polynomial in @expr{x}.
5904 Mathematicians often write a truncated series using a ``big-O'' notation
5905 that records what was the lowest term that was truncated.
5907 @ifinfo
5908 @example
5909 cos(x) = 1 - x^2 / 2! + O(x^3)
5910 @end example
5911 @end ifinfo
5912 @tex
5913 \turnoffactive
5914 \beforedisplay
5915 $$ \cos x = 1 - {x^2 \over 2!} + O(x^3) $$
5916 \afterdisplay
5917 @end tex
5919 @noindent
5920 The meaning of @expr{O(x^3)} is ``a quantity which is negligibly small
5921 if @expr{x^3} is considered negligibly small as @expr{x} goes to zero.''
5923 The exercise is to create rewrite rules that simplify sums and products of
5924 power series represented as @samp{@var{polynomial} + O(@var{var}^@var{n})}.
5925 For example, given @samp{1 - x^2 / 2 + O(x^3)} and @samp{x - x^3 / 6 + O(x^4)}
5926 on the stack, we want to be able to type @kbd{*} and get the result
5927 @samp{x - 2:3 x^3 + O(x^4)}.  Don't worry if the terms of the sum are
5928 rearranged or if @kbd{a s} needs to be typed after rewriting.  (This one
5929 is rather tricky; the solution at the end of this chapter uses 6 rewrite
5930 rules.  Hint:  The @samp{constant(x)} condition tests whether @samp{x} is
5931 a number.)  @xref{Rewrites Answer 6, 6}. (@bullet{})
5933 Just for kicks, try adding the rule @code{2+3 := 6} to @code{EvalRules}.
5934 What happens?  (Be sure to remove this rule afterward, or you might get
5935 a nasty surprise when you use Calc to balance your checkbook!)
5937 @xref{Rewrite Rules}, for the whole story on rewrite rules.
5939 @node Programming Tutorial, Answers to Exercises, Algebra Tutorial, Tutorial
5940 @section Programming Tutorial
5942 @noindent
5943 The Calculator is written entirely in Emacs Lisp, a highly extensible
5944 language.  If you know Lisp, you can program the Calculator to do
5945 anything you like.  Rewrite rules also work as a powerful programming
5946 system.  But Lisp and rewrite rules take a while to master, and often
5947 all you want to do is define a new function or repeat a command a few
5948 times.  Calc has features that allow you to do these things easily.
5950 One very limited form of programming is defining your own functions.
5951 Calc's @kbd{Z F} command allows you to define a function name and
5952 key sequence to correspond to any formula.  Programming commands use
5953 the shift-@kbd{Z} prefix; the user commands they create use the lower
5954 case @kbd{z} prefix.
5956 @smallexample
5957 @group
5958 1:  1 + x + x^2 / 2 + x^3 / 6         1:  1 + x + x^2 / 2 + x^3 / 6
5959     .                                     .
5961     ' 1 + x + x^2/2! + x^3/3! @key{RET}         Z F e myexp @key{RET} @key{RET} @key{RET} y
5962 @end group
5963 @end smallexample
5965 This polynomial is a Taylor series approximation to @samp{exp(x)}.
5966 The @kbd{Z F} command asks a number of questions.  The above answers
5967 say that the key sequence for our function should be @kbd{z e}; the
5968 @kbd{M-x} equivalent should be @code{calc-myexp}; the name of the
5969 function in algebraic formulas should also be @code{myexp}; the
5970 default argument list @samp{(x)} is acceptable; and finally @kbd{y}
5971 answers the question ``leave it in symbolic form for non-constant
5972 arguments?''
5974 @smallexample
5975 @group
5976 1:  1.3495     2:  1.3495     3:  1.3495
5977     .          1:  1.34986    2:  1.34986
5978                    .          1:  myexp(a + 1)
5979                                   .
5981     .3 z e         .3 E           ' a+1 @key{RET} z e
5982 @end group
5983 @end smallexample
5985 @noindent
5986 First we call our new @code{exp} approximation with 0.3 as an
5987 argument, and compare it with the true @code{exp} function.  Then
5988 we note that, as requested, if we try to give @kbd{z e} an
5989 argument that isn't a plain number, it leaves the @code{myexp}
5990 function call in symbolic form.  If we had answered @kbd{n} to the
5991 final question, @samp{myexp(a + 1)} would have evaluated by plugging
5992 in @samp{a + 1} for @samp{x} in the defining formula.
5994 @cindex Sine integral Si(x)
5995 @ignore
5996 @starindex
5997 @end ignore
5998 @tindex Si
5999 (@bullet{}) @strong{Exercise 1.}  The ``sine integral'' function
6000 @texline @math{{\rm Si}(x)}
6001 @infoline @expr{Si(x)} 
6002 is defined as the integral of @samp{sin(t)/t} for
6003 @expr{t = 0} to @expr{x} in radians.  (It was invented because this
6004 integral has no solution in terms of basic functions; if you give it
6005 to Calc's @kbd{a i} command, it will ponder it for a long time and then
6006 give up.)  We can use the numerical integration command, however,
6007 which in algebraic notation is written like @samp{ninteg(f(t), t, 0, x)}
6008 with any integrand @samp{f(t)}.  Define a @kbd{z s} command and
6009 @code{Si} function that implement this.  You will need to edit the
6010 default argument list a bit.  As a test, @samp{Si(1)} should return
6011 0.946083. (If you don't get this answer, you might want to check that
6012 Calc is in Radians mode.  Also, @code{ninteg} will run a lot faster if
6013 you reduce the precision to, say, six digits beforehand.)
6014 @xref{Programming Answer 1, 1}. (@bullet{})
6016 The simplest way to do real ``programming'' of Emacs is to define a
6017 @dfn{keyboard macro}.  A keyboard macro is simply a sequence of
6018 keystrokes which Emacs has stored away and can play back on demand.
6019 For example, if you find yourself typing @kbd{H a S x @key{RET}} often,
6020 you may wish to program a keyboard macro to type this for you.
6022 @smallexample
6023 @group
6024 1:  y = sqrt(x)          1:  x = y^2
6025     .                        .
6027     ' y=sqrt(x) @key{RET}       C-x ( H a S x @key{RET} C-x )
6029 1:  y = cos(x)           1:  x = s1 arccos(y) + 2 pi n1
6030     .                        .
6032     ' y=cos(x) @key{RET}           X
6033 @end group
6034 @end smallexample
6036 @noindent
6037 When you type @kbd{C-x (}, Emacs begins recording.  But it is also
6038 still ready to execute your keystrokes, so you're really ``training''
6039 Emacs by walking it through the procedure once.  When you type
6040 @w{@kbd{C-x )}}, the macro is recorded.  You can now type @kbd{X} to
6041 re-execute the same keystrokes.
6043 You can give a name to your macro by typing @kbd{Z K}.
6045 @smallexample
6046 @group
6047 1:  .              1:  y = x^4         1:  x = s2 sqrt(s1 sqrt(y))
6048                        .                   .
6050   Z K x @key{RET}            ' y=x^4 @key{RET}         z x
6051 @end group
6052 @end smallexample
6054 @noindent
6055 Notice that we use shift-@kbd{Z} to define the command, and lower-case
6056 @kbd{z} to call it up.
6058 Keyboard macros can call other macros.
6060 @smallexample
6061 @group
6062 1:  abs(x)        1:  x = s1 y                1:  2 / x    1:  x = 2 / y
6063     .                 .                           .            .
6065  ' abs(x) @key{RET}   C-x ( ' y @key{RET} a = z x C-x )    ' 2/x @key{RET}       X
6066 @end group
6067 @end smallexample
6069 (@bullet{}) @strong{Exercise 2.}  Define a keyboard macro to negate
6070 the item in level 3 of the stack, without disturbing the rest of
6071 the stack.  @xref{Programming Answer 2, 2}. (@bullet{})
6073 (@bullet{}) @strong{Exercise 3.}  Define keyboard macros to compute
6074 the following functions:
6076 @enumerate
6077 @item
6078 Compute 
6079 @texline @math{\displaystyle{\sin x \over x}},
6080 @infoline @expr{sin(x) / x}, 
6081 where @expr{x} is the number on the top of the stack.
6083 @item
6084 Compute the base-@expr{b} logarithm, just like the @kbd{B} key except
6085 the arguments are taken in the opposite order.
6087 @item
6088 Produce a vector of integers from 1 to the integer on the top of
6089 the stack.
6090 @end enumerate
6091 @noindent
6092 @xref{Programming Answer 3, 3}. (@bullet{})
6094 (@bullet{}) @strong{Exercise 4.}  Define a keyboard macro to compute
6095 the average (mean) value of a list of numbers.
6096 @xref{Programming Answer 4, 4}. (@bullet{})
6098 In many programs, some of the steps must execute several times.
6099 Calc has @dfn{looping} commands that allow this.  Loops are useful
6100 inside keyboard macros, but actually work at any time.
6102 @smallexample
6103 @group
6104 1:  x^6          2:  x^6        1: 360 x^2
6105     .            1:  4             .
6106                      .
6108   ' x^6 @key{RET}          4         Z < a d x @key{RET} Z >
6109 @end group
6110 @end smallexample
6112 @noindent
6113 Here we have computed the fourth derivative of @expr{x^6} by
6114 enclosing a derivative command in a ``repeat loop'' structure.
6115 This structure pops a repeat count from the stack, then
6116 executes the body of the loop that many times.
6118 If you make a mistake while entering the body of the loop,
6119 type @w{@kbd{Z C-g}} to cancel the loop command.
6121 @cindex Fibonacci numbers
6122 Here's another example:
6124 @smallexample
6125 @group
6126 3:  1               2:  10946
6127 2:  1               1:  17711
6128 1:  20                  .
6129     .
6131 1 @key{RET} @key{RET} 20       Z < @key{TAB} C-j + Z >
6132 @end group
6133 @end smallexample
6135 @noindent
6136 The numbers in levels 2 and 1 should be the 21st and 22nd Fibonacci
6137 numbers, respectively.  (To see what's going on, try a few repetitions
6138 of the loop body by hand; @kbd{C-j}, also on the Line-Feed or @key{LFD}
6139 key if you have one, makes a copy of the number in level 2.)
6141 @cindex Golden ratio
6142 @cindex Phi, golden ratio
6143 A fascinating property of the Fibonacci numbers is that the @expr{n}th
6144 Fibonacci number can be found directly by computing 
6145 @texline @math{\phi^n / \sqrt{5}}
6146 @infoline @expr{phi^n / sqrt(5)}
6147 and then rounding to the nearest integer, where 
6148 @texline @math{\phi} (``phi''),
6149 @infoline @expr{phi}, 
6150 the ``golden ratio,'' is 
6151 @texline @math{(1 + \sqrt{5}) / 2}.
6152 @infoline @expr{(1 + sqrt(5)) / 2}. 
6153 (For convenience, this constant is available from the @code{phi}
6154 variable, or the @kbd{I H P} command.)
6156 @smallexample
6157 @group
6158 1:  1.61803         1:  24476.0000409    1:  10945.9999817    1:  10946
6159     .                   .                    .                    .
6161     I H P               21 ^                 5 Q /                R
6162 @end group
6163 @end smallexample
6165 @cindex Continued fractions
6166 (@bullet{}) @strong{Exercise 5.}  The @dfn{continued fraction}
6167 representation of 
6168 @texline @math{\phi}
6169 @infoline @expr{phi} 
6170 is 
6171 @texline @math{1 + 1/(1 + 1/(1 + 1/( \ldots )))}.
6172 @infoline @expr{1 + 1/(1 + 1/(1 + 1/( ...@: )))}.
6173 We can compute an approximate value by carrying this however far
6174 and then replacing the innermost 
6175 @texline @math{1/( \ldots )}
6176 @infoline @expr{1/( ...@: )} 
6177 by 1.  Approximate
6178 @texline @math{\phi}
6179 @infoline @expr{phi} 
6180 using a twenty-term continued fraction.
6181 @xref{Programming Answer 5, 5}. (@bullet{})
6183 (@bullet{}) @strong{Exercise 6.}  Linear recurrences like the one for
6184 Fibonacci numbers can be expressed in terms of matrices.  Given a
6185 vector @w{@expr{[a, b]}} determine a matrix which, when multiplied by this
6186 vector, produces the vector @expr{[b, c]}, where @expr{a}, @expr{b} and
6187 @expr{c} are three successive Fibonacci numbers.  Now write a program
6188 that, given an integer @expr{n}, computes the @expr{n}th Fibonacci number
6189 using matrix arithmetic.  @xref{Programming Answer 6, 6}. (@bullet{})
6191 @cindex Harmonic numbers
6192 A more sophisticated kind of loop is the @dfn{for} loop.  Suppose
6193 we wish to compute the 20th ``harmonic'' number, which is equal to
6194 the sum of the reciprocals of the integers from 1 to 20.
6196 @smallexample
6197 @group
6198 3:  0               1:  3.597739
6199 2:  1                   .
6200 1:  20
6201     .
6203 0 @key{RET} 1 @key{RET} 20         Z ( & + 1 Z )
6204 @end group
6205 @end smallexample
6207 @noindent
6208 The ``for'' loop pops two numbers, the lower and upper limits, then
6209 repeats the body of the loop as an internal counter increases from
6210 the lower limit to the upper one.  Just before executing the loop
6211 body, it pushes the current loop counter.  When the loop body
6212 finishes, it pops the ``step,'' i.e., the amount by which to
6213 increment the loop counter.  As you can see, our loop always
6214 uses a step of one.
6216 This harmonic number function uses the stack to hold the running
6217 total as well as for the various loop housekeeping functions.  If
6218 you find this disorienting, you can sum in a variable instead:
6220 @smallexample
6221 @group
6222 1:  0         2:  1                  .            1:  3.597739
6223     .         1:  20                                  .
6224                   .
6226     0 t 7       1 @key{RET} 20      Z ( & s + 7 1 Z )       r 7
6227 @end group
6228 @end smallexample
6230 @noindent
6231 The @kbd{s +} command adds the top-of-stack into the value in a
6232 variable (and removes that value from the stack).
6234 It's worth noting that many jobs that call for a ``for'' loop can
6235 also be done more easily by Calc's high-level operations.  Two
6236 other ways to compute harmonic numbers are to use vector mapping
6237 and reduction (@kbd{v x 20}, then @w{@kbd{V M &}}, then @kbd{V R +}),
6238 or to use the summation command @kbd{a +}.  Both of these are
6239 probably easier than using loops.  However, there are some
6240 situations where loops really are the way to go:
6242 (@bullet{}) @strong{Exercise 7.}  Use a ``for'' loop to find the first
6243 harmonic number which is greater than 4.0.
6244 @xref{Programming Answer 7, 7}. (@bullet{})
6246 Of course, if we're going to be using variables in our programs,
6247 we have to worry about the programs clobbering values that the
6248 caller was keeping in those same variables.  This is easy to
6249 fix, though:
6251 @smallexample
6252 @group
6253     .        1:  0.6667       1:  0.6667     3:  0.6667
6254                  .                .          2:  3.597739
6255                                              1:  0.6667
6256                                                  .
6258    Z `    p 4 @key{RET} 2 @key{RET} 3 /   s 7 s s a @key{RET}    Z '  r 7 s r a @key{RET}
6259 @end group
6260 @end smallexample
6262 @noindent
6263 When we type @kbd{Z `} (that's a back-quote character), Calc saves
6264 its mode settings and the contents of the ten ``quick variables''
6265 for later reference.  When we type @kbd{Z '} (that's an apostrophe
6266 now), Calc restores those saved values.  Thus the @kbd{p 4} and
6267 @kbd{s 7} commands have no effect outside this sequence.  Wrapping
6268 this around the body of a keyboard macro ensures that it doesn't
6269 interfere with what the user of the macro was doing.  Notice that
6270 the contents of the stack, and the values of named variables,
6271 survive past the @kbd{Z '} command.
6273 @cindex Bernoulli numbers, approximate
6274 The @dfn{Bernoulli numbers} are a sequence with the interesting
6275 property that all of the odd Bernoulli numbers are zero, and the
6276 even ones, while difficult to compute, can be roughly approximated
6277 by the formula 
6278 @texline @math{\displaystyle{2 n! \over (2 \pi)^n}}.
6279 @infoline @expr{2 n!@: / (2 pi)^n}.  
6280 Let's write a keyboard macro to compute (approximate) Bernoulli numbers.
6281 (Calc has a command, @kbd{k b}, to compute exact Bernoulli numbers, but
6282 this command is very slow for large @expr{n} since the higher Bernoulli
6283 numbers are very large fractions.)
6285 @smallexample
6286 @group
6287 1:  10               1:  0.0756823
6288     .                    .
6290     10     C-x ( @key{RET} 2 % Z [ @key{DEL} 0 Z : ' 2 $! / (2 pi)^$ @key{RET} = Z ] C-x )
6291 @end group
6292 @end smallexample
6294 @noindent
6295 You can read @kbd{Z [} as ``then,'' @kbd{Z :} as ``else,'' and
6296 @kbd{Z ]} as ``end-if.''  There is no need for an explicit ``if''
6297 command.  For the purposes of @w{@kbd{Z [}}, the condition is ``true''
6298 if the value it pops from the stack is a nonzero number, or ``false''
6299 if it pops zero or something that is not a number (like a formula).
6300 Here we take our integer argument modulo 2; this will be nonzero
6301 if we're asking for an odd Bernoulli number.
6303 The actual tenth Bernoulli number is @expr{5/66}.
6305 @smallexample
6306 @group
6307 3:  0.0756823    1:  0          1:  0.25305    1:  0          1:  1.16659
6308 2:  5:66             .              .              .              .
6309 1:  0.0757575
6310     .
6312 10 k b @key{RET} c f   M-0 @key{DEL} 11 X   @key{DEL} 12 X       @key{DEL} 13 X       @key{DEL} 14 X
6313 @end group
6314 @end smallexample
6316 Just to exercise loops a bit more, let's compute a table of even
6317 Bernoulli numbers.
6319 @smallexample
6320 @group
6321 3:  []             1:  [0.10132, 0.03079, 0.02340, 0.033197, ...]
6322 2:  2                  .
6323 1:  30
6324     .
6326  [ ] 2 @key{RET} 30          Z ( X | 2 Z )
6327 @end group
6328 @end smallexample
6330 @noindent
6331 The vertical-bar @kbd{|} is the vector-concatenation command.  When
6332 we execute it, the list we are building will be in stack level 2
6333 (initially this is an empty list), and the next Bernoulli number
6334 will be in level 1.  The effect is to append the Bernoulli number
6335 onto the end of the list.  (To create a table of exact fractional
6336 Bernoulli numbers, just replace @kbd{X} with @kbd{k b} in the above
6337 sequence of keystrokes.)
6339 With loops and conditionals, you can program essentially anything
6340 in Calc.  One other command that makes looping easier is @kbd{Z /},
6341 which takes a condition from the stack and breaks out of the enclosing
6342 loop if the condition is true (non-zero).  You can use this to make
6343 ``while'' and ``until'' style loops.
6345 If you make a mistake when entering a keyboard macro, you can edit
6346 it using @kbd{Z E}.  First, you must attach it to a key with @kbd{Z K}.
6347 One technique is to enter a throwaway dummy definition for the macro,
6348 then enter the real one in the edit command.
6350 @smallexample
6351 @group
6352 1:  3                   1:  3           Calc Macro Edit Mode.
6353     .                       .           Original keys: 1 <return> 2 +
6355                                         1                          ;; calc digits
6356                                         RET                        ;; calc-enter
6357                                         2                          ;; calc digits
6358                                         +                          ;; calc-plus
6360 C-x ( 1 @key{RET} 2 + C-x )    Z K h @key{RET}      Z E h
6361 @end group
6362 @end smallexample
6364 @noindent
6365 A keyboard macro is stored as a pure keystroke sequence.  The
6366 @file{edmacro} package (invoked by @kbd{Z E}) scans along the
6367 macro and tries to decode it back into human-readable steps.
6368 Descriptions of the keystrokes are given as comments, which begin with
6369 @samp{;;}, and which are ignored when the edited macro is saved.
6370 Spaces and line breaks are also ignored when the edited macro is saved.
6371 To enter a space into the macro, type @code{SPC}.  All the special
6372 characters @code{RET}, @code{LFD}, @code{TAB}, @code{SPC}, @code{DEL},
6373 and @code{NUL} must be written in all uppercase, as must the prefixes
6374 @code{C-} and @code{M-}.
6376 Let's edit in a new definition, for computing harmonic numbers.
6377 First, erase the four lines of the old definition.  Then, type
6378 in the new definition (or use Emacs @kbd{M-w} and @kbd{C-y} commands
6379 to copy it from this page of the Info file; you can of course skip
6380 typing the comments, which begin with @samp{;;}).
6382 @smallexample
6383 Z`                      ;; calc-kbd-push     (Save local values)
6384 0                       ;; calc digits       (Push a zero onto the stack)
6385 st                      ;; calc-store-into   (Store it in the following variable)
6386 1                       ;; calc quick variable  (Quick variable q1)
6387 1                       ;; calc digits       (Initial value for the loop) 
6388 TAB                     ;; calc-roll-down    (Swap initial and final)
6389 Z(                      ;; calc-kbd-for      (Begin the "for" loop)
6390 &                       ;; calc-inv          (Take the reciprocal)
6391 s+                      ;; calc-store-plus   (Add to the following variable)
6392 1                       ;; calc quick variable  (Quick variable q1)
6393 1                       ;; calc digits       (The loop step is 1)
6394 Z)                      ;; calc-kbd-end-for  (End the "for" loop)
6395 sr                      ;; calc-recall       (Recall the final accumulated value)
6396 1                       ;; calc quick variable (Quick variable q1)
6397 Z'                      ;; calc-kbd-pop      (Restore values)
6398 @end smallexample
6400 @noindent
6401 Press @kbd{C-c C-c} to finish editing and return to the Calculator.
6403 @smallexample
6404 @group
6405 1:  20         1:  3.597739
6406     .              .
6408     20             z h
6409 @end group
6410 @end smallexample
6412 The @file{edmacro} package defines a handy @code{read-kbd-macro} command
6413 which reads the current region of the current buffer as a sequence of
6414 keystroke names, and defines that sequence on the @kbd{X} 
6415 (and @kbd{C-x e}) key.  Because this is so useful, Calc puts this
6416 command on the @kbd{M-# m} key.  Try reading in this macro in the
6417 following form:  Press @kbd{C-@@} (or @kbd{C-@key{SPC}}) at 
6418 one end of the text below, then type @kbd{M-# m} at the other.
6420 @example
6421 @group
6422 Z ` 0 t 1
6423     1 TAB
6424     Z (  & s + 1  1 Z )
6425     r 1
6426 Z '
6427 @end group
6428 @end example
6430 (@bullet{}) @strong{Exercise 8.}  A general algorithm for solving
6431 equations numerically is @dfn{Newton's Method}.  Given the equation
6432 @expr{f(x) = 0} for any function @expr{f}, and an initial guess
6433 @expr{x_0} which is reasonably close to the desired solution, apply
6434 this formula over and over:
6436 @ifinfo
6437 @example
6438 new_x = x - f(x)/f'(x)
6439 @end example
6440 @end ifinfo
6441 @tex
6442 \beforedisplay
6443 $$ x_{\rm new} = x - {f(x) \over f'(x)} $$
6444 \afterdisplay
6445 @end tex
6447 @noindent
6448 where @expr{f'(x)} is the derivative of @expr{f}.  The @expr{x}
6449 values will quickly converge to a solution, i.e., eventually
6450 @texline @math{x_{\rm new}}
6451 @infoline @expr{new_x} 
6452 and @expr{x} will be equal to within the limits
6453 of the current precision.  Write a program which takes a formula
6454 involving the variable @expr{x}, and an initial guess @expr{x_0},
6455 on the stack, and produces a value of @expr{x} for which the formula
6456 is zero.  Use it to find a solution of 
6457 @texline @math{\sin(\cos x) = 0.5}
6458 @infoline @expr{sin(cos(x)) = 0.5}
6459 near @expr{x = 4.5}.  (Use angles measured in radians.)  Note that
6460 the built-in @w{@kbd{a R}} (@code{calc-find-root}) command uses Newton's
6461 method when it is able.  @xref{Programming Answer 8, 8}. (@bullet{})
6463 @cindex Digamma function
6464 @cindex Gamma constant, Euler's
6465 @cindex Euler's gamma constant
6466 (@bullet{}) @strong{Exercise 9.}  The @dfn{digamma} function 
6467 @texline @math{\psi(z) (``psi'')}
6468 @infoline @expr{psi(z)}
6469 is defined as the derivative of 
6470 @texline @math{\ln \Gamma(z)}.
6471 @infoline @expr{ln(gamma(z))}.  
6472 For large values of @expr{z}, it can be approximated by the infinite sum
6474 @ifinfo
6475 @example
6476 psi(z) ~= ln(z) - 1/2z - sum(bern(2 n) / 2 n z^(2 n), n, 1, inf)
6477 @end example
6478 @end ifinfo
6479 @tex
6480 \beforedisplay
6481 $$ \psi(z) \approx \ln z - {1\over2z} -
6482    \sum_{n=1}^\infty {\code{bern}(2 n) \over 2 n z^{2n}}
6484 \afterdisplay
6485 @end tex
6487 @noindent
6488 where 
6489 @texline @math{\sum}
6490 @infoline @expr{sum} 
6491 represents the sum over @expr{n} from 1 to infinity
6492 (or to some limit high enough to give the desired accuracy), and
6493 the @code{bern} function produces (exact) Bernoulli numbers.
6494 While this sum is not guaranteed to converge, in practice it is safe.
6495 An interesting mathematical constant is Euler's gamma, which is equal
6496 to about 0.5772.  One way to compute it is by the formula,
6497 @texline @math{\gamma = -\psi(1)}.
6498 @infoline @expr{gamma = -psi(1)}.  
6499 Unfortunately, 1 isn't a large enough argument
6500 for the above formula to work (5 is a much safer value for @expr{z}).
6501 Fortunately, we can compute 
6502 @texline @math{\psi(1)}
6503 @infoline @expr{psi(1)} 
6504 from 
6505 @texline @math{\psi(5)}
6506 @infoline @expr{psi(5)} 
6507 using the recurrence 
6508 @texline @math{\psi(z+1) = \psi(z) + {1 \over z}}.
6509 @infoline @expr{psi(z+1) = psi(z) + 1/z}.  
6510 Your task:  Develop a program to compute 
6511 @texline @math{\psi(z)};
6512 @infoline @expr{psi(z)}; 
6513 it should ``pump up'' @expr{z}
6514 if necessary to be greater than 5, then use the above summation
6515 formula.  Use looping commands to compute the sum.  Use your function
6516 to compute 
6517 @texline @math{\gamma}
6518 @infoline @expr{gamma} 
6519 to twelve decimal places.  (Calc has a built-in command
6520 for Euler's constant, @kbd{I P}, which you can use to check your answer.)
6521 @xref{Programming Answer 9, 9}. (@bullet{})
6523 @cindex Polynomial, list of coefficients
6524 (@bullet{}) @strong{Exercise 10.}  Given a polynomial in @expr{x} and
6525 a number @expr{m} on the stack, where the polynomial is of degree
6526 @expr{m} or less (i.e., does not have any terms higher than @expr{x^m}),
6527 write a program to convert the polynomial into a list-of-coefficients
6528 notation.  For example, @expr{5 x^4 + (x + 1)^2} with @expr{m = 6}
6529 should produce the list @expr{[1, 2, 1, 0, 5, 0, 0]}.  Also develop
6530 a way to convert from this form back to the standard algebraic form.
6531 @xref{Programming Answer 10, 10}. (@bullet{})
6533 @cindex Recursion
6534 (@bullet{}) @strong{Exercise 11.}  The @dfn{Stirling numbers of the
6535 first kind} are defined by the recurrences,
6537 @ifinfo
6538 @example
6539 s(n,n) = 1   for n >= 0,
6540 s(n,0) = 0   for n > 0,
6541 s(n+1,m) = s(n,m-1) - n s(n,m)   for n >= m >= 1.
6542 @end example
6543 @end ifinfo
6544 @tex
6545 \turnoffactive
6546 \beforedisplay
6547 $$ \eqalign{ s(n,n)   &= 1 \qquad \hbox{for } n \ge 0,  \cr
6548              s(n,0)   &= 0 \qquad \hbox{for } n > 0, \cr
6549              s(n+1,m) &= s(n,m-1) - n \, s(n,m) \qquad
6550                           \hbox{for } n \ge m \ge 1.}
6552 \afterdisplay
6553 \vskip5pt
6554 (These numbers are also sometimes written $\displaystyle{n \brack m}$.)
6555 @end tex
6557 This can be implemented using a @dfn{recursive} program in Calc; the
6558 program must invoke itself in order to calculate the two righthand
6559 terms in the general formula.  Since it always invokes itself with
6560 ``simpler'' arguments, it's easy to see that it must eventually finish
6561 the computation.  Recursion is a little difficult with Emacs keyboard
6562 macros since the macro is executed before its definition is complete.
6563 So here's the recommended strategy:  Create a ``dummy macro'' and assign
6564 it to a key with, e.g., @kbd{Z K s}.  Now enter the true definition,
6565 using the @kbd{z s} command to call itself recursively, then assign it
6566 to the same key with @kbd{Z K s}.  Now the @kbd{z s} command will run
6567 the complete recursive program.  (Another way is to use @w{@kbd{Z E}}
6568 or @kbd{M-# m} (@code{read-kbd-macro}) to read the whole macro at once,
6569 thus avoiding the ``training'' phase.)  The task:  Write a program
6570 that computes Stirling numbers of the first kind, given @expr{n} and
6571 @expr{m} on the stack.  Test it with @emph{small} inputs like
6572 @expr{s(4,2)}.  (There is a built-in command for Stirling numbers,
6573 @kbd{k s}, which you can use to check your answers.)
6574 @xref{Programming Answer 11, 11}. (@bullet{})
6576 The programming commands we've seen in this part of the tutorial
6577 are low-level, general-purpose operations.  Often you will find
6578 that a higher-level function, such as vector mapping or rewrite
6579 rules, will do the job much more easily than a detailed, step-by-step
6580 program can:
6582 (@bullet{}) @strong{Exercise 12.}  Write another program for
6583 computing Stirling numbers of the first kind, this time using
6584 rewrite rules.  Once again, @expr{n} and @expr{m} should be taken
6585 from the stack.  @xref{Programming Answer 12, 12}. (@bullet{})
6587 @example
6589 @end example
6590 This ends the tutorial section of the Calc manual.  Now you know enough
6591 about Calc to use it effectively for many kinds of calculations.  But
6592 Calc has many features that were not even touched upon in this tutorial.
6593 @c [not-split]
6594 The rest of this manual tells the whole story.
6595 @c [when-split]
6596 @c Volume II of this manual, the @dfn{Calc Reference}, tells the whole story.
6598 @page
6599 @node Answers to Exercises, , Programming Tutorial, Tutorial
6600 @section Answers to Exercises
6602 @noindent
6603 This section includes answers to all the exercises in the Calc tutorial.
6605 @menu
6606 * RPN Answer 1::           1 @key{RET} 2 @key{RET} 3 @key{RET} 4 + * -
6607 * RPN Answer 2::           2*4 + 7*9.5 + 5/4
6608 * RPN Answer 3::           Operating on levels 2 and 3
6609 * RPN Answer 4::           Joe's complex problems
6610 * Algebraic Answer 1::     Simulating Q command
6611 * Algebraic Answer 2::     Joe's algebraic woes
6612 * Algebraic Answer 3::     1 / 0
6613 * Modes Answer 1::         3#0.1 = 3#0.0222222?
6614 * Modes Answer 2::         16#f.e8fe15
6615 * Modes Answer 3::         Joe's rounding bug
6616 * Modes Answer 4::         Why floating point?
6617 * Arithmetic Answer 1::    Why the \ command?
6618 * Arithmetic Answer 2::    Tripping up the B command
6619 * Vector Answer 1::        Normalizing a vector
6620 * Vector Answer 2::        Average position
6621 * Matrix Answer 1::        Row and column sums
6622 * Matrix Answer 2::        Symbolic system of equations
6623 * Matrix Answer 3::        Over-determined system
6624 * List Answer 1::          Powers of two
6625 * List Answer 2::          Least-squares fit with matrices
6626 * List Answer 3::          Geometric mean
6627 * List Answer 4::          Divisor function
6628 * List Answer 5::          Duplicate factors
6629 * List Answer 6::          Triangular list
6630 * List Answer 7::          Another triangular list
6631 * List Answer 8::          Maximum of Bessel function
6632 * List Answer 9::          Integers the hard way
6633 * List Answer 10::         All elements equal
6634 * List Answer 11::         Estimating pi with darts
6635 * List Answer 12::         Estimating pi with matchsticks
6636 * List Answer 13::         Hash codes
6637 * List Answer 14::         Random walk
6638 * Types Answer 1::         Square root of pi times rational
6639 * Types Answer 2::         Infinities
6640 * Types Answer 3::         What can "nan" be?
6641 * Types Answer 4::         Abbey Road
6642 * Types Answer 5::         Friday the 13th
6643 * Types Answer 6::         Leap years
6644 * Types Answer 7::         Erroneous donut
6645 * Types Answer 8::         Dividing intervals
6646 * Types Answer 9::         Squaring intervals
6647 * Types Answer 10::        Fermat's primality test
6648 * Types Answer 11::        pi * 10^7 seconds
6649 * Types Answer 12::        Abbey Road on CD
6650 * Types Answer 13::        Not quite pi * 10^7 seconds
6651 * Types Answer 14::        Supercomputers and c
6652 * Types Answer 15::        Sam the Slug
6653 * Algebra Answer 1::       Squares and square roots
6654 * Algebra Answer 2::       Building polynomial from roots
6655 * Algebra Answer 3::       Integral of x sin(pi x)
6656 * Algebra Answer 4::       Simpson's rule
6657 * Rewrites Answer 1::      Multiplying by conjugate
6658 * Rewrites Answer 2::      Alternative fib rule
6659 * Rewrites Answer 3::      Rewriting opt(a) + opt(b) x
6660 * Rewrites Answer 4::      Sequence of integers
6661 * Rewrites Answer 5::      Number of terms in sum
6662 * Rewrites Answer 6::      Truncated Taylor series
6663 * Programming Answer 1::   Fresnel's C(x)
6664 * Programming Answer 2::   Negate third stack element
6665 * Programming Answer 3::   Compute sin(x) / x, etc.
6666 * Programming Answer 4::   Average value of a list
6667 * Programming Answer 5::   Continued fraction phi
6668 * Programming Answer 6::   Matrix Fibonacci numbers
6669 * Programming Answer 7::   Harmonic number greater than 4
6670 * Programming Answer 8::   Newton's method
6671 * Programming Answer 9::   Digamma function
6672 * Programming Answer 10::  Unpacking a polynomial
6673 * Programming Answer 11::  Recursive Stirling numbers
6674 * Programming Answer 12::  Stirling numbers with rewrites
6675 @end menu
6677 @c The following kludgery prevents the individual answers from
6678 @c being entered on the table of contents.
6679 @tex
6680 \global\let\oldwrite=\write
6681 \gdef\skipwrite#1#2{\let\write=\oldwrite}
6682 \global\let\oldchapternofonts=\chapternofonts
6683 \gdef\chapternofonts{\let\write=\skipwrite\oldchapternofonts}
6684 @end tex
6686 @node RPN Answer 1, RPN Answer 2, Answers to Exercises, Answers to Exercises
6687 @subsection RPN Tutorial Exercise 1
6689 @noindent
6690 @kbd{1 @key{RET} 2 @key{RET} 3 @key{RET} 4 + * -}
6692 The result is 
6693 @texline @math{1 - (2 \times (3 + 4)) = -13}.
6694 @infoline @expr{1 - (2 * (3 + 4)) = -13}.
6696 @node RPN Answer 2, RPN Answer 3, RPN Answer 1, Answers to Exercises
6697 @subsection RPN Tutorial Exercise 2
6699 @noindent
6700 @texline @math{2\times4 + 7\times9.5 + {5\over4} = 75.75}
6701 @infoline @expr{2*4 + 7*9.5 + 5/4 = 75.75}
6703 After computing the intermediate term 
6704 @texline @math{2\times4 = 8},
6705 @infoline @expr{2*4 = 8}, 
6706 you can leave that result on the stack while you compute the second
6707 term.  With both of these results waiting on the stack you can then
6708 compute the final term, then press @kbd{+ +} to add everything up.
6710 @smallexample
6711 @group
6712 2:  2          1:  8          3:  8          2:  8
6713 1:  4              .          2:  7          1:  66.5
6714     .                         1:  9.5            .
6715                                   .
6717   2 @key{RET} 4          *          7 @key{RET} 9.5          *
6719 @end group
6720 @end smallexample
6721 @noindent
6722 @smallexample
6723 @group
6724 4:  8          3:  8          2:  8          1:  75.75
6725 3:  66.5       2:  66.5       1:  67.75          .
6726 2:  5          1:  1.25           .
6727 1:  4              .
6728     .
6730   5 @key{RET} 4          /              +              +
6731 @end group
6732 @end smallexample
6734 Alternatively, you could add the first two terms before going on
6735 with the third term.
6737 @smallexample
6738 @group
6739 2:  8          1:  74.5       3:  74.5       2:  74.5       1:  75.75
6740 1:  66.5           .          2:  5          1:  1.25           .
6741     .                         1:  4              .
6742                                   .
6744    ...             +            5 @key{RET} 4          /              +
6745 @end group
6746 @end smallexample
6748 On an old-style RPN calculator this second method would have the
6749 advantage of using only three stack levels.  But since Calc's stack
6750 can grow arbitrarily large this isn't really an issue.  Which method
6751 you choose is purely a matter of taste.
6753 @node RPN Answer 3, RPN Answer 4, RPN Answer 2, Answers to Exercises
6754 @subsection RPN Tutorial Exercise 3
6756 @noindent
6757 The @key{TAB} key provides a way to operate on the number in level 2.
6759 @smallexample
6760 @group
6761 3:  10         3:  10         4:  10         3:  10         3:  10
6762 2:  20         2:  30         3:  30         2:  30         2:  21
6763 1:  30         1:  20         2:  20         1:  21         1:  30
6764     .              .          1:  1              .              .
6765                                   .
6767                   @key{TAB}             1              +             @key{TAB}
6768 @end group
6769 @end smallexample
6771 Similarly, @kbd{M-@key{TAB}} gives you access to the number in level 3.
6773 @smallexample
6774 @group
6775 3:  10         3:  21         3:  21         3:  30         3:  11
6776 2:  21         2:  30         2:  30         2:  11         2:  21
6777 1:  30         1:  10         1:  11         1:  21         1:  30
6778     .              .              .              .              .
6780                   M-@key{TAB}           1 +           M-@key{TAB}          M-@key{TAB}
6781 @end group
6782 @end smallexample
6784 @node RPN Answer 4, Algebraic Answer 1, RPN Answer 3, Answers to Exercises
6785 @subsection RPN Tutorial Exercise 4
6787 @noindent
6788 Either @kbd{( 2 , 3 )} or @kbd{( 2 @key{SPC} 3 )} would have worked,
6789 but using both the comma and the space at once yields:
6791 @smallexample
6792 @group
6793 1:  ( ...      2:  ( ...      1:  (2, ...    2:  (2, ...    2:  (2, ...
6794     .          1:  2              .          1:  (2, ...    1:  (2, 3)
6795                    .                             .              .
6797     (              2              ,             @key{SPC}            3 )
6798 @end group
6799 @end smallexample
6801 Joe probably tried to type @kbd{@key{TAB} @key{DEL}} to swap the
6802 extra incomplete object to the top of the stack and delete it.
6803 But a feature of Calc is that @key{DEL} on an incomplete object
6804 deletes just one component out of that object, so he had to press
6805 @key{DEL} twice to finish the job.
6807 @smallexample
6808 @group
6809 2:  (2, ...    2:  (2, 3)     2:  (2, 3)     1:  (2, 3)
6810 1:  (2, 3)     1:  (2, ...    1:  ( ...          .
6811     .              .              .
6813                   @key{TAB}            @key{DEL}            @key{DEL}
6814 @end group
6815 @end smallexample
6817 (As it turns out, deleting the second-to-top stack entry happens often
6818 enough that Calc provides a special key, @kbd{M-@key{DEL}}, to do just that.
6819 @kbd{M-@key{DEL}} is just like @kbd{@key{TAB} @key{DEL}}, except that it doesn't exhibit
6820 the ``feature'' that tripped poor Joe.)
6822 @node Algebraic Answer 1, Algebraic Answer 2, RPN Answer 4, Answers to Exercises
6823 @subsection Algebraic Entry Tutorial Exercise 1
6825 @noindent
6826 Type @kbd{' sqrt($) @key{RET}}.
6828 If the @kbd{Q} key is broken, you could use @kbd{' $^0.5 @key{RET}}.
6829 Or, RPN style, @kbd{0.5 ^}.
6831 (Actually, @samp{$^1:2}, using the fraction one-half as the power, is
6832 a closer equivalent, since @samp{9^0.5} yields @expr{3.0} whereas
6833 @samp{sqrt(9)} and @samp{9^1:2} yield the exact integer @expr{3}.)
6835 @node Algebraic Answer 2, Algebraic Answer 3, Algebraic Answer 1, Answers to Exercises
6836 @subsection Algebraic Entry Tutorial Exercise 2
6838 @noindent
6839 In the formula @samp{2 x (1+y)}, @samp{x} was interpreted as a function
6840 name with @samp{1+y} as its argument.  Assigning a value to a variable
6841 has no relation to a function by the same name.  Joe needed to use an
6842 explicit @samp{*} symbol here:  @samp{2 x*(1+y)}.
6844 @node Algebraic Answer 3, Modes Answer 1, Algebraic Answer 2, Answers to Exercises
6845 @subsection Algebraic Entry Tutorial Exercise 3
6847 @noindent
6848 The result from @kbd{1 @key{RET} 0 /} will be the formula @expr{1 / 0}.
6849 The ``function'' @samp{/} cannot be evaluated when its second argument
6850 is zero, so it is left in symbolic form.  When you now type @kbd{0 *},
6851 the result will be zero because Calc uses the general rule that ``zero
6852 times anything is zero.''
6854 @c [fix-ref Infinities]
6855 The @kbd{m i} command enables an @dfn{Infinite mode} in which @expr{1 / 0}
6856 results in a special symbol that represents ``infinity.''  If you
6857 multiply infinity by zero, Calc uses another special new symbol to
6858 show that the answer is ``indeterminate.''  @xref{Infinities}, for
6859 further discussion of infinite and indeterminate values.
6861 @node Modes Answer 1, Modes Answer 2, Algebraic Answer 3, Answers to Exercises
6862 @subsection Modes Tutorial Exercise 1
6864 @noindent
6865 Calc always stores its numbers in decimal, so even though one-third has
6866 an exact base-3 representation (@samp{3#0.1}), it is still stored as
6867 0.3333333 (chopped off after 12 or however many decimal digits) inside
6868 the calculator's memory.  When this inexact number is converted back
6869 to base 3 for display, it may still be slightly inexact.  When we
6870 multiply this number by 3, we get 0.999999, also an inexact value.
6872 When Calc displays a number in base 3, it has to decide how many digits
6873 to show.  If the current precision is 12 (decimal) digits, that corresponds
6874 to @samp{12 / log10(3) = 25.15} base-3 digits.  Because 25.15 is not an
6875 exact integer, Calc shows only 25 digits, with the result that stored
6876 numbers carry a little bit of extra information that may not show up on
6877 the screen.  When Joe entered @samp{3#0.2}, the stored number 0.666666
6878 happened to round to a pleasing value when it lost that last 0.15 of a
6879 digit, but it was still inexact in Calc's memory.  When he divided by 2,
6880 he still got the dreaded inexact value 0.333333.  (Actually, he divided
6881 0.666667 by 2 to get 0.333334, which is why he got something a little
6882 higher than @code{3#0.1} instead of a little lower.)
6884 If Joe didn't want to be bothered with all this, he could have typed
6885 @kbd{M-24 d n} to display with one less digit than the default.  (If
6886 you give @kbd{d n} a negative argument, it uses default-minus-that,
6887 so @kbd{M-- d n} would be an easier way to get the same effect.)  Those
6888 inexact results would still be lurking there, but they would now be
6889 rounded to nice, natural-looking values for display purposes.  (Remember,
6890 @samp{0.022222} in base 3 is like @samp{0.099999} in base 10; rounding
6891 off one digit will round the number up to @samp{0.1}.)  Depending on the
6892 nature of your work, this hiding of the inexactness may be a benefit or
6893 a danger.  With the @kbd{d n} command, Calc gives you the choice.
6895 Incidentally, another consequence of all this is that if you type
6896 @kbd{M-30 d n} to display more digits than are ``really there,''
6897 you'll see garbage digits at the end of the number.  (In decimal
6898 display mode, with decimally-stored numbers, these garbage digits are
6899 always zero so they vanish and you don't notice them.)  Because Calc
6900 rounds off that 0.15 digit, there is the danger that two numbers could
6901 be slightly different internally but still look the same.  If you feel
6902 uneasy about this, set the @kbd{d n} precision to be a little higher
6903 than normal; you'll get ugly garbage digits, but you'll always be able
6904 to tell two distinct numbers apart.
6906 An interesting side note is that most computers store their
6907 floating-point numbers in binary, and convert to decimal for display.
6908 Thus everyday programs have the same problem:  Decimal 0.1 cannot be
6909 represented exactly in binary (try it: @kbd{0.1 d 2}), so @samp{0.1 * 10}
6910 comes out as an inexact approximation to 1 on some machines (though
6911 they generally arrange to hide it from you by rounding off one digit as
6912 we did above).  Because Calc works in decimal instead of binary, you can
6913 be sure that numbers that look exact @emph{are} exact as long as you stay
6914 in decimal display mode.
6916 It's not hard to show that any number that can be represented exactly
6917 in binary, octal, or hexadecimal is also exact in decimal, so the kinds
6918 of problems we saw in this exercise are likely to be severe only when
6919 you use a relatively unusual radix like 3.
6921 @node Modes Answer 2, Modes Answer 3, Modes Answer 1, Answers to Exercises
6922 @subsection Modes Tutorial Exercise 2
6924 If the radix is 15 or higher, we can't use the letter @samp{e} to mark
6925 the exponent because @samp{e} is interpreted as a digit.  When Calc
6926 needs to display scientific notation in a high radix, it writes
6927 @samp{16#F.E8F*16.^15}.  You can enter a number like this as an
6928 algebraic entry.  Also, pressing @kbd{e} without any digits before it
6929 normally types @kbd{1e}, but in a high radix it types @kbd{16.^} and
6930 puts you in algebraic entry:  @kbd{16#f.e8f @key{RET} e 15 @key{RET} *} is another
6931 way to enter this number.
6933 The reason Calc puts a decimal point in the @samp{16.^} is to prevent
6934 huge integers from being generated if the exponent is large (consider
6935 @samp{16#1.23*16^1000}, where we compute @samp{16^1000} as a giant
6936 exact integer and then throw away most of the digits when we multiply
6937 it by the floating-point @samp{16#1.23}).  While this wouldn't normally
6938 matter for display purposes, it could give you a nasty surprise if you
6939 copied that number into a file and later moved it back into Calc.
6941 @node Modes Answer 3, Modes Answer 4, Modes Answer 2, Answers to Exercises
6942 @subsection Modes Tutorial Exercise 3
6944 @noindent
6945 The answer he got was @expr{0.5000000000006399}.
6947 The problem is not that the square operation is inexact, but that the
6948 sine of 45 that was already on the stack was accurate to only 12 places.
6949 Arbitrary-precision calculations still only give answers as good as
6950 their inputs.
6952 The real problem is that there is no 12-digit number which, when
6953 squared, comes out to 0.5 exactly.  The @kbd{f [} and @kbd{f ]}
6954 commands decrease or increase a number by one unit in the last
6955 place (according to the current precision).  They are useful for
6956 determining facts like this.
6958 @smallexample
6959 @group
6960 1:  0.707106781187      1:  0.500000000001
6961     .                       .
6963     45 S                    2 ^
6965 @end group
6966 @end smallexample
6967 @noindent
6968 @smallexample
6969 @group
6970 1:  0.707106781187      1:  0.707106781186      1:  0.499999999999
6971     .                       .                       .
6973     U  @key{DEL}                  f [                     2 ^
6974 @end group
6975 @end smallexample
6977 A high-precision calculation must be carried out in high precision
6978 all the way.  The only number in the original problem which was known
6979 exactly was the quantity 45 degrees, so the precision must be raised
6980 before anything is done after the number 45 has been entered in order
6981 for the higher precision to be meaningful.
6983 @node Modes Answer 4, Arithmetic Answer 1, Modes Answer 3, Answers to Exercises
6984 @subsection Modes Tutorial Exercise 4
6986 @noindent
6987 Many calculations involve real-world quantities, like the width and
6988 height of a piece of wood or the volume of a jar.  Such quantities
6989 can't be measured exactly anyway, and if the data that is input to
6990 a calculation is inexact, doing exact arithmetic on it is a waste
6991 of time.
6993 Fractions become unwieldy after too many calculations have been
6994 done with them.  For example, the sum of the reciprocals of the
6995 integers from 1 to 10 is 7381:2520.  The sum from 1 to 30 is
6996 9304682830147:2329089562800.  After a point it will take a long
6997 time to add even one more term to this sum, but a floating-point
6998 calculation of the sum will not have this problem.
7000 Also, rational numbers cannot express the results of all calculations.
7001 There is no fractional form for the square root of two, so if you type
7002 @w{@kbd{2 Q}}, Calc has no choice but to give you a floating-point answer.
7004 @node Arithmetic Answer 1, Arithmetic Answer 2, Modes Answer 4, Answers to Exercises
7005 @subsection Arithmetic Tutorial Exercise 1
7007 @noindent
7008 Dividing two integers that are larger than the current precision may
7009 give a floating-point result that is inaccurate even when rounded
7010 down to an integer.  Consider @expr{123456789 / 2} when the current
7011 precision is 6 digits.  The true answer is @expr{61728394.5}, but
7012 with a precision of 6 this will be rounded to 
7013 @texline @math{12345700.0/2.0 = 61728500.0}.
7014 @infoline @expr{12345700.@: / 2.@: = 61728500.}.
7015 The result, when converted to an integer, will be off by 106.
7017 Here are two solutions:  Raise the precision enough that the
7018 floating-point round-off error is strictly to the right of the
7019 decimal point.  Or, convert to Fraction mode so that @expr{123456789 / 2}
7020 produces the exact fraction @expr{123456789:2}, which can be rounded
7021 down by the @kbd{F} command without ever switching to floating-point
7022 format.
7024 @node Arithmetic Answer 2, Vector Answer 1, Arithmetic Answer 1, Answers to Exercises
7025 @subsection Arithmetic Tutorial Exercise 2
7027 @noindent
7028 @kbd{27 @key{RET} 9 B} could give the exact result @expr{3:2}, but it
7029 does a floating-point calculation instead and produces @expr{1.5}.
7031 Calc will find an exact result for a logarithm if the result is an integer
7032 or (when in Fraction mode) the reciprocal of an integer.  But there is
7033 no efficient way to search the space of all possible rational numbers
7034 for an exact answer, so Calc doesn't try.
7036 @node Vector Answer 1, Vector Answer 2, Arithmetic Answer 2, Answers to Exercises
7037 @subsection Vector Tutorial Exercise 1
7039 @noindent
7040 Duplicate the vector, compute its length, then divide the vector
7041 by its length:  @kbd{@key{RET} A /}.
7043 @smallexample
7044 @group
7045 1:  [1, 2, 3]  2:  [1, 2, 3]      1:  [0.27, 0.53, 0.80]  1:  1.
7046     .          1:  3.74165738677      .                       .
7047                    .
7049     r 1            @key{RET} A              /                       A
7050 @end group
7051 @end smallexample
7053 The final @kbd{A} command shows that the normalized vector does
7054 indeed have unit length.
7056 @node Vector Answer 2, Matrix Answer 1, Vector Answer 1, Answers to Exercises
7057 @subsection Vector Tutorial Exercise 2
7059 @noindent
7060 The average position is equal to the sum of the products of the
7061 positions times their corresponding probabilities.  This is the
7062 definition of the dot product operation.  So all you need to do
7063 is to put the two vectors on the stack and press @kbd{*}.
7065 @node Matrix Answer 1, Matrix Answer 2, Vector Answer 2, Answers to Exercises
7066 @subsection Matrix Tutorial Exercise 1
7068 @noindent
7069 The trick is to multiply by a vector of ones.  Use @kbd{r 4 [1 1 1] *} to
7070 get the row sum.  Similarly, use @kbd{[1 1] r 4 *} to get the column sum.
7072 @node Matrix Answer 2, Matrix Answer 3, Matrix Answer 1, Answers to Exercises
7073 @subsection Matrix Tutorial Exercise 2
7075 @ifinfo
7076 @example
7077 @group
7078    x + a y = 6
7079    x + b y = 10
7080 @end group
7081 @end example
7082 @end ifinfo
7083 @tex
7084 \turnoffactive
7085 \beforedisplay
7086 $$ \eqalign{ x &+ a y = 6 \cr
7087              x &+ b y = 10}
7089 \afterdisplay
7090 @end tex
7092 Just enter the righthand side vector, then divide by the lefthand side
7093 matrix as usual.
7095 @smallexample
7096 @group
7097 1:  [6, 10]    2:  [6, 10]         1:  [6 - 4 a / (b - a), 4 / (b - a) ]
7098     .          1:  [ [ 1, a ]          .
7099                      [ 1, b ] ]
7100                    .
7102 ' [6 10] @key{RET}     ' [1 a; 1 b] @key{RET}      /
7103 @end group
7104 @end smallexample
7106 This can be made more readable using @kbd{d B} to enable Big display
7107 mode:
7109 @smallexample
7110 @group
7111           4 a     4
7112 1:  [6 - -----, -----]
7113          b - a  b - a
7114 @end group
7115 @end smallexample
7117 Type @kbd{d N} to return to Normal display mode afterwards.
7119 @node Matrix Answer 3, List Answer 1, Matrix Answer 2, Answers to Exercises
7120 @subsection Matrix Tutorial Exercise 3
7122 @noindent
7123 To solve 
7124 @texline @math{A^T A \, X = A^T B},
7125 @infoline @expr{trn(A) * A * X = trn(A) * B}, 
7126 first we compute
7127 @texline @math{A' = A^T A}
7128 @infoline @expr{A2 = trn(A) * A} 
7129 and 
7130 @texline @math{B' = A^T B};
7131 @infoline @expr{B2 = trn(A) * B}; 
7132 now, we have a system 
7133 @texline @math{A' X = B'}
7134 @infoline @expr{A2 * X = B2} 
7135 which we can solve using Calc's @samp{/} command.
7137 @ifinfo
7138 @example
7139 @group
7140     a + 2b + 3c = 6
7141    4a + 5b + 6c = 2
7142    7a + 6b      = 3
7143    2a + 4b + 6c = 11
7144 @end group
7145 @end example
7146 @end ifinfo
7147 @tex
7148 \turnoffactive
7149 \beforedisplayh
7150 $$ \openup1\jot \tabskip=0pt plus1fil
7151 \halign to\displaywidth{\tabskip=0pt
7152    $\hfil#$&$\hfil{}#{}$&
7153    $\hfil#$&$\hfil{}#{}$&
7154    $\hfil#$&${}#\hfil$\tabskip=0pt plus1fil\cr
7155   a&+&2b&+&3c&=6 \cr
7156  4a&+&5b&+&6c&=2 \cr
7157  7a&+&6b& &  &=3 \cr
7158  2a&+&4b&+&6c&=11 \cr}
7160 \afterdisplayh
7161 @end tex
7163 The first step is to enter the coefficient matrix.  We'll store it in
7164 quick variable number 7 for later reference.  Next, we compute the
7165 @texline @math{B'}
7166 @infoline @expr{B2} 
7167 vector.
7169 @smallexample
7170 @group
7171 1:  [ [ 1, 2, 3 ]             2:  [ [ 1, 4, 7, 2 ]     1:  [57, 84, 96]
7172       [ 4, 5, 6 ]                   [ 2, 5, 6, 4 ]         .
7173       [ 7, 6, 0 ]                   [ 3, 6, 0, 6 ] ]
7174       [ 2, 4, 6 ] ]           1:  [6, 2, 3, 11]
7175     .                             .
7177 ' [1 2 3; 4 5 6; 7 6 0; 2 4 6] @key{RET}  s 7  v t  [6 2 3 11]   *
7178 @end group
7179 @end smallexample
7181 @noindent
7182 Now we compute the matrix 
7183 @texline @math{A'}
7184 @infoline @expr{A2} 
7185 and divide.
7187 @smallexample
7188 @group
7189 2:  [57, 84, 96]          1:  [-11.64, 14.08, -3.64]
7190 1:  [ [ 70, 72, 39 ]          .
7191       [ 72, 81, 60 ]
7192       [ 39, 60, 81 ] ]
7193     .
7195     r 7 v t r 7 *             /
7196 @end group
7197 @end smallexample
7199 @noindent
7200 (The actual computed answer will be slightly inexact due to
7201 round-off error.)
7203 Notice that the answers are similar to those for the 
7204 @texline @math{3\times3}
7205 @infoline 3x3
7206 system solved in the text.  That's because the fourth equation that was 
7207 added to the system is almost identical to the first one multiplied
7208 by two.  (If it were identical, we would have gotten the exact same
7209 answer since the 
7210 @texline @math{4\times3}
7211 @infoline 4x3
7212 system would be equivalent to the original 
7213 @texline @math{3\times3}
7214 @infoline 3x3
7215 system.)
7217 Since the first and fourth equations aren't quite equivalent, they
7218 can't both be satisfied at once.  Let's plug our answers back into
7219 the original system of equations to see how well they match.
7221 @smallexample
7222 @group
7223 2:  [-11.64, 14.08, -3.64]     1:  [5.6, 2., 3., 11.2]
7224 1:  [ [ 1, 2, 3 ]                  .
7225       [ 4, 5, 6 ]
7226       [ 7, 6, 0 ]
7227       [ 2, 4, 6 ] ]
7228     .
7230     r 7                            @key{TAB} *
7231 @end group
7232 @end smallexample
7234 @noindent
7235 This is reasonably close to our original @expr{B} vector,
7236 @expr{[6, 2, 3, 11]}.
7238 @node List Answer 1, List Answer 2, Matrix Answer 3, Answers to Exercises
7239 @subsection List Tutorial Exercise 1
7241 @noindent
7242 We can use @kbd{v x} to build a vector of integers.  This needs to be
7243 adjusted to get the range of integers we desire.  Mapping @samp{-}
7244 across the vector will accomplish this, although it turns out the
7245 plain @samp{-} key will work just as well.
7247 @smallexample
7248 @group
7249 2:  2                              2:  2
7250 1:  [1, 2, 3, 4, 5, 6, 7, 8, 9]    1:  [-4, -3, -2, -1, 0, 1, 2, 3, 4]
7251     .                                  .
7253     2  v x 9 @key{RET}                       5 V M -   or   5 -
7254 @end group
7255 @end smallexample
7257 @noindent
7258 Now we use @kbd{V M ^} to map the exponentiation operator across the
7259 vector.
7261 @smallexample
7262 @group
7263 1:  [0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16]
7264     .
7266     V M ^
7267 @end group
7268 @end smallexample
7270 @node List Answer 2, List Answer 3, List Answer 1, Answers to Exercises
7271 @subsection List Tutorial Exercise 2
7273 @noindent
7274 Given @expr{x} and @expr{y} vectors in quick variables 1 and 2 as before,
7275 the first job is to form the matrix that describes the problem.
7277 @ifinfo
7278 @example
7279    m*x + b*1 = y
7280 @end example
7281 @end ifinfo
7282 @tex
7283 \turnoffactive
7284 \beforedisplay
7285 $$ m \times x + b \times 1 = y $$
7286 \afterdisplay
7287 @end tex
7289 Thus we want a 
7290 @texline @math{19\times2}
7291 @infoline 19x2
7292 matrix with our @expr{x} vector as one column and
7293 ones as the other column.  So, first we build the column of ones, then
7294 we combine the two columns to form our @expr{A} matrix.
7296 @smallexample
7297 @group
7298 2:  [1.34, 1.41, 1.49, ... ]    1:  [ [ 1.34, 1 ]
7299 1:  [1, 1, 1, ...]                    [ 1.41, 1 ]
7300     .                                 [ 1.49, 1 ]
7301                                       @dots{}
7303     r 1 1 v b 19 @key{RET}                M-2 v p v t   s 3
7304 @end group
7305 @end smallexample
7307 @noindent
7308 Now we compute 
7309 @texline @math{A^T y}
7310 @infoline @expr{trn(A) * y} 
7311 and 
7312 @texline @math{A^T A}
7313 @infoline @expr{trn(A) * A} 
7314 and divide.
7316 @smallexample
7317 @group
7318 1:  [33.36554, 13.613]    2:  [33.36554, 13.613]
7319     .                     1:  [ [ 98.0003, 41.63 ]
7320                                 [  41.63,   19   ] ]
7321                               .
7323  v t r 2 *                    r 3 v t r 3 *
7324 @end group
7325 @end smallexample
7327 @noindent
7328 (Hey, those numbers look familiar!)
7330 @smallexample
7331 @group
7332 1:  [0.52141679, -0.425978]
7333     .
7335     /
7336 @end group
7337 @end smallexample
7339 Since we were solving equations of the form 
7340 @texline @math{m \times x + b \times 1 = y},
7341 @infoline @expr{m*x + b*1 = y}, 
7342 these numbers should be @expr{m} and @expr{b}, respectively.  Sure
7343 enough, they agree exactly with the result computed using @kbd{V M} and
7344 @kbd{V R}!
7346 The moral of this story:  @kbd{V M} and @kbd{V R} will probably solve
7347 your problem, but there is often an easier way using the higher-level
7348 arithmetic functions!
7350 @c [fix-ref Curve Fitting]
7351 In fact, there is a built-in @kbd{a F} command that does least-squares
7352 fits.  @xref{Curve Fitting}.
7354 @node List Answer 3, List Answer 4, List Answer 2, Answers to Exercises
7355 @subsection List Tutorial Exercise 3
7357 @noindent
7358 Move to one end of the list and press @kbd{C-@@} (or @kbd{C-@key{SPC}} or
7359 whatever) to set the mark, then move to the other end of the list
7360 and type @w{@kbd{M-# g}}.
7362 @smallexample
7363 @group
7364 1:  [2.3, 6, 22, 15.1, 7, 15, 14, 7.5, 2.5]
7365     .
7366 @end group
7367 @end smallexample
7369 To make things interesting, let's assume we don't know at a glance
7370 how many numbers are in this list.  Then we could type:
7372 @smallexample
7373 @group
7374 2:  [2.3, 6, 22, ... ]     2:  [2.3, 6, 22, ... ]
7375 1:  [2.3, 6, 22, ... ]     1:  126356422.5
7376     .                          .
7378     @key{RET}                        V R *
7380 @end group
7381 @end smallexample
7382 @noindent
7383 @smallexample
7384 @group
7385 2:  126356422.5            2:  126356422.5     1:  7.94652913734
7386 1:  [2.3, 6, 22, ... ]     1:  9                   .
7387     .                          .
7389     @key{TAB}                        v l                 I ^
7390 @end group
7391 @end smallexample
7393 @noindent
7394 (The @kbd{I ^} command computes the @var{n}th root of a number.
7395 You could also type @kbd{& ^} to take the reciprocal of 9 and
7396 then raise the number to that power.)
7398 @node List Answer 4, List Answer 5, List Answer 3, Answers to Exercises
7399 @subsection List Tutorial Exercise 4
7401 @noindent
7402 A number @expr{j} is a divisor of @expr{n} if 
7403 @texline @math{n \mathbin{\hbox{\code{\%}}} j = 0}.
7404 @infoline @samp{n % j = 0}.  
7405 The first step is to get a vector that identifies the divisors.
7407 @smallexample
7408 @group
7409 2:  30                  2:  [0, 0, 0, 2, ...]    1:  [1, 1, 1, 0, ...]
7410 1:  [1, 2, 3, 4, ...]   1:  0                        .
7411     .                       .
7413  30 @key{RET} v x 30 @key{RET}   s 1    V M %  0                 V M a =  s 2
7414 @end group
7415 @end smallexample
7417 @noindent
7418 This vector has 1's marking divisors of 30 and 0's marking non-divisors.
7420 The zeroth divisor function is just the total number of divisors.
7421 The first divisor function is the sum of the divisors.
7423 @smallexample
7424 @group
7425 1:  8      3:  8                    2:  8                    2:  8
7426            2:  [1, 2, 3, 4, ...]    1:  [1, 2, 3, 0, ...]    1:  72
7427            1:  [1, 1, 1, 0, ...]        .                        .
7428                .
7430    V R +       r 1 r 2                  V M *                  V R +
7431 @end group
7432 @end smallexample
7434 @noindent
7435 Once again, the last two steps just compute a dot product for which
7436 a simple @kbd{*} would have worked equally well.
7438 @node List Answer 5, List Answer 6, List Answer 4, Answers to Exercises
7439 @subsection List Tutorial Exercise 5
7441 @noindent
7442 The obvious first step is to obtain the list of factors with @kbd{k f}.
7443 This list will always be in sorted order, so if there are duplicates
7444 they will be right next to each other.  A suitable method is to compare
7445 the list with a copy of itself shifted over by one.
7447 @smallexample
7448 @group
7449 1:  [3, 7, 7, 7, 19]   2:  [3, 7, 7, 7, 19]     2:  [3, 7, 7, 7, 19, 0]
7450     .                  1:  [3, 7, 7, 7, 19, 0]  1:  [0, 3, 7, 7, 7, 19]
7451                            .                        .
7453     19551 k f              @key{RET} 0 |                  @key{TAB} 0 @key{TAB} |
7455 @end group
7456 @end smallexample
7457 @noindent
7458 @smallexample
7459 @group
7460 1:  [0, 0, 1, 1, 0, 0]   1:  2          1:  0
7461     .                        .              .
7463     V M a =                  V R +          0 a =
7464 @end group
7465 @end smallexample
7467 @noindent
7468 Note that we have to arrange for both vectors to have the same length
7469 so that the mapping operation works; no prime factor will ever be
7470 zero, so adding zeros on the left and right is safe.  From then on
7471 the job is pretty straightforward.
7473 Incidentally, Calc provides the 
7474 @texline @dfn{M@"obius} @math{\mu}
7475 @infoline @dfn{Moebius mu} 
7476 function which is zero if and only if its argument is square-free.  It
7477 would be a much more convenient way to do the above test in practice.
7479 @node List Answer 6, List Answer 7, List Answer 5, Answers to Exercises
7480 @subsection List Tutorial Exercise 6
7482 @noindent
7483 First use @kbd{v x 6 @key{RET}} to get a list of integers, then @kbd{V M v x}
7484 to get a list of lists of integers!
7486 @node List Answer 7, List Answer 8, List Answer 6, Answers to Exercises
7487 @subsection List Tutorial Exercise 7
7489 @noindent
7490 Here's one solution.  First, compute the triangular list from the previous
7491 exercise and type @kbd{1 -} to subtract one from all the elements.
7493 @smallexample
7494 @group
7495 1:  [ [0],
7496       [0, 1],
7497       [0, 1, 2],
7498       @dots{}
7500     1 -
7501 @end group
7502 @end smallexample
7504 The numbers down the lefthand edge of the list we desire are called
7505 the ``triangular numbers'' (now you know why!).  The @expr{n}th
7506 triangular number is the sum of the integers from 1 to @expr{n}, and
7507 can be computed directly by the formula 
7508 @texline @math{n (n+1) \over 2}.
7509 @infoline @expr{n * (n+1) / 2}.
7511 @smallexample
7512 @group
7513 2:  [ [0], [0, 1], ... ]    2:  [ [0], [0, 1], ... ]
7514 1:  [0, 1, 2, 3, 4, 5]      1:  [0, 1, 3, 6, 10, 15]
7515     .                           .
7517     v x 6 @key{RET} 1 -               V M ' $ ($+1)/2 @key{RET}
7518 @end group
7519 @end smallexample
7521 @noindent
7522 Adding this list to the above list of lists produces the desired
7523 result:
7525 @smallexample
7526 @group
7527 1:  [ [0],
7528       [1, 2],
7529       [3, 4, 5],
7530       [6, 7, 8, 9],
7531       [10, 11, 12, 13, 14],
7532       [15, 16, 17, 18, 19, 20] ]
7533       .
7535       V M +
7536 @end group
7537 @end smallexample
7539 If we did not know the formula for triangular numbers, we could have
7540 computed them using a @kbd{V U +} command.  We could also have
7541 gotten them the hard way by mapping a reduction across the original
7542 triangular list.
7544 @smallexample
7545 @group
7546 2:  [ [0], [0, 1], ... ]    2:  [ [0], [0, 1], ... ]
7547 1:  [ [0], [0, 1], ... ]    1:  [0, 1, 3, 6, 10, 15]
7548     .                           .
7550     @key{RET}                         V M V R +
7551 @end group
7552 @end smallexample
7554 @noindent
7555 (This means ``map a @kbd{V R +} command across the vector,'' and
7556 since each element of the main vector is itself a small vector,
7557 @kbd{V R +} computes the sum of its elements.)
7559 @node List Answer 8, List Answer 9, List Answer 7, Answers to Exercises
7560 @subsection List Tutorial Exercise 8
7562 @noindent
7563 The first step is to build a list of values of @expr{x}.
7565 @smallexample
7566 @group
7567 1:  [1, 2, 3, ..., 21]  1:  [0, 1, 2, ..., 20]  1:  [0, 0.25, 0.5, ..., 5]
7568     .                       .                       .
7570     v x 21 @key{RET}              1 -                     4 /  s 1
7571 @end group
7572 @end smallexample
7574 Next, we compute the Bessel function values.
7576 @smallexample
7577 @group
7578 1:  [0., 0.124, 0.242, ..., -0.328]
7579     .
7581     V M ' besJ(1,$) @key{RET}
7582 @end group
7583 @end smallexample
7585 @noindent
7586 (Another way to do this would be @kbd{1 @key{TAB} V M f j}.)
7588 A way to isolate the maximum value is to compute the maximum using
7589 @kbd{V R X}, then compare all the Bessel values with that maximum.
7591 @smallexample
7592 @group
7593 2:  [0., 0.124, 0.242, ... ]   1:  [0, 0, 0, ... ]    2:  [0, 0, 0, ... ]
7594 1:  0.5801562                      .                  1:  1
7595     .                                                     .
7597     @key{RET} V R X                      V M a =                @key{RET} V R +    @key{DEL}
7598 @end group
7599 @end smallexample
7601 @noindent
7602 It's a good idea to verify, as in the last step above, that only
7603 one value is equal to the maximum.  (After all, a plot of 
7604 @texline @math{\sin x}
7605 @infoline @expr{sin(x)}
7606 might have many points all equal to the maximum value, 1.)
7608 The vector we have now has a single 1 in the position that indicates
7609 the maximum value of @expr{x}.  Now it is a simple matter to convert
7610 this back into the corresponding value itself.
7612 @smallexample
7613 @group
7614 2:  [0, 0, 0, ... ]         1:  [0, 0., 0., ... ]    1:  1.75
7615 1:  [0, 0.25, 0.5, ... ]        .                        .
7616     .
7618     r 1                         V M *                    V R +
7619 @end group
7620 @end smallexample
7622 If @kbd{a =} had produced more than one @expr{1} value, this method
7623 would have given the sum of all maximum @expr{x} values; not very
7624 useful!  In this case we could have used @kbd{v m} (@code{calc-mask-vector})
7625 instead.  This command deletes all elements of a ``data'' vector that
7626 correspond to zeros in a ``mask'' vector, leaving us with, in this
7627 example, a vector of maximum @expr{x} values.
7629 The built-in @kbd{a X} command maximizes a function using more
7630 efficient methods.  Just for illustration, let's use @kbd{a X}
7631 to maximize @samp{besJ(1,x)} over this same interval.
7633 @smallexample
7634 @group
7635 2:  besJ(1, x)                 1:  [1.84115, 0.581865]
7636 1:  [0 .. 5]                       .
7637     .
7639 ' besJ(1,x), [0..5] @key{RET}            a X x @key{RET}
7640 @end group
7641 @end smallexample
7643 @noindent
7644 The output from @kbd{a X} is a vector containing the value of @expr{x}
7645 that maximizes the function, and the function's value at that maximum.
7646 As you can see, our simple search got quite close to the right answer.
7648 @node List Answer 9, List Answer 10, List Answer 8, Answers to Exercises
7649 @subsection List Tutorial Exercise 9
7651 @noindent
7652 Step one is to convert our integer into vector notation.
7654 @smallexample
7655 @group
7656 1:  25129925999           3:  25129925999
7657     .                     2:  10
7658                           1:  [11, 10, 9, ..., 1, 0]
7659                               .
7661     25129925999 @key{RET}           10 @key{RET} 12 @key{RET} v x 12 @key{RET} -
7663 @end group
7664 @end smallexample
7665 @noindent
7666 @smallexample
7667 @group
7668 1:  25129925999              1:  [0, 2, 25, 251, 2512, ... ]
7669 2:  [100000000000, ... ]         .
7670     .
7672     V M ^   s 1                  V M \
7673 @end group
7674 @end smallexample
7676 @noindent
7677 (Recall, the @kbd{\} command computes an integer quotient.)
7679 @smallexample
7680 @group
7681 1:  [0, 2, 5, 1, 2, 9, 9, 2, 5, 9, 9, 9]
7682     .
7684     10 V M %   s 2
7685 @end group
7686 @end smallexample
7688 Next we must increment this number.  This involves adding one to
7689 the last digit, plus handling carries.  There is a carry to the
7690 left out of a digit if that digit is a nine and all the digits to
7691 the right of it are nines.
7693 @smallexample
7694 @group
7695 1:  [0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1]   1:  [1, 1, 1, 0, 0, 1, ... ]
7696     .                                          .
7698     9 V M a =                                  v v
7700 @end group
7701 @end smallexample
7702 @noindent
7703 @smallexample
7704 @group
7705 1:  [1, 1, 1, 0, 0, 0, ... ]   1:  [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1]
7706     .                              .
7708     V U *                          v v 1 |
7709 @end group
7710 @end smallexample
7712 @noindent
7713 Accumulating @kbd{*} across a vector of ones and zeros will preserve
7714 only the initial run of ones.  These are the carries into all digits
7715 except the rightmost digit.  Concatenating a one on the right takes
7716 care of aligning the carries properly, and also adding one to the
7717 rightmost digit.
7719 @smallexample
7720 @group
7721 2:  [0, 0, 0, 0, ... ]     1:  [0, 0, 2, 5, 1, 2, 9, 9, 2, 6, 0, 0, 0]
7722 1:  [0, 0, 2, 5, ... ]         .
7723     .
7725     0 r 2 |                    V M +  10 V M %
7726 @end group
7727 @end smallexample
7729 @noindent
7730 Here we have concatenated 0 to the @emph{left} of the original number;
7731 this takes care of shifting the carries by one with respect to the
7732 digits that generated them.
7734 Finally, we must convert this list back into an integer.
7736 @smallexample
7737 @group
7738 3:  [0, 0, 2, 5, ... ]        2:  [0, 0, 2, 5, ... ]
7739 2:  1000000000000             1:  [1000000000000, 100000000000, ... ]
7740 1:  [100000000000, ... ]          .
7741     .
7743     10 @key{RET} 12 ^  r 1              |
7745 @end group
7746 @end smallexample
7747 @noindent
7748 @smallexample
7749 @group
7750 1:  [0, 0, 20000000000, 5000000000, ... ]    1:  25129926000
7751     .                                            .
7753     V M *                                        V R +
7754 @end group
7755 @end smallexample
7757 @noindent
7758 Another way to do this final step would be to reduce the formula
7759 @w{@samp{10 $$ + $}} across the vector of digits.
7761 @smallexample
7762 @group
7763 1:  [0, 0, 2, 5, ... ]        1:  25129926000
7764     .                             .
7766                                   V R ' 10 $$ + $ @key{RET}
7767 @end group
7768 @end smallexample
7770 @node List Answer 10, List Answer 11, List Answer 9, Answers to Exercises
7771 @subsection List Tutorial Exercise 10
7773 @noindent
7774 For the list @expr{[a, b, c, d]}, the result is @expr{((a = b) = c) = d},
7775 which will compare @expr{a} and @expr{b} to produce a 1 or 0, which is
7776 then compared with @expr{c} to produce another 1 or 0, which is then
7777 compared with @expr{d}.  This is not at all what Joe wanted.
7779 Here's a more correct method:
7781 @smallexample
7782 @group
7783 1:  [7, 7, 7, 8, 7]      2:  [7, 7, 7, 8, 7]
7784     .                    1:  7
7785                              .
7787   ' [7,7,7,8,7] @key{RET}          @key{RET} v r 1 @key{RET}
7789 @end group
7790 @end smallexample
7791 @noindent
7792 @smallexample
7793 @group
7794 1:  [1, 1, 1, 0, 1]      1:  0
7795     .                        .
7797     V M a =                  V R *
7798 @end group
7799 @end smallexample
7801 @node List Answer 11, List Answer 12, List Answer 10, Answers to Exercises
7802 @subsection List Tutorial Exercise 11
7804 @noindent
7805 The circle of unit radius consists of those points @expr{(x,y)} for which
7806 @expr{x^2 + y^2 < 1}.  We start by generating a vector of @expr{x^2}
7807 and a vector of @expr{y^2}.
7809 We can make this go a bit faster by using the @kbd{v .} and @kbd{t .}
7810 commands.
7812 @smallexample
7813 @group
7814 2:  [2., 2., ..., 2.]          2:  [2., 2., ..., 2.]
7815 1:  [2., 2., ..., 2.]          1:  [1.16, 1.98, ..., 0.81]
7816     .                              .
7818  v . t .  2. v b 100 @key{RET} @key{RET}       V M k r
7820 @end group
7821 @end smallexample
7822 @noindent
7823 @smallexample
7824 @group
7825 2:  [2., 2., ..., 2.]          1:  [0.026, 0.96, ..., 0.036]
7826 1:  [0.026, 0.96, ..., 0.036]  2:  [0.53, 0.81, ..., 0.094]
7827     .                              .
7829     1 -  2 V M ^                   @key{TAB}  V M k r  1 -  2 V M ^
7830 @end group
7831 @end smallexample
7833 Now we sum the @expr{x^2} and @expr{y^2} values, compare with 1 to
7834 get a vector of 1/0 truth values, then sum the truth values.
7836 @smallexample
7837 @group
7838 1:  [0.56, 1.78, ..., 0.13]    1:  [1, 0, ..., 1]    1:  84
7839     .                              .                     .
7841     +                              1 V M a <             V R +
7842 @end group
7843 @end smallexample
7845 @noindent
7846 The ratio @expr{84/100} should approximate the ratio @cpiover{4}.
7848 @smallexample
7849 @group
7850 1:  0.84       1:  3.36       2:  3.36       1:  1.0695
7851     .              .          1:  3.14159        .
7853     100 /          4 *            P              /
7854 @end group
7855 @end smallexample
7857 @noindent
7858 Our estimate, 3.36, is off by about 7%.  We could get a better estimate
7859 by taking more points (say, 1000), but it's clear that this method is
7860 not very efficient!
7862 (Naturally, since this example uses random numbers your own answer
7863 will be slightly different from the one shown here!)
7865 If you typed @kbd{v .} and @kbd{t .} before, type them again to
7866 return to full-sized display of vectors.
7868 @node List Answer 12, List Answer 13, List Answer 11, Answers to Exercises
7869 @subsection List Tutorial Exercise 12
7871 @noindent
7872 This problem can be made a lot easier by taking advantage of some
7873 symmetries.  First of all, after some thought it's clear that the
7874 @expr{y} axis can be ignored altogether.  Just pick a random @expr{x}
7875 component for one end of the match, pick a random direction 
7876 @texline @math{\theta},
7877 @infoline @expr{theta},
7878 and see if @expr{x} and 
7879 @texline @math{x + \cos \theta}
7880 @infoline @expr{x + cos(theta)} 
7881 (which is the @expr{x} coordinate of the other endpoint) cross a line.
7882 The lines are at integer coordinates, so this happens when the two
7883 numbers surround an integer.
7885 Since the two endpoints are equivalent, we may as well choose the leftmost
7886 of the two endpoints as @expr{x}.  Then @expr{theta} is an angle pointing
7887 to the right, in the range -90 to 90 degrees.  (We could use radians, but
7888 it would feel like cheating to refer to @cpiover{2} radians while trying
7889 to estimate @cpi{}!)
7891 In fact, since the field of lines is infinite we can choose the
7892 coordinates 0 and 1 for the lines on either side of the leftmost
7893 endpoint.  The rightmost endpoint will be between 0 and 1 if the
7894 match does not cross a line, or between 1 and 2 if it does.  So:
7895 Pick random @expr{x} and 
7896 @texline @math{\theta},
7897 @infoline @expr{theta}, 
7898 compute
7899 @texline @math{x + \cos \theta},
7900 @infoline @expr{x + cos(theta)},
7901 and count how many of the results are greater than one.  Simple!
7903 We can make this go a bit faster by using the @kbd{v .} and @kbd{t .}
7904 commands.
7906 @smallexample
7907 @group
7908 1:  [0.52, 0.71, ..., 0.72]    2:  [0.52, 0.71, ..., 0.72]
7909     .                          1:  [78.4, 64.5, ..., -42.9]
7910                                    .
7912 v . t . 1. v b 100 @key{RET}  V M k r    180. v b 100 @key{RET}  V M k r  90 -
7913 @end group
7914 @end smallexample
7916 @noindent
7917 (The next step may be slow, depending on the speed of your computer.)
7919 @smallexample
7920 @group
7921 2:  [0.52, 0.71, ..., 0.72]    1:  [0.72, 1.14, ..., 1.45]
7922 1:  [0.20, 0.43, ..., 0.73]        .
7923     .
7925     m d  V M C                     +
7927 @end group
7928 @end smallexample
7929 @noindent
7930 @smallexample
7931 @group
7932 1:  [0, 1, ..., 1]       1:  0.64            1:  3.125
7933     .                        .                   .
7935     1 V M a >                V R + 100 /         2 @key{TAB} /
7936 @end group
7937 @end smallexample
7939 Let's try the third method, too.  We'll use random integers up to
7940 one million.  The @kbd{k r} command with an integer argument picks
7941 a random integer.
7943 @smallexample
7944 @group
7945 2:  [1000000, 1000000, ..., 1000000]   2:  [78489, 527587, ..., 814975]
7946 1:  [1000000, 1000000, ..., 1000000]   1:  [324014, 358783, ..., 955450]
7947     .                                      .
7949     1000000 v b 100 @key{RET} @key{RET}                V M k r  @key{TAB}  V M k r
7951 @end group
7952 @end smallexample
7953 @noindent
7954 @smallexample
7955 @group
7956 1:  [1, 1, ..., 25]      1:  [1, 1, ..., 0]     1:  0.56
7957     .                        .                      .
7959     V M k g                  1 V M a =              V R + 100 /
7961 @end group
7962 @end smallexample
7963 @noindent
7964 @smallexample
7965 @group
7966 1:  10.714        1:  3.273
7967     .                 .
7969     6 @key{TAB} /           Q
7970 @end group
7971 @end smallexample
7973 For a proof of this property of the GCD function, see section 4.5.2,
7974 exercise 10, of Knuth's @emph{Art of Computer Programming}, volume II.
7976 If you typed @kbd{v .} and @kbd{t .} before, type them again to
7977 return to full-sized display of vectors.
7979 @node List Answer 13, List Answer 14, List Answer 12, Answers to Exercises
7980 @subsection List Tutorial Exercise 13
7982 @noindent
7983 First, we put the string on the stack as a vector of ASCII codes.
7985 @smallexample
7986 @group
7987 1:  [84, 101, 115, ..., 51]
7988     .
7990     "Testing, 1, 2, 3 @key{RET}
7991 @end group
7992 @end smallexample
7994 @noindent
7995 Note that the @kbd{"} key, like @kbd{$}, initiates algebraic entry so
7996 there was no need to type an apostrophe.  Also, Calc didn't mind that
7997 we omitted the closing @kbd{"}.  (The same goes for all closing delimiters
7998 like @kbd{)} and @kbd{]} at the end of a formula.
8000 We'll show two different approaches here.  In the first, we note that
8001 if the input vector is @expr{[a, b, c, d]}, then the hash code is
8002 @expr{3 (3 (3a + b) + c) + d = 27a + 9b + 3c + d}.  In other words,
8003 it's a sum of descending powers of three times the ASCII codes.
8005 @smallexample
8006 @group
8007 2:  [84, 101, 115, ..., 51]    2:  [84, 101, 115, ..., 51]
8008 1:  16                         1:  [15, 14, 13, ..., 0]
8009     .                              .
8011     @key{RET} v l                        v x 16 @key{RET} -
8013 @end group
8014 @end smallexample
8015 @noindent
8016 @smallexample
8017 @group
8018 2:  [84, 101, 115, ..., 51]    1:  1960915098    1:  121
8019 1:  [14348907, ..., 1]             .                 .
8020     .
8022     3 @key{TAB} V M ^                    *                 511 %
8023 @end group
8024 @end smallexample
8026 @noindent
8027 Once again, @kbd{*} elegantly summarizes most of the computation.
8028 But there's an even more elegant approach:  Reduce the formula
8029 @kbd{3 $$ + $} across the vector.  Recall that this represents a
8030 function of two arguments that computes its first argument times three
8031 plus its second argument.
8033 @smallexample
8034 @group
8035 1:  [84, 101, 115, ..., 51]    1:  1960915098
8036     .                              .
8038     "Testing, 1, 2, 3 @key{RET}          V R ' 3$$+$ @key{RET}
8039 @end group
8040 @end smallexample
8042 @noindent
8043 If you did the decimal arithmetic exercise, this will be familiar.
8044 Basically, we're turning a base-3 vector of digits into an integer,
8045 except that our ``digits'' are much larger than real digits.
8047 Instead of typing @kbd{511 %} again to reduce the result, we can be
8048 cleverer still and notice that rather than computing a huge integer
8049 and taking the modulo at the end, we can take the modulo at each step
8050 without affecting the result.  While this means there are more
8051 arithmetic operations, the numbers we operate on remain small so
8052 the operations are faster.
8054 @smallexample
8055 @group
8056 1:  [84, 101, 115, ..., 51]    1:  121
8057     .                              .
8059     "Testing, 1, 2, 3 @key{RET}          V R ' (3$$+$)%511 @key{RET}
8060 @end group
8061 @end smallexample
8063 Why does this work?  Think about a two-step computation:
8064 @w{@expr{3 (3a + b) + c}}.  Taking a result modulo 511 basically means
8065 subtracting off enough 511's to put the result in the desired range.
8066 So the result when we take the modulo after every step is,
8068 @ifinfo
8069 @example
8070 3 (3 a + b - 511 m) + c - 511 n
8071 @end example
8072 @end ifinfo
8073 @tex
8074 \turnoffactive
8075 \beforedisplay
8076 $$ 3 (3 a + b - 511 m) + c - 511 n $$
8077 \afterdisplay
8078 @end tex
8080 @noindent
8081 for some suitable integers @expr{m} and @expr{n}.  Expanding out by
8082 the distributive law yields
8084 @ifinfo
8085 @example
8086 9 a + 3 b + c - 511*3 m - 511 n
8087 @end example
8088 @end ifinfo
8089 @tex
8090 \turnoffactive
8091 \beforedisplay
8092 $$ 9 a + 3 b + c - 511\times3 m - 511 n $$
8093 \afterdisplay
8094 @end tex
8096 @noindent
8097 The @expr{m} term in the latter formula is redundant because any
8098 contribution it makes could just as easily be made by the @expr{n}
8099 term.  So we can take it out to get an equivalent formula with
8100 @expr{n' = 3m + n},
8102 @ifinfo
8103 @example
8104 9 a + 3 b + c - 511 n'
8105 @end example
8106 @end ifinfo
8107 @tex
8108 \turnoffactive
8109 \beforedisplay
8110 $$ 9 a + 3 b + c - 511 n' $$
8111 \afterdisplay
8112 @end tex
8114 @noindent
8115 which is just the formula for taking the modulo only at the end of
8116 the calculation.  Therefore the two methods are essentially the same.
8118 Later in the tutorial we will encounter @dfn{modulo forms}, which
8119 basically automate the idea of reducing every intermediate result
8120 modulo some value @var{m}.
8122 @node List Answer 14, Types Answer 1, List Answer 13, Answers to Exercises
8123 @subsection List Tutorial Exercise 14
8125 We want to use @kbd{H V U} to nest a function which adds a random
8126 step to an @expr{(x,y)} coordinate.  The function is a bit long, but
8127 otherwise the problem is quite straightforward.
8129 @smallexample
8130 @group
8131 2:  [0, 0]     1:  [ [    0,       0    ]
8132 1:  50               [  0.4288, -0.1695 ]
8133     .                [ -0.4787, -0.9027 ]
8134                      ...
8136     [0,0] 50       H V U ' <# + [random(2.0)-1, random(2.0)-1]> @key{RET}
8137 @end group
8138 @end smallexample
8140 Just as the text recommended, we used @samp{< >} nameless function
8141 notation to keep the two @code{random} calls from being evaluated
8142 before nesting even begins.
8144 We now have a vector of @expr{[x, y]} sub-vectors, which by Calc's
8145 rules acts like a matrix.  We can transpose this matrix and unpack
8146 to get a pair of vectors, @expr{x} and @expr{y}, suitable for graphing.
8148 @smallexample
8149 @group
8150 2:  [ 0, 0.4288, -0.4787, ... ]
8151 1:  [ 0, -0.1696, -0.9027, ... ]
8152     .
8154     v t  v u  g f
8155 @end group
8156 @end smallexample
8158 Incidentally, because the @expr{x} and @expr{y} are completely
8159 independent in this case, we could have done two separate commands
8160 to create our @expr{x} and @expr{y} vectors of numbers directly.
8162 To make a random walk of unit steps, we note that @code{sincos} of
8163 a random direction exactly gives us an @expr{[x, y]} step of unit
8164 length; in fact, the new nesting function is even briefer, though
8165 we might want to lower the precision a bit for it.
8167 @smallexample
8168 @group
8169 2:  [0, 0]     1:  [ [    0,      0    ]
8170 1:  50               [  0.1318, 0.9912 ]
8171     .                [ -0.5965, 0.3061 ]
8172                      ...
8174     [0,0] 50   m d  p 6 @key{RET}   H V U ' <# + sincos(random(360.0))> @key{RET}
8175 @end group
8176 @end smallexample
8178 Another @kbd{v t v u g f} sequence will graph this new random walk.
8180 An interesting twist on these random walk functions would be to use
8181 complex numbers instead of 2-vectors to represent points on the plane.
8182 In the first example, we'd use something like @samp{random + random*(0,1)},
8183 and in the second we could use polar complex numbers with random phase
8184 angles.  (This exercise was first suggested in this form by Randal
8185 Schwartz.)
8187 @node Types Answer 1, Types Answer 2, List Answer 14, Answers to Exercises
8188 @subsection Types Tutorial Exercise 1
8190 @noindent
8191 If the number is the square root of @cpi{} times a rational number,
8192 then its square, divided by @cpi{}, should be a rational number.
8194 @smallexample
8195 @group
8196 1:  1.26508260337    1:  0.509433962268   1:  2486645810:4881193627
8197     .                    .                    .
8199                          2 ^ P /              c F
8200 @end group
8201 @end smallexample
8203 @noindent
8204 Technically speaking this is a rational number, but not one that is
8205 likely to have arisen in the original problem.  More likely, it just
8206 happens to be the fraction which most closely represents some
8207 irrational number to within 12 digits.
8209 But perhaps our result was not quite exact.  Let's reduce the
8210 precision slightly and try again:
8212 @smallexample
8213 @group
8214 1:  0.509433962268     1:  27:53
8215     .                      .
8217     U p 10 @key{RET}             c F
8218 @end group
8219 @end smallexample
8221 @noindent
8222 Aha!  It's unlikely that an irrational number would equal a fraction
8223 this simple to within ten digits, so our original number was probably
8224 @texline @math{\sqrt{27 \pi / 53}}.
8225 @infoline @expr{sqrt(27 pi / 53)}.
8227 Notice that we didn't need to re-round the number when we reduced the
8228 precision.  Remember, arithmetic operations always round their inputs
8229 to the current precision before they begin.
8231 @node Types Answer 2, Types Answer 3, Types Answer 1, Answers to Exercises
8232 @subsection Types Tutorial Exercise 2
8234 @noindent
8235 @samp{inf / inf = nan}.  Perhaps @samp{1} is the ``obvious'' answer.
8236 But if @w{@samp{17 inf = inf}}, then @samp{17 inf / inf = inf / inf = 17}, too.
8238 @samp{exp(inf) = inf}.  It's tempting to say that the exponential
8239 of infinity must be ``bigger'' than ``regular'' infinity, but as
8240 far as Calc is concerned all infinities are as just as big.
8241 In other words, as @expr{x} goes to infinity, @expr{e^x} also goes
8242 to infinity, but the fact the @expr{e^x} grows much faster than
8243 @expr{x} is not relevant here.
8245 @samp{exp(-inf) = 0}.  Here we have a finite answer even though
8246 the input is infinite.
8248 @samp{sqrt(-inf) = (0, 1) inf}.  Remember that @expr{(0, 1)}
8249 represents the imaginary number @expr{i}.  Here's a derivation:
8250 @samp{sqrt(-inf) = @w{sqrt((-1) * inf)} = sqrt(-1) * sqrt(inf)}.
8251 The first part is, by definition, @expr{i}; the second is @code{inf}
8252 because, once again, all infinities are the same size.
8254 @samp{sqrt(uinf) = uinf}.  In fact, we do know something about the
8255 direction because @code{sqrt} is defined to return a value in the
8256 right half of the complex plane.  But Calc has no notation for this,
8257 so it settles for the conservative answer @code{uinf}.
8259 @samp{abs(uinf) = inf}.  No matter which direction @expr{x} points,
8260 @samp{abs(x)} always points along the positive real axis.
8262 @samp{ln(0) = -inf}.  Here we have an infinite answer to a finite
8263 input.  As in the @expr{1 / 0} case, Calc will only use infinities
8264 here if you have turned on Infinite mode.  Otherwise, it will
8265 treat @samp{ln(0)} as an error.
8267 @node Types Answer 3, Types Answer 4, Types Answer 2, Answers to Exercises
8268 @subsection Types Tutorial Exercise 3
8270 @noindent
8271 We can make @samp{inf - inf} be any real number we like, say,
8272 @expr{a}, just by claiming that we added @expr{a} to the first
8273 infinity but not to the second.  This is just as true for complex
8274 values of @expr{a}, so @code{nan} can stand for a complex number.
8275 (And, similarly, @code{uinf} can stand for an infinity that points
8276 in any direction in the complex plane, such as @samp{(0, 1) inf}).
8278 In fact, we can multiply the first @code{inf} by two.  Surely
8279 @w{@samp{2 inf - inf = inf}}, but also @samp{2 inf - inf = inf - inf = nan}.
8280 So @code{nan} can even stand for infinity.  Obviously it's just
8281 as easy to make it stand for minus infinity as for plus infinity.
8283 The moral of this story is that ``infinity'' is a slippery fish
8284 indeed, and Calc tries to handle it by having a very simple model
8285 for infinities (only the direction counts, not the ``size''); but
8286 Calc is careful to write @code{nan} any time this simple model is
8287 unable to tell what the true answer is.
8289 @node Types Answer 4, Types Answer 5, Types Answer 3, Answers to Exercises
8290 @subsection Types Tutorial Exercise 4
8292 @smallexample
8293 @group
8294 2:  0@@ 47' 26"              1:  0@@ 2' 47.411765"
8295 1:  17                          .
8296     .
8298     0@@ 47' 26" @key{RET} 17           /
8299 @end group
8300 @end smallexample
8302 @noindent
8303 The average song length is two minutes and 47.4 seconds.
8305 @smallexample
8306 @group
8307 2:  0@@ 2' 47.411765"     1:  0@@ 3' 7.411765"    1:  0@@ 53' 6.000005"
8308 1:  0@@ 0' 20"                .                      .
8309     .
8311     20"                      +                      17 *
8312 @end group
8313 @end smallexample
8315 @noindent
8316 The album would be 53 minutes and 6 seconds long.
8318 @node Types Answer 5, Types Answer 6, Types Answer 4, Answers to Exercises
8319 @subsection Types Tutorial Exercise 5
8321 @noindent
8322 Let's suppose it's January 14, 1991.  The easiest thing to do is
8323 to keep trying 13ths of months until Calc reports a Friday.
8324 We can do this by manually entering dates, or by using @kbd{t I}:
8326 @smallexample
8327 @group
8328 1:  <Wed Feb 13, 1991>    1:  <Wed Mar 13, 1991>   1:  <Sat Apr 13, 1991>
8329     .                         .                        .
8331     ' <2/13> @key{RET}       @key{DEL}    ' <3/13> @key{RET}             t I
8332 @end group
8333 @end smallexample
8335 @noindent
8336 (Calc assumes the current year if you don't say otherwise.)
8338 This is getting tedious---we can keep advancing the date by typing
8339 @kbd{t I} over and over again, but let's automate the job by using
8340 vector mapping.  The @kbd{t I} command actually takes a second
8341 ``how-many-months'' argument, which defaults to one.  This
8342 argument is exactly what we want to map over:
8344 @smallexample
8345 @group
8346 2:  <Sat Apr 13, 1991>     1:  [<Mon May 13, 1991>, <Thu Jun 13, 1991>,
8347 1:  [1, 2, 3, 4, 5, 6]          <Sat Jul 13, 1991>, <Tue Aug 13, 1991>,
8348     .                           <Fri Sep 13, 1991>, <Sun Oct 13, 1991>]
8349                                .
8351     v x 6 @key{RET}                  V M t I
8352 @end group
8353 @end smallexample
8355 @noindent
8356 Et voil@`a, September 13, 1991 is a Friday.
8358 @smallexample
8359 @group
8360 1:  242
8361     .
8363 ' <sep 13> - <jan 14> @key{RET}
8364 @end group
8365 @end smallexample
8367 @noindent
8368 And the answer to our original question:  242 days to go.
8370 @node Types Answer 6, Types Answer 7, Types Answer 5, Answers to Exercises
8371 @subsection Types Tutorial Exercise 6
8373 @noindent
8374 The full rule for leap years is that they occur in every year divisible
8375 by four, except that they don't occur in years divisible by 100, except
8376 that they @emph{do} in years divisible by 400.  We could work out the
8377 answer by carefully counting the years divisible by four and the
8378 exceptions, but there is a much simpler way that works even if we
8379 don't know the leap year rule.
8381 Let's assume the present year is 1991.  Years have 365 days, except
8382 that leap years (whenever they occur) have 366 days.  So let's count
8383 the number of days between now and then, and compare that to the
8384 number of years times 365.  The number of extra days we find must be
8385 equal to the number of leap years there were.
8387 @smallexample
8388 @group
8389 1:  <Mon Jan 1, 10001>     2:  <Mon Jan 1, 10001>     1:  2925593
8390     .                      1:  <Tue Jan 1, 1991>          .
8391                                .
8393   ' <jan 1 10001> @key{RET}         ' <jan 1 1991> @key{RET}          -
8395 @end group
8396 @end smallexample
8397 @noindent
8398 @smallexample
8399 @group
8400 3:  2925593       2:  2925593     2:  2925593     1:  1943
8401 2:  10001         1:  8010        1:  2923650         .
8402 1:  1991              .               .
8403     .
8405   10001 @key{RET} 1991      -               365 *           -
8406 @end group
8407 @end smallexample
8409 @c [fix-ref Date Forms]
8410 @noindent
8411 There will be 1943 leap years before the year 10001.  (Assuming,
8412 of course, that the algorithm for computing leap years remains
8413 unchanged for that long.  @xref{Date Forms}, for some interesting
8414 background information in that regard.)
8416 @node Types Answer 7, Types Answer 8, Types Answer 6, Answers to Exercises
8417 @subsection Types Tutorial Exercise 7
8419 @noindent
8420 The relative errors must be converted to absolute errors so that
8421 @samp{+/-} notation may be used.
8423 @smallexample
8424 @group
8425 1:  1.              2:  1.
8426     .               1:  0.2
8427                         .
8429     20 @key{RET} .05 *        4 @key{RET} .05 *
8430 @end group
8431 @end smallexample
8433 Now we simply chug through the formula.
8435 @smallexample
8436 @group
8437 1:  19.7392088022    1:  394.78 +/- 19.739    1:  6316.5 +/- 706.21
8438     .                    .                        .
8440     2 P 2 ^ *            20 p 1 *                 4 p .2 @key{RET} 2 ^ *
8441 @end group
8442 @end smallexample
8444 It turns out the @kbd{v u} command will unpack an error form as
8445 well as a vector.  This saves us some retyping of numbers.
8447 @smallexample
8448 @group
8449 3:  6316.5 +/- 706.21     2:  6316.5 +/- 706.21
8450 2:  6316.5                1:  0.1118
8451 1:  706.21                    .
8452     .
8454     @key{RET} v u                   @key{TAB} /
8455 @end group
8456 @end smallexample
8458 @noindent
8459 Thus the volume is 6316 cubic centimeters, within about 11 percent.
8461 @node Types Answer 8, Types Answer 9, Types Answer 7, Answers to Exercises
8462 @subsection Types Tutorial Exercise 8
8464 @noindent
8465 The first answer is pretty simple:  @samp{1 / (0 .. 10) = (0.1 .. inf)}.
8466 Since a number in the interval @samp{(0 .. 10)} can get arbitrarily
8467 close to zero, its reciprocal can get arbitrarily large, so the answer
8468 is an interval that effectively means, ``any number greater than 0.1''
8469 but with no upper bound.
8471 The second answer, similarly, is @samp{1 / (-10 .. 0) = (-inf .. -0.1)}.
8473 Calc normally treats division by zero as an error, so that the formula
8474 @w{@samp{1 / 0}} is left unsimplified.  Our third problem,
8475 @w{@samp{1 / [0 .. 10]}}, also (potentially) divides by zero because zero
8476 is now a member of the interval.  So Calc leaves this one unevaluated, too.
8478 If you turn on Infinite mode by pressing @kbd{m i}, you will
8479 instead get the answer @samp{[0.1 .. inf]}, which includes infinity
8480 as a possible value.
8482 The fourth calculation, @samp{1 / (-10 .. 10)}, has the same problem.
8483 Zero is buried inside the interval, but it's still a possible value.
8484 It's not hard to see that the actual result of @samp{1 / (-10 .. 10)}
8485 will be either greater than @mathit{0.1}, or less than @mathit{-0.1}.  Thus
8486 the interval goes from minus infinity to plus infinity, with a ``hole''
8487 in it from @mathit{-0.1} to @mathit{0.1}.  Calc doesn't have any way to
8488 represent this, so it just reports @samp{[-inf .. inf]} as the answer.
8489 It may be disappointing to hear ``the answer lies somewhere between
8490 minus infinity and plus infinity, inclusive,'' but that's the best
8491 that interval arithmetic can do in this case.
8493 @node Types Answer 9, Types Answer 10, Types Answer 8, Answers to Exercises
8494 @subsection Types Tutorial Exercise 9
8496 @smallexample
8497 @group
8498 1:  [-3 .. 3]       2:  [-3 .. 3]     2:  [0 .. 9]
8499     .               1:  [0 .. 9]      1:  [-9 .. 9]
8500                         .                 .
8502     [ 3 n .. 3 ]        @key{RET} 2 ^           @key{TAB} @key{RET} *
8503 @end group
8504 @end smallexample
8506 @noindent
8507 In the first case the result says, ``if a number is between @mathit{-3} and
8508 3, its square is between 0 and 9.''  The second case says, ``the product
8509 of two numbers each between @mathit{-3} and 3 is between @mathit{-9} and 9.''
8511 An interval form is not a number; it is a symbol that can stand for
8512 many different numbers.  Two identical-looking interval forms can stand
8513 for different numbers.
8515 The same issue arises when you try to square an error form.
8517 @node Types Answer 10, Types Answer 11, Types Answer 9, Answers to Exercises
8518 @subsection Types Tutorial Exercise 10
8520 @noindent
8521 Testing the first number, we might arbitrarily choose 17 for @expr{x}.
8523 @smallexample
8524 @group
8525 1:  17 mod 811749613   2:  17 mod 811749613   1:  533694123 mod 811749613
8526     .                      811749612              .
8527                            .
8529     17 M 811749613 @key{RET}     811749612              ^
8530 @end group
8531 @end smallexample
8533 @noindent
8534 Since 533694123 is (considerably) different from 1, the number 811749613
8535 must not be prime.
8537 It's awkward to type the number in twice as we did above.  There are
8538 various ways to avoid this, and algebraic entry is one.  In fact, using
8539 a vector mapping operation we can perform several tests at once.  Let's
8540 use this method to test the second number.
8542 @smallexample
8543 @group
8544 2:  [17, 42, 100000]               1:  [1 mod 15485863, 1 mod ... ]
8545 1:  15485863                           .
8546     .
8548  [17 42 100000] 15485863 @key{RET}           V M ' ($$ mod $)^($-1) @key{RET}
8549 @end group
8550 @end smallexample
8552 @noindent
8553 The result is three ones (modulo @expr{n}), so it's very probable that
8554 15485863 is prime.  (In fact, this number is the millionth prime.)
8556 Note that the functions @samp{($$^($-1)) mod $} or @samp{$$^($-1) % $}
8557 would have been hopelessly inefficient, since they would have calculated
8558 the power using full integer arithmetic.
8560 Calc has a @kbd{k p} command that does primality testing.  For small
8561 numbers it does an exact test; for large numbers it uses a variant
8562 of the Fermat test we used here.  You can use @kbd{k p} repeatedly
8563 to prove that a large integer is prime with any desired probability.
8565 @node Types Answer 11, Types Answer 12, Types Answer 10, Answers to Exercises
8566 @subsection Types Tutorial Exercise 11
8568 @noindent
8569 There are several ways to insert a calculated number into an HMS form.
8570 One way to convert a number of seconds to an HMS form is simply to
8571 multiply the number by an HMS form representing one second:
8573 @smallexample
8574 @group
8575 1:  31415926.5359     2:  31415926.5359     1:  8726@@ 38' 46.5359"
8576     .                 1:  0@@ 0' 1"              .
8577                           .
8579     P 1e7 *               0@@ 0' 1"              *
8581 @end group
8582 @end smallexample
8583 @noindent
8584 @smallexample
8585 @group
8586 2:  8726@@ 38' 46.5359"             1:  6@@ 6' 2.5359" mod 24@@ 0' 0"
8587 1:  15@@ 27' 16" mod 24@@ 0' 0"          .
8588     .
8590     x time @key{RET}                         +
8591 @end group
8592 @end smallexample
8594 @noindent
8595 It will be just after six in the morning.
8597 The algebraic @code{hms} function can also be used to build an
8598 HMS form:
8600 @smallexample
8601 @group
8602 1:  hms(0, 0, 10000000. pi)       1:  8726@@ 38' 46.5359"
8603     .                                 .
8605   ' hms(0, 0, 1e7 pi) @key{RET}             =
8606 @end group
8607 @end smallexample
8609 @noindent
8610 The @kbd{=} key is necessary to evaluate the symbol @samp{pi} to
8611 the actual number 3.14159...
8613 @node Types Answer 12, Types Answer 13, Types Answer 11, Answers to Exercises
8614 @subsection Types Tutorial Exercise 12
8616 @noindent
8617 As we recall, there are 17 songs of about 2 minutes and 47 seconds
8618 each.
8620 @smallexample
8621 @group
8622 2:  0@@ 2' 47"                    1:  [0@@ 3' 7" .. 0@@ 3' 47"]
8623 1:  [0@@ 0' 20" .. 0@@ 1' 0"]          .
8624     .
8626     [ 0@@ 20" .. 0@@ 1' ]              +
8628 @end group
8629 @end smallexample
8630 @noindent
8631 @smallexample
8632 @group
8633 1:  [0@@ 52' 59." .. 1@@ 4' 19."]
8634     .
8636     17 *
8637 @end group
8638 @end smallexample
8640 @noindent
8641 No matter how long it is, the album will fit nicely on one CD.
8643 @node Types Answer 13, Types Answer 14, Types Answer 12, Answers to Exercises
8644 @subsection Types Tutorial Exercise 13
8646 @noindent
8647 Type @kbd{' 1 yr @key{RET} u c s @key{RET}}.  The answer is 31557600 seconds.
8649 @node Types Answer 14, Types Answer 15, Types Answer 13, Answers to Exercises
8650 @subsection Types Tutorial Exercise 14
8652 @noindent
8653 How long will it take for a signal to get from one end of the computer
8654 to the other?
8656 @smallexample
8657 @group
8658 1:  m / c         1:  3.3356 ns
8659     .                 .
8661  ' 1 m / c @key{RET}        u c ns @key{RET}
8662 @end group
8663 @end smallexample
8665 @noindent
8666 (Recall, @samp{c} is a ``unit'' corresponding to the speed of light.)
8668 @smallexample
8669 @group
8670 1:  3.3356 ns     1:  0.81356 ns / ns     1:  0.81356
8671 2:  4.1 ns            .                       .
8672     .
8674   ' 4.1 ns @key{RET}        /                       u s
8675 @end group
8676 @end smallexample
8678 @noindent
8679 Thus a signal could take up to 81 percent of a clock cycle just to
8680 go from one place to another inside the computer, assuming the signal
8681 could actually attain the full speed of light.  Pretty tight!
8683 @node Types Answer 15, Algebra Answer 1, Types Answer 14, Answers to Exercises
8684 @subsection Types Tutorial Exercise 15
8686 @noindent
8687 The speed limit is 55 miles per hour on most highways.  We want to
8688 find the ratio of Sam's speed to the US speed limit.
8690 @smallexample
8691 @group
8692 1:  55 mph         2:  55 mph           3:  11 hr mph / yd
8693     .              1:  5 yd / hr            .
8694                        .
8696   ' 55 mph @key{RET}       ' 5 yd/hr @key{RET}          /
8697 @end group
8698 @end smallexample
8700 The @kbd{u s} command cancels out these units to get a plain
8701 number.  Now we take the logarithm base two to find the final
8702 answer, assuming that each successive pill doubles his speed.
8704 @smallexample
8705 @group
8706 1:  19360.       2:  19360.       1:  14.24
8707     .            1:  2                .
8708                      .
8710     u s              2                B
8711 @end group
8712 @end smallexample
8714 @noindent
8715 Thus Sam can take up to 14 pills without a worry.
8717 @node Algebra Answer 1, Algebra Answer 2, Types Answer 15, Answers to Exercises
8718 @subsection Algebra Tutorial Exercise 1
8720 @noindent
8721 @c [fix-ref Declarations]
8722 The result @samp{sqrt(x)^2} is simplified back to @expr{x} by the
8723 Calculator, but @samp{sqrt(x^2)} is not.  (Consider what happens
8724 if @w{@expr{x = -4}}.)  If @expr{x} is real, this formula could be
8725 simplified to @samp{abs(x)}, but for general complex arguments even
8726 that is not safe.  (@xref{Declarations}, for a way to tell Calc
8727 that @expr{x} is known to be real.)
8729 @node Algebra Answer 2, Algebra Answer 3, Algebra Answer 1, Answers to Exercises
8730 @subsection Algebra Tutorial Exercise 2
8732 @noindent
8733 Suppose our roots are @expr{[a, b, c]}.  We want a polynomial which
8734 is zero when @expr{x} is any of these values.  The trivial polynomial
8735 @expr{x-a} is zero when @expr{x=a}, so the product @expr{(x-a)(x-b)(x-c)}
8736 will do the job.  We can use @kbd{a c x} to write this in a more
8737 familiar form.
8739 @smallexample
8740 @group
8741 1:  34 x - 24 x^3          1:  [1.19023, -1.19023, 0]
8742     .                          .
8744     r 2                        a P x @key{RET}
8746 @end group
8747 @end smallexample
8748 @noindent
8749 @smallexample
8750 @group
8751 1:  [x - 1.19023, x + 1.19023, x]     1:  (x - 1.19023) (x + 1.19023) x
8752     .                                     .
8754     V M ' x-$ @key{RET}                         V R *
8756 @end group
8757 @end smallexample
8758 @noindent
8759 @smallexample
8760 @group
8761 1:  x^3 - 1.41666 x        1:  34 x - 24 x^3
8762     .                          .
8764     a c x @key{RET}                  24 n *  a x
8765 @end group
8766 @end smallexample
8768 @noindent
8769 Sure enough, our answer (multiplied by a suitable constant) is the
8770 same as the original polynomial.
8772 @node Algebra Answer 3, Algebra Answer 4, Algebra Answer 2, Answers to Exercises
8773 @subsection Algebra Tutorial Exercise 3
8775 @smallexample
8776 @group
8777 1:  x sin(pi x)         1:  (sin(pi x) - pi x cos(pi x)) / pi^2
8778     .                       .
8780   ' x sin(pi x) @key{RET}   m r   a i x @key{RET}
8782 @end group
8783 @end smallexample
8784 @noindent
8785 @smallexample
8786 @group
8787 1:  [y, 1]
8788 2:  (sin(pi x) - pi x cos(pi x)) / pi^2
8789     .
8791   ' [y,1] @key{RET} @key{TAB}
8793 @end group
8794 @end smallexample
8795 @noindent
8796 @smallexample
8797 @group
8798 1:  [(sin(pi y) - pi y cos(pi y)) / pi^2, (sin(pi) - pi cos(pi)) / pi^2]
8799     .
8801     V M $ @key{RET}
8803 @end group
8804 @end smallexample
8805 @noindent
8806 @smallexample
8807 @group
8808 1:  (sin(pi y) - pi y cos(pi y)) / pi^2 + (pi cos(pi) - sin(pi)) / pi^2
8809     .
8811     V R -
8813 @end group
8814 @end smallexample
8815 @noindent
8816 @smallexample
8817 @group
8818 1:  (sin(3.14159 y) - 3.14159 y cos(3.14159 y)) / 9.8696 - 0.3183
8819     .
8821     =
8823 @end group
8824 @end smallexample
8825 @noindent
8826 @smallexample
8827 @group
8828 1:  [0., -0.95493, 0.63662, -1.5915, 1.2732]
8829     .
8831     v x 5 @key{RET}  @key{TAB}  V M $ @key{RET}
8832 @end group
8833 @end smallexample
8835 @node Algebra Answer 4, Rewrites Answer 1, Algebra Answer 3, Answers to Exercises
8836 @subsection Algebra Tutorial Exercise 4
8838 @noindent
8839 The hard part is that @kbd{V R +} is no longer sufficient to add up all
8840 the contributions from the slices, since the slices have varying
8841 coefficients.  So first we must come up with a vector of these
8842 coefficients.  Here's one way:
8844 @smallexample
8845 @group
8846 2:  -1                 2:  3                    1:  [4, 2, ..., 4]
8847 1:  [1, 2, ..., 9]     1:  [-1, 1, ..., -1]         .
8848     .                      .
8850     1 n v x 9 @key{RET}          V M ^  3 @key{TAB}             -
8852 @end group
8853 @end smallexample
8854 @noindent
8855 @smallexample
8856 @group
8857 1:  [4, 2, ..., 4, 1]      1:  [1, 4, 2, ..., 4, 1]
8858     .                          .
8860     1 |                        1 @key{TAB} |
8861 @end group
8862 @end smallexample
8864 @noindent
8865 Now we compute the function values.  Note that for this method we need
8866 eleven values, including both endpoints of the desired interval.
8868 @smallexample
8869 @group
8870 2:  [1, 4, 2, ..., 4, 1]
8871 1:  [1, 1.1, 1.2,  ...  , 1.8, 1.9, 2.]
8872     .
8874  11 @key{RET} 1 @key{RET} .1 @key{RET}  C-u v x
8876 @end group
8877 @end smallexample
8878 @noindent
8879 @smallexample
8880 @group
8881 2:  [1, 4, 2, ..., 4, 1]
8882 1:  [0., 0.084941, 0.16993, ... ]
8883     .
8885     ' sin(x) ln(x) @key{RET}   m r  p 5 @key{RET}   V M $ @key{RET}
8886 @end group
8887 @end smallexample
8889 @noindent
8890 Once again this calls for @kbd{V M * V R +}; a simple @kbd{*} does the
8891 same thing.
8893 @smallexample
8894 @group
8895 1:  11.22      1:  1.122      1:  0.374
8896     .              .              .
8898     *              .1 *           3 /
8899 @end group
8900 @end smallexample
8902 @noindent
8903 Wow!  That's even better than the result from the Taylor series method.
8905 @node Rewrites Answer 1, Rewrites Answer 2, Algebra Answer 4, Answers to Exercises
8906 @subsection Rewrites Tutorial Exercise 1
8908 @noindent
8909 We'll use Big mode to make the formulas more readable.
8911 @smallexample
8912 @group
8913                                                ___
8914                                           2 + V 2
8915 1:  (2 + sqrt(2)) / (1 + sqrt(2))     1:  --------
8916     .                                          ___
8917                                           1 + V 2
8919                                           .
8921   ' (2+sqrt(2)) / (1+sqrt(2)) @key{RET}         d B
8922 @end group
8923 @end smallexample
8925 @noindent
8926 Multiplying by the conjugate helps because @expr{(a+b) (a-b) = a^2 - b^2}.
8928 @smallexample
8929 @group
8930           ___    ___
8931 1:  (2 + V 2 ) (V 2  - 1)
8932     .
8934   a r a/(b+c) := a*(b-c) / (b^2-c^2) @key{RET}
8936 @end group
8937 @end smallexample
8938 @noindent
8939 @smallexample
8940 @group
8941          ___                         ___
8942 1:  2 + V 2  - 2                1:  V 2
8943     .                               .
8945   a r a*(b+c) := a*b + a*c          a s
8946 @end group
8947 @end smallexample
8949 @noindent
8950 (We could have used @kbd{a x} instead of a rewrite rule for the
8951 second step.)
8953 The multiply-by-conjugate rule turns out to be useful in many
8954 different circumstances, such as when the denominator involves
8955 sines and cosines or the imaginary constant @code{i}.
8957 @node Rewrites Answer 2, Rewrites Answer 3, Rewrites Answer 1, Answers to Exercises
8958 @subsection Rewrites Tutorial Exercise 2
8960 @noindent
8961 Here is the rule set:
8963 @smallexample
8964 @group
8965 [ fib(n) := fib(n, 1, 1) :: integer(n) :: n >= 1,
8966   fib(1, x, y) := x,
8967   fib(n, x, y) := fib(n-1, y, x+y) ]
8968 @end group
8969 @end smallexample
8971 @noindent
8972 The first rule turns a one-argument @code{fib} that people like to write
8973 into a three-argument @code{fib} that makes computation easier.  The
8974 second rule converts back from three-argument form once the computation
8975 is done.  The third rule does the computation itself.  It basically
8976 says that if @expr{x} and @expr{y} are two consecutive Fibonacci numbers,
8977 then @expr{y} and @expr{x+y} are the next (overlapping) pair of Fibonacci
8978 numbers.
8980 Notice that because the number @expr{n} was ``validated'' by the
8981 conditions on the first rule, there is no need to put conditions on
8982 the other rules because the rule set would never get that far unless
8983 the input were valid.  That further speeds computation, since no
8984 extra conditions need to be checked at every step.
8986 Actually, a user with a nasty sense of humor could enter a bad
8987 three-argument @code{fib} call directly, say, @samp{fib(0, 1, 1)},
8988 which would get the rules into an infinite loop.  One thing that would
8989 help keep this from happening by accident would be to use something like
8990 @samp{ZzFib} instead of @code{fib} as the name of the three-argument
8991 function.
8993 @node Rewrites Answer 3, Rewrites Answer 4, Rewrites Answer 2, Answers to Exercises
8994 @subsection Rewrites Tutorial Exercise 3
8996 @noindent
8997 He got an infinite loop.  First, Calc did as expected and rewrote
8998 @w{@samp{2 + 3 x}} to @samp{f(2, 3, x)}.  Then it looked for ways to
8999 apply the rule again, and found that @samp{f(2, 3, x)} looks like
9000 @samp{a + b x} with @w{@samp{a = 0}} and @samp{b = 1}, so it rewrote to
9001 @samp{f(0, 1, f(2, 3, x))}.  It then wrapped another @samp{f(0, 1, ...)}
9002 around that, and so on, ad infinitum.  Joe should have used @kbd{M-1 a r}
9003 to make sure the rule applied only once.
9005 (Actually, even the first step didn't work as he expected.  What Calc
9006 really gives for @kbd{M-1 a r} in this situation is @samp{f(3 x, 1, 2)},
9007 treating 2 as the ``variable,'' and @samp{3 x} as a constant being added
9008 to it.  While this may seem odd, it's just as valid a solution as the
9009 ``obvious'' one.  One way to fix this would be to add the condition
9010 @samp{:: variable(x)} to the rule, to make sure the thing that matches
9011 @samp{x} is indeed a variable, or to change @samp{x} to @samp{quote(x)}
9012 on the lefthand side, so that the rule matches the actual variable
9013 @samp{x} rather than letting @samp{x} stand for something else.)
9015 @node Rewrites Answer 4, Rewrites Answer 5, Rewrites Answer 3, Answers to Exercises
9016 @subsection Rewrites Tutorial Exercise 4
9018 @noindent
9019 @ignore
9020 @starindex
9021 @end ignore
9022 @tindex seq
9023 Here is a suitable set of rules to solve the first part of the problem:
9025 @smallexample
9026 @group
9027 [ seq(n, c) := seq(n/2,  c+1) :: n%2 = 0,
9028   seq(n, c) := seq(3n+1, c+1) :: n%2 = 1 :: n > 1 ]
9029 @end group
9030 @end smallexample
9032 Given the initial formula @samp{seq(6, 0)}, application of these
9033 rules produces the following sequence of formulas:
9035 @example
9036 seq( 3, 1)
9037 seq(10, 2)
9038 seq( 5, 3)
9039 seq(16, 4)
9040 seq( 8, 5)
9041 seq( 4, 6)
9042 seq( 2, 7)
9043 seq( 1, 8)
9044 @end example
9046 @noindent
9047 whereupon neither of the rules match, and rewriting stops.
9049 We can pretty this up a bit with a couple more rules:
9051 @smallexample
9052 @group
9053 [ seq(n) := seq(n, 0),
9054   seq(1, c) := c,
9055   ... ]
9056 @end group
9057 @end smallexample
9059 @noindent
9060 Now, given @samp{seq(6)} as the starting configuration, we get 8
9061 as the result.
9063 The change to return a vector is quite simple:
9065 @smallexample
9066 @group
9067 [ seq(n) := seq(n, []) :: integer(n) :: n > 0,
9068   seq(1, v) := v | 1,
9069   seq(n, v) := seq(n/2,  v | n) :: n%2 = 0,
9070   seq(n, v) := seq(3n+1, v | n) :: n%2 = 1 ]
9071 @end group
9072 @end smallexample
9074 @noindent
9075 Given @samp{seq(6)}, the result is @samp{[6, 3, 10, 5, 16, 8, 4, 2, 1]}.
9077 Notice that the @expr{n > 1} guard is no longer necessary on the last
9078 rule since the @expr{n = 1} case is now detected by another rule.
9079 But a guard has been added to the initial rule to make sure the
9080 initial value is suitable before the computation begins.
9082 While still a good idea, this guard is not as vitally important as it
9083 was for the @code{fib} function, since calling, say, @samp{seq(x, [])}
9084 will not get into an infinite loop.  Calc will not be able to prove
9085 the symbol @samp{x} is either even or odd, so none of the rules will
9086 apply and the rewrites will stop right away.
9088 @node Rewrites Answer 5, Rewrites Answer 6, Rewrites Answer 4, Answers to Exercises
9089 @subsection Rewrites Tutorial Exercise 5
9091 @noindent
9092 @ignore
9093 @starindex
9094 @end ignore
9095 @tindex nterms
9096 If @expr{x} is the sum @expr{a + b}, then `@tfn{nterms(}@var{x}@tfn{)}' must
9097 be `@tfn{nterms(}@var{a}@tfn{)}' plus `@tfn{nterms(}@var{b}@tfn{)}'.  If @expr{x}
9098 is not a sum, then `@tfn{nterms(}@var{x}@tfn{)}' = 1.
9100 @smallexample
9101 @group
9102 [ nterms(a + b) := nterms(a) + nterms(b),
9103   nterms(x)     := 1 ]
9104 @end group
9105 @end smallexample
9107 @noindent
9108 Here we have taken advantage of the fact that earlier rules always
9109 match before later rules; @samp{nterms(x)} will only be tried if we
9110 already know that @samp{x} is not a sum.
9112 @node Rewrites Answer 6, Programming Answer 1, Rewrites Answer 5, Answers to Exercises
9113 @subsection Rewrites Tutorial Exercise 6
9115 @noindent
9116 Here is a rule set that will do the job:
9118 @smallexample
9119 @group
9120 [ a*(b + c) := a*b + a*c,
9121   opt(a) O(x^n) + opt(b) O(x^m) := O(x^n) :: n <= m
9122      :: constant(a) :: constant(b),
9123   opt(a) O(x^n) + opt(b) x^m := O(x^n) :: n <= m
9124      :: constant(a) :: constant(b),
9125   a O(x^n) := O(x^n) :: constant(a),
9126   x^opt(m) O(x^n) := O(x^(n+m)),
9127   O(x^n) O(x^m) := O(x^(n+m)) ]
9128 @end group
9129 @end smallexample
9131 If we really want the @kbd{+} and @kbd{*} keys to operate naturally
9132 on power series, we should put these rules in @code{EvalRules}.  For
9133 testing purposes, it is better to put them in a different variable,
9134 say, @code{O}, first.
9136 The first rule just expands products of sums so that the rest of the
9137 rules can assume they have an expanded-out polynomial to work with.
9138 Note that this rule does not mention @samp{O} at all, so it will
9139 apply to any product-of-sum it encounters---this rule may surprise
9140 you if you put it into @code{EvalRules}!
9142 In the second rule, the sum of two O's is changed to the smaller O.
9143 The optional constant coefficients are there mostly so that
9144 @samp{O(x^2) - O(x^3)} and @samp{O(x^3) - O(x^2)} are handled
9145 as well as @samp{O(x^2) + O(x^3)}.
9147 The third rule absorbs higher powers of @samp{x} into O's.
9149 The fourth rule says that a constant times a negligible quantity
9150 is still negligible.  (This rule will also match @samp{O(x^3) / 4},
9151 with @samp{a = 1/4}.)
9153 The fifth rule rewrites, for example, @samp{x^2 O(x^3)} to @samp{O(x^5)}.
9154 (It is easy to see that if one of these forms is negligible, the other
9155 is, too.)  Notice the @samp{x^opt(m)} to pick up terms like
9156 @w{@samp{x O(x^3)}}.  Optional powers will match @samp{x} as @samp{x^1}
9157 but not 1 as @samp{x^0}.  This turns out to be exactly what we want here.
9159 The sixth rule is the corresponding rule for products of two O's.
9161 Another way to solve this problem would be to create a new ``data type''
9162 that represents truncated power series.  We might represent these as
9163 function calls @samp{series(@var{coefs}, @var{x})} where @var{coefs} is
9164 a vector of coefficients for @expr{x^0}, @expr{x^1}, @expr{x^2}, and so
9165 on.  Rules would exist for sums and products of such @code{series}
9166 objects, and as an optional convenience could also know how to combine a
9167 @code{series} object with a normal polynomial.  (With this, and with a
9168 rule that rewrites @samp{O(x^n)} to the equivalent @code{series} form,
9169 you could still enter power series in exactly the same notation as
9170 before.)  Operations on such objects would probably be more efficient,
9171 although the objects would be a bit harder to read.
9173 @c [fix-ref Compositions]
9174 Some other symbolic math programs provide a power series data type
9175 similar to this.  Mathematica, for example, has an object that looks
9176 like @samp{PowerSeries[@var{x}, @var{x0}, @var{coefs}, @var{nmin},
9177 @var{nmax}, @var{den}]}, where @var{x0} is the point about which the
9178 power series is taken (we've been assuming this was always zero),
9179 and @var{nmin}, @var{nmax}, and @var{den} allow pseudo-power-series
9180 with fractional or negative powers.  Also, the @code{PowerSeries}
9181 objects have a special display format that makes them look like
9182 @samp{2 x^2 + O(x^4)} when they are printed out.  (@xref{Compositions},
9183 for a way to do this in Calc, although for something as involved as
9184 this it would probably be better to write the formatting routine
9185 in Lisp.)
9187 @node Programming Answer 1, Programming Answer 2, Rewrites Answer 6, Answers to Exercises
9188 @subsection Programming Tutorial Exercise 1
9190 @noindent
9191 Just enter the formula @samp{ninteg(sin(t)/t, t, 0, x)}, type
9192 @kbd{Z F}, and answer the questions.  Since this formula contains two
9193 variables, the default argument list will be @samp{(t x)}.  We want to
9194 change this to @samp{(x)} since @expr{t} is really a dummy variable
9195 to be used within @code{ninteg}.
9197 The exact keystrokes are @kbd{Z F s Si @key{RET} @key{RET} C-b C-b @key{DEL} @key{DEL} @key{RET} y}.
9198 (The @kbd{C-b C-b @key{DEL} @key{DEL}} are what fix the argument list.)
9200 @node Programming Answer 2, Programming Answer 3, Programming Answer 1, Answers to Exercises
9201 @subsection Programming Tutorial Exercise 2
9203 @noindent
9204 One way is to move the number to the top of the stack, operate on
9205 it, then move it back:  @kbd{C-x ( M-@key{TAB} n M-@key{TAB} M-@key{TAB} C-x )}.
9207 Another way is to negate the top three stack entries, then negate
9208 again the top two stack entries:  @kbd{C-x ( M-3 n M-2 n C-x )}.
9210 Finally, it turns out that a negative prefix argument causes a
9211 command like @kbd{n} to operate on the specified stack entry only,
9212 which is just what we want:  @kbd{C-x ( M-- 3 n C-x )}.
9214 Just for kicks, let's also do it algebraically:
9215 @w{@kbd{C-x ( ' -$$$, $$, $ @key{RET} C-x )}}.
9217 @node Programming Answer 3, Programming Answer 4, Programming Answer 2, Answers to Exercises
9218 @subsection Programming Tutorial Exercise 3
9220 @noindent
9221 Each of these functions can be computed using the stack, or using
9222 algebraic entry, whichever way you prefer:
9224 @noindent
9225 Computing 
9226 @texline @math{\displaystyle{\sin x \over x}}:
9227 @infoline @expr{sin(x) / x}:
9229 Using the stack:  @kbd{C-x (  @key{RET} S @key{TAB} /  C-x )}.
9231 Using algebraic entry:  @kbd{C-x (  ' sin($)/$ @key{RET}  C-x )}.
9233 @noindent
9234 Computing the logarithm:
9236 Using the stack:  @kbd{C-x (  @key{TAB} B  C-x )}
9238 Using algebraic entry:  @kbd{C-x (  ' log($,$$) @key{RET}  C-x )}.
9240 @noindent
9241 Computing the vector of integers:
9243 Using the stack:  @kbd{C-x (  1 @key{RET} 1  C-u v x  C-x )}.  (Recall that
9244 @kbd{C-u v x} takes the vector size, starting value, and increment
9245 from the stack.)
9247 Alternatively:  @kbd{C-x (  ~ v x  C-x )}.  (The @kbd{~} key pops a
9248 number from the stack and uses it as the prefix argument for the
9249 next command.)
9251 Using algebraic entry:  @kbd{C-x (  ' index($) @key{RET}  C-x )}.
9253 @node Programming Answer 4, Programming Answer 5, Programming Answer 3, Answers to Exercises
9254 @subsection Programming Tutorial Exercise 4
9256 @noindent
9257 Here's one way:  @kbd{C-x ( @key{RET} V R + @key{TAB} v l / C-x )}.
9259 @node Programming Answer 5, Programming Answer 6, Programming Answer 4, Answers to Exercises
9260 @subsection Programming Tutorial Exercise 5
9262 @smallexample
9263 @group
9264 2:  1              1:  1.61803398502         2:  1.61803398502
9265 1:  20                 .                     1:  1.61803398875
9266     .                                            .
9268    1 @key{RET} 20         Z < & 1 + Z >                I H P
9269 @end group
9270 @end smallexample
9272 @noindent
9273 This answer is quite accurate.
9275 @node Programming Answer 6, Programming Answer 7, Programming Answer 5, Answers to Exercises
9276 @subsection Programming Tutorial Exercise 6
9278 @noindent
9279 Here is the matrix:
9281 @example
9282 [ [ 0, 1 ]   * [a, b] = [b, a + b]
9283   [ 1, 1 ] ]
9284 @end example
9286 @noindent
9287 Thus @samp{[0, 1; 1, 1]^n * [1, 1]} computes Fibonacci numbers @expr{n+1}
9288 and @expr{n+2}.  Here's one program that does the job:
9290 @example
9291 C-x ( ' [0, 1; 1, 1] ^ ($-1) * [1, 1] @key{RET} v u @key{DEL} C-x )
9292 @end example
9294 @noindent
9295 This program is quite efficient because Calc knows how to raise a
9296 matrix (or other value) to the power @expr{n} in only 
9297 @texline @math{\log_2 n}
9298 @infoline @expr{log(n,2)}
9299 steps.  For example, this program can compute the 1000th Fibonacci
9300 number (a 209-digit integer!) in about 10 steps; even though the
9301 @kbd{Z < ... Z >} solution had much simpler steps, it would have
9302 required so many steps that it would not have been practical.
9304 @node Programming Answer 7, Programming Answer 8, Programming Answer 6, Answers to Exercises
9305 @subsection Programming Tutorial Exercise 7
9307 @noindent
9308 The trick here is to compute the harmonic numbers differently, so that
9309 the loop counter itself accumulates the sum of reciprocals.  We use
9310 a separate variable to hold the integer counter.
9312 @smallexample
9313 @group
9314 1:  1          2:  1       1:  .
9315     .          1:  4
9316                    .
9318     1 t 1       1 @key{RET} 4      Z ( t 2 r 1 1 + s 1 & Z )
9319 @end group
9320 @end smallexample
9322 @noindent
9323 The body of the loop goes as follows:  First save the harmonic sum
9324 so far in variable 2.  Then delete it from the stack; the for loop
9325 itself will take care of remembering it for us.  Next, recall the
9326 count from variable 1, add one to it, and feed its reciprocal to
9327 the for loop to use as the step value.  The for loop will increase
9328 the ``loop counter'' by that amount and keep going until the
9329 loop counter exceeds 4.
9331 @smallexample
9332 @group
9333 2:  31                  3:  31
9334 1:  3.99498713092       2:  3.99498713092
9335     .                   1:  4.02724519544
9336                             .
9338     r 1 r 2                 @key{RET} 31 & +
9339 @end group
9340 @end smallexample
9342 Thus we find that the 30th harmonic number is 3.99, and the 31st
9343 harmonic number is 4.02.
9345 @node Programming Answer 8, Programming Answer 9, Programming Answer 7, Answers to Exercises
9346 @subsection Programming Tutorial Exercise 8
9348 @noindent
9349 The first step is to compute the derivative @expr{f'(x)} and thus
9350 the formula 
9351 @texline @math{\displaystyle{x - {f(x) \over f'(x)}}}.
9352 @infoline @expr{x - f(x)/f'(x)}.
9354 (Because this definition is long, it will be repeated in concise form
9355 below.  You can use @w{@kbd{M-# m}} to load it from there.  While you are
9356 entering a @kbd{Z ` Z '} body in a macro, Calc simply collects
9357 keystrokes without executing them.  In the following diagrams we'll
9358 pretend Calc actually executed the keystrokes as you typed them,
9359 just for purposes of illustration.)
9361 @smallexample
9362 @group
9363 2:  sin(cos(x)) - 0.5            3:  4.5
9364 1:  4.5                          2:  sin(cos(x)) - 0.5
9365     .                            1:  -(sin(x) cos(cos(x)))
9366                                      .
9368 ' sin(cos(x))-0.5 @key{RET} 4.5  m r  C-x ( Z `  @key{TAB} @key{RET} a d x @key{RET}
9370 @end group
9371 @end smallexample
9372 @noindent
9373 @smallexample
9374 @group
9375 2:  4.5
9376 1:  x + (sin(cos(x)) - 0.5) / sin(x) cos(cos(x))
9377     .
9379     /  ' x @key{RET} @key{TAB} -   t 1
9380 @end group
9381 @end smallexample
9383 Now, we enter the loop.  We'll use a repeat loop with a 20-repetition
9384 limit just in case the method fails to converge for some reason.
9385 (Normally, the @w{@kbd{Z /}} command will stop the loop before all 20
9386 repetitions are done.)
9388 @smallexample
9389 @group
9390 1:  4.5         3:  4.5                     2:  4.5
9391     .           2:  x + (sin(cos(x)) ...    1:  5.24196456928
9392                 1:  4.5                         .
9393                     .
9395   20 Z <          @key{RET} r 1 @key{TAB}                 s l x @key{RET}
9396 @end group
9397 @end smallexample
9399 This is the new guess for @expr{x}.  Now we compare it with the
9400 old one to see if we've converged.
9402 @smallexample
9403 @group
9404 3:  5.24196     2:  5.24196     1:  5.24196     1:  5.26345856348
9405 2:  5.24196     1:  0               .               .
9406 1:  4.5             .
9407     .
9409   @key{RET} M-@key{TAB}         a =             Z /             Z > Z ' C-x )
9410 @end group
9411 @end smallexample
9413 The loop converges in just a few steps to this value.  To check
9414 the result, we can simply substitute it back into the equation.
9416 @smallexample
9417 @group
9418 2:  5.26345856348
9419 1:  0.499999999997
9420     .
9422  @key{RET} ' sin(cos($)) @key{RET}
9423 @end group
9424 @end smallexample
9426 Let's test the new definition again:
9428 @smallexample
9429 @group
9430 2:  x^2 - 9           1:  3.
9431 1:  1                     .
9432     .
9434   ' x^2-9 @key{RET} 1           X
9435 @end group
9436 @end smallexample
9438 Once again, here's the full Newton's Method definition:
9440 @example
9441 @group
9442 C-x ( Z `  @key{TAB} @key{RET} a d x @key{RET}  /  ' x @key{RET} @key{TAB} -  t 1
9443            20 Z <  @key{RET} r 1 @key{TAB}  s l x @key{RET}
9444                    @key{RET} M-@key{TAB}  a =  Z /
9445               Z >
9446       Z '
9447 C-x )
9448 @end group
9449 @end example
9451 @c [fix-ref Nesting and Fixed Points]
9452 It turns out that Calc has a built-in command for applying a formula
9453 repeatedly until it converges to a number.  @xref{Nesting and Fixed Points},
9454 to see how to use it.
9456 @c [fix-ref Root Finding]
9457 Also, of course, @kbd{a R} is a built-in command that uses Newton's
9458 method (among others) to look for numerical solutions to any equation.
9459 @xref{Root Finding}.
9461 @node Programming Answer 9, Programming Answer 10, Programming Answer 8, Answers to Exercises
9462 @subsection Programming Tutorial Exercise 9
9464 @noindent
9465 The first step is to adjust @expr{z} to be greater than 5.  A simple
9466 ``for'' loop will do the job here.  If @expr{z} is less than 5, we
9467 reduce the problem using 
9468 @texline @math{\psi(z) = \psi(z+1) - 1/z}.
9469 @infoline @expr{psi(z) = psi(z+1) - 1/z}.  We go
9470 on to compute 
9471 @texline @math{\psi(z+1)},
9472 @infoline @expr{psi(z+1)}, 
9473 and remember to add back a factor of @expr{-1/z} when we're done.  This
9474 step is repeated until @expr{z > 5}.
9476 (Because this definition is long, it will be repeated in concise form
9477 below.  You can use @w{@kbd{M-# m}} to load it from there.  While you are
9478 entering a @kbd{Z ` Z '} body in a macro, Calc simply collects
9479 keystrokes without executing them.  In the following diagrams we'll
9480 pretend Calc actually executed the keystrokes as you typed them,
9481 just for purposes of illustration.)
9483 @smallexample
9484 @group
9485 1:  1.             1:  1.
9486     .                  .
9488  1.0 @key{RET}       C-x ( Z `  s 1  0 t 2
9489 @end group
9490 @end smallexample
9492 Here, variable 1 holds @expr{z} and variable 2 holds the adjustment
9493 factor.  If @expr{z < 5}, we use a loop to increase it.
9495 (By the way, we started with @samp{1.0} instead of the integer 1 because
9496 otherwise the calculation below will try to do exact fractional arithmetic,
9497 and will never converge because fractions compare equal only if they
9498 are exactly equal, not just equal to within the current precision.)
9500 @smallexample
9501 @group
9502 3:  1.      2:  1.       1:  6.
9503 2:  1.      1:  1            .
9504 1:  5           .
9505     .
9507   @key{RET} 5        a <    Z [  5 Z (  & s + 2  1 s + 1  1 Z ) r 1  Z ]
9508 @end group
9509 @end smallexample
9511 Now we compute the initial part of the sum:  
9512 @texline @math{\ln z - {1 \over 2z}}
9513 @infoline @expr{ln(z) - 1/2z}
9514 minus the adjustment factor.
9516 @smallexample
9517 @group
9518 2:  1.79175946923      2:  1.7084261359      1:  -0.57490719743
9519 1:  0.0833333333333    1:  2.28333333333         .
9520     .                      .
9522     L  r 1 2 * &           -  r 2                -
9523 @end group
9524 @end smallexample
9526 Now we evaluate the series.  We'll use another ``for'' loop counting
9527 up the value of @expr{2 n}.  (Calc does have a summation command,
9528 @kbd{a +}, but we'll use loops just to get more practice with them.)
9530 @smallexample
9531 @group
9532 3:  -0.5749       3:  -0.5749        4:  -0.5749      2:  -0.5749
9533 2:  2             2:  1:6            3:  1:6          1:  2.3148e-3
9534 1:  40            1:  2              2:  2                .
9535     .                 .              1:  36.
9536                                          .
9538    2 @key{RET} 40        Z ( @key{RET} k b @key{TAB}     @key{RET} r 1 @key{TAB} ^      * /
9540 @end group
9541 @end smallexample
9542 @noindent
9543 @smallexample
9544 @group
9545 3:  -0.5749       3:  -0.5772      2:  -0.5772     1:  -0.577215664892
9546 2:  -0.5749       2:  -0.5772      1:  0               .
9547 1:  2.3148e-3     1:  -0.5749          .
9548     .                 .
9550   @key{TAB} @key{RET} M-@key{TAB}       - @key{RET} M-@key{TAB}      a =     Z /    2  Z )  Z ' C-x )
9551 @end group
9552 @end smallexample
9554 This is the value of 
9555 @texline @math{-\gamma},
9556 @infoline @expr{- gamma}, 
9557 with a slight bit of roundoff error.  To get a full 12 digits, let's use
9558 a higher precision:
9560 @smallexample
9561 @group
9562 2:  -0.577215664892      2:  -0.577215664892
9563 1:  1.                   1:  -0.577215664901532
9565     1. @key{RET}                   p 16 @key{RET} X
9566 @end group
9567 @end smallexample
9569 Here's the complete sequence of keystrokes:
9571 @example
9572 @group
9573 C-x ( Z `  s 1  0 t 2
9574            @key{RET} 5 a <  Z [  5 Z (  & s + 2  1 s + 1  1 Z ) r 1  Z ]
9575            L r 1 2 * & - r 2 -
9576            2 @key{RET} 40  Z (  @key{RET} k b @key{TAB} @key{RET} r 1 @key{TAB} ^ * /
9577                           @key{TAB} @key{RET} M-@key{TAB} - @key{RET} M-@key{TAB} a = Z /
9578                   2  Z )
9579       Z '
9580 C-x )
9581 @end group
9582 @end example
9584 @node Programming Answer 10, Programming Answer 11, Programming Answer 9, Answers to Exercises
9585 @subsection Programming Tutorial Exercise 10
9587 @noindent
9588 Taking the derivative of a term of the form @expr{x^n} will produce
9589 a term like 
9590 @texline @math{n x^{n-1}}.
9591 @infoline @expr{n x^(n-1)}.  
9592 Taking the derivative of a constant
9593 produces zero.  From this it is easy to see that the @expr{n}th
9594 derivative of a polynomial, evaluated at @expr{x = 0}, will equal the
9595 coefficient on the @expr{x^n} term times @expr{n!}.
9597 (Because this definition is long, it will be repeated in concise form
9598 below.  You can use @w{@kbd{M-# m}} to load it from there.  While you are
9599 entering a @kbd{Z ` Z '} body in a macro, Calc simply collects
9600 keystrokes without executing them.  In the following diagrams we'll
9601 pretend Calc actually executed the keystrokes as you typed them,
9602 just for purposes of illustration.)
9604 @smallexample
9605 @group
9606 2:  5 x^4 + (x + 1)^2          3:  5 x^4 + (x + 1)^2
9607 1:  6                          2:  0
9608     .                          1:  6
9609                                    .
9611   ' 5 x^4 + (x+1)^2 @key{RET} 6        C-x ( Z `  [ ] t 1  0 @key{TAB}
9612 @end group
9613 @end smallexample
9615 @noindent
9616 Variable 1 will accumulate the vector of coefficients.
9618 @smallexample
9619 @group
9620 2:  0              3:  0                  2:  5 x^4 + ...
9621 1:  5 x^4 + ...    2:  5 x^4 + ...        1:  1
9622     .              1:  1                      .
9623                        .
9625    Z ( @key{TAB}         @key{RET} 0 s l x @key{RET}            M-@key{TAB} ! /  s | 1
9626 @end group
9627 @end smallexample
9629 @noindent
9630 Note that @kbd{s | 1} appends the top-of-stack value to the vector
9631 in a variable; it is completely analogous to @kbd{s + 1}.  We could
9632 have written instead, @kbd{r 1 @key{TAB} | t 1}.
9634 @smallexample
9635 @group
9636 1:  20 x^3 + 2 x + 2      1:  0         1:  [1, 2, 1, 0, 5, 0, 0]
9637     .                         .             .
9639     a d x @key{RET}                 1 Z )         @key{DEL} r 1  Z ' C-x )
9640 @end group
9641 @end smallexample
9643 To convert back, a simple method is just to map the coefficients
9644 against a table of powers of @expr{x}.
9646 @smallexample
9647 @group
9648 2:  [1, 2, 1, 0, 5, 0, 0]    2:  [1, 2, 1, 0, 5, 0, 0]
9649 1:  6                        1:  [0, 1, 2, 3, 4, 5, 6]
9650     .                            .
9652     6 @key{RET}                        1 + 0 @key{RET} 1 C-u v x
9654 @end group
9655 @end smallexample
9656 @noindent
9657 @smallexample
9658 @group
9659 2:  [1, 2, 1, 0, 5, 0, 0]    2:  1 + 2 x + x^2 + 5 x^4
9660 1:  [1, x, x^2, x^3, ... ]       .
9661     .
9663     ' x @key{RET} @key{TAB} V M ^            *
9664 @end group
9665 @end smallexample
9667 Once again, here are the whole polynomial to/from vector programs:
9669 @example
9670 @group
9671 C-x ( Z `  [ ] t 1  0 @key{TAB}
9672            Z (  @key{TAB} @key{RET} 0 s l x @key{RET} M-@key{TAB} ! /  s | 1
9673                 a d x @key{RET}
9674          1 Z ) r 1
9675       Z '
9676 C-x )
9678 C-x (  1 + 0 @key{RET} 1 C-u v x ' x @key{RET} @key{TAB} V M ^ *  C-x )
9679 @end group
9680 @end example
9682 @node Programming Answer 11, Programming Answer 12, Programming Answer 10, Answers to Exercises
9683 @subsection Programming Tutorial Exercise 11
9685 @noindent
9686 First we define a dummy program to go on the @kbd{z s} key.  The true
9687 @w{@kbd{z s}} key is supposed to take two numbers from the stack and
9688 return one number, so @key{DEL} as a dummy definition will make
9689 sure the stack comes out right.
9691 @smallexample
9692 @group
9693 2:  4          1:  4                         2:  4
9694 1:  2              .                         1:  2
9695     .                                            .
9697   4 @key{RET} 2       C-x ( @key{DEL} C-x )  Z K s @key{RET}       2
9698 @end group
9699 @end smallexample
9701 The last step replaces the 2 that was eaten during the creation
9702 of the dummy @kbd{z s} command.  Now we move on to the real
9703 definition.  The recurrence needs to be rewritten slightly,
9704 to the form @expr{s(n,m) = s(n-1,m-1) - (n-1) s(n-1,m)}.
9706 (Because this definition is long, it will be repeated in concise form
9707 below.  You can use @kbd{M-# m} to load it from there.)
9709 @smallexample
9710 @group
9711 2:  4        4:  4       3:  4       2:  4
9712 1:  2        3:  2       2:  2       1:  2
9713     .        2:  4       1:  0           .
9714              1:  2           .
9715                  .
9717   C-x (       M-2 @key{RET}        a =         Z [  @key{DEL} @key{DEL} 1  Z :
9719 @end group
9720 @end smallexample
9721 @noindent
9722 @smallexample
9723 @group
9724 4:  4       2:  4                     2:  3      4:  3    4:  3    3:  3
9725 3:  2       1:  2                     1:  2      3:  2    3:  2    2:  2
9726 2:  2           .                         .      2:  3    2:  3    1:  3
9727 1:  0                                            1:  2    1:  1        .
9728     .                                                .        .
9730   @key{RET} 0   a = Z [  @key{DEL} @key{DEL} 0  Z :  @key{TAB} 1 - @key{TAB}   M-2 @key{RET}     1 -      z s
9731 @end group
9732 @end smallexample
9734 @noindent
9735 (Note that the value 3 that our dummy @kbd{z s} produces is not correct;
9736 it is merely a placeholder that will do just as well for now.)
9738 @smallexample
9739 @group
9740 3:  3               4:  3           3:  3       2:  3      1:  -6
9741 2:  3               3:  3           2:  3       1:  9          .
9742 1:  2               2:  3           1:  3           .
9743     .               1:  2               .
9744                         .
9746  M-@key{TAB} M-@key{TAB}     @key{TAB} @key{RET} M-@key{TAB}         z s          *          -
9748 @end group
9749 @end smallexample
9750 @noindent
9751 @smallexample
9752 @group
9753 1:  -6                          2:  4          1:  11      2:  11
9754     .                           1:  2              .       1:  11
9755                                     .                          .
9757   Z ] Z ] C-x )   Z K s @key{RET}      @key{DEL} 4 @key{RET} 2       z s      M-@key{RET} k s
9758 @end group
9759 @end smallexample
9761 Even though the result that we got during the definition was highly
9762 bogus, once the definition is complete the @kbd{z s} command gets
9763 the right answers.
9765 Here's the full program once again:
9767 @example
9768 @group
9769 C-x (  M-2 @key{RET} a =
9770        Z [  @key{DEL} @key{DEL} 1
9771        Z :  @key{RET} 0 a =
9772             Z [  @key{DEL} @key{DEL} 0
9773             Z :  @key{TAB} 1 - @key{TAB} M-2 @key{RET} 1 - z s
9774                  M-@key{TAB} M-@key{TAB} @key{TAB} @key{RET} M-@key{TAB} z s * -
9775             Z ]
9776        Z ]
9777 C-x )
9778 @end group
9779 @end example
9781 You can read this definition using @kbd{M-# m} (@code{read-kbd-macro})
9782 followed by @kbd{Z K s}, without having to make a dummy definition
9783 first, because @code{read-kbd-macro} doesn't need to execute the
9784 definition as it reads it in.  For this reason, @code{M-# m} is often
9785 the easiest way to create recursive programs in Calc.
9787 @node Programming Answer 12, , Programming Answer 11, Answers to Exercises
9788 @subsection Programming Tutorial Exercise 12
9790 @noindent
9791 This turns out to be a much easier way to solve the problem.  Let's
9792 denote Stirling numbers as calls of the function @samp{s}.
9794 First, we store the rewrite rules corresponding to the definition of
9795 Stirling numbers in a convenient variable:
9797 @smallexample
9798 s e StirlingRules @key{RET}
9799 [ s(n,n) := 1  :: n >= 0,
9800   s(n,0) := 0  :: n > 0,
9801   s(n,m) := s(n-1,m-1) - (n-1) s(n-1,m) :: n >= m :: m >= 1 ]
9802 C-c C-c
9803 @end smallexample
9805 Now, it's just a matter of applying the rules:
9807 @smallexample
9808 @group
9809 2:  4          1:  s(4, 2)              1:  11
9810 1:  2              .                        .
9811     .
9813   4 @key{RET} 2       C-x (  ' s($$,$) @key{RET}     a r StirlingRules @key{RET}  C-x )
9814 @end group
9815 @end smallexample
9817 As in the case of the @code{fib} rules, it would be useful to put these
9818 rules in @code{EvalRules} and to add a @samp{:: remember} condition to
9819 the last rule.
9821 @c This ends the table-of-contents kludge from above:
9822 @tex
9823 \global\let\chapternofonts=\oldchapternofonts
9824 @end tex
9826 @c [reference]
9828 @node Introduction, Data Types, Tutorial, Top
9829 @chapter Introduction
9831 @noindent
9832 This chapter is the beginning of the Calc reference manual.
9833 It covers basic concepts such as the stack, algebraic and
9834 numeric entry, undo, numeric prefix arguments, etc.
9836 @c [when-split]
9837 @c (Chapter 2, the Tutorial, has been printed in a separate volume.)
9839 @menu
9840 * Basic Commands::
9841 * Help Commands::
9842 * Stack Basics::
9843 * Numeric Entry::
9844 * Algebraic Entry::
9845 * Quick Calculator::
9846 * Keypad Mode::
9847 * Prefix Arguments::
9848 * Undo::
9849 * Error Messages::
9850 * Multiple Calculators::
9851 * Troubleshooting Commands::
9852 @end menu
9854 @node Basic Commands, Help Commands, Introduction, Introduction
9855 @section Basic Commands
9857 @noindent
9858 @pindex calc
9859 @pindex calc-mode
9860 @cindex Starting the Calculator
9861 @cindex Running the Calculator
9862 To start the Calculator in its standard interface, type @kbd{M-x calc}.
9863 By default this creates a pair of small windows, @samp{*Calculator*}
9864 and @samp{*Calc Trail*}.  The former displays the contents of the
9865 Calculator stack and is manipulated exclusively through Calc commands.
9866 It is possible (though not usually necessary) to create several Calc
9867 mode buffers each of which has an independent stack, undo list, and
9868 mode settings.  There is exactly one Calc Trail buffer; it records a
9869 list of the results of all calculations that have been done.  The
9870 Calc Trail buffer uses a variant of Calc mode, so Calculator commands
9871 still work when the trail buffer's window is selected.  It is possible
9872 to turn the trail window off, but the @samp{*Calc Trail*} buffer itself
9873 still exists and is updated silently.  @xref{Trail Commands}.
9875 @kindex M-# c
9876 @kindex M-# M-#
9877 @ignore
9878 @mindex @null
9879 @end ignore
9880 @kindex M-# #
9881 In most installations, the @kbd{M-# c} key sequence is a more
9882 convenient way to start the Calculator.  Also, @kbd{M-# M-#} and
9883 @kbd{M-# #} are synonyms for @kbd{M-# c} unless you last used Calc
9884 in its Keypad mode.
9886 @kindex x
9887 @kindex M-x
9888 @pindex calc-execute-extended-command
9889 Most Calc commands use one or two keystrokes.  Lower- and upper-case
9890 letters are distinct.  Commands may also be entered in full @kbd{M-x} form;
9891 for some commands this is the only form.  As a convenience, the @kbd{x}
9892 key (@code{calc-execute-extended-command})
9893 is like @kbd{M-x} except that it enters the initial string @samp{calc-}
9894 for you.  For example, the following key sequences are equivalent:
9895 @kbd{S}, @kbd{M-x calc-sin @key{RET}}, @kbd{x sin @key{RET}}.
9897 @cindex Extensions module
9898 @cindex @file{calc-ext} module
9899 The Calculator exists in many parts.  When you type @kbd{M-# c}, the
9900 Emacs ``auto-load'' mechanism will bring in only the first part, which
9901 contains the basic arithmetic functions.  The other parts will be
9902 auto-loaded the first time you use the more advanced commands like trig
9903 functions or matrix operations.  This is done to improve the response time
9904 of the Calculator in the common case when all you need to do is a
9905 little arithmetic.  If for some reason the Calculator fails to load an
9906 extension module automatically, you can force it to load all the
9907 extensions by using the @kbd{M-# L} (@code{calc-load-everything})
9908 command.  @xref{Mode Settings}.
9910 If you type @kbd{M-x calc} or @kbd{M-# c} with any numeric prefix argument,
9911 the Calculator is loaded if necessary, but it is not actually started.
9912 If the argument is positive, the @file{calc-ext} extensions are also
9913 loaded if necessary.  User-written Lisp code that wishes to make use
9914 of Calc's arithmetic routines can use @samp{(calc 0)} or @samp{(calc 1)}
9915 to auto-load the Calculator.
9917 @kindex M-# b
9918 @pindex full-calc
9919 If you type @kbd{M-# b}, then next time you use @kbd{M-# c} you
9920 will get a Calculator that uses the full height of the Emacs screen.
9921 When full-screen mode is on, @kbd{M-# c} runs the @code{full-calc}
9922 command instead of @code{calc}.  From the Unix shell you can type
9923 @samp{emacs -f full-calc} to start a new Emacs specifically for use
9924 as a calculator.  When Calc is started from the Emacs command line
9925 like this, Calc's normal ``quit'' commands actually quit Emacs itself.
9927 @kindex M-# o
9928 @pindex calc-other-window
9929 The @kbd{M-# o} command is like @kbd{M-# c} except that the Calc
9930 window is not actually selected.  If you are already in the Calc
9931 window, @kbd{M-# o} switches you out of it.  (The regular Emacs
9932 @kbd{C-x o} command would also work for this, but it has a
9933 tendency to drop you into the Calc Trail window instead, which
9934 @kbd{M-# o} takes care not to do.)
9936 @ignore
9937 @mindex M-# q
9938 @end ignore
9939 For one quick calculation, you can type @kbd{M-# q} (@code{quick-calc})
9940 which prompts you for a formula (like @samp{2+3/4}).  The result is
9941 displayed at the bottom of the Emacs screen without ever creating
9942 any special Calculator windows.  @xref{Quick Calculator}.
9944 @ignore
9945 @mindex M-# k
9946 @end ignore
9947 Finally, if you are using the X window system you may want to try
9948 @kbd{M-# k} (@code{calc-keypad}) which runs Calc with a
9949 ``calculator keypad'' picture as well as a stack display.  Click on
9950 the keys with the mouse to operate the calculator.  @xref{Keypad Mode}.
9952 @kindex q
9953 @pindex calc-quit
9954 @cindex Quitting the Calculator
9955 @cindex Exiting the Calculator
9956 The @kbd{q} key (@code{calc-quit}) exits Calc mode and closes the
9957 Calculator's window(s).  It does not delete the Calculator buffers.
9958 If you type @kbd{M-x calc} again, the Calculator will reappear with the
9959 contents of the stack intact.  Typing @kbd{M-# c} or @kbd{M-# M-#}
9960 again from inside the Calculator buffer is equivalent to executing
9961 @code{calc-quit}; you can think of @kbd{M-# M-#} as toggling the
9962 Calculator on and off.
9964 @kindex M-# x
9965 The @kbd{M-# x} command also turns the Calculator off, no matter which
9966 user interface (standard, Keypad, or Embedded) is currently active.
9967 It also cancels @code{calc-edit} mode if used from there.
9969 @kindex d @key{SPC}
9970 @pindex calc-refresh
9971 @cindex Refreshing a garbled display
9972 @cindex Garbled displays, refreshing
9973 The @kbd{d @key{SPC}} key sequence (@code{calc-refresh}) redraws the contents
9974 of the Calculator buffer from memory.  Use this if the contents of the
9975 buffer have been damaged somehow.
9977 @ignore
9978 @mindex o
9979 @end ignore
9980 The @kbd{o} key (@code{calc-realign}) moves the cursor back to its
9981 ``home'' position at the bottom of the Calculator buffer.
9983 @kindex <
9984 @kindex >
9985 @pindex calc-scroll-left
9986 @pindex calc-scroll-right
9987 @cindex Horizontal scrolling
9988 @cindex Scrolling
9989 @cindex Wide text, scrolling
9990 The @kbd{<} and @kbd{>} keys are bound to @code{calc-scroll-left} and
9991 @code{calc-scroll-right}.  These are just like the normal horizontal
9992 scrolling commands except that they scroll one half-screen at a time by
9993 default.  (Calc formats its output to fit within the bounds of the
9994 window whenever it can.)
9996 @kindex @{
9997 @kindex @}
9998 @pindex calc-scroll-down
9999 @pindex calc-scroll-up
10000 @cindex Vertical scrolling
10001 The @kbd{@{} and @kbd{@}} keys are bound to @code{calc-scroll-down}
10002 and @code{calc-scroll-up}.  They scroll up or down by one-half the
10003 height of the Calc window.
10005 @kindex M-# 0
10006 @pindex calc-reset
10007 The @kbd{M-# 0} command (@code{calc-reset}; that's @kbd{M-#} followed
10008 by a zero) resets the Calculator to its initial state.  This clears
10009 the stack, resets all the modes to their initial values (the values
10010 that were saved with @kbd{m m} (@code{calc-save-modes})), clears the
10011 caches (@pxref{Caches}), and so on.  (It does @emph{not} erase the
10012 values of any variables.) With an argument of 0, Calc will be reset to
10013 its default state; namely, the modes will be given their default values.
10014 With a positive prefix argument, @kbd{M-# 0} preserves the contents of
10015 the stack but resets everything else to its initial state; with a
10016 negative prefix argument, @kbd{M-# 0} preserves the contents of the
10017 stack but resets everything else to its default state.
10019 @pindex calc-version
10020 The @kbd{M-x calc-version} command displays the current version number
10021 of Calc and the name of the person who installed it on your system.
10022 (This information is also present in the @samp{*Calc Trail*} buffer,
10023 and in the output of the @kbd{h h} command.)
10025 @node Help Commands, Stack Basics, Basic Commands, Introduction
10026 @section Help Commands
10028 @noindent
10029 @cindex Help commands
10030 @kindex ?
10031 @pindex calc-help
10032 The @kbd{?} key (@code{calc-help}) displays a series of brief help messages.
10033 Some keys (such as @kbd{b} and @kbd{d}) are prefix keys, like Emacs'
10034 @key{ESC} and @kbd{C-x} prefixes.  You can type
10035 @kbd{?} after a prefix to see a list of commands beginning with that
10036 prefix.  (If the message includes @samp{[MORE]}, press @kbd{?} again
10037 to see additional commands for that prefix.)
10039 @kindex h h
10040 @pindex calc-full-help
10041 The @kbd{h h} (@code{calc-full-help}) command displays all the @kbd{?}
10042 responses at once.  When printed, this makes a nice, compact (three pages)
10043 summary of Calc keystrokes.
10045 In general, the @kbd{h} key prefix introduces various commands that
10046 provide help within Calc.  Many of the @kbd{h} key functions are
10047 Calc-specific analogues to the @kbd{C-h} functions for Emacs help.
10049 @kindex h i
10050 @kindex M-# i
10051 @kindex i
10052 @pindex calc-info
10053 The @kbd{h i} (@code{calc-info}) command runs the Emacs Info system
10054 to read this manual on-line.  This is basically the same as typing
10055 @kbd{C-h i} (the regular way to run the Info system), then, if Info
10056 is not already in the Calc manual, selecting the beginning of the
10057 manual.  The @kbd{M-# i} command is another way to read the Calc
10058 manual; it is different from @kbd{h i} in that it works any time,
10059 not just inside Calc.  The plain @kbd{i} key is also equivalent to
10060 @kbd{h i}, though this key is obsolete and may be replaced with a
10061 different command in a future version of Calc.
10063 @kindex h t
10064 @kindex M-# t
10065 @pindex calc-tutorial
10066 The @kbd{h t} (@code{calc-tutorial}) command runs the Info system on
10067 the Tutorial section of the Calc manual.  It is like @kbd{h i},
10068 except that it selects the starting node of the tutorial rather
10069 than the beginning of the whole manual.  (It actually selects the
10070 node ``Interactive Tutorial'' which tells a few things about
10071 using the Info system before going on to the actual tutorial.)
10072 The @kbd{M-# t} key is equivalent to @kbd{h t} (but it works at
10073 all times).
10075 @kindex h s
10076 @kindex M-# s
10077 @pindex calc-info-summary
10078 The @kbd{h s} (@code{calc-info-summary}) command runs the Info system
10079 on the Summary node of the Calc manual.  @xref{Summary}.  The @kbd{M-# s}
10080 key is equivalent to @kbd{h s}.
10082 @kindex h k
10083 @pindex calc-describe-key
10084 The @kbd{h k} (@code{calc-describe-key}) command looks up a key
10085 sequence in the Calc manual.  For example, @kbd{h k H a S} looks
10086 up the documentation on the @kbd{H a S} (@code{calc-solve-for})
10087 command.  This works by looking up the textual description of
10088 the key(s) in the Key Index of the manual, then jumping to the
10089 node indicated by the index.
10091 Most Calc commands do not have traditional Emacs documentation
10092 strings, since the @kbd{h k} command is both more convenient and
10093 more instructive.  This means the regular Emacs @kbd{C-h k}
10094 (@code{describe-key}) command will not be useful for Calc keystrokes.
10096 @kindex h c
10097 @pindex calc-describe-key-briefly
10098 The @kbd{h c} (@code{calc-describe-key-briefly}) command reads a
10099 key sequence and displays a brief one-line description of it at
10100 the bottom of the screen.  It looks for the key sequence in the
10101 Summary node of the Calc manual; if it doesn't find the sequence
10102 there, it acts just like its regular Emacs counterpart @kbd{C-h c}
10103 (@code{describe-key-briefly}).  For example, @kbd{h c H a S}
10104 gives the description:
10106 @smallexample
10107 H a S runs calc-solve-for:  a `H a S' v  => fsolve(a,v)  (?=notes)
10108 @end smallexample
10110 @noindent
10111 which means the command @kbd{H a S} or @kbd{H M-x calc-solve-for}
10112 takes a value @expr{a} from the stack, prompts for a value @expr{v},
10113 then applies the algebraic function @code{fsolve} to these values.
10114 The @samp{?=notes} message means you can now type @kbd{?} to see
10115 additional notes from the summary that apply to this command.
10117 @kindex h f
10118 @pindex calc-describe-function
10119 The @kbd{h f} (@code{calc-describe-function}) command looks up an
10120 algebraic function or a command name in the Calc manual.  Enter an
10121 algebraic function name to look up that function in the Function
10122 Index or enter a command name beginning with @samp{calc-} to look it 
10123 up in the Command Index.  This command will also look up operator
10124 symbols that can appear in algebraic formulas, like @samp{%} and 
10125 @samp{=>}.
10127 @kindex h v
10128 @pindex calc-describe-variable
10129 The @kbd{h v} (@code{calc-describe-variable}) command looks up a
10130 variable in the Calc manual.  Enter a variable name like @code{pi} or
10131 @code{PlotRejects}.
10133 @kindex h b
10134 @pindex describe-bindings
10135 The @kbd{h b} (@code{calc-describe-bindings}) command is just like
10136 @kbd{C-h b}, except that only local (Calc-related) key bindings are
10137 listed.
10139 @kindex h n
10140 The @kbd{h n} or @kbd{h C-n} (@code{calc-view-news}) command displays
10141 the ``news'' or change history of Calc.  This is kept in the file
10142 @file{README}, which Calc looks for in the same directory as the Calc
10143 source files.
10145 @kindex h C-c
10146 @kindex h C-d
10147 @kindex h C-w
10148 The @kbd{h C-c}, @kbd{h C-d}, and @kbd{h C-w} keys display copying,
10149 distribution, and warranty information about Calc.  These work by
10150 pulling up the appropriate parts of the ``Copying'' or ``Reporting
10151 Bugs'' sections of the manual.
10153 @node Stack Basics, Numeric Entry, Help Commands, Introduction
10154 @section Stack Basics
10156 @noindent
10157 @cindex Stack basics
10158 @c [fix-tut RPN Calculations and the Stack]
10159 Calc uses RPN notation.  If you are not familiar with RPN, @pxref{RPN
10160 Tutorial}.
10162 To add the numbers 1 and 2 in Calc you would type the keys:
10163 @kbd{1 @key{RET} 2 +}.
10164 (@key{RET} corresponds to the @key{ENTER} key on most calculators.)
10165 The first three keystrokes ``push'' the numbers 1 and 2 onto the stack.  The
10166 @kbd{+} key always ``pops'' the top two numbers from the stack, adds them,
10167 and pushes the result (3) back onto the stack.  This number is ready for
10168 further calculations:  @kbd{5 -} pushes 5 onto the stack, then pops the
10169 3 and 5, subtracts them, and pushes the result (@mathit{-2}).
10171 Note that the ``top'' of the stack actually appears at the @emph{bottom}
10172 of the buffer.  A line containing a single @samp{.} character signifies
10173 the end of the buffer; Calculator commands operate on the number(s)
10174 directly above this line.  The @kbd{d t} (@code{calc-truncate-stack})
10175 command allows you to move the @samp{.} marker up and down in the stack;
10176 @pxref{Truncating the Stack}.
10178 @kindex d l
10179 @pindex calc-line-numbering
10180 Stack elements are numbered consecutively, with number 1 being the top of
10181 the stack.  These line numbers are ordinarily displayed on the lefthand side
10182 of the window.  The @kbd{d l} (@code{calc-line-numbering}) command controls
10183 whether these numbers appear.  (Line numbers may be turned off since they
10184 slow the Calculator down a bit and also clutter the display.)
10186 @kindex o
10187 @pindex calc-realign
10188 The unshifted letter @kbd{o} (@code{calc-realign}) command repositions
10189 the cursor to its top-of-stack ``home'' position.  It also undoes any
10190 horizontal scrolling in the window.  If you give it a numeric prefix
10191 argument, it instead moves the cursor to the specified stack element.
10193 The @key{RET} (or equivalent @key{SPC}) key is only required to separate
10194 two consecutive numbers.
10195 (After all, if you typed @kbd{1 2} by themselves the Calculator
10196 would enter the number 12.)  If you press @key{RET} or @key{SPC} @emph{not}
10197 right after typing a number, the key duplicates the number on the top of
10198 the stack.  @kbd{@key{RET} *} is thus a handy way to square a number.
10200 The @key{DEL} key pops and throws away the top number on the stack.
10201 The @key{TAB} key swaps the top two objects on the stack.
10202 @xref{Stack and Trail}, for descriptions of these and other stack-related
10203 commands.
10205 @node Numeric Entry, Algebraic Entry, Stack Basics, Introduction
10206 @section Numeric Entry
10208 @noindent
10209 @kindex 0-9
10210 @kindex .
10211 @kindex e
10212 @cindex Numeric entry
10213 @cindex Entering numbers
10214 Pressing a digit or other numeric key begins numeric entry using the
10215 minibuffer.  The number is pushed on the stack when you press the @key{RET}
10216 or @key{SPC} keys.  If you press any other non-numeric key, the number is
10217 pushed onto the stack and the appropriate operation is performed.  If
10218 you press a numeric key which is not valid, the key is ignored.
10220 @cindex Minus signs
10221 @cindex Negative numbers, entering
10222 @kindex _
10223 There are three different concepts corresponding to the word ``minus,''
10224 typified by @expr{a-b} (subtraction), @expr{-x}
10225 (change-sign), and @expr{-5} (negative number).  Calc uses three
10226 different keys for these operations, respectively:
10227 @kbd{-}, @kbd{n}, and @kbd{_} (the underscore).  The @kbd{-} key subtracts
10228 the two numbers on the top of the stack.  The @kbd{n} key changes the sign
10229 of the number on the top of the stack or the number currently being entered.
10230 The @kbd{_} key begins entry of a negative number or changes the sign of
10231 the number currently being entered.  The following sequences all enter the
10232 number @mathit{-5} onto the stack:  @kbd{0 @key{RET} 5 -}, @kbd{5 n @key{RET}},
10233 @kbd{5 @key{RET} n}, @kbd{_ 5 @key{RET}}, @kbd{5 _ @key{RET}}.
10235 Some other keys are active during numeric entry, such as @kbd{#} for
10236 non-decimal numbers, @kbd{:} for fractions, and @kbd{@@} for HMS forms.
10237 These notations are described later in this manual with the corresponding
10238 data types.  @xref{Data Types}.
10240 During numeric entry, the only editing key available is @key{DEL}.
10242 @node Algebraic Entry, Quick Calculator, Numeric Entry, Introduction
10243 @section Algebraic Entry
10245 @noindent
10246 @kindex '
10247 @pindex calc-algebraic-entry
10248 @cindex Algebraic notation
10249 @cindex Formulas, entering
10250 Calculations can also be entered in algebraic form.  This is accomplished
10251 by typing the apostrophe key, @kbd{'}, followed by the expression in
10252 standard format:  @kbd{@key{'} 2+3*4 @key{RET}} computes
10253 @texline @math{2+(3\times4) = 14}
10254 @infoline @expr{2+(3*4) = 14} 
10255 and pushes that on the stack.  If you wish you can
10256 ignore the RPN aspect of Calc altogether and simply enter algebraic
10257 expressions in this way.  You may want to use @key{DEL} every so often to
10258 clear previous results off the stack.
10260 You can press the apostrophe key during normal numeric entry to switch
10261 the half-entered number into Algebraic entry mode.  One reason to do this
10262 would be to use the full Emacs cursor motion and editing keys, which are
10263 available during algebraic entry but not during numeric entry.
10265 In the same vein, during either numeric or algebraic entry you can
10266 press @kbd{`} (backquote) to switch to @code{calc-edit} mode, where
10267 you complete your half-finished entry in a separate buffer.
10268 @xref{Editing Stack Entries}.
10270 @kindex m a
10271 @pindex calc-algebraic-mode
10272 @cindex Algebraic Mode
10273 If you prefer algebraic entry, you can use the command @kbd{m a}
10274 (@code{calc-algebraic-mode}) to set Algebraic mode.  In this mode,
10275 digits and other keys that would normally start numeric entry instead
10276 start full algebraic entry; as long as your formula begins with a digit
10277 you can omit the apostrophe.  Open parentheses and square brackets also
10278 begin algebraic entry.  You can still do RPN calculations in this mode,
10279 but you will have to press @key{RET} to terminate every number:
10280 @kbd{2 @key{RET} 3 @key{RET} * 4 @key{RET} +} would accomplish the same
10281 thing as @kbd{2*3+4 @key{RET}}.
10283 @cindex Incomplete Algebraic Mode
10284 If you give a numeric prefix argument like @kbd{C-u} to the @kbd{m a}
10285 command, it enables Incomplete Algebraic mode; this is like regular
10286 Algebraic mode except that it applies to the @kbd{(} and @kbd{[} keys
10287 only.  Numeric keys still begin a numeric entry in this mode.
10289 @kindex m t
10290 @pindex calc-total-algebraic-mode
10291 @cindex Total Algebraic Mode
10292 The @kbd{m t} (@code{calc-total-algebraic-mode}) gives you an even
10293 stronger algebraic-entry mode, in which @emph{all} regular letter and
10294 punctuation keys begin algebraic entry.  Use this if you prefer typing
10295 @w{@kbd{sqrt( )}} instead of @kbd{Q}, @w{@kbd{factor( )}} instead of
10296 @kbd{a f}, and so on.  To type regular Calc commands when you are in
10297 Total Algebraic mode, hold down the @key{META} key.  Thus @kbd{M-q}
10298 is the command to quit Calc, @kbd{M-p} sets the precision, and
10299 @kbd{M-m t} (or @kbd{M-m M-t}, if you prefer) turns Total Algebraic
10300 mode back off again.  Meta keys also terminate algebraic entry, so
10301 that @kbd{2+3 M-S} is equivalent to @kbd{2+3 @key{RET} M-S}.  The symbol
10302 @samp{Alg*} will appear in the mode line whenever you are in this mode.
10304 Pressing @kbd{'} (the apostrophe) a second time re-enters the previous
10305 algebraic formula.  You can then use the normal Emacs editing keys to
10306 modify this formula to your liking before pressing @key{RET}.
10308 @kindex $
10309 @cindex Formulas, referring to stack
10310 Within a formula entered from the keyboard, the symbol @kbd{$}
10311 represents the number on the top of the stack.  If an entered formula
10312 contains any @kbd{$} characters, the Calculator replaces the top of
10313 stack with that formula rather than simply pushing the formula onto the
10314 stack.  Thus, @kbd{' 1+2 @key{RET}} pushes 3 on the stack, and @kbd{$*2
10315 @key{RET}} replaces it with 6.  Note that the @kbd{$} key always
10316 initiates algebraic entry; the @kbd{'} is unnecessary if @kbd{$} is the
10317 first character in the new formula.
10319 Higher stack elements can be accessed from an entered formula with the
10320 symbols @kbd{$$}, @kbd{$$$}, and so on.  The number of stack elements
10321 removed (to be replaced by the entered values) equals the number of dollar
10322 signs in the longest such symbol in the formula.  For example, @samp{$$+$$$}
10323 adds the second and third stack elements, replacing the top three elements
10324 with the answer.  (All information about the top stack element is thus lost
10325 since no single @samp{$} appears in this formula.)
10327 A slightly different way to refer to stack elements is with a dollar
10328 sign followed by a number:  @samp{$1}, @samp{$2}, and so on are much
10329 like @samp{$}, @samp{$$}, etc., except that stack entries referred
10330 to numerically are not replaced by the algebraic entry.  That is, while
10331 @samp{$+1} replaces 5 on the stack with 6, @samp{$1+1} leaves the 5
10332 on the stack and pushes an additional 6.
10334 If a sequence of formulas are entered separated by commas, each formula
10335 is pushed onto the stack in turn.  For example, @samp{1,2,3} pushes
10336 those three numbers onto the stack (leaving the 3 at the top), and
10337 @samp{$+1,$-1} replaces a 5 on the stack with 4 followed by 6.  Also,
10338 @samp{$,$$} exchanges the top two elements of the stack, just like the
10339 @key{TAB} key.
10341 You can finish an algebraic entry with @kbd{M-=} or @kbd{M-@key{RET}} instead
10342 of @key{RET}.  This uses @kbd{=} to evaluate the variables in each
10343 formula that goes onto the stack.  (Thus @kbd{' pi @key{RET}} pushes
10344 the variable @samp{pi}, but @kbd{' pi M-@key{RET}} pushes 3.1415.)
10346 If you finish your algebraic entry by pressing @key{LFD} (or @kbd{C-j})
10347 instead of @key{RET}, Calc disables the default simplifications
10348 (as if by @kbd{m O}; @pxref{Simplification Modes}) while the entry
10349 is being pushed on the stack.  Thus @kbd{' 1+2 @key{RET}} pushes 3
10350 on the stack, but @kbd{' 1+2 @key{LFD}} pushes the formula @expr{1+2};
10351 you might then press @kbd{=} when it is time to evaluate this formula.
10353 @node Quick Calculator, Prefix Arguments, Algebraic Entry, Introduction
10354 @section ``Quick Calculator'' Mode
10356 @noindent
10357 @kindex M-# q
10358 @pindex quick-calc
10359 @cindex Quick Calculator
10360 There is another way to invoke the Calculator if all you need to do
10361 is make one or two quick calculations.  Type @kbd{M-# q} (or
10362 @kbd{M-x quick-calc}), then type any formula as an algebraic entry.
10363 The Calculator will compute the result and display it in the echo
10364 area, without ever actually putting up a Calc window.
10366 You can use the @kbd{$} character in a Quick Calculator formula to
10367 refer to the previous Quick Calculator result.  Older results are
10368 not retained; the Quick Calculator has no effect on the full
10369 Calculator's stack or trail.  If you compute a result and then
10370 forget what it was, just run @code{M-# q} again and enter
10371 @samp{$} as the formula.
10373 If this is the first time you have used the Calculator in this Emacs
10374 session, the @kbd{M-# q} command will create the @code{*Calculator*}
10375 buffer and perform all the usual initializations; it simply will
10376 refrain from putting that buffer up in a new window.  The Quick
10377 Calculator refers to the @code{*Calculator*} buffer for all mode
10378 settings.  Thus, for example, to set the precision that the Quick
10379 Calculator uses, simply run the full Calculator momentarily and use
10380 the regular @kbd{p} command.
10382 If you use @code{M-# q} from inside the Calculator buffer, the
10383 effect is the same as pressing the apostrophe key (algebraic entry).
10385 The result of a Quick calculation is placed in the Emacs ``kill ring''
10386 as well as being displayed.  A subsequent @kbd{C-y} command will
10387 yank the result into the editing buffer.  You can also use this
10388 to yank the result into the next @kbd{M-# q} input line as a more
10389 explicit alternative to @kbd{$} notation, or to yank the result
10390 into the Calculator stack after typing @kbd{M-# c}.
10392 If you finish your formula by typing @key{LFD} (or @kbd{C-j}) instead
10393 of @key{RET}, the result is inserted immediately into the current
10394 buffer rather than going into the kill ring.
10396 Quick Calculator results are actually evaluated as if by the @kbd{=}
10397 key (which replaces variable names by their stored values, if any).
10398 If the formula you enter is an assignment to a variable using the
10399 @samp{:=} operator, say, @samp{foo := 2 + 3} or @samp{foo := foo + 1},
10400 then the result of the evaluation is stored in that Calc variable.
10401 @xref{Store and Recall}.
10403 If the result is an integer and the current display radix is decimal,
10404 the number will also be displayed in hex and octal formats.  If the
10405 integer is in the range from 1 to 126, it will also be displayed as
10406 an ASCII character.
10408 For example, the quoted character @samp{"x"} produces the vector
10409 result @samp{[120]} (because 120 is the ASCII code of the lower-case
10410 `x'; @pxref{Strings}).  Since this is a vector, not an integer, it
10411 is displayed only according to the current mode settings.  But
10412 running Quick Calc again and entering @samp{120} will produce the
10413 result @samp{120 (16#78, 8#170, x)} which shows the number in its
10414 decimal, hexadecimal, octal, and ASCII forms.
10416 Please note that the Quick Calculator is not any faster at loading
10417 or computing the answer than the full Calculator; the name ``quick''
10418 merely refers to the fact that it's much less hassle to use for
10419 small calculations.
10421 @node Prefix Arguments, Undo, Quick Calculator, Introduction
10422 @section Numeric Prefix Arguments
10424 @noindent
10425 Many Calculator commands use numeric prefix arguments.  Some, such as
10426 @kbd{d s} (@code{calc-sci-notation}), set a parameter to the value of
10427 the prefix argument or use a default if you don't use a prefix.
10428 Others (like @kbd{d f} (@code{calc-fix-notation})) require an argument
10429 and prompt for a number if you don't give one as a prefix.
10431 As a rule, stack-manipulation commands accept a numeric prefix argument
10432 which is interpreted as an index into the stack.  A positive argument
10433 operates on the top @var{n} stack entries; a negative argument operates
10434 on the @var{n}th stack entry in isolation; and a zero argument operates
10435 on the entire stack.
10437 Most commands that perform computations (such as the arithmetic and
10438 scientific functions) accept a numeric prefix argument that allows the
10439 operation to be applied across many stack elements.  For unary operations
10440 (that is, functions of one argument like absolute value or complex
10441 conjugate), a positive prefix argument applies that function to the top
10442 @var{n} stack entries simultaneously, and a negative argument applies it
10443 to the @var{n}th stack entry only.  For binary operations (functions of
10444 two arguments like addition, GCD, and vector concatenation), a positive
10445 prefix argument ``reduces'' the function across the top @var{n}
10446 stack elements (for example, @kbd{C-u 5 +} sums the top 5 stack entries;
10447 @pxref{Reducing and Mapping}), and a negative argument maps the next-to-top
10448 @var{n} stack elements with the top stack element as a second argument
10449 (for example, @kbd{7 c-u -5 +} adds 7 to the top 5 stack elements).
10450 This feature is not available for operations which use the numeric prefix
10451 argument for some other purpose.
10453 Numeric prefixes are specified the same way as always in Emacs:  Press
10454 a sequence of @key{META}-digits, or press @key{ESC} followed by digits,
10455 or press @kbd{C-u} followed by digits.  Some commands treat plain
10456 @kbd{C-u} (without any actual digits) specially.
10458 @kindex ~
10459 @pindex calc-num-prefix
10460 You can type @kbd{~} (@code{calc-num-prefix}) to pop an integer from the
10461 top of the stack and enter it as the numeric prefix for the next command.
10462 For example, @kbd{C-u 16 p} sets the precision to 16 digits; an alternate
10463 (silly) way to do this would be @kbd{2 @key{RET} 4 ^ ~ p}, i.e., compute 2
10464 to the fourth power and set the precision to that value.
10466 Conversely, if you have typed a numeric prefix argument the @kbd{~} key
10467 pushes it onto the stack in the form of an integer.
10469 @node Undo, Error Messages, Prefix Arguments, Introduction
10470 @section Undoing Mistakes
10472 @noindent
10473 @kindex U
10474 @kindex C-_
10475 @pindex calc-undo
10476 @cindex Mistakes, undoing
10477 @cindex Undoing mistakes
10478 @cindex Errors, undoing
10479 The shift-@kbd{U} key (@code{calc-undo}) undoes the most recent operation.
10480 If that operation added or dropped objects from the stack, those objects
10481 are removed or restored.  If it was a ``store'' operation, you are
10482 queried whether or not to restore the variable to its original value.
10483 The @kbd{U} key may be pressed any number of times to undo successively
10484 farther back in time; with a numeric prefix argument it undoes a
10485 specified number of operations.  The undo history is cleared only by the
10486 @kbd{q} (@code{calc-quit}) command.  (Recall that @kbd{M-# c} is
10487 synonymous with @code{calc-quit} while inside the Calculator; this
10488 also clears the undo history.)
10490 Currently the mode-setting commands (like @code{calc-precision}) are not
10491 undoable.  You can undo past a point where you changed a mode, but you
10492 will need to reset the mode yourself.
10494 @kindex D
10495 @pindex calc-redo
10496 @cindex Redoing after an Undo
10497 The shift-@kbd{D} key (@code{calc-redo}) redoes an operation that was
10498 mistakenly undone.  Pressing @kbd{U} with a negative prefix argument is
10499 equivalent to executing @code{calc-redo}.  You can redo any number of
10500 times, up to the number of recent consecutive undo commands.  Redo
10501 information is cleared whenever you give any command that adds new undo
10502 information, i.e., if you undo, then enter a number on the stack or make
10503 any other change, then it will be too late to redo.
10505 @kindex M-@key{RET}
10506 @pindex calc-last-args
10507 @cindex Last-arguments feature
10508 @cindex Arguments, restoring
10509 The @kbd{M-@key{RET}} key (@code{calc-last-args}) is like undo in that
10510 it restores the arguments of the most recent command onto the stack;
10511 however, it does not remove the result of that command.  Given a numeric
10512 prefix argument, this command applies to the @expr{n}th most recent
10513 command which removed items from the stack; it pushes those items back
10514 onto the stack.
10516 The @kbd{K} (@code{calc-keep-args}) command provides a related function
10517 to @kbd{M-@key{RET}}.  @xref{Stack and Trail}.
10519 It is also possible to recall previous results or inputs using the trail.
10520 @xref{Trail Commands}.
10522 The standard Emacs @kbd{C-_} undo key is recognized as a synonym for @kbd{U}.
10524 @node Error Messages, Multiple Calculators, Undo, Introduction
10525 @section Error Messages
10527 @noindent
10528 @kindex w
10529 @pindex calc-why
10530 @cindex Errors, messages
10531 @cindex Why did an error occur?
10532 Many situations that would produce an error message in other calculators
10533 simply create unsimplified formulas in the Emacs Calculator.  For example,
10534 @kbd{1 @key{RET} 0 /} pushes the formula @expr{1 / 0}; @w{@kbd{0 L}} pushes
10535 the formula @samp{ln(0)}.  Floating-point overflow and underflow are also
10536 reasons for this to happen.
10538 When a function call must be left in symbolic form, Calc usually
10539 produces a message explaining why.  Messages that are probably
10540 surprising or indicative of user errors are displayed automatically.
10541 Other messages are simply kept in Calc's memory and are displayed only
10542 if you type @kbd{w} (@code{calc-why}).  You can also press @kbd{w} if
10543 the same computation results in several messages.  (The first message
10544 will end with @samp{[w=more]} in this case.)
10546 @kindex d w
10547 @pindex calc-auto-why
10548 The @kbd{d w} (@code{calc-auto-why}) command controls when error messages
10549 are displayed automatically.  (Calc effectively presses @kbd{w} for you
10550 after your computation finishes.)  By default, this occurs only for
10551 ``important'' messages.  The other possible modes are to report
10552 @emph{all} messages automatically, or to report none automatically (so
10553 that you must always press @kbd{w} yourself to see the messages).
10555 @node Multiple Calculators, Troubleshooting Commands, Error Messages, Introduction
10556 @section Multiple Calculators
10558 @noindent
10559 @pindex another-calc
10560 It is possible to have any number of Calc mode buffers at once.
10561 Usually this is done by executing @kbd{M-x another-calc}, which
10562 is similar to @kbd{M-# c} except that if a @samp{*Calculator*}
10563 buffer already exists, a new, independent one with a name of the
10564 form @samp{*Calculator*<@var{n}>} is created.  You can also use the
10565 command @code{calc-mode} to put any buffer into Calculator mode, but
10566 this would ordinarily never be done.
10568 The @kbd{q} (@code{calc-quit}) command does not destroy a Calculator buffer;
10569 it only closes its window.  Use @kbd{M-x kill-buffer} to destroy a
10570 Calculator buffer.
10572 Each Calculator buffer keeps its own stack, undo list, and mode settings
10573 such as precision, angular mode, and display formats.  In Emacs terms,
10574 variables such as @code{calc-stack} are buffer-local variables.  The
10575 global default values of these variables are used only when a new
10576 Calculator buffer is created.  The @code{calc-quit} command saves
10577 the stack and mode settings of the buffer being quit as the new defaults.
10579 There is only one trail buffer, @samp{*Calc Trail*}, used by all
10580 Calculator buffers.
10582 @node Troubleshooting Commands, , Multiple Calculators, Introduction
10583 @section Troubleshooting Commands
10585 @noindent
10586 This section describes commands you can use in case a computation
10587 incorrectly fails or gives the wrong answer.
10589 @xref{Reporting Bugs}, if you find a problem that appears to be due
10590 to a bug or deficiency in Calc.
10592 @menu
10593 * Autoloading Problems::
10594 * Recursion Depth::
10595 * Caches::
10596 * Debugging Calc::
10597 @end menu
10599 @node Autoloading Problems, Recursion Depth, Troubleshooting Commands, Troubleshooting Commands
10600 @subsection Autoloading Problems
10602 @noindent
10603 The Calc program is split into many component files; components are
10604 loaded automatically as you use various commands that require them.
10605 Occasionally Calc may lose track of when a certain component is
10606 necessary; typically this means you will type a command and it won't
10607 work because some function you've never heard of was undefined.
10609 @kindex M-# L
10610 @pindex calc-load-everything
10611 If this happens, the easiest workaround is to type @kbd{M-# L}
10612 (@code{calc-load-everything}) to force all the parts of Calc to be
10613 loaded right away.  This will cause Emacs to take up a lot more
10614 memory than it would otherwise, but it's guaranteed to fix the problem.
10616 @node Recursion Depth, Caches, Autoloading Problems, Troubleshooting Commands
10617 @subsection Recursion Depth
10619 @noindent
10620 @kindex M
10621 @kindex I M
10622 @pindex calc-more-recursion-depth
10623 @pindex calc-less-recursion-depth
10624 @cindex Recursion depth
10625 @cindex ``Computation got stuck'' message
10626 @cindex @code{max-lisp-eval-depth}
10627 @cindex @code{max-specpdl-size}
10628 Calc uses recursion in many of its calculations.  Emacs Lisp keeps a
10629 variable @code{max-lisp-eval-depth} which limits the amount of recursion
10630 possible in an attempt to recover from program bugs.  If a calculation
10631 ever halts incorrectly with the message ``Computation got stuck or
10632 ran too long,'' use the @kbd{M} command (@code{calc-more-recursion-depth})
10633 to increase this limit.  (Of course, this will not help if the
10634 calculation really did get stuck due to some problem inside Calc.)
10636 The limit is always increased (multiplied) by a factor of two.  There
10637 is also an @kbd{I M} (@code{calc-less-recursion-depth}) command which
10638 decreases this limit by a factor of two, down to a minimum value of 200.
10639 The default value is 1000.
10641 These commands also double or halve @code{max-specpdl-size}, another
10642 internal Lisp recursion limit.  The minimum value for this limit is 600.
10644 @node Caches, Debugging Calc, Recursion Depth, Troubleshooting Commands
10645 @subsection Caches
10647 @noindent
10648 @cindex Caches
10649 @cindex Flushing caches
10650 Calc saves certain values after they have been computed once.  For
10651 example, the @kbd{P} (@code{calc-pi}) command initially ``knows'' the
10652 constant @cpi{} to about 20 decimal places; if the current precision
10653 is greater than this, it will recompute @cpi{} using a series
10654 approximation.  This value will not need to be recomputed ever again
10655 unless you raise the precision still further.  Many operations such as
10656 logarithms and sines make use of similarly cached values such as
10657 @cpiover{4} and 
10658 @texline @math{\ln 2}.
10659 @infoline @expr{ln(2)}.  
10660 The visible effect of caching is that
10661 high-precision computations may seem to do extra work the first time.
10662 Other things cached include powers of two (for the binary arithmetic
10663 functions), matrix inverses and determinants, symbolic integrals, and
10664 data points computed by the graphing commands.
10666 @pindex calc-flush-caches
10667 If you suspect a Calculator cache has become corrupt, you can use the
10668 @code{calc-flush-caches} command to reset all caches to the empty state.
10669 (This should only be necessary in the event of bugs in the Calculator.)
10670 The @kbd{M-# 0} (with the zero key) command also resets caches along
10671 with all other aspects of the Calculator's state.
10673 @node Debugging Calc, , Caches, Troubleshooting Commands
10674 @subsection Debugging Calc
10676 @noindent
10677 A few commands exist to help in the debugging of Calc commands.
10678 @xref{Programming}, to see the various ways that you can write
10679 your own Calc commands.
10681 @kindex Z T
10682 @pindex calc-timing
10683 The @kbd{Z T} (@code{calc-timing}) command turns on and off a mode
10684 in which the timing of slow commands is reported in the Trail.
10685 Any Calc command that takes two seconds or longer writes a line
10686 to the Trail showing how many seconds it took.  This value is
10687 accurate only to within one second.
10689 All steps of executing a command are included; in particular, time
10690 taken to format the result for display in the stack and trail is
10691 counted.  Some prompts also count time taken waiting for them to
10692 be answered, while others do not; this depends on the exact
10693 implementation of the command.  For best results, if you are timing
10694 a sequence that includes prompts or multiple commands, define a
10695 keyboard macro to run the whole sequence at once.  Calc's @kbd{X}
10696 command (@pxref{Keyboard Macros}) will then report the time taken
10697 to execute the whole macro.
10699 Another advantage of the @kbd{X} command is that while it is
10700 executing, the stack and trail are not updated from step to step.
10701 So if you expect the output of your test sequence to leave a result
10702 that may take a long time to format and you don't wish to count
10703 this formatting time, end your sequence with a @key{DEL} keystroke
10704 to clear the result from the stack.  When you run the sequence with
10705 @kbd{X}, Calc will never bother to format the large result.
10707 Another thing @kbd{Z T} does is to increase the Emacs variable
10708 @code{gc-cons-threshold} to a much higher value (two million; the
10709 usual default in Calc is 250,000) for the duration of each command.
10710 This generally prevents garbage collection during the timing of
10711 the command, though it may cause your Emacs process to grow
10712 abnormally large.  (Garbage collection time is a major unpredictable
10713 factor in the timing of Emacs operations.)
10715 Another command that is useful when debugging your own Lisp
10716 extensions to Calc is @kbd{M-x calc-pass-errors}, which disables
10717 the error handler that changes the ``@code{max-lisp-eval-depth}
10718 exceeded'' message to the much more friendly ``Computation got
10719 stuck or ran too long.''  This handler interferes with the Emacs
10720 Lisp debugger's @code{debug-on-error} mode.  Errors are reported
10721 in the handler itself rather than at the true location of the
10722 error.  After you have executed @code{calc-pass-errors}, Lisp
10723 errors will be reported correctly but the user-friendly message
10724 will be lost.
10726 @node Data Types, Stack and Trail, Introduction, Top
10727 @chapter Data Types
10729 @noindent
10730 This chapter discusses the various types of objects that can be placed
10731 on the Calculator stack, how they are displayed, and how they are
10732 entered.  (@xref{Data Type Formats}, for information on how these data
10733 types are represented as underlying Lisp objects.)
10735 Integers, fractions, and floats are various ways of describing real
10736 numbers.  HMS forms also for many purposes act as real numbers.  These
10737 types can be combined to form complex numbers, modulo forms, error forms,
10738 or interval forms.  (But these last four types cannot be combined
10739 arbitrarily:@: error forms may not contain modulo forms, for example.)
10740 Finally, all these types of numbers may be combined into vectors,
10741 matrices, or algebraic formulas.
10743 @menu
10744 * Integers::                The most basic data type.
10745 * Fractions::               This and above are called @dfn{rationals}.
10746 * Floats::                  This and above are called @dfn{reals}.
10747 * Complex Numbers::         This and above are called @dfn{numbers}.
10748 * Infinities::
10749 * Vectors and Matrices::
10750 * Strings::
10751 * HMS Forms::
10752 * Date Forms::
10753 * Modulo Forms::
10754 * Error Forms::
10755 * Interval Forms::
10756 * Incomplete Objects::
10757 * Variables::
10758 * Formulas::
10759 @end menu
10761 @node Integers, Fractions, Data Types, Data Types
10762 @section Integers
10764 @noindent
10765 @cindex Integers
10766 The Calculator stores integers to arbitrary precision.  Addition,
10767 subtraction, and multiplication of integers always yields an exact
10768 integer result.  (If the result of a division or exponentiation of
10769 integers is not an integer, it is expressed in fractional or
10770 floating-point form according to the current Fraction mode.
10771 @xref{Fraction Mode}.)
10773 A decimal integer is represented as an optional sign followed by a
10774 sequence of digits.  Grouping (@pxref{Grouping Digits}) can be used to
10775 insert a comma at every third digit for display purposes, but you
10776 must not type commas during the entry of numbers.
10778 @kindex #
10779 A non-decimal integer is represented as an optional sign, a radix
10780 between 2 and 36, a @samp{#} symbol, and one or more digits.  For radix 11
10781 and above, the letters A through Z (upper- or lower-case) count as
10782 digits and do not terminate numeric entry mode.  @xref{Radix Modes}, for how
10783 to set the default radix for display of integers.  Numbers of any radix
10784 may be entered at any time.  If you press @kbd{#} at the beginning of a
10785 number, the current display radix is used.
10787 @node Fractions, Floats, Integers, Data Types
10788 @section Fractions
10790 @noindent
10791 @cindex Fractions
10792 A @dfn{fraction} is a ratio of two integers.  Fractions are traditionally
10793 written ``2/3'' but Calc uses the notation @samp{2:3}.  (The @kbd{/} key
10794 performs RPN division; the following two sequences push the number
10795 @samp{2:3} on the stack:  @kbd{2 :@: 3 @key{RET}}, or @kbd{2 @key{RET} 3 /}
10796 assuming Fraction mode has been enabled.)
10797 When the Calculator produces a fractional result it always reduces it to
10798 simplest form, which may in fact be an integer.
10800 Fractions may also be entered in a three-part form, where @samp{2:3:4}
10801 represents two-and-three-quarters.  @xref{Fraction Formats}, for fraction
10802 display formats.
10804 Non-decimal fractions are entered and displayed as
10805 @samp{@var{radix}#@var{num}:@var{denom}} (or in the analogous three-part
10806 form).  The numerator and denominator always use the same radix.
10808 @node Floats, Complex Numbers, Fractions, Data Types
10809 @section Floats
10811 @noindent
10812 @cindex Floating-point numbers
10813 A floating-point number or @dfn{float} is a number stored in scientific
10814 notation.  The number of significant digits in the fractional part is
10815 governed by the current floating precision (@pxref{Precision}).  The
10816 range of acceptable values is from 
10817 @texline @math{10^{-3999999}}
10818 @infoline @expr{10^-3999999} 
10819 (inclusive) to 
10820 @texline @math{10^{4000000}}
10821 @infoline @expr{10^4000000}
10822 (exclusive), plus the corresponding negative values and zero.
10824 Calculations that would exceed the allowable range of values (such
10825 as @samp{exp(exp(20))}) are left in symbolic form by Calc.  The
10826 messages ``floating-point overflow'' or ``floating-point underflow''
10827 indicate that during the calculation a number would have been produced
10828 that was too large or too close to zero, respectively, to be represented
10829 by Calc.  This does not necessarily mean the final result would have
10830 overflowed, just that an overflow occurred while computing the result.
10831 (In fact, it could report an underflow even though the final result
10832 would have overflowed!)
10834 If a rational number and a float are mixed in a calculation, the result
10835 will in general be expressed as a float.  Commands that require an integer
10836 value (such as @kbd{k g} [@code{gcd}]) will also accept integer-valued
10837 floats, i.e., floating-point numbers with nothing after the decimal point.
10839 Floats are identified by the presence of a decimal point and/or an
10840 exponent.  In general a float consists of an optional sign, digits
10841 including an optional decimal point, and an optional exponent consisting
10842 of an @samp{e}, an optional sign, and up to seven exponent digits.
10843 For example, @samp{23.5e-2} is 23.5 times ten to the minus-second power,
10844 or 0.235.
10846 Floating-point numbers are normally displayed in decimal notation with
10847 all significant figures shown.  Exceedingly large or small numbers are
10848 displayed in scientific notation.  Various other display options are
10849 available.  @xref{Float Formats}.
10851 @cindex Accuracy of calculations
10852 Floating-point numbers are stored in decimal, not binary.  The result
10853 of each operation is rounded to the nearest value representable in the
10854 number of significant digits specified by the current precision,
10855 rounding away from zero in the case of a tie.  Thus (in the default
10856 display mode) what you see is exactly what you get.  Some operations such
10857 as square roots and transcendental functions are performed with several
10858 digits of extra precision and then rounded down, in an effort to make the
10859 final result accurate to the full requested precision.  However,
10860 accuracy is not rigorously guaranteed.  If you suspect the validity of a
10861 result, try doing the same calculation in a higher precision.  The
10862 Calculator's arithmetic is not intended to be IEEE-conformant in any
10863 way.
10865 While floats are always @emph{stored} in decimal, they can be entered
10866 and displayed in any radix just like integers and fractions.  The
10867 notation @samp{@var{radix}#@var{ddd}.@var{ddd}} is a floating-point
10868 number whose digits are in the specified radix.  Note that the @samp{.}
10869 is more aptly referred to as a ``radix point'' than as a decimal
10870 point in this case.  The number @samp{8#123.4567} is defined as
10871 @samp{8#1234567 * 8^-4}.  If the radix is 14 or less, you can use
10872 @samp{e} notation to write a non-decimal number in scientific notation.
10873 The exponent is written in decimal, and is considered to be a power
10874 of the radix: @samp{8#1234567e-4}.  If the radix is 15 or above, the
10875 letter @samp{e} is a digit, so scientific notation must be written
10876 out, e.g., @samp{16#123.4567*16^2}.  The first two exercises of the
10877 Modes Tutorial explore some of the properties of non-decimal floats.
10879 @node Complex Numbers, Infinities, Floats, Data Types
10880 @section Complex Numbers
10882 @noindent
10883 @cindex Complex numbers
10884 There are two supported formats for complex numbers: rectangular and
10885 polar.  The default format is rectangular, displayed in the form
10886 @samp{(@var{real},@var{imag})} where @var{real} is the real part and
10887 @var{imag} is the imaginary part, each of which may be any real number.
10888 Rectangular complex numbers can also be displayed in @samp{@var{a}+@var{b}i}
10889 notation; @pxref{Complex Formats}.
10891 Polar complex numbers are displayed in the form 
10892 @texline `@tfn{(}@var{r}@tfn{;}@math{\theta}@tfn{)}'
10893 @infoline `@tfn{(}@var{r}@tfn{;}@var{theta}@tfn{)}'
10894 where @var{r} is the nonnegative magnitude and 
10895 @texline @math{\theta}
10896 @infoline @var{theta} 
10897 is the argument or phase angle.  The range of 
10898 @texline @math{\theta}
10899 @infoline @var{theta} 
10900 depends on the current angular mode (@pxref{Angular Modes}); it is
10901 generally between @mathit{-180} and @mathit{+180} degrees or the equivalent range
10902 in radians. 
10904 Complex numbers are entered in stages using incomplete objects.
10905 @xref{Incomplete Objects}.
10907 Operations on rectangular complex numbers yield rectangular complex
10908 results, and similarly for polar complex numbers.  Where the two types
10909 are mixed, or where new complex numbers arise (as for the square root of
10910 a negative real), the current @dfn{Polar mode} is used to determine the
10911 type.  @xref{Polar Mode}.
10913 A complex result in which the imaginary part is zero (or the phase angle
10914 is 0 or 180 degrees or @cpi{} radians) is automatically converted to a real
10915 number.
10917 @node Infinities, Vectors and Matrices, Complex Numbers, Data Types
10918 @section Infinities
10920 @noindent
10921 @cindex Infinity
10922 @cindex @code{inf} variable
10923 @cindex @code{uinf} variable
10924 @cindex @code{nan} variable
10925 @vindex inf
10926 @vindex uinf
10927 @vindex nan
10928 The word @code{inf} represents the mathematical concept of @dfn{infinity}.
10929 Calc actually has three slightly different infinity-like values:
10930 @code{inf}, @code{uinf}, and @code{nan}.  These are just regular
10931 variable names (@pxref{Variables}); you should avoid using these
10932 names for your own variables because Calc gives them special
10933 treatment.  Infinities, like all variable names, are normally
10934 entered using algebraic entry.
10936 Mathematically speaking, it is not rigorously correct to treat
10937 ``infinity'' as if it were a number, but mathematicians often do
10938 so informally.  When they say that @samp{1 / inf = 0}, what they
10939 really mean is that @expr{1 / x}, as @expr{x} becomes larger and
10940 larger, becomes arbitrarily close to zero.  So you can imagine
10941 that if @expr{x} got ``all the way to infinity,'' then @expr{1 / x}
10942 would go all the way to zero.  Similarly, when they say that
10943 @samp{exp(inf) = inf}, they mean that 
10944 @texline @math{e^x}
10945 @infoline @expr{exp(x)} 
10946 grows without bound as @expr{x} grows.  The symbol @samp{-inf} likewise
10947 stands for an infinitely negative real value; for example, we say that
10948 @samp{exp(-inf) = 0}.  You can have an infinity pointing in any
10949 direction on the complex plane:  @samp{sqrt(-inf) = i inf}.
10951 The same concept of limits can be used to define @expr{1 / 0}.  We
10952 really want the value that @expr{1 / x} approaches as @expr{x}
10953 approaches zero.  But if all we have is @expr{1 / 0}, we can't
10954 tell which direction @expr{x} was coming from.  If @expr{x} was
10955 positive and decreasing toward zero, then we should say that
10956 @samp{1 / 0 = inf}.  But if @expr{x} was negative and increasing
10957 toward zero, the answer is @samp{1 / 0 = -inf}.  In fact, @expr{x}
10958 could be an imaginary number, giving the answer @samp{i inf} or
10959 @samp{-i inf}.  Calc uses the special symbol @samp{uinf} to mean
10960 @dfn{undirected infinity}, i.e., a value which is infinitely
10961 large but with an unknown sign (or direction on the complex plane).
10963 Calc actually has three modes that say how infinities are handled.
10964 Normally, infinities never arise from calculations that didn't
10965 already have them.  Thus, @expr{1 / 0} is treated simply as an
10966 error and left unevaluated.  The @kbd{m i} (@code{calc-infinite-mode})
10967 command (@pxref{Infinite Mode}) enables a mode in which
10968 @expr{1 / 0} evaluates to @code{uinf} instead.  There is also
10969 an alternative type of infinite mode which says to treat zeros
10970 as if they were positive, so that @samp{1 / 0 = inf}.  While this
10971 is less mathematically correct, it may be the answer you want in
10972 some cases.
10974 Since all infinities are ``as large'' as all others, Calc simplifies,
10975 e.g., @samp{5 inf} to @samp{inf}.  Another example is
10976 @samp{5 - inf = -inf}, where the @samp{-inf} is so large that
10977 adding a finite number like five to it does not affect it.
10978 Note that @samp{a - inf} also results in @samp{-inf}; Calc assumes
10979 that variables like @code{a} always stand for finite quantities.
10980 Just to show that infinities really are all the same size,
10981 note that @samp{sqrt(inf) = inf^2 = exp(inf) = inf} in Calc's
10982 notation.
10984 It's not so easy to define certain formulas like @samp{0 * inf} and
10985 @samp{inf / inf}.  Depending on where these zeros and infinities
10986 came from, the answer could be literally anything.  The latter
10987 formula could be the limit of @expr{x / x} (giving a result of one),
10988 or @expr{2 x / x} (giving two), or @expr{x^2 / x} (giving @code{inf}),
10989 or @expr{x / x^2} (giving zero).  Calc uses the symbol @code{nan}
10990 to represent such an @dfn{indeterminate} value.  (The name ``nan''
10991 comes from analogy with the ``NAN'' concept of IEEE standard
10992 arithmetic; it stands for ``Not A Number.''  This is somewhat of a
10993 misnomer, since @code{nan} @emph{does} stand for some number or
10994 infinity, it's just that @emph{which} number it stands for
10995 cannot be determined.)  In Calc's notation, @samp{0 * inf = nan}
10996 and @samp{inf / inf = nan}.  A few other common indeterminate
10997 expressions are @samp{inf - inf} and @samp{inf ^ 0}.  Also,
10998 @samp{0 / 0 = nan} if you have turned on Infinite mode
10999 (as described above).
11001 Infinities are especially useful as parts of @dfn{intervals}.
11002 @xref{Interval Forms}.
11004 @node Vectors and Matrices, Strings, Infinities, Data Types
11005 @section Vectors and Matrices
11007 @noindent
11008 @cindex Vectors
11009 @cindex Plain vectors
11010 @cindex Matrices
11011 The @dfn{vector} data type is flexible and general.  A vector is simply a
11012 list of zero or more data objects.  When these objects are numbers, the
11013 whole is a vector in the mathematical sense.  When these objects are
11014 themselves vectors of equal (nonzero) length, the whole is a @dfn{matrix}.
11015 A vector which is not a matrix is referred to here as a @dfn{plain vector}.
11017 A vector is displayed as a list of values separated by commas and enclosed
11018 in square brackets:  @samp{[1, 2, 3]}.  Thus the following is a 2 row by
11019 3 column matrix:  @samp{[[1, 2, 3], [4, 5, 6]]}.  Vectors, like complex
11020 numbers, are entered as incomplete objects.  @xref{Incomplete Objects}.
11021 During algebraic entry, vectors are entered all at once in the usual
11022 brackets-and-commas form.  Matrices may be entered algebraically as nested
11023 vectors, or using the shortcut notation @w{@samp{[1, 2, 3; 4, 5, 6]}},
11024 with rows separated by semicolons.  The commas may usually be omitted
11025 when entering vectors:  @samp{[1 2 3]}.  Curly braces may be used in
11026 place of brackets: @samp{@{1, 2, 3@}}, but the commas are required in
11027 this case.
11029 Traditional vector and matrix arithmetic is also supported;
11030 @pxref{Basic Arithmetic} and @pxref{Matrix Functions}.
11031 Many other operations are applied to vectors element-wise.  For example,
11032 the complex conjugate of a vector is a vector of the complex conjugates
11033 of its elements.
11035 @ignore
11036 @starindex
11037 @end ignore
11038 @tindex vec
11039 Algebraic functions for building vectors include @samp{vec(a, b, c)}
11040 to build @samp{[a, b, c]}, @samp{cvec(a, n, m)} to build an 
11041 @texline @math{n\times m}
11042 @infoline @var{n}x@var{m}
11043 matrix of @samp{a}s, and @samp{index(n)} to build a vector of integers
11044 from 1 to @samp{n}.
11046 @node Strings, HMS Forms, Vectors and Matrices, Data Types
11047 @section Strings
11049 @noindent
11050 @kindex "
11051 @cindex Strings
11052 @cindex Character strings
11053 Character strings are not a special data type in the Calculator.
11054 Rather, a string is represented simply as a vector all of whose
11055 elements are integers in the range 0 to 255 (ASCII codes).  You can
11056 enter a string at any time by pressing the @kbd{"} key.  Quotation
11057 marks and backslashes are written @samp{\"} and @samp{\\}, respectively,
11058 inside strings.  Other notations introduced by backslashes are:
11060 @example
11061 @group
11062 \a     7          \^@@    0
11063 \b     8          \^a-z  1-26
11064 \e     27         \^[    27
11065 \f     12         \^\\   28
11066 \n     10         \^]    29
11067 \r     13         \^^    30
11068 \t     9          \^_    31
11069                   \^?    127
11070 @end group
11071 @end example
11073 @noindent
11074 Finally, a backslash followed by three octal digits produces any
11075 character from its ASCII code.
11077 @kindex d "
11078 @pindex calc-display-strings
11079 Strings are normally displayed in vector-of-integers form.  The
11080 @w{@kbd{d "}} (@code{calc-display-strings}) command toggles a mode in
11081 which any vectors of small integers are displayed as quoted strings
11082 instead.
11084 The backslash notations shown above are also used for displaying
11085 strings.  Characters 128 and above are not translated by Calc; unless
11086 you have an Emacs modified for 8-bit fonts, these will show up in
11087 backslash-octal-digits notation.  For characters below 32, and
11088 for character 127, Calc uses the backslash-letter combination if
11089 there is one, or otherwise uses a @samp{\^} sequence.
11091 The only Calc feature that uses strings is @dfn{compositions};
11092 @pxref{Compositions}.  Strings also provide a convenient
11093 way to do conversions between ASCII characters and integers.
11095 @ignore
11096 @starindex
11097 @end ignore
11098 @tindex string
11099 There is a @code{string} function which provides a different display
11100 format for strings.  Basically, @samp{string(@var{s})}, where @var{s}
11101 is a vector of integers in the proper range, is displayed as the
11102 corresponding string of characters with no surrounding quotation
11103 marks or other modifications.  Thus @samp{string("ABC")} (or
11104 @samp{string([65 66 67])}) will look like @samp{ABC} on the stack.
11105 This happens regardless of whether @w{@kbd{d "}} has been used.  The
11106 only way to turn it off is to use @kbd{d U} (unformatted language
11107 mode) which will display @samp{string("ABC")} instead.
11109 Control characters are displayed somewhat differently by @code{string}.
11110 Characters below 32, and character 127, are shown using @samp{^} notation
11111 (same as shown above, but without the backslash).  The quote and
11112 backslash characters are left alone, as are characters 128 and above.
11114 @ignore
11115 @starindex
11116 @end ignore
11117 @tindex bstring
11118 The @code{bstring} function is just like @code{string} except that
11119 the resulting string is breakable across multiple lines if it doesn't
11120 fit all on one line.  Potential break points occur at every space
11121 character in the string.
11123 @node HMS Forms, Date Forms, Strings, Data Types
11124 @section HMS Forms
11126 @noindent
11127 @cindex Hours-minutes-seconds forms
11128 @cindex Degrees-minutes-seconds forms
11129 @dfn{HMS} stands for Hours-Minutes-Seconds; when used as an angular
11130 argument, the interpretation is Degrees-Minutes-Seconds.  All functions
11131 that operate on angles accept HMS forms.  These are interpreted as
11132 degrees regardless of the current angular mode.  It is also possible to
11133 use HMS as the angular mode so that calculated angles are expressed in
11134 degrees, minutes, and seconds.
11136 @kindex @@
11137 @ignore
11138 @mindex @null
11139 @end ignore
11140 @kindex ' (HMS forms)
11141 @ignore
11142 @mindex @null
11143 @end ignore
11144 @kindex " (HMS forms)
11145 @ignore
11146 @mindex @null
11147 @end ignore
11148 @kindex h (HMS forms)
11149 @ignore
11150 @mindex @null
11151 @end ignore
11152 @kindex o (HMS forms)
11153 @ignore
11154 @mindex @null
11155 @end ignore
11156 @kindex m (HMS forms)
11157 @ignore
11158 @mindex @null
11159 @end ignore
11160 @kindex s (HMS forms)
11161 The default format for HMS values is
11162 @samp{@var{hours}@@ @var{mins}' @var{secs}"}.  During entry, the letters
11163 @samp{h} (for ``hours'') or
11164 @samp{o} (approximating the ``degrees'' symbol) are accepted as well as
11165 @samp{@@}, @samp{m} is accepted in place of @samp{'}, and @samp{s} is
11166 accepted in place of @samp{"}.
11167 The @var{hours} value is an integer (or integer-valued float).
11168 The @var{mins} value is an integer or integer-valued float between 0 and 59.
11169 The @var{secs} value is a real number between 0 (inclusive) and 60
11170 (exclusive).  A positive HMS form is interpreted as @var{hours} +
11171 @var{mins}/60 + @var{secs}/3600.  A negative HMS form is interpreted
11172 as @mathit{- @var{hours}} @mathit{-} @var{mins}/60 @mathit{-} @var{secs}/3600.
11173 Display format for HMS forms is quite flexible.  @xref{HMS Formats}.
11175 HMS forms can be added and subtracted.  When they are added to numbers,
11176 the numbers are interpreted according to the current angular mode.  HMS
11177 forms can also be multiplied and divided by real numbers.  Dividing
11178 two HMS forms produces a real-valued ratio of the two angles.
11180 @pindex calc-time
11181 @cindex Time of day
11182 Just for kicks, @kbd{M-x calc-time} pushes the current time of day on
11183 the stack as an HMS form.
11185 @node Date Forms, Modulo Forms, HMS Forms, Data Types
11186 @section Date Forms
11188 @noindent
11189 @cindex Date forms
11190 A @dfn{date form} represents a date and possibly an associated time.
11191 Simple date arithmetic is supported:  Adding a number to a date
11192 produces a new date shifted by that many days; adding an HMS form to
11193 a date shifts it by that many hours.  Subtracting two date forms
11194 computes the number of days between them (represented as a simple
11195 number).  Many other operations, such as multiplying two date forms,
11196 are nonsensical and are not allowed by Calc.
11198 Date forms are entered and displayed enclosed in @samp{< >} brackets.
11199 The default format is, e.g., @samp{<Wed Jan 9, 1991>} for dates,
11200 or @samp{<3:32:20pm Wed Jan 9, 1991>} for dates with times.
11201 Input is flexible; date forms can be entered in any of the usual
11202 notations for dates and times.  @xref{Date Formats}.
11204 Date forms are stored internally as numbers, specifically the number
11205 of days since midnight on the morning of January 1 of the year 1 AD.
11206 If the internal number is an integer, the form represents a date only;
11207 if the internal number is a fraction or float, the form represents
11208 a date and time.  For example, @samp{<6:00am Wed Jan 9, 1991>}
11209 is represented by the number 726842.25.  The standard precision of
11210 12 decimal digits is enough to ensure that a (reasonable) date and
11211 time can be stored without roundoff error.
11213 If the current precision is greater than 12, date forms will keep
11214 additional digits in the seconds position.  For example, if the
11215 precision is 15, the seconds will keep three digits after the
11216 decimal point.  Decreasing the precision below 12 may cause the
11217 time part of a date form to become inaccurate.  This can also happen
11218 if astronomically high years are used, though this will not be an
11219 issue in everyday (or even everymillennium) use.  Note that date
11220 forms without times are stored as exact integers, so roundoff is
11221 never an issue for them.
11223 You can use the @kbd{v p} (@code{calc-pack}) and @kbd{v u}
11224 (@code{calc-unpack}) commands to get at the numerical representation
11225 of a date form.  @xref{Packing and Unpacking}.
11227 Date forms can go arbitrarily far into the future or past.  Negative
11228 year numbers represent years BC.  Calc uses a combination of the
11229 Gregorian and Julian calendars, following the history of Great
11230 Britain and the British colonies.  This is the same calendar that
11231 is used by the @code{cal} program in most Unix implementations.
11233 @cindex Julian calendar
11234 @cindex Gregorian calendar
11235 Some historical background:  The Julian calendar was created by
11236 Julius Caesar in the year 46 BC as an attempt to fix the gradual
11237 drift caused by the lack of leap years in the calendar used
11238 until that time.  The Julian calendar introduced an extra day in
11239 all years divisible by four.  After some initial confusion, the
11240 calendar was adopted around the year we call 8 AD.  Some centuries
11241 later it became apparent that the Julian year of 365.25 days was
11242 itself not quite right.  In 1582 Pope Gregory XIII introduced the
11243 Gregorian calendar, which added the new rule that years divisible
11244 by 100, but not by 400, were not to be considered leap years
11245 despite being divisible by four.  Many countries delayed adoption
11246 of the Gregorian calendar because of religious differences;
11247 in Britain it was put off until the year 1752, by which time
11248 the Julian calendar had fallen eleven days behind the true
11249 seasons.  So the switch to the Gregorian calendar in early
11250 September 1752 introduced a discontinuity:  The day after
11251 Sep 2, 1752 is Sep 14, 1752.  Calc follows this convention.
11252 To take another example, Russia waited until 1918 before
11253 adopting the new calendar, and thus needed to remove thirteen
11254 days (between Feb 1, 1918 and Feb 14, 1918).  This means that
11255 Calc's reckoning will be inconsistent with Russian history between
11256 1752 and 1918, and similarly for various other countries.
11258 Today's timekeepers introduce an occasional ``leap second'' as
11259 well, but Calc does not take these minor effects into account.
11260 (If it did, it would have to report a non-integer number of days
11261 between, say, @samp{<12:00am Mon Jan 1, 1900>} and
11262 @samp{<12:00am Sat Jan 1, 2000>}.)
11264 Calc uses the Julian calendar for all dates before the year 1752,
11265 including dates BC when the Julian calendar technically had not
11266 yet been invented.  Thus the claim that day number @mathit{-10000} is
11267 called ``August 16, 28 BC'' should be taken with a grain of salt.
11269 Please note that there is no ``year 0''; the day before
11270 @samp{<Sat Jan 1, +1>} is @samp{<Fri Dec 31, -1>}.  These are
11271 days 0 and @mathit{-1} respectively in Calc's internal numbering scheme.
11273 @cindex Julian day counting
11274 Another day counting system in common use is, confusingly, also
11275 called ``Julian.''  It was invented in 1583 by Joseph Justus
11276 Scaliger, who named it in honor of his father Julius Caesar
11277 Scaliger.  For obscure reasons he chose to start his day
11278 numbering on Jan 1, 4713 BC at noon, which in Calc's scheme
11279 is @mathit{-1721423.5} (recall that Calc starts at midnight instead
11280 of noon).  Thus to convert a Calc date code obtained by
11281 unpacking a date form into a Julian day number, simply add
11282 1721423.5.  The Julian code for @samp{6:00am Jan 9, 1991}
11283 is 2448265.75.  The built-in @kbd{t J} command performs
11284 this conversion for you.
11286 @cindex Unix time format
11287 The Unix operating system measures time as an integer number of
11288 seconds since midnight, Jan 1, 1970.  To convert a Calc date
11289 value into a Unix time stamp, first subtract 719164 (the code
11290 for @samp{<Jan 1, 1970>}), then multiply by 86400 (the number of
11291 seconds in a day) and press @kbd{R} to round to the nearest
11292 integer.  If you have a date form, you can simply subtract the
11293 day @samp{<Jan 1, 1970>} instead of unpacking and subtracting
11294 719164.  Likewise, divide by 86400 and add @samp{<Jan 1, 1970>}
11295 to convert from Unix time to a Calc date form.  (Note that
11296 Unix normally maintains the time in the GMT time zone; you may
11297 need to subtract five hours to get New York time, or eight hours
11298 for California time.  The same is usually true of Julian day
11299 counts.)  The built-in @kbd{t U} command performs these
11300 conversions.
11302 @node Modulo Forms, Error Forms, Date Forms, Data Types
11303 @section Modulo Forms
11305 @noindent
11306 @cindex Modulo forms
11307 A @dfn{modulo form} is a real number which is taken modulo (i.e., within
11308 an integer multiple of) some value @var{M}.  Arithmetic modulo @var{M}
11309 often arises in number theory.  Modulo forms are written
11310 `@var{a} @tfn{mod} @var{M}',
11311 where @var{a} and @var{M} are real numbers or HMS forms, and
11312 @texline @math{0 \le a < M}.
11313 @infoline @expr{0 <= a < @var{M}}.
11314 In many applications @expr{a} and @expr{M} will be
11315 integers but this is not required.
11317 @ignore
11318 @mindex M
11319 @end ignore
11320 @kindex M (modulo forms)
11321 @ignore
11322 @mindex mod
11323 @end ignore
11324 @tindex mod (operator)
11325 To create a modulo form during numeric entry, press the shift-@kbd{M}
11326 key to enter the word @samp{mod}.  As a special convenience, pressing
11327 shift-@kbd{M} a second time automatically enters the value of @expr{M}
11328 that was most recently used before.  During algebraic entry, either
11329 type @samp{mod} by hand or press @kbd{M-m} (that's @kbd{@key{META}-m}).
11330 Once again, pressing this a second time enters the current modulo.
11332 Modulo forms are not to be confused with the modulo operator @samp{%}.
11333 The expression @samp{27 % 10} means to compute 27 modulo 10 to produce
11334 the result 7.  Further computations treat this 7 as just a regular integer.
11335 The expression @samp{27 mod 10} produces the result @samp{7 mod 10};
11336 further computations with this value are again reduced modulo 10 so that
11337 the result always lies in the desired range.
11339 When two modulo forms with identical @expr{M}'s are added or multiplied,
11340 the Calculator simply adds or multiplies the values, then reduces modulo
11341 @expr{M}.  If one argument is a modulo form and the other a plain number,
11342 the plain number is treated like a compatible modulo form.  It is also
11343 possible to raise modulo forms to powers; the result is the value raised
11344 to the power, then reduced modulo @expr{M}.  (When all values involved
11345 are integers, this calculation is done much more efficiently than
11346 actually computing the power and then reducing.)
11348 @cindex Modulo division
11349 Two modulo forms `@var{a} @tfn{mod} @var{M}' and `@var{b} @tfn{mod} @var{M}'
11350 can be divided if @expr{a}, @expr{b}, and @expr{M} are all
11351 integers.  The result is the modulo form which, when multiplied by
11352 `@var{b} @tfn{mod} @var{M}', produces `@var{a} @tfn{mod} @var{M}'.  If
11353 there is no solution to this equation (which can happen only when
11354 @expr{M} is non-prime), or if any of the arguments are non-integers, the
11355 division is left in symbolic form.  Other operations, such as square
11356 roots, are not yet supported for modulo forms.  (Note that, although
11357 @w{`@tfn{(}@var{a} @tfn{mod} @var{M}@tfn{)^.5}'} will compute a ``modulo square root''
11358 in the sense of reducing 
11359 @texline @math{\sqrt a}
11360 @infoline @expr{sqrt(a)} 
11361 modulo @expr{M}, this is not a useful definition from the
11362 number-theoretical point of view.)
11364 It is possible to mix HMS forms and modulo forms.  For example, an
11365 HMS form modulo 24 could be used to manipulate clock times; an HMS
11366 form modulo 360 would be suitable for angles.  Making the modulo @expr{M}
11367 also be an HMS form eliminates troubles that would arise if the angular
11368 mode were inadvertently set to Radians, in which case
11369 @w{@samp{2@@ 0' 0" mod 24}} would be interpreted as two degrees modulo
11370 24 radians!
11372 Modulo forms cannot have variables or formulas for components.  If you
11373 enter the formula @samp{(x + 2) mod 5}, Calc propagates the modulus
11374 to each of the coefficients:  @samp{(1 mod 5) x + (2 mod 5)}.
11376 You can use @kbd{v p} and @kbd{%} to modify modulo forms.
11377 @xref{Packing and Unpacking}.  @xref{Basic Arithmetic}.
11379 @ignore
11380 @starindex
11381 @end ignore
11382 @tindex makemod
11383 The algebraic function @samp{makemod(a, m)} builds the modulo form
11384 @w{@samp{a mod m}}.
11386 @node Error Forms, Interval Forms, Modulo Forms, Data Types
11387 @section Error Forms
11389 @noindent
11390 @cindex Error forms
11391 @cindex Standard deviations
11392 An @dfn{error form} is a number with an associated standard
11393 deviation, as in @samp{2.3 +/- 0.12}.  The notation
11394 @texline `@var{x} @tfn{+/-} @math{\sigma}' 
11395 @infoline `@var{x} @tfn{+/-} sigma' 
11396 stands for an uncertain value which follows
11397 a normal or Gaussian distribution of mean @expr{x} and standard
11398 deviation or ``error'' 
11399 @texline @math{\sigma}.
11400 @infoline @expr{sigma}.
11401 Both the mean and the error can be either numbers or
11402 formulas.  Generally these are real numbers but the mean may also be
11403 complex.  If the error is negative or complex, it is changed to its
11404 absolute value.  An error form with zero error is converted to a
11405 regular number by the Calculator.
11407 All arithmetic and transcendental functions accept error forms as input.
11408 Operations on the mean-value part work just like operations on regular
11409 numbers.  The error part for any function @expr{f(x)} (such as 
11410 @texline @math{\sin x}
11411 @infoline @expr{sin(x)})
11412 is defined by the error of @expr{x} times the derivative of @expr{f}
11413 evaluated at the mean value of @expr{x}.  For a two-argument function
11414 @expr{f(x,y)} (such as addition) the error is the square root of the sum
11415 of the squares of the errors due to @expr{x} and @expr{y}.
11416 @tex
11417 $$ \eqalign{
11418   f(x \hbox{\code{ +/- }} \sigma)
11419     &= f(x) \hbox{\code{ +/- }} \sigma \left| {df(x) \over dx} \right| \cr
11420   f(x \hbox{\code{ +/- }} \sigma_x, y \hbox{\code{ +/- }} \sigma_y)
11421     &= f(x,y) \hbox{\code{ +/- }}
11422         \sqrt{\left(\sigma_x \left| {\partial f(x,y) \over \partial x}
11423                              \right| \right)^2
11424              +\left(\sigma_y \left| {\partial f(x,y) \over \partial y}
11425                              \right| \right)^2 } \cr
11426 } $$
11427 @end tex
11428 Note that this
11429 definition assumes the errors in @expr{x} and @expr{y} are uncorrelated.
11430 A side effect of this definition is that @samp{(2 +/- 1) * (2 +/- 1)}
11431 is not the same as @samp{(2 +/- 1)^2}; the former represents the product
11432 of two independent values which happen to have the same probability
11433 distributions, and the latter is the product of one random value with itself.
11434 The former will produce an answer with less error, since on the average
11435 the two independent errors can be expected to cancel out.
11437 Consult a good text on error analysis for a discussion of the proper use
11438 of standard deviations.  Actual errors often are neither Gaussian-distributed
11439 nor uncorrelated, and the above formulas are valid only when errors
11440 are small.  As an example, the error arising from
11441 @texline `@tfn{sin(}@var{x} @tfn{+/-} @math{\sigma}@tfn{)}' 
11442 @infoline `@tfn{sin(}@var{x} @tfn{+/-} @var{sigma}@tfn{)}' 
11443 is 
11444 @texline `@math{\sigma} @tfn{abs(cos(}@var{x}@tfn{))}'.  
11445 @infoline `@var{sigma} @tfn{abs(cos(}@var{x}@tfn{))}'.  
11446 When @expr{x} is close to zero,
11447 @texline @math{\cos x}
11448 @infoline @expr{cos(x)} 
11449 is close to one so the error in the sine is close to 
11450 @texline @math{\sigma};
11451 @infoline @expr{sigma};
11452 this makes sense, since 
11453 @texline @math{\sin x}
11454 @infoline @expr{sin(x)} 
11455 is approximately @expr{x} near zero, so a given error in @expr{x} will
11456 produce about the same error in the sine.  Likewise, near 90 degrees
11457 @texline @math{\cos x}
11458 @infoline @expr{cos(x)} 
11459 is nearly zero and so the computed error is
11460 small:  The sine curve is nearly flat in that region, so an error in @expr{x}
11461 has relatively little effect on the value of 
11462 @texline @math{\sin x}.
11463 @infoline @expr{sin(x)}.  
11464 However, consider @samp{sin(90 +/- 1000)}.  The cosine of 90 is zero, so
11465 Calc will report zero error!  We get an obviously wrong result because
11466 we have violated the small-error approximation underlying the error
11467 analysis.  If the error in @expr{x} had been small, the error in
11468 @texline @math{\sin x}
11469 @infoline @expr{sin(x)} 
11470 would indeed have been negligible.
11472 @ignore
11473 @mindex p
11474 @end ignore
11475 @kindex p (error forms)
11476 @tindex +/-
11477 To enter an error form during regular numeric entry, use the @kbd{p}
11478 (``plus-or-minus'') key to type the @samp{+/-} symbol.  (If you try actually
11479 typing @samp{+/-} the @kbd{+} key will be interpreted as the Calculator's
11480 @kbd{+} command!)  Within an algebraic formula, you can press @kbd{M-p} to
11481 type the @samp{+/-} symbol, or type it out by hand.
11483 Error forms and complex numbers can be mixed; the formulas shown above
11484 are used for complex numbers, too; note that if the error part evaluates
11485 to a complex number its absolute value (or the square root of the sum of
11486 the squares of the absolute values of the two error contributions) is
11487 used.  Mathematically, this corresponds to a radially symmetric Gaussian
11488 distribution of numbers on the complex plane.  However, note that Calc
11489 considers an error form with real components to represent a real number,
11490 not a complex distribution around a real mean.
11492 Error forms may also be composed of HMS forms.  For best results, both
11493 the mean and the error should be HMS forms if either one is.
11495 @ignore
11496 @starindex
11497 @end ignore
11498 @tindex sdev
11499 The algebraic function @samp{sdev(a, b)} builds the error form @samp{a +/- b}.
11501 @node Interval Forms, Incomplete Objects, Error Forms, Data Types
11502 @section Interval Forms
11504 @noindent
11505 @cindex Interval forms
11506 An @dfn{interval} is a subset of consecutive real numbers.  For example,
11507 the interval @samp{[2 ..@: 4]} represents all the numbers from 2 to 4,
11508 inclusive.  If you multiply it by the interval @samp{[0.5 ..@: 2]} you
11509 obtain @samp{[1 ..@: 8]}.  This calculation represents the fact that if
11510 you multiply some number in the range @samp{[2 ..@: 4]} by some other
11511 number in the range @samp{[0.5 ..@: 2]}, your result will lie in the range
11512 from 1 to 8.  Interval arithmetic is used to get a worst-case estimate
11513 of the possible range of values a computation will produce, given the
11514 set of possible values of the input.
11516 @ifinfo
11517 Calc supports several varieties of intervals, including @dfn{closed}
11518 intervals of the type shown above, @dfn{open} intervals such as
11519 @samp{(2 ..@: 4)}, which represents the range of numbers from 2 to 4
11520 @emph{exclusive}, and @dfn{semi-open} intervals in which one end
11521 uses a round parenthesis and the other a square bracket.  In mathematical
11522 terms,
11523 @samp{[2 ..@: 4]} means @expr{2 <= x <= 4}, whereas
11524 @samp{[2 ..@: 4)} represents @expr{2 <= x < 4},
11525 @samp{(2 ..@: 4]} represents @expr{2 < x <= 4}, and
11526 @samp{(2 ..@: 4)} represents @expr{2 < x < 4}.
11527 @end ifinfo
11528 @tex
11529 Calc supports several varieties of intervals, including \dfn{closed}
11530 intervals of the type shown above, \dfn{open} intervals such as
11531 \samp{(2 ..\: 4)}, which represents the range of numbers from 2 to 4
11532 \emph{exclusive}, and \dfn{semi-open} intervals in which one end
11533 uses a round parenthesis and the other a square bracket.  In mathematical
11534 terms,
11535 $$ \eqalign{
11536    [2 \hbox{\cite{..}} 4]  &\quad\hbox{means}\quad  2 \le x \le 4  \cr
11537    [2 \hbox{\cite{..}} 4)  &\quad\hbox{means}\quad  2 \le x  <  4  \cr
11538    (2 \hbox{\cite{..}} 4]  &\quad\hbox{means}\quad  2  <  x \le 4  \cr
11539    (2 \hbox{\cite{..}} 4)  &\quad\hbox{means}\quad  2  <  x  <  4  \cr
11540 } $$
11541 @end tex
11543 The lower and upper limits of an interval must be either real numbers
11544 (or HMS or date forms), or symbolic expressions which are assumed to be
11545 real-valued, or @samp{-inf} and @samp{inf}.  In general the lower limit
11546 must be less than the upper limit.  A closed interval containing only
11547 one value, @samp{[3 ..@: 3]}, is converted to a plain number (3)
11548 automatically.  An interval containing no values at all (such as
11549 @samp{[3 ..@: 2]} or @samp{[2 ..@: 2)}) can be represented but is not
11550 guaranteed to behave well when used in arithmetic.  Note that the
11551 interval @samp{[3 .. inf)} represents all real numbers greater than
11552 or equal to 3, and @samp{(-inf .. inf)} represents all real numbers.
11553 In fact, @samp{[-inf .. inf]} represents all real numbers including
11554 the real infinities.
11556 Intervals are entered in the notation shown here, either as algebraic
11557 formulas, or using incomplete forms.  (@xref{Incomplete Objects}.)
11558 In algebraic formulas, multiple periods in a row are collected from
11559 left to right, so that @samp{1...1e2} is interpreted as @samp{1.0 ..@: 1e2}
11560 rather than @samp{1 ..@: 0.1e2}.  Add spaces or zeros if you want to
11561 get the other interpretation.  If you omit the lower or upper limit,
11562 a default of @samp{-inf} or @samp{inf} (respectively) is furnished.
11564 Infinite mode also affects operations on intervals
11565 (@pxref{Infinities}).  Calc will always introduce an open infinity,
11566 as in @samp{1 / (0 .. 2] = [0.5 .. inf)}.  But closed infinities,
11567 @w{@samp{1 / [0 .. 2] = [0.5 .. inf]}}, arise only in Infinite mode;
11568 otherwise they are left unevaluated.  Note that the ``direction'' of
11569 a zero is not an issue in this case since the zero is always assumed
11570 to be continuous with the rest of the interval.  For intervals that
11571 contain zero inside them Calc is forced to give the result,
11572 @samp{1 / (-2 .. 2) = [-inf .. inf]}.
11574 While it may seem that intervals and error forms are similar, they are
11575 based on entirely different concepts of inexact quantities.  An error
11576 form 
11577 @texline `@var{x} @tfn{+/-} @math{\sigma}' 
11578 @infoline `@var{x} @tfn{+/-} @var{sigma}' 
11579 means a variable is random, and its value could
11580 be anything but is ``probably'' within one 
11581 @texline @math{\sigma} 
11582 @infoline @var{sigma} 
11583 of the mean value @expr{x}. An interval 
11584 `@tfn{[}@var{a} @tfn{..@:} @var{b}@tfn{]}' means a
11585 variable's value is unknown, but guaranteed to lie in the specified
11586 range.  Error forms are statistical or ``average case'' approximations;
11587 interval arithmetic tends to produce ``worst case'' bounds on an
11588 answer.
11590 Intervals may not contain complex numbers, but they may contain
11591 HMS forms or date forms.
11593 @xref{Set Operations}, for commands that interpret interval forms
11594 as subsets of the set of real numbers.
11596 @ignore
11597 @starindex
11598 @end ignore
11599 @tindex intv
11600 The algebraic function @samp{intv(n, a, b)} builds an interval form
11601 from @samp{a} to @samp{b}; @samp{n} is an integer code which must
11602 be 0 for @samp{(..)}, 1 for @samp{(..]}, 2 for @samp{[..)}, or
11603 3 for @samp{[..]}.
11605 Please note that in fully rigorous interval arithmetic, care would be
11606 taken to make sure that the computation of the lower bound rounds toward
11607 minus infinity, while upper bound computations round toward plus
11608 infinity.  Calc's arithmetic always uses a round-to-nearest mode,
11609 which means that roundoff errors could creep into an interval
11610 calculation to produce intervals slightly smaller than they ought to
11611 be.  For example, entering @samp{[1..2]} and pressing @kbd{Q 2 ^}
11612 should yield the interval @samp{[1..2]} again, but in fact it yields the
11613 (slightly too small) interval @samp{[1..1.9999999]} due to roundoff
11614 error.
11616 @node Incomplete Objects, Variables, Interval Forms, Data Types
11617 @section Incomplete Objects
11619 @noindent
11620 @ignore
11621 @mindex [ ]
11622 @end ignore
11623 @kindex [
11624 @ignore
11625 @mindex ( )
11626 @end ignore
11627 @kindex (
11628 @kindex ,
11629 @ignore
11630 @mindex @null
11631 @end ignore
11632 @kindex ]
11633 @ignore
11634 @mindex @null
11635 @end ignore
11636 @kindex )
11637 @cindex Incomplete vectors
11638 @cindex Incomplete complex numbers
11639 @cindex Incomplete interval forms
11640 When @kbd{(} or @kbd{[} is typed to begin entering a complex number or
11641 vector, respectively, the effect is to push an @dfn{incomplete} complex
11642 number or vector onto the stack.  The @kbd{,} key adds the value(s) at
11643 the top of the stack onto the current incomplete object.  The @kbd{)}
11644 and @kbd{]} keys ``close'' the incomplete object after adding any values
11645 on the top of the stack in front of the incomplete object.
11647 As a result, the sequence of keystrokes @kbd{[ 2 , 3 @key{RET} 2 * , 9 ]}
11648 pushes the vector @samp{[2, 6, 9]} onto the stack.  Likewise, @kbd{( 1 , 2 Q )}
11649 pushes the complex number @samp{(1, 1.414)} (approximately).
11651 If several values lie on the stack in front of the incomplete object,
11652 all are collected and appended to the object.  Thus the @kbd{,} key
11653 is redundant:  @kbd{[ 2 @key{RET} 3 @key{RET} 2 * 9 ]}.  Some people
11654 prefer the equivalent @key{SPC} key to @key{RET}.
11656 As a special case, typing @kbd{,} immediately after @kbd{(}, @kbd{[}, or
11657 @kbd{,} adds a zero or duplicates the preceding value in the list being
11658 formed.  Typing @key{DEL} during incomplete entry removes the last item
11659 from the list.
11661 @kindex ;
11662 The @kbd{;} key is used in the same way as @kbd{,} to create polar complex
11663 numbers:  @kbd{( 1 ; 2 )}.  When entering a vector, @kbd{;} is useful for
11664 creating a matrix.  In particular, @kbd{[ [ 1 , 2 ; 3 , 4 ; 5 , 6 ] ]} is
11665 equivalent to @kbd{[ [ 1 , 2 ] , [ 3 , 4 ] , [ 5 , 6 ] ]}.
11667 @kindex ..
11668 @pindex calc-dots
11669 Incomplete entry is also used to enter intervals.  For example,
11670 @kbd{[ 2 ..@: 4 )} enters a semi-open interval.  Note that when you type
11671 the first period, it will be interpreted as a decimal point, but when
11672 you type a second period immediately afterward, it is re-interpreted as
11673 part of the interval symbol.  Typing @kbd{..} corresponds to executing
11674 the @code{calc-dots} command.
11676 If you find incomplete entry distracting, you may wish to enter vectors
11677 and complex numbers as algebraic formulas by pressing the apostrophe key.
11679 @node Variables, Formulas, Incomplete Objects, Data Types
11680 @section Variables
11682 @noindent
11683 @cindex Variables, in formulas
11684 A @dfn{variable} is somewhere between a storage register on a conventional
11685 calculator, and a variable in a programming language.  (In fact, a Calc
11686 variable is really just an Emacs Lisp variable that contains a Calc number
11687 or formula.)  A variable's name is normally composed of letters and digits.
11688 Calc also allows apostrophes and @code{#} signs in variable names.
11689 (The Calc variable @code{foo} corresponds to the Emacs Lisp variable
11690 @code{var-foo}, but unless you access the variable from within Emacs
11691 Lisp, you don't need to worry about it.  Variable names in algebraic
11692 formulas implicitly have @samp{var-} prefixed to their names.  The
11693 @samp{#} character in variable names used in algebraic formulas
11694 corresponds to a dash @samp{-} in the Lisp variable name.  If the name
11695 contains any dashes, the prefix @samp{var-} is @emph{not} automatically
11696 added.  Thus the two formulas @samp{foo + 1} and @samp{var#foo + 1} both
11697 refer to the same variable.)
11699 In a command that takes a variable name, you can either type the full
11700 name of a variable, or type a single digit to use one of the special
11701 convenience variables @code{q0} through @code{q9}.  For example,
11702 @kbd{3 s s 2} stores the number 3 in variable @code{q2}, and
11703 @w{@kbd{3 s s foo @key{RET}}} stores that number in variable
11704 @code{foo}.
11706 To push a variable itself (as opposed to the variable's value) on the
11707 stack, enter its name as an algebraic expression using the apostrophe
11708 (@key{'}) key.
11710 @kindex =
11711 @pindex calc-evaluate
11712 @cindex Evaluation of variables in a formula
11713 @cindex Variables, evaluation
11714 @cindex Formulas, evaluation
11715 The @kbd{=} (@code{calc-evaluate}) key ``evaluates'' a formula by
11716 replacing all variables in the formula which have been given values by a
11717 @code{calc-store} or @code{calc-let} command by their stored values.
11718 Other variables are left alone.  Thus a variable that has not been
11719 stored acts like an abstract variable in algebra; a variable that has
11720 been stored acts more like a register in a traditional calculator.
11721 With a positive numeric prefix argument, @kbd{=} evaluates the top
11722 @var{n} stack entries; with a negative argument, @kbd{=} evaluates
11723 the @var{n}th stack entry.
11725 @cindex @code{e} variable
11726 @cindex @code{pi} variable
11727 @cindex @code{i} variable
11728 @cindex @code{phi} variable
11729 @cindex @code{gamma} variable
11730 @vindex e
11731 @vindex pi
11732 @vindex i
11733 @vindex phi
11734 @vindex gamma
11735 A few variables are called @dfn{special constants}.  Their names are
11736 @samp{e}, @samp{pi}, @samp{i}, @samp{phi}, and @samp{gamma}.
11737 (@xref{Scientific Functions}.)  When they are evaluated with @kbd{=},
11738 their values are calculated if necessary according to the current precision
11739 or complex polar mode.  If you wish to use these symbols for other purposes,
11740 simply undefine or redefine them using @code{calc-store}.
11742 The variables @samp{inf}, @samp{uinf}, and @samp{nan} stand for
11743 infinite or indeterminate values.  It's best not to use them as
11744 regular variables, since Calc uses special algebraic rules when
11745 it manipulates them.  Calc displays a warning message if you store
11746 a value into any of these special variables.
11748 @xref{Store and Recall}, for a discussion of commands dealing with variables.
11750 @node Formulas, , Variables, Data Types
11751 @section Formulas
11753 @noindent
11754 @cindex Formulas
11755 @cindex Expressions
11756 @cindex Operators in formulas
11757 @cindex Precedence of operators
11758 When you press the apostrophe key you may enter any expression or formula
11759 in algebraic form.  (Calc uses the terms ``expression'' and ``formula''
11760 interchangeably.)  An expression is built up of numbers, variable names,
11761 and function calls, combined with various arithmetic operators.
11762 Parentheses may
11763 be used to indicate grouping.  Spaces are ignored within formulas, except
11764 that spaces are not permitted within variable names or numbers.
11765 Arithmetic operators, in order from highest to lowest precedence, and
11766 with their equivalent function names, are:
11768 @samp{_} [@code{subscr}] (subscripts);
11770 postfix @samp{%} [@code{percent}] (as in @samp{25% = 0.25});
11772 prefix @samp{+} and @samp{-} [@code{neg}] (as in @samp{-x})
11773 and prefix @samp{!} [@code{lnot}] (logical ``not,'' as in @samp{!x});
11775 @samp{+/-} [@code{sdev}] (the standard deviation symbol) and
11776 @samp{mod} [@code{makemod}] (the symbol for modulo forms);
11778 postfix @samp{!} [@code{fact}] (factorial, as in @samp{n!})
11779 and postfix @samp{!!} [@code{dfact}] (double factorial);
11781 @samp{^} [@code{pow}] (raised-to-the-power-of);
11783 @samp{*} [@code{mul}];
11785 @samp{/} [@code{div}], @samp{%} [@code{mod}] (modulo), and
11786 @samp{\} [@code{idiv}] (integer division);
11788 infix @samp{+} [@code{add}] and @samp{-} [@code{sub}] (as in @samp{x-y});
11790 @samp{|} [@code{vconcat}] (vector concatenation);
11792 relations @samp{=} [@code{eq}], @samp{!=} [@code{neq}], @samp{<} [@code{lt}],
11793 @samp{>} [@code{gt}], @samp{<=} [@code{leq}], and @samp{>=} [@code{geq}];
11795 @samp{&&} [@code{land}] (logical ``and'');
11797 @samp{||} [@code{lor}] (logical ``or'');
11799 the C-style ``if'' operator @samp{a?b:c} [@code{if}];
11801 @samp{!!!} [@code{pnot}] (rewrite pattern ``not'');
11803 @samp{&&&} [@code{pand}] (rewrite pattern ``and'');
11805 @samp{|||} [@code{por}] (rewrite pattern ``or'');
11807 @samp{:=} [@code{assign}] (for assignments and rewrite rules);
11809 @samp{::} [@code{condition}] (rewrite pattern condition);
11811 @samp{=>} [@code{evalto}].
11813 Note that, unlike in usual computer notation, multiplication binds more
11814 strongly than division:  @samp{a*b/c*d} is equivalent to 
11815 @texline @math{a b \over c d}.
11816 @infoline @expr{(a*b)/(c*d)}.
11818 @cindex Multiplication, implicit
11819 @cindex Implicit multiplication
11820 The multiplication sign @samp{*} may be omitted in many cases.  In particular,
11821 if the righthand side is a number, variable name, or parenthesized
11822 expression, the @samp{*} may be omitted.  Implicit multiplication has the
11823 same precedence as the explicit @samp{*} operator.  The one exception to
11824 the rule is that a variable name followed by a parenthesized expression,
11825 as in @samp{f(x)},
11826 is interpreted as a function call, not an implicit @samp{*}.  In many
11827 cases you must use a space if you omit the @samp{*}:  @samp{2a} is the
11828 same as @samp{2*a}, and @samp{a b} is the same as @samp{a*b}, but @samp{ab}
11829 is a variable called @code{ab}, @emph{not} the product of @samp{a} and
11830 @samp{b}!  Also note that @samp{f (x)} is still a function call.
11832 @cindex Implicit comma in vectors
11833 The rules are slightly different for vectors written with square brackets.
11834 In vectors, the space character is interpreted (like the comma) as a
11835 separator of elements of the vector.  Thus @w{@samp{[ 2a b+c d ]}} is
11836 equivalent to @samp{[2*a, b+c, d]}, whereas @samp{2a b+c d} is equivalent
11837 to @samp{2*a*b + c*d}.
11838 Note that spaces around the brackets, and around explicit commas, are
11839 ignored.  To force spaces to be interpreted as multiplication you can
11840 enclose a formula in parentheses as in @samp{[(a b) 2(c d)]}, which is
11841 interpreted as @samp{[a*b, 2*c*d]}.  An implicit comma is also inserted
11842 between @samp{][}, as in the matrix @samp{[[1 2][3 4]]}.
11844 Vectors that contain commas (not embedded within nested parentheses or
11845 brackets) do not treat spaces specially:  @samp{[a b, 2 c d]} is a vector
11846 of two elements.  Also, if it would be an error to treat spaces as
11847 separators, but not otherwise, then Calc will ignore spaces:
11848 @w{@samp{[a - b]}} is a vector of one element, but @w{@samp{[a -b]}} is
11849 a vector of two elements.  Finally, vectors entered with curly braces
11850 instead of square brackets do not give spaces any special treatment.
11851 When Calc displays a vector that does not contain any commas, it will
11852 insert parentheses if necessary to make the meaning clear:
11853 @w{@samp{[(a b)]}}.
11855 The expression @samp{5%-2} is ambiguous; is this five-percent minus two,
11856 or five modulo minus-two?  Calc always interprets the leftmost symbol as
11857 an infix operator preferentially (modulo, in this case), so you would
11858 need to write @samp{(5%)-2} to get the former interpretation.
11860 @cindex Function call notation
11861 A function call is, e.g., @samp{sin(1+x)}.  (The Calc algebraic function
11862 @code{foo} corresponds to the Emacs Lisp function @code{calcFunc-foo},
11863 but unless you access the function from within Emacs Lisp, you don't
11864 need to worry about it.)  Most mathematical Calculator commands like
11865 @code{calc-sin} have function equivalents like @code{sin}.
11866 If no Lisp function is defined for a function called by a formula, the
11867 call is left as it is during algebraic manipulation: @samp{f(x+y)} is
11868 left alone.  Beware that many innocent-looking short names like @code{in}
11869 and @code{re} have predefined meanings which could surprise you; however,
11870 single letters or single letters followed by digits are always safe to
11871 use for your own function names.  @xref{Function Index}.
11873 In the documentation for particular commands, the notation @kbd{H S}
11874 (@code{calc-sinh}) [@code{sinh}] means that the key sequence @kbd{H S}, the
11875 command @kbd{M-x calc-sinh}, and the algebraic function @code{sinh(x)} all
11876 represent the same operation.
11878 Commands that interpret (``parse'') text as algebraic formulas include
11879 algebraic entry (@kbd{'}), editing commands like @kbd{`} which parse
11880 the contents of the editing buffer when you finish, the @kbd{M-# g}
11881 and @w{@kbd{M-# r}} commands, the @kbd{C-y} command, the X window system
11882 ``paste'' mouse operation, and Embedded mode.  All of these operations
11883 use the same rules for parsing formulas; in particular, language modes
11884 (@pxref{Language Modes}) affect them all in the same way.
11886 When you read a large amount of text into the Calculator (say a vector
11887 which represents a big set of rewrite rules; @pxref{Rewrite Rules}),
11888 you may wish to include comments in the text.  Calc's formula parser
11889 ignores the symbol @samp{%%} and anything following it on a line:
11891 @example
11892 [ a + b,   %% the sum of "a" and "b"
11893   c + d,
11894   %% last line is coming up:
11895   e + f ]
11896 @end example
11898 @noindent
11899 This is parsed exactly the same as @samp{[ a + b, c + d, e + f ]}.
11901 @xref{Syntax Tables}, for a way to create your own operators and other
11902 input notations.  @xref{Compositions}, for a way to create new display
11903 formats.
11905 @xref{Algebra}, for commands for manipulating formulas symbolically.
11907 @node Stack and Trail, Mode Settings, Data Types, Top
11908 @chapter Stack and Trail Commands
11910 @noindent
11911 This chapter describes the Calc commands for manipulating objects on the
11912 stack and in the trail buffer.  (These commands operate on objects of any
11913 type, such as numbers, vectors, formulas, and incomplete objects.)
11915 @menu
11916 * Stack Manipulation::
11917 * Editing Stack Entries::
11918 * Trail Commands::
11919 * Keep Arguments::
11920 @end menu
11922 @node Stack Manipulation, Editing Stack Entries, Stack and Trail, Stack and Trail
11923 @section Stack Manipulation Commands
11925 @noindent
11926 @kindex @key{RET}
11927 @kindex @key{SPC}
11928 @pindex calc-enter
11929 @cindex Duplicating stack entries
11930 To duplicate the top object on the stack, press @key{RET} or @key{SPC}
11931 (two equivalent keys for the @code{calc-enter} command).
11932 Given a positive numeric prefix argument, these commands duplicate
11933 several elements at the top of the stack.
11934 Given a negative argument,
11935 these commands duplicate the specified element of the stack.
11936 Given an argument of zero, they duplicate the entire stack.
11937 For example, with @samp{10 20 30} on the stack,
11938 @key{RET} creates @samp{10 20 30 30},
11939 @kbd{C-u 2 @key{RET}} creates @samp{10 20 30 20 30},
11940 @kbd{C-u - 2 @key{RET}} creates @samp{10 20 30 20}, and
11941 @kbd{C-u 0 @key{RET}} creates @samp{10 20 30 10 20 30}.
11943 @kindex @key{LFD}
11944 @pindex calc-over
11945 The @key{LFD} (@code{calc-over}) command (on a key marked Line-Feed if you
11946 have it, else on @kbd{C-j}) is like @code{calc-enter}
11947 except that the sign of the numeric prefix argument is interpreted
11948 oppositely.  Also, with no prefix argument the default argument is 2.
11949 Thus with @samp{10 20 30} on the stack, @key{LFD} and @kbd{C-u 2 @key{LFD}}
11950 are both equivalent to @kbd{C-u - 2 @key{RET}}, producing
11951 @samp{10 20 30 20}.
11953 @kindex @key{DEL}
11954 @kindex C-d
11955 @pindex calc-pop
11956 @cindex Removing stack entries
11957 @cindex Deleting stack entries
11958 To remove the top element from the stack, press @key{DEL} (@code{calc-pop}).
11959 The @kbd{C-d} key is a synonym for @key{DEL}.
11960 (If the top element is an incomplete object with at least one element, the
11961 last element is removed from it.)  Given a positive numeric prefix argument,
11962 several elements are removed.  Given a negative argument, the specified
11963 element of the stack is deleted.  Given an argument of zero, the entire
11964 stack is emptied.
11965 For example, with @samp{10 20 30} on the stack,
11966 @key{DEL} leaves @samp{10 20},
11967 @kbd{C-u 2 @key{DEL}} leaves @samp{10},
11968 @kbd{C-u - 2 @key{DEL}} leaves @samp{10 30}, and
11969 @kbd{C-u 0 @key{DEL}} leaves an empty stack.
11971 @kindex M-@key{DEL}
11972 @pindex calc-pop-above
11973 The @kbd{M-@key{DEL}} (@code{calc-pop-above}) command is to @key{DEL} what
11974 @key{LFD} is to @key{RET}:  It interprets the sign of the numeric
11975 prefix argument in the opposite way, and the default argument is 2.
11976 Thus @kbd{M-@key{DEL}} by itself removes the second-from-top stack element,
11977 leaving the first, third, fourth, and so on; @kbd{M-3 M-@key{DEL}} deletes
11978 the third stack element.
11980 @kindex @key{TAB}
11981 @pindex calc-roll-down
11982 To exchange the top two elements of the stack, press @key{TAB}
11983 (@code{calc-roll-down}).  Given a positive numeric prefix argument, the
11984 specified number of elements at the top of the stack are rotated downward.
11985 Given a negative argument, the entire stack is rotated downward the specified
11986 number of times.  Given an argument of zero, the entire stack is reversed
11987 top-for-bottom.
11988 For example, with @samp{10 20 30 40 50} on the stack,
11989 @key{TAB} creates @samp{10 20 30 50 40},
11990 @kbd{C-u 3 @key{TAB}} creates @samp{10 20 50 30 40},
11991 @kbd{C-u - 2 @key{TAB}} creates @samp{40 50 10 20 30}, and
11992 @kbd{C-u 0 @key{TAB}} creates @samp{50 40 30 20 10}.
11994 @kindex M-@key{TAB}
11995 @pindex calc-roll-up
11996 The command @kbd{M-@key{TAB}} (@code{calc-roll-up}) is analogous to @key{TAB}
11997 except that it rotates upward instead of downward.  Also, the default
11998 with no prefix argument is to rotate the top 3 elements.
11999 For example, with @samp{10 20 30 40 50} on the stack,
12000 @kbd{M-@key{TAB}} creates @samp{10 20 40 50 30},
12001 @kbd{C-u 4 M-@key{TAB}} creates @samp{10 30 40 50 20},
12002 @kbd{C-u - 2 M-@key{TAB}} creates @samp{30 40 50 10 20}, and
12003 @kbd{C-u 0 M-@key{TAB}} creates @samp{50 40 30 20 10}.
12005 A good way to view the operation of @key{TAB} and @kbd{M-@key{TAB}} is in
12006 terms of moving a particular element to a new position in the stack.
12007 With a positive argument @var{n}, @key{TAB} moves the top stack
12008 element down to level @var{n}, making room for it by pulling all the
12009 intervening stack elements toward the top.  @kbd{M-@key{TAB}} moves the
12010 element at level @var{n} up to the top.  (Compare with @key{LFD},
12011 which copies instead of moving the element in level @var{n}.)
12013 With a negative argument @mathit{-@var{n}}, @key{TAB} rotates the stack
12014 to move the object in level @var{n} to the deepest place in the
12015 stack, and the object in level @mathit{@var{n}+1} to the top.  @kbd{M-@key{TAB}}
12016 rotates the deepest stack element to be in level @mathit{n}, also
12017 putting the top stack element in level @mathit{@var{n}+1}.
12019 @xref{Selecting Subformulas}, for a way to apply these commands to
12020 any portion of a vector or formula on the stack.
12022 @node Editing Stack Entries, Trail Commands, Stack Manipulation, Stack and Trail
12023 @section Editing Stack Entries
12025 @noindent
12026 @kindex `
12027 @pindex calc-edit
12028 @pindex calc-edit-finish
12029 @cindex Editing the stack with Emacs
12030 The backquote, @kbd{`} (@code{calc-edit}) command creates a temporary
12031 buffer (@samp{*Calc Edit*}) for editing the top-of-stack value using
12032 regular Emacs commands.  With a numeric prefix argument, it edits the
12033 specified number of stack entries at once.  (An argument of zero edits
12034 the entire stack; a negative argument edits one specific stack entry.)
12036 When you are done editing, press @kbd{C-c C-c} to finish and return
12037 to Calc.  The @key{RET} and @key{LFD} keys also work to finish most
12038 sorts of editing, though in some cases Calc leaves @key{RET} with its
12039 usual meaning (``insert a newline'') if it's a situation where you
12040 might want to insert new lines into the editing buffer.
12042 When you finish editing, the Calculator parses the lines of text in
12043 the @samp{*Calc Edit*} buffer as numbers or formulas, replaces the
12044 original stack elements in the original buffer with these new values,
12045 then kills the @samp{*Calc Edit*} buffer.  The original Calculator buffer
12046 continues to exist during editing, but for best results you should be
12047 careful not to change it until you have finished the edit.  You can
12048 also cancel the edit by killing the buffer with @kbd{C-x k}.
12050 The formula is normally reevaluated as it is put onto the stack.
12051 For example, editing @samp{a + 2} to @samp{3 + 2} and pressing
12052 @kbd{C-c C-c} will push 5 on the stack.  If you use @key{LFD} to
12053 finish, Calc will put the result on the stack without evaluating it.
12055 If you give a prefix argument to @kbd{C-c C-c},
12056 Calc will not kill the @samp{*Calc Edit*} buffer.  You can switch
12057 back to that buffer and continue editing if you wish.  However, you
12058 should understand that if you initiated the edit with @kbd{`}, the
12059 @kbd{C-c C-c} operation will be programmed to replace the top of the
12060 stack with the new edited value, and it will do this even if you have
12061 rearranged the stack in the meanwhile.  This is not so much of a problem
12062 with other editing commands, though, such as @kbd{s e}
12063 (@code{calc-edit-variable}; @pxref{Operations on Variables}).
12065 If the @code{calc-edit} command involves more than one stack entry,
12066 each line of the @samp{*Calc Edit*} buffer is interpreted as a
12067 separate formula.  Otherwise, the entire buffer is interpreted as
12068 one formula, with line breaks ignored.  (You can use @kbd{C-o} or
12069 @kbd{C-q C-j} to insert a newline in the buffer without pressing @key{RET}.)
12071 The @kbd{`} key also works during numeric or algebraic entry.  The
12072 text entered so far is moved to the @code{*Calc Edit*} buffer for
12073 more extensive editing than is convenient in the minibuffer.
12075 @node Trail Commands, Keep Arguments, Editing Stack Entries, Stack and Trail
12076 @section Trail Commands
12078 @noindent
12079 @cindex Trail buffer
12080 The commands for manipulating the Calc Trail buffer are two-key sequences
12081 beginning with the @kbd{t} prefix.
12083 @kindex t d
12084 @pindex calc-trail-display
12085 The @kbd{t d} (@code{calc-trail-display}) command turns display of the
12086 trail on and off.  Normally the trail display is toggled on if it was off,
12087 off if it was on.  With a numeric prefix of zero, this command always
12088 turns the trail off; with a prefix of one, it always turns the trail on.
12089 The other trail-manipulation commands described here automatically turn
12090 the trail on.  Note that when the trail is off values are still recorded
12091 there; they are simply not displayed.  To set Emacs to turn the trail
12092 off by default, type @kbd{t d} and then save the mode settings with
12093 @kbd{m m} (@code{calc-save-modes}).
12095 @kindex t i
12096 @pindex calc-trail-in
12097 @kindex t o
12098 @pindex calc-trail-out
12099 The @kbd{t i} (@code{calc-trail-in}) and @kbd{t o}
12100 (@code{calc-trail-out}) commands switch the cursor into and out of the
12101 Calc Trail window.  In practice they are rarely used, since the commands
12102 shown below are a more convenient way to move around in the
12103 trail, and they work ``by remote control'' when the cursor is still
12104 in the Calculator window.
12106 @cindex Trail pointer
12107 There is a @dfn{trail pointer} which selects some entry of the trail at
12108 any given time.  The trail pointer looks like a @samp{>} symbol right
12109 before the selected number.  The following commands operate on the
12110 trail pointer in various ways.
12112 @kindex t y
12113 @pindex calc-trail-yank
12114 @cindex Retrieving previous results
12115 The @kbd{t y} (@code{calc-trail-yank}) command reads the selected value in
12116 the trail and pushes it onto the Calculator stack.  It allows you to
12117 re-use any previously computed value without retyping.  With a numeric
12118 prefix argument @var{n}, it yanks the value @var{n} lines above the current
12119 trail pointer.
12121 @kindex t <
12122 @pindex calc-trail-scroll-left
12123 @kindex t >
12124 @pindex calc-trail-scroll-right
12125 The @kbd{t <} (@code{calc-trail-scroll-left}) and @kbd{t >}
12126 (@code{calc-trail-scroll-right}) commands horizontally scroll the trail
12127 window left or right by one half of its width.
12129 @kindex t n
12130 @pindex calc-trail-next
12131 @kindex t p
12132 @pindex calc-trail-previous
12133 @kindex t f
12134 @pindex calc-trail-forward
12135 @kindex t b
12136 @pindex calc-trail-backward
12137 The @kbd{t n} (@code{calc-trail-next}) and @kbd{t p}
12138 (@code{calc-trail-previous)} commands move the trail pointer down or up
12139 one line.  The @kbd{t f} (@code{calc-trail-forward}) and @kbd{t b}
12140 (@code{calc-trail-backward}) commands move the trail pointer down or up
12141 one screenful at a time.  All of these commands accept numeric prefix
12142 arguments to move several lines or screenfuls at a time.
12144 @kindex t [
12145 @pindex calc-trail-first
12146 @kindex t ]
12147 @pindex calc-trail-last
12148 @kindex t h
12149 @pindex calc-trail-here
12150 The @kbd{t [} (@code{calc-trail-first}) and @kbd{t ]}
12151 (@code{calc-trail-last}) commands move the trail pointer to the first or
12152 last line of the trail.  The @kbd{t h} (@code{calc-trail-here}) command
12153 moves the trail pointer to the cursor position; unlike the other trail
12154 commands, @kbd{t h} works only when Calc Trail is the selected window.
12156 @kindex t s
12157 @pindex calc-trail-isearch-forward
12158 @kindex t r
12159 @pindex calc-trail-isearch-backward
12160 @ifinfo
12161 The @kbd{t s} (@code{calc-trail-isearch-forward}) and @kbd{t r}
12162 (@code{calc-trail-isearch-backward}) commands perform an incremental
12163 search forward or backward through the trail.  You can press @key{RET}
12164 to terminate the search; the trail pointer moves to the current line.
12165 If you cancel the search with @kbd{C-g}, the trail pointer stays where
12166 it was when the search began.
12167 @end ifinfo
12168 @tex
12169 The @kbd{t s} (@code{calc-trail-isearch-forward}) and @kbd{t r}
12170 (@code{calc-trail-isearch-backward}) com\-mands perform an incremental
12171 search forward or backward through the trail.  You can press @key{RET}
12172 to terminate the search; the trail pointer moves to the current line.
12173 If you cancel the search with @kbd{C-g}, the trail pointer stays where
12174 it was when the search began.
12175 @end tex
12177 @kindex t m
12178 @pindex calc-trail-marker
12179 The @kbd{t m} (@code{calc-trail-marker}) command allows you to enter a
12180 line of text of your own choosing into the trail.  The text is inserted
12181 after the line containing the trail pointer; this usually means it is
12182 added to the end of the trail.  Trail markers are useful mainly as the
12183 targets for later incremental searches in the trail.
12185 @kindex t k
12186 @pindex calc-trail-kill
12187 The @kbd{t k} (@code{calc-trail-kill}) command removes the selected line
12188 from the trail.  The line is saved in the Emacs kill ring suitable for
12189 yanking into another buffer, but it is not easy to yank the text back
12190 into the trail buffer.  With a numeric prefix argument, this command
12191 kills the @var{n} lines below or above the selected one.
12193 The @kbd{t .} (@code{calc-full-trail-vectors}) command is described
12194 elsewhere; @pxref{Vector and Matrix Formats}.
12196 @node Keep Arguments, , Trail Commands, Stack and Trail
12197 @section Keep Arguments
12199 @noindent
12200 @kindex K
12201 @pindex calc-keep-args
12202 The @kbd{K} (@code{calc-keep-args}) command acts like a prefix for
12203 the following command.  It prevents that command from removing its
12204 arguments from the stack.  For example, after @kbd{2 @key{RET} 3 +},
12205 the stack contains the sole number 5, but after @kbd{2 @key{RET} 3 K +},
12206 the stack contains the arguments and the result: @samp{2 3 5}.
12208 With the exception of keyboard macros, this works for all commands that
12209 take arguments off the stack. (To avoid potentially unpleasant behavior,
12210 a @kbd{K} prefix before a keyboard macro will be ignored.  A @kbd{K}
12211 prefix called @emph{within} the keyboard macro will still take effect.)  
12212 As another example, @kbd{K a s} simplifies a formula, pushing the
12213 simplified version of the formula onto the stack after the original
12214 formula (rather than replacing the original formula).  Note that you
12215 could get the same effect by typing @kbd{@key{RET} a s}, copying the
12216 formula and then simplifying the copy. One difference is that for a very
12217 large formula the time taken to format the intermediate copy in
12218 @kbd{@key{RET} a s} could be noticeable; @kbd{K a s} would avoid this
12219 extra work. 
12221 Even stack manipulation commands are affected.  @key{TAB} works by
12222 popping two values and pushing them back in the opposite order,
12223 so @kbd{2 @key{RET} 3 K @key{TAB}} produces @samp{2 3 3 2}.
12225 A few Calc commands provide other ways of doing the same thing.
12226 For example, @kbd{' sin($)} replaces the number on the stack with
12227 its sine using algebraic entry; to push the sine and keep the
12228 original argument you could use either @kbd{' sin($1)} or
12229 @kbd{K ' sin($)}.  @xref{Algebraic Entry}.  Also, the @kbd{s s}
12230 command is effectively the same as @kbd{K s t}.  @xref{Storing Variables}.
12232 If you execute a command and then decide you really wanted to keep
12233 the argument, you can press @kbd{M-@key{RET}} (@code{calc-last-args}).
12234 This command pushes the last arguments that were popped by any command
12235 onto the stack.  Note that the order of things on the stack will be
12236 different than with @kbd{K}:  @kbd{2 @key{RET} 3 + M-@key{RET}} leaves
12237 @samp{5 2 3} on the stack instead of @samp{2 3 5}.  @xref{Undo}.
12239 @node Mode Settings, Arithmetic, Stack and Trail, Top
12240 @chapter Mode Settings
12242 @noindent
12243 This chapter describes commands that set modes in the Calculator.
12244 They do not affect the contents of the stack, although they may change
12245 the @emph{appearance} or @emph{interpretation} of the stack's contents.
12247 @menu
12248 * General Mode Commands::
12249 * Precision::
12250 * Inverse and Hyperbolic::
12251 * Calculation Modes::
12252 * Simplification Modes::
12253 * Declarations::
12254 * Display Modes::
12255 * Language Modes::
12256 * Modes Variable::
12257 * Calc Mode Line::
12258 @end menu
12260 @node General Mode Commands, Precision, Mode Settings, Mode Settings
12261 @section General Mode Commands
12263 @noindent
12264 @kindex m m
12265 @pindex calc-save-modes
12266 @cindex Continuous memory
12267 @cindex Saving mode settings
12268 @cindex Permanent mode settings
12269 @cindex Calc init file, mode settings
12270 You can save all of the current mode settings in your Calc init file 
12271 (the file given by the variable @code{calc-settings-file}, typically
12272 @file{~/.calc.el}) with the @kbd{m m} (@code{calc-save-modes}) command.
12273 This will cause Emacs to reestablish these modes each time it starts up.
12274 The modes saved in the file include everything controlled by the @kbd{m}
12275 and @kbd{d} prefix keys, the current precision and binary word size,
12276 whether or not the trail is displayed, the current height of the Calc
12277 window, and more.  The current interface (used when you type @kbd{M-#
12278 M-#}) is also saved.  If there were already saved mode settings in the
12279 file, they are replaced.  Otherwise, the new mode information is
12280 appended to the end of the file.
12282 @kindex m R
12283 @pindex calc-mode-record-mode
12284 The @kbd{m R} (@code{calc-mode-record-mode}) command tells Calc to
12285 record all the mode settings (as if by pressing @kbd{m m}) every
12286 time a mode setting changes.  If the modes are saved this way, then this
12287 ``automatic mode recording'' mode is also saved.
12288 Type @kbd{m R} again to disable this method of recording the mode
12289 settings.  To turn it off permanently, the @kbd{m m} command will also be
12290 necessary.   (If Embedded mode is enabled, other options for recording
12291 the modes are available; @pxref{Mode Settings in Embedded Mode}.)
12293 @kindex m F
12294 @pindex calc-settings-file-name
12295 The @kbd{m F} (@code{calc-settings-file-name}) command allows you to
12296 choose a different file than the current value of @code{calc-settings-file}
12297 for @kbd{m m}, @kbd{Z P}, and similar commands to save permanent information.
12298 You are prompted for a file name.  All Calc modes are then reset to
12299 their default values, then settings from the file you named are loaded
12300 if this file exists, and this file becomes the one that Calc will
12301 use in the future for commands like @kbd{m m}.  The default settings
12302 file name is @file{~/.calc.el}.  You can see the current file name by
12303 giving a blank response to the @kbd{m F} prompt.  See also the
12304 discussion of the @code{calc-settings-file} variable; @pxref{Customizable Variables}.
12306 If the file name you give is your user init file (typically
12307 @file{~/.emacs}), @kbd{m F} will not automatically load the new file.  This
12308 is because your user init file may contain other things you don't want
12309 to reread.  You can give 
12310 a numeric prefix argument of 1 to @kbd{m F} to force it to read the
12311 file no matter what.  Conversely, an argument of @mathit{-1} tells
12312 @kbd{m F} @emph{not} to read the new file.  An argument of 2 or @mathit{-2}
12313 tells @kbd{m F} not to reset the modes to their defaults beforehand,
12314 which is useful if you intend your new file to have a variant of the
12315 modes present in the file you were using before.
12317 @kindex m x
12318 @pindex calc-always-load-extensions
12319 The @kbd{m x} (@code{calc-always-load-extensions}) command enables a mode
12320 in which the first use of Calc loads the entire program, including all
12321 extensions modules.  Otherwise, the extensions modules will not be loaded
12322 until the various advanced Calc features are used.  Since this mode only
12323 has effect when Calc is first loaded, @kbd{m x} is usually followed by
12324 @kbd{m m} to make the mode-setting permanent.  To load all of Calc just
12325 once, rather than always in the future, you can press @kbd{M-# L}.
12327 @kindex m S
12328 @pindex calc-shift-prefix
12329 The @kbd{m S} (@code{calc-shift-prefix}) command enables a mode in which
12330 all of Calc's letter prefix keys may be typed shifted as well as unshifted.
12331 If you are typing, say, @kbd{a S} (@code{calc-solve-for}) quite often
12332 you might find it easier to turn this mode on so that you can type
12333 @kbd{A S} instead.  When this mode is enabled, the commands that used to
12334 be on those single shifted letters (e.g., @kbd{A} (@code{calc-abs})) can
12335 now be invoked by pressing the shifted letter twice: @kbd{A A}.  Note
12336 that the @kbd{v} prefix key always works both shifted and unshifted, and
12337 the @kbd{z} and @kbd{Z} prefix keys are always distinct.  Also, the @kbd{h}
12338 prefix is not affected by this mode.  Press @kbd{m S} again to disable
12339 shifted-prefix mode.
12341 @node Precision, Inverse and Hyperbolic, General Mode Commands, Mode Settings
12342 @section Precision
12344 @noindent
12345 @kindex p
12346 @pindex calc-precision
12347 @cindex Precision of calculations
12348 The @kbd{p} (@code{calc-precision}) command controls the precision to
12349 which floating-point calculations are carried.  The precision must be
12350 at least 3 digits and may be arbitrarily high, within the limits of
12351 memory and time.  This affects only floats:  Integer and rational
12352 calculations are always carried out with as many digits as necessary.
12354 The @kbd{p} key prompts for the current precision.  If you wish you
12355 can instead give the precision as a numeric prefix argument.
12357 Many internal calculations are carried to one or two digits higher
12358 precision than normal.  Results are rounded down afterward to the
12359 current precision.  Unless a special display mode has been selected,
12360 floats are always displayed with their full stored precision, i.e.,
12361 what you see is what you get.  Reducing the current precision does not
12362 round values already on the stack, but those values will be rounded
12363 down before being used in any calculation.  The @kbd{c 0} through
12364 @kbd{c 9} commands (@pxref{Conversions}) can be used to round an
12365 existing value to a new precision.
12367 @cindex Accuracy of calculations
12368 It is important to distinguish the concepts of @dfn{precision} and
12369 @dfn{accuracy}.  In the normal usage of these words, the number
12370 123.4567 has a precision of 7 digits but an accuracy of 4 digits.
12371 The precision is the total number of digits not counting leading
12372 or trailing zeros (regardless of the position of the decimal point).
12373 The accuracy is simply the number of digits after the decimal point
12374 (again not counting trailing zeros).  In Calc you control the precision,
12375 not the accuracy of computations.  If you were to set the accuracy
12376 instead, then calculations like @samp{exp(100)} would generate many
12377 more digits than you would typically need, while @samp{exp(-100)} would
12378 probably round to zero!  In Calc, both these computations give you
12379 exactly 12 (or the requested number of) significant digits.
12381 The only Calc features that deal with accuracy instead of precision
12382 are fixed-point display mode for floats (@kbd{d f}; @pxref{Float Formats}),
12383 and the rounding functions like @code{floor} and @code{round}
12384 (@pxref{Integer Truncation}).  Also, @kbd{c 0} through @kbd{c 9}
12385 deal with both precision and accuracy depending on the magnitudes
12386 of the numbers involved.
12388 If you need to work with a particular fixed accuracy (say, dollars and
12389 cents with two digits after the decimal point), one solution is to work
12390 with integers and an ``implied'' decimal point.  For example, $8.99
12391 divided by 6 would be entered @kbd{899 @key{RET} 6 /}, yielding 149.833
12392 (actually $1.49833 with our implied decimal point); pressing @kbd{R}
12393 would round this to 150 cents, i.e., $1.50.
12395 @xref{Floats}, for still more on floating-point precision and related
12396 issues.
12398 @node Inverse and Hyperbolic, Calculation Modes, Precision, Mode Settings
12399 @section Inverse and Hyperbolic Flags
12401 @noindent
12402 @kindex I
12403 @pindex calc-inverse
12404 There is no single-key equivalent to the @code{calc-arcsin} function.
12405 Instead, you must first press @kbd{I} (@code{calc-inverse}) to set
12406 the @dfn{Inverse Flag}, then press @kbd{S} (@code{calc-sin}).
12407 The @kbd{I} key actually toggles the Inverse Flag.  When this flag
12408 is set, the word @samp{Inv} appears in the mode line.
12410 @kindex H
12411 @pindex calc-hyperbolic
12412 Likewise, the @kbd{H} key (@code{calc-hyperbolic}) sets or clears the
12413 Hyperbolic Flag, which transforms @code{calc-sin} into @code{calc-sinh}.
12414 If both of these flags are set at once, the effect will be
12415 @code{calc-arcsinh}.  (The Hyperbolic flag is also used by some
12416 non-trigonometric commands; for example @kbd{H L} computes a base-10,
12417 instead of base-@mathit{e}, logarithm.)
12419 Command names like @code{calc-arcsin} are provided for completeness, and
12420 may be executed with @kbd{x} or @kbd{M-x}.  Their effect is simply to
12421 toggle the Inverse and/or Hyperbolic flags and then execute the
12422 corresponding base command (@code{calc-sin} in this case).
12424 The Inverse and Hyperbolic flags apply only to the next Calculator
12425 command, after which they are automatically cleared.  (They are also
12426 cleared if the next keystroke is not a Calc command.)  Digits you
12427 type after @kbd{I} or @kbd{H} (or @kbd{K}) are treated as prefix
12428 arguments for the next command, not as numeric entries.  The same
12429 is true of @kbd{C-u}, but not of the minus sign (@kbd{K -} means to
12430 subtract and keep arguments).
12432 The third Calc prefix flag, @kbd{K} (keep-arguments), is discussed
12433 elsewhere.  @xref{Keep Arguments}.
12435 @node Calculation Modes, Simplification Modes, Inverse and Hyperbolic, Mode Settings
12436 @section Calculation Modes
12438 @noindent
12439 The commands in this section are two-key sequences beginning with
12440 the @kbd{m} prefix.  (That's the letter @kbd{m}, not the @key{META} key.)
12441 The @samp{m a} (@code{calc-algebraic-mode}) command is described elsewhere
12442 (@pxref{Algebraic Entry}).
12444 @menu
12445 * Angular Modes::
12446 * Polar Mode::
12447 * Fraction Mode::
12448 * Infinite Mode::
12449 * Symbolic Mode::
12450 * Matrix Mode::
12451 * Automatic Recomputation::
12452 * Working Message::
12453 @end menu
12455 @node Angular Modes, Polar Mode, Calculation Modes, Calculation Modes
12456 @subsection Angular Modes
12458 @noindent
12459 @cindex Angular mode
12460 The Calculator supports three notations for angles: radians, degrees,
12461 and degrees-minutes-seconds.  When a number is presented to a function
12462 like @code{sin} that requires an angle, the current angular mode is
12463 used to interpret the number as either radians or degrees.  If an HMS
12464 form is presented to @code{sin}, it is always interpreted as
12465 degrees-minutes-seconds.
12467 Functions that compute angles produce a number in radians, a number in
12468 degrees, or an HMS form depending on the current angular mode.  If the
12469 result is a complex number and the current mode is HMS, the number is
12470 instead expressed in degrees.  (Complex-number calculations would
12471 normally be done in Radians mode, though.  Complex numbers are converted
12472 to degrees by calculating the complex result in radians and then
12473 multiplying by 180 over @cpi{}.)
12475 @kindex m r
12476 @pindex calc-radians-mode
12477 @kindex m d
12478 @pindex calc-degrees-mode
12479 @kindex m h
12480 @pindex calc-hms-mode
12481 The @kbd{m r} (@code{calc-radians-mode}), @kbd{m d} (@code{calc-degrees-mode}),
12482 and @kbd{m h} (@code{calc-hms-mode}) commands control the angular mode.
12483 The current angular mode is displayed on the Emacs mode line.
12484 The default angular mode is Degrees.
12486 @node Polar Mode, Fraction Mode, Angular Modes, Calculation Modes
12487 @subsection Polar Mode
12489 @noindent
12490 @cindex Polar mode
12491 The Calculator normally ``prefers'' rectangular complex numbers in the
12492 sense that rectangular form is used when the proper form can not be
12493 decided from the input.  This might happen by multiplying a rectangular
12494 number by a polar one, by taking the square root of a negative real
12495 number, or by entering @kbd{( 2 @key{SPC} 3 )}.
12497 @kindex m p
12498 @pindex calc-polar-mode
12499 The @kbd{m p} (@code{calc-polar-mode}) command toggles complex-number
12500 preference between rectangular and polar forms.  In Polar mode, all
12501 of the above example situations would produce polar complex numbers.
12503 @node Fraction Mode, Infinite Mode, Polar Mode, Calculation Modes
12504 @subsection Fraction Mode
12506 @noindent
12507 @cindex Fraction mode
12508 @cindex Division of integers
12509 Division of two integers normally yields a floating-point number if the
12510 result cannot be expressed as an integer.  In some cases you would
12511 rather get an exact fractional answer.  One way to accomplish this is
12512 to use the @kbd{:} (@code{calc-fdiv}) [@code{fdiv}] command, which
12513 divides the two integers on the top of the stack to produce a fraction:
12514 @kbd{6 @key{RET} 4 :} produces @expr{3:2} even though 
12515 @kbd{6 @key{RET} 4 /} produces @expr{1.5}.
12517 @kindex m f
12518 @pindex calc-frac-mode
12519 To set the Calculator to produce fractional results for normal integer
12520 divisions, use the @kbd{m f} (@code{calc-frac-mode}) command.
12521 For example, @expr{8/4} produces @expr{2} in either mode,
12522 but @expr{6/4} produces @expr{3:2} in Fraction mode, @expr{1.5} in
12523 Float mode.
12525 At any time you can use @kbd{c f} (@code{calc-float}) to convert a
12526 fraction to a float, or @kbd{c F} (@code{calc-fraction}) to convert a
12527 float to a fraction.  @xref{Conversions}.
12529 @node Infinite Mode, Symbolic Mode, Fraction Mode, Calculation Modes
12530 @subsection Infinite Mode
12532 @noindent
12533 @cindex Infinite mode
12534 The Calculator normally treats results like @expr{1 / 0} as errors;
12535 formulas like this are left in unsimplified form.  But Calc can be
12536 put into a mode where such calculations instead produce ``infinite''
12537 results.
12539 @kindex m i
12540 @pindex calc-infinite-mode
12541 The @kbd{m i} (@code{calc-infinite-mode}) command turns this mode
12542 on and off.  When the mode is off, infinities do not arise except
12543 in calculations that already had infinities as inputs.  (One exception
12544 is that infinite open intervals like @samp{[0 .. inf)} can be
12545 generated; however, intervals closed at infinity (@samp{[0 .. inf]})
12546 will not be generated when Infinite mode is off.)
12548 With Infinite mode turned on, @samp{1 / 0} will generate @code{uinf},
12549 an undirected infinity.  @xref{Infinities}, for a discussion of the
12550 difference between @code{inf} and @code{uinf}.  Also, @expr{0 / 0}
12551 evaluates to @code{nan}, the ``indeterminate'' symbol.  Various other
12552 functions can also return infinities in this mode; for example,
12553 @samp{ln(0) = -inf}, and @samp{gamma(-7) = uinf}.  Once again,
12554 note that @samp{exp(inf) = inf} regardless of Infinite mode because
12555 this calculation has infinity as an input.
12557 @cindex Positive Infinite mode
12558 The @kbd{m i} command with a numeric prefix argument of zero,
12559 i.e., @kbd{C-u 0 m i}, turns on a Positive Infinite mode in
12560 which zero is treated as positive instead of being directionless.
12561 Thus, @samp{1 / 0 = inf} and @samp{-1 / 0 = -inf} in this mode.
12562 Note that zero never actually has a sign in Calc; there are no
12563 separate representations for @mathit{+0} and @mathit{-0}.  Positive
12564 Infinite mode merely changes the interpretation given to the
12565 single symbol, @samp{0}.  One consequence of this is that, while
12566 you might expect @samp{1 / -0 = -inf}, actually @samp{1 / -0}
12567 is equivalent to @samp{1 / 0}, which is equal to positive @code{inf}.
12569 @node Symbolic Mode, Matrix Mode, Infinite Mode, Calculation Modes
12570 @subsection Symbolic Mode
12572 @noindent
12573 @cindex Symbolic mode
12574 @cindex Inexact results
12575 Calculations are normally performed numerically wherever possible.
12576 For example, the @code{calc-sqrt} command, or @code{sqrt} function in an
12577 algebraic expression, produces a numeric answer if the argument is a
12578 number or a symbolic expression if the argument is an expression:
12579 @kbd{2 Q} pushes 1.4142 but @kbd{@key{'} x+1 @key{RET} Q} pushes @samp{sqrt(x+1)}.
12581 @kindex m s
12582 @pindex calc-symbolic-mode
12583 In @dfn{Symbolic mode}, controlled by the @kbd{m s} (@code{calc-symbolic-mode})
12584 command, functions which would produce inexact, irrational results are
12585 left in symbolic form.  Thus @kbd{16 Q} pushes 4, but @kbd{2 Q} pushes
12586 @samp{sqrt(2)}.
12588 @kindex N
12589 @pindex calc-eval-num
12590 The shift-@kbd{N} (@code{calc-eval-num}) command evaluates numerically
12591 the expression at the top of the stack, by temporarily disabling
12592 @code{calc-symbolic-mode} and executing @kbd{=} (@code{calc-evaluate}).
12593 Given a numeric prefix argument, it also
12594 sets the floating-point precision to the specified value for the duration
12595 of the command.
12597 To evaluate a formula numerically without expanding the variables it
12598 contains, you can use the key sequence @kbd{m s a v m s} (this uses
12599 @code{calc-alg-evaluate}, which resimplifies but doesn't evaluate
12600 variables.)
12602 @node Matrix Mode, Automatic Recomputation, Symbolic Mode, Calculation Modes
12603 @subsection Matrix and Scalar Modes
12605 @noindent
12606 @cindex Matrix mode
12607 @cindex Scalar mode
12608 Calc sometimes makes assumptions during algebraic manipulation that
12609 are awkward or incorrect when vectors and matrices are involved.
12610 Calc has two modes, @dfn{Matrix mode} and @dfn{Scalar mode}, which
12611 modify its behavior around vectors in useful ways.
12613 @kindex m v
12614 @pindex calc-matrix-mode
12615 Press @kbd{m v} (@code{calc-matrix-mode}) once to enter Matrix mode.
12616 In this mode, all objects are assumed to be matrices unless provably
12617 otherwise.  One major effect is that Calc will no longer consider
12618 multiplication to be commutative.  (Recall that in matrix arithmetic,
12619 @samp{A*B} is not the same as @samp{B*A}.)  This assumption affects
12620 rewrite rules and algebraic simplification.  Another effect of this
12621 mode is that calculations that would normally produce constants like
12622 0 and 1 (e.g., @expr{a - a} and @expr{a / a}, respectively) will now
12623 produce function calls that represent ``generic'' zero or identity
12624 matrices: @samp{idn(0)}, @samp{idn(1)}.  The @code{idn} function
12625 @samp{idn(@var{a},@var{n})} returns @var{a} times an @var{n}x@var{n}
12626 identity matrix; if @var{n} is omitted, it doesn't know what
12627 dimension to use and so the @code{idn} call remains in symbolic
12628 form.  However, if this generic identity matrix is later combined
12629 with a matrix whose size is known, it will be converted into
12630 a true identity matrix of the appropriate size.  On the other hand,
12631 if it is combined with a scalar (as in @samp{idn(1) + 2}), Calc
12632 will assume it really was a scalar after all and produce, e.g., 3.
12634 Press @kbd{m v} a second time to get Scalar mode.  Here, objects are
12635 assumed @emph{not} to be vectors or matrices unless provably so.
12636 For example, normally adding a variable to a vector, as in
12637 @samp{[x, y, z] + a}, will leave the sum in symbolic form because
12638 as far as Calc knows, @samp{a} could represent either a number or
12639 another 3-vector.  In Scalar mode, @samp{a} is assumed to be a
12640 non-vector, and the addition is evaluated to @samp{[x+a, y+a, z+a]}.
12642 Press @kbd{m v} a third time to return to the normal mode of operation.
12644 If you press @kbd{m v} with a numeric prefix argument @var{n}, you
12645 get a special ``dimensioned'' Matrix mode in which matrices of
12646 unknown size are assumed to be @var{n}x@var{n} square matrices.
12647 Then, the function call @samp{idn(1)} will expand into an actual
12648 matrix rather than representing a ``generic'' matrix.
12650 @cindex Declaring scalar variables
12651 Of course these modes are approximations to the true state of
12652 affairs, which is probably that some quantities will be matrices
12653 and others will be scalars.  One solution is to ``declare''
12654 certain variables or functions to be scalar-valued.
12655 @xref{Declarations}, to see how to make declarations in Calc.
12657 There is nothing stopping you from declaring a variable to be
12658 scalar and then storing a matrix in it; however, if you do, the
12659 results you get from Calc may not be valid.  Suppose you let Calc
12660 get the result @samp{[x+a, y+a, z+a]} shown above, and then stored
12661 @samp{[1, 2, 3]} in @samp{a}.  The result would not be the same as
12662 for @samp{[x, y, z] + [1, 2, 3]}, but that's because you have broken
12663 your earlier promise to Calc that @samp{a} would be scalar.
12665 Another way to mix scalars and matrices is to use selections
12666 (@pxref{Selecting Subformulas}).  Use Matrix mode when operating on
12667 your formula normally; then, to apply Scalar mode to a certain part
12668 of the formula without affecting the rest just select that part,
12669 change into Scalar mode and press @kbd{=} to resimplify the part
12670 under this mode, then change back to Matrix mode before deselecting.
12672 @node Automatic Recomputation, Working Message, Matrix Mode, Calculation Modes
12673 @subsection Automatic Recomputation
12675 @noindent
12676 The @dfn{evaluates-to} operator, @samp{=>}, has the special
12677 property that any @samp{=>} formulas on the stack are recomputed
12678 whenever variable values or mode settings that might affect them
12679 are changed.  @xref{Evaluates-To Operator}.
12681 @kindex m C
12682 @pindex calc-auto-recompute
12683 The @kbd{m C} (@code{calc-auto-recompute}) command turns this
12684 automatic recomputation on and off.  If you turn it off, Calc will
12685 not update @samp{=>} operators on the stack (nor those in the
12686 attached Embedded mode buffer, if there is one).  They will not
12687 be updated unless you explicitly do so by pressing @kbd{=} or until
12688 you press @kbd{m C} to turn recomputation back on.  (While automatic
12689 recomputation is off, you can think of @kbd{m C m C} as a command
12690 to update all @samp{=>} operators while leaving recomputation off.)
12692 To update @samp{=>} operators in an Embedded buffer while
12693 automatic recomputation is off, use @w{@kbd{M-# u}}.
12694 @xref{Embedded Mode}.
12696 @node Working Message, , Automatic Recomputation, Calculation Modes
12697 @subsection Working Messages
12699 @noindent
12700 @cindex Performance
12701 @cindex Working messages
12702 Since the Calculator is written entirely in Emacs Lisp, which is not
12703 designed for heavy numerical work, many operations are quite slow.
12704 The Calculator normally displays the message @samp{Working...} in the
12705 echo area during any command that may be slow.  In addition, iterative
12706 operations such as square roots and trigonometric functions display the
12707 intermediate result at each step.  Both of these types of messages can
12708 be disabled if you find them distracting.
12710 @kindex m w
12711 @pindex calc-working
12712 Type @kbd{m w} (@code{calc-working}) with a numeric prefix of 0 to
12713 disable all ``working'' messages.  Use a numeric prefix of 1 to enable
12714 only the plain @samp{Working...} message.  Use a numeric prefix of 2 to
12715 see intermediate results as well.  With no numeric prefix this displays
12716 the current mode.
12718 While it may seem that the ``working'' messages will slow Calc down
12719 considerably, experiments have shown that their impact is actually
12720 quite small.  But if your terminal is slow you may find that it helps
12721 to turn the messages off.
12723 @node Simplification Modes, Declarations, Calculation Modes, Mode Settings
12724 @section Simplification Modes
12726 @noindent
12727 The current @dfn{simplification mode} controls how numbers and formulas
12728 are ``normalized'' when being taken from or pushed onto the stack.
12729 Some normalizations are unavoidable, such as rounding floating-point
12730 results to the current precision, and reducing fractions to simplest
12731 form.  Others, such as simplifying a formula like @expr{a+a} (or @expr{2+3}),
12732 are done by default but can be turned off when necessary.
12734 When you press a key like @kbd{+} when @expr{2} and @expr{3} are on the
12735 stack, Calc pops these numbers, normalizes them, creates the formula
12736 @expr{2+3}, normalizes it, and pushes the result.  Of course the standard
12737 rules for normalizing @expr{2+3} will produce the result @expr{5}.
12739 Simplification mode commands consist of the lower-case @kbd{m} prefix key
12740 followed by a shifted letter.
12742 @kindex m O
12743 @pindex calc-no-simplify-mode
12744 The @kbd{m O} (@code{calc-no-simplify-mode}) command turns off all optional
12745 simplifications.  These would leave a formula like @expr{2+3} alone.  In
12746 fact, nothing except simple numbers are ever affected by normalization
12747 in this mode.
12749 @kindex m N
12750 @pindex calc-num-simplify-mode
12751 The @kbd{m N} (@code{calc-num-simplify-mode}) command turns off simplification
12752 of any formulas except those for which all arguments are constants.  For
12753 example, @expr{1+2} is simplified to @expr{3}, and @expr{a+(2-2)} is
12754 simplified to @expr{a+0} but no further, since one argument of the sum
12755 is not a constant.  Unfortunately, @expr{(a+2)-2} is @emph{not} simplified
12756 because the top-level @samp{-} operator's arguments are not both
12757 constant numbers (one of them is the formula @expr{a+2}).
12758 A constant is a number or other numeric object (such as a constant
12759 error form or modulo form), or a vector all of whose
12760 elements are constant.
12762 @kindex m D
12763 @pindex calc-default-simplify-mode
12764 The @kbd{m D} (@code{calc-default-simplify-mode}) command restores the
12765 default simplifications for all formulas.  This includes many easy and
12766 fast algebraic simplifications such as @expr{a+0} to @expr{a}, and
12767 @expr{a + 2 a} to @expr{3 a}, as well as evaluating functions like
12768 @expr{@tfn{deriv}(x^2, x)} to @expr{2 x}.
12770 @kindex m B
12771 @pindex calc-bin-simplify-mode
12772 The @kbd{m B} (@code{calc-bin-simplify-mode}) mode applies the default
12773 simplifications to a result and then, if the result is an integer,
12774 uses the @kbd{b c} (@code{calc-clip}) command to clip the integer according
12775 to the current binary word size.  @xref{Binary Functions}.  Real numbers
12776 are rounded to the nearest integer and then clipped; other kinds of
12777 results (after the default simplifications) are left alone.
12779 @kindex m A
12780 @pindex calc-alg-simplify-mode
12781 The @kbd{m A} (@code{calc-alg-simplify-mode}) mode does algebraic
12782 simplification; it applies all the default simplifications, and also
12783 the more powerful (and slower) simplifications made by @kbd{a s}
12784 (@code{calc-simplify}).  @xref{Algebraic Simplifications}.
12786 @kindex m E
12787 @pindex calc-ext-simplify-mode
12788 The @kbd{m E} (@code{calc-ext-simplify-mode}) mode does ``extended''
12789 algebraic simplification, as by the @kbd{a e} (@code{calc-simplify-extended})
12790 command.  @xref{Unsafe Simplifications}.
12792 @kindex m U
12793 @pindex calc-units-simplify-mode
12794 The @kbd{m U} (@code{calc-units-simplify-mode}) mode does units
12795 simplification; it applies the command @kbd{u s}
12796 (@code{calc-simplify-units}), which in turn
12797 is a superset of @kbd{a s}.  In this mode, variable names which
12798 are identifiable as unit names (like @samp{mm} for ``millimeters'')
12799 are simplified with their unit definitions in mind.
12801 A common technique is to set the simplification mode down to the lowest
12802 amount of simplification you will allow to be applied automatically, then
12803 use manual commands like @kbd{a s} and @kbd{c c} (@code{calc-clean}) to
12804 perform higher types of simplifications on demand.  @xref{Algebraic
12805 Definitions}, for another sample use of No-Simplification mode.
12807 @node Declarations, Display Modes, Simplification Modes, Mode Settings
12808 @section Declarations
12810 @noindent
12811 A @dfn{declaration} is a statement you make that promises you will
12812 use a certain variable or function in a restricted way.  This may
12813 give Calc the freedom to do things that it couldn't do if it had to
12814 take the fully general situation into account.
12816 @menu
12817 * Declaration Basics::
12818 * Kinds of Declarations::
12819 * Functions for Declarations::
12820 @end menu
12822 @node Declaration Basics, Kinds of Declarations, Declarations, Declarations
12823 @subsection Declaration Basics
12825 @noindent
12826 @kindex s d
12827 @pindex calc-declare-variable
12828 The @kbd{s d} (@code{calc-declare-variable}) command is the easiest
12829 way to make a declaration for a variable.  This command prompts for
12830 the variable name, then prompts for the declaration.  The default
12831 at the declaration prompt is the previous declaration, if any.
12832 You can edit this declaration, or press @kbd{C-k} to erase it and
12833 type a new declaration.  (Or, erase it and press @key{RET} to clear
12834 the declaration, effectively ``undeclaring'' the variable.)
12836 A declaration is in general a vector of @dfn{type symbols} and
12837 @dfn{range} values.  If there is only one type symbol or range value,
12838 you can write it directly rather than enclosing it in a vector.
12839 For example, @kbd{s d foo @key{RET} real @key{RET}} declares @code{foo} to
12840 be a real number, and @kbd{s d bar @key{RET} [int, const, [1..6]] @key{RET}}
12841 declares @code{bar} to be a constant integer between 1 and 6.
12842 (Actually, you can omit the outermost brackets and Calc will
12843 provide them for you: @kbd{s d bar @key{RET} int, const, [1..6] @key{RET}}.)
12845 @cindex @code{Decls} variable
12846 @vindex Decls
12847 Declarations in Calc are kept in a special variable called @code{Decls}.
12848 This variable encodes the set of all outstanding declarations in
12849 the form of a matrix.  Each row has two elements:  A variable or
12850 vector of variables declared by that row, and the declaration
12851 specifier as described above.  You can use the @kbd{s D} command to
12852 edit this variable if you wish to see all the declarations at once.
12853 @xref{Operations on Variables}, for a description of this command
12854 and the @kbd{s p} command that allows you to save your declarations
12855 permanently if you wish.
12857 Items being declared can also be function calls.  The arguments in
12858 the call are ignored; the effect is to say that this function returns
12859 values of the declared type for any valid arguments.  The @kbd{s d}
12860 command declares only variables, so if you wish to make a function
12861 declaration you will have to edit the @code{Decls} matrix yourself.
12863 For example, the declaration matrix
12865 @smallexample
12866 @group
12867 [ [ foo,       real       ]
12868   [ [j, k, n], int        ]
12869   [ f(1,2,3),  [0 .. inf) ] ]
12870 @end group
12871 @end smallexample
12873 @noindent
12874 declares that @code{foo} represents a real number, @code{j}, @code{k}
12875 and @code{n} represent integers, and the function @code{f} always
12876 returns a real number in the interval shown.
12878 @vindex All
12879 If there is a declaration for the variable @code{All}, then that
12880 declaration applies to all variables that are not otherwise declared.
12881 It does not apply to function names.  For example, using the row
12882 @samp{[All, real]} says that all your variables are real unless they
12883 are explicitly declared without @code{real} in some other row.
12884 The @kbd{s d} command declares @code{All} if you give a blank
12885 response to the variable-name prompt.
12887 @node Kinds of Declarations, Functions for Declarations, Declaration Basics, Declarations
12888 @subsection Kinds of Declarations
12890 @noindent
12891 The type-specifier part of a declaration (that is, the second prompt
12892 in the @kbd{s d} command) can be a type symbol, an interval, or a
12893 vector consisting of zero or more type symbols followed by zero or
12894 more intervals or numbers that represent the set of possible values
12895 for the variable.
12897 @smallexample
12898 @group
12899 [ [ a, [1, 2, 3, 4, 5] ]
12900   [ b, [1 .. 5]        ]
12901   [ c, [int, 1 .. 5]   ] ]
12902 @end group
12903 @end smallexample
12905 Here @code{a} is declared to contain one of the five integers shown;
12906 @code{b} is any number in the interval from 1 to 5 (any real number
12907 since we haven't specified), and @code{c} is any integer in that
12908 interval.  Thus the declarations for @code{a} and @code{c} are
12909 nearly equivalent (see below).
12911 The type-specifier can be the empty vector @samp{[]} to say that
12912 nothing is known about a given variable's value.  This is the same
12913 as not declaring the variable at all except that it overrides any
12914 @code{All} declaration which would otherwise apply.
12916 The initial value of @code{Decls} is the empty vector @samp{[]}.
12917 If @code{Decls} has no stored value or if the value stored in it
12918 is not valid, it is ignored and there are no declarations as far
12919 as Calc is concerned.  (The @kbd{s d} command will replace such a
12920 malformed value with a fresh empty matrix, @samp{[]}, before recording
12921 the new declaration.)  Unrecognized type symbols are ignored.
12923 The following type symbols describe what sorts of numbers will be
12924 stored in a variable:
12926 @table @code
12927 @item int
12928 Integers.
12929 @item numint
12930 Numerical integers.  (Integers or integer-valued floats.)
12931 @item frac
12932 Fractions.  (Rational numbers which are not integers.)
12933 @item rat
12934 Rational numbers.  (Either integers or fractions.)
12935 @item float
12936 Floating-point numbers.
12937 @item real
12938 Real numbers.  (Integers, fractions, or floats.  Actually,
12939 intervals and error forms with real components also count as
12940 reals here.)
12941 @item pos
12942 Positive real numbers.  (Strictly greater than zero.)
12943 @item nonneg
12944 Nonnegative real numbers.  (Greater than or equal to zero.)
12945 @item number
12946 Numbers.  (Real or complex.)
12947 @end table
12949 Calc uses this information to determine when certain simplifications
12950 of formulas are safe.  For example, @samp{(x^y)^z} cannot be
12951 simplified to @samp{x^(y z)} in general; for example,
12952 @samp{((-3)^2)^1:2} is 3, but @samp{(-3)^(2*1:2) = (-3)^1} is @mathit{-3}.
12953 However, this simplification @emph{is} safe if @code{z} is known
12954 to be an integer, or if @code{x} is known to be a nonnegative
12955 real number.  If you have given declarations that allow Calc to
12956 deduce either of these facts, Calc will perform this simplification
12957 of the formula.
12959 Calc can apply a certain amount of logic when using declarations.
12960 For example, @samp{(x^y)^(2n+1)} will be simplified if @code{n}
12961 has been declared @code{int}; Calc knows that an integer times an
12962 integer, plus an integer, must always be an integer.  (In fact,
12963 Calc would simplify @samp{(-x)^(2n+1)} to @samp{-(x^(2n+1))} since
12964 it is able to determine that @samp{2n+1} must be an odd integer.)
12966 Similarly, @samp{(abs(x)^y)^z} will be simplified to @samp{abs(x)^(y z)}
12967 because Calc knows that the @code{abs} function always returns a
12968 nonnegative real.  If you had a @code{myabs} function that also had
12969 this property, you could get Calc to recognize it by adding the row
12970 @samp{[myabs(), nonneg]} to the @code{Decls} matrix.
12972 One instance of this simplification is @samp{sqrt(x^2)} (since the
12973 @code{sqrt} function is effectively a one-half power).  Normally
12974 Calc leaves this formula alone.  After the command
12975 @kbd{s d x @key{RET} real @key{RET}}, however, it can simplify the formula to
12976 @samp{abs(x)}.  And after @kbd{s d x @key{RET} nonneg @key{RET}}, Calc can
12977 simplify this formula all the way to @samp{x}.
12979 If there are any intervals or real numbers in the type specifier,
12980 they comprise the set of possible values that the variable or
12981 function being declared can have.  In particular, the type symbol
12982 @code{real} is effectively the same as the range @samp{[-inf .. inf]}
12983 (note that infinity is included in the range of possible values);
12984 @code{pos} is the same as @samp{(0 .. inf]}, and @code{nonneg} is
12985 the same as @samp{[0 .. inf]}.  Saying @samp{[real, [-5 .. 5]]} is
12986 redundant because the fact that the variable is real can be
12987 deduced just from the interval, but @samp{[int, [-5 .. 5]]} and
12988 @samp{[rat, [-5 .. 5]]} are useful combinations.
12990 Note that the vector of intervals or numbers is in the same format
12991 used by Calc's set-manipulation commands.  @xref{Set Operations}.
12993 The type specifier @samp{[1, 2, 3]} is equivalent to
12994 @samp{[numint, 1, 2, 3]}, @emph{not} to @samp{[int, 1, 2, 3]}.
12995 In other words, the range of possible values means only that
12996 the variable's value must be numerically equal to a number in
12997 that range, but not that it must be equal in type as well.
12998 Calc's set operations act the same way; @samp{in(2, [1., 2., 3.])}
12999 and @samp{in(1.5, [1:2, 3:2, 5:2])} both report ``true.''
13001 If you use a conflicting combination of type specifiers, the
13002 results are unpredictable.  An example is @samp{[pos, [0 .. 5]]},
13003 where the interval does not lie in the range described by the
13004 type symbol.
13006 ``Real'' declarations mostly affect simplifications involving powers
13007 like the one described above.  Another case where they are used
13008 is in the @kbd{a P} command which returns a list of all roots of a
13009 polynomial; if the variable has been declared real, only the real
13010 roots (if any) will be included in the list.
13012 ``Integer'' declarations are used for simplifications which are valid
13013 only when certain values are integers (such as @samp{(x^y)^z}
13014 shown above).
13016 Another command that makes use of declarations is @kbd{a s}, when
13017 simplifying equations and inequalities.  It will cancel @code{x}
13018 from both sides of @samp{a x = b x} only if it is sure @code{x}
13019 is non-zero, say, because it has a @code{pos} declaration.
13020 To declare specifically that @code{x} is real and non-zero,
13021 use @samp{[[-inf .. 0), (0 .. inf]]}.  (There is no way in the
13022 current notation to say that @code{x} is nonzero but not necessarily
13023 real.)  The @kbd{a e} command does ``unsafe'' simplifications,
13024 including cancelling @samp{x} from the equation when @samp{x} is
13025 not known to be nonzero.
13027 Another set of type symbols distinguish between scalars and vectors.
13029 @table @code
13030 @item scalar
13031 The value is not a vector.
13032 @item vector
13033 The value is a vector.
13034 @item matrix
13035 The value is a matrix (a rectangular vector of vectors).
13036 @end table
13038 These type symbols can be combined with the other type symbols
13039 described above; @samp{[int, matrix]} describes an object which
13040 is a matrix of integers.
13042 Scalar/vector declarations are used to determine whether certain
13043 algebraic operations are safe.  For example, @samp{[a, b, c] + x}
13044 is normally not simplified to @samp{[a + x, b + x, c + x]}, but
13045 it will be if @code{x} has been declared @code{scalar}.  On the
13046 other hand, multiplication is usually assumed to be commutative,
13047 but the terms in @samp{x y} will never be exchanged if both @code{x}
13048 and @code{y} are known to be vectors or matrices.  (Calc currently
13049 never distinguishes between @code{vector} and @code{matrix}
13050 declarations.)
13052 @xref{Matrix Mode}, for a discussion of Matrix mode and
13053 Scalar mode, which are similar to declaring @samp{[All, matrix]}
13054 or @samp{[All, scalar]} but much more convenient.
13056 One more type symbol that is recognized is used with the @kbd{H a d}
13057 command for taking total derivatives of a formula.  @xref{Calculus}.
13059 @table @code
13060 @item const
13061 The value is a constant with respect to other variables.
13062 @end table
13064 Calc does not check the declarations for a variable when you store
13065 a value in it.  However, storing @mathit{-3.5} in a variable that has
13066 been declared @code{pos}, @code{int}, or @code{matrix} may have
13067 unexpected effects; Calc may evaluate @samp{sqrt(x^2)} to @expr{3.5}
13068 if it substitutes the value first, or to @expr{-3.5} if @code{x}
13069 was declared @code{pos} and the formula @samp{sqrt(x^2)} is
13070 simplified to @samp{x} before the value is substituted.  Before
13071 using a variable for a new purpose, it is best to use @kbd{s d}
13072 or @kbd{s D} to check to make sure you don't still have an old
13073 declaration for the variable that will conflict with its new meaning.
13075 @node Functions for Declarations, , Kinds of Declarations, Declarations
13076 @subsection Functions for Declarations
13078 @noindent
13079 Calc has a set of functions for accessing the current declarations
13080 in a convenient manner.  These functions return 1 if the argument
13081 can be shown to have the specified property, or 0 if the argument
13082 can be shown @emph{not} to have that property; otherwise they are
13083 left unevaluated.  These functions are suitable for use with rewrite
13084 rules (@pxref{Conditional Rewrite Rules}) or programming constructs
13085 (@pxref{Conditionals in Macros}).  They can be entered only using
13086 algebraic notation.  @xref{Logical Operations}, for functions
13087 that perform other tests not related to declarations.
13089 For example, @samp{dint(17)} returns 1 because 17 is an integer, as
13090 do @samp{dint(n)} and @samp{dint(2 n - 3)} if @code{n} has been declared
13091 @code{int}, but @samp{dint(2.5)} and @samp{dint(n + 0.5)} return 0.
13092 Calc consults knowledge of its own built-in functions as well as your
13093 own declarations: @samp{dint(floor(x))} returns 1.
13095 @ignore
13096 @starindex
13097 @end ignore
13098 @tindex dint
13099 @ignore
13100 @starindex
13101 @end ignore
13102 @tindex dnumint
13103 @ignore
13104 @starindex
13105 @end ignore
13106 @tindex dnatnum
13107 The @code{dint} function checks if its argument is an integer.
13108 The @code{dnatnum} function checks if its argument is a natural
13109 number, i.e., a nonnegative integer.  The @code{dnumint} function
13110 checks if its argument is numerically an integer, i.e., either an
13111 integer or an integer-valued float.  Note that these and the other
13112 data type functions also accept vectors or matrices composed of
13113 suitable elements, and that real infinities @samp{inf} and @samp{-inf}
13114 are considered to be integers for the purposes of these functions.
13116 @ignore
13117 @starindex
13118 @end ignore
13119 @tindex drat
13120 The @code{drat} function checks if its argument is rational, i.e.,
13121 an integer or fraction.  Infinities count as rational, but intervals
13122 and error forms do not.
13124 @ignore
13125 @starindex
13126 @end ignore
13127 @tindex dreal
13128 The @code{dreal} function checks if its argument is real.  This
13129 includes integers, fractions, floats, real error forms, and intervals.
13131 @ignore
13132 @starindex
13133 @end ignore
13134 @tindex dimag
13135 The @code{dimag} function checks if its argument is imaginary,
13136 i.e., is mathematically equal to a real number times @expr{i}.
13138 @ignore
13139 @starindex
13140 @end ignore
13141 @tindex dpos
13142 @ignore
13143 @starindex
13144 @end ignore
13145 @tindex dneg
13146 @ignore
13147 @starindex
13148 @end ignore
13149 @tindex dnonneg
13150 The @code{dpos} function checks for positive (but nonzero) reals.
13151 The @code{dneg} function checks for negative reals.  The @code{dnonneg}
13152 function checks for nonnegative reals, i.e., reals greater than or
13153 equal to zero.  Note that the @kbd{a s} command can simplify an
13154 expression like @expr{x > 0} to 1 or 0 using @code{dpos}, and that
13155 @kbd{a s} is effectively applied to all conditions in rewrite rules,
13156 so the actual functions @code{dpos}, @code{dneg}, and @code{dnonneg}
13157 are rarely necessary.
13159 @ignore
13160 @starindex
13161 @end ignore
13162 @tindex dnonzero
13163 The @code{dnonzero} function checks that its argument is nonzero.
13164 This includes all nonzero real or complex numbers, all intervals that
13165 do not include zero, all nonzero modulo forms, vectors all of whose
13166 elements are nonzero, and variables or formulas whose values can be
13167 deduced to be nonzero.  It does not include error forms, since they
13168 represent values which could be anything including zero.  (This is
13169 also the set of objects considered ``true'' in conditional contexts.)
13171 @ignore
13172 @starindex
13173 @end ignore
13174 @tindex deven
13175 @ignore
13176 @starindex
13177 @end ignore
13178 @tindex dodd
13179 The @code{deven} function returns 1 if its argument is known to be
13180 an even integer (or integer-valued float); it returns 0 if its argument
13181 is known not to be even (because it is known to be odd or a non-integer).
13182 The @kbd{a s} command uses this to simplify a test of the form
13183 @samp{x % 2 = 0}.  There is also an analogous @code{dodd} function.
13185 @ignore
13186 @starindex
13187 @end ignore
13188 @tindex drange
13189 The @code{drange} function returns a set (an interval or a vector
13190 of intervals and/or numbers; @pxref{Set Operations}) that describes
13191 the set of possible values of its argument.  If the argument is
13192 a variable or a function with a declaration, the range is copied
13193 from the declaration.  Otherwise, the possible signs of the
13194 expression are determined using a method similar to @code{dpos},
13195 etc., and a suitable set like @samp{[0 .. inf]} is returned.  If
13196 the expression is not provably real, the @code{drange} function
13197 remains unevaluated.
13199 @ignore
13200 @starindex
13201 @end ignore
13202 @tindex dscalar
13203 The @code{dscalar} function returns 1 if its argument is provably
13204 scalar, or 0 if its argument is provably non-scalar.  It is left
13205 unevaluated if this cannot be determined.  (If Matrix mode or Scalar
13206 mode is in effect, this function returns 1 or 0, respectively,
13207 if it has no other information.)  When Calc interprets a condition
13208 (say, in a rewrite rule) it considers an unevaluated formula to be
13209 ``false.''  Thus, @samp{dscalar(a)} is ``true'' only if @code{a} is
13210 provably scalar, and @samp{!dscalar(a)} is ``true'' only if @code{a}
13211 is provably non-scalar; both are ``false'' if there is insufficient
13212 information to tell.
13214 @node Display Modes, Language Modes, Declarations, Mode Settings
13215 @section Display Modes
13217 @noindent
13218 The commands in this section are two-key sequences beginning with the
13219 @kbd{d} prefix.  The @kbd{d l} (@code{calc-line-numbering}) and @kbd{d b}
13220 (@code{calc-line-breaking}) commands are described elsewhere;
13221 @pxref{Stack Basics} and @pxref{Normal Language Modes}, respectively.
13222 Display formats for vectors and matrices are also covered elsewhere;
13223 @pxref{Vector and Matrix Formats}.
13225 One thing all display modes have in common is their treatment of the
13226 @kbd{H} prefix.  This prefix causes any mode command that would normally
13227 refresh the stack to leave the stack display alone.  The word ``Dirty''
13228 will appear in the mode line when Calc thinks the stack display may not
13229 reflect the latest mode settings.
13231 @kindex d @key{RET}
13232 @pindex calc-refresh-top
13233 The @kbd{d @key{RET}} (@code{calc-refresh-top}) command reformats the
13234 top stack entry according to all the current modes.  Positive prefix
13235 arguments reformat the top @var{n} entries; negative prefix arguments
13236 reformat the specified entry, and a prefix of zero is equivalent to
13237 @kbd{d @key{SPC}} (@code{calc-refresh}), which reformats the entire stack.
13238 For example, @kbd{H d s M-2 d @key{RET}} changes to scientific notation
13239 but reformats only the top two stack entries in the new mode.
13241 The @kbd{I} prefix has another effect on the display modes.  The mode
13242 is set only temporarily; the top stack entry is reformatted according
13243 to that mode, then the original mode setting is restored.  In other
13244 words, @kbd{I d s} is equivalent to @kbd{H d s d @key{RET} H d (@var{old mode})}.
13246 @menu
13247 * Radix Modes::
13248 * Grouping Digits::
13249 * Float Formats::
13250 * Complex Formats::
13251 * Fraction Formats::
13252 * HMS Formats::
13253 * Date Formats::
13254 * Truncating the Stack::
13255 * Justification::
13256 * Labels::
13257 @end menu
13259 @node Radix Modes, Grouping Digits, Display Modes, Display Modes
13260 @subsection Radix Modes
13262 @noindent
13263 @cindex Radix display
13264 @cindex Non-decimal numbers
13265 @cindex Decimal and non-decimal numbers
13266 Calc normally displays numbers in decimal (@dfn{base-10} or @dfn{radix-10})
13267 notation.  Calc can actually display in any radix from two (binary) to 36.
13268 When the radix is above 10, the letters @code{A} to @code{Z} are used as
13269 digits.  When entering such a number, letter keys are interpreted as
13270 potential digits rather than terminating numeric entry mode.
13272 @kindex d 2
13273 @kindex d 8
13274 @kindex d 6
13275 @kindex d 0
13276 @cindex Hexadecimal integers
13277 @cindex Octal integers
13278 The key sequences @kbd{d 2}, @kbd{d 8}, @kbd{d 6}, and @kbd{d 0} select
13279 binary, octal, hexadecimal, and decimal as the current display radix,
13280 respectively.  Numbers can always be entered in any radix, though the
13281 current radix is used as a default if you press @kbd{#} without any initial
13282 digits.  A number entered without a @kbd{#} is @emph{always} interpreted
13283 as decimal.
13285 @kindex d r
13286 @pindex calc-radix
13287 To set the radix generally, use @kbd{d r} (@code{calc-radix}) and enter
13288 an integer from 2 to 36.  You can specify the radix as a numeric prefix
13289 argument; otherwise you will be prompted for it.
13291 @kindex d z
13292 @pindex calc-leading-zeros
13293 @cindex Leading zeros
13294 Integers normally are displayed with however many digits are necessary to
13295 represent the integer and no more.  The @kbd{d z} (@code{calc-leading-zeros})
13296 command causes integers to be padded out with leading zeros according to the
13297 current binary word size.  (@xref{Binary Functions}, for a discussion of
13298 word size.)  If the absolute value of the word size is @expr{w}, all integers
13299 are displayed with at least enough digits to represent 
13300 @texline @math{2^w-1}
13301 @infoline @expr{(2^w)-1} 
13302 in the current radix.  (Larger integers will still be displayed in their
13303 entirety.) 
13305 @node Grouping Digits, Float Formats, Radix Modes, Display Modes
13306 @subsection Grouping Digits
13308 @noindent
13309 @kindex d g
13310 @pindex calc-group-digits
13311 @cindex Grouping digits
13312 @cindex Digit grouping
13313 Long numbers can be hard to read if they have too many digits.  For
13314 example, the factorial of 30 is 33 digits long!  Press @kbd{d g}
13315 (@code{calc-group-digits}) to enable @dfn{Grouping} mode, in which digits
13316 are displayed in clumps of 3 or 4 (depending on the current radix)
13317 separated by commas.
13319 The @kbd{d g} command toggles grouping on and off.
13320 With a numeric prefix of 0, this command displays the current state of
13321 the grouping flag; with an argument of minus one it disables grouping;
13322 with a positive argument @expr{N} it enables grouping on every @expr{N}
13323 digits.  For floating-point numbers, grouping normally occurs only
13324 before the decimal point.  A negative prefix argument @expr{-N} enables
13325 grouping every @expr{N} digits both before and after the decimal point.
13327 @kindex d ,
13328 @pindex calc-group-char
13329 The @kbd{d ,} (@code{calc-group-char}) command allows you to choose any
13330 character as the grouping separator.  The default is the comma character.
13331 If you find it difficult to read vectors of large integers grouped with
13332 commas, you may wish to use spaces or some other character instead.
13333 This command takes the next character you type, whatever it is, and
13334 uses it as the digit separator.  As a special case, @kbd{d , \} selects
13335 @samp{\,} (@TeX{}'s thin-space symbol) as the digit separator.
13337 Please note that grouped numbers will not generally be parsed correctly
13338 if re-read in textual form, say by the use of @kbd{M-# y} and @kbd{M-# g}.
13339 (@xref{Kill and Yank}, for details on these commands.)  One exception is
13340 the @samp{\,} separator, which doesn't interfere with parsing because it
13341 is ignored by @TeX{} language mode.
13343 @node Float Formats, Complex Formats, Grouping Digits, Display Modes
13344 @subsection Float Formats
13346 @noindent
13347 Floating-point quantities are normally displayed in standard decimal
13348 form, with scientific notation used if the exponent is especially high
13349 or low.  All significant digits are normally displayed.  The commands
13350 in this section allow you to choose among several alternative display
13351 formats for floats.
13353 @kindex d n
13354 @pindex calc-normal-notation
13355 The @kbd{d n} (@code{calc-normal-notation}) command selects the normal
13356 display format.  All significant figures in a number are displayed.
13357 With a positive numeric prefix, numbers are rounded if necessary to
13358 that number of significant digits.  With a negative numerix prefix,
13359 the specified number of significant digits less than the current
13360 precision is used.  (Thus @kbd{C-u -2 d n} displays 10 digits if the
13361 current precision is 12.)
13363 @kindex d f
13364 @pindex calc-fix-notation
13365 The @kbd{d f} (@code{calc-fix-notation}) command selects fixed-point
13366 notation.  The numeric argument is the number of digits after the
13367 decimal point, zero or more.  This format will relax into scientific
13368 notation if a nonzero number would otherwise have been rounded all the
13369 way to zero.  Specifying a negative number of digits is the same as
13370 for a positive number, except that small nonzero numbers will be rounded
13371 to zero rather than switching to scientific notation.
13373 @kindex d s
13374 @pindex calc-sci-notation
13375 @cindex Scientific notation, display of
13376 The @kbd{d s} (@code{calc-sci-notation}) command selects scientific
13377 notation.  A positive argument sets the number of significant figures
13378 displayed, of which one will be before and the rest after the decimal
13379 point.  A negative argument works the same as for @kbd{d n} format.
13380 The default is to display all significant digits.
13382 @kindex d e
13383 @pindex calc-eng-notation
13384 @cindex Engineering notation, display of
13385 The @kbd{d e} (@code{calc-eng-notation}) command selects engineering
13386 notation.  This is similar to scientific notation except that the
13387 exponent is rounded down to a multiple of three, with from one to three
13388 digits before the decimal point.  An optional numeric prefix sets the
13389 number of significant digits to display, as for @kbd{d s}.
13391 It is important to distinguish between the current @emph{precision} and
13392 the current @emph{display format}.  After the commands @kbd{C-u 10 p}
13393 and @kbd{C-u 6 d n} the Calculator computes all results to ten
13394 significant figures but displays only six.  (In fact, intermediate
13395 calculations are often carried to one or two more significant figures,
13396 but values placed on the stack will be rounded down to ten figures.)
13397 Numbers are never actually rounded to the display precision for storage,
13398 except by commands like @kbd{C-k} and @kbd{M-# y} which operate on the
13399 actual displayed text in the Calculator buffer.
13401 @kindex d .
13402 @pindex calc-point-char
13403 The @kbd{d .} (@code{calc-point-char}) command selects the character used
13404 as a decimal point.  Normally this is a period; users in some countries
13405 may wish to change this to a comma.  Note that this is only a display
13406 style; on entry, periods must always be used to denote floating-point
13407 numbers, and commas to separate elements in a list.
13409 @node Complex Formats, Fraction Formats, Float Formats, Display Modes
13410 @subsection Complex Formats
13412 @noindent
13413 @kindex d c
13414 @pindex calc-complex-notation
13415 There are three supported notations for complex numbers in rectangular
13416 form.  The default is as a pair of real numbers enclosed in parentheses
13417 and separated by a comma: @samp{(a,b)}.  The @kbd{d c}
13418 (@code{calc-complex-notation}) command selects this style.
13420 @kindex d i
13421 @pindex calc-i-notation
13422 @kindex d j
13423 @pindex calc-j-notation
13424 The other notations are @kbd{d i} (@code{calc-i-notation}), in which
13425 numbers are displayed in @samp{a+bi} form, and @kbd{d j}
13426 (@code{calc-j-notation}) which displays the form @samp{a+bj} preferred
13427 in some disciplines.
13429 @cindex @code{i} variable
13430 @vindex i
13431 Complex numbers are normally entered in @samp{(a,b)} format.
13432 If you enter @samp{2+3i} as an algebraic formula, it will be stored as
13433 the formula @samp{2 + 3 * i}.  However, if you use @kbd{=} to evaluate
13434 this formula and you have not changed the variable @samp{i}, the @samp{i}
13435 will be interpreted as @samp{(0,1)} and the formula will be simplified
13436 to @samp{(2,3)}.  Other commands (like @code{calc-sin}) will @emph{not}
13437 interpret the formula @samp{2 + 3 * i} as a complex number.
13438 @xref{Variables}, under ``special constants.''
13440 @node Fraction Formats, HMS Formats, Complex Formats, Display Modes
13441 @subsection Fraction Formats
13443 @noindent
13444 @kindex d o
13445 @pindex calc-over-notation
13446 Display of fractional numbers is controlled by the @kbd{d o}
13447 (@code{calc-over-notation}) command.  By default, a number like
13448 eight thirds is displayed in the form @samp{8:3}.  The @kbd{d o} command
13449 prompts for a one- or two-character format.  If you give one character,
13450 that character is used as the fraction separator.  Common separators are
13451 @samp{:} and @samp{/}.  (During input of numbers, the @kbd{:} key must be
13452 used regardless of the display format; in particular, the @kbd{/} is used
13453 for RPN-style division, @emph{not} for entering fractions.)
13455 If you give two characters, fractions use ``integer-plus-fractional-part''
13456 notation.  For example, the format @samp{+/} would display eight thirds
13457 as @samp{2+2/3}.  If two colons are present in a number being entered,
13458 the number is interpreted in this form (so that the entries @kbd{2:2:3}
13459 and @kbd{8:3} are equivalent).
13461 It is also possible to follow the one- or two-character format with
13462 a number.  For example:  @samp{:10} or @samp{+/3}.  In this case,
13463 Calc adjusts all fractions that are displayed to have the specified
13464 denominator, if possible.  Otherwise it adjusts the denominator to
13465 be a multiple of the specified value.  For example, in @samp{:6} mode
13466 the fraction @expr{1:6} will be unaffected, but @expr{2:3} will be
13467 displayed as @expr{4:6}, @expr{1:2} will be displayed as @expr{3:6},
13468 and @expr{1:8} will be displayed as @expr{3:24}.  Integers are also
13469 affected by this mode:  3 is displayed as @expr{18:6}.  Note that the
13470 format @samp{:1} writes fractions the same as @samp{:}, but it writes
13471 integers as @expr{n:1}.
13473 The fraction format does not affect the way fractions or integers are
13474 stored, only the way they appear on the screen.  The fraction format
13475 never affects floats.
13477 @node HMS Formats, Date Formats, Fraction Formats, Display Modes
13478 @subsection HMS Formats
13480 @noindent
13481 @kindex d h
13482 @pindex calc-hms-notation
13483 The @kbd{d h} (@code{calc-hms-notation}) command controls the display of
13484 HMS (hours-minutes-seconds) forms.  It prompts for a string which
13485 consists basically of an ``hours'' marker, optional punctuation, a
13486 ``minutes'' marker, more optional punctuation, and a ``seconds'' marker.
13487 Punctuation is zero or more spaces, commas, or semicolons.  The hours
13488 marker is one or more non-punctuation characters.  The minutes and
13489 seconds markers must be single non-punctuation characters.
13491 The default HMS format is @samp{@@ ' "}, producing HMS values of the form
13492 @samp{23@@ 30' 15.75"}.  The format @samp{deg, ms} would display this same
13493 value as @samp{23deg, 30m15.75s}.  During numeric entry, the @kbd{h} or @kbd{o}
13494 keys are recognized as synonyms for @kbd{@@} regardless of display format.
13495 The @kbd{m} and @kbd{s} keys are recognized as synonyms for @kbd{'} and
13496 @kbd{"}, respectively, but only if an @kbd{@@} (or @kbd{h} or @kbd{o}) has
13497 already been typed; otherwise, they have their usual meanings
13498 (@kbd{m-} prefix and @kbd{s-} prefix).  Thus, @kbd{5 "}, @kbd{0 @@ 5 "}, and
13499 @kbd{0 h 5 s} are some of the ways to enter the quantity ``five seconds.''
13500 The @kbd{'} key is recognized as ``minutes'' only if @kbd{@@} (or @kbd{h} or
13501 @kbd{o}) has already been pressed; otherwise it means to switch to algebraic
13502 entry.
13504 @node Date Formats, Truncating the Stack, HMS Formats, Display Modes
13505 @subsection Date Formats
13507 @noindent
13508 @kindex d d
13509 @pindex calc-date-notation
13510 The @kbd{d d} (@code{calc-date-notation}) command controls the display
13511 of date forms (@pxref{Date Forms}).  It prompts for a string which
13512 contains letters that represent the various parts of a date and time.
13513 To show which parts should be omitted when the form represents a pure
13514 date with no time, parts of the string can be enclosed in @samp{< >}
13515 marks.  If you don't include @samp{< >} markers in the format, Calc
13516 guesses at which parts, if any, should be omitted when formatting
13517 pure dates.
13519 The default format is:  @samp{<H:mm:SSpp >Www Mmm D, YYYY}.
13520 An example string in this format is @samp{3:32pm Wed Jan 9, 1991}.
13521 If you enter a blank format string, this default format is
13522 reestablished.
13524 Calc uses @samp{< >} notation for nameless functions as well as for
13525 dates.  @xref{Specifying Operators}.  To avoid confusion with nameless
13526 functions, your date formats should avoid using the @samp{#} character.
13528 @menu
13529 * Date Formatting Codes::
13530 * Free-Form Dates::
13531 * Standard Date Formats::
13532 @end menu
13534 @node Date Formatting Codes, Free-Form Dates, Date Formats, Date Formats
13535 @subsubsection Date Formatting Codes
13537 @noindent
13538 When displaying a date, the current date format is used.  All
13539 characters except for letters and @samp{<} and @samp{>} are
13540 copied literally when dates are formatted.  The portion between
13541 @samp{< >} markers is omitted for pure dates, or included for
13542 date/time forms.  Letters are interpreted according to the table
13543 below.
13545 When dates are read in during algebraic entry, Calc first tries to
13546 match the input string to the current format either with or without
13547 the time part.  The punctuation characters (including spaces) must
13548 match exactly; letter fields must correspond to suitable text in
13549 the input.  If this doesn't work, Calc checks if the input is a
13550 simple number; if so, the number is interpreted as a number of days
13551 since Jan 1, 1 AD.  Otherwise, Calc tries a much more relaxed and
13552 flexible algorithm which is described in the next section.
13554 Weekday names are ignored during reading.
13556 Two-digit year numbers are interpreted as lying in the range
13557 from 1941 to 2039.  Years outside that range are always
13558 entered and displayed in full.  Year numbers with a leading
13559 @samp{+} sign are always interpreted exactly, allowing the
13560 entry and display of the years 1 through 99 AD.
13562 Here is a complete list of the formatting codes for dates:
13564 @table @asis
13565 @item Y
13566 Year:  ``91'' for 1991, ``7'' for 2007, ``+23'' for 23 AD.
13567 @item YY
13568 Year:  ``91'' for 1991, ``07'' for 2007, ``+23'' for 23 AD.
13569 @item BY
13570 Year:  ``91'' for 1991, `` 7'' for 2007, ``+23'' for 23 AD.
13571 @item YYY
13572 Year:  ``1991'' for 1991, ``23'' for 23 AD.
13573 @item YYYY
13574 Year:  ``1991'' for 1991, ``+23'' for 23 AD.
13575 @item aa
13576 Year:  ``ad'' or blank.
13577 @item AA
13578 Year:  ``AD'' or blank.
13579 @item aaa
13580 Year:  ``ad '' or blank.  (Note trailing space.)
13581 @item AAA
13582 Year:  ``AD '' or blank.
13583 @item aaaa
13584 Year:  ``a.d.'' or blank.
13585 @item AAAA
13586 Year:  ``A.D.'' or blank.
13587 @item bb
13588 Year:  ``bc'' or blank.
13589 @item BB
13590 Year:  ``BC'' or blank.
13591 @item bbb
13592 Year:  `` bc'' or blank.  (Note leading space.)
13593 @item BBB
13594 Year:  `` BC'' or blank.
13595 @item bbbb
13596 Year:  ``b.c.'' or blank.
13597 @item BBBB
13598 Year:  ``B.C.'' or blank.
13599 @item M
13600 Month:  ``8'' for August.
13601 @item MM
13602 Month:  ``08'' for August.
13603 @item BM
13604 Month:  `` 8'' for August.
13605 @item MMM
13606 Month:  ``AUG'' for August.
13607 @item Mmm
13608 Month:  ``Aug'' for August.
13609 @item mmm
13610 Month:  ``aug'' for August.
13611 @item MMMM
13612 Month:  ``AUGUST'' for August.
13613 @item Mmmm
13614 Month:  ``August'' for August.
13615 @item D
13616 Day:  ``7'' for 7th day of month.
13617 @item DD
13618 Day:  ``07'' for 7th day of month.
13619 @item BD
13620 Day:  `` 7'' for 7th day of month.
13621 @item W
13622 Weekday:  ``0'' for Sunday, ``6'' for Saturday.
13623 @item WWW
13624 Weekday:  ``SUN'' for Sunday.
13625 @item Www
13626 Weekday:  ``Sun'' for Sunday.
13627 @item www
13628 Weekday:  ``sun'' for Sunday.
13629 @item WWWW
13630 Weekday:  ``SUNDAY'' for Sunday.
13631 @item Wwww
13632 Weekday:  ``Sunday'' for Sunday.
13633 @item d
13634 Day of year:  ``34'' for Feb. 3.
13635 @item ddd
13636 Day of year:  ``034'' for Feb. 3.
13637 @item bdd
13638 Day of year:  `` 34'' for Feb. 3.
13639 @item h
13640 Hour:  ``5'' for 5 AM; ``17'' for 5 PM.
13641 @item hh
13642 Hour:  ``05'' for 5 AM; ``17'' for 5 PM.
13643 @item bh
13644 Hour:  `` 5'' for 5 AM; ``17'' for 5 PM.
13645 @item H
13646 Hour:  ``5'' for 5 AM and 5 PM.
13647 @item HH
13648 Hour:  ``05'' for 5 AM and 5 PM.
13649 @item BH
13650 Hour:  `` 5'' for 5 AM and 5 PM.
13651 @item p
13652 AM/PM:  ``a'' or ``p''.
13653 @item P
13654 AM/PM:  ``A'' or ``P''.
13655 @item pp
13656 AM/PM:  ``am'' or ``pm''.
13657 @item PP
13658 AM/PM:  ``AM'' or ``PM''.
13659 @item pppp
13660 AM/PM:  ``a.m.'' or ``p.m.''.
13661 @item PPPP
13662 AM/PM:  ``A.M.'' or ``P.M.''.
13663 @item m
13664 Minutes:  ``7'' for 7.
13665 @item mm
13666 Minutes:  ``07'' for 7.
13667 @item bm
13668 Minutes:  `` 7'' for 7.
13669 @item s
13670 Seconds:  ``7'' for 7;  ``7.23'' for 7.23.
13671 @item ss
13672 Seconds:  ``07'' for 7;  ``07.23'' for 7.23.
13673 @item bs
13674 Seconds:  `` 7'' for 7;  `` 7.23'' for 7.23.
13675 @item SS
13676 Optional seconds:  ``07'' for 7;  blank for 0.
13677 @item BS
13678 Optional seconds:  `` 7'' for 7;  blank for 0.
13679 @item N
13680 Numeric date/time:  ``726842.25'' for 6:00am Wed Jan 9, 1991.
13681 @item n
13682 Numeric date:  ``726842'' for any time on Wed Jan 9, 1991.
13683 @item J
13684 Julian date/time:  ``2448265.75'' for 6:00am Wed Jan 9, 1991.
13685 @item j
13686 Julian date:  ``2448266'' for any time on Wed Jan 9, 1991.
13687 @item U
13688 Unix time:  ``663400800'' for 6:00am Wed Jan 9, 1991.
13689 @item X
13690 Brackets suppression.  An ``X'' at the front of the format
13691 causes the surrounding @w{@samp{< >}} delimiters to be omitted
13692 when formatting dates.  Note that the brackets are still
13693 required for algebraic entry.
13694 @end table
13696 If ``SS'' or ``BS'' (optional seconds) is preceded by a colon, the
13697 colon is also omitted if the seconds part is zero.
13699 If ``bb,'' ``bbb'' or ``bbbb'' or their upper-case equivalents
13700 appear in the format, then negative year numbers are displayed
13701 without a minus sign.  Note that ``aa'' and ``bb'' are mutually
13702 exclusive.  Some typical usages would be @samp{YYYY AABB};
13703 @samp{AAAYYYYBBB}; @samp{YYYYBBB}.
13705 The formats ``YY,'' ``YYYY,'' ``MM,'' ``DD,'' ``ddd,'' ``hh,'' ``HH,''
13706 ``mm,'' ``ss,'' and ``SS'' actually match any number of digits during
13707 reading unless several of these codes are strung together with no
13708 punctuation in between, in which case the input must have exactly as
13709 many digits as there are letters in the format.
13711 The ``j,'' ``J,'' and ``U'' formats do not make any time zone
13712 adjustment.  They effectively use @samp{julian(x,0)} and
13713 @samp{unixtime(x,0)} to make the conversion; @pxref{Date Arithmetic}.
13715 @node Free-Form Dates, Standard Date Formats, Date Formatting Codes, Date Formats
13716 @subsubsection Free-Form Dates
13718 @noindent
13719 When reading a date form during algebraic entry, Calc falls back
13720 on the algorithm described here if the input does not exactly
13721 match the current date format.  This algorithm generally
13722 ``does the right thing'' and you don't have to worry about it,
13723 but it is described here in full detail for the curious.
13725 Calc does not distinguish between upper- and lower-case letters
13726 while interpreting dates.
13728 First, the time portion, if present, is located somewhere in the
13729 text and then removed.  The remaining text is then interpreted as
13730 the date.
13732 A time is of the form @samp{hh:mm:ss}, possibly with the seconds
13733 part omitted and possibly with an AM/PM indicator added to indicate
13734 12-hour time.  If the AM/PM is present, the minutes may also be
13735 omitted.  The AM/PM part may be any of the words @samp{am},
13736 @samp{pm}, @samp{noon}, or @samp{midnight}; each of these may be
13737 abbreviated to one letter, and the alternate forms @samp{a.m.},
13738 @samp{p.m.}, and @samp{mid} are also understood.  Obviously
13739 @samp{noon} and @samp{midnight} are allowed only on 12:00:00.
13740 The words @samp{noon}, @samp{mid}, and @samp{midnight} are also
13741 recognized with no number attached.
13743 If there is no AM/PM indicator, the time is interpreted in 24-hour
13744 format.
13746 To read the date portion, all words and numbers are isolated
13747 from the string; other characters are ignored.  All words must
13748 be either month names or day-of-week names (the latter of which
13749 are ignored).  Names can be written in full or as three-letter
13750 abbreviations.
13752 Large numbers, or numbers with @samp{+} or @samp{-} signs,
13753 are interpreted as years.  If one of the other numbers is
13754 greater than 12, then that must be the day and the remaining
13755 number in the input is therefore the month.  Otherwise, Calc
13756 assumes the month, day and year are in the same order that they
13757 appear in the current date format.  If the year is omitted, the
13758 current year is taken from the system clock.
13760 If there are too many or too few numbers, or any unrecognizable
13761 words, then the input is rejected.
13763 If there are any large numbers (of five digits or more) other than
13764 the year, they are ignored on the assumption that they are something
13765 like Julian dates that were included along with the traditional
13766 date components when the date was formatted.
13768 One of the words @samp{ad}, @samp{a.d.}, @samp{bc}, or @samp{b.c.}
13769 may optionally be used; the latter two are equivalent to a
13770 minus sign on the year value.
13772 If you always enter a four-digit year, and use a name instead
13773 of a number for the month, there is no danger of ambiguity.
13775 @node Standard Date Formats, , Free-Form Dates, Date Formats
13776 @subsubsection Standard Date Formats
13778 @noindent
13779 There are actually ten standard date formats, numbered 0 through 9.
13780 Entering a blank line at the @kbd{d d} command's prompt gives
13781 you format number 1, Calc's usual format.  You can enter any digit
13782 to select the other formats.
13784 To create your own standard date formats, give a numeric prefix
13785 argument from 0 to 9 to the @w{@kbd{d d}} command.  The format you
13786 enter will be recorded as the new standard format of that
13787 number, as well as becoming the new current date format.
13788 You can save your formats permanently with the @w{@kbd{m m}}
13789 command (@pxref{Mode Settings}).
13791 @table @asis
13792 @item 0
13793 @samp{N}  (Numerical format)
13794 @item 1
13795 @samp{<H:mm:SSpp >Www Mmm D, YYYY}  (American format)
13796 @item 2
13797 @samp{D Mmm YYYY<, h:mm:SS>}  (European format)
13798 @item 3
13799 @samp{Www Mmm BD< hh:mm:ss> YYYY}  (Unix written date format)
13800 @item 4
13801 @samp{M/D/Y< H:mm:SSpp>}  (American slashed format)
13802 @item 5
13803 @samp{D.M.Y< h:mm:SS>}  (European dotted format)
13804 @item 6
13805 @samp{M-D-Y< H:mm:SSpp>}  (American dashed format)
13806 @item 7
13807 @samp{D-M-Y< h:mm:SS>}  (European dashed format)
13808 @item 8
13809 @samp{j<, h:mm:ss>}  (Julian day plus time)
13810 @item 9
13811 @samp{YYddd< hh:mm:ss>}  (Year-day format)
13812 @end table
13814 @node Truncating the Stack, Justification, Date Formats, Display Modes
13815 @subsection Truncating the Stack
13817 @noindent
13818 @kindex d t
13819 @pindex calc-truncate-stack
13820 @cindex Truncating the stack
13821 @cindex Narrowing the stack
13822 The @kbd{d t} (@code{calc-truncate-stack}) command moves the @samp{.}@:
13823 line that marks the top-of-stack up or down in the Calculator buffer.
13824 The number right above that line is considered to the be at the top of
13825 the stack.  Any numbers below that line are ``hidden'' from all stack
13826 operations (although still visible to the user).  This is similar to the
13827 Emacs ``narrowing'' feature, except that the values below the @samp{.}
13828 are @emph{visible}, just temporarily frozen.  This feature allows you to
13829 keep several independent calculations running at once in different parts
13830 of the stack, or to apply a certain command to an element buried deep in
13831 the stack.
13833 Pressing @kbd{d t} by itself moves the @samp{.} to the line the cursor
13834 is on.  Thus, this line and all those below it become hidden.  To un-hide
13835 these lines, move down to the end of the buffer and press @w{@kbd{d t}}.
13836 With a positive numeric prefix argument @expr{n}, @kbd{d t} hides the
13837 bottom @expr{n} values in the buffer.  With a negative argument, it hides
13838 all but the top @expr{n} values.  With an argument of zero, it hides zero
13839 values, i.e., moves the @samp{.} all the way down to the bottom.
13841 @kindex d [
13842 @pindex calc-truncate-up
13843 @kindex d ]
13844 @pindex calc-truncate-down
13845 The @kbd{d [} (@code{calc-truncate-up}) and @kbd{d ]}
13846 (@code{calc-truncate-down}) commands move the @samp{.} up or down one
13847 line at a time (or several lines with a prefix argument).
13849 @node Justification, Labels, Truncating the Stack, Display Modes
13850 @subsection Justification
13852 @noindent
13853 @kindex d <
13854 @pindex calc-left-justify
13855 @kindex d =
13856 @pindex calc-center-justify
13857 @kindex d >
13858 @pindex calc-right-justify
13859 Values on the stack are normally left-justified in the window.  You can
13860 control this arrangement by typing @kbd{d <} (@code{calc-left-justify}),
13861 @kbd{d >} (@code{calc-right-justify}), or @kbd{d =}
13862 (@code{calc-center-justify}).  For example, in Right-Justification mode,
13863 stack entries are displayed flush-right against the right edge of the
13864 window.
13866 If you change the width of the Calculator window you may have to type
13867 @kbd{d @key{SPC}} (@code{calc-refresh}) to re-align right-justified or centered
13868 text.
13870 Right-justification is especially useful together with fixed-point
13871 notation (see @code{d f}; @code{calc-fix-notation}).  With these modes
13872 together, the decimal points on numbers will always line up.
13874 With a numeric prefix argument, the justification commands give you
13875 a little extra control over the display.  The argument specifies the
13876 horizontal ``origin'' of a display line.  It is also possible to
13877 specify a maximum line width using the @kbd{d b} command (@pxref{Normal
13878 Language Modes}).  For reference, the precise rules for formatting and
13879 breaking lines are given below.  Notice that the interaction between
13880 origin and line width is slightly different in each justification
13881 mode.
13883 In Left-Justified mode, the line is indented by a number of spaces
13884 given by the origin (default zero).  If the result is longer than the
13885 maximum line width, if given, or too wide to fit in the Calc window
13886 otherwise, then it is broken into lines which will fit; each broken
13887 line is indented to the origin.
13889 In Right-Justified mode, lines are shifted right so that the rightmost
13890 character is just before the origin, or just before the current
13891 window width if no origin was specified.  If the line is too long
13892 for this, then it is broken; the current line width is used, if
13893 specified, or else the origin is used as a width if that is
13894 specified, or else the line is broken to fit in the window.
13896 In Centering mode, the origin is the column number of the center of
13897 each stack entry.  If a line width is specified, lines will not be
13898 allowed to go past that width; Calc will either indent less or
13899 break the lines if necessary.  If no origin is specified, half the
13900 line width or Calc window width is used.
13902 Note that, in each case, if line numbering is enabled the display
13903 is indented an additional four spaces to make room for the line
13904 number.  The width of the line number is taken into account when
13905 positioning according to the current Calc window width, but not
13906 when positioning by explicit origins and widths.  In the latter
13907 case, the display is formatted as specified, and then uniformly
13908 shifted over four spaces to fit the line numbers.
13910 @node Labels, , Justification, Display Modes
13911 @subsection Labels
13913 @noindent
13914 @kindex d @{
13915 @pindex calc-left-label
13916 The @kbd{d @{} (@code{calc-left-label}) command prompts for a string,
13917 then displays that string to the left of every stack entry.  If the
13918 entries are left-justified (@pxref{Justification}), then they will
13919 appear immediately after the label (unless you specified an origin
13920 greater than the length of the label).  If the entries are centered
13921 or right-justified, the label appears on the far left and does not
13922 affect the horizontal position of the stack entry.
13924 Give a blank string (with @kbd{d @{ @key{RET}}) to turn the label off.
13926 @kindex d @}
13927 @pindex calc-right-label
13928 The @kbd{d @}} (@code{calc-right-label}) command similarly adds a
13929 label on the righthand side.  It does not affect positioning of
13930 the stack entries unless they are right-justified.  Also, if both
13931 a line width and an origin are given in Right-Justified mode, the
13932 stack entry is justified to the origin and the righthand label is
13933 justified to the line width.
13935 One application of labels would be to add equation numbers to
13936 formulas you are manipulating in Calc and then copying into a
13937 document (possibly using Embedded mode).  The equations would
13938 typically be centered, and the equation numbers would be on the
13939 left or right as you prefer.
13941 @node Language Modes, Modes Variable, Display Modes, Mode Settings
13942 @section Language Modes
13944 @noindent
13945 The commands in this section change Calc to use a different notation for
13946 entry and display of formulas, corresponding to the conventions of some
13947 other common language such as Pascal or La@TeX{}.  Objects displayed on the
13948 stack or yanked from the Calculator to an editing buffer will be formatted
13949 in the current language; objects entered in algebraic entry or yanked from
13950 another buffer will be interpreted according to the current language.
13952 The current language has no effect on things written to or read from the
13953 trail buffer, nor does it affect numeric entry.  Only algebraic entry is
13954 affected.  You can make even algebraic entry ignore the current language
13955 and use the standard notation by giving a numeric prefix, e.g., @kbd{C-u '}.
13957 For example, suppose the formula @samp{2*a[1] + atan(a[2])} occurs in a C
13958 program; elsewhere in the program you need the derivatives of this formula
13959 with respect to @samp{a[1]} and @samp{a[2]}.  First, type @kbd{d C}
13960 to switch to C notation.  Now use @code{C-u M-# g} to grab the formula
13961 into the Calculator, @kbd{a d a[1] @key{RET}} to differentiate with respect
13962 to the first variable, and @kbd{M-# y} to yank the formula for the derivative
13963 back into your C program.  Press @kbd{U} to undo the differentiation and
13964 repeat with @kbd{a d a[2] @key{RET}} for the other derivative.
13966 Without being switched into C mode first, Calc would have misinterpreted
13967 the brackets in @samp{a[1]} and @samp{a[2]}, would not have known that
13968 @code{atan} was equivalent to Calc's built-in @code{arctan} function,
13969 and would have written the formula back with notations (like implicit
13970 multiplication) which would not have been valid for a C program.
13972 As another example, suppose you are maintaining a C program and a La@TeX{}
13973 document, each of which needs a copy of the same formula.  You can grab the
13974 formula from the program in C mode, switch to La@TeX{} mode, and yank the
13975 formula into the document in La@TeX{} math-mode format.
13977 Language modes are selected by typing the letter @kbd{d} followed by a
13978 shifted letter key.
13980 @menu
13981 * Normal Language Modes::
13982 * C FORTRAN Pascal::
13983 * TeX and LaTeX Language Modes::
13984 * Eqn Language Mode::
13985 * Mathematica Language Mode::
13986 * Maple Language Mode::
13987 * Compositions::
13988 * Syntax Tables::
13989 @end menu
13991 @node Normal Language Modes, C FORTRAN Pascal, Language Modes, Language Modes
13992 @subsection Normal Language Modes
13994 @noindent
13995 @kindex d N
13996 @pindex calc-normal-language
13997 The @kbd{d N} (@code{calc-normal-language}) command selects the usual
13998 notation for Calc formulas, as described in the rest of this manual.
13999 Matrices are displayed in a multi-line tabular format, but all other
14000 objects are written in linear form, as they would be typed from the
14001 keyboard.
14003 @kindex d O
14004 @pindex calc-flat-language
14005 @cindex Matrix display
14006 The @kbd{d O} (@code{calc-flat-language}) command selects a language
14007 identical with the normal one, except that matrices are written in
14008 one-line form along with everything else.  In some applications this
14009 form may be more suitable for yanking data into other buffers.
14011 @kindex d b
14012 @pindex calc-line-breaking
14013 @cindex Line breaking
14014 @cindex Breaking up long lines
14015 Even in one-line mode, long formulas or vectors will still be split
14016 across multiple lines if they exceed the width of the Calculator window.
14017 The @kbd{d b} (@code{calc-line-breaking}) command turns this line-breaking
14018 feature on and off.  (It works independently of the current language.)
14019 If you give a numeric prefix argument of five or greater to the @kbd{d b}
14020 command, that argument will specify the line width used when breaking
14021 long lines.
14023 @kindex d B
14024 @pindex calc-big-language
14025 The @kbd{d B} (@code{calc-big-language}) command selects a language
14026 which uses textual approximations to various mathematical notations,
14027 such as powers, quotients, and square roots:
14029 @example
14030   ____________
14031  | a + 1    2
14032  | ----- + c
14033 \|   b
14034 @end example
14036 @noindent
14037 in place of @samp{sqrt((a+1)/b + c^2)}.
14039 Subscripts like @samp{a_i} are displayed as actual subscripts in Big
14040 mode.  Double subscripts, @samp{a_i_j} (@samp{subscr(subscr(a, i), j)})
14041 are displayed as @samp{a} with subscripts separated by commas:
14042 @samp{i, j}.  They must still be entered in the usual underscore
14043 notation.
14045 One slight ambiguity of Big notation is that
14047 @example
14048   3
14049 - -
14050   4
14051 @end example
14053 @noindent
14054 can represent either the negative rational number @expr{-3:4}, or the
14055 actual expression @samp{-(3/4)}; but the latter formula would normally
14056 never be displayed because it would immediately be evaluated to
14057 @expr{-3:4} or @expr{-0.75}, so this ambiguity is not a problem in
14058 typical use.
14060 Non-decimal numbers are displayed with subscripts.  Thus there is no
14061 way to tell the difference between @samp{16#C2} and @samp{C2_16},
14062 though generally you will know which interpretation is correct.
14063 Logarithms @samp{log(x,b)} and @samp{log10(x)} also use subscripts
14064 in Big mode.
14066 In Big mode, stack entries often take up several lines.  To aid
14067 readability, stack entries are separated by a blank line in this mode.
14068 You may find it useful to expand the Calc window's height using
14069 @kbd{C-x ^} (@code{enlarge-window}) or to make the Calc window the only
14070 one on the screen with @kbd{C-x 1} (@code{delete-other-windows}).
14072 Long lines are currently not rearranged to fit the window width in
14073 Big mode, so you may need to use the @kbd{<} and @kbd{>} keys
14074 to scroll across a wide formula.  For really big formulas, you may
14075 even need to use @kbd{@{} and @kbd{@}} to scroll up and down.
14077 @kindex d U
14078 @pindex calc-unformatted-language
14079 The @kbd{d U} (@code{calc-unformatted-language}) command altogether disables
14080 the use of operator notation in formulas.  In this mode, the formula
14081 shown above would be displayed:
14083 @example
14084 sqrt(add(div(add(a, 1), b), pow(c, 2)))
14085 @end example
14087 These four modes differ only in display format, not in the format
14088 expected for algebraic entry.  The standard Calc operators work in
14089 all four modes, and unformatted notation works in any language mode
14090 (except that Mathematica mode expects square brackets instead of
14091 parentheses).
14093 @node C FORTRAN Pascal, TeX and LaTeX Language Modes, Normal Language Modes, Language Modes
14094 @subsection C, FORTRAN, and Pascal Modes
14096 @noindent
14097 @kindex d C
14098 @pindex calc-c-language
14099 @cindex C language
14100 The @kbd{d C} (@code{calc-c-language}) command selects the conventions
14101 of the C language for display and entry of formulas.  This differs from
14102 the normal language mode in a variety of (mostly minor) ways.  In
14103 particular, C language operators and operator precedences are used in
14104 place of Calc's usual ones.  For example, @samp{a^b} means @samp{xor(a,b)}
14105 in C mode; a value raised to a power is written as a function call,
14106 @samp{pow(a,b)}.
14108 In C mode, vectors and matrices use curly braces instead of brackets.
14109 Octal and hexadecimal values are written with leading @samp{0} or @samp{0x}
14110 rather than using the @samp{#} symbol.  Array subscripting is
14111 translated into @code{subscr} calls, so that @samp{a[i]} in C
14112 mode is the same as @samp{a_i} in Normal mode.  Assignments
14113 turn into the @code{assign} function, which Calc normally displays
14114 using the @samp{:=} symbol.
14116 The variables @code{pi} and @code{e} would be displayed @samp{pi}
14117 and @samp{e} in Normal mode, but in C mode they are displayed as
14118 @samp{M_PI} and @samp{M_E}, corresponding to the names of constants
14119 typically provided in the @file{<math.h>} header.  Functions whose
14120 names are different in C are translated automatically for entry and
14121 display purposes.  For example, entering @samp{asin(x)} will push the
14122 formula @samp{arcsin(x)} onto the stack; this formula will be displayed
14123 as @samp{asin(x)} as long as C mode is in effect.
14125 @kindex d P
14126 @pindex calc-pascal-language
14127 @cindex Pascal language
14128 The @kbd{d P} (@code{calc-pascal-language}) command selects Pascal
14129 conventions.  Like C mode, Pascal mode interprets array brackets and uses
14130 a different table of operators.  Hexadecimal numbers are entered and
14131 displayed with a preceding dollar sign.  (Thus the regular meaning of
14132 @kbd{$2} during algebraic entry does not work in Pascal mode, though
14133 @kbd{$} (and @kbd{$$}, etc.) not followed by digits works the same as
14134 always.)  No special provisions are made for other non-decimal numbers,
14135 vectors, and so on, since there is no universally accepted standard way
14136 of handling these in Pascal.
14138 @kindex d F
14139 @pindex calc-fortran-language
14140 @cindex FORTRAN language
14141 The @kbd{d F} (@code{calc-fortran-language}) command selects FORTRAN
14142 conventions.  Various function names are transformed into FORTRAN
14143 equivalents.  Vectors are written as @samp{/1, 2, 3/}, and may be
14144 entered this way or using square brackets.  Since FORTRAN uses round
14145 parentheses for both function calls and array subscripts, Calc displays
14146 both in the same way; @samp{a(i)} is interpreted as a function call
14147 upon reading, and subscripts must be entered as @samp{subscr(a, i)}.
14148 Also, if the variable @code{a} has been declared to have type
14149 @code{vector} or @code{matrix} then @samp{a(i)} will be parsed as a
14150 subscript.  (@xref{Declarations}.)  Usually it doesn't matter, though;
14151 if you enter the subscript expression @samp{a(i)} and Calc interprets
14152 it as a function call, you'll never know the difference unless you
14153 switch to another language mode or replace @code{a} with an actual
14154 vector (or unless @code{a} happens to be the name of a built-in
14155 function!).
14157 Underscores are allowed in variable and function names in all of these
14158 language modes.  The underscore here is equivalent to the @samp{#} in
14159 Normal mode, or to hyphens in the underlying Emacs Lisp variable names.
14161 FORTRAN and Pascal modes normally do not adjust the case of letters in
14162 formulas.  Most built-in Calc names use lower-case letters.  If you use a
14163 positive numeric prefix argument with @kbd{d P} or @kbd{d F}, these
14164 modes will use upper-case letters exclusively for display, and will
14165 convert to lower-case on input.  With a negative prefix, these modes
14166 convert to lower-case for display and input.
14168 @node TeX and LaTeX Language Modes, Eqn Language Mode, C FORTRAN Pascal, Language Modes
14169 @subsection @TeX{} and La@TeX{} Language Modes
14171 @noindent
14172 @kindex d T
14173 @pindex calc-tex-language
14174 @cindex TeX language
14175 @kindex d L
14176 @pindex calc-latex-language
14177 @cindex LaTeX language
14178 The @kbd{d T} (@code{calc-tex-language}) command selects the conventions
14179 of ``math mode'' in Donald Knuth's @TeX{} typesetting language,
14180 and the @kbd{d L} (@code{calc-latex-language}) command selects the
14181 conventions of ``math mode'' in La@TeX{}, a typesetting language that
14182 uses @TeX{} as its formatting engine.  Calc's La@TeX{} language mode can
14183 read any formula that the @TeX{} language mode can, although La@TeX{}
14184 mode may display it differently.
14186 Formulas are entered and displayed in the appropriate notation;
14187 @texline @math{\sin(a/b)}
14188 @infoline @expr{sin(a/b)}
14189 will appear as @samp{\sin\left( a \over b \right)} in @TeX{} mode and
14190 @samp{\sin\left(\frac@{a@}@{b@}\right)} in La@TeX{} mode.
14191 Math formulas are often enclosed by @samp{$ $} signs in @TeX{} and
14192 La@TeX{}; these should be omitted when interfacing with Calc.  To Calc,
14193 the @samp{$} sign has the same meaning it always does in algebraic
14194 formulas (a reference to an existing entry on the stack).
14196 Complex numbers are displayed as in @samp{3 + 4i}.  Fractions and
14197 quotients are written using @code{\over} in @TeX{} mode (as in 
14198 @code{@{a \over b@}}) and @code{\frac} in La@TeX{} mode (as in
14199 @code{\frac@{a@}@{b@}});  binomial coefficients are written with
14200 @code{\choose} in @TeX{} mode (as in @code{@{a \choose b@}}) and
14201 @code{\binom} in La@TeX{} mode (as in @code{\binom@{a@}@{b@}}).
14202 Interval forms are written with @code{\ldots}, and error forms are
14203 written with @code{\pm}. Absolute values are written as in 
14204 @samp{|x + 1|}, and the floor and ceiling functions are written with
14205 @code{\lfloor}, @code{\rfloor}, etc. The words @code{\left} and
14206 @code{\right} are ignored when reading formulas in @TeX{} and La@TeX{}
14207 modes.  Both @code{inf} and @code{uinf} are written as @code{\infty};
14208 when read, @code{\infty} always translates to @code{inf}.
14210 Function calls are written the usual way, with the function name followed
14211 by the arguments in parentheses.  However, functions for which @TeX{}
14212 and La@TeX{} have special names (like @code{\sin}) will use curly braces
14213 instead of parentheses for very simple arguments.  During input, curly
14214 braces and parentheses work equally well for grouping, but when the
14215 document is formatted the curly braces will be invisible.  Thus the
14216 printed result is 
14217 @texline @math{\sin{2 x}}
14218 @infoline @expr{sin 2x} 
14219 but 
14220 @texline @math{\sin(2 + x)}.
14221 @infoline @expr{sin(2 + x)}.
14223 Function and variable names not treated specially by @TeX{} and La@TeX{}
14224 are simply written out as-is, which will cause them to come out in
14225 italic letters in the printed document.  If you invoke @kbd{d T} or
14226 @kbd{d L} with a positive numeric prefix argument, names of more than
14227 one character will instead be enclosed in a protective commands that
14228 will prevent them from being typeset in the math italics; they will be
14229 written @samp{\hbox@{@var{name}@}} in @TeX{} mode and 
14230 @samp{\text@{@var{name}@}} in La@TeX{} mode.  The
14231 @samp{\hbox@{ @}} and @samp{\text@{ @}} notations are ignored during
14232 reading.  If you use a negative prefix argument, such function names are
14233 written @samp{\@var{name}}, and function names that begin with @code{\} during
14234 reading have the @code{\} removed.  (Note that in this mode, long
14235 variable names are still written with @code{\hbox} or @code{\text}.
14236 However, you can always make an actual variable name like @code{\bar} in
14237 any @TeX{} mode.)
14239 During reading, text of the form @samp{\matrix@{ ...@: @}} is replaced
14240 by @samp{[ ...@: ]}.  The same also applies to @code{\pmatrix} and
14241 @code{\bmatrix}.  In La@TeX{} mode this also applies to 
14242 @samp{\begin@{matrix@} ... \end@{matrix@}},
14243 @samp{\begin@{bmatrix@} ... \end@{bmatrix@}},
14244 @samp{\begin@{pmatrix@} ... \end@{pmatrix@}}, as well as
14245 @samp{\begin@{smallmatrix@} ... \end@{smallmatrix@}}.
14246 The symbol @samp{&} is interpreted as a comma,
14247 and the symbols @samp{\cr} and @samp{\\} are interpreted as semicolons.
14248 During output, matrices are displayed in @samp{\matrix@{ a & b \\ c & d@}}
14249 format in @TeX{} mode and in 
14250 @samp{\begin@{pmatrix@} a & b \\ c & d \end@{pmatrix@}} format in
14251 La@TeX{} mode; you may need to edit this afterwards to change to your
14252 preferred matrix form.  If you invoke @kbd{d T} or @kbd{d L} with an
14253 argument of 2 or -2, then matrices will be displayed in two-dimensional
14254 form, such as 
14256 @example
14257 \begin@{pmatrix@}
14258 a & b \\
14259 c & d
14260 \end@{pmatrix@}
14261 @end example
14263 @noindent
14264 This may be convenient for isolated matrices, but could lead to
14265 expressions being displayed like
14267 @example
14268 \begin@{pmatrix@} \times x
14269 a & b \\
14270 c & d
14271 \end@{pmatrix@}
14272 @end example
14274 @noindent
14275 While this wouldn't bother Calc, it is incorrect La@TeX{}.
14276 (Similarly for @TeX{}.)
14278 Accents like @code{\tilde} and @code{\bar} translate into function
14279 calls internally (@samp{tilde(x)}, @samp{bar(x)}).  The @code{\underline}
14280 sequence is treated as an accent.  The @code{\vec} accent corresponds
14281 to the function name @code{Vec}, because @code{vec} is the name of
14282 a built-in Calc function.  The following table shows the accents
14283 in Calc, @TeX{}, La@TeX{} and @dfn{eqn} (described in the next section):
14285 @iftex
14286 @begingroup
14287 @let@calcindexershow=@calcindexernoshow  @c Suppress marginal notes
14288 @let@calcindexersh=@calcindexernoshow
14289 @end iftex
14290 @ignore
14291 @starindex
14292 @end ignore
14293 @tindex acute
14294 @ignore
14295 @starindex
14296 @end ignore
14297 @tindex Acute
14298 @ignore
14299 @starindex
14300 @end ignore
14301 @tindex bar
14302 @ignore
14303 @starindex
14304 @end ignore
14305 @tindex Bar
14306 @ignore
14307 @starindex
14308 @end ignore
14309 @tindex breve
14310 @ignore
14311 @starindex
14312 @end ignore
14313 @tindex Breve
14314 @ignore
14315 @starindex
14316 @end ignore
14317 @tindex check
14318 @ignore
14319 @starindex
14320 @end ignore
14321 @tindex Check
14322 @ignore
14323 @starindex
14324 @end ignore
14325 @tindex dddot
14326 @ignore
14327 @starindex
14328 @end ignore
14329 @tindex ddddot
14330 @ignore
14331 @starindex
14332 @end ignore
14333 @tindex dot
14334 @ignore
14335 @starindex
14336 @end ignore
14337 @tindex Dot
14338 @ignore
14339 @starindex
14340 @end ignore
14341 @tindex dotdot
14342 @ignore
14343 @starindex
14344 @end ignore
14345 @tindex DotDot
14346 @ignore
14347 @starindex
14348 @end ignore
14349 @tindex dyad
14350 @ignore
14351 @starindex
14352 @end ignore
14353 @tindex grave
14354 @ignore
14355 @starindex
14356 @end ignore
14357 @tindex Grave
14358 @ignore
14359 @starindex
14360 @end ignore
14361 @tindex hat
14362 @ignore
14363 @starindex
14364 @end ignore
14365 @tindex Hat
14366 @ignore
14367 @starindex
14368 @end ignore
14369 @tindex Prime
14370 @ignore
14371 @starindex
14372 @end ignore
14373 @tindex tilde
14374 @ignore
14375 @starindex
14376 @end ignore
14377 @tindex Tilde
14378 @ignore
14379 @starindex
14380 @end ignore
14381 @tindex under
14382 @ignore
14383 @starindex
14384 @end ignore
14385 @tindex Vec
14386 @ignore
14387 @starindex
14388 @end ignore
14389 @tindex VEC
14390 @iftex
14391 @endgroup
14392 @end iftex
14393 @example
14394 Calc      TeX           LaTeX         eqn
14395 ----      ---           -----         ---
14396 acute     \acute        \acute        
14397 Acute                   \Acute        
14398 bar       \bar          \bar          bar
14399 Bar                     \Bar
14400 breve     \breve        \breve        
14401 Breve                   \Breve        
14402 check     \check        \check        
14403 Check                   \Check        
14404 dddot                   \dddot
14405 ddddot                  \ddddot
14406 dot       \dot          \dot          dot
14407 Dot                     \Dot
14408 dotdot    \ddot         \ddot         dotdot
14409 DotDot                  \Ddot         
14410 dyad                                  dyad
14411 grave     \grave        \grave        
14412 Grave                   \Grave        
14413 hat       \hat          \hat          hat
14414 Hat                     \Hat          
14415 Prime                                 prime
14416 tilde     \tilde        \tilde        tilde
14417 Tilde                   \Tilde
14418 under     \underline    \underline    under
14419 Vec       \vec          \vec          vec
14420 VEC                     \Vec
14421 @end example
14423 The @samp{=>} (evaluates-to) operator appears as a @code{\to} symbol:
14424 @samp{@{@var{a} \to @var{b}@}}.  @TeX{} defines @code{\to} as an
14425 alias for @code{\rightarrow}.  However, if the @samp{=>} is the
14426 top-level expression being formatted, a slightly different notation
14427 is used:  @samp{\evalto @var{a} \to @var{b}}.  The @code{\evalto}
14428 word is ignored by Calc's input routines, and is undefined in @TeX{}.
14429 You will typically want to include one of the following definitions
14430 at the top of a @TeX{} file that uses @code{\evalto}:
14432 @example
14433 \def\evalto@{@}
14434 \def\evalto#1\to@{@}
14435 @end example
14437 The first definition formats evaluates-to operators in the usual
14438 way.  The second causes only the @var{b} part to appear in the
14439 printed document; the @var{a} part and the arrow are hidden.
14440 Another definition you may wish to use is @samp{\let\to=\Rightarrow}
14441 which causes @code{\to} to appear more like Calc's @samp{=>} symbol.
14442 @xref{Evaluates-To Operator}, for a discussion of @code{evalto}.
14444 The complete set of @TeX{} control sequences that are ignored during
14445 reading is:
14447 @example
14448 \hbox  \mbox  \text  \left  \right
14449 \,  \>  \:  \;  \!  \quad  \qquad  \hfil  \hfill
14450 \displaystyle  \textstyle  \dsize  \tsize
14451 \scriptstyle  \scriptscriptstyle  \ssize  \ssize
14452 \rm  \bf  \it  \sl  \roman  \bold  \italic  \slanted
14453 \cal  \mit  \Cal  \Bbb  \frak  \goth
14454 \evalto
14455 @end example
14457 Note that, because these symbols are ignored, reading a @TeX{} or
14458 La@TeX{} formula into Calc and writing it back out may lose spacing and
14459 font information. 
14461 Also, the ``discretionary multiplication sign'' @samp{\*} is read
14462 the same as @samp{*}.
14464 @ifinfo
14465 The @TeX{} version of this manual includes some printed examples at the
14466 end of this section.
14467 @end ifinfo
14468 @iftex
14469 Here are some examples of how various Calc formulas are formatted in @TeX{}:
14471 @example
14472 @group
14473 sin(a^2 / b_i)
14474 \sin\left( {a^2 \over b_i} \right)
14475 @end group
14476 @end example
14477 @tex
14478 $$ \sin\left( a^2 \over b_i \right) $$
14479 @end tex
14480 @sp 1
14482 @example
14483 @group
14484 [(3, 4), 3:4, 3 +/- 4, [3 .. inf)]
14485 [3 + 4i, @{3 \over 4@}, 3 \pm 4, [3 \ldots \infty)]
14486 @end group
14487 @end example
14488 @tex
14489 \turnoffactive
14490 $$ [3 + 4i, {3 \over 4}, 3 \pm 4, [ 3 \ldots \infty)] $$
14491 @end tex
14492 @sp 1
14494 @example
14495 @group
14496 [abs(a), abs(a / b), floor(a), ceil(a / b)]
14497 [|a|, \left| a \over b \right|,
14498  \lfloor a \rfloor, \left\lceil a \over b \right\rceil]
14499 @end group
14500 @end example
14501 @tex
14502 $$ [|a|, \left| a \over b \right|,
14503     \lfloor a \rfloor, \left\lceil a \over b \right\rceil] $$
14504 @end tex
14505 @sp 1
14507 @example
14508 @group
14509 [sin(a), sin(2 a), sin(2 + a), sin(a / b)]
14510 [\sin@{a@}, \sin@{2 a@}, \sin(2 + a),
14511  \sin\left( @{a \over b@} \right)]
14512 @end group
14513 @end example
14514 @tex
14515 \turnoffactive
14516 $$ [\sin{a}, \sin{2 a}, \sin(2 + a), \sin\left( {a \over b} \right)] $$
14517 @end tex
14518 @sp 2
14520 First with plain @kbd{d T}, then with @kbd{C-u d T}, then finally with
14521 @kbd{C-u - d T} (using the example definition
14522 @samp{\def\foo#1@{\tilde F(#1)@}}:
14524 @example
14525 @group
14526 [f(a), foo(bar), sin(pi)]
14527 [f(a), foo(bar), \sin{\pi}]
14528 [f(a), \hbox@{foo@}(\hbox@{bar@}), \sin@{\pi@}]
14529 [f(a), \foo@{\hbox@{bar@}@}, \sin@{\pi@}]
14530 @end group
14531 @end example
14532 @tex
14533 $$ [f(a), foo(bar), \sin{\pi}] $$
14534 $$ [f(a), \hbox{foo}(\hbox{bar}), \sin{\pi}] $$
14535 $$ [f(a), \tilde F(\hbox{bar}), \sin{\pi}] $$
14536 @end tex
14537 @sp 2
14539 First with @samp{\def\evalto@{@}}, then with @samp{\def\evalto#1\to@{@}}:
14541 @example
14542 @group
14543 2 + 3 => 5
14544 \evalto 2 + 3 \to 5
14545 @end group
14546 @end example
14547 @tex
14548 \turnoffactive
14549 $$ 2 + 3 \to 5 $$
14550 $$ 5 $$
14551 @end tex
14552 @sp 2
14554 First with standard @code{\to}, then with @samp{\let\to\Rightarrow}:
14556 @example
14557 @group
14558 [2 + 3 => 5, a / 2 => (b + c) / 2]
14559 [@{2 + 3 \to 5@}, @{@{a \over 2@} \to @{b + c \over 2@}@}]
14560 @end group
14561 @end example
14562 @tex
14563 \turnoffactive
14564 $$ [{2 + 3 \to 5}, {{a \over 2} \to {b + c \over 2}}] $$
14565 {\let\to\Rightarrow
14566 $$ [{2 + 3 \to 5}, {{a \over 2} \to {b + c \over 2}}] $$}
14567 @end tex
14568 @sp 2
14570 Matrices normally, then changing @code{\matrix} to @code{\pmatrix}:
14572 @example
14573 @group
14574 [ [ a / b, 0 ], [ 0, 2^(x + 1) ] ]
14575 \matrix@{ @{a \over b@} & 0 \\ 0 & 2^@{(x + 1)@} @}
14576 \pmatrix@{ @{a \over b@} & 0 \\ 0 & 2^@{(x + 1)@} @}
14577 @end group
14578 @end example
14579 @tex
14580 \turnoffactive
14581 $$ \matrix{ {a \over b} & 0 \cr 0 & 2^{(x + 1)} } $$
14582 $$ \pmatrix{ {a \over b} & 0 \cr 0 & 2^{(x + 1)} } $$
14583 @end tex
14584 @sp 2
14585 @end iftex
14587 @node Eqn Language Mode, Mathematica Language Mode, TeX and LaTeX Language Modes, Language Modes
14588 @subsection Eqn Language Mode
14590 @noindent
14591 @kindex d E
14592 @pindex calc-eqn-language
14593 @dfn{Eqn} is another popular formatter for math formulas.  It is
14594 designed for use with the TROFF text formatter, and comes standard
14595 with many versions of Unix.  The @kbd{d E} (@code{calc-eqn-language})
14596 command selects @dfn{eqn} notation.
14598 The @dfn{eqn} language's main idiosyncrasy is that whitespace plays
14599 a significant part in the parsing of the language.  For example,
14600 @samp{sqrt x+1 + y} treats @samp{x+1} as the argument of the
14601 @code{sqrt} operator.  @dfn{Eqn} also understands more conventional
14602 grouping using curly braces:  @samp{sqrt@{x+1@} + y}.  Braces are
14603 required only when the argument contains spaces.
14605 In Calc's @dfn{eqn} mode, however, curly braces are required to
14606 delimit arguments of operators like @code{sqrt}.  The first of the
14607 above examples would treat only the @samp{x} as the argument of
14608 @code{sqrt}, and in fact @samp{sin x+1} would be interpreted as
14609 @samp{sin * x + 1}, because @code{sin} is not a special operator
14610 in the @dfn{eqn} language.  If you always surround the argument
14611 with curly braces, Calc will never misunderstand.
14613 Calc also understands parentheses as grouping characters.  Another
14614 peculiarity of @dfn{eqn}'s syntax makes it advisable to separate
14615 words with spaces from any surrounding characters that aren't curly
14616 braces, so Calc writes @samp{sin ( x + y )} in @dfn{eqn} mode.
14617 (The spaces around @code{sin} are important to make @dfn{eqn}
14618 recognize that @code{sin} should be typeset in a roman font, and
14619 the spaces around @code{x} and @code{y} are a good idea just in
14620 case the @dfn{eqn} document has defined special meanings for these
14621 names, too.)
14623 Powers and subscripts are written with the @code{sub} and @code{sup}
14624 operators, respectively.  Note that the caret symbol @samp{^} is
14625 treated the same as a space in @dfn{eqn} mode, as is the @samp{~}
14626 symbol (these are used to introduce spaces of various widths into
14627 the typeset output of @dfn{eqn}).
14629 As in La@TeX{} mode, Calc's formatter omits parentheses around the
14630 arguments of functions like @code{ln} and @code{sin} if they are
14631 ``simple-looking''; in this case Calc surrounds the argument with
14632 braces, separated by a @samp{~} from the function name: @samp{sin~@{x@}}.
14634 Font change codes (like @samp{roman @var{x}}) and positioning codes
14635 (like @samp{~} and @samp{down @var{n} @var{x}}) are ignored by the
14636 @dfn{eqn} reader.  Also ignored are the words @code{left}, @code{right},
14637 @code{mark}, and @code{lineup}.  Quotation marks in @dfn{eqn} mode input
14638 are treated the same as curly braces: @samp{sqrt "1+x"} is equivalent to
14639 @samp{sqrt @{1+x@}}; this is only an approximation to the true meaning
14640 of quotes in @dfn{eqn}, but it is good enough for most uses.
14642 Accent codes (@samp{@var{x} dot}) are handled by treating them as
14643 function calls (@samp{dot(@var{x})}) internally.  
14644 @xref{TeX and LaTeX Language Modes}, for a table of these accent
14645 functions.  The @code{prime} accent is treated specially if it occurs on
14646 a variable or function name: @samp{f prime prime @w{( x prime )}} is
14647 stored internally as @samp{f'@w{'}(x')}.  For example, taking the
14648 derivative of @samp{f(2 x)} with @kbd{a d x} will produce @samp{2 f'(2
14649 x)}, which @dfn{eqn} mode will display as @samp{2 f prime ( 2 x )}.
14651 Assignments are written with the @samp{<-} (left-arrow) symbol,
14652 and @code{evalto} operators are written with @samp{->} or
14653 @samp{evalto ... ->} (@pxref{TeX and LaTeX Language Modes}, for a discussion
14654 of this).  The regular Calc symbols @samp{:=} and @samp{=>} are also
14655 recognized for these operators during reading.
14657 Vectors in @dfn{eqn} mode use regular Calc square brackets, but
14658 matrices are formatted as @samp{matrix @{ ccol @{ a above b @} ... @}}.
14659 The words @code{lcol} and @code{rcol} are recognized as synonyms
14660 for @code{ccol} during input, and are generated instead of @code{ccol}
14661 if the matrix justification mode so specifies.
14663 @node Mathematica Language Mode, Maple Language Mode, Eqn Language Mode, Language Modes
14664 @subsection Mathematica Language Mode
14666 @noindent
14667 @kindex d M
14668 @pindex calc-mathematica-language
14669 @cindex Mathematica language
14670 The @kbd{d M} (@code{calc-mathematica-language}) command selects the
14671 conventions of Mathematica.  Notable differences in Mathematica mode
14672 are that the names of built-in functions are capitalized, and function
14673 calls use square brackets instead of parentheses.  Thus the Calc
14674 formula @samp{sin(2 x)} is entered and displayed @w{@samp{Sin[2 x]}} in
14675 Mathematica mode.
14677 Vectors and matrices use curly braces in Mathematica.  Complex numbers
14678 are written @samp{3 + 4 I}.  The standard special constants in Calc are
14679 written @code{Pi}, @code{E}, @code{I}, @code{GoldenRatio}, @code{EulerGamma},
14680 @code{Infinity}, @code{ComplexInfinity}, and @code{Indeterminate} in
14681 Mathematica mode.
14682 Non-decimal numbers are written, e.g., @samp{16^^7fff}.  Floating-point
14683 numbers in scientific notation are written @samp{1.23*10.^3}.
14684 Subscripts use double square brackets: @samp{a[[i]]}.
14686 @node Maple Language Mode, Compositions, Mathematica Language Mode, Language Modes
14687 @subsection Maple Language Mode
14689 @noindent
14690 @kindex d W
14691 @pindex calc-maple-language
14692 @cindex Maple language
14693 The @kbd{d W} (@code{calc-maple-language}) command selects the
14694 conventions of Maple.
14696 Maple's language is much like C.  Underscores are allowed in symbol
14697 names; square brackets are used for subscripts; explicit @samp{*}s for
14698 multiplications are required.  Use either @samp{^} or @samp{**} to
14699 denote powers.
14701 Maple uses square brackets for lists and curly braces for sets.  Calc
14702 interprets both notations as vectors, and displays vectors with square
14703 brackets.  This means Maple sets will be converted to lists when they
14704 pass through Calc.  As a special case, matrices are written as calls
14705 to the function @code{matrix}, given a list of lists as the argument,
14706 and can be read in this form or with all-capitals @code{MATRIX}.
14708 The Maple interval notation @samp{2 .. 3} has no surrounding brackets;
14709 Calc reads @samp{2 .. 3} as the closed interval @samp{[2 .. 3]}, and
14710 writes any kind of interval as @samp{2 .. 3}.  This means you cannot
14711 see the difference between an open and a closed interval while in
14712 Maple display mode.
14714 Maple writes complex numbers as @samp{3 + 4*I}.  Its special constants
14715 are @code{Pi}, @code{E}, @code{I}, and @code{infinity} (all three of
14716 @code{inf}, @code{uinf}, and @code{nan} display as @code{infinity}).
14717 Floating-point numbers are written @samp{1.23*10.^3}.
14719 Among things not currently handled by Calc's Maple mode are the
14720 various quote symbols, procedures and functional operators, and
14721 inert (@samp{&}) operators.
14723 @node Compositions, Syntax Tables, Maple Language Mode, Language Modes
14724 @subsection Compositions
14726 @noindent
14727 @cindex Compositions
14728 There are several @dfn{composition functions} which allow you to get
14729 displays in a variety of formats similar to those in Big language
14730 mode.  Most of these functions do not evaluate to anything; they are
14731 placeholders which are left in symbolic form by Calc's evaluator but
14732 are recognized by Calc's display formatting routines.
14734 Two of these, @code{string} and @code{bstring}, are described elsewhere.
14735 @xref{Strings}.  For example, @samp{string("ABC")} is displayed as
14736 @samp{ABC}.  When viewed on the stack it will be indistinguishable from
14737 the variable @code{ABC}, but internally it will be stored as
14738 @samp{string([65, 66, 67])} and can still be manipulated this way; for
14739 example, the selection and vector commands @kbd{j 1 v v j u} would
14740 select the vector portion of this object and reverse the elements, then
14741 deselect to reveal a string whose characters had been reversed.
14743 The composition functions do the same thing in all language modes
14744 (although their components will of course be formatted in the current
14745 language mode).  The one exception is Unformatted mode (@kbd{d U}),
14746 which does not give the composition functions any special treatment.
14747 The functions are discussed here because of their relationship to
14748 the language modes.
14750 @menu
14751 * Composition Basics::
14752 * Horizontal Compositions::
14753 * Vertical Compositions::
14754 * Other Compositions::
14755 * Information about Compositions::
14756 * User-Defined Compositions::
14757 @end menu
14759 @node Composition Basics, Horizontal Compositions, Compositions, Compositions
14760 @subsubsection Composition Basics
14762 @noindent
14763 Compositions are generally formed by stacking formulas together
14764 horizontally or vertically in various ways.  Those formulas are
14765 themselves compositions.  @TeX{} users will find this analogous
14766 to @TeX{}'s ``boxes.''  Each multi-line composition has a
14767 @dfn{baseline}; horizontal compositions use the baselines to
14768 decide how formulas should be positioned relative to one another.
14769 For example, in the Big mode formula
14771 @example
14772 @group
14773           2
14774      a + b
14775 17 + ------
14776        c
14777 @end group
14778 @end example
14780 @noindent
14781 the second term of the sum is four lines tall and has line three as
14782 its baseline.  Thus when the term is combined with 17, line three
14783 is placed on the same level as the baseline of 17.
14785 @tex
14786 \bigskip
14787 @end tex
14789 Another important composition concept is @dfn{precedence}.  This is
14790 an integer that represents the binding strength of various operators.
14791 For example, @samp{*} has higher precedence (195) than @samp{+} (180),
14792 which means that @samp{(a * b) + c} will be formatted without the
14793 parentheses, but @samp{a * (b + c)} will keep the parentheses.
14795 The operator table used by normal and Big language modes has the
14796 following precedences:
14798 @example
14799 _     1200   @r{(subscripts)}
14800 %     1100   @r{(as in n}%@r{)}
14801 -     1000   @r{(as in }-@r{n)}
14802 !     1000   @r{(as in }!@r{n)}
14803 mod    400
14804 +/-    300
14805 !!     210    @r{(as in n}!!@r{)}
14806 !      210    @r{(as in n}!@r{)}
14807 ^      200
14808 *      195    @r{(or implicit multiplication)}
14809 / % \  190
14810 + -    180    @r{(as in a}+@r{b)}
14811 |      170
14812 < =    160    @r{(and other relations)}
14813 &&     110
14814 ||     100
14815 ? :     90
14816 !!!     85
14817 &&&     80
14818 |||     75
14819 :=      50
14820 ::      45
14821 =>      40
14822 @end example
14824 The general rule is that if an operator with precedence @expr{n}
14825 occurs as an argument to an operator with precedence @expr{m}, then
14826 the argument is enclosed in parentheses if @expr{n < m}.  Top-level
14827 expressions and expressions which are function arguments, vector
14828 components, etc., are formatted with precedence zero (so that they
14829 normally never get additional parentheses).
14831 For binary left-associative operators like @samp{+}, the righthand
14832 argument is actually formatted with one-higher precedence than shown
14833 in the table.  This makes sure @samp{(a + b) + c} omits the parentheses,
14834 but the unnatural form @samp{a + (b + c)} keeps its parentheses.
14835 Right-associative operators like @samp{^} format the lefthand argument
14836 with one-higher precedence.
14838 @ignore
14839 @starindex
14840 @end ignore
14841 @tindex cprec
14842 The @code{cprec} function formats an expression with an arbitrary
14843 precedence.  For example, @samp{cprec(abc, 185)} will combine into
14844 sums and products as follows:  @samp{7 + abc}, @samp{7 (abc)} (because
14845 this @code{cprec} form has higher precedence than addition, but lower
14846 precedence than multiplication).
14848 @tex
14849 \bigskip
14850 @end tex
14852 A final composition issue is @dfn{line breaking}.  Calc uses two
14853 different strategies for ``flat'' and ``non-flat'' compositions.
14854 A non-flat composition is anything that appears on multiple lines
14855 (not counting line breaking).  Examples would be matrices and Big
14856 mode powers and quotients.  Non-flat compositions are displayed
14857 exactly as specified.  If they come out wider than the current
14858 window, you must use horizontal scrolling (@kbd{<} and @kbd{>}) to
14859 view them.
14861 Flat compositions, on the other hand, will be broken across several
14862 lines if they are too wide to fit the window.  Certain points in a
14863 composition are noted internally as @dfn{break points}.  Calc's
14864 general strategy is to fill each line as much as possible, then to
14865 move down to the next line starting at the first break point that
14866 didn't fit.  However, the line breaker understands the hierarchical
14867 structure of formulas.  It will not break an ``inner'' formula if
14868 it can use an earlier break point from an ``outer'' formula instead.
14869 For example, a vector of sums might be formatted as:
14871 @example
14872 @group
14873 [ a + b + c, d + e + f,
14874   g + h + i, j + k + l, m ]
14875 @end group
14876 @end example
14878 @noindent
14879 If the @samp{m} can fit, then so, it seems, could the @samp{g}.
14880 But Calc prefers to break at the comma since the comma is part
14881 of a ``more outer'' formula.  Calc would break at a plus sign
14882 only if it had to, say, if the very first sum in the vector had
14883 itself been too large to fit.
14885 Of the composition functions described below, only @code{choriz}
14886 generates break points.  The @code{bstring} function (@pxref{Strings})
14887 also generates breakable items:  A break point is added after every
14888 space (or group of spaces) except for spaces at the very beginning or
14889 end of the string.
14891 Composition functions themselves count as levels in the formula
14892 hierarchy, so a @code{choriz} that is a component of a larger
14893 @code{choriz} will be less likely to be broken.  As a special case,
14894 if a @code{bstring} occurs as a component of a @code{choriz} or
14895 @code{choriz}-like object (such as a vector or a list of arguments
14896 in a function call), then the break points in that @code{bstring}
14897 will be on the same level as the break points of the surrounding
14898 object.
14900 @node Horizontal Compositions, Vertical Compositions, Composition Basics, Compositions
14901 @subsubsection Horizontal Compositions
14903 @noindent
14904 @ignore
14905 @starindex
14906 @end ignore
14907 @tindex choriz
14908 The @code{choriz} function takes a vector of objects and composes
14909 them horizontally.  For example, @samp{choriz([17, a b/c, d])} formats
14910 as @w{@samp{17a b / cd}} in Normal language mode, or as
14912 @example
14913 @group
14914   a b
14915 17---d
14916    c
14917 @end group
14918 @end example
14920 @noindent
14921 in Big language mode.  This is actually one case of the general
14922 function @samp{choriz(@var{vec}, @var{sep}, @var{prec})}, where
14923 either or both of @var{sep} and @var{prec} may be omitted.
14924 @var{Prec} gives the @dfn{precedence} to use when formatting
14925 each of the components of @var{vec}.  The default precedence is
14926 the precedence from the surrounding environment.
14928 @var{Sep} is a string (i.e., a vector of character codes as might
14929 be entered with @code{" "} notation) which should separate components
14930 of the composition.  Also, if @var{sep} is given, the line breaker
14931 will allow lines to be broken after each occurrence of @var{sep}.
14932 If @var{sep} is omitted, the composition will not be breakable
14933 (unless any of its component compositions are breakable).
14935 For example, @samp{2 choriz([a, b c, d = e], " + ", 180)} is
14936 formatted as @samp{2 a + b c + (d = e)}.  To get the @code{choriz}
14937 to have precedence 180 ``outwards'' as well as ``inwards,''
14938 enclose it in a @code{cprec} form:  @samp{2 cprec(choriz(...), 180)}
14939 formats as @samp{2 (a + b c + (d = e))}.
14941 The baseline of a horizontal composition is the same as the
14942 baselines of the component compositions, which are all aligned.
14944 @node Vertical Compositions, Other Compositions, Horizontal Compositions, Compositions
14945 @subsubsection Vertical Compositions
14947 @noindent
14948 @ignore
14949 @starindex
14950 @end ignore
14951 @tindex cvert
14952 The @code{cvert} function makes a vertical composition.  Each
14953 component of the vector is centered in a column.  The baseline of
14954 the result is by default the top line of the resulting composition.
14955 For example, @samp{f(cvert([a, bb, ccc]), cvert([a^2 + 1, b^2]))}
14956 formats in Big mode as
14958 @example
14959 @group
14960 f( a ,  2    )
14961   bb   a  + 1
14962   ccc     2
14963          b
14964 @end group
14965 @end example
14967 @ignore
14968 @starindex
14969 @end ignore
14970 @tindex cbase
14971 There are several special composition functions that work only as
14972 components of a vertical composition.  The @code{cbase} function
14973 controls the baseline of the vertical composition; the baseline
14974 will be the same as the baseline of whatever component is enclosed
14975 in @code{cbase}.  Thus @samp{f(cvert([a, cbase(bb), ccc]),
14976 cvert([a^2 + 1, cbase(b^2)]))} displays as
14978 @example
14979 @group
14980         2
14981        a  + 1
14982    a      2
14983 f(bb ,   b   )
14984   ccc
14985 @end group
14986 @end example
14988 @ignore
14989 @starindex
14990 @end ignore
14991 @tindex ctbase
14992 @ignore
14993 @starindex
14994 @end ignore
14995 @tindex cbbase
14996 There are also @code{ctbase} and @code{cbbase} functions which
14997 make the baseline of the vertical composition equal to the top
14998 or bottom line (rather than the baseline) of that component.
14999 Thus @samp{cvert([cbase(a / b)]) + cvert([ctbase(a / b)]) +
15000 cvert([cbbase(a / b)])} gives
15002 @example
15003 @group
15004         a
15005 a       -
15006 - + a + b
15007 b   -
15008     b
15009 @end group
15010 @end example
15012 There should be only one @code{cbase}, @code{ctbase}, or @code{cbbase}
15013 function in a given vertical composition.  These functions can also
15014 be written with no arguments:  @samp{ctbase()} is a zero-height object
15015 which means the baseline is the top line of the following item, and
15016 @samp{cbbase()} means the baseline is the bottom line of the preceding
15017 item.
15019 @ignore
15020 @starindex
15021 @end ignore
15022 @tindex crule
15023 The @code{crule} function builds a ``rule,'' or horizontal line,
15024 across a vertical composition.  By itself @samp{crule()} uses @samp{-}
15025 characters to build the rule.  You can specify any other character,
15026 e.g., @samp{crule("=")}.  The argument must be a character code or
15027 vector of exactly one character code.  It is repeated to match the
15028 width of the widest item in the stack.  For example, a quotient
15029 with a thick line is @samp{cvert([a + 1, cbase(crule("=")), b^2])}:
15031 @example
15032 @group
15033 a + 1
15034 =====
15035   2
15037 @end group
15038 @end example
15040 @ignore
15041 @starindex
15042 @end ignore
15043 @tindex clvert
15044 @ignore
15045 @starindex
15046 @end ignore
15047 @tindex crvert
15048 Finally, the functions @code{clvert} and @code{crvert} act exactly
15049 like @code{cvert} except that the items are left- or right-justified
15050 in the stack.  Thus @samp{clvert([a, bb, ccc]) + crvert([a, bb, ccc])}
15051 gives:
15053 @example
15054 @group
15055 a   +   a
15056 bb     bb
15057 ccc   ccc
15058 @end group
15059 @end example
15061 Like @code{choriz}, the vertical compositions accept a second argument
15062 which gives the precedence to use when formatting the components.
15063 Vertical compositions do not support separator strings.
15065 @node Other Compositions, Information about Compositions, Vertical Compositions, Compositions
15066 @subsubsection Other Compositions
15068 @noindent
15069 @ignore
15070 @starindex
15071 @end ignore
15072 @tindex csup
15073 The @code{csup} function builds a superscripted expression.  For
15074 example, @samp{csup(a, b)} looks the same as @samp{a^b} does in Big
15075 language mode.  This is essentially a horizontal composition of
15076 @samp{a} and @samp{b}, where @samp{b} is shifted up so that its
15077 bottom line is one above the baseline.
15079 @ignore
15080 @starindex
15081 @end ignore
15082 @tindex csub
15083 Likewise, the @code{csub} function builds a subscripted expression.
15084 This shifts @samp{b} down so that its top line is one below the
15085 bottom line of @samp{a} (note that this is not quite analogous to
15086 @code{csup}).  Other arrangements can be obtained by using
15087 @code{choriz} and @code{cvert} directly.
15089 @ignore
15090 @starindex
15091 @end ignore
15092 @tindex cflat
15093 The @code{cflat} function formats its argument in ``flat'' mode,
15094 as obtained by @samp{d O}, if the current language mode is normal
15095 or Big.  It has no effect in other language modes.  For example,
15096 @samp{a^(b/c)} is formatted by Big mode like @samp{csup(a, cflat(b/c))}
15097 to improve its readability.
15099 @ignore
15100 @starindex
15101 @end ignore
15102 @tindex cspace
15103 The @code{cspace} function creates horizontal space.  For example,
15104 @samp{cspace(4)} is effectively the same as @samp{string("    ")}.
15105 A second string (i.e., vector of characters) argument is repeated
15106 instead of the space character.  For example, @samp{cspace(4, "ab")}
15107 looks like @samp{abababab}.  If the second argument is not a string,
15108 it is formatted in the normal way and then several copies of that
15109 are composed together:  @samp{cspace(4, a^2)} yields
15111 @example
15112 @group
15113  2 2 2 2
15114 a a a a
15115 @end group
15116 @end example
15118 @noindent
15119 If the number argument is zero, this is a zero-width object.
15121 @ignore
15122 @starindex
15123 @end ignore
15124 @tindex cvspace
15125 The @code{cvspace} function creates vertical space, or a vertical
15126 stack of copies of a certain string or formatted object.  The
15127 baseline is the center line of the resulting stack.  A numerical
15128 argument of zero will produce an object which contributes zero
15129 height if used in a vertical composition.
15131 @ignore
15132 @starindex
15133 @end ignore
15134 @tindex ctspace
15135 @ignore
15136 @starindex
15137 @end ignore
15138 @tindex cbspace
15139 There are also @code{ctspace} and @code{cbspace} functions which
15140 create vertical space with the baseline the same as the baseline
15141 of the top or bottom copy, respectively, of the second argument.
15142 Thus @samp{cvspace(2, a/b) + ctspace(2, a/b) + cbspace(2, a/b)}
15143 displays as:
15145 @example
15146 @group
15147         a
15148         -
15149 a       b
15150 -   a   a
15151 b + - + -
15152 a   b   b
15153 -   a
15154 b   -
15155     b
15156 @end group
15157 @end example
15159 @node Information about Compositions, User-Defined Compositions, Other Compositions, Compositions
15160 @subsubsection Information about Compositions
15162 @noindent
15163 The functions in this section are actual functions; they compose their
15164 arguments according to the current language and other display modes,
15165 then return a certain measurement of the composition as an integer.
15167 @ignore
15168 @starindex
15169 @end ignore
15170 @tindex cwidth
15171 The @code{cwidth} function measures the width, in characters, of a
15172 composition.  For example, @samp{cwidth(a + b)} is 5, and
15173 @samp{cwidth(a / b)} is 5 in Normal mode, 1 in Big mode, and 11 in
15174 @TeX{} mode (for @samp{@{a \over b@}}).  The argument may involve
15175 the composition functions described in this section.
15177 @ignore
15178 @starindex
15179 @end ignore
15180 @tindex cheight
15181 The @code{cheight} function measures the height of a composition.
15182 This is the total number of lines in the argument's printed form.
15184 @ignore
15185 @starindex
15186 @end ignore
15187 @tindex cascent
15188 @ignore
15189 @starindex
15190 @end ignore
15191 @tindex cdescent
15192 The functions @code{cascent} and @code{cdescent} measure the amount
15193 of the height that is above (and including) the baseline, or below
15194 the baseline, respectively.  Thus @samp{cascent(@var{x}) + cdescent(@var{x})}
15195 always equals @samp{cheight(@var{x})}.  For a one-line formula like
15196 @samp{a + b}, @code{cascent} returns 1 and @code{cdescent} returns 0.
15197 For @samp{a / b} in Big mode, @code{cascent} returns 2 and @code{cdescent}
15198 returns 1.  The only formula for which @code{cascent} will return zero
15199 is @samp{cvspace(0)} or equivalents.
15201 @node User-Defined Compositions, , Information about Compositions, Compositions
15202 @subsubsection User-Defined Compositions
15204 @noindent
15205 @kindex Z C
15206 @pindex calc-user-define-composition
15207 The @kbd{Z C} (@code{calc-user-define-composition}) command lets you
15208 define the display format for any algebraic function.  You provide a
15209 formula containing a certain number of argument variables on the stack.
15210 Any time Calc formats a call to the specified function in the current
15211 language mode and with that number of arguments, Calc effectively
15212 replaces the function call with that formula with the arguments
15213 replaced.
15215 Calc builds the default argument list by sorting all the variable names
15216 that appear in the formula into alphabetical order.  You can edit this
15217 argument list before pressing @key{RET} if you wish.  Any variables in
15218 the formula that do not appear in the argument list will be displayed
15219 literally; any arguments that do not appear in the formula will not
15220 affect the display at all.
15222 You can define formats for built-in functions, for functions you have
15223 defined with @kbd{Z F} (@pxref{Algebraic Definitions}), or for functions
15224 which have no definitions but are being used as purely syntactic objects.
15225 You can define different formats for each language mode, and for each
15226 number of arguments, using a succession of @kbd{Z C} commands.  When
15227 Calc formats a function call, it first searches for a format defined
15228 for the current language mode (and number of arguments); if there is
15229 none, it uses the format defined for the Normal language mode.  If
15230 neither format exists, Calc uses its built-in standard format for that
15231 function (usually just @samp{@var{func}(@var{args})}).
15233 If you execute @kbd{Z C} with the number 0 on the stack instead of a
15234 formula, any defined formats for the function in the current language
15235 mode will be removed.  The function will revert to its standard format.
15237 For example, the default format for the binomial coefficient function
15238 @samp{choose(n, m)} in the Big language mode is
15240 @example
15241 @group
15243 ( )
15245 @end group
15246 @end example
15248 @noindent
15249 You might prefer the notation,
15251 @example
15252 @group
15254 n m
15255 @end group
15256 @end example
15258 @noindent
15259 To define this notation, first make sure you are in Big mode,
15260 then put the formula
15262 @smallexample
15263 choriz([cvert([cvspace(1), n]), C, cvert([cvspace(1), m])])
15264 @end smallexample
15266 @noindent
15267 on the stack and type @kbd{Z C}.  Answer the first prompt with
15268 @code{choose}.  The second prompt will be the default argument list
15269 of @samp{(C m n)}.  Edit this list to be @samp{(n m)} and press
15270 @key{RET}.  Now, try it out:  For example, turn simplification
15271 off with @kbd{m O} and enter @samp{choose(a,b) + choose(7,3)}
15272 as an algebraic entry.
15274 @example
15275 @group
15276  C  +  C
15277 a b   7 3
15278 @end group
15279 @end example
15281 As another example, let's define the usual notation for Stirling
15282 numbers of the first kind, @samp{stir1(n, m)}.  This is just like
15283 the regular format for binomial coefficients but with square brackets
15284 instead of parentheses.
15286 @smallexample
15287 choriz([string("["), cvert([n, cbase(cvspace(1)), m]), string("]")])
15288 @end smallexample
15290 Now type @kbd{Z C stir1 @key{RET}}, edit the argument list to
15291 @samp{(n m)}, and type @key{RET}.
15293 The formula provided to @kbd{Z C} usually will involve composition
15294 functions, but it doesn't have to.  Putting the formula @samp{a + b + c}
15295 onto the stack and typing @kbd{Z C foo @key{RET} @key{RET}} would define
15296 the function @samp{foo(x,y,z)} to display like @samp{x + y + z}.
15297 This ``sum'' will act exactly like a real sum for all formatting
15298 purposes (it will be parenthesized the same, and so on).  However
15299 it will be computationally unrelated to a sum.  For example, the
15300 formula @samp{2 * foo(1, 2, 3)} will display as @samp{2 (1 + 2 + 3)}.
15301 Operator precedences have caused the ``sum'' to be written in
15302 parentheses, but the arguments have not actually been summed.
15303 (Generally a display format like this would be undesirable, since
15304 it can easily be confused with a real sum.)
15306 The special function @code{eval} can be used inside a @kbd{Z C}
15307 composition formula to cause all or part of the formula to be
15308 evaluated at display time.  For example, if the formula is
15309 @samp{a + eval(b + c)}, then @samp{foo(1, 2, 3)} will be displayed
15310 as @samp{1 + 5}.  Evaluation will use the default simplifications,
15311 regardless of the current simplification mode.  There are also
15312 @code{evalsimp} and @code{evalextsimp} which simplify as if by
15313 @kbd{a s} and @kbd{a e} (respectively).  Note that these ``functions''
15314 operate only in the context of composition formulas (and also in
15315 rewrite rules, where they serve a similar purpose; @pxref{Rewrite
15316 Rules}).  On the stack, a call to @code{eval} will be left in
15317 symbolic form.
15319 It is not a good idea to use @code{eval} except as a last resort.
15320 It can cause the display of formulas to be extremely slow.  For
15321 example, while @samp{eval(a + b)} might seem quite fast and simple,
15322 there are several situations where it could be slow.  For example,
15323 @samp{a} and/or @samp{b} could be polar complex numbers, in which
15324 case doing the sum requires trigonometry.  Or, @samp{a} could be
15325 the factorial @samp{fact(100)} which is unevaluated because you
15326 have typed @kbd{m O}; @code{eval} will evaluate it anyway to
15327 produce a large, unwieldy integer.
15329 You can save your display formats permanently using the @kbd{Z P}
15330 command (@pxref{Creating User Keys}).
15332 @node Syntax Tables, , Compositions, Language Modes
15333 @subsection Syntax Tables
15335 @noindent
15336 @cindex Syntax tables
15337 @cindex Parsing formulas, customized
15338 Syntax tables do for input what compositions do for output:  They
15339 allow you to teach custom notations to Calc's formula parser.
15340 Calc keeps a separate syntax table for each language mode.
15342 (Note that the Calc ``syntax tables'' discussed here are completely
15343 unrelated to the syntax tables described in the Emacs manual.)
15345 @kindex Z S
15346 @pindex calc-edit-user-syntax
15347 The @kbd{Z S} (@code{calc-edit-user-syntax}) command edits the
15348 syntax table for the current language mode.  If you want your
15349 syntax to work in any language, define it in the Normal language
15350 mode.  Type @kbd{C-c C-c} to finish editing the syntax table, or
15351 @kbd{C-x k} to cancel the edit.  The @kbd{m m} command saves all
15352 the syntax tables along with the other mode settings;
15353 @pxref{General Mode Commands}.
15355 @menu
15356 * Syntax Table Basics::
15357 * Precedence in Syntax Tables::
15358 * Advanced Syntax Patterns::
15359 * Conditional Syntax Rules::
15360 @end menu
15362 @node Syntax Table Basics, Precedence in Syntax Tables, Syntax Tables, Syntax Tables
15363 @subsubsection Syntax Table Basics
15365 @noindent
15366 @dfn{Parsing} is the process of converting a raw string of characters,
15367 such as you would type in during algebraic entry, into a Calc formula.
15368 Calc's parser works in two stages.  First, the input is broken down
15369 into @dfn{tokens}, such as words, numbers, and punctuation symbols
15370 like @samp{+}, @samp{:=}, and @samp{+/-}.  Space between tokens is
15371 ignored (except when it serves to separate adjacent words).  Next,
15372 the parser matches this string of tokens against various built-in
15373 syntactic patterns, such as ``an expression followed by @samp{+}
15374 followed by another expression'' or ``a name followed by @samp{(},
15375 zero or more expressions separated by commas, and @samp{)}.''
15377 A @dfn{syntax table} is a list of user-defined @dfn{syntax rules},
15378 which allow you to specify new patterns to define your own
15379 favorite input notations.  Calc's parser always checks the syntax
15380 table for the current language mode, then the table for the Normal
15381 language mode, before it uses its built-in rules to parse an
15382 algebraic formula you have entered.  Each syntax rule should go on
15383 its own line; it consists of a @dfn{pattern}, a @samp{:=} symbol,
15384 and a Calc formula with an optional @dfn{condition}.  (Syntax rules
15385 resemble algebraic rewrite rules, but the notation for patterns is
15386 completely different.)
15388 A syntax pattern is a list of tokens, separated by spaces.
15389 Except for a few special symbols, tokens in syntax patterns are
15390 matched literally, from left to right.  For example, the rule,
15392 @example
15393 foo ( ) := 2+3
15394 @end example
15396 @noindent
15397 would cause Calc to parse the formula @samp{4+foo()*5} as if it
15398 were @samp{4+(2+3)*5}.  Notice that the parentheses were written
15399 as two separate tokens in the rule.  As a result, the rule works
15400 for both @samp{foo()} and @w{@samp{foo (  )}}.  If we had written
15401 the rule as @samp{foo () := 2+3}, then Calc would treat @samp{()}
15402 as a single, indivisible token, so that @w{@samp{foo( )}} would
15403 not be recognized by the rule.  (It would be parsed as a regular
15404 zero-argument function call instead.)  In fact, this rule would
15405 also make trouble for the rest of Calc's parser:  An unrelated
15406 formula like @samp{bar()} would now be tokenized into @samp{bar ()}
15407 instead of @samp{bar ( )}, so that the standard parser for function
15408 calls would no longer recognize it!
15410 While it is possible to make a token with a mixture of letters
15411 and punctuation symbols, this is not recommended.  It is better to
15412 break it into several tokens, as we did with @samp{foo()} above.
15414 The symbol @samp{#} in a syntax pattern matches any Calc expression.
15415 On the righthand side, the things that matched the @samp{#}s can
15416 be referred to as @samp{#1}, @samp{#2}, and so on (where @samp{#1}
15417 matches the leftmost @samp{#} in the pattern).  For example, these
15418 rules match a user-defined function, prefix operator, infix operator,
15419 and postfix operator, respectively:
15421 @example
15422 foo ( # ) := myfunc(#1)
15423 foo # := myprefix(#1)
15424 # foo # := myinfix(#1,#2)
15425 # foo := mypostfix(#1)
15426 @end example
15428 Thus @samp{foo(3)} will parse as @samp{myfunc(3)}, and @samp{2+3 foo}
15429 will parse as @samp{mypostfix(2+3)}.
15431 It is important to write the first two rules in the order shown,
15432 because Calc tries rules in order from first to last.  If the
15433 pattern @samp{foo #} came first, it would match anything that could
15434 match the @samp{foo ( # )} rule, since an expression in parentheses
15435 is itself a valid expression.  Thus the @w{@samp{foo ( # )}} rule would
15436 never get to match anything.  Likewise, the last two rules must be
15437 written in the order shown or else @samp{3 foo 4} will be parsed as
15438 @samp{mypostfix(3) * 4}.  (Of course, the best way to avoid these
15439 ambiguities is not to use the same symbol in more than one way at
15440 the same time!  In case you're not convinced, try the following
15441 exercise:  How will the above rules parse the input @samp{foo(3,4)},
15442 if at all?  Work it out for yourself, then try it in Calc and see.)
15444 Calc is quite flexible about what sorts of patterns are allowed.
15445 The only rule is that every pattern must begin with a literal
15446 token (like @samp{foo} in the first two patterns above), or with
15447 a @samp{#} followed by a literal token (as in the last two
15448 patterns).  After that, any mixture is allowed, although putting
15449 two @samp{#}s in a row will not be very useful since two
15450 expressions with nothing between them will be parsed as one
15451 expression that uses implicit multiplication.
15453 As a more practical example, Maple uses the notation
15454 @samp{sum(a(i), i=1..10)} for sums, which Calc's Maple mode doesn't
15455 recognize at present.  To handle this syntax, we simply add the
15456 rule,
15458 @example
15459 sum ( # , # = # .. # ) := sum(#1,#2,#3,#4)
15460 @end example
15462 @noindent
15463 to the Maple mode syntax table.  As another example, C mode can't
15464 read assignment operators like @samp{++} and @samp{*=}.  We can
15465 define these operators quite easily:
15467 @example
15468 # *= # := muleq(#1,#2)
15469 # ++ := postinc(#1)
15470 ++ # := preinc(#1)
15471 @end example
15473 @noindent
15474 To complete the job, we would use corresponding composition functions
15475 and @kbd{Z C} to cause these functions to display in their respective
15476 Maple and C notations.  (Note that the C example ignores issues of
15477 operator precedence, which are discussed in the next section.)
15479 You can enclose any token in quotes to prevent its usual
15480 interpretation in syntax patterns:
15482 @example
15483 # ":=" # := becomes(#1,#2)
15484 @end example
15486 Quotes also allow you to include spaces in a token, although once
15487 again it is generally better to use two tokens than one token with
15488 an embedded space.  To include an actual quotation mark in a quoted
15489 token, precede it with a backslash.  (This also works to include
15490 backslashes in tokens.)
15492 @example
15493 # "bad token" # "/\"\\" # := silly(#1,#2,#3)
15494 @end example
15496 @noindent
15497 This will parse @samp{3 bad token 4 /"\ 5} to @samp{silly(3,4,5)}.
15499 The token @kbd{#} has a predefined meaning in Calc's formula parser;
15500 it is not valid to use @samp{"#"} in a syntax rule.  However, longer
15501 tokens that include the @samp{#} character are allowed.  Also, while
15502 @samp{"$"} and @samp{"\""} are allowed as tokens, their presence in
15503 the syntax table will prevent those characters from working in their
15504 usual ways (referring to stack entries and quoting strings,
15505 respectively).
15507 Finally, the notation @samp{%%} anywhere in a syntax table causes
15508 the rest of the line to be ignored as a comment.
15510 @node Precedence in Syntax Tables, Advanced Syntax Patterns, Syntax Table Basics, Syntax Tables
15511 @subsubsection Precedence
15513 @noindent
15514 Different operators are generally assigned different @dfn{precedences}.
15515 By default, an operator defined by a rule like
15517 @example
15518 # foo # := foo(#1,#2)
15519 @end example
15521 @noindent
15522 will have an extremely low precedence, so that @samp{2*3+4 foo 5 == 6}
15523 will be parsed as @samp{(2*3+4) foo (5 == 6)}.  To change the
15524 precedence of an operator, use the notation @samp{#/@var{p}} in
15525 place of @samp{#}, where @var{p} is an integer precedence level.
15526 For example, 185 lies between the precedences for @samp{+} and
15527 @samp{*}, so if we change this rule to
15529 @example
15530 #/185 foo #/186 := foo(#1,#2)
15531 @end example
15533 @noindent
15534 then @samp{2+3 foo 4*5} will be parsed as @samp{2+(3 foo (4*5))}.
15535 Also, because we've given the righthand expression slightly higher
15536 precedence, our new operator will be left-associative:
15537 @samp{1 foo 2 foo 3} will be parsed as @samp{(1 foo 2) foo 3}.
15538 By raising the precedence of the lefthand expression instead, we
15539 can create a right-associative operator.
15541 @xref{Composition Basics}, for a table of precedences of the
15542 standard Calc operators.  For the precedences of operators in other
15543 language modes, look in the Calc source file @file{calc-lang.el}.
15545 @node Advanced Syntax Patterns, Conditional Syntax Rules, Precedence in Syntax Tables, Syntax Tables
15546 @subsubsection Advanced Syntax Patterns
15548 @noindent
15549 To match a function with a variable number of arguments, you could
15550 write
15552 @example
15553 foo ( # ) := myfunc(#1)
15554 foo ( # , # ) := myfunc(#1,#2)
15555 foo ( # , # , # ) := myfunc(#1,#2,#3)
15556 @end example
15558 @noindent
15559 but this isn't very elegant.  To match variable numbers of items,
15560 Calc uses some notations inspired regular expressions and the
15561 ``extended BNF'' style used by some language designers.
15563 @example
15564 foo ( @{ # @}*, ) := apply(myfunc,#1)
15565 @end example
15567 The token @samp{@{} introduces a repeated or optional portion.
15568 One of the three tokens @samp{@}*}, @samp{@}+}, or @samp{@}?}
15569 ends the portion.  These will match zero or more, one or more,
15570 or zero or one copies of the enclosed pattern, respectively.
15571 In addition, @samp{@}*} and @samp{@}+} can be followed by a
15572 separator token (with no space in between, as shown above).
15573 Thus @samp{@{ # @}*,} matches nothing, or one expression, or
15574 several expressions separated by commas.
15576 A complete @samp{@{ ... @}} item matches as a vector of the
15577 items that matched inside it.  For example, the above rule will
15578 match @samp{foo(1,2,3)} to get @samp{apply(myfunc,[1,2,3])}.
15579 The Calc @code{apply} function takes a function name and a vector
15580 of arguments and builds a call to the function with those
15581 arguments, so the net result is the formula @samp{myfunc(1,2,3)}.
15583 If the body of a @samp{@{ ... @}} contains several @samp{#}s
15584 (or nested @samp{@{ ... @}} constructs), then the items will be
15585 strung together into the resulting vector.  If the body
15586 does not contain anything but literal tokens, the result will
15587 always be an empty vector.
15589 @example
15590 foo ( @{ # , # @}+, ) := bar(#1)
15591 foo ( @{ @{ # @}*, @}*; ) := matrix(#1)
15592 @end example
15594 @noindent
15595 will parse @samp{foo(1, 2, 3, 4)} as @samp{bar([1, 2, 3, 4])}, and
15596 @samp{foo(1, 2; 3, 4)} as @samp{matrix([[1, 2], [3, 4]])}.  Also, after
15597 some thought it's easy to see how this pair of rules will parse
15598 @samp{foo(1, 2, 3)} as @samp{matrix([[1, 2, 3]])}, since the first
15599 rule will only match an even number of arguments.  The rule
15601 @example
15602 foo ( # @{ , # , # @}? ) := bar(#1,#2)
15603 @end example
15605 @noindent
15606 will parse @samp{foo(2,3,4)} as @samp{bar(2,[3,4])}, and
15607 @samp{foo(2)} as @samp{bar(2,[])}.
15609 The notation @samp{@{ ... @}?.} (note the trailing period) works
15610 just the same as regular @samp{@{ ... @}?}, except that it does not
15611 count as an argument; the following two rules are equivalent:
15613 @example
15614 foo ( # , @{ also @}? # ) := bar(#1,#3)
15615 foo ( # , @{ also @}?. # ) := bar(#1,#2)
15616 @end example
15618 @noindent
15619 Note that in the first case the optional text counts as @samp{#2},
15620 which will always be an empty vector, but in the second case no
15621 empty vector is produced.
15623 Another variant is @samp{@{ ... @}?$}, which means the body is
15624 optional only at the end of the input formula.  All built-in syntax
15625 rules in Calc use this for closing delimiters, so that during
15626 algebraic entry you can type @kbd{[sqrt(2), sqrt(3 @key{RET}}, omitting
15627 the closing parenthesis and bracket.  Calc does this automatically
15628 for trailing @samp{)}, @samp{]}, and @samp{>} tokens in syntax
15629 rules, but you can use @samp{@{ ... @}?$} explicitly to get
15630 this effect with any token (such as @samp{"@}"} or @samp{end}).
15631 Like @samp{@{ ... @}?.}, this notation does not count as an
15632 argument.  Conversely, you can use quotes, as in @samp{")"}, to
15633 prevent a closing-delimiter token from being automatically treated
15634 as optional.
15636 Calc's parser does not have full backtracking, which means some
15637 patterns will not work as you might expect:
15639 @example
15640 foo ( @{ # , @}? # , # ) := bar(#1,#2,#3)
15641 @end example
15643 @noindent
15644 Here we are trying to make the first argument optional, so that
15645 @samp{foo(2,3)} parses as @samp{bar([],2,3)}.  Unfortunately, Calc
15646 first tries to match @samp{2,} against the optional part of the
15647 pattern, finds a match, and so goes ahead to match the rest of the
15648 pattern.  Later on it will fail to match the second comma, but it
15649 doesn't know how to go back and try the other alternative at that
15650 point.  One way to get around this would be to use two rules:
15652 @example
15653 foo ( # , # , # ) := bar([#1],#2,#3)
15654 foo ( # , # ) := bar([],#1,#2)
15655 @end example
15657 More precisely, when Calc wants to match an optional or repeated
15658 part of a pattern, it scans forward attempting to match that part.
15659 If it reaches the end of the optional part without failing, it
15660 ``finalizes'' its choice and proceeds.  If it fails, though, it
15661 backs up and tries the other alternative.  Thus Calc has ``partial''
15662 backtracking.  A fully backtracking parser would go on to make sure
15663 the rest of the pattern matched before finalizing the choice.
15665 @node Conditional Syntax Rules, , Advanced Syntax Patterns, Syntax Tables
15666 @subsubsection Conditional Syntax Rules
15668 @noindent
15669 It is possible to attach a @dfn{condition} to a syntax rule.  For
15670 example, the rules
15672 @example
15673 foo ( # ) := ifoo(#1) :: integer(#1)
15674 foo ( # ) := gfoo(#1)
15675 @end example
15677 @noindent
15678 will parse @samp{foo(3)} as @samp{ifoo(3)}, but will parse
15679 @samp{foo(3.5)} and @samp{foo(x)} as calls to @code{gfoo}.  Any
15680 number of conditions may be attached; all must be true for the
15681 rule to succeed.  A condition is ``true'' if it evaluates to a
15682 nonzero number.  @xref{Logical Operations}, for a list of Calc
15683 functions like @code{integer} that perform logical tests.
15685 The exact sequence of events is as follows:  When Calc tries a
15686 rule, it first matches the pattern as usual.  It then substitutes
15687 @samp{#1}, @samp{#2}, etc., in the conditions, if any.  Next, the
15688 conditions are simplified and evaluated in order from left to right,
15689 as if by the @w{@kbd{a s}} algebra command (@pxref{Simplifying Formulas}).
15690 Each result is true if it is a nonzero number, or an expression
15691 that can be proven to be nonzero (@pxref{Declarations}).  If the
15692 results of all conditions are true, the expression (such as
15693 @samp{ifoo(#1)}) has its @samp{#}s substituted, and that is the
15694 result of the parse.  If the result of any condition is false, Calc
15695 goes on to try the next rule in the syntax table.
15697 Syntax rules also support @code{let} conditions, which operate in
15698 exactly the same way as they do in algebraic rewrite rules.
15699 @xref{Other Features of Rewrite Rules}, for details.  A @code{let}
15700 condition is always true, but as a side effect it defines a
15701 variable which can be used in later conditions, and also in the
15702 expression after the @samp{:=} sign:
15704 @example
15705 foo ( # ) := hifoo(x) :: let(x := #1 + 0.5) :: dnumint(x)
15706 @end example
15708 @noindent
15709 The @code{dnumint} function tests if a value is numerically an
15710 integer, i.e., either a true integer or an integer-valued float.
15711 This rule will parse @code{foo} with a half-integer argument,
15712 like @samp{foo(3.5)}, to a call like @samp{hifoo(4.)}.
15714 The lefthand side of a syntax rule @code{let} must be a simple
15715 variable, not the arbitrary pattern that is allowed in rewrite
15716 rules.
15718 The @code{matches} function is also treated specially in syntax
15719 rule conditions (again, in the same way as in rewrite rules).
15720 @xref{Matching Commands}.  If the matching pattern contains
15721 meta-variables, then those meta-variables may be used in later
15722 conditions and in the result expression.  The arguments to
15723 @code{matches} are not evaluated in this situation.
15725 @example
15726 sum ( # , # ) := sum(#1,a,b,c) :: matches(#2, a=[b..c])
15727 @end example
15729 @noindent
15730 This is another way to implement the Maple mode @code{sum} notation.
15731 In this approach, we allow @samp{#2} to equal the whole expression
15732 @samp{i=1..10}.  Then, we use @code{matches} to break it apart into
15733 its components.  If the expression turns out not to match the pattern,
15734 the syntax rule will fail.  Note that @kbd{Z S} always uses Calc's
15735 Normal language mode for editing expressions in syntax rules, so we
15736 must use regular Calc notation for the interval @samp{[b..c]} that
15737 will correspond to the Maple mode interval @samp{1..10}.
15739 @node Modes Variable, Calc Mode Line, Language Modes, Mode Settings
15740 @section The @code{Modes} Variable
15742 @noindent
15743 @kindex m g
15744 @pindex calc-get-modes
15745 The @kbd{m g} (@code{calc-get-modes}) command pushes onto the stack
15746 a vector of numbers that describes the various mode settings that
15747 are in effect.  With a numeric prefix argument, it pushes only the
15748 @var{n}th mode, i.e., the @var{n}th element of this vector.  Keyboard
15749 macros can use the @kbd{m g} command to modify their behavior based
15750 on the current mode settings.
15752 @cindex @code{Modes} variable
15753 @vindex Modes
15754 The modes vector is also available in the special variable
15755 @code{Modes}.  In other words, @kbd{m g} is like @kbd{s r Modes @key{RET}}.
15756 It will not work to store into this variable; in fact, if you do,
15757 @code{Modes} will cease to track the current modes.  (The @kbd{m g}
15758 command will continue to work, however.)
15760 In general, each number in this vector is suitable as a numeric
15761 prefix argument to the associated mode-setting command.  (Recall
15762 that the @kbd{~} key takes a number from the stack and gives it as
15763 a numeric prefix to the next command.)
15765 The elements of the modes vector are as follows:
15767 @enumerate
15768 @item
15769 Current precision.  Default is 12; associated command is @kbd{p}.
15771 @item
15772 Binary word size.  Default is 32; associated command is @kbd{b w}.
15774 @item
15775 Stack size (not counting the value about to be pushed by @kbd{m g}).
15776 This is zero if @kbd{m g} is executed with an empty stack.
15778 @item
15779 Number radix.  Default is 10; command is @kbd{d r}.
15781 @item
15782 Floating-point format.  This is the number of digits, plus the
15783 constant 0 for normal notation, 10000 for scientific notation,
15784 20000 for engineering notation, or 30000 for fixed-point notation.
15785 These codes are acceptable as prefix arguments to the @kbd{d n}
15786 command, but note that this may lose information:  For example,
15787 @kbd{d s} and @kbd{C-u 12 d s} have similar (but not quite
15788 identical) effects if the current precision is 12, but they both
15789 produce a code of 10012, which will be treated by @kbd{d n} as
15790 @kbd{C-u 12 d s}.  If the precision then changes, the float format
15791 will still be frozen at 12 significant figures.
15793 @item
15794 Angular mode.  Default is 1 (degrees).  Other values are 2 (radians)
15795 and 3 (HMS).  The @kbd{m d} command accepts these prefixes.
15797 @item
15798 Symbolic mode.  Value is 0 or 1; default is 0.  Command is @kbd{m s}.
15800 @item
15801 Fraction mode.  Value is 0 or 1; default is 0.  Command is @kbd{m f}.
15803 @item
15804 Polar mode.  Value is 0 (rectangular) or 1 (polar); default is 0.
15805 Command is @kbd{m p}.
15807 @item
15808 Matrix/Scalar mode.  Default value is @mathit{-1}.  Value is 0 for Scalar
15809 mode, @mathit{-2} for Matrix mode, or @var{N} for 
15810 @texline @math{N\times N}
15811 @infoline @var{N}x@var{N} 
15812 Matrix mode.  Command is @kbd{m v}.
15814 @item
15815 Simplification mode.  Default is 1.  Value is @mathit{-1} for off (@kbd{m O}),
15816 0 for @kbd{m N}, 2 for @kbd{m B}, 3 for @kbd{m A}, 4 for @kbd{m E},
15817 or 5 for @w{@kbd{m U}}.  The @kbd{m D} command accepts these prefixes.
15819 @item
15820 Infinite mode.  Default is @mathit{-1} (off).  Value is 1 if the mode is on,
15821 or 0 if the mode is on with positive zeros.  Command is @kbd{m i}.
15822 @end enumerate
15824 For example, the sequence @kbd{M-1 m g @key{RET} 2 + ~ p} increases the
15825 precision by two, leaving a copy of the old precision on the stack.
15826 Later, @kbd{~ p} will restore the original precision using that
15827 stack value.  (This sequence might be especially useful inside a
15828 keyboard macro.)
15830 As another example, @kbd{M-3 m g 1 - ~ @key{DEL}} deletes all but the
15831 oldest (bottommost) stack entry.
15833 Yet another example:  The HP-48 ``round'' command rounds a number
15834 to the current displayed precision.  You could roughly emulate this
15835 in Calc with the sequence @kbd{M-5 m g 10000 % ~ c c}.  (This
15836 would not work for fixed-point mode, but it wouldn't be hard to
15837 do a full emulation with the help of the @kbd{Z [} and @kbd{Z ]}
15838 programming commands.  @xref{Conditionals in Macros}.)
15840 @node Calc Mode Line, , Modes Variable, Mode Settings
15841 @section The Calc Mode Line
15843 @noindent
15844 @cindex Mode line indicators
15845 This section is a summary of all symbols that can appear on the
15846 Calc mode line, the highlighted bar that appears under the Calc
15847 stack window (or under an editing window in Embedded mode).
15849 The basic mode line format is:
15851 @example
15852 --%%-Calc: 12 Deg @var{other modes}       (Calculator)
15853 @end example
15855 The @samp{%%} is the Emacs symbol for ``read-only''; it shows that
15856 regular Emacs commands are not allowed to edit the stack buffer
15857 as if it were text.
15859 The word @samp{Calc:} changes to @samp{CalcEmbed:} if Embedded mode
15860 is enabled.  The words after this describe the various Calc modes
15861 that are in effect.
15863 The first mode is always the current precision, an integer.
15864 The second mode is always the angular mode, either @code{Deg},
15865 @code{Rad}, or @code{Hms}.
15867 Here is a complete list of the remaining symbols that can appear
15868 on the mode line:
15870 @table @code
15871 @item Alg
15872 Algebraic mode (@kbd{m a}; @pxref{Algebraic Entry}).
15874 @item Alg[(
15875 Incomplete algebraic mode (@kbd{C-u m a}).
15877 @item Alg*
15878 Total algebraic mode (@kbd{m t}).
15880 @item Symb
15881 Symbolic mode (@kbd{m s}; @pxref{Symbolic Mode}).
15883 @item Matrix
15884 Matrix mode (@kbd{m v}; @pxref{Matrix Mode}).
15886 @item Matrix@var{n}
15887 Dimensioned Matrix mode (@kbd{C-u @var{n} m v}).
15889 @item Scalar
15890 Scalar mode (@kbd{m v}; @pxref{Matrix Mode}).
15892 @item Polar
15893 Polar complex mode (@kbd{m p}; @pxref{Polar Mode}).
15895 @item Frac
15896 Fraction mode (@kbd{m f}; @pxref{Fraction Mode}).
15898 @item Inf
15899 Infinite mode (@kbd{m i}; @pxref{Infinite Mode}).
15901 @item +Inf
15902 Positive Infinite mode (@kbd{C-u 0 m i}).
15904 @item NoSimp
15905 Default simplifications off (@kbd{m O}; @pxref{Simplification Modes}).
15907 @item NumSimp
15908 Default simplifications for numeric arguments only (@kbd{m N}).
15910 @item BinSimp@var{w}
15911 Binary-integer simplification mode; word size @var{w} (@kbd{m B}, @kbd{b w}).
15913 @item AlgSimp
15914 Algebraic simplification mode (@kbd{m A}).
15916 @item ExtSimp
15917 Extended algebraic simplification mode (@kbd{m E}).
15919 @item UnitSimp
15920 Units simplification mode (@kbd{m U}).
15922 @item Bin
15923 Current radix is 2 (@kbd{d 2}; @pxref{Radix Modes}).
15925 @item Oct
15926 Current radix is 8 (@kbd{d 8}).
15928 @item Hex
15929 Current radix is 16 (@kbd{d 6}).
15931 @item Radix@var{n}
15932 Current radix is @var{n} (@kbd{d r}).
15934 @item Zero
15935 Leading zeros (@kbd{d z}; @pxref{Radix Modes}).
15937 @item Big
15938 Big language mode (@kbd{d B}; @pxref{Normal Language Modes}).
15940 @item Flat
15941 One-line normal language mode (@kbd{d O}).
15943 @item Unform
15944 Unformatted language mode (@kbd{d U}).
15946 @item C
15947 C language mode (@kbd{d C}; @pxref{C FORTRAN Pascal}).
15949 @item Pascal
15950 Pascal language mode (@kbd{d P}).
15952 @item Fortran
15953 FORTRAN language mode (@kbd{d F}).
15955 @item TeX
15956 @TeX{} language mode (@kbd{d T}; @pxref{TeX and LaTeX Language Modes}).
15958 @item LaTeX
15959 La@TeX{} language mode (@kbd{d L}; @pxref{TeX and LaTeX Language Modes}).
15961 @item Eqn
15962 @dfn{Eqn} language mode (@kbd{d E}; @pxref{Eqn Language Mode}).
15964 @item Math
15965 Mathematica language mode (@kbd{d M}; @pxref{Mathematica Language Mode}).
15967 @item Maple
15968 Maple language mode (@kbd{d W}; @pxref{Maple Language Mode}).
15970 @item Norm@var{n}
15971 Normal float mode with @var{n} digits (@kbd{d n}; @pxref{Float Formats}).
15973 @item Fix@var{n}
15974 Fixed point mode with @var{n} digits after the point (@kbd{d f}).
15976 @item Sci
15977 Scientific notation mode (@kbd{d s}).
15979 @item Sci@var{n}
15980 Scientific notation with @var{n} digits (@kbd{d s}).
15982 @item Eng
15983 Engineering notation mode (@kbd{d e}).
15985 @item Eng@var{n}
15986 Engineering notation with @var{n} digits (@kbd{d e}).
15988 @item Left@var{n}
15989 Left-justified display indented by @var{n} (@kbd{d <}; @pxref{Justification}).
15991 @item Right
15992 Right-justified display (@kbd{d >}).
15994 @item Right@var{n}
15995 Right-justified display with width @var{n} (@kbd{d >}).
15997 @item Center
15998 Centered display (@kbd{d =}).
16000 @item Center@var{n}
16001 Centered display with center column @var{n} (@kbd{d =}).
16003 @item Wid@var{n}
16004 Line breaking with width @var{n} (@kbd{d b}; @pxref{Normal Language Modes}).
16006 @item Wide
16007 No line breaking (@kbd{d b}).
16009 @item Break
16010 Selections show deep structure (@kbd{j b}; @pxref{Making Selections}).
16012 @item Save
16013 Record modes in @file{~/.calc.el} (@kbd{m R}; @pxref{General Mode Commands}).
16015 @item Local
16016 Record modes in Embedded buffer (@kbd{m R}).
16018 @item LocEdit
16019 Record modes as editing-only in Embedded buffer (@kbd{m R}).
16021 @item LocPerm
16022 Record modes as permanent-only in Embedded buffer (@kbd{m R}).
16024 @item Global
16025 Record modes as global in Embedded buffer (@kbd{m R}).
16027 @item Manual
16028 Automatic recomputation turned off (@kbd{m C}; @pxref{Automatic
16029 Recomputation}).
16031 @item Graph
16032 GNUPLOT process is alive in background (@pxref{Graphics}).
16034 @item Sel
16035 Top-of-stack has a selection (Embedded only; @pxref{Making Selections}).
16037 @item Dirty
16038 The stack display may not be up-to-date (@pxref{Display Modes}).
16040 @item Inv
16041 ``Inverse'' prefix was pressed (@kbd{I}; @pxref{Inverse and Hyperbolic}).
16043 @item Hyp
16044 ``Hyperbolic'' prefix was pressed (@kbd{H}).
16046 @item Keep
16047 ``Keep-arguments'' prefix was pressed (@kbd{K}).
16049 @item Narrow
16050 Stack is truncated (@kbd{d t}; @pxref{Truncating the Stack}).
16051 @end table
16053 In addition, the symbols @code{Active} and @code{~Active} can appear
16054 as minor modes on an Embedded buffer's mode line.  @xref{Embedded Mode}.
16056 @node Arithmetic, Scientific Functions, Mode Settings, Top
16057 @chapter Arithmetic Functions
16059 @noindent
16060 This chapter describes the Calc commands for doing simple calculations
16061 on numbers, such as addition, absolute value, and square roots.  These
16062 commands work by removing the top one or two values from the stack,
16063 performing the desired operation, and pushing the result back onto the
16064 stack.  If the operation cannot be performed, the result pushed is a
16065 formula instead of a number, such as @samp{2/0} (because division by zero
16066 is invalid) or @samp{sqrt(x)} (because the argument @samp{x} is a formula).
16068 Most of the commands described here can be invoked by a single keystroke.
16069 Some of the more obscure ones are two-letter sequences beginning with
16070 the @kbd{f} (``functions'') prefix key.
16072 @xref{Prefix Arguments}, for a discussion of the effect of numeric
16073 prefix arguments on commands in this chapter which do not otherwise
16074 interpret a prefix argument.
16076 @menu
16077 * Basic Arithmetic::
16078 * Integer Truncation::
16079 * Complex Number Functions::
16080 * Conversions::
16081 * Date Arithmetic::
16082 * Financial Functions::
16083 * Binary Functions::
16084 @end menu
16086 @node Basic Arithmetic, Integer Truncation, Arithmetic, Arithmetic
16087 @section Basic Arithmetic
16089 @noindent
16090 @kindex +
16091 @pindex calc-plus
16092 @ignore
16093 @mindex @null
16094 @end ignore
16095 @tindex +
16096 The @kbd{+} (@code{calc-plus}) command adds two numbers.  The numbers may
16097 be any of the standard Calc data types.  The resulting sum is pushed back
16098 onto the stack.
16100 If both arguments of @kbd{+} are vectors or matrices (of matching dimensions),
16101 the result is a vector or matrix sum.  If one argument is a vector and the
16102 other a scalar (i.e., a non-vector), the scalar is added to each of the
16103 elements of the vector to form a new vector.  If the scalar is not a
16104 number, the operation is left in symbolic form:  Suppose you added @samp{x}
16105 to the vector @samp{[1,2]}.  You may want the result @samp{[1+x,2+x]}, or
16106 you may plan to substitute a 2-vector for @samp{x} in the future.  Since
16107 the Calculator can't tell which interpretation you want, it makes the
16108 safest assumption.  @xref{Reducing and Mapping}, for a way to add @samp{x}
16109 to every element of a vector.
16111 If either argument of @kbd{+} is a complex number, the result will in general
16112 be complex.  If one argument is in rectangular form and the other polar,
16113 the current Polar mode determines the form of the result.  If Symbolic
16114 mode is enabled, the sum may be left as a formula if the necessary
16115 conversions for polar addition are non-trivial.
16117 If both arguments of @kbd{+} are HMS forms, the forms are added according to
16118 the usual conventions of hours-minutes-seconds notation.  If one argument
16119 is an HMS form and the other is a number, that number is converted from
16120 degrees or radians (depending on the current Angular mode) to HMS format
16121 and then the two HMS forms are added.
16123 If one argument of @kbd{+} is a date form, the other can be either a
16124 real number, which advances the date by a certain number of days, or
16125 an HMS form, which advances the date by a certain amount of time.
16126 Subtracting two date forms yields the number of days between them.
16127 Adding two date forms is meaningless, but Calc interprets it as the
16128 subtraction of one date form and the negative of the other.  (The
16129 negative of a date form can be understood by remembering that dates
16130 are stored as the number of days before or after Jan 1, 1 AD.)
16132 If both arguments of @kbd{+} are error forms, the result is an error form
16133 with an appropriately computed standard deviation.  If one argument is an
16134 error form and the other is a number, the number is taken to have zero error.
16135 Error forms may have symbolic formulas as their mean and/or error parts;
16136 adding these will produce a symbolic error form result.  However, adding an
16137 error form to a plain symbolic formula (as in @samp{(a +/- b) + c}) will not
16138 work, for the same reasons just mentioned for vectors.  Instead you must
16139 write @samp{(a +/- b) + (c +/- 0)}.
16141 If both arguments of @kbd{+} are modulo forms with equal values of @expr{M},
16142 or if one argument is a modulo form and the other a plain number, the
16143 result is a modulo form which represents the sum, modulo @expr{M}, of
16144 the two values.
16146 If both arguments of @kbd{+} are intervals, the result is an interval
16147 which describes all possible sums of the possible input values.  If
16148 one argument is a plain number, it is treated as the interval
16149 @w{@samp{[x ..@: x]}}.
16151 If one argument of @kbd{+} is an infinity and the other is not, the
16152 result is that same infinity.  If both arguments are infinite and in
16153 the same direction, the result is the same infinity, but if they are
16154 infinite in different directions the result is @code{nan}.
16156 @kindex -
16157 @pindex calc-minus
16158 @ignore
16159 @mindex @null
16160 @end ignore
16161 @tindex -
16162 The @kbd{-} (@code{calc-minus}) command subtracts two values.  The top
16163 number on the stack is subtracted from the one behind it, so that the
16164 computation @kbd{5 @key{RET} 2 -} produces 3, not @mathit{-3}.  All options
16165 available for @kbd{+} are available for @kbd{-} as well.
16167 @kindex *
16168 @pindex calc-times
16169 @ignore
16170 @mindex @null
16171 @end ignore
16172 @tindex *
16173 The @kbd{*} (@code{calc-times}) command multiplies two numbers.  If one
16174 argument is a vector and the other a scalar, the scalar is multiplied by
16175 the elements of the vector to produce a new vector.  If both arguments
16176 are vectors, the interpretation depends on the dimensions of the
16177 vectors:  If both arguments are matrices, a matrix multiplication is
16178 done.  If one argument is a matrix and the other a plain vector, the
16179 vector is interpreted as a row vector or column vector, whichever is
16180 dimensionally correct.  If both arguments are plain vectors, the result
16181 is a single scalar number which is the dot product of the two vectors.
16183 If one argument of @kbd{*} is an HMS form and the other a number, the
16184 HMS form is multiplied by that amount.  It is an error to multiply two
16185 HMS forms together, or to attempt any multiplication involving date
16186 forms.  Error forms, modulo forms, and intervals can be multiplied;
16187 see the comments for addition of those forms.  When two error forms
16188 or intervals are multiplied they are considered to be statistically
16189 independent; thus, @samp{[-2 ..@: 3] * [-2 ..@: 3]} is @samp{[-6 ..@: 9]},
16190 whereas @w{@samp{[-2 ..@: 3] ^ 2}} is @samp{[0 ..@: 9]}.
16192 @kindex /
16193 @pindex calc-divide
16194 @ignore
16195 @mindex @null
16196 @end ignore
16197 @tindex /
16198 The @kbd{/} (@code{calc-divide}) command divides two numbers.  When
16199 dividing a scalar @expr{B} by a square matrix @expr{A}, the computation
16200 performed is @expr{B} times the inverse of @expr{A}.  This also occurs
16201 if @expr{B} is itself a vector or matrix, in which case the effect is
16202 to solve the set of linear equations represented by @expr{B}.  If @expr{B}
16203 is a matrix with the same number of rows as @expr{A}, or a plain vector
16204 (which is interpreted here as a column vector), then the equation
16205 @expr{A X = B} is solved for the vector or matrix @expr{X}.  Otherwise,
16206 if @expr{B} is a non-square matrix with the same number of @emph{columns}
16207 as @expr{A}, the equation @expr{X A = B} is solved.  If you wish a vector
16208 @expr{B} to be interpreted as a row vector to be solved as @expr{X A = B},
16209 make it into a one-row matrix with @kbd{C-u 1 v p} first.  To force a
16210 left-handed solution with a square matrix @expr{B}, transpose @expr{A} and
16211 @expr{B} before dividing, then transpose the result.
16213 HMS forms can be divided by real numbers or by other HMS forms.  Error
16214 forms can be divided in any combination of ways.  Modulo forms where both
16215 values and the modulo are integers can be divided to get an integer modulo
16216 form result.  Intervals can be divided; dividing by an interval that
16217 encompasses zero or has zero as a limit will result in an infinite
16218 interval.
16220 @kindex ^
16221 @pindex calc-power
16222 @ignore
16223 @mindex @null
16224 @end ignore
16225 @tindex ^
16226 The @kbd{^} (@code{calc-power}) command raises a number to a power.  If
16227 the power is an integer, an exact result is computed using repeated
16228 multiplications.  For non-integer powers, Calc uses Newton's method or
16229 logarithms and exponentials.  Square matrices can be raised to integer
16230 powers.  If either argument is an error (or interval or modulo) form,
16231 the result is also an error (or interval or modulo) form.
16233 @kindex I ^
16234 @tindex nroot
16235 If you press the @kbd{I} (inverse) key first, the @kbd{I ^} command
16236 computes an Nth root:  @kbd{125 @key{RET} 3 I ^} computes the number 5.
16237 (This is entirely equivalent to @kbd{125 @key{RET} 1:3 ^}.)
16239 @kindex \
16240 @pindex calc-idiv
16241 @tindex idiv
16242 @ignore
16243 @mindex @null
16244 @end ignore
16245 @tindex \
16246 The @kbd{\} (@code{calc-idiv}) command divides two numbers on the stack
16247 to produce an integer result.  It is equivalent to dividing with
16248 @key{/}, then rounding down with @kbd{F} (@code{calc-floor}), only a bit
16249 more convenient and efficient.  Also, since it is an all-integer
16250 operation when the arguments are integers, it avoids problems that
16251 @kbd{/ F} would have with floating-point roundoff.
16253 @kindex %
16254 @pindex calc-mod
16255 @ignore
16256 @mindex @null
16257 @end ignore
16258 @tindex %
16259 The @kbd{%} (@code{calc-mod}) command performs a ``modulo'' (or ``remainder'')
16260 operation.  Mathematically, @samp{a%b = a - (a\b)*b}, and is defined
16261 for all real numbers @expr{a} and @expr{b} (except @expr{b=0}).  For
16262 positive @expr{b}, the result will always be between 0 (inclusive) and
16263 @expr{b} (exclusive).  Modulo does not work for HMS forms and error forms.
16264 If @expr{a} is a modulo form, its modulo is changed to @expr{b}, which
16265 must be positive real number.
16267 @kindex :
16268 @pindex calc-fdiv
16269 @tindex fdiv
16270 The @kbd{:} (@code{calc-fdiv}) [@code{fdiv}] command
16271 divides the two integers on the top of the stack to produce a fractional
16272 result.  This is a convenient shorthand for enabling Fraction mode (with
16273 @kbd{m f}) temporarily and using @samp{/}.  Note that during numeric entry
16274 the @kbd{:} key is interpreted as a fraction separator, so to divide 8 by 6
16275 you would have to type @kbd{8 @key{RET} 6 @key{RET} :}.  (Of course, in
16276 this case, it would be much easier simply to enter the fraction directly
16277 as @kbd{8:6 @key{RET}}!)
16279 @kindex n
16280 @pindex calc-change-sign
16281 The @kbd{n} (@code{calc-change-sign}) command negates the number on the top
16282 of the stack.  It works on numbers, vectors and matrices, HMS forms, date
16283 forms, error forms, intervals, and modulo forms.
16285 @kindex A
16286 @pindex calc-abs
16287 @tindex abs
16288 The @kbd{A} (@code{calc-abs}) [@code{abs}] command computes the absolute
16289 value of a number.  The result of @code{abs} is always a nonnegative
16290 real number:  With a complex argument, it computes the complex magnitude.
16291 With a vector or matrix argument, it computes the Frobenius norm, i.e.,
16292 the square root of the sum of the squares of the absolute values of the
16293 elements.  The absolute value of an error form is defined by replacing
16294 the mean part with its absolute value and leaving the error part the same.
16295 The absolute value of a modulo form is undefined.  The absolute value of
16296 an interval is defined in the obvious way.
16298 @kindex f A
16299 @pindex calc-abssqr
16300 @tindex abssqr
16301 The @kbd{f A} (@code{calc-abssqr}) [@code{abssqr}] command computes the
16302 absolute value squared of a number, vector or matrix, or error form.
16304 @kindex f s
16305 @pindex calc-sign
16306 @tindex sign
16307 The @kbd{f s} (@code{calc-sign}) [@code{sign}] command returns 1 if its
16308 argument is positive, @mathit{-1} if its argument is negative, or 0 if its
16309 argument is zero.  In algebraic form, you can also write @samp{sign(a,x)}
16310 which evaluates to @samp{x * sign(a)}, i.e., either @samp{x}, @samp{-x}, or
16311 zero depending on the sign of @samp{a}.
16313 @kindex &
16314 @pindex calc-inv
16315 @tindex inv
16316 @cindex Reciprocal
16317 The @kbd{&} (@code{calc-inv}) [@code{inv}] command computes the
16318 reciprocal of a number, i.e., @expr{1 / x}.  Operating on a square
16319 matrix, it computes the inverse of that matrix.
16321 @kindex Q
16322 @pindex calc-sqrt
16323 @tindex sqrt
16324 The @kbd{Q} (@code{calc-sqrt}) [@code{sqrt}] command computes the square
16325 root of a number.  For a negative real argument, the result will be a
16326 complex number whose form is determined by the current Polar mode.
16328 @kindex f h
16329 @pindex calc-hypot
16330 @tindex hypot
16331 The @kbd{f h} (@code{calc-hypot}) [@code{hypot}] command computes the square
16332 root of the sum of the squares of two numbers.  That is, @samp{hypot(a,b)}
16333 is the length of the hypotenuse of a right triangle with sides @expr{a}
16334 and @expr{b}.  If the arguments are complex numbers, their squared
16335 magnitudes are used.
16337 @kindex f Q
16338 @pindex calc-isqrt
16339 @tindex isqrt
16340 The @kbd{f Q} (@code{calc-isqrt}) [@code{isqrt}] command computes the
16341 integer square root of an integer.  This is the true square root of the
16342 number, rounded down to an integer.  For example, @samp{isqrt(10)}
16343 produces 3.  Note that, like @kbd{\} [@code{idiv}], this uses exact
16344 integer arithmetic throughout to avoid roundoff problems.  If the input
16345 is a floating-point number or other non-integer value, this is exactly
16346 the same as @samp{floor(sqrt(x))}.
16348 @kindex f n
16349 @kindex f x
16350 @pindex calc-min
16351 @tindex min
16352 @pindex calc-max
16353 @tindex max
16354 The @kbd{f n} (@code{calc-min}) [@code{min}] and @kbd{f x} (@code{calc-max})
16355 [@code{max}] commands take the minimum or maximum of two real numbers,
16356 respectively.  These commands also work on HMS forms, date forms,
16357 intervals, and infinities.  (In algebraic expressions, these functions
16358 take any number of arguments and return the maximum or minimum among
16359 all the arguments.)
16361 @kindex f M
16362 @kindex f X
16363 @pindex calc-mant-part
16364 @tindex mant
16365 @pindex calc-xpon-part
16366 @tindex xpon
16367 The @kbd{f M} (@code{calc-mant-part}) [@code{mant}] function extracts
16368 the ``mantissa'' part @expr{m} of its floating-point argument; @kbd{f X}
16369 (@code{calc-xpon-part}) [@code{xpon}] extracts the ``exponent'' part
16370 @expr{e}.  The original number is equal to 
16371 @texline @math{m \times 10^e},
16372 @infoline @expr{m * 10^e},
16373 where @expr{m} is in the interval @samp{[1.0 ..@: 10.0)} except that
16374 @expr{m=e=0} if the original number is zero.  For integers
16375 and fractions, @code{mant} returns the number unchanged and @code{xpon}
16376 returns zero.  The @kbd{v u} (@code{calc-unpack}) command can also be
16377 used to ``unpack'' a floating-point number; this produces an integer
16378 mantissa and exponent, with the constraint that the mantissa is not
16379 a multiple of ten (again except for the @expr{m=e=0} case).
16381 @kindex f S
16382 @pindex calc-scale-float
16383 @tindex scf
16384 The @kbd{f S} (@code{calc-scale-float}) [@code{scf}] function scales a number
16385 by a given power of ten.  Thus, @samp{scf(mant(x), xpon(x)) = x} for any
16386 real @samp{x}.  The second argument must be an integer, but the first
16387 may actually be any numeric value.  For example, @samp{scf(5,-2) = 0.05}
16388 or @samp{1:20} depending on the current Fraction mode.
16390 @kindex f [
16391 @kindex f ]
16392 @pindex calc-decrement
16393 @pindex calc-increment
16394 @tindex decr
16395 @tindex incr
16396 The @kbd{f [} (@code{calc-decrement}) [@code{decr}] and @kbd{f ]}
16397 (@code{calc-increment}) [@code{incr}] functions decrease or increase
16398 a number by one unit.  For integers, the effect is obvious.  For
16399 floating-point numbers, the change is by one unit in the last place.
16400 For example, incrementing @samp{12.3456} when the current precision
16401 is 6 digits yields @samp{12.3457}.  If the current precision had been
16402 8 digits, the result would have been @samp{12.345601}.  Incrementing
16403 @samp{0.0} produces 
16404 @texline @math{10^{-p}},
16405 @infoline @expr{10^-p}, 
16406 where @expr{p} is the current
16407 precision.  These operations are defined only on integers and floats.
16408 With numeric prefix arguments, they change the number by @expr{n} units.
16410 Note that incrementing followed by decrementing, or vice-versa, will
16411 almost but not quite always cancel out.  Suppose the precision is
16412 6 digits and the number @samp{9.99999} is on the stack.  Incrementing
16413 will produce @samp{10.0000}; decrementing will produce @samp{9.9999}.
16414 One digit has been dropped.  This is an unavoidable consequence of the
16415 way floating-point numbers work.
16417 Incrementing a date/time form adjusts it by a certain number of seconds.
16418 Incrementing a pure date form adjusts it by a certain number of days.
16420 @node Integer Truncation, Complex Number Functions, Basic Arithmetic, Arithmetic
16421 @section Integer Truncation
16423 @noindent
16424 There are four commands for truncating a real number to an integer,
16425 differing mainly in their treatment of negative numbers.  All of these
16426 commands have the property that if the argument is an integer, the result
16427 is the same integer.  An integer-valued floating-point argument is converted
16428 to integer form.
16430 If you press @kbd{H} (@code{calc-hyperbolic}) first, the result will be
16431 expressed as an integer-valued floating-point number.
16433 @cindex Integer part of a number
16434 @kindex F
16435 @pindex calc-floor
16436 @tindex floor
16437 @tindex ffloor
16438 @ignore
16439 @mindex @null
16440 @end ignore
16441 @kindex H F
16442 The @kbd{F} (@code{calc-floor}) [@code{floor} or @code{ffloor}] command
16443 truncates a real number to the next lower integer, i.e., toward minus
16444 infinity.  Thus @kbd{3.6 F} produces 3, but @kbd{_3.6 F} produces
16445 @mathit{-4}.
16447 @kindex I F
16448 @pindex calc-ceiling
16449 @tindex ceil
16450 @tindex fceil
16451 @ignore
16452 @mindex @null
16453 @end ignore
16454 @kindex H I F
16455 The @kbd{I F} (@code{calc-ceiling}) [@code{ceil} or @code{fceil}]
16456 command truncates toward positive infinity.  Thus @kbd{3.6 I F} produces
16457 4, and @kbd{_3.6 I F} produces @mathit{-3}.
16459 @kindex R
16460 @pindex calc-round
16461 @tindex round
16462 @tindex fround
16463 @ignore
16464 @mindex @null
16465 @end ignore
16466 @kindex H R
16467 The @kbd{R} (@code{calc-round}) [@code{round} or @code{fround}] command
16468 rounds to the nearest integer.  When the fractional part is .5 exactly,
16469 this command rounds away from zero.  (All other rounding in the
16470 Calculator uses this convention as well.)  Thus @kbd{3.5 R} produces 4
16471 but @kbd{3.4 R} produces 3; @kbd{_3.5 R} produces @mathit{-4}.
16473 @kindex I R
16474 @pindex calc-trunc
16475 @tindex trunc
16476 @tindex ftrunc
16477 @ignore
16478 @mindex @null
16479 @end ignore
16480 @kindex H I R
16481 The @kbd{I R} (@code{calc-trunc}) [@code{trunc} or @code{ftrunc}]
16482 command truncates toward zero.  In other words, it ``chops off''
16483 everything after the decimal point.  Thus @kbd{3.6 I R} produces 3 and
16484 @kbd{_3.6 I R} produces @mathit{-3}.
16486 These functions may not be applied meaningfully to error forms, but they
16487 do work for intervals.  As a convenience, applying @code{floor} to a
16488 modulo form floors the value part of the form.  Applied to a vector,
16489 these functions operate on all elements of the vector one by one.
16490 Applied to a date form, they operate on the internal numerical
16491 representation of dates, converting a date/time form into a pure date.
16493 @ignore
16494 @starindex
16495 @end ignore
16496 @tindex rounde
16497 @ignore
16498 @starindex
16499 @end ignore
16500 @tindex roundu
16501 @ignore
16502 @starindex
16503 @end ignore
16504 @tindex frounde
16505 @ignore
16506 @starindex
16507 @end ignore
16508 @tindex froundu
16509 There are two more rounding functions which can only be entered in
16510 algebraic notation.  The @code{roundu} function is like @code{round}
16511 except that it rounds up, toward plus infinity, when the fractional
16512 part is .5.  This distinction matters only for negative arguments.
16513 Also, @code{rounde} rounds to an even number in the case of a tie,
16514 rounding up or down as necessary.  For example, @samp{rounde(3.5)} and
16515 @samp{rounde(4.5)} both return 4, but @samp{rounde(5.5)} returns 6.
16516 The advantage of round-to-even is that the net error due to rounding
16517 after a long calculation tends to cancel out to zero.  An important
16518 subtle point here is that the number being fed to @code{rounde} will
16519 already have been rounded to the current precision before @code{rounde}
16520 begins.  For example, @samp{rounde(2.500001)} with a current precision
16521 of 6 will incorrectly, or at least surprisingly, yield 2 because the
16522 argument will first have been rounded down to @expr{2.5} (which
16523 @code{rounde} sees as an exact tie between 2 and 3).
16525 Each of these functions, when written in algebraic formulas, allows
16526 a second argument which specifies the number of digits after the
16527 decimal point to keep.  For example, @samp{round(123.4567, 2)} will
16528 produce the answer 123.46, and @samp{round(123.4567, -1)} will
16529 produce 120 (i.e., the cutoff is one digit to the @emph{left} of
16530 the decimal point).  A second argument of zero is equivalent to
16531 no second argument at all.
16533 @cindex Fractional part of a number
16534 To compute the fractional part of a number (i.e., the amount which, when
16535 added to `@tfn{floor(}@var{n}@tfn{)}', will produce @var{n}) just take @var{n}
16536 modulo 1 using the @code{%} command.
16538 Note also the @kbd{\} (integer quotient), @kbd{f I} (integer logarithm),
16539 and @kbd{f Q} (integer square root) commands, which are analogous to
16540 @kbd{/}, @kbd{B}, and @kbd{Q}, respectively, except that they take integer
16541 arguments and return the result rounded down to an integer.
16543 @node Complex Number Functions, Conversions, Integer Truncation, Arithmetic
16544 @section Complex Number Functions
16546 @noindent
16547 @kindex J
16548 @pindex calc-conj
16549 @tindex conj
16550 The @kbd{J} (@code{calc-conj}) [@code{conj}] command computes the
16551 complex conjugate of a number.  For complex number @expr{a+bi}, the
16552 complex conjugate is @expr{a-bi}.  If the argument is a real number,
16553 this command leaves it the same.  If the argument is a vector or matrix,
16554 this command replaces each element by its complex conjugate.
16556 @kindex G
16557 @pindex calc-argument
16558 @tindex arg
16559 The @kbd{G} (@code{calc-argument}) [@code{arg}] command computes the
16560 ``argument'' or polar angle of a complex number.  For a number in polar
16561 notation, this is simply the second component of the pair
16562 @texline `@tfn{(}@var{r}@tfn{;}@math{\theta}@tfn{)}'.
16563 @infoline `@tfn{(}@var{r}@tfn{;}@var{theta}@tfn{)}'.
16564 The result is expressed according to the current angular mode and will
16565 be in the range @mathit{-180} degrees (exclusive) to @mathit{+180} degrees
16566 (inclusive), or the equivalent range in radians.
16568 @pindex calc-imaginary
16569 The @code{calc-imaginary} command multiplies the number on the
16570 top of the stack by the imaginary number @expr{i = (0,1)}.  This
16571 command is not normally bound to a key in Calc, but it is available
16572 on the @key{IMAG} button in Keypad mode.
16574 @kindex f r
16575 @pindex calc-re
16576 @tindex re
16577 The @kbd{f r} (@code{calc-re}) [@code{re}] command replaces a complex number
16578 by its real part.  This command has no effect on real numbers.  (As an
16579 added convenience, @code{re} applied to a modulo form extracts
16580 the value part.)
16582 @kindex f i
16583 @pindex calc-im
16584 @tindex im
16585 The @kbd{f i} (@code{calc-im}) [@code{im}] command replaces a complex number
16586 by its imaginary part; real numbers are converted to zero.  With a vector
16587 or matrix argument, these functions operate element-wise.
16589 @ignore
16590 @mindex v p
16591 @end ignore
16592 @kindex v p (complex)
16593 @pindex calc-pack
16594 The @kbd{v p} (@code{calc-pack}) command can pack the top two numbers on
16595 the stack into a composite object such as a complex number.  With
16596 a prefix argument of @mathit{-1}, it produces a rectangular complex number;
16597 with an argument of @mathit{-2}, it produces a polar complex number.
16598 (Also, @pxref{Building Vectors}.)
16600 @ignore
16601 @mindex v u
16602 @end ignore
16603 @kindex v u (complex)
16604 @pindex calc-unpack
16605 The @kbd{v u} (@code{calc-unpack}) command takes the complex number
16606 (or other composite object) on the top of the stack and unpacks it
16607 into its separate components.
16609 @node Conversions, Date Arithmetic, Complex Number Functions, Arithmetic
16610 @section Conversions
16612 @noindent
16613 The commands described in this section convert numbers from one form
16614 to another; they are two-key sequences beginning with the letter @kbd{c}.
16616 @kindex c f
16617 @pindex calc-float
16618 @tindex pfloat
16619 The @kbd{c f} (@code{calc-float}) [@code{pfloat}] command converts the
16620 number on the top of the stack to floating-point form.  For example,
16621 @expr{23} is converted to @expr{23.0}, @expr{3:2} is converted to
16622 @expr{1.5}, and @expr{2.3} is left the same.  If the value is a composite
16623 object such as a complex number or vector, each of the components is
16624 converted to floating-point.  If the value is a formula, all numbers
16625 in the formula are converted to floating-point.  Note that depending
16626 on the current floating-point precision, conversion to floating-point
16627 format may lose information.
16629 As a special exception, integers which appear as powers or subscripts
16630 are not floated by @kbd{c f}.  If you really want to float a power,
16631 you can use a @kbd{j s} command to select the power followed by @kbd{c f}.
16632 Because @kbd{c f} cannot examine the formula outside of the selection,
16633 it does not notice that the thing being floated is a power.
16634 @xref{Selecting Subformulas}.
16636 The normal @kbd{c f} command is ``pervasive'' in the sense that it
16637 applies to all numbers throughout the formula.  The @code{pfloat}
16638 algebraic function never stays around in a formula; @samp{pfloat(a + 1)}
16639 changes to @samp{a + 1.0} as soon as it is evaluated.
16641 @kindex H c f
16642 @tindex float
16643 With the Hyperbolic flag, @kbd{H c f} [@code{float}] operates
16644 only on the number or vector of numbers at the top level of its
16645 argument.  Thus, @samp{float(1)} is 1.0, but @samp{float(a + 1)}
16646 is left unevaluated because its argument is not a number.
16648 You should use @kbd{H c f} if you wish to guarantee that the final
16649 value, once all the variables have been assigned, is a float; you
16650 would use @kbd{c f} if you wish to do the conversion on the numbers
16651 that appear right now.
16653 @kindex c F
16654 @pindex calc-fraction
16655 @tindex pfrac
16656 The @kbd{c F} (@code{calc-fraction}) [@code{pfrac}] command converts a
16657 floating-point number into a fractional approximation.  By default, it
16658 produces a fraction whose decimal representation is the same as the
16659 input number, to within the current precision.  You can also give a
16660 numeric prefix argument to specify a tolerance, either directly, or,
16661 if the prefix argument is zero, by using the number on top of the stack
16662 as the tolerance.  If the tolerance is a positive integer, the fraction
16663 is correct to within that many significant figures.  If the tolerance is
16664 a non-positive integer, it specifies how many digits fewer than the current
16665 precision to use.  If the tolerance is a floating-point number, the
16666 fraction is correct to within that absolute amount.
16668 @kindex H c F
16669 @tindex frac
16670 The @code{pfrac} function is pervasive, like @code{pfloat}.
16671 There is also a non-pervasive version, @kbd{H c F} [@code{frac}],
16672 which is analogous to @kbd{H c f} discussed above.
16674 @kindex c d
16675 @pindex calc-to-degrees
16676 @tindex deg
16677 The @kbd{c d} (@code{calc-to-degrees}) [@code{deg}] command converts a
16678 number into degrees form.  The value on the top of the stack may be an
16679 HMS form (interpreted as degrees-minutes-seconds), or a real number which
16680 will be interpreted in radians regardless of the current angular mode.
16682 @kindex c r
16683 @pindex calc-to-radians
16684 @tindex rad
16685 The @kbd{c r} (@code{calc-to-radians}) [@code{rad}] command converts an
16686 HMS form or angle in degrees into an angle in radians.
16688 @kindex c h
16689 @pindex calc-to-hms
16690 @tindex hms
16691 The @kbd{c h} (@code{calc-to-hms}) [@code{hms}] command converts a real
16692 number, interpreted according to the current angular mode, to an HMS
16693 form describing the same angle.  In algebraic notation, the @code{hms}
16694 function also accepts three arguments: @samp{hms(@var{h}, @var{m}, @var{s})}.
16695 (The three-argument version is independent of the current angular mode.)
16697 @pindex calc-from-hms
16698 The @code{calc-from-hms} command converts the HMS form on the top of the
16699 stack into a real number according to the current angular mode.
16701 @kindex c p
16702 @kindex I c p
16703 @pindex calc-polar
16704 @tindex polar
16705 @tindex rect
16706 The @kbd{c p} (@code{calc-polar}) command converts the complex number on
16707 the top of the stack from polar to rectangular form, or from rectangular
16708 to polar form, whichever is appropriate.  Real numbers are left the same.
16709 This command is equivalent to the @code{rect} or @code{polar}
16710 functions in algebraic formulas, depending on the direction of
16711 conversion.  (It uses @code{polar}, except that if the argument is
16712 already a polar complex number, it uses @code{rect} instead.  The
16713 @kbd{I c p} command always uses @code{rect}.)
16715 @kindex c c
16716 @pindex calc-clean
16717 @tindex pclean
16718 The @kbd{c c} (@code{calc-clean}) [@code{pclean}] command ``cleans'' the
16719 number on the top of the stack.  Floating point numbers are re-rounded
16720 according to the current precision.  Polar numbers whose angular
16721 components have strayed from the @mathit{-180} to @mathit{+180} degree range
16722 are normalized.  (Note that results will be undesirable if the current
16723 angular mode is different from the one under which the number was
16724 produced!)  Integers and fractions are generally unaffected by this
16725 operation.  Vectors and formulas are cleaned by cleaning each component
16726 number (i.e., pervasively).
16728 If the simplification mode is set below the default level, it is raised
16729 to the default level for the purposes of this command.  Thus, @kbd{c c}
16730 applies the default simplifications even if their automatic application
16731 is disabled.  @xref{Simplification Modes}.
16733 @cindex Roundoff errors, correcting
16734 A numeric prefix argument to @kbd{c c} sets the floating-point precision
16735 to that value for the duration of the command.  A positive prefix (of at
16736 least 3) sets the precision to the specified value; a negative or zero
16737 prefix decreases the precision by the specified amount.
16739 @kindex c 0-9
16740 @pindex calc-clean-num
16741 The keystroke sequences @kbd{c 0} through @kbd{c 9} are equivalent
16742 to @kbd{c c} with the corresponding negative prefix argument.  If roundoff
16743 errors have changed 2.0 into 1.999999, typing @kbd{c 1} to clip off one
16744 decimal place often conveniently does the trick.
16746 The @kbd{c c} command with a numeric prefix argument, and the @kbd{c 0}
16747 through @kbd{c 9} commands, also ``clip'' very small floating-point
16748 numbers to zero.  If the exponent is less than or equal to the negative
16749 of the specified precision, the number is changed to 0.0.  For example,
16750 if the current precision is 12, then @kbd{c 2} changes the vector
16751 @samp{[1e-8, 1e-9, 1e-10, 1e-11]} to @samp{[1e-8, 1e-9, 0, 0]}.
16752 Numbers this small generally arise from roundoff noise.
16754 If the numbers you are using really are legitimately this small,
16755 you should avoid using the @kbd{c 0} through @kbd{c 9} commands.
16756 (The plain @kbd{c c} command rounds to the current precision but
16757 does not clip small numbers.)
16759 One more property of @kbd{c 0} through @kbd{c 9}, and of @kbd{c c} with
16760 a prefix argument, is that integer-valued floats are converted to
16761 plain integers, so that @kbd{c 1} on @samp{[1., 1.5, 2., 2.5, 3.]}
16762 produces @samp{[1, 1.5, 2, 2.5, 3]}.  This is not done for huge
16763 numbers (@samp{1e100} is technically an integer-valued float, but
16764 you wouldn't want it automatically converted to a 100-digit integer).
16766 @kindex H c 0-9
16767 @kindex H c c
16768 @tindex clean
16769 With the Hyperbolic flag, @kbd{H c c} and @kbd{H c 0} through @kbd{H c 9}
16770 operate non-pervasively [@code{clean}].
16772 @node Date Arithmetic, Financial Functions, Conversions, Arithmetic
16773 @section Date Arithmetic
16775 @noindent
16776 @cindex Date arithmetic, additional functions
16777 The commands described in this section perform various conversions
16778 and calculations involving date forms (@pxref{Date Forms}).  They
16779 use the @kbd{t} (for time/date) prefix key followed by shifted
16780 letters.
16782 The simplest date arithmetic is done using the regular @kbd{+} and @kbd{-}
16783 commands.  In particular, adding a number to a date form advances the
16784 date form by a certain number of days; adding an HMS form to a date
16785 form advances the date by a certain amount of time; and subtracting two
16786 date forms produces a difference measured in days.  The commands
16787 described here provide additional, more specialized operations on dates.
16789 Many of these commands accept a numeric prefix argument; if you give
16790 plain @kbd{C-u} as the prefix, these commands will instead take the
16791 additional argument from the top of the stack.
16793 @menu
16794 * Date Conversions::
16795 * Date Functions::
16796 * Time Zones::
16797 * Business Days::
16798 @end menu
16800 @node Date Conversions, Date Functions, Date Arithmetic, Date Arithmetic
16801 @subsection Date Conversions
16803 @noindent
16804 @kindex t D
16805 @pindex calc-date
16806 @tindex date
16807 The @kbd{t D} (@code{calc-date}) [@code{date}] command converts a
16808 date form into a number, measured in days since Jan 1, 1 AD.  The
16809 result will be an integer if @var{date} is a pure date form, or a
16810 fraction or float if @var{date} is a date/time form.  Or, if its
16811 argument is a number, it converts this number into a date form.
16813 With a numeric prefix argument, @kbd{t D} takes that many objects
16814 (up to six) from the top of the stack and interprets them in one
16815 of the following ways:
16817 The @samp{date(@var{year}, @var{month}, @var{day})} function
16818 builds a pure date form out of the specified year, month, and
16819 day, which must all be integers.  @var{Year} is a year number,
16820 such as 1991 (@emph{not} the same as 91!).  @var{Month} must be
16821 an integer in the range 1 to 12; @var{day} must be in the range
16822 1 to 31.  If the specified month has fewer than 31 days and
16823 @var{day} is too large, the equivalent day in the following
16824 month will be used.
16826 The @samp{date(@var{month}, @var{day})} function builds a
16827 pure date form using the current year, as determined by the
16828 real-time clock.
16830 The @samp{date(@var{year}, @var{month}, @var{day}, @var{hms})}
16831 function builds a date/time form using an @var{hms} form.
16833 The @samp{date(@var{year}, @var{month}, @var{day}, @var{hour},
16834 @var{minute}, @var{second})} function builds a date/time form.
16835 @var{hour} should be an integer in the range 0 to 23;
16836 @var{minute} should be an integer in the range 0 to 59;
16837 @var{second} should be any real number in the range @samp{[0 .. 60)}.
16838 The last two arguments default to zero if omitted.
16840 @kindex t J
16841 @pindex calc-julian
16842 @tindex julian
16843 @cindex Julian day counts, conversions
16844 The @kbd{t J} (@code{calc-julian}) [@code{julian}] command converts
16845 a date form into a Julian day count, which is the number of days
16846 since noon on Jan 1, 4713 BC.  A pure date is converted to an integer
16847 Julian count representing noon of that day.  A date/time form is
16848 converted to an exact floating-point Julian count, adjusted to
16849 interpret the date form in the current time zone but the Julian
16850 day count in Greenwich Mean Time.  A numeric prefix argument allows
16851 you to specify the time zone; @pxref{Time Zones}.  Use a prefix of
16852 zero to suppress the time zone adjustment.  Note that pure date forms
16853 are never time-zone adjusted.
16855 This command can also do the opposite conversion, from a Julian day
16856 count (either an integer day, or a floating-point day and time in
16857 the GMT zone), into a pure date form or a date/time form in the
16858 current or specified time zone.
16860 @kindex t U
16861 @pindex calc-unix-time
16862 @tindex unixtime
16863 @cindex Unix time format, conversions
16864 The @kbd{t U} (@code{calc-unix-time}) [@code{unixtime}] command
16865 converts a date form into a Unix time value, which is the number of
16866 seconds since midnight on Jan 1, 1970, or vice-versa.  The numeric result
16867 will be an integer if the current precision is 12 or less; for higher
16868 precisions, the result may be a float with (@var{precision}@minus{}12)
16869 digits after the decimal.  Just as for @kbd{t J}, the numeric time
16870 is interpreted in the GMT time zone and the date form is interpreted
16871 in the current or specified zone.  Some systems use Unix-like
16872 numbering but with the local time zone; give a prefix of zero to
16873 suppress the adjustment if so.
16875 @kindex t C
16876 @pindex calc-convert-time-zones
16877 @tindex tzconv
16878 @cindex Time Zones, converting between
16879 The @kbd{t C} (@code{calc-convert-time-zones}) [@code{tzconv}]
16880 command converts a date form from one time zone to another.  You
16881 are prompted for each time zone name in turn; you can answer with
16882 any suitable Calc time zone expression (@pxref{Time Zones}).
16883 If you answer either prompt with a blank line, the local time
16884 zone is used for that prompt.  You can also answer the first
16885 prompt with @kbd{$} to take the two time zone names from the
16886 stack (and the date to be converted from the third stack level).
16888 @node Date Functions, Business Days, Date Conversions, Date Arithmetic
16889 @subsection Date Functions
16891 @noindent
16892 @kindex t N
16893 @pindex calc-now
16894 @tindex now
16895 The @kbd{t N} (@code{calc-now}) [@code{now}] command pushes the
16896 current date and time on the stack as a date form.  The time is
16897 reported in terms of the specified time zone; with no numeric prefix
16898 argument, @kbd{t N} reports for the current time zone.
16900 @kindex t P
16901 @pindex calc-date-part
16902 The @kbd{t P} (@code{calc-date-part}) command extracts one part
16903 of a date form.  The prefix argument specifies the part; with no
16904 argument, this command prompts for a part code from 1 to 9.
16905 The various part codes are described in the following paragraphs.
16907 @tindex year
16908 The @kbd{M-1 t P} [@code{year}] function extracts the year number
16909 from a date form as an integer, e.g., 1991.  This and the
16910 following functions will also accept a real number for an
16911 argument, which is interpreted as a standard Calc day number.
16912 Note that this function will never return zero, since the year
16913 1 BC immediately precedes the year 1 AD.
16915 @tindex month
16916 The @kbd{M-2 t P} [@code{month}] function extracts the month number
16917 from a date form as an integer in the range 1 to 12.
16919 @tindex day
16920 The @kbd{M-3 t P} [@code{day}] function extracts the day number
16921 from a date form as an integer in the range 1 to 31.
16923 @tindex hour
16924 The @kbd{M-4 t P} [@code{hour}] function extracts the hour from
16925 a date form as an integer in the range 0 (midnight) to 23.  Note
16926 that 24-hour time is always used.  This returns zero for a pure
16927 date form.  This function (and the following two) also accept
16928 HMS forms as input.
16930 @tindex minute
16931 The @kbd{M-5 t P} [@code{minute}] function extracts the minute
16932 from a date form as an integer in the range 0 to 59.
16934 @tindex second
16935 The @kbd{M-6 t P} [@code{second}] function extracts the second
16936 from a date form.  If the current precision is 12 or less,
16937 the result is an integer in the range 0 to 59.  For higher
16938 precisions, the result may instead be a floating-point number.
16940 @tindex weekday
16941 The @kbd{M-7 t P} [@code{weekday}] function extracts the weekday
16942 number from a date form as an integer in the range 0 (Sunday)
16943 to 6 (Saturday).
16945 @tindex yearday
16946 The @kbd{M-8 t P} [@code{yearday}] function extracts the day-of-year
16947 number from a date form as an integer in the range 1 (January 1)
16948 to 366 (December 31 of a leap year).
16950 @tindex time
16951 The @kbd{M-9 t P} [@code{time}] function extracts the time portion
16952 of a date form as an HMS form.  This returns @samp{0@@ 0' 0"}
16953 for a pure date form.
16955 @kindex t M
16956 @pindex calc-new-month
16957 @tindex newmonth
16958 The @kbd{t M} (@code{calc-new-month}) [@code{newmonth}] command
16959 computes a new date form that represents the first day of the month
16960 specified by the input date.  The result is always a pure date
16961 form; only the year and month numbers of the input are retained.
16962 With a numeric prefix argument @var{n} in the range from 1 to 31,
16963 @kbd{t M} computes the @var{n}th day of the month.  (If @var{n}
16964 is greater than the actual number of days in the month, or if
16965 @var{n} is zero, the last day of the month is used.)
16967 @kindex t Y
16968 @pindex calc-new-year
16969 @tindex newyear
16970 The @kbd{t Y} (@code{calc-new-year}) [@code{newyear}] command
16971 computes a new pure date form that represents the first day of
16972 the year specified by the input.  The month, day, and time
16973 of the input date form are lost.  With a numeric prefix argument
16974 @var{n} in the range from 1 to 366, @kbd{t Y} computes the
16975 @var{n}th day of the year (366 is treated as 365 in non-leap
16976 years).  A prefix argument of 0 computes the last day of the
16977 year (December 31).  A negative prefix argument from @mathit{-1} to
16978 @mathit{-12} computes the first day of the @var{n}th month of the year.
16980 @kindex t W
16981 @pindex calc-new-week
16982 @tindex newweek
16983 The @kbd{t W} (@code{calc-new-week}) [@code{newweek}] command
16984 computes a new pure date form that represents the Sunday on or before
16985 the input date.  With a numeric prefix argument, it can be made to
16986 use any day of the week as the starting day; the argument must be in
16987 the range from 0 (Sunday) to 6 (Saturday).  This function always
16988 subtracts between 0 and 6 days from the input date.
16990 Here's an example use of @code{newweek}:  Find the date of the next
16991 Wednesday after a given date.  Using @kbd{M-3 t W} or @samp{newweek(d, 3)}
16992 will give you the @emph{preceding} Wednesday, so @samp{newweek(d+7, 3)}
16993 will give you the following Wednesday.  A further look at the definition
16994 of @code{newweek} shows that if the input date is itself a Wednesday,
16995 this formula will return the Wednesday one week in the future.  An
16996 exercise for the reader is to modify this formula to yield the same day
16997 if the input is already a Wednesday.  Another interesting exercise is
16998 to preserve the time-of-day portion of the input (@code{newweek} resets
16999 the time to midnight; hint:@: how can @code{newweek} be defined in terms
17000 of the @code{weekday} function?).
17002 @ignore
17003 @starindex
17004 @end ignore
17005 @tindex pwday
17006 The @samp{pwday(@var{date})} function (not on any key) computes the
17007 day-of-month number of the Sunday on or before @var{date}.  With
17008 two arguments, @samp{pwday(@var{date}, @var{day})} computes the day
17009 number of the Sunday on or before day number @var{day} of the month
17010 specified by @var{date}.  The @var{day} must be in the range from
17011 7 to 31; if the day number is greater than the actual number of days
17012 in the month, the true number of days is used instead.  Thus
17013 @samp{pwday(@var{date}, 7)} finds the first Sunday of the month, and
17014 @samp{pwday(@var{date}, 31)} finds the last Sunday of the month.
17015 With a third @var{weekday} argument, @code{pwday} can be made to look
17016 for any day of the week instead of Sunday.
17018 @kindex t I
17019 @pindex calc-inc-month
17020 @tindex incmonth
17021 The @kbd{t I} (@code{calc-inc-month}) [@code{incmonth}] command
17022 increases a date form by one month, or by an arbitrary number of
17023 months specified by a numeric prefix argument.  The time portion,
17024 if any, of the date form stays the same.  The day also stays the
17025 same, except that if the new month has fewer days the day
17026 number may be reduced to lie in the valid range.  For example,
17027 @samp{incmonth(<Jan 31, 1991>)} produces @samp{<Feb 28, 1991>}.
17028 Because of this, @kbd{t I t I} and @kbd{M-2 t I} do not always give
17029 the same results (@samp{<Mar 28, 1991>} versus @samp{<Mar 31, 1991>}
17030 in this case).
17032 @ignore
17033 @starindex
17034 @end ignore
17035 @tindex incyear
17036 The @samp{incyear(@var{date}, @var{step})} function increases
17037 a date form by the specified number of years, which may be
17038 any positive or negative integer.  Note that @samp{incyear(d, n)}
17039 is equivalent to @w{@samp{incmonth(d, 12*n)}}, but these do not have
17040 simple equivalents in terms of day arithmetic because
17041 months and years have varying lengths.  If the @var{step}
17042 argument is omitted, 1 year is assumed.  There is no keyboard
17043 command for this function; use @kbd{C-u 12 t I} instead.
17045 There is no @code{newday} function at all because @kbd{F} [@code{floor}]
17046 serves this purpose.  Similarly, instead of @code{incday} and
17047 @code{incweek} simply use @expr{d + n} or @expr{d + 7 n}.
17049 @xref{Basic Arithmetic}, for the @kbd{f ]} [@code{incr}] command
17050 which can adjust a date/time form by a certain number of seconds.
17052 @node Business Days, Time Zones, Date Functions, Date Arithmetic
17053 @subsection Business Days
17055 @noindent
17056 Often time is measured in ``business days'' or ``working days,''
17057 where weekends and holidays are skipped.  Calc's normal date
17058 arithmetic functions use calendar days, so that subtracting two
17059 consecutive Mondays will yield a difference of 7 days.  By contrast,
17060 subtracting two consecutive Mondays would yield 5 business days
17061 (assuming two-day weekends and the absence of holidays).
17063 @kindex t +
17064 @kindex t -
17065 @tindex badd
17066 @tindex bsub
17067 @pindex calc-business-days-plus
17068 @pindex calc-business-days-minus
17069 The @kbd{t +} (@code{calc-business-days-plus}) [@code{badd}]
17070 and @kbd{t -} (@code{calc-business-days-minus}) [@code{bsub}]
17071 commands perform arithmetic using business days.  For @kbd{t +},
17072 one argument must be a date form and the other must be a real
17073 number (positive or negative).  If the number is not an integer,
17074 then a certain amount of time is added as well as a number of
17075 days; for example, adding 0.5 business days to a time in Friday
17076 evening will produce a time in Monday morning.  It is also
17077 possible to add an HMS form; adding @samp{12@@ 0' 0"} also adds
17078 half a business day.  For @kbd{t -}, the arguments are either a
17079 date form and a number or HMS form, or two date forms, in which
17080 case the result is the number of business days between the two
17081 dates.
17083 @cindex @code{Holidays} variable
17084 @vindex Holidays
17085 By default, Calc considers any day that is not a Saturday or
17086 Sunday to be a business day.  You can define any number of
17087 additional holidays by editing the variable @code{Holidays}.
17088 (There is an @w{@kbd{s H}} convenience command for editing this
17089 variable.)  Initially, @code{Holidays} contains the vector
17090 @samp{[sat, sun]}.  Entries in the @code{Holidays} vector may
17091 be any of the following kinds of objects:
17093 @itemize @bullet
17094 @item
17095 Date forms (pure dates, not date/time forms).  These specify
17096 particular days which are to be treated as holidays.
17098 @item
17099 Intervals of date forms.  These specify a range of days, all of
17100 which are holidays (e.g., Christmas week).  @xref{Interval Forms}.
17102 @item
17103 Nested vectors of date forms.  Each date form in the vector is
17104 considered to be a holiday.
17106 @item
17107 Any Calc formula which evaluates to one of the above three things.
17108 If the formula involves the variable @expr{y}, it stands for a
17109 yearly repeating holiday; @expr{y} will take on various year
17110 numbers like 1992.  For example, @samp{date(y, 12, 25)} specifies
17111 Christmas day, and @samp{newweek(date(y, 11, 7), 4) + 21} specifies
17112 Thanksgiving (which is held on the fourth Thursday of November).
17113 If the formula involves the variable @expr{m}, that variable
17114 takes on month numbers from 1 to 12:  @samp{date(y, m, 15)} is
17115 a holiday that takes place on the 15th of every month.
17117 @item
17118 A weekday name, such as @code{sat} or @code{sun}.  This is really
17119 a variable whose name is a three-letter, lower-case day name.
17121 @item
17122 An interval of year numbers (integers).  This specifies the span of
17123 years over which this holiday list is to be considered valid.  Any
17124 business-day arithmetic that goes outside this range will result
17125 in an error message.  Use this if you are including an explicit
17126 list of holidays, rather than a formula to generate them, and you
17127 want to make sure you don't accidentally go beyond the last point
17128 where the holidays you entered are complete.  If there is no
17129 limiting interval in the @code{Holidays} vector, the default
17130 @samp{[1 .. 2737]} is used.  (This is the absolute range of years
17131 for which Calc's business-day algorithms will operate.)
17133 @item
17134 An interval of HMS forms.  This specifies the span of hours that
17135 are to be considered one business day.  For example, if this
17136 range is @samp{[9@@ 0' 0" .. 17@@ 0' 0"]} (i.e., 9am to 5pm), then
17137 the business day is only eight hours long, so that @kbd{1.5 t +}
17138 on @samp{<4:00pm Fri Dec 13, 1991>} will add one business day and
17139 four business hours to produce @samp{<12:00pm Tue Dec 17, 1991>}.
17140 Likewise, @kbd{t -} will now express differences in time as
17141 fractions of an eight-hour day.  Times before 9am will be treated
17142 as 9am by business date arithmetic, and times at or after 5pm will
17143 be treated as 4:59:59pm.  If there is no HMS interval in @code{Holidays},
17144 the full 24-hour day @samp{[0@ 0' 0" .. 24@ 0' 0"]} is assumed.
17145 (Regardless of the type of bounds you specify, the interval is
17146 treated as inclusive on the low end and exclusive on the high end,
17147 so that the work day goes from 9am up to, but not including, 5pm.)
17148 @end itemize
17150 If the @code{Holidays} vector is empty, then @kbd{t +} and
17151 @kbd{t -} will act just like @kbd{+} and @kbd{-} because there will
17152 then be no difference between business days and calendar days.
17154 Calc expands the intervals and formulas you give into a complete
17155 list of holidays for internal use.  This is done mainly to make
17156 sure it can detect multiple holidays.  (For example,
17157 @samp{<Jan 1, 1989>} is both New Year's Day and a Sunday, but
17158 Calc's algorithms take care to count it only once when figuring
17159 the number of holidays between two dates.)
17161 Since the complete list of holidays for all the years from 1 to
17162 2737 would be huge, Calc actually computes only the part of the
17163 list between the smallest and largest years that have been involved
17164 in business-day calculations so far.  Normally, you won't have to
17165 worry about this.  Keep in mind, however, that if you do one
17166 calculation for 1992, and another for 1792, even if both involve
17167 only a small range of years, Calc will still work out all the
17168 holidays that fall in that 200-year span.
17170 If you add a (positive) number of days to a date form that falls on a
17171 weekend or holiday, the date form is treated as if it were the most
17172 recent business day.  (Thus adding one business day to a Friday,
17173 Saturday, or Sunday will all yield the following Monday.)  If you
17174 subtract a number of days from a weekend or holiday, the date is
17175 effectively on the following business day.  (So subtracting one business
17176 day from Saturday, Sunday, or Monday yields the preceding Friday.)  The
17177 difference between two dates one or both of which fall on holidays
17178 equals the number of actual business days between them.  These
17179 conventions are consistent in the sense that, if you add @var{n}
17180 business days to any date, the difference between the result and the
17181 original date will come out to @var{n} business days.  (It can't be
17182 completely consistent though; a subtraction followed by an addition
17183 might come out a bit differently, since @kbd{t +} is incapable of
17184 producing a date that falls on a weekend or holiday.)
17186 @ignore
17187 @starindex
17188 @end ignore
17189 @tindex holiday
17190 There is a @code{holiday} function, not on any keys, that takes
17191 any date form and returns 1 if that date falls on a weekend or
17192 holiday, as defined in @code{Holidays}, or 0 if the date is a
17193 business day.
17195 @node Time Zones, , Business Days, Date Arithmetic
17196 @subsection Time Zones
17198 @noindent
17199 @cindex Time zones
17200 @cindex Daylight savings time
17201 Time zones and daylight savings time are a complicated business.
17202 The conversions to and from Julian and Unix-style dates automatically
17203 compute the correct time zone and daylight savings adjustment to use,
17204 provided they can figure out this information.  This section describes
17205 Calc's time zone adjustment algorithm in detail, in case you want to
17206 do conversions in different time zones or in case Calc's algorithms
17207 can't determine the right correction to use.
17209 Adjustments for time zones and daylight savings time are done by
17210 @kbd{t U}, @kbd{t J}, @kbd{t N}, and @kbd{t C}, but not by any other
17211 commands.  In particular, @samp{<may 1 1991> - <apr 1 1991>} evaluates
17212 to exactly 30 days even though there is a daylight-savings
17213 transition in between.  This is also true for Julian pure dates:
17214 @samp{julian(<may 1 1991>) - julian(<apr 1 1991>)}.  But Julian
17215 and Unix date/times will adjust for daylight savings time:
17216 @samp{julian(<12am may 1 1991>) - julian(<12am apr 1 1991>)}
17217 evaluates to @samp{29.95834} (that's 29 days and 23 hours)
17218 because one hour was lost when daylight savings commenced on
17219 April 7, 1991.
17221 In brief, the idiom @samp{julian(@var{date1}) - julian(@var{date2})}
17222 computes the actual number of 24-hour periods between two dates, whereas
17223 @samp{@var{date1} - @var{date2}} computes the number of calendar
17224 days between two dates without taking daylight savings into account.
17226 @pindex calc-time-zone
17227 @ignore
17228 @starindex
17229 @end ignore
17230 @tindex tzone
17231 The @code{calc-time-zone} [@code{tzone}] command converts the time
17232 zone specified by its numeric prefix argument into a number of
17233 seconds difference from Greenwich mean time (GMT).  If the argument
17234 is a number, the result is simply that value multiplied by 3600.
17235 Typical arguments for North America are 5 (Eastern) or 8 (Pacific).  If
17236 Daylight Savings time is in effect, one hour should be subtracted from
17237 the normal difference.
17239 If you give a prefix of plain @kbd{C-u}, @code{calc-time-zone} (like other
17240 date arithmetic commands that include a time zone argument) takes the
17241 zone argument from the top of the stack.  (In the case of @kbd{t J}
17242 and @kbd{t U}, the normal argument is then taken from the second-to-top
17243 stack position.)  This allows you to give a non-integer time zone
17244 adjustment.  The time-zone argument can also be an HMS form, or
17245 it can be a variable which is a time zone name in upper- or lower-case.
17246 For example @samp{tzone(PST) = tzone(8)} and @samp{tzone(pdt) = tzone(7)}
17247 (for Pacific standard and daylight savings times, respectively).
17249 North American and European time zone names are defined as follows;
17250 note that for each time zone there is one name for standard time,
17251 another for daylight savings time, and a third for ``generalized'' time
17252 in which the daylight savings adjustment is computed from context.
17254 @smallexample
17255 @group
17256 YST  PST  MST  CST  EST  AST    NST    GMT   WET     MET    MEZ
17257  9    8    7    6    5    4     3.5     0     -1      -2     -2
17259 YDT  PDT  MDT  CDT  EDT  ADT    NDT    BST  WETDST  METDST  MESZ
17260  8    7    6    5    4    3     2.5     -1    -2      -3     -3
17262 YGT  PGT  MGT  CGT  EGT  AGT    NGT    BGT   WEGT    MEGT   MEGZ
17263 9/8  8/7  7/6  6/5  5/4  4/3  3.5/2.5  0/-1 -1/-2   -2/-3  -2/-3
17264 @end group
17265 @end smallexample
17267 @vindex math-tzone-names
17268 To define time zone names that do not appear in the above table,
17269 you must modify the Lisp variable @code{math-tzone-names}.  This
17270 is a list of lists describing the different time zone names; its
17271 structure is best explained by an example.  The three entries for
17272 Pacific Time look like this:
17274 @smallexample
17275 @group
17276 ( ( "PST" 8 0 )    ; Name as an upper-case string, then standard
17277   ( "PDT" 8 -1 )   ; adjustment, then daylight savings adjustment.
17278   ( "PGT" 8 "PST" "PDT" ) )   ; Generalized time zone.
17279 @end group
17280 @end smallexample
17282 @cindex @code{TimeZone} variable
17283 @vindex TimeZone
17284 With no arguments, @code{calc-time-zone} or @samp{tzone()} obtains an
17285 argument from the Calc variable @code{TimeZone} if a value has been
17286 stored for that variable.  If not, Calc runs the Unix @samp{date}
17287 command and looks for one of the above time zone names in the output;
17288 if this does not succeed, @samp{tzone()} leaves itself unevaluated.
17289 The time zone name in the @samp{date} output may be followed by a signed
17290 adjustment, e.g., @samp{GMT+5} or @samp{GMT+0500} which specifies a
17291 number of hours and minutes to be added to the base time zone.
17292 Calc stores the time zone it finds into @code{TimeZone} to speed
17293 later calls to @samp{tzone()}.
17295 The special time zone name @code{local} is equivalent to no argument,
17296 i.e., it uses the local time zone as obtained from the @code{date}
17297 command.
17299 If the time zone name found is one of the standard or daylight
17300 savings zone names from the above table, and Calc's internal
17301 daylight savings algorithm says that time and zone are consistent
17302 (e.g., @code{PDT} accompanies a date that Calc's algorithm would also
17303 consider to be daylight savings, or @code{PST} accompanies a date
17304 that Calc would consider to be standard time), then Calc substitutes
17305 the corresponding generalized time zone (like @code{PGT}).
17307 If your system does not have a suitable @samp{date} command, you
17308 may wish to put a @samp{(setq var-TimeZone ...)} in your Emacs
17309 initialization file to set the time zone.  (Since you are interacting
17310 with the variable @code{TimeZone} directly from Emacs Lisp, the
17311 @code{var-} prefix needs to be present.)  The easiest way to do
17312 this is to edit the @code{TimeZone} variable using Calc's @kbd{s T}
17313 command, then use the @kbd{s p} (@code{calc-permanent-variable})
17314 command to save the value of @code{TimeZone} permanently.
17316 The @kbd{t J} and @code{t U} commands with no numeric prefix
17317 arguments do the same thing as @samp{tzone()}.  If the current
17318 time zone is a generalized time zone, e.g., @code{EGT}, Calc
17319 examines the date being converted to tell whether to use standard
17320 or daylight savings time.  But if the current time zone is explicit,
17321 e.g., @code{EST} or @code{EDT}, then that adjustment is used exactly
17322 and Calc's daylight savings algorithm is not consulted.
17324 Some places don't follow the usual rules for daylight savings time.
17325 The state of Arizona, for example, does not observe daylight savings
17326 time.  If you run Calc during the winter season in Arizona, the
17327 Unix @code{date} command will report @code{MST} time zone, which
17328 Calc will change to @code{MGT}.  If you then convert a time that
17329 lies in the summer months, Calc will apply an incorrect daylight
17330 savings time adjustment.  To avoid this, set your @code{TimeZone}
17331 variable explicitly to @code{MST} to force the use of standard,
17332 non-daylight-savings time.
17334 @vindex math-daylight-savings-hook
17335 @findex math-std-daylight-savings
17336 By default Calc always considers daylight savings time to begin at
17337 2 a.m.@: on the first Sunday of April, and to end at 2 a.m.@: on the
17338 last Sunday of October.  This is the rule that has been in effect
17339 in North America since 1987.  If you are in a country that uses
17340 different rules for computing daylight savings time, you have two
17341 choices:  Write your own daylight savings hook, or control time
17342 zones explicitly by setting the @code{TimeZone} variable and/or
17343 always giving a time-zone argument for the conversion functions.
17345 The Lisp variable @code{math-daylight-savings-hook} holds the
17346 name of a function that is used to compute the daylight savings
17347 adjustment for a given date.  The default is
17348 @code{math-std-daylight-savings}, which computes an adjustment
17349 (either 0 or @mathit{-1}) using the North American rules given above.
17351 The daylight savings hook function is called with four arguments:
17352 The date, as a floating-point number in standard Calc format;
17353 a six-element list of the date decomposed into year, month, day,
17354 hour, minute, and second, respectively; a string which contains
17355 the generalized time zone name in upper-case, e.g., @code{"WEGT"};
17356 and a special adjustment to be applied to the hour value when
17357 converting into a generalized time zone (see below).
17359 @findex math-prev-weekday-in-month
17360 The Lisp function @code{math-prev-weekday-in-month} is useful for
17361 daylight savings computations.  This is an internal version of
17362 the user-level @code{pwday} function described in the previous
17363 section. It takes four arguments:  The floating-point date value,
17364 the corresponding six-element date list, the day-of-month number,
17365 and the weekday number (0-6).
17367 The default daylight savings hook ignores the time zone name, but a
17368 more sophisticated hook could use different algorithms for different
17369 time zones.  It would also be possible to use different algorithms
17370 depending on the year number, but the default hook always uses the
17371 algorithm for 1987 and later.  Here is a listing of the default
17372 daylight savings hook:
17374 @smallexample
17375 (defun math-std-daylight-savings (date dt zone bump)
17376   (cond ((< (nth 1 dt) 4) 0)
17377         ((= (nth 1 dt) 4)
17378          (let ((sunday (math-prev-weekday-in-month date dt 7 0)))
17379            (cond ((< (nth 2 dt) sunday) 0)
17380                  ((= (nth 2 dt) sunday)
17381                   (if (>= (nth 3 dt) (+ 3 bump)) -1 0))
17382                  (t -1))))
17383         ((< (nth 1 dt) 10) -1)
17384         ((= (nth 1 dt) 10)
17385          (let ((sunday (math-prev-weekday-in-month date dt 31 0)))
17386            (cond ((< (nth 2 dt) sunday) -1)
17387                  ((= (nth 2 dt) sunday)
17388                   (if (>= (nth 3 dt) (+ 2 bump)) 0 -1))
17389                  (t 0))))
17390         (t 0))
17392 @end smallexample
17394 @noindent
17395 The @code{bump} parameter is equal to zero when Calc is converting
17396 from a date form in a generalized time zone into a GMT date value.
17397 It is @mathit{-1} when Calc is converting in the other direction.  The
17398 adjustments shown above ensure that the conversion behaves correctly
17399 and reasonably around the 2 a.m.@: transition in each direction.
17401 There is a ``missing'' hour between 2 a.m.@: and 3 a.m.@: at the
17402 beginning of daylight savings time; converting a date/time form that
17403 falls in this hour results in a time value for the following hour,
17404 from 3 a.m.@: to 4 a.m.  At the end of daylight savings time, the
17405 hour from 1 a.m.@: to 2 a.m.@: repeats itself; converting a date/time
17406 form that falls in in this hour results in a time value for the first
17407 manifestation of that time (@emph{not} the one that occurs one hour later).
17409 If @code{math-daylight-savings-hook} is @code{nil}, then the
17410 daylight savings adjustment is always taken to be zero.
17412 In algebraic formulas, @samp{tzone(@var{zone}, @var{date})}
17413 computes the time zone adjustment for a given zone name at a
17414 given date.  The @var{date} is ignored unless @var{zone} is a
17415 generalized time zone.  If @var{date} is a date form, the
17416 daylight savings computation is applied to it as it appears.
17417 If @var{date} is a numeric date value, it is adjusted for the
17418 daylight-savings version of @var{zone} before being given to
17419 the daylight savings hook.  This odd-sounding rule ensures
17420 that the daylight-savings computation is always done in
17421 local time, not in the GMT time that a numeric @var{date}
17422 is typically represented in.
17424 @ignore
17425 @starindex
17426 @end ignore
17427 @tindex dsadj
17428 The @samp{dsadj(@var{date}, @var{zone})} function computes the
17429 daylight savings adjustment that is appropriate for @var{date} in
17430 time zone @var{zone}.  If @var{zone} is explicitly in or not in
17431 daylight savings time (e.g., @code{PDT} or @code{PST}) the
17432 @var{date} is ignored.  If @var{zone} is a generalized time zone,
17433 the algorithms described above are used.  If @var{zone} is omitted,
17434 the computation is done for the current time zone.
17436 @xref{Reporting Bugs}, for the address of Calc's author, if you
17437 should wish to contribute your improved versions of
17438 @code{math-tzone-names} and @code{math-daylight-savings-hook}
17439 to the Calc distribution.
17441 @node Financial Functions, Binary Functions, Date Arithmetic, Arithmetic
17442 @section Financial Functions
17444 @noindent
17445 Calc's financial or business functions use the @kbd{b} prefix
17446 key followed by a shifted letter.  (The @kbd{b} prefix followed by
17447 a lower-case letter is used for operations on binary numbers.)
17449 Note that the rate and the number of intervals given to these
17450 functions must be on the same time scale, e.g., both months or
17451 both years.  Mixing an annual interest rate with a time expressed
17452 in months will give you very wrong answers!
17454 It is wise to compute these functions to a higher precision than
17455 you really need, just to make sure your answer is correct to the
17456 last penny; also, you may wish to check the definitions at the end
17457 of this section to make sure the functions have the meaning you expect.
17459 @menu
17460 * Percentages::
17461 * Future Value::
17462 * Present Value::
17463 * Related Financial Functions::
17464 * Depreciation Functions::
17465 * Definitions of Financial Functions::
17466 @end menu
17468 @node Percentages, Future Value, Financial Functions, Financial Functions
17469 @subsection Percentages
17471 @kindex M-%
17472 @pindex calc-percent
17473 @tindex %
17474 @tindex percent
17475 The @kbd{M-%} (@code{calc-percent}) command takes a percentage value,
17476 say 5.4, and converts it to an equivalent actual number.  For example,
17477 @kbd{5.4 M-%} enters 0.054 on the stack.  (That's the @key{META} or
17478 @key{ESC} key combined with @kbd{%}.)
17480 Actually, @kbd{M-%} creates a formula of the form @samp{5.4%}.
17481 You can enter @samp{5.4%} yourself during algebraic entry.  The
17482 @samp{%} operator simply means, ``the preceding value divided by
17483 100.''  The @samp{%} operator has very high precedence, so that
17484 @samp{1+8%} is interpreted as @samp{1+(8%)}, not as @samp{(1+8)%}.
17485 (The @samp{%} operator is just a postfix notation for the
17486 @code{percent} function, just like @samp{20!} is the notation for
17487 @samp{fact(20)}, or twenty-factorial.)
17489 The formula @samp{5.4%} would normally evaluate immediately to
17490 0.054, but the @kbd{M-%} command suppresses evaluation as it puts
17491 the formula onto the stack.  However, the next Calc command that
17492 uses the formula @samp{5.4%} will evaluate it as its first step.
17493 The net effect is that you get to look at @samp{5.4%} on the stack,
17494 but Calc commands see it as @samp{0.054}, which is what they expect.
17496 In particular, @samp{5.4%} and @samp{0.054} are suitable values
17497 for the @var{rate} arguments of the various financial functions,
17498 but the number @samp{5.4} is probably @emph{not} suitable---it
17499 represents a rate of 540 percent!
17501 The key sequence @kbd{M-% *} effectively means ``percent-of.''
17502 For example, @kbd{68 @key{RET} 25 M-% *} computes 17, which is 25% of
17503 68 (and also 68% of 25, which comes out to the same thing).
17505 @kindex c %
17506 @pindex calc-convert-percent
17507 The @kbd{c %} (@code{calc-convert-percent}) command converts the
17508 value on the top of the stack from numeric to percentage form.
17509 For example, if 0.08 is on the stack, @kbd{c %} converts it to
17510 @samp{8%}.  The quantity is the same, it's just represented
17511 differently.  (Contrast this with @kbd{M-%}, which would convert
17512 this number to @samp{0.08%}.)  The @kbd{=} key is a convenient way
17513 to convert a formula like @samp{8%} back to numeric form, 0.08.
17515 To compute what percentage one quantity is of another quantity,
17516 use @kbd{/ c %}.  For example, @w{@kbd{17 @key{RET} 68 / c %}} displays
17517 @samp{25%}.
17519 @kindex b %
17520 @pindex calc-percent-change
17521 @tindex relch
17522 The @kbd{b %} (@code{calc-percent-change}) [@code{relch}] command
17523 calculates the percentage change from one number to another.
17524 For example, @kbd{40 @key{RET} 50 b %} produces the answer @samp{25%},
17525 since 50 is 25% larger than 40.  A negative result represents a
17526 decrease:  @kbd{50 @key{RET} 40 b %} produces @samp{-20%}, since 40 is
17527 20% smaller than 50.  (The answers are different in magnitude
17528 because, in the first case, we're increasing by 25% of 40, but
17529 in the second case, we're decreasing by 20% of 50.)  The effect
17530 of @kbd{40 @key{RET} 50 b %} is to compute @expr{(50-40)/40}, converting
17531 the answer to percentage form as if by @kbd{c %}.
17533 @node Future Value, Present Value, Percentages, Financial Functions
17534 @subsection Future Value
17536 @noindent
17537 @kindex b F
17538 @pindex calc-fin-fv
17539 @tindex fv
17540 The @kbd{b F} (@code{calc-fin-fv}) [@code{fv}] command computes
17541 the future value of an investment.  It takes three arguments
17542 from the stack:  @samp{fv(@var{rate}, @var{n}, @var{payment})}.
17543 If you give payments of @var{payment} every year for @var{n}
17544 years, and the money you have paid earns interest at @var{rate} per
17545 year, then this function tells you what your investment would be
17546 worth at the end of the period.  (The actual interval doesn't
17547 have to be years, as long as @var{n} and @var{rate} are expressed
17548 in terms of the same intervals.)  This function assumes payments
17549 occur at the @emph{end} of each interval.
17551 @kindex I b F
17552 @tindex fvb
17553 The @kbd{I b F} [@code{fvb}] command does the same computation,
17554 but assuming your payments are at the beginning of each interval.
17555 Suppose you plan to deposit $1000 per year in a savings account
17556 earning 5.4% interest, starting right now.  How much will be
17557 in the account after five years?  @code{fvb(5.4%, 5, 1000) = 5870.73}.
17558 Thus you will have earned $870 worth of interest over the years.
17559 Using the stack, this calculation would have been
17560 @kbd{5.4 M-% 5 @key{RET} 1000 I b F}.  Note that the rate is expressed
17561 as a number between 0 and 1, @emph{not} as a percentage.
17563 @kindex H b F
17564 @tindex fvl
17565 The @kbd{H b F} [@code{fvl}] command computes the future value
17566 of an initial lump sum investment.  Suppose you could deposit
17567 those five thousand dollars in the bank right now; how much would
17568 they be worth in five years?  @code{fvl(5.4%, 5, 5000) = 6503.89}.
17570 The algebraic functions @code{fv} and @code{fvb} accept an optional
17571 fourth argument, which is used as an initial lump sum in the sense
17572 of @code{fvl}.  In other words, @code{fv(@var{rate}, @var{n},
17573 @var{payment}, @var{initial}) = fv(@var{rate}, @var{n}, @var{payment})
17574 + fvl(@var{rate}, @var{n}, @var{initial})}.
17576 To illustrate the relationships between these functions, we could
17577 do the @code{fvb} calculation ``by hand'' using @code{fvl}.  The
17578 final balance will be the sum of the contributions of our five
17579 deposits at various times.  The first deposit earns interest for
17580 five years:  @code{fvl(5.4%, 5, 1000) = 1300.78}.  The second
17581 deposit only earns interest for four years:  @code{fvl(5.4%, 4, 1000) =
17582 1234.13}.  And so on down to the last deposit, which earns one
17583 year's interest:  @code{fvl(5.4%, 1, 1000) = 1054.00}.  The sum of
17584 these five values is, sure enough, $5870.73, just as was computed
17585 by @code{fvb} directly.
17587 What does @code{fv(5.4%, 5, 1000) = 5569.96} mean?  The payments
17588 are now at the ends of the periods.  The end of one year is the same
17589 as the beginning of the next, so what this really means is that we've
17590 lost the payment at year zero (which contributed $1300.78), but we're
17591 now counting the payment at year five (which, since it didn't have
17592 a chance to earn interest, counts as $1000).  Indeed, @expr{5569.96 =
17593 5870.73 - 1300.78 + 1000} (give or take a bit of roundoff error).
17595 @node Present Value, Related Financial Functions, Future Value, Financial Functions
17596 @subsection Present Value
17598 @noindent
17599 @kindex b P
17600 @pindex calc-fin-pv
17601 @tindex pv
17602 The @kbd{b P} (@code{calc-fin-pv}) [@code{pv}] command computes
17603 the present value of an investment.  Like @code{fv}, it takes
17604 three arguments:  @code{pv(@var{rate}, @var{n}, @var{payment})}.
17605 It computes the present value of a series of regular payments.
17606 Suppose you have the chance to make an investment that will
17607 pay $2000 per year over the next four years; as you receive
17608 these payments you can put them in the bank at 9% interest.
17609 You want to know whether it is better to make the investment, or
17610 to keep the money in the bank where it earns 9% interest right
17611 from the start.  The calculation @code{pv(9%, 4, 2000)} gives the
17612 result 6479.44.  If your initial investment must be less than this,
17613 say, $6000, then the investment is worthwhile.  But if you had to
17614 put up $7000, then it would be better just to leave it in the bank.
17616 Here is the interpretation of the result of @code{pv}:  You are
17617 trying to compare the return from the investment you are
17618 considering, which is @code{fv(9%, 4, 2000) = 9146.26}, with
17619 the return from leaving the money in the bank, which is
17620 @code{fvl(9%, 4, @var{x})} where @var{x} is the amount of money
17621 you would have to put up in advance.  The @code{pv} function
17622 finds the break-even point, @expr{x = 6479.44}, at which
17623 @code{fvl(9%, 4, 6479.44)} is also equal to 9146.26.  This is
17624 the largest amount you should be willing to invest.
17626 @kindex I b P
17627 @tindex pvb
17628 The @kbd{I b P} [@code{pvb}] command solves the same problem,
17629 but with payments occurring at the beginning of each interval.
17630 It has the same relationship to @code{fvb} as @code{pv} has
17631 to @code{fv}.  For example @code{pvb(9%, 4, 2000) = 7062.59},
17632 a larger number than @code{pv} produced because we get to start
17633 earning interest on the return from our investment sooner.
17635 @kindex H b P
17636 @tindex pvl
17637 The @kbd{H b P} [@code{pvl}] command computes the present value of
17638 an investment that will pay off in one lump sum at the end of the
17639 period.  For example, if we get our $8000 all at the end of the
17640 four years, @code{pvl(9%, 4, 8000) = 5667.40}.  This is much
17641 less than @code{pv} reported, because we don't earn any interest
17642 on the return from this investment.  Note that @code{pvl} and
17643 @code{fvl} are simple inverses:  @code{fvl(9%, 4, 5667.40) = 8000}.
17645 You can give an optional fourth lump-sum argument to @code{pv}
17646 and @code{pvb}; this is handled in exactly the same way as the
17647 fourth argument for @code{fv} and @code{fvb}.
17649 @kindex b N
17650 @pindex calc-fin-npv
17651 @tindex npv
17652 The @kbd{b N} (@code{calc-fin-npv}) [@code{npv}] command computes
17653 the net present value of a series of irregular investments.
17654 The first argument is the interest rate.  The second argument is
17655 a vector which represents the expected return from the investment
17656 at the end of each interval.  For example, if the rate represents
17657 a yearly interest rate, then the vector elements are the return
17658 from the first year, second year, and so on.
17660 Thus, @code{npv(9%, [2000,2000,2000,2000]) = pv(9%, 4, 2000) = 6479.44}.
17661 Obviously this function is more interesting when the payments are
17662 not all the same!
17664 The @code{npv} function can actually have two or more arguments.
17665 Multiple arguments are interpreted in the same way as for the
17666 vector statistical functions like @code{vsum}.
17667 @xref{Single-Variable Statistics}.  Basically, if there are several
17668 payment arguments, each either a vector or a plain number, all these
17669 values are collected left-to-right into the complete list of payments.
17670 A numeric prefix argument on the @kbd{b N} command says how many
17671 payment values or vectors to take from the stack.
17673 @kindex I b N
17674 @tindex npvb
17675 The @kbd{I b N} [@code{npvb}] command computes the net present
17676 value where payments occur at the beginning of each interval
17677 rather than at the end.
17679 @node Related Financial Functions, Depreciation Functions, Present Value, Financial Functions
17680 @subsection Related Financial Functions
17682 @noindent
17683 The functions in this section are basically inverses of the
17684 present value functions with respect to the various arguments.
17686 @kindex b M
17687 @pindex calc-fin-pmt
17688 @tindex pmt
17689 The @kbd{b M} (@code{calc-fin-pmt}) [@code{pmt}] command computes
17690 the amount of periodic payment necessary to amortize a loan.
17691 Thus @code{pmt(@var{rate}, @var{n}, @var{amount})} equals the
17692 value of @var{payment} such that @code{pv(@var{rate}, @var{n},
17693 @var{payment}) = @var{amount}}.
17695 @kindex I b M
17696 @tindex pmtb
17697 The @kbd{I b M} [@code{pmtb}] command does the same computation
17698 but using @code{pvb} instead of @code{pv}.  Like @code{pv} and
17699 @code{pvb}, these functions can also take a fourth argument which
17700 represents an initial lump-sum investment.
17702 @kindex H b M
17703 The @kbd{H b M} key just invokes the @code{fvl} function, which is
17704 the inverse of @code{pvl}.  There is no explicit @code{pmtl} function.
17706 @kindex b #
17707 @pindex calc-fin-nper
17708 @tindex nper
17709 The @kbd{b #} (@code{calc-fin-nper}) [@code{nper}] command computes
17710 the number of regular payments necessary to amortize a loan.
17711 Thus @code{nper(@var{rate}, @var{payment}, @var{amount})} equals
17712 the value of @var{n} such that @code{pv(@var{rate}, @var{n},
17713 @var{payment}) = @var{amount}}.  If @var{payment} is too small
17714 ever to amortize a loan for @var{amount} at interest rate @var{rate},
17715 the @code{nper} function is left in symbolic form.
17717 @kindex I b #
17718 @tindex nperb
17719 The @kbd{I b #} [@code{nperb}] command does the same computation
17720 but using @code{pvb} instead of @code{pv}.  You can give a fourth
17721 lump-sum argument to these functions, but the computation will be
17722 rather slow in the four-argument case.
17724 @kindex H b #
17725 @tindex nperl
17726 The @kbd{H b #} [@code{nperl}] command does the same computation
17727 using @code{pvl}.  By exchanging @var{payment} and @var{amount} you
17728 can also get the solution for @code{fvl}.  For example,
17729 @code{nperl(8%, 2000, 1000) = 9.006}, so if you place $1000 in a
17730 bank account earning 8%, it will take nine years to grow to $2000.
17732 @kindex b T
17733 @pindex calc-fin-rate
17734 @tindex rate
17735 The @kbd{b T} (@code{calc-fin-rate}) [@code{rate}] command computes
17736 the rate of return on an investment.  This is also an inverse of @code{pv}:
17737 @code{rate(@var{n}, @var{payment}, @var{amount})} computes the value of
17738 @var{rate} such that @code{pv(@var{rate}, @var{n}, @var{payment}) =
17739 @var{amount}}.  The result is expressed as a formula like @samp{6.3%}.
17741 @kindex I b T
17742 @kindex H b T
17743 @tindex rateb
17744 @tindex ratel
17745 The @kbd{I b T} [@code{rateb}] and @kbd{H b T} [@code{ratel}]
17746 commands solve the analogous equations with @code{pvb} or @code{pvl}
17747 in place of @code{pv}.  Also, @code{rate} and @code{rateb} can
17748 accept an optional fourth argument just like @code{pv} and @code{pvb}.
17749 To redo the above example from a different perspective,
17750 @code{ratel(9, 2000, 1000) = 8.00597%}, which says you will need an
17751 interest rate of 8% in order to double your account in nine years.
17753 @kindex b I
17754 @pindex calc-fin-irr
17755 @tindex irr
17756 The @kbd{b I} (@code{calc-fin-irr}) [@code{irr}] command is the
17757 analogous function to @code{rate} but for net present value.
17758 Its argument is a vector of payments.  Thus @code{irr(@var{payments})}
17759 computes the @var{rate} such that @code{npv(@var{rate}, @var{payments}) = 0};
17760 this rate is known as the @dfn{internal rate of return}.
17762 @kindex I b I
17763 @tindex irrb
17764 The @kbd{I b I} [@code{irrb}] command computes the internal rate of
17765 return assuming payments occur at the beginning of each period.
17767 @node Depreciation Functions, Definitions of Financial Functions, Related Financial Functions, Financial Functions
17768 @subsection Depreciation Functions
17770 @noindent
17771 The functions in this section calculate @dfn{depreciation}, which is
17772 the amount of value that a possession loses over time.  These functions
17773 are characterized by three parameters:  @var{cost}, the original cost
17774 of the asset; @var{salvage}, the value the asset will have at the end
17775 of its expected ``useful life''; and @var{life}, the number of years
17776 (or other periods) of the expected useful life.
17778 There are several methods for calculating depreciation that differ in
17779 the way they spread the depreciation over the lifetime of the asset.
17781 @kindex b S
17782 @pindex calc-fin-sln
17783 @tindex sln
17784 The @kbd{b S} (@code{calc-fin-sln}) [@code{sln}] command computes the
17785 ``straight-line'' depreciation.  In this method, the asset depreciates
17786 by the same amount every year (or period).  For example,
17787 @samp{sln(12000, 2000, 5)} returns 2000.  The asset costs $12000
17788 initially and will be worth $2000 after five years; it loses $2000
17789 per year.
17791 @kindex b Y
17792 @pindex calc-fin-syd
17793 @tindex syd
17794 The @kbd{b Y} (@code{calc-fin-syd}) [@code{syd}] command computes the
17795 accelerated ``sum-of-years'-digits'' depreciation.  Here the depreciation
17796 is higher during the early years of the asset's life.  Since the
17797 depreciation is different each year, @kbd{b Y} takes a fourth @var{period}
17798 parameter which specifies which year is requested, from 1 to @var{life}.
17799 If @var{period} is outside this range, the @code{syd} function will
17800 return zero.
17802 @kindex b D
17803 @pindex calc-fin-ddb
17804 @tindex ddb
17805 The @kbd{b D} (@code{calc-fin-ddb}) [@code{ddb}] command computes an
17806 accelerated depreciation using the double-declining balance method.
17807 It also takes a fourth @var{period} parameter.
17809 For symmetry, the @code{sln} function will accept a @var{period}
17810 parameter as well, although it will ignore its value except that the
17811 return value will as usual be zero if @var{period} is out of range.
17813 For example, pushing the vector @expr{[1,2,3,4,5]} (perhaps with @kbd{v x 5})
17814 and then mapping @kbd{V M ' [sln(12000,2000,5,$), syd(12000,2000,5,$),
17815 ddb(12000,2000,5,$)] @key{RET}} produces a matrix that allows us to compare
17816 the three depreciation methods:
17818 @example
17819 @group
17820 [ [ 2000, 3333, 4800 ]
17821   [ 2000, 2667, 2880 ]
17822   [ 2000, 2000, 1728 ]
17823   [ 2000, 1333,  592 ]
17824   [ 2000,  667,   0  ] ]
17825 @end group
17826 @end example
17828 @noindent
17829 (Values have been rounded to nearest integers in this figure.)
17830 We see that @code{sln} depreciates by the same amount each year,
17831 @kbd{syd} depreciates more at the beginning and less at the end,
17832 and @kbd{ddb} weights the depreciation even more toward the beginning.
17834 Summing columns with @kbd{V R : +} yields @expr{[10000, 10000, 10000]};
17835 the total depreciation in any method is (by definition) the
17836 difference between the cost and the salvage value.
17838 @node Definitions of Financial Functions, , Depreciation Functions, Financial Functions
17839 @subsection Definitions
17841 @noindent
17842 For your reference, here are the actual formulas used to compute
17843 Calc's financial functions.
17845 Calc will not evaluate a financial function unless the @var{rate} or
17846 @var{n} argument is known.  However, @var{payment} or @var{amount} can
17847 be a variable.  Calc expands these functions according to the
17848 formulas below for symbolic arguments only when you use the @kbd{a "}
17849 (@code{calc-expand-formula}) command, or when taking derivatives or
17850 integrals or solving equations involving the functions.
17852 @ifinfo
17853 These formulas are shown using the conventions of Big display
17854 mode (@kbd{d B}); for example, the formula for @code{fv} written
17855 linearly is @samp{pmt * ((1 + rate)^n) - 1) / rate}.
17857 @example
17858                                         n
17859                               (1 + rate)  - 1
17860 fv(rate, n, pmt) =      pmt * ---------------
17861                                    rate
17863                                          n
17864                               ((1 + rate)  - 1) (1 + rate)
17865 fvb(rate, n, pmt) =     pmt * ----------------------------
17866                                          rate
17868                                         n
17869 fvl(rate, n, pmt) =     pmt * (1 + rate)
17871                                             -n
17872                               1 - (1 + rate)
17873 pv(rate, n, pmt) =      pmt * ----------------
17874                                     rate
17876                                              -n
17877                               (1 - (1 + rate)  ) (1 + rate)
17878 pvb(rate, n, pmt) =     pmt * -----------------------------
17879                                          rate
17881                                         -n
17882 pvl(rate, n, pmt) =     pmt * (1 + rate)
17884                                     -1               -2               -3
17885 npv(rate, [a, b, c]) =  a*(1 + rate)   + b*(1 + rate)   + c*(1 + rate)
17887                                         -1               -2
17888 npvb(rate, [a, b, c]) = a + b*(1 + rate)   + c*(1 + rate)
17890                                              -n
17891                         (amt - x * (1 + rate)  ) * rate
17892 pmt(rate, n, amt, x) =  -------------------------------
17893                                              -n
17894                                1 - (1 + rate)
17896                                              -n
17897                         (amt - x * (1 + rate)  ) * rate
17898 pmtb(rate, n, amt, x) = -------------------------------
17899                                         -n
17900                          (1 - (1 + rate)  ) (1 + rate)
17902                                    amt * rate
17903 nper(rate, pmt, amt) =  - log(1 - ------------, 1 + rate)
17904                                       pmt
17906                                     amt * rate
17907 nperb(rate, pmt, amt) = - log(1 - ---------------, 1 + rate)
17908                                   pmt * (1 + rate)
17910                               amt
17911 nperl(rate, pmt, amt) = - log(---, 1 + rate)
17912                               pmt
17914                            1/n
17915                         pmt
17916 ratel(n, pmt, amt) =    ------ - 1
17917                            1/n
17918                         amt
17920                         cost - salv
17921 sln(cost, salv, life) = -----------
17922                            life
17924                              (cost - salv) * (life - per + 1)
17925 syd(cost, salv, life, per) = --------------------------------
17926                                   life * (life + 1) / 2
17928                              book * 2
17929 ddb(cost, salv, life, per) = --------,  book = cost - depreciation so far
17930                                life
17931 @end example
17932 @end ifinfo
17933 @tex
17934 \turnoffactive
17935 $$ \code{fv}(r, n, p) = p { (1 + r)^n - 1 \over r } $$
17936 $$ \code{fvb}(r, n, p) = p { ((1 + r)^n - 1) (1 + r) \over r } $$
17937 $$ \code{fvl}(r, n, p) = p (1 + r)^n $$
17938 $$ \code{pv}(r, n, p) = p { 1 - (1 + r)^{-n} \over r } $$
17939 $$ \code{pvb}(r, n, p) = p { (1 - (1 + r)^{-n}) (1 + r) \over r } $$
17940 $$ \code{pvl}(r, n, p) = p (1 + r)^{-n} $$
17941 $$ \code{npv}(r, [a,b,c]) = a (1 + r)^{-1} + b (1 + r)^{-2} + c (1 + r)^{-3} $$
17942 $$ \code{npvb}(r, [a,b,c]) = a + b (1 + r)^{-1} + c (1 + r)^{-2} $$
17943 $$ \code{pmt}(r, n, a, x) = { (a - x (1 + r)^{-n}) r \over 1 - (1 + r)^{-n} }$$
17944 $$ \code{pmtb}(r, n, a, x) = { (a - x (1 + r)^{-n}) r \over
17945                                (1 - (1 + r)^{-n}) (1 + r) } $$
17946 $$ \code{nper}(r, p, a) = -\code{log}(1 - { a r \over p }, 1 + r) $$
17947 $$ \code{nperb}(r, p, a) = -\code{log}(1 - { a r \over p (1 + r) }, 1 + r) $$
17948 $$ \code{nperl}(r, p, a) = -\code{log}({a \over p}, 1 + r) $$
17949 $$ \code{ratel}(n, p, a) = { p^{1/n} \over a^{1/n} } - 1 $$
17950 $$ \code{sln}(c, s, l) = { c - s \over l } $$
17951 $$ \code{syd}(c, s, l, p) = { (c - s) (l - p + 1) \over l (l+1) / 2 } $$
17952 $$ \code{ddb}(c, s, l, p) = { 2 (c - \hbox{depreciation so far}) \over l } $$
17953 @end tex
17955 @noindent
17956 In @code{pmt} and @code{pmtb}, @expr{x=0} if omitted.
17958 These functions accept any numeric objects, including error forms,
17959 intervals, and even (though not very usefully) complex numbers.  The
17960 above formulas specify exactly the behavior of these functions with
17961 all sorts of inputs.
17963 Note that if the first argument to the @code{log} in @code{nper} is
17964 negative, @code{nper} leaves itself in symbolic form rather than
17965 returning a (financially meaningless) complex number.
17967 @samp{rate(num, pmt, amt)} solves the equation
17968 @samp{pv(rate, num, pmt) = amt} for @samp{rate} using @kbd{H a R}
17969 (@code{calc-find-root}), with the interval @samp{[.01% .. 100%]}
17970 for an initial guess.  The @code{rateb} function is the same except
17971 that it uses @code{pvb}.  Note that @code{ratel} can be solved
17972 directly; its formula is shown in the above list.
17974 Similarly, @samp{irr(pmts)} solves the equation @samp{npv(rate, pmts) = 0}
17975 for @samp{rate}.
17977 If you give a fourth argument to @code{nper} or @code{nperb}, Calc
17978 will also use @kbd{H a R} to solve the equation using an initial
17979 guess interval of @samp{[0 .. 100]}.
17981 A fourth argument to @code{fv} simply sums the two components
17982 calculated from the above formulas for @code{fv} and @code{fvl}.
17983 The same is true of @code{fvb}, @code{pv}, and @code{pvb}.
17985 The @kbd{ddb} function is computed iteratively; the ``book'' value
17986 starts out equal to @var{cost}, and decreases according to the above
17987 formula for the specified number of periods.  If the book value
17988 would decrease below @var{salvage}, it only decreases to @var{salvage}
17989 and the depreciation is zero for all subsequent periods.  The @code{ddb}
17990 function returns the amount the book value decreased in the specified
17991 period.
17993 @node Binary Functions, , Financial Functions, Arithmetic
17994 @section Binary Number Functions
17996 @noindent
17997 The commands in this chapter all use two-letter sequences beginning with
17998 the @kbd{b} prefix.
18000 @cindex Binary numbers
18001 The ``binary'' operations actually work regardless of the currently
18002 displayed radix, although their results make the most sense in a radix
18003 like 2, 8, or 16 (as obtained by the @kbd{d 2}, @kbd{d 8}, or @w{@kbd{d 6}}
18004 commands, respectively).  You may also wish to enable display of leading
18005 zeros with @kbd{d z}.  @xref{Radix Modes}.
18007 @cindex Word size for binary operations
18008 The Calculator maintains a current @dfn{word size} @expr{w}, an
18009 arbitrary positive or negative integer.  For a positive word size, all
18010 of the binary operations described here operate modulo @expr{2^w}.  In
18011 particular, negative arguments are converted to positive integers modulo
18012 @expr{2^w} by all binary functions.
18014 If the word size is negative, binary operations produce 2's complement
18015 integers from 
18016 @texline @math{-2^{-w-1}}
18017 @infoline @expr{-(2^(-w-1))} 
18018 to 
18019 @texline @math{2^{-w-1}-1}
18020 @infoline @expr{2^(-w-1)-1} 
18021 inclusive.  Either mode accepts inputs in any range; the sign of
18022 @expr{w} affects only the results produced.
18024 @kindex b c
18025 @pindex calc-clip
18026 @tindex clip
18027 The @kbd{b c} (@code{calc-clip})
18028 [@code{clip}] command can be used to clip a number by reducing it modulo
18029 @expr{2^w}.  The commands described in this chapter automatically clip
18030 their results to the current word size.  Note that other operations like
18031 addition do not use the current word size, since integer addition
18032 generally is not ``binary.''  (However, @pxref{Simplification Modes},
18033 @code{calc-bin-simplify-mode}.)  For example, with a word size of 8
18034 bits @kbd{b c} converts a number to the range 0 to 255; with a word
18035 size of @mathit{-8} @kbd{b c} converts to the range @mathit{-128} to 127.
18037 @kindex b w
18038 @pindex calc-word-size
18039 The default word size is 32 bits.  All operations except the shifts and
18040 rotates allow you to specify a different word size for that one
18041 operation by giving a numeric prefix argument:  @kbd{C-u 8 b c} clips the
18042 top of stack to the range 0 to 255 regardless of the current word size.
18043 To set the word size permanently, use @kbd{b w} (@code{calc-word-size}).
18044 This command displays a prompt with the current word size; press @key{RET}
18045 immediately to keep this word size, or type a new word size at the prompt.
18047 When the binary operations are written in symbolic form, they take an
18048 optional second (or third) word-size parameter.  When a formula like
18049 @samp{and(a,b)} is finally evaluated, the word size current at that time
18050 will be used, but when @samp{and(a,b,-8)} is evaluated, a word size of
18051 @mathit{-8} will always be used.  A symbolic binary function will be left
18052 in symbolic form unless the all of its argument(s) are integers or
18053 integer-valued floats.
18055 If either or both arguments are modulo forms for which @expr{M} is a
18056 power of two, that power of two is taken as the word size unless a
18057 numeric prefix argument overrides it.  The current word size is never
18058 consulted when modulo-power-of-two forms are involved.
18060 @kindex b a
18061 @pindex calc-and
18062 @tindex and
18063 The @kbd{b a} (@code{calc-and}) [@code{and}] command computes the bitwise
18064 AND of the two numbers on the top of the stack.  In other words, for each
18065 of the @expr{w} binary digits of the two numbers (pairwise), the corresponding
18066 bit of the result is 1 if and only if both input bits are 1:
18067 @samp{and(2#1100, 2#1010) = 2#1000}.
18069 @kindex b o
18070 @pindex calc-or
18071 @tindex or
18072 The @kbd{b o} (@code{calc-or}) [@code{or}] command computes the bitwise
18073 inclusive OR of two numbers.  A bit is 1 if either of the input bits, or
18074 both, are 1:  @samp{or(2#1100, 2#1010) = 2#1110}.
18076 @kindex b x
18077 @pindex calc-xor
18078 @tindex xor
18079 The @kbd{b x} (@code{calc-xor}) [@code{xor}] command computes the bitwise
18080 exclusive OR of two numbers.  A bit is 1 if exactly one of the input bits
18081 is 1:  @samp{xor(2#1100, 2#1010) = 2#0110}.
18083 @kindex b d
18084 @pindex calc-diff
18085 @tindex diff
18086 The @kbd{b d} (@code{calc-diff}) [@code{diff}] command computes the bitwise
18087 difference of two numbers; this is defined by @samp{diff(a,b) = and(a,not(b))},
18088 so that @samp{diff(2#1100, 2#1010) = 2#0100}.
18090 @kindex b n
18091 @pindex calc-not
18092 @tindex not
18093 The @kbd{b n} (@code{calc-not}) [@code{not}] command computes the bitwise
18094 NOT of a number.  A bit is 1 if the input bit is 0 and vice-versa.
18096 @kindex b l
18097 @pindex calc-lshift-binary
18098 @tindex lsh
18099 The @kbd{b l} (@code{calc-lshift-binary}) [@code{lsh}] command shifts a
18100 number left by one bit, or by the number of bits specified in the numeric
18101 prefix argument.  A negative prefix argument performs a logical right shift,
18102 in which zeros are shifted in on the left.  In symbolic form, @samp{lsh(a)}
18103 is short for @samp{lsh(a,1)}, which in turn is short for @samp{lsh(a,n,w)}.
18104 Bits shifted ``off the end,'' according to the current word size, are lost.
18106 @kindex H b l
18107 @kindex H b r
18108 @ignore
18109 @mindex @idots
18110 @end ignore
18111 @kindex H b L
18112 @ignore
18113 @mindex @null
18114 @end ignore
18115 @kindex H b R
18116 @ignore
18117 @mindex @null
18118 @end ignore
18119 @kindex H b t
18120 The @kbd{H b l} command also does a left shift, but it takes two arguments
18121 from the stack (the value to shift, and, at top-of-stack, the number of
18122 bits to shift).  This version interprets the prefix argument just like
18123 the regular binary operations, i.e., as a word size.  The Hyperbolic flag
18124 has a similar effect on the rest of the binary shift and rotate commands.
18126 @kindex b r
18127 @pindex calc-rshift-binary
18128 @tindex rsh
18129 The @kbd{b r} (@code{calc-rshift-binary}) [@code{rsh}] command shifts a
18130 number right by one bit, or by the number of bits specified in the numeric
18131 prefix argument:  @samp{rsh(a,n) = lsh(a,-n)}.
18133 @kindex b L
18134 @pindex calc-lshift-arith
18135 @tindex ash
18136 The @kbd{b L} (@code{calc-lshift-arith}) [@code{ash}] command shifts a
18137 number left.  It is analogous to @code{lsh}, except that if the shift
18138 is rightward (the prefix argument is negative), an arithmetic shift
18139 is performed as described below.
18141 @kindex b R
18142 @pindex calc-rshift-arith
18143 @tindex rash
18144 The @kbd{b R} (@code{calc-rshift-arith}) [@code{rash}] command performs
18145 an ``arithmetic'' shift to the right, in which the leftmost bit (according
18146 to the current word size) is duplicated rather than shifting in zeros.
18147 This corresponds to dividing by a power of two where the input is interpreted
18148 as a signed, twos-complement number.  (The distinction between the @samp{rsh}
18149 and @samp{rash} operations is totally independent from whether the word
18150 size is positive or negative.)  With a negative prefix argument, this
18151 performs a standard left shift.
18153 @kindex b t
18154 @pindex calc-rotate-binary
18155 @tindex rot
18156 The @kbd{b t} (@code{calc-rotate-binary}) [@code{rot}] command rotates a
18157 number one bit to the left.  The leftmost bit (according to the current
18158 word size) is dropped off the left and shifted in on the right.  With a
18159 numeric prefix argument, the number is rotated that many bits to the left
18160 or right.
18162 @xref{Set Operations}, for the @kbd{b p} and @kbd{b u} commands that
18163 pack and unpack binary integers into sets.  (For example, @kbd{b u}
18164 unpacks the number @samp{2#11001} to the set of bit-numbers
18165 @samp{[0, 3, 4]}.)  Type @kbd{b u V #} to count the number of ``1''
18166 bits in a binary integer.
18168 Another interesting use of the set representation of binary integers
18169 is to reverse the bits in, say, a 32-bit integer.  Type @kbd{b u} to
18170 unpack; type @kbd{31 @key{TAB} -} to replace each bit-number in the set
18171 with 31 minus that bit-number; type @kbd{b p} to pack the set back
18172 into a binary integer.
18174 @node Scientific Functions, Matrix Functions, Arithmetic, Top
18175 @chapter Scientific Functions
18177 @noindent
18178 The functions described here perform trigonometric and other transcendental
18179 calculations.  They generally produce floating-point answers correct to the
18180 full current precision.  The @kbd{H} (Hyperbolic) and @kbd{I} (Inverse)
18181 flag keys must be used to get some of these functions from the keyboard.
18183 @kindex P
18184 @pindex calc-pi
18185 @cindex @code{pi} variable
18186 @vindex pi
18187 @kindex H P
18188 @cindex @code{e} variable
18189 @vindex e
18190 @kindex I P
18191 @cindex @code{gamma} variable
18192 @vindex gamma
18193 @cindex Gamma constant, Euler's
18194 @cindex Euler's gamma constant
18195 @kindex H I P
18196 @cindex @code{phi} variable
18197 @cindex Phi, golden ratio
18198 @cindex Golden ratio
18199 One miscellaneous command is shift-@kbd{P} (@code{calc-pi}), which pushes
18200 the value of @cpi{} (at the current precision) onto the stack.  With the
18201 Hyperbolic flag, it pushes the value @expr{e}, the base of natural logarithms.
18202 With the Inverse flag, it pushes Euler's constant 
18203 @texline @math{\gamma}
18204 @infoline @expr{gamma} 
18205 (about 0.5772).  With both Inverse and Hyperbolic, it
18206 pushes the ``golden ratio'' 
18207 @texline @math{\phi}
18208 @infoline @expr{phi} 
18209 (about 1.618).  (At present, Euler's constant is not available
18210 to unlimited precision; Calc knows only the first 100 digits.)
18211 In Symbolic mode, these commands push the
18212 actual variables @samp{pi}, @samp{e}, @samp{gamma}, and @samp{phi},
18213 respectively, instead of their values; @pxref{Symbolic Mode}.
18215 @ignore
18216 @mindex Q
18217 @end ignore
18218 @ignore
18219 @mindex I Q
18220 @end ignore
18221 @kindex I Q
18222 @tindex sqr
18223 The @kbd{Q} (@code{calc-sqrt}) [@code{sqrt}] function is described elsewhere;
18224 @pxref{Basic Arithmetic}.  With the Inverse flag [@code{sqr}], this command
18225 computes the square of the argument.
18227 @xref{Prefix Arguments}, for a discussion of the effect of numeric
18228 prefix arguments on commands in this chapter which do not otherwise
18229 interpret a prefix argument.
18231 @menu
18232 * Logarithmic Functions::
18233 * Trigonometric and Hyperbolic Functions::
18234 * Advanced Math Functions::
18235 * Branch Cuts::
18236 * Random Numbers::
18237 * Combinatorial Functions::
18238 * Probability Distribution Functions::
18239 @end menu
18241 @node Logarithmic Functions, Trigonometric and Hyperbolic Functions, Scientific Functions, Scientific Functions
18242 @section Logarithmic Functions
18244 @noindent
18245 @kindex L
18246 @pindex calc-ln
18247 @tindex ln
18248 @ignore
18249 @mindex @null
18250 @end ignore
18251 @kindex I E
18252 The shift-@kbd{L} (@code{calc-ln}) [@code{ln}] command computes the natural
18253 logarithm of the real or complex number on the top of the stack.  With
18254 the Inverse flag it computes the exponential function instead, although
18255 this is redundant with the @kbd{E} command.
18257 @kindex E
18258 @pindex calc-exp
18259 @tindex exp
18260 @ignore
18261 @mindex @null
18262 @end ignore
18263 @kindex I L
18264 The shift-@kbd{E} (@code{calc-exp}) [@code{exp}] command computes the
18265 exponential, i.e., @expr{e} raised to the power of the number on the stack.
18266 The meanings of the Inverse and Hyperbolic flags follow from those for
18267 the @code{calc-ln} command.
18269 @kindex H L
18270 @kindex H E
18271 @pindex calc-log10
18272 @tindex log10
18273 @tindex exp10
18274 @ignore
18275 @mindex @null
18276 @end ignore
18277 @kindex H I L
18278 @ignore
18279 @mindex @null
18280 @end ignore
18281 @kindex H I E
18282 The @kbd{H L} (@code{calc-log10}) [@code{log10}] command computes the common
18283 (base-10) logarithm of a number.  (With the Inverse flag [@code{exp10}],
18284 it raises ten to a given power.)  Note that the common logarithm of a
18285 complex number is computed by taking the natural logarithm and dividing
18286 by 
18287 @texline @math{\ln10}.
18288 @infoline @expr{ln(10)}.
18290 @kindex B
18291 @kindex I B
18292 @pindex calc-log
18293 @tindex log
18294 @tindex alog
18295 The @kbd{B} (@code{calc-log}) [@code{log}] command computes a logarithm
18296 to any base.  For example, @kbd{1024 @key{RET} 2 B} produces 10, since
18297 @texline @math{2^{10} = 1024}.
18298 @infoline @expr{2^10 = 1024}.  
18299 In certain cases like @samp{log(3,9)}, the result
18300 will be either @expr{1:2} or @expr{0.5} depending on the current Fraction
18301 mode setting.  With the Inverse flag [@code{alog}], this command is
18302 similar to @kbd{^} except that the order of the arguments is reversed.
18304 @kindex f I
18305 @pindex calc-ilog
18306 @tindex ilog
18307 The @kbd{f I} (@code{calc-ilog}) [@code{ilog}] command computes the
18308 integer logarithm of a number to any base.  The number and the base must
18309 themselves be positive integers.  This is the true logarithm, rounded
18310 down to an integer.  Thus @kbd{ilog(x,10)} is 3 for all @expr{x} in the
18311 range from 1000 to 9999.  If both arguments are positive integers, exact
18312 integer arithmetic is used; otherwise, this is equivalent to
18313 @samp{floor(log(x,b))}.
18315 @kindex f E
18316 @pindex calc-expm1
18317 @tindex expm1
18318 The @kbd{f E} (@code{calc-expm1}) [@code{expm1}] command computes
18319 @texline @math{e^x - 1},
18320 @infoline @expr{exp(x)-1}, 
18321 but using an algorithm that produces a more accurate
18322 answer when the result is close to zero, i.e., when 
18323 @texline @math{e^x}
18324 @infoline @expr{exp(x)} 
18325 is close to one.
18327 @kindex f L
18328 @pindex calc-lnp1
18329 @tindex lnp1
18330 The @kbd{f L} (@code{calc-lnp1}) [@code{lnp1}] command computes
18331 @texline @math{\ln(x+1)},
18332 @infoline @expr{ln(x+1)}, 
18333 producing a more accurate answer when @expr{x} is close to zero.
18335 @node Trigonometric and Hyperbolic Functions, Advanced Math Functions, Logarithmic Functions, Scientific Functions
18336 @section Trigonometric/Hyperbolic Functions
18338 @noindent
18339 @kindex S
18340 @pindex calc-sin
18341 @tindex sin
18342 The shift-@kbd{S} (@code{calc-sin}) [@code{sin}] command computes the sine
18343 of an angle or complex number.  If the input is an HMS form, it is interpreted
18344 as degrees-minutes-seconds; otherwise, the input is interpreted according
18345 to the current angular mode.  It is best to use Radians mode when operating
18346 on complex numbers.
18348 Calc's ``units'' mechanism includes angular units like @code{deg},
18349 @code{rad}, and @code{grad}.  While @samp{sin(45 deg)} is not evaluated
18350 all the time, the @kbd{u s} (@code{calc-simplify-units}) command will
18351 simplify @samp{sin(45 deg)} by taking the sine of 45 degrees, regardless
18352 of the current angular mode.  @xref{Basic Operations on Units}.
18354 Also, the symbolic variable @code{pi} is not ordinarily recognized in
18355 arguments to trigonometric functions, as in @samp{sin(3 pi / 4)}, but
18356 the @kbd{a s} (@code{calc-simplify}) command recognizes many such
18357 formulas when the current angular mode is Radians @emph{and} Symbolic
18358 mode is enabled; this example would be replaced by @samp{sqrt(2) / 2}.
18359 @xref{Symbolic Mode}.  Beware, this simplification occurs even if you
18360 have stored a different value in the variable @samp{pi}; this is one
18361 reason why changing built-in variables is a bad idea.  Arguments of
18362 the form @expr{x} plus a multiple of @cpiover{2} are also simplified.
18363 Calc includes similar formulas for @code{cos} and @code{tan}.
18365 The @kbd{a s} command knows all angles which are integer multiples of
18366 @cpiover{12}, @cpiover{10}, or @cpiover{8} radians.  In Degrees mode,
18367 analogous simplifications occur for integer multiples of 15 or 18
18368 degrees, and for arguments plus multiples of 90 degrees.
18370 @kindex I S
18371 @pindex calc-arcsin
18372 @tindex arcsin
18373 With the Inverse flag, @code{calc-sin} computes an arcsine.  This is also
18374 available as the @code{calc-arcsin} command or @code{arcsin} algebraic
18375 function.  The returned argument is converted to degrees, radians, or HMS
18376 notation depending on the current angular mode.
18378 @kindex H S
18379 @pindex calc-sinh
18380 @tindex sinh
18381 @kindex H I S
18382 @pindex calc-arcsinh
18383 @tindex arcsinh
18384 With the Hyperbolic flag, @code{calc-sin} computes the hyperbolic
18385 sine, also available as @code{calc-sinh} [@code{sinh}].  With the
18386 Hyperbolic and Inverse flags, it computes the hyperbolic arcsine
18387 (@code{calc-arcsinh}) [@code{arcsinh}].
18389 @kindex C
18390 @pindex calc-cos
18391 @tindex cos
18392 @ignore
18393 @mindex @idots
18394 @end ignore
18395 @kindex I C
18396 @pindex calc-arccos
18397 @ignore
18398 @mindex @null
18399 @end ignore
18400 @tindex arccos
18401 @ignore
18402 @mindex @null
18403 @end ignore
18404 @kindex H C
18405 @pindex calc-cosh
18406 @ignore
18407 @mindex @null
18408 @end ignore
18409 @tindex cosh
18410 @ignore
18411 @mindex @null
18412 @end ignore
18413 @kindex H I C
18414 @pindex calc-arccosh
18415 @ignore
18416 @mindex @null
18417 @end ignore
18418 @tindex arccosh
18419 @ignore
18420 @mindex @null
18421 @end ignore
18422 @kindex T
18423 @pindex calc-tan
18424 @ignore
18425 @mindex @null
18426 @end ignore
18427 @tindex tan
18428 @ignore
18429 @mindex @null
18430 @end ignore
18431 @kindex I T
18432 @pindex calc-arctan
18433 @ignore
18434 @mindex @null
18435 @end ignore
18436 @tindex arctan
18437 @ignore
18438 @mindex @null
18439 @end ignore
18440 @kindex H T
18441 @pindex calc-tanh
18442 @ignore
18443 @mindex @null
18444 @end ignore
18445 @tindex tanh
18446 @ignore
18447 @mindex @null
18448 @end ignore
18449 @kindex H I T
18450 @pindex calc-arctanh
18451 @ignore
18452 @mindex @null
18453 @end ignore
18454 @tindex arctanh
18455 The shift-@kbd{C} (@code{calc-cos}) [@code{cos}] command computes the cosine
18456 of an angle or complex number, and shift-@kbd{T} (@code{calc-tan}) [@code{tan}]
18457 computes the tangent, along with all the various inverse and hyperbolic
18458 variants of these functions.
18460 @kindex f T
18461 @pindex calc-arctan2
18462 @tindex arctan2
18463 The @kbd{f T} (@code{calc-arctan2}) [@code{arctan2}] command takes two
18464 numbers from the stack and computes the arc tangent of their ratio.  The
18465 result is in the full range from @mathit{-180} (exclusive) to @mathit{+180}
18466 (inclusive) degrees, or the analogous range in radians.  A similar
18467 result would be obtained with @kbd{/} followed by @kbd{I T}, but the
18468 value would only be in the range from @mathit{-90} to @mathit{+90} degrees
18469 since the division loses information about the signs of the two
18470 components, and an error might result from an explicit division by zero
18471 which @code{arctan2} would avoid.  By (arbitrary) definition,
18472 @samp{arctan2(0,0)=0}.
18474 @pindex calc-sincos
18475 @ignore
18476 @starindex
18477 @end ignore
18478 @tindex sincos
18479 @ignore
18480 @starindex
18481 @end ignore
18482 @ignore
18483 @mindex arc@idots
18484 @end ignore
18485 @tindex arcsincos
18486 The @code{calc-sincos} [@code{sincos}] command computes the sine and
18487 cosine of a number, returning them as a vector of the form
18488 @samp{[@var{cos}, @var{sin}]}.
18489 With the Inverse flag [@code{arcsincos}], this command takes a two-element
18490 vector as an argument and computes @code{arctan2} of the elements.
18491 (This command does not accept the Hyperbolic flag.)
18493 @pindex calc-sec
18494 @tindex sec
18495 @pindex calc-csc
18496 @tindex csc
18497 @pindex calc-cot
18498 @tindex cot
18499 @pindex calc-sech
18500 @tindex sech
18501 @pindex calc-csch
18502 @tindex csch
18503 @pindex calc-coth
18504 @tindex coth
18505 The remaining trigonometric functions, @code{calc-sec} [@code{sec}],
18506 @code{calc-csc} [@code{csc}] and @code{calc-sec} [@code{sec}], are also
18507 available.  With the Hyperbolic flag, these compute their hyperbolic
18508 counterparts, which are also available separately as @code{calc-sech}
18509 [@code{sech}], @code{calc-csch} [@code{csch}] and @code{calc-sech}
18510 [@code{sech}].  (These commmands do not accept the Inverse flag.)
18512 @node Advanced Math Functions, Branch Cuts, Trigonometric and Hyperbolic Functions, Scientific Functions
18513 @section Advanced Mathematical Functions
18515 @noindent
18516 Calc can compute a variety of less common functions that arise in
18517 various branches of mathematics.  All of the functions described in
18518 this section allow arbitrary complex arguments and, except as noted,
18519 will work to arbitrarily large precisions.  They can not at present
18520 handle error forms or intervals as arguments.
18522 NOTE:  These functions are still experimental.  In particular, their
18523 accuracy is not guaranteed in all domains.  It is advisable to set the
18524 current precision comfortably higher than you actually need when
18525 using these functions.  Also, these functions may be impractically
18526 slow for some values of the arguments.
18528 @kindex f g
18529 @pindex calc-gamma
18530 @tindex gamma
18531 The @kbd{f g} (@code{calc-gamma}) [@code{gamma}] command computes the Euler
18532 gamma function.  For positive integer arguments, this is related to the
18533 factorial function:  @samp{gamma(n+1) = fact(n)}.  For general complex
18534 arguments the gamma function can be defined by the following definite
18535 integral:  
18536 @texline @math{\Gamma(a) = \int_0^\infty t^{a-1} e^t dt}.
18537 @infoline @expr{gamma(a) = integ(t^(a-1) exp(t), t, 0, inf)}.  
18538 (The actual implementation uses far more efficient computational methods.)
18540 @kindex f G
18541 @tindex gammaP
18542 @ignore
18543 @mindex @idots
18544 @end ignore
18545 @kindex I f G
18546 @ignore
18547 @mindex @null
18548 @end ignore
18549 @kindex H f G
18550 @ignore
18551 @mindex @null
18552 @end ignore
18553 @kindex H I f G
18554 @pindex calc-inc-gamma
18555 @ignore
18556 @mindex @null
18557 @end ignore
18558 @tindex gammaQ
18559 @ignore
18560 @mindex @null
18561 @end ignore
18562 @tindex gammag
18563 @ignore
18564 @mindex @null
18565 @end ignore
18566 @tindex gammaG
18567 The @kbd{f G} (@code{calc-inc-gamma}) [@code{gammaP}] command computes
18568 the incomplete gamma function, denoted @samp{P(a,x)}.  This is defined by
18569 the integral, 
18570 @texline @math{P(a,x) = \left( \int_0^x t^{a-1} e^t dt \right) / \Gamma(a)}.
18571 @infoline @expr{gammaP(a,x) = integ(t^(a-1) exp(t), t, 0, x) / gamma(a)}.
18572 This implies that @samp{gammaP(a,inf) = 1} for any @expr{a} (see the
18573 definition of the normal gamma function).
18575 Several other varieties of incomplete gamma function are defined.
18576 The complement of @expr{P(a,x)}, called @expr{Q(a,x) = 1-P(a,x)} by
18577 some authors, is computed by the @kbd{I f G} [@code{gammaQ}] command.
18578 You can think of this as taking the other half of the integral, from
18579 @expr{x} to infinity.
18581 @ifinfo
18582 The functions corresponding to the integrals that define @expr{P(a,x)}
18583 and @expr{Q(a,x)} but without the normalizing @expr{1/gamma(a)}
18584 factor are called @expr{g(a,x)} and @expr{G(a,x)}, respectively
18585 (where @expr{g} and @expr{G} represent the lower- and upper-case Greek
18586 letter gamma).  You can obtain these using the @kbd{H f G} [@code{gammag}]
18587 and @kbd{H I f G} [@code{gammaG}] commands.
18588 @end ifinfo
18589 @tex
18590 \turnoffactive
18591 The functions corresponding to the integrals that define $P(a,x)$
18592 and $Q(a,x)$ but without the normalizing $1/\Gamma(a)$
18593 factor are called $\gamma(a,x)$ and $\Gamma(a,x)$, respectively.
18594 You can obtain these using the \kbd{H f G} [\code{gammag}] and
18595 \kbd{I H f G} [\code{gammaG}] commands.
18596 @end tex
18598 @kindex f b
18599 @pindex calc-beta
18600 @tindex beta
18601 The @kbd{f b} (@code{calc-beta}) [@code{beta}] command computes the
18602 Euler beta function, which is defined in terms of the gamma function as
18603 @texline @math{B(a,b) = \Gamma(a) \Gamma(b) / \Gamma(a+b)},
18604 @infoline @expr{beta(a,b) = gamma(a) gamma(b) / gamma(a+b)}, 
18605 or by
18606 @texline @math{B(a,b) = \int_0^1 t^{a-1} (1-t)^{b-1} dt}.
18607 @infoline @expr{beta(a,b) = integ(t^(a-1) (1-t)^(b-1), t, 0, 1)}.
18609 @kindex f B
18610 @kindex H f B
18611 @pindex calc-inc-beta
18612 @tindex betaI
18613 @tindex betaB
18614 The @kbd{f B} (@code{calc-inc-beta}) [@code{betaI}] command computes
18615 the incomplete beta function @expr{I(x,a,b)}.  It is defined by
18616 @texline @math{I(x,a,b) = \left( \int_0^x t^{a-1} (1-t)^{b-1} dt \right) / B(a,b)}.
18617 @infoline @expr{betaI(x,a,b) = integ(t^(a-1) (1-t)^(b-1), t, 0, x) / beta(a,b)}.
18618 Once again, the @kbd{H} (hyperbolic) prefix gives the corresponding
18619 un-normalized version [@code{betaB}].
18621 @kindex f e
18622 @kindex I f e
18623 @pindex calc-erf
18624 @tindex erf
18625 @tindex erfc
18626 The @kbd{f e} (@code{calc-erf}) [@code{erf}] command computes the
18627 error function 
18628 @texline @math{\hbox{erf}(x) = {2 \over \sqrt{\pi}} \int_0^x e^{-t^2} dt}.
18629 @infoline @expr{erf(x) = 2 integ(exp(-(t^2)), t, 0, x) / sqrt(pi)}.
18630 The complementary error function @kbd{I f e} (@code{calc-erfc}) [@code{erfc}]
18631 is the corresponding integral from @samp{x} to infinity; the sum
18632 @texline @math{\hbox{erf}(x) + \hbox{erfc}(x) = 1}.
18633 @infoline @expr{erf(x) + erfc(x) = 1}.
18635 @kindex f j
18636 @kindex f y
18637 @pindex calc-bessel-J
18638 @pindex calc-bessel-Y
18639 @tindex besJ
18640 @tindex besY
18641 The @kbd{f j} (@code{calc-bessel-J}) [@code{besJ}] and @kbd{f y}
18642 (@code{calc-bessel-Y}) [@code{besY}] commands compute the Bessel
18643 functions of the first and second kinds, respectively.
18644 In @samp{besJ(n,x)} and @samp{besY(n,x)} the ``order'' parameter
18645 @expr{n} is often an integer, but is not required to be one.
18646 Calc's implementation of the Bessel functions currently limits the
18647 precision to 8 digits, and may not be exact even to that precision.
18648 Use with care!
18650 @node Branch Cuts, Random Numbers, Advanced Math Functions, Scientific Functions
18651 @section Branch Cuts and Principal Values
18653 @noindent
18654 @cindex Branch cuts
18655 @cindex Principal values
18656 All of the logarithmic, trigonometric, and other scientific functions are
18657 defined for complex numbers as well as for reals.
18658 This section describes the values
18659 returned in cases where the general result is a family of possible values.
18660 Calc follows section 12.5.3 of Steele's @dfn{Common Lisp, the Language},
18661 second edition, in these matters.  This section will describe each
18662 function briefly; for a more detailed discussion (including some nifty
18663 diagrams), consult Steele's book.
18665 Note that the branch cuts for @code{arctan} and @code{arctanh} were
18666 changed between the first and second editions of Steele.  Versions of
18667 Calc starting with 2.00 follow the second edition.
18669 The new branch cuts exactly match those of the HP-28/48 calculators.
18670 They also match those of Mathematica 1.2, except that Mathematica's
18671 @code{arctan} cut is always in the right half of the complex plane,
18672 and its @code{arctanh} cut is always in the top half of the plane.
18673 Calc's cuts are continuous with quadrants I and III for @code{arctan},
18674 or II and IV for @code{arctanh}.
18676 Note:  The current implementations of these functions with complex arguments
18677 are designed with proper behavior around the branch cuts in mind, @emph{not}
18678 efficiency or accuracy.  You may need to increase the floating precision
18679 and wait a while to get suitable answers from them.
18681 For @samp{sqrt(a+bi)}:  When @expr{a<0} and @expr{b} is small but positive
18682 or zero, the result is close to the @expr{+i} axis.  For @expr{b} small and
18683 negative, the result is close to the @expr{-i} axis.  The result always lies
18684 in the right half of the complex plane.
18686 For @samp{ln(a+bi)}:  The real part is defined as @samp{ln(abs(a+bi))}.
18687 The imaginary part is defined as @samp{arg(a+bi) = arctan2(b,a)}.
18688 Thus the branch cuts for @code{sqrt} and @code{ln} both lie on the
18689 negative real axis.
18691 The following table describes these branch cuts in another way.
18692 If the real and imaginary parts of @expr{z} are as shown, then
18693 the real and imaginary parts of @expr{f(z)} will be as shown.
18694 Here @code{eps} stands for a small positive value; each
18695 occurrence of @code{eps} may stand for a different small value.
18697 @smallexample
18698      z           sqrt(z)       ln(z)
18699 ----------------------------------------
18700    +,   0         +,  0       any, 0
18701    -,   0         0,  +       any, pi
18702    -, +eps      +eps, +      +eps, +
18703    -, -eps      +eps, -      +eps, -
18704 @end smallexample
18706 For @samp{z1^z2}:  This is defined by @samp{exp(ln(z1)*z2)}.
18707 One interesting consequence of this is that @samp{(-8)^1:3} does
18708 not evaluate to @mathit{-2} as you might expect, but to the complex
18709 number @expr{(1., 1.732)}.  Both of these are valid cube roots
18710 of @mathit{-8} (as is @expr{(1., -1.732)}); Calc chooses a perhaps
18711 less-obvious root for the sake of mathematical consistency.
18713 For @samp{arcsin(z)}:  This is defined by @samp{-i*ln(i*z + sqrt(1-z^2))}.
18714 The branch cuts are on the real axis, less than @mathit{-1} and greater than 1.
18716 For @samp{arccos(z)}:  This is defined by @samp{-i*ln(z + i*sqrt(1-z^2))},
18717 or equivalently by @samp{pi/2 - arcsin(z)}.  The branch cuts are on
18718 the real axis, less than @mathit{-1} and greater than 1.
18720 For @samp{arctan(z)}:  This is defined by
18721 @samp{(ln(1+i*z) - ln(1-i*z)) / (2*i)}.  The branch cuts are on the
18722 imaginary axis, below @expr{-i} and above @expr{i}.
18724 For @samp{arcsinh(z)}:  This is defined by @samp{ln(z + sqrt(1+z^2))}.
18725 The branch cuts are on the imaginary axis, below @expr{-i} and
18726 above @expr{i}.
18728 For @samp{arccosh(z)}:  This is defined by
18729 @samp{ln(z + (z+1)*sqrt((z-1)/(z+1)))}.  The branch cut is on the
18730 real axis less than 1.
18732 For @samp{arctanh(z)}:  This is defined by @samp{(ln(1+z) - ln(1-z)) / 2}.
18733 The branch cuts are on the real axis, less than @mathit{-1} and greater than 1.
18735 The following tables for @code{arcsin}, @code{arccos}, and
18736 @code{arctan} assume the current angular mode is Radians.  The
18737 hyperbolic functions operate independently of the angular mode.
18739 @smallexample
18740        z             arcsin(z)            arccos(z)
18741 -------------------------------------------------------
18742  (-1..1),  0      (-pi/2..pi/2), 0       (0..pi), 0
18743  (-1..1), +eps    (-pi/2..pi/2), +eps    (0..pi), -eps
18744  (-1..1), -eps    (-pi/2..pi/2), -eps    (0..pi), +eps
18745    <-1,    0          -pi/2,     +         pi,    -
18746    <-1,  +eps      -pi/2 + eps,  +      pi - eps, -
18747    <-1,  -eps      -pi/2 + eps,  -      pi - eps, +
18748     >1,    0           pi/2,     -          0,    +
18749     >1,  +eps       pi/2 - eps,  +        +eps,   -
18750     >1,  -eps       pi/2 - eps,  -        +eps,   +
18751 @end smallexample
18753 @smallexample
18754        z            arccosh(z)         arctanh(z)
18755 -----------------------------------------------------
18756  (-1..1),  0        0,  (0..pi)       any,     0
18757  (-1..1), +eps    +eps, (0..pi)       any,    +eps
18758  (-1..1), -eps    +eps, (-pi..0)      any,    -eps
18759    <-1,    0        +,    pi           -,     pi/2
18760    <-1,  +eps       +,  pi - eps       -,  pi/2 - eps
18761    <-1,  -eps       +, -pi + eps       -, -pi/2 + eps
18762     >1,    0        +,     0           +,    -pi/2
18763     >1,  +eps       +,   +eps          +,  pi/2 - eps
18764     >1,  -eps       +,   -eps          +, -pi/2 + eps
18765 @end smallexample
18767 @smallexample
18768        z           arcsinh(z)           arctan(z)
18769 -----------------------------------------------------
18770    0, (-1..1)    0, (-pi/2..pi/2)         0,     any
18771    0,   <-1      -,    -pi/2            -pi/2,    -
18772  +eps,  <-1      +, -pi/2 + eps       pi/2 - eps, -
18773  -eps,  <-1      -, -pi/2 + eps      -pi/2 + eps, -
18774    0,    >1      +,     pi/2             pi/2,    +
18775  +eps,   >1      +,  pi/2 - eps       pi/2 - eps, +
18776  -eps,   >1      -,  pi/2 - eps      -pi/2 + eps, +
18777 @end smallexample
18779 Finally, the following identities help to illustrate the relationship
18780 between the complex trigonometric and hyperbolic functions.  They
18781 are valid everywhere, including on the branch cuts.
18783 @smallexample
18784 sin(i*z)  = i*sinh(z)       arcsin(i*z)  = i*arcsinh(z)
18785 cos(i*z)  =   cosh(z)       arcsinh(i*z) = i*arcsin(z)
18786 tan(i*z)  = i*tanh(z)       arctan(i*z)  = i*arctanh(z)
18787 sinh(i*z) = i*sin(z)        cosh(i*z)    =   cos(z)
18788 @end smallexample
18790 The ``advanced math'' functions (gamma, Bessel, etc.@:) are also defined
18791 for general complex arguments, but their branch cuts and principal values
18792 are not rigorously specified at present.
18794 @node Random Numbers, Combinatorial Functions, Branch Cuts, Scientific Functions
18795 @section Random Numbers
18797 @noindent
18798 @kindex k r
18799 @pindex calc-random
18800 @tindex random
18801 The @kbd{k r} (@code{calc-random}) [@code{random}] command produces
18802 random numbers of various sorts.
18804 Given a positive numeric prefix argument @expr{M}, it produces a random
18805 integer @expr{N} in the range 
18806 @texline @math{0 \le N < M}.
18807 @infoline @expr{0 <= N < M}.  
18808 Each of the @expr{M} values appears with equal probability.
18810 With no numeric prefix argument, the @kbd{k r} command takes its argument
18811 from the stack instead.  Once again, if this is a positive integer @expr{M}
18812 the result is a random integer less than @expr{M}.  However, note that
18813 while numeric prefix arguments are limited to six digits or so, an @expr{M}
18814 taken from the stack can be arbitrarily large.  If @expr{M} is negative,
18815 the result is a random integer in the range 
18816 @texline @math{M < N \le 0}.
18817 @infoline @expr{M < N <= 0}.
18819 If the value on the stack is a floating-point number @expr{M}, the result
18820 is a random floating-point number @expr{N} in the range 
18821 @texline @math{0 \le N < M}
18822 @infoline @expr{0 <= N < M}
18823 or 
18824 @texline @math{M < N \le 0},
18825 @infoline @expr{M < N <= 0}, 
18826 according to the sign of @expr{M}.
18828 If @expr{M} is zero, the result is a Gaussian-distributed random real
18829 number; the distribution has a mean of zero and a standard deviation
18830 of one.  The algorithm used generates random numbers in pairs; thus,
18831 every other call to this function will be especially fast.
18833 If @expr{M} is an error form 
18834 @texline @math{m} @code{+/-} @math{\sigma}
18835 @infoline @samp{m +/- s} 
18836 where @var{m} and 
18837 @texline @math{\sigma}
18838 @infoline @var{s} 
18839 are both real numbers, the result uses a Gaussian distribution with mean
18840 @var{m} and standard deviation 
18841 @texline @math{\sigma}.
18842 @infoline @var{s}.
18844 If @expr{M} is an interval form, the lower and upper bounds specify the
18845 acceptable limits of the random numbers.  If both bounds are integers,
18846 the result is a random integer in the specified range.  If either bound
18847 is floating-point, the result is a random real number in the specified
18848 range.  If the interval is open at either end, the result will be sure
18849 not to equal that end value.  (This makes a big difference for integer
18850 intervals, but for floating-point intervals it's relatively minor:
18851 with a precision of 6, @samp{random([1.0..2.0))} will return any of one
18852 million numbers from 1.00000 to 1.99999; @samp{random([1.0..2.0])} may
18853 additionally return 2.00000, but the probability of this happening is
18854 extremely small.)
18856 If @expr{M} is a vector, the result is one element taken at random from
18857 the vector.  All elements of the vector are given equal probabilities.
18859 @vindex RandSeed
18860 The sequence of numbers produced by @kbd{k r} is completely random by
18861 default, i.e., the sequence is seeded each time you start Calc using
18862 the current time and other information.  You can get a reproducible
18863 sequence by storing a particular ``seed value'' in the Calc variable
18864 @code{RandSeed}.  Any integer will do for a seed; integers of from 1
18865 to 12 digits are good.  If you later store a different integer into
18866 @code{RandSeed}, Calc will switch to a different pseudo-random
18867 sequence.  If you ``unstore'' @code{RandSeed}, Calc will re-seed itself
18868 from the current time.  If you store the same integer that you used
18869 before back into @code{RandSeed}, you will get the exact same sequence
18870 of random numbers as before.
18872 @pindex calc-rrandom
18873 The @code{calc-rrandom} command (not on any key) produces a random real
18874 number between zero and one.  It is equivalent to @samp{random(1.0)}.
18876 @kindex k a
18877 @pindex calc-random-again
18878 The @kbd{k a} (@code{calc-random-again}) command produces another random
18879 number, re-using the most recent value of @expr{M}.  With a numeric
18880 prefix argument @var{n}, it produces @var{n} more random numbers using
18881 that value of @expr{M}.
18883 @kindex k h
18884 @pindex calc-shuffle
18885 @tindex shuffle
18886 The @kbd{k h} (@code{calc-shuffle}) command produces a vector of several
18887 random values with no duplicates.  The value on the top of the stack
18888 specifies the set from which the random values are drawn, and may be any
18889 of the @expr{M} formats described above.  The numeric prefix argument
18890 gives the length of the desired list.  (If you do not provide a numeric
18891 prefix argument, the length of the list is taken from the top of the
18892 stack, and @expr{M} from second-to-top.)
18894 If @expr{M} is a floating-point number, zero, or an error form (so
18895 that the random values are being drawn from the set of real numbers)
18896 there is little practical difference between using @kbd{k h} and using
18897 @kbd{k r} several times.  But if the set of possible values consists
18898 of just a few integers, or the elements of a vector, then there is
18899 a very real chance that multiple @kbd{k r}'s will produce the same
18900 number more than once.  The @kbd{k h} command produces a vector whose
18901 elements are always distinct.  (Actually, there is a slight exception:
18902 If @expr{M} is a vector, no given vector element will be drawn more
18903 than once, but if several elements of @expr{M} are equal, they may
18904 each make it into the result vector.)
18906 One use of @kbd{k h} is to rearrange a list at random.  This happens
18907 if the prefix argument is equal to the number of values in the list:
18908 @kbd{[1, 1.5, 2, 2.5, 3] 5 k h} might produce the permuted list
18909 @samp{[2.5, 1, 1.5, 3, 2]}.  As a convenient feature, if the argument
18910 @var{n} is negative it is replaced by the size of the set represented
18911 by @expr{M}.  Naturally, this is allowed only when @expr{M} specifies
18912 a small discrete set of possibilities.
18914 To do the equivalent of @kbd{k h} but with duplications allowed,
18915 given @expr{M} on the stack and with @var{n} just entered as a numeric
18916 prefix, use @kbd{v b} to build a vector of copies of @expr{M}, then use
18917 @kbd{V M k r} to ``map'' the normal @kbd{k r} function over the
18918 elements of this vector.  @xref{Matrix Functions}.
18920 @menu
18921 * Random Number Generator::     (Complete description of Calc's algorithm)
18922 @end menu
18924 @node Random Number Generator, , Random Numbers, Random Numbers
18925 @subsection Random Number Generator
18927 Calc's random number generator uses several methods to ensure that
18928 the numbers it produces are highly random.  Knuth's @emph{Art of
18929 Computer Programming}, Volume II, contains a thorough description
18930 of the theory of random number generators and their measurement and
18931 characterization.
18933 If @code{RandSeed} has no stored value, Calc calls Emacs' built-in
18934 @code{random} function to get a stream of random numbers, which it
18935 then treats in various ways to avoid problems inherent in the simple
18936 random number generators that many systems use to implement @code{random}.
18938 When Calc's random number generator is first invoked, it ``seeds''
18939 the low-level random sequence using the time of day, so that the
18940 random number sequence will be different every time you use Calc.
18942 Since Emacs Lisp doesn't specify the range of values that will be
18943 returned by its @code{random} function, Calc exercises the function
18944 several times to estimate the range.  When Calc subsequently uses
18945 the @code{random} function, it takes only 10 bits of the result
18946 near the most-significant end.  (It avoids at least the bottom
18947 four bits, preferably more, and also tries to avoid the top two
18948 bits.)  This strategy works well with the linear congruential
18949 generators that are typically used to implement @code{random}.
18951 If @code{RandSeed} contains an integer, Calc uses this integer to
18952 seed an ``additive congruential'' method (Knuth's algorithm 3.2.2A,
18953 computing 
18954 @texline @math{X_{n-55} - X_{n-24}}.
18955 @infoline @expr{X_n-55 - X_n-24}).  
18956 This method expands the seed
18957 value into a large table which is maintained internally; the variable
18958 @code{RandSeed} is changed from, e.g., 42 to the vector @expr{[42]}
18959 to indicate that the seed has been absorbed into this table.  When
18960 @code{RandSeed} contains a vector, @kbd{k r} and related commands
18961 continue to use the same internal table as last time.  There is no
18962 way to extract the complete state of the random number generator
18963 so that you can restart it from any point; you can only restart it
18964 from the same initial seed value.  A simple way to restart from the
18965 same seed is to type @kbd{s r RandSeed} to get the seed vector,
18966 @kbd{v u} to unpack it back into a number, then @kbd{s t RandSeed}
18967 to reseed the generator with that number.
18969 Calc uses a ``shuffling'' method as described in algorithm 3.2.2B
18970 of Knuth.  It fills a table with 13 random 10-bit numbers.  Then,
18971 to generate a new random number, it uses the previous number to
18972 index into the table, picks the value it finds there as the new
18973 random number, then replaces that table entry with a new value
18974 obtained from a call to the base random number generator (either
18975 the additive congruential generator or the @code{random} function
18976 supplied by the system).  If there are any flaws in the base
18977 generator, shuffling will tend to even them out.  But if the system
18978 provides an excellent @code{random} function, shuffling will not
18979 damage its randomness.
18981 To create a random integer of a certain number of digits, Calc
18982 builds the integer three decimal digits at a time.  For each group
18983 of three digits, Calc calls its 10-bit shuffling random number generator
18984 (which returns a value from 0 to 1023); if the random value is 1000
18985 or more, Calc throws it out and tries again until it gets a suitable
18986 value.
18988 To create a random floating-point number with precision @var{p}, Calc
18989 simply creates a random @var{p}-digit integer and multiplies by
18990 @texline @math{10^{-p}}.
18991 @infoline @expr{10^-p}.  
18992 The resulting random numbers should be very clean, but note
18993 that relatively small numbers will have few significant random digits.
18994 In other words, with a precision of 12, you will occasionally get
18995 numbers on the order of 
18996 @texline @math{10^{-9}}
18997 @infoline @expr{10^-9} 
18998 or 
18999 @texline @math{10^{-10}},
19000 @infoline @expr{10^-10}, 
19001 but those numbers will only have two or three random digits since they
19002 correspond to small integers times 
19003 @texline @math{10^{-12}}.
19004 @infoline @expr{10^-12}.
19006 To create a random integer in the interval @samp{[0 .. @var{m})}, Calc
19007 counts the digits in @var{m}, creates a random integer with three
19008 additional digits, then reduces modulo @var{m}.  Unless @var{m} is a
19009 power of ten the resulting values will be very slightly biased toward
19010 the lower numbers, but this bias will be less than 0.1%.  (For example,
19011 if @var{m} is 42, Calc will reduce a random integer less than 100000
19012 modulo 42 to get a result less than 42.  It is easy to show that the
19013 numbers 40 and 41 will be only 2380/2381 as likely to result from this
19014 modulo operation as numbers 39 and below.)  If @var{m} is a power of
19015 ten, however, the numbers should be completely unbiased.
19017 The Gaussian random numbers generated by @samp{random(0.0)} use the
19018 ``polar'' method described in Knuth section 3.4.1C.  This method
19019 generates a pair of Gaussian random numbers at a time, so only every
19020 other call to @samp{random(0.0)} will require significant calculations.
19022 @node Combinatorial Functions, Probability Distribution Functions, Random Numbers, Scientific Functions
19023 @section Combinatorial Functions
19025 @noindent
19026 Commands relating to combinatorics and number theory begin with the
19027 @kbd{k} key prefix.
19029 @kindex k g
19030 @pindex calc-gcd
19031 @tindex gcd
19032 The @kbd{k g} (@code{calc-gcd}) [@code{gcd}] command computes the
19033 Greatest Common Divisor of two integers.  It also accepts fractions;
19034 the GCD of two fractions is defined by taking the GCD of the
19035 numerators, and the LCM of the denominators.  This definition is
19036 consistent with the idea that @samp{a / gcd(a,x)} should yield an
19037 integer for any @samp{a} and @samp{x}.  For other types of arguments,
19038 the operation is left in symbolic form.
19040 @kindex k l
19041 @pindex calc-lcm
19042 @tindex lcm
19043 The @kbd{k l} (@code{calc-lcm}) [@code{lcm}] command computes the
19044 Least Common Multiple of two integers or fractions.  The product of
19045 the LCM and GCD of two numbers is equal to the product of the
19046 numbers.
19048 @kindex k E
19049 @pindex calc-extended-gcd
19050 @tindex egcd
19051 The @kbd{k E} (@code{calc-extended-gcd}) [@code{egcd}] command computes
19052 the GCD of two integers @expr{x} and @expr{y} and returns a vector
19053 @expr{[g, a, b]} where 
19054 @texline @math{g = \gcd(x,y) = a x + b y}.
19055 @infoline @expr{g = gcd(x,y) = a x + b y}.
19057 @kindex !
19058 @pindex calc-factorial
19059 @tindex fact
19060 @ignore
19061 @mindex @null
19062 @end ignore
19063 @tindex !
19064 The @kbd{!} (@code{calc-factorial}) [@code{fact}] command computes the
19065 factorial of the number at the top of the stack.  If the number is an
19066 integer, the result is an exact integer.  If the number is an
19067 integer-valued float, the result is a floating-point approximation.  If
19068 the number is a non-integral real number, the generalized factorial is used,
19069 as defined by the Euler Gamma function.  Please note that computation of
19070 large factorials can be slow; using floating-point format will help
19071 since fewer digits must be maintained.  The same is true of many of
19072 the commands in this section.
19074 @kindex k d
19075 @pindex calc-double-factorial
19076 @tindex dfact
19077 @ignore
19078 @mindex @null
19079 @end ignore
19080 @tindex !!
19081 The @kbd{k d} (@code{calc-double-factorial}) [@code{dfact}] command
19082 computes the ``double factorial'' of an integer.  For an even integer,
19083 this is the product of even integers from 2 to @expr{N}.  For an odd
19084 integer, this is the product of odd integers from 3 to @expr{N}.  If
19085 the argument is an integer-valued float, the result is a floating-point
19086 approximation.  This function is undefined for negative even integers.
19087 The notation @expr{N!!} is also recognized for double factorials.
19089 @kindex k c
19090 @pindex calc-choose
19091 @tindex choose
19092 The @kbd{k c} (@code{calc-choose}) [@code{choose}] command computes the
19093 binomial coefficient @expr{N}-choose-@expr{M}, where @expr{M} is the number
19094 on the top of the stack and @expr{N} is second-to-top.  If both arguments
19095 are integers, the result is an exact integer.  Otherwise, the result is a
19096 floating-point approximation.  The binomial coefficient is defined for all
19097 real numbers by
19098 @texline @math{N! \over M! (N-M)!\,}.
19099 @infoline @expr{N! / M! (N-M)!}.
19101 @kindex H k c
19102 @pindex calc-perm
19103 @tindex perm
19104 @ifinfo
19105 The @kbd{H k c} (@code{calc-perm}) [@code{perm}] command computes the
19106 number-of-permutations function @expr{N! / (N-M)!}.
19107 @end ifinfo
19108 @tex
19109 The \kbd{H k c} (\code{calc-perm}) [\code{perm}] command computes the
19110 number-of-perm\-utations function $N! \over (N-M)!\,$.
19111 @end tex
19113 @kindex k b
19114 @kindex H k b
19115 @pindex calc-bernoulli-number
19116 @tindex bern
19117 The @kbd{k b} (@code{calc-bernoulli-number}) [@code{bern}] command
19118 computes a given Bernoulli number.  The value at the top of the stack
19119 is a nonnegative integer @expr{n} that specifies which Bernoulli number
19120 is desired.  The @kbd{H k b} command computes a Bernoulli polynomial,
19121 taking @expr{n} from the second-to-top position and @expr{x} from the
19122 top of the stack.  If @expr{x} is a variable or formula the result is
19123 a polynomial in @expr{x}; if @expr{x} is a number the result is a number.
19125 @kindex k e
19126 @kindex H k e
19127 @pindex calc-euler-number
19128 @tindex euler
19129 The @kbd{k e} (@code{calc-euler-number}) [@code{euler}] command similarly
19130 computes an Euler number, and @w{@kbd{H k e}} computes an Euler polynomial.
19131 Bernoulli and Euler numbers occur in the Taylor expansions of several
19132 functions.
19134 @kindex k s
19135 @kindex H k s
19136 @pindex calc-stirling-number
19137 @tindex stir1
19138 @tindex stir2
19139 The @kbd{k s} (@code{calc-stirling-number}) [@code{stir1}] command
19140 computes a Stirling number of the first 
19141 @texline kind@tie{}@math{n \brack m},
19142 @infoline kind,
19143 given two integers @expr{n} and @expr{m} on the stack.  The @kbd{H k s}
19144 [@code{stir2}] command computes a Stirling number of the second 
19145 @texline kind@tie{}@math{n \brace m}.
19146 @infoline kind.
19147 These are the number of @expr{m}-cycle permutations of @expr{n} objects,
19148 and the number of ways to partition @expr{n} objects into @expr{m}
19149 non-empty sets, respectively.
19151 @kindex k p
19152 @pindex calc-prime-test
19153 @cindex Primes
19154 The @kbd{k p} (@code{calc-prime-test}) command checks if the integer on
19155 the top of the stack is prime.  For integers less than eight million, the
19156 answer is always exact and reasonably fast.  For larger integers, a
19157 probabilistic method is used (see Knuth vol. II, section 4.5.4, algorithm P).
19158 The number is first checked against small prime factors (up to 13).  Then,
19159 any number of iterations of the algorithm are performed.  Each step either
19160 discovers that the number is non-prime, or substantially increases the
19161 certainty that the number is prime.  After a few steps, the chance that
19162 a number was mistakenly described as prime will be less than one percent.
19163 (Indeed, this is a worst-case estimate of the probability; in practice
19164 even a single iteration is quite reliable.)  After the @kbd{k p} command,
19165 the number will be reported as definitely prime or non-prime if possible,
19166 or otherwise ``probably'' prime with a certain probability of error.
19168 @ignore
19169 @starindex
19170 @end ignore
19171 @tindex prime
19172 The normal @kbd{k p} command performs one iteration of the primality
19173 test.  Pressing @kbd{k p} repeatedly for the same integer will perform
19174 additional iterations.  Also, @kbd{k p} with a numeric prefix performs
19175 the specified number of iterations.  There is also an algebraic function
19176 @samp{prime(n)} or @samp{prime(n,iters)} which returns 1 if @expr{n}
19177 is (probably) prime and 0 if not.
19179 @kindex k f
19180 @pindex calc-prime-factors
19181 @tindex prfac
19182 The @kbd{k f} (@code{calc-prime-factors}) [@code{prfac}] command
19183 attempts to decompose an integer into its prime factors.  For numbers up
19184 to 25 million, the answer is exact although it may take some time.  The
19185 result is a vector of the prime factors in increasing order.  For larger
19186 inputs, prime factors above 5000 may not be found, in which case the
19187 last number in the vector will be an unfactored integer greater than 25
19188 million (with a warning message).  For negative integers, the first
19189 element of the list will be @mathit{-1}.  For inputs @mathit{-1}, @mathit{0}, and
19190 @mathit{1}, the result is a list of the same number.
19192 @kindex k n
19193 @pindex calc-next-prime
19194 @ignore
19195 @mindex nextpr@idots
19196 @end ignore
19197 @tindex nextprime
19198 The @kbd{k n} (@code{calc-next-prime}) [@code{nextprime}] command finds
19199 the next prime above a given number.  Essentially, it searches by calling
19200 @code{calc-prime-test} on successive integers until it finds one that
19201 passes the test.  This is quite fast for integers less than eight million,
19202 but once the probabilistic test comes into play the search may be rather
19203 slow.  Ordinarily this command stops for any prime that passes one iteration
19204 of the primality test.  With a numeric prefix argument, a number must pass
19205 the specified number of iterations before the search stops.  (This only
19206 matters when searching above eight million.)  You can always use additional
19207 @kbd{k p} commands to increase your certainty that the number is indeed
19208 prime.
19210 @kindex I k n
19211 @pindex calc-prev-prime
19212 @ignore
19213 @mindex prevpr@idots
19214 @end ignore
19215 @tindex prevprime
19216 The @kbd{I k n} (@code{calc-prev-prime}) [@code{prevprime}] command
19217 analogously finds the next prime less than a given number.
19219 @kindex k t
19220 @pindex calc-totient
19221 @tindex totient
19222 The @kbd{k t} (@code{calc-totient}) [@code{totient}] command computes the
19223 Euler ``totient'' 
19224 @texline function@tie{}@math{\phi(n)},
19225 @infoline function,
19226 the number of integers less than @expr{n} which
19227 are relatively prime to @expr{n}.
19229 @kindex k m
19230 @pindex calc-moebius
19231 @tindex moebius
19232 The @kbd{k m} (@code{calc-moebius}) [@code{moebius}] command computes the
19233 @texline M@"obius @math{\mu}
19234 @infoline Moebius ``mu''
19235 function.  If the input number is a product of @expr{k}
19236 distinct factors, this is @expr{(-1)^k}.  If the input number has any
19237 duplicate factors (i.e., can be divided by the same prime more than once),
19238 the result is zero.
19240 @node Probability Distribution Functions, , Combinatorial Functions, Scientific Functions
19241 @section Probability Distribution Functions
19243 @noindent
19244 The functions in this section compute various probability distributions.
19245 For continuous distributions, this is the integral of the probability
19246 density function from @expr{x} to infinity.  (These are the ``upper
19247 tail'' distribution functions; there are also corresponding ``lower
19248 tail'' functions which integrate from minus infinity to @expr{x}.)
19249 For discrete distributions, the upper tail function gives the sum
19250 from @expr{x} to infinity; the lower tail function gives the sum
19251 from minus infinity up to, but not including,@w{ }@expr{x}.
19253 To integrate from @expr{x} to @expr{y}, just use the distribution
19254 function twice and subtract.  For example, the probability that a
19255 Gaussian random variable with mean 2 and standard deviation 1 will
19256 lie in the range from 2.5 to 2.8 is @samp{utpn(2.5,2,1) - utpn(2.8,2,1)}
19257 (``the probability that it is greater than 2.5, but not greater than 2.8''),
19258 or equivalently @samp{ltpn(2.8,2,1) - ltpn(2.5,2,1)}.
19260 @kindex k B
19261 @kindex I k B
19262 @pindex calc-utpb
19263 @tindex utpb
19264 @tindex ltpb
19265 The @kbd{k B} (@code{calc-utpb}) [@code{utpb}] function uses the
19266 binomial distribution.  Push the parameters @var{n}, @var{p}, and
19267 then @var{x} onto the stack; the result (@samp{utpb(x,n,p)}) is the
19268 probability that an event will occur @var{x} or more times out
19269 of @var{n} trials, if its probability of occurring in any given
19270 trial is @var{p}.  The @kbd{I k B} [@code{ltpb}] function is
19271 the probability that the event will occur fewer than @var{x} times.
19273 The other probability distribution functions similarly take the
19274 form @kbd{k @var{X}} (@code{calc-utp@var{x}}) [@code{utp@var{x}}]
19275 and @kbd{I k @var{X}} [@code{ltp@var{x}}], for various letters
19276 @var{x}.  The arguments to the algebraic functions are the value of
19277 the random variable first, then whatever other parameters define the
19278 distribution.  Note these are among the few Calc functions where the
19279 order of the arguments in algebraic form differs from the order of
19280 arguments as found on the stack.  (The random variable comes last on
19281 the stack, so that you can type, e.g., @kbd{2 @key{RET} 1 @key{RET} 2.5
19282 k N M-@key{RET} @key{DEL} 2.8 k N -}, using @kbd{M-@key{RET} @key{DEL}} to
19283 recover the original arguments but substitute a new value for @expr{x}.)
19285 @kindex k C
19286 @pindex calc-utpc
19287 @tindex utpc
19288 @ignore
19289 @mindex @idots
19290 @end ignore
19291 @kindex I k C
19292 @ignore
19293 @mindex @null
19294 @end ignore
19295 @tindex ltpc
19296 The @samp{utpc(x,v)} function uses the chi-square distribution with
19297 @texline @math{\nu}
19298 @infoline @expr{v} 
19299 degrees of freedom.  It is the probability that a model is
19300 correct if its chi-square statistic is @expr{x}.
19302 @kindex k F
19303 @pindex calc-utpf
19304 @tindex utpf
19305 @ignore
19306 @mindex @idots
19307 @end ignore
19308 @kindex I k F
19309 @ignore
19310 @mindex @null
19311 @end ignore
19312 @tindex ltpf
19313 The @samp{utpf(F,v1,v2)} function uses the F distribution, used in
19314 various statistical tests.  The parameters 
19315 @texline @math{\nu_1}
19316 @infoline @expr{v1} 
19317 and 
19318 @texline @math{\nu_2}
19319 @infoline @expr{v2}
19320 are the degrees of freedom in the numerator and denominator,
19321 respectively, used in computing the statistic @expr{F}.
19323 @kindex k N
19324 @pindex calc-utpn
19325 @tindex utpn
19326 @ignore
19327 @mindex @idots
19328 @end ignore
19329 @kindex I k N
19330 @ignore
19331 @mindex @null
19332 @end ignore
19333 @tindex ltpn
19334 The @samp{utpn(x,m,s)} function uses a normal (Gaussian) distribution
19335 with mean @expr{m} and standard deviation 
19336 @texline @math{\sigma}.
19337 @infoline @expr{s}.  
19338 It is the probability that such a normal-distributed random variable
19339 would exceed @expr{x}.
19341 @kindex k P
19342 @pindex calc-utpp
19343 @tindex utpp
19344 @ignore
19345 @mindex @idots
19346 @end ignore
19347 @kindex I k P
19348 @ignore
19349 @mindex @null
19350 @end ignore
19351 @tindex ltpp
19352 The @samp{utpp(n,x)} function uses a Poisson distribution with
19353 mean @expr{x}.  It is the probability that @expr{n} or more such
19354 Poisson random events will occur.
19356 @kindex k T
19357 @pindex calc-ltpt
19358 @tindex utpt
19359 @ignore
19360 @mindex @idots
19361 @end ignore
19362 @kindex I k T
19363 @ignore
19364 @mindex @null
19365 @end ignore
19366 @tindex ltpt
19367 The @samp{utpt(t,v)} function uses the Student's ``t'' distribution
19368 with 
19369 @texline @math{\nu}
19370 @infoline @expr{v} 
19371 degrees of freedom.  It is the probability that a
19372 t-distributed random variable will be greater than @expr{t}.
19373 (Note:  This computes the distribution function 
19374 @texline @math{A(t|\nu)}
19375 @infoline @expr{A(t|v)}
19376 where 
19377 @texline @math{A(0|\nu) = 1}
19378 @infoline @expr{A(0|v) = 1} 
19379 and 
19380 @texline @math{A(\infty|\nu) \to 0}.
19381 @infoline @expr{A(inf|v) -> 0}.  
19382 The @code{UTPT} operation on the HP-48 uses a different definition which
19383 returns half of Calc's value:  @samp{UTPT(t,v) = .5*utpt(t,v)}.)
19385 While Calc does not provide inverses of the probability distribution
19386 functions, the @kbd{a R} command can be used to solve for the inverse.
19387 Since the distribution functions are monotonic, @kbd{a R} is guaranteed
19388 to be able to find a solution given any initial guess.
19389 @xref{Numerical Solutions}.
19391 @node Matrix Functions, Algebra, Scientific Functions, Top
19392 @chapter Vector/Matrix Functions
19394 @noindent
19395 Many of the commands described here begin with the @kbd{v} prefix.
19396 (For convenience, the shift-@kbd{V} prefix is equivalent to @kbd{v}.)
19397 The commands usually apply to both plain vectors and matrices; some
19398 apply only to matrices or only to square matrices.  If the argument
19399 has the wrong dimensions the operation is left in symbolic form.
19401 Vectors are entered and displayed using @samp{[a,b,c]} notation.
19402 Matrices are vectors of which all elements are vectors of equal length.
19403 (Though none of the standard Calc commands use this concept, a
19404 three-dimensional matrix or rank-3 tensor could be defined as a
19405 vector of matrices, and so on.)
19407 @menu
19408 * Packing and Unpacking::
19409 * Building Vectors::
19410 * Extracting Elements::
19411 * Manipulating Vectors::
19412 * Vector and Matrix Arithmetic::
19413 * Set Operations::
19414 * Statistical Operations::
19415 * Reducing and Mapping::
19416 * Vector and Matrix Formats::
19417 @end menu
19419 @node Packing and Unpacking, Building Vectors, Matrix Functions, Matrix Functions
19420 @section Packing and Unpacking
19422 @noindent
19423 Calc's ``pack'' and ``unpack'' commands collect stack entries to build
19424 composite objects such as vectors and complex numbers.  They are
19425 described in this chapter because they are most often used to build
19426 vectors.
19428 @kindex v p
19429 @pindex calc-pack
19430 The @kbd{v p} (@code{calc-pack}) [@code{pack}] command collects several
19431 elements from the stack into a matrix, complex number, HMS form, error
19432 form, etc.  It uses a numeric prefix argument to specify the kind of
19433 object to be built; this argument is referred to as the ``packing mode.''
19434 If the packing mode is a nonnegative integer, a vector of that
19435 length is created.  For example, @kbd{C-u 5 v p} will pop the top
19436 five stack elements and push back a single vector of those five
19437 elements.  (@kbd{C-u 0 v p} simply creates an empty vector.)
19439 The same effect can be had by pressing @kbd{[} to push an incomplete
19440 vector on the stack, using @key{TAB} (@code{calc-roll-down}) to sneak
19441 the incomplete object up past a certain number of elements, and
19442 then pressing @kbd{]} to complete the vector.
19444 Negative packing modes create other kinds of composite objects:
19446 @table @cite
19447 @item -1
19448 Two values are collected to build a complex number.  For example,
19449 @kbd{5 @key{RET} 7 C-u -1 v p} creates the complex number
19450 @expr{(5, 7)}.  The result is always a rectangular complex
19451 number.  The two input values must both be real numbers,
19452 i.e., integers, fractions, or floats.  If they are not, Calc
19453 will instead build a formula like @samp{a + (0, 1) b}.  (The
19454 other packing modes also create a symbolic answer if the
19455 components are not suitable.)
19457 @item -2
19458 Two values are collected to build a polar complex number.
19459 The first is the magnitude; the second is the phase expressed
19460 in either degrees or radians according to the current angular
19461 mode.
19463 @item -3
19464 Three values are collected into an HMS form.  The first
19465 two values (hours and minutes) must be integers or
19466 integer-valued floats.  The third value may be any real
19467 number.
19469 @item -4
19470 Two values are collected into an error form.  The inputs
19471 may be real numbers or formulas.
19473 @item -5
19474 Two values are collected into a modulo form.  The inputs
19475 must be real numbers.
19477 @item -6
19478 Two values are collected into the interval @samp{[a .. b]}.
19479 The inputs may be real numbers, HMS or date forms, or formulas.
19481 @item -7
19482 Two values are collected into the interval @samp{[a .. b)}.
19484 @item -8
19485 Two values are collected into the interval @samp{(a .. b]}.
19487 @item -9
19488 Two values are collected into the interval @samp{(a .. b)}.
19490 @item -10
19491 Two integer values are collected into a fraction.
19493 @item -11
19494 Two values are collected into a floating-point number.
19495 The first is the mantissa; the second, which must be an
19496 integer, is the exponent.  The result is the mantissa
19497 times ten to the power of the exponent.
19499 @item -12
19500 This is treated the same as @mathit{-11} by the @kbd{v p} command.
19501 When unpacking, @mathit{-12} specifies that a floating-point mantissa
19502 is desired.
19504 @item -13
19505 A real number is converted into a date form.
19507 @item -14
19508 Three numbers (year, month, day) are packed into a pure date form.
19510 @item -15
19511 Six numbers are packed into a date/time form.
19512 @end table
19514 With any of the two-input negative packing modes, either or both
19515 of the inputs may be vectors.  If both are vectors of the same
19516 length, the result is another vector made by packing corresponding
19517 elements of the input vectors.  If one input is a vector and the
19518 other is a plain number, the number is packed along with each vector
19519 element to produce a new vector.  For example, @kbd{C-u -4 v p}
19520 could be used to convert a vector of numbers and a vector of errors
19521 into a single vector of error forms; @kbd{C-u -5 v p} could convert
19522 a vector of numbers and a single number @var{M} into a vector of
19523 numbers modulo @var{M}.
19525 If you don't give a prefix argument to @kbd{v p}, it takes
19526 the packing mode from the top of the stack.  The elements to
19527 be packed then begin at stack level 2.  Thus
19528 @kbd{1 @key{RET} 2 @key{RET} 4 n v p} is another way to
19529 enter the error form @samp{1 +/- 2}.
19531 If the packing mode taken from the stack is a vector, the result is a
19532 matrix with the dimensions specified by the elements of the vector,
19533 which must each be integers.  For example, if the packing mode is
19534 @samp{[2, 3]}, then six numbers will be taken from the stack and
19535 returned in the form @samp{[@w{[a, b, c]}, [d, e, f]]}.
19537 If any elements of the vector are negative, other kinds of
19538 packing are done at that level as described above.  For
19539 example, @samp{[2, 3, -4]} takes 12 objects and creates a
19540 @texline @math{2\times3}
19541 @infoline 2x3
19542 matrix of error forms: @samp{[[a +/- b, c +/- d ... ]]}.
19543 Also, @samp{[-4, -10]} will convert four integers into an
19544 error form consisting of two fractions:  @samp{a:b +/- c:d}.
19546 @ignore
19547 @starindex
19548 @end ignore
19549 @tindex pack
19550 There is an equivalent algebraic function,
19551 @samp{pack(@var{mode}, @var{items})} where @var{mode} is a
19552 packing mode (an integer or a vector of integers) and @var{items}
19553 is a vector of objects to be packed (re-packed, really) according
19554 to that mode.  For example, @samp{pack([3, -4], [a,b,c,d,e,f])}
19555 yields @samp{[a +/- b, @w{c +/- d}, e +/- f]}.  The function is
19556 left in symbolic form if the packing mode is invalid, or if the
19557 number of data items does not match the number of items required
19558 by the mode.
19560 @kindex v u
19561 @pindex calc-unpack
19562 The @kbd{v u} (@code{calc-unpack}) command takes the vector, complex
19563 number, HMS form, or other composite object on the top of the stack and
19564 ``unpacks'' it, pushing each of its elements onto the stack as separate
19565 objects.  Thus, it is the ``inverse'' of @kbd{v p}.  If the value
19566 at the top of the stack is a formula, @kbd{v u} unpacks it by pushing
19567 each of the arguments of the top-level operator onto the stack.
19569 You can optionally give a numeric prefix argument to @kbd{v u}
19570 to specify an explicit (un)packing mode.  If the packing mode is
19571 negative and the input is actually a vector or matrix, the result
19572 will be two or more similar vectors or matrices of the elements.
19573 For example, given the vector @samp{[@w{a +/- b}, c^2, d +/- 7]},
19574 the result of @kbd{C-u -4 v u} will be the two vectors
19575 @samp{[a, c^2, d]} and @w{@samp{[b, 0, 7]}}.
19577 Note that the prefix argument can have an effect even when the input is
19578 not a vector.  For example, if the input is the number @mathit{-5}, then
19579 @kbd{c-u -1 v u} yields @mathit{-5} and 0 (the components of @mathit{-5}
19580 when viewed as a rectangular complex number); @kbd{C-u -2 v u} yields 5
19581 and 180 (assuming Degrees mode); and @kbd{C-u -10 v u} yields @mathit{-5}
19582 and 1 (the numerator and denominator of @mathit{-5}, viewed as a rational
19583 number).  Plain @kbd{v u} with this input would complain that the input
19584 is not a composite object.
19586 Unpacking mode @mathit{-11} converts a float into an integer mantissa and
19587 an integer exponent, where the mantissa is not divisible by 10
19588 (except that 0.0 is represented by a mantissa and exponent of 0).
19589 Unpacking mode @mathit{-12} converts a float into a floating-point mantissa
19590 and integer exponent, where the mantissa (for non-zero numbers)
19591 is guaranteed to lie in the range [1 .. 10).  In both cases,
19592 the mantissa is shifted left or right (and the exponent adjusted
19593 to compensate) in order to satisfy these constraints.
19595 Positive unpacking modes are treated differently than for @kbd{v p}.
19596 A mode of 1 is much like plain @kbd{v u} with no prefix argument,
19597 except that in addition to the components of the input object,
19598 a suitable packing mode to re-pack the object is also pushed.
19599 Thus, @kbd{C-u 1 v u} followed by @kbd{v p} will re-build the
19600 original object.
19602 A mode of 2 unpacks two levels of the object; the resulting
19603 re-packing mode will be a vector of length 2.  This might be used
19604 to unpack a matrix, say, or a vector of error forms.  Higher
19605 unpacking modes unpack the input even more deeply.
19607 @ignore
19608 @starindex
19609 @end ignore
19610 @tindex unpack
19611 There are two algebraic functions analogous to @kbd{v u}.
19612 The @samp{unpack(@var{mode}, @var{item})} function unpacks the
19613 @var{item} using the given @var{mode}, returning the result as
19614 a vector of components.  Here the @var{mode} must be an
19615 integer, not a vector.  For example, @samp{unpack(-4, a +/- b)}
19616 returns @samp{[a, b]}, as does @samp{unpack(1, a +/- b)}.
19618 @ignore
19619 @starindex
19620 @end ignore
19621 @tindex unpackt
19622 The @code{unpackt} function is like @code{unpack} but instead
19623 of returning a simple vector of items, it returns a vector of
19624 two things:  The mode, and the vector of items.  For example,
19625 @samp{unpackt(1, 2:3 +/- 1:4)} returns @samp{[-4, [2:3, 1:4]]},
19626 and @samp{unpackt(2, 2:3 +/- 1:4)} returns @samp{[[-4, -10], [2, 3, 1, 4]]}.
19627 The identity for re-building the original object is
19628 @samp{apply(pack, unpackt(@var{n}, @var{x})) = @var{x}}.  (The
19629 @code{apply} function builds a function call given the function
19630 name and a vector of arguments.)
19632 @cindex Numerator of a fraction, extracting
19633 Subscript notation is a useful way to extract a particular part
19634 of an object.  For example, to get the numerator of a rational
19635 number, you can use @samp{unpack(-10, @var{x})_1}.
19637 @node Building Vectors, Extracting Elements, Packing and Unpacking, Matrix Functions
19638 @section Building Vectors
19640 @noindent
19641 Vectors and matrices can be added,
19642 subtracted, multiplied, and divided; @pxref{Basic Arithmetic}.
19644 @kindex |
19645 @pindex calc-concat
19646 @ignore
19647 @mindex @null
19648 @end ignore
19649 @tindex |
19650 The @kbd{|} (@code{calc-concat}) [@code{vconcat}] command ``concatenates'' two vectors
19651 into one.  For example, after @kbd{@w{[ 1 , 2 ]} [ 3 , 4 ] |}, the stack
19652 will contain the single vector @samp{[1, 2, 3, 4]}.  If the arguments
19653 are matrices, the rows of the first matrix are concatenated with the
19654 rows of the second.  (In other words, two matrices are just two vectors
19655 of row-vectors as far as @kbd{|} is concerned.)
19657 If either argument to @kbd{|} is a scalar (a non-vector), it is treated
19658 like a one-element vector for purposes of concatenation:  @kbd{1 [ 2 , 3 ] |}
19659 produces the vector @samp{[1, 2, 3]}.  Likewise, if one argument is a
19660 matrix and the other is a plain vector, the vector is treated as a
19661 one-row matrix.
19663 @kindex H |
19664 @tindex append
19665 The @kbd{H |} (@code{calc-append}) [@code{append}] command concatenates
19666 two vectors without any special cases.  Both inputs must be vectors.
19667 Whether or not they are matrices is not taken into account.  If either
19668 argument is a scalar, the @code{append} function is left in symbolic form.
19669 See also @code{cons} and @code{rcons} below.
19671 @kindex I |
19672 @kindex H I |
19673 The @kbd{I |} and @kbd{H I |} commands are similar, but they use their
19674 two stack arguments in the opposite order.  Thus @kbd{I |} is equivalent
19675 to @kbd{@key{TAB} |}, but possibly more convenient and also a bit faster.
19677 @kindex v d
19678 @pindex calc-diag
19679 @tindex diag
19680 The @kbd{v d} (@code{calc-diag}) [@code{diag}] function builds a diagonal
19681 square matrix.  The optional numeric prefix gives the number of rows
19682 and columns in the matrix.  If the value at the top of the stack is a
19683 vector, the elements of the vector are used as the diagonal elements; the
19684 prefix, if specified, must match the size of the vector.  If the value on
19685 the stack is a scalar, it is used for each element on the diagonal, and
19686 the prefix argument is required.
19688 To build a constant square matrix, e.g., a 
19689 @texline @math{3\times3}
19690 @infoline 3x3
19691 matrix filled with ones, use @kbd{0 M-3 v d 1 +}, i.e., build a zero
19692 matrix first and then add a constant value to that matrix.  (Another
19693 alternative would be to use @kbd{v b} and @kbd{v a}; see below.)
19695 @kindex v i
19696 @pindex calc-ident
19697 @tindex idn
19698 The @kbd{v i} (@code{calc-ident}) [@code{idn}] function builds an identity
19699 matrix of the specified size.  It is a convenient form of @kbd{v d}
19700 where the diagonal element is always one.  If no prefix argument is given,
19701 this command prompts for one.
19703 In algebraic notation, @samp{idn(a,n)} acts much like @samp{diag(a,n)},
19704 except that @expr{a} is required to be a scalar (non-vector) quantity.
19705 If @expr{n} is omitted, @samp{idn(a)} represents @expr{a} times an
19706 identity matrix of unknown size.  Calc can operate algebraically on
19707 such generic identity matrices, and if one is combined with a matrix
19708 whose size is known, it is converted automatically to an identity
19709 matrix of a suitable matching size.  The @kbd{v i} command with an
19710 argument of zero creates a generic identity matrix, @samp{idn(1)}.
19711 Note that in dimensioned Matrix mode (@pxref{Matrix Mode}), generic
19712 identity matrices are immediately expanded to the current default
19713 dimensions.
19715 @kindex v x
19716 @pindex calc-index
19717 @tindex index
19718 The @kbd{v x} (@code{calc-index}) [@code{index}] function builds a vector
19719 of consecutive integers from 1 to @var{n}, where @var{n} is the numeric
19720 prefix argument.  If you do not provide a prefix argument, you will be
19721 prompted to enter a suitable number.  If @var{n} is negative, the result
19722 is a vector of negative integers from @var{n} to @mathit{-1}.
19724 With a prefix argument of just @kbd{C-u}, the @kbd{v x} command takes
19725 three values from the stack: @var{n}, @var{start}, and @var{incr} (with
19726 @var{incr} at top-of-stack).  Counting starts at @var{start} and increases
19727 by @var{incr} for successive vector elements.  If @var{start} or @var{n}
19728 is in floating-point format, the resulting vector elements will also be
19729 floats.  Note that @var{start} and @var{incr} may in fact be any kind
19730 of numbers or formulas.
19732 When @var{start} and @var{incr} are specified, a negative @var{n} has a
19733 different interpretation:  It causes a geometric instead of arithmetic
19734 sequence to be generated.  For example, @samp{index(-3, a, b)} produces
19735 @samp{[a, a b, a b^2]}.  If you omit @var{incr} in the algebraic form,
19736 @samp{index(@var{n}, @var{start})}, the default value for @var{incr}
19737 is one for positive @var{n} or two for negative @var{n}.
19739 @kindex v b
19740 @pindex calc-build-vector
19741 @tindex cvec
19742 The @kbd{v b} (@code{calc-build-vector}) [@code{cvec}] function builds a
19743 vector of @var{n} copies of the value on the top of the stack, where @var{n}
19744 is the numeric prefix argument.  In algebraic formulas, @samp{cvec(x,n,m)}
19745 can also be used to build an @var{n}-by-@var{m} matrix of copies of @var{x}.
19746 (Interactively, just use @kbd{v b} twice: once to build a row, then again
19747 to build a matrix of copies of that row.)
19749 @kindex v h
19750 @kindex I v h
19751 @pindex calc-head
19752 @pindex calc-tail
19753 @tindex head
19754 @tindex tail
19755 The @kbd{v h} (@code{calc-head}) [@code{head}] function returns the first
19756 element of a vector.  The @kbd{I v h} (@code{calc-tail}) [@code{tail}]
19757 function returns the vector with its first element removed.  In both
19758 cases, the argument must be a non-empty vector.
19760 @kindex v k
19761 @pindex calc-cons
19762 @tindex cons
19763 The @kbd{v k} (@code{calc-cons}) [@code{cons}] function takes a value @var{h}
19764 and a vector @var{t} from the stack, and produces the vector whose head is
19765 @var{h} and whose tail is @var{t}.  This is similar to @kbd{|}, except
19766 if @var{h} is itself a vector, @kbd{|} will concatenate the two vectors
19767 whereas @code{cons} will insert @var{h} at the front of the vector @var{t}.
19769 @kindex H v h
19770 @tindex rhead
19771 @ignore
19772 @mindex @idots
19773 @end ignore
19774 @kindex H I v h
19775 @ignore
19776 @mindex @null
19777 @end ignore
19778 @kindex H v k
19779 @ignore
19780 @mindex @null
19781 @end ignore
19782 @tindex rtail
19783 @ignore
19784 @mindex @null
19785 @end ignore
19786 @tindex rcons
19787 Each of these three functions also accepts the Hyperbolic flag [@code{rhead},
19788 @code{rtail}, @code{rcons}] in which case @var{t} instead represents
19789 the @emph{last} single element of the vector, with @var{h}
19790 representing the remainder of the vector.  Thus the vector
19791 @samp{[a, b, c, d] = cons(a, [b, c, d]) = rcons([a, b, c], d)}.
19792 Also, @samp{head([a, b, c, d]) = a}, @samp{tail([a, b, c, d]) = [b, c, d]},
19793 @samp{rhead([a, b, c, d]) = [a, b, c]}, and @samp{rtail([a, b, c, d]) = d}.
19795 @node Extracting Elements, Manipulating Vectors, Building Vectors, Matrix Functions
19796 @section Extracting Vector Elements
19798 @noindent
19799 @kindex v r
19800 @pindex calc-mrow
19801 @tindex mrow
19802 The @kbd{v r} (@code{calc-mrow}) [@code{mrow}] command extracts one row of
19803 the matrix on the top of the stack, or one element of the plain vector on
19804 the top of the stack.  The row or element is specified by the numeric
19805 prefix argument; the default is to prompt for the row or element number.
19806 The matrix or vector is replaced by the specified row or element in the
19807 form of a vector or scalar, respectively.
19809 @cindex Permutations, applying
19810 With a prefix argument of @kbd{C-u} only, @kbd{v r} takes the index of
19811 the element or row from the top of the stack, and the vector or matrix
19812 from the second-to-top position.  If the index is itself a vector of
19813 integers, the result is a vector of the corresponding elements of the
19814 input vector, or a matrix of the corresponding rows of the input matrix.
19815 This command can be used to obtain any permutation of a vector.
19817 With @kbd{C-u}, if the index is an interval form with integer components,
19818 it is interpreted as a range of indices and the corresponding subvector or
19819 submatrix is returned.
19821 @cindex Subscript notation
19822 @kindex a _
19823 @pindex calc-subscript
19824 @tindex subscr
19825 @tindex _
19826 Subscript notation in algebraic formulas (@samp{a_b}) stands for the
19827 Calc function @code{subscr}, which is synonymous with @code{mrow}.
19828 Thus, @samp{[x, y, z]_k} produces @expr{x}, @expr{y}, or @expr{z} if
19829 @expr{k} is one, two, or three, respectively.  A double subscript
19830 (@samp{M_i_j}, equivalent to @samp{subscr(subscr(M, i), j)}) will
19831 access the element at row @expr{i}, column @expr{j} of a matrix.
19832 The @kbd{a _} (@code{calc-subscript}) command creates a subscript
19833 formula @samp{a_b} out of two stack entries.  (It is on the @kbd{a}
19834 ``algebra'' prefix because subscripted variables are often used
19835 purely as an algebraic notation.)
19837 @tindex mrrow
19838 Given a negative prefix argument, @kbd{v r} instead deletes one row or
19839 element from the matrix or vector on the top of the stack.  Thus
19840 @kbd{C-u 2 v r} replaces a matrix with its second row, but @kbd{C-u -2 v r}
19841 replaces the matrix with the same matrix with its second row removed.
19842 In algebraic form this function is called @code{mrrow}.
19844 @tindex getdiag
19845 Given a prefix argument of zero, @kbd{v r} extracts the diagonal elements
19846 of a square matrix in the form of a vector.  In algebraic form this
19847 function is called @code{getdiag}.
19849 @kindex v c
19850 @pindex calc-mcol
19851 @tindex mcol
19852 @tindex mrcol
19853 The @kbd{v c} (@code{calc-mcol}) [@code{mcol} or @code{mrcol}] command is
19854 the analogous operation on columns of a matrix.  Given a plain vector
19855 it extracts (or removes) one element, just like @kbd{v r}.  If the
19856 index in @kbd{C-u v c} is an interval or vector and the argument is a
19857 matrix, the result is a submatrix with only the specified columns
19858 retained (and possibly permuted in the case of a vector index).
19860 To extract a matrix element at a given row and column, use @kbd{v r} to
19861 extract the row as a vector, then @kbd{v c} to extract the column element
19862 from that vector.  In algebraic formulas, it is often more convenient to
19863 use subscript notation:  @samp{m_i_j} gives row @expr{i}, column @expr{j}
19864 of matrix @expr{m}.
19866 @kindex v s
19867 @pindex calc-subvector
19868 @tindex subvec
19869 The @kbd{v s} (@code{calc-subvector}) [@code{subvec}] command extracts
19870 a subvector of a vector.  The arguments are the vector, the starting
19871 index, and the ending index, with the ending index in the top-of-stack
19872 position.  The starting index indicates the first element of the vector
19873 to take.  The ending index indicates the first element @emph{past} the
19874 range to be taken.  Thus, @samp{subvec([a, b, c, d, e], 2, 4)} produces
19875 the subvector @samp{[b, c]}.  You could get the same result using
19876 @samp{mrow([a, b, c, d, e], @w{[2 .. 4)})}.
19878 If either the start or the end index is zero or negative, it is
19879 interpreted as relative to the end of the vector.  Thus
19880 @samp{subvec([a, b, c, d, e], 2, -2)} also produces @samp{[b, c]}.  In
19881 the algebraic form, the end index can be omitted in which case it
19882 is taken as zero, i.e., elements from the starting element to the
19883 end of the vector are used.  The infinity symbol, @code{inf}, also
19884 has this effect when used as the ending index.
19886 @kindex I v s
19887 @tindex rsubvec
19888 With the Inverse flag, @kbd{I v s} [@code{rsubvec}] removes a subvector
19889 from a vector.  The arguments are interpreted the same as for the
19890 normal @kbd{v s} command.  Thus, @samp{rsubvec([a, b, c, d, e], 2, 4)}
19891 produces @samp{[a, d, e]}.  It is always true that @code{subvec} and
19892 @code{rsubvec} return complementary parts of the input vector.
19894 @xref{Selecting Subformulas}, for an alternative way to operate on
19895 vectors one element at a time.
19897 @node Manipulating Vectors, Vector and Matrix Arithmetic, Extracting Elements, Matrix Functions
19898 @section Manipulating Vectors
19900 @noindent
19901 @kindex v l
19902 @pindex calc-vlength
19903 @tindex vlen
19904 The @kbd{v l} (@code{calc-vlength}) [@code{vlen}] command computes the
19905 length of a vector.  The length of a non-vector is considered to be zero.
19906 Note that matrices are just vectors of vectors for the purposes of this
19907 command.
19909 @kindex H v l
19910 @tindex mdims
19911 With the Hyperbolic flag, @kbd{H v l} [@code{mdims}] computes a vector
19912 of the dimensions of a vector, matrix, or higher-order object.  For
19913 example, @samp{mdims([[a,b,c],[d,e,f]])} returns @samp{[2, 3]} since
19914 its argument is a 
19915 @texline @math{2\times3}
19916 @infoline 2x3
19917 matrix.
19919 @kindex v f
19920 @pindex calc-vector-find
19921 @tindex find
19922 The @kbd{v f} (@code{calc-vector-find}) [@code{find}] command searches
19923 along a vector for the first element equal to a given target.  The target
19924 is on the top of the stack; the vector is in the second-to-top position.
19925 If a match is found, the result is the index of the matching element.
19926 Otherwise, the result is zero.  The numeric prefix argument, if given,
19927 allows you to select any starting index for the search.
19929 @kindex v a
19930 @pindex calc-arrange-vector
19931 @tindex arrange
19932 @cindex Arranging a matrix
19933 @cindex Reshaping a matrix
19934 @cindex Flattening a matrix
19935 The @kbd{v a} (@code{calc-arrange-vector}) [@code{arrange}] command
19936 rearranges a vector to have a certain number of columns and rows.  The
19937 numeric prefix argument specifies the number of columns; if you do not
19938 provide an argument, you will be prompted for the number of columns.
19939 The vector or matrix on the top of the stack is @dfn{flattened} into a
19940 plain vector.  If the number of columns is nonzero, this vector is
19941 then formed into a matrix by taking successive groups of @var{n} elements.
19942 If the number of columns does not evenly divide the number of elements
19943 in the vector, the last row will be short and the result will not be
19944 suitable for use as a matrix.  For example, with the matrix
19945 @samp{[[1, 2], @w{[3, 4]}]} on the stack, @kbd{v a 4} produces
19946 @samp{[[1, 2, 3, 4]]} (a 
19947 @texline @math{1\times4}
19948 @infoline 1x4
19949 matrix), @kbd{v a 1} produces @samp{[[1], [2], [3], [4]]} (a 
19950 @texline @math{4\times1}
19951 @infoline 4x1
19952 matrix), @kbd{v a 2} produces @samp{[[1, 2], [3, 4]]} (the original 
19953 @texline @math{2\times2}
19954 @infoline 2x2
19955 matrix), @w{@kbd{v a 3}} produces @samp{[[1, 2, 3], [4]]} (not a
19956 matrix), and @kbd{v a 0} produces the flattened list 
19957 @samp{[1, 2, @w{3, 4}]}.
19959 @cindex Sorting data
19960 @kindex V S
19961 @kindex I V S
19962 @pindex calc-sort
19963 @tindex sort
19964 @tindex rsort
19965 The @kbd{V S} (@code{calc-sort}) [@code{sort}] command sorts the elements of
19966 a vector into increasing order.  Real numbers, real infinities, and
19967 constant interval forms come first in this ordering; next come other
19968 kinds of numbers, then variables (in alphabetical order), then finally
19969 come formulas and other kinds of objects; these are sorted according
19970 to a kind of lexicographic ordering with the useful property that
19971 one vector is less or greater than another if the first corresponding
19972 unequal elements are less or greater, respectively.  Since quoted strings
19973 are stored by Calc internally as vectors of ASCII character codes
19974 (@pxref{Strings}), this means vectors of strings are also sorted into
19975 alphabetical order by this command.
19977 The @kbd{I V S} [@code{rsort}] command sorts a vector into decreasing order.
19979 @cindex Permutation, inverse of
19980 @cindex Inverse of permutation
19981 @cindex Index tables
19982 @cindex Rank tables
19983 @kindex V G
19984 @kindex I V G
19985 @pindex calc-grade
19986 @tindex grade
19987 @tindex rgrade
19988 The @kbd{V G} (@code{calc-grade}) [@code{grade}, @code{rgrade}] command
19989 produces an index table or permutation vector which, if applied to the
19990 input vector (as the index of @kbd{C-u v r}, say), would sort the vector.
19991 A permutation vector is just a vector of integers from 1 to @var{n}, where
19992 each integer occurs exactly once.  One application of this is to sort a
19993 matrix of data rows using one column as the sort key; extract that column,
19994 grade it with @kbd{V G}, then use the result to reorder the original matrix
19995 with @kbd{C-u v r}.  Another interesting property of the @code{V G} command
19996 is that, if the input is itself a permutation vector, the result will
19997 be the inverse of the permutation.  The inverse of an index table is
19998 a rank table, whose @var{k}th element says where the @var{k}th original
19999 vector element will rest when the vector is sorted.  To get a rank
20000 table, just use @kbd{V G V G}.
20002 With the Inverse flag, @kbd{I V G} produces an index table that would
20003 sort the input into decreasing order.  Note that @kbd{V S} and @kbd{V G}
20004 use a ``stable'' sorting algorithm, i.e., any two elements which are equal
20005 will not be moved out of their original order.  Generally there is no way
20006 to tell with @kbd{V S}, since two elements which are equal look the same,
20007 but with @kbd{V G} this can be an important issue.  In the matrix-of-rows
20008 example, suppose you have names and telephone numbers as two columns and
20009 you wish to sort by phone number primarily, and by name when the numbers
20010 are equal.  You can sort the data matrix by names first, and then again
20011 by phone numbers.  Because the sort is stable, any two rows with equal
20012 phone numbers will remain sorted by name even after the second sort.
20014 @cindex Histograms
20015 @kindex V H
20016 @pindex calc-histogram
20017 @ignore
20018 @mindex histo@idots
20019 @end ignore
20020 @tindex histogram
20021 The @kbd{V H} (@code{calc-histogram}) [@code{histogram}] command builds a
20022 histogram of a vector of numbers.  Vector elements are assumed to be
20023 integers or real numbers in the range [0..@var{n}) for some ``number of
20024 bins'' @var{n}, which is the numeric prefix argument given to the
20025 command.  The result is a vector of @var{n} counts of how many times
20026 each value appeared in the original vector.  Non-integers in the input
20027 are rounded down to integers.  Any vector elements outside the specified
20028 range are ignored.  (You can tell if elements have been ignored by noting
20029 that the counts in the result vector don't add up to the length of the
20030 input vector.)
20032 @kindex H V H
20033 With the Hyperbolic flag, @kbd{H V H} pulls two vectors from the stack.
20034 The second-to-top vector is the list of numbers as before.  The top
20035 vector is an equal-sized list of ``weights'' to attach to the elements
20036 of the data vector.  For example, if the first data element is 4.2 and
20037 the first weight is 10, then 10 will be added to bin 4 of the result
20038 vector.  Without the hyperbolic flag, every element has a weight of one.
20040 @kindex v t
20041 @pindex calc-transpose
20042 @tindex trn
20043 The @kbd{v t} (@code{calc-transpose}) [@code{trn}] command computes
20044 the transpose of the matrix at the top of the stack.  If the argument
20045 is a plain vector, it is treated as a row vector and transposed into
20046 a one-column matrix.
20048 @kindex v v
20049 @pindex calc-reverse-vector
20050 @tindex rev
20051 The @kbd{v v} (@code{calc-reverse-vector}) [@code{rev}] command reverses
20052 a vector end-for-end.  Given a matrix, it reverses the order of the rows.
20053 (To reverse the columns instead, just use @kbd{v t v v v t}.  The same
20054 principle can be used to apply other vector commands to the columns of
20055 a matrix.)
20057 @kindex v m
20058 @pindex calc-mask-vector
20059 @tindex vmask
20060 The @kbd{v m} (@code{calc-mask-vector}) [@code{vmask}] command uses
20061 one vector as a mask to extract elements of another vector.  The mask
20062 is in the second-to-top position; the target vector is on the top of
20063 the stack.  These vectors must have the same length.  The result is
20064 the same as the target vector, but with all elements which correspond
20065 to zeros in the mask vector deleted.  Thus, for example,
20066 @samp{vmask([1, 0, 1, 0, 1], [a, b, c, d, e])} produces @samp{[a, c, e]}.
20067 @xref{Logical Operations}.
20069 @kindex v e
20070 @pindex calc-expand-vector
20071 @tindex vexp
20072 The @kbd{v e} (@code{calc-expand-vector}) [@code{vexp}] command
20073 expands a vector according to another mask vector.  The result is a
20074 vector the same length as the mask, but with nonzero elements replaced
20075 by successive elements from the target vector.  The length of the target
20076 vector is normally the number of nonzero elements in the mask.  If the
20077 target vector is longer, its last few elements are lost.  If the target
20078 vector is shorter, the last few nonzero mask elements are left
20079 unreplaced in the result.  Thus @samp{vexp([2, 0, 3, 0, 7], [a, b])}
20080 produces @samp{[a, 0, b, 0, 7]}.
20082 @kindex H v e
20083 With the Hyperbolic flag, @kbd{H v e} takes a filler value from the
20084 top of the stack; the mask and target vectors come from the third and
20085 second elements of the stack.  This filler is used where the mask is
20086 zero:  @samp{vexp([2, 0, 3, 0, 7], [a, b], z)} produces
20087 @samp{[a, z, c, z, 7]}.  If the filler value is itself a vector,
20088 then successive values are taken from it, so that the effect is to
20089 interleave two vectors according to the mask:
20090 @samp{vexp([2, 0, 3, 7, 0, 0], [a, b], [x, y])} produces
20091 @samp{[a, x, b, 7, y, 0]}.
20093 Another variation on the masking idea is to combine @samp{[a, b, c, d, e]}
20094 with the mask @samp{[1, 0, 1, 0, 1]} to produce @samp{[a, 0, c, 0, e]}.
20095 You can accomplish this with @kbd{V M a &}, mapping the logical ``and''
20096 operation across the two vectors.  @xref{Logical Operations}.  Note that
20097 the @code{? :} operation also discussed there allows other types of
20098 masking using vectors.
20100 @node Vector and Matrix Arithmetic, Set Operations, Manipulating Vectors, Matrix Functions
20101 @section Vector and Matrix Arithmetic
20103 @noindent
20104 Basic arithmetic operations like addition and multiplication are defined
20105 for vectors and matrices as well as for numbers.  Division of matrices, in
20106 the sense of multiplying by the inverse, is supported.  (Division by a
20107 matrix actually uses LU-decomposition for greater accuracy and speed.)
20108 @xref{Basic Arithmetic}.
20110 The following functions are applied element-wise if their arguments are
20111 vectors or matrices: @code{change-sign}, @code{conj}, @code{arg},
20112 @code{re}, @code{im}, @code{polar}, @code{rect}, @code{clean},
20113 @code{float}, @code{frac}.  @xref{Function Index}.
20115 @kindex V J
20116 @pindex calc-conj-transpose
20117 @tindex ctrn
20118 The @kbd{V J} (@code{calc-conj-transpose}) [@code{ctrn}] command computes
20119 the conjugate transpose of its argument, i.e., @samp{conj(trn(x))}.
20121 @ignore
20122 @mindex A
20123 @end ignore
20124 @kindex A (vectors)
20125 @pindex calc-abs (vectors)
20126 @ignore
20127 @mindex abs
20128 @end ignore
20129 @tindex abs (vectors)
20130 The @kbd{A} (@code{calc-abs}) [@code{abs}] command computes the
20131 Frobenius norm of a vector or matrix argument.  This is the square
20132 root of the sum of the squares of the absolute values of the
20133 elements of the vector or matrix.  If the vector is interpreted as
20134 a point in two- or three-dimensional space, this is the distance
20135 from that point to the origin.
20137 @kindex v n
20138 @pindex calc-rnorm
20139 @tindex rnorm
20140 The @kbd{v n} (@code{calc-rnorm}) [@code{rnorm}] command computes
20141 the row norm, or infinity-norm, of a vector or matrix.  For a plain
20142 vector, this is the maximum of the absolute values of the elements.
20143 For a matrix, this is the maximum of the row-absolute-value-sums,
20144 i.e., of the sums of the absolute values of the elements along the
20145 various rows.
20147 @kindex V N
20148 @pindex calc-cnorm
20149 @tindex cnorm
20150 The @kbd{V N} (@code{calc-cnorm}) [@code{cnorm}] command computes
20151 the column norm, or one-norm, of a vector or matrix.  For a plain
20152 vector, this is the sum of the absolute values of the elements.
20153 For a matrix, this is the maximum of the column-absolute-value-sums.
20154 General @expr{k}-norms for @expr{k} other than one or infinity are
20155 not provided.
20157 @kindex V C
20158 @pindex calc-cross
20159 @tindex cross
20160 The @kbd{V C} (@code{calc-cross}) [@code{cross}] command computes the
20161 right-handed cross product of two vectors, each of which must have
20162 exactly three elements.
20164 @ignore
20165 @mindex &
20166 @end ignore
20167 @kindex & (matrices)
20168 @pindex calc-inv (matrices)
20169 @ignore
20170 @mindex inv
20171 @end ignore
20172 @tindex inv (matrices)
20173 The @kbd{&} (@code{calc-inv}) [@code{inv}] command computes the
20174 inverse of a square matrix.  If the matrix is singular, the inverse
20175 operation is left in symbolic form.  Matrix inverses are recorded so
20176 that once an inverse (or determinant) of a particular matrix has been
20177 computed, the inverse and determinant of the matrix can be recomputed
20178 quickly in the future.
20180 If the argument to @kbd{&} is a plain number @expr{x}, this
20181 command simply computes @expr{1/x}.  This is okay, because the
20182 @samp{/} operator also does a matrix inversion when dividing one
20183 by a matrix.
20185 @kindex V D
20186 @pindex calc-mdet
20187 @tindex det
20188 The @kbd{V D} (@code{calc-mdet}) [@code{det}] command computes the
20189 determinant of a square matrix.
20191 @kindex V L
20192 @pindex calc-mlud
20193 @tindex lud
20194 The @kbd{V L} (@code{calc-mlud}) [@code{lud}] command computes the
20195 LU decomposition of a matrix.  The result is a list of three matrices
20196 which, when multiplied together left-to-right, form the original matrix.
20197 The first is a permutation matrix that arises from pivoting in the
20198 algorithm, the second is lower-triangular with ones on the diagonal,
20199 and the third is upper-triangular.
20201 @kindex V T
20202 @pindex calc-mtrace
20203 @tindex tr
20204 The @kbd{V T} (@code{calc-mtrace}) [@code{tr}] command computes the
20205 trace of a square matrix.  This is defined as the sum of the diagonal
20206 elements of the matrix.
20208 @node Set Operations, Statistical Operations, Vector and Matrix Arithmetic, Matrix Functions
20209 @section Set Operations using Vectors
20211 @noindent
20212 @cindex Sets, as vectors
20213 Calc includes several commands which interpret vectors as @dfn{sets} of
20214 objects.  A set is a collection of objects; any given object can appear
20215 only once in the set.  Calc stores sets as vectors of objects in
20216 sorted order.  Objects in a Calc set can be any of the usual things,
20217 such as numbers, variables, or formulas.  Two set elements are considered
20218 equal if they are identical, except that numerically equal numbers like
20219 the integer 4 and the float 4.0 are considered equal even though they
20220 are not ``identical.''  Variables are treated like plain symbols without
20221 attached values by the set operations; subtracting the set @samp{[b]}
20222 from @samp{[a, b]} always yields the set @samp{[a]} even though if
20223 the variables @samp{a} and @samp{b} both equaled 17, you might
20224 expect the answer @samp{[]}.
20226 If a set contains interval forms, then it is assumed to be a set of
20227 real numbers.  In this case, all set operations require the elements
20228 of the set to be only things that are allowed in intervals:  Real
20229 numbers, plus and minus infinity, HMS forms, and date forms.  If
20230 there are variables or other non-real objects present in a real set,
20231 all set operations on it will be left in unevaluated form.
20233 If the input to a set operation is a plain number or interval form
20234 @var{a}, it is treated like the one-element vector @samp{[@var{a}]}.
20235 The result is always a vector, except that if the set consists of a
20236 single interval, the interval itself is returned instead.
20238 @xref{Logical Operations}, for the @code{in} function which tests if
20239 a certain value is a member of a given set.  To test if the set @expr{A}
20240 is a subset of the set @expr{B}, use @samp{vdiff(A, B) = []}.
20242 @kindex V +
20243 @pindex calc-remove-duplicates
20244 @tindex rdup
20245 The @kbd{V +} (@code{calc-remove-duplicates}) [@code{rdup}] command
20246 converts an arbitrary vector into set notation.  It works by sorting
20247 the vector as if by @kbd{V S}, then removing duplicates.  (For example,
20248 @kbd{[a, 5, 4, a, 4.0]} is sorted to @samp{[4, 4.0, 5, a, a]} and then
20249 reduced to @samp{[4, 5, a]}).  Overlapping intervals are merged as
20250 necessary.  You rarely need to use @kbd{V +} explicitly, since all the
20251 other set-based commands apply @kbd{V +} to their inputs before using
20252 them.
20254 @kindex V V
20255 @pindex calc-set-union
20256 @tindex vunion
20257 The @kbd{V V} (@code{calc-set-union}) [@code{vunion}] command computes
20258 the union of two sets.  An object is in the union of two sets if and
20259 only if it is in either (or both) of the input sets.  (You could
20260 accomplish the same thing by concatenating the sets with @kbd{|},
20261 then using @kbd{V +}.)
20263 @kindex V ^
20264 @pindex calc-set-intersect
20265 @tindex vint
20266 The @kbd{V ^} (@code{calc-set-intersect}) [@code{vint}] command computes
20267 the intersection of two sets.  An object is in the intersection if
20268 and only if it is in both of the input sets.  Thus if the input
20269 sets are disjoint, i.e., if they share no common elements, the result
20270 will be the empty vector @samp{[]}.  Note that the characters @kbd{V}
20271 and @kbd{^} were chosen to be close to the conventional mathematical
20272 notation for set 
20273 @texline union@tie{}(@math{A \cup B})
20274 @infoline union
20275 and 
20276 @texline intersection@tie{}(@math{A \cap B}).
20277 @infoline intersection.
20279 @kindex V -
20280 @pindex calc-set-difference
20281 @tindex vdiff
20282 The @kbd{V -} (@code{calc-set-difference}) [@code{vdiff}] command computes
20283 the difference between two sets.  An object is in the difference
20284 @expr{A - B} if and only if it is in @expr{A} but not in @expr{B}.
20285 Thus subtracting @samp{[y,z]} from a set will remove the elements
20286 @samp{y} and @samp{z} if they are present.  You can also think of this
20287 as a general @dfn{set complement} operator; if @expr{A} is the set of
20288 all possible values, then @expr{A - B} is the ``complement'' of @expr{B}.
20289 Obviously this is only practical if the set of all possible values in
20290 your problem is small enough to list in a Calc vector (or simple
20291 enough to express in a few intervals).
20293 @kindex V X
20294 @pindex calc-set-xor
20295 @tindex vxor
20296 The @kbd{V X} (@code{calc-set-xor}) [@code{vxor}] command computes
20297 the ``exclusive-or,'' or ``symmetric difference'' of two sets.
20298 An object is in the symmetric difference of two sets if and only
20299 if it is in one, but @emph{not} both, of the sets.  Objects that
20300 occur in both sets ``cancel out.''
20302 @kindex V ~
20303 @pindex calc-set-complement
20304 @tindex vcompl
20305 The @kbd{V ~} (@code{calc-set-complement}) [@code{vcompl}] command
20306 computes the complement of a set with respect to the real numbers.
20307 Thus @samp{vcompl(x)} is equivalent to @samp{vdiff([-inf .. inf], x)}.
20308 For example, @samp{vcompl([2, (3 .. 4]])} evaluates to
20309 @samp{[[-inf .. 2), (2 .. 3], (4 .. inf]]}.
20311 @kindex V F
20312 @pindex calc-set-floor
20313 @tindex vfloor
20314 The @kbd{V F} (@code{calc-set-floor}) [@code{vfloor}] command
20315 reinterprets a set as a set of integers.  Any non-integer values,
20316 and intervals that do not enclose any integers, are removed.  Open
20317 intervals are converted to equivalent closed intervals.  Successive
20318 integers are converted into intervals of integers.  For example, the
20319 complement of the set @samp{[2, 6, 7, 8]} is messy, but if you wanted
20320 the complement with respect to the set of integers you could type
20321 @kbd{V ~ V F} to get @samp{[[-inf .. 1], [3 .. 5], [9 .. inf]]}.
20323 @kindex V E
20324 @pindex calc-set-enumerate
20325 @tindex venum
20326 The @kbd{V E} (@code{calc-set-enumerate}) [@code{venum}] command
20327 converts a set of integers into an explicit vector.  Intervals in
20328 the set are expanded out to lists of all integers encompassed by
20329 the intervals.  This only works for finite sets (i.e., sets which
20330 do not involve @samp{-inf} or @samp{inf}).
20332 @kindex V :
20333 @pindex calc-set-span
20334 @tindex vspan
20335 The @kbd{V :} (@code{calc-set-span}) [@code{vspan}] command converts any
20336 set of reals into an interval form that encompasses all its elements.
20337 The lower limit will be the smallest element in the set; the upper
20338 limit will be the largest element.  For an empty set, @samp{vspan([])}
20339 returns the empty interval @w{@samp{[0 .. 0)}}.
20341 @kindex V #
20342 @pindex calc-set-cardinality
20343 @tindex vcard
20344 The @kbd{V #} (@code{calc-set-cardinality}) [@code{vcard}] command counts
20345 the number of integers in a set.  The result is the length of the vector
20346 that would be produced by @kbd{V E}, although the computation is much
20347 more efficient than actually producing that vector.
20349 @cindex Sets, as binary numbers
20350 Another representation for sets that may be more appropriate in some
20351 cases is binary numbers.  If you are dealing with sets of integers
20352 in the range 0 to 49, you can use a 50-bit binary number where a
20353 particular bit is 1 if the corresponding element is in the set.
20354 @xref{Binary Functions}, for a list of commands that operate on
20355 binary numbers.  Note that many of the above set operations have
20356 direct equivalents in binary arithmetic:  @kbd{b o} (@code{calc-or}),
20357 @kbd{b a} (@code{calc-and}), @kbd{b d} (@code{calc-diff}),
20358 @kbd{b x} (@code{calc-xor}), and @kbd{b n} (@code{calc-not}),
20359 respectively.  You can use whatever representation for sets is most
20360 convenient to you.
20362 @kindex b p
20363 @kindex b u
20364 @pindex calc-pack-bits
20365 @pindex calc-unpack-bits
20366 @tindex vpack
20367 @tindex vunpack
20368 The @kbd{b u} (@code{calc-unpack-bits}) [@code{vunpack}] command
20369 converts an integer that represents a set in binary into a set
20370 in vector/interval notation.  For example, @samp{vunpack(67)}
20371 returns @samp{[[0 .. 1], 6]}.  If the input is negative, the set
20372 it represents is semi-infinite: @samp{vunpack(-4) = [2 .. inf)}.
20373 Use @kbd{V E} afterwards to expand intervals to individual
20374 values if you wish.  Note that this command uses the @kbd{b}
20375 (binary) prefix key.
20377 The @kbd{b p} (@code{calc-pack-bits}) [@code{vpack}] command
20378 converts the other way, from a vector or interval representing
20379 a set of nonnegative integers into a binary integer describing
20380 the same set.  The set may include positive infinity, but must
20381 not include any negative numbers.  The input is interpreted as a
20382 set of integers in the sense of @kbd{V F} (@code{vfloor}).  Beware
20383 that a simple input like @samp{[100]} can result in a huge integer
20384 representation 
20385 @texline (@math{2^{100}}, a 31-digit integer, in this case).
20386 @infoline (@expr{2^100}, a 31-digit integer, in this case).
20388 @node Statistical Operations, Reducing and Mapping, Set Operations, Matrix Functions
20389 @section Statistical Operations on Vectors
20391 @noindent
20392 @cindex Statistical functions
20393 The commands in this section take vectors as arguments and compute
20394 various statistical measures on the data stored in the vectors.  The
20395 references used in the definitions of these functions are Bevington's
20396 @emph{Data Reduction and Error Analysis for the Physical Sciences},
20397 and @emph{Numerical Recipes} by Press, Flannery, Teukolsky and
20398 Vetterling.
20400 The statistical commands use the @kbd{u} prefix key followed by
20401 a shifted letter or other character.
20403 @xref{Manipulating Vectors}, for a description of @kbd{V H}
20404 (@code{calc-histogram}).
20406 @xref{Curve Fitting}, for the @kbd{a F} command for doing
20407 least-squares fits to statistical data.
20409 @xref{Probability Distribution Functions}, for several common
20410 probability distribution functions.
20412 @menu
20413 * Single-Variable Statistics::
20414 * Paired-Sample Statistics::
20415 @end menu
20417 @node Single-Variable Statistics, Paired-Sample Statistics, Statistical Operations, Statistical Operations
20418 @subsection Single-Variable Statistics
20420 @noindent
20421 These functions do various statistical computations on single
20422 vectors.  Given a numeric prefix argument, they actually pop
20423 @var{n} objects from the stack and combine them into a data
20424 vector.  Each object may be either a number or a vector; if a
20425 vector, any sub-vectors inside it are ``flattened'' as if by
20426 @kbd{v a 0}; @pxref{Manipulating Vectors}.  By default one object
20427 is popped, which (in order to be useful) is usually a vector.
20429 If an argument is a variable name, and the value stored in that
20430 variable is a vector, then the stored vector is used.  This method
20431 has the advantage that if your data vector is large, you can avoid
20432 the slow process of manipulating it directly on the stack.
20434 These functions are left in symbolic form if any of their arguments
20435 are not numbers or vectors, e.g., if an argument is a formula, or
20436 a non-vector variable.  However, formulas embedded within vector
20437 arguments are accepted; the result is a symbolic representation
20438 of the computation, based on the assumption that the formula does
20439 not itself represent a vector.  All varieties of numbers such as
20440 error forms and interval forms are acceptable.
20442 Some of the functions in this section also accept a single error form
20443 or interval as an argument.  They then describe a property of the
20444 normal or uniform (respectively) statistical distribution described
20445 by the argument.  The arguments are interpreted in the same way as
20446 the @var{M} argument of the random number function @kbd{k r}.  In
20447 particular, an interval with integer limits is considered an integer
20448 distribution, so that @samp{[2 .. 6)} is the same as @samp{[2 .. 5]}.
20449 An interval with at least one floating-point limit is a continuous
20450 distribution:  @samp{[2.0 .. 6.0)} is @emph{not} the same as
20451 @samp{[2.0 .. 5.0]}!
20453 @kindex u #
20454 @pindex calc-vector-count
20455 @tindex vcount
20456 The @kbd{u #} (@code{calc-vector-count}) [@code{vcount}] command
20457 computes the number of data values represented by the inputs.
20458 For example, @samp{vcount(1, [2, 3], [[4, 5], [], x, y])} returns 7.
20459 If the argument is a single vector with no sub-vectors, this
20460 simply computes the length of the vector.
20462 @kindex u +
20463 @kindex u *
20464 @pindex calc-vector-sum
20465 @pindex calc-vector-prod
20466 @tindex vsum
20467 @tindex vprod
20468 @cindex Summations (statistical)
20469 The @kbd{u +} (@code{calc-vector-sum}) [@code{vsum}] command
20470 computes the sum of the data values.  The @kbd{u *}
20471 (@code{calc-vector-prod}) [@code{vprod}] command computes the
20472 product of the data values.  If the input is a single flat vector,
20473 these are the same as @kbd{V R +} and @kbd{V R *}
20474 (@pxref{Reducing and Mapping}).
20476 @kindex u X
20477 @kindex u N
20478 @pindex calc-vector-max
20479 @pindex calc-vector-min
20480 @tindex vmax
20481 @tindex vmin
20482 The @kbd{u X} (@code{calc-vector-max}) [@code{vmax}] command
20483 computes the maximum of the data values, and the @kbd{u N}
20484 (@code{calc-vector-min}) [@code{vmin}] command computes the minimum.
20485 If the argument is an interval, this finds the minimum or maximum
20486 value in the interval.  (Note that @samp{vmax([2..6)) = 5} as
20487 described above.)  If the argument is an error form, this returns
20488 plus or minus infinity.
20490 @kindex u M
20491 @pindex calc-vector-mean
20492 @tindex vmean
20493 @cindex Mean of data values
20494 The @kbd{u M} (@code{calc-vector-mean}) [@code{vmean}] command
20495 computes the average (arithmetic mean) of the data values.
20496 If the inputs are error forms 
20497 @texline @math{x \pm \sigma},
20498 @infoline @samp{x +/- s}, 
20499 this is the weighted mean of the @expr{x} values with weights 
20500 @texline @math{1 /\sigma^2}.
20501 @infoline @expr{1 / s^2}.
20502 @tex
20503 \turnoffactive
20504 $$ \mu = { \displaystyle \sum { x_i \over \sigma_i^2 } \over
20505            \displaystyle \sum { 1 \over \sigma_i^2 } } $$
20506 @end tex
20507 If the inputs are not error forms, this is simply the sum of the
20508 values divided by the count of the values.
20510 Note that a plain number can be considered an error form with
20511 error 
20512 @texline @math{\sigma = 0}.
20513 @infoline @expr{s = 0}.  
20514 If the input to @kbd{u M} is a mixture of
20515 plain numbers and error forms, the result is the mean of the
20516 plain numbers, ignoring all values with non-zero errors.  (By the
20517 above definitions it's clear that a plain number effectively
20518 has an infinite weight, next to which an error form with a finite
20519 weight is completely negligible.)
20521 This function also works for distributions (error forms or
20522 intervals).  The mean of an error form `@var{a} @tfn{+/-} @var{b}' is simply
20523 @expr{a}.  The mean of an interval is the mean of the minimum
20524 and maximum values of the interval.
20526 @kindex I u M
20527 @pindex calc-vector-mean-error
20528 @tindex vmeane
20529 The @kbd{I u M} (@code{calc-vector-mean-error}) [@code{vmeane}]
20530 command computes the mean of the data points expressed as an
20531 error form.  This includes the estimated error associated with
20532 the mean.  If the inputs are error forms, the error is the square
20533 root of the reciprocal of the sum of the reciprocals of the squares
20534 of the input errors.  (I.e., the variance is the reciprocal of the
20535 sum of the reciprocals of the variances.)
20536 @tex
20537 \turnoffactive
20538 $$ \sigma_\mu^2 = {1 \over \displaystyle \sum {1 \over \sigma_i^2}} $$
20539 @end tex
20540 If the inputs are plain
20541 numbers, the error is equal to the standard deviation of the values
20542 divided by the square root of the number of values.  (This works
20543 out to be equivalent to calculating the standard deviation and
20544 then assuming each value's error is equal to this standard
20545 deviation.)
20546 @tex
20547 \turnoffactive
20548 $$ \sigma_\mu^2 = {\sigma^2 \over N} $$
20549 @end tex
20551 @kindex H u M
20552 @pindex calc-vector-median
20553 @tindex vmedian
20554 @cindex Median of data values
20555 The @kbd{H u M} (@code{calc-vector-median}) [@code{vmedian}]
20556 command computes the median of the data values.  The values are
20557 first sorted into numerical order; the median is the middle
20558 value after sorting.  (If the number of data values is even,
20559 the median is taken to be the average of the two middle values.)
20560 The median function is different from the other functions in
20561 this section in that the arguments must all be real numbers;
20562 variables are not accepted even when nested inside vectors.
20563 (Otherwise it is not possible to sort the data values.)  If
20564 any of the input values are error forms, their error parts are
20565 ignored.
20567 The median function also accepts distributions.  For both normal
20568 (error form) and uniform (interval) distributions, the median is
20569 the same as the mean.
20571 @kindex H I u M
20572 @pindex calc-vector-harmonic-mean
20573 @tindex vhmean
20574 @cindex Harmonic mean
20575 The @kbd{H I u M} (@code{calc-vector-harmonic-mean}) [@code{vhmean}]
20576 command computes the harmonic mean of the data values.  This is
20577 defined as the reciprocal of the arithmetic mean of the reciprocals
20578 of the values.
20579 @tex
20580 \turnoffactive
20581 $$ { N \over \displaystyle \sum {1 \over x_i} } $$
20582 @end tex
20584 @kindex u G
20585 @pindex calc-vector-geometric-mean
20586 @tindex vgmean
20587 @cindex Geometric mean
20588 The @kbd{u G} (@code{calc-vector-geometric-mean}) [@code{vgmean}]
20589 command computes the geometric mean of the data values.  This
20590 is the @var{n}th root of the product of the values.  This is also
20591 equal to the @code{exp} of the arithmetic mean of the logarithms
20592 of the data values.
20593 @tex
20594 \turnoffactive
20595 $$ \exp \left ( \sum { \ln x_i } \right ) =
20596    \left ( \prod { x_i } \right)^{1 / N} $$
20597 @end tex
20599 @kindex H u G
20600 @tindex agmean
20601 The @kbd{H u G} [@code{agmean}] command computes the ``arithmetic-geometric
20602 mean'' of two numbers taken from the stack.  This is computed by
20603 replacing the two numbers with their arithmetic mean and geometric
20604 mean, then repeating until the two values converge.
20605 @tex
20606 \turnoffactive
20607 $$ a_{i+1} = { a_i + b_i \over 2 } , \qquad b_{i+1} = \sqrt{a_i b_i} $$
20608 @end tex
20610 @cindex Root-mean-square
20611 Another commonly used mean, the RMS (root-mean-square), can be computed
20612 for a vector of numbers simply by using the @kbd{A} command.
20614 @kindex u S
20615 @pindex calc-vector-sdev
20616 @tindex vsdev
20617 @cindex Standard deviation
20618 @cindex Sample statistics
20619 The @kbd{u S} (@code{calc-vector-sdev}) [@code{vsdev}] command
20620 computes the standard 
20621 @texline deviation@tie{}@math{\sigma}
20622 @infoline deviation
20623 of the data values.  If the values are error forms, the errors are used
20624 as weights just as for @kbd{u M}.  This is the @emph{sample} standard
20625 deviation, whose value is the square root of the sum of the squares of
20626 the differences between the values and the mean of the @expr{N} values,
20627 divided by @expr{N-1}.
20628 @tex
20629 \turnoffactive
20630 $$ \sigma^2 = {1 \over N - 1} \sum (x_i - \mu)^2 $$
20631 @end tex
20633 This function also applies to distributions.  The standard deviation
20634 of a single error form is simply the error part.  The standard deviation
20635 of a continuous interval happens to equal the difference between the
20636 limits, divided by 
20637 @texline @math{\sqrt{12}}.
20638 @infoline @expr{sqrt(12)}.  
20639 The standard deviation of an integer interval is the same as the
20640 standard deviation of a vector of those integers.
20642 @kindex I u S
20643 @pindex calc-vector-pop-sdev
20644 @tindex vpsdev
20645 @cindex Population statistics
20646 The @kbd{I u S} (@code{calc-vector-pop-sdev}) [@code{vpsdev}]
20647 command computes the @emph{population} standard deviation.
20648 It is defined by the same formula as above but dividing
20649 by @expr{N} instead of by @expr{N-1}.  The population standard
20650 deviation is used when the input represents the entire set of
20651 data values in the distribution; the sample standard deviation
20652 is used when the input represents a sample of the set of all
20653 data values, so that the mean computed from the input is itself
20654 only an estimate of the true mean.
20655 @tex
20656 \turnoffactive
20657 $$ \sigma^2 = {1 \over N} \sum (x_i - \mu)^2 $$
20658 @end tex
20660 For error forms and continuous intervals, @code{vpsdev} works
20661 exactly like @code{vsdev}.  For integer intervals, it computes the
20662 population standard deviation of the equivalent vector of integers.
20664 @kindex H u S
20665 @kindex H I u S
20666 @pindex calc-vector-variance
20667 @pindex calc-vector-pop-variance
20668 @tindex vvar
20669 @tindex vpvar
20670 @cindex Variance of data values
20671 The @kbd{H u S} (@code{calc-vector-variance}) [@code{vvar}] and
20672 @kbd{H I u S} (@code{calc-vector-pop-variance}) [@code{vpvar}]
20673 commands compute the variance of the data values.  The variance
20674 is the 
20675 @texline square@tie{}@math{\sigma^2}
20676 @infoline square
20677 of the standard deviation, i.e., the sum of the
20678 squares of the deviations of the data values from the mean.
20679 (This definition also applies when the argument is a distribution.)
20681 @ignore
20682 @starindex
20683 @end ignore
20684 @tindex vflat
20685 The @code{vflat} algebraic function returns a vector of its
20686 arguments, interpreted in the same way as the other functions
20687 in this section.  For example, @samp{vflat(1, [2, [3, 4]], 5)}
20688 returns @samp{[1, 2, 3, 4, 5]}.
20690 @node Paired-Sample Statistics, , Single-Variable Statistics, Statistical Operations
20691 @subsection Paired-Sample Statistics
20693 @noindent
20694 The functions in this section take two arguments, which must be
20695 vectors of equal size.  The vectors are each flattened in the same
20696 way as by the single-variable statistical functions.  Given a numeric
20697 prefix argument of 1, these functions instead take one object from
20698 the stack, which must be an 
20699 @texline @math{N\times2}
20700 @infoline Nx2
20701 matrix of data values.  Once again, variable names can be used in place
20702 of actual vectors and matrices.
20704 @kindex u C
20705 @pindex calc-vector-covariance
20706 @tindex vcov
20707 @cindex Covariance
20708 The @kbd{u C} (@code{calc-vector-covariance}) [@code{vcov}] command
20709 computes the sample covariance of two vectors.  The covariance
20710 of vectors @var{x} and @var{y} is the sum of the products of the
20711 differences between the elements of @var{x} and the mean of @var{x}
20712 times the differences between the corresponding elements of @var{y}
20713 and the mean of @var{y}, all divided by @expr{N-1}.  Note that
20714 the variance of a vector is just the covariance of the vector
20715 with itself.  Once again, if the inputs are error forms the
20716 errors are used as weight factors.  If both @var{x} and @var{y}
20717 are composed of error forms, the error for a given data point
20718 is taken as the square root of the sum of the squares of the two
20719 input errors.
20720 @tex
20721 \turnoffactive
20722 $$ \sigma_{x\!y}^2 = {1 \over N-1} \sum (x_i - \mu_x) (y_i - \mu_y) $$
20723 $$ \sigma_{x\!y}^2 =
20724     {\displaystyle {1 \over N-1}
20725                    \sum {(x_i - \mu_x) (y_i - \mu_y) \over \sigma_i^2}
20726      \over \displaystyle {1 \over N} \sum {1 \over \sigma_i^2}}
20728 @end tex
20730 @kindex I u C
20731 @pindex calc-vector-pop-covariance
20732 @tindex vpcov
20733 The @kbd{I u C} (@code{calc-vector-pop-covariance}) [@code{vpcov}]
20734 command computes the population covariance, which is the same as the
20735 sample covariance computed by @kbd{u C} except dividing by @expr{N}
20736 instead of @expr{N-1}.
20738 @kindex H u C
20739 @pindex calc-vector-correlation
20740 @tindex vcorr
20741 @cindex Correlation coefficient
20742 @cindex Linear correlation
20743 The @kbd{H u C} (@code{calc-vector-correlation}) [@code{vcorr}]
20744 command computes the linear correlation coefficient of two vectors.
20745 This is defined by the covariance of the vectors divided by the
20746 product of their standard deviations.  (There is no difference
20747 between sample or population statistics here.)
20748 @tex
20749 \turnoffactive
20750 $$ r_{x\!y} = { \sigma_{x\!y}^2 \over \sigma_x^2 \sigma_y^2 } $$
20751 @end tex
20753 @node Reducing and Mapping, Vector and Matrix Formats, Statistical Operations, Matrix Functions
20754 @section Reducing and Mapping Vectors
20756 @noindent
20757 The commands in this section allow for more general operations on the
20758 elements of vectors.
20760 @kindex V A
20761 @pindex calc-apply
20762 @tindex apply
20763 The simplest of these operations is @kbd{V A} (@code{calc-apply})
20764 [@code{apply}], which applies a given operator to the elements of a vector.
20765 For example, applying the hypothetical function @code{f} to the vector
20766 @w{@samp{[1, 2, 3]}} would produce the function call @samp{f(1, 2, 3)}.
20767 Applying the @code{+} function to the vector @samp{[a, b]} gives
20768 @samp{a + b}.  Applying @code{+} to the vector @samp{[a, b, c]} is an
20769 error, since the @code{+} function expects exactly two arguments.
20771 While @kbd{V A} is useful in some cases, you will usually find that either
20772 @kbd{V R} or @kbd{V M}, described below, is closer to what you want.
20774 @menu
20775 * Specifying Operators::
20776 * Mapping::
20777 * Reducing::
20778 * Nesting and Fixed Points::
20779 * Generalized Products::
20780 @end menu
20782 @node Specifying Operators, Mapping, Reducing and Mapping, Reducing and Mapping
20783 @subsection Specifying Operators
20785 @noindent
20786 Commands in this section (like @kbd{V A}) prompt you to press the key
20787 corresponding to the desired operator.  Press @kbd{?} for a partial
20788 list of the available operators.  Generally, an operator is any key or
20789 sequence of keys that would normally take one or more arguments from
20790 the stack and replace them with a result.  For example, @kbd{V A H C}
20791 uses the hyperbolic cosine operator, @code{cosh}.  (Since @code{cosh}
20792 expects one argument, @kbd{V A H C} requires a vector with a single
20793 element as its argument.)
20795 You can press @kbd{x} at the operator prompt to select any algebraic
20796 function by name to use as the operator.  This includes functions you
20797 have defined yourself using the @kbd{Z F} command.  (@xref{Algebraic
20798 Definitions}.)  If you give a name for which no function has been
20799 defined, the result is left in symbolic form, as in @samp{f(1, 2, 3)}.
20800 Calc will prompt for the number of arguments the function takes if it
20801 can't figure it out on its own (say, because you named a function that
20802 is currently undefined).  It is also possible to type a digit key before
20803 the function name to specify the number of arguments, e.g.,
20804 @kbd{V M 3 x f @key{RET}} calls @code{f} with three arguments even if it
20805 looks like it ought to have only two.  This technique may be necessary
20806 if the function allows a variable number of arguments.  For example,
20807 the @kbd{v e} [@code{vexp}] function accepts two or three arguments;
20808 if you want to map with the three-argument version, you will have to
20809 type @kbd{V M 3 v e}.
20811 It is also possible to apply any formula to a vector by treating that
20812 formula as a function.  When prompted for the operator to use, press
20813 @kbd{'} (the apostrophe) and type your formula as an algebraic entry.
20814 You will then be prompted for the argument list, which defaults to a
20815 list of all variables that appear in the formula, sorted into alphabetic
20816 order.  For example, suppose you enter the formula @w{@samp{x + 2y^x}}.
20817 The default argument list would be @samp{(x y)}, which means that if
20818 this function is applied to the arguments @samp{[3, 10]} the result will
20819 be @samp{3 + 2*10^3}.  (If you plan to use a certain formula in this
20820 way often, you might consider defining it as a function with @kbd{Z F}.)
20822 Another way to specify the arguments to the formula you enter is with
20823 @kbd{$}, @kbd{$$}, and so on.  For example, @kbd{V A ' $$ + 2$^$$}
20824 has the same effect as the previous example.  The argument list is
20825 automatically taken to be @samp{($$ $)}.  (The order of the arguments
20826 may seem backwards, but it is analogous to the way normal algebraic
20827 entry interacts with the stack.)
20829 If you press @kbd{$} at the operator prompt, the effect is similar to
20830 the apostrophe except that the relevant formula is taken from top-of-stack
20831 instead.  The actual vector arguments of the @kbd{V A $} or related command
20832 then start at the second-to-top stack position.  You will still be
20833 prompted for an argument list.
20835 @cindex Nameless functions
20836 @cindex Generic functions
20837 A function can be written without a name using the notation @samp{<#1 - #2>},
20838 which means ``a function of two arguments that computes the first
20839 argument minus the second argument.''  The symbols @samp{#1} and @samp{#2}
20840 are placeholders for the arguments.  You can use any names for these
20841 placeholders if you wish, by including an argument list followed by a
20842 colon:  @samp{<x, y : x - y>}.  When you type @kbd{V A ' $$ + 2$^$$ @key{RET}},
20843 Calc builds the nameless function @samp{<#1 + 2 #2^#1>} as the function
20844 to map across the vectors.  When you type @kbd{V A ' x + 2y^x @key{RET} @key{RET}},
20845 Calc builds the nameless function @w{@samp{<x, y : x + 2 y^x>}}.  In both
20846 cases, Calc also writes the nameless function to the Trail so that you
20847 can get it back later if you wish.
20849 If there is only one argument, you can write @samp{#} in place of @samp{#1}.
20850 (Note that @samp{< >} notation is also used for date forms.  Calc tells
20851 that @samp{<@var{stuff}>} is a nameless function by the presence of
20852 @samp{#} signs inside @var{stuff}, or by the fact that @var{stuff}
20853 begins with a list of variables followed by a colon.)
20855 You can type a nameless function directly to @kbd{V A '}, or put one on
20856 the stack and use it with @w{@kbd{V A $}}.  Calc will not prompt for an
20857 argument list in this case, since the nameless function specifies the
20858 argument list as well as the function itself.  In @kbd{V A '}, you can
20859 omit the @samp{< >} marks if you use @samp{#} notation for the arguments,
20860 so that @kbd{V A ' #1+#2 @key{RET}} is the same as @kbd{V A ' <#1+#2> @key{RET}},
20861 which in turn is the same as @kbd{V A ' $$+$ @key{RET}}.
20863 @cindex Lambda expressions
20864 @ignore
20865 @starindex
20866 @end ignore
20867 @tindex lambda
20868 The internal format for @samp{<x, y : x + y>} is @samp{lambda(x, y, x + y)}.
20869 (The word @code{lambda} derives from Lisp notation and the theory of
20870 functions.)  The internal format for @samp{<#1 + #2>} is @samp{lambda(ArgA,
20871 ArgB, ArgA + ArgB)}.  Note that there is no actual Calc function called
20872 @code{lambda}; the whole point is that the @code{lambda} expression is
20873 used in its symbolic form, not evaluated for an answer until it is applied
20874 to specific arguments by a command like @kbd{V A} or @kbd{V M}.
20876 (Actually, @code{lambda} does have one special property:  Its arguments
20877 are never evaluated; for example, putting @samp{<(2/3) #>} on the stack
20878 will not simplify the @samp{2/3} until the nameless function is actually
20879 called.)
20881 @tindex add
20882 @tindex sub
20883 @ignore
20884 @mindex @idots
20885 @end ignore
20886 @tindex mul
20887 @ignore
20888 @mindex @null
20889 @end ignore
20890 @tindex div
20891 @ignore
20892 @mindex @null
20893 @end ignore
20894 @tindex pow
20895 @ignore
20896 @mindex @null
20897 @end ignore
20898 @tindex neg
20899 @ignore
20900 @mindex @null
20901 @end ignore
20902 @tindex mod
20903 @ignore
20904 @mindex @null
20905 @end ignore
20906 @tindex vconcat
20907 As usual, commands like @kbd{V A} have algebraic function name equivalents.
20908 For example, @kbd{V A k g} with an argument of @samp{v} is equivalent to
20909 @samp{apply(gcd, v)}.  The first argument specifies the operator name,
20910 and is either a variable whose name is the same as the function name,
20911 or a nameless function like @samp{<#^3+1>}.  Operators that are normally
20912 written as algebraic symbols have the names @code{add}, @code{sub},
20913 @code{mul}, @code{div}, @code{pow}, @code{neg}, @code{mod}, and
20914 @code{vconcat}.
20916 @ignore
20917 @starindex
20918 @end ignore
20919 @tindex call
20920 The @code{call} function builds a function call out of several arguments:
20921 @samp{call(gcd, x, y)} is the same as @samp{apply(gcd, [x, y])}, which
20922 in turn is the same as @samp{gcd(x, y)}.  The first argument of @code{call},
20923 like the other functions described here, may be either a variable naming a
20924 function, or a nameless function (@samp{call(<#1+2#2>, x, y)} is the same
20925 as @samp{x + 2y}).
20927 (Experts will notice that it's not quite proper to use a variable to name
20928 a function, since the name @code{gcd} corresponds to the Lisp variable
20929 @code{var-gcd} but to the Lisp function @code{calcFunc-gcd}.  Calc
20930 automatically makes this translation, so you don't have to worry
20931 about it.)
20933 @node Mapping, Reducing, Specifying Operators, Reducing and Mapping
20934 @subsection Mapping
20936 @noindent
20937 @kindex V M
20938 @pindex calc-map
20939 @tindex map
20940 The @kbd{V M} (@code{calc-map}) [@code{map}] command applies a given
20941 operator elementwise to one or more vectors.  For example, mapping
20942 @code{A} [@code{abs}] produces a vector of the absolute values of the
20943 elements in the input vector.  Mapping @code{+} pops two vectors from
20944 the stack, which must be of equal length, and produces a vector of the
20945 pairwise sums of the elements.  If either argument is a non-vector, it
20946 is duplicated for each element of the other vector.  For example,
20947 @kbd{[1,2,3] 2 V M ^} squares the elements of the specified vector.
20948 With the 2 listed first, it would have computed a vector of powers of
20949 two.  Mapping a user-defined function pops as many arguments from the
20950 stack as the function requires.  If you give an undefined name, you will
20951 be prompted for the number of arguments to use.
20953 If any argument to @kbd{V M} is a matrix, the operator is normally mapped
20954 across all elements of the matrix.  For example, given the matrix
20955 @expr{[[1, -2, 3], [-4, 5, -6]]}, @kbd{V M A} takes six absolute values to
20956 produce another 
20957 @texline @math{3\times2}
20958 @infoline 3x2
20959 matrix, @expr{[[1, 2, 3], [4, 5, 6]]}.
20961 @tindex mapr
20962 The command @kbd{V M _} [@code{mapr}] (i.e., type an underscore at the
20963 operator prompt) maps by rows instead.  For example, @kbd{V M _ A} views
20964 the above matrix as a vector of two 3-element row vectors.  It produces
20965 a new vector which contains the absolute values of those row vectors,
20966 namely @expr{[3.74, 8.77]}.  (Recall, the absolute value of a vector is
20967 defined as the square root of the sum of the squares of the elements.)
20968 Some operators accept vectors and return new vectors; for example,
20969 @kbd{v v} reverses a vector, so @kbd{V M _ v v} would reverse each row
20970 of the matrix to get a new matrix, @expr{[[3, -2, 1], [-6, 5, -4]]}.
20972 Sometimes a vector of vectors (representing, say, strings, sets, or lists)
20973 happens to look like a matrix.  If so, remember to use @kbd{V M _} if you
20974 want to map a function across the whole strings or sets rather than across
20975 their individual elements.
20977 @tindex mapc
20978 The command @kbd{V M :} [@code{mapc}] maps by columns.  Basically, it
20979 transposes the input matrix, maps by rows, and then, if the result is a
20980 matrix, transposes again.  For example, @kbd{V M : A} takes the absolute
20981 values of the three columns of the matrix, treating each as a 2-vector,
20982 and @kbd{V M : v v} reverses the columns to get the matrix
20983 @expr{[[-4, 5, -6], [1, -2, 3]]}.
20985 (The symbols @kbd{_} and @kbd{:} were chosen because they had row-like
20986 and column-like appearances, and were not already taken by useful
20987 operators.  Also, they appear shifted on most keyboards so they are easy
20988 to type after @kbd{V M}.)
20990 The @kbd{_} and @kbd{:} modifiers have no effect on arguments that are
20991 not matrices (so if none of the arguments are matrices, they have no
20992 effect at all).  If some of the arguments are matrices and others are
20993 plain numbers, the plain numbers are held constant for all rows of the
20994 matrix (so that @kbd{2 V M _ ^} squares every row of a matrix; squaring
20995 a vector takes a dot product of the vector with itself).
20997 If some of the arguments are vectors with the same lengths as the
20998 rows (for @kbd{V M _}) or columns (for @kbd{V M :}) of the matrix
20999 arguments, those vectors are also held constant for every row or
21000 column.
21002 Sometimes it is useful to specify another mapping command as the operator
21003 to use with @kbd{V M}.  For example, @kbd{V M _ V A +} applies @kbd{V A +}
21004 to each row of the input matrix, which in turn adds the two values on that
21005 row.  If you give another vector-operator command as the operator for
21006 @kbd{V M}, it automatically uses map-by-rows mode if you don't specify
21007 otherwise; thus @kbd{V M V A +} is equivalent to @kbd{V M _ V A +}.  (If
21008 you really want to map-by-elements another mapping command, you can use
21009 a triple-nested mapping command:  @kbd{V M V M V A +} means to map
21010 @kbd{V M V A +} over the rows of the matrix; in turn, @kbd{V A +} is
21011 mapped over the elements of each row.)
21013 @tindex mapa
21014 @tindex mapd
21015 Previous versions of Calc had ``map across'' and ``map down'' modes
21016 that are now considered obsolete; the old ``map across'' is now simply
21017 @kbd{V M V A}, and ``map down'' is now @kbd{V M : V A}.  The algebraic
21018 functions @code{mapa} and @code{mapd} are still supported, though.
21019 Note also that, while the old mapping modes were persistent (once you
21020 set the mode, it would apply to later mapping commands until you reset
21021 it), the new @kbd{:} and @kbd{_} modifiers apply only to the current
21022 mapping command.  The default @kbd{V M} always means map-by-elements.
21024 @xref{Algebraic Manipulation}, for the @kbd{a M} command, which is like
21025 @kbd{V M} but for equations and inequalities instead of vectors.
21026 @xref{Storing Variables}, for the @kbd{s m} command which modifies a
21027 variable's stored value using a @kbd{V M}-like operator.
21029 @node Reducing, Nesting and Fixed Points, Mapping, Reducing and Mapping
21030 @subsection Reducing
21032 @noindent
21033 @kindex V R
21034 @pindex calc-reduce
21035 @tindex reduce
21036 The @kbd{V R} (@code{calc-reduce}) [@code{reduce}] command applies a given
21037 binary operator across all the elements of a vector.  A binary operator is
21038 a function such as @code{+} or @code{max} which takes two arguments.  For
21039 example, reducing @code{+} over a vector computes the sum of the elements
21040 of the vector.  Reducing @code{-} computes the first element minus each of
21041 the remaining elements.  Reducing @code{max} computes the maximum element
21042 and so on.  In general, reducing @code{f} over the vector @samp{[a, b, c, d]}
21043 produces @samp{f(f(f(a, b), c), d)}.
21045 @kindex I V R
21046 @tindex rreduce
21047 The @kbd{I V R} [@code{rreduce}] command is similar to @kbd{V R} except
21048 that works from right to left through the vector.  For example, plain
21049 @kbd{V R -} on the vector @samp{[a, b, c, d]} produces @samp{a - b - c - d}
21050 but @kbd{I V R -} on the same vector produces @samp{a - (b - (c - d))},
21051 or @samp{a - b + c - d}.  This ``alternating sum'' occurs frequently
21052 in power series expansions.
21054 @kindex V U
21055 @tindex accum
21056 The @kbd{V U} (@code{calc-accumulate}) [@code{accum}] command does an
21057 accumulation operation.  Here Calc does the corresponding reduction
21058 operation, but instead of producing only the final result, it produces
21059 a vector of all the intermediate results.  Accumulating @code{+} over
21060 the vector @samp{[a, b, c, d]} produces the vector
21061 @samp{[a, a + b, a + b + c, a + b + c + d]}.
21063 @kindex I V U
21064 @tindex raccum
21065 The @kbd{I V U} [@code{raccum}] command does a right-to-left accumulation.
21066 For example, @kbd{I V U -} on the vector @samp{[a, b, c, d]} produces the
21067 vector @samp{[a - b + c - d, b - c + d, c - d, d]}.
21069 @tindex reducea
21070 @tindex rreducea
21071 @tindex reduced
21072 @tindex rreduced
21073 As for @kbd{V M}, @kbd{V R} normally reduces a matrix elementwise.  For
21074 example, given the matrix @expr{[[a, b, c], [d, e, f]]}, @kbd{V R +} will
21075 compute @expr{a + b + c + d + e + f}.  You can type @kbd{V R _} or
21076 @kbd{V R :} to modify this behavior.  The @kbd{V R _} [@code{reducea}]
21077 command reduces ``across'' the matrix; it reduces each row of the matrix
21078 as a vector, then collects the results.  Thus @kbd{V R _ +} of this
21079 matrix would produce @expr{[a + b + c, d + e + f]}.  Similarly, @kbd{V R :}
21080 [@code{reduced}] reduces down; @kbd{V R : +} would produce @expr{[a + d,
21081 b + e, c + f]}.
21083 @tindex reducer
21084 @tindex rreducer
21085 There is a third ``by rows'' mode for reduction that is occasionally
21086 useful; @kbd{V R =} [@code{reducer}] simply reduces the operator over
21087 the rows of the matrix themselves.  Thus @kbd{V R = +} on the above
21088 matrix would get the same result as @kbd{V R : +}, since adding two
21089 row vectors is equivalent to adding their elements.  But @kbd{V R = *}
21090 would multiply the two rows (to get a single number, their dot product),
21091 while @kbd{V R : *} would produce a vector of the products of the columns.
21093 These three matrix reduction modes work with @kbd{V R} and @kbd{I V R},
21094 but they are not currently supported with @kbd{V U} or @kbd{I V U}.
21096 @tindex reducec
21097 @tindex rreducec
21098 The obsolete reduce-by-columns function, @code{reducec}, is still
21099 supported but there is no way to get it through the @kbd{V R} command.
21101 The commands @kbd{M-# :} and @kbd{M-# _} are equivalent to typing
21102 @kbd{M-# r} to grab a rectangle of data into Calc, and then typing
21103 @kbd{V R : +} or @kbd{V R _ +}, respectively, to sum the columns or
21104 rows of the matrix.  @xref{Grabbing From Buffers}.
21106 @node Nesting and Fixed Points, Generalized Products, Reducing, Reducing and Mapping
21107 @subsection Nesting and Fixed Points
21109 @noindent
21110 @kindex H V R
21111 @tindex nest
21112 The @kbd{H V R} [@code{nest}] command applies a function to a given
21113 argument repeatedly.  It takes two values, @samp{a} and @samp{n}, from
21114 the stack, where @samp{n} must be an integer.  It then applies the
21115 function nested @samp{n} times; if the function is @samp{f} and @samp{n}
21116 is 3, the result is @samp{f(f(f(a)))}.  The number @samp{n} may be
21117 negative if Calc knows an inverse for the function @samp{f}; for
21118 example, @samp{nest(sin, a, -2)} returns @samp{arcsin(arcsin(a))}.
21120 @kindex H V U
21121 @tindex anest
21122 The @kbd{H V U} [@code{anest}] command is an accumulating version of
21123 @code{nest}:  It returns a vector of @samp{n+1} values, e.g.,
21124 @samp{[a, f(a), f(f(a)), f(f(f(a)))]}.  If @samp{n} is negative and
21125 @samp{F} is the inverse of @samp{f}, then the result is of the
21126 form @samp{[a, F(a), F(F(a)), F(F(F(a)))]}.
21128 @kindex H I V R
21129 @tindex fixp
21130 @cindex Fixed points
21131 The @kbd{H I V R} [@code{fixp}] command is like @kbd{H V R}, except
21132 that it takes only an @samp{a} value from the stack; the function is
21133 applied until it reaches a ``fixed point,'' i.e., until the result
21134 no longer changes.
21136 @kindex H I V U
21137 @tindex afixp
21138 The @kbd{H I V U} [@code{afixp}] command is an accumulating @code{fixp}.
21139 The first element of the return vector will be the initial value @samp{a};
21140 the last element will be the final result that would have been returned
21141 by @code{fixp}.
21143 For example, 0.739085 is a fixed point of the cosine function (in radians):
21144 @samp{cos(0.739085) = 0.739085}.  You can find this value by putting, say,
21145 1.0 on the stack and typing @kbd{H I V U C}.  (We use the accumulating
21146 version so we can see the intermediate results:  @samp{[1, 0.540302, 0.857553,
21147 0.65329, ...]}.  With a precision of six, this command will take 36 steps
21148 to converge to 0.739085.)
21150 Newton's method for finding roots is a classic example of iteration
21151 to a fixed point.  To find the square root of five starting with an
21152 initial guess, Newton's method would look for a fixed point of the
21153 function @samp{(x + 5/x) / 2}.  Putting a guess of 1 on the stack
21154 and typing @kbd{H I V R ' ($ + 5/$)/2 @key{RET}} quickly yields the result
21155 2.23607.  This is equivalent to using the @kbd{a R} (@code{calc-find-root})
21156 command to find a root of the equation @samp{x^2 = 5}.
21158 These examples used numbers for @samp{a} values.  Calc keeps applying
21159 the function until two successive results are equal to within the
21160 current precision.  For complex numbers, both the real parts and the
21161 imaginary parts must be equal to within the current precision.  If
21162 @samp{a} is a formula (say, a variable name), then the function is
21163 applied until two successive results are exactly the same formula.
21164 It is up to you to ensure that the function will eventually converge;
21165 if it doesn't, you may have to press @kbd{C-g} to stop the Calculator.
21167 The algebraic @code{fixp} function takes two optional arguments, @samp{n}
21168 and @samp{tol}.  The first is the maximum number of steps to be allowed,
21169 and must be either an integer or the symbol @samp{inf} (infinity, the
21170 default).  The second is a convergence tolerance.  If a tolerance is
21171 specified, all results during the calculation must be numbers, not
21172 formulas, and the iteration stops when the magnitude of the difference
21173 between two successive results is less than or equal to the tolerance.
21174 (This implies that a tolerance of zero iterates until the results are
21175 exactly equal.)
21177 Putting it all together, @samp{fixp(<(# + A/#)/2>, B, 20, 1e-10)}
21178 computes the square root of @samp{A} given the initial guess @samp{B},
21179 stopping when the result is correct within the specified tolerance, or
21180 when 20 steps have been taken, whichever is sooner.
21182 @node Generalized Products, , Nesting and Fixed Points, Reducing and Mapping
21183 @subsection Generalized Products
21185 @kindex V O
21186 @pindex calc-outer-product
21187 @tindex outer
21188 The @kbd{V O} (@code{calc-outer-product}) [@code{outer}] command applies
21189 a given binary operator to all possible pairs of elements from two
21190 vectors, to produce a matrix.  For example, @kbd{V O *} with @samp{[a, b]}
21191 and @samp{[x, y, z]} on the stack produces a multiplication table:
21192 @samp{[[a x, a y, a z], [b x, b y, b z]]}.  Element @var{r},@var{c} of
21193 the result matrix is obtained by applying the operator to element @var{r}
21194 of the lefthand vector and element @var{c} of the righthand vector.
21196 @kindex V I
21197 @pindex calc-inner-product
21198 @tindex inner
21199 The @kbd{V I} (@code{calc-inner-product}) [@code{inner}] command computes
21200 the generalized inner product of two vectors or matrices, given a
21201 ``multiplicative'' operator and an ``additive'' operator.  These can each
21202 actually be any binary operators; if they are @samp{*} and @samp{+},
21203 respectively, the result is a standard matrix multiplication.  Element
21204 @var{r},@var{c} of the result matrix is obtained by mapping the
21205 multiplicative operator across row @var{r} of the lefthand matrix and
21206 column @var{c} of the righthand matrix, and then reducing with the additive
21207 operator.  Just as for the standard @kbd{*} command, this can also do a
21208 vector-matrix or matrix-vector inner product, or a vector-vector
21209 generalized dot product.
21211 Since @kbd{V I} requires two operators, it prompts twice.  In each case,
21212 you can use any of the usual methods for entering the operator.  If you
21213 use @kbd{$} twice to take both operator formulas from the stack, the
21214 first (multiplicative) operator is taken from the top of the stack
21215 and the second (additive) operator is taken from second-to-top.
21217 @node Vector and Matrix Formats, , Reducing and Mapping, Matrix Functions
21218 @section Vector and Matrix Display Formats
21220 @noindent
21221 Commands for controlling vector and matrix display use the @kbd{v} prefix
21222 instead of the usual @kbd{d} prefix.  But they are display modes; in
21223 particular, they are influenced by the @kbd{I} and @kbd{H} prefix keys
21224 in the same way (@pxref{Display Modes}).  Matrix display is also
21225 influenced by the @kbd{d O} (@code{calc-flat-language}) mode;
21226 @pxref{Normal Language Modes}.
21228 @kindex V <
21229 @pindex calc-matrix-left-justify
21230 @kindex V =
21231 @pindex calc-matrix-center-justify
21232 @kindex V >
21233 @pindex calc-matrix-right-justify
21234 The commands @kbd{v <} (@code{calc-matrix-left-justify}), @kbd{v >}
21235 (@code{calc-matrix-right-justify}), and @w{@kbd{v =}}
21236 (@code{calc-matrix-center-justify}) control whether matrix elements
21237 are justified to the left, right, or center of their columns.
21239 @kindex V [
21240 @pindex calc-vector-brackets
21241 @kindex V @{
21242 @pindex calc-vector-braces
21243 @kindex V (
21244 @pindex calc-vector-parens
21245 The @kbd{v [} (@code{calc-vector-brackets}) command turns the square
21246 brackets that surround vectors and matrices displayed in the stack on
21247 and off.  The @kbd{v @{} (@code{calc-vector-braces}) and @kbd{v (}
21248 (@code{calc-vector-parens}) commands use curly braces or parentheses,
21249 respectively, instead of square brackets.  For example, @kbd{v @{} might
21250 be used in preparation for yanking a matrix into a buffer running
21251 Mathematica.  (In fact, the Mathematica language mode uses this mode;
21252 @pxref{Mathematica Language Mode}.)  Note that, regardless of the
21253 display mode, either brackets or braces may be used to enter vectors,
21254 and parentheses may never be used for this purpose.
21256 @kindex V ]
21257 @pindex calc-matrix-brackets
21258 The @kbd{v ]} (@code{calc-matrix-brackets}) command controls the
21259 ``big'' style display of matrices.  It prompts for a string of code
21260 letters; currently implemented letters are @code{R}, which enables
21261 brackets on each row of the matrix; @code{O}, which enables outer
21262 brackets in opposite corners of the matrix; and @code{C}, which
21263 enables commas or semicolons at the ends of all rows but the last.
21264 The default format is @samp{RO}.  (Before Calc 2.00, the format
21265 was fixed at @samp{ROC}.)  Here are some example matrices:
21267 @example
21268 @group
21269 [ [ 123,  0,   0  ]       [ [ 123,  0,   0  ],
21270   [  0,  123,  0  ]         [  0,  123,  0  ],
21271   [  0,   0,  123 ] ]       [  0,   0,  123 ] ]
21273          RO                        ROC
21275 @end group
21276 @end example
21277 @noindent
21278 @example
21279 @group
21280   [ 123,  0,   0            [ 123,  0,   0 ;
21281      0,  123,  0               0,  123,  0 ;
21282      0,   0,  123 ]            0,   0,  123 ]
21284           O                        OC
21286 @end group
21287 @end example
21288 @noindent
21289 @example
21290 @group
21291   [ 123,  0,   0  ]           123,  0,   0
21292   [  0,  123,  0  ]            0,  123,  0
21293   [  0,   0,  123 ]            0,   0,  123
21295           R                       @r{blank}
21296 @end group
21297 @end example
21299 @noindent
21300 Note that of the formats shown here, @samp{RO}, @samp{ROC}, and
21301 @samp{OC} are all recognized as matrices during reading, while
21302 the others are useful for display only.
21304 @kindex V ,
21305 @pindex calc-vector-commas
21306 The @kbd{v ,} (@code{calc-vector-commas}) command turns commas on and
21307 off in vector and matrix display.
21309 In vectors of length one, and in all vectors when commas have been
21310 turned off, Calc adds extra parentheses around formulas that might
21311 otherwise be ambiguous.  For example, @samp{[a b]} could be a vector
21312 of the one formula @samp{a b}, or it could be a vector of two
21313 variables with commas turned off.  Calc will display the former
21314 case as @samp{[(a b)]}.  You can disable these extra parentheses
21315 (to make the output less cluttered at the expense of allowing some
21316 ambiguity) by adding the letter @code{P} to the control string you
21317 give to @kbd{v ]} (as described above).
21319 @kindex V .
21320 @pindex calc-full-vectors
21321 The @kbd{v .} (@code{calc-full-vectors}) command turns abbreviated
21322 display of long vectors on and off.  In this mode, vectors of six
21323 or more elements, or matrices of six or more rows or columns, will
21324 be displayed in an abbreviated form that displays only the first
21325 three elements and the last element:  @samp{[a, b, c, ..., z]}.
21326 When very large vectors are involved this will substantially
21327 improve Calc's display speed.
21329 @kindex t .
21330 @pindex calc-full-trail-vectors
21331 The @kbd{t .} (@code{calc-full-trail-vectors}) command controls a
21332 similar mode for recording vectors in the Trail.  If you turn on
21333 this mode, vectors of six or more elements and matrices of six or
21334 more rows or columns will be abbreviated when they are put in the
21335 Trail.  The @kbd{t y} (@code{calc-trail-yank}) command will be
21336 unable to recover those vectors.  If you are working with very
21337 large vectors, this mode will improve the speed of all operations
21338 that involve the trail.
21340 @kindex V /
21341 @pindex calc-break-vectors
21342 The @kbd{v /} (@code{calc-break-vectors}) command turns multi-line
21343 vector display on and off.  Normally, matrices are displayed with one
21344 row per line but all other types of vectors are displayed in a single
21345 line.  This mode causes all vectors, whether matrices or not, to be
21346 displayed with a single element per line.  Sub-vectors within the
21347 vectors will still use the normal linear form.
21349 @node Algebra, Units, Matrix Functions, Top
21350 @chapter Algebra
21352 @noindent
21353 This section covers the Calc features that help you work with
21354 algebraic formulas.  First, the general sub-formula selection
21355 mechanism is described; this works in conjunction with any Calc
21356 commands.  Then, commands for specific algebraic operations are
21357 described.  Finally, the flexible @dfn{rewrite rule} mechanism
21358 is discussed.
21360 The algebraic commands use the @kbd{a} key prefix; selection
21361 commands use the @kbd{j} (for ``just a letter that wasn't used
21362 for anything else'') prefix.
21364 @xref{Editing Stack Entries}, to see how to manipulate formulas
21365 using regular Emacs editing commands.
21367 When doing algebraic work, you may find several of the Calculator's
21368 modes to be helpful, including Algebraic Simplification mode (@kbd{m A})
21369 or No-Simplification mode (@kbd{m O}),
21370 Algebraic entry mode (@kbd{m a}), Fraction mode (@kbd{m f}), and
21371 Symbolic mode (@kbd{m s}).  @xref{Mode Settings}, for discussions
21372 of these modes.  You may also wish to select Big display mode (@kbd{d B}).
21373 @xref{Normal Language Modes}.
21375 @menu
21376 * Selecting Subformulas::
21377 * Algebraic Manipulation::
21378 * Simplifying Formulas::
21379 * Polynomials::
21380 * Calculus::
21381 * Solving Equations::
21382 * Numerical Solutions::
21383 * Curve Fitting::
21384 * Summations::
21385 * Logical Operations::
21386 * Rewrite Rules::
21387 @end menu
21389 @node Selecting Subformulas, Algebraic Manipulation, Algebra, Algebra
21390 @section Selecting Sub-Formulas
21392 @noindent
21393 @cindex Selections
21394 @cindex Sub-formulas
21395 @cindex Parts of formulas
21396 When working with an algebraic formula it is often necessary to
21397 manipulate a portion of the formula rather than the formula as a
21398 whole.  Calc allows you to ``select'' a portion of any formula on
21399 the stack.  Commands which would normally operate on that stack
21400 entry will now operate only on the sub-formula, leaving the
21401 surrounding part of the stack entry alone.
21403 One common non-algebraic use for selection involves vectors.  To work
21404 on one element of a vector in-place, simply select that element as a
21405 ``sub-formula'' of the vector.
21407 @menu
21408 * Making Selections::
21409 * Changing Selections::
21410 * Displaying Selections::
21411 * Operating on Selections::
21412 * Rearranging with Selections::
21413 @end menu
21415 @node Making Selections, Changing Selections, Selecting Subformulas, Selecting Subformulas
21416 @subsection Making Selections
21418 @noindent
21419 @kindex j s
21420 @pindex calc-select-here
21421 To select a sub-formula, move the Emacs cursor to any character in that
21422 sub-formula, and press @w{@kbd{j s}} (@code{calc-select-here}).  Calc will
21423 highlight the smallest portion of the formula that contains that
21424 character.  By default the sub-formula is highlighted by blanking out
21425 all of the rest of the formula with dots.  Selection works in any
21426 display mode but is perhaps easiest in Big mode (@kbd{d B}).
21427 Suppose you enter the following formula:
21429 @smallexample
21430 @group
21431            3    ___
21432     (a + b)  + V c
21433 1:  ---------------
21434         2 x + 1
21435 @end group
21436 @end smallexample
21438 @noindent
21439 (by typing @kbd{' ((a+b)^3 + sqrt(c)) / (2x+1)}).  If you move the
21440 cursor to the letter @samp{b} and press @w{@kbd{j s}}, the display changes
21443 @smallexample
21444 @group
21445            .    ...
21446     .. . b.  . . .
21447 1*  ...............
21448         . . . .
21449 @end group
21450 @end smallexample
21452 @noindent
21453 Every character not part of the sub-formula @samp{b} has been changed
21454 to a dot.  The @samp{*} next to the line number is to remind you that
21455 the formula has a portion of it selected.  (In this case, it's very
21456 obvious, but it might not always be.  If Embedded mode is enabled,
21457 the word @samp{Sel} also appears in the mode line because the stack
21458 may not be visible.  @pxref{Embedded Mode}.)
21460 If you had instead placed the cursor on the parenthesis immediately to
21461 the right of the @samp{b}, the selection would have been:
21463 @smallexample
21464 @group
21465            .    ...
21466     (a + b)  . . .
21467 1*  ...............
21468         . . . .
21469 @end group
21470 @end smallexample
21472 @noindent
21473 The portion selected is always large enough to be considered a complete
21474 formula all by itself, so selecting the parenthesis selects the whole
21475 formula that it encloses.  Putting the cursor on the @samp{+} sign
21476 would have had the same effect.
21478 (Strictly speaking, the Emacs cursor is really the manifestation of
21479 the Emacs ``point,'' which is a position @emph{between} two characters
21480 in the buffer.  So purists would say that Calc selects the smallest
21481 sub-formula which contains the character to the right of ``point.'')
21483 If you supply a numeric prefix argument @var{n}, the selection is
21484 expanded to the @var{n}th enclosing sub-formula.  Thus, positioning
21485 the cursor on the @samp{b} and typing @kbd{C-u 1 j s} will select
21486 @samp{a + b}; typing @kbd{C-u 2 j s} will select @samp{(a + b)^3},
21487 and so on.
21489 If the cursor is not on any part of the formula, or if you give a
21490 numeric prefix that is too large, the entire formula is selected.
21492 If the cursor is on the @samp{.} line that marks the top of the stack
21493 (i.e., its normal ``rest position''), this command selects the entire
21494 formula at stack level 1.  Most selection commands similarly operate
21495 on the formula at the top of the stack if you haven't positioned the
21496 cursor on any stack entry.
21498 @kindex j a
21499 @pindex calc-select-additional
21500 The @kbd{j a} (@code{calc-select-additional}) command enlarges the
21501 current selection to encompass the cursor.  To select the smallest
21502 sub-formula defined by two different points, move to the first and
21503 press @kbd{j s}, then move to the other and press @kbd{j a}.  This
21504 is roughly analogous to using @kbd{C-@@} (@code{set-mark-command}) to
21505 select the two ends of a region of text during normal Emacs editing.
21507 @kindex j o
21508 @pindex calc-select-once
21509 The @kbd{j o} (@code{calc-select-once}) command selects a formula in
21510 exactly the same way as @kbd{j s}, except that the selection will
21511 last only as long as the next command that uses it.  For example,
21512 @kbd{j o 1 +} is a handy way to add one to the sub-formula indicated
21513 by the cursor.
21515 (A somewhat more precise definition: The @kbd{j o} command sets a flag
21516 such that the next command involving selected stack entries will clear
21517 the selections on those stack entries afterwards.  All other selection
21518 commands except @kbd{j a} and @kbd{j O} clear this flag.)
21520 @kindex j S
21521 @kindex j O
21522 @pindex calc-select-here-maybe
21523 @pindex calc-select-once-maybe
21524 The @kbd{j S} (@code{calc-select-here-maybe}) and @kbd{j O}
21525 (@code{calc-select-once-maybe}) commands are equivalent to @kbd{j s}
21526 and @kbd{j o}, respectively, except that if the formula already
21527 has a selection they have no effect.  This is analogous to the
21528 behavior of some commands such as @kbd{j r} (@code{calc-rewrite-selection};
21529 @pxref{Selections with Rewrite Rules}) and is mainly intended to be
21530 used in keyboard macros that implement your own selection-oriented
21531 commands.
21533 Selection of sub-formulas normally treats associative terms like
21534 @samp{a + b - c + d} and @samp{x * y * z} as single levels of the formula.
21535 If you place the cursor anywhere inside @samp{a + b - c + d} except
21536 on one of the variable names and use @kbd{j s}, you will select the
21537 entire four-term sum.
21539 @kindex j b
21540 @pindex calc-break-selections
21541 The @kbd{j b} (@code{calc-break-selections}) command controls a mode
21542 in which the ``deep structure'' of these associative formulas shows
21543 through.  Calc actually stores the above formulas as @samp{((a + b) - c) + d}
21544 and @samp{x * (y * z)}.  (Note that for certain obscure reasons, Calc
21545 treats multiplication as right-associative.)  Once you have enabled
21546 @kbd{j b} mode, selecting with the cursor on the @samp{-} sign would
21547 only select the @samp{a + b - c} portion, which makes sense when the
21548 deep structure of the sum is considered.  There is no way to select
21549 the @samp{b - c + d} portion; although this might initially look
21550 like just as legitimate a sub-formula as @samp{a + b - c}, the deep
21551 structure shows that it isn't.  The @kbd{d U} command can be used
21552 to view the deep structure of any formula (@pxref{Normal Language Modes}).
21554 When @kbd{j b} mode has not been enabled, the deep structure is
21555 generally hidden by the selection commands---what you see is what
21556 you get.
21558 @kindex j u
21559 @pindex calc-unselect
21560 The @kbd{j u} (@code{calc-unselect}) command unselects the formula
21561 that the cursor is on.  If there was no selection in the formula,
21562 this command has no effect.  With a numeric prefix argument, it
21563 unselects the @var{n}th stack element rather than using the cursor
21564 position.
21566 @kindex j c
21567 @pindex calc-clear-selections
21568 The @kbd{j c} (@code{calc-clear-selections}) command unselects all
21569 stack elements.
21571 @node Changing Selections, Displaying Selections, Making Selections, Selecting Subformulas
21572 @subsection Changing Selections
21574 @noindent
21575 @kindex j m
21576 @pindex calc-select-more
21577 Once you have selected a sub-formula, you can expand it using the
21578 @w{@kbd{j m}} (@code{calc-select-more}) command.  If @samp{a + b} is
21579 selected, pressing @w{@kbd{j m}} repeatedly works as follows:
21581 @smallexample
21582 @group
21583            3    ...                3    ___                3    ___
21584     (a + b)  . . .          (a + b)  + V c          (a + b)  + V c
21585 1*  ...............     1*  ...............     1*  ---------------
21586         . . . .                 . . . .                 2 x + 1
21587 @end group
21588 @end smallexample
21590 @noindent
21591 In the last example, the entire formula is selected.  This is roughly
21592 the same as having no selection at all, but because there are subtle
21593 differences the @samp{*} character is still there on the line number.
21595 With a numeric prefix argument @var{n}, @kbd{j m} expands @var{n}
21596 times (or until the entire formula is selected).  Note that @kbd{j s}
21597 with argument @var{n} is equivalent to plain @kbd{j s} followed by
21598 @kbd{j m} with argument @var{n}.  If @w{@kbd{j m}} is used when there
21599 is no current selection, it is equivalent to @w{@kbd{j s}}.
21601 Even though @kbd{j m} does not explicitly use the location of the
21602 cursor within the formula, it nevertheless uses the cursor to determine
21603 which stack element to operate on.  As usual, @kbd{j m} when the cursor
21604 is not on any stack element operates on the top stack element.
21606 @kindex j l
21607 @pindex calc-select-less
21608 The @kbd{j l} (@code{calc-select-less}) command reduces the current
21609 selection around the cursor position.  That is, it selects the
21610 immediate sub-formula of the current selection which contains the
21611 cursor, the opposite of @kbd{j m}.  If the cursor is not inside the
21612 current selection, the command de-selects the formula.
21614 @kindex j 1-9
21615 @pindex calc-select-part
21616 The @kbd{j 1} through @kbd{j 9} (@code{calc-select-part}) commands
21617 select the @var{n}th sub-formula of the current selection.  They are
21618 like @kbd{j l} (@code{calc-select-less}) except they use counting
21619 rather than the cursor position to decide which sub-formula to select.
21620 For example, if the current selection is @kbd{a + b + c} or
21621 @kbd{f(a, b, c)} or @kbd{[a, b, c]}, then @kbd{j 1} selects @samp{a},
21622 @kbd{j 2} selects @samp{b}, and @kbd{j 3} selects @samp{c}; in each of
21623 these cases, @kbd{j 4} through @kbd{j 9} would be errors.
21625 If there is no current selection, @kbd{j 1} through @kbd{j 9} select
21626 the @var{n}th top-level sub-formula.  (In other words, they act as if
21627 the entire stack entry were selected first.)  To select the @var{n}th
21628 sub-formula where @var{n} is greater than nine, you must instead invoke
21629 @w{@kbd{j 1}} with @var{n} as a numeric prefix argument.
21631 @kindex j n
21632 @kindex j p
21633 @pindex calc-select-next
21634 @pindex calc-select-previous
21635 The @kbd{j n} (@code{calc-select-next}) and @kbd{j p}
21636 (@code{calc-select-previous}) commands change the current selection
21637 to the next or previous sub-formula at the same level.  For example,
21638 if @samp{b} is selected in @w{@samp{2 + a*b*c + x}}, then @kbd{j n}
21639 selects @samp{c}.  Further @kbd{j n} commands would be in error because,
21640 even though there is something to the right of @samp{c} (namely, @samp{x}),
21641 it is not at the same level; in this case, it is not a term of the
21642 same product as @samp{b} and @samp{c}.  However, @kbd{j m} (to select
21643 the whole product @samp{a*b*c} as a term of the sum) followed by
21644 @w{@kbd{j n}} would successfully select the @samp{x}.
21646 Similarly, @kbd{j p} moves the selection from the @samp{b} in this
21647 sample formula to the @samp{a}.  Both commands accept numeric prefix
21648 arguments to move several steps at a time.
21650 It is interesting to compare Calc's selection commands with the
21651 Emacs Info system's commands for navigating through hierarchically
21652 organized documentation.  Calc's @kbd{j n} command is completely
21653 analogous to Info's @kbd{n} command.  Likewise, @kbd{j p} maps to
21654 @kbd{p}, @kbd{j 2} maps to @kbd{2}, and Info's @kbd{u} is like @kbd{j m}.
21655 (Note that @kbd{j u} stands for @code{calc-unselect}, not ``up''.)
21656 The Info @kbd{m} command is somewhat similar to Calc's @kbd{j s} and
21657 @kbd{j l}; in each case, you can jump directly to a sub-component
21658 of the hierarchy simply by pointing to it with the cursor.
21660 @node Displaying Selections, Operating on Selections, Changing Selections, Selecting Subformulas
21661 @subsection Displaying Selections
21663 @noindent
21664 @kindex j d
21665 @pindex calc-show-selections
21666 The @kbd{j d} (@code{calc-show-selections}) command controls how
21667 selected sub-formulas are displayed.  One of the alternatives is
21668 illustrated in the above examples; if we press @kbd{j d} we switch
21669 to the other style in which the selected portion itself is obscured
21670 by @samp{#} signs:
21672 @smallexample
21673 @group
21674            3    ...                  #    ___
21675     (a + b)  . . .            ## # ##  + V c
21676 1*  ...............       1*  ---------------
21677         . . . .                   2 x + 1
21678 @end group
21679 @end smallexample
21681 @node Operating on Selections, Rearranging with Selections, Displaying Selections, Selecting Subformulas
21682 @subsection Operating on Selections
21684 @noindent
21685 Once a selection is made, all Calc commands that manipulate items
21686 on the stack will operate on the selected portions of the items
21687 instead.  (Note that several stack elements may have selections
21688 at once, though there can be only one selection at a time in any
21689 given stack element.)
21691 @kindex j e
21692 @pindex calc-enable-selections
21693 The @kbd{j e} (@code{calc-enable-selections}) command disables the
21694 effect that selections have on Calc commands.  The current selections
21695 still exist, but Calc commands operate on whole stack elements anyway.
21696 This mode can be identified by the fact that the @samp{*} markers on
21697 the line numbers are gone, even though selections are visible.  To
21698 reactivate the selections, press @kbd{j e} again.
21700 To extract a sub-formula as a new formula, simply select the
21701 sub-formula and press @key{RET}.  This normally duplicates the top
21702 stack element; here it duplicates only the selected portion of that
21703 element.
21705 To replace a sub-formula with something different, you can enter the
21706 new value onto the stack and press @key{TAB}.  This normally exchanges
21707 the top two stack elements; here it swaps the value you entered into
21708 the selected portion of the formula, returning the old selected
21709 portion to the top of the stack.
21711 @smallexample
21712 @group
21713            3    ...                    ...                    ___
21714     (a + b)  . . .           17 x y . . .           17 x y + V c
21715 2*  ...............      2*  .............      2:  -------------
21716         . . . .                 . . . .                2 x + 1
21718                                     3                      3
21719 1:  17 x y               1:  (a + b)            1:  (a + b)
21720 @end group
21721 @end smallexample
21723 In this example we select a sub-formula of our original example,
21724 enter a new formula, @key{TAB} it into place, then deselect to see
21725 the complete, edited formula.
21727 If you want to swap whole formulas around even though they contain
21728 selections, just use @kbd{j e} before and after.
21730 @kindex j '
21731 @pindex calc-enter-selection
21732 The @kbd{j '} (@code{calc-enter-selection}) command is another way
21733 to replace a selected sub-formula.  This command does an algebraic
21734 entry just like the regular @kbd{'} key.  When you press @key{RET},
21735 the formula you type replaces the original selection.  You can use
21736 the @samp{$} symbol in the formula to refer to the original
21737 selection.  If there is no selection in the formula under the cursor,
21738 the cursor is used to make a temporary selection for the purposes of
21739 the command.  Thus, to change a term of a formula, all you have to
21740 do is move the Emacs cursor to that term and press @kbd{j '}.
21742 @kindex j `
21743 @pindex calc-edit-selection
21744 The @kbd{j `} (@code{calc-edit-selection}) command is a similar
21745 analogue of the @kbd{`} (@code{calc-edit}) command.  It edits the
21746 selected sub-formula in a separate buffer.  If there is no
21747 selection, it edits the sub-formula indicated by the cursor.
21749 To delete a sub-formula, press @key{DEL}.  This generally replaces
21750 the sub-formula with the constant zero, but in a few suitable contexts
21751 it uses the constant one instead.  The @key{DEL} key automatically
21752 deselects and re-simplifies the entire formula afterwards.  Thus:
21754 @smallexample
21755 @group
21756               ###
21757     17 x y + # #          17 x y         17 # y          17 y
21758 1*  -------------     1:  -------    1*  -------    1:  -------
21759        2 x + 1            2 x + 1        2 x + 1        2 x + 1
21760 @end group
21761 @end smallexample
21763 In this example, we first delete the @samp{sqrt(c)} term; Calc
21764 accomplishes this by replacing @samp{sqrt(c)} with zero and
21765 resimplifying.  We then delete the @kbd{x} in the numerator;
21766 since this is part of a product, Calc replaces it with @samp{1}
21767 and resimplifies.
21769 If you select an element of a vector and press @key{DEL}, that
21770 element is deleted from the vector.  If you delete one side of
21771 an equation or inequality, only the opposite side remains.
21773 @kindex j @key{DEL}
21774 @pindex calc-del-selection
21775 The @kbd{j @key{DEL}} (@code{calc-del-selection}) command is like
21776 @key{DEL} but with the auto-selecting behavior of @kbd{j '} and
21777 @kbd{j `}.  It deletes the selected portion of the formula
21778 indicated by the cursor, or, in the absence of a selection, it
21779 deletes the sub-formula indicated by the cursor position.
21781 @kindex j @key{RET}
21782 @pindex calc-grab-selection
21783 (There is also an auto-selecting @kbd{j @key{RET}} (@code{calc-copy-selection})
21784 command.)
21786 Normal arithmetic operations also apply to sub-formulas.  Here we
21787 select the denominator, press @kbd{5 -} to subtract five from the
21788 denominator, press @kbd{n} to negate the denominator, then
21789 press @kbd{Q} to take the square root.
21791 @smallexample
21792 @group
21793      .. .           .. .           .. .             .. .
21794 1*  .......    1*  .......    1*  .......    1*  ..........
21795     2 x + 1        2 x - 4        4 - 2 x         _________
21796                                                  V 4 - 2 x
21797 @end group
21798 @end smallexample
21800 Certain types of operations on selections are not allowed.  For
21801 example, for an arithmetic function like @kbd{-} no more than one of
21802 the arguments may be a selected sub-formula.  (As the above example
21803 shows, the result of the subtraction is spliced back into the argument
21804 which had the selection; if there were more than one selection involved,
21805 this would not be well-defined.)  If you try to subtract two selections,
21806 the command will abort with an error message.
21808 Operations on sub-formulas sometimes leave the formula as a whole
21809 in an ``un-natural'' state.  Consider negating the @samp{2 x} term
21810 of our sample formula by selecting it and pressing @kbd{n}
21811 (@code{calc-change-sign}).
21813 @smallexample
21814 @group
21815        .. .                .. .
21816 1*  ..........      1*  ...........
21817      .........           ..........
21818     . . . 2 x           . . . -2 x
21819 @end group
21820 @end smallexample
21822 Unselecting the sub-formula reveals that the minus sign, which would
21823 normally have cancelled out with the subtraction automatically, has
21824 not been able to do so because the subtraction was not part of the
21825 selected portion.  Pressing @kbd{=} (@code{calc-evaluate}) or doing
21826 any other mathematical operation on the whole formula will cause it
21827 to be simplified.
21829 @smallexample
21830 @group
21831        17 y                17 y
21832 1:  -----------     1:  ----------
21833      __________          _________
21834     V 4 - -2 x          V 4 + 2 x
21835 @end group
21836 @end smallexample
21838 @node Rearranging with Selections, , Operating on Selections, Selecting Subformulas
21839 @subsection Rearranging Formulas using Selections
21841 @noindent
21842 @kindex j R
21843 @pindex calc-commute-right
21844 The @kbd{j R} (@code{calc-commute-right}) command moves the selected
21845 sub-formula to the right in its surrounding formula.  Generally the
21846 selection is one term of a sum or product; the sum or product is
21847 rearranged according to the commutative laws of algebra.
21849 As with @kbd{j '} and @kbd{j @key{DEL}}, the term under the cursor is used
21850 if there is no selection in the current formula.  All commands described
21851 in this section share this property.  In this example, we place the
21852 cursor on the @samp{a} and type @kbd{j R}, then repeat.
21854 @smallexample
21855 1:  a + b - c          1:  b + a - c          1:  b - c + a
21856 @end smallexample
21858 @noindent
21859 Note that in the final step above, the @samp{a} is switched with
21860 the @samp{c} but the signs are adjusted accordingly.  When moving
21861 terms of sums and products, @kbd{j R} will never change the
21862 mathematical meaning of the formula.
21864 The selected term may also be an element of a vector or an argument
21865 of a function.  The term is exchanged with the one to its right.
21866 In this case, the ``meaning'' of the vector or function may of
21867 course be drastically changed.
21869 @smallexample
21870 1:  [a, b, c]          1:  [b, a, c]          1:  [b, c, a]
21872 1:  f(a, b, c)         1:  f(b, a, c)         1:  f(b, c, a)
21873 @end smallexample
21875 @kindex j L
21876 @pindex calc-commute-left
21877 The @kbd{j L} (@code{calc-commute-left}) command is like @kbd{j R}
21878 except that it swaps the selected term with the one to its left.
21880 With numeric prefix arguments, these commands move the selected
21881 term several steps at a time.  It is an error to try to move a
21882 term left or right past the end of its enclosing formula.
21883 With numeric prefix arguments of zero, these commands move the
21884 selected term as far as possible in the given direction.
21886 @kindex j D
21887 @pindex calc-sel-distribute
21888 The @kbd{j D} (@code{calc-sel-distribute}) command mixes the selected
21889 sum or product into the surrounding formula using the distributive
21890 law.  For example, in @samp{a * (b - c)} with the @samp{b - c}
21891 selected, the result is @samp{a b - a c}.  This also distributes
21892 products or quotients into surrounding powers, and can also do
21893 transformations like @samp{exp(a + b)} to @samp{exp(a) exp(b)},
21894 where @samp{a + b} is the selected term, and @samp{ln(a ^ b)}
21895 to @samp{ln(a) b}, where @samp{a ^ b} is the selected term.
21897 For multiple-term sums or products, @kbd{j D} takes off one term
21898 at a time:  @samp{a * (b + c - d)} goes to @samp{a * (c - d) + a b}
21899 with the @samp{c - d} selected so that you can type @kbd{j D}
21900 repeatedly to expand completely.  The @kbd{j D} command allows a
21901 numeric prefix argument which specifies the maximum number of
21902 times to expand at once; the default is one time only.
21904 @vindex DistribRules
21905 The @kbd{j D} command is implemented using rewrite rules.
21906 @xref{Selections with Rewrite Rules}.  The rules are stored in
21907 the Calc variable @code{DistribRules}.  A convenient way to view
21908 these rules is to use @kbd{s e} (@code{calc-edit-variable}) which
21909 displays and edits the stored value of a variable.  Press @kbd{C-c C-c}
21910 to return from editing mode; be careful not to make any actual changes
21911 or else you will affect the behavior of future @kbd{j D} commands!
21913 To extend @kbd{j D} to handle new cases, just edit @code{DistribRules}
21914 as described above.  You can then use the @kbd{s p} command to save
21915 this variable's value permanently for future Calc sessions.
21916 @xref{Operations on Variables}.
21918 @kindex j M
21919 @pindex calc-sel-merge
21920 @vindex MergeRules
21921 The @kbd{j M} (@code{calc-sel-merge}) command is the complement
21922 of @kbd{j D}; given @samp{a b - a c} with either @samp{a b} or
21923 @samp{a c} selected, the result is @samp{a * (b - c)}.  Once
21924 again, @kbd{j M} can also merge calls to functions like @code{exp}
21925 and @code{ln}; examine the variable @code{MergeRules} to see all
21926 the relevant rules.
21928 @kindex j C
21929 @pindex calc-sel-commute
21930 @vindex CommuteRules
21931 The @kbd{j C} (@code{calc-sel-commute}) command swaps the arguments
21932 of the selected sum, product, or equation.  It always behaves as
21933 if @kbd{j b} mode were in effect, i.e., the sum @samp{a + b + c} is
21934 treated as the nested sums @samp{(a + b) + c} by this command.
21935 If you put the cursor on the first @samp{+}, the result is
21936 @samp{(b + a) + c}; if you put the cursor on the second @samp{+}, the
21937 result is @samp{c + (a + b)} (which the default simplifications
21938 will rearrange to @samp{(c + a) + b}).  The relevant rules are stored
21939 in the variable @code{CommuteRules}.
21941 You may need to turn default simplifications off (with the @kbd{m O}
21942 command) in order to get the full benefit of @kbd{j C}.  For example,
21943 commuting @samp{a - b} produces @samp{-b + a}, but the default
21944 simplifications will ``simplify'' this right back to @samp{a - b} if
21945 you don't turn them off.  The same is true of some of the other
21946 manipulations described in this section.
21948 @kindex j N
21949 @pindex calc-sel-negate
21950 @vindex NegateRules
21951 The @kbd{j N} (@code{calc-sel-negate}) command replaces the selected
21952 term with the negative of that term, then adjusts the surrounding
21953 formula in order to preserve the meaning.  For example, given
21954 @samp{exp(a - b)} where @samp{a - b} is selected, the result is
21955 @samp{1 / exp(b - a)}.  By contrast, selecting a term and using the
21956 regular @kbd{n} (@code{calc-change-sign}) command negates the
21957 term without adjusting the surroundings, thus changing the meaning
21958 of the formula as a whole.  The rules variable is @code{NegateRules}.
21960 @kindex j &
21961 @pindex calc-sel-invert
21962 @vindex InvertRules
21963 The @kbd{j &} (@code{calc-sel-invert}) command is similar to @kbd{j N}
21964 except it takes the reciprocal of the selected term.  For example,
21965 given @samp{a - ln(b)} with @samp{b} selected, the result is
21966 @samp{a + ln(1/b)}.  The rules variable is @code{InvertRules}.
21968 @kindex j E
21969 @pindex calc-sel-jump-equals
21970 @vindex JumpRules
21971 The @kbd{j E} (@code{calc-sel-jump-equals}) command moves the
21972 selected term from one side of an equation to the other.  Given
21973 @samp{a + b = c + d} with @samp{c} selected, the result is
21974 @samp{a + b - c = d}.  This command also works if the selected
21975 term is part of a @samp{*}, @samp{/}, or @samp{^} formula.  The
21976 relevant rules variable is @code{JumpRules}.
21978 @kindex j I
21979 @kindex H j I
21980 @pindex calc-sel-isolate
21981 The @kbd{j I} (@code{calc-sel-isolate}) command isolates the
21982 selected term on its side of an equation.  It uses the @kbd{a S}
21983 (@code{calc-solve-for}) command to solve the equation, and the
21984 Hyperbolic flag affects it in the same way.  @xref{Solving Equations}.
21985 When it applies, @kbd{j I} is often easier to use than @kbd{j E}.
21986 It understands more rules of algebra, and works for inequalities
21987 as well as equations.
21989 @kindex j *
21990 @kindex j /
21991 @pindex calc-sel-mult-both-sides
21992 @pindex calc-sel-div-both-sides
21993 The @kbd{j *} (@code{calc-sel-mult-both-sides}) command prompts for a
21994 formula using algebraic entry, then multiplies both sides of the
21995 selected quotient or equation by that formula.  It simplifies each
21996 side with @kbd{a s} (@code{calc-simplify}) before re-forming the
21997 quotient or equation.  You can suppress this simplification by
21998 providing any numeric prefix argument.  There is also a @kbd{j /}
21999 (@code{calc-sel-div-both-sides}) which is similar to @kbd{j *} but
22000 dividing instead of multiplying by the factor you enter.
22002 As a special feature, if the numerator of the quotient is 1, then
22003 the denominator is expanded at the top level using the distributive
22004 law (i.e., using the @kbd{C-u -1 a x} command).  Suppose the
22005 formula on the stack is @samp{1 / (sqrt(a) + 1)}, and you wish
22006 to eliminate the square root in the denominator by multiplying both
22007 sides by @samp{sqrt(a) - 1}.  Calc's default simplifications would
22008 change the result @samp{(sqrt(a) - 1) / (sqrt(a) - 1) (sqrt(a) + 1)}
22009 right back to the original form by cancellation; Calc expands the
22010 denominator to @samp{sqrt(a) (sqrt(a) - 1) + sqrt(a) - 1} to prevent
22011 this.  (You would now want to use an @kbd{a x} command to expand
22012 the rest of the way, whereupon the denominator would cancel out to
22013 the desired form, @samp{a - 1}.)  When the numerator is not 1, this
22014 initial expansion is not necessary because Calc's default
22015 simplifications will not notice the potential cancellation.
22017 If the selection is an inequality, @kbd{j *} and @kbd{j /} will
22018 accept any factor, but will warn unless they can prove the factor
22019 is either positive or negative.  (In the latter case the direction
22020 of the inequality will be switched appropriately.)  @xref{Declarations},
22021 for ways to inform Calc that a given variable is positive or
22022 negative.  If Calc can't tell for sure what the sign of the factor
22023 will be, it will assume it is positive and display a warning
22024 message.
22026 For selections that are not quotients, equations, or inequalities,
22027 these commands pull out a multiplicative factor:  They divide (or
22028 multiply) by the entered formula, simplify, then multiply (or divide)
22029 back by the formula.
22031 @kindex j +
22032 @kindex j -
22033 @pindex calc-sel-add-both-sides
22034 @pindex calc-sel-sub-both-sides
22035 The @kbd{j +} (@code{calc-sel-add-both-sides}) and @kbd{j -}
22036 (@code{calc-sel-sub-both-sides}) commands analogously add to or
22037 subtract from both sides of an equation or inequality.  For other
22038 types of selections, they extract an additive factor.  A numeric
22039 prefix argument suppresses simplification of the intermediate
22040 results.
22042 @kindex j U
22043 @pindex calc-sel-unpack
22044 The @kbd{j U} (@code{calc-sel-unpack}) command replaces the
22045 selected function call with its argument.  For example, given
22046 @samp{a + sin(x^2)} with @samp{sin(x^2)} selected, the result
22047 is @samp{a + x^2}.  (The @samp{x^2} will remain selected; if you
22048 wanted to change the @code{sin} to @code{cos}, just press @kbd{C}
22049 now to take the cosine of the selected part.)
22051 @kindex j v
22052 @pindex calc-sel-evaluate
22053 The @kbd{j v} (@code{calc-sel-evaluate}) command performs the
22054 normal default simplifications on the selected sub-formula.
22055 These are the simplifications that are normally done automatically
22056 on all results, but which may have been partially inhibited by
22057 previous selection-related operations, or turned off altogether
22058 by the @kbd{m O} command.  This command is just an auto-selecting
22059 version of the @w{@kbd{a v}} command (@pxref{Algebraic Manipulation}).
22061 With a numeric prefix argument of 2, @kbd{C-u 2 j v} applies
22062 the @kbd{a s} (@code{calc-simplify}) command to the selected
22063 sub-formula.  With a prefix argument of 3 or more, e.g., @kbd{C-u j v}
22064 applies the @kbd{a e} (@code{calc-simplify-extended}) command.
22065 @xref{Simplifying Formulas}.  With a negative prefix argument
22066 it simplifies at the top level only, just as with @kbd{a v}.
22067 Here the ``top'' level refers to the top level of the selected
22068 sub-formula.
22070 @kindex j "
22071 @pindex calc-sel-expand-formula
22072 The @kbd{j "} (@code{calc-sel-expand-formula}) command is to @kbd{a "}
22073 (@pxref{Algebraic Manipulation}) what @kbd{j v} is to @kbd{a v}.
22075 You can use the @kbd{j r} (@code{calc-rewrite-selection}) command
22076 to define other algebraic operations on sub-formulas.  @xref{Rewrite Rules}.
22078 @node Algebraic Manipulation, Simplifying Formulas, Selecting Subformulas, Algebra
22079 @section Algebraic Manipulation
22081 @noindent
22082 The commands in this section perform general-purpose algebraic
22083 manipulations.  They work on the whole formula at the top of the
22084 stack (unless, of course, you have made a selection in that
22085 formula).
22087 Many algebra commands prompt for a variable name or formula.  If you
22088 answer the prompt with a blank line, the variable or formula is taken
22089 from top-of-stack, and the normal argument for the command is taken
22090 from the second-to-top stack level.
22092 @kindex a v
22093 @pindex calc-alg-evaluate
22094 The @kbd{a v} (@code{calc-alg-evaluate}) command performs the normal
22095 default simplifications on a formula; for example, @samp{a - -b} is
22096 changed to @samp{a + b}.  These simplifications are normally done
22097 automatically on all Calc results, so this command is useful only if
22098 you have turned default simplifications off with an @kbd{m O}
22099 command.  @xref{Simplification Modes}.
22101 It is often more convenient to type @kbd{=}, which is like @kbd{a v}
22102 but which also substitutes stored values for variables in the formula.
22103 Use @kbd{a v} if you want the variables to ignore their stored values.
22105 If you give a numeric prefix argument of 2 to @kbd{a v}, it simplifies
22106 as if in Algebraic Simplification mode.  This is equivalent to typing
22107 @kbd{a s}; @pxref{Simplifying Formulas}.  If you give a numeric prefix
22108 of 3 or more, it uses Extended Simplification mode (@kbd{a e}).
22110 If you give a negative prefix argument @mathit{-1}, @mathit{-2}, or @mathit{-3},
22111 it simplifies in the corresponding mode but only works on the top-level
22112 function call of the formula.  For example, @samp{(2 + 3) * (2 + 3)} will
22113 simplify to @samp{(2 + 3)^2}, without simplifying the sub-formulas
22114 @samp{2 + 3}.  As another example, typing @kbd{V R +} to sum the vector
22115 @samp{[1, 2, 3, 4]} produces the formula @samp{reduce(add, [1, 2, 3, 4])}
22116 in No-Simplify mode.  Using @kbd{a v} will evaluate this all the way to
22117 10; using @kbd{C-u - a v} will evaluate it only to @samp{1 + 2 + 3 + 4}.
22118 (@xref{Reducing and Mapping}.)
22120 @tindex evalv
22121 @tindex evalvn
22122 The @kbd{=} command corresponds to the @code{evalv} function, and
22123 the related @kbd{N} command, which is like @kbd{=} but temporarily
22124 disables Symbolic mode (@kbd{m s}) during the evaluation, corresponds
22125 to the @code{evalvn} function.  (These commands interpret their prefix
22126 arguments differently than @kbd{a v}; @kbd{=} treats the prefix as
22127 the number of stack elements to evaluate at once, and @kbd{N} treats
22128 it as a temporary different working precision.)
22130 The @code{evalvn} function can take an alternate working precision
22131 as an optional second argument.  This argument can be either an
22132 integer, to set the precision absolutely, or a vector containing
22133 a single integer, to adjust the precision relative to the current
22134 precision.  Note that @code{evalvn} with a larger than current
22135 precision will do the calculation at this higher precision, but the
22136 result will as usual be rounded back down to the current precision
22137 afterward.  For example, @samp{evalvn(pi - 3.1415)} at a precision
22138 of 12 will return @samp{9.265359e-5}; @samp{evalvn(pi - 3.1415, 30)}
22139 will return @samp{9.26535897932e-5} (computing a 25-digit result which
22140 is then rounded down to 12); and @samp{evalvn(pi - 3.1415, [-2])}
22141 will return @samp{9.2654e-5}.
22143 @kindex a "
22144 @pindex calc-expand-formula
22145 The @kbd{a "} (@code{calc-expand-formula}) command expands functions
22146 into their defining formulas wherever possible.  For example,
22147 @samp{deg(x^2)} is changed to @samp{180 x^2 / pi}.  Most functions,
22148 like @code{sin} and @code{gcd}, are not defined by simple formulas
22149 and so are unaffected by this command.  One important class of
22150 functions which @emph{can} be expanded is the user-defined functions
22151 created by the @kbd{Z F} command.  @xref{Algebraic Definitions}.
22152 Other functions which @kbd{a "} can expand include the probability
22153 distribution functions, most of the financial functions, and the
22154 hyperbolic and inverse hyperbolic functions.  A numeric prefix argument
22155 affects @kbd{a "} in the same way as it does @kbd{a v}:  A positive
22156 argument expands all functions in the formula and then simplifies in
22157 various ways; a negative argument expands and simplifies only the
22158 top-level function call.
22160 @kindex a M
22161 @pindex calc-map-equation
22162 @tindex mapeq
22163 The @kbd{a M} (@code{calc-map-equation}) [@code{mapeq}] command applies
22164 a given function or operator to one or more equations.  It is analogous
22165 to @kbd{V M}, which operates on vectors instead of equations.
22166 @pxref{Reducing and Mapping}.  For example, @kbd{a M S} changes
22167 @samp{x = y+1} to @samp{sin(x) = sin(y+1)}, and @kbd{a M +} with
22168 @samp{x = y+1} and @expr{6} on the stack produces @samp{x+6 = y+7}.
22169 With two equations on the stack, @kbd{a M +} would add the lefthand
22170 sides together and the righthand sides together to get the two
22171 respective sides of a new equation.
22173 Mapping also works on inequalities.  Mapping two similar inequalities
22174 produces another inequality of the same type.  Mapping an inequality
22175 with an equation produces an inequality of the same type.  Mapping a
22176 @samp{<=} with a @samp{<} or @samp{!=} (not-equal) produces a @samp{<}.
22177 If inequalities with opposite direction (e.g., @samp{<} and @samp{>})
22178 are mapped, the direction of the second inequality is reversed to
22179 match the first:  Using @kbd{a M +} on @samp{a < b} and @samp{a > 2}
22180 reverses the latter to get @samp{2 < a}, which then allows the
22181 combination @samp{a + 2 < b + a}, which the @kbd{a s} command can
22182 then simplify to get @samp{2 < b}.
22184 Using @kbd{a M *}, @kbd{a M /}, @kbd{a M n}, or @kbd{a M &} to negate
22185 or invert an inequality will reverse the direction of the inequality.
22186 Other adjustments to inequalities are @emph{not} done automatically;
22187 @kbd{a M S} will change @w{@samp{x < y}} to @samp{sin(x) < sin(y)} even
22188 though this is not true for all values of the variables.
22190 @kindex H a M
22191 @tindex mapeqp
22192 With the Hyperbolic flag, @kbd{H a M} [@code{mapeqp}] does a plain
22193 mapping operation without reversing the direction of any inequalities.
22194 Thus, @kbd{H a M &} would change @kbd{x > 2} to @kbd{1/x > 0.5}.
22195 (This change is mathematically incorrect, but perhaps you were
22196 fixing an inequality which was already incorrect.)
22198 @kindex I a M
22199 @tindex mapeqr
22200 With the Inverse flag, @kbd{I a M} [@code{mapeqr}] always reverses
22201 the direction of the inequality.  You might use @kbd{I a M C} to
22202 change @samp{x < y} to @samp{cos(x) > cos(y)} if you know you are
22203 working with small positive angles.
22205 @kindex a b
22206 @pindex calc-substitute
22207 @tindex subst
22208 The @kbd{a b} (@code{calc-substitute}) [@code{subst}] command substitutes
22209 all occurrences
22210 of some variable or sub-expression of an expression with a new
22211 sub-expression.  For example, substituting @samp{sin(x)} with @samp{cos(y)}
22212 in @samp{2 sin(x)^2 + x sin(x) + sin(2 x)} produces
22213 @samp{2 cos(y)^2 + x cos(y) + @w{sin(2 x)}}.
22214 Note that this is a purely structural substitution; the lone @samp{x} and
22215 the @samp{sin(2 x)} stayed the same because they did not look like
22216 @samp{sin(x)}.  @xref{Rewrite Rules}, for a more general method for
22217 doing substitutions.
22219 The @kbd{a b} command normally prompts for two formulas, the old
22220 one and the new one.  If you enter a blank line for the first
22221 prompt, all three arguments are taken from the stack (new, then old,
22222 then target expression).  If you type an old formula but then enter a
22223 blank line for the new one, the new formula is taken from top-of-stack
22224 and the target from second-to-top.  If you answer both prompts, the
22225 target is taken from top-of-stack as usual.
22227 Note that @kbd{a b} has no understanding of commutativity or
22228 associativity.  The pattern @samp{x+y} will not match the formula
22229 @samp{y+x}.  Also, @samp{y+z} will not match inside the formula @samp{x+y+z}
22230 because the @samp{+} operator is left-associative, so the ``deep
22231 structure'' of that formula is @samp{(x+y) + z}.  Use @kbd{d U}
22232 (@code{calc-unformatted-language}) mode to see the true structure of
22233 a formula.  The rewrite rule mechanism, discussed later, does not have
22234 these limitations.
22236 As an algebraic function, @code{subst} takes three arguments:
22237 Target expression, old, new.  Note that @code{subst} is always
22238 evaluated immediately, even if its arguments are variables, so if
22239 you wish to put a call to @code{subst} onto the stack you must
22240 turn the default simplifications off first (with @kbd{m O}).
22242 @node Simplifying Formulas, Polynomials, Algebraic Manipulation, Algebra
22243 @section Simplifying Formulas
22245 @noindent
22246 @kindex a s
22247 @pindex calc-simplify
22248 @tindex simplify
22249 The @kbd{a s} (@code{calc-simplify}) [@code{simplify}] command applies
22250 various algebraic rules to simplify a formula.  This includes rules which
22251 are not part of the default simplifications because they may be too slow
22252 to apply all the time, or may not be desirable all of the time.  For
22253 example, non-adjacent terms of sums are combined, as in @samp{a + b + 2 a}
22254 to @samp{b + 3 a}, and some formulas like @samp{sin(arcsin(x))} are
22255 simplified to @samp{x}.
22257 The sections below describe all the various kinds of algebraic
22258 simplifications Calc provides in full detail.  None of Calc's
22259 simplification commands are designed to pull rabbits out of hats;
22260 they simply apply certain specific rules to put formulas into
22261 less redundant or more pleasing forms.  Serious algebra in Calc
22262 must be done manually, usually with a combination of selections
22263 and rewrite rules.  @xref{Rearranging with Selections}.
22264 @xref{Rewrite Rules}.
22266 @xref{Simplification Modes}, for commands to control what level of
22267 simplification occurs automatically.  Normally only the ``default
22268 simplifications'' occur.
22270 @menu
22271 * Default Simplifications::
22272 * Algebraic Simplifications::
22273 * Unsafe Simplifications::
22274 * Simplification of Units::
22275 @end menu
22277 @node Default Simplifications, Algebraic Simplifications, Simplifying Formulas, Simplifying Formulas
22278 @subsection Default Simplifications
22280 @noindent
22281 @cindex Default simplifications
22282 This section describes the ``default simplifications,'' those which are
22283 normally applied to all results.  For example, if you enter the variable
22284 @expr{x} on the stack twice and push @kbd{+}, Calc's default
22285 simplifications automatically change @expr{x + x} to @expr{2 x}.
22287 The @kbd{m O} command turns off the default simplifications, so that
22288 @expr{x + x} will remain in this form unless you give an explicit
22289 ``simplify'' command like @kbd{=} or @kbd{a v}.  @xref{Algebraic
22290 Manipulation}.  The @kbd{m D} command turns the default simplifications
22291 back on.
22293 The most basic default simplification is the evaluation of functions.
22294 For example, @expr{2 + 3} is evaluated to @expr{5}, and @expr{@tfn{sqrt}(9)}
22295 is evaluated to @expr{3}.  Evaluation does not occur if the arguments
22296 to a function are somehow of the wrong type @expr{@tfn{tan}([2,3,4])}),
22297 range (@expr{@tfn{tan}(90)}), or number (@expr{@tfn{tan}(3,5)}), 
22298 or if the function name is not recognized (@expr{@tfn{f}(5)}), or if
22299 Symbolic mode (@pxref{Symbolic Mode}) prevents evaluation
22300 (@expr{@tfn{sqrt}(2)}).
22302 Calc simplifies (evaluates) the arguments to a function before it
22303 simplifies the function itself.  Thus @expr{@tfn{sqrt}(5+4)} is
22304 simplified to @expr{@tfn{sqrt}(9)} before the @code{sqrt} function
22305 itself is applied.  There are very few exceptions to this rule:
22306 @code{quote}, @code{lambda}, and @code{condition} (the @code{::}
22307 operator) do not evaluate their arguments, @code{if} (the @code{? :}
22308 operator) does not evaluate all of its arguments, and @code{evalto}
22309 does not evaluate its lefthand argument.
22311 Most commands apply the default simplifications to all arguments they
22312 take from the stack, perform a particular operation, then simplify
22313 the result before pushing it back on the stack.  In the common special
22314 case of regular arithmetic commands like @kbd{+} and @kbd{Q} [@code{sqrt}],
22315 the arguments are simply popped from the stack and collected into a
22316 suitable function call, which is then simplified (the arguments being
22317 simplified first as part of the process, as described above).
22319 The default simplifications are too numerous to describe completely
22320 here, but this section will describe the ones that apply to the
22321 major arithmetic operators.  This list will be rather technical in
22322 nature, and will probably be interesting to you only if you are
22323 a serious user of Calc's algebra facilities.
22325 @tex
22326 \bigskip
22327 @end tex
22329 As well as the simplifications described here, if you have stored
22330 any rewrite rules in the variable @code{EvalRules} then these rules
22331 will also be applied before any built-in default simplifications.
22332 @xref{Automatic Rewrites}, for details.
22334 @tex
22335 \bigskip
22336 @end tex
22338 And now, on with the default simplifications:
22340 Arithmetic operators like @kbd{+} and @kbd{*} always take two
22341 arguments in Calc's internal form.  Sums and products of three or
22342 more terms are arranged by the associative law of algebra into
22343 a left-associative form for sums, @expr{((a + b) + c) + d}, and
22344 a right-associative form for products, @expr{a * (b * (c * d))}.
22345 Formulas like @expr{(a + b) + (c + d)} are rearranged to
22346 left-associative form, though this rarely matters since Calc's
22347 algebra commands are designed to hide the inner structure of
22348 sums and products as much as possible.  Sums and products in
22349 their proper associative form will be written without parentheses
22350 in the examples below.
22352 Sums and products are @emph{not} rearranged according to the
22353 commutative law (@expr{a + b} to @expr{b + a}) except in a few
22354 special cases described below.  Some algebra programs always
22355 rearrange terms into a canonical order, which enables them to
22356 see that @expr{a b + b a} can be simplified to @expr{2 a b}.
22357 Calc assumes you have put the terms into the order you want
22358 and generally leaves that order alone, with the consequence
22359 that formulas like the above will only be simplified if you
22360 explicitly give the @kbd{a s} command.  @xref{Algebraic
22361 Simplifications}.
22363 Differences @expr{a - b} are treated like sums @expr{a + (-b)}
22364 for purposes of simplification; one of the default simplifications
22365 is to rewrite @expr{a + (-b)} or @expr{(-b) + a}, where @expr{-b}
22366 represents a ``negative-looking'' term, into @expr{a - b} form.
22367 ``Negative-looking'' means negative numbers, negated formulas like
22368 @expr{-x}, and products or quotients in which either term is
22369 negative-looking.
22371 Other simplifications involving negation are @expr{-(-x)} to @expr{x};
22372 @expr{-(a b)} or @expr{-(a/b)} where either @expr{a} or @expr{b} is
22373 negative-looking, simplified by negating that term, or else where
22374 @expr{a} or @expr{b} is any number, by negating that number;
22375 @expr{-(a + b)} to @expr{-a - b}, and @expr{-(b - a)} to @expr{a - b}.
22376 (This, and rewriting @expr{(-b) + a} to @expr{a - b}, are the only
22377 cases where the order of terms in a sum is changed by the default
22378 simplifications.)
22380 The distributive law is used to simplify sums in some cases:
22381 @expr{a x + b x} to @expr{(a + b) x}, where @expr{a} represents
22382 a number or an implicit 1 or @mathit{-1} (as in @expr{x} or @expr{-x})
22383 and similarly for @expr{b}.  Use the @kbd{a c}, @w{@kbd{a f}}, or
22384 @kbd{j M} commands to merge sums with non-numeric coefficients
22385 using the distributive law.
22387 The distributive law is only used for sums of two terms, or
22388 for adjacent terms in a larger sum.  Thus @expr{a + b + b + c}
22389 is simplified to @expr{a + 2 b + c}, but @expr{a + b + c + b}
22390 is not simplified.  The reason is that comparing all terms of a
22391 sum with one another would require time proportional to the
22392 square of the number of terms; Calc relegates potentially slow
22393 operations like this to commands that have to be invoked
22394 explicitly, like @kbd{a s}.
22396 Finally, @expr{a + 0} and @expr{0 + a} are simplified to @expr{a}.
22397 A consequence of the above rules is that @expr{0 - a} is simplified
22398 to @expr{-a}.
22400 @tex
22401 \bigskip
22402 @end tex
22404 The products @expr{1 a} and @expr{a 1} are simplified to @expr{a};
22405 @expr{(-1) a} and @expr{a (-1)} are simplified to @expr{-a};
22406 @expr{0 a} and @expr{a 0} are simplified to @expr{0}, except that
22407 in Matrix mode where @expr{a} is not provably scalar the result
22408 is the generic zero matrix @samp{idn(0)}, and that if @expr{a} is
22409 infinite the result is @samp{nan}.
22411 Also, @expr{(-a) b} and @expr{a (-b)} are simplified to @expr{-(a b)},
22412 where this occurs for negated formulas but not for regular negative
22413 numbers.
22415 Products are commuted only to move numbers to the front:
22416 @expr{a b 2} is commuted to @expr{2 a b}.
22418 The product @expr{a (b + c)} is distributed over the sum only if
22419 @expr{a} and at least one of @expr{b} and @expr{c} are numbers:
22420 @expr{2 (x + 3)} goes to @expr{2 x + 6}.  The formula
22421 @expr{(-a) (b - c)}, where @expr{-a} is a negative number, is
22422 rewritten to @expr{a (c - b)}.
22424 The distributive law of products and powers is used for adjacent
22425 terms of the product: @expr{x^a x^b} goes to 
22426 @texline @math{x^{a+b}}
22427 @infoline @expr{x^(a+b)}
22428 where @expr{a} is a number, or an implicit 1 (as in @expr{x}),
22429 or the implicit one-half of @expr{@tfn{sqrt}(x)}, and similarly for
22430 @expr{b}.  The result is written using @samp{sqrt} or @samp{1/sqrt}
22431 if the sum of the powers is @expr{1/2} or @expr{-1/2}, respectively.
22432 If the sum of the powers is zero, the product is simplified to
22433 @expr{1} or to @samp{idn(1)} if Matrix mode is enabled.
22435 The product of a negative power times anything but another negative
22436 power is changed to use division:  
22437 @texline @math{x^{-2} y}
22438 @infoline @expr{x^(-2) y} 
22439 goes to @expr{y / x^2} unless Matrix mode is
22440 in effect and neither @expr{x} nor @expr{y} are scalar (in which
22441 case it is considered unsafe to rearrange the order of the terms).
22443 Finally, @expr{a (b/c)} is rewritten to @expr{(a b)/c}, and also
22444 @expr{(a/b) c} is changed to @expr{(a c)/b} unless in Matrix mode.
22446 @tex
22447 \bigskip
22448 @end tex
22450 Simplifications for quotients are analogous to those for products.
22451 The quotient @expr{0 / x} is simplified to @expr{0}, with the same
22452 exceptions that were noted for @expr{0 x}.  Likewise, @expr{x / 1}
22453 and @expr{x / (-1)} are simplified to @expr{x} and @expr{-x},
22454 respectively.
22456 The quotient @expr{x / 0} is left unsimplified or changed to an
22457 infinite quantity, as directed by the current infinite mode.
22458 @xref{Infinite Mode}.
22460 The expression 
22461 @texline @math{a / b^{-c}}
22462 @infoline @expr{a / b^(-c)} 
22463 is changed to @expr{a b^c}, where @expr{-c} is any negative-looking
22464 power.  Also, @expr{1 / b^c} is changed to 
22465 @texline @math{b^{-c}}
22466 @infoline @expr{b^(-c)} 
22467 for any power @expr{c}.
22469 Also, @expr{(-a) / b} and @expr{a / (-b)} go to @expr{-(a/b)};
22470 @expr{(a/b) / c} goes to @expr{a / (b c)}; and @expr{a / (b/c)}
22471 goes to @expr{(a c) / b} unless Matrix mode prevents this
22472 rearrangement.  Similarly, @expr{a / (b:c)} is simplified to
22473 @expr{(c:b) a} for any fraction @expr{b:c}.
22475 The distributive law is applied to @expr{(a + b) / c} only if
22476 @expr{c} and at least one of @expr{a} and @expr{b} are numbers.
22477 Quotients of powers and square roots are distributed just as
22478 described for multiplication.
22480 Quotients of products cancel only in the leading terms of the
22481 numerator and denominator.  In other words, @expr{a x b / a y b}
22482 is cancelled to @expr{x b / y b} but not to @expr{x / y}.  Once
22483 again this is because full cancellation can be slow; use @kbd{a s}
22484 to cancel all terms of the quotient.
22486 Quotients of negative-looking values are simplified according
22487 to @expr{(-a) / (-b)} to @expr{a / b}, @expr{(-a) / (b - c)}
22488 to @expr{a / (c - b)}, and @expr{(a - b) / (-c)} to @expr{(b - a) / c}.
22490 @tex
22491 \bigskip
22492 @end tex
22494 The formula @expr{x^0} is simplified to @expr{1}, or to @samp{idn(1)}
22495 in Matrix mode.  The formula @expr{0^x} is simplified to @expr{0}
22496 unless @expr{x} is a negative number or complex number, in which
22497 case the result is an infinity or an unsimplified formula according
22498 to the current infinite mode.  Note that @expr{0^0} is an
22499 indeterminate form, as evidenced by the fact that the simplifications
22500 for @expr{x^0} and @expr{0^x} conflict when @expr{x=0}.
22502 Powers of products or quotients @expr{(a b)^c}, @expr{(a/b)^c}
22503 are distributed to @expr{a^c b^c}, @expr{a^c / b^c} only if @expr{c}
22504 is an integer, or if either @expr{a} or @expr{b} are nonnegative
22505 real numbers.  Powers of powers @expr{(a^b)^c} are simplified to
22506 @texline @math{a^{b c}}
22507 @infoline @expr{a^(b c)} 
22508 only when @expr{c} is an integer and @expr{b c} also
22509 evaluates to an integer.  Without these restrictions these simplifications
22510 would not be safe because of problems with principal values.
22511 (In other words, 
22512 @texline @math{((-3)^{1/2})^2}
22513 @infoline @expr{((-3)^1:2)^2} 
22514 is safe to simplify, but
22515 @texline @math{((-3)^2)^{1/2}}
22516 @infoline @expr{((-3)^2)^1:2} 
22517 is not.)  @xref{Declarations}, for ways to inform Calc that your
22518 variables satisfy these requirements.
22520 As a special case of this rule, @expr{@tfn{sqrt}(x)^n} is simplified to
22521 @texline @math{x^{n/2}}
22522 @infoline @expr{x^(n/2)} 
22523 only for even integers @expr{n}.
22525 If @expr{a} is known to be real, @expr{b} is an even integer, and
22526 @expr{c} is a half- or quarter-integer, then @expr{(a^b)^c} is
22527 simplified to @expr{@tfn{abs}(a^(b c))}.
22529 Also, @expr{(-a)^b} is simplified to @expr{a^b} if @expr{b} is an
22530 even integer, or to @expr{-(a^b)} if @expr{b} is an odd integer,
22531 for any negative-looking expression @expr{-a}.
22533 Square roots @expr{@tfn{sqrt}(x)} generally act like one-half powers
22534 @texline @math{x^{1:2}}
22535 @infoline @expr{x^1:2} 
22536 for the purposes of the above-listed simplifications.
22538 Also, note that 
22539 @texline @math{1 / x^{1:2}}
22540 @infoline @expr{1 / x^1:2} 
22541 is changed to 
22542 @texline @math{x^{-1:2}},
22543 @infoline @expr{x^(-1:2)},
22544 but @expr{1 / @tfn{sqrt}(x)} is left alone.
22546 @tex
22547 \bigskip
22548 @end tex
22550 Generic identity matrices (@pxref{Matrix Mode}) are simplified by the
22551 following rules:  @expr{@tfn{idn}(a) + b} to @expr{a + b} if @expr{b}
22552 is provably scalar, or expanded out if @expr{b} is a matrix;
22553 @expr{@tfn{idn}(a) + @tfn{idn}(b)} to @expr{@tfn{idn}(a + b)}; 
22554 @expr{-@tfn{idn}(a)} to @expr{@tfn{idn}(-a)}; @expr{a @tfn{idn}(b)} to 
22555 @expr{@tfn{idn}(a b)} if @expr{a} is provably scalar, or to @expr{a b} 
22556 if @expr{a} is provably non-scalar;  @expr{@tfn{idn}(a) @tfn{idn}(b)} to
22557 @expr{@tfn{idn}(a b)}; analogous simplifications for quotients involving
22558 @code{idn}; and @expr{@tfn{idn}(a)^n} to @expr{@tfn{idn}(a^n)} where
22559 @expr{n} is an integer.
22561 @tex
22562 \bigskip
22563 @end tex
22565 The @code{floor} function and other integer truncation functions
22566 vanish if the argument is provably integer-valued, so that
22567 @expr{@tfn{floor}(@tfn{round}(x))} simplifies to @expr{@tfn{round}(x)}.
22568 Also, combinations of @code{float}, @code{floor} and its friends,
22569 and @code{ffloor} and its friends, are simplified in appropriate
22570 ways.  @xref{Integer Truncation}.
22572 The expression @expr{@tfn{abs}(-x)} changes to @expr{@tfn{abs}(x)}.
22573 The expression @expr{@tfn{abs}(@tfn{abs}(x))} changes to
22574 @expr{@tfn{abs}(x)};  in fact, @expr{@tfn{abs}(x)} changes to @expr{x} or
22575 @expr{-x} if @expr{x} is provably nonnegative or nonpositive
22576 (@pxref{Declarations}). 
22578 While most functions do not recognize the variable @code{i} as an
22579 imaginary number, the @code{arg} function does handle the two cases
22580 @expr{@tfn{arg}(@tfn{i})} and @expr{@tfn{arg}(-@tfn{i})} just for convenience.
22582 The expression @expr{@tfn{conj}(@tfn{conj}(x))} simplifies to @expr{x}.
22583 Various other expressions involving @code{conj}, @code{re}, and
22584 @code{im} are simplified, especially if some of the arguments are
22585 provably real or involve the constant @code{i}.  For example,
22586 @expr{@tfn{conj}(a + b i)} is changed to 
22587 @expr{@tfn{conj}(a) - @tfn{conj}(b) i},  or to @expr{a - b i} if @expr{a}
22588 and @expr{b} are known to be real.
22590 Functions like @code{sin} and @code{arctan} generally don't have
22591 any default simplifications beyond simply evaluating the functions
22592 for suitable numeric arguments and infinity.  The @kbd{a s} command
22593 described in the next section does provide some simplifications for
22594 these functions, though.
22596 One important simplification that does occur is that
22597 @expr{@tfn{ln}(@tfn{e})} is simplified to 1, and @expr{@tfn{ln}(@tfn{e}^x)} is
22598 simplified to @expr{x} for any @expr{x}.  This occurs even if you have
22599 stored a different value in the Calc variable @samp{e}; but this would
22600 be a bad idea in any case if you were also using natural logarithms!
22602 Among the logical functions, @tfn{(@var{a} <= @var{b})} changes to
22603 @tfn{@var{a} > @var{b}} and so on.  Equations and inequalities where both sides
22604 are either negative-looking or zero are simplified by negating both sides
22605 and reversing the inequality.  While it might seem reasonable to simplify
22606 @expr{!!x} to @expr{x}, this would not be valid in general because
22607 @expr{!!2} is 1, not 2.
22609 Most other Calc functions have few if any default simplifications
22610 defined, aside of course from evaluation when the arguments are
22611 suitable numbers.
22613 @node Algebraic Simplifications, Unsafe Simplifications, Default Simplifications, Simplifying Formulas
22614 @subsection Algebraic Simplifications
22616 @noindent
22617 @cindex Algebraic simplifications
22618 The @kbd{a s} command makes simplifications that may be too slow to
22619 do all the time, or that may not be desirable all of the time.
22620 If you find these simplifications are worthwhile, you can type
22621 @kbd{m A} to have Calc apply them automatically.
22623 This section describes all simplifications that are performed by
22624 the @kbd{a s} command.  Note that these occur in addition to the
22625 default simplifications; even if the default simplifications have
22626 been turned off by an @kbd{m O} command, @kbd{a s} will turn them
22627 back on temporarily while it simplifies the formula.
22629 There is a variable, @code{AlgSimpRules}, in which you can put rewrites
22630 to be applied by @kbd{a s}.  Its use is analogous to @code{EvalRules},
22631 but without the special restrictions.  Basically, the simplifier does
22632 @samp{@w{a r} AlgSimpRules} with an infinite repeat count on the whole
22633 expression being simplified, then it traverses the expression applying
22634 the built-in rules described below.  If the result is different from
22635 the original expression, the process repeats with the default
22636 simplifications (including @code{EvalRules}), then @code{AlgSimpRules},
22637 then the built-in simplifications, and so on.
22639 @tex
22640 \bigskip
22641 @end tex
22643 Sums are simplified in two ways.  Constant terms are commuted to the
22644 end of the sum, so that @expr{a + 2 + b} changes to @expr{a + b + 2}.
22645 The only exception is that a constant will not be commuted away
22646 from the first position of a difference, i.e., @expr{2 - x} is not
22647 commuted to @expr{-x + 2}.
22649 Also, terms of sums are combined by the distributive law, as in
22650 @expr{x + y + 2 x} to @expr{y + 3 x}.  This always occurs for
22651 adjacent terms, but @kbd{a s} compares all pairs of terms including
22652 non-adjacent ones.
22654 @tex
22655 \bigskip
22656 @end tex
22658 Products are sorted into a canonical order using the commutative
22659 law.  For example, @expr{b c a} is commuted to @expr{a b c}.
22660 This allows easier comparison of products; for example, the default
22661 simplifications will not change @expr{x y + y x} to @expr{2 x y},
22662 but @kbd{a s} will; it first rewrites the sum to @expr{x y + x y},
22663 and then the default simplifications are able to recognize a sum
22664 of identical terms.
22666 The canonical ordering used to sort terms of products has the
22667 property that real-valued numbers, interval forms and infinities
22668 come first, and are sorted into increasing order.  The @kbd{V S}
22669 command uses the same ordering when sorting a vector.
22671 Sorting of terms of products is inhibited when Matrix mode is
22672 turned on; in this case, Calc will never exchange the order of
22673 two terms unless it knows at least one of the terms is a scalar.
22675 Products of powers are distributed by comparing all pairs of
22676 terms, using the same method that the default simplifications
22677 use for adjacent terms of products.
22679 Even though sums are not sorted, the commutative law is still
22680 taken into account when terms of a product are being compared.
22681 Thus @expr{(x + y) (y + x)} will be simplified to @expr{(x + y)^2}.
22682 A subtle point is that @expr{(x - y) (y - x)} will @emph{not}
22683 be simplified to @expr{-(x - y)^2}; Calc does not notice that
22684 one term can be written as a constant times the other, even if
22685 that constant is @mathit{-1}.
22687 A fraction times any expression, @expr{(a:b) x}, is changed to
22688 a quotient involving integers:  @expr{a x / b}.  This is not
22689 done for floating-point numbers like @expr{0.5}, however.  This
22690 is one reason why you may find it convenient to turn Fraction mode
22691 on while doing algebra; @pxref{Fraction Mode}.
22693 @tex
22694 \bigskip
22695 @end tex
22697 Quotients are simplified by comparing all terms in the numerator
22698 with all terms in the denominator for possible cancellation using
22699 the distributive law.  For example, @expr{a x^2 b / c x^3 d} will
22700 cancel @expr{x^2} from the top and bottom to get @expr{a b / c x d}.
22701 (The terms in the denominator will then be rearranged to @expr{c d x}
22702 as described above.)  If there is any common integer or fractional
22703 factor in the numerator and denominator, it is cancelled out;
22704 for example, @expr{(4 x + 6) / 8 x} simplifies to @expr{(2 x + 3) / 4 x}.
22706 Non-constant common factors are not found even by @kbd{a s}.  To
22707 cancel the factor @expr{a} in @expr{(a x + a) / a^2} you could first
22708 use @kbd{j M} on the product @expr{a x} to Merge the numerator to
22709 @expr{a (1+x)}, which can then be simplified successfully.
22711 @tex
22712 \bigskip
22713 @end tex
22715 Integer powers of the variable @code{i} are simplified according
22716 to the identity @expr{i^2 = -1}.  If you store a new value other
22717 than the complex number @expr{(0,1)} in @code{i}, this simplification
22718 will no longer occur.  This is done by @kbd{a s} instead of by default
22719 in case someone (unwisely) uses the name @code{i} for a variable
22720 unrelated to complex numbers; it would be unfortunate if Calc
22721 quietly and automatically changed this formula for reasons the
22722 user might not have been thinking of.
22724 Square roots of integer or rational arguments are simplified in
22725 several ways.  (Note that these will be left unevaluated only in
22726 Symbolic mode.)  First, square integer or rational factors are
22727 pulled out so that @expr{@tfn{sqrt}(8)} is rewritten as
22728 @texline @math{2\,@tfn{sqrt}(2)}.
22729 @infoline @expr{2 sqrt(2)}.  
22730 Conceptually speaking this implies factoring the argument into primes
22731 and moving pairs of primes out of the square root, but for reasons of
22732 efficiency Calc only looks for primes up to 29.
22734 Square roots in the denominator of a quotient are moved to the
22735 numerator:  @expr{1 / @tfn{sqrt}(3)} changes to @expr{@tfn{sqrt}(3) / 3}.
22736 The same effect occurs for the square root of a fraction:
22737 @expr{@tfn{sqrt}(2:3)} changes to @expr{@tfn{sqrt}(6) / 3}.
22739 @tex
22740 \bigskip
22741 @end tex
22743 The @code{%} (modulo) operator is simplified in several ways
22744 when the modulus @expr{M} is a positive real number.  First, if
22745 the argument is of the form @expr{x + n} for some real number
22746 @expr{n}, then @expr{n} is itself reduced modulo @expr{M}.  For
22747 example, @samp{(x - 23) % 10} is simplified to @samp{(x + 7) % 10}.
22749 If the argument is multiplied by a constant, and this constant
22750 has a common integer divisor with the modulus, then this factor is
22751 cancelled out.  For example, @samp{12 x % 15} is changed to
22752 @samp{3 (4 x % 5)} by factoring out 3.  Also, @samp{(12 x + 1) % 15}
22753 is changed to @samp{3 ((4 x + 1:3) % 5)}.  While these forms may
22754 not seem ``simpler,'' they allow Calc to discover useful information
22755 about modulo forms in the presence of declarations.
22757 If the modulus is 1, then Calc can use @code{int} declarations to
22758 evaluate the expression.  For example, the idiom @samp{x % 2} is
22759 often used to check whether a number is odd or even.  As described
22760 above, @w{@samp{2 n % 2}} and @samp{(2 n + 1) % 2} are simplified to
22761 @samp{2 (n % 1)} and @samp{2 ((n + 1:2) % 1)}, respectively; Calc
22762 can simplify these to 0 and 1 (respectively) if @code{n} has been
22763 declared to be an integer.
22765 @tex
22766 \bigskip
22767 @end tex
22769 Trigonometric functions are simplified in several ways.  Whenever a
22770 products of two trigonometric functions can be replaced by a single
22771 function, the replacement is made; for example,
22772 @expr{@tfn{tan}(x) @tfn{cos}(x)} is simplified to @expr{@tfn{sin}(x)}. 
22773 Reciprocals of trigonometric functions are replaced by their reciprocal
22774 function; for example, @expr{1/@tfn{sec}(x)} is simplified to
22775 @expr{@tfn{cos}(x)}.  The corresponding simplifications for the
22776 hyperbolic functions are also handled.
22778 Trigonometric functions of their inverse functions are
22779 simplified. The expression @expr{@tfn{sin}(@tfn{arcsin}(x))} is
22780 simplified to @expr{x}, and similarly for @code{cos} and @code{tan}.  
22781 Trigonometric functions of inverses of different trigonometric
22782 functions can also be simplified, as in @expr{@tfn{sin}(@tfn{arccos}(x))}
22783 to @expr{@tfn{sqrt}(1 - x^2)}.
22785 If the argument to @code{sin} is negative-looking, it is simplified to
22786 @expr{-@tfn{sin}(x)}, and similarly for @code{cos} and @code{tan}.
22787 Finally, certain special values of the argument are recognized;
22788 @pxref{Trigonometric and Hyperbolic Functions}.
22790 Hyperbolic functions of their inverses and of negative-looking
22791 arguments are also handled, as are exponentials of inverse
22792 hyperbolic functions.
22794 No simplifications for inverse trigonometric and hyperbolic
22795 functions are known, except for negative arguments of @code{arcsin},
22796 @code{arctan}, @code{arcsinh}, and @code{arctanh}.  Note that
22797 @expr{@tfn{arcsin}(@tfn{sin}(x))} can @emph{not} safely change to
22798 @expr{x}, since this only correct within an integer multiple of 
22799 @texline @math{2 \pi}
22800 @infoline @expr{2 pi} 
22801 radians or 360 degrees.  However, @expr{@tfn{arcsinh}(@tfn{sinh}(x))} is
22802 simplified to @expr{x} if @expr{x} is known to be real.
22804 Several simplifications that apply to logarithms and exponentials
22805 are that @expr{@tfn{exp}(@tfn{ln}(x))}, 
22806 @texline @tfn{e}@math{^{\ln(x)}},
22807 @infoline @expr{e^@tfn{ln}(x)}, 
22809 @texline @math{10^{{\rm log10}(x)}}
22810 @infoline @expr{10^@tfn{log10}(x)} 
22811 all reduce to @expr{x}.  Also, @expr{@tfn{ln}(@tfn{exp}(x))}, etc., can
22812 reduce to @expr{x} if @expr{x} is provably real.  The form
22813 @expr{@tfn{exp}(x)^y} is simplified to @expr{@tfn{exp}(x y)}.  If @expr{x}
22814 is a suitable multiple of 
22815 @texline @math{\pi i} 
22816 @infoline @expr{pi i}
22817 (as described above for the trigonometric functions), then
22818 @expr{@tfn{exp}(x)} or @expr{e^x} will be expanded.  Finally,
22819 @expr{@tfn{ln}(x)} is simplified to a form involving @code{pi} and
22820 @code{i} where @expr{x} is provably negative, positive imaginary, or
22821 negative imaginary. 
22823 The error functions @code{erf} and @code{erfc} are simplified when
22824 their arguments are negative-looking or are calls to the @code{conj}
22825 function.
22827 @tex
22828 \bigskip
22829 @end tex
22831 Equations and inequalities are simplified by cancelling factors
22832 of products, quotients, or sums on both sides.  Inequalities
22833 change sign if a negative multiplicative factor is cancelled.
22834 Non-constant multiplicative factors as in @expr{a b = a c} are
22835 cancelled from equations only if they are provably nonzero (generally
22836 because they were declared so; @pxref{Declarations}).  Factors
22837 are cancelled from inequalities only if they are nonzero and their
22838 sign is known.
22840 Simplification also replaces an equation or inequality with
22841 1 or 0 (``true'' or ``false'') if it can through the use of
22842 declarations.  If @expr{x} is declared to be an integer greater
22843 than 5, then @expr{x < 3}, @expr{x = 3}, and @expr{x = 7.5} are
22844 all simplified to 0, but @expr{x > 3} is simplified to 1.
22845 By a similar analysis, @expr{abs(x) >= 0} is simplified to 1,
22846 as is @expr{x^2 >= 0} if @expr{x} is known to be real.
22848 @node Unsafe Simplifications, Simplification of Units, Algebraic Simplifications, Simplifying Formulas
22849 @subsection ``Unsafe'' Simplifications
22851 @noindent
22852 @cindex Unsafe simplifications
22853 @cindex Extended simplification
22854 @kindex a e
22855 @pindex calc-simplify-extended
22856 @ignore
22857 @mindex esimpl@idots
22858 @end ignore
22859 @tindex esimplify
22860 The @kbd{a e} (@code{calc-simplify-extended}) [@code{esimplify}] command
22861 is like @kbd{a s}
22862 except that it applies some additional simplifications which are not
22863 ``safe'' in all cases.  Use this only if you know the values in your
22864 formula lie in the restricted ranges for which these simplifications
22865 are valid.  The symbolic integrator uses @kbd{a e};
22866 one effect of this is that the integrator's results must be used with
22867 caution.  Where an integral table will often attach conditions like
22868 ``for positive @expr{a} only,'' Calc (like most other symbolic
22869 integration programs) will simply produce an unqualified result.
22871 Because @kbd{a e}'s simplifications are unsafe, it is sometimes better
22872 to type @kbd{C-u -3 a v}, which does extended simplification only
22873 on the top level of the formula without affecting the sub-formulas.
22874 In fact, @kbd{C-u -3 j v} allows you to target extended simplification
22875 to any specific part of a formula.
22877 The variable @code{ExtSimpRules} contains rewrites to be applied by
22878 the @kbd{a e} command.  These are applied in addition to
22879 @code{EvalRules} and @code{AlgSimpRules}.  (The @kbd{a r AlgSimpRules}
22880 step described above is simply followed by an @kbd{a r ExtSimpRules} step.)
22882 Following is a complete list of ``unsafe'' simplifications performed
22883 by @kbd{a e}.
22885 @tex
22886 \bigskip
22887 @end tex
22889 Inverse trigonometric or hyperbolic functions, called with their
22890 corresponding non-inverse functions as arguments, are simplified
22891 by @kbd{a e}.  For example, @expr{@tfn{arcsin}(@tfn{sin}(x))} changes
22892 to @expr{x}.  Also, @expr{@tfn{arcsin}(@tfn{cos}(x))} and
22893 @expr{@tfn{arccos}(@tfn{sin}(x))} both change to @expr{@tfn{pi}/2 - x}.
22894 These simplifications are unsafe because they are valid only for
22895 values of @expr{x} in a certain range; outside that range, values
22896 are folded down to the 360-degree range that the inverse trigonometric
22897 functions always produce.
22899 Powers of powers @expr{(x^a)^b} are simplified to 
22900 @texline @math{x^{a b}}
22901 @infoline @expr{x^(a b)}
22902 for all @expr{a} and @expr{b}.  These results will be valid only
22903 in a restricted range of @expr{x}; for example, in 
22904 @texline @math{(x^2)^{1:2}}
22905 @infoline @expr{(x^2)^1:2}
22906 the powers cancel to get @expr{x}, which is valid for positive values
22907 of @expr{x} but not for negative or complex values.
22909 Similarly, @expr{@tfn{sqrt}(x^a)} and @expr{@tfn{sqrt}(x)^a} are both
22910 simplified (possibly unsafely) to 
22911 @texline @math{x^{a/2}}.
22912 @infoline @expr{x^(a/2)}.
22914 Forms like @expr{@tfn{sqrt}(1 - sin(x)^2)} are simplified to, e.g.,
22915 @expr{@tfn{cos}(x)}.  Calc has identities of this sort for @code{sin},
22916 @code{cos}, @code{tan}, @code{sinh}, and @code{cosh}.
22918 Arguments of square roots are partially factored to look for
22919 squared terms that can be extracted.  For example,
22920 @expr{@tfn{sqrt}(a^2 b^3 + a^3 b^2)} simplifies to 
22921 @expr{a b @tfn{sqrt}(a+b)}.
22923 The simplifications of @expr{@tfn{ln}(@tfn{exp}(x))},
22924 @expr{@tfn{ln}(@tfn{e}^x)}, and @expr{@tfn{log10}(10^x)} to @expr{x} are also
22925 unsafe because of problems with principal values (although these
22926 simplifications are safe if @expr{x} is known to be real).
22928 Common factors are cancelled from products on both sides of an
22929 equation, even if those factors may be zero:  @expr{a x / b x}
22930 to @expr{a / b}.  Such factors are never cancelled from
22931 inequalities:  Even @kbd{a e} is not bold enough to reduce
22932 @expr{a x < b x} to @expr{a < b} (or @expr{a > b}, depending
22933 on whether you believe @expr{x} is positive or negative).
22934 The @kbd{a M /} command can be used to divide a factor out of
22935 both sides of an inequality.
22937 @node Simplification of Units, , Unsafe Simplifications, Simplifying Formulas
22938 @subsection Simplification of Units
22940 @noindent
22941 The simplifications described in this section are applied by the
22942 @kbd{u s} (@code{calc-simplify-units}) command.  These are in addition
22943 to the regular @kbd{a s} (but not @kbd{a e}) simplifications described
22944 earlier.  @xref{Basic Operations on Units}.
22946 The variable @code{UnitSimpRules} contains rewrites to be applied by
22947 the @kbd{u s} command.  These are applied in addition to @code{EvalRules}
22948 and @code{AlgSimpRules}.
22950 Scalar mode is automatically put into effect when simplifying units.
22951 @xref{Matrix Mode}.
22953 Sums @expr{a + b} involving units are simplified by extracting the
22954 units of @expr{a} as if by the @kbd{u x} command (call the result
22955 @expr{u_a}), then simplifying the expression @expr{b / u_a}
22956 using @kbd{u b} and @kbd{u s}.  If the result has units then the sum
22957 is inconsistent and is left alone.  Otherwise, it is rewritten
22958 in terms of the units @expr{u_a}.
22960 If units auto-ranging mode is enabled, products or quotients in
22961 which the first argument is a number which is out of range for the
22962 leading unit are modified accordingly.
22964 When cancelling and combining units in products and quotients,
22965 Calc accounts for unit names that differ only in the prefix letter.
22966 For example, @samp{2 km m} is simplified to @samp{2000 m^2}.
22967 However, compatible but different units like @code{ft} and @code{in}
22968 are not combined in this way.
22970 Quotients @expr{a / b} are simplified in three additional ways.  First,
22971 if @expr{b} is a number or a product beginning with a number, Calc
22972 computes the reciprocal of this number and moves it to the numerator.
22974 Second, for each pair of unit names from the numerator and denominator
22975 of a quotient, if the units are compatible (e.g., they are both
22976 units of area) then they are replaced by the ratio between those
22977 units.  For example, in @samp{3 s in N / kg cm} the units
22978 @samp{in / cm} will be replaced by @expr{2.54}.
22980 Third, if the units in the quotient exactly cancel out, so that
22981 a @kbd{u b} command on the quotient would produce a dimensionless
22982 number for an answer, then the quotient simplifies to that number.
22984 For powers and square roots, the ``unsafe'' simplifications
22985 @expr{(a b)^c} to @expr{a^c b^c}, @expr{(a/b)^c} to @expr{a^c / b^c},
22986 and @expr{(a^b)^c} to 
22987 @texline @math{a^{b c}}
22988 @infoline @expr{a^(b c)} 
22989 are done if the powers are real numbers.  (These are safe in the context
22990 of units because all numbers involved can reasonably be assumed to be
22991 real.)
22993 Also, if a unit name is raised to a fractional power, and the
22994 base units in that unit name all occur to powers which are a
22995 multiple of the denominator of the power, then the unit name
22996 is expanded out into its base units, which can then be simplified
22997 according to the previous paragraph.  For example, @samp{acre^1.5}
22998 is simplified by noting that @expr{1.5 = 3:2}, that @samp{acre}
22999 is defined in terms of @samp{m^2}, and that the 2 in the power of
23000 @code{m} is a multiple of 2 in @expr{3:2}.  Thus, @code{acre^1.5} is
23001 replaced by approximately 
23002 @texline @math{(4046 m^2)^{1.5}}
23003 @infoline @expr{(4046 m^2)^1.5}, 
23004 which is then changed to 
23005 @texline @math{4046^{1.5} \, (m^2)^{1.5}},
23006 @infoline @expr{4046^1.5 (m^2)^1.5}, 
23007 then to @expr{257440 m^3}.
23009 The functions @code{float}, @code{frac}, @code{clean}, @code{abs},
23010 as well as @code{floor} and the other integer truncation functions,
23011 applied to unit names or products or quotients involving units, are
23012 simplified.  For example, @samp{round(1.6 in)} is changed to
23013 @samp{round(1.6) round(in)}; the lefthand term evaluates to 2,
23014 and the righthand term simplifies to @code{in}.
23016 The functions @code{sin}, @code{cos}, and @code{tan} with arguments
23017 that have angular units like @code{rad} or @code{arcmin} are
23018 simplified by converting to base units (radians), then evaluating
23019 with the angular mode temporarily set to radians.
23021 @node Polynomials, Calculus, Simplifying Formulas, Algebra
23022 @section Polynomials
23024 A @dfn{polynomial} is a sum of terms which are coefficients times
23025 various powers of a ``base'' variable.  For example, @expr{2 x^2 + 3 x - 4}
23026 is a polynomial in @expr{x}.  Some formulas can be considered
23027 polynomials in several different variables:  @expr{1 + 2 x + 3 y + 4 x y^2}
23028 is a polynomial in both @expr{x} and @expr{y}.  Polynomial coefficients
23029 are often numbers, but they may in general be any formulas not
23030 involving the base variable.
23032 @kindex a f
23033 @pindex calc-factor
23034 @tindex factor
23035 The @kbd{a f} (@code{calc-factor}) [@code{factor}] command factors a
23036 polynomial into a product of terms.  For example, the polynomial
23037 @expr{x^3 + 2 x^2 + x} is factored into @samp{x*(x+1)^2}.  As another
23038 example, @expr{a c + b d + b c + a d} is factored into the product
23039 @expr{(a + b) (c + d)}.
23041 Calc currently has three algorithms for factoring.  Formulas which are
23042 linear in several variables, such as the second example above, are
23043 merged according to the distributive law.  Formulas which are
23044 polynomials in a single variable, with constant integer or fractional
23045 coefficients, are factored into irreducible linear and/or quadratic
23046 terms.  The first example above factors into three linear terms
23047 (@expr{x}, @expr{x+1}, and @expr{x+1} again).  Finally, formulas
23048 which do not fit the above criteria are handled by the algebraic
23049 rewrite mechanism.
23051 Calc's polynomial factorization algorithm works by using the general
23052 root-finding command (@w{@kbd{a P}}) to solve for the roots of the
23053 polynomial.  It then looks for roots which are rational numbers
23054 or complex-conjugate pairs, and converts these into linear and
23055 quadratic terms, respectively.  Because it uses floating-point
23056 arithmetic, it may be unable to find terms that involve large
23057 integers (whose number of digits approaches the current precision).
23058 Also, irreducible factors of degree higher than quadratic are not
23059 found, and polynomials in more than one variable are not treated.
23060 (A more robust factorization algorithm may be included in a future
23061 version of Calc.)
23063 @vindex FactorRules
23064 @ignore
23065 @starindex
23066 @end ignore
23067 @tindex thecoefs
23068 @ignore
23069 @starindex
23070 @end ignore
23071 @ignore
23072 @mindex @idots
23073 @end ignore
23074 @tindex thefactors
23075 The rewrite-based factorization method uses rules stored in the variable
23076 @code{FactorRules}.  @xref{Rewrite Rules}, for a discussion of the
23077 operation of rewrite rules.  The default @code{FactorRules} are able
23078 to factor quadratic forms symbolically into two linear terms,
23079 @expr{(a x + b) (c x + d)}.  You can edit these rules to include other
23080 cases if you wish.  To use the rules, Calc builds the formula
23081 @samp{thecoefs(x, [a, b, c, ...])} where @code{x} is the polynomial
23082 base variable and @code{a}, @code{b}, etc., are polynomial coefficients
23083 (which may be numbers or formulas).  The constant term is written first,
23084 i.e., in the @code{a} position.  When the rules complete, they should have
23085 changed the formula into the form @samp{thefactors(x, [f1, f2, f3, ...])}
23086 where each @code{fi} should be a factored term, e.g., @samp{x - ai}.
23087 Calc then multiplies these terms together to get the complete
23088 factored form of the polynomial.  If the rules do not change the
23089 @code{thecoefs} call to a @code{thefactors} call, @kbd{a f} leaves the
23090 polynomial alone on the assumption that it is unfactorable.  (Note that
23091 the function names @code{thecoefs} and @code{thefactors} are used only
23092 as placeholders; there are no actual Calc functions by those names.)
23094 @kindex H a f
23095 @tindex factors
23096 The @kbd{H a f} [@code{factors}] command also factors a polynomial,
23097 but it returns a list of factors instead of an expression which is the
23098 product of the factors.  Each factor is represented by a sub-vector
23099 of the factor, and the power with which it appears.  For example,
23100 @expr{x^5 + x^4 - 33 x^3 + 63 x^2} factors to @expr{(x + 7) x^2 (x - 3)^2}
23101 in @kbd{a f}, or to @expr{[ [x, 2], [x+7, 1], [x-3, 2] ]} in @kbd{H a f}.
23102 If there is an overall numeric factor, it always comes first in the list.
23103 The functions @code{factor} and @code{factors} allow a second argument
23104 when written in algebraic form; @samp{factor(x,v)} factors @expr{x} with
23105 respect to the specific variable @expr{v}.  The default is to factor with
23106 respect to all the variables that appear in @expr{x}.
23108 @kindex a c
23109 @pindex calc-collect
23110 @tindex collect
23111 The @kbd{a c} (@code{calc-collect}) [@code{collect}] command rearranges a
23112 formula as a
23113 polynomial in a given variable, ordered in decreasing powers of that
23114 variable.  For example, given @expr{1 + 2 x + 3 y + 4 x y^2} on
23115 the stack, @kbd{a c x} would produce @expr{(2 + 4 y^2) x + (1 + 3 y)},
23116 and @kbd{a c y} would produce @expr{(4 x) y^2 + 3 y + (1 + 2 x)}.
23117 The polynomial will be expanded out using the distributive law as
23118 necessary:  Collecting @expr{x} in @expr{(x - 1)^3} produces
23119 @expr{x^3 - 3 x^2 + 3 x - 1}.  Terms not involving @expr{x} will
23120 not be expanded.
23122 The ``variable'' you specify at the prompt can actually be any
23123 expression: @kbd{a c ln(x+1)} will collect together all terms multiplied
23124 by @samp{ln(x+1)} or integer powers thereof.  If @samp{x} also appears
23125 in the formula in a context other than @samp{ln(x+1)}, @kbd{a c} will
23126 treat those occurrences as unrelated to @samp{ln(x+1)}, i.e., as constants.
23128 @kindex a x
23129 @pindex calc-expand
23130 @tindex expand
23131 The @kbd{a x} (@code{calc-expand}) [@code{expand}] command expands an
23132 expression by applying the distributive law everywhere.  It applies to
23133 products, quotients, and powers involving sums.  By default, it fully
23134 distributes all parts of the expression.  With a numeric prefix argument,
23135 the distributive law is applied only the specified number of times, then
23136 the partially expanded expression is left on the stack.
23138 The @kbd{a x} and @kbd{j D} commands are somewhat redundant.  Use
23139 @kbd{a x} if you want to expand all products of sums in your formula.
23140 Use @kbd{j D} if you want to expand a particular specified term of
23141 the formula.  There is an exactly analogous correspondence between
23142 @kbd{a f} and @kbd{j M}.  (The @kbd{j D} and @kbd{j M} commands
23143 also know many other kinds of expansions, such as
23144 @samp{exp(a + b) = exp(a) exp(b)}, which @kbd{a x} and @kbd{a f}
23145 do not do.)
23147 Calc's automatic simplifications will sometimes reverse a partial
23148 expansion.  For example, the first step in expanding @expr{(x+1)^3} is
23149 to write @expr{(x+1) (x+1)^2}.  If @kbd{a x} stops there and tries
23150 to put this formula onto the stack, though, Calc will automatically
23151 simplify it back to @expr{(x+1)^3} form.  The solution is to turn
23152 simplification off first (@pxref{Simplification Modes}), or to run
23153 @kbd{a x} without a numeric prefix argument so that it expands all
23154 the way in one step.
23156 @kindex a a
23157 @pindex calc-apart
23158 @tindex apart
23159 The @kbd{a a} (@code{calc-apart}) [@code{apart}] command expands a
23160 rational function by partial fractions.  A rational function is the
23161 quotient of two polynomials; @code{apart} pulls this apart into a
23162 sum of rational functions with simple denominators.  In algebraic
23163 notation, the @code{apart} function allows a second argument that
23164 specifies which variable to use as the ``base''; by default, Calc
23165 chooses the base variable automatically.
23167 @kindex a n
23168 @pindex calc-normalize-rat
23169 @tindex nrat
23170 The @kbd{a n} (@code{calc-normalize-rat}) [@code{nrat}] command
23171 attempts to arrange a formula into a quotient of two polynomials.
23172 For example, given @expr{1 + (a + b/c) / d}, the result would be
23173 @expr{(b + a c + c d) / c d}.  The quotient is reduced, so that
23174 @kbd{a n} will simplify @expr{(x^2 + 2x + 1) / (x^2 - 1)} by dividing
23175 out the common factor @expr{x + 1}, yielding @expr{(x + 1) / (x - 1)}.
23177 @kindex a \
23178 @pindex calc-poly-div
23179 @tindex pdiv
23180 The @kbd{a \} (@code{calc-poly-div}) [@code{pdiv}] command divides
23181 two polynomials @expr{u} and @expr{v}, yielding a new polynomial
23182 @expr{q}.  If several variables occur in the inputs, the inputs are
23183 considered multivariate polynomials.  (Calc divides by the variable
23184 with the largest power in @expr{u} first, or, in the case of equal
23185 powers, chooses the variables in alphabetical order.)  For example,
23186 dividing @expr{x^2 + 3 x + 2} by @expr{x + 2} yields @expr{x + 1}.
23187 The remainder from the division, if any, is reported at the bottom
23188 of the screen and is also placed in the Trail along with the quotient.
23190 Using @code{pdiv} in algebraic notation, you can specify the particular
23191 variable to be used as the base: @code{pdiv(@var{a},@var{b},@var{x})}.
23192 If @code{pdiv} is given only two arguments (as is always the case with
23193 the @kbd{a \} command), then it does a multivariate division as outlined
23194 above.
23196 @kindex a %
23197 @pindex calc-poly-rem
23198 @tindex prem
23199 The @kbd{a %} (@code{calc-poly-rem}) [@code{prem}] command divides
23200 two polynomials and keeps the remainder @expr{r}.  The quotient
23201 @expr{q} is discarded.  For any formulas @expr{a} and @expr{b}, the
23202 results of @kbd{a \} and @kbd{a %} satisfy @expr{a = q b + r}.
23203 (This is analogous to plain @kbd{\} and @kbd{%}, which compute the
23204 integer quotient and remainder from dividing two numbers.)
23206 @kindex a /
23207 @kindex H a /
23208 @pindex calc-poly-div-rem
23209 @tindex pdivrem
23210 @tindex pdivide
23211 The @kbd{a /} (@code{calc-poly-div-rem}) [@code{pdivrem}] command
23212 divides two polynomials and reports both the quotient and the
23213 remainder as a vector @expr{[q, r]}.  The @kbd{H a /} [@code{pdivide}]
23214 command divides two polynomials and constructs the formula
23215 @expr{q + r/b} on the stack.  (Naturally if the remainder is zero,
23216 this will immediately simplify to @expr{q}.)
23218 @kindex a g
23219 @pindex calc-poly-gcd
23220 @tindex pgcd
23221 The @kbd{a g} (@code{calc-poly-gcd}) [@code{pgcd}] command computes
23222 the greatest common divisor of two polynomials.  (The GCD actually
23223 is unique only to within a constant multiplier; Calc attempts to
23224 choose a GCD which will be unsurprising.)  For example, the @kbd{a n}
23225 command uses @kbd{a g} to take the GCD of the numerator and denominator
23226 of a quotient, then divides each by the result using @kbd{a \}.  (The
23227 definition of GCD ensures that this division can take place without
23228 leaving a remainder.)
23230 While the polynomials used in operations like @kbd{a /} and @kbd{a g}
23231 often have integer coefficients, this is not required.  Calc can also
23232 deal with polynomials over the rationals or floating-point reals.
23233 Polynomials with modulo-form coefficients are also useful in many
23234 applications; if you enter @samp{(x^2 + 3 x - 1) mod 5}, Calc
23235 automatically transforms this into a polynomial over the field of
23236 integers mod 5:  @samp{(1 mod 5) x^2 + (3 mod 5) x + (4 mod 5)}.
23238 Congratulations and thanks go to Ove Ewerlid
23239 (@code{ewerlid@@mizar.DoCS.UU.SE}), who contributed many of the
23240 polynomial routines used in the above commands.
23242 @xref{Decomposing Polynomials}, for several useful functions for
23243 extracting the individual coefficients of a polynomial.
23245 @node Calculus, Solving Equations, Polynomials, Algebra
23246 @section Calculus
23248 @noindent
23249 The following calculus commands do not automatically simplify their
23250 inputs or outputs using @code{calc-simplify}.  You may find it helps
23251 to do this by hand by typing @kbd{a s} or @kbd{a e}.  It may also help
23252 to use @kbd{a x} and/or @kbd{a c} to arrange a result in the most
23253 readable way.
23255 @menu
23256 * Differentiation::
23257 * Integration::
23258 * Customizing the Integrator::
23259 * Numerical Integration::
23260 * Taylor Series::
23261 @end menu
23263 @node Differentiation, Integration, Calculus, Calculus
23264 @subsection Differentiation
23266 @noindent
23267 @kindex a d
23268 @kindex H a d
23269 @pindex calc-derivative
23270 @tindex deriv
23271 @tindex tderiv
23272 The @kbd{a d} (@code{calc-derivative}) [@code{deriv}] command computes
23273 the derivative of the expression on the top of the stack with respect to
23274 some variable, which it will prompt you to enter.  Normally, variables
23275 in the formula other than the specified differentiation variable are
23276 considered constant, i.e., @samp{deriv(y,x)} is reduced to zero.  With
23277 the Hyperbolic flag, the @code{tderiv} (total derivative) operation is used
23278 instead, in which derivatives of variables are not reduced to zero
23279 unless those variables are known to be ``constant,'' i.e., independent
23280 of any other variables.  (The built-in special variables like @code{pi}
23281 are considered constant, as are variables that have been declared
23282 @code{const}; @pxref{Declarations}.)
23284 With a numeric prefix argument @var{n}, this command computes the
23285 @var{n}th derivative.
23287 When working with trigonometric functions, it is best to switch to
23288 Radians mode first (with @w{@kbd{m r}}).  The derivative of @samp{sin(x)}
23289 in degrees is @samp{(pi/180) cos(x)}, probably not the expected
23290 answer!
23292 If you use the @code{deriv} function directly in an algebraic formula,
23293 you can write @samp{deriv(f,x,x0)} which represents the derivative
23294 of @expr{f} with respect to @expr{x}, evaluated at the point 
23295 @texline @math{x=x_0}.
23296 @infoline @expr{x=x0}.
23298 If the formula being differentiated contains functions which Calc does
23299 not know, the derivatives of those functions are produced by adding
23300 primes (apostrophe characters).  For example, @samp{deriv(f(2x), x)}
23301 produces @samp{2 f'(2 x)}, where the function @code{f'} represents the
23302 derivative of @code{f}.
23304 For functions you have defined with the @kbd{Z F} command, Calc expands
23305 the functions according to their defining formulas unless you have
23306 also defined @code{f'} suitably.  For example, suppose we define
23307 @samp{sinc(x) = sin(x)/x} using @kbd{Z F}.  If we then differentiate
23308 the formula @samp{sinc(2 x)}, the formula will be expanded to
23309 @samp{sin(2 x) / (2 x)} and differentiated.  However, if we also
23310 define @samp{sinc'(x) = dsinc(x)}, say, then Calc will write the
23311 result as @samp{2 dsinc(2 x)}.  @xref{Algebraic Definitions}.
23313 For multi-argument functions @samp{f(x,y,z)}, the derivative with respect
23314 to the first argument is written @samp{f'(x,y,z)}; derivatives with
23315 respect to the other arguments are @samp{f'2(x,y,z)} and @samp{f'3(x,y,z)}.
23316 Various higher-order derivatives can be formed in the obvious way, e.g.,
23317 @samp{f'@var{}'(x)} (the second derivative of @code{f}) or
23318 @samp{f'@var{}'2'3(x,y,z)} (@code{f} differentiated with respect to each
23319 argument once).
23321 @node Integration, Customizing the Integrator, Differentiation, Calculus
23322 @subsection Integration
23324 @noindent
23325 @kindex a i
23326 @pindex calc-integral
23327 @tindex integ
23328 The @kbd{a i} (@code{calc-integral}) [@code{integ}] command computes the
23329 indefinite integral of the expression on the top of the stack with
23330 respect to a variable.  The integrator is not guaranteed to work for
23331 all integrable functions, but it is able to integrate several large
23332 classes of formulas.  In particular, any polynomial or rational function
23333 (a polynomial divided by a polynomial) is acceptable.  (Rational functions
23334 don't have to be in explicit quotient form, however; 
23335 @texline @math{x/(1+x^{-2})}
23336 @infoline @expr{x/(1+x^-2)}
23337 is not strictly a quotient of polynomials, but it is equivalent to
23338 @expr{x^3/(x^2+1)}, which is.)  Also, square roots of terms involving
23339 @expr{x} and @expr{x^2} may appear in rational functions being
23340 integrated.  Finally, rational functions involving trigonometric or
23341 hyperbolic functions can be integrated.
23343 @ifinfo
23344 If you use the @code{integ} function directly in an algebraic formula,
23345 you can also write @samp{integ(f,x,v)} which expresses the resulting
23346 indefinite integral in terms of variable @code{v} instead of @code{x}.
23347 With four arguments, @samp{integ(f(x),x,a,b)} represents a definite
23348 integral from @code{a} to @code{b}.
23349 @end ifinfo
23350 @tex
23351 If you use the @code{integ} function directly in an algebraic formula,
23352 you can also write @samp{integ(f,x,v)} which expresses the resulting
23353 indefinite integral in terms of variable @code{v} instead of @code{x}.
23354 With four arguments, @samp{integ(f(x),x,a,b)} represents a definite
23355 integral $\int_a^b f(x) \, dx$.
23356 @end tex
23358 Please note that the current implementation of Calc's integrator sometimes
23359 produces results that are significantly more complex than they need to
23360 be.  For example, the integral Calc finds for 
23361 @texline @math{1/(x+\sqrt{x^2+1})}
23362 @infoline @expr{1/(x+sqrt(x^2+1))}
23363 is several times more complicated than the answer Mathematica
23364 returns for the same input, although the two forms are numerically
23365 equivalent.  Also, any indefinite integral should be considered to have
23366 an arbitrary constant of integration added to it, although Calc does not
23367 write an explicit constant of integration in its result.  For example,
23368 Calc's solution for 
23369 @texline @math{1/(1+\tan x)}
23370 @infoline @expr{1/(1+tan(x))} 
23371 differs from the solution given in the @emph{CRC Math Tables} by a
23372 constant factor of  
23373 @texline @math{\pi i / 2}
23374 @infoline @expr{pi i / 2},
23375 due to a different choice of constant of integration.
23377 The Calculator remembers all the integrals it has done.  If conditions
23378 change in a way that would invalidate the old integrals, say, a switch
23379 from Degrees to Radians mode, then they will be thrown out.  If you
23380 suspect this is not happening when it should, use the
23381 @code{calc-flush-caches} command; @pxref{Caches}.
23383 @vindex IntegLimit
23384 Calc normally will pursue integration by substitution or integration by
23385 parts up to 3 nested times before abandoning an approach as fruitless.
23386 If the integrator is taking too long, you can lower this limit by storing
23387 a number (like 2) in the variable @code{IntegLimit}.  (The @kbd{s I}
23388 command is a convenient way to edit @code{IntegLimit}.)  If this variable
23389 has no stored value or does not contain a nonnegative integer, a limit
23390 of 3 is used.  The lower this limit is, the greater the chance that Calc
23391 will be unable to integrate a function it could otherwise handle.  Raising
23392 this limit allows the Calculator to solve more integrals, though the time
23393 it takes may grow exponentially.  You can monitor the integrator's actions
23394 by creating an Emacs buffer called @code{*Trace*}.  If such a buffer
23395 exists, the @kbd{a i} command will write a log of its actions there.
23397 If you want to manipulate integrals in a purely symbolic way, you can
23398 set the integration nesting limit to 0 to prevent all but fast
23399 table-lookup solutions of integrals.  You might then wish to define
23400 rewrite rules for integration by parts, various kinds of substitutions,
23401 and so on.  @xref{Rewrite Rules}.
23403 @node Customizing the Integrator, Numerical Integration, Integration, Calculus
23404 @subsection Customizing the Integrator
23406 @noindent
23407 @vindex IntegRules
23408 Calc has two built-in rewrite rules called @code{IntegRules} and
23409 @code{IntegAfterRules} which you can edit to define new integration
23410 methods.  @xref{Rewrite Rules}.  At each step of the integration process,
23411 Calc wraps the current integrand in a call to the fictitious function
23412 @samp{integtry(@var{expr},@var{var})}, where @var{expr} is the
23413 integrand and @var{var} is the integration variable.  If your rules
23414 rewrite this to be a plain formula (not a call to @code{integtry}), then
23415 Calc will use this formula as the integral of @var{expr}.  For example,
23416 the rule @samp{integtry(mysin(x),x) := -mycos(x)} would define a rule to
23417 integrate a function @code{mysin} that acts like the sine function.
23418 Then, putting @samp{4 mysin(2y+1)} on the stack and typing @kbd{a i y}
23419 will produce the integral @samp{-2 mycos(2y+1)}.  Note that Calc has
23420 automatically made various transformations on the integral to allow it
23421 to use your rule; integral tables generally give rules for
23422 @samp{mysin(a x + b)}, but you don't need to use this much generality
23423 in your @code{IntegRules}.
23425 @cindex Exponential integral Ei(x)
23426 @ignore
23427 @starindex
23428 @end ignore
23429 @tindex Ei
23430 As a more serious example, the expression @samp{exp(x)/x} cannot be
23431 integrated in terms of the standard functions, so the ``exponential
23432 integral'' function 
23433 @texline @math{{\rm Ei}(x)}
23434 @infoline @expr{Ei(x)} 
23435 was invented to describe it.
23436 We can get Calc to do this integral in terms of a made-up @code{Ei}
23437 function by adding the rule @samp{[integtry(exp(x)/x, x) := Ei(x)]}
23438 to @code{IntegRules}.  Now entering @samp{exp(2x)/x} on the stack
23439 and typing @kbd{a i x} yields @samp{Ei(2 x)}.  This new rule will
23440 work with Calc's various built-in integration methods (such as
23441 integration by substitution) to solve a variety of other problems
23442 involving @code{Ei}:  For example, now Calc will also be able to
23443 integrate @samp{exp(exp(x))} and @samp{ln(ln(x))} (to get @samp{Ei(exp(x))}
23444 and @samp{x ln(ln(x)) - Ei(ln(x))}, respectively).
23446 Your rule may do further integration by calling @code{integ}.  For
23447 example, @samp{integtry(twice(u),x) := twice(integ(u))} allows Calc
23448 to integrate @samp{twice(sin(x))} to get @samp{twice(-cos(x))}.
23449 Note that @code{integ} was called with only one argument.  This notation
23450 is allowed only within @code{IntegRules}; it means ``integrate this
23451 with respect to the same integration variable.''  If Calc is unable
23452 to integrate @code{u}, the integration that invoked @code{IntegRules}
23453 also fails.  Thus integrating @samp{twice(f(x))} fails, returning the
23454 unevaluated integral @samp{integ(twice(f(x)), x)}.  It is still valid
23455 to call @code{integ} with two or more arguments, however; in this case,
23456 if @code{u} is not integrable, @code{twice} itself will still be
23457 integrated:  If the above rule is changed to @samp{... := twice(integ(u,x))},
23458 then integrating @samp{twice(f(x))} will yield @samp{twice(integ(f(x),x))}.
23460 If a rule instead produces the formula @samp{integsubst(@var{sexpr},
23461 @var{svar})}, either replacing the top-level @code{integtry} call or
23462 nested anywhere inside the expression, then Calc will apply the
23463 substitution @samp{@var{u} = @var{sexpr}(@var{svar})} to try to
23464 integrate the original @var{expr}.  For example, the rule
23465 @samp{sqrt(a) := integsubst(sqrt(x),x)} says that if Calc ever finds
23466 a square root in the integrand, it should attempt the substitution
23467 @samp{u = sqrt(x)}.  (This particular rule is unnecessary because
23468 Calc always tries ``obvious'' substitutions where @var{sexpr} actually
23469 appears in the integrand.)  The variable @var{svar} may be the same
23470 as the @var{var} that appeared in the call to @code{integtry}, but
23471 it need not be.
23473 When integrating according to an @code{integsubst}, Calc uses the
23474 equation solver to find the inverse of @var{sexpr} (if the integrand
23475 refers to @var{var} anywhere except in subexpressions that exactly
23476 match @var{sexpr}).  It uses the differentiator to find the derivative
23477 of @var{sexpr} and/or its inverse (it has two methods that use one
23478 derivative or the other).  You can also specify these items by adding
23479 extra arguments to the @code{integsubst} your rules construct; the
23480 general form is @samp{integsubst(@var{sexpr}, @var{svar}, @var{sinv},
23481 @var{sprime})}, where @var{sinv} is the inverse of @var{sexpr} (still
23482 written as a function of @var{svar}), and @var{sprime} is the
23483 derivative of @var{sexpr} with respect to @var{svar}.  If you don't
23484 specify these things, and Calc is not able to work them out on its
23485 own with the information it knows, then your substitution rule will
23486 work only in very specific, simple cases.
23488 Calc applies @code{IntegRules} as if by @kbd{C-u 1 a r IntegRules};
23489 in other words, Calc stops rewriting as soon as any rule in your rule
23490 set succeeds.  (If it weren't for this, the @samp{integsubst(sqrt(x),x)}
23491 example above would keep on adding layers of @code{integsubst} calls
23492 forever!)
23494 @vindex IntegSimpRules
23495 Another set of rules, stored in @code{IntegSimpRules}, are applied
23496 every time the integrator uses @kbd{a s} to simplify an intermediate
23497 result.  For example, putting the rule @samp{twice(x) := 2 x} into
23498 @code{IntegSimpRules} would tell Calc to convert the @code{twice}
23499 function into a form it knows whenever integration is attempted.
23501 One more way to influence the integrator is to define a function with
23502 the @kbd{Z F} command (@pxref{Algebraic Definitions}).  Calc's
23503 integrator automatically expands such functions according to their
23504 defining formulas, even if you originally asked for the function to
23505 be left unevaluated for symbolic arguments.  (Certain other Calc
23506 systems, such as the differentiator and the equation solver, also
23507 do this.)
23509 @vindex IntegAfterRules
23510 Sometimes Calc is able to find a solution to your integral, but it
23511 expresses the result in a way that is unnecessarily complicated.  If
23512 this happens, you can either use @code{integsubst} as described
23513 above to try to hint at a more direct path to the desired result, or
23514 you can use @code{IntegAfterRules}.  This is an extra rule set that
23515 runs after the main integrator returns its result; basically, Calc does
23516 an @kbd{a r IntegAfterRules} on the result before showing it to you.
23517 (It also does an @kbd{a s}, without @code{IntegSimpRules}, after that
23518 to further simplify the result.)  For example, Calc's integrator
23519 sometimes produces expressions of the form @samp{ln(1+x) - ln(1-x)};
23520 the default @code{IntegAfterRules} rewrite this into the more readable
23521 form @samp{2 arctanh(x)}.  Note that, unlike @code{IntegRules},
23522 @code{IntegSimpRules} and @code{IntegAfterRules} are applied any number
23523 of times until no further changes are possible.  Rewriting by
23524 @code{IntegAfterRules} occurs only after the main integrator has
23525 finished, not at every step as for @code{IntegRules} and
23526 @code{IntegSimpRules}.
23528 @node Numerical Integration, Taylor Series, Customizing the Integrator, Calculus
23529 @subsection Numerical Integration
23531 @noindent
23532 @kindex a I
23533 @pindex calc-num-integral
23534 @tindex ninteg
23535 If you want a purely numerical answer to an integration problem, you can
23536 use the @kbd{a I} (@code{calc-num-integral}) [@code{ninteg}] command.  This
23537 command prompts for an integration variable, a lower limit, and an
23538 upper limit.  Except for the integration variable, all other variables
23539 that appear in the integrand formula must have stored values.  (A stored
23540 value, if any, for the integration variable itself is ignored.)
23542 Numerical integration works by evaluating your formula at many points in
23543 the specified interval.  Calc uses an ``open Romberg'' method; this means
23544 that it does not evaluate the formula actually at the endpoints (so that
23545 it is safe to integrate @samp{sin(x)/x} from zero, for example).  Also,
23546 the Romberg method works especially well when the function being
23547 integrated is fairly smooth.  If the function is not smooth, Calc will
23548 have to evaluate it at quite a few points before it can accurately
23549 determine the value of the integral.
23551 Integration is much faster when the current precision is small.  It is
23552 best to set the precision to the smallest acceptable number of digits
23553 before you use @kbd{a I}.  If Calc appears to be taking too long, press
23554 @kbd{C-g} to halt it and try a lower precision.  If Calc still appears
23555 to need hundreds of evaluations, check to make sure your function is
23556 well-behaved in the specified interval.
23558 It is possible for the lower integration limit to be @samp{-inf} (minus
23559 infinity).  Likewise, the upper limit may be plus infinity.  Calc
23560 internally transforms the integral into an equivalent one with finite
23561 limits.  However, integration to or across singularities is not supported:
23562 The integral of @samp{1/sqrt(x)} from 0 to 1 exists (it can be found
23563 by Calc's symbolic integrator, for example), but @kbd{a I} will fail
23564 because the integrand goes to infinity at one of the endpoints.
23566 @node Taylor Series, , Numerical Integration, Calculus
23567 @subsection Taylor Series
23569 @noindent
23570 @kindex a t
23571 @pindex calc-taylor
23572 @tindex taylor
23573 The @kbd{a t} (@code{calc-taylor}) [@code{taylor}] command computes a
23574 power series expansion or Taylor series of a function.  You specify the
23575 variable and the desired number of terms.  You may give an expression of
23576 the form @samp{@var{var} = @var{a}} or @samp{@var{var} - @var{a}} instead
23577 of just a variable to produce a Taylor expansion about the point @var{a}.
23578 You may specify the number of terms with a numeric prefix argument;
23579 otherwise the command will prompt you for the number of terms.  Note that
23580 many series expansions have coefficients of zero for some terms, so you
23581 may appear to get fewer terms than you asked for.
23583 If the @kbd{a i} command is unable to find a symbolic integral for a
23584 function, you can get an approximation by integrating the function's
23585 Taylor series.
23587 @node Solving Equations, Numerical Solutions, Calculus, Algebra
23588 @section Solving Equations
23590 @noindent
23591 @kindex a S
23592 @pindex calc-solve-for
23593 @tindex solve
23594 @cindex Equations, solving
23595 @cindex Solving equations
23596 The @kbd{a S} (@code{calc-solve-for}) [@code{solve}] command rearranges
23597 an equation to solve for a specific variable.  An equation is an
23598 expression of the form @expr{L = R}.  For example, the command @kbd{a S x}
23599 will rearrange @expr{y = 3x + 6} to the form, @expr{x = y/3 - 2}.  If the
23600 input is not an equation, it is treated like an equation of the
23601 form @expr{X = 0}.
23603 This command also works for inequalities, as in @expr{y < 3x + 6}.
23604 Some inequalities cannot be solved where the analogous equation could
23605 be; for example, solving 
23606 @texline @math{a < b \, c}
23607 @infoline @expr{a < b c} 
23608 for @expr{b} is impossible
23609 without knowing the sign of @expr{c}.  In this case, @kbd{a S} will
23610 produce the result 
23611 @texline @math{b \mathbin{\hbox{\code{!=}}} a/c}
23612 @infoline @expr{b != a/c} 
23613 (using the not-equal-to operator) to signify that the direction of the
23614 inequality is now unknown.  The inequality 
23615 @texline @math{a \le b \, c}
23616 @infoline @expr{a <= b c} 
23617 is not even partially solved.  @xref{Declarations}, for a way to tell
23618 Calc that the signs of the variables in a formula are in fact known.
23620 Two useful commands for working with the result of @kbd{a S} are
23621 @kbd{a .} (@pxref{Logical Operations}), which converts @expr{x = y/3 - 2}
23622 to @expr{y/3 - 2}, and @kbd{s l} (@pxref{Let Command}) which evaluates
23623 another formula with @expr{x} set equal to @expr{y/3 - 2}.
23625 @menu
23626 * Multiple Solutions::
23627 * Solving Systems of Equations::
23628 * Decomposing Polynomials::
23629 @end menu
23631 @node Multiple Solutions, Solving Systems of Equations, Solving Equations, Solving Equations
23632 @subsection Multiple Solutions
23634 @noindent
23635 @kindex H a S
23636 @tindex fsolve
23637 Some equations have more than one solution.  The Hyperbolic flag
23638 (@code{H a S}) [@code{fsolve}] tells the solver to report the fully
23639 general family of solutions.  It will invent variables @code{n1},
23640 @code{n2}, @dots{}, which represent independent arbitrary integers, and
23641 @code{s1}, @code{s2}, @dots{}, which represent independent arbitrary
23642 signs (either @mathit{+1} or @mathit{-1}).  If you don't use the Hyperbolic
23643 flag, Calc will use zero in place of all arbitrary integers, and plus
23644 one in place of all arbitrary signs.  Note that variables like @code{n1}
23645 and @code{s1} are not given any special interpretation in Calc except by
23646 the equation solver itself.  As usual, you can use the @w{@kbd{s l}}
23647 (@code{calc-let}) command to obtain solutions for various actual values
23648 of these variables.
23650 For example, @kbd{' x^2 = y @key{RET} H a S x @key{RET}} solves to
23651 get @samp{x = s1 sqrt(y)}, indicating that the two solutions to the
23652 equation are @samp{sqrt(y)} and @samp{-sqrt(y)}.  Another way to
23653 think about it is that the square-root operation is really a
23654 two-valued function; since every Calc function must return a
23655 single result, @code{sqrt} chooses to return the positive result.
23656 Then @kbd{H a S} doctors this result using @code{s1} to indicate
23657 the full set of possible values of the mathematical square-root.
23659 There is a similar phenomenon going the other direction:  Suppose
23660 we solve @samp{sqrt(y) = x} for @code{y}.  Calc squares both sides
23661 to get @samp{y = x^2}.  This is correct, except that it introduces
23662 some dubious solutions.  Consider solving @samp{sqrt(y) = -3}:
23663 Calc will report @expr{y = 9} as a valid solution, which is true
23664 in the mathematical sense of square-root, but false (there is no
23665 solution) for the actual Calc positive-valued @code{sqrt}.  This
23666 happens for both @kbd{a S} and @kbd{H a S}.
23668 @cindex @code{GenCount} variable
23669 @vindex GenCount
23670 @ignore
23671 @starindex
23672 @end ignore
23673 @tindex an
23674 @ignore
23675 @starindex
23676 @end ignore
23677 @tindex as
23678 If you store a positive integer in the Calc variable @code{GenCount},
23679 then Calc will generate formulas of the form @samp{as(@var{n})} for
23680 arbitrary signs, and @samp{an(@var{n})} for arbitrary integers,
23681 where @var{n} represents successive values taken by incrementing
23682 @code{GenCount} by one.  While the normal arbitrary sign and
23683 integer symbols start over at @code{s1} and @code{n1} with each
23684 new Calc command, the @code{GenCount} approach will give each
23685 arbitrary value a name that is unique throughout the entire Calc
23686 session.  Also, the arbitrary values are function calls instead
23687 of variables, which is advantageous in some cases.  For example,
23688 you can make a rewrite rule that recognizes all arbitrary signs
23689 using a pattern like @samp{as(n)}.  The @kbd{s l} command only works
23690 on variables, but you can use the @kbd{a b} (@code{calc-substitute})
23691 command to substitute actual values for function calls like @samp{as(3)}.
23693 The @kbd{s G} (@code{calc-edit-GenCount}) command is a convenient
23694 way to create or edit this variable.  Press @kbd{C-c C-c} to finish.
23696 If you have not stored a value in @code{GenCount}, or if the value
23697 in that variable is not a positive integer, the regular
23698 @code{s1}/@code{n1} notation is used.
23700 @kindex I a S
23701 @kindex H I a S
23702 @tindex finv
23703 @tindex ffinv
23704 With the Inverse flag, @kbd{I a S} [@code{finv}] treats the expression
23705 on top of the stack as a function of the specified variable and solves
23706 to find the inverse function, written in terms of the same variable.
23707 For example, @kbd{I a S x} inverts @expr{2x + 6} to @expr{x/2 - 3}.
23708 You can use both Inverse and Hyperbolic [@code{ffinv}] to obtain a
23709 fully general inverse, as described above.
23711 @kindex a P
23712 @pindex calc-poly-roots
23713 @tindex roots
23714 Some equations, specifically polynomials, have a known, finite number
23715 of solutions.  The @kbd{a P} (@code{calc-poly-roots}) [@code{roots}]
23716 command uses @kbd{H a S} to solve an equation in general form, then, for
23717 all arbitrary-sign variables like @code{s1}, and all arbitrary-integer
23718 variables like @code{n1} for which @code{n1} only usefully varies over
23719 a finite range, it expands these variables out to all their possible
23720 values.  The results are collected into a vector, which is returned.
23721 For example, @samp{roots(x^4 = 1, x)} returns the four solutions
23722 @samp{[1, -1, (0, 1), (0, -1)]}.  Generally an @var{n}th degree
23723 polynomial will always have @var{n} roots on the complex plane.
23724 (If you have given a @code{real} declaration for the solution
23725 variable, then only the real-valued solutions, if any, will be
23726 reported; @pxref{Declarations}.)
23728 Note that because @kbd{a P} uses @kbd{H a S}, it is able to deliver
23729 symbolic solutions if the polynomial has symbolic coefficients.  Also
23730 note that Calc's solver is not able to get exact symbolic solutions
23731 to all polynomials.  Polynomials containing powers up to @expr{x^4}
23732 can always be solved exactly; polynomials of higher degree sometimes
23733 can be:  @expr{x^6 + x^3 + 1} is converted to @expr{(x^3)^2 + (x^3) + 1},
23734 which can be solved for @expr{x^3} using the quadratic equation, and then
23735 for @expr{x} by taking cube roots.  But in many cases, like
23736 @expr{x^6 + x + 1}, Calc does not know how to rewrite the polynomial
23737 into a form it can solve.  The @kbd{a P} command can still deliver a
23738 list of numerical roots, however, provided that Symbolic mode (@kbd{m s})
23739 is not turned on.  (If you work with Symbolic mode on, recall that the
23740 @kbd{N} (@code{calc-eval-num}) key is a handy way to reevaluate the
23741 formula on the stack with Symbolic mode temporarily off.)  Naturally,
23742 @kbd{a P} can only provide numerical roots if the polynomial coefficients
23743 are all numbers (real or complex).
23745 @node Solving Systems of Equations, Decomposing Polynomials, Multiple Solutions, Solving Equations
23746 @subsection Solving Systems of Equations
23748 @noindent
23749 @cindex Systems of equations, symbolic
23750 You can also use the commands described above to solve systems of
23751 simultaneous equations.  Just create a vector of equations, then
23752 specify a vector of variables for which to solve.  (You can omit
23753 the surrounding brackets when entering the vector of variables
23754 at the prompt.)
23756 For example, putting @samp{[x + y = a, x - y = b]} on the stack
23757 and typing @kbd{a S x,y @key{RET}} produces the vector of solutions
23758 @samp{[x = a - (a-b)/2, y = (a-b)/2]}.  The result vector will
23759 have the same length as the variables vector, and the variables
23760 will be listed in the same order there.  Note that the solutions
23761 are not always simplified as far as possible; the solution for
23762 @expr{x} here could be improved by an application of the @kbd{a n}
23763 command.
23765 Calc's algorithm works by trying to eliminate one variable at a
23766 time by solving one of the equations for that variable and then
23767 substituting into the other equations.  Calc will try all the
23768 possibilities, but you can speed things up by noting that Calc
23769 first tries to eliminate the first variable with the first
23770 equation, then the second variable with the second equation,
23771 and so on.  It also helps to put the simpler (e.g., more linear)
23772 equations toward the front of the list.  Calc's algorithm will
23773 solve any system of linear equations, and also many kinds of
23774 nonlinear systems.
23776 @ignore
23777 @starindex
23778 @end ignore
23779 @tindex elim
23780 Normally there will be as many variables as equations.  If you
23781 give fewer variables than equations (an ``over-determined'' system
23782 of equations), Calc will find a partial solution.  For example,
23783 typing @kbd{a S y @key{RET}} with the above system of equations
23784 would produce @samp{[y = a - x]}.  There are now several ways to
23785 express this solution in terms of the original variables; Calc uses
23786 the first one that it finds.  You can control the choice by adding
23787 variable specifiers of the form @samp{elim(@var{v})} to the
23788 variables list.  This says that @var{v} should be eliminated from
23789 the equations; the variable will not appear at all in the solution.
23790 For example, typing @kbd{a S y,elim(x)} would yield
23791 @samp{[y = a - (b+a)/2]}.
23793 If the variables list contains only @code{elim} specifiers,
23794 Calc simply eliminates those variables from the equations
23795 and then returns the resulting set of equations.  For example,
23796 @kbd{a S elim(x)} produces @samp{[a - 2 y = b]}.  Every variable
23797 eliminated will reduce the number of equations in the system
23798 by one.
23800 Again, @kbd{a S} gives you one solution to the system of
23801 equations.  If there are several solutions, you can use @kbd{H a S}
23802 to get a general family of solutions, or, if there is a finite
23803 number of solutions, you can use @kbd{a P} to get a list.  (In
23804 the latter case, the result will take the form of a matrix where
23805 the rows are different solutions and the columns correspond to the
23806 variables you requested.)
23808 Another way to deal with certain kinds of overdetermined systems of
23809 equations is the @kbd{a F} command, which does least-squares fitting
23810 to satisfy the equations.  @xref{Curve Fitting}.
23812 @node Decomposing Polynomials, , Solving Systems of Equations, Solving Equations
23813 @subsection Decomposing Polynomials
23815 @noindent
23816 @ignore
23817 @starindex
23818 @end ignore
23819 @tindex poly
23820 The @code{poly} function takes a polynomial and a variable as
23821 arguments, and returns a vector of polynomial coefficients (constant
23822 coefficient first).  For example, @samp{poly(x^3 + 2 x, x)} returns
23823 @expr{[0, 2, 0, 1]}.  If the input is not a polynomial in @expr{x},
23824 the call to @code{poly} is left in symbolic form.  If the input does
23825 not involve the variable @expr{x}, the input is returned in a list
23826 of length one, representing a polynomial with only a constant
23827 coefficient.  The call @samp{poly(x, x)} returns the vector @expr{[0, 1]}.
23828 The last element of the returned vector is guaranteed to be nonzero;
23829 note that @samp{poly(0, x)} returns the empty vector @expr{[]}.
23830 Note also that @expr{x} may actually be any formula; for example,
23831 @samp{poly(sin(x)^2 - sin(x) + 3, sin(x))} returns @expr{[3, -1, 1]}.
23833 @cindex Coefficients of polynomial
23834 @cindex Degree of polynomial
23835 To get the @expr{x^k} coefficient of polynomial @expr{p}, use
23836 @samp{poly(p, x)_(k+1)}.  To get the degree of polynomial @expr{p},
23837 use @samp{vlen(poly(p, x)) - 1}.  For example, @samp{poly((x+1)^4, x)}
23838 returns @samp{[1, 4, 6, 4, 1]}, so @samp{poly((x+1)^4, x)_(2+1)}
23839 gives the @expr{x^2} coefficient of this polynomial, 6.
23841 @ignore
23842 @starindex
23843 @end ignore
23844 @tindex gpoly
23845 One important feature of the solver is its ability to recognize
23846 formulas which are ``essentially'' polynomials.  This ability is
23847 made available to the user through the @code{gpoly} function, which
23848 is used just like @code{poly}:  @samp{gpoly(@var{expr}, @var{var})}.
23849 If @var{expr} is a polynomial in some term which includes @var{var}, then
23850 this function will return a vector @samp{[@var{x}, @var{c}, @var{a}]}
23851 where @var{x} is the term that depends on @var{var}, @var{c} is a
23852 vector of polynomial coefficients (like the one returned by @code{poly}),
23853 and @var{a} is a multiplier which is usually 1.  Basically,
23854 @samp{@var{expr} = @var{a}*(@var{c}_1 + @var{c}_2 @var{x} +
23855 @var{c}_3 @var{x}^2 + ...)}.  The last element of @var{c} is
23856 guaranteed to be non-zero, and @var{c} will not equal @samp{[1]}
23857 (i.e., the trivial decomposition @var{expr} = @var{x} is not
23858 considered a polynomial).  One side effect is that @samp{gpoly(x, x)}
23859 and @samp{gpoly(6, x)}, both of which might be expected to recognize
23860 their arguments as polynomials, will not because the decomposition
23861 is considered trivial.
23863 For example, @samp{gpoly((x-2)^2, x)} returns @samp{[x, [4, -4, 1], 1]},
23864 since the expanded form of this polynomial is @expr{4 - 4 x + x^2}.
23866 The term @var{x} may itself be a polynomial in @var{var}.  This is
23867 done to reduce the size of the @var{c} vector.  For example,
23868 @samp{gpoly(x^4 + x^2 - 1, x)} returns @samp{[x^2, [-1, 1, 1], 1]},
23869 since a quadratic polynomial in @expr{x^2} is easier to solve than
23870 a quartic polynomial in @expr{x}.
23872 A few more examples of the kinds of polynomials @code{gpoly} can
23873 discover:
23875 @smallexample
23876 sin(x) - 1               [sin(x), [-1, 1], 1]
23877 x + 1/x - 1              [x, [1, -1, 1], 1/x]
23878 x + 1/x                  [x^2, [1, 1], 1/x]
23879 x^3 + 2 x                [x^2, [2, 1], x]
23880 x + x^2:3 + sqrt(x)      [x^1:6, [1, 1, 0, 1], x^1:2]
23881 x^(2a) + 2 x^a + 5       [x^a, [5, 2, 1], 1]
23882 (exp(-x) + exp(x)) / 2   [e^(2 x), [0.5, 0.5], e^-x]
23883 @end smallexample
23885 The @code{poly} and @code{gpoly} functions accept a third integer argument
23886 which specifies the largest degree of polynomial that is acceptable.
23887 If this is @expr{n}, then only @var{c} vectors of length @expr{n+1}
23888 or less will be returned.  Otherwise, the @code{poly} or @code{gpoly}
23889 call will remain in symbolic form.  For example, the equation solver
23890 can handle quartics and smaller polynomials, so it calls
23891 @samp{gpoly(@var{expr}, @var{var}, 4)} to discover whether @var{expr}
23892 can be treated by its linear, quadratic, cubic, or quartic formulas.
23894 @ignore
23895 @starindex
23896 @end ignore
23897 @tindex pdeg
23898 The @code{pdeg} function computes the degree of a polynomial;
23899 @samp{pdeg(p,x)} is the highest power of @code{x} that appears in
23900 @code{p}.  This is the same as @samp{vlen(poly(p,x))-1}, but is
23901 much more efficient.  If @code{p} is constant with respect to @code{x},
23902 then @samp{pdeg(p,x) = 0}.  If @code{p} is not a polynomial in @code{x}
23903 (e.g., @samp{pdeg(2 cos(x), x)}, the function remains unevaluated.
23904 It is possible to omit the second argument @code{x}, in which case
23905 @samp{pdeg(p)} returns the highest total degree of any term of the
23906 polynomial, counting all variables that appear in @code{p}.  Note
23907 that @code{pdeg(c) = pdeg(c,x) = 0} for any nonzero constant @code{c};
23908 the degree of the constant zero is considered to be @code{-inf}
23909 (minus infinity).
23911 @ignore
23912 @starindex
23913 @end ignore
23914 @tindex plead
23915 The @code{plead} function finds the leading term of a polynomial.
23916 Thus @samp{plead(p,x)} is equivalent to @samp{poly(p,x)_vlen(poly(p,x))},
23917 though again more efficient.  In particular, @samp{plead((2x+1)^10, x)}
23918 returns 1024 without expanding out the list of coefficients.  The
23919 value of @code{plead(p,x)} will be zero only if @expr{p = 0}.
23921 @ignore
23922 @starindex
23923 @end ignore
23924 @tindex pcont
23925 The @code{pcont} function finds the @dfn{content} of a polynomial.  This
23926 is the greatest common divisor of all the coefficients of the polynomial.
23927 With two arguments, @code{pcont(p,x)} effectively uses @samp{poly(p,x)}
23928 to get a list of coefficients, then uses @code{pgcd} (the polynomial
23929 GCD function) to combine these into an answer.  For example,
23930 @samp{pcont(4 x y^2 + 6 x^2 y, x)} is @samp{2 y}.  The content is
23931 basically the ``biggest'' polynomial that can be divided into @code{p}
23932 exactly.  The sign of the content is the same as the sign of the leading
23933 coefficient.
23935 With only one argument, @samp{pcont(p)} computes the numerical
23936 content of the polynomial, i.e., the @code{gcd} of the numerical
23937 coefficients of all the terms in the formula.  Note that @code{gcd}
23938 is defined on rational numbers as well as integers; it computes
23939 the @code{gcd} of the numerators and the @code{lcm} of the
23940 denominators.  Thus @samp{pcont(4:3 x y^2 + 6 x^2 y)} returns 2:3.
23941 Dividing the polynomial by this number will clear all the
23942 denominators, as well as dividing by any common content in the
23943 numerators.  The numerical content of a polynomial is negative only
23944 if all the coefficients in the polynomial are negative.
23946 @ignore
23947 @starindex
23948 @end ignore
23949 @tindex pprim
23950 The @code{pprim} function finds the @dfn{primitive part} of a
23951 polynomial, which is simply the polynomial divided (using @code{pdiv}
23952 if necessary) by its content.  If the input polynomial has rational
23953 coefficients, the result will have integer coefficients in simplest
23954 terms.
23956 @node Numerical Solutions, Curve Fitting, Solving Equations, Algebra
23957 @section Numerical Solutions
23959 @noindent
23960 Not all equations can be solved symbolically.  The commands in this
23961 section use numerical algorithms that can find a solution to a specific
23962 instance of an equation to any desired accuracy.  Note that the
23963 numerical commands are slower than their algebraic cousins; it is a
23964 good idea to try @kbd{a S} before resorting to these commands.
23966 (@xref{Curve Fitting}, for some other, more specialized, operations
23967 on numerical data.)
23969 @menu
23970 * Root Finding::
23971 * Minimization::
23972 * Numerical Systems of Equations::
23973 @end menu
23975 @node Root Finding, Minimization, Numerical Solutions, Numerical Solutions
23976 @subsection Root Finding
23978 @noindent
23979 @kindex a R
23980 @pindex calc-find-root
23981 @tindex root
23982 @cindex Newton's method
23983 @cindex Roots of equations
23984 @cindex Numerical root-finding
23985 The @kbd{a R} (@code{calc-find-root}) [@code{root}] command finds a
23986 numerical solution (or @dfn{root}) of an equation.  (This command treats
23987 inequalities the same as equations.  If the input is any other kind
23988 of formula, it is interpreted as an equation of the form @expr{X = 0}.)
23990 The @kbd{a R} command requires an initial guess on the top of the
23991 stack, and a formula in the second-to-top position.  It prompts for a
23992 solution variable, which must appear in the formula.  All other variables
23993 that appear in the formula must have assigned values, i.e., when
23994 a value is assigned to the solution variable and the formula is
23995 evaluated with @kbd{=}, it should evaluate to a number.  Any assigned
23996 value for the solution variable itself is ignored and unaffected by
23997 this command.
23999 When the command completes, the initial guess is replaced on the stack
24000 by a vector of two numbers:  The value of the solution variable that
24001 solves the equation, and the difference between the lefthand and
24002 righthand sides of the equation at that value.  Ordinarily, the second
24003 number will be zero or very nearly zero.  (Note that Calc uses a
24004 slightly higher precision while finding the root, and thus the second
24005 number may be slightly different from the value you would compute from
24006 the equation yourself.)
24008 The @kbd{v h} (@code{calc-head}) command is a handy way to extract
24009 the first element of the result vector, discarding the error term.
24011 The initial guess can be a real number, in which case Calc searches
24012 for a real solution near that number, or a complex number, in which
24013 case Calc searches the whole complex plane near that number for a
24014 solution, or it can be an interval form which restricts the search
24015 to real numbers inside that interval.
24017 Calc tries to use @kbd{a d} to take the derivative of the equation.
24018 If this succeeds, it uses Newton's method.  If the equation is not
24019 differentiable Calc uses a bisection method.  (If Newton's method
24020 appears to be going astray, Calc switches over to bisection if it
24021 can, or otherwise gives up.  In this case it may help to try again
24022 with a slightly different initial guess.)  If the initial guess is a
24023 complex number, the function must be differentiable.
24025 If the formula (or the difference between the sides of an equation)
24026 is negative at one end of the interval you specify and positive at
24027 the other end, the root finder is guaranteed to find a root.
24028 Otherwise, Calc subdivides the interval into small parts looking for
24029 positive and negative values to bracket the root.  When your guess is
24030 an interval, Calc will not look outside that interval for a root.
24032 @kindex H a R
24033 @tindex wroot
24034 The @kbd{H a R} [@code{wroot}] command is similar to @kbd{a R}, except
24035 that if the initial guess is an interval for which the function has
24036 the same sign at both ends, then rather than subdividing the interval
24037 Calc attempts to widen it to enclose a root.  Use this mode if
24038 you are not sure if the function has a root in your interval.
24040 If the function is not differentiable, and you give a simple number
24041 instead of an interval as your initial guess, Calc uses this widening
24042 process even if you did not type the Hyperbolic flag.  (If the function
24043 @emph{is} differentiable, Calc uses Newton's method which does not
24044 require a bounding interval in order to work.)
24046 If Calc leaves the @code{root} or @code{wroot} function in symbolic
24047 form on the stack, it will normally display an explanation for why
24048 no root was found.  If you miss this explanation, press @kbd{w}
24049 (@code{calc-why}) to get it back.
24051 @node Minimization, Numerical Systems of Equations, Root Finding, Numerical Solutions
24052 @subsection Minimization
24054 @noindent
24055 @kindex a N
24056 @kindex H a N
24057 @kindex a X
24058 @kindex H a X
24059 @pindex calc-find-minimum
24060 @pindex calc-find-maximum
24061 @tindex minimize
24062 @tindex maximize
24063 @cindex Minimization, numerical
24064 The @kbd{a N} (@code{calc-find-minimum}) [@code{minimize}] command
24065 finds a minimum value for a formula.  It is very similar in operation
24066 to @kbd{a R} (@code{calc-find-root}):  You give the formula and an initial
24067 guess on the stack, and are prompted for the name of a variable.  The guess
24068 may be either a number near the desired minimum, or an interval enclosing
24069 the desired minimum.  The function returns a vector containing the
24070 value of the variable which minimizes the formula's value, along
24071 with the minimum value itself.
24073 Note that this command looks for a @emph{local} minimum.  Many functions
24074 have more than one minimum; some, like 
24075 @texline @math{x \sin x},
24076 @infoline @expr{x sin(x)}, 
24077 have infinitely many.  In fact, there is no easy way to define the
24078 ``global'' minimum of 
24079 @texline @math{x \sin x}
24080 @infoline @expr{x sin(x)} 
24081 but Calc can still locate any particular local minimum
24082 for you.  Calc basically goes downhill from the initial guess until it
24083 finds a point at which the function's value is greater both to the left
24084 and to the right.  Calc does not use derivatives when minimizing a function.
24086 If your initial guess is an interval and it looks like the minimum
24087 occurs at one or the other endpoint of the interval, Calc will return
24088 that endpoint only if that endpoint is closed; thus, minimizing @expr{17 x}
24089 over @expr{[2..3]} will return @expr{[2, 38]}, but minimizing over
24090 @expr{(2..3]} would report no minimum found.  In general, you should
24091 use closed intervals to find literally the minimum value in that
24092 range of @expr{x}, or open intervals to find the local minimum, if
24093 any, that happens to lie in that range.
24095 Most functions are smooth and flat near their minimum values.  Because
24096 of this flatness, if the current precision is, say, 12 digits, the
24097 variable can only be determined meaningfully to about six digits.  Thus
24098 you should set the precision to twice as many digits as you need in your
24099 answer.
24101 @ignore
24102 @mindex wmin@idots
24103 @end ignore
24104 @tindex wminimize
24105 @ignore
24106 @mindex wmax@idots
24107 @end ignore
24108 @tindex wmaximize
24109 The @kbd{H a N} [@code{wminimize}] command, analogously to @kbd{H a R},
24110 expands the guess interval to enclose a minimum rather than requiring
24111 that the minimum lie inside the interval you supply.
24113 The @kbd{a X} (@code{calc-find-maximum}) [@code{maximize}] and
24114 @kbd{H a X} [@code{wmaximize}] commands effectively minimize the
24115 negative of the formula you supply.
24117 The formula must evaluate to a real number at all points inside the
24118 interval (or near the initial guess if the guess is a number).  If
24119 the initial guess is a complex number the variable will be minimized
24120 over the complex numbers; if it is real or an interval it will
24121 be minimized over the reals.
24123 @node Numerical Systems of Equations, , Minimization, Numerical Solutions
24124 @subsection Systems of Equations
24126 @noindent
24127 @cindex Systems of equations, numerical
24128 The @kbd{a R} command can also solve systems of equations.  In this
24129 case, the equation should instead be a vector of equations, the
24130 guess should instead be a vector of numbers (intervals are not
24131 supported), and the variable should be a vector of variables.  You
24132 can omit the brackets while entering the list of variables.  Each
24133 equation must be differentiable by each variable for this mode to
24134 work.  The result will be a vector of two vectors:  The variable
24135 values that solved the system of equations, and the differences
24136 between the sides of the equations with those variable values.
24137 There must be the same number of equations as variables.  Since
24138 only plain numbers are allowed as guesses, the Hyperbolic flag has
24139 no effect when solving a system of equations.
24141 It is also possible to minimize over many variables with @kbd{a N}
24142 (or maximize with @kbd{a X}).  Once again the variable name should
24143 be replaced by a vector of variables, and the initial guess should
24144 be an equal-sized vector of initial guesses.  But, unlike the case of
24145 multidimensional @kbd{a R}, the formula being minimized should
24146 still be a single formula, @emph{not} a vector.  Beware that
24147 multidimensional minimization is currently @emph{very} slow.
24149 @node Curve Fitting, Summations, Numerical Solutions, Algebra
24150 @section Curve Fitting
24152 @noindent
24153 The @kbd{a F} command fits a set of data to a @dfn{model formula},
24154 such as @expr{y = m x + b} where @expr{m} and @expr{b} are parameters
24155 to be determined.  For a typical set of measured data there will be
24156 no single @expr{m} and @expr{b} that exactly fit the data; in this
24157 case, Calc chooses values of the parameters that provide the closest
24158 possible fit.
24160 @menu
24161 * Linear Fits::
24162 * Polynomial and Multilinear Fits::
24163 * Error Estimates for Fits::
24164 * Standard Nonlinear Models::
24165 * Curve Fitting Details::
24166 * Interpolation::
24167 @end menu
24169 @node Linear Fits, Polynomial and Multilinear Fits, Curve Fitting, Curve Fitting
24170 @subsection Linear Fits
24172 @noindent
24173 @kindex a F
24174 @pindex calc-curve-fit
24175 @tindex fit
24176 @cindex Linear regression
24177 @cindex Least-squares fits
24178 The @kbd{a F} (@code{calc-curve-fit}) [@code{fit}] command attempts
24179 to fit a set of data (@expr{x} and @expr{y} vectors of numbers) to a
24180 straight line, polynomial, or other function of @expr{x}.  For the
24181 moment we will consider only the case of fitting to a line, and we
24182 will ignore the issue of whether or not the model was in fact a good
24183 fit for the data.
24185 In a standard linear least-squares fit, we have a set of @expr{(x,y)}
24186 data points that we wish to fit to the model @expr{y = m x + b}
24187 by adjusting the parameters @expr{m} and @expr{b} to make the @expr{y}
24188 values calculated from the formula be as close as possible to the actual
24189 @expr{y} values in the data set.  (In a polynomial fit, the model is
24190 instead, say, @expr{y = a x^3 + b x^2 + c x + d}.  In a multilinear fit,
24191 we have data points of the form @expr{(x_1,x_2,x_3,y)} and our model is
24192 @expr{y = a x_1 + b x_2 + c x_3 + d}.  These will be discussed later.)
24194 In the model formula, variables like @expr{x} and @expr{x_2} are called
24195 the @dfn{independent variables}, and @expr{y} is the @dfn{dependent
24196 variable}.  Variables like @expr{m}, @expr{a}, and @expr{b} are called
24197 the @dfn{parameters} of the model.
24199 The @kbd{a F} command takes the data set to be fitted from the stack.
24200 By default, it expects the data in the form of a matrix.  For example,
24201 for a linear or polynomial fit, this would be a 
24202 @texline @math{2\times N}
24203 @infoline 2xN
24204 matrix where the first row is a list of @expr{x} values and the second
24205 row has the corresponding @expr{y} values.  For the multilinear fit
24206 shown above, the matrix would have four rows (@expr{x_1}, @expr{x_2},
24207 @expr{x_3}, and @expr{y}, respectively).
24209 If you happen to have an 
24210 @texline @math{N\times2}
24211 @infoline Nx2
24212 matrix instead of a 
24213 @texline @math{2\times N}
24214 @infoline 2xN
24215 matrix, just press @kbd{v t} first to transpose the matrix.
24217 After you type @kbd{a F}, Calc prompts you to select a model.  For a
24218 linear fit, press the digit @kbd{1}.
24220 Calc then prompts for you to name the variables.  By default it chooses
24221 high letters like @expr{x} and @expr{y} for independent variables and
24222 low letters like @expr{a} and @expr{b} for parameters.  (The dependent
24223 variable doesn't need a name.)  The two kinds of variables are separated
24224 by a semicolon.  Since you generally care more about the names of the
24225 independent variables than of the parameters, Calc also allows you to
24226 name only those and let the parameters use default names.
24228 For example, suppose the data matrix
24230 @ifinfo
24231 @example
24232 @group
24233 [ [ 1, 2, 3, 4,  5  ]
24234   [ 5, 7, 9, 11, 13 ] ]
24235 @end group
24236 @end example
24237 @end ifinfo
24238 @tex
24239 \turnoffactive
24240 \turnoffactive
24241 \beforedisplay
24242 $$ \pmatrix{ 1 & 2 & 3 & 4  & 5  \cr
24243              5 & 7 & 9 & 11 & 13 }
24245 \afterdisplay
24246 @end tex
24248 @noindent
24249 is on the stack and we wish to do a simple linear fit.  Type
24250 @kbd{a F}, then @kbd{1} for the model, then @key{RET} to use
24251 the default names.  The result will be the formula @expr{3 + 2 x}
24252 on the stack.  Calc has created the model expression @kbd{a + b x},
24253 then found the optimal values of @expr{a} and @expr{b} to fit the
24254 data.  (In this case, it was able to find an exact fit.)  Calc then
24255 substituted those values for @expr{a} and @expr{b} in the model
24256 formula.
24258 The @kbd{a F} command puts two entries in the trail.  One is, as
24259 always, a copy of the result that went to the stack; the other is
24260 a vector of the actual parameter values, written as equations:
24261 @expr{[a = 3, b = 2]}, in case you'd rather read them in a list
24262 than pick them out of the formula.  (You can type @kbd{t y}
24263 to move this vector to the stack; see @ref{Trail Commands}.
24265 Specifying a different independent variable name will affect the
24266 resulting formula: @kbd{a F 1 k @key{RET}} produces @kbd{3 + 2 k}.
24267 Changing the parameter names (say, @kbd{a F 1 k;b,m @key{RET}}) will affect
24268 the equations that go into the trail.
24270 @tex
24271 \bigskip
24272 @end tex
24274 To see what happens when the fit is not exact, we could change
24275 the number 13 in the data matrix to 14 and try the fit again.
24276 The result is:
24278 @example
24279 2.6 + 2.2 x
24280 @end example
24282 Evaluating this formula, say with @kbd{v x 5 @key{RET} @key{TAB} V M $ @key{RET}}, shows
24283 a reasonably close match to the y-values in the data.
24285 @example
24286 [4.8, 7., 9.2, 11.4, 13.6]
24287 @end example
24289 Since there is no line which passes through all the @var{n} data points,
24290 Calc has chosen a line that best approximates the data points using
24291 the method of least squares.  The idea is to define the @dfn{chi-square}
24292 error measure
24294 @ifinfo
24295 @example
24296 chi^2 = sum((y_i - (a + b x_i))^2, i, 1, N)
24297 @end example
24298 @end ifinfo
24299 @tex
24300 \turnoffactive
24301 \beforedisplay
24302 $$ \chi^2 = \sum_{i=1}^N (y_i - (a + b x_i))^2 $$
24303 \afterdisplay
24304 @end tex
24306 @noindent
24307 which is clearly zero if @expr{a + b x} exactly fits all data points,
24308 and increases as various @expr{a + b x_i} values fail to match the
24309 corresponding @expr{y_i} values.  There are several reasons why the
24310 summand is squared, one of them being to ensure that 
24311 @texline @math{\chi^2 \ge 0}.
24312 @infoline @expr{chi^2 >= 0}.
24313 Least-squares fitting simply chooses the values of @expr{a} and @expr{b}
24314 for which the error 
24315 @texline @math{\chi^2}
24316 @infoline @expr{chi^2} 
24317 is as small as possible.
24319 Other kinds of models do the same thing but with a different model
24320 formula in place of @expr{a + b x_i}.
24322 @tex
24323 \bigskip
24324 @end tex
24326 A numeric prefix argument causes the @kbd{a F} command to take the
24327 data in some other form than one big matrix.  A positive argument @var{n}
24328 will take @var{N} items from the stack, corresponding to the @var{n} rows
24329 of a data matrix.  In the linear case, @var{n} must be 2 since there
24330 is always one independent variable and one dependent variable.
24332 A prefix of zero or plain @kbd{C-u} is a compromise; Calc takes two
24333 items from the stack, an @var{n}-row matrix of @expr{x} values, and a
24334 vector of @expr{y} values.  If there is only one independent variable,
24335 the @expr{x} values can be either a one-row matrix or a plain vector,
24336 in which case the @kbd{C-u} prefix is the same as a @w{@kbd{C-u 2}} prefix.
24338 @node Polynomial and Multilinear Fits, Error Estimates for Fits, Linear Fits, Curve Fitting
24339 @subsection Polynomial and Multilinear Fits
24341 @noindent
24342 To fit the data to higher-order polynomials, just type one of the
24343 digits @kbd{2} through @kbd{9} when prompted for a model.  For example,
24344 we could fit the original data matrix from the previous section
24345 (with 13, not 14) to a parabola instead of a line by typing
24346 @kbd{a F 2 @key{RET}}.
24348 @example
24349 2.00000000001 x - 1.5e-12 x^2 + 2.99999999999
24350 @end example
24352 Note that since the constant and linear terms are enough to fit the
24353 data exactly, it's no surprise that Calc chose a tiny contribution
24354 for @expr{x^2}.  (The fact that it's not exactly zero is due only
24355 to roundoff error.  Since our data are exact integers, we could get
24356 an exact answer by typing @kbd{m f} first to get Fraction mode.
24357 Then the @expr{x^2} term would vanish altogether.  Usually, though,
24358 the data being fitted will be approximate floats so Fraction mode
24359 won't help.)
24361 Doing the @kbd{a F 2} fit on the data set with 14 instead of 13
24362 gives a much larger @expr{x^2} contribution, as Calc bends the
24363 line slightly to improve the fit.
24365 @example
24366 0.142857142855 x^2 + 1.34285714287 x + 3.59999999998
24367 @end example
24369 An important result from the theory of polynomial fitting is that it
24370 is always possible to fit @var{n} data points exactly using a polynomial
24371 of degree @mathit{@var{n}-1}, sometimes called an @dfn{interpolating polynomial}.
24372 Using the modified (14) data matrix, a model number of 4 gives
24373 a polynomial that exactly matches all five data points:
24375 @example
24376 0.04167 x^4 - 0.4167 x^3 + 1.458 x^2 - 0.08333 x + 4.
24377 @end example
24379 The actual coefficients we get with a precision of 12, like
24380 @expr{0.0416666663588}, clearly suffer from loss of precision.
24381 It is a good idea to increase the working precision to several
24382 digits beyond what you need when you do a fitting operation.
24383 Or, if your data are exact, use Fraction mode to get exact
24384 results.
24386 You can type @kbd{i} instead of a digit at the model prompt to fit
24387 the data exactly to a polynomial.  This just counts the number of
24388 columns of the data matrix to choose the degree of the polynomial
24389 automatically.
24391 Fitting data ``exactly'' to high-degree polynomials is not always
24392 a good idea, though.  High-degree polynomials have a tendency to
24393 wiggle uncontrollably in between the fitting data points.  Also,
24394 if the exact-fit polynomial is going to be used to interpolate or
24395 extrapolate the data, it is numerically better to use the @kbd{a p}
24396 command described below.  @xref{Interpolation}.
24398 @tex
24399 \bigskip
24400 @end tex
24402 Another generalization of the linear model is to assume the
24403 @expr{y} values are a sum of linear contributions from several
24404 @expr{x} values.  This is a @dfn{multilinear} fit, and it is also
24405 selected by the @kbd{1} digit key.  (Calc decides whether the fit
24406 is linear or multilinear by counting the rows in the data matrix.)
24408 Given the data matrix,
24410 @example
24411 @group
24412 [ [  1,   2,   3,    4,   5  ]
24413   [  7,   2,   3,    5,   2  ]
24414   [ 14.5, 15, 18.5, 22.5, 24 ] ]
24415 @end group
24416 @end example
24418 @noindent
24419 the command @kbd{a F 1 @key{RET}} will call the first row @expr{x} and the
24420 second row @expr{y}, and will fit the values in the third row to the
24421 model @expr{a + b x + c y}.
24423 @example
24424 8. + 3. x + 0.5 y
24425 @end example
24427 Calc can do multilinear fits with any number of independent variables
24428 (i.e., with any number of data rows).
24430 @tex
24431 \bigskip
24432 @end tex
24434 Yet another variation is @dfn{homogeneous} linear models, in which
24435 the constant term is known to be zero.  In the linear case, this
24436 means the model formula is simply @expr{a x}; in the multilinear
24437 case, the model might be @expr{a x + b y + c z}; and in the polynomial
24438 case, the model could be @expr{a x + b x^2 + c x^3}.  You can get
24439 a homogeneous linear or multilinear model by pressing the letter
24440 @kbd{h} followed by a regular model key, like @kbd{1} or @kbd{2}.
24442 It is certainly possible to have other constrained linear models,
24443 like @expr{2.3 + a x} or @expr{a - 4 x}.  While there is no single
24444 key to select models like these, a later section shows how to enter
24445 any desired model by hand.  In the first case, for example, you
24446 would enter @kbd{a F ' 2.3 + a x}.
24448 Another class of models that will work but must be entered by hand
24449 are multinomial fits, e.g., @expr{a + b x + c y + d x^2 + e y^2 + f x y}.
24451 @node Error Estimates for Fits, Standard Nonlinear Models, Polynomial and Multilinear Fits, Curve Fitting
24452 @subsection Error Estimates for Fits
24454 @noindent
24455 @kindex H a F
24456 @tindex efit
24457 With the Hyperbolic flag, @kbd{H a F} [@code{efit}] performs the same
24458 fitting operation as @kbd{a F}, but reports the coefficients as error
24459 forms instead of plain numbers.  Fitting our two data matrices (first
24460 with 13, then with 14) to a line with @kbd{H a F} gives the results,
24462 @example
24463 3. + 2. x
24464 2.6 +/- 0.382970843103 + 2.2 +/- 0.115470053838 x
24465 @end example
24467 In the first case the estimated errors are zero because the linear
24468 fit is perfect.  In the second case, the errors are nonzero but
24469 moderately small, because the data are still very close to linear.
24471 It is also possible for the @emph{input} to a fitting operation to
24472 contain error forms.  The data values must either all include errors
24473 or all be plain numbers.  Error forms can go anywhere but generally
24474 go on the numbers in the last row of the data matrix.  If the last
24475 row contains error forms
24476 @texline `@var{y_i}@w{ @tfn{+/-} }@math{\sigma_i}', 
24477 @infoline `@var{y_i}@w{ @tfn{+/-} }@var{sigma_i}', 
24478 then the 
24479 @texline @math{\chi^2}
24480 @infoline @expr{chi^2}
24481 statistic is now,
24483 @ifinfo
24484 @example
24485 chi^2 = sum(((y_i - (a + b x_i)) / sigma_i)^2, i, 1, N)
24486 @end example
24487 @end ifinfo
24488 @tex
24489 \turnoffactive
24490 \beforedisplay
24491 $$ \chi^2 = \sum_{i=1}^N \left(y_i - (a + b x_i) \over \sigma_i\right)^2 $$
24492 \afterdisplay
24493 @end tex
24495 @noindent
24496 so that data points with larger error estimates contribute less to
24497 the fitting operation.
24499 If there are error forms on other rows of the data matrix, all the
24500 errors for a given data point are combined; the square root of the
24501 sum of the squares of the errors forms the 
24502 @texline @math{\sigma_i}
24503 @infoline @expr{sigma_i} 
24504 used for the data point.
24506 Both @kbd{a F} and @kbd{H a F} can accept error forms in the input
24507 matrix, although if you are concerned about error analysis you will
24508 probably use @kbd{H a F} so that the output also contains error
24509 estimates.
24511 If the input contains error forms but all the 
24512 @texline @math{\sigma_i}
24513 @infoline @expr{sigma_i} 
24514 values are the same, it is easy to see that the resulting fitted model
24515 will be the same as if the input did not have error forms at all 
24516 @texline (@math{\chi^2}
24517 @infoline (@expr{chi^2}
24518 is simply scaled uniformly by 
24519 @texline @math{1 / \sigma^2},
24520 @infoline @expr{1 / sigma^2}, 
24521 which doesn't affect where it has a minimum).  But there @emph{will} be
24522 a difference in the estimated errors of the coefficients reported by
24523 @kbd{H a F}. 
24525 Consult any text on statistical modeling of data for a discussion
24526 of where these error estimates come from and how they should be
24527 interpreted.
24529 @tex
24530 \bigskip
24531 @end tex
24533 @kindex I a F
24534 @tindex xfit
24535 With the Inverse flag, @kbd{I a F} [@code{xfit}] produces even more
24536 information.  The result is a vector of six items:
24538 @enumerate
24539 @item
24540 The model formula with error forms for its coefficients or
24541 parameters.  This is the result that @kbd{H a F} would have
24542 produced.
24544 @item
24545 A vector of ``raw'' parameter values for the model.  These are the
24546 polynomial coefficients or other parameters as plain numbers, in the
24547 same order as the parameters appeared in the final prompt of the
24548 @kbd{I a F} command.  For polynomials of degree @expr{d}, this vector
24549 will have length @expr{M = d+1} with the constant term first.
24551 @item
24552 The covariance matrix @expr{C} computed from the fit.  This is
24553 an @var{m}x@var{m} symmetric matrix; the diagonal elements
24554 @texline @math{C_{jj}}
24555 @infoline @expr{C_j_j} 
24556 are the variances 
24557 @texline @math{\sigma_j^2}
24558 @infoline @expr{sigma_j^2} 
24559 of the parameters.  The other elements are covariances
24560 @texline @math{\sigma_{ij}^2} 
24561 @infoline @expr{sigma_i_j^2} 
24562 that describe the correlation between pairs of parameters.  (A related
24563 set of numbers, the @dfn{linear correlation coefficients} 
24564 @texline @math{r_{ij}},
24565 @infoline @expr{r_i_j},
24566 are defined as 
24567 @texline @math{\sigma_{ij}^2 / \sigma_i \, \sigma_j}.)
24568 @infoline @expr{sigma_i_j^2 / sigma_i sigma_j}.)
24570 @item
24571 A vector of @expr{M} ``parameter filter'' functions whose
24572 meanings are described below.  If no filters are necessary this
24573 will instead be an empty vector; this is always the case for the
24574 polynomial and multilinear fits described so far.
24576 @item
24577 The value of 
24578 @texline @math{\chi^2}
24579 @infoline @expr{chi^2} 
24580 for the fit, calculated by the formulas shown above.  This gives a
24581 measure of the quality of the fit; statisticians consider
24582 @texline @math{\chi^2 \approx N - M}
24583 @infoline @expr{chi^2 = N - M} 
24584 to indicate a moderately good fit (where again @expr{N} is the number of
24585 data points and @expr{M} is the number of parameters).
24587 @item
24588 A measure of goodness of fit expressed as a probability @expr{Q}.
24589 This is computed from the @code{utpc} probability distribution
24590 function using 
24591 @texline @math{\chi^2}
24592 @infoline @expr{chi^2} 
24593 with @expr{N - M} degrees of freedom.  A
24594 value of 0.5 implies a good fit; some texts recommend that often
24595 @expr{Q = 0.1} or even 0.001 can signify an acceptable fit.  In
24596 particular, 
24597 @texline @math{\chi^2}
24598 @infoline @expr{chi^2} 
24599 statistics assume the errors in your inputs
24600 follow a normal (Gaussian) distribution; if they don't, you may
24601 have to accept smaller values of @expr{Q}.
24603 The @expr{Q} value is computed only if the input included error
24604 estimates.  Otherwise, Calc will report the symbol @code{nan}
24605 for @expr{Q}.  The reason is that in this case the 
24606 @texline @math{\chi^2}
24607 @infoline @expr{chi^2}
24608 value has effectively been used to estimate the original errors
24609 in the input, and thus there is no redundant information left
24610 over to use for a confidence test.
24611 @end enumerate
24613 @node Standard Nonlinear Models, Curve Fitting Details, Error Estimates for Fits, Curve Fitting
24614 @subsection Standard Nonlinear Models
24616 @noindent
24617 The @kbd{a F} command also accepts other kinds of models besides
24618 lines and polynomials.  Some common models have quick single-key
24619 abbreviations; others must be entered by hand as algebraic formulas.
24621 Here is a complete list of the standard models recognized by @kbd{a F}:
24623 @table @kbd
24624 @item 1
24625 Linear or multilinear.  @mathit{a + b x + c y + d z}.
24626 @item 2-9
24627 Polynomials.  @mathit{a + b x + c x^2 + d x^3}.
24628 @item e
24629 Exponential.  @mathit{a} @tfn{exp}@mathit{(b x)} @tfn{exp}@mathit{(c y)}.
24630 @item E
24631 Base-10 exponential.  @mathit{a} @tfn{10^}@mathit{(b x)} @tfn{10^}@mathit{(c y)}.
24632 @item x
24633 Exponential (alternate notation).  @tfn{exp}@mathit{(a + b x + c y)}.
24634 @item X
24635 Base-10 exponential (alternate).  @tfn{10^}@mathit{(a + b x + c y)}.
24636 @item l
24637 Logarithmic.  @mathit{a + b} @tfn{ln}@mathit{(x) + c} @tfn{ln}@mathit{(y)}.
24638 @item L
24639 Base-10 logarithmic.  @mathit{a + b} @tfn{log10}@mathit{(x) + c} @tfn{log10}@mathit{(y)}.
24640 @item ^
24641 General exponential.  @mathit{a b^x c^y}.
24642 @item p
24643 Power law.  @mathit{a x^b y^c}.
24644 @item q
24645 Quadratic.  @mathit{a + b (x-c)^2 + d (x-e)^2}.
24646 @item g
24647 Gaussian.  
24648 @texline @math{{a \over b \sqrt{2 \pi}} \exp\left( -{1 \over 2} \left( x - c \over b \right)^2 \right)}.
24649 @infoline @mathit{(a / b sqrt(2 pi)) exp(-0.5*((x-c)/b)^2)}.
24650 @end table
24652 All of these models are used in the usual way; just press the appropriate
24653 letter at the model prompt, and choose variable names if you wish.  The
24654 result will be a formula as shown in the above table, with the best-fit
24655 values of the parameters substituted.  (You may find it easier to read
24656 the parameter values from the vector that is placed in the trail.)
24658 All models except Gaussian and polynomials can generalize as shown to any
24659 number of independent variables.  Also, all the built-in models have an
24660 additive or multiplicative parameter shown as @expr{a} in the above table
24661 which can be replaced by zero or one, as appropriate, by typing @kbd{h}
24662 before the model key.
24664 Note that many of these models are essentially equivalent, but express
24665 the parameters slightly differently.  For example, @expr{a b^x} and
24666 the other two exponential models are all algebraic rearrangements of
24667 each other.  Also, the ``quadratic'' model is just a degree-2 polynomial
24668 with the parameters expressed differently.  Use whichever form best
24669 matches the problem.
24671 The HP-28/48 calculators support four different models for curve
24672 fitting, called @code{LIN}, @code{LOG}, @code{EXP}, and @code{PWR}.
24673 These correspond to Calc models @samp{a + b x}, @samp{a + b ln(x)},
24674 @samp{a exp(b x)}, and @samp{a x^b}, respectively.  In each case,
24675 @expr{a} is what the HP-48 identifies as the ``intercept,'' and
24676 @expr{b} is what it calls the ``slope.''
24678 @tex
24679 \bigskip
24680 @end tex
24682 If the model you want doesn't appear on this list, press @kbd{'}
24683 (the apostrophe key) at the model prompt to enter any algebraic
24684 formula, such as @kbd{m x - b}, as the model.  (Not all models
24685 will work, though---see the next section for details.)
24687 The model can also be an equation like @expr{y = m x + b}.
24688 In this case, Calc thinks of all the rows of the data matrix on
24689 equal terms; this model effectively has two parameters
24690 (@expr{m} and @expr{b}) and two independent variables (@expr{x}
24691 and @expr{y}), with no ``dependent'' variables.  Model equations
24692 do not need to take this @expr{y =} form.  For example, the
24693 implicit line equation @expr{a x + b y = 1} works fine as a
24694 model.
24696 When you enter a model, Calc makes an alphabetical list of all
24697 the variables that appear in the model.  These are used for the
24698 default parameters, independent variables, and dependent variable
24699 (in that order).  If you enter a plain formula (not an equation),
24700 Calc assumes the dependent variable does not appear in the formula
24701 and thus does not need a name.
24703 For example, if the model formula has the variables @expr{a,mu,sigma,t,x},
24704 and the data matrix has three rows (meaning two independent variables),
24705 Calc will use @expr{a,mu,sigma} as the default parameters, and the
24706 data rows will be named @expr{t} and @expr{x}, respectively.  If you
24707 enter an equation instead of a plain formula, Calc will use @expr{a,mu}
24708 as the parameters, and @expr{sigma,t,x} as the three independent
24709 variables.
24711 You can, of course, override these choices by entering something
24712 different at the prompt.  If you leave some variables out of the list,
24713 those variables must have stored values and those stored values will
24714 be used as constants in the model.  (Stored values for the parameters
24715 and independent variables are ignored by the @kbd{a F} command.)
24716 If you list only independent variables, all the remaining variables
24717 in the model formula will become parameters.
24719 If there are @kbd{$} signs in the model you type, they will stand
24720 for parameters and all other variables (in alphabetical order)
24721 will be independent.  Use @kbd{$} for one parameter, @kbd{$$} for
24722 another, and so on.  Thus @kbd{$ x + $$} is another way to describe
24723 a linear model.
24725 If you type a @kbd{$} instead of @kbd{'} at the model prompt itself,
24726 Calc will take the model formula from the stack.  (The data must then
24727 appear at the second stack level.)  The same conventions are used to
24728 choose which variables in the formula are independent by default and
24729 which are parameters.
24731 Models taken from the stack can also be expressed as vectors of
24732 two or three elements, @expr{[@var{model}, @var{vars}]} or
24733 @expr{[@var{model}, @var{vars}, @var{params}]}.  Each of @var{vars}
24734 and @var{params} may be either a variable or a vector of variables.
24735 (If @var{params} is omitted, all variables in @var{model} except
24736 those listed as @var{vars} are parameters.)
24738 When you enter a model manually with @kbd{'}, Calc puts a 3-vector
24739 describing the model in the trail so you can get it back if you wish.
24741 @tex
24742 \bigskip
24743 @end tex
24745 @vindex Model1
24746 @vindex Model2
24747 Finally, you can store a model in one of the Calc variables
24748 @code{Model1} or @code{Model2}, then use this model by typing
24749 @kbd{a F u} or @kbd{a F U} (respectively).  The value stored in
24750 the variable can be any of the formats that @kbd{a F $} would
24751 accept for a model on the stack.
24753 @tex
24754 \bigskip
24755 @end tex
24757 Calc uses the principal values of inverse functions like @code{ln}
24758 and @code{arcsin} when doing fits.  For example, when you enter
24759 the model @samp{y = sin(a t + b)} Calc actually uses the easier
24760 form @samp{arcsin(y) = a t + b}.  The @code{arcsin} function always
24761 returns results in the range from @mathit{-90} to 90 degrees (or the
24762 equivalent range in radians).  Suppose you had data that you
24763 believed to represent roughly three oscillations of a sine wave,
24764 so that the argument of the sine might go from zero to 
24765 @texline @math{3\times360}
24766 @infoline @mathit{3*360} 
24767 degrees.
24768 The above model would appear to be a good way to determine the
24769 true frequency and phase of the sine wave, but in practice it
24770 would fail utterly.  The righthand side of the actual model
24771 @samp{arcsin(y) = a t + b} will grow smoothly with @expr{t}, but
24772 the lefthand side will bounce back and forth between @mathit{-90} and 90.
24773 No values of @expr{a} and @expr{b} can make the two sides match,
24774 even approximately.
24776 There is no good solution to this problem at present.  You could
24777 restrict your data to small enough ranges so that the above problem
24778 doesn't occur (i.e., not straddling any peaks in the sine wave).
24779 Or, in this case, you could use a totally different method such as
24780 Fourier analysis, which is beyond the scope of the @kbd{a F} command.
24781 (Unfortunately, Calc does not currently have any facilities for
24782 taking Fourier and related transforms.)
24784 @node Curve Fitting Details, Interpolation, Standard Nonlinear Models, Curve Fitting
24785 @subsection Curve Fitting Details
24787 @noindent
24788 Calc's internal least-squares fitter can only handle multilinear
24789 models.  More precisely, it can handle any model of the form
24790 @expr{a f(x,y,z) + b g(x,y,z) + c h(x,y,z)}, where @expr{a,b,c}
24791 are the parameters and @expr{x,y,z} are the independent variables
24792 (of course there can be any number of each, not just three).
24794 In a simple multilinear or polynomial fit, it is easy to see how
24795 to convert the model into this form.  For example, if the model
24796 is @expr{a + b x + c x^2}, then @expr{f(x) = 1}, @expr{g(x) = x},
24797 and @expr{h(x) = x^2} are suitable functions.
24799 For other models, Calc uses a variety of algebraic manipulations
24800 to try to put the problem into the form
24802 @smallexample
24803 Y(x,y,z) = A(a,b,c) F(x,y,z) + B(a,b,c) G(x,y,z) + C(a,b,c) H(x,y,z)
24804 @end smallexample
24806 @noindent
24807 where @expr{Y,A,B,C,F,G,H} are arbitrary functions.  It computes
24808 @expr{Y}, @expr{F}, @expr{G}, and @expr{H} for all the data points,
24809 does a standard linear fit to find the values of @expr{A}, @expr{B},
24810 and @expr{C}, then uses the equation solver to solve for @expr{a,b,c}
24811 in terms of @expr{A,B,C}.
24813 A remarkable number of models can be cast into this general form.
24814 We'll look at two examples here to see how it works.  The power-law
24815 model @expr{y = a x^b} with two independent variables and two parameters
24816 can be rewritten as follows:
24818 @example
24819 y = a x^b
24820 y = a exp(b ln(x))
24821 y = exp(ln(a) + b ln(x))
24822 ln(y) = ln(a) + b ln(x)
24823 @end example
24825 @noindent
24826 which matches the desired form with 
24827 @texline @math{Y = \ln(y)},
24828 @infoline @expr{Y = ln(y)}, 
24829 @texline @math{A = \ln(a)},
24830 @infoline @expr{A = ln(a)},
24831 @expr{F = 1}, @expr{B = b}, and 
24832 @texline @math{G = \ln(x)}.
24833 @infoline @expr{G = ln(x)}.  
24834 Calc thus computes the logarithms of your @expr{y} and @expr{x} values,
24835 does a linear fit for @expr{A} and @expr{B}, then solves to get 
24836 @texline @math{a = \exp(A)} 
24837 @infoline @expr{a = exp(A)} 
24838 and @expr{b = B}.
24840 Another interesting example is the ``quadratic'' model, which can
24841 be handled by expanding according to the distributive law.
24843 @example
24844 y = a + b*(x - c)^2
24845 y = a + b c^2 - 2 b c x + b x^2
24846 @end example
24848 @noindent
24849 which matches with @expr{Y = y}, @expr{A = a + b c^2}, @expr{F = 1},
24850 @expr{B = -2 b c}, @expr{G = x} (the @mathit{-2} factor could just as easily
24851 have been put into @expr{G} instead of @expr{B}), @expr{C = b}, and
24852 @expr{H = x^2}.
24854 The Gaussian model looks quite complicated, but a closer examination
24855 shows that it's actually similar to the quadratic model but with an
24856 exponential that can be brought to the top and moved into @expr{Y}.
24858 An example of a model that cannot be put into general linear
24859 form is a Gaussian with a constant background added on, i.e.,
24860 @expr{d} + the regular Gaussian formula.  If you have a model like
24861 this, your best bet is to replace enough of your parameters with
24862 constants to make the model linearizable, then adjust the constants
24863 manually by doing a series of fits.  You can compare the fits by
24864 graphing them, by examining the goodness-of-fit measures returned by
24865 @kbd{I a F}, or by some other method suitable to your application.
24866 Note that some models can be linearized in several ways.  The
24867 Gaussian-plus-@var{d} model can be linearized by setting @expr{d}
24868 (the background) to a constant, or by setting @expr{b} (the standard
24869 deviation) and @expr{c} (the mean) to constants.
24871 To fit a model with constants substituted for some parameters, just
24872 store suitable values in those parameter variables, then omit them
24873 from the list of parameters when you answer the variables prompt.
24875 @tex
24876 \bigskip
24877 @end tex
24879 A last desperate step would be to use the general-purpose
24880 @code{minimize} function rather than @code{fit}.  After all, both
24881 functions solve the problem of minimizing an expression (the 
24882 @texline @math{\chi^2}
24883 @infoline @expr{chi^2}
24884 sum) by adjusting certain parameters in the expression.  The @kbd{a F}
24885 command is able to use a vastly more efficient algorithm due to its
24886 special knowledge about linear chi-square sums, but the @kbd{a N}
24887 command can do the same thing by brute force.
24889 A compromise would be to pick out a few parameters without which the
24890 fit is linearizable, and use @code{minimize} on a call to @code{fit}
24891 which efficiently takes care of the rest of the parameters.  The thing
24892 to be minimized would be the value of 
24893 @texline @math{\chi^2}
24894 @infoline @expr{chi^2} 
24895 returned as the fifth result of the @code{xfit} function:
24897 @smallexample
24898 minimize(xfit(gaus(a,b,c,d,x), x, [a,b,c], data)_5, d, guess)
24899 @end smallexample
24901 @noindent
24902 where @code{gaus} represents the Gaussian model with background,
24903 @code{data} represents the data matrix, and @code{guess} represents
24904 the initial guess for @expr{d} that @code{minimize} requires.
24905 This operation will only be, shall we say, extraordinarily slow
24906 rather than astronomically slow (as would be the case if @code{minimize}
24907 were used by itself to solve the problem).
24909 @tex
24910 \bigskip
24911 @end tex
24913 The @kbd{I a F} [@code{xfit}] command is somewhat trickier when
24914 nonlinear models are used.  The second item in the result is the
24915 vector of ``raw'' parameters @expr{A}, @expr{B}, @expr{C}.  The
24916 covariance matrix is written in terms of those raw parameters.
24917 The fifth item is a vector of @dfn{filter} expressions.  This
24918 is the empty vector @samp{[]} if the raw parameters were the same
24919 as the requested parameters, i.e., if @expr{A = a}, @expr{B = b},
24920 and so on (which is always true if the model is already linear
24921 in the parameters as written, e.g., for polynomial fits).  If the
24922 parameters had to be rearranged, the fifth item is instead a vector
24923 of one formula per parameter in the original model.  The raw
24924 parameters are expressed in these ``filter'' formulas as
24925 @samp{fitdummy(1)} for @expr{A}, @samp{fitdummy(2)} for @expr{B},
24926 and so on.
24928 When Calc needs to modify the model to return the result, it replaces
24929 @samp{fitdummy(1)} in all the filters with the first item in the raw
24930 parameters list, and so on for the other raw parameters, then
24931 evaluates the resulting filter formulas to get the actual parameter
24932 values to be substituted into the original model.  In the case of
24933 @kbd{H a F} and @kbd{I a F} where the parameters must be error forms,
24934 Calc uses the square roots of the diagonal entries of the covariance
24935 matrix as error values for the raw parameters, then lets Calc's
24936 standard error-form arithmetic take it from there.
24938 If you use @kbd{I a F} with a nonlinear model, be sure to remember
24939 that the covariance matrix is in terms of the raw parameters,
24940 @emph{not} the actual requested parameters.  It's up to you to
24941 figure out how to interpret the covariances in the presence of
24942 nontrivial filter functions.
24944 Things are also complicated when the input contains error forms.
24945 Suppose there are three independent and dependent variables, @expr{x},
24946 @expr{y}, and @expr{z}, one or more of which are error forms in the
24947 data.  Calc combines all the error values by taking the square root
24948 of the sum of the squares of the errors.  It then changes @expr{x}
24949 and @expr{y} to be plain numbers, and makes @expr{z} into an error
24950 form with this combined error.  The @expr{Y(x,y,z)} part of the
24951 linearized model is evaluated, and the result should be an error
24952 form.  The error part of that result is used for 
24953 @texline @math{\sigma_i}
24954 @infoline @expr{sigma_i} 
24955 for the data point.  If for some reason @expr{Y(x,y,z)} does not return 
24956 an error form, the combined error from @expr{z} is used directly for 
24957 @texline @math{\sigma_i}.
24958 @infoline @expr{sigma_i}.  
24959 Finally, @expr{z} is also stripped of its error
24960 for use in computing @expr{F(x,y,z)}, @expr{G(x,y,z)} and so on;
24961 the righthand side of the linearized model is computed in regular
24962 arithmetic with no error forms.
24964 (While these rules may seem complicated, they are designed to do
24965 the most reasonable thing in the typical case that @expr{Y(x,y,z)}
24966 depends only on the dependent variable @expr{z}, and in fact is
24967 often simply equal to @expr{z}.  For common cases like polynomials
24968 and multilinear models, the combined error is simply used as the
24969 @texline @math{\sigma}
24970 @infoline @expr{sigma} 
24971 for the data point with no further ado.)
24973 @tex
24974 \bigskip
24975 @end tex
24977 @vindex FitRules
24978 It may be the case that the model you wish to use is linearizable,
24979 but Calc's built-in rules are unable to figure it out.  Calc uses
24980 its algebraic rewrite mechanism to linearize a model.  The rewrite
24981 rules are kept in the variable @code{FitRules}.  You can edit this
24982 variable using the @kbd{s e FitRules} command; in fact, there is
24983 a special @kbd{s F} command just for editing @code{FitRules}.
24984 @xref{Operations on Variables}.
24986 @xref{Rewrite Rules}, for a discussion of rewrite rules.
24988 @ignore
24989 @starindex
24990 @end ignore
24991 @tindex fitvar
24992 @ignore
24993 @starindex
24994 @end ignore
24995 @ignore
24996 @mindex @idots
24997 @end ignore
24998 @tindex fitparam
24999 @ignore
25000 @starindex
25001 @end ignore
25002 @ignore
25003 @mindex @null
25004 @end ignore
25005 @tindex fitmodel
25006 @ignore
25007 @starindex
25008 @end ignore
25009 @ignore
25010 @mindex @null
25011 @end ignore
25012 @tindex fitsystem
25013 @ignore
25014 @starindex
25015 @end ignore
25016 @ignore
25017 @mindex @null
25018 @end ignore
25019 @tindex fitdummy
25020 Calc uses @code{FitRules} as follows.  First, it converts the model
25021 to an equation if necessary and encloses the model equation in a
25022 call to the function @code{fitmodel} (which is not actually a defined
25023 function in Calc; it is only used as a placeholder by the rewrite rules).
25024 Parameter variables are renamed to function calls @samp{fitparam(1)},
25025 @samp{fitparam(2)}, and so on, and independent variables are renamed
25026 to @samp{fitvar(1)}, @samp{fitvar(2)}, etc.  The dependent variable
25027 is the highest-numbered @code{fitvar}.  For example, the power law
25028 model @expr{a x^b} is converted to @expr{y = a x^b}, then to
25030 @smallexample
25031 @group
25032 fitmodel(fitvar(2) = fitparam(1) fitvar(1)^fitparam(2))
25033 @end group
25034 @end smallexample
25036 Calc then applies the rewrites as if by @samp{C-u 0 a r FitRules}.
25037 (The zero prefix means that rewriting should continue until no further
25038 changes are possible.)
25040 When rewriting is complete, the @code{fitmodel} call should have
25041 been replaced by a @code{fitsystem} call that looks like this:
25043 @example
25044 fitsystem(@var{Y}, @var{FGH}, @var{abc})
25045 @end example
25047 @noindent
25048 where @var{Y} is a formula that describes the function @expr{Y(x,y,z)},
25049 @var{FGH} is the vector of formulas @expr{[F(x,y,z), G(x,y,z), H(x,y,z)]},
25050 and @var{abc} is the vector of parameter filters which refer to the
25051 raw parameters as @samp{fitdummy(1)} for @expr{A}, @samp{fitdummy(2)}
25052 for @expr{B}, etc.  While the number of raw parameters (the length of
25053 the @var{FGH} vector) is usually the same as the number of original
25054 parameters (the length of the @var{abc} vector), this is not required.
25056 The power law model eventually boils down to
25058 @smallexample
25059 @group
25060 fitsystem(ln(fitvar(2)),
25061           [1, ln(fitvar(1))],
25062           [exp(fitdummy(1)), fitdummy(2)])
25063 @end group
25064 @end smallexample
25066 The actual implementation of @code{FitRules} is complicated; it
25067 proceeds in four phases.  First, common rearrangements are done
25068 to try to bring linear terms together and to isolate functions like
25069 @code{exp} and @code{ln} either all the way ``out'' (so that they
25070 can be put into @var{Y}) or all the way ``in'' (so that they can
25071 be put into @var{abc} or @var{FGH}).  In particular, all
25072 non-constant powers are converted to logs-and-exponentials form,
25073 and the distributive law is used to expand products of sums.
25074 Quotients are rewritten to use the @samp{fitinv} function, where
25075 @samp{fitinv(x)} represents @expr{1/x} while the @code{FitRules}
25076 are operating.  (The use of @code{fitinv} makes recognition of
25077 linear-looking forms easier.)  If you modify @code{FitRules}, you
25078 will probably only need to modify the rules for this phase.
25080 Phase two, whose rules can actually also apply during phases one
25081 and three, first rewrites @code{fitmodel} to a two-argument
25082 form @samp{fitmodel(@var{Y}, @var{model})}, where @var{Y} is
25083 initially zero and @var{model} has been changed from @expr{a=b}
25084 to @expr{a-b} form.  It then tries to peel off invertible functions
25085 from the outside of @var{model} and put them into @var{Y} instead,
25086 calling the equation solver to invert the functions.  Finally, when
25087 this is no longer possible, the @code{fitmodel} is changed to a
25088 four-argument @code{fitsystem}, where the fourth argument is
25089 @var{model} and the @var{FGH} and @var{abc} vectors are initially
25090 empty.  (The last vector is really @var{ABC}, corresponding to
25091 raw parameters, for now.)
25093 Phase three converts a sum of items in the @var{model} to a sum
25094 of @samp{fitpart(@var{a}, @var{b}, @var{c})} terms which represent
25095 terms @samp{@var{a}*@var{b}*@var{c}} of the sum, where @var{a}
25096 is all factors that do not involve any variables, @var{b} is all
25097 factors that involve only parameters, and @var{c} is the factors
25098 that involve only independent variables.  (If this decomposition
25099 is not possible, the rule set will not complete and Calc will
25100 complain that the model is too complex.)  Then @code{fitpart}s
25101 with equal @var{b} or @var{c} components are merged back together
25102 using the distributive law in order to minimize the number of
25103 raw parameters needed.
25105 Phase four moves the @code{fitpart} terms into the @var{FGH} and
25106 @var{ABC} vectors.  Also, some of the algebraic expansions that
25107 were done in phase 1 are undone now to make the formulas more
25108 computationally efficient.  Finally, it calls the solver one more
25109 time to convert the @var{ABC} vector to an @var{abc} vector, and
25110 removes the fourth @var{model} argument (which by now will be zero)
25111 to obtain the three-argument @code{fitsystem} that the linear
25112 least-squares solver wants to see.
25114 @ignore
25115 @starindex
25116 @end ignore
25117 @ignore
25118 @mindex hasfit@idots
25119 @end ignore
25120 @tindex hasfitparams
25121 @ignore
25122 @starindex
25123 @end ignore
25124 @ignore
25125 @mindex @null
25126 @end ignore
25127 @tindex hasfitvars
25128 Two functions which are useful in connection with @code{FitRules}
25129 are @samp{hasfitparams(x)} and @samp{hasfitvars(x)}, which check
25130 whether @expr{x} refers to any parameters or independent variables,
25131 respectively.  Specifically, these functions return ``true'' if the
25132 argument contains any @code{fitparam} (or @code{fitvar}) function
25133 calls, and ``false'' otherwise.  (Recall that ``true'' means a
25134 nonzero number, and ``false'' means zero.  The actual nonzero number
25135 returned is the largest @var{n} from all the @samp{fitparam(@var{n})}s
25136 or @samp{fitvar(@var{n})}s, respectively, that appear in the formula.)
25138 @tex
25139 \bigskip
25140 @end tex
25142 The @code{fit} function in algebraic notation normally takes four
25143 arguments, @samp{fit(@var{model}, @var{vars}, @var{params}, @var{data})},
25144 where @var{model} is the model formula as it would be typed after
25145 @kbd{a F '}, @var{vars} is the independent variable or a vector of
25146 independent variables, @var{params} likewise gives the parameter(s),
25147 and @var{data} is the data matrix.  Note that the length of @var{vars}
25148 must be equal to the number of rows in @var{data} if @var{model} is
25149 an equation, or one less than the number of rows if @var{model} is
25150 a plain formula.  (Actually, a name for the dependent variable is
25151 allowed but will be ignored in the plain-formula case.)
25153 If @var{params} is omitted, the parameters are all variables in
25154 @var{model} except those that appear in @var{vars}.  If @var{vars}
25155 is also omitted, Calc sorts all the variables that appear in
25156 @var{model} alphabetically and uses the higher ones for @var{vars}
25157 and the lower ones for @var{params}.
25159 Alternatively, @samp{fit(@var{modelvec}, @var{data})} is allowed
25160 where @var{modelvec} is a 2- or 3-vector describing the model
25161 and variables, as discussed previously.
25163 If Calc is unable to do the fit, the @code{fit} function is left
25164 in symbolic form, ordinarily with an explanatory message.  The
25165 message will be ``Model expression is too complex'' if the
25166 linearizer was unable to put the model into the required form.
25168 The @code{efit} (corresponding to @kbd{H a F}) and @code{xfit}
25169 (for @kbd{I a F}) functions are completely analogous.
25171 @node Interpolation, ,  Curve Fitting Details, Curve Fitting
25172 @subsection Polynomial Interpolation
25174 @kindex a p
25175 @pindex calc-poly-interp
25176 @tindex polint
25177 The @kbd{a p} (@code{calc-poly-interp}) [@code{polint}] command does
25178 a polynomial interpolation at a particular @expr{x} value.  It takes
25179 two arguments from the stack:  A data matrix of the sort used by
25180 @kbd{a F}, and a single number which represents the desired @expr{x}
25181 value.  Calc effectively does an exact polynomial fit as if by @kbd{a F i},
25182 then substitutes the @expr{x} value into the result in order to get an
25183 approximate @expr{y} value based on the fit.  (Calc does not actually
25184 use @kbd{a F i}, however; it uses a direct method which is both more
25185 efficient and more numerically stable.)
25187 The result of @kbd{a p} is actually a vector of two values:  The @expr{y}
25188 value approximation, and an error measure @expr{dy} that reflects Calc's
25189 estimation of the probable error of the approximation at that value of
25190 @expr{x}.  If the input @expr{x} is equal to any of the @expr{x} values
25191 in the data matrix, the output @expr{y} will be the corresponding @expr{y}
25192 value from the matrix, and the output @expr{dy} will be exactly zero.
25194 A prefix argument of 2 causes @kbd{a p} to take separate x- and
25195 y-vectors from the stack instead of one data matrix.
25197 If @expr{x} is a vector of numbers, @kbd{a p} will return a matrix of
25198 interpolated results for each of those @expr{x} values.  (The matrix will
25199 have two columns, the @expr{y} values and the @expr{dy} values.)
25200 If @expr{x} is a formula instead of a number, the @code{polint} function
25201 remains in symbolic form; use the @kbd{a "} command to expand it out to
25202 a formula that describes the fit in symbolic terms.
25204 In all cases, the @kbd{a p} command leaves the data vectors or matrix
25205 on the stack.  Only the @expr{x} value is replaced by the result.
25207 @kindex H a p
25208 @tindex ratint
25209 The @kbd{H a p} [@code{ratint}] command does a rational function
25210 interpolation.  It is used exactly like @kbd{a p}, except that it
25211 uses as its model the quotient of two polynomials.  If there are
25212 @expr{N} data points, the numerator and denominator polynomials will
25213 each have degree @expr{N/2} (if @expr{N} is odd, the denominator will
25214 have degree one higher than the numerator).
25216 Rational approximations have the advantage that they can accurately
25217 describe functions that have poles (points at which the function's value
25218 goes to infinity, so that the denominator polynomial of the approximation
25219 goes to zero).  If @expr{x} corresponds to a pole of the fitted rational
25220 function, then the result will be a division by zero.  If Infinite mode
25221 is enabled, the result will be @samp{[uinf, uinf]}.
25223 There is no way to get the actual coefficients of the rational function
25224 used by @kbd{H a p}.  (The algorithm never generates these coefficients
25225 explicitly, and quotients of polynomials are beyond @w{@kbd{a F}}'s
25226 capabilities to fit.)
25228 @node Summations, Logical Operations, Curve Fitting, Algebra
25229 @section Summations
25231 @noindent
25232 @cindex Summation of a series
25233 @kindex a +
25234 @pindex calc-summation
25235 @tindex sum
25236 The @kbd{a +} (@code{calc-summation}) [@code{sum}] command computes
25237 the sum of a formula over a certain range of index values.  The formula
25238 is taken from the top of the stack; the command prompts for the
25239 name of the summation index variable, the lower limit of the
25240 sum (any formula), and the upper limit of the sum.  If you
25241 enter a blank line at any of these prompts, that prompt and
25242 any later ones are answered by reading additional elements from
25243 the stack.  Thus, @kbd{' k^2 @key{RET} ' k @key{RET} 1 @key{RET} 5 @key{RET} a + @key{RET}}
25244 produces the result 55.
25245 @tex
25246 \turnoffactive
25247 $$ \sum_{k=1}^5 k^2 = 55 $$
25248 @end tex
25250 The choice of index variable is arbitrary, but it's best not to
25251 use a variable with a stored value.  In particular, while
25252 @code{i} is often a favorite index variable, it should be avoided
25253 in Calc because @code{i} has the imaginary constant @expr{(0, 1)}
25254 as a value.  If you pressed @kbd{=} on a sum over @code{i}, it would
25255 be changed to a nonsensical sum over the ``variable'' @expr{(0, 1)}!
25256 If you really want to use @code{i} as an index variable, use
25257 @w{@kbd{s u i @key{RET}}} first to ``unstore'' this variable.
25258 (@xref{Storing Variables}.)
25260 A numeric prefix argument steps the index by that amount rather
25261 than by one.  Thus @kbd{' a_k @key{RET} C-u -2 a + k @key{RET} 10 @key{RET} 0 @key{RET}}
25262 yields @samp{a_10 + a_8 + a_6 + a_4 + a_2 + a_0}.  A prefix
25263 argument of plain @kbd{C-u} causes @kbd{a +} to prompt for the
25264 step value, in which case you can enter any formula or enter
25265 a blank line to take the step value from the stack.  With the
25266 @kbd{C-u} prefix, @kbd{a +} can take up to five arguments from
25267 the stack:  The formula, the variable, the lower limit, the
25268 upper limit, and (at the top of the stack), the step value.
25270 Calc knows how to do certain sums in closed form.  For example,
25271 @samp{sum(6 k^2, k, 1, n) = @w{2 n^3} + 3 n^2 + n}.  In particular,
25272 this is possible if the formula being summed is polynomial or
25273 exponential in the index variable.  Sums of logarithms are
25274 transformed into logarithms of products.  Sums of trigonometric
25275 and hyperbolic functions are transformed to sums of exponentials
25276 and then done in closed form.  Also, of course, sums in which the
25277 lower and upper limits are both numbers can always be evaluated
25278 just by grinding them out, although Calc will use closed forms
25279 whenever it can for the sake of efficiency.
25281 The notation for sums in algebraic formulas is
25282 @samp{sum(@var{expr}, @var{var}, @var{low}, @var{high}, @var{step})}.
25283 If @var{step} is omitted, it defaults to one.  If @var{high} is
25284 omitted, @var{low} is actually the upper limit and the lower limit
25285 is one.  If @var{low} is also omitted, the limits are @samp{-inf}
25286 and @samp{inf}, respectively.
25288 Infinite sums can sometimes be evaluated:  @samp{sum(.5^k, k, 1, inf)}
25289 returns @expr{1}.  This is done by evaluating the sum in closed
25290 form (to @samp{1. - 0.5^n} in this case), then evaluating this
25291 formula with @code{n} set to @code{inf}.  Calc's usual rules
25292 for ``infinite'' arithmetic can find the answer from there.  If
25293 infinite arithmetic yields a @samp{nan}, or if the sum cannot be
25294 solved in closed form, Calc leaves the @code{sum} function in
25295 symbolic form.  @xref{Infinities}.
25297 As a special feature, if the limits are infinite (or omitted, as
25298 described above) but the formula includes vectors subscripted by
25299 expressions that involve the iteration variable, Calc narrows
25300 the limits to include only the range of integers which result in
25301 valid subscripts for the vector.  For example, the sum
25302 @samp{sum(k [a,b,c,d,e,f,g]_(2k),k)} evaluates to @samp{b + 2 d + 3 f}.
25304 The limits of a sum do not need to be integers.  For example,
25305 @samp{sum(a_k, k, 0, 2 n, n)} produces @samp{a_0 + a_n + a_(2 n)}.
25306 Calc computes the number of iterations using the formula
25307 @samp{1 + (@var{high} - @var{low}) / @var{step}}, which must,
25308 after simplification as if by @kbd{a s}, evaluate to an integer.
25310 If the number of iterations according to the above formula does
25311 not come out to an integer, the sum is invalid and will be left
25312 in symbolic form.  However, closed forms are still supplied, and
25313 you are on your honor not to misuse the resulting formulas by
25314 substituting mismatched bounds into them.  For example,
25315 @samp{sum(k, k, 1, 10, 2)} is invalid, but Calc will go ahead and
25316 evaluate the closed form solution for the limits 1 and 10 to get
25317 the rather dubious answer, 29.25.
25319 If the lower limit is greater than the upper limit (assuming a
25320 positive step size), the result is generally zero.  However,
25321 Calc only guarantees a zero result when the upper limit is
25322 exactly one step less than the lower limit, i.e., if the number
25323 of iterations is @mathit{-1}.  Thus @samp{sum(f(k), k, n, n-1)} is zero
25324 but the sum from @samp{n} to @samp{n-2} may report a nonzero value
25325 if Calc used a closed form solution.
25327 Calc's logical predicates like @expr{a < b} return 1 for ``true''
25328 and 0 for ``false.''  @xref{Logical Operations}.  This can be
25329 used to advantage for building conditional sums.  For example,
25330 @samp{sum(prime(k)*k^2, k, 1, 20)} is the sum of the squares of all
25331 prime numbers from 1 to 20; the @code{prime} predicate returns 1 if
25332 its argument is prime and 0 otherwise.  You can read this expression
25333 as ``the sum of @expr{k^2}, where @expr{k} is prime.''  Indeed,
25334 @samp{sum(prime(k)*k^2, k)} would represent the sum of @emph{all} primes
25335 squared, since the limits default to plus and minus infinity, but
25336 there are no such sums that Calc's built-in rules can do in
25337 closed form.
25339 As another example, @samp{sum((k != k_0) * f(k), k, 1, n)} is the
25340 sum of @expr{f(k)} for all @expr{k} from 1 to @expr{n}, excluding
25341 one value @expr{k_0}.  Slightly more tricky is the summand
25342 @samp{(k != k_0) / (k - k_0)}, which is an attempt to describe
25343 the sum of all @expr{1/(k-k_0)} except at @expr{k = k_0}, where
25344 this would be a division by zero.  But at @expr{k = k_0}, this
25345 formula works out to the indeterminate form @expr{0 / 0}, which
25346 Calc will not assume is zero.  Better would be to use
25347 @samp{(k != k_0) ? 1/(k-k_0) : 0}; the @samp{? :} operator does
25348 an ``if-then-else'' test:  This expression says, ``if 
25349 @texline @math{k \ne k_0},
25350 @infoline @expr{k != k_0},
25351 then @expr{1/(k-k_0)}, else zero.''  Now the formula @expr{1/(k-k_0)}
25352 will not even be evaluated by Calc when @expr{k = k_0}.
25354 @cindex Alternating sums
25355 @kindex a -
25356 @pindex calc-alt-summation
25357 @tindex asum
25358 The @kbd{a -} (@code{calc-alt-summation}) [@code{asum}] command
25359 computes an alternating sum.  Successive terms of the sequence
25360 are given alternating signs, with the first term (corresponding
25361 to the lower index value) being positive.  Alternating sums
25362 are converted to normal sums with an extra term of the form
25363 @samp{(-1)^(k-@var{low})}.  This formula is adjusted appropriately
25364 if the step value is other than one.  For example, the Taylor
25365 series for the sine function is @samp{asum(x^k / k!, k, 1, inf, 2)}.
25366 (Calc cannot evaluate this infinite series, but it can approximate
25367 it if you replace @code{inf} with any particular odd number.)
25368 Calc converts this series to a regular sum with a step of one,
25369 namely @samp{sum((-1)^k x^(2k+1) / (2k+1)!, k, 0, inf)}.
25371 @cindex Product of a sequence
25372 @kindex a *
25373 @pindex calc-product
25374 @tindex prod
25375 The @kbd{a *} (@code{calc-product}) [@code{prod}] command is
25376 the analogous way to take a product of many terms.  Calc also knows
25377 some closed forms for products, such as @samp{prod(k, k, 1, n) = n!}.
25378 Conditional products can be written @samp{prod(k^prime(k), k, 1, n)}
25379 or @samp{prod(prime(k) ? k : 1, k, 1, n)}.
25381 @kindex a T
25382 @pindex calc-tabulate
25383 @tindex table
25384 The @kbd{a T} (@code{calc-tabulate}) [@code{table}] command
25385 evaluates a formula at a series of iterated index values, just
25386 like @code{sum} and @code{prod}, but its result is simply a
25387 vector of the results.  For example, @samp{table(a_i, i, 1, 7, 2)}
25388 produces @samp{[a_1, a_3, a_5, a_7]}.
25390 @node Logical Operations, Rewrite Rules, Summations, Algebra
25391 @section Logical Operations
25393 @noindent
25394 The following commands and algebraic functions return true/false values,
25395 where 1 represents ``true'' and 0 represents ``false.''  In cases where
25396 a truth value is required (such as for the condition part of a rewrite
25397 rule, or as the condition for a @w{@kbd{Z [ Z ]}} control structure), any
25398 nonzero value is accepted to mean ``true.''  (Specifically, anything
25399 for which @code{dnonzero} returns 1 is ``true,'' and anything for
25400 which @code{dnonzero} returns 0 or cannot decide is assumed ``false.''
25401 Note that this means that @w{@kbd{Z [ Z ]}} will execute the ``then''
25402 portion if its condition is provably true, but it will execute the
25403 ``else'' portion for any condition like @expr{a = b} that is not
25404 provably true, even if it might be true.  Algebraic functions that
25405 have conditions as arguments, like @code{? :} and @code{&&}, remain
25406 unevaluated if the condition is neither provably true nor provably
25407 false.  @xref{Declarations}.)
25409 @kindex a =
25410 @pindex calc-equal-to
25411 @tindex eq
25412 @tindex =
25413 @tindex ==
25414 The @kbd{a =} (@code{calc-equal-to}) command, or @samp{eq(a,b)} function
25415 (which can also be written @samp{a = b} or @samp{a == b} in an algebraic
25416 formula) is true if @expr{a} and @expr{b} are equal, either because they
25417 are identical expressions, or because they are numbers which are
25418 numerically equal.  (Thus the integer 1 is considered equal to the float
25419 1.0.)  If the equality of @expr{a} and @expr{b} cannot be determined,
25420 the comparison is left in symbolic form.  Note that as a command, this
25421 operation pops two values from the stack and pushes back either a 1 or
25422 a 0, or a formula @samp{a = b} if the values' equality cannot be determined.
25424 Many Calc commands use @samp{=} formulas to represent @dfn{equations}.
25425 For example, the @kbd{a S} (@code{calc-solve-for}) command rearranges
25426 an equation to solve for a given variable.  The @kbd{a M}
25427 (@code{calc-map-equation}) command can be used to apply any
25428 function to both sides of an equation; for example, @kbd{2 a M *}
25429 multiplies both sides of the equation by two.  Note that just
25430 @kbd{2 *} would not do the same thing; it would produce the formula
25431 @samp{2 (a = b)} which represents 2 if the equality is true or
25432 zero if not.
25434 The @code{eq} function with more than two arguments (e.g., @kbd{C-u 3 a =}
25435 or @samp{a = b = c}) tests if all of its arguments are equal.  In
25436 algebraic notation, the @samp{=} operator is unusual in that it is
25437 neither left- nor right-associative:  @samp{a = b = c} is not the
25438 same as @samp{(a = b) = c} or @samp{a = (b = c)} (which each compare
25439 one variable with the 1 or 0 that results from comparing two other
25440 variables).
25442 @kindex a #
25443 @pindex calc-not-equal-to
25444 @tindex neq
25445 @tindex !=
25446 The @kbd{a #} (@code{calc-not-equal-to}) command, or @samp{neq(a,b)} or
25447 @samp{a != b} function, is true if @expr{a} and @expr{b} are not equal.
25448 This also works with more than two arguments; @samp{a != b != c != d}
25449 tests that all four of @expr{a}, @expr{b}, @expr{c}, and @expr{d} are
25450 distinct numbers.
25452 @kindex a <
25453 @tindex lt
25454 @ignore
25455 @mindex @idots
25456 @end ignore
25457 @kindex a >
25458 @ignore
25459 @mindex @null
25460 @end ignore
25461 @kindex a [
25462 @ignore
25463 @mindex @null
25464 @end ignore
25465 @kindex a ]
25466 @pindex calc-less-than
25467 @pindex calc-greater-than
25468 @pindex calc-less-equal
25469 @pindex calc-greater-equal
25470 @ignore
25471 @mindex @null
25472 @end ignore
25473 @tindex gt
25474 @ignore
25475 @mindex @null
25476 @end ignore
25477 @tindex leq
25478 @ignore
25479 @mindex @null
25480 @end ignore
25481 @tindex geq
25482 @ignore
25483 @mindex @null
25484 @end ignore
25485 @tindex <
25486 @ignore
25487 @mindex @null
25488 @end ignore
25489 @tindex >
25490 @ignore
25491 @mindex @null
25492 @end ignore
25493 @tindex <=
25494 @ignore
25495 @mindex @null
25496 @end ignore
25497 @tindex >=
25498 The @kbd{a <} (@code{calc-less-than}) [@samp{lt(a,b)} or @samp{a < b}]
25499 operation is true if @expr{a} is less than @expr{b}.  Similar functions
25500 are @kbd{a >} (@code{calc-greater-than}) [@samp{gt(a,b)} or @samp{a > b}],
25501 @kbd{a [} (@code{calc-less-equal}) [@samp{leq(a,b)} or @samp{a <= b}], and
25502 @kbd{a ]} (@code{calc-greater-equal}) [@samp{geq(a,b)} or @samp{a >= b}].
25504 While the inequality functions like @code{lt} do not accept more
25505 than two arguments, the syntax @w{@samp{a <= b < c}} is translated to an
25506 equivalent expression involving intervals: @samp{b in [a .. c)}.
25507 (See the description of @code{in} below.)  All four combinations
25508 of @samp{<} and @samp{<=} are allowed, or any of the four combinations
25509 of @samp{>} and @samp{>=}.  Four-argument constructions like
25510 @samp{a < b < c < d}, and mixtures like @w{@samp{a < b = c}} that
25511 involve both equalities and inequalities, are not allowed.
25513 @kindex a .
25514 @pindex calc-remove-equal
25515 @tindex rmeq
25516 The @kbd{a .} (@code{calc-remove-equal}) [@code{rmeq}] command extracts
25517 the righthand side of the equation or inequality on the top of the
25518 stack.  It also works elementwise on vectors.  For example, if
25519 @samp{[x = 2.34, y = z / 2]} is on the stack, then @kbd{a .} produces
25520 @samp{[2.34, z / 2]}.  As a special case, if the righthand side is a
25521 variable and the lefthand side is a number (as in @samp{2.34 = x}), then
25522 Calc keeps the lefthand side instead.  Finally, this command works with
25523 assignments @samp{x := 2.34} as well as equations, always taking the
25524 the righthand side, and for @samp{=>} (evaluates-to) operators, always
25525 taking the lefthand side.
25527 @kindex a &
25528 @pindex calc-logical-and
25529 @tindex land
25530 @tindex &&
25531 The @kbd{a &} (@code{calc-logical-and}) [@samp{land(a,b)} or @samp{a && b}]
25532 function is true if both of its arguments are true, i.e., are
25533 non-zero numbers.  In this case, the result will be either @expr{a} or
25534 @expr{b}, chosen arbitrarily.  If either argument is zero, the result is
25535 zero.  Otherwise, the formula is left in symbolic form.
25537 @kindex a |
25538 @pindex calc-logical-or
25539 @tindex lor
25540 @tindex ||
25541 The @kbd{a |} (@code{calc-logical-or}) [@samp{lor(a,b)} or @samp{a || b}]
25542 function is true if either or both of its arguments are true (nonzero).
25543 The result is whichever argument was nonzero, choosing arbitrarily if both
25544 are nonzero.  If both @expr{a} and @expr{b} are zero, the result is
25545 zero.
25547 @kindex a !
25548 @pindex calc-logical-not
25549 @tindex lnot
25550 @tindex !
25551 The @kbd{a !} (@code{calc-logical-not}) [@samp{lnot(a)} or @samp{!@: a}]
25552 function is true if @expr{a} is false (zero), or false if @expr{a} is
25553 true (nonzero).  It is left in symbolic form if @expr{a} is not a
25554 number.
25556 @kindex a :
25557 @pindex calc-logical-if
25558 @tindex if
25559 @ignore
25560 @mindex ? :
25561 @end ignore
25562 @tindex ?
25563 @ignore
25564 @mindex @null
25565 @end ignore
25566 @tindex :
25567 @cindex Arguments, not evaluated
25568 The @kbd{a :} (@code{calc-logical-if}) [@samp{if(a,b,c)} or @samp{a ? b :@: c}]
25569 function is equal to either @expr{b} or @expr{c} if @expr{a} is a nonzero
25570 number or zero, respectively.  If @expr{a} is not a number, the test is
25571 left in symbolic form and neither @expr{b} nor @expr{c} is evaluated in
25572 any way.  In algebraic formulas, this is one of the few Calc functions
25573 whose arguments are not automatically evaluated when the function itself
25574 is evaluated.  The others are @code{lambda}, @code{quote}, and
25575 @code{condition}.
25577 One minor surprise to watch out for is that the formula @samp{a?3:4}
25578 will not work because the @samp{3:4} is parsed as a fraction instead of
25579 as three separate symbols.  Type something like @samp{a ? 3 : 4} or
25580 @samp{a?(3):4} instead.
25582 As a special case, if @expr{a} evaluates to a vector, then both @expr{b}
25583 and @expr{c} are evaluated; the result is a vector of the same length
25584 as @expr{a} whose elements are chosen from corresponding elements of
25585 @expr{b} and @expr{c} according to whether each element of @expr{a}
25586 is zero or nonzero.  Each of @expr{b} and @expr{c} must be either a
25587 vector of the same length as @expr{a}, or a non-vector which is matched
25588 with all elements of @expr{a}.
25590 @kindex a @{
25591 @pindex calc-in-set
25592 @tindex in
25593 The @kbd{a @{} (@code{calc-in-set}) [@samp{in(a,b)}] function is true if
25594 the number @expr{a} is in the set of numbers represented by @expr{b}.
25595 If @expr{b} is an interval form, @expr{a} must be one of the values
25596 encompassed by the interval.  If @expr{b} is a vector, @expr{a} must be
25597 equal to one of the elements of the vector.  (If any vector elements are
25598 intervals, @expr{a} must be in any of the intervals.)  If @expr{b} is a
25599 plain number, @expr{a} must be numerically equal to @expr{b}.
25600 @xref{Set Operations}, for a group of commands that manipulate sets
25601 of this sort.
25603 @ignore
25604 @starindex
25605 @end ignore
25606 @tindex typeof
25607 The @samp{typeof(a)} function produces an integer or variable which
25608 characterizes @expr{a}.  If @expr{a} is a number, vector, or variable,
25609 the result will be one of the following numbers:
25611 @example
25612  1   Integer
25613  2   Fraction
25614  3   Floating-point number
25615  4   HMS form
25616  5   Rectangular complex number
25617  6   Polar complex number
25618  7   Error form
25619  8   Interval form
25620  9   Modulo form
25621 10   Date-only form
25622 11   Date/time form
25623 12   Infinity (inf, uinf, or nan)
25624 100  Variable
25625 101  Vector (but not a matrix)
25626 102  Matrix
25627 @end example
25629 Otherwise, @expr{a} is a formula, and the result is a variable which
25630 represents the name of the top-level function call.
25632 @ignore
25633 @starindex
25634 @end ignore
25635 @tindex integer
25636 @ignore
25637 @starindex
25638 @end ignore
25639 @tindex real
25640 @ignore
25641 @starindex
25642 @end ignore
25643 @tindex constant
25644 The @samp{integer(a)} function returns true if @expr{a} is an integer.
25645 The @samp{real(a)} function
25646 is true if @expr{a} is a real number, either integer, fraction, or
25647 float.  The @samp{constant(a)} function returns true if @expr{a} is
25648 any of the objects for which @code{typeof} would produce an integer
25649 code result except for variables, and provided that the components of
25650 an object like a vector or error form are themselves constant.
25651 Note that infinities do not satisfy any of these tests, nor do
25652 special constants like @code{pi} and @code{e}.
25654 @xref{Declarations}, for a set of similar functions that recognize
25655 formulas as well as actual numbers.  For example, @samp{dint(floor(x))}
25656 is true because @samp{floor(x)} is provably integer-valued, but
25657 @samp{integer(floor(x))} does not because @samp{floor(x)} is not
25658 literally an integer constant.
25660 @ignore
25661 @starindex
25662 @end ignore
25663 @tindex refers
25664 The @samp{refers(a,b)} function is true if the variable (or sub-expression)
25665 @expr{b} appears in @expr{a}, or false otherwise.  Unlike the other
25666 tests described here, this function returns a definite ``no'' answer
25667 even if its arguments are still in symbolic form.  The only case where
25668 @code{refers} will be left unevaluated is if @expr{a} is a plain
25669 variable (different from @expr{b}).
25671 @ignore
25672 @starindex
25673 @end ignore
25674 @tindex negative
25675 The @samp{negative(a)} function returns true if @expr{a} ``looks'' negative,
25676 because it is a negative number, because it is of the form @expr{-x},
25677 or because it is a product or quotient with a term that looks negative.
25678 This is most useful in rewrite rules.  Beware that @samp{negative(a)}
25679 evaluates to 1 or 0 for @emph{any} argument @expr{a}, so it can only
25680 be stored in a formula if the default simplifications are turned off
25681 first with @kbd{m O} (or if it appears in an unevaluated context such
25682 as a rewrite rule condition).
25684 @ignore
25685 @starindex
25686 @end ignore
25687 @tindex variable
25688 The @samp{variable(a)} function is true if @expr{a} is a variable,
25689 or false if not.  If @expr{a} is a function call, this test is left
25690 in symbolic form.  Built-in variables like @code{pi} and @code{inf}
25691 are considered variables like any others by this test.
25693 @ignore
25694 @starindex
25695 @end ignore
25696 @tindex nonvar
25697 The @samp{nonvar(a)} function is true if @expr{a} is a non-variable.
25698 If its argument is a variable it is left unsimplified; it never
25699 actually returns zero.  However, since Calc's condition-testing
25700 commands consider ``false'' anything not provably true, this is
25701 often good enough.
25703 @ignore
25704 @starindex
25705 @end ignore
25706 @tindex lin
25707 @ignore
25708 @starindex
25709 @end ignore
25710 @tindex linnt
25711 @ignore
25712 @starindex
25713 @end ignore
25714 @tindex islin
25715 @ignore
25716 @starindex
25717 @end ignore
25718 @tindex islinnt
25719 @cindex Linearity testing
25720 The functions @code{lin}, @code{linnt}, @code{islin}, and @code{islinnt}
25721 check if an expression is ``linear,'' i.e., can be written in the form
25722 @expr{a + b x} for some constants @expr{a} and @expr{b}, and some
25723 variable or subformula @expr{x}.  The function @samp{islin(f,x)} checks
25724 if formula @expr{f} is linear in @expr{x}, returning 1 if so.  For
25725 example, @samp{islin(x,x)}, @samp{islin(-x,x)}, @samp{islin(3,x)}, and
25726 @samp{islin(x y / 3 - 2, x)} all return 1.  The @samp{lin(f,x)} function
25727 is similar, except that instead of returning 1 it returns the vector
25728 @expr{[a, b, x]}.  For the above examples, this vector would be
25729 @expr{[0, 1, x]}, @expr{[0, -1, x]}, @expr{[3, 0, x]}, and
25730 @expr{[-2, y/3, x]}, respectively.  Both @code{lin} and @code{islin}
25731 generally remain unevaluated for expressions which are not linear,
25732 e.g., @samp{lin(2 x^2, x)} and @samp{lin(sin(x), x)}.  The second
25733 argument can also be a formula; @samp{islin(2 + 3 sin(x), sin(x))}
25734 returns true.
25736 The @code{linnt} and @code{islinnt} functions perform a similar check,
25737 but require a ``non-trivial'' linear form, which means that the
25738 @expr{b} coefficient must be non-zero.  For example, @samp{lin(2,x)}
25739 returns @expr{[2, 0, x]} and @samp{lin(y,x)} returns @expr{[y, 0, x]},
25740 but @samp{linnt(2,x)} and @samp{linnt(y,x)} are left unevaluated
25741 (in other words, these formulas are considered to be only ``trivially''
25742 linear in @expr{x}).
25744 All four linearity-testing functions allow you to omit the second
25745 argument, in which case the input may be linear in any non-constant
25746 formula.  Here, the @expr{a=0}, @expr{b=1} case is also considered
25747 trivial, and only constant values for @expr{a} and @expr{b} are
25748 recognized.  Thus, @samp{lin(2 x y)} returns @expr{[0, 2, x y]},
25749 @samp{lin(2 - x y)} returns @expr{[2, -1, x y]}, and @samp{lin(x y)}
25750 returns @expr{[0, 1, x y]}.  The @code{linnt} function would allow the
25751 first two cases but not the third.  Also, neither @code{lin} nor
25752 @code{linnt} accept plain constants as linear in the one-argument
25753 case: @samp{islin(2,x)} is true, but @samp{islin(2)} is false.
25755 @ignore
25756 @starindex
25757 @end ignore
25758 @tindex istrue
25759 The @samp{istrue(a)} function returns 1 if @expr{a} is a nonzero
25760 number or provably nonzero formula, or 0 if @expr{a} is anything else.
25761 Calls to @code{istrue} can only be manipulated if @kbd{m O} mode is
25762 used to make sure they are not evaluated prematurely.  (Note that
25763 declarations are used when deciding whether a formula is true;
25764 @code{istrue} returns 1 when @code{dnonzero} would return 1, and
25765 it returns 0 when @code{dnonzero} would return 0 or leave itself
25766 in symbolic form.)
25768 @node Rewrite Rules, , Logical Operations, Algebra
25769 @section Rewrite Rules
25771 @noindent
25772 @cindex Rewrite rules
25773 @cindex Transformations
25774 @cindex Pattern matching
25775 @kindex a r
25776 @pindex calc-rewrite
25777 @tindex rewrite
25778 The @kbd{a r} (@code{calc-rewrite}) [@code{rewrite}] command makes
25779 substitutions in a formula according to a specified pattern or patterns
25780 known as @dfn{rewrite rules}.  Whereas @kbd{a b} (@code{calc-substitute})
25781 matches literally, so that substituting @samp{sin(x)} with @samp{cos(x)}
25782 matches only the @code{sin} function applied to the variable @code{x},
25783 rewrite rules match general kinds of formulas; rewriting using the rule
25784 @samp{sin(x) := cos(x)} matches @code{sin} of any argument and replaces
25785 it with @code{cos} of that same argument.  The only significance of the
25786 name @code{x} is that the same name is used on both sides of the rule.
25788 Rewrite rules rearrange formulas already in Calc's memory.
25789 @xref{Syntax Tables}, to read about @dfn{syntax rules}, which are
25790 similar to algebraic rewrite rules but operate when new algebraic
25791 entries are being parsed, converting strings of characters into
25792 Calc formulas.
25794 @menu
25795 * Entering Rewrite Rules::
25796 * Basic Rewrite Rules::
25797 * Conditional Rewrite Rules::
25798 * Algebraic Properties of Rewrite Rules::
25799 * Other Features of Rewrite Rules::
25800 * Composing Patterns in Rewrite Rules::
25801 * Nested Formulas with Rewrite Rules::
25802 * Multi-Phase Rewrite Rules::
25803 * Selections with Rewrite Rules::
25804 * Matching Commands::
25805 * Automatic Rewrites::
25806 * Debugging Rewrites::
25807 * Examples of Rewrite Rules::
25808 @end menu
25810 @node Entering Rewrite Rules, Basic Rewrite Rules, Rewrite Rules, Rewrite Rules
25811 @subsection Entering Rewrite Rules
25813 @noindent
25814 Rewrite rules normally use the ``assignment'' operator
25815 @samp{@var{old} := @var{new}}.
25816 This operator is equivalent to the function call @samp{assign(old, new)}.
25817 The @code{assign} function is undefined by itself in Calc, so an
25818 assignment formula such as a rewrite rule will be left alone by ordinary
25819 Calc commands.  But certain commands, like the rewrite system, interpret
25820 assignments in special ways.
25822 For example, the rule @samp{sin(x)^2 := 1-cos(x)^2} says to replace
25823 every occurrence of the sine of something, squared, with one minus the
25824 square of the cosine of that same thing.  All by itself as a formula
25825 on the stack it does nothing, but when given to the @kbd{a r} command
25826 it turns that command into a sine-squared-to-cosine-squared converter.
25828 To specify a set of rules to be applied all at once, make a vector of
25829 rules.
25831 When @kbd{a r} prompts you to enter the rewrite rules, you can answer
25832 in several ways:
25834 @enumerate
25835 @item
25836 With a rule:  @kbd{f(x) := g(x) @key{RET}}.
25837 @item
25838 With a vector of rules:  @kbd{[f1(x) := g1(x), f2(x) := g2(x)] @key{RET}}.
25839 (You can omit the enclosing square brackets if you wish.)
25840 @item
25841 With the name of a variable that contains the rule or rules vector:
25842 @kbd{myrules @key{RET}}.
25843 @item
25844 With any formula except a rule, a vector, or a variable name; this
25845 will be interpreted as the @var{old} half of a rewrite rule,
25846 and you will be prompted a second time for the @var{new} half:
25847 @kbd{f(x) @key{RET} g(x) @key{RET}}.
25848 @item
25849 With a blank line, in which case the rule, rules vector, or variable
25850 will be taken from the top of the stack (and the formula to be
25851 rewritten will come from the second-to-top position).
25852 @end enumerate
25854 If you enter the rules directly (as opposed to using rules stored
25855 in a variable), those rules will be put into the Trail so that you
25856 can retrieve them later.  @xref{Trail Commands}.
25858 It is most convenient to store rules you use often in a variable and
25859 invoke them by giving the variable name.  The @kbd{s e}
25860 (@code{calc-edit-variable}) command is an easy way to create or edit a
25861 rule set stored in a variable.  You may also wish to use @kbd{s p}
25862 (@code{calc-permanent-variable}) to save your rules permanently;
25863 @pxref{Operations on Variables}.
25865 Rewrite rules are compiled into a special internal form for faster
25866 matching.  If you enter a rule set directly it must be recompiled
25867 every time.  If you store the rules in a variable and refer to them
25868 through that variable, they will be compiled once and saved away
25869 along with the variable for later reference.  This is another good
25870 reason to store your rules in a variable.
25872 Calc also accepts an obsolete notation for rules, as vectors
25873 @samp{[@var{old}, @var{new}]}.  But because it is easily confused with a
25874 vector of two rules, the use of this notation is no longer recommended.
25876 @node Basic Rewrite Rules, Conditional Rewrite Rules, Entering Rewrite Rules, Rewrite Rules
25877 @subsection Basic Rewrite Rules
25879 @noindent
25880 To match a particular formula @expr{x} with a particular rewrite rule
25881 @samp{@var{old} := @var{new}}, Calc compares the structure of @expr{x} with
25882 the structure of @var{old}.  Variables that appear in @var{old} are
25883 treated as @dfn{meta-variables}; the corresponding positions in @expr{x}
25884 may contain any sub-formulas.  For example, the pattern @samp{f(x,y)}
25885 would match the expression @samp{f(12, a+1)} with the meta-variable
25886 @samp{x} corresponding to 12 and with @samp{y} corresponding to
25887 @samp{a+1}.  However, this pattern would not match @samp{f(12)} or
25888 @samp{g(12, a+1)}, since there is no assignment of the meta-variables
25889 that will make the pattern match these expressions.  Notice that if
25890 the pattern is a single meta-variable, it will match any expression.
25892 If a given meta-variable appears more than once in @var{old}, the
25893 corresponding sub-formulas of @expr{x} must be identical.  Thus
25894 the pattern @samp{f(x,x)} would match @samp{f(12, 12)} and
25895 @samp{f(a+1, a+1)} but not @samp{f(12, a+1)} or @samp{f(a+b, b+a)}.
25896 (@xref{Conditional Rewrite Rules}, for a way to match the latter.)
25898 Things other than variables must match exactly between the pattern
25899 and the target formula.  To match a particular variable exactly, use
25900 the pseudo-function @samp{quote(v)} in the pattern.  For example, the
25901 pattern @samp{x+quote(y)} matches @samp{x+y}, @samp{2+y}, or
25902 @samp{sin(a)+y}.
25904 The special variable names @samp{e}, @samp{pi}, @samp{i}, @samp{phi},
25905 @samp{gamma}, @samp{inf}, @samp{uinf}, and @samp{nan} always match
25906 literally.  Thus the pattern @samp{sin(d + e + f)} acts exactly like
25907 @samp{sin(d + quote(e) + f)}.
25909 If the @var{old} pattern is found to match a given formula, that
25910 formula is replaced by @var{new}, where any occurrences in @var{new}
25911 of meta-variables from the pattern are replaced with the sub-formulas
25912 that they matched.  Thus, applying the rule @samp{f(x,y) := g(y+x,x)}
25913 to @samp{f(12, a+1)} would produce @samp{g(a+13, 12)}.
25915 The normal @kbd{a r} command applies rewrite rules over and over
25916 throughout the target formula until no further changes are possible
25917 (up to a limit of 100 times).  Use @kbd{C-u 1 a r} to make only one
25918 change at a time.
25920 @node Conditional Rewrite Rules, Algebraic Properties of Rewrite Rules, Basic Rewrite Rules, Rewrite Rules
25921 @subsection Conditional Rewrite Rules
25923 @noindent
25924 A rewrite rule can also be @dfn{conditional}, written in the form
25925 @samp{@var{old} := @var{new} :: @var{cond}}.  (There is also the obsolete
25926 form @samp{[@var{old}, @var{new}, @var{cond}]}.)  If a @var{cond} part
25927 is present in the
25928 rule, this is an additional condition that must be satisfied before
25929 the rule is accepted.  Once @var{old} has been successfully matched
25930 to the target expression, @var{cond} is evaluated (with all the
25931 meta-variables substituted for the values they matched) and simplified
25932 with @kbd{a s} (@code{calc-simplify}).  If the result is a nonzero
25933 number or any other object known to be nonzero (@pxref{Declarations}),
25934 the rule is accepted.  If the result is zero or if it is a symbolic
25935 formula that is not known to be nonzero, the rule is rejected.
25936 @xref{Logical Operations}, for a number of functions that return
25937 1 or 0 according to the results of various tests.
25939 For example, the formula @samp{n > 0} simplifies to 1 or 0 if @expr{n}
25940 is replaced by a positive or nonpositive number, respectively (or if
25941 @expr{n} has been declared to be positive or nonpositive).  Thus,
25942 the rule @samp{f(x,y) := g(y+x,x) :: x+y > 0} would apply to
25943 @samp{f(0, 4)} but not to @samp{f(-3, 2)} or @samp{f(12, a+1)}
25944 (assuming no outstanding declarations for @expr{a}).  In the case of
25945 @samp{f(-3, 2)}, the condition can be shown not to be satisfied; in
25946 the case of @samp{f(12, a+1)}, the condition merely cannot be shown
25947 to be satisfied, but that is enough to reject the rule.
25949 While Calc will use declarations to reason about variables in the
25950 formula being rewritten, declarations do not apply to meta-variables.
25951 For example, the rule @samp{f(a) := g(a+1)} will match for any values
25952 of @samp{a}, such as complex numbers, vectors, or formulas, even if
25953 @samp{a} has been declared to be real or scalar.  If you want the
25954 meta-variable @samp{a} to match only literal real numbers, use
25955 @samp{f(a) := g(a+1) :: real(a)}.  If you want @samp{a} to match only
25956 reals and formulas which are provably real, use @samp{dreal(a)} as
25957 the condition.
25959 The @samp{::} operator is a shorthand for the @code{condition}
25960 function; @samp{@var{old} := @var{new} :: @var{cond}} is equivalent to
25961 the formula @samp{condition(assign(@var{old}, @var{new}), @var{cond})}.
25963 If you have several conditions, you can use @samp{... :: c1 :: c2 :: c3}
25964 or @samp{... :: c1 && c2 && c3}.  The two are entirely equivalent.
25966 It is also possible to embed conditions inside the pattern:
25967 @samp{f(x :: x>0, y) := g(y+x, x)}.  This is purely a notational
25968 convenience, though; where a condition appears in a rule has no
25969 effect on when it is tested.  The rewrite-rule compiler automatically
25970 decides when it is best to test each condition while a rule is being
25971 matched.
25973 Certain conditions are handled as special cases by the rewrite rule
25974 system and are tested very efficiently:  Where @expr{x} is any
25975 meta-variable, these conditions are @samp{integer(x)}, @samp{real(x)},
25976 @samp{constant(x)}, @samp{negative(x)}, @samp{x >= y} where @expr{y}
25977 is either a constant or another meta-variable and @samp{>=} may be
25978 replaced by any of the six relational operators, and @samp{x % a = b}
25979 where @expr{a} and @expr{b} are constants.  Other conditions, like
25980 @samp{x >= y+1} or @samp{dreal(x)}, will be less efficient to check
25981 since Calc must bring the whole evaluator and simplifier into play.
25983 An interesting property of @samp{::} is that neither of its arguments
25984 will be touched by Calc's default simplifications.  This is important
25985 because conditions often are expressions that cannot safely be
25986 evaluated early.  For example, the @code{typeof} function never
25987 remains in symbolic form; entering @samp{typeof(a)} will put the
25988 number 100 (the type code for variables like @samp{a}) on the stack.
25989 But putting the condition @samp{... :: typeof(a) = 6} on the stack
25990 is safe since @samp{::} prevents the @code{typeof} from being
25991 evaluated until the condition is actually used by the rewrite system.
25993 Since @samp{::} protects its lefthand side, too, you can use a dummy
25994 condition to protect a rule that must itself not evaluate early.
25995 For example, it's not safe to put @samp{a(f,x) := apply(f, [x])} on
25996 the stack because it will immediately evaluate to @samp{a(f,x) := f(x)},
25997 where the meta-variable-ness of @code{f} on the righthand side has been
25998 lost.  But @samp{a(f,x) := apply(f, [x]) :: 1} is safe, and of course
25999 the condition @samp{1} is always true (nonzero) so it has no effect on
26000 the functioning of the rule.  (The rewrite compiler will ensure that
26001 it doesn't even impact the speed of matching the rule.)
26003 @node Algebraic Properties of Rewrite Rules, Other Features of Rewrite Rules, Conditional Rewrite Rules, Rewrite Rules
26004 @subsection Algebraic Properties of Rewrite Rules
26006 @noindent
26007 The rewrite mechanism understands the algebraic properties of functions
26008 like @samp{+} and @samp{*}.  In particular, pattern matching takes
26009 the associativity and commutativity of the following functions into
26010 account:
26012 @smallexample
26013 + - *  = !=  && ||  and or xor  vint vunion vxor  gcd lcm  max min  beta
26014 @end smallexample
26016 For example, the rewrite rule:
26018 @example
26019 a x + b x  :=  (a + b) x
26020 @end example
26022 @noindent
26023 will match formulas of the form,
26025 @example
26026 a x + b x,  x a + x b,  a x + x b,  x a + b x
26027 @end example
26029 Rewrites also understand the relationship between the @samp{+} and @samp{-}
26030 operators.  The above rewrite rule will also match the formulas,
26032 @example
26033 a x - b x,  x a - x b,  a x - x b,  x a - b x
26034 @end example
26036 @noindent
26037 by matching @samp{b} in the pattern to @samp{-b} from the formula.
26039 Applied to a sum of many terms like @samp{r + a x + s + b x + t}, this
26040 pattern will check all pairs of terms for possible matches.  The rewrite
26041 will take whichever suitable pair it discovers first.
26043 In general, a pattern using an associative operator like @samp{a + b}
26044 will try @var{2 n} different ways to match a sum of @var{n} terms
26045 like @samp{x + y + z - w}.  First, @samp{a} is matched against each
26046 of @samp{x}, @samp{y}, @samp{z}, and @samp{-w} in turn, with @samp{b}
26047 being matched to the remainders @samp{y + z - w}, @samp{x + z - w}, etc.
26048 If none of these succeed, then @samp{b} is matched against each of the
26049 four terms with @samp{a} matching the remainder.  Half-and-half matches,
26050 like @samp{(x + y) + (z - w)}, are not tried.
26052 Note that @samp{*} is not commutative when applied to matrices, but
26053 rewrite rules pretend that it is.  If you type @kbd{m v} to enable
26054 Matrix mode (@pxref{Matrix Mode}), rewrite rules will match @samp{*}
26055 literally, ignoring its usual commutativity property.  (In the
26056 current implementation, the associativity also vanishes---it is as
26057 if the pattern had been enclosed in a @code{plain} marker; see below.)
26058 If you are applying rewrites to formulas with matrices, it's best to
26059 enable Matrix mode first to prevent algebraically incorrect rewrites
26060 from occurring.
26062 The pattern @samp{-x} will actually match any expression.  For example,
26063 the rule
26065 @example
26066 f(-x)  :=  -f(x)
26067 @end example
26069 @noindent
26070 will rewrite @samp{f(a)} to @samp{-f(-a)}.  To avoid this, either use
26071 a @code{plain} marker as described below, or add a @samp{negative(x)}
26072 condition.  The @code{negative} function is true if its argument
26073 ``looks'' negative, for example, because it is a negative number or
26074 because it is a formula like @samp{-x}.  The new rule using this
26075 condition is:
26077 @example
26078 f(x)  :=  -f(-x)  :: negative(x)    @r{or, equivalently,}
26079 f(-x)  :=  -f(x)  :: negative(-x)
26080 @end example
26082 In the same way, the pattern @samp{x - y} will match the sum @samp{a + b}
26083 by matching @samp{y} to @samp{-b}.
26085 The pattern @samp{a b} will also match the formula @samp{x/y} if
26086 @samp{y} is a number.  Thus the rule @samp{a x + @w{b x} := (a+b) x}
26087 will also convert @samp{a x + x / 2} to @samp{(a + 0.5) x} (or
26088 @samp{(a + 1:2) x}, depending on the current fraction mode).
26090 Calc will @emph{not} take other liberties with @samp{*}, @samp{/}, and
26091 @samp{^}.  For example, the pattern @samp{f(a b)} will not match
26092 @samp{f(x^2)}, and @samp{f(a + b)} will not match @samp{f(2 x)}, even
26093 though conceivably these patterns could match with @samp{a = b = x}.
26094 Nor will @samp{f(a b)} match @samp{f(x / y)} if @samp{y} is not a
26095 constant, even though it could be considered to match with @samp{a = x}
26096 and @samp{b = 1/y}.  The reasons are partly for efficiency, and partly
26097 because while few mathematical operations are substantively different
26098 for addition and subtraction, often it is preferable to treat the cases
26099 of multiplication, division, and integer powers separately.
26101 Even more subtle is the rule set
26103 @example
26104 [ f(a) + f(b) := f(a + b),  -f(a) := f(-a) ]
26105 @end example
26107 @noindent
26108 attempting to match @samp{f(x) - f(y)}.  You might think that Calc
26109 will view this subtraction as @samp{f(x) + (-f(y))} and then apply
26110 the above two rules in turn, but actually this will not work because
26111 Calc only does this when considering rules for @samp{+} (like the
26112 first rule in this set).  So it will see first that @samp{f(x) + (-f(y))}
26113 does not match @samp{f(a) + f(b)} for any assignments of the
26114 meta-variables, and then it will see that @samp{f(x) - f(y)} does
26115 not match @samp{-f(a)} for any assignment of @samp{a}.  Because Calc
26116 tries only one rule at a time, it will not be able to rewrite
26117 @samp{f(x) - f(y)} with this rule set.  An explicit @samp{f(a) - f(b)}
26118 rule will have to be added.
26120 Another thing patterns will @emph{not} do is break up complex numbers.
26121 The pattern @samp{myconj(a + @w{b i)} := a - b i} will work for formulas
26122 involving the special constant @samp{i} (such as @samp{3 - 4 i}), but
26123 it will not match actual complex numbers like @samp{(3, -4)}.  A version
26124 of the above rule for complex numbers would be
26126 @example
26127 myconj(a)  :=  re(a) - im(a) (0,1)  :: im(a) != 0
26128 @end example
26130 @noindent
26131 (Because the @code{re} and @code{im} functions understand the properties
26132 of the special constant @samp{i}, this rule will also work for
26133 @samp{3 - 4 i}.  In fact, this particular rule would probably be better
26134 without the @samp{im(a) != 0} condition, since if @samp{im(a) = 0} the
26135 righthand side of the rule will still give the correct answer for the
26136 conjugate of a real number.)
26138 It is also possible to specify optional arguments in patterns.  The rule
26140 @example
26141 opt(a) x + opt(b) (x^opt(c) + opt(d))  :=  f(a, b, c, d)
26142 @end example
26144 @noindent
26145 will match the formula
26147 @example
26148 5 (x^2 - 4) + 3 x
26149 @end example
26151 @noindent
26152 in a fairly straightforward manner, but it will also match reduced
26153 formulas like
26155 @example
26156 x + x^2,    2(x + 1) - x,    x + x
26157 @end example
26159 @noindent
26160 producing, respectively,
26162 @example
26163 f(1, 1, 2, 0),   f(-1, 2, 1, 1),   f(1, 1, 1, 0)
26164 @end example
26166 (The latter two formulas can be entered only if default simplifications
26167 have been turned off with @kbd{m O}.)
26169 The default value for a term of a sum is zero.  The default value
26170 for a part of a product, for a power, or for the denominator of a
26171 quotient, is one.  Also, @samp{-x} matches the pattern @samp{opt(a) b}
26172 with @samp{a = -1}.
26174 In particular, the distributive-law rule can be refined to
26176 @example
26177 opt(a) x + opt(b) x  :=  (a + b) x
26178 @end example
26180 @noindent
26181 so that it will convert, e.g., @samp{a x - x}, to @samp{(a - 1) x}.
26183 The pattern @samp{opt(a) + opt(b) x} matches almost any formulas which
26184 are linear in @samp{x}.  You can also use the @code{lin} and @code{islin}
26185 functions with rewrite conditions to test for this; @pxref{Logical
26186 Operations}.  These functions are not as convenient to use in rewrite
26187 rules, but they recognize more kinds of formulas as linear:
26188 @samp{x/z} is considered linear with @expr{b = 1/z} by @code{lin},
26189 but it will not match the above pattern because that pattern calls
26190 for a multiplication, not a division.
26192 As another example, the obvious rule to replace @samp{sin(x)^2 + cos(x)^2}
26193 by 1,
26195 @example
26196 sin(x)^2 + cos(x)^2  :=  1
26197 @end example
26199 @noindent
26200 misses many cases because the sine and cosine may both be multiplied by
26201 an equal factor.  Here's a more successful rule:
26203 @example
26204 opt(a) sin(x)^2 + opt(a) cos(x)^2  :=  a
26205 @end example
26207 Note that this rule will @emph{not} match @samp{sin(x)^2 + 6 cos(x)^2}
26208 because one @expr{a} would have ``matched'' 1 while the other matched 6.
26210 Calc automatically converts a rule like
26212 @example
26213 f(x-1, x)  :=  g(x)
26214 @end example
26216 @noindent
26217 into the form
26219 @example
26220 f(temp, x)  :=  g(x)  :: temp = x-1
26221 @end example
26223 @noindent
26224 (where @code{temp} stands for a new, invented meta-variable that
26225 doesn't actually have a name).  This modified rule will successfully
26226 match @samp{f(6, 7)}, binding @samp{temp} and @samp{x} to 6 and 7,
26227 respectively, then verifying that they differ by one even though
26228 @samp{6} does not superficially look like @samp{x-1}.
26230 However, Calc does not solve equations to interpret a rule.  The
26231 following rule,
26233 @example
26234 f(x-1, x+1)  :=  g(x)
26235 @end example
26237 @noindent
26238 will not work.  That is, it will match @samp{f(a - 1 + b, a + 1 + b)}
26239 but not @samp{f(6, 8)}.  Calc always interprets at least one occurrence
26240 of a variable by literal matching.  If the variable appears ``isolated''
26241 then Calc is smart enough to use it for literal matching.  But in this
26242 last example, Calc is forced to rewrite the rule to @samp{f(x-1, temp)
26243 := g(x) :: temp = x+1} where the @samp{x-1} term must correspond to an
26244 actual ``something-minus-one'' in the target formula.
26246 A successful way to write this would be @samp{f(x, x+2) := g(x+1)}.
26247 You could make this resemble the original form more closely by using
26248 @code{let} notation, which is described in the next section:
26250 @example
26251 f(xm1, x+1)  :=  g(x)  :: let(x := xm1+1)
26252 @end example
26254 Calc does this rewriting or ``conditionalizing'' for any sub-pattern
26255 which involves only the functions in the following list, operating
26256 only on constants and meta-variables which have already been matched
26257 elsewhere in the pattern.  When matching a function call, Calc is
26258 careful to match arguments which are plain variables before arguments
26259 which are calls to any of the functions below, so that a pattern like
26260 @samp{f(x-1, x)} can be conditionalized even though the isolated
26261 @samp{x} comes after the @samp{x-1}.
26263 @smallexample
26264 + - * / \ % ^  abs sign  round rounde roundu trunc floor ceil
26265 max min  re im conj arg
26266 @end smallexample
26268 You can suppress all of the special treatments described in this
26269 section by surrounding a function call with a @code{plain} marker.
26270 This marker causes the function call which is its argument to be
26271 matched literally, without regard to commutativity, associativity,
26272 negation, or conditionalization.  When you use @code{plain}, the
26273 ``deep structure'' of the formula being matched can show through.
26274 For example,
26276 @example
26277 plain(a - a b)  :=  f(a, b)
26278 @end example
26280 @noindent
26281 will match only literal subtractions.  However, the @code{plain}
26282 marker does not affect its arguments' arguments.  In this case,
26283 commutativity and associativity is still considered while matching
26284 the @w{@samp{a b}} sub-pattern, so the whole pattern will match
26285 @samp{x - y x} as well as @samp{x - x y}.  We could go still
26286 further and use
26288 @example
26289 plain(a - plain(a b))  :=  f(a, b)
26290 @end example
26292 @noindent
26293 which would do a completely strict match for the pattern.
26295 By contrast, the @code{quote} marker means that not only the
26296 function name but also the arguments must be literally the same.
26297 The above pattern will match @samp{x - x y} but
26299 @example
26300 quote(a - a b)  :=  f(a, b)
26301 @end example
26303 @noindent
26304 will match only the single formula @samp{a - a b}.  Also,
26306 @example
26307 quote(a - quote(a b))  :=  f(a, b)
26308 @end example
26310 @noindent
26311 will match only @samp{a - quote(a b)}---probably not the desired
26312 effect!
26314 A certain amount of algebra is also done when substituting the
26315 meta-variables on the righthand side of a rule.  For example,
26316 in the rule
26318 @example
26319 a + f(b)  :=  f(a + b)
26320 @end example
26322 @noindent
26323 matching @samp{f(x) - y} would produce @samp{f((-y) + x)} if
26324 taken literally, but the rewrite mechanism will simplify the
26325 righthand side to @samp{f(x - y)} automatically.  (Of course,
26326 the default simplifications would do this anyway, so this
26327 special simplification is only noticeable if you have turned the
26328 default simplifications off.)  This rewriting is done only when
26329 a meta-variable expands to a ``negative-looking'' expression.
26330 If this simplification is not desirable, you can use a @code{plain}
26331 marker on the righthand side:
26333 @example
26334 a + f(b)  :=  f(plain(a + b))
26335 @end example
26337 @noindent
26338 In this example, we are still allowing the pattern-matcher to
26339 use all the algebra it can muster, but the righthand side will
26340 always simplify to a literal addition like @samp{f((-y) + x)}.
26342 @node Other Features of Rewrite Rules, Composing Patterns in Rewrite Rules, Algebraic Properties of Rewrite Rules, Rewrite Rules
26343 @subsection Other Features of Rewrite Rules
26345 @noindent
26346 Certain ``function names'' serve as markers in rewrite rules.
26347 Here is a complete list of these markers.  First are listed the
26348 markers that work inside a pattern; then come the markers that
26349 work in the righthand side of a rule.
26351 @ignore
26352 @starindex
26353 @end ignore
26354 @tindex import
26355 One kind of marker, @samp{import(x)}, takes the place of a whole
26356 rule.  Here @expr{x} is the name of a variable containing another
26357 rule set; those rules are ``spliced into'' the rule set that
26358 imports them.  For example, if @samp{[f(a+b) := f(a) + f(b),
26359 f(a b) := a f(b) :: real(a)]} is stored in variable @samp{linearF},
26360 then the rule set @samp{[f(0) := 0, import(linearF)]} will apply
26361 all three rules.  It is possible to modify the imported rules
26362 slightly:  @samp{import(x, v1, x1, v2, x2, @dots{})} imports
26363 the rule set @expr{x} with all occurrences of 
26364 @texline @math{v_1},
26365 @infoline @expr{v1}, 
26366 as either a variable name or a function name, replaced with 
26367 @texline @math{x_1}
26368 @infoline @expr{x1} 
26369 and so on.  (If 
26370 @texline @math{v_1}
26371 @infoline @expr{v1} 
26372 is used as a function name, then 
26373 @texline @math{x_1}
26374 @infoline @expr{x1}
26375 must be either a function name itself or a @w{@samp{< >}} nameless
26376 function; @pxref{Specifying Operators}.)  For example, @samp{[g(0) := 0,
26377 import(linearF, f, g)]} applies the linearity rules to the function
26378 @samp{g} instead of @samp{f}.  Imports can be nested, but the
26379 import-with-renaming feature may fail to rename sub-imports properly.
26381 The special functions allowed in patterns are:
26383 @table @samp
26384 @item quote(x)
26385 @ignore
26386 @starindex
26387 @end ignore
26388 @tindex quote
26389 This pattern matches exactly @expr{x}; variable names in @expr{x} are
26390 not interpreted as meta-variables.  The only flexibility is that
26391 numbers are compared for numeric equality, so that the pattern
26392 @samp{f(quote(12))} will match both @samp{f(12)} and @samp{f(12.0)}.
26393 (Numbers are always treated this way by the rewrite mechanism:
26394 The rule @samp{f(x,x) := g(x)} will match @samp{f(12, 12.0)}.
26395 The rewrite may produce either @samp{g(12)} or @samp{g(12.0)}
26396 as a result in this case.)
26398 @item plain(x)
26399 @ignore
26400 @starindex
26401 @end ignore
26402 @tindex plain
26403 Here @expr{x} must be a function call @samp{f(x1,x2,@dots{})}.  This
26404 pattern matches a call to function @expr{f} with the specified
26405 argument patterns.  No special knowledge of the properties of the
26406 function @expr{f} is used in this case; @samp{+} is not commutative or
26407 associative.  Unlike @code{quote}, the arguments @samp{x1,x2,@dots{}}
26408 are treated as patterns.  If you wish them to be treated ``plainly''
26409 as well, you must enclose them with more @code{plain} markers:
26410 @samp{plain(plain(@w{-a}) + plain(b c))}.
26412 @item opt(x,def)
26413 @ignore
26414 @starindex
26415 @end ignore
26416 @tindex opt
26417 Here @expr{x} must be a variable name.  This must appear as an
26418 argument to a function or an element of a vector; it specifies that
26419 the argument or element is optional.
26420 As an argument to @samp{+}, @samp{-}, @samp{*}, @samp{&&}, or @samp{||},
26421 or as the second argument to @samp{/} or @samp{^}, the value @var{def}
26422 may be omitted.  The pattern @samp{x + opt(y)} matches a sum by
26423 binding one summand to @expr{x} and the other to @expr{y}, and it
26424 matches anything else by binding the whole expression to @expr{x} and
26425 zero to @expr{y}.  The other operators above work similarly.
26427 For general miscellaneous functions, the default value @code{def}
26428 must be specified.  Optional arguments are dropped starting with
26429 the rightmost one during matching.  For example, the pattern
26430 @samp{f(opt(a,0), b, opt(c,b))} will match @samp{f(b)}, @samp{f(a,b)},
26431 or @samp{f(a,b,c)}.  Default values of zero and @expr{b} are
26432 supplied in this example for the omitted arguments.  Note that
26433 the literal variable @expr{b} will be the default in the latter
26434 case, @emph{not} the value that matched the meta-variable @expr{b}.
26435 In other words, the default @var{def} is effectively quoted.
26437 @item condition(x,c)
26438 @ignore
26439 @starindex
26440 @end ignore
26441 @tindex condition
26442 @tindex ::
26443 This matches the pattern @expr{x}, with the attached condition
26444 @expr{c}.  It is the same as @samp{x :: c}.
26446 @item pand(x,y)
26447 @ignore
26448 @starindex
26449 @end ignore
26450 @tindex pand
26451 @tindex &&&
26452 This matches anything that matches both pattern @expr{x} and
26453 pattern @expr{y}.  It is the same as @samp{x &&& y}.
26454 @pxref{Composing Patterns in Rewrite Rules}.
26456 @item por(x,y)
26457 @ignore
26458 @starindex
26459 @end ignore
26460 @tindex por
26461 @tindex |||
26462 This matches anything that matches either pattern @expr{x} or
26463 pattern @expr{y}.  It is the same as @w{@samp{x ||| y}}.
26465 @item pnot(x)
26466 @ignore
26467 @starindex
26468 @end ignore
26469 @tindex pnot
26470 @tindex !!!
26471 This matches anything that does not match pattern @expr{x}.
26472 It is the same as @samp{!!! x}.
26474 @item cons(h,t)
26475 @ignore
26476 @mindex cons
26477 @end ignore
26478 @tindex cons (rewrites)
26479 This matches any vector of one or more elements.  The first
26480 element is matched to @expr{h}; a vector of the remaining
26481 elements is matched to @expr{t}.  Note that vectors of fixed
26482 length can also be matched as actual vectors:  The rule
26483 @samp{cons(a,cons(b,[])) := cons(a+b,[])} is equivalent
26484 to the rule @samp{[a,b] := [a+b]}.
26486 @item rcons(t,h)
26487 @ignore
26488 @mindex rcons
26489 @end ignore
26490 @tindex rcons (rewrites)
26491 This is like @code{cons}, except that the @emph{last} element
26492 is matched to @expr{h}, with the remaining elements matched
26493 to @expr{t}.
26495 @item apply(f,args)
26496 @ignore
26497 @mindex apply
26498 @end ignore
26499 @tindex apply (rewrites)
26500 This matches any function call.  The name of the function, in
26501 the form of a variable, is matched to @expr{f}.  The arguments
26502 of the function, as a vector of zero or more objects, are
26503 matched to @samp{args}.  Constants, variables, and vectors
26504 do @emph{not} match an @code{apply} pattern.  For example,
26505 @samp{apply(f,x)} matches any function call, @samp{apply(quote(f),x)}
26506 matches any call to the function @samp{f}, @samp{apply(f,[a,b])}
26507 matches any function call with exactly two arguments, and
26508 @samp{apply(quote(f), cons(a,cons(b,x)))} matches any call
26509 to the function @samp{f} with two or more arguments.  Another
26510 way to implement the latter, if the rest of the rule does not
26511 need to refer to the first two arguments of @samp{f} by name,
26512 would be @samp{apply(quote(f), x :: vlen(x) >= 2)}.
26513 Here's a more interesting sample use of @code{apply}:
26515 @example
26516 apply(f,[x+n])  :=  n + apply(f,[x])
26517    :: in(f, [floor,ceil,round,trunc]) :: integer(n)
26518 @end example
26520 Note, however, that this will be slower to match than a rule
26521 set with four separate rules.  The reason is that Calc sorts
26522 the rules of a rule set according to top-level function name;
26523 if the top-level function is @code{apply}, Calc must try the
26524 rule for every single formula and sub-formula.  If the top-level
26525 function in the pattern is, say, @code{floor}, then Calc invokes
26526 the rule only for sub-formulas which are calls to @code{floor}.
26528 Formulas normally written with operators like @code{+} are still
26529 considered function calls:  @code{apply(f,x)} matches @samp{a+b}
26530 with @samp{f = add}, @samp{x = [a,b]}.
26532 You must use @code{apply} for meta-variables with function names
26533 on both sides of a rewrite rule:  @samp{apply(f, [x]) := f(x+1)}
26534 is @emph{not} correct, because it rewrites @samp{spam(6)} into
26535 @samp{f(7)}.  The righthand side should be @samp{apply(f, [x+1])}.
26536 Also note that you will have to use No-Simplify mode (@kbd{m O})
26537 when entering this rule so that the @code{apply} isn't
26538 evaluated immediately to get the new rule @samp{f(x) := f(x+1)}.
26539 Or, use @kbd{s e} to enter the rule without going through the stack,
26540 or enter the rule as @samp{apply(f, [x]) := apply(f, [x+1]) @w{:: 1}}.
26541 @xref{Conditional Rewrite Rules}.
26543 @item select(x)
26544 @ignore
26545 @starindex
26546 @end ignore
26547 @tindex select
26548 This is used for applying rules to formulas with selections;
26549 @pxref{Selections with Rewrite Rules}.
26550 @end table
26552 Special functions for the righthand sides of rules are:
26554 @table @samp
26555 @item quote(x)
26556 The notation @samp{quote(x)} is changed to @samp{x} when the
26557 righthand side is used.  As far as the rewrite rule is concerned,
26558 @code{quote} is invisible.  However, @code{quote} has the special
26559 property in Calc that its argument is not evaluated.  Thus,
26560 while it will not work to put the rule @samp{t(a) := typeof(a)}
26561 on the stack because @samp{typeof(a)} is evaluated immediately
26562 to produce @samp{t(a) := 100}, you can use @code{quote} to
26563 protect the righthand side:  @samp{t(a) := quote(typeof(a))}.
26564 (@xref{Conditional Rewrite Rules}, for another trick for
26565 protecting rules from evaluation.)
26567 @item plain(x)
26568 Special properties of and simplifications for the function call
26569 @expr{x} are not used.  One interesting case where @code{plain}
26570 is useful is the rule, @samp{q(x) := quote(x)}, trying to expand a
26571 shorthand notation for the @code{quote} function.  This rule will
26572 not work as shown; instead of replacing @samp{q(foo)} with
26573 @samp{quote(foo)}, it will replace it with @samp{foo}!  The correct
26574 rule would be @samp{q(x) := plain(quote(x))}.
26576 @item cons(h,t)
26577 Where @expr{t} is a vector, this is converted into an expanded
26578 vector during rewrite processing.  Note that @code{cons} is a regular
26579 Calc function which normally does this anyway; the only way @code{cons}
26580 is treated specially by rewrites is that @code{cons} on the righthand
26581 side of a rule will be evaluated even if default simplifications
26582 have been turned off.
26584 @item rcons(t,h)
26585 Analogous to @code{cons} except putting @expr{h} at the @emph{end} of
26586 the vector @expr{t}.
26588 @item apply(f,args)
26589 Where @expr{f} is a variable and @var{args} is a vector, this
26590 is converted to a function call.  Once again, note that @code{apply}
26591 is also a regular Calc function.
26593 @item eval(x)
26594 @ignore
26595 @starindex
26596 @end ignore
26597 @tindex eval
26598 The formula @expr{x} is handled in the usual way, then the
26599 default simplifications are applied to it even if they have
26600 been turned off normally.  This allows you to treat any function
26601 similarly to the way @code{cons} and @code{apply} are always
26602 treated.  However, there is a slight difference:  @samp{cons(2+3, [])}
26603 with default simplifications off will be converted to @samp{[2+3]},
26604 whereas @samp{eval(cons(2+3, []))} will be converted to @samp{[5]}.
26606 @item evalsimp(x)
26607 @ignore
26608 @starindex
26609 @end ignore
26610 @tindex evalsimp
26611 The formula @expr{x} has meta-variables substituted in the usual
26612 way, then algebraically simplified as if by the @kbd{a s} command.
26614 @item evalextsimp(x)
26615 @ignore
26616 @starindex
26617 @end ignore
26618 @tindex evalextsimp
26619 The formula @expr{x} has meta-variables substituted in the normal
26620 way, then ``extendedly'' simplified as if by the @kbd{a e} command.
26622 @item select(x)
26623 @xref{Selections with Rewrite Rules}.
26624 @end table
26626 There are also some special functions you can use in conditions.
26628 @table @samp
26629 @item let(v := x)
26630 @ignore
26631 @starindex
26632 @end ignore
26633 @tindex let
26634 The expression @expr{x} is evaluated with meta-variables substituted.
26635 The @kbd{a s} command's simplifications are @emph{not} applied by
26636 default, but @expr{x} can include calls to @code{evalsimp} or
26637 @code{evalextsimp} as described above to invoke higher levels
26638 of simplification.  The
26639 result of @expr{x} is then bound to the meta-variable @expr{v}.  As
26640 usual, if this meta-variable has already been matched to something
26641 else the two values must be equal; if the meta-variable is new then
26642 it is bound to the result of the expression.  This variable can then
26643 appear in later conditions, and on the righthand side of the rule.
26644 In fact, @expr{v} may be any pattern in which case the result of
26645 evaluating @expr{x} is matched to that pattern, binding any
26646 meta-variables that appear in that pattern.  Note that @code{let}
26647 can only appear by itself as a condition, or as one term of an
26648 @samp{&&} which is a whole condition:  It cannot be inside
26649 an @samp{||} term or otherwise buried.
26651 The alternate, equivalent form @samp{let(v, x)} is also recognized.
26652 Note that the use of @samp{:=} by @code{let}, while still being
26653 assignment-like in character, is unrelated to the use of @samp{:=}
26654 in the main part of a rewrite rule.
26656 As an example, @samp{f(a) := g(ia) :: let(ia := 1/a) :: constant(ia)}
26657 replaces @samp{f(a)} with @samp{g} of the inverse of @samp{a}, if
26658 that inverse exists and is constant.  For example, if @samp{a} is a
26659 singular matrix the operation @samp{1/a} is left unsimplified and
26660 @samp{constant(ia)} fails, but if @samp{a} is an invertible matrix
26661 then the rule succeeds.  Without @code{let} there would be no way
26662 to express this rule that didn't have to invert the matrix twice.
26663 Note that, because the meta-variable @samp{ia} is otherwise unbound
26664 in this rule, the @code{let} condition itself always ``succeeds''
26665 because no matter what @samp{1/a} evaluates to, it can successfully
26666 be bound to @code{ia}.
26668 Here's another example, for integrating cosines of linear
26669 terms:  @samp{myint(cos(y),x) := sin(y)/b :: let([a,b,x] := lin(y,x))}.
26670 The @code{lin} function returns a 3-vector if its argument is linear,
26671 or leaves itself unevaluated if not.  But an unevaluated @code{lin}
26672 call will not match the 3-vector on the lefthand side of the @code{let},
26673 so this @code{let} both verifies that @code{y} is linear, and binds
26674 the coefficients @code{a} and @code{b} for use elsewhere in the rule.
26675 (It would have been possible to use @samp{sin(a x + b)/b} for the
26676 righthand side instead, but using @samp{sin(y)/b} avoids gratuitous
26677 rearrangement of the argument of the sine.)
26679 @ignore
26680 @starindex
26681 @end ignore
26682 @tindex ierf
26683 Similarly, here is a rule that implements an inverse-@code{erf}
26684 function.  It uses @code{root} to search for a solution.  If
26685 @code{root} succeeds, it will return a vector of two numbers
26686 where the first number is the desired solution.  If no solution
26687 is found, @code{root} remains in symbolic form.  So we use
26688 @code{let} to check that the result was indeed a vector.
26690 @example
26691 ierf(x)  :=  y  :: let([y,z] := root(erf(a) = x, a, .5))
26692 @end example
26694 @item matches(v,p)
26695 The meta-variable @var{v}, which must already have been matched
26696 to something elsewhere in the rule, is compared against pattern
26697 @var{p}.  Since @code{matches} is a standard Calc function, it
26698 can appear anywhere in a condition.  But if it appears alone or
26699 as a term of a top-level @samp{&&}, then you get the special
26700 extra feature that meta-variables which are bound to things
26701 inside @var{p} can be used elsewhere in the surrounding rewrite
26702 rule.
26704 The only real difference between @samp{let(p := v)} and
26705 @samp{matches(v, p)} is that the former evaluates @samp{v} using
26706 the default simplifications, while the latter does not.
26708 @item remember
26709 @vindex remember
26710 This is actually a variable, not a function.  If @code{remember}
26711 appears as a condition in a rule, then when that rule succeeds
26712 the original expression and rewritten expression are added to the
26713 front of the rule set that contained the rule.  If the rule set
26714 was not stored in a variable, @code{remember} is ignored.  The
26715 lefthand side is enclosed in @code{quote} in the added rule if it
26716 contains any variables.
26718 For example, the rule @samp{f(n) := n f(n-1) :: remember} applied
26719 to @samp{f(7)} will add the rule @samp{f(7) := 7 f(6)} to the front
26720 of the rule set.  The rule set @code{EvalRules} works slightly
26721 differently:  There, the evaluation of @samp{f(6)} will complete before
26722 the result is added to the rule set, in this case as @samp{f(7) := 5040}.
26723 Thus @code{remember} is most useful inside @code{EvalRules}.
26725 It is up to you to ensure that the optimization performed by
26726 @code{remember} is safe.  For example, the rule @samp{foo(n) := n
26727 :: evalv(eatfoo) > 0 :: remember} is a bad idea (@code{evalv} is
26728 the function equivalent of the @kbd{=} command); if the variable
26729 @code{eatfoo} ever contains 1, rules like @samp{foo(7) := 7} will
26730 be added to the rule set and will continue to operate even if
26731 @code{eatfoo} is later changed to 0.
26733 @item remember(c)
26734 @ignore
26735 @starindex
26736 @end ignore
26737 @tindex remember
26738 Remember the match as described above, but only if condition @expr{c}
26739 is true.  For example, @samp{remember(n % 4 = 0)} in the above factorial
26740 rule remembers only every fourth result.  Note that @samp{remember(1)}
26741 is equivalent to @samp{remember}, and @samp{remember(0)} has no effect.
26742 @end table
26744 @node Composing Patterns in Rewrite Rules, Nested Formulas with Rewrite Rules, Other Features of Rewrite Rules, Rewrite Rules
26745 @subsection Composing Patterns in Rewrite Rules
26747 @noindent
26748 There are three operators, @samp{&&&}, @samp{|||}, and @samp{!!!},
26749 that combine rewrite patterns to make larger patterns.  The
26750 combinations are ``and,'' ``or,'' and ``not,'' respectively, and
26751 these operators are the pattern equivalents of @samp{&&}, @samp{||}
26752 and @samp{!} (which operate on zero-or-nonzero logical values).
26754 Note that @samp{&&&}, @samp{|||}, and @samp{!!!} are left in symbolic
26755 form by all regular Calc features; they have special meaning only in
26756 the context of rewrite rule patterns.
26758 The pattern @samp{@var{p1} &&& @var{p2}} matches anything that
26759 matches both @var{p1} and @var{p2}.  One especially useful case is
26760 when one of @var{p1} or @var{p2} is a meta-variable.  For example,
26761 here is a rule that operates on error forms:
26763 @example
26764 f(x &&& a +/- b, x)  :=  g(x)
26765 @end example
26767 This does the same thing, but is arguably simpler than, the rule
26769 @example
26770 f(a +/- b, a +/- b)  :=  g(a +/- b)
26771 @end example
26773 @ignore
26774 @starindex
26775 @end ignore
26776 @tindex ends
26777 Here's another interesting example:
26779 @example
26780 ends(cons(a, x) &&& rcons(y, b))  :=  [a, b]
26781 @end example
26783 @noindent
26784 which effectively clips out the middle of a vector leaving just
26785 the first and last elements.  This rule will change a one-element
26786 vector @samp{[a]} to @samp{[a, a]}.  The similar rule
26788 @example
26789 ends(cons(a, rcons(y, b)))  :=  [a, b]
26790 @end example
26792 @noindent
26793 would do the same thing except that it would fail to match a
26794 one-element vector.
26796 @tex
26797 \bigskip
26798 @end tex
26800 The pattern @samp{@var{p1} ||| @var{p2}} matches anything that
26801 matches either @var{p1} or @var{p2}.  Calc first tries matching
26802 against @var{p1}; if that fails, it goes on to try @var{p2}.
26804 @ignore
26805 @starindex
26806 @end ignore
26807 @tindex curve
26808 A simple example of @samp{|||} is
26810 @example
26811 curve(inf ||| -inf)  :=  0
26812 @end example
26814 @noindent
26815 which converts both @samp{curve(inf)} and @samp{curve(-inf)} to zero.
26817 Here is a larger example:
26819 @example
26820 log(a, b) ||| (ln(a) :: let(b := e))  :=  mylog(a, b)
26821 @end example
26823 This matches both generalized and natural logarithms in a single rule.
26824 Note that the @samp{::} term must be enclosed in parentheses because
26825 that operator has lower precedence than @samp{|||} or @samp{:=}.
26827 (In practice this rule would probably include a third alternative,
26828 omitted here for brevity, to take care of @code{log10}.)
26830 While Calc generally treats interior conditions exactly the same as
26831 conditions on the outside of a rule, it does guarantee that if all the
26832 variables in the condition are special names like @code{e}, or already
26833 bound in the pattern to which the condition is attached (say, if
26834 @samp{a} had appeared in this condition), then Calc will process this
26835 condition right after matching the pattern to the left of the @samp{::}.
26836 Thus, we know that @samp{b} will be bound to @samp{e} only if the
26837 @code{ln} branch of the @samp{|||} was taken.
26839 Note that this rule was careful to bind the same set of meta-variables
26840 on both sides of the @samp{|||}.  Calc does not check this, but if
26841 you bind a certain meta-variable only in one branch and then use that
26842 meta-variable elsewhere in the rule, results are unpredictable:
26844 @example
26845 f(a,b) ||| g(b)  :=  h(a,b)
26846 @end example
26848 Here if the pattern matches @samp{g(17)}, Calc makes no promises about
26849 the value that will be substituted for @samp{a} on the righthand side.
26851 @tex
26852 \bigskip
26853 @end tex
26855 The pattern @samp{!!! @var{pat}} matches anything that does not
26856 match @var{pat}.  Any meta-variables that are bound while matching
26857 @var{pat} remain unbound outside of @var{pat}.
26859 For example,
26861 @example
26862 f(x &&& !!! a +/- b, !!![])  :=  g(x)
26863 @end example
26865 @noindent
26866 converts @code{f} whose first argument is anything @emph{except} an
26867 error form, and whose second argument is not the empty vector, into
26868 a similar call to @code{g} (but without the second argument).
26870 If we know that the second argument will be a vector (empty or not),
26871 then an equivalent rule would be:
26873 @example
26874 f(x, y)  :=  g(x)  :: typeof(x) != 7 :: vlen(y) > 0
26875 @end example
26877 @noindent
26878 where of course 7 is the @code{typeof} code for error forms.
26879 Another final condition, that works for any kind of @samp{y},
26880 would be @samp{!istrue(y == [])}.  (The @code{istrue} function
26881 returns an explicit 0 if its argument was left in symbolic form;
26882 plain @samp{!(y == [])} or @samp{y != []} would not work to replace
26883 @samp{!!![]} since these would be left unsimplified, and thus cause
26884 the rule to fail, if @samp{y} was something like a variable name.)
26886 It is possible for a @samp{!!!} to refer to meta-variables bound
26887 elsewhere in the pattern.  For example,
26889 @example
26890 f(a, !!!a)  :=  g(a)
26891 @end example
26893 @noindent
26894 matches any call to @code{f} with different arguments, changing
26895 this to @code{g} with only the first argument.
26897 If a function call is to be matched and one of the argument patterns
26898 contains a @samp{!!!} somewhere inside it, that argument will be
26899 matched last.  Thus
26901 @example
26902 f(!!!a, a)  :=  g(a)
26903 @end example
26905 @noindent
26906 will be careful to bind @samp{a} to the second argument of @code{f}
26907 before testing the first argument.  If Calc had tried to match the
26908 first argument of @code{f} first, the results would have been
26909 disastrous: since @code{a} was unbound so far, the pattern @samp{a}
26910 would have matched anything at all, and the pattern @samp{!!!a}
26911 therefore would @emph{not} have matched anything at all!
26913 @node Nested Formulas with Rewrite Rules, Multi-Phase Rewrite Rules, Composing Patterns in Rewrite Rules, Rewrite Rules
26914 @subsection Nested Formulas with Rewrite Rules
26916 @noindent
26917 When @kbd{a r} (@code{calc-rewrite}) is used, it takes an expression from
26918 the top of the stack and attempts to match any of the specified rules
26919 to any part of the expression, starting with the whole expression
26920 and then, if that fails, trying deeper and deeper sub-expressions.
26921 For each part of the expression, the rules are tried in the order
26922 they appear in the rules vector.  The first rule to match the first
26923 sub-expression wins; it replaces the matched sub-expression according
26924 to the @var{new} part of the rule.
26926 Often, the rule set will match and change the formula several times.
26927 The top-level formula is first matched and substituted repeatedly until
26928 it no longer matches the pattern; then, sub-formulas are tried, and
26929 so on.  Once every part of the formula has gotten its chance, the
26930 rewrite mechanism starts over again with the top-level formula
26931 (in case a substitution of one of its arguments has caused it again
26932 to match).  This continues until no further matches can be made
26933 anywhere in the formula.
26935 It is possible for a rule set to get into an infinite loop.  The
26936 most obvious case, replacing a formula with itself, is not a problem
26937 because a rule is not considered to ``succeed'' unless the righthand
26938 side actually comes out to something different than the original
26939 formula or sub-formula that was matched.  But if you accidentally
26940 had both @samp{ln(a b) := ln(a) + ln(b)} and the reverse
26941 @samp{ln(a) + ln(b) := ln(a b)} in your rule set, Calc would
26942 run forever switching a formula back and forth between the two
26943 forms.
26945 To avoid disaster, Calc normally stops after 100 changes have been
26946 made to the formula.  This will be enough for most multiple rewrites,
26947 but it will keep an endless loop of rewrites from locking up the
26948 computer forever.  (On most systems, you can also type @kbd{C-g} to
26949 halt any Emacs command prematurely.)
26951 To change this limit, give a positive numeric prefix argument.
26952 In particular, @kbd{M-1 a r} applies only one rewrite at a time,
26953 useful when you are first testing your rule (or just if repeated
26954 rewriting is not what is called for by your application).
26956 @ignore
26957 @starindex
26958 @end ignore
26959 @ignore
26960 @mindex iter@idots
26961 @end ignore
26962 @tindex iterations
26963 You can also put a ``function call'' @samp{iterations(@var{n})}
26964 in place of a rule anywhere in your rules vector (but usually at
26965 the top).  Then, @var{n} will be used instead of 100 as the default
26966 number of iterations for this rule set.  You can use
26967 @samp{iterations(inf)} if you want no iteration limit by default.
26968 A prefix argument will override the @code{iterations} limit in the
26969 rule set.
26971 @example
26972 [ iterations(1),
26973   f(x) := f(x+1) ]
26974 @end example
26976 More precisely, the limit controls the number of ``iterations,''
26977 where each iteration is a successful matching of a rule pattern whose
26978 righthand side, after substituting meta-variables and applying the
26979 default simplifications, is different from the original sub-formula
26980 that was matched.
26982 A prefix argument of zero sets the limit to infinity.  Use with caution!
26984 Given a negative numeric prefix argument, @kbd{a r} will match and
26985 substitute the top-level expression up to that many times, but
26986 will not attempt to match the rules to any sub-expressions.
26988 In a formula, @code{rewrite(@var{expr}, @var{rules}, @var{n})}
26989 does a rewriting operation.  Here @var{expr} is the expression
26990 being rewritten, @var{rules} is the rule, vector of rules, or
26991 variable containing the rules, and @var{n} is the optional
26992 iteration limit, which may be a positive integer, a negative
26993 integer, or @samp{inf} or @samp{-inf}.  If @var{n} is omitted
26994 the @code{iterations} value from the rule set is used; if both
26995 are omitted, 100 is used.
26997 @node Multi-Phase Rewrite Rules, Selections with Rewrite Rules, Nested Formulas with Rewrite Rules, Rewrite Rules
26998 @subsection Multi-Phase Rewrite Rules
27000 @noindent
27001 It is possible to separate a rewrite rule set into several @dfn{phases}.
27002 During each phase, certain rules will be enabled while certain others
27003 will be disabled.  A @dfn{phase schedule} controls the order in which
27004 phases occur during the rewriting process.
27006 @ignore
27007 @starindex
27008 @end ignore
27009 @tindex phase
27010 @vindex all
27011 If a call to the marker function @code{phase} appears in the rules
27012 vector in place of a rule, all rules following that point will be
27013 members of the phase(s) identified in the arguments to @code{phase}.
27014 Phases are given integer numbers.  The markers @samp{phase()} and
27015 @samp{phase(all)} both mean the following rules belong to all phases;
27016 this is the default at the start of the rule set.
27018 If you do not explicitly schedule the phases, Calc sorts all phase
27019 numbers that appear in the rule set and executes the phases in
27020 ascending order.  For example, the rule set
27022 @example
27023 @group
27024 [ f0(x) := g0(x),
27025   phase(1),
27026   f1(x) := g1(x),
27027   phase(2),
27028   f2(x) := g2(x),
27029   phase(3),
27030   f3(x) := g3(x),
27031   phase(1,2),
27032   f4(x) := g4(x) ]
27033 @end group
27034 @end example
27036 @noindent
27037 has three phases, 1 through 3.  Phase 1 consists of the @code{f0},
27038 @code{f1}, and @code{f4} rules (in that order).  Phase 2 consists of
27039 @code{f0}, @code{f2}, and @code{f4}.  Phase 3 consists of @code{f0}
27040 and @code{f3}.
27042 When Calc rewrites a formula using this rule set, it first rewrites
27043 the formula using only the phase 1 rules until no further changes are
27044 possible.  Then it switches to the phase 2 rule set and continues
27045 until no further changes occur, then finally rewrites with phase 3.
27046 When no more phase 3 rules apply, rewriting finishes.  (This is
27047 assuming @kbd{a r} with a large enough prefix argument to allow the
27048 rewriting to run to completion; the sequence just described stops
27049 early if the number of iterations specified in the prefix argument,
27050 100 by default, is reached.)
27052 During each phase, Calc descends through the nested levels of the
27053 formula as described previously.  (@xref{Nested Formulas with Rewrite
27054 Rules}.)  Rewriting starts at the top of the formula, then works its
27055 way down to the parts, then goes back to the top and works down again.
27056 The phase 2 rules do not begin until no phase 1 rules apply anywhere
27057 in the formula.
27059 @ignore
27060 @starindex
27061 @end ignore
27062 @tindex schedule
27063 A @code{schedule} marker appearing in the rule set (anywhere, but
27064 conventionally at the top) changes the default schedule of phases.
27065 In the simplest case, @code{schedule} has a sequence of phase numbers
27066 for arguments; each phase number is invoked in turn until the
27067 arguments to @code{schedule} are exhausted.  Thus adding
27068 @samp{schedule(3,2,1)} at the top of the above rule set would
27069 reverse the order of the phases; @samp{schedule(1,2,3)} would have
27070 no effect since this is the default schedule; and @samp{schedule(1,2,1,3)}
27071 would give phase 1 a second chance after phase 2 has completed, before
27072 moving on to phase 3.
27074 Any argument to @code{schedule} can instead be a vector of phase
27075 numbers (or even of sub-vectors).  Then the sub-sequence of phases
27076 described by the vector are tried repeatedly until no change occurs
27077 in any phase in the sequence.  For example, @samp{schedule([1, 2], 3)}
27078 tries phase 1, then phase 2, then, if either phase made any changes
27079 to the formula, repeats these two phases until they can make no
27080 further progress.  Finally, it goes on to phase 3 for finishing
27081 touches.
27083 Also, items in @code{schedule} can be variable names as well as
27084 numbers.  A variable name is interpreted as the name of a function
27085 to call on the whole formula.  For example, @samp{schedule(1, simplify)}
27086 says to apply the phase-1 rules (presumably, all of them), then to
27087 call @code{simplify} which is the function name equivalent of @kbd{a s}.
27088 Likewise, @samp{schedule([1, simplify])} says to alternate between
27089 phase 1 and @kbd{a s} until no further changes occur.
27091 Phases can be used purely to improve efficiency; if it is known that
27092 a certain group of rules will apply only at the beginning of rewriting,
27093 and a certain other group will apply only at the end, then rewriting
27094 will be faster if these groups are identified as separate phases.
27095 Once the phase 1 rules are done, Calc can put them aside and no longer
27096 spend any time on them while it works on phase 2.
27098 There are also some problems that can only be solved with several
27099 rewrite phases.  For a real-world example of a multi-phase rule set,
27100 examine the set @code{FitRules}, which is used by the curve-fitting
27101 command to convert a model expression to linear form.
27102 @xref{Curve Fitting Details}.  This set is divided into four phases.
27103 The first phase rewrites certain kinds of expressions to be more
27104 easily linearizable, but less computationally efficient.  After the
27105 linear components have been picked out, the final phase includes the
27106 opposite rewrites to put each component back into an efficient form.
27107 If both sets of rules were included in one big phase, Calc could get
27108 into an infinite loop going back and forth between the two forms.
27110 Elsewhere in @code{FitRules}, the components are first isolated,
27111 then recombined where possible to reduce the complexity of the linear
27112 fit, then finally packaged one component at a time into vectors.
27113 If the packaging rules were allowed to begin before the recombining
27114 rules were finished, some components might be put away into vectors
27115 before they had a chance to recombine.  By putting these rules in
27116 two separate phases, this problem is neatly avoided.
27118 @node Selections with Rewrite Rules, Matching Commands, Multi-Phase Rewrite Rules, Rewrite Rules
27119 @subsection Selections with Rewrite Rules
27121 @noindent
27122 If a sub-formula of the current formula is selected (as by @kbd{j s};
27123 @pxref{Selecting Subformulas}), the @kbd{a r} (@code{calc-rewrite})
27124 command applies only to that sub-formula.  Together with a negative
27125 prefix argument, you can use this fact to apply a rewrite to one
27126 specific part of a formula without affecting any other parts.
27128 @kindex j r
27129 @pindex calc-rewrite-selection
27130 The @kbd{j r} (@code{calc-rewrite-selection}) command allows more
27131 sophisticated operations on selections.  This command prompts for
27132 the rules in the same way as @kbd{a r}, but it then applies those
27133 rules to the whole formula in question even though a sub-formula
27134 of it has been selected.  However, the selected sub-formula will
27135 first have been surrounded by a @samp{select( )} function call.
27136 (Calc's evaluator does not understand the function name @code{select};
27137 this is only a tag used by the @kbd{j r} command.)
27139 For example, suppose the formula on the stack is @samp{2 (a + b)^2}
27140 and the sub-formula @samp{a + b} is selected.  This formula will
27141 be rewritten to @samp{2 select(a + b)^2} and then the rewrite
27142 rules will be applied in the usual way.  The rewrite rules can
27143 include references to @code{select} to tell where in the pattern
27144 the selected sub-formula should appear.
27146 If there is still exactly one @samp{select( )} function call in
27147 the formula after rewriting is done, it indicates which part of
27148 the formula should be selected afterwards.  Otherwise, the
27149 formula will be unselected.
27151 You can make @kbd{j r} act much like @kbd{a r} by enclosing both parts
27152 of the rewrite rule with @samp{select()}.  However, @kbd{j r}
27153 allows you to use the current selection in more flexible ways.
27154 Suppose you wished to make a rule which removed the exponent from
27155 the selected term; the rule @samp{select(a)^x := select(a)} would
27156 work.  In the above example, it would rewrite @samp{2 select(a + b)^2}
27157 to @samp{2 select(a + b)}.  This would then be returned to the
27158 stack as @samp{2 (a + b)} with the @samp{a + b} selected.
27160 The @kbd{j r} command uses one iteration by default, unlike
27161 @kbd{a r} which defaults to 100 iterations.  A numeric prefix
27162 argument affects @kbd{j r} in the same way as @kbd{a r}.
27163 @xref{Nested Formulas with Rewrite Rules}.
27165 As with other selection commands, @kbd{j r} operates on the stack
27166 entry that contains the cursor.  (If the cursor is on the top-of-stack
27167 @samp{.} marker, it works as if the cursor were on the formula
27168 at stack level 1.)
27170 If you don't specify a set of rules, the rules are taken from the
27171 top of the stack, just as with @kbd{a r}.  In this case, the
27172 cursor must indicate stack entry 2 or above as the formula to be
27173 rewritten (otherwise the same formula would be used as both the
27174 target and the rewrite rules).
27176 If the indicated formula has no selection, the cursor position within
27177 the formula temporarily selects a sub-formula for the purposes of this
27178 command.  If the cursor is not on any sub-formula (e.g., it is in
27179 the line-number area to the left of the formula), the @samp{select( )}
27180 markers are ignored by the rewrite mechanism and the rules are allowed
27181 to apply anywhere in the formula.
27183 As a special feature, the normal @kbd{a r} command also ignores
27184 @samp{select( )} calls in rewrite rules.  For example, if you used the
27185 above rule @samp{select(a)^x := select(a)} with @kbd{a r}, it would apply
27186 the rule as if it were @samp{a^x := a}.  Thus, you can write general
27187 purpose rules with @samp{select( )} hints inside them so that they
27188 will ``do the right thing'' in both @kbd{a r} and @kbd{j r},
27189 both with and without selections.
27191 @node Matching Commands, Automatic Rewrites, Selections with Rewrite Rules, Rewrite Rules
27192 @subsection Matching Commands
27194 @noindent
27195 @kindex a m
27196 @pindex calc-match
27197 @tindex match
27198 The @kbd{a m} (@code{calc-match}) [@code{match}] function takes a
27199 vector of formulas and a rewrite-rule-style pattern, and produces
27200 a vector of all formulas which match the pattern.  The command
27201 prompts you to enter the pattern; as for @kbd{a r}, you can enter
27202 a single pattern (i.e., a formula with meta-variables), or a
27203 vector of patterns, or a variable which contains patterns, or
27204 you can give a blank response in which case the patterns are taken
27205 from the top of the stack.  The pattern set will be compiled once
27206 and saved if it is stored in a variable.  If there are several
27207 patterns in the set, vector elements are kept if they match any
27208 of the patterns.
27210 For example, @samp{match(a+b, [x, x+y, x-y, 7, x+y+z])}
27211 will return @samp{[x+y, x-y, x+y+z]}.
27213 The @code{import} mechanism is not available for pattern sets.
27215 The @kbd{a m} command can also be used to extract all vector elements
27216 which satisfy any condition:  The pattern @samp{x :: x>0} will select
27217 all the positive vector elements.
27219 @kindex I a m
27220 @tindex matchnot
27221 With the Inverse flag [@code{matchnot}], this command extracts all
27222 vector elements which do @emph{not} match the given pattern.
27224 @ignore
27225 @starindex
27226 @end ignore
27227 @tindex matches
27228 There is also a function @samp{matches(@var{x}, @var{p})} which
27229 evaluates to 1 if expression @var{x} matches pattern @var{p}, or
27230 to 0 otherwise.  This is sometimes useful for including into the
27231 conditional clauses of other rewrite rules.
27233 @ignore
27234 @starindex
27235 @end ignore
27236 @tindex vmatches
27237 The function @code{vmatches} is just like @code{matches}, except
27238 that if the match succeeds it returns a vector of assignments to
27239 the meta-variables instead of the number 1.  For example,
27240 @samp{vmatches(f(1,2), f(a,b))} returns @samp{[a := 1, b := 2]}.
27241 If the match fails, the function returns the number 0.
27243 @node Automatic Rewrites, Debugging Rewrites, Matching Commands, Rewrite Rules
27244 @subsection Automatic Rewrites
27246 @noindent
27247 @cindex @code{EvalRules} variable
27248 @vindex EvalRules
27249 It is possible to get Calc to apply a set of rewrite rules on all
27250 results, effectively adding to the built-in set of default
27251 simplifications.  To do this, simply store your rule set in the
27252 variable @code{EvalRules}.  There is a convenient @kbd{s E} command
27253 for editing @code{EvalRules}; @pxref{Operations on Variables}.
27255 For example, suppose you want @samp{sin(a + b)} to be expanded out
27256 to @samp{sin(b) cos(a) + cos(b) sin(a)} wherever it appears, and
27257 similarly for @samp{cos(a + b)}.  The corresponding rewrite rule
27258 set would be,
27260 @smallexample
27261 @group
27262 [ sin(a + b)  :=  cos(a) sin(b) + sin(a) cos(b),
27263   cos(a + b)  :=  cos(a) cos(b) - sin(a) sin(b) ]
27264 @end group
27265 @end smallexample
27267 To apply these manually, you could put them in a variable called
27268 @code{trigexp} and then use @kbd{a r trigexp} every time you wanted
27269 to expand trig functions.  But if instead you store them in the
27270 variable @code{EvalRules}, they will automatically be applied to all
27271 sines and cosines of sums.  Then, with @samp{2 x} and @samp{45} on
27272 the stack, typing @kbd{+ S} will (assuming Degrees mode) result in
27273 @samp{0.7071 sin(2 x) + 0.7071 cos(2 x)} automatically.
27275 As each level of a formula is evaluated, the rules from
27276 @code{EvalRules} are applied before the default simplifications.
27277 Rewriting continues until no further @code{EvalRules} apply.
27278 Note that this is different from the usual order of application of
27279 rewrite rules:  @code{EvalRules} works from the bottom up, simplifying
27280 the arguments to a function before the function itself, while @kbd{a r}
27281 applies rules from the top down.
27283 Because the @code{EvalRules} are tried first, you can use them to
27284 override the normal behavior of any built-in Calc function.
27286 It is important not to write a rule that will get into an infinite
27287 loop.  For example, the rule set @samp{[f(0) := 1, f(n) := n f(n-1)]}
27288 appears to be a good definition of a factorial function, but it is
27289 unsafe.  Imagine what happens if @samp{f(2.5)} is simplified.  Calc
27290 will continue to subtract 1 from this argument forever without reaching
27291 zero.  A safer second rule would be @samp{f(n) := n f(n-1) :: n>0}.
27292 Another dangerous rule is @samp{g(x, y) := g(y, x)}.  Rewriting
27293 @samp{g(2, 4)}, this would bounce back and forth between that and
27294 @samp{g(4, 2)} forever.  If an infinite loop in @code{EvalRules}
27295 occurs, Emacs will eventually stop with a ``Computation got stuck
27296 or ran too long'' message.
27298 Another subtle difference between @code{EvalRules} and regular rewrites
27299 concerns rules that rewrite a formula into an identical formula.  For
27300 example, @samp{f(n) := f(floor(n))} ``fails to match'' when @expr{n} is
27301 already an integer.  But in @code{EvalRules} this case is detected only
27302 if the righthand side literally becomes the original formula before any
27303 further simplification.  This means that @samp{f(n) := f(floor(n))} will
27304 get into an infinite loop if it occurs in @code{EvalRules}.  Calc will
27305 replace @samp{f(6)} with @samp{f(floor(6))}, which is different from
27306 @samp{f(6)}, so it will consider the rule to have matched and will
27307 continue simplifying that formula; first the argument is simplified
27308 to get @samp{f(6)}, then the rule matches again to get @samp{f(floor(6))}
27309 again, ad infinitum.  A much safer rule would check its argument first,
27310 say, with @samp{f(n) := f(floor(n)) :: !dint(n)}.
27312 (What really happens is that the rewrite mechanism substitutes the
27313 meta-variables in the righthand side of a rule, compares to see if the
27314 result is the same as the original formula and fails if so, then uses
27315 the default simplifications to simplify the result and compares again
27316 (and again fails if the formula has simplified back to its original
27317 form).  The only special wrinkle for the @code{EvalRules} is that the
27318 same rules will come back into play when the default simplifications
27319 are used.  What Calc wants to do is build @samp{f(floor(6))}, see that
27320 this is different from the original formula, simplify to @samp{f(6)},
27321 see that this is the same as the original formula, and thus halt the
27322 rewriting.  But while simplifying, @samp{f(6)} will again trigger
27323 the same @code{EvalRules} rule and Calc will get into a loop inside
27324 the rewrite mechanism itself.)
27326 The @code{phase}, @code{schedule}, and @code{iterations} markers do
27327 not work in @code{EvalRules}.  If the rule set is divided into phases,
27328 only the phase 1 rules are applied, and the schedule is ignored.
27329 The rules are always repeated as many times as possible.
27331 The @code{EvalRules} are applied to all function calls in a formula,
27332 but not to numbers (and other number-like objects like error forms),
27333 nor to vectors or individual variable names.  (Though they will apply
27334 to @emph{components} of vectors and error forms when appropriate.)  You
27335 might try to make a variable @code{phihat} which automatically expands
27336 to its definition without the need to press @kbd{=} by writing the
27337 rule @samp{quote(phihat) := (1-sqrt(5))/2}, but unfortunately this rule
27338 will not work as part of @code{EvalRules}.
27340 Finally, another limitation is that Calc sometimes calls its built-in
27341 functions directly rather than going through the default simplifications.
27342 When it does this, @code{EvalRules} will not be able to override those
27343 functions.  For example, when you take the absolute value of the complex
27344 number @expr{(2, 3)}, Calc computes @samp{sqrt(2*2 + 3*3)} by calling
27345 the multiplication, addition, and square root functions directly rather
27346 than applying the default simplifications to this formula.  So an
27347 @code{EvalRules} rule that (perversely) rewrites @samp{sqrt(13) := 6}
27348 would not apply.  (However, if you put Calc into Symbolic mode so that
27349 @samp{sqrt(13)} will be left in symbolic form by the built-in square
27350 root function, your rule will be able to apply.  But if the complex
27351 number were @expr{(3,4)}, so that @samp{sqrt(25)} must be calculated,
27352 then Symbolic mode will not help because @samp{sqrt(25)} can be
27353 evaluated exactly to 5.)
27355 One subtle restriction that normally only manifests itself with
27356 @code{EvalRules} is that while a given rewrite rule is in the process
27357 of being checked, that same rule cannot be recursively applied.  Calc
27358 effectively removes the rule from its rule set while checking the rule,
27359 then puts it back once the match succeeds or fails.  (The technical
27360 reason for this is that compiled pattern programs are not reentrant.)
27361 For example, consider the rule @samp{foo(x) := x :: foo(x/2) > 0}
27362 attempting to match @samp{foo(8)}.  This rule will be inactive while
27363 the condition @samp{foo(4) > 0} is checked, even though it might be
27364 an integral part of evaluating that condition.  Note that this is not
27365 a problem for the more usual recursive type of rule, such as
27366 @samp{foo(x) := foo(x/2)}, because there the rule has succeeded and
27367 been reactivated by the time the righthand side is evaluated.
27369 If @code{EvalRules} has no stored value (its default state), or if
27370 anything but a vector is stored in it, then it is ignored.
27372 Even though Calc's rewrite mechanism is designed to compare rewrite
27373 rules to formulas as quickly as possible, storing rules in
27374 @code{EvalRules} may make Calc run substantially slower.  This is
27375 particularly true of rules where the top-level call is a commonly used
27376 function, or is not fixed.  The rule @samp{f(n) := n f(n-1) :: n>0} will
27377 only activate the rewrite mechanism for calls to the function @code{f},
27378 but @samp{lg(n) + lg(m) := lg(n m)} will check every @samp{+} operator.
27380 @smallexample
27381 apply(f, [a*b]) := apply(f, [a]) + apply(f, [b]) :: in(f, [ln, log10])
27382 @end smallexample
27384 @noindent
27385 may seem more ``efficient'' than two separate rules for @code{ln} and
27386 @code{log10}, but actually it is vastly less efficient because rules
27387 with @code{apply} as the top-level pattern must be tested against
27388 @emph{every} function call that is simplified.
27390 @cindex @code{AlgSimpRules} variable
27391 @vindex AlgSimpRules
27392 Suppose you want @samp{sin(a + b)} to be expanded out not all the time,
27393 but only when @kbd{a s} is used to simplify the formula.  The variable
27394 @code{AlgSimpRules} holds rules for this purpose.  The @kbd{a s} command
27395 will apply @code{EvalRules} and @code{AlgSimpRules} to the formula, as
27396 well as all of its built-in simplifications.
27398 Most of the special limitations for @code{EvalRules} don't apply to
27399 @code{AlgSimpRules}.  Calc simply does an @kbd{a r AlgSimpRules}
27400 command with an infinite repeat count as the first step of @kbd{a s}.
27401 It then applies its own built-in simplifications throughout the
27402 formula, and then repeats these two steps (along with applying the
27403 default simplifications) until no further changes are possible.
27405 @cindex @code{ExtSimpRules} variable
27406 @cindex @code{UnitSimpRules} variable
27407 @vindex ExtSimpRules
27408 @vindex UnitSimpRules
27409 There are also @code{ExtSimpRules} and @code{UnitSimpRules} variables
27410 that are used by @kbd{a e} and @kbd{u s}, respectively; these commands
27411 also apply @code{EvalRules} and @code{AlgSimpRules}.  The variable
27412 @code{IntegSimpRules} contains simplification rules that are used
27413 only during integration by @kbd{a i}.
27415 @node Debugging Rewrites, Examples of Rewrite Rules, Automatic Rewrites, Rewrite Rules
27416 @subsection Debugging Rewrites
27418 @noindent
27419 If a buffer named @samp{*Trace*} exists, the rewrite mechanism will
27420 record some useful information there as it operates.  The original
27421 formula is written there, as is the result of each successful rewrite,
27422 and the final result of the rewriting.  All phase changes are also
27423 noted.
27425 Calc always appends to @samp{*Trace*}.  You must empty this buffer
27426 yourself periodically if it is in danger of growing unwieldy.
27428 Note that the rewriting mechanism is substantially slower when the
27429 @samp{*Trace*} buffer exists, even if the buffer is not visible on
27430 the screen.  Once you are done, you will probably want to kill this
27431 buffer (with @kbd{C-x k *Trace* @key{RET}}).  If you leave it in
27432 existence and forget about it, all your future rewrite commands will
27433 be needlessly slow.
27435 @node Examples of Rewrite Rules, , Debugging Rewrites, Rewrite Rules
27436 @subsection Examples of Rewrite Rules
27438 @noindent
27439 Returning to the example of substituting the pattern
27440 @samp{sin(x)^2 + cos(x)^2} with 1, we saw that the rule
27441 @samp{opt(a) sin(x)^2 + opt(a) cos(x)^2 := a} does a good job of
27442 finding suitable cases.  Another solution would be to use the rule
27443 @samp{cos(x)^2 := 1 - sin(x)^2}, followed by algebraic simplification
27444 if necessary.  This rule will be the most effective way to do the job,
27445 but at the expense of making some changes that you might not desire.
27447 Another algebraic rewrite rule is @samp{exp(x+y) := exp(x) exp(y)}.
27448 To make this work with the @w{@kbd{j r}} command so that it can be
27449 easily targeted to a particular exponential in a large formula,
27450 you might wish to write the rule as @samp{select(exp(x+y)) :=
27451 select(exp(x) exp(y))}.  The @samp{select} markers will be
27452 ignored by the regular @kbd{a r} command
27453 (@pxref{Selections with Rewrite Rules}).
27455 A surprisingly useful rewrite rule is @samp{a/(b-c) := a*(b+c)/(b^2-c^2)}.
27456 This will simplify the formula whenever @expr{b} and/or @expr{c} can
27457 be made simpler by squaring.  For example, applying this rule to
27458 @samp{2 / (sqrt(2) + 3)} yields @samp{6:7 - 2:7 sqrt(2)} (assuming
27459 Symbolic mode has been enabled to keep the square root from being
27460 evaluated to a floating-point approximation).  This rule is also
27461 useful when working with symbolic complex numbers, e.g.,
27462 @samp{(a + b i) / (c + d i)}.
27464 As another example, we could define our own ``triangular numbers'' function
27465 with the rules @samp{[tri(0) := 0, tri(n) := n + tri(n-1) :: n>0]}.  Enter
27466 this vector and store it in a variable:  @kbd{@w{s t} trirules}.  Now, given
27467 a suitable formula like @samp{tri(5)} on the stack, type @samp{a r trirules}
27468 to apply these rules repeatedly.  After six applications, @kbd{a r} will
27469 stop with 15 on the stack.  Once these rules are debugged, it would probably
27470 be most useful to add them to @code{EvalRules} so that Calc will evaluate
27471 the new @code{tri} function automatically.  We could then use @kbd{Z K} on
27472 the keyboard macro @kbd{' tri($) @key{RET}} to make a command that applies
27473 @code{tri} to the value on the top of the stack.  @xref{Programming}.
27475 @cindex Quaternions
27476 The following rule set, contributed by 
27477 @texline Fran\c cois
27478 @infoline Francois
27479 Pinard, implements @dfn{quaternions}, a generalization of the concept of
27480 complex numbers.  Quaternions have four components, and are here
27481 represented by function calls @samp{quat(@var{w}, [@var{x}, @var{y},
27482 @var{z}])} with ``real part'' @var{w} and the three ``imaginary'' parts
27483 collected into a vector.  Various arithmetical operations on quaternions
27484 are supported.  To use these rules, either add them to @code{EvalRules},
27485 or create a command based on @kbd{a r} for simplifying quaternion
27486 formulas.  A convenient way to enter quaternions would be a command
27487 defined by a keyboard macro containing: @kbd{' quat($$$$, [$$$, $$, $])
27488 @key{RET}}.
27490 @smallexample
27491 [ quat(w, x, y, z) := quat(w, [x, y, z]),
27492   quat(w, [0, 0, 0]) := w,
27493   abs(quat(w, v)) := hypot(w, v),
27494   -quat(w, v) := quat(-w, -v),
27495   r + quat(w, v) := quat(r + w, v) :: real(r),
27496   r - quat(w, v) := quat(r - w, -v) :: real(r),
27497   quat(w1, v1) + quat(w2, v2) := quat(w1 + w2, v1 + v2),
27498   r * quat(w, v) := quat(r * w, r * v) :: real(r),
27499   plain(quat(w1, v1) * quat(w2, v2))
27500      := quat(w1 * w2 - v1 * v2, w1 * v2 + w2 * v1 + cross(v1, v2)),
27501   quat(w1, v1) / r := quat(w1 / r, v1 / r) :: real(r),
27502   z / quat(w, v) := z * quatinv(quat(w, v)),
27503   quatinv(quat(w, v)) := quat(w, -v) / (w^2 + v^2),
27504   quatsqr(quat(w, v)) := quat(w^2 - v^2, 2 * w * v),
27505   quat(w, v)^k := quatsqr(quat(w, v)^(k / 2))
27506                :: integer(k) :: k > 0 :: k % 2 = 0,
27507   quat(w, v)^k := quatsqr(quat(w, v)^((k - 1) / 2)) * quat(w, v)
27508                :: integer(k) :: k > 2,
27509   quat(w, v)^-k := quatinv(quat(w, v)^k) :: integer(k) :: k > 0 ]
27510 @end smallexample
27512 Quaternions, like matrices, have non-commutative multiplication.
27513 In other words, @expr{q1 * q2 = q2 * q1} is not necessarily true if
27514 @expr{q1} and @expr{q2} are @code{quat} forms.  The @samp{quat*quat}
27515 rule above uses @code{plain} to prevent Calc from rearranging the
27516 product.  It may also be wise to add the line @samp{[quat(), matrix]}
27517 to the @code{Decls} matrix, to ensure that Calc's other algebraic
27518 operations will not rearrange a quaternion product.  @xref{Declarations}.
27520 These rules also accept a four-argument @code{quat} form, converting
27521 it to the preferred form in the first rule.  If you would rather see
27522 results in the four-argument form, just append the two items
27523 @samp{phase(2), quat(w, [x, y, z]) := quat(w, x, y, z)} to the end
27524 of the rule set.  (But remember that multi-phase rule sets don't work
27525 in @code{EvalRules}.)
27527 @node Units, Store and Recall, Algebra, Top
27528 @chapter Operating on Units
27530 @noindent
27531 One special interpretation of algebraic formulas is as numbers with units.
27532 For example, the formula @samp{5 m / s^2} can be read ``five meters
27533 per second squared.''  The commands in this chapter help you
27534 manipulate units expressions in this form.  Units-related commands
27535 begin with the @kbd{u} prefix key.
27537 @menu
27538 * Basic Operations on Units::
27539 * The Units Table::
27540 * Predefined Units::
27541 * User-Defined Units::
27542 @end menu
27544 @node Basic Operations on Units, The Units Table, Units, Units
27545 @section Basic Operations on Units
27547 @noindent
27548 A @dfn{units expression} is a formula which is basically a number
27549 multiplied and/or divided by one or more @dfn{unit names}, which may
27550 optionally be raised to integer powers.  Actually, the value part need not
27551 be a number; any product or quotient involving unit names is a units
27552 expression.  Many of the units commands will also accept any formula,
27553 where the command applies to all units expressions which appear in the
27554 formula.
27556 A unit name is a variable whose name appears in the @dfn{unit table},
27557 or a variable whose name is a prefix character like @samp{k} (for ``kilo'')
27558 or @samp{u} (for ``micro'') followed by a name in the unit table.
27559 A substantial table of built-in units is provided with Calc;
27560 @pxref{Predefined Units}.  You can also define your own unit names;
27561 @pxref{User-Defined Units}.
27563 Note that if the value part of a units expression is exactly @samp{1},
27564 it will be removed by the Calculator's automatic algebra routines:  The
27565 formula @samp{1 mm} is ``simplified'' to @samp{mm}.  This is only a
27566 display anomaly, however; @samp{mm} will work just fine as a
27567 representation of one millimeter.
27569 You may find that Algebraic mode (@pxref{Algebraic Entry}) makes working
27570 with units expressions easier.  Otherwise, you will have to remember
27571 to hit the apostrophe key every time you wish to enter units.
27573 @kindex u s
27574 @pindex calc-simplify-units
27575 @ignore
27576 @mindex usimpl@idots
27577 @end ignore
27578 @tindex usimplify
27579 The @kbd{u s} (@code{calc-simplify-units}) [@code{usimplify}] command
27580 simplifies a units
27581 expression.  It uses @kbd{a s} (@code{calc-simplify}) to simplify the
27582 expression first as a regular algebraic formula; it then looks for
27583 features that can be further simplified by converting one object's units
27584 to be compatible with another's.  For example, @samp{5 m + 23 mm} will
27585 simplify to @samp{5.023 m}.  When different but compatible units are
27586 added, the righthand term's units are converted to match those of the
27587 lefthand term.  @xref{Simplification Modes}, for a way to have this done
27588 automatically at all times.
27590 Units simplification also handles quotients of two units with the same
27591 dimensionality, as in @w{@samp{2 in s/L cm}} to @samp{5.08 s/L}; fractional
27592 powers of unit expressions, as in @samp{sqrt(9 mm^2)} to @samp{3 mm} and
27593 @samp{sqrt(9 acre)} to a quantity in meters; and @code{floor},
27594 @code{ceil}, @code{round}, @code{rounde}, @code{roundu}, @code{trunc},
27595 @code{float}, @code{frac}, @code{abs}, and @code{clean}
27596 applied to units expressions, in which case
27597 the operation in question is applied only to the numeric part of the
27598 expression.  Finally, trigonometric functions of quantities with units
27599 of angle are evaluated, regardless of the current angular mode.
27601 @kindex u c
27602 @pindex calc-convert-units
27603 The @kbd{u c} (@code{calc-convert-units}) command converts a units
27604 expression to new, compatible units.  For example, given the units
27605 expression @samp{55 mph}, typing @kbd{u c m/s @key{RET}} produces
27606 @samp{24.5872 m/s}.  If the units you request are inconsistent with
27607 the original units, the number will be converted into your units
27608 times whatever ``remainder'' units are left over.  For example,
27609 converting @samp{55 mph} into acres produces @samp{6.08e-3 acre / m s}.
27610 (Recall that multiplication binds more strongly than division in Calc
27611 formulas, so the units here are acres per meter-second.)  Remainder
27612 units are expressed in terms of ``fundamental'' units like @samp{m} and
27613 @samp{s}, regardless of the input units.
27615 One special exception is that if you specify a single unit name, and
27616 a compatible unit appears somewhere in the units expression, then
27617 that compatible unit will be converted to the new unit and the
27618 remaining units in the expression will be left alone.  For example,
27619 given the input @samp{980 cm/s^2}, the command @kbd{u c ms} will
27620 change the @samp{s} to @samp{ms} to get @samp{9.8e-4 cm/ms^2}.
27621 The ``remainder unit'' @samp{cm} is left alone rather than being
27622 changed to the base unit @samp{m}.
27624 You can use explicit unit conversion instead of the @kbd{u s} command
27625 to gain more control over the units of the result of an expression.
27626 For example, given @samp{5 m + 23 mm}, you can type @kbd{u c m} or
27627 @kbd{u c mm} to express the result in either meters or millimeters.
27628 (For that matter, you could type @kbd{u c fath} to express the result
27629 in fathoms, if you preferred!)
27631 In place of a specific set of units, you can also enter one of the
27632 units system names @code{si}, @code{mks} (equivalent), or @code{cgs}.
27633 For example, @kbd{u c si @key{RET}} converts the expression into
27634 International System of Units (SI) base units.  Also, @kbd{u c base}
27635 converts to Calc's base units, which are the same as @code{si} units
27636 except that @code{base} uses @samp{g} as the fundamental unit of mass
27637 whereas @code{si} uses @samp{kg}.
27639 @cindex Composite units
27640 The @kbd{u c} command also accepts @dfn{composite units}, which
27641 are expressed as the sum of several compatible unit names.  For
27642 example, converting @samp{30.5 in} to units @samp{mi+ft+in} (miles,
27643 feet, and inches) produces @samp{2 ft + 6.5 in}.  Calc first
27644 sorts the unit names into order of decreasing relative size.
27645 It then accounts for as much of the input quantity as it can
27646 using an integer number times the largest unit, then moves on
27647 to the next smaller unit, and so on.  Only the smallest unit
27648 may have a non-integer amount attached in the result.  A few
27649 standard unit names exist for common combinations, such as
27650 @code{mfi} for @samp{mi+ft+in}, and @code{tpo} for @samp{ton+lb+oz}.
27651 Composite units are expanded as if by @kbd{a x}, so that
27652 @samp{(ft+in)/hr} is first converted to @samp{ft/hr+in/hr}.
27654 If the value on the stack does not contain any units, @kbd{u c} will
27655 prompt first for the old units which this value should be considered
27656 to have, then for the new units.  Assuming the old and new units you
27657 give are consistent with each other, the result also will not contain
27658 any units.  For example, @kbd{@w{u c} cm @key{RET} in @key{RET}} converts the number
27659 2 on the stack to 5.08.
27661 @kindex u b
27662 @pindex calc-base-units
27663 The @kbd{u b} (@code{calc-base-units}) command is shorthand for
27664 @kbd{u c base}; it converts the units expression on the top of the
27665 stack into @code{base} units.  If @kbd{u s} does not simplify a
27666 units expression as far as you would like, try @kbd{u b}.
27668 The @kbd{u c} and @kbd{u b} commands treat temperature units (like
27669 @samp{degC} and @samp{K}) as relative temperatures.  For example,
27670 @kbd{u c} converts @samp{10 degC} to @samp{18 degF}: A change of 10
27671 degrees Celsius corresponds to a change of 18 degrees Fahrenheit.
27673 @kindex u t
27674 @pindex calc-convert-temperature
27675 @cindex Temperature conversion
27676 The @kbd{u t} (@code{calc-convert-temperature}) command converts
27677 absolute temperatures.  The value on the stack must be a simple units
27678 expression with units of temperature only.  This command would convert
27679 @samp{10 degC} to @samp{50 degF}, the equivalent temperature on the
27680 Fahrenheit scale.
27682 @kindex u r
27683 @pindex calc-remove-units
27684 @kindex u x
27685 @pindex calc-extract-units
27686 The @kbd{u r} (@code{calc-remove-units}) command removes units from the
27687 formula at the top of the stack.  The @kbd{u x}
27688 (@code{calc-extract-units}) command extracts only the units portion of a
27689 formula.  These commands essentially replace every term of the formula
27690 that does or doesn't (respectively) look like a unit name by the
27691 constant 1, then resimplify the formula.
27693 @kindex u a
27694 @pindex calc-autorange-units
27695 The @kbd{u a} (@code{calc-autorange-units}) command turns on and off a
27696 mode in which unit prefixes like @code{k} (``kilo'') are automatically
27697 applied to keep the numeric part of a units expression in a reasonable
27698 range.  This mode affects @kbd{u s} and all units conversion commands
27699 except @kbd{u b}.  For example, with autoranging on, @samp{12345 Hz}
27700 will be simplified to @samp{12.345 kHz}.  Autoranging is useful for
27701 some kinds of units (like @code{Hz} and @code{m}), but is probably
27702 undesirable for non-metric units like @code{ft} and @code{tbsp}.
27703 (Composite units are more appropriate for those; see above.)
27705 Autoranging always applies the prefix to the leftmost unit name.
27706 Calc chooses the largest prefix that causes the number to be greater
27707 than or equal to 1.0.  Thus an increasing sequence of adjusted times
27708 would be @samp{1 ms, 10 ms, 100 ms, 1 s, 10 s, 100 s, 1 ks}.
27709 Generally the rule of thumb is that the number will be adjusted
27710 to be in the interval @samp{[1 .. 1000)}, although there are several
27711 exceptions to this rule.  First, if the unit has a power then this
27712 is not possible; @samp{0.1 s^2} simplifies to @samp{100000 ms^2}.
27713 Second, the ``centi-'' prefix is allowed to form @code{cm} (centimeters),
27714 but will not apply to other units.  The ``deci-,'' ``deka-,'' and
27715 ``hecto-'' prefixes are never used.  Thus the allowable interval is
27716 @samp{[1 .. 10)} for millimeters and @samp{[1 .. 100)} for centimeters.
27717 Finally, a prefix will not be added to a unit if the resulting name
27718 is also the actual name of another unit; @samp{1e-15 t} would normally
27719 be considered a ``femto-ton,'' but it is written as @samp{1000 at}
27720 (1000 atto-tons) instead because @code{ft} would be confused with feet.
27722 @node The Units Table, Predefined Units, Basic Operations on Units, Units
27723 @section The Units Table
27725 @noindent
27726 @kindex u v
27727 @pindex calc-enter-units-table
27728 The @kbd{u v} (@code{calc-enter-units-table}) command displays the units table
27729 in another buffer called @code{*Units Table*}.  Each entry in this table
27730 gives the unit name as it would appear in an expression, the definition
27731 of the unit in terms of simpler units, and a full name or description of
27732 the unit.  Fundamental units are defined as themselves; these are the
27733 units produced by the @kbd{u b} command.  The fundamental units are
27734 meters, seconds, grams, kelvins, amperes, candelas, moles, radians,
27735 and steradians.
27737 The Units Table buffer also displays the Unit Prefix Table.  Note that
27738 two prefixes, ``kilo'' and ``hecto,'' accept either upper- or lower-case
27739 prefix letters.  @samp{Meg} is also accepted as a synonym for the @samp{M}
27740 prefix.  Whenever a unit name can be interpreted as either a built-in name
27741 or a prefix followed by another built-in name, the former interpretation
27742 wins.  For example, @samp{2 pt} means two pints, not two pico-tons.
27744 The Units Table buffer, once created, is not rebuilt unless you define
27745 new units.  To force the buffer to be rebuilt, give any numeric prefix
27746 argument to @kbd{u v}.
27748 @kindex u V
27749 @pindex calc-view-units-table
27750 The @kbd{u V} (@code{calc-view-units-table}) command is like @kbd{u v} except
27751 that the cursor is not moved into the Units Table buffer.  You can
27752 type @kbd{u V} again to remove the Units Table from the display.  To
27753 return from the Units Table buffer after a @kbd{u v}, type @kbd{M-# c}
27754 again or use the regular Emacs @w{@kbd{C-x o}} (@code{other-window})
27755 command.  You can also kill the buffer with @kbd{C-x k} if you wish;
27756 the actual units table is safely stored inside the Calculator.
27758 @kindex u g
27759 @pindex calc-get-unit-definition
27760 The @kbd{u g} (@code{calc-get-unit-definition}) command retrieves a unit's
27761 defining expression and pushes it onto the Calculator stack.  For example,
27762 @kbd{u g in} will produce the expression @samp{2.54 cm}.  This is the
27763 same definition for the unit that would appear in the Units Table buffer.
27764 Note that this command works only for actual unit names; @kbd{u g km}
27765 will report that no such unit exists, for example, because @code{km} is
27766 really the unit @code{m} with a @code{k} (``kilo'') prefix.  To see a
27767 definition of a unit in terms of base units, it is easier to push the
27768 unit name on the stack and then reduce it to base units with @kbd{u b}.
27770 @kindex u e
27771 @pindex calc-explain-units
27772 The @kbd{u e} (@code{calc-explain-units}) command displays an English
27773 description of the units of the expression on the stack.  For example,
27774 for the expression @samp{62 km^2 g / s^2 mol K}, the description is
27775 ``Square-Kilometer Gram per (Second-squared Mole Degree-Kelvin).''  This
27776 command uses the English descriptions that appear in the righthand
27777 column of the Units Table.
27779 @node Predefined Units, User-Defined Units, The Units Table, Units
27780 @section Predefined Units
27782 @noindent
27783 Since the exact definitions of many kinds of units have evolved over the
27784 years, and since certain countries sometimes have local differences in
27785 their definitions, it is a good idea to examine Calc's definition of a
27786 unit before depending on its exact value.  For example, there are three
27787 different units for gallons, corresponding to the US (@code{gal}),
27788 Canadian (@code{galC}), and British (@code{galUK}) definitions.  Also,
27789 note that @code{oz} is a standard ounce of mass, @code{ozt} is a Troy
27790 ounce, and @code{ozfl} is a fluid ounce.
27792 The temperature units corresponding to degrees Kelvin and Centigrade
27793 (Celsius) are the same in this table, since most units commands treat
27794 temperatures as being relative.  The @code{calc-convert-temperature}
27795 command has special rules for handling the different absolute magnitudes
27796 of the various temperature scales.
27798 The unit of volume ``liters'' can be referred to by either the lower-case
27799 @code{l} or the upper-case @code{L}.
27801 The unit @code{A} stands for Amperes; the name @code{Ang} is used
27802 @tex
27803 for \AA ngstroms.
27804 @end tex
27805 @ifinfo
27806 for Angstroms.
27807 @end ifinfo
27809 The unit @code{pt} stands for pints; the name @code{point} stands for
27810 a typographical point, defined by @samp{72 point = 1 in}.  There is
27811 also @code{tpt}, which stands for a printer's point as defined by the
27812 @TeX{} typesetting system:  @samp{72.27 tpt = 1 in}.
27814 The unit @code{e} stands for the elementary (electron) unit of charge;
27815 because algebra command could mistake this for the special constant
27816 @expr{e}, Calc provides the alternate unit name @code{ech} which is
27817 preferable to @code{e}.
27819 The name @code{g} stands for one gram of mass; there is also @code{gf},
27820 one gram of force.  (Likewise for @kbd{lb}, pounds, and @kbd{lbf}.)
27821 Meanwhile, one ``@expr{g}'' of acceleration is denoted @code{ga}.
27823 The unit @code{ton} is a U.S. ton of @samp{2000 lb}, and @code{t} is
27824 a metric ton of @samp{1000 kg}.
27826 The names @code{s} (or @code{sec}) and @code{min} refer to units of
27827 time; @code{arcsec} and @code{arcmin} are units of angle.
27829 Some ``units'' are really physical constants; for example, @code{c}
27830 represents the speed of light, and @code{h} represents Planck's
27831 constant.  You can use these just like other units: converting
27832 @samp{.5 c} to @samp{m/s} expresses one-half the speed of light in
27833 meters per second.  You can also use this merely as a handy reference;
27834 the @kbd{u g} command gets the definition of one of these constants
27835 in its normal terms, and @kbd{u b} expresses the definition in base
27836 units.
27838 Two units, @code{pi} and @code{fsc} (the fine structure constant,
27839 approximately @mathit{1/137}) are dimensionless.  The units simplification
27840 commands simply treat these names as equivalent to their corresponding
27841 values.  However you can, for example, use @kbd{u c} to convert a pure
27842 number into multiples of the fine structure constant, or @kbd{u b} to
27843 convert this back into a pure number.  (When @kbd{u c} prompts for the
27844 ``old units,'' just enter a blank line to signify that the value
27845 really is unitless.)
27847 @c Describe angular units, luminosity vs. steradians problem.
27849 @node User-Defined Units, , Predefined Units, Units
27850 @section User-Defined Units
27852 @noindent
27853 Calc provides ways to get quick access to your selected ``favorite''
27854 units, as well as ways to define your own new units.
27856 @kindex u 0-9
27857 @pindex calc-quick-units
27858 @vindex Units
27859 @cindex @code{Units} variable
27860 @cindex Quick units
27861 To select your favorite units, store a vector of unit names or
27862 expressions in the Calc variable @code{Units}.  The @kbd{u 1}
27863 through @kbd{u 9} commands (@code{calc-quick-units}) provide access
27864 to these units.  If the value on the top of the stack is a plain
27865 number (with no units attached), then @kbd{u 1} gives it the
27866 specified units.  (Basically, it multiplies the number by the
27867 first item in the @code{Units} vector.)  If the number on the
27868 stack @emph{does} have units, then @kbd{u 1} converts that number
27869 to the new units.  For example, suppose the vector @samp{[in, ft]}
27870 is stored in @code{Units}.  Then @kbd{30 u 1} will create the
27871 expression @samp{30 in}, and @kbd{u 2} will convert that expression
27872 to @samp{2.5 ft}.
27874 The @kbd{u 0} command accesses the tenth element of @code{Units}.
27875 Only ten quick units may be defined at a time.  If the @code{Units}
27876 variable has no stored value (the default), or if its value is not
27877 a vector, then the quick-units commands will not function.  The
27878 @kbd{s U} command is a convenient way to edit the @code{Units}
27879 variable; @pxref{Operations on Variables}.
27881 @kindex u d
27882 @pindex calc-define-unit
27883 @cindex User-defined units
27884 The @kbd{u d} (@code{calc-define-unit}) command records the units
27885 expression on the top of the stack as the definition for a new,
27886 user-defined unit.  For example, putting @samp{16.5 ft} on the stack and
27887 typing @kbd{u d rod} defines the new unit @samp{rod} to be equivalent to
27888 16.5 feet.  The unit conversion and simplification commands will now
27889 treat @code{rod} just like any other unit of length.  You will also be
27890 prompted for an optional English description of the unit, which will
27891 appear in the Units Table.
27893 @kindex u u
27894 @pindex calc-undefine-unit
27895 The @kbd{u u} (@code{calc-undefine-unit}) command removes a user-defined
27896 unit.  It is not possible to remove one of the predefined units,
27897 however.
27899 If you define a unit with an existing unit name, your new definition
27900 will replace the original definition of that unit.  If the unit was a
27901 predefined unit, the old definition will not be replaced, only
27902 ``shadowed.''  The built-in definition will reappear if you later use
27903 @kbd{u u} to remove the shadowing definition.
27905 To create a new fundamental unit, use either 1 or the unit name itself
27906 as the defining expression.  Otherwise the expression can involve any
27907 other units that you like (except for composite units like @samp{mfi}).
27908 You can create a new composite unit with a sum of other units as the
27909 defining expression.  The next unit operation like @kbd{u c} or @kbd{u v}
27910 will rebuild the internal unit table incorporating your modifications.
27911 Note that erroneous definitions (such as two units defined in terms of
27912 each other) will not be detected until the unit table is next rebuilt;
27913 @kbd{u v} is a convenient way to force this to happen.
27915 Temperature units are treated specially inside the Calculator; it is not
27916 possible to create user-defined temperature units.
27918 @kindex u p
27919 @pindex calc-permanent-units
27920 @cindex Calc init file, user-defined units
27921 The @kbd{u p} (@code{calc-permanent-units}) command stores the user-defined
27922 units in your Calc init file (the file given by the variable
27923 @code{calc-settings-file}, typically @file{~/.calc.el}), so that the
27924 units will still be available in subsequent Emacs sessions.  If there
27925 was already a set of user-defined units in your Calc init file, it
27926 is replaced by the new set.  (@xref{General Mode Commands}, for a way to
27927 tell Calc to use a different file for the Calc init file.)
27929 @node Store and Recall, Graphics, Units, Top
27930 @chapter Storing and Recalling
27932 @noindent
27933 Calculator variables are really just Lisp variables that contain numbers
27934 or formulas in a form that Calc can understand.  The commands in this
27935 section allow you to manipulate variables conveniently.  Commands related
27936 to variables use the @kbd{s} prefix key.
27938 @menu
27939 * Storing Variables::
27940 * Recalling Variables::
27941 * Operations on Variables::
27942 * Let Command::
27943 * Evaluates-To Operator::
27944 @end menu
27946 @node Storing Variables, Recalling Variables, Store and Recall, Store and Recall
27947 @section Storing Variables
27949 @noindent
27950 @kindex s s
27951 @pindex calc-store
27952 @cindex Storing variables
27953 @cindex Quick variables
27954 @vindex q0
27955 @vindex q9
27956 The @kbd{s s} (@code{calc-store}) command stores the value at the top of
27957 the stack into a specified variable.  It prompts you to enter the
27958 name of the variable.  If you press a single digit, the value is stored
27959 immediately in one of the ``quick'' variables @code{q0} through
27960 @code{q9}.  Or you can enter any variable name.  
27962 @kindex s t
27963 @pindex calc-store-into
27964 The @kbd{s s} command leaves the stored value on the stack.  There is
27965 also an @kbd{s t} (@code{calc-store-into}) command, which removes a
27966 value from the stack and stores it in a variable.
27968 If the top of stack value is an equation @samp{a = 7} or assignment
27969 @samp{a := 7} with a variable on the lefthand side, then Calc will
27970 assign that variable with that value by default, i.e., if you type
27971 @kbd{s s @key{RET}} or @kbd{s t @key{RET}}.  In this example, the
27972 value 7 would be stored in the variable @samp{a}.  (If you do type
27973 a variable name at the prompt, the top-of-stack value is stored in
27974 its entirety, even if it is an equation:  @samp{s s b @key{RET}}
27975 with @samp{a := 7} on the stack stores @samp{a := 7} in @code{b}.)
27977 In fact, the top of stack value can be a vector of equations or
27978 assignments with different variables on their lefthand sides; the
27979 default will be to store all the variables with their corresponding
27980 righthand sides simultaneously.
27982 It is also possible to type an equation or assignment directly at
27983 the prompt for the @kbd{s s} or @kbd{s t} command:  @kbd{s s foo = 7}.
27984 In this case the expression to the right of the @kbd{=} or @kbd{:=}
27985 symbol is evaluated as if by the @kbd{=} command, and that value is
27986 stored in the variable.  No value is taken from the stack; @kbd{s s}
27987 and @kbd{s t} are equivalent when used in this way.
27989 @kindex s 0-9
27990 @kindex t 0-9
27991 The prefix keys @kbd{s} and @kbd{t} may be followed immediately by a
27992 digit; @kbd{s 9} is equivalent to @kbd{s s 9}, and @kbd{t 9} is
27993 equivalent to @kbd{s t 9}.  (The @kbd{t} prefix is otherwise used
27994 for trail and time/date commands.)
27996 @kindex s +
27997 @kindex s -
27998 @ignore
27999 @mindex @idots
28000 @end ignore
28001 @kindex s *
28002 @ignore
28003 @mindex @null
28004 @end ignore
28005 @kindex s /
28006 @ignore
28007 @mindex @null
28008 @end ignore
28009 @kindex s ^
28010 @ignore
28011 @mindex @null
28012 @end ignore
28013 @kindex s |
28014 @ignore
28015 @mindex @null
28016 @end ignore
28017 @kindex s n
28018 @ignore
28019 @mindex @null
28020 @end ignore
28021 @kindex s &
28022 @ignore
28023 @mindex @null
28024 @end ignore
28025 @kindex s [
28026 @ignore
28027 @mindex @null
28028 @end ignore
28029 @kindex s ]
28030 @pindex calc-store-plus
28031 @pindex calc-store-minus
28032 @pindex calc-store-times
28033 @pindex calc-store-div
28034 @pindex calc-store-power
28035 @pindex calc-store-concat
28036 @pindex calc-store-neg
28037 @pindex calc-store-inv
28038 @pindex calc-store-decr
28039 @pindex calc-store-incr
28040 There are also several ``arithmetic store'' commands.  For example,
28041 @kbd{s +} removes a value from the stack and adds it to the specified
28042 variable.  The other arithmetic stores are @kbd{s -}, @kbd{s *}, @kbd{s /},
28043 @kbd{s ^}, and @w{@kbd{s |}} (vector concatenation), plus @kbd{s n} and
28044 @kbd{s &} which negate or invert the value in a variable, and @w{@kbd{s [}}
28045 and @kbd{s ]} which decrease or increase a variable by one.
28047 All the arithmetic stores accept the Inverse prefix to reverse the
28048 order of the operands.  If @expr{v} represents the contents of the
28049 variable, and @expr{a} is the value drawn from the stack, then regular
28050 @w{@kbd{s -}} assigns 
28051 @texline @math{v \coloneq v - a},
28052 @infoline @expr{v := v - a}, 
28053 but @kbd{I s -} assigns
28054 @texline @math{v \coloneq a - v}.
28055 @infoline @expr{v := a - v}.  
28056 While @kbd{I s *} might seem pointless, it is
28057 useful if matrix multiplication is involved.  Actually, all the
28058 arithmetic stores use formulas designed to behave usefully both
28059 forwards and backwards:
28061 @example
28062 @group
28063 s +        v := v + a          v := a + v
28064 s -        v := v - a          v := a - v
28065 s *        v := v * a          v := a * v
28066 s /        v := v / a          v := a / v
28067 s ^        v := v ^ a          v := a ^ v
28068 s |        v := v | a          v := a | v
28069 s n        v := v / (-1)       v := (-1) / v
28070 s &        v := v ^ (-1)       v := (-1) ^ v
28071 s [        v := v - 1          v := 1 - v
28072 s ]        v := v - (-1)       v := (-1) - v
28073 @end group
28074 @end example
28076 In the last four cases, a numeric prefix argument will be used in
28077 place of the number one.  (For example, @kbd{M-2 s ]} increases
28078 a variable by 2, and @kbd{M-2 I s ]} replaces a variable by
28079 minus-two minus the variable.
28081 The first six arithmetic stores can also be typed @kbd{s t +}, @kbd{s t -},
28082 etc.  The commands @kbd{s s +}, @kbd{s s -}, and so on are analogous
28083 arithmetic stores that don't remove the value @expr{a} from the stack.
28085 All arithmetic stores report the new value of the variable in the
28086 Trail for your information.  They signal an error if the variable
28087 previously had no stored value.  If default simplifications have been
28088 turned off, the arithmetic stores temporarily turn them on for numeric
28089 arguments only (i.e., they temporarily do an @kbd{m N} command).
28090 @xref{Simplification Modes}.  Large vectors put in the trail by
28091 these commands always use abbreviated (@kbd{t .}) mode.
28093 @kindex s m
28094 @pindex calc-store-map
28095 The @kbd{s m} command is a general way to adjust a variable's value
28096 using any Calc function.  It is a ``mapping'' command analogous to
28097 @kbd{V M}, @kbd{V R}, etc.  @xref{Reducing and Mapping}, to see
28098 how to specify a function for a mapping command.  Basically,
28099 all you do is type the Calc command key that would invoke that
28100 function normally.  For example, @kbd{s m n} applies the @kbd{n}
28101 key to negate the contents of the variable, so @kbd{s m n} is
28102 equivalent to @kbd{s n}.  Also, @kbd{s m Q} takes the square root
28103 of the value stored in a variable, @kbd{s m v v} uses @kbd{v v} to
28104 reverse the vector stored in the variable, and @kbd{s m H I S}
28105 takes the hyperbolic arcsine of the variable contents.
28107 If the mapping function takes two or more arguments, the additional
28108 arguments are taken from the stack; the old value of the variable
28109 is provided as the first argument.  Thus @kbd{s m -} with @expr{a}
28110 on the stack computes @expr{v - a}, just like @kbd{s -}.  With the
28111 Inverse prefix, the variable's original value becomes the @emph{last}
28112 argument instead of the first.  Thus @kbd{I s m -} is also
28113 equivalent to @kbd{I s -}.
28115 @kindex s x
28116 @pindex calc-store-exchange
28117 The @kbd{s x} (@code{calc-store-exchange}) command exchanges the value
28118 of a variable with the value on the top of the stack.  Naturally, the
28119 variable must already have a stored value for this to work.
28121 You can type an equation or assignment at the @kbd{s x} prompt.  The
28122 command @kbd{s x a=6} takes no values from the stack; instead, it
28123 pushes the old value of @samp{a} on the stack and stores @samp{a = 6}.
28125 @kindex s u
28126 @pindex calc-unstore
28127 @cindex Void variables
28128 @cindex Un-storing variables
28129 Until you store something in them, variables are ``void,'' that is, they
28130 contain no value at all.  If they appear in an algebraic formula they
28131 will be left alone even if you press @kbd{=} (@code{calc-evaluate}).
28132 The @kbd{s u} (@code{calc-unstore}) command returns a variable to the
28133 void state.
28135 The only variables with predefined values are the ``special constants''
28136 @code{pi}, @code{e}, @code{i}, @code{phi}, and @code{gamma}.  You are free
28137 to unstore these variables or to store new values into them if you like,
28138 although some of the algebraic-manipulation functions may assume these
28139 variables represent their standard values.  Calc displays a warning if
28140 you change the value of one of these variables, or of one of the other
28141 special variables @code{inf}, @code{uinf}, and @code{nan} (which are
28142 normally void).
28144 Note that @code{pi} doesn't actually have 3.14159265359 stored
28145 in it, but rather a special magic value that evaluates to @cpi{}
28146 at the current precision.  Likewise @code{e}, @code{i}, and
28147 @code{phi} evaluate according to the current precision or polar mode.
28148 If you recall a value from @code{pi} and store it back, this magic
28149 property will be lost.
28151 @kindex s c
28152 @pindex calc-copy-variable
28153 The @kbd{s c} (@code{calc-copy-variable}) command copies the stored
28154 value of one variable to another.  It differs from a simple @kbd{s r}
28155 followed by an @kbd{s t} in two important ways.  First, the value never
28156 goes on the stack and thus is never rounded, evaluated, or simplified
28157 in any way; it is not even rounded down to the current precision.
28158 Second, the ``magic'' contents of a variable like @code{e} can
28159 be copied into another variable with this command, perhaps because
28160 you need to unstore @code{e} right now but you wish to put it
28161 back when you're done.  The @kbd{s c} command is the only way to
28162 manipulate these magic values intact.
28164 @node Recalling Variables, Operations on Variables, Storing Variables, Store and Recall
28165 @section Recalling Variables
28167 @noindent
28168 @kindex s r
28169 @pindex calc-recall
28170 @cindex Recalling variables
28171 The most straightforward way to extract the stored value from a variable
28172 is to use the @kbd{s r} (@code{calc-recall}) command.  This command prompts
28173 for a variable name (similarly to @code{calc-store}), looks up the value
28174 of the specified variable, and pushes that value onto the stack.  It is
28175 an error to try to recall a void variable.
28177 It is also possible to recall the value from a variable by evaluating a
28178 formula containing that variable.  For example, @kbd{' a @key{RET} =} is
28179 the same as @kbd{s r a @key{RET}} except that if the variable is void, the
28180 former will simply leave the formula @samp{a} on the stack whereas the
28181 latter will produce an error message.
28183 @kindex r 0-9
28184 The @kbd{r} prefix may be followed by a digit, so that @kbd{r 9} is
28185 equivalent to @kbd{s r 9}.  (The @kbd{r} prefix is otherwise unused
28186 in the current version of Calc.)
28188 @node Operations on Variables, Let Command, Recalling Variables, Store and Recall
28189 @section Other Operations on Variables
28191 @noindent
28192 @kindex s e
28193 @pindex calc-edit-variable
28194 The @kbd{s e} (@code{calc-edit-variable}) command edits the stored
28195 value of a variable without ever putting that value on the stack
28196 or simplifying or evaluating the value.  It prompts for the name of
28197 the variable to edit.  If the variable has no stored value, the
28198 editing buffer will start out empty.  If the editing buffer is
28199 empty when you press @kbd{C-c C-c} to finish, the variable will
28200 be made void.  @xref{Editing Stack Entries}, for a general
28201 description of editing.
28203 The @kbd{s e} command is especially useful for creating and editing
28204 rewrite rules which are stored in variables.  Sometimes these rules
28205 contain formulas which must not be evaluated until the rules are
28206 actually used.  (For example, they may refer to @samp{deriv(x,y)},
28207 where @code{x} will someday become some expression involving @code{y};
28208 if you let Calc evaluate the rule while you are defining it, Calc will
28209 replace @samp{deriv(x,y)} with 0 because the formula @code{x} does
28210 not itself refer to @code{y}.)  By contrast, recalling the variable,
28211 editing with @kbd{`}, and storing will evaluate the variable's value
28212 as a side effect of putting the value on the stack.
28214 @kindex s A
28215 @kindex s D
28216 @ignore
28217 @mindex @idots
28218 @end ignore
28219 @kindex s E
28220 @ignore
28221 @mindex @null
28222 @end ignore
28223 @kindex s F
28224 @ignore
28225 @mindex @null
28226 @end ignore
28227 @kindex s G
28228 @ignore
28229 @mindex @null
28230 @end ignore
28231 @kindex s H
28232 @ignore
28233 @mindex @null
28234 @end ignore
28235 @kindex s I
28236 @ignore
28237 @mindex @null
28238 @end ignore
28239 @kindex s L
28240 @ignore
28241 @mindex @null
28242 @end ignore
28243 @kindex s P
28244 @ignore
28245 @mindex @null
28246 @end ignore
28247 @kindex s R
28248 @ignore
28249 @mindex @null
28250 @end ignore
28251 @kindex s T
28252 @ignore
28253 @mindex @null
28254 @end ignore
28255 @kindex s U
28256 @ignore
28257 @mindex @null
28258 @end ignore
28259 @kindex s X
28260 @pindex calc-store-AlgSimpRules
28261 @pindex calc-store-Decls
28262 @pindex calc-store-EvalRules
28263 @pindex calc-store-FitRules
28264 @pindex calc-store-GenCount
28265 @pindex calc-store-Holidays
28266 @pindex calc-store-IntegLimit
28267 @pindex calc-store-LineStyles
28268 @pindex calc-store-PointStyles
28269 @pindex calc-store-PlotRejects
28270 @pindex calc-store-TimeZone
28271 @pindex calc-store-Units
28272 @pindex calc-store-ExtSimpRules
28273 There are several special-purpose variable-editing commands that
28274 use the @kbd{s} prefix followed by a shifted letter:
28276 @table @kbd
28277 @item s A
28278 Edit @code{AlgSimpRules}.  @xref{Algebraic Simplifications}.
28279 @item s D
28280 Edit @code{Decls}.  @xref{Declarations}.
28281 @item s E
28282 Edit @code{EvalRules}.  @xref{Default Simplifications}.
28283 @item s F
28284 Edit @code{FitRules}.  @xref{Curve Fitting}.
28285 @item s G
28286 Edit @code{GenCount}.  @xref{Solving Equations}.
28287 @item s H
28288 Edit @code{Holidays}.  @xref{Business Days}.
28289 @item s I
28290 Edit @code{IntegLimit}.  @xref{Calculus}.
28291 @item s L
28292 Edit @code{LineStyles}.  @xref{Graphics}.
28293 @item s P
28294 Edit @code{PointStyles}.  @xref{Graphics}.
28295 @item s R
28296 Edit @code{PlotRejects}.  @xref{Graphics}.
28297 @item s T
28298 Edit @code{TimeZone}.  @xref{Time Zones}.
28299 @item s U
28300 Edit @code{Units}.  @xref{User-Defined Units}.
28301 @item s X
28302 Edit @code{ExtSimpRules}.  @xref{Unsafe Simplifications}.
28303 @end table
28305 These commands are just versions of @kbd{s e} that use fixed variable
28306 names rather than prompting for the variable name.
28308 @kindex s p
28309 @pindex calc-permanent-variable
28310 @cindex Storing variables
28311 @cindex Permanent variables
28312 @cindex Calc init file, variables
28313 The @kbd{s p} (@code{calc-permanent-variable}) command saves a
28314 variable's value permanently in your Calc init file (the file given by
28315 the variable @code{calc-settings-file}, typically @file{~/.calc.el}), so
28316 that its value will still be available in future Emacs sessions.  You
28317 can re-execute @w{@kbd{s p}} later on to update the saved value, but the
28318 only way to remove a saved variable is to edit your calc init file
28319 by hand.  (@xref{General Mode Commands}, for a way to tell Calc to
28320 use a different file for the Calc init file.)
28322 If you do not specify the name of a variable to save (i.e.,
28323 @kbd{s p @key{RET}}), all Calc variables with defined values
28324 are saved except for the special constants @code{pi}, @code{e},
28325 @code{i}, @code{phi}, and @code{gamma}; the variables @code{TimeZone}
28326 and @code{PlotRejects};
28327 @code{FitRules}, @code{DistribRules}, and other built-in rewrite
28328 rules; and @code{PlotData@var{n}} variables generated
28329 by the graphics commands.  (You can still save these variables by
28330 explicitly naming them in an @kbd{s p} command.)
28332 @kindex s i
28333 @pindex calc-insert-variables
28334 The @kbd{s i} (@code{calc-insert-variables}) command writes
28335 the values of all Calc variables into a specified buffer.
28336 The variables are written with the prefix @code{var-} in the form of
28337 Lisp @code{setq} commands 
28338 which store the values in string form.  You can place these commands
28339 in your Calc init file (or @file{.emacs}) if you wish, though in this case it
28340 would be easier to use @kbd{s p @key{RET}}.  (Note that @kbd{s i}
28341 omits the same set of variables as @w{@kbd{s p @key{RET}}}; the difference
28342 is that @kbd{s i} will store the variables in any buffer, and it also
28343 stores in a more human-readable format.)
28345 @node Let Command, Evaluates-To Operator, Operations on Variables, Store and Recall
28346 @section The Let Command
28348 @noindent
28349 @kindex s l
28350 @pindex calc-let
28351 @cindex Variables, temporary assignment
28352 @cindex Temporary assignment to variables
28353 If you have an expression like @samp{a+b^2} on the stack and you wish to
28354 compute its value where @expr{b=3}, you can simply store 3 in @expr{b} and
28355 then press @kbd{=} to reevaluate the formula.  This has the side-effect
28356 of leaving the stored value of 3 in @expr{b} for future operations.
28358 The @kbd{s l} (@code{calc-let}) command evaluates a formula under a
28359 @emph{temporary} assignment of a variable.  It stores the value on the
28360 top of the stack into the specified variable, then evaluates the
28361 second-to-top stack entry, then restores the original value (or lack of one)
28362 in the variable.  Thus after @kbd{'@w{ }a+b^2 @key{RET} 3 s l b @key{RET}},
28363 the stack will contain the formula @samp{a + 9}.  The subsequent command
28364 @kbd{@w{5 s l a} @key{RET}} will replace this formula with the number 14.
28365 The variables @samp{a} and @samp{b} are not permanently affected in any way
28366 by these commands.
28368 The value on the top of the stack may be an equation or assignment, or
28369 a vector of equations or assignments, in which case the default will be
28370 analogous to the case of @kbd{s t @key{RET}}.  @xref{Storing Variables}.
28372 Also, you can answer the variable-name prompt with an equation or
28373 assignment:  @kbd{s l b=3 @key{RET}} is the same as storing 3 on the stack
28374 and typing @kbd{s l b @key{RET}}.
28376 The @kbd{a b} (@code{calc-substitute}) command is another way to substitute
28377 a variable with a value in a formula.  It does an actual substitution
28378 rather than temporarily assigning the variable and evaluating.  For
28379 example, letting @expr{n=2} in @samp{f(n pi)} with @kbd{a b} will
28380 produce @samp{f(2 pi)}, whereas @kbd{s l} would give @samp{f(6.28)}
28381 since the evaluation step will also evaluate @code{pi}.
28383 @node Evaluates-To Operator, , Let Command, Store and Recall
28384 @section The Evaluates-To Operator
28386 @noindent
28387 @tindex evalto
28388 @tindex =>
28389 @cindex Evaluates-to operator
28390 @cindex @samp{=>} operator
28391 The special algebraic symbol @samp{=>} is known as the @dfn{evaluates-to
28392 operator}.  (It will show up as an @code{evalto} function call in
28393 other language modes like Pascal and La@TeX{}.)  This is a binary
28394 operator, that is, it has a lefthand and a righthand argument,
28395 although it can be entered with the righthand argument omitted.
28397 A formula like @samp{@var{a} => @var{b}} is evaluated by Calc as
28398 follows:  First, @var{a} is not simplified or modified in any
28399 way.  The previous value of argument @var{b} is thrown away; the
28400 formula @var{a} is then copied and evaluated as if by the @kbd{=}
28401 command according to all current modes and stored variable values,
28402 and the result is installed as the new value of @var{b}.
28404 For example, suppose you enter the algebraic formula @samp{2 + 3 => 17}.
28405 The number 17 is ignored, and the lefthand argument is left in its
28406 unevaluated form; the result is the formula @samp{2 + 3 => 5}.
28408 @kindex s =
28409 @pindex calc-evalto
28410 You can enter an @samp{=>} formula either directly using algebraic
28411 entry (in which case the righthand side may be omitted since it is
28412 going to be replaced right away anyhow), or by using the @kbd{s =}
28413 (@code{calc-evalto}) command, which takes @var{a} from the stack
28414 and replaces it with @samp{@var{a} => @var{b}}.
28416 Calc keeps track of all @samp{=>} operators on the stack, and
28417 recomputes them whenever anything changes that might affect their
28418 values, i.e., a mode setting or variable value.  This occurs only
28419 if the @samp{=>} operator is at the top level of the formula, or
28420 if it is part of a top-level vector.  In other words, pushing
28421 @samp{2 + (a => 17)} will change the 17 to the actual value of
28422 @samp{a} when you enter the formula, but the result will not be
28423 dynamically updated when @samp{a} is changed later because the
28424 @samp{=>} operator is buried inside a sum.  However, a vector
28425 of @samp{=>} operators will be recomputed, since it is convenient
28426 to push a vector like @samp{[a =>, b =>, c =>]} on the stack to
28427 make a concise display of all the variables in your problem.
28428 (Another way to do this would be to use @samp{[a, b, c] =>},
28429 which provides a slightly different format of display.  You
28430 can use whichever you find easiest to read.)
28432 @kindex m C
28433 @pindex calc-auto-recompute
28434 The @kbd{m C} (@code{calc-auto-recompute}) command allows you to
28435 turn this automatic recomputation on or off.  If you turn
28436 recomputation off, you must explicitly recompute an @samp{=>}
28437 operator on the stack in one of the usual ways, such as by
28438 pressing @kbd{=}.  Turning recomputation off temporarily can save
28439 a lot of time if you will be changing several modes or variables
28440 before you look at the @samp{=>} entries again.
28442 Most commands are not especially useful with @samp{=>} operators
28443 as arguments.  For example, given @samp{x + 2 => 17}, it won't
28444 work to type @kbd{1 +} to get @samp{x + 3 => 18}.  If you want
28445 to operate on the lefthand side of the @samp{=>} operator on
28446 the top of the stack, type @kbd{j 1} (that's the digit ``one'')
28447 to select the lefthand side, execute your commands, then type
28448 @kbd{j u} to unselect.
28450 All current modes apply when an @samp{=>} operator is computed,
28451 including the current simplification mode.  Recall that the
28452 formula @samp{x + y + x} is not handled by Calc's default
28453 simplifications, but the @kbd{a s} command will reduce it to
28454 the simpler form @samp{y + 2 x}.  You can also type @kbd{m A}
28455 to enable an Algebraic Simplification mode in which the
28456 equivalent of @kbd{a s} is used on all of Calc's results.
28457 If you enter @samp{x + y + x =>} normally, the result will
28458 be @samp{x + y + x => x + y + x}.  If you change to
28459 Algebraic Simplification mode, the result will be
28460 @samp{x + y + x => y + 2 x}.  However, just pressing @kbd{a s}
28461 once will have no effect on @samp{x + y + x => x + y + x},
28462 because the righthand side depends only on the lefthand side
28463 and the current mode settings, and the lefthand side is not
28464 affected by commands like @kbd{a s}.
28466 The ``let'' command (@kbd{s l}) has an interesting interaction
28467 with the @samp{=>} operator.  The @kbd{s l} command evaluates the
28468 second-to-top stack entry with the top stack entry supplying
28469 a temporary value for a given variable.  As you might expect,
28470 if that stack entry is an @samp{=>} operator its righthand
28471 side will temporarily show this value for the variable.  In
28472 fact, all @samp{=>}s on the stack will be updated if they refer
28473 to that variable.  But this change is temporary in the sense
28474 that the next command that causes Calc to look at those stack
28475 entries will make them revert to the old variable value.
28477 @smallexample
28478 @group
28479 2:  a => a             2:  a => 17         2:  a => a
28480 1:  a + 1 => a + 1     1:  a + 1 => 18     1:  a + 1 => a + 1
28481     .                      .                   .
28483                            17 s l a @key{RET}        p 8 @key{RET}
28484 @end group
28485 @end smallexample
28487 Here the @kbd{p 8} command changes the current precision,
28488 thus causing the @samp{=>} forms to be recomputed after the
28489 influence of the ``let'' is gone.  The @kbd{d @key{SPC}} command
28490 (@code{calc-refresh}) is a handy way to force the @samp{=>}
28491 operators on the stack to be recomputed without any other
28492 side effects.
28494 @kindex s :
28495 @pindex calc-assign
28496 @tindex assign
28497 @tindex :=
28498 Embedded mode also uses @samp{=>} operators.  In Embedded mode,
28499 the lefthand side of an @samp{=>} operator can refer to variables
28500 assigned elsewhere in the file by @samp{:=} operators.  The
28501 assignment operator @samp{a := 17} does not actually do anything
28502 by itself.  But Embedded mode recognizes it and marks it as a sort
28503 of file-local definition of the variable.  You can enter @samp{:=}
28504 operators in Algebraic mode, or by using the @kbd{s :}
28505 (@code{calc-assign}) [@code{assign}] command which takes a variable
28506 and value from the stack and replaces them with an assignment.
28508 @xref{TeX and LaTeX Language Modes}, for the way @samp{=>} appears in
28509 @TeX{} language output.  The @dfn{eqn} mode gives similar
28510 treatment to @samp{=>}.
28512 @node Graphics, Kill and Yank, Store and Recall, Top
28513 @chapter Graphics
28515 @noindent
28516 The commands for graphing data begin with the @kbd{g} prefix key.  Calc
28517 uses GNUPLOT 2.0 or 3.0 to do graphics.  These commands will only work
28518 if GNUPLOT is available on your system.  (While GNUPLOT sounds like
28519 a relative of GNU Emacs, it is actually completely unrelated.
28520 However, it is free software and can be obtained from the Free
28521 Software Foundation's machine @samp{prep.ai.mit.edu}.)
28523 @vindex calc-gnuplot-name
28524 If you have GNUPLOT installed on your system but Calc is unable to
28525 find it, you may need to set the @code{calc-gnuplot-name} variable
28526 in your Calc init file or @file{.emacs}.  You may also need to set some Lisp
28527 variables to show Calc how to run GNUPLOT on your system; these
28528 are described under @kbd{g D} and @kbd{g O} below.  If you are
28529 using the X window system, Calc will configure GNUPLOT for you
28530 automatically.  If you have GNUPLOT 3.0 and you are not using X,
28531 Calc will configure GNUPLOT to display graphs using simple character
28532 graphics that will work on any terminal.
28534 @menu
28535 * Basic Graphics::
28536 * Three Dimensional Graphics::
28537 * Managing Curves::
28538 * Graphics Options::
28539 * Devices::
28540 @end menu
28542 @node Basic Graphics, Three Dimensional Graphics, Graphics, Graphics
28543 @section Basic Graphics
28545 @noindent
28546 @kindex g f
28547 @pindex calc-graph-fast
28548 The easiest graphics command is @kbd{g f} (@code{calc-graph-fast}).
28549 This command takes two vectors of equal length from the stack.
28550 The vector at the top of the stack represents the ``y'' values of
28551 the various data points.  The vector in the second-to-top position
28552 represents the corresponding ``x'' values.  This command runs
28553 GNUPLOT (if it has not already been started by previous graphing
28554 commands) and displays the set of data points.  The points will
28555 be connected by lines, and there will also be some kind of symbol
28556 to indicate the points themselves.
28558 The ``x'' entry may instead be an interval form, in which case suitable
28559 ``x'' values are interpolated between the minimum and maximum values of
28560 the interval (whether the interval is open or closed is ignored).
28562 The ``x'' entry may also be a number, in which case Calc uses the
28563 sequence of ``x'' values @expr{x}, @expr{x+1}, @expr{x+2}, etc.
28564 (Generally the number 0 or 1 would be used for @expr{x} in this case.)
28566 The ``y'' entry may be any formula instead of a vector.  Calc effectively
28567 uses @kbd{N} (@code{calc-eval-num}) to evaluate variables in the formula;
28568 the result of this must be a formula in a single (unassigned) variable.
28569 The formula is plotted with this variable taking on the various ``x''
28570 values.  Graphs of formulas by default use lines without symbols at the
28571 computed data points.  Note that if neither ``x'' nor ``y'' is a vector,
28572 Calc guesses at a reasonable number of data points to use.  See the
28573 @kbd{g N} command below.  (The ``x'' values must be either a vector
28574 or an interval if ``y'' is a formula.)
28576 @ignore
28577 @starindex
28578 @end ignore
28579 @tindex xy
28580 If ``y'' is (or evaluates to) a formula of the form
28581 @samp{xy(@var{x}, @var{y})} then the result is a
28582 parametric plot.  The two arguments of the fictitious @code{xy} function
28583 are used as the ``x'' and ``y'' coordinates of the curve, respectively.
28584 In this case the ``x'' vector or interval you specified is not directly
28585 visible in the graph.  For example, if ``x'' is the interval @samp{[0..360]}
28586 and ``y'' is the formula @samp{xy(sin(t), cos(t))}, the resulting graph
28587 will be a circle.
28589 Also, ``x'' and ``y'' may each be variable names, in which case Calc
28590 looks for suitable vectors, intervals, or formulas stored in those
28591 variables.
28593 The ``x'' and ``y'' values for the data points (as pulled from the vectors,
28594 calculated from the formulas, or interpolated from the intervals) should
28595 be real numbers (integers, fractions, or floats).  If either the ``x''
28596 value or the ``y'' value of a given data point is not a real number, that
28597 data point will be omitted from the graph.  The points on either side
28598 of the invalid point will @emph{not} be connected by a line.
28600 See the documentation for @kbd{g a} below for a description of the way
28601 numeric prefix arguments affect @kbd{g f}.
28603 @cindex @code{PlotRejects} variable
28604 @vindex PlotRejects
28605 If you store an empty vector in the variable @code{PlotRejects}
28606 (i.e., @kbd{[ ] s t PlotRejects}), Calc will append information to
28607 this vector for every data point which was rejected because its
28608 ``x'' or ``y'' values were not real numbers.  The result will be
28609 a matrix where each row holds the curve number, data point number,
28610 ``x'' value, and ``y'' value for a rejected data point.
28611 @xref{Evaluates-To Operator}, for a handy way to keep tabs on the
28612 current value of @code{PlotRejects}.  @xref{Operations on Variables},
28613 for the @kbd{s R} command which is another easy way to examine
28614 @code{PlotRejects}.
28616 @kindex g c
28617 @pindex calc-graph-clear
28618 To clear the graphics display, type @kbd{g c} (@code{calc-graph-clear}).
28619 If the GNUPLOT output device is an X window, the window will go away.
28620 Effects on other kinds of output devices will vary.  You don't need
28621 to use @kbd{g c} if you don't want to---if you give another @kbd{g f}
28622 or @kbd{g p} command later on, it will reuse the existing graphics
28623 window if there is one.
28625 @node Three Dimensional Graphics, Managing Curves, Basic Graphics, Graphics
28626 @section Three-Dimensional Graphics
28628 @kindex g F
28629 @pindex calc-graph-fast-3d
28630 The @kbd{g F} (@code{calc-graph-fast-3d}) command makes a three-dimensional
28631 graph.  It works only if you have GNUPLOT 3.0 or later; with GNUPLOT 2.0,
28632 you will see a GNUPLOT error message if you try this command.
28634 The @kbd{g F} command takes three values from the stack, called ``x'',
28635 ``y'', and ``z'', respectively.  As was the case for 2D graphs, there
28636 are several options for these values.
28638 In the first case, ``x'' and ``y'' are each vectors (not necessarily of
28639 the same length); either or both may instead be interval forms.  The
28640 ``z'' value must be a matrix with the same number of rows as elements
28641 in ``x'', and the same number of columns as elements in ``y''.  The
28642 result is a surface plot where 
28643 @texline @math{z_{ij}}
28644 @infoline @expr{z_ij} 
28645 is the height of the point
28646 at coordinate @expr{(x_i, y_j)} on the surface.  The 3D graph will
28647 be displayed from a certain default viewpoint; you can change this
28648 viewpoint by adding a @samp{set view} to the @samp{*Gnuplot Commands*}
28649 buffer as described later.  See the GNUPLOT 3.0 documentation for a
28650 description of the @samp{set view} command.
28652 Each point in the matrix will be displayed as a dot in the graph,
28653 and these points will be connected by a grid of lines (@dfn{isolines}).
28655 In the second case, ``x'', ``y'', and ``z'' are all vectors of equal
28656 length.  The resulting graph displays a 3D line instead of a surface,
28657 where the coordinates of points along the line are successive triplets
28658 of values from the input vectors.
28660 In the third case, ``x'' and ``y'' are vectors or interval forms, and
28661 ``z'' is any formula involving two variables (not counting variables
28662 with assigned values).  These variables are sorted into alphabetical
28663 order; the first takes on values from ``x'' and the second takes on
28664 values from ``y'' to form a matrix of results that are graphed as a
28665 3D surface.
28667 @ignore
28668 @starindex
28669 @end ignore
28670 @tindex xyz
28671 If the ``z'' formula evaluates to a call to the fictitious function
28672 @samp{xyz(@var{x}, @var{y}, @var{z})}, then the result is a
28673 ``parametric surface.''  In this case, the axes of the graph are
28674 taken from the @var{x} and @var{y} values in these calls, and the
28675 ``x'' and ``y'' values from the input vectors or intervals are used only
28676 to specify the range of inputs to the formula.  For example, plotting
28677 @samp{[0..360], [0..180], xyz(sin(x)*sin(y), cos(x)*sin(y), cos(y))}
28678 will draw a sphere.  (Since the default resolution for 3D plots is
28679 5 steps in each of ``x'' and ``y'', this will draw a very crude
28680 sphere.  You could use the @kbd{g N} command, described below, to
28681 increase this resolution, or specify the ``x'' and ``y'' values as
28682 vectors with more than 5 elements.
28684 It is also possible to have a function in a regular @kbd{g f} plot
28685 evaluate to an @code{xyz} call.  Since @kbd{g f} plots a line, not
28686 a surface, the result will be a 3D parametric line.  For example,
28687 @samp{[[0..720], xyz(sin(x), cos(x), x)]} will plot two turns of a
28688 helix (a three-dimensional spiral).
28690 As for @kbd{g f}, each of ``x'', ``y'', and ``z'' may instead be
28691 variables containing the relevant data.
28693 @node Managing Curves, Graphics Options, Three Dimensional Graphics, Graphics
28694 @section Managing Curves
28696 @noindent
28697 The @kbd{g f} command is really shorthand for the following commands:
28698 @kbd{C-u g d  g a  g p}.  Likewise, @w{@kbd{g F}} is shorthand for
28699 @kbd{C-u g d  g A  g p}.  You can gain more control over your graph
28700 by using these commands directly.
28702 @kindex g a
28703 @pindex calc-graph-add
28704 The @kbd{g a} (@code{calc-graph-add}) command adds the ``curve''
28705 represented by the two values on the top of the stack to the current
28706 graph.  You can have any number of curves in the same graph.  When
28707 you give the @kbd{g p} command, all the curves will be drawn superimposed
28708 on the same axes.
28710 The @kbd{g a} command (and many others that affect the current graph)
28711 will cause a special buffer, @samp{*Gnuplot Commands*}, to be displayed
28712 in another window.  This buffer is a template of the commands that will
28713 be sent to GNUPLOT when it is time to draw the graph.  The first
28714 @kbd{g a} command adds a @code{plot} command to this buffer.  Succeeding
28715 @kbd{g a} commands add extra curves onto that @code{plot} command.
28716 Other graph-related commands put other GNUPLOT commands into this
28717 buffer.  In normal usage you never need to work with this buffer
28718 directly, but you can if you wish.  The only constraint is that there
28719 must be only one @code{plot} command, and it must be the last command
28720 in the buffer.  If you want to save and later restore a complete graph
28721 configuration, you can use regular Emacs commands to save and restore
28722 the contents of the @samp{*Gnuplot Commands*} buffer.
28724 @vindex PlotData1
28725 @vindex PlotData2
28726 If the values on the stack are not variable names, @kbd{g a} will invent
28727 variable names for them (of the form @samp{PlotData@var{n}}) and store
28728 the values in those variables.  The ``x'' and ``y'' variables are what
28729 go into the @code{plot} command in the template.  If you add a curve
28730 that uses a certain variable and then later change that variable, you
28731 can replot the graph without having to delete and re-add the curve.
28732 That's because the variable name, not the vector, interval or formula
28733 itself, is what was added by @kbd{g a}.
28735 A numeric prefix argument on @kbd{g a} or @kbd{g f} changes the way
28736 stack entries are interpreted as curves.  With a positive prefix
28737 argument @expr{n}, the top @expr{n} stack entries are ``y'' values
28738 for @expr{n} different curves which share a common ``x'' value in
28739 the @expr{n+1}st stack entry.  (Thus @kbd{g a} with no prefix
28740 argument is equivalent to @kbd{C-u 1 g a}.)
28742 A prefix of zero or plain @kbd{C-u} means to take two stack entries,
28743 ``x'' and ``y'' as usual, but to interpret ``y'' as a vector of
28744 ``y'' values for several curves that share a common ``x''.
28746 A negative prefix argument tells Calc to read @expr{n} vectors from
28747 the stack; each vector @expr{[x, y]} describes an independent curve.
28748 This is the only form of @kbd{g a} that creates several curves at once
28749 that don't have common ``x'' values.  (Of course, the range of ``x''
28750 values covered by all the curves ought to be roughly the same if
28751 they are to look nice on the same graph.)
28753 For example, to plot 
28754 @texline @math{\sin n x}
28755 @infoline @expr{sin(n x)} 
28756 for integers @expr{n}
28757 from 1 to 5, you could use @kbd{v x} to create a vector of integers
28758 (@expr{n}), then @kbd{V M '} or @kbd{V M $} to map @samp{sin(n x)}
28759 across this vector.  The resulting vector of formulas is suitable
28760 for use as the ``y'' argument to a @kbd{C-u g a} or @kbd{C-u g f}
28761 command.
28763 @kindex g A
28764 @pindex calc-graph-add-3d
28765 The @kbd{g A} (@code{calc-graph-add-3d}) command adds a 3D curve
28766 to the graph.  It is not valid to intermix 2D and 3D curves in a
28767 single graph.  This command takes three arguments, ``x'', ``y'',
28768 and ``z'', from the stack.  With a positive prefix @expr{n}, it
28769 takes @expr{n+2} arguments (common ``x'' and ``y'', plus @expr{n}
28770 separate ``z''s).  With a zero prefix, it takes three stack entries
28771 but the ``z'' entry is a vector of curve values.  With a negative
28772 prefix @expr{-n}, it takes @expr{n} vectors of the form @expr{[x, y, z]}.
28773 The @kbd{g A} command works by adding a @code{splot} (surface-plot)
28774 command to the @samp{*Gnuplot Commands*} buffer.
28776 (Although @kbd{g a} adds a 2D @code{plot} command to the
28777 @samp{*Gnuplot Commands*} buffer, Calc changes this to @code{splot}
28778 before sending it to GNUPLOT if it notices that the data points are
28779 evaluating to @code{xyz} calls.  It will not work to mix 2D and 3D
28780 @kbd{g a} curves in a single graph, although Calc does not currently
28781 check for this.)
28783 @kindex g d
28784 @pindex calc-graph-delete
28785 The @kbd{g d} (@code{calc-graph-delete}) command deletes the most
28786 recently added curve from the graph.  It has no effect if there are
28787 no curves in the graph.  With a numeric prefix argument of any kind,
28788 it deletes all of the curves from the graph.
28790 @kindex g H
28791 @pindex calc-graph-hide
28792 The @kbd{g H} (@code{calc-graph-hide}) command ``hides'' or ``unhides''
28793 the most recently added curve.  A hidden curve will not appear in
28794 the actual plot, but information about it such as its name and line and
28795 point styles will be retained.
28797 @kindex g j
28798 @pindex calc-graph-juggle
28799 The @kbd{g j} (@code{calc-graph-juggle}) command moves the curve
28800 at the end of the list (the ``most recently added curve'') to the
28801 front of the list.  The next-most-recent curve is thus exposed for
28802 @w{@kbd{g d}} or similar commands to use.  With @kbd{g j} you can work
28803 with any curve in the graph even though curve-related commands only
28804 affect the last curve in the list.
28806 @kindex g p
28807 @pindex calc-graph-plot
28808 The @kbd{g p} (@code{calc-graph-plot}) command uses GNUPLOT to draw
28809 the graph described in the @samp{*Gnuplot Commands*} buffer.  Any
28810 GNUPLOT parameters which are not defined by commands in this buffer
28811 are reset to their default values.  The variables named in the @code{plot}
28812 command are written to a temporary data file and the variable names
28813 are then replaced by the file name in the template.  The resulting
28814 plotting commands are fed to the GNUPLOT program.  See the documentation
28815 for the GNUPLOT program for more specific information.  All temporary
28816 files are removed when Emacs or GNUPLOT exits.
28818 If you give a formula for ``y'', Calc will remember all the values that
28819 it calculates for the formula so that later plots can reuse these values.
28820 Calc throws out these saved values when you change any circumstances
28821 that may affect the data, such as switching from Degrees to Radians
28822 mode, or changing the value of a parameter in the formula.  You can
28823 force Calc to recompute the data from scratch by giving a negative
28824 numeric prefix argument to @kbd{g p}.
28826 Calc uses a fairly rough step size when graphing formulas over intervals.
28827 This is to ensure quick response.  You can ``refine'' a plot by giving
28828 a positive numeric prefix argument to @kbd{g p}.  Calc goes through
28829 the data points it has computed and saved from previous plots of the
28830 function, and computes and inserts a new data point midway between
28831 each of the existing points.  You can refine a plot any number of times,
28832 but beware that the amount of calculation involved doubles each time.
28834 Calc does not remember computed values for 3D graphs.  This means the
28835 numerix prefix argument, if any, to @kbd{g p} is effectively ignored if
28836 the current graph is three-dimensional.
28838 @kindex g P
28839 @pindex calc-graph-print
28840 The @kbd{g P} (@code{calc-graph-print}) command is like @kbd{g p},
28841 except that it sends the output to a printer instead of to the
28842 screen.  More precisely, @kbd{g p} looks for @samp{set terminal}
28843 or @samp{set output} commands in the @samp{*Gnuplot Commands*} buffer;
28844 lacking these it uses the default settings.  However, @kbd{g P}
28845 ignores @samp{set terminal} and @samp{set output} commands and
28846 uses a different set of default values.  All of these values are
28847 controlled by the @kbd{g D} and @kbd{g O} commands discussed below.
28848 Provided everything is set up properly, @kbd{g p} will plot to
28849 the screen unless you have specified otherwise and @kbd{g P} will
28850 always plot to the printer.
28852 @node Graphics Options, Devices, Managing Curves, Graphics
28853 @section Graphics Options
28855 @noindent
28856 @kindex g g
28857 @pindex calc-graph-grid
28858 The @kbd{g g} (@code{calc-graph-grid}) command turns the ``grid''
28859 on and off.  It is off by default; tick marks appear only at the
28860 edges of the graph.  With the grid turned on, dotted lines appear
28861 across the graph at each tick mark.  Note that this command only
28862 changes the setting in @samp{*Gnuplot Commands*}; to see the effects
28863 of the change you must give another @kbd{g p} command.
28865 @kindex g b
28866 @pindex calc-graph-border
28867 The @kbd{g b} (@code{calc-graph-border}) command turns the border
28868 (the box that surrounds the graph) on and off.  It is on by default.
28869 This command will only work with GNUPLOT 3.0 and later versions.
28871 @kindex g k
28872 @pindex calc-graph-key
28873 The @kbd{g k} (@code{calc-graph-key}) command turns the ``key''
28874 on and off.  The key is a chart in the corner of the graph that
28875 shows the correspondence between curves and line styles.  It is
28876 off by default, and is only really useful if you have several
28877 curves on the same graph.
28879 @kindex g N
28880 @pindex calc-graph-num-points
28881 The @kbd{g N} (@code{calc-graph-num-points}) command allows you
28882 to select the number of data points in the graph.  This only affects
28883 curves where neither ``x'' nor ``y'' is specified as a vector.
28884 Enter a blank line to revert to the default value (initially 15).
28885 With no prefix argument, this command affects only the current graph.
28886 With a positive prefix argument this command changes or, if you enter
28887 a blank line, displays the default number of points used for all
28888 graphs created by @kbd{g a} that don't specify the resolution explicitly.
28889 With a negative prefix argument, this command changes or displays
28890 the default value (initially 5) used for 3D graphs created by @kbd{g A}.
28891 Note that a 3D setting of 5 means that a total of @expr{5^2 = 25} points
28892 will be computed for the surface.
28894 Data values in the graph of a function are normally computed to a
28895 precision of five digits, regardless of the current precision at the
28896 time. This is usually more than adequate, but there are cases where
28897 it will not be.  For example, plotting @expr{1 + x} with @expr{x} in the
28898 interval @samp{[0 ..@: 1e-6]} will round all the data points down
28899 to 1.0!  Putting the command @samp{set precision @var{n}} in the
28900 @samp{*Gnuplot Commands*} buffer will cause the data to be computed
28901 at precision @var{n} instead of 5.  Since this is such a rare case,
28902 there is no keystroke-based command to set the precision.
28904 @kindex g h
28905 @pindex calc-graph-header
28906 The @kbd{g h} (@code{calc-graph-header}) command sets the title
28907 for the graph.  This will show up centered above the graph.
28908 The default title is blank (no title).
28910 @kindex g n
28911 @pindex calc-graph-name
28912 The @kbd{g n} (@code{calc-graph-name}) command sets the title of an
28913 individual curve.  Like the other curve-manipulating commands, it
28914 affects the most recently added curve, i.e., the last curve on the
28915 list in the @samp{*Gnuplot Commands*} buffer.  To set the title of
28916 the other curves you must first juggle them to the end of the list
28917 with @kbd{g j}, or edit the @samp{*Gnuplot Commands*} buffer by hand.
28918 Curve titles appear in the key; if the key is turned off they are
28919 not used.
28921 @kindex g t
28922 @kindex g T
28923 @pindex calc-graph-title-x
28924 @pindex calc-graph-title-y
28925 The @kbd{g t} (@code{calc-graph-title-x}) and @kbd{g T}
28926 (@code{calc-graph-title-y}) commands set the titles on the ``x''
28927 and ``y'' axes, respectively.  These titles appear next to the
28928 tick marks on the left and bottom edges of the graph, respectively.
28929 Calc does not have commands to control the tick marks themselves,
28930 but you can edit them into the @samp{*Gnuplot Commands*} buffer if
28931 you wish.  See the GNUPLOT documentation for details.
28933 @kindex g r
28934 @kindex g R
28935 @pindex calc-graph-range-x
28936 @pindex calc-graph-range-y
28937 The @kbd{g r} (@code{calc-graph-range-x}) and @kbd{g R}
28938 (@code{calc-graph-range-y}) commands set the range of values on the
28939 ``x'' and ``y'' axes, respectively.  You are prompted to enter a
28940 suitable range.  This should be either a pair of numbers of the
28941 form, @samp{@var{min}:@var{max}}, or a blank line to revert to the
28942 default behavior of setting the range based on the range of values
28943 in the data, or @samp{$} to take the range from the top of the stack.
28944 Ranges on the stack can be represented as either interval forms or
28945 vectors:  @samp{[@var{min} ..@: @var{max}]} or @samp{[@var{min}, @var{max}]}.
28947 @kindex g l
28948 @kindex g L
28949 @pindex calc-graph-log-x
28950 @pindex calc-graph-log-y
28951 The @kbd{g l} (@code{calc-graph-log-x}) and @kbd{g L} (@code{calc-graph-log-y})
28952 commands allow you to set either or both of the axes of the graph to
28953 be logarithmic instead of linear.
28955 @kindex g C-l
28956 @kindex g C-r
28957 @kindex g C-t
28958 @pindex calc-graph-log-z
28959 @pindex calc-graph-range-z
28960 @pindex calc-graph-title-z
28961 For 3D plots, @kbd{g C-t}, @kbd{g C-r}, and @kbd{g C-l} (those are
28962 letters with the Control key held down) are the corresponding commands
28963 for the ``z'' axis.
28965 @kindex g z
28966 @kindex g Z
28967 @pindex calc-graph-zero-x
28968 @pindex calc-graph-zero-y
28969 The @kbd{g z} (@code{calc-graph-zero-x}) and @kbd{g Z}
28970 (@code{calc-graph-zero-y}) commands control whether a dotted line is
28971 drawn to indicate the ``x'' and/or ``y'' zero axes.  (These are the same
28972 dotted lines that would be drawn there anyway if you used @kbd{g g} to
28973 turn the ``grid'' feature on.)  Zero-axis lines are on by default, and
28974 may be turned off only in GNUPLOT 3.0 and later versions.  They are
28975 not available for 3D plots.
28977 @kindex g s
28978 @pindex calc-graph-line-style
28979 The @kbd{g s} (@code{calc-graph-line-style}) command turns the connecting
28980 lines on or off for the most recently added curve, and optionally selects
28981 the style of lines to be used for that curve.  Plain @kbd{g s} simply
28982 toggles the lines on and off.  With a numeric prefix argument, @kbd{g s}
28983 turns lines on and sets a particular line style.  Line style numbers
28984 start at one and their meanings vary depending on the output device.
28985 GNUPLOT guarantees that there will be at least six different line styles
28986 available for any device.
28988 @kindex g S
28989 @pindex calc-graph-point-style
28990 The @kbd{g S} (@code{calc-graph-point-style}) command similarly turns
28991 the symbols at the data points on or off, or sets the point style.
28992 If you turn both lines and points off, the data points will show as
28993 tiny dots.
28995 @cindex @code{LineStyles} variable
28996 @cindex @code{PointStyles} variable
28997 @vindex LineStyles
28998 @vindex PointStyles
28999 Another way to specify curve styles is with the @code{LineStyles} and
29000 @code{PointStyles} variables.  These variables initially have no stored
29001 values, but if you store a vector of integers in one of these variables,
29002 the @kbd{g a} and @kbd{g f} commands will use those style numbers
29003 instead of the defaults for new curves that are added to the graph.
29004 An entry should be a positive integer for a specific style, or 0 to let
29005 the style be chosen automatically, or @mathit{-1} to turn off lines or points
29006 altogether.  If there are more curves than elements in the vector, the
29007 last few curves will continue to have the default styles.  Of course,
29008 you can later use @kbd{g s} and @kbd{g S} to change any of these styles.
29010 For example, @kbd{'[2 -1 3] @key{RET} s t LineStyles} causes the first curve
29011 to have lines in style number 2, the second curve to have no connecting
29012 lines, and the third curve to have lines in style 3.  Point styles will
29013 still be assigned automatically, but you could store another vector in
29014 @code{PointStyles} to define them, too.
29016 @node Devices, , Graphics Options, Graphics
29017 @section Graphical Devices
29019 @noindent
29020 @kindex g D
29021 @pindex calc-graph-device
29022 The @kbd{g D} (@code{calc-graph-device}) command sets the device name
29023 (or ``terminal name'' in GNUPLOT lingo) to be used by @kbd{g p} commands
29024 on this graph.  It does not affect the permanent default device name.
29025 If you enter a blank name, the device name reverts to the default.
29026 Enter @samp{?} to see a list of supported devices.
29028 With a positive numeric prefix argument, @kbd{g D} instead sets
29029 the default device name, used by all plots in the future which do
29030 not override it with a plain @kbd{g D} command.  If you enter a
29031 blank line this command shows you the current default.  The special
29032 name @code{default} signifies that Calc should choose @code{x11} if
29033 the X window system is in use (as indicated by the presence of a
29034 @code{DISPLAY} environment variable), or otherwise @code{dumb} under
29035 GNUPLOT 3.0 and later, or @code{postscript} under GNUPLOT 2.0.
29036 This is the initial default value.
29038 The @code{dumb} device is an interface to ``dumb terminals,'' i.e.,
29039 terminals with no special graphics facilities.  It writes a crude
29040 picture of the graph composed of characters like @code{-} and @code{|}
29041 to a buffer called @samp{*Gnuplot Trail*}, which Calc then displays.
29042 The graph is made the same size as the Emacs screen, which on most
29043 dumb terminals will be 
29044 @texline @math{80\times24}
29045 @infoline 80x24
29046 characters.  The graph is displayed in
29047 an Emacs ``recursive edit''; type @kbd{q} or @kbd{C-c C-c} to exit
29048 the recursive edit and return to Calc.  Note that the @code{dumb}
29049 device is present only in GNUPLOT 3.0 and later versions.
29051 The word @code{dumb} may be followed by two numbers separated by
29052 spaces.  These are the desired width and height of the graph in
29053 characters.  Also, the device name @code{big} is like @code{dumb}
29054 but creates a graph four times the width and height of the Emacs
29055 screen.  You will then have to scroll around to view the entire
29056 graph.  In the @samp{*Gnuplot Trail*} buffer, @key{SPC}, @key{DEL},
29057 @kbd{<}, and @kbd{>} are defined to scroll by one screenful in each
29058 of the four directions.
29060 With a negative numeric prefix argument, @kbd{g D} sets or displays
29061 the device name used by @kbd{g P} (@code{calc-graph-print}).  This
29062 is initially @code{postscript}.  If you don't have a PostScript
29063 printer, you may decide once again to use @code{dumb} to create a
29064 plot on any text-only printer.
29066 @kindex g O
29067 @pindex calc-graph-output
29068 The @kbd{g O} (@code{calc-graph-output}) command sets the name of
29069 the output file used by GNUPLOT.  For some devices, notably @code{x11},
29070 there is no output file and this information is not used.  Many other
29071 ``devices'' are really file formats like @code{postscript}; in these
29072 cases the output in the desired format goes into the file you name
29073 with @kbd{g O}.  Type @kbd{g O stdout @key{RET}} to set GNUPLOT to write
29074 to its standard output stream, i.e., to @samp{*Gnuplot Trail*}.
29075 This is the default setting.
29077 Another special output name is @code{tty}, which means that GNUPLOT
29078 is going to write graphics commands directly to its standard output,
29079 which you wish Emacs to pass through to your terminal.  Tektronix
29080 graphics terminals, among other devices, operate this way.  Calc does
29081 this by telling GNUPLOT to write to a temporary file, then running a
29082 sub-shell executing the command @samp{cat tempfile >/dev/tty}.  On
29083 typical Unix systems, this will copy the temporary file directly to
29084 the terminal, bypassing Emacs entirely.  You will have to type @kbd{C-l}
29085 to Emacs afterwards to refresh the screen.
29087 Once again, @kbd{g O} with a positive or negative prefix argument
29088 sets the default or printer output file names, respectively.  In each
29089 case you can specify @code{auto}, which causes Calc to invent a temporary
29090 file name for each @kbd{g p} (or @kbd{g P}) command.  This temporary file
29091 will be deleted once it has been displayed or printed.  If the output file
29092 name is not @code{auto}, the file is not automatically deleted.
29094 The default and printer devices and output files can be saved
29095 permanently by the @kbd{m m} (@code{calc-save-modes}) command.  The
29096 default number of data points (see @kbd{g N}) and the X geometry
29097 (see @kbd{g X}) are also saved.  Other graph information is @emph{not}
29098 saved; you can save a graph's configuration simply by saving the contents
29099 of the @samp{*Gnuplot Commands*} buffer.
29101 @vindex calc-gnuplot-plot-command
29102 @vindex calc-gnuplot-default-device
29103 @vindex calc-gnuplot-default-output
29104 @vindex calc-gnuplot-print-command
29105 @vindex calc-gnuplot-print-device
29106 @vindex calc-gnuplot-print-output
29107 You may wish to configure the default and
29108 printer devices and output files for the whole system.  The relevant
29109 Lisp variables are @code{calc-gnuplot-default-device} and @code{-output},
29110 and @code{calc-gnuplot-print-device} and @code{-output}.  The output
29111 file names must be either strings as described above, or Lisp
29112 expressions which are evaluated on the fly to get the output file names.
29114 Other important Lisp variables are @code{calc-gnuplot-plot-command} and
29115 @code{calc-gnuplot-print-command}, which give the system commands to
29116 display or print the output of GNUPLOT, respectively.  These may be
29117 @code{nil} if no command is necessary, or strings which can include
29118 @samp{%s} to signify the name of the file to be displayed or printed.
29119 Or, these variables may contain Lisp expressions which are evaluated
29120 to display or print the output.  These variables are customizable
29121 (@pxref{Customizable Variables}).
29123 @kindex g x
29124 @pindex calc-graph-display
29125 The @kbd{g x} (@code{calc-graph-display}) command lets you specify
29126 on which X window system display your graphs should be drawn.  Enter
29127 a blank line to see the current display name.  This command has no
29128 effect unless the current device is @code{x11}.
29130 @kindex g X
29131 @pindex calc-graph-geometry
29132 The @kbd{g X} (@code{calc-graph-geometry}) command is a similar
29133 command for specifying the position and size of the X window.
29134 The normal value is @code{default}, which generally means your
29135 window manager will let you place the window interactively.
29136 Entering @samp{800x500+0+0} would create an 800-by-500 pixel
29137 window in the upper-left corner of the screen.
29139 The buffer called @samp{*Gnuplot Trail*} holds a transcript of the
29140 session with GNUPLOT.  This shows the commands Calc has ``typed'' to
29141 GNUPLOT and the responses it has received.  Calc tries to notice when an
29142 error message has appeared here and display the buffer for you when
29143 this happens.  You can check this buffer yourself if you suspect
29144 something has gone wrong.
29146 @kindex g C
29147 @pindex calc-graph-command
29148 The @kbd{g C} (@code{calc-graph-command}) command prompts you to
29149 enter any line of text, then simply sends that line to the current
29150 GNUPLOT process.  The @samp{*Gnuplot Trail*} buffer looks deceptively
29151 like a Shell buffer but you can't type commands in it yourself.
29152 Instead, you must use @kbd{g C} for this purpose.
29154 @kindex g v
29155 @kindex g V
29156 @pindex calc-graph-view-commands
29157 @pindex calc-graph-view-trail
29158 The @kbd{g v} (@code{calc-graph-view-commands}) and @kbd{g V}
29159 (@code{calc-graph-view-trail}) commands display the @samp{*Gnuplot Commands*}
29160 and @samp{*Gnuplot Trail*} buffers, respectively, in another window.
29161 This happens automatically when Calc thinks there is something you
29162 will want to see in either of these buffers.  If you type @kbd{g v}
29163 or @kbd{g V} when the relevant buffer is already displayed, the
29164 buffer is hidden again.
29166 One reason to use @kbd{g v} is to add your own commands to the
29167 @samp{*Gnuplot Commands*} buffer.  Press @kbd{g v}, then use
29168 @kbd{C-x o} to switch into that window.  For example, GNUPLOT has
29169 @samp{set label} and @samp{set arrow} commands that allow you to
29170 annotate your plots.  Since Calc doesn't understand these commands,
29171 you have to add them to the @samp{*Gnuplot Commands*} buffer
29172 yourself, then use @w{@kbd{g p}} to replot using these new commands.  Note
29173 that your commands must appear @emph{before} the @code{plot} command.
29174 To get help on any GNUPLOT feature, type, e.g., @kbd{g C help set label}.
29175 You may have to type @kbd{g C @key{RET}} a few times to clear the
29176 ``press return for more'' or ``subtopic of @dots{}'' requests.
29177 Note that Calc always sends commands (like @samp{set nolabel}) to
29178 reset all plotting parameters to the defaults before each plot, so
29179 to delete a label all you need to do is delete the @samp{set label}
29180 line you added (or comment it out with @samp{#}) and then replot
29181 with @kbd{g p}.
29183 @kindex g q
29184 @pindex calc-graph-quit
29185 You can use @kbd{g q} (@code{calc-graph-quit}) to kill the GNUPLOT
29186 process that is running.  The next graphing command you give will
29187 start a fresh GNUPLOT process.  The word @samp{Graph} appears in
29188 the Calc window's mode line whenever a GNUPLOT process is currently
29189 running.  The GNUPLOT process is automatically killed when you
29190 exit Emacs if you haven't killed it manually by then.
29192 @kindex g K
29193 @pindex calc-graph-kill
29194 The @kbd{g K} (@code{calc-graph-kill}) command is like @kbd{g q}
29195 except that it also views the @samp{*Gnuplot Trail*} buffer so that
29196 you can see the process being killed.  This is better if you are
29197 killing GNUPLOT because you think it has gotten stuck.
29199 @node Kill and Yank, Keypad Mode, Graphics, Top
29200 @chapter Kill and Yank Functions
29202 @noindent
29203 The commands in this chapter move information between the Calculator and
29204 other Emacs editing buffers.
29206 In many cases Embedded mode is an easier and more natural way to
29207 work with Calc from a regular editing buffer.  @xref{Embedded Mode}.
29209 @menu
29210 * Killing From Stack::
29211 * Yanking Into Stack::
29212 * Grabbing From Buffers::
29213 * Yanking Into Buffers::
29214 * X Cut and Paste::
29215 @end menu
29217 @node Killing From Stack, Yanking Into Stack, Kill and Yank, Kill and Yank
29218 @section Killing from the Stack
29220 @noindent
29221 @kindex C-k
29222 @pindex calc-kill
29223 @kindex M-k
29224 @pindex calc-copy-as-kill
29225 @kindex C-w
29226 @pindex calc-kill-region
29227 @kindex M-w
29228 @pindex calc-copy-region-as-kill
29229 @cindex Kill ring
29230 @dfn{Kill} commands are Emacs commands that insert text into the
29231 ``kill ring,'' from which it can later be ``yanked'' by a @kbd{C-y}
29232 command.  Three common kill commands in normal Emacs are @kbd{C-k}, which
29233 kills one line, @kbd{C-w}, which kills the region between mark and point,
29234 and @kbd{M-w}, which puts the region into the kill ring without actually
29235 deleting it.  All of these commands work in the Calculator, too.  Also,
29236 @kbd{M-k} has been provided to complete the set; it puts the current line
29237 into the kill ring without deleting anything.
29239 The kill commands are unusual in that they pay attention to the location
29240 of the cursor in the Calculator buffer.  If the cursor is on or below the
29241 bottom line, the kill commands operate on the top of the stack.  Otherwise,
29242 they operate on whatever stack element the cursor is on.  Calc's kill
29243 commands always operate on whole stack entries.  (They act the same as their
29244 standard Emacs cousins except they ``round up'' the specified region to
29245 encompass full lines.)  The text is copied into the kill ring exactly as
29246 it appears on the screen, including line numbers if they are enabled.
29248 A numeric prefix argument to @kbd{C-k} or @kbd{M-k} affects the number
29249 of lines killed.  A positive argument kills the current line and @expr{n-1}
29250 lines below it.  A negative argument kills the @expr{-n} lines above the
29251 current line.  Again this mirrors the behavior of the standard Emacs
29252 @kbd{C-k} command.  Although a whole line is always deleted, @kbd{C-k}
29253 with no argument copies only the number itself into the kill ring, whereas
29254 @kbd{C-k} with a prefix argument of 1 copies the number with its trailing
29255 newline.
29257 @node Yanking Into Stack, Grabbing From Buffers, Killing From Stack, Kill and Yank
29258 @section Yanking into the Stack
29260 @noindent
29261 @kindex C-y
29262 @pindex calc-yank
29263 The @kbd{C-y} command yanks the most recently killed text back into the
29264 Calculator.  It pushes this value onto the top of the stack regardless of
29265 the cursor position.  In general it re-parses the killed text as a number
29266 or formula (or a list of these separated by commas or newlines).  However if
29267 the thing being yanked is something that was just killed from the Calculator
29268 itself, its full internal structure is yanked.  For example, if you have
29269 set the floating-point display mode to show only four significant digits,
29270 then killing and re-yanking 3.14159 (which displays as 3.142) will yank the
29271 full 3.14159, even though yanking it into any other buffer would yank the
29272 number in its displayed form, 3.142.  (Since the default display modes
29273 show all objects to their full precision, this feature normally makes no
29274 difference.)
29276 @node Grabbing From Buffers, Yanking Into Buffers, Yanking Into Stack, Kill and Yank
29277 @section Grabbing from Other Buffers
29279 @noindent
29280 @kindex M-# g
29281 @pindex calc-grab-region
29282 The @kbd{M-# g} (@code{calc-grab-region}) command takes the text between
29283 point and mark in the current buffer and attempts to parse it as a
29284 vector of values.  Basically, it wraps the text in vector brackets
29285 @samp{[ ]} unless the text already is enclosed in vector brackets,
29286 then reads the text as if it were an algebraic entry.  The contents
29287 of the vector may be numbers, formulas, or any other Calc objects.
29288 If the @kbd{M-# g} command works successfully, it does an automatic
29289 @kbd{M-# c} to enter the Calculator buffer.
29291 A numeric prefix argument grabs the specified number of lines around
29292 point, ignoring the mark.  A positive prefix grabs from point to the
29293 @expr{n}th following newline (so that @kbd{M-1 M-# g} grabs from point
29294 to the end of the current line); a negative prefix grabs from point
29295 back to the @expr{n+1}st preceding newline.  In these cases the text
29296 that is grabbed is exactly the same as the text that @kbd{C-k} would
29297 delete given that prefix argument.
29299 A prefix of zero grabs the current line; point may be anywhere on the
29300 line.
29302 A plain @kbd{C-u} prefix interprets the region between point and mark
29303 as a single number or formula rather than a vector.  For example,
29304 @kbd{M-# g} on the text @samp{2 a b} produces the vector of three
29305 values @samp{[2, a, b]}, but @kbd{C-u M-# g} on the same region
29306 reads a formula which is a product of three things:  @samp{2 a b}.
29307 (The text @samp{a + b}, on the other hand, will be grabbed as a
29308 vector of one element by plain @kbd{M-# g} because the interpretation
29309 @samp{[a, +, b]} would be a syntax error.)
29311 If a different language has been specified (@pxref{Language Modes}),
29312 the grabbed text will be interpreted according to that language.
29314 @kindex M-# r
29315 @pindex calc-grab-rectangle
29316 The @kbd{M-# r} (@code{calc-grab-rectangle}) command takes the text between
29317 point and mark and attempts to parse it as a matrix.  If point and mark
29318 are both in the leftmost column, the lines in between are parsed in their
29319 entirety.  Otherwise, point and mark define the corners of a rectangle
29320 whose contents are parsed.
29322 Each line of the grabbed area becomes a row of the matrix.  The result
29323 will actually be a vector of vectors, which Calc will treat as a matrix
29324 only if every row contains the same number of values.
29326 If a line contains a portion surrounded by square brackets (or curly
29327 braces), that portion is interpreted as a vector which becomes a row
29328 of the matrix.  Any text surrounding the bracketed portion on the line
29329 is ignored.
29331 Otherwise, the entire line is interpreted as a row vector as if it
29332 were surrounded by square brackets.  Leading line numbers (in the
29333 format used in the Calc stack buffer) are ignored.  If you wish to
29334 force this interpretation (even if the line contains bracketed
29335 portions), give a negative numeric prefix argument to the
29336 @kbd{M-# r} command.
29338 If you give a numeric prefix argument of zero or plain @kbd{C-u}, each
29339 line is instead interpreted as a single formula which is converted into
29340 a one-element vector.  Thus the result of @kbd{C-u M-# r} will be a
29341 one-column matrix.  For example, suppose one line of the data is the
29342 expression @samp{2 a}.  A plain @w{@kbd{M-# r}} will interpret this as
29343 @samp{[2 a]}, which in turn is read as a two-element vector that forms
29344 one row of the matrix.  But a @kbd{C-u M-# r} will interpret this row
29345 as @samp{[2*a]}.
29347 If you give a positive numeric prefix argument @var{n}, then each line
29348 will be split up into columns of width @var{n}; each column is parsed
29349 separately as a matrix element.  If a line contained
29350 @w{@samp{2 +/- 3 4 +/- 5}}, then grabbing with a prefix argument of 8
29351 would correctly split the line into two error forms.
29353 @xref{Matrix Functions}, to see how to pull the matrix apart into its
29354 constituent rows and columns.  (If it is a 
29355 @texline @math{1\times1}
29356 @infoline 1x1
29357 matrix, just hit @kbd{v u} (@code{calc-unpack}) twice.)
29359 @kindex M-# :
29360 @kindex M-# _
29361 @pindex calc-grab-sum-across
29362 @pindex calc-grab-sum-down
29363 @cindex Summing rows and columns of data
29364 The @kbd{M-# :} (@code{calc-grab-sum-down}) command is a handy way to
29365 grab a rectangle of data and sum its columns.  It is equivalent to
29366 typing @kbd{M-# r}, followed by @kbd{V R : +} (the vector reduction
29367 command that sums the columns of a matrix; @pxref{Reducing}).  The
29368 result of the command will be a vector of numbers, one for each column
29369 in the input data.  The @kbd{M-# _} (@code{calc-grab-sum-across}) command
29370 similarly grabs a rectangle and sums its rows by executing @w{@kbd{V R _ +}}.
29372 As well as being more convenient, @kbd{M-# :} and @kbd{M-# _} are also
29373 much faster because they don't actually place the grabbed vector on
29374 the stack.  In a @kbd{M-# r V R : +} sequence, formatting the vector
29375 for display on the stack takes a large fraction of the total time
29376 (unless you have planned ahead and used @kbd{v .} and @kbd{t .} modes).
29378 For example, suppose we have a column of numbers in a file which we
29379 wish to sum.  Go to one corner of the column and press @kbd{C-@@} to
29380 set the mark; go to the other corner and type @kbd{M-# :}.  Since there
29381 is only one column, the result will be a vector of one number, the sum.
29382 (You can type @kbd{v u} to unpack this vector into a plain number if
29383 you want to do further arithmetic with it.)
29385 To compute the product of the column of numbers, we would have to do
29386 it ``by hand'' since there's no special grab-and-multiply command.
29387 Use @kbd{M-# r} to grab the column of numbers into the calculator in
29388 the form of a column matrix.  The statistics command @kbd{u *} is a
29389 handy way to find the product of a vector or matrix of numbers.
29390 @xref{Statistical Operations}.  Another approach would be to use
29391 an explicit column reduction command, @kbd{V R : *}.
29393 @node Yanking Into Buffers, X Cut and Paste, Grabbing From Buffers, Kill and Yank
29394 @section Yanking into Other Buffers
29396 @noindent
29397 @kindex y
29398 @pindex calc-copy-to-buffer
29399 The plain @kbd{y} (@code{calc-copy-to-buffer}) command inserts the number
29400 at the top of the stack into the most recently used normal editing buffer.
29401 (More specifically, this is the most recently used buffer which is displayed
29402 in a window and whose name does not begin with @samp{*}.  If there is no
29403 such buffer, this is the most recently used buffer except for Calculator
29404 and Calc Trail buffers.)  The number is inserted exactly as it appears and
29405 without a newline.  (If line-numbering is enabled, the line number is
29406 normally not included.)  The number is @emph{not} removed from the stack.
29408 With a prefix argument, @kbd{y} inserts several numbers, one per line.
29409 A positive argument inserts the specified number of values from the top
29410 of the stack.  A negative argument inserts the @expr{n}th value from the
29411 top of the stack.  An argument of zero inserts the entire stack.  Note
29412 that @kbd{y} with an argument of 1 is slightly different from @kbd{y}
29413 with no argument; the former always copies full lines, whereas the
29414 latter strips off the trailing newline.
29416 With a lone @kbd{C-u} as a prefix argument, @kbd{y} @emph{replaces} the
29417 region in the other buffer with the yanked text, then quits the
29418 Calculator, leaving you in that buffer.  A typical use would be to use
29419 @kbd{M-# g} to read a region of data into the Calculator, operate on the
29420 data to produce a new matrix, then type @kbd{C-u y} to replace the
29421 original data with the new data.  One might wish to alter the matrix
29422 display style (@pxref{Vector and Matrix Formats}) or change the current
29423 display language (@pxref{Language Modes}) before doing this.  Also, note
29424 that this command replaces a linear region of text (as grabbed by
29425 @kbd{M-# g}), not a rectangle (as grabbed by @kbd{M-# r}).
29427 If the editing buffer is in overwrite (as opposed to insert) mode,
29428 and the @kbd{C-u} prefix was not used, then the yanked number will
29429 overwrite the characters following point rather than being inserted
29430 before those characters.  The usual conventions of overwrite mode
29431 are observed; for example, characters will be inserted at the end of
29432 a line rather than overflowing onto the next line.  Yanking a multi-line
29433 object such as a matrix in overwrite mode overwrites the next @var{n}
29434 lines in the buffer, lengthening or shortening each line as necessary.
29435 Finally, if the thing being yanked is a simple integer or floating-point
29436 number (like @samp{-1.2345e-3}) and the characters following point also
29437 make up such a number, then Calc will replace that number with the new
29438 number, lengthening or shortening as necessary.  The concept of
29439 ``overwrite mode'' has thus been generalized from overwriting characters
29440 to overwriting one complete number with another.
29442 @kindex M-# y
29443 The @kbd{M-# y} key sequence is equivalent to @kbd{y} except that
29444 it can be typed anywhere, not just in Calc.  This provides an easy
29445 way to guarantee that Calc knows which editing buffer you want to use!
29447 @node X Cut and Paste, , Yanking Into Buffers, Kill and Yank
29448 @section X Cut and Paste
29450 @noindent
29451 If you are using Emacs with the X window system, there is an easier
29452 way to move small amounts of data into and out of the calculator:
29453 Use the mouse-oriented cut and paste facilities of X.
29455 The default bindings for a three-button mouse cause the left button
29456 to move the Emacs cursor to the given place, the right button to
29457 select the text between the cursor and the clicked location, and
29458 the middle button to yank the selection into the buffer at the
29459 clicked location.  So, if you have a Calc window and an editing
29460 window on your Emacs screen, you can use left-click/right-click
29461 to select a number, vector, or formula from one window, then
29462 middle-click to paste that value into the other window.  When you
29463 paste text into the Calc window, Calc interprets it as an algebraic
29464 entry.  It doesn't matter where you click in the Calc window; the
29465 new value is always pushed onto the top of the stack.
29467 The @code{xterm} program that is typically used for general-purpose
29468 shell windows in X interprets the mouse buttons in the same way.
29469 So you can use the mouse to move data between Calc and any other
29470 Unix program.  One nice feature of @code{xterm} is that a double
29471 left-click selects one word, and a triple left-click selects a
29472 whole line.  So you can usually transfer a single number into Calc
29473 just by double-clicking on it in the shell, then middle-clicking
29474 in the Calc window.
29476 @node Keypad Mode, Embedded Mode, Kill and Yank, Introduction
29477 @chapter Keypad Mode
29479 @noindent
29480 @kindex M-# k
29481 @pindex calc-keypad
29482 The @kbd{M-# k} (@code{calc-keypad}) command starts the Calculator
29483 and displays a picture of a calculator-style keypad.  If you are using
29484 the X window system, you can click on any of the ``keys'' in the
29485 keypad using the left mouse button to operate the calculator.
29486 The original window remains the selected window; in Keypad mode
29487 you can type in your file while simultaneously performing
29488 calculations with the mouse.
29490 @pindex full-calc-keypad
29491 If you have used @kbd{M-# b} first, @kbd{M-# k} instead invokes
29492 the @code{full-calc-keypad} command, which takes over the whole
29493 Emacs screen and displays the keypad, the Calc stack, and the Calc
29494 trail all at once.  This mode would normally be used when running
29495 Calc standalone (@pxref{Standalone Operation}).
29497 If you aren't using the X window system, you must switch into
29498 the @samp{*Calc Keypad*} window, place the cursor on the desired
29499 ``key,'' and type @key{SPC} or @key{RET}.  If you think this
29500 is easier than using Calc normally, go right ahead.
29502 Calc commands are more or less the same in Keypad mode.  Certain
29503 keypad keys differ slightly from the corresponding normal Calc
29504 keystrokes; all such deviations are described below.
29506 Keypad mode includes many more commands than will fit on the keypad
29507 at once.  Click the right mouse button [@code{calc-keypad-menu}]
29508 to switch to the next menu.  The bottom five rows of the keypad
29509 stay the same; the top three rows change to a new set of commands.
29510 To return to earlier menus, click the middle mouse button
29511 [@code{calc-keypad-menu-back}] or simply advance through the menus
29512 until you wrap around.  Typing @key{TAB} inside the keypad window
29513 is equivalent to clicking the right mouse button there.
29515 You can always click the @key{EXEC} button and type any normal
29516 Calc key sequence.  This is equivalent to switching into the
29517 Calc buffer, typing the keys, then switching back to your
29518 original buffer.
29520 @menu
29521 * Keypad Main Menu::
29522 * Keypad Functions Menu::
29523 * Keypad Binary Menu::
29524 * Keypad Vectors Menu::
29525 * Keypad Modes Menu::
29526 @end menu
29528 @node Keypad Main Menu, Keypad Functions Menu, Keypad Mode, Keypad Mode
29529 @section Main Menu
29531 @smallexample
29532 @group
29533 |----+-----Calc 2.00-----+----1
29534 |FLR |CEIL|RND |TRNC|CLN2|FLT |
29535 |----+----+----+----+----+----|
29536 | LN |EXP |    |ABS |IDIV|MOD |
29537 |----+----+----+----+----+----|
29538 |SIN |COS |TAN |SQRT|y^x |1/x |
29539 |----+----+----+----+----+----|
29540 |  ENTER  |+/- |EEX |UNDO| <- |
29541 |-----+---+-+--+--+-+---++----|
29542 | INV |  7  |  8  |  9  |  /  |
29543 |-----+-----+-----+-----+-----|
29544 | HYP |  4  |  5  |  6  |  *  |
29545 |-----+-----+-----+-----+-----|
29546 |EXEC |  1  |  2  |  3  |  -  |
29547 |-----+-----+-----+-----+-----|
29548 | OFF |  0  |  .  | PI  |  +  |
29549 |-----+-----+-----+-----+-----+
29550 @end group
29551 @end smallexample
29553 @noindent
29554 This is the menu that appears the first time you start Keypad mode.
29555 It will show up in a vertical window on the right side of your screen.
29556 Above this menu is the traditional Calc stack display.  On a 24-line
29557 screen you will be able to see the top three stack entries.
29559 The ten digit keys, decimal point, and @key{EEX} key are used for
29560 entering numbers in the obvious way.  @key{EEX} begins entry of an
29561 exponent in scientific notation.  Just as with regular Calc, the
29562 number is pushed onto the stack as soon as you press @key{ENTER}
29563 or any other function key.
29565 The @key{+/-} key corresponds to normal Calc's @kbd{n} key.  During
29566 numeric entry it changes the sign of the number or of the exponent.
29567 At other times it changes the sign of the number on the top of the
29568 stack.
29570 The @key{INV} and @key{HYP} keys modify other keys.  As well as
29571 having the effects described elsewhere in this manual, Keypad mode
29572 defines several other ``inverse'' operations.  These are described
29573 below and in the following sections.
29575 The @key{ENTER} key finishes the current numeric entry, or otherwise
29576 duplicates the top entry on the stack.
29578 The @key{UNDO} key undoes the most recent Calc operation.
29579 @kbd{INV UNDO} is the ``redo'' command, and @kbd{HYP UNDO} is
29580 ``last arguments'' (@kbd{M-@key{RET}}).
29582 The @key{<-} key acts as a ``backspace'' during numeric entry.
29583 At other times it removes the top stack entry.  @kbd{INV <-}
29584 clears the entire stack.  @kbd{HYP <-} takes an integer from
29585 the stack, then removes that many additional stack elements.
29587 The @key{EXEC} key prompts you to enter any keystroke sequence
29588 that would normally work in Calc mode.  This can include a
29589 numeric prefix if you wish.  It is also possible simply to
29590 switch into the Calc window and type commands in it; there is
29591 nothing ``magic'' about this window when Keypad mode is active.
29593 The other keys in this display perform their obvious calculator
29594 functions.  @key{CLN2} rounds the top-of-stack by temporarily
29595 reducing the precision by 2 digits.  @key{FLT} converts an
29596 integer or fraction on the top of the stack to floating-point.
29598 The @key{INV} and @key{HYP} keys combined with several of these keys
29599 give you access to some common functions even if the appropriate menu
29600 is not displayed.  Obviously you don't need to learn these keys
29601 unless you find yourself wasting time switching among the menus.
29603 @table @kbd
29604 @item INV +/-
29605 is the same as @key{1/x}.
29606 @item INV +
29607 is the same as @key{SQRT}.
29608 @item INV -
29609 is the same as @key{CONJ}.
29610 @item INV *
29611 is the same as @key{y^x}.
29612 @item INV /
29613 is the same as @key{INV y^x} (the @expr{x}th root of @expr{y}).
29614 @item HYP/INV 1
29615 are the same as @key{SIN} / @kbd{INV SIN}.
29616 @item HYP/INV 2
29617 are the same as @key{COS} / @kbd{INV COS}.
29618 @item HYP/INV 3
29619 are the same as @key{TAN} / @kbd{INV TAN}.
29620 @item INV/HYP 4
29621 are the same as @key{LN} / @kbd{HYP LN}.
29622 @item INV/HYP 5
29623 are the same as @key{EXP} / @kbd{HYP EXP}.
29624 @item INV 6
29625 is the same as @key{ABS}.
29626 @item INV 7
29627 is the same as @key{RND} (@code{calc-round}).
29628 @item INV 8
29629 is the same as @key{CLN2}.
29630 @item INV 9
29631 is the same as @key{FLT} (@code{calc-float}).
29632 @item INV 0
29633 is the same as @key{IMAG}.
29634 @item INV .
29635 is the same as @key{PREC}.
29636 @item INV ENTER
29637 is the same as @key{SWAP}.
29638 @item HYP ENTER
29639 is the same as @key{RLL3}.
29640 @item INV HYP ENTER
29641 is the same as @key{OVER}.
29642 @item HYP +/-
29643 packs the top two stack entries as an error form.
29644 @item HYP EEX
29645 packs the top two stack entries as a modulo form.
29646 @item INV EEX
29647 creates an interval form; this removes an integer which is one
29648 of 0 @samp{[]}, 1 @samp{[)}, 2 @samp{(]} or 3 @samp{()}, followed
29649 by the two limits of the interval.
29650 @end table
29652 The @kbd{OFF} key turns Calc off; typing @kbd{M-# k} or @kbd{M-# M-#}
29653 again has the same effect.  This is analogous to typing @kbd{q} or
29654 hitting @kbd{M-# c} again in the normal calculator.  If Calc is
29655 running standalone (the @code{full-calc-keypad} command appeared in the
29656 command line that started Emacs), then @kbd{OFF} is replaced with
29657 @kbd{EXIT}; clicking on this actually exits Emacs itself.
29659 @node Keypad Functions Menu, Keypad Binary Menu, Keypad Main Menu, Keypad Mode
29660 @section Functions Menu
29662 @smallexample
29663 @group
29664 |----+----+----+----+----+----2
29665 |IGAM|BETA|IBET|ERF |BESJ|BESY|
29666 |----+----+----+----+----+----|
29667 |IMAG|CONJ| RE |ATN2|RAND|RAGN|
29668 |----+----+----+----+----+----|
29669 |GCD |FACT|DFCT|BNOM|PERM|NXTP|
29670 |----+----+----+----+----+----|
29671 @end group
29672 @end smallexample
29674 @noindent
29675 This menu provides various operations from the @kbd{f} and @kbd{k}
29676 prefix keys.
29678 @key{IMAG} multiplies the number on the stack by the imaginary
29679 number @expr{i = (0, 1)}.
29681 @key{RE} extracts the real part a complex number.  @kbd{INV RE}
29682 extracts the imaginary part.
29684 @key{RAND} takes a number from the top of the stack and computes
29685 a random number greater than or equal to zero but less than that
29686 number.  (@xref{Random Numbers}.)  @key{RAGN} is the ``random
29687 again'' command; it computes another random number using the
29688 same limit as last time.
29690 @key{INV GCD} computes the LCM (least common multiple) function.
29692 @key{INV FACT} is the gamma function.  
29693 @texline @math{\Gamma(x) = (x-1)!}.
29694 @infoline @expr{gamma(x) = (x-1)!}.
29696 @key{PERM} is the number-of-permutations function, which is on the
29697 @kbd{H k c} key in normal Calc.
29699 @key{NXTP} finds the next prime after a number.  @kbd{INV NXTP}
29700 finds the previous prime.
29702 @node Keypad Binary Menu, Keypad Vectors Menu, Keypad Functions Menu, Keypad Mode
29703 @section Binary Menu
29705 @smallexample
29706 @group
29707 |----+----+----+----+----+----3
29708 |AND | OR |XOR |NOT |LSH |RSH |
29709 |----+----+----+----+----+----|
29710 |DEC |HEX |OCT |BIN |WSIZ|ARSH|
29711 |----+----+----+----+----+----|
29712 | A  | B  | C  | D  | E  | F  |
29713 |----+----+----+----+----+----|
29714 @end group
29715 @end smallexample
29717 @noindent
29718 The keys in this menu perform operations on binary integers.
29719 Note that both logical and arithmetic right-shifts are provided.
29720 @key{INV LSH} rotates one bit to the left.
29722 The ``difference'' function (normally on @kbd{b d}) is on @key{INV AND}.
29723 The ``clip'' function (normally on @w{@kbd{b c}}) is on @key{INV NOT}.
29725 The @key{DEC}, @key{HEX}, @key{OCT}, and @key{BIN} keys select the
29726 current radix for display and entry of numbers:  Decimal, hexadecimal,
29727 octal, or binary.  The six letter keys @key{A} through @key{F} are used
29728 for entering hexadecimal numbers.
29730 The @key{WSIZ} key displays the current word size for binary operations
29731 and allows you to enter a new word size.  You can respond to the prompt
29732 using either the keyboard or the digits and @key{ENTER} from the keypad.
29733 The initial word size is 32 bits.
29735 @node Keypad Vectors Menu, Keypad Modes Menu, Keypad Binary Menu, Keypad Mode
29736 @section Vectors Menu
29738 @smallexample
29739 @group
29740 |----+----+----+----+----+----4
29741 |SUM |PROD|MAX |MAP*|MAP^|MAP$|
29742 |----+----+----+----+----+----|
29743 |MINV|MDET|MTRN|IDNT|CRSS|"x" |
29744 |----+----+----+----+----+----|
29745 |PACK|UNPK|INDX|BLD |LEN |... |
29746 |----+----+----+----+----+----|
29747 @end group
29748 @end smallexample
29750 @noindent
29751 The keys in this menu operate on vectors and matrices.
29753 @key{PACK} removes an integer @var{n} from the top of the stack;
29754 the next @var{n} stack elements are removed and packed into a vector,
29755 which is replaced onto the stack.  Thus the sequence
29756 @kbd{1 ENTER 3 ENTER 5 ENTER 3 PACK} enters the vector
29757 @samp{[1, 3, 5]} onto the stack.  To enter a matrix, build each row
29758 on the stack as a vector, then use a final @key{PACK} to collect the
29759 rows into a matrix.
29761 @key{UNPK} unpacks the vector on the stack, pushing each of its
29762 components separately.
29764 @key{INDX} removes an integer @var{n}, then builds a vector of
29765 integers from 1 to @var{n}.  @kbd{INV INDX} takes three numbers
29766 from the stack:  The vector size @var{n}, the starting number,
29767 and the increment.  @kbd{BLD} takes an integer @var{n} and any
29768 value @var{x} and builds a vector of @var{n} copies of @var{x}.
29770 @key{IDNT} removes an integer @var{n}, then builds an @var{n}-by-@var{n}
29771 identity matrix.
29773 @key{LEN} replaces a vector by its length, an integer.
29775 @key{...} turns on or off ``abbreviated'' display mode for large vectors.
29777 @key{MINV}, @key{MDET}, @key{MTRN}, and @key{CROSS} are the matrix
29778 inverse, determinant, and transpose, and vector cross product.
29780 @key{SUM} replaces a vector by the sum of its elements.  It is
29781 equivalent to @kbd{u +} in normal Calc (@pxref{Statistical Operations}).
29782 @key{PROD} computes the product of the elements of a vector, and
29783 @key{MAX} computes the maximum of all the elements of a vector.
29785 @key{INV SUM} computes the alternating sum of the first element
29786 minus the second, plus the third, minus the fourth, and so on.
29787 @key{INV MAX} computes the minimum of the vector elements.
29789 @key{HYP SUM} computes the mean of the vector elements.
29790 @key{HYP PROD} computes the sample standard deviation.
29791 @key{HYP MAX} computes the median.
29793 @key{MAP*} multiplies two vectors elementwise.  It is equivalent
29794 to the @kbd{V M *} command.  @key{MAP^} computes powers elementwise.
29795 The arguments must be vectors of equal length, or one must be a vector
29796 and the other must be a plain number.  For example, @kbd{2 MAP^} squares
29797 all the elements of a vector.
29799 @key{MAP$} maps the formula on the top of the stack across the
29800 vector in the second-to-top position.  If the formula contains
29801 several variables, Calc takes that many vectors starting at the
29802 second-to-top position and matches them to the variables in
29803 alphabetical order.  The result is a vector of the same size as
29804 the input vectors, whose elements are the formula evaluated with
29805 the variables set to the various sets of numbers in those vectors.
29806 For example, you could simulate @key{MAP^} using @key{MAP$} with
29807 the formula @samp{x^y}.
29809 The @kbd{"x"} key pushes the variable name @expr{x} onto the
29810 stack.  To build the formula @expr{x^2 + 6}, you would use the
29811 key sequence @kbd{"x" 2 y^x 6 +}.  This formula would then be
29812 suitable for use with the @key{MAP$} key described above.
29813 With @key{INV}, @key{HYP}, or @key{INV} and @key{HYP}, the
29814 @kbd{"x"} key pushes the variable names @expr{y}, @expr{z}, and
29815 @expr{t}, respectively.
29817 @node Keypad Modes Menu, , Keypad Vectors Menu, Keypad Mode
29818 @section Modes Menu
29820 @smallexample
29821 @group
29822 |----+----+----+----+----+----5
29823 |FLT |FIX |SCI |ENG |GRP |    |
29824 |----+----+----+----+----+----|
29825 |RAD |DEG |FRAC|POLR|SYMB|PREC|
29826 |----+----+----+----+----+----|
29827 |SWAP|RLL3|RLL4|OVER|STO |RCL |
29828 |----+----+----+----+----+----|
29829 @end group
29830 @end smallexample
29832 @noindent
29833 The keys in this menu manipulate modes, variables, and the stack.
29835 The @key{FLT}, @key{FIX}, @key{SCI}, and @key{ENG} keys select
29836 floating-point, fixed-point, scientific, or engineering notation.
29837 @key{FIX} displays two digits after the decimal by default; the
29838 others display full precision.  With the @key{INV} prefix, these
29839 keys pop a number-of-digits argument from the stack.
29841 The @key{GRP} key turns grouping of digits with commas on or off.
29842 @kbd{INV GRP} enables grouping to the right of the decimal point as
29843 well as to the left.
29845 The @key{RAD} and @key{DEG} keys switch between radians and degrees
29846 for trigonometric functions.
29848 The @key{FRAC} key turns Fraction mode on or off.  This affects
29849 whether commands like @kbd{/} with integer arguments produce
29850 fractional or floating-point results.
29852 The @key{POLR} key turns Polar mode on or off, determining whether
29853 polar or rectangular complex numbers are used by default.
29855 The @key{SYMB} key turns Symbolic mode on or off, in which
29856 operations that would produce inexact floating-point results
29857 are left unevaluated as algebraic formulas.
29859 The @key{PREC} key selects the current precision.  Answer with
29860 the keyboard or with the keypad digit and @key{ENTER} keys.
29862 The @key{SWAP} key exchanges the top two stack elements.
29863 The @key{RLL3} key rotates the top three stack elements upwards.
29864 The @key{RLL4} key rotates the top four stack elements upwards.
29865 The @key{OVER} key duplicates the second-to-top stack element.
29867 The @key{STO} and @key{RCL} keys are analogous to @kbd{s t} and
29868 @kbd{s r} in regular Calc.  @xref{Store and Recall}.  Click the
29869 @key{STO} or @key{RCL} key, then one of the ten digits.  (Named
29870 variables are not available in Keypad mode.)  You can also use,
29871 for example, @kbd{STO + 3} to add to register 3.
29873 @node Embedded Mode, Programming, Keypad Mode, Top
29874 @chapter Embedded Mode
29876 @noindent
29877 Embedded mode in Calc provides an alternative to copying numbers
29878 and formulas back and forth between editing buffers and the Calc
29879 stack.  In Embedded mode, your editing buffer becomes temporarily
29880 linked to the stack and this copying is taken care of automatically.
29882 @menu
29883 * Basic Embedded Mode::
29884 * More About Embedded Mode::
29885 * Assignments in Embedded Mode::
29886 * Mode Settings in Embedded Mode::
29887 * Customizing Embedded Mode::
29888 @end menu
29890 @node Basic Embedded Mode, More About Embedded Mode, Embedded Mode, Embedded Mode
29891 @section Basic Embedded Mode
29893 @noindent
29894 @kindex M-# e
29895 @pindex calc-embedded
29896 To enter Embedded mode, position the Emacs point (cursor) on a
29897 formula in any buffer and press @kbd{M-# e} (@code{calc-embedded}).
29898 Note that @kbd{M-# e} is not to be used in the Calc stack buffer
29899 like most Calc commands, but rather in regular editing buffers that
29900 are visiting your own files.
29902 Calc will try to guess an appropriate language based on the major mode
29903 of the editing buffer. (@xref{Language Modes}.) If the current buffer is
29904 in @code{latex-mode}, for example, Calc will set its language to La@TeX{}.
29905 Similarly, Calc will use @TeX{} language for @code{tex-mode},
29906 @code{plain-tex-mode} and @code{context-mode}, C language for
29907 @code{c-mode} and @code{c++-mode}, FORTRAN language for
29908 @code{fortran-mode} and @code{f90-mode}, Pascal for @code{pascal-mode},
29909 and eqn for @code{nroff-mode} (@pxref{Customizable Variables}).  
29910 These can be overridden with Calc's mode
29911 changing commands (@pxref{Mode Settings in Embedded Mode}).  If no
29912 suitable language is available, Calc will continue with its current language.
29914 Calc normally scans backward and forward in the buffer for the
29915 nearest opening and closing @dfn{formula delimiters}.  The simplest
29916 delimiters are blank lines.  Other delimiters that Embedded mode
29917 understands are:
29919 @enumerate
29920 @item
29921 The @TeX{} and La@TeX{} math delimiters @samp{$ $}, @samp{$$ $$},
29922 @samp{\[ \]}, and @samp{\( \)};
29923 @item
29924 Lines beginning with @samp{\begin} and @samp{\end} (except matrix delimiters);
29925 @item
29926 Lines beginning with @samp{@@} (Texinfo delimiters).
29927 @item
29928 Lines beginning with @samp{.EQ} and @samp{.EN} (@dfn{eqn} delimiters);
29929 @item
29930 Lines containing a single @samp{%} or @samp{.\"} symbol and nothing else.
29931 @end enumerate
29933 @xref{Customizing Embedded Mode}, to see how to make Calc recognize
29934 your own favorite delimiters.  Delimiters like @samp{$ $} can appear
29935 on their own separate lines or in-line with the formula.
29937 If you give a positive or negative numeric prefix argument, Calc
29938 instead uses the current point as one end of the formula, and moves
29939 forward or backward (respectively) by that many lines to find the
29940 other end.  Explicit delimiters are not necessary in this case.
29942 With a prefix argument of zero, Calc uses the current region
29943 (delimited by point and mark) instead of formula delimiters.
29945 @kindex M-# w
29946 @pindex calc-embedded-word
29947 With a prefix argument of @kbd{C-u} only, Calc scans for the first
29948 non-numeric character (i.e., the first character that is not a
29949 digit, sign, decimal point, or upper- or lower-case @samp{e})
29950 forward and backward to delimit the formula.  @kbd{M-# w}
29951 (@code{calc-embedded-word}) is equivalent to @kbd{C-u M-# e}.
29953 When you enable Embedded mode for a formula, Calc reads the text
29954 between the delimiters and tries to interpret it as a Calc formula.
29955 Calc can generally identify @TeX{} formulas and
29956 Big-style formulas even if the language mode is wrong.  If Calc
29957 can't make sense of the formula, it beeps and refuses to enter
29958 Embedded mode.  But if the current language is wrong, Calc can
29959 sometimes parse the formula successfully (but incorrectly);
29960 for example, the C expression @samp{atan(a[1])} can be parsed
29961 in Normal language mode, but the @code{atan} won't correspond to
29962 the built-in @code{arctan} function, and the @samp{a[1]} will be
29963 interpreted as @samp{a} times the vector @samp{[1]}!
29965 If you press @kbd{M-# e} or @kbd{M-# w} to activate an embedded
29966 formula which is blank, say with the cursor on the space between
29967 the two delimiters @samp{$ $}, Calc will immediately prompt for
29968 an algebraic entry.
29970 Only one formula in one buffer can be enabled at a time.  If you
29971 move to another area of the current buffer and give Calc commands,
29972 Calc turns Embedded mode off for the old formula and then tries
29973 to restart Embedded mode at the new position.  Other buffers are
29974 not affected by Embedded mode.
29976 When Embedded mode begins, Calc pushes the current formula onto
29977 the stack.  No Calc stack window is created; however, Calc copies
29978 the top-of-stack position into the original buffer at all times.
29979 You can create a Calc window by hand with @kbd{M-# o} if you
29980 find you need to see the entire stack.
29982 For example, typing @kbd{M-# e} while somewhere in the formula
29983 @samp{n>2} in the following line enables Embedded mode on that
29984 inequality:
29986 @example
29987 We define $F_n = F_(n-1)+F_(n-2)$ for all $n>2$.
29988 @end example
29990 @noindent
29991 The formula @expr{n>2} will be pushed onto the Calc stack, and
29992 the top of stack will be copied back into the editing buffer.
29993 This means that spaces will appear around the @samp{>} symbol
29994 to match Calc's usual display style:
29996 @example
29997 We define $F_n = F_(n-1)+F_(n-2)$ for all $n > 2$.
29998 @end example
30000 @noindent
30001 No spaces have appeared around the @samp{+} sign because it's
30002 in a different formula, one which we have not yet touched with
30003 Embedded mode.
30005 Now that Embedded mode is enabled, keys you type in this buffer
30006 are interpreted as Calc commands.  At this point we might use
30007 the ``commute'' command @kbd{j C} to reverse the inequality.
30008 This is a selection-based command for which we first need to
30009 move the cursor onto the operator (@samp{>} in this case) that
30010 needs to be commuted.
30012 @example
30013 We define $F_n = F_(n-1)+F_(n-2)$ for all $2 < n$.
30014 @end example
30016 The @kbd{M-# o} command is a useful way to open a Calc window
30017 without actually selecting that window.  Giving this command
30018 verifies that @samp{2 < n} is also on the Calc stack.  Typing
30019 @kbd{17 @key{RET}} would produce:
30021 @example
30022 We define $F_n = F_(n-1)+F_(n-2)$ for all $17$.
30023 @end example
30025 @noindent
30026 with @samp{2 < n} and @samp{17} on the stack; typing @key{TAB}
30027 at this point will exchange the two stack values and restore
30028 @samp{2 < n} to the embedded formula.  Even though you can't
30029 normally see the stack in Embedded mode, it is still there and
30030 it still operates in the same way.  But, as with old-fashioned
30031 RPN calculators, you can only see the value at the top of the
30032 stack at any given time (unless you use @kbd{M-# o}).
30034 Typing @kbd{M-# e} again turns Embedded mode off.  The Calc
30035 window reveals that the formula @w{@samp{2 < n}} is automatically
30036 removed from the stack, but the @samp{17} is not.  Entering
30037 Embedded mode always pushes one thing onto the stack, and
30038 leaving Embedded mode always removes one thing.  Anything else
30039 that happens on the stack is entirely your business as far as
30040 Embedded mode is concerned.
30042 If you press @kbd{M-# e} in the wrong place by accident, it is
30043 possible that Calc will be able to parse the nearby text as a
30044 formula and will mangle that text in an attempt to redisplay it
30045 ``properly'' in the current language mode.  If this happens,
30046 press @kbd{M-# e} again to exit Embedded mode, then give the
30047 regular Emacs ``undo'' command (@kbd{C-_} or @kbd{C-x u}) to put
30048 the text back the way it was before Calc edited it.  Note that Calc's
30049 own Undo command (typed before you turn Embedded mode back off)
30050 will not do you any good, because as far as Calc is concerned
30051 you haven't done anything with this formula yet.
30053 @node More About Embedded Mode, Assignments in Embedded Mode, Basic Embedded Mode, Embedded Mode
30054 @section More About Embedded Mode
30056 @noindent
30057 When Embedded mode ``activates'' a formula, i.e., when it examines
30058 the formula for the first time since the buffer was created or
30059 loaded, Calc tries to sense the language in which the formula was
30060 written.  If the formula contains any La@TeX{}-like @samp{\} sequences,
30061 it is parsed (i.e., read) in La@TeX{} mode.  If the formula appears to
30062 be written in multi-line Big mode, it is parsed in Big mode.  Otherwise,
30063 it is parsed according to the current language mode.
30065 Note that Calc does not change the current language mode according
30066 the formula it reads in.  Even though it can read a La@TeX{} formula when
30067 not in La@TeX{} mode, it will immediately rewrite this formula using
30068 whatever language mode is in effect.
30070 @tex
30071 \bigskip
30072 @end tex
30074 @kindex d p
30075 @pindex calc-show-plain
30076 Calc's parser is unable to read certain kinds of formulas.  For
30077 example, with @kbd{v ]} (@code{calc-matrix-brackets}) you can
30078 specify matrix display styles which the parser is unable to
30079 recognize as matrices.  The @kbd{d p} (@code{calc-show-plain})
30080 command turns on a mode in which a ``plain'' version of a
30081 formula is placed in front of the fully-formatted version.
30082 When Calc reads a formula that has such a plain version in
30083 front, it reads the plain version and ignores the formatted
30084 version.
30086 Plain formulas are preceded and followed by @samp{%%%} signs
30087 by default.  This notation has the advantage that the @samp{%}
30088 character begins a comment in @TeX{} and La@TeX{}, so if your formula is 
30089 embedded in a @TeX{} or La@TeX{} document its plain version will be
30090 invisible in the final printed copy.  @xref{Customizing
30091 Embedded Mode}, to see how to change the ``plain'' formula
30092 delimiters, say to something that @dfn{eqn} or some other
30093 formatter will treat as a comment.
30095 There are several notations which Calc's parser for ``big''
30096 formatted formulas can't yet recognize.  In particular, it can't
30097 read the large symbols for @code{sum}, @code{prod}, and @code{integ},
30098 and it can't handle @samp{=>} with the righthand argument omitted.
30099 Also, Calc won't recognize special formats you have defined with
30100 the @kbd{Z C} command (@pxref{User-Defined Compositions}).  In
30101 these cases it is important to use ``plain'' mode to make sure
30102 Calc will be able to read your formula later.
30104 Another example where ``plain'' mode is important is if you have
30105 specified a float mode with few digits of precision.  Normally
30106 any digits that are computed but not displayed will simply be
30107 lost when you save and re-load your embedded buffer, but ``plain''
30108 mode allows you to make sure that the complete number is present
30109 in the file as well as the rounded-down number.
30111 @tex
30112 \bigskip
30113 @end tex
30115 Embedded buffers remember active formulas for as long as they
30116 exist in Emacs memory.  Suppose you have an embedded formula
30117 which is @cpi{} to the normal 12 decimal places, and then
30118 type @w{@kbd{C-u 5 d n}} to display only five decimal places.
30119 If you then type @kbd{d n}, all 12 places reappear because the
30120 full number is still there on the Calc stack.  More surprisingly,
30121 even if you exit Embedded mode and later re-enter it for that
30122 formula, typing @kbd{d n} will restore all 12 places because
30123 each buffer remembers all its active formulas.  However, if you
30124 save the buffer in a file and reload it in a new Emacs session,
30125 all non-displayed digits will have been lost unless you used
30126 ``plain'' mode.
30128 @tex
30129 \bigskip
30130 @end tex
30132 In some applications of Embedded mode, you will want to have a
30133 sequence of copies of a formula that show its evolution as you
30134 work on it.  For example, you might want to have a sequence
30135 like this in your file (elaborating here on the example from
30136 the ``Getting Started'' chapter):
30138 @smallexample
30139 The derivative of
30141                               ln(ln(x))
30145                   @r{(the derivative of }ln(ln(x))@r{)}
30147 whose value at x = 2 is
30149                             @r{(the value)}
30151 and at x = 3 is
30153                             @r{(the value)}
30154 @end smallexample
30156 @kindex M-# d
30157 @pindex calc-embedded-duplicate
30158 The @kbd{M-# d} (@code{calc-embedded-duplicate}) command is a
30159 handy way to make sequences like this.  If you type @kbd{M-# d},
30160 the formula under the cursor (which may or may not have Embedded
30161 mode enabled for it at the time) is copied immediately below and
30162 Embedded mode is then enabled for that copy.
30164 For this example, you would start with just
30166 @smallexample
30167 The derivative of
30169                               ln(ln(x))
30170 @end smallexample
30172 @noindent
30173 and press @kbd{M-# d} with the cursor on this formula.  The result
30176 @smallexample
30177 The derivative of
30179                               ln(ln(x))
30182                               ln(ln(x))
30183 @end smallexample
30185 @noindent
30186 with the second copy of the formula enabled in Embedded mode.
30187 You can now press @kbd{a d x @key{RET}} to take the derivative, and
30188 @kbd{M-# d M-# d} to make two more copies of the derivative.
30189 To complete the computations, type @kbd{3 s l x @key{RET}} to evaluate
30190 the last formula, then move up to the second-to-last formula
30191 and type @kbd{2 s l x @key{RET}}.
30193 Finally, you would want to press @kbd{M-# e} to exit Embedded
30194 mode, then go up and insert the necessary text in between the
30195 various formulas and numbers.
30197 @tex
30198 \bigskip
30199 @end tex
30201 @kindex M-# f
30202 @kindex M-# '
30203 @pindex calc-embedded-new-formula
30204 The @kbd{M-# f} (@code{calc-embedded-new-formula}) command
30205 creates a new embedded formula at the current point.  It inserts
30206 some default delimiters, which are usually just blank lines,
30207 and then does an algebraic entry to get the formula (which is
30208 then enabled for Embedded mode).  This is just shorthand for
30209 typing the delimiters yourself, positioning the cursor between
30210 the new delimiters, and pressing @kbd{M-# e}.  The key sequence
30211 @kbd{M-# '} is equivalent to @kbd{M-# f}.
30213 @kindex M-# n
30214 @kindex M-# p
30215 @pindex calc-embedded-next
30216 @pindex calc-embedded-previous
30217 The @kbd{M-# n} (@code{calc-embedded-next}) and @kbd{M-# p}
30218 (@code{calc-embedded-previous}) commands move the cursor to the
30219 next or previous active embedded formula in the buffer.  They
30220 can take positive or negative prefix arguments to move by several
30221 formulas.  Note that these commands do not actually examine the
30222 text of the buffer looking for formulas; they only see formulas
30223 which have previously been activated in Embedded mode.  In fact,
30224 @kbd{M-# n} and @kbd{M-# p} are a useful way to tell which
30225 embedded formulas are currently active.  Also, note that these
30226 commands do not enable Embedded mode on the next or previous
30227 formula, they just move the cursor.  (By the way, @kbd{M-# n} is
30228 not as awkward to type as it may seem, because @kbd{M-#} ignores
30229 Shift and Meta on the second keystroke:  @kbd{M-# M-N} can be typed
30230 by holding down Shift and Meta and alternately typing two keys.)
30232 @kindex M-# `
30233 @pindex calc-embedded-edit
30234 The @kbd{M-# `} (@code{calc-embedded-edit}) command edits the
30235 embedded formula at the current point as if by @kbd{`} (@code{calc-edit}).
30236 Embedded mode does not have to be enabled for this to work.  Press
30237 @kbd{C-c C-c} to finish the edit, or @kbd{C-x k} to cancel.
30239 @node Assignments in Embedded Mode, Mode Settings in Embedded Mode, More About Embedded Mode, Embedded Mode
30240 @section Assignments in Embedded Mode
30242 @noindent
30243 The @samp{:=} (assignment) and @samp{=>} (``evaluates-to'') operators
30244 are especially useful in Embedded mode.  They allow you to make
30245 a definition in one formula, then refer to that definition in
30246 other formulas embedded in the same buffer.
30248 An embedded formula which is an assignment to a variable, as in
30250 @example
30251 foo := 5
30252 @end example
30254 @noindent
30255 records @expr{5} as the stored value of @code{foo} for the
30256 purposes of Embedded mode operations in the current buffer.  It
30257 does @emph{not} actually store @expr{5} as the ``global'' value
30258 of @code{foo}, however.  Regular Calc operations, and Embedded
30259 formulas in other buffers, will not see this assignment.
30261 One way to use this assigned value is simply to create an
30262 Embedded formula elsewhere that refers to @code{foo}, and to press
30263 @kbd{=} in that formula.  However, this permanently replaces the
30264 @code{foo} in the formula with its current value.  More interesting
30265 is to use @samp{=>} elsewhere:
30267 @example
30268 foo + 7 => 12
30269 @end example
30271 @xref{Evaluates-To Operator}, for a general discussion of @samp{=>}.
30273 If you move back and change the assignment to @code{foo}, any
30274 @samp{=>} formulas which refer to it are automatically updated.
30276 @example
30277 foo := 17
30279 foo + 7 => 24
30280 @end example
30282 The obvious question then is, @emph{how} can one easily change the
30283 assignment to @code{foo}?  If you simply select the formula in
30284 Embedded mode and type 17, the assignment itself will be replaced
30285 by the 17.  The effect on the other formula will be that the
30286 variable @code{foo} becomes unassigned:
30288 @example
30291 foo + 7 => foo + 7
30292 @end example
30294 The right thing to do is first to use a selection command (@kbd{j 2}
30295 will do the trick) to select the righthand side of the assignment.
30296 Then, @kbd{17 @key{TAB} @key{DEL}} will swap the 17 into place (@pxref{Selecting
30297 Subformulas}, to see how this works).
30299 @kindex M-# j
30300 @pindex calc-embedded-select
30301 The @kbd{M-# j} (@code{calc-embedded-select}) command provides an
30302 easy way to operate on assignments.  It is just like @kbd{M-# e},
30303 except that if the enabled formula is an assignment, it uses
30304 @kbd{j 2} to select the righthand side.  If the enabled formula
30305 is an evaluates-to, it uses @kbd{j 1} to select the lefthand side.
30306 A formula can also be a combination of both:
30308 @example
30309 bar := foo + 3 => 20
30310 @end example
30312 @noindent
30313 in which case @kbd{M-# j} will select the middle part (@samp{foo + 3}).
30315 The formula is automatically deselected when you leave Embedded
30316 mode.
30318 @kindex M-# u
30319 @kindex M-# =
30320 @pindex calc-embedded-update
30321 Another way to change the assignment to @code{foo} would simply be
30322 to edit the number using regular Emacs editing rather than Embedded
30323 mode.  Then, we have to find a way to get Embedded mode to notice
30324 the change.  The @kbd{M-# u} or @kbd{M-# =}
30325 (@code{calc-embedded-update-formula}) command is a convenient way
30326 to do this.
30328 @example
30329 foo := 6
30331 foo + 7 => 13
30332 @end example
30334 Pressing @kbd{M-# u} is much like pressing @kbd{M-# e = M-# e}, that
30335 is, temporarily enabling Embedded mode for the formula under the
30336 cursor and then evaluating it with @kbd{=}.  But @kbd{M-# u} does
30337 not actually use @kbd{M-# e}, and in fact another formula somewhere
30338 else can be enabled in Embedded mode while you use @kbd{M-# u} and
30339 that formula will not be disturbed.
30341 With a numeric prefix argument, @kbd{M-# u} updates all active
30342 @samp{=>} formulas in the buffer.  Formulas which have not yet
30343 been activated in Embedded mode, and formulas which do not have
30344 @samp{=>} as their top-level operator, are not affected by this.
30345 (This is useful only if you have used @kbd{m C}; see below.)
30347 With a plain @kbd{C-u} prefix, @kbd{C-u M-# u} updates only in the
30348 region between mark and point rather than in the whole buffer.
30350 @kbd{M-# u} is also a handy way to activate a formula, such as an
30351 @samp{=>} formula that has freshly been typed in or loaded from a
30352 file.
30354 @kindex M-# a
30355 @pindex calc-embedded-activate
30356 The @kbd{M-# a} (@code{calc-embedded-activate}) command scans
30357 through the current buffer and activates all embedded formulas
30358 that contain @samp{:=} or @samp{=>} symbols.  This does not mean
30359 that Embedded mode is actually turned on, but only that the
30360 formulas' positions are registered with Embedded mode so that
30361 the @samp{=>} values can be properly updated as assignments are
30362 changed.
30364 It is a good idea to type @kbd{M-# a} right after loading a file
30365 that uses embedded @samp{=>} operators.  Emacs includes a nifty
30366 ``buffer-local variables'' feature that you can use to do this
30367 automatically.  The idea is to place near the end of your file
30368 a few lines that look like this:
30370 @example
30371 --- Local Variables: ---
30372 --- eval:(calc-embedded-activate) ---
30373 --- End: ---
30374 @end example
30376 @noindent
30377 where the leading and trailing @samp{---} can be replaced by
30378 any suitable strings (which must be the same on all three lines)
30379 or omitted altogether; in a @TeX{} or La@TeX{} file, @samp{%} would be a good
30380 leading string and no trailing string would be necessary.  In a
30381 C program, @samp{/*} and @samp{*/} would be good leading and
30382 trailing strings.
30384 When Emacs loads a file into memory, it checks for a Local Variables
30385 section like this one at the end of the file.  If it finds this
30386 section, it does the specified things (in this case, running
30387 @kbd{M-# a} automatically) before editing of the file begins.
30388 The Local Variables section must be within 3000 characters of the
30389 end of the file for Emacs to find it, and it must be in the last
30390 page of the file if the file has any page separators.
30391 @xref{File Variables, , Local Variables in Files, emacs, the
30392 Emacs manual}.
30394 Note that @kbd{M-# a} does not update the formulas it finds.
30395 To do this, type, say, @kbd{M-1 M-# u} after @w{@kbd{M-# a}}.
30396 Generally this should not be a problem, though, because the
30397 formulas will have been up-to-date already when the file was
30398 saved.
30400 Normally, @kbd{M-# a} activates all the formulas it finds, but
30401 any previous active formulas remain active as well.  With a
30402 positive numeric prefix argument, @kbd{M-# a} first deactivates
30403 all current active formulas, then actives the ones it finds in
30404 its scan of the buffer.  With a negative prefix argument,
30405 @kbd{M-# a} simply deactivates all formulas.
30407 Embedded mode has two symbols, @samp{Active} and @samp{~Active},
30408 which it puts next to the major mode name in a buffer's mode line.
30409 It puts @samp{Active} if it has reason to believe that all
30410 formulas in the buffer are active, because you have typed @kbd{M-# a}
30411 and Calc has not since had to deactivate any formulas (which can
30412 happen if Calc goes to update an @samp{=>} formula somewhere because
30413 a variable changed, and finds that the formula is no longer there
30414 due to some kind of editing outside of Embedded mode).  Calc puts
30415 @samp{~Active} in the mode line if some, but probably not all,
30416 formulas in the buffer are active.  This happens if you activate
30417 a few formulas one at a time but never use @kbd{M-# a}, or if you
30418 used @kbd{M-# a} but then Calc had to deactivate a formula
30419 because it lost track of it.  If neither of these symbols appears
30420 in the mode line, no embedded formulas are active in the buffer
30421 (e.g., before Embedded mode has been used, or after a @kbd{M-- M-# a}).
30423 Embedded formulas can refer to assignments both before and after them
30424 in the buffer.  If there are several assignments to a variable, the
30425 nearest preceding assignment is used if there is one, otherwise the
30426 following assignment is used.
30428 @example
30429 x => 1
30431 x := 1
30433 x => 1
30435 x := 2
30437 x => 2
30438 @end example
30440 As well as simple variables, you can also assign to subscript
30441 expressions of the form @samp{@var{var}_@var{number}} (as in
30442 @code{x_0}), or @samp{@var{var}_@var{var}} (as in @code{x_max}).
30443 Assignments to other kinds of objects can be represented by Calc,
30444 but the automatic linkage between assignments and references works
30445 only for plain variables and these two kinds of subscript expressions.
30447 If there are no assignments to a given variable, the global
30448 stored value for the variable is used (@pxref{Storing Variables}),
30449 or, if no value is stored, the variable is left in symbolic form.
30450 Note that global stored values will be lost when the file is saved
30451 and loaded in a later Emacs session, unless you have used the
30452 @kbd{s p} (@code{calc-permanent-variable}) command to save them;
30453 @pxref{Operations on Variables}.
30455 The @kbd{m C} (@code{calc-auto-recompute}) command turns automatic
30456 recomputation of @samp{=>} forms on and off.  If you turn automatic
30457 recomputation off, you will have to use @kbd{M-# u} to update these
30458 formulas manually after an assignment has been changed.  If you
30459 plan to change several assignments at once, it may be more efficient
30460 to type @kbd{m C}, change all the assignments, then use @kbd{M-1 M-# u}
30461 to update the entire buffer afterwards.  The @kbd{m C} command also
30462 controls @samp{=>} formulas on the stack; @pxref{Evaluates-To
30463 Operator}.  When you turn automatic recomputation back on, the
30464 stack will be updated but the Embedded buffer will not; you must
30465 use @kbd{M-# u} to update the buffer by hand.
30467 @node Mode Settings in Embedded Mode, Customizing Embedded Mode, Assignments in Embedded Mode, Embedded Mode
30468 @section Mode Settings in Embedded Mode
30470 @noindent
30471 The mode settings can be changed while Calc is in embedded mode, but
30472 will revert to their original values when embedded mode is ended
30473 (except for the modes saved when the mode-recording mode is
30474 @code{Save}; see below).
30476 Embedded mode has a rather complicated mechanism for handling mode
30477 settings in Embedded formulas.  It is possible to put annotations
30478 in the file that specify mode settings either global to the entire
30479 file or local to a particular formula or formulas.  In the latter
30480 case, different modes can be specified for use when a formula
30481 is the enabled Embedded mode formula.
30483 When you give any mode-setting command, like @kbd{m f} (for Fraction
30484 mode) or @kbd{d s} (for scientific notation), Embedded mode adds
30485 a line like the following one to the file just before the opening
30486 delimiter of the formula.
30488 @example
30489 % [calc-mode: fractions: t]
30490 % [calc-mode: float-format: (sci 0)]
30491 @end example
30493 When Calc interprets an embedded formula, it scans the text before
30494 the formula for mode-setting annotations like these and sets the
30495 Calc buffer to match these modes.  Modes not explicitly described
30496 in the file are not changed.  Calc scans all the way to the top of
30497 the file, or up to a line of the form
30499 @example
30500 % [calc-defaults]
30501 @end example
30503 @noindent
30504 which you can insert at strategic places in the file if this backward
30505 scan is getting too slow, or just to provide a barrier between one
30506 ``zone'' of mode settings and another.
30508 If the file contains several annotations for the same mode, the
30509 closest one before the formula is used.  Annotations after the
30510 formula are never used (except for global annotations, described
30511 below).
30513 The scan does not look for the leading @samp{% }, only for the
30514 square brackets and the text they enclose.  You can edit the mode
30515 annotations to a style that works better in context if you wish.
30516 @xref{Customizing Embedded Mode}, to see how to change the style
30517 that Calc uses when it generates the annotations.  You can write
30518 mode annotations into the file yourself if you know the syntax;
30519 the easiest way to find the syntax for a given mode is to let
30520 Calc write the annotation for it once and see what it does.
30522 If you give a mode-changing command for a mode that already has
30523 a suitable annotation just above the current formula, Calc will
30524 modify that annotation rather than generating a new, conflicting
30525 one.
30527 Mode annotations have three parts, separated by colons.  (Spaces
30528 after the colons are optional.)  The first identifies the kind
30529 of mode setting, the second is a name for the mode itself, and
30530 the third is the value in the form of a Lisp symbol, number,
30531 or list.  Annotations with unrecognizable text in the first or
30532 second parts are ignored.  The third part is not checked to make
30533 sure the value is of a valid type or range; if you write an
30534 annotation by hand, be sure to give a proper value or results
30535 will be unpredictable.  Mode-setting annotations are case-sensitive.
30537 While Embedded mode is enabled, the word @code{Local} appears in
30538 the mode line.  This is to show that mode setting commands generate
30539 annotations that are ``local'' to the current formula or set of
30540 formulas.  The @kbd{m R} (@code{calc-mode-record-mode}) command
30541 causes Calc to generate different kinds of annotations.  Pressing
30542 @kbd{m R} repeatedly cycles through the possible modes.
30544 @code{LocEdit} and @code{LocPerm} modes generate annotations
30545 that look like this, respectively:
30547 @example
30548 % [calc-edit-mode: float-format: (sci 0)]
30549 % [calc-perm-mode: float-format: (sci 5)]
30550 @end example
30552 The first kind of annotation will be used only while a formula
30553 is enabled in Embedded mode.  The second kind will be used only
30554 when the formula is @emph{not} enabled.  (Whether the formula
30555 is ``active'' or not, i.e., whether Calc has seen this formula
30556 yet, is not relevant here.)
30558 @code{Global} mode generates an annotation like this at the end
30559 of the file:
30561 @example
30562 % [calc-global-mode: fractions t]
30563 @end example
30565 Global mode annotations affect all formulas throughout the file,
30566 and may appear anywhere in the file.  This allows you to tuck your
30567 mode annotations somewhere out of the way, say, on a new page of
30568 the file, as long as those mode settings are suitable for all
30569 formulas in the file.
30571 Enabling a formula with @kbd{M-# e} causes a fresh scan for local
30572 mode annotations; you will have to use this after adding annotations
30573 above a formula by hand to get the formula to notice them.  Updating
30574 a formula with @kbd{M-# u} will also re-scan the local modes, but
30575 global modes are only re-scanned by @kbd{M-# a}.
30577 Another way that modes can get out of date is if you add a local
30578 mode annotation to a formula that has another formula after it.
30579 In this example, we have used the @kbd{d s} command while the
30580 first of the two embedded formulas is active.  But the second
30581 formula has not changed its style to match, even though by the
30582 rules of reading annotations the @samp{(sci 0)} applies to it, too.
30584 @example
30585 % [calc-mode: float-format: (sci 0)]
30586 1.23e2
30588 456.
30589 @end example
30591 We would have to go down to the other formula and press @kbd{M-# u}
30592 on it in order to get it to notice the new annotation.
30594 Two more mode-recording modes selectable by @kbd{m R} are available
30595 which are also available outside of Embedded mode.  
30596 (@pxref{General Mode Commands}.) They are @code{Save},  in which mode
30597 settings are recorded permanently in your Calc init file (the file given
30598 by the variable @code{calc-settings-file}, typically @file{~/.calc.el})
30599 rather than by annotating the current document, and no-recording
30600 mode (where there is no symbol like @code{Save} or @code{Local} in
30601 the mode line), in which mode-changing commands do not leave any
30602 annotations at all.
30604 When Embedded mode is not enabled, mode-recording modes except
30605 for @code{Save} have no effect.
30607 @node Customizing Embedded Mode, , Mode Settings in Embedded Mode, Embedded Mode
30608 @section Customizing Embedded Mode
30610 @noindent
30611 You can modify Embedded mode's behavior by setting various Lisp
30612 variables described here.  These variables are customizable 
30613 (@pxref{Customizable Variables}), or you can use @kbd{M-x set-variable}
30614 or @kbd{M-x edit-options} to adjust a variable on the fly.
30615 (Another possibility would
30616 be to use a file-local variable annotation at the end of the
30617 file; @pxref{File Variables, , Local Variables in Files, emacs, the
30618 Emacs manual}.)
30620 While none of these variables will be buffer-local by default, you
30621 can make any of them local to any Embedded mode buffer.  (Their
30622 values in the @samp{*Calculator*} buffer are never used.)
30624 @vindex calc-embedded-open-formula
30625 The @code{calc-embedded-open-formula} variable holds a regular
30626 expression for the opening delimiter of a formula.  @xref{Regexp Search,
30627 , Regular Expression Search, emacs, the Emacs manual}, to see
30628 how regular expressions work.  Basically, a regular expression is a
30629 pattern that Calc can search for.  A regular expression that considers
30630 blank lines, @samp{$}, and @samp{$$} to be opening delimiters is
30631 @code{"\\`\\|^\n\\|\\$\\$?"}.  Just in case the meaning of this
30632 regular expression is not completely plain, let's go through it
30633 in detail.
30635 The surrounding @samp{" "} marks quote the text between them as a
30636 Lisp string.  If you left them off, @code{set-variable} or
30637 @code{edit-options} would try to read the regular expression as a
30638 Lisp program.
30640 The most obvious property of this regular expression is that it
30641 contains indecently many backslashes.  There are actually two levels
30642 of backslash usage going on here.  First, when Lisp reads a quoted
30643 string, all pairs of characters beginning with a backslash are
30644 interpreted as special characters.  Here, @code{\n} changes to a
30645 new-line character, and @code{\\} changes to a single backslash.
30646 So the actual regular expression seen by Calc is
30647 @samp{\`\|^ @r{(newline)} \|\$\$?}.
30649 Regular expressions also consider pairs beginning with backslash
30650 to have special meanings.  Sometimes the backslash is used to quote
30651 a character that otherwise would have a special meaning in a regular
30652 expression, like @samp{$}, which normally means ``end-of-line,''
30653 or @samp{?}, which means that the preceding item is optional.  So
30654 @samp{\$\$?} matches either one or two dollar signs.
30656 The other codes in this regular expression are @samp{^}, which matches
30657 ``beginning-of-line,'' @samp{\|}, which means ``or,'' and @samp{\`},
30658 which matches ``beginning-of-buffer.''  So the whole pattern means
30659 that a formula begins at the beginning of the buffer, or on a newline
30660 that occurs at the beginning of a line (i.e., a blank line), or at
30661 one or two dollar signs.
30663 The default value of @code{calc-embedded-open-formula} looks just
30664 like this example, with several more alternatives added on to
30665 recognize various other common kinds of delimiters.
30667 By the way, the reason to use @samp{^\n} rather than @samp{^$}
30668 or @samp{\n\n}, which also would appear to match blank lines,
30669 is that the former expression actually ``consumes'' only one
30670 newline character as @emph{part of} the delimiter, whereas the
30671 latter expressions consume zero or two newlines, respectively.
30672 The former choice gives the most natural behavior when Calc
30673 must operate on a whole formula including its delimiters.
30675 See the Emacs manual for complete details on regular expressions.
30676 But just for your convenience, here is a list of all characters
30677 which must be quoted with backslash (like @samp{\$}) to avoid
30678 some special interpretation:  @samp{. * + ? [ ] ^ $ \}.  (Note
30679 the backslash in this list; for example, to match @samp{\[} you
30680 must use @code{"\\\\\\["}.  An exercise for the reader is to
30681 account for each of these six backslashes!)
30683 @vindex calc-embedded-close-formula
30684 The @code{calc-embedded-close-formula} variable holds a regular
30685 expression for the closing delimiter of a formula.  A closing
30686 regular expression to match the above example would be
30687 @code{"\\'\\|\n$\\|\\$\\$?"}.  This is almost the same as the
30688 other one, except it now uses @samp{\'} (``end-of-buffer'') and
30689 @samp{\n$} (newline occurring at end of line, yet another way
30690 of describing a blank line that is more appropriate for this
30691 case).
30693 @vindex calc-embedded-open-word
30694 @vindex calc-embedded-close-word
30695 The @code{calc-embedded-open-word} and @code{calc-embedded-close-word}
30696 variables are similar expressions used when you type @kbd{M-# w}
30697 instead of @kbd{M-# e} to enable Embedded mode.
30699 @vindex calc-embedded-open-plain
30700 The @code{calc-embedded-open-plain} variable is a string which
30701 begins a ``plain'' formula written in front of the formatted
30702 formula when @kbd{d p} mode is turned on.  Note that this is an
30703 actual string, not a regular expression, because Calc must be able
30704 to write this string into a buffer as well as to recognize it.
30705 The default string is @code{"%%% "} (note the trailing space).
30707 @vindex calc-embedded-close-plain
30708 The @code{calc-embedded-close-plain} variable is a string which
30709 ends a ``plain'' formula.  The default is @code{" %%%\n"}.  Without
30710 the trailing newline here, the first line of a Big mode formula
30711 that followed might be shifted over with respect to the other lines.
30713 @vindex calc-embedded-open-new-formula
30714 The @code{calc-embedded-open-new-formula} variable is a string
30715 which is inserted at the front of a new formula when you type
30716 @kbd{M-# f}.  Its default value is @code{"\n\n"}.  If this
30717 string begins with a newline character and the @kbd{M-# f} is
30718 typed at the beginning of a line, @kbd{M-# f} will skip this
30719 first newline to avoid introducing unnecessary blank lines in
30720 the file.
30722 @vindex calc-embedded-close-new-formula
30723 The @code{calc-embedded-close-new-formula} variable is the corresponding
30724 string which is inserted at the end of a new formula.  Its default
30725 value is also @code{"\n\n"}.  The final newline is omitted by
30726 @w{@kbd{M-# f}} if typed at the end of a line.  (It follows that if
30727 @kbd{M-# f} is typed on a blank line, both a leading opening
30728 newline and a trailing closing newline are omitted.)
30730 @vindex calc-embedded-announce-formula
30731 The @code{calc-embedded-announce-formula} variable is a regular
30732 expression which is sure to be followed by an embedded formula.
30733 The @kbd{M-# a} command searches for this pattern as well as for
30734 @samp{=>} and @samp{:=} operators.  Note that @kbd{M-# a} will
30735 not activate just anything surrounded by formula delimiters; after
30736 all, blank lines are considered formula delimiters by default!
30737 But if your language includes a delimiter which can only occur
30738 actually in front of a formula, you can take advantage of it here.
30739 The default pattern is @code{"%Embed\n\\(% .*\n\\)*"}, which
30740 checks for @samp{%Embed} followed by any number of lines beginning
30741 with @samp{%} and a space.  This last is important to make Calc
30742 consider mode annotations part of the pattern, so that the formula's
30743 opening delimiter really is sure to follow the pattern.
30745 @vindex calc-embedded-open-mode
30746 The @code{calc-embedded-open-mode} variable is a string (not a
30747 regular expression) which should precede a mode annotation.
30748 Calc never scans for this string; Calc always looks for the
30749 annotation itself.  But this is the string that is inserted before
30750 the opening bracket when Calc adds an annotation on its own.
30751 The default is @code{"% "}.
30753 @vindex calc-embedded-close-mode
30754 The @code{calc-embedded-close-mode} variable is a string which
30755 follows a mode annotation written by Calc.  Its default value
30756 is simply a newline, @code{"\n"}.  If you change this, it is a
30757 good idea still to end with a newline so that mode annotations
30758 will appear on lines by themselves.
30760 @node Programming, Customizable Variables, Embedded Mode, Top
30761 @chapter Programming
30763 @noindent
30764 There are several ways to ``program'' the Emacs Calculator, depending
30765 on the nature of the problem you need to solve.
30767 @enumerate
30768 @item
30769 @dfn{Keyboard macros} allow you to record a sequence of keystrokes
30770 and play them back at a later time.  This is just the standard Emacs
30771 keyboard macro mechanism, dressed up with a few more features such
30772 as loops and conditionals.
30774 @item
30775 @dfn{Algebraic definitions} allow you to use any formula to define a
30776 new function.  This function can then be used in algebraic formulas or
30777 as an interactive command.
30779 @item
30780 @dfn{Rewrite rules} are discussed in the section on algebra commands.
30781 @xref{Rewrite Rules}.  If you put your rewrite rules in the variable
30782 @code{EvalRules}, they will be applied automatically to all Calc
30783 results in just the same way as an internal ``rule'' is applied to
30784 evaluate @samp{sqrt(9)} to 3 and so on.  @xref{Automatic Rewrites}.
30786 @item
30787 @dfn{Lisp} is the programming language that Calc (and most of Emacs)
30788 is written in.  If the above techniques aren't powerful enough, you
30789 can write Lisp functions to do anything that built-in Calc commands
30790 can do.  Lisp code is also somewhat faster than keyboard macros or
30791 rewrite rules.
30792 @end enumerate
30794 @kindex z
30795 Programming features are available through the @kbd{z} and @kbd{Z}
30796 prefix keys.  New commands that you define are two-key sequences
30797 beginning with @kbd{z}.  Commands for managing these definitions
30798 use the shift-@kbd{Z} prefix.  (The @kbd{Z T} (@code{calc-timing})
30799 command is described elsewhere; @pxref{Troubleshooting Commands}.
30800 The @kbd{Z C} (@code{calc-user-define-composition}) command is also
30801 described elsewhere; @pxref{User-Defined Compositions}.)
30803 @menu
30804 * Creating User Keys::
30805 * Keyboard Macros::
30806 * Invocation Macros::
30807 * Algebraic Definitions::
30808 * Lisp Definitions::
30809 @end menu
30811 @node Creating User Keys, Keyboard Macros, Programming, Programming
30812 @section Creating User Keys
30814 @noindent
30815 @kindex Z D
30816 @pindex calc-user-define
30817 Any Calculator command may be bound to a key using the @kbd{Z D}
30818 (@code{calc-user-define}) command.  Actually, it is bound to a two-key
30819 sequence beginning with the lower-case @kbd{z} prefix.
30821 The @kbd{Z D} command first prompts for the key to define.  For example,
30822 press @kbd{Z D a} to define the new key sequence @kbd{z a}.  You are then
30823 prompted for the name of the Calculator command that this key should
30824 run.  For example, the @code{calc-sincos} command is not normally
30825 available on a key.  Typing @kbd{Z D s sincos @key{RET}} programs the
30826 @kbd{z s} key sequence to run @code{calc-sincos}.  This definition will remain
30827 in effect for the rest of this Emacs session, or until you redefine
30828 @kbd{z s} to be something else.
30830 You can actually bind any Emacs command to a @kbd{z} key sequence by
30831 backspacing over the @samp{calc-} when you are prompted for the command name.
30833 As with any other prefix key, you can type @kbd{z ?} to see a list of
30834 all the two-key sequences you have defined that start with @kbd{z}.
30835 Initially, no @kbd{z} sequences (except @kbd{z ?} itself) are defined.
30837 User keys are typically letters, but may in fact be any key.
30838 (@key{META}-keys are not permitted, nor are a terminal's special
30839 function keys which generate multi-character sequences when pressed.)
30840 You can define different commands on the shifted and unshifted versions
30841 of a letter if you wish.
30843 @kindex Z U
30844 @pindex calc-user-undefine
30845 The @kbd{Z U} (@code{calc-user-undefine}) command unbinds a user key.
30846 For example, the key sequence @kbd{Z U s} will undefine the @code{sincos}
30847 key we defined above.
30849 @kindex Z P
30850 @pindex calc-user-define-permanent
30851 @cindex Storing user definitions
30852 @cindex Permanent user definitions
30853 @cindex Calc init file, user-defined commands
30854 The @kbd{Z P} (@code{calc-user-define-permanent}) command makes a key
30855 binding permanent so that it will remain in effect even in future Emacs
30856 sessions.  (It does this by adding a suitable bit of Lisp code into
30857 your Calc init file; that is, the file given by the variable
30858 @code{calc-settings-file}, typically @file{~/.calc.el}.)  For example,
30859 @kbd{Z P s} would register our @code{sincos} command permanently.  If
30860 you later wish to unregister this command you must edit your Calc init
30861 file by hand.  (@xref{General Mode Commands}, for a way to tell Calc to
30862 use a different file for the Calc init file.)
30864 The @kbd{Z P} command also saves the user definition, if any, for the
30865 command bound to the key.  After @kbd{Z F} and @kbd{Z C}, a given user
30866 key could invoke a command, which in turn calls an algebraic function,
30867 which might have one or more special display formats.  A single @kbd{Z P}
30868 command will save all of these definitions.
30869 To save an algebraic function, type @kbd{'} (the apostrophe)
30870 when prompted for a key, and type the function name.  To save a command
30871 without its key binding, type @kbd{M-x} and enter a function name.  (The
30872 @samp{calc-} prefix will automatically be inserted for you.)
30873 (If the command you give implies a function, the function will be saved,
30874 and if the function has any display formats, those will be saved, but
30875 not the other way around:  Saving a function will not save any commands
30876 or key bindings associated with the function.) 
30878 @kindex Z E
30879 @pindex calc-user-define-edit
30880 @cindex Editing user definitions
30881 The @kbd{Z E} (@code{calc-user-define-edit}) command edits the definition
30882 of a user key.  This works for keys that have been defined by either
30883 keyboard macros or formulas; further details are contained in the relevant
30884 following sections.
30886 @node Keyboard Macros, Invocation Macros, Creating User Keys, Programming
30887 @section Programming with Keyboard Macros
30889 @noindent
30890 @kindex X
30891 @cindex Programming with keyboard macros
30892 @cindex Keyboard macros
30893 The easiest way to ``program'' the Emacs Calculator is to use standard
30894 keyboard macros.  Press @w{@kbd{C-x (}} to begin recording a macro.  From
30895 this point on, keystrokes you type will be saved away as well as
30896 performing their usual functions.  Press @kbd{C-x )} to end recording.
30897 Press shift-@kbd{X} (or the standard Emacs key sequence @kbd{C-x e}) to
30898 execute your keyboard macro by replaying the recorded keystrokes.
30899 @xref{Keyboard Macros, , , emacs, the Emacs Manual}, for further
30900 information.
30902 When you use @kbd{X} to invoke a keyboard macro, the entire macro is
30903 treated as a single command by the undo and trail features.  The stack
30904 display buffer is not updated during macro execution, but is instead
30905 fixed up once the macro completes.  Thus, commands defined with keyboard
30906 macros are convenient and efficient.  The @kbd{C-x e} command, on the
30907 other hand, invokes the keyboard macro with no special treatment: Each
30908 command in the macro will record its own undo information and trail entry,
30909 and update the stack buffer accordingly.  If your macro uses features
30910 outside of Calc's control to operate on the contents of the Calc stack
30911 buffer, or if it includes Undo, Redo, or last-arguments commands, you
30912 must use @kbd{C-x e} to make sure the buffer and undo list are up-to-date
30913 at all times.  You could also consider using @kbd{K} (@code{calc-keep-args})
30914 instead of @kbd{M-@key{RET}} (@code{calc-last-args}).
30916 Calc extends the standard Emacs keyboard macros in several ways.
30917 Keyboard macros can be used to create user-defined commands.  Keyboard
30918 macros can include conditional and iteration structures, somewhat
30919 analogous to those provided by a traditional programmable calculator.
30921 @menu
30922 * Naming Keyboard Macros::
30923 * Conditionals in Macros::
30924 * Loops in Macros::
30925 * Local Values in Macros::
30926 * Queries in Macros::
30927 @end menu
30929 @node Naming Keyboard Macros, Conditionals in Macros, Keyboard Macros, Keyboard Macros
30930 @subsection Naming Keyboard Macros
30932 @noindent
30933 @kindex Z K
30934 @pindex calc-user-define-kbd-macro
30935 Once you have defined a keyboard macro, you can bind it to a @kbd{z}
30936 key sequence with the @kbd{Z K} (@code{calc-user-define-kbd-macro}) command.
30937 This command prompts first for a key, then for a command name.  For
30938 example, if you type @kbd{C-x ( n @key{TAB} n @key{TAB} C-x )} you will
30939 define a keyboard macro which negates the top two numbers on the stack
30940 (@key{TAB} swaps the top two stack elements).  Now you can type
30941 @kbd{Z K n @key{RET}} to define this keyboard macro onto the @kbd{z n} key
30942 sequence.  The default command name (if you answer the second prompt with
30943 just the @key{RET} key as in this example) will be something like
30944 @samp{calc-User-n}.  The keyboard macro will now be available as both
30945 @kbd{z n} and @kbd{M-x calc-User-n}.  You can backspace and enter a more
30946 descriptive command name if you wish.
30948 Macros defined by @kbd{Z K} act like single commands; they are executed
30949 in the same way as by the @kbd{X} key.  If you wish to define the macro
30950 as a standard no-frills Emacs macro (to be executed as if by @kbd{C-x e}),
30951 give a negative prefix argument to @kbd{Z K}.
30953 Once you have bound your keyboard macro to a key, you can use
30954 @kbd{Z P} to register it permanently with Emacs.  @xref{Creating User Keys}.
30956 @cindex Keyboard macros, editing
30957 The @kbd{Z E} (@code{calc-user-define-edit}) command on a key that has
30958 been defined by a keyboard macro tries to use the @code{edmacro} package
30959 edit the macro.  Type @kbd{C-c C-c} to finish editing and update 
30960 the definition stored on the key, or, to cancel the edit, kill the
30961 buffer with @kbd{C-x k}.
30962 The special characters @code{RET}, @code{LFD}, @code{TAB}, @code{SPC},
30963 @code{DEL}, and @code{NUL} must be entered as these three character
30964 sequences, written in all uppercase, as must the prefixes @code{C-} and
30965 @code{M-}.  Spaces and line breaks are ignored.  Other characters are
30966 copied verbatim into the keyboard macro.  Basically, the notation is the
30967 same as is used in all of this manual's examples, except that the manual
30968 takes some liberties with spaces: When we say @kbd{' [1 2 3] @key{RET}},
30969 we take it for granted that it is clear we really mean 
30970 @kbd{' [1 @key{SPC} 2 @key{SPC} 3] @key{RET}}.
30972 @kindex M-# m
30973 @pindex read-kbd-macro
30974 The @kbd{M-# m} (@code{read-kbd-macro}) command reads an Emacs ``region''
30975 of spelled-out keystrokes and defines it as the current keyboard macro.
30976 It is a convenient way to define a keyboard macro that has been stored
30977 in a file, or to define a macro without executing it at the same time.
30979 @node Conditionals in Macros, Loops in Macros, Naming Keyboard Macros, Keyboard Macros
30980 @subsection Conditionals in Keyboard Macros
30982 @noindent
30983 @kindex Z [
30984 @kindex Z ]
30985 @pindex calc-kbd-if
30986 @pindex calc-kbd-else
30987 @pindex calc-kbd-else-if
30988 @pindex calc-kbd-end-if
30989 @cindex Conditional structures
30990 The @kbd{Z [} (@code{calc-kbd-if}) and @kbd{Z ]} (@code{calc-kbd-end-if})
30991 commands allow you to put simple tests in a keyboard macro.  When Calc
30992 sees the @kbd{Z [}, it pops an object from the stack and, if the object is
30993 a non-zero value, continues executing keystrokes.  But if the object is
30994 zero, or if it is not provably nonzero, Calc skips ahead to the matching
30995 @kbd{Z ]} keystroke.  @xref{Logical Operations}, for a set of commands for
30996 performing tests which conveniently produce 1 for true and 0 for false.
30998 For example, @kbd{@key{RET} 0 a < Z [ n Z ]} implements an absolute-value
30999 function in the form of a keyboard macro.  This macro duplicates the
31000 number on the top of the stack, pushes zero and compares using @kbd{a <}
31001 (@code{calc-less-than}), then, if the number was less than zero,
31002 executes @kbd{n} (@code{calc-change-sign}).  Otherwise, the change-sign
31003 command is skipped.
31005 To program this macro, type @kbd{C-x (}, type the above sequence of
31006 keystrokes, then type @kbd{C-x )}.  Note that the keystrokes will be
31007 executed while you are making the definition as well as when you later
31008 re-execute the macro by typing @kbd{X}.  Thus you should make sure a
31009 suitable number is on the stack before defining the macro so that you
31010 don't get a stack-underflow error during the definition process.
31012 Conditionals can be nested arbitrarily.  However, there should be exactly
31013 one @kbd{Z ]} for each @kbd{Z [} in a keyboard macro.
31015 @kindex Z :
31016 The @kbd{Z :} (@code{calc-kbd-else}) command allows you to choose between
31017 two keystroke sequences.  The general format is @kbd{@var{cond} Z [
31018 @var{then-part} Z : @var{else-part} Z ]}.  If @var{cond} is true
31019 (i.e., if the top of stack contains a non-zero number after @var{cond}
31020 has been executed), the @var{then-part} will be executed and the
31021 @var{else-part} will be skipped.  Otherwise, the @var{then-part} will
31022 be skipped and the @var{else-part} will be executed.
31024 @kindex Z |
31025 The @kbd{Z |} (@code{calc-kbd-else-if}) command allows you to choose
31026 between any number of alternatives.  For example,
31027 @kbd{@var{cond1} Z [ @var{part1} Z : @var{cond2} Z | @var{part2} Z :
31028 @var{part3} Z ]} will execute @var{part1} if @var{cond1} is true,
31029 otherwise it will execute @var{part2} if @var{cond2} is true, otherwise
31030 it will execute @var{part3}.
31032 More precisely, @kbd{Z [} pops a number and conditionally skips to the
31033 next matching @kbd{Z :} or @kbd{Z ]} key.  @w{@kbd{Z ]}} has no effect when
31034 actually executed.  @kbd{Z :} skips to the next matching @kbd{Z ]}.
31035 @kbd{Z |} pops a number and conditionally skips to the next matching
31036 @kbd{Z :} or @kbd{Z ]}; thus, @kbd{Z [} and @kbd{Z |} are functionally
31037 equivalent except that @kbd{Z [} participates in nesting but @kbd{Z |}
31038 does not.
31040 Calc's conditional and looping constructs work by scanning the
31041 keyboard macro for occurrences of character sequences like @samp{Z:}
31042 and @samp{Z]}.  One side-effect of this is that if you use these
31043 constructs you must be careful that these character pairs do not
31044 occur by accident in other parts of the macros.  Since Calc rarely
31045 uses shift-@kbd{Z} for any purpose except as a prefix character, this
31046 is not likely to be a problem.  Another side-effect is that it will
31047 not work to define your own custom key bindings for these commands.
31048 Only the standard shift-@kbd{Z} bindings will work correctly.
31050 @kindex Z C-g
31051 If Calc gets stuck while skipping characters during the definition of a
31052 macro, type @kbd{Z C-g} to cancel the definition.  (Typing plain @kbd{C-g}
31053 actually adds a @kbd{C-g} keystroke to the macro.)
31055 @node Loops in Macros, Local Values in Macros, Conditionals in Macros, Keyboard Macros
31056 @subsection Loops in Keyboard Macros
31058 @noindent
31059 @kindex Z <
31060 @kindex Z >
31061 @pindex calc-kbd-repeat
31062 @pindex calc-kbd-end-repeat
31063 @cindex Looping structures
31064 @cindex Iterative structures
31065 The @kbd{Z <} (@code{calc-kbd-repeat}) and @kbd{Z >}
31066 (@code{calc-kbd-end-repeat}) commands pop a number from the stack,
31067 which must be an integer, then repeat the keystrokes between the brackets
31068 the specified number of times.  If the integer is zero or negative, the
31069 body is skipped altogether.  For example, @kbd{1 @key{TAB} Z < 2 * Z >}
31070 computes two to a nonnegative integer power.  First, we push 1 on the
31071 stack and then swap the integer argument back to the top.  The @kbd{Z <}
31072 pops that argument leaving the 1 back on top of the stack.  Then, we
31073 repeat a multiply-by-two step however many times.
31075 Once again, the keyboard macro is executed as it is being entered.
31076 In this case it is especially important to set up reasonable initial
31077 conditions before making the definition:  Suppose the integer 1000 just
31078 happened to be sitting on the stack before we typed the above definition!
31079 Another approach is to enter a harmless dummy definition for the macro,
31080 then go back and edit in the real one with a @kbd{Z E} command.  Yet
31081 another approach is to type the macro as written-out keystroke names
31082 in a buffer, then use @kbd{M-# m} (@code{read-kbd-macro}) to read the
31083 macro.
31085 @kindex Z /
31086 @pindex calc-break
31087 The @kbd{Z /} (@code{calc-kbd-break}) command allows you to break out
31088 of a keyboard macro loop prematurely.  It pops an object from the stack;
31089 if that object is true (a non-zero number), control jumps out of the
31090 innermost enclosing @kbd{Z <} @dots{} @kbd{Z >} loop and continues
31091 after the @kbd{Z >}.  If the object is false, the @kbd{Z /} has no
31092 effect.  Thus @kbd{@var{cond} Z /} is similar to @samp{if (@var{cond}) break;}
31093 in the C language.
31095 @kindex Z (
31096 @kindex Z )
31097 @pindex calc-kbd-for
31098 @pindex calc-kbd-end-for
31099 The @kbd{Z (} (@code{calc-kbd-for}) and @kbd{Z )} (@code{calc-kbd-end-for})
31100 commands are similar to @kbd{Z <} and @kbd{Z >}, except that they make the
31101 value of the counter available inside the loop.  The general layout is
31102 @kbd{@var{init} @var{final} Z ( @var{body} @var{step} Z )}.  The @kbd{Z (}
31103 command pops initial and final values from the stack.  It then creates
31104 a temporary internal counter and initializes it with the value @var{init}.
31105 The @kbd{Z (} command then repeatedly pushes the counter value onto the
31106 stack and executes @var{body} and @var{step}, adding @var{step} to the
31107 counter each time until the loop finishes.
31109 @cindex Summations (by keyboard macros)
31110 By default, the loop finishes when the counter becomes greater than (or
31111 less than) @var{final}, assuming @var{initial} is less than (greater
31112 than) @var{final}.  If @var{initial} is equal to @var{final}, the body
31113 executes exactly once.  The body of the loop always executes at least
31114 once.  For example, @kbd{0 1 10 Z ( 2 ^ + 1 Z )} computes the sum of the
31115 squares of the integers from 1 to 10, in steps of 1.
31117 If you give a numeric prefix argument of 1 to @kbd{Z (}, the loop is
31118 forced to use upward-counting conventions.  In this case, if @var{initial}
31119 is greater than @var{final} the body will not be executed at all.
31120 Note that @var{step} may still be negative in this loop; the prefix
31121 argument merely constrains the loop-finished test.  Likewise, a prefix
31122 argument of @mathit{-1} forces downward-counting conventions.
31124 @kindex Z @{
31125 @kindex Z @}
31126 @pindex calc-kbd-loop
31127 @pindex calc-kbd-end-loop
31128 The @kbd{Z @{} (@code{calc-kbd-loop}) and @kbd{Z @}}
31129 (@code{calc-kbd-end-loop}) commands are similar to @kbd{Z <} and
31130 @kbd{Z >}, except that they do not pop a count from the stack---they
31131 effectively create an infinite loop.  Every @kbd{Z @{} @dots{} @kbd{Z @}}
31132 loop ought to include at least one @kbd{Z /} to make sure the loop
31133 doesn't run forever.  (If any error message occurs which causes Emacs
31134 to beep, the keyboard macro will also be halted; this is a standard
31135 feature of Emacs.  You can also generally press @kbd{C-g} to halt a
31136 running keyboard macro, although not all versions of Unix support
31137 this feature.)
31139 The conditional and looping constructs are not actually tied to
31140 keyboard macros, but they are most often used in that context.
31141 For example, the keystrokes @kbd{10 Z < 23 @key{RET} Z >} push
31142 ten copies of 23 onto the stack.  This can be typed ``live'' just
31143 as easily as in a macro definition.
31145 @xref{Conditionals in Macros}, for some additional notes about
31146 conditional and looping commands.
31148 @node Local Values in Macros, Queries in Macros, Loops in Macros, Keyboard Macros
31149 @subsection Local Values in Macros
31151 @noindent
31152 @cindex Local variables
31153 @cindex Restoring saved modes
31154 Keyboard macros sometimes want to operate under known conditions
31155 without affecting surrounding conditions.  For example, a keyboard
31156 macro may wish to turn on Fraction mode, or set a particular
31157 precision, independent of the user's normal setting for those
31158 modes.
31160 @kindex Z `
31161 @kindex Z '
31162 @pindex calc-kbd-push
31163 @pindex calc-kbd-pop
31164 Macros also sometimes need to use local variables.  Assignments to
31165 local variables inside the macro should not affect any variables
31166 outside the macro.  The @kbd{Z `} (@code{calc-kbd-push}) and @kbd{Z '}
31167 (@code{calc-kbd-pop}) commands give you both of these capabilities.
31169 When you type @kbd{Z `} (with a backquote or accent grave character),
31170 the values of various mode settings are saved away.  The ten ``quick''
31171 variables @code{q0} through @code{q9} are also saved.  When
31172 you type @w{@kbd{Z '}} (with an apostrophe), these values are restored.
31173 Pairs of @kbd{Z `} and @kbd{Z '} commands may be nested.
31175 If a keyboard macro halts due to an error in between a @kbd{Z `} and
31176 a @kbd{Z '}, the saved values will be restored correctly even though
31177 the macro never reaches the @kbd{Z '} command.  Thus you can use
31178 @kbd{Z `} and @kbd{Z '} without having to worry about what happens
31179 in exceptional conditions.
31181 If you type @kbd{Z `} ``live'' (not in a keyboard macro), Calc puts
31182 you into a ``recursive edit.''  You can tell you are in a recursive
31183 edit because there will be extra square brackets in the mode line,
31184 as in @samp{[(Calculator)]}.  These brackets will go away when you
31185 type the matching @kbd{Z '} command.  The modes and quick variables
31186 will be saved and restored in just the same way as if actual keyboard
31187 macros were involved.
31189 The modes saved by @kbd{Z `} and @kbd{Z '} are the current precision
31190 and binary word size, the angular mode (Deg, Rad, or HMS), the
31191 simplification mode, Algebraic mode, Symbolic mode, Infinite mode,
31192 Matrix or Scalar mode, Fraction mode, and the current complex mode
31193 (Polar or Rectangular).  The ten ``quick'' variables' values (or lack
31194 thereof) are also saved.
31196 Most mode-setting commands act as toggles, but with a numeric prefix
31197 they force the mode either on (positive prefix) or off (negative
31198 or zero prefix).  Since you don't know what the environment might
31199 be when you invoke your macro, it's best to use prefix arguments
31200 for all mode-setting commands inside the macro.
31202 In fact, @kbd{C-u Z `} is like @kbd{Z `} except that it sets the modes
31203 listed above to their default values.  As usual, the matching @kbd{Z '}
31204 will restore the modes to their settings from before the @kbd{C-u Z `}.
31205 Also, @w{@kbd{Z `}} with a negative prefix argument resets the algebraic mode
31206 to its default (off) but leaves the other modes the same as they were
31207 outside the construct.
31209 The contents of the stack and trail, values of non-quick variables, and
31210 other settings such as the language mode and the various display modes,
31211 are @emph{not} affected by @kbd{Z `} and @kbd{Z '}.
31213 @node Queries in Macros, , Local Values in Macros, Keyboard Macros
31214 @subsection Queries in Keyboard Macros
31216 @noindent
31217 @kindex Z =
31218 @pindex calc-kbd-report
31219 The @kbd{Z =} (@code{calc-kbd-report}) command displays an informative
31220 message including the value on the top of the stack.  You are prompted
31221 to enter a string.  That string, along with the top-of-stack value,
31222 is displayed unless @kbd{m w} (@code{calc-working}) has been used
31223 to turn such messages off.
31225 @kindex Z #
31226 @pindex calc-kbd-query
31227 The @kbd{Z #} (@code{calc-kbd-query}) command displays a prompt message
31228 (which you enter during macro definition), then does an algebraic entry
31229 which takes its input from the keyboard, even during macro execution.
31230 This command allows your keyboard macros to accept numbers or formulas
31231 as interactive input.  All the normal conventions of algebraic input,
31232 including the use of @kbd{$} characters, are supported.
31234 @xref{Keyboard Macro Query, , , emacs, the Emacs Manual}, for a description of
31235 @kbd{C-x q} (@code{kbd-macro-query}), the standard Emacs way to accept
31236 keyboard input during a keyboard macro.  In particular, you can use
31237 @kbd{C-x q} to enter a recursive edit, which allows the user to perform
31238 any Calculator operations interactively before pressing @kbd{C-M-c} to
31239 return control to the keyboard macro.
31241 @node Invocation Macros, Algebraic Definitions, Keyboard Macros, Programming
31242 @section Invocation Macros
31244 @kindex M-# z
31245 @kindex Z I
31246 @pindex calc-user-invocation
31247 @pindex calc-user-define-invocation
31248 Calc provides one special keyboard macro, called up by @kbd{M-# z}
31249 (@code{calc-user-invocation}), that is intended to allow you to define
31250 your own special way of starting Calc.  To define this ``invocation
31251 macro,'' create the macro in the usual way with @kbd{C-x (} and
31252 @kbd{C-x )}, then type @kbd{Z I} (@code{calc-user-define-invocation}).
31253 There is only one invocation macro, so you don't need to type any
31254 additional letters after @kbd{Z I}.  From now on, you can type
31255 @kbd{M-# z} at any time to execute your invocation macro.
31257 For example, suppose you find yourself often grabbing rectangles of
31258 numbers into Calc and multiplying their columns.  You can do this
31259 by typing @kbd{M-# r} to grab, and @kbd{V R : *} to multiply columns.
31260 To make this into an invocation macro, just type @kbd{C-x ( M-# r
31261 V R : * C-x )}, then @kbd{Z I}.  Then, to multiply a rectangle of data,
31262 just mark the data in its buffer in the usual way and type @kbd{M-# z}.
31264 Invocation macros are treated like regular Emacs keyboard macros;
31265 all the special features described above for @kbd{Z K}-style macros
31266 do not apply.  @kbd{M-# z} is just like @kbd{C-x e}, except that it
31267 uses the macro that was last stored by @kbd{Z I}.  (In fact, the
31268 macro does not even have to have anything to do with Calc!)
31270 The @kbd{m m} command saves the last invocation macro defined by
31271 @kbd{Z I} along with all the other Calc mode settings.
31272 @xref{General Mode Commands}.
31274 @node Algebraic Definitions, Lisp Definitions, Invocation Macros, Programming
31275 @section Programming with Formulas
31277 @noindent
31278 @kindex Z F
31279 @pindex calc-user-define-formula
31280 @cindex Programming with algebraic formulas
31281 Another way to create a new Calculator command uses algebraic formulas.
31282 The @kbd{Z F} (@code{calc-user-define-formula}) command stores the
31283 formula at the top of the stack as the definition for a key.  This
31284 command prompts for five things: The key, the command name, the function
31285 name, the argument list, and the behavior of the command when given
31286 non-numeric arguments.
31288 For example, suppose we type @kbd{' a+2b @key{RET}} to push the formula
31289 @samp{a + 2*b} onto the stack.  We now type @kbd{Z F m} to define this
31290 formula on the @kbd{z m} key sequence.  The next prompt is for a command
31291 name, beginning with @samp{calc-}, which should be the long (@kbd{M-x}) form
31292 for the new command.  If you simply press @key{RET}, a default name like
31293 @code{calc-User-m} will be constructed.  In our example, suppose we enter
31294 @kbd{spam @key{RET}} to define the new command as @code{calc-spam}.
31296 If you want to give the formula a long-style name only, you can press
31297 @key{SPC} or @key{RET} when asked which single key to use.  For example
31298 @kbd{Z F @key{RET} spam @key{RET}} defines the new command as
31299 @kbd{M-x calc-spam}, with no keyboard equivalent.
31301 The third prompt is for an algebraic function name.  The default is to
31302 use the same name as the command name but without the @samp{calc-}
31303 prefix.  (If this is of the form @samp{User-m}, the hyphen is removed so
31304 it won't be taken for a minus sign in algebraic formulas.)
31305 This is the name you will use if you want to enter your 
31306 new function in an algebraic formula.  Suppose we enter @kbd{yow @key{RET}}.
31307 Then the new function can be invoked by pushing two numbers on the
31308 stack and typing @kbd{z m} or @kbd{x spam}, or by entering the algebraic
31309 formula @samp{yow(x,y)}.
31311 The fourth prompt is for the function's argument list.  This is used to
31312 associate values on the stack with the variables that appear in the formula.
31313 The default is a list of all variables which appear in the formula, sorted
31314 into alphabetical order.  In our case, the default would be @samp{(a b)}.
31315 This means that, when the user types @kbd{z m}, the Calculator will remove
31316 two numbers from the stack, substitute these numbers for @samp{a} and
31317 @samp{b} (respectively) in the formula, then simplify the formula and
31318 push the result on the stack.  In other words, @kbd{10 @key{RET} 100 z m}
31319 would replace the 10 and 100 on the stack with the number 210, which is
31320 @expr{a + 2 b} with @expr{a=10} and @expr{b=100}.  Likewise, the formula
31321 @samp{yow(10, 100)} will be evaluated by substituting @expr{a=10} and
31322 @expr{b=100} in the definition.
31324 You can rearrange the order of the names before pressing @key{RET} to
31325 control which stack positions go to which variables in the formula.  If
31326 you remove a variable from the argument list, that variable will be left
31327 in symbolic form by the command.  Thus using an argument list of @samp{(b)}
31328 for our function would cause @kbd{10 z m} to replace the 10 on the stack
31329 with the formula @samp{a + 20}.  If we had used an argument list of
31330 @samp{(b a)}, the result with inputs 10 and 100 would have been 120.
31332 You can also put a nameless function on the stack instead of just a
31333 formula, as in @samp{<a, b : a + 2 b>}.  @xref{Specifying Operators}.
31334 In this example, the command will be defined by the formula @samp{a + 2 b}
31335 using the argument list @samp{(a b)}.
31337 The final prompt is a y-or-n question concerning what to do if symbolic
31338 arguments are given to your function.  If you answer @kbd{y}, then
31339 executing @kbd{z m} (using the original argument list @samp{(a b)}) with
31340 arguments @expr{10} and @expr{x} will leave the function in symbolic
31341 form, i.e., @samp{yow(10,x)}.  On the other hand, if you answer @kbd{n},
31342 then the formula will always be expanded, even for non-constant
31343 arguments: @samp{10 + 2 x}.  If you never plan to feed algebraic
31344 formulas to your new function, it doesn't matter how you answer this
31345 question.
31347 If you answered @kbd{y} to this question you can still cause a function
31348 call to be expanded by typing @kbd{a "} (@code{calc-expand-formula}).
31349 Also, Calc will expand the function if necessary when you take a
31350 derivative or integral or solve an equation involving the function.
31352 @kindex Z G
31353 @pindex calc-get-user-defn
31354 Once you have defined a formula on a key, you can retrieve this formula
31355 with the @kbd{Z G} (@code{calc-user-define-get-defn}) command.  Press a
31356 key, and this command pushes the formula that was used to define that
31357 key onto the stack.  Actually, it pushes a nameless function that
31358 specifies both the argument list and the defining formula.  You will get
31359 an error message if the key is undefined, or if the key was not defined
31360 by a @kbd{Z F} command.
31362 The @kbd{Z E} (@code{calc-user-define-edit}) command on a key that has
31363 been defined by a formula uses a variant of the @code{calc-edit} command
31364 to edit the defining formula.  Press @kbd{C-c C-c} to finish editing and
31365 store the new formula back in the definition, or kill the buffer with
31366 @kbd{C-x k} to
31367 cancel the edit.  (The argument list and other properties of the
31368 definition are unchanged; to adjust the argument list, you can use
31369 @kbd{Z G} to grab the function onto the stack, edit with @kbd{`}, and
31370 then re-execute the @kbd{Z F} command.)
31372 As usual, the @kbd{Z P} command records your definition permanently.
31373 In this case it will permanently record all three of the relevant
31374 definitions: the key, the command, and the function.
31376 You may find it useful to turn off the default simplifications with
31377 @kbd{m O} (@code{calc-no-simplify-mode}) when entering a formula to be
31378 used as a function definition.  For example, the formula @samp{deriv(a^2,v)}
31379 which might be used to define a new function @samp{dsqr(a,v)} will be
31380 ``simplified'' to 0 immediately upon entry since @code{deriv} considers
31381 @expr{a} to be constant with respect to @expr{v}.  Turning off
31382 default simplifications cures this problem:  The definition will be stored
31383 in symbolic form without ever activating the @code{deriv} function.  Press
31384 @kbd{m D} to turn the default simplifications back on afterwards.
31386 @node Lisp Definitions, , Algebraic Definitions, Programming
31387 @section Programming with Lisp
31389 @noindent
31390 The Calculator can be programmed quite extensively in Lisp.  All you
31391 do is write a normal Lisp function definition, but with @code{defmath}
31392 in place of @code{defun}.  This has the same form as @code{defun}, but it
31393 automagically replaces calls to standard Lisp functions like @code{+} and
31394 @code{zerop} with calls to the corresponding functions in Calc's own library.
31395 Thus you can write natural-looking Lisp code which operates on all of the
31396 standard Calculator data types.  You can then use @kbd{Z D} if you wish to
31397 bind your new command to a @kbd{z}-prefix key sequence.  The @kbd{Z E} command
31398 will not edit a Lisp-based definition.
31400 Emacs Lisp is described in the GNU Emacs Lisp Reference Manual.  This section
31401 assumes a familiarity with Lisp programming concepts; if you do not know
31402 Lisp, you may find keyboard macros or rewrite rules to be an easier way
31403 to program the Calculator.
31405 This section first discusses ways to write commands, functions, or
31406 small programs to be executed inside of Calc.  Then it discusses how
31407 your own separate programs are able to call Calc from the outside.
31408 Finally, there is a list of internal Calc functions and data structures
31409 for the true Lisp enthusiast.
31411 @menu
31412 * Defining Functions::
31413 * Defining Simple Commands::
31414 * Defining Stack Commands::
31415 * Argument Qualifiers::
31416 * Example Definitions::
31418 * Calling Calc from Your Programs::
31419 * Internals::
31420 @end menu
31422 @node Defining Functions, Defining Simple Commands, Lisp Definitions, Lisp Definitions
31423 @subsection Defining New Functions
31425 @noindent
31426 @findex defmath
31427 The @code{defmath} function (actually a Lisp macro) is like @code{defun}
31428 except that code in the body of the definition can make use of the full
31429 range of Calculator data types.  The prefix @samp{calcFunc-} is added
31430 to the specified name to get the actual Lisp function name.  As a simple
31431 example,
31433 @example
31434 (defmath myfact (n)
31435   (if (> n 0)
31436       (* n (myfact (1- n)))
31437     1))
31438 @end example
31440 @noindent
31441 This actually expands to the code,
31443 @example
31444 (defun calcFunc-myfact (n)
31445   (if (math-posp n)
31446       (math-mul n (calcFunc-myfact (math-add n -1)))
31447     1))
31448 @end example
31450 @noindent
31451 This function can be used in algebraic expressions, e.g., @samp{myfact(5)}.
31453 The @samp{myfact} function as it is defined above has the bug that an
31454 expression @samp{myfact(a+b)} will be simplified to 1 because the
31455 formula @samp{a+b} is not considered to be @code{posp}.  A robust
31456 factorial function would be written along the following lines:
31458 @smallexample
31459 (defmath myfact (n)
31460   (if (> n 0)
31461       (* n (myfact (1- n)))
31462     (if (= n 0)
31463         1
31464       nil)))    ; this could be simplified as: (and (= n 0) 1)
31465 @end smallexample
31467 If a function returns @code{nil}, it is left unsimplified by the Calculator
31468 (except that its arguments will be simplified).  Thus, @samp{myfact(a+1+2)}
31469 will be simplified to @samp{myfact(a+3)} but no further.  Beware that every
31470 time the Calculator reexamines this formula it will attempt to resimplify
31471 it, so your function ought to detect the returning-@code{nil} case as
31472 efficiently as possible.
31474 The following standard Lisp functions are treated by @code{defmath}:
31475 @code{+}, @code{-}, @code{*}, @code{/}, @code{%}, @code{^} or
31476 @code{expt}, @code{=}, @code{<}, @code{>}, @code{<=}, @code{>=},
31477 @code{/=}, @code{1+}, @code{1-}, @code{logand}, @code{logior}, @code{logxor},
31478 @code{logandc2}, @code{lognot}.  Also, @code{~=} is an abbreviation for
31479 @code{math-nearly-equal}, which is useful in implementing Taylor series.
31481 For other functions @var{func}, if a function by the name
31482 @samp{calcFunc-@var{func}} exists it is used, otherwise if a function by the
31483 name @samp{math-@var{func}} exists it is used, otherwise if @var{func} itself
31484 is defined as a function it is used, otherwise @samp{calcFunc-@var{func}} is
31485 used on the assumption that this is a to-be-defined math function.  Also, if
31486 the function name is quoted as in @samp{('integerp a)} the function name is
31487 always used exactly as written (but not quoted).
31489 Variable names have @samp{var-} prepended to them unless they appear in
31490 the function's argument list or in an enclosing @code{let}, @code{let*},
31491 @code{for}, or @code{foreach} form,
31492 or their names already contain a @samp{-} character.  Thus a reference to
31493 @samp{foo} is the same as a reference to @samp{var-foo}.
31495 A few other Lisp extensions are available in @code{defmath} definitions:
31497 @itemize @bullet
31498 @item
31499 The @code{elt} function accepts any number of index variables.
31500 Note that Calc vectors are stored as Lisp lists whose first
31501 element is the symbol @code{vec}; thus, @samp{(elt v 2)} yields
31502 the second element of vector @code{v}, and @samp{(elt m i j)}
31503 yields one element of a Calc matrix.
31505 @item
31506 The @code{setq} function has been extended to act like the Common
31507 Lisp @code{setf} function.  (The name @code{setf} is recognized as
31508 a synonym of @code{setq}.)  Specifically, the first argument of
31509 @code{setq} can be an @code{nth}, @code{elt}, @code{car}, or @code{cdr} form,
31510 in which case the effect is to store into the specified
31511 element of a list.  Thus, @samp{(setq (elt m i j) x)} stores @expr{x}
31512 into one element of a matrix.
31514 @item
31515 A @code{for} looping construct is available.  For example,
31516 @samp{(for ((i 0 10)) body)} executes @code{body} once for each
31517 binding of @expr{i} from zero to 10.  This is like a @code{let}
31518 form in that @expr{i} is temporarily bound to the loop count
31519 without disturbing its value outside the @code{for} construct.
31520 Nested loops, as in @samp{(for ((i 0 10) (j 0 (1- i) 2)) body)},
31521 are also available.  For each value of @expr{i} from zero to 10,
31522 @expr{j} counts from 0 to @expr{i-1} in steps of two.  Note that
31523 @code{for} has the same general outline as @code{let*}, except
31524 that each element of the header is a list of three or four
31525 things, not just two.
31527 @item
31528 The @code{foreach} construct loops over elements of a list.
31529 For example, @samp{(foreach ((x (cdr v))) body)} executes
31530 @code{body} with @expr{x} bound to each element of Calc vector
31531 @expr{v} in turn.  The purpose of @code{cdr} here is to skip over
31532 the initial @code{vec} symbol in the vector.
31534 @item
31535 The @code{break} function breaks out of the innermost enclosing
31536 @code{while}, @code{for}, or @code{foreach} loop.  If given a
31537 value, as in @samp{(break x)}, this value is returned by the
31538 loop.  (Lisp loops otherwise always return @code{nil}.)
31540 @item
31541 The @code{return} function prematurely returns from the enclosing
31542 function.  For example, @samp{(return (+ x y))} returns @expr{x+y}
31543 as the value of a function.  You can use @code{return} anywhere
31544 inside the body of the function.
31545 @end itemize
31547 Non-integer numbers (and extremely large integers) cannot be included
31548 directly into a @code{defmath} definition.  This is because the Lisp
31549 reader will fail to parse them long before @code{defmath} ever gets control.
31550 Instead, use the notation, @samp{:"3.1415"}.  In fact, any algebraic
31551 formula can go between the quotes.  For example,
31553 @smallexample
31554 (defmath sqexp (x)     ; sqexp(x) == sqrt(exp(x)) == exp(x*0.5)
31555   (and (numberp x)
31556        (exp :"x * 0.5")))
31557 @end smallexample
31559 expands to
31561 @smallexample
31562 (defun calcFunc-sqexp (x)
31563   (and (math-numberp x)
31564        (calcFunc-exp (math-mul x '(float 5 -1)))))
31565 @end smallexample
31567 Note the use of @code{numberp} as a guard to ensure that the argument is
31568 a number first, returning @code{nil} if not.  The exponential function
31569 could itself have been included in the expression, if we had preferred:
31570 @samp{:"exp(x * 0.5)"}.  As another example, the multiplication-and-recursion
31571 step of @code{myfact} could have been written
31573 @example
31574 :"n * myfact(n-1)"
31575 @end example
31577 A good place to put your @code{defmath} commands is your Calc init file
31578 (the file given by @code{calc-settings-file}, typically
31579 @file{~/.calc.el}), which will not be loaded until Calc starts.
31580 If a file named @file{.emacs} exists in your home directory, Emacs reads
31581 and executes the Lisp forms in this file as it starts up.  While it may
31582 seem reasonable to put your favorite @code{defmath} commands there,
31583 this has the unfortunate side-effect that parts of the Calculator must be
31584 loaded in to process the @code{defmath} commands whether or not you will
31585 actually use the Calculator!  If you want to put the @code{defmath}
31586 commands there (for example, if you redefine @code{calc-settings-file}
31587 to be @file{.emacs}), a better effect can be had by writing
31589 @example
31590 (put 'calc-define 'thing '(progn
31591  (defmath ... )
31592  (defmath ... )
31594 @end example
31596 @noindent
31597 @vindex calc-define
31598 The @code{put} function adds a @dfn{property} to a symbol.  Each Lisp
31599 symbol has a list of properties associated with it.  Here we add a
31600 property with a name of @code{thing} and a @samp{(progn ...)} form as
31601 its value.  When Calc starts up, and at the start of every Calc command,
31602 the property list for the symbol @code{calc-define} is checked and the
31603 values of any properties found are evaluated as Lisp forms.  The
31604 properties are removed as they are evaluated.  The property names
31605 (like @code{thing}) are not used; you should choose something like the
31606 name of your project so as not to conflict with other properties.
31608 The net effect is that you can put the above code in your @file{.emacs}
31609 file and it will not be executed until Calc is loaded.  Or, you can put
31610 that same code in another file which you load by hand either before or
31611 after Calc itself is loaded.
31613 The properties of @code{calc-define} are evaluated in the same order
31614 that they were added.  They can assume that the Calc modules @file{calc.el},
31615 @file{calc-ext.el}, and @file{calc-macs.el} have been fully loaded, and
31616 that the @samp{*Calculator*} buffer will be the current buffer.
31618 If your @code{calc-define} property only defines algebraic functions,
31619 you can be sure that it will have been evaluated before Calc tries to
31620 call your function, even if the file defining the property is loaded
31621 after Calc is loaded.  But if the property defines commands or key
31622 sequences, it may not be evaluated soon enough.  (Suppose it defines the
31623 new command @code{tweak-calc}; the user can load your file, then type
31624 @kbd{M-x tweak-calc} before Calc has had chance to do anything.)  To
31625 protect against this situation, you can put
31627 @example
31628 (run-hooks 'calc-check-defines)
31629 @end example
31631 @findex calc-check-defines
31632 @noindent
31633 at the end of your file.  The @code{calc-check-defines} function is what
31634 looks for and evaluates properties on @code{calc-define}; @code{run-hooks}
31635 has the advantage that it is quietly ignored if @code{calc-check-defines}
31636 is not yet defined because Calc has not yet been loaded.
31638 Examples of things that ought to be enclosed in a @code{calc-define}
31639 property are @code{defmath} calls, @code{define-key} calls that modify
31640 the Calc key map, and any calls that redefine things defined inside Calc.
31641 Ordinary @code{defun}s need not be enclosed with @code{calc-define}.
31643 @node Defining Simple Commands, Defining Stack Commands, Defining Functions, Lisp Definitions
31644 @subsection Defining New Simple Commands
31646 @noindent
31647 @findex interactive
31648 If a @code{defmath} form contains an @code{interactive} clause, it defines
31649 a Calculator command.  Actually such a @code{defmath} results in @emph{two}
31650 function definitions:  One, a @samp{calcFunc-} function as was just described,
31651 with the @code{interactive} clause removed.  Two, a @samp{calc-} function
31652 with a suitable @code{interactive} clause and some sort of wrapper to make
31653 the command work in the Calc environment.
31655 In the simple case, the @code{interactive} clause has the same form as
31656 for normal Emacs Lisp commands:
31658 @smallexample
31659 (defmath increase-precision (delta)
31660   "Increase precision by DELTA."     ; This is the "documentation string"
31661   (interactive "p")                  ; Register this as a M-x-able command
31662   (setq calc-internal-prec (+ calc-internal-prec delta)))
31663 @end smallexample
31665 This expands to the pair of definitions,
31667 @smallexample
31668 (defun calc-increase-precision (delta)
31669   "Increase precision by DELTA."
31670   (interactive "p")
31671   (calc-wrapper
31672    (setq calc-internal-prec (math-add calc-internal-prec delta))))
31674 (defun calcFunc-increase-precision (delta)
31675   "Increase precision by DELTA."
31676   (setq calc-internal-prec (math-add calc-internal-prec delta)))
31677 @end smallexample
31679 @noindent
31680 where in this case the latter function would never really be used!  Note
31681 that since the Calculator stores small integers as plain Lisp integers,
31682 the @code{math-add} function will work just as well as the native
31683 @code{+} even when the intent is to operate on native Lisp integers.
31685 @findex calc-wrapper
31686 The @samp{calc-wrapper} call invokes a macro which surrounds the body of
31687 the function with code that looks roughly like this:
31689 @smallexample
31690 (let ((calc-command-flags nil))
31691   (unwind-protect
31692       (save-excursion
31693         (calc-select-buffer)
31694         @emph{body of function}
31695         @emph{renumber stack}
31696         @emph{clear} Working @emph{message})
31697     @emph{realign cursor and window}
31698     @emph{clear Inverse, Hyperbolic, and Keep Args flags}
31699     @emph{update Emacs mode line}))
31700 @end smallexample
31702 @findex calc-select-buffer
31703 The @code{calc-select-buffer} function selects the @samp{*Calculator*}
31704 buffer if necessary, say, because the command was invoked from inside
31705 the @samp{*Calc Trail*} window.
31707 @findex calc-set-command-flag
31708 You can call, for example, @code{(calc-set-command-flag 'no-align)} to
31709 set the above-mentioned command flags.  Calc routines recognize the
31710 following command flags:
31712 @table @code
31713 @item renum-stack
31714 Stack line numbers @samp{1:}, @samp{2:}, and so on must be renumbered
31715 after this command completes.  This is set by routines like
31716 @code{calc-push}.
31718 @item clear-message
31719 Calc should call @samp{(message "")} if this command completes normally
31720 (to clear a ``Working@dots{}'' message out of the echo area).
31722 @item no-align
31723 Do not move the cursor back to the @samp{.} top-of-stack marker.
31725 @item position-point
31726 Use the variables @code{calc-position-point-line} and
31727 @code{calc-position-point-column} to position the cursor after
31728 this command finishes.
31730 @item keep-flags
31731 Do not clear @code{calc-inverse-flag}, @code{calc-hyperbolic-flag},
31732 and @code{calc-keep-args-flag} at the end of this command.
31734 @item do-edit
31735 Switch to buffer @samp{*Calc Edit*} after this command.
31737 @item hold-trail
31738 Do not move trail pointer to end of trail when something is recorded
31739 there.
31740 @end table
31742 @kindex Y
31743 @kindex Y ?
31744 @vindex calc-Y-help-msgs
31745 Calc reserves a special prefix key, shift-@kbd{Y}, for user-written
31746 extensions to Calc.  There are no built-in commands that work with
31747 this prefix key; you must call @code{define-key} from Lisp (probably
31748 from inside a @code{calc-define} property) to add to it.  Initially only
31749 @kbd{Y ?} is defined; it takes help messages from a list of strings
31750 (initially @code{nil}) in the variable @code{calc-Y-help-msgs}.  All
31751 other undefined keys except for @kbd{Y} are reserved for use by
31752 future versions of Calc.
31754 If you are writing a Calc enhancement which you expect to give to
31755 others, it is best to minimize the number of @kbd{Y}-key sequences
31756 you use.  In fact, if you have more than one key sequence you should
31757 consider defining three-key sequences with a @kbd{Y}, then a key that
31758 stands for your package, then a third key for the particular command
31759 within your package.
31761 Users may wish to install several Calc enhancements, and it is possible
31762 that several enhancements will choose to use the same key.  In the
31763 example below, a variable @code{inc-prec-base-key} has been defined
31764 to contain the key that identifies the @code{inc-prec} package.  Its
31765 value is initially @code{"P"}, but a user can change this variable
31766 if necessary without having to modify the file.
31768 Here is a complete file, @file{inc-prec.el}, which makes a @kbd{Y P I}
31769 command that increases the precision, and a @kbd{Y P D} command that
31770 decreases the precision.
31772 @smallexample
31773 ;;; Increase and decrease Calc precision.  Dave Gillespie, 5/31/91.
31774 ;;; (Include copyright or copyleft stuff here.)
31776 (defvar inc-prec-base-key "P"
31777   "Base key for inc-prec.el commands.")
31779 (put 'calc-define 'inc-prec '(progn
31781 (define-key calc-mode-map (format "Y%sI" inc-prec-base-key)
31782             'increase-precision)
31783 (define-key calc-mode-map (format "Y%sD" inc-prec-base-key)
31784             'decrease-precision)
31786 (setq calc-Y-help-msgs
31787       (cons (format "%s + Inc-prec, Dec-prec" inc-prec-base-key)
31788             calc-Y-help-msgs))
31790 (defmath increase-precision (delta)
31791   "Increase precision by DELTA."
31792   (interactive "p")
31793   (setq calc-internal-prec (+ calc-internal-prec delta)))
31795 (defmath decrease-precision (delta)
31796   "Decrease precision by DELTA."
31797   (interactive "p")
31798   (setq calc-internal-prec (- calc-internal-prec delta)))
31800 ))  ; end of calc-define property
31802 (run-hooks 'calc-check-defines)
31803 @end smallexample
31805 @node Defining Stack Commands, Argument Qualifiers, Defining Simple Commands, Lisp Definitions
31806 @subsection Defining New Stack-Based Commands
31808 @noindent
31809 To define a new computational command which takes and/or leaves arguments
31810 on the stack, a special form of @code{interactive} clause is used.
31812 @example
31813 (interactive @var{num} @var{tag})
31814 @end example
31816 @noindent
31817 where @var{num} is an integer, and @var{tag} is a string.  The effect is
31818 to pop @var{num} values off the stack, resimplify them by calling
31819 @code{calc-normalize}, and hand them to your function according to the
31820 function's argument list.  Your function may include @code{&optional} and
31821 @code{&rest} parameters, so long as calling the function with @var{num}
31822 parameters is valid.
31824 Your function must return either a number or a formula in a form
31825 acceptable to Calc, or a list of such numbers or formulas.  These value(s)
31826 are pushed onto the stack when the function completes.  They are also
31827 recorded in the Calc Trail buffer on a line beginning with @var{tag},
31828 a string of (normally) four characters or less.  If you omit @var{tag}
31829 or use @code{nil} as a tag, the result is not recorded in the trail.
31831 As an example, the definition
31833 @smallexample
31834 (defmath myfact (n)
31835   "Compute the factorial of the integer at the top of the stack."
31836   (interactive 1 "fact")
31837   (if (> n 0)
31838       (* n (myfact (1- n)))
31839     (and (= n 0) 1)))
31840 @end smallexample
31842 @noindent
31843 is a version of the factorial function shown previously which can be used
31844 as a command as well as an algebraic function.  It expands to
31846 @smallexample
31847 (defun calc-myfact ()
31848   "Compute the factorial of the integer at the top of the stack."
31849   (interactive)
31850   (calc-slow-wrapper
31851    (calc-enter-result 1 "fact"
31852      (cons 'calcFunc-myfact (calc-top-list-n 1)))))
31854 (defun calcFunc-myfact (n)
31855   "Compute the factorial of the integer at the top of the stack."
31856   (if (math-posp n)
31857       (math-mul n (calcFunc-myfact (math-add n -1)))
31858     (and (math-zerop n) 1)))
31859 @end smallexample
31861 @findex calc-slow-wrapper
31862 The @code{calc-slow-wrapper} function is a version of @code{calc-wrapper}
31863 that automatically puts up a @samp{Working...} message before the
31864 computation begins.  (This message can be turned off by the user
31865 with an @kbd{m w} (@code{calc-working}) command.)
31867 @findex calc-top-list-n
31868 The @code{calc-top-list-n} function returns a list of the specified number
31869 of values from the top of the stack.  It resimplifies each value by
31870 calling @code{calc-normalize}.  If its argument is zero it returns an
31871 empty list.  It does not actually remove these values from the stack.
31873 @findex calc-enter-result
31874 The @code{calc-enter-result} function takes an integer @var{num} and string
31875 @var{tag} as described above, plus a third argument which is either a
31876 Calculator data object or a list of such objects.  These objects are
31877 resimplified and pushed onto the stack after popping the specified number
31878 of values from the stack.  If @var{tag} is non-@code{nil}, the values
31879 being pushed are also recorded in the trail.
31881 Note that if @code{calcFunc-myfact} returns @code{nil} this represents
31882 ``leave the function in symbolic form.''  To return an actual empty list,
31883 in the sense that @code{calc-enter-result} will push zero elements back
31884 onto the stack, you should return the special value @samp{'(nil)}, a list
31885 containing the single symbol @code{nil}.
31887 The @code{interactive} declaration can actually contain a limited
31888 Emacs-style code string as well which comes just before @var{num} and
31889 @var{tag}.  Currently the only Emacs code supported is @samp{"p"}, as in
31891 @example
31892 (defmath foo (a b &optional c)
31893   (interactive "p" 2 "foo")
31894   @var{body})
31895 @end example
31897 In this example, the command @code{calc-foo} will evaluate the expression
31898 @samp{foo(a,b)} if executed with no argument, or @samp{foo(a,b,n)} if
31899 executed with a numeric prefix argument of @expr{n}.
31901 The other code string allowed is @samp{"m"} (unrelated to the usual @samp{"m"}
31902 code as used with @code{defun}).  It uses the numeric prefix argument as the
31903 number of objects to remove from the stack and pass to the function.
31904 In this case, the integer @var{num} serves as a default number of
31905 arguments to be used when no prefix is supplied.
31907 @node Argument Qualifiers, Example Definitions, Defining Stack Commands, Lisp Definitions
31908 @subsection Argument Qualifiers
31910 @noindent
31911 Anywhere a parameter name can appear in the parameter list you can also use
31912 an @dfn{argument qualifier}.  Thus the general form of a definition is:
31914 @example
31915 (defmath @var{name} (@var{param} @var{param...}
31916                &optional @var{param} @var{param...}
31917                &rest @var{param})
31918   @var{body})
31919 @end example
31921 @noindent
31922 where each @var{param} is either a symbol or a list of the form
31924 @example
31925 (@var{qual} @var{param})
31926 @end example
31928 The following qualifiers are recognized:
31930 @table @samp
31931 @item complete
31932 @findex complete
31933 The argument must not be an incomplete vector, interval, or complex number.
31934 (This is rarely needed since the Calculator itself will never call your
31935 function with an incomplete argument.  But there is nothing stopping your
31936 own Lisp code from calling your function with an incomplete argument.)
31938 @item integer
31939 @findex integer
31940 The argument must be an integer.  If it is an integer-valued float
31941 it will be accepted but converted to integer form.  Non-integers and
31942 formulas are rejected.
31944 @item natnum
31945 @findex natnum
31946 Like @samp{integer}, but the argument must be non-negative.
31948 @item fixnum
31949 @findex fixnum
31950 Like @samp{integer}, but the argument must fit into a native Lisp integer,
31951 which on most systems means less than 2^23 in absolute value.  The
31952 argument is converted into Lisp-integer form if necessary.
31954 @item float
31955 @findex float
31956 The argument is converted to floating-point format if it is a number or
31957 vector.  If it is a formula it is left alone.  (The argument is never
31958 actually rejected by this qualifier.)
31960 @item @var{pred}
31961 The argument must satisfy predicate @var{pred}, which is one of the
31962 standard Calculator predicates.  @xref{Predicates}.
31964 @item not-@var{pred}
31965 The argument must @emph{not} satisfy predicate @var{pred}.
31966 @end table
31968 For example,
31970 @example
31971 (defmath foo (a (constp (not-matrixp b)) &optional (float c)
31972               &rest (integer d))
31973   @var{body})
31974 @end example
31976 @noindent
31977 expands to
31979 @example
31980 (defun calcFunc-foo (a b &optional c &rest d)
31981   (and (math-matrixp b)
31982        (math-reject-arg b 'not-matrixp))
31983   (or (math-constp b)
31984       (math-reject-arg b 'constp))
31985   (and c (setq c (math-check-float c)))
31986   (setq d (mapcar 'math-check-integer d))
31987   @var{body})
31988 @end example
31990 @noindent
31991 which performs the necessary checks and conversions before executing the
31992 body of the function.
31994 @node Example Definitions, Calling Calc from Your Programs, Argument Qualifiers, Lisp Definitions
31995 @subsection Example Definitions
31997 @noindent
31998 This section includes some Lisp programming examples on a larger scale.
31999 These programs make use of some of the Calculator's internal functions;
32000 @pxref{Internals}.
32002 @menu
32003 * Bit Counting Example::
32004 * Sine Example::
32005 @end menu
32007 @node Bit Counting Example, Sine Example, Example Definitions, Example Definitions
32008 @subsubsection Bit-Counting
32010 @noindent
32011 @ignore
32012 @starindex
32013 @end ignore
32014 @tindex bcount
32015 Calc does not include a built-in function for counting the number of
32016 ``one'' bits in a binary integer.  It's easy to invent one using @kbd{b u}
32017 to convert the integer to a set, and @kbd{V #} to count the elements of
32018 that set; let's write a function that counts the bits without having to
32019 create an intermediate set.
32021 @smallexample
32022 (defmath bcount ((natnum n))
32023   (interactive 1 "bcnt")
32024   (let ((count 0))
32025     (while (> n 0)
32026       (if (oddp n)
32027           (setq count (1+ count)))
32028       (setq n (lsh n -1)))
32029     count))
32030 @end smallexample
32032 @noindent
32033 When this is expanded by @code{defmath}, it will become the following
32034 Emacs Lisp function:
32036 @smallexample
32037 (defun calcFunc-bcount (n)
32038   (setq n (math-check-natnum n))
32039   (let ((count 0))
32040     (while (math-posp n)
32041       (if (math-oddp n)
32042           (setq count (math-add count 1)))
32043       (setq n (calcFunc-lsh n -1)))
32044     count))
32045 @end smallexample
32047 If the input numbers are large, this function involves a fair amount
32048 of arithmetic.  A binary right shift is essentially a division by two;
32049 recall that Calc stores integers in decimal form so bit shifts must
32050 involve actual division.
32052 To gain a bit more efficiency, we could divide the integer into
32053 @var{n}-bit chunks, each of which can be handled quickly because
32054 they fit into Lisp integers.  It turns out that Calc's arithmetic
32055 routines are especially fast when dividing by an integer less than
32056 1000, so we can set @var{n = 9} bits and use repeated division by 512:
32058 @smallexample
32059 (defmath bcount ((natnum n))
32060   (interactive 1 "bcnt")
32061   (let ((count 0))
32062     (while (not (fixnump n))
32063       (let ((qr (idivmod n 512)))
32064         (setq count (+ count (bcount-fixnum (cdr qr)))
32065               n (car qr))))
32066     (+ count (bcount-fixnum n))))
32068 (defun bcount-fixnum (n)
32069   (let ((count 0))
32070     (while (> n 0)
32071       (setq count (+ count (logand n 1))
32072             n (lsh n -1)))
32073     count))
32074 @end smallexample
32076 @noindent
32077 Note that the second function uses @code{defun}, not @code{defmath}.
32078 Because this function deals only with native Lisp integers (``fixnums''),
32079 it can use the actual Emacs @code{+} and related functions rather
32080 than the slower but more general Calc equivalents which @code{defmath}
32081 uses.
32083 The @code{idivmod} function does an integer division, returning both
32084 the quotient and the remainder at once.  Again, note that while it
32085 might seem that @samp{(logand n 511)} and @samp{(lsh n -9)} are
32086 more efficient ways to split off the bottom nine bits of @code{n},
32087 actually they are less efficient because each operation is really
32088 a division by 512 in disguise; @code{idivmod} allows us to do the
32089 same thing with a single division by 512.
32091 @node Sine Example, , Bit Counting Example, Example Definitions
32092 @subsubsection The Sine Function
32094 @noindent
32095 @ignore
32096 @starindex
32097 @end ignore
32098 @tindex mysin
32099 A somewhat limited sine function could be defined as follows, using the
32100 well-known Taylor series expansion for 
32101 @texline @math{\sin x}:
32102 @infoline @samp{sin(x)}:
32104 @smallexample
32105 (defmath mysin ((float (anglep x)))
32106   (interactive 1 "mysn")
32107   (setq x (to-radians x))    ; Convert from current angular mode.
32108   (let ((sum x)              ; Initial term of Taylor expansion of sin.
32109         newsum
32110         (nfact 1)            ; "nfact" equals "n" factorial at all times.
32111         (xnegsqr :"-(x^2)")) ; "xnegsqr" equals -x^2.
32112     (for ((n 3 100 2))       ; Upper limit of 100 is a good precaution.
32113       (working "mysin" sum)  ; Display "Working" message, if enabled.
32114       (setq nfact (* nfact (1- n) n)
32115             x (* x xnegsqr)
32116             newsum (+ sum (/ x nfact)))
32117       (if (~= newsum sum)    ; If newsum is "nearly equal to" sum,
32118           (break))           ;  then we are done.
32119       (setq sum newsum))
32120     sum))
32121 @end smallexample
32123 The actual @code{sin} function in Calc works by first reducing the problem
32124 to a sine or cosine of a nonnegative number less than @cpiover{4}.  This
32125 ensures that the Taylor series will converge quickly.  Also, the calculation
32126 is carried out with two extra digits of precision to guard against cumulative
32127 round-off in @samp{sum}.  Finally, complex arguments are allowed and handled
32128 by a separate algorithm.
32130 @smallexample
32131 (defmath mysin ((float (scalarp x)))
32132   (interactive 1 "mysn")
32133   (setq x (to-radians x))    ; Convert from current angular mode.
32134   (with-extra-prec 2         ; Evaluate with extra precision.
32135     (cond ((complexp x)
32136            (mysin-complex x))
32137           ((< x 0)
32138            (- (mysin-raw (- x)))    ; Always call mysin-raw with x >= 0.
32139           (t (mysin-raw x))))))
32141 (defmath mysin-raw (x)
32142   (cond ((>= x 7)
32143          (mysin-raw (% x (two-pi))))     ; Now x < 7.
32144         ((> x (pi-over-2))
32145          (- (mysin-raw (- x (pi)))))     ; Now -pi/2 <= x <= pi/2.
32146         ((> x (pi-over-4))
32147          (mycos-raw (- x (pi-over-2))))  ; Now -pi/2 <= x <= pi/4.
32148         ((< x (- (pi-over-4)))
32149          (- (mycos-raw (+ x (pi-over-2)))))  ; Now -pi/4 <= x <= pi/4,
32150         (t (mysin-series x))))           ; so the series will be efficient.
32151 @end smallexample
32153 @noindent
32154 where @code{mysin-complex} is an appropriate function to handle complex
32155 numbers, @code{mysin-series} is the routine to compute the sine Taylor
32156 series as before, and @code{mycos-raw} is a function analogous to
32157 @code{mysin-raw} for cosines.
32159 The strategy is to ensure that @expr{x} is nonnegative before calling
32160 @code{mysin-raw}.  This function then recursively reduces its argument
32161 to a suitable range, namely, plus-or-minus @cpiover{4}.  Note that each
32162 test, and particularly the first comparison against 7, is designed so
32163 that small roundoff errors cannot produce an infinite loop.  (Suppose
32164 we compared with @samp{(two-pi)} instead; if due to roundoff problems
32165 the modulo operator ever returned @samp{(two-pi)} exactly, an infinite
32166 recursion could result!)  We use modulo only for arguments that will
32167 clearly get reduced, knowing that the next rule will catch any reductions
32168 that this rule misses.
32170 If a program is being written for general use, it is important to code
32171 it carefully as shown in this second example.  For quick-and-dirty programs,
32172 when you know that your own use of the sine function will never encounter
32173 a large argument, a simpler program like the first one shown is fine.
32175 @node Calling Calc from Your Programs, Internals, Example Definitions, Lisp Definitions
32176 @subsection Calling Calc from Your Lisp Programs
32178 @noindent
32179 A later section (@pxref{Internals}) gives a full description of
32180 Calc's internal Lisp functions.  It's not hard to call Calc from
32181 inside your programs, but the number of these functions can be daunting.
32182 So Calc provides one special ``programmer-friendly'' function called
32183 @code{calc-eval} that can be made to do just about everything you
32184 need.  It's not as fast as the low-level Calc functions, but it's
32185 much simpler to use!
32187 It may seem that @code{calc-eval} itself has a daunting number of
32188 options, but they all stem from one simple operation.
32190 In its simplest manifestation, @samp{(calc-eval "1+2")} parses the
32191 string @code{"1+2"} as if it were a Calc algebraic entry and returns
32192 the result formatted as a string: @code{"3"}.
32194 Since @code{calc-eval} is on the list of recommended @code{autoload}
32195 functions, you don't need to make any special preparations to load
32196 Calc before calling @code{calc-eval} the first time.  Calc will be
32197 loaded and initialized for you.
32199 All the Calc modes that are currently in effect will be used when
32200 evaluating the expression and formatting the result.
32202 @ifinfo
32203 @example
32205 @end example
32206 @end ifinfo
32207 @subsubsection Additional Arguments to @code{calc-eval}
32209 @noindent
32210 If the input string parses to a list of expressions, Calc returns
32211 the results separated by @code{", "}.  You can specify a different
32212 separator by giving a second string argument to @code{calc-eval}:
32213 @samp{(calc-eval "1+2,3+4" ";")} returns @code{"3;7"}.
32215 The ``separator'' can also be any of several Lisp symbols which
32216 request other behaviors from @code{calc-eval}.  These are discussed
32217 one by one below.
32219 You can give additional arguments to be substituted for
32220 @samp{$}, @samp{$$}, and so on in the main expression.  For
32221 example, @samp{(calc-eval "$/$$" nil "7" "1+1")} evaluates the
32222 expression @code{"7/(1+1)"} to yield the result @code{"3.5"}
32223 (assuming Fraction mode is not in effect).  Note the @code{nil}
32224 used as a placeholder for the item-separator argument.
32226 @ifinfo
32227 @example
32229 @end example
32230 @end ifinfo
32231 @subsubsection Error Handling
32233 @noindent
32234 If @code{calc-eval} encounters an error, it returns a list containing
32235 the character position of the error, plus a suitable message as a
32236 string.  Note that @samp{1 / 0} is @emph{not} an error by Calc's
32237 standards; it simply returns the string @code{"1 / 0"} which is the
32238 division left in symbolic form.  But @samp{(calc-eval "1/")} will
32239 return the list @samp{(2 "Expected a number")}.
32241 If you bind the variable @code{calc-eval-error} to @code{t}
32242 using a @code{let} form surrounding the call to @code{calc-eval},
32243 errors instead call the Emacs @code{error} function which aborts
32244 to the Emacs command loop with a beep and an error message.
32246 If you bind this variable to the symbol @code{string}, error messages
32247 are returned as strings instead of lists.  The character position is
32248 ignored.
32250 As a courtesy to other Lisp code which may be using Calc, be sure
32251 to bind @code{calc-eval-error} using @code{let} rather than changing
32252 it permanently with @code{setq}.
32254 @ifinfo
32255 @example
32257 @end example
32258 @end ifinfo
32259 @subsubsection Numbers Only
32261 @noindent
32262 Sometimes it is preferable to treat @samp{1 / 0} as an error
32263 rather than returning a symbolic result.  If you pass the symbol
32264 @code{num} as the second argument to @code{calc-eval}, results
32265 that are not constants are treated as errors.  The error message
32266 reported is the first @code{calc-why} message if there is one,
32267 or otherwise ``Number expected.''
32269 A result is ``constant'' if it is a number, vector, or other
32270 object that does not include variables or function calls.  If it
32271 is a vector, the components must themselves be constants.
32273 @ifinfo
32274 @example
32276 @end example
32277 @end ifinfo
32278 @subsubsection Default Modes
32280 @noindent
32281 If the first argument to @code{calc-eval} is a list whose first
32282 element is a formula string, then @code{calc-eval} sets all the
32283 various Calc modes to their default values while the formula is
32284 evaluated and formatted.  For example, the precision is set to 12
32285 digits, digit grouping is turned off, and the Normal language
32286 mode is used.
32288 This same principle applies to the other options discussed below.
32289 If the first argument would normally be @var{x}, then it can also
32290 be the list @samp{(@var{x})} to use the default mode settings.
32292 If there are other elements in the list, they are taken as
32293 variable-name/value pairs which override the default mode
32294 settings.  Look at the documentation at the front of the
32295 @file{calc.el} file to find the names of the Lisp variables for
32296 the various modes.  The mode settings are restored to their
32297 original values when @code{calc-eval} is done.
32299 For example, @samp{(calc-eval '("$+$$" calc-internal-prec 8) 'num a b)}
32300 computes the sum of two numbers, requiring a numeric result, and
32301 using default mode settings except that the precision is 8 instead
32302 of the default of 12.
32304 It's usually best to use this form of @code{calc-eval} unless your
32305 program actually considers the interaction with Calc's mode settings
32306 to be a feature.  This will avoid all sorts of potential ``gotchas'';
32307 consider what happens with @samp{(calc-eval "sqrt(2)" 'num)}
32308 when the user has left Calc in Symbolic mode or No-Simplify mode.
32310 As another example, @samp{(equal (calc-eval '("$<$$") nil a b) "1")}
32311 checks if the number in string @expr{a} is less than the one in
32312 string @expr{b}.  Without using a list, the integer 1 might
32313 come out in a variety of formats which would be hard to test for
32314 conveniently: @code{"1"}, @code{"8#1"}, @code{"00001"}.  (But
32315 see ``Predicates'' mode, below.)
32317 @ifinfo
32318 @example
32320 @end example
32321 @end ifinfo
32322 @subsubsection Raw Numbers
32324 @noindent
32325 Normally all input and output for @code{calc-eval} is done with strings.
32326 You can do arithmetic with, say, @samp{(calc-eval "$+$$" nil a b)}
32327 in place of @samp{(+ a b)}, but this is very inefficient since the
32328 numbers must be converted to and from string format as they are passed
32329 from one @code{calc-eval} to the next.
32331 If the separator is the symbol @code{raw}, the result will be returned
32332 as a raw Calc data structure rather than a string.  You can read about
32333 how these objects look in the following sections, but usually you can
32334 treat them as ``black box'' objects with no important internal
32335 structure.
32337 There is also a @code{rawnum} symbol, which is a combination of
32338 @code{raw} (returning a raw Calc object) and @code{num} (signaling
32339 an error if that object is not a constant).
32341 You can pass a raw Calc object to @code{calc-eval} in place of a
32342 string, either as the formula itself or as one of the @samp{$}
32343 arguments.  Thus @samp{(calc-eval "$+$$" 'raw a b)} is an
32344 addition function that operates on raw Calc objects.  Of course
32345 in this case it would be easier to call the low-level @code{math-add}
32346 function in Calc, if you can remember its name.
32348 In particular, note that a plain Lisp integer is acceptable to Calc
32349 as a raw object.  (All Lisp integers are accepted on input, but
32350 integers of more than six decimal digits are converted to ``big-integer''
32351 form for output.  @xref{Data Type Formats}.)
32353 When it comes time to display the object, just use @samp{(calc-eval a)}
32354 to format it as a string.
32356 It is an error if the input expression evaluates to a list of
32357 values.  The separator symbol @code{list} is like @code{raw}
32358 except that it returns a list of one or more raw Calc objects.
32360 Note that a Lisp string is not a valid Calc object, nor is a list
32361 containing a string.  Thus you can still safely distinguish all the
32362 various kinds of error returns discussed above.
32364 @ifinfo
32365 @example
32367 @end example
32368 @end ifinfo
32369 @subsubsection Predicates
32371 @noindent
32372 If the separator symbol is @code{pred}, the result of the formula is
32373 treated as a true/false value; @code{calc-eval} returns @code{t} or
32374 @code{nil}, respectively.  A value is considered ``true'' if it is a
32375 non-zero number, or false if it is zero or if it is not a number.
32377 For example, @samp{(calc-eval "$<$$" 'pred a b)} tests whether
32378 one value is less than another.
32380 As usual, it is also possible for @code{calc-eval} to return one of
32381 the error indicators described above.  Lisp will interpret such an
32382 indicator as ``true'' if you don't check for it explicitly.  If you
32383 wish to have an error register as ``false'', use something like
32384 @samp{(eq (calc-eval ...) t)}.
32386 @ifinfo
32387 @example
32389 @end example
32390 @end ifinfo
32391 @subsubsection Variable Values
32393 @noindent
32394 Variables in the formula passed to @code{calc-eval} are not normally
32395 replaced by their values.  If you wish this, you can use the
32396 @code{evalv} function (@pxref{Algebraic Manipulation}).  For example,
32397 if 4 is stored in Calc variable @code{a} (i.e., in Lisp variable
32398 @code{var-a}), then @samp{(calc-eval "a+pi")} will return the
32399 formula @code{"a + pi"}, but @samp{(calc-eval "evalv(a+pi)")}
32400 will return @code{"7.14159265359"}.
32402 To store in a Calc variable, just use @code{setq} to store in the
32403 corresponding Lisp variable.  (This is obtained by prepending
32404 @samp{var-} to the Calc variable name.)  Calc routines will
32405 understand either string or raw form values stored in variables,
32406 although raw data objects are much more efficient.  For example,
32407 to increment the Calc variable @code{a}:
32409 @example
32410 (setq var-a (calc-eval "evalv(a+1)" 'raw))
32411 @end example
32413 @ifinfo
32414 @example
32416 @end example
32417 @end ifinfo
32418 @subsubsection Stack Access
32420 @noindent
32421 If the separator symbol is @code{push}, the formula argument is
32422 evaluated (with possible @samp{$} expansions, as usual).  The
32423 result is pushed onto the Calc stack.  The return value is @code{nil}
32424 (unless there is an error from evaluating the formula, in which
32425 case the return value depends on @code{calc-eval-error} in the
32426 usual way).
32428 If the separator symbol is @code{pop}, the first argument to
32429 @code{calc-eval} must be an integer instead of a string.  That
32430 many values are popped from the stack and thrown away.  A negative
32431 argument deletes the entry at that stack level.  The return value
32432 is the number of elements remaining in the stack after popping;
32433 @samp{(calc-eval 0 'pop)} is a good way to measure the size of
32434 the stack.
32436 If the separator symbol is @code{top}, the first argument to
32437 @code{calc-eval} must again be an integer.  The value at that
32438 stack level is formatted as a string and returned.  Thus
32439 @samp{(calc-eval 1 'top)} returns the top-of-stack value.  If the
32440 integer is out of range, @code{nil} is returned.
32442 The separator symbol @code{rawtop} is just like @code{top} except
32443 that the stack entry is returned as a raw Calc object instead of
32444 as a string.
32446 In all of these cases the first argument can be made a list in
32447 order to force the default mode settings, as described above.
32448 Thus @samp{(calc-eval '(2 calc-number-radix 16) 'top)} returns the
32449 second-to-top stack entry, formatted as a string using the default
32450 instead of current display modes, except that the radix is
32451 hexadecimal instead of decimal.
32453 It is, of course, polite to put the Calc stack back the way you
32454 found it when you are done, unless the user of your program is
32455 actually expecting it to affect the stack.
32457 Note that you do not actually have to switch into the @samp{*Calculator*}
32458 buffer in order to use @code{calc-eval}; it temporarily switches into
32459 the stack buffer if necessary.
32461 @ifinfo
32462 @example
32464 @end example
32465 @end ifinfo
32466 @subsubsection Keyboard Macros
32468 @noindent
32469 If the separator symbol is @code{macro}, the first argument must be a
32470 string of characters which Calc can execute as a sequence of keystrokes.
32471 This switches into the Calc buffer for the duration of the macro.
32472 For example, @samp{(calc-eval "vx5\rVR+" 'macro)} pushes the
32473 vector @samp{[1,2,3,4,5]} on the stack and then replaces it
32474 with the sum of those numbers.  Note that @samp{\r} is the Lisp
32475 notation for the carriage-return, @key{RET}, character.
32477 If your keyboard macro wishes to pop the stack, @samp{\C-d} is
32478 safer than @samp{\177} (the @key{DEL} character) because some
32479 installations may have switched the meanings of @key{DEL} and
32480 @kbd{C-h}.  Calc always interprets @kbd{C-d} as a synonym for
32481 ``pop-stack'' regardless of key mapping.
32483 If you provide a third argument to @code{calc-eval}, evaluation
32484 of the keyboard macro will leave a record in the Trail using
32485 that argument as a tag string.  Normally the Trail is unaffected.
32487 The return value in this case is always @code{nil}.
32489 @ifinfo
32490 @example
32492 @end example
32493 @end ifinfo
32494 @subsubsection Lisp Evaluation
32496 @noindent
32497 Finally, if the separator symbol is @code{eval}, then the Lisp
32498 @code{eval} function is called on the first argument, which must
32499 be a Lisp expression rather than a Calc formula.  Remember to
32500 quote the expression so that it is not evaluated until inside
32501 @code{calc-eval}.
32503 The difference from plain @code{eval} is that @code{calc-eval}
32504 switches to the Calc buffer before evaluating the expression.
32505 For example, @samp{(calc-eval '(setq calc-internal-prec 17) 'eval)}
32506 will correctly affect the buffer-local Calc precision variable.
32508 An alternative would be @samp{(calc-eval '(calc-precision 17) 'eval)}.
32509 This is evaluating a call to the function that is normally invoked
32510 by the @kbd{p} key, giving it 17 as its ``numeric prefix argument.''
32511 Note that this function will leave a message in the echo area as
32512 a side effect.  Also, all Calc functions switch to the Calc buffer
32513 automatically if not invoked from there, so the above call is
32514 also equivalent to @samp{(calc-precision 17)} by itself.
32515 In all cases, Calc uses @code{save-excursion} to switch back to
32516 your original buffer when it is done.
32518 As usual the first argument can be a list that begins with a Lisp
32519 expression to use default instead of current mode settings.
32521 The result of @code{calc-eval} in this usage is just the result
32522 returned by the evaluated Lisp expression.
32524 @ifinfo
32525 @example
32527 @end example
32528 @end ifinfo
32529 @subsubsection Example
32531 @noindent
32532 @findex convert-temp
32533 Here is a sample Emacs command that uses @code{calc-eval}.  Suppose
32534 you have a document with lots of references to temperatures on the
32535 Fahrenheit scale, say ``98.6 F'', and you wish to convert these
32536 references to Centigrade.  The following command does this conversion.
32537 Place the Emacs cursor right after the letter ``F'' and invoke the
32538 command to change ``98.6 F'' to ``37 C''.  Or, if the temperature is
32539 already in Centigrade form, the command changes it back to Fahrenheit.
32541 @example
32542 (defun convert-temp ()
32543   (interactive)
32544   (save-excursion
32545     (re-search-backward "[^-.0-9]\\([-.0-9]+\\) *\\([FC]\\)")
32546     (let* ((top1 (match-beginning 1))
32547            (bot1 (match-end 1))
32548            (number (buffer-substring top1 bot1))
32549            (top2 (match-beginning 2))
32550            (bot2 (match-end 2))
32551            (type (buffer-substring top2 bot2)))
32552       (if (equal type "F")
32553           (setq type "C"
32554                 number (calc-eval "($ - 32)*5/9" nil number))
32555         (setq type "F"
32556               number (calc-eval "$*9/5 + 32" nil number)))
32557       (goto-char top2)
32558       (delete-region top2 bot2)
32559       (insert-before-markers type)
32560       (goto-char top1)
32561       (delete-region top1 bot1)
32562       (if (string-match "\\.$" number)   ; change "37." to "37"
32563           (setq number (substring number 0 -1)))
32564       (insert number))))
32565 @end example
32567 Note the use of @code{insert-before-markers} when changing between
32568 ``F'' and ``C'', so that the character winds up before the cursor
32569 instead of after it.
32571 @node Internals, , Calling Calc from Your Programs, Lisp Definitions
32572 @subsection Calculator Internals
32574 @noindent
32575 This section describes the Lisp functions defined by the Calculator that
32576 may be of use to user-written Calculator programs (as described in the
32577 rest of this chapter).  These functions are shown by their names as they
32578 conventionally appear in @code{defmath}.  Their full Lisp names are
32579 generally gotten by prepending @samp{calcFunc-} or @samp{math-} to their
32580 apparent names.  (Names that begin with @samp{calc-} are already in
32581 their full Lisp form.)  You can use the actual full names instead if you
32582 prefer them, or if you are calling these functions from regular Lisp.
32584 The functions described here are scattered throughout the various
32585 Calc component files.  Note that @file{calc.el} includes @code{autoload}s
32586 for only a few component files; when Calc wants to call an advanced
32587 function it calls @samp{(calc-extensions)} first; this function
32588 autoloads @file{calc-ext.el}, which in turn autoloads all the functions
32589 in the remaining component files.
32591 Because @code{defmath} itself uses the extensions, user-written code
32592 generally always executes with the extensions already loaded, so
32593 normally you can use any Calc function and be confident that it will
32594 be autoloaded for you when necessary.  If you are doing something
32595 special, check carefully to make sure each function you are using is
32596 from @file{calc.el} or its components, and call @samp{(calc-extensions)}
32597 before using any function based in @file{calc-ext.el} if you can't
32598 prove this file will already be loaded.
32600 @menu
32601 * Data Type Formats::
32602 * Interactive Lisp Functions::
32603 * Stack Lisp Functions::
32604 * Predicates::
32605 * Computational Lisp Functions::
32606 * Vector Lisp Functions::
32607 * Symbolic Lisp Functions::
32608 * Formatting Lisp Functions::
32609 * Hooks::
32610 @end menu
32612 @node Data Type Formats, Interactive Lisp Functions, Internals, Internals
32613 @subsubsection Data Type Formats
32615 @noindent
32616 Integers are stored in either of two ways, depending on their magnitude.
32617 Integers less than one million in absolute value are stored as standard
32618 Lisp integers.  This is the only storage format for Calc data objects
32619 which is not a Lisp list.
32621 Large integers are stored as lists of the form @samp{(bigpos @var{d0}
32622 @var{d1} @var{d2} @dots{})} for positive integers 1000000 or more, or
32623 @samp{(bigneg @var{d0} @var{d1} @var{d2} @dots{})} for negative integers
32624 @mathit{-1000000} or less.  Each @var{d} is a base-1000 ``digit,'' a Lisp integer
32625 from 0 to 999.  The least significant digit is @var{d0}; the last digit,
32626 @var{dn}, which is always nonzero, is the most significant digit.  For
32627 example, the integer @mathit{-12345678} is stored as @samp{(bigneg 678 345 12)}.
32629 The distinction between small and large integers is entirely hidden from
32630 the user.  In @code{defmath} definitions, the Lisp predicate @code{integerp}
32631 returns true for either kind of integer, and in general both big and small
32632 integers are accepted anywhere the word ``integer'' is used in this manual.
32633 If the distinction must be made, native Lisp integers are called @dfn{fixnums}
32634 and large integers are called @dfn{bignums}.
32636 Fractions are stored as a list of the form, @samp{(frac @var{n} @var{d})}
32637 where @var{n} is an integer (big or small) numerator, @var{d} is an
32638 integer denominator greater than one, and @var{n} and @var{d} are relatively
32639 prime.  Note that fractions where @var{d} is one are automatically converted
32640 to plain integers by all math routines; fractions where @var{d} is negative
32641 are normalized by negating the numerator and denominator.
32643 Floating-point numbers are stored in the form, @samp{(float @var{mant}
32644 @var{exp})}, where @var{mant} (the ``mantissa'') is an integer less than
32645 @samp{10^@var{p}} in absolute value (@var{p} represents the current
32646 precision), and @var{exp} (the ``exponent'') is a fixnum.  The value of
32647 the float is @samp{@var{mant} * 10^@var{exp}}.  For example, the number
32648 @mathit{-3.14} is stored as @samp{(float -314 -2) = -314*10^-2}.  Other constraints
32649 are that the number 0.0 is always stored as @samp{(float 0 0)}, and,
32650 except for the 0.0 case, the rightmost base-10 digit of @var{mant} is
32651 always nonzero.  (If the rightmost digit is zero, the number is
32652 rearranged by dividing @var{mant} by ten and incrementing @var{exp}.)
32654 Rectangular complex numbers are stored in the form @samp{(cplx @var{re}
32655 @var{im})}, where @var{re} and @var{im} are each real numbers, either
32656 integers, fractions, or floats.  The value is @samp{@var{re} + @var{im}i}.
32657 The @var{im} part is nonzero; complex numbers with zero imaginary
32658 components are converted to real numbers automatically.
32660 Polar complex numbers are stored in the form @samp{(polar @var{r}
32661 @var{theta})}, where @var{r} is a positive real value and @var{theta}
32662 is a real value or HMS form representing an angle.  This angle is
32663 usually normalized to lie in the interval @samp{(-180 ..@: 180)} degrees,
32664 or @samp{(-pi ..@: pi)} radians, according to the current angular mode.
32665 If the angle is 0 the value is converted to a real number automatically.
32666 (If the angle is 180 degrees, the value is usually also converted to a
32667 negative real number.)
32669 Hours-minutes-seconds forms are stored as @samp{(hms @var{h} @var{m}
32670 @var{s})}, where @var{h} is an integer or an integer-valued float (i.e.,
32671 a float with @samp{@var{exp} >= 0}), @var{m} is an integer or integer-valued
32672 float in the range @w{@samp{[0 ..@: 60)}}, and @var{s} is any real number
32673 in the range @samp{[0 ..@: 60)}.
32675 Date forms are stored as @samp{(date @var{n})}, where @var{n} is
32676 a real number that counts days since midnight on the morning of
32677 January 1, 1 AD.  If @var{n} is an integer, this is a pure date
32678 form.  If @var{n} is a fraction or float, this is a date/time form.
32680 Modulo forms are stored as @samp{(mod @var{n} @var{m})}, where @var{m} is a
32681 positive real number or HMS form, and @var{n} is a real number or HMS
32682 form in the range @samp{[0 ..@: @var{m})}.
32684 Error forms are stored as @samp{(sdev @var{x} @var{sigma})}, where @var{x}
32685 is the mean value and @var{sigma} is the standard deviation.  Each
32686 component is either a number, an HMS form, or a symbolic object
32687 (a variable or function call).  If @var{sigma} is zero, the value is
32688 converted to a plain real number.  If @var{sigma} is negative or
32689 complex, it is automatically normalized to be a positive real.
32691 Interval forms are stored as @samp{(intv @var{mask} @var{lo} @var{hi})},
32692 where @var{mask} is one of the integers 0, 1, 2, or 3, and @var{lo} and
32693 @var{hi} are real numbers, HMS forms, or symbolic objects.  The @var{mask}
32694 is a binary integer where 1 represents the fact that the interval is
32695 closed on the high end, and 2 represents the fact that it is closed on
32696 the low end.  (Thus 3 represents a fully closed interval.)  The interval
32697 @w{@samp{(intv 3 @var{x} @var{x})}} is converted to the plain number @var{x};
32698 intervals @samp{(intv @var{mask} @var{x} @var{x})} for any other @var{mask}
32699 represent empty intervals.  If @var{hi} is less than @var{lo}, the interval
32700 is converted to a standard empty interval by replacing @var{hi} with @var{lo}.
32702 Vectors are stored as @samp{(vec @var{v1} @var{v2} @dots{})}, where @var{v1}
32703 is the first element of the vector, @var{v2} is the second, and so on.
32704 An empty vector is stored as @samp{(vec)}.  A matrix is simply a vector
32705 where all @var{v}'s are themselves vectors of equal lengths.  Note that
32706 Calc vectors are unrelated to the Emacs Lisp ``vector'' type, which is
32707 generally unused by Calc data structures.
32709 Variables are stored as @samp{(var @var{name} @var{sym})}, where
32710 @var{name} is a Lisp symbol whose print name is used as the visible name
32711 of the variable, and @var{sym} is a Lisp symbol in which the variable's
32712 value is actually stored.  Thus, @samp{(var pi var-pi)} represents the
32713 special constant @samp{pi}.  Almost always, the form is @samp{(var
32714 @var{v} var-@var{v})}.  If the variable name was entered with @code{#}
32715 signs (which are converted to hyphens internally), the form is
32716 @samp{(var @var{u} @var{v})}, where @var{u} is a symbol whose name
32717 contains @code{#} characters, and @var{v} is a symbol that contains
32718 @code{-} characters instead.  The value of a variable is the Calc
32719 object stored in its @var{sym} symbol's value cell.  If the symbol's
32720 value cell is void or if it contains @code{nil}, the variable has no
32721 value.  Special constants have the form @samp{(special-const
32722 @var{value})} stored in their value cell, where @var{value} is a formula
32723 which is evaluated when the constant's value is requested.  Variables
32724 which represent units are not stored in any special way; they are units
32725 only because their names appear in the units table.  If the value
32726 cell contains a string, it is parsed to get the variable's value when
32727 the variable is used.
32729 A Lisp list with any other symbol as the first element is a function call.
32730 The symbols @code{+}, @code{-}, @code{*}, @code{/}, @code{%}, @code{^},
32731 and @code{|} represent special binary operators; these lists are always
32732 of the form @samp{(@var{op} @var{lhs} @var{rhs})} where @var{lhs} is the
32733 sub-formula on the lefthand side and @var{rhs} is the sub-formula on the
32734 right.  The symbol @code{neg} represents unary negation; this list is always
32735 of the form @samp{(neg @var{arg})}.  Any other symbol @var{func} represents a
32736 function that would be displayed in function-call notation; the symbol
32737 @var{func} is in general always of the form @samp{calcFunc-@var{name}}.
32738 The function cell of the symbol @var{func} should contain a Lisp function
32739 for evaluating a call to @var{func}.  This function is passed the remaining
32740 elements of the list (themselves already evaluated) as arguments; such
32741 functions should return @code{nil} or call @code{reject-arg} to signify
32742 that they should be left in symbolic form, or they should return a Calc
32743 object which represents their value, or a list of such objects if they
32744 wish to return multiple values.  (The latter case is allowed only for
32745 functions which are the outer-level call in an expression whose value is
32746 about to be pushed on the stack; this feature is considered obsolete
32747 and is not used by any built-in Calc functions.)
32749 @node Interactive Lisp Functions, Stack Lisp Functions, Data Type Formats, Internals
32750 @subsubsection Interactive Functions
32752 @noindent
32753 The functions described here are used in implementing interactive Calc
32754 commands.  Note that this list is not exhaustive!  If there is an
32755 existing command that behaves similarly to the one you want to define,
32756 you may find helpful tricks by checking the source code for that command.
32758 @defun calc-set-command-flag flag
32759 Set the command flag @var{flag}.  This is generally a Lisp symbol, but
32760 may in fact be anything.  The effect is to add @var{flag} to the list
32761 stored in the variable @code{calc-command-flags}, unless it is already
32762 there.  @xref{Defining Simple Commands}.
32763 @end defun
32765 @defun calc-clear-command-flag flag
32766 If @var{flag} appears among the list of currently-set command flags,
32767 remove it from that list.
32768 @end defun
32770 @defun calc-record-undo rec
32771 Add the ``undo record'' @var{rec} to the list of steps to take if the
32772 current operation should need to be undone.  Stack push and pop functions
32773 automatically call @code{calc-record-undo}, so the kinds of undo records
32774 you might need to create take the form @samp{(set @var{sym} @var{value})},
32775 which says that the Lisp variable @var{sym} was changed and had previously
32776 contained @var{value}; @samp{(store @var{var} @var{value})} which says that
32777 the Calc variable @var{var} (a string which is the name of the symbol that
32778 contains the variable's value) was stored and its previous value was
32779 @var{value} (either a Calc data object, or @code{nil} if the variable was
32780 previously void); or @samp{(eval @var{undo} @var{redo} @var{args} @dots{})},
32781 which means that to undo requires calling the function @samp{(@var{undo}
32782 @var{args} @dots{})} and, if the undo is later redone, calling
32783 @samp{(@var{redo} @var{args} @dots{})}.
32784 @end defun
32786 @defun calc-record-why msg args
32787 Record the error or warning message @var{msg}, which is normally a string.
32788 This message will be replayed if the user types @kbd{w} (@code{calc-why});
32789 if the message string begins with a @samp{*}, it is considered important
32790 enough to display even if the user doesn't type @kbd{w}.  If one or more
32791 @var{args} are present, the displayed message will be of the form,
32792 @samp{@var{msg}: @var{arg1}, @var{arg2}, @dots{}}, where the arguments are
32793 formatted on the assumption that they are either strings or Calc objects of
32794 some sort.  If @var{msg} is a symbol, it is the name of a Calc predicate
32795 (such as @code{integerp} or @code{numvecp}) which the arguments did not
32796 satisfy; it is expanded to a suitable string such as ``Expected an
32797 integer.''  The @code{reject-arg} function calls @code{calc-record-why}
32798 automatically; @pxref{Predicates}.
32799 @end defun
32801 @defun calc-is-inverse
32802 This predicate returns true if the current command is inverse,
32803 i.e., if the Inverse (@kbd{I} key) flag was set.
32804 @end defun
32806 @defun calc-is-hyperbolic
32807 This predicate is the analogous function for the @kbd{H} key.
32808 @end defun
32810 @node Stack Lisp Functions, Predicates, Interactive Lisp Functions, Internals
32811 @subsubsection Stack-Oriented Functions
32813 @noindent
32814 The functions described here perform various operations on the Calc
32815 stack and trail.  They are to be used in interactive Calc commands.
32817 @defun calc-push-list vals n
32818 Push the Calc objects in list @var{vals} onto the stack at stack level
32819 @var{n}.  If @var{n} is omitted it defaults to 1, so that the elements
32820 are pushed at the top of the stack.  If @var{n} is greater than 1, the
32821 elements will be inserted into the stack so that the last element will
32822 end up at level @var{n}, the next-to-last at level @var{n}+1, etc.
32823 The elements of @var{vals} are assumed to be valid Calc objects, and
32824 are not evaluated, rounded, or renormalized in any way.  If @var{vals}
32825 is an empty list, nothing happens.
32827 The stack elements are pushed without any sub-formula selections.
32828 You can give an optional third argument to this function, which must
32829 be a list the same size as @var{vals} of selections.  Each selection
32830 must be @code{eq} to some sub-formula of the corresponding formula
32831 in @var{vals}, or @code{nil} if that formula should have no selection.
32832 @end defun
32834 @defun calc-top-list n m
32835 Return a list of the @var{n} objects starting at level @var{m} of the
32836 stack.  If @var{m} is omitted it defaults to 1, so that the elements are
32837 taken from the top of the stack.  If @var{n} is omitted, it also
32838 defaults to 1, so that the top stack element (in the form of a
32839 one-element list) is returned.  If @var{m} is greater than 1, the
32840 @var{m}th stack element will be at the end of the list, the @var{m}+1st
32841 element will be next-to-last, etc.  If @var{n} or @var{m} are out of
32842 range, the command is aborted with a suitable error message.  If @var{n}
32843 is zero, the function returns an empty list.  The stack elements are not
32844 evaluated, rounded, or renormalized.
32846 If any stack elements contain selections, and selections have not
32847 been disabled by the @kbd{j e} (@code{calc-enable-selections}) command,
32848 this function returns the selected portions rather than the entire
32849 stack elements.  It can be given a third ``selection-mode'' argument
32850 which selects other behaviors.  If it is the symbol @code{t}, then
32851 a selection in any of the requested stack elements produces an
32852 ``invalid operation on selections'' error.  If it is the symbol @code{full},
32853 the whole stack entry is always returned regardless of selections.
32854 If it is the symbol @code{sel}, the selected portion is always returned,
32855 or @code{nil} if there is no selection.  (This mode ignores the @kbd{j e}
32856 command.)  If the symbol is @code{entry}, the complete stack entry in
32857 list form is returned; the first element of this list will be the whole
32858 formula, and the third element will be the selection (or @code{nil}).
32859 @end defun
32861 @defun calc-pop-stack n m
32862 Remove the specified elements from the stack.  The parameters @var{n}
32863 and @var{m} are defined the same as for @code{calc-top-list}.  The return
32864 value of @code{calc-pop-stack} is uninteresting.
32866 If there are any selected sub-formulas among the popped elements, and
32867 @kbd{j e} has not been used to disable selections, this produces an
32868 error without changing the stack.  If you supply an optional third
32869 argument of @code{t}, the stack elements are popped even if they
32870 contain selections.
32871 @end defun
32873 @defun calc-record-list vals tag
32874 This function records one or more results in the trail.  The @var{vals}
32875 are a list of strings or Calc objects.  The @var{tag} is the four-character
32876 tag string to identify the values.  If @var{tag} is omitted, a blank tag
32877 will be used.
32878 @end defun
32880 @defun calc-normalize n
32881 This function takes a Calc object and ``normalizes'' it.  At the very
32882 least this involves re-rounding floating-point values according to the
32883 current precision and other similar jobs.  Also, unless the user has
32884 selected No-Simplify mode (@pxref{Simplification Modes}), this involves
32885 actually evaluating a formula object by executing the function calls
32886 it contains, and possibly also doing algebraic simplification, etc.
32887 @end defun
32889 @defun calc-top-list-n n m
32890 This function is identical to @code{calc-top-list}, except that it calls
32891 @code{calc-normalize} on the values that it takes from the stack.  They
32892 are also passed through @code{check-complete}, so that incomplete
32893 objects will be rejected with an error message.  All computational
32894 commands should use this in preference to @code{calc-top-list}; the only
32895 standard Calc commands that operate on the stack without normalizing
32896 are stack management commands like @code{calc-enter} and @code{calc-roll-up}.
32897 This function accepts the same optional selection-mode argument as
32898 @code{calc-top-list}.
32899 @end defun
32901 @defun calc-top-n m
32902 This function is a convenient form of @code{calc-top-list-n} in which only
32903 a single element of the stack is taken and returned, rather than a list
32904 of elements.  This also accepts an optional selection-mode argument.
32905 @end defun
32907 @defun calc-enter-result n tag vals
32908 This function is a convenient interface to most of the above functions.
32909 The @var{vals} argument should be either a single Calc object, or a list
32910 of Calc objects; the object or objects are normalized, and the top @var{n}
32911 stack entries are replaced by the normalized objects.  If @var{tag} is
32912 non-@code{nil}, the normalized objects are also recorded in the trail.
32913 A typical stack-based computational command would take the form,
32915 @smallexample
32916 (calc-enter-result @var{n} @var{tag} (cons 'calcFunc-@var{func}
32917                                (calc-top-list-n @var{n})))
32918 @end smallexample
32920 If any of the @var{n} stack elements replaced contain sub-formula
32921 selections, and selections have not been disabled by @kbd{j e},
32922 this function takes one of two courses of action.  If @var{n} is
32923 equal to the number of elements in @var{vals}, then each element of
32924 @var{vals} is spliced into the corresponding selection; this is what
32925 happens when you use the @key{TAB} key, or when you use a unary
32926 arithmetic operation like @code{sqrt}.  If @var{vals} has only one
32927 element but @var{n} is greater than one, there must be only one
32928 selection among the top @var{n} stack elements; the element from
32929 @var{vals} is spliced into that selection.  This is what happens when
32930 you use a binary arithmetic operation like @kbd{+}.  Any other
32931 combination of @var{n} and @var{vals} is an error when selections
32932 are present.
32933 @end defun
32935 @defun calc-unary-op tag func arg
32936 This function implements a unary operator that allows a numeric prefix
32937 argument to apply the operator over many stack entries.  If the prefix
32938 argument @var{arg} is @code{nil}, this uses @code{calc-enter-result}
32939 as outlined above.  Otherwise, it maps the function over several stack
32940 elements; @pxref{Prefix Arguments}.  For example,
32942 @smallexample
32943 (defun calc-zeta (arg)
32944   (interactive "P")
32945   (calc-unary-op "zeta" 'calcFunc-zeta arg))
32946 @end smallexample
32947 @end defun
32949 @defun calc-binary-op tag func arg ident unary
32950 This function implements a binary operator, analogously to
32951 @code{calc-unary-op}.  The optional @var{ident} and @var{unary}
32952 arguments specify the behavior when the prefix argument is zero or
32953 one, respectively.  If the prefix is zero, the value @var{ident}
32954 is pushed onto the stack, if specified, otherwise an error message
32955 is displayed.  If the prefix is one, the unary function @var{unary}
32956 is applied to the top stack element, or, if @var{unary} is not
32957 specified, nothing happens.  When the argument is two or more,
32958 the binary function @var{func} is reduced across the top @var{arg}
32959 stack elements; when the argument is negative, the function is
32960 mapped between the next-to-top @mathit{-@var{arg}} stack elements and the
32961 top element.
32962 @end defun
32964 @defun calc-stack-size
32965 Return the number of elements on the stack as an integer.  This count
32966 does not include elements that have been temporarily hidden by stack
32967 truncation; @pxref{Truncating the Stack}.
32968 @end defun
32970 @defun calc-cursor-stack-index n
32971 Move the point to the @var{n}th stack entry.  If @var{n} is zero, this
32972 will be the @samp{.} line.  If @var{n} is from 1 to the current stack size,
32973 this will be the beginning of the first line of that stack entry's display.
32974 If line numbers are enabled, this will move to the first character of the
32975 line number, not the stack entry itself.
32976 @end defun
32978 @defun calc-substack-height n
32979 Return the number of lines between the beginning of the @var{n}th stack
32980 entry and the bottom of the buffer.  If @var{n} is zero, this
32981 will be one (assuming no stack truncation).  If all stack entries are
32982 one line long (i.e., no matrices are displayed), the return value will
32983 be equal @var{n}+1 as long as @var{n} is in range.  (Note that in Big
32984 mode, the return value includes the blank lines that separate stack
32985 entries.)
32986 @end defun
32988 @defun calc-refresh
32989 Erase the @code{*Calculator*} buffer and reformat its contents from memory.
32990 This must be called after changing any parameter, such as the current
32991 display radix, which might change the appearance of existing stack
32992 entries.  (During a keyboard macro invoked by the @kbd{X} key, refreshing
32993 is suppressed, but a flag is set so that the entire stack will be refreshed
32994 rather than just the top few elements when the macro finishes.)
32995 @end defun
32997 @node Predicates, Computational Lisp Functions, Stack Lisp Functions, Internals
32998 @subsubsection Predicates
33000 @noindent
33001 The functions described here are predicates, that is, they return a
33002 true/false value where @code{nil} means false and anything else means
33003 true.  These predicates are expanded by @code{defmath}, for example,
33004 from @code{zerop} to @code{math-zerop}.  In many cases they correspond
33005 to native Lisp functions by the same name, but are extended to cover
33006 the full range of Calc data types.
33008 @defun zerop x
33009 Returns true if @var{x} is numerically zero, in any of the Calc data
33010 types.  (Note that for some types, such as error forms and intervals,
33011 it never makes sense to return true.)  In @code{defmath}, the expression
33012 @samp{(= x 0)} will automatically be converted to @samp{(math-zerop x)},
33013 and @samp{(/= x 0)} will be converted to @samp{(not (math-zerop x))}.
33014 @end defun
33016 @defun negp x
33017 Returns true if @var{x} is negative.  This accepts negative real numbers
33018 of various types, negative HMS and date forms, and intervals in which
33019 all included values are negative.  In @code{defmath}, the expression
33020 @samp{(< x 0)} will automatically be converted to @samp{(math-negp x)},
33021 and @samp{(>= x 0)} will be converted to @samp{(not (math-negp x))}.
33022 @end defun
33024 @defun posp x
33025 Returns true if @var{x} is positive (and non-zero).  For complex
33026 numbers, none of these three predicates will return true.
33027 @end defun
33029 @defun looks-negp x
33030 Returns true if @var{x} is ``negative-looking.''  This returns true if
33031 @var{x} is a negative number, or a formula with a leading minus sign
33032 such as @samp{-a/b}.  In other words, this is an object which can be
33033 made simpler by calling @code{(- @var{x})}.
33034 @end defun
33036 @defun integerp x
33037 Returns true if @var{x} is an integer of any size.
33038 @end defun
33040 @defun fixnump x
33041 Returns true if @var{x} is a native Lisp integer.
33042 @end defun
33044 @defun natnump x
33045 Returns true if @var{x} is a nonnegative integer of any size.
33046 @end defun
33048 @defun fixnatnump x
33049 Returns true if @var{x} is a nonnegative Lisp integer.
33050 @end defun
33052 @defun num-integerp x
33053 Returns true if @var{x} is numerically an integer, i.e., either a
33054 true integer or a float with no significant digits to the right of
33055 the decimal point.
33056 @end defun
33058 @defun messy-integerp x
33059 Returns true if @var{x} is numerically, but not literally, an integer.
33060 A value is @code{num-integerp} if it is @code{integerp} or
33061 @code{messy-integerp} (but it is never both at once).
33062 @end defun
33064 @defun num-natnump x
33065 Returns true if @var{x} is numerically a nonnegative integer.
33066 @end defun
33068 @defun evenp x
33069 Returns true if @var{x} is an even integer.
33070 @end defun
33072 @defun looks-evenp x
33073 Returns true if @var{x} is an even integer, or a formula with a leading
33074 multiplicative coefficient which is an even integer.
33075 @end defun
33077 @defun oddp x
33078 Returns true if @var{x} is an odd integer.
33079 @end defun
33081 @defun ratp x
33082 Returns true if @var{x} is a rational number, i.e., an integer or a
33083 fraction.
33084 @end defun
33086 @defun realp x
33087 Returns true if @var{x} is a real number, i.e., an integer, fraction,
33088 or floating-point number.
33089 @end defun
33091 @defun anglep x
33092 Returns true if @var{x} is a real number or HMS form.
33093 @end defun
33095 @defun floatp x
33096 Returns true if @var{x} is a float, or a complex number, error form,
33097 interval, date form, or modulo form in which at least one component
33098 is a float.
33099 @end defun
33101 @defun complexp x
33102 Returns true if @var{x} is a rectangular or polar complex number
33103 (but not a real number).
33104 @end defun
33106 @defun rect-complexp x
33107 Returns true if @var{x} is a rectangular complex number.
33108 @end defun
33110 @defun polar-complexp x
33111 Returns true if @var{x} is a polar complex number.
33112 @end defun
33114 @defun numberp x
33115 Returns true if @var{x} is a real number or a complex number.
33116 @end defun
33118 @defun scalarp x
33119 Returns true if @var{x} is a real or complex number or an HMS form.
33120 @end defun
33122 @defun vectorp x
33123 Returns true if @var{x} is a vector (this simply checks if its argument
33124 is a list whose first element is the symbol @code{vec}).
33125 @end defun
33127 @defun numvecp x
33128 Returns true if @var{x} is a number or vector.
33129 @end defun
33131 @defun matrixp x
33132 Returns true if @var{x} is a matrix, i.e., a vector of one or more vectors,
33133 all of the same size.
33134 @end defun
33136 @defun square-matrixp x
33137 Returns true if @var{x} is a square matrix.
33138 @end defun
33140 @defun objectp x
33141 Returns true if @var{x} is any numeric Calc object, including real and
33142 complex numbers, HMS forms, date forms, error forms, intervals, and
33143 modulo forms.  (Note that error forms and intervals may include formulas
33144 as their components; see @code{constp} below.)
33145 @end defun
33147 @defun objvecp x
33148 Returns true if @var{x} is an object or a vector.  This also accepts
33149 incomplete objects, but it rejects variables and formulas (except as
33150 mentioned above for @code{objectp}).
33151 @end defun
33153 @defun primp x
33154 Returns true if @var{x} is a ``primitive'' or ``atomic'' Calc object,
33155 i.e., one whose components cannot be regarded as sub-formulas.  This
33156 includes variables, and all @code{objectp} types except error forms
33157 and intervals.
33158 @end defun
33160 @defun constp x
33161 Returns true if @var{x} is constant, i.e., a real or complex number,
33162 HMS form, date form, or error form, interval, or vector all of whose
33163 components are @code{constp}.
33164 @end defun
33166 @defun lessp x y
33167 Returns true if @var{x} is numerically less than @var{y}.  Returns false
33168 if @var{x} is greater than or equal to @var{y}, or if the order is
33169 undefined or cannot be determined.  Generally speaking, this works
33170 by checking whether @samp{@var{x} - @var{y}} is @code{negp}.  In
33171 @code{defmath}, the expression @samp{(< x y)} will automatically be
33172 converted to @samp{(lessp x y)}; expressions involving @code{>}, @code{<=},
33173 and @code{>=} are similarly converted in terms of @code{lessp}.
33174 @end defun
33176 @defun beforep x y
33177 Returns true if @var{x} comes before @var{y} in a canonical ordering
33178 of Calc objects.  If @var{x} and @var{y} are both real numbers, this
33179 will be the same as @code{lessp}.  But whereas @code{lessp} considers
33180 other types of objects to be unordered, @code{beforep} puts any two
33181 objects into a definite, consistent order.  The @code{beforep}
33182 function is used by the @kbd{V S} vector-sorting command, and also
33183 by @kbd{a s} to put the terms of a product into canonical order:
33184 This allows @samp{x y + y x} to be simplified easily to @samp{2 x y}.
33185 @end defun
33187 @defun equal x y
33188 This is the standard Lisp @code{equal} predicate; it returns true if
33189 @var{x} and @var{y} are structurally identical.  This is the usual way
33190 to compare numbers for equality, but note that @code{equal} will treat
33191 0 and 0.0 as different.
33192 @end defun
33194 @defun math-equal x y
33195 Returns true if @var{x} and @var{y} are numerically equal, either because
33196 they are @code{equal}, or because their difference is @code{zerop}.  In
33197 @code{defmath}, the expression @samp{(= x y)} will automatically be
33198 converted to @samp{(math-equal x y)}.
33199 @end defun
33201 @defun equal-int x n
33202 Returns true if @var{x} and @var{n} are numerically equal, where @var{n}
33203 is a fixnum which is not a multiple of 10.  This will automatically be
33204 used by @code{defmath} in place of the more general @code{math-equal}
33205 whenever possible.
33206 @end defun
33208 @defun nearly-equal x y
33209 Returns true if @var{x} and @var{y}, as floating-point numbers, are
33210 equal except possibly in the last decimal place.  For example,
33211 314.159 and 314.166 are considered nearly equal if the current
33212 precision is 6 (since they differ by 7 units), but not if the current
33213 precision is 7 (since they differ by 70 units).  Most functions which
33214 use series expansions use @code{with-extra-prec} to evaluate the
33215 series with 2 extra digits of precision, then use @code{nearly-equal}
33216 to decide when the series has converged; this guards against cumulative
33217 error in the series evaluation without doing extra work which would be
33218 lost when the result is rounded back down to the current precision.
33219 In @code{defmath}, this can be written @samp{(~= @var{x} @var{y})}.
33220 The @var{x} and @var{y} can be numbers of any kind, including complex.
33221 @end defun
33223 @defun nearly-zerop x y
33224 Returns true if @var{x} is nearly zero, compared to @var{y}.  This
33225 checks whether @var{x} plus @var{y} would by be @code{nearly-equal}
33226 to @var{y} itself, to within the current precision, in other words,
33227 if adding @var{x} to @var{y} would have a negligible effect on @var{y}
33228 due to roundoff error.  @var{X} may be a real or complex number, but
33229 @var{y} must be real.
33230 @end defun
33232 @defun is-true x
33233 Return true if the formula @var{x} represents a true value in
33234 Calc, not Lisp, terms.  It tests if @var{x} is a non-zero number
33235 or a provably non-zero formula.
33236 @end defun
33238 @defun reject-arg val pred
33239 Abort the current function evaluation due to unacceptable argument values.
33240 This calls @samp{(calc-record-why @var{pred} @var{val})}, then signals a
33241 Lisp error which @code{normalize} will trap.  The net effect is that the
33242 function call which led here will be left in symbolic form.
33243 @end defun
33245 @defun inexact-value
33246 If Symbolic mode is enabled, this will signal an error that causes
33247 @code{normalize} to leave the formula in symbolic form, with the message
33248 ``Inexact result.''  (This function has no effect when not in Symbolic mode.)
33249 Note that if your function calls @samp{(sin 5)} in Symbolic mode, the
33250 @code{sin} function will call @code{inexact-value}, which will cause your
33251 function to be left unsimplified.  You may instead wish to call
33252 @samp{(normalize (list 'calcFunc-sin 5))}, which in Symbolic mode will
33253 return the formula @samp{sin(5)} to your function.
33254 @end defun
33256 @defun overflow
33257 This signals an error that will be reported as a floating-point overflow.
33258 @end defun
33260 @defun underflow
33261 This signals a floating-point underflow.
33262 @end defun
33264 @node Computational Lisp Functions, Vector Lisp Functions, Predicates, Internals
33265 @subsubsection Computational Functions
33267 @noindent
33268 The functions described here do the actual computational work of the
33269 Calculator.  In addition to these, note that any function described in
33270 the main body of this manual may be called from Lisp; for example, if
33271 the documentation refers to the @code{calc-sqrt} [@code{sqrt}] command,
33272 this means @code{calc-sqrt} is an interactive stack-based square-root
33273 command and @code{sqrt} (which @code{defmath} expands to @code{calcFunc-sqrt})
33274 is the actual Lisp function for taking square roots.
33276 The functions @code{math-add}, @code{math-sub}, @code{math-mul},
33277 @code{math-div}, @code{math-mod}, and @code{math-neg} are not included
33278 in this list, since @code{defmath} allows you to write native Lisp
33279 @code{+}, @code{-}, @code{*}, @code{/}, @code{%}, and unary @code{-},
33280 respectively, instead.
33282 @defun normalize val
33283 (Full form: @code{math-normalize}.)
33284 Reduce the value @var{val} to standard form.  For example, if @var{val}
33285 is a fixnum, it will be converted to a bignum if it is too large, and
33286 if @var{val} is a bignum it will be normalized by clipping off trailing
33287 (i.e., most-significant) zero digits and converting to a fixnum if it is
33288 small.  All the various data types are similarly converted to their standard
33289 forms.  Variables are left alone, but function calls are actually evaluated
33290 in formulas.  For example, normalizing @samp{(+ 2 (calcFunc-abs -4))} will
33291 return 6.
33293 If a function call fails, because the function is void or has the wrong
33294 number of parameters, or because it returns @code{nil} or calls
33295 @code{reject-arg} or @code{inexact-result}, @code{normalize} returns
33296 the formula still in symbolic form.
33298 If the current simplification mode is ``none'' or ``numeric arguments
33299 only,'' @code{normalize} will act appropriately.  However, the more
33300 powerful simplification modes (like Algebraic Simplification) are
33301 not handled by @code{normalize}.  They are handled by @code{calc-normalize},
33302 which calls @code{normalize} and possibly some other routines, such
33303 as @code{simplify} or @code{simplify-units}.  Programs generally will
33304 never call @code{calc-normalize} except when popping or pushing values
33305 on the stack.
33306 @end defun
33308 @defun evaluate-expr expr
33309 Replace all variables in @var{expr} that have values with their values,
33310 then use @code{normalize} to simplify the result.  This is what happens
33311 when you press the @kbd{=} key interactively.
33312 @end defun
33314 @defmac with-extra-prec n body
33315 Evaluate the Lisp forms in @var{body} with precision increased by @var{n}
33316 digits.  This is a macro which expands to
33318 @smallexample
33319 (math-normalize
33320   (let ((calc-internal-prec (+ calc-internal-prec @var{n})))
33321     @var{body}))
33322 @end smallexample
33324 The surrounding call to @code{math-normalize} causes a floating-point
33325 result to be rounded down to the original precision afterwards.  This
33326 is important because some arithmetic operations assume a number's
33327 mantissa contains no more digits than the current precision allows.
33328 @end defmac
33330 @defun make-frac n d
33331 Build a fraction @samp{@var{n}:@var{d}}.  This is equivalent to calling
33332 @samp{(normalize (list 'frac @var{n} @var{d}))}, but more efficient.
33333 @end defun
33335 @defun make-float mant exp
33336 Build a floating-point value out of @var{mant} and @var{exp}, both
33337 of which are arbitrary integers.  This function will return a
33338 properly normalized float value, or signal an overflow or underflow
33339 if @var{exp} is out of range.
33340 @end defun
33342 @defun make-sdev x sigma
33343 Build an error form out of @var{x} and the absolute value of @var{sigma}.
33344 If @var{sigma} is zero, the result is the number @var{x} directly.
33345 If @var{sigma} is negative or complex, its absolute value is used.
33346 If @var{x} or @var{sigma} is not a valid type of object for use in
33347 error forms, this calls @code{reject-arg}.
33348 @end defun
33350 @defun make-intv mask lo hi
33351 Build an interval form out of @var{mask} (which is assumed to be an
33352 integer from 0 to 3), and the limits @var{lo} and @var{hi}.  If
33353 @var{lo} is greater than @var{hi}, an empty interval form is returned.
33354 This calls @code{reject-arg} if @var{lo} or @var{hi} is unsuitable.
33355 @end defun
33357 @defun sort-intv mask lo hi
33358 Build an interval form, similar to @code{make-intv}, except that if
33359 @var{lo} is less than @var{hi} they are simply exchanged, and the
33360 bits of @var{mask} are swapped accordingly.
33361 @end defun
33363 @defun make-mod n m
33364 Build a modulo form out of @var{n} and the modulus @var{m}.  Since modulo
33365 forms do not allow formulas as their components, if @var{n} or @var{m}
33366 is not a real number or HMS form the result will be a formula which
33367 is a call to @code{makemod}, the algebraic version of this function.
33368 @end defun
33370 @defun float x
33371 Convert @var{x} to floating-point form.  Integers and fractions are
33372 converted to numerically equivalent floats; components of complex
33373 numbers, vectors, HMS forms, date forms, error forms, intervals, and
33374 modulo forms are recursively floated.  If the argument is a variable
33375 or formula, this calls @code{reject-arg}.
33376 @end defun
33378 @defun compare x y
33379 Compare the numbers @var{x} and @var{y}, and return @mathit{-1} if
33380 @samp{(lessp @var{x} @var{y})}, 1 if @samp{(lessp @var{y} @var{x})},
33381 0 if @samp{(math-equal @var{x} @var{y})}, or 2 if the order is
33382 undefined or cannot be determined.
33383 @end defun
33385 @defun numdigs n
33386 Return the number of digits of integer @var{n}, effectively
33387 @samp{ceil(log10(@var{n}))}, but much more efficient.  Zero is
33388 considered to have zero digits.
33389 @end defun
33391 @defun scale-int x n
33392 Shift integer @var{x} left @var{n} decimal digits, or right @mathit{-@var{n}}
33393 digits with truncation toward zero.
33394 @end defun
33396 @defun scale-rounding x n
33397 Like @code{scale-int}, except that a right shift rounds to the nearest
33398 integer rather than truncating.
33399 @end defun
33401 @defun fixnum n
33402 Return the integer @var{n} as a fixnum, i.e., a native Lisp integer.
33403 If @var{n} is outside the permissible range for Lisp integers (usually
33404 24 binary bits) the result is undefined.
33405 @end defun
33407 @defun sqr x
33408 Compute the square of @var{x}; short for @samp{(* @var{x} @var{x})}.
33409 @end defun
33411 @defun quotient x y
33412 Divide integer @var{x} by integer @var{y}; return an integer quotient
33413 and discard the remainder.  If @var{x} or @var{y} is negative, the
33414 direction of rounding is undefined.
33415 @end defun
33417 @defun idiv x y
33418 Perform an integer division; if @var{x} and @var{y} are both nonnegative
33419 integers, this uses the @code{quotient} function, otherwise it computes
33420 @samp{floor(@var{x}/@var{y})}.  Thus the result is well-defined but
33421 slower than for @code{quotient}.
33422 @end defun
33424 @defun imod x y
33425 Divide integer @var{x} by integer @var{y}; return the integer remainder
33426 and discard the quotient.  Like @code{quotient}, this works only for
33427 integer arguments and is not well-defined for negative arguments.
33428 For a more well-defined result, use @samp{(% @var{x} @var{y})}.
33429 @end defun
33431 @defun idivmod x y
33432 Divide integer @var{x} by integer @var{y}; return a cons cell whose
33433 @code{car} is @samp{(quotient @var{x} @var{y})} and whose @code{cdr}
33434 is @samp{(imod @var{x} @var{y})}.
33435 @end defun
33437 @defun pow x y
33438 Compute @var{x} to the power @var{y}.  In @code{defmath} code, this can
33439 also be written @samp{(^ @var{x} @var{y})} or
33440 @w{@samp{(expt @var{x} @var{y})}}.
33441 @end defun
33443 @defun abs-approx x
33444 Compute a fast approximation to the absolute value of @var{x}.  For
33445 example, for a rectangular complex number the result is the sum of
33446 the absolute values of the components.
33447 @end defun
33449 @findex two-pi
33450 @findex pi-over-2
33451 @findex pi-over-4
33452 @findex pi-over-180
33453 @findex sqrt-two-pi
33454 @findex sqrt-e
33455 @findex e
33456 @findex ln-2
33457 @findex ln-10
33458 @defun pi
33459 The function @samp{(pi)} computes @samp{pi} to the current precision.
33460 Other related constant-generating functions are @code{two-pi},
33461 @code{pi-over-2}, @code{pi-over-4}, @code{pi-over-180}, @code{sqrt-two-pi},
33462 @code{e}, @code{sqrt-e}, @code{ln-2}, and @code{ln-10}.  Each function
33463 returns a floating-point value in the current precision, and each uses
33464 caching so that all calls after the first are essentially free.
33465 @end defun
33467 @defmac math-defcache @var{func} @var{initial} @var{form}
33468 This macro, usually used as a top-level call like @code{defun} or
33469 @code{defvar}, defines a new cached constant analogous to @code{pi}, etc.
33470 It defines a function @code{func} which returns the requested value;
33471 if @var{initial} is non-@code{nil} it must be a @samp{(float @dots{})}
33472 form which serves as an initial value for the cache.  If @var{func}
33473 is called when the cache is empty or does not have enough digits to
33474 satisfy the current precision, the Lisp expression @var{form} is evaluated
33475 with the current precision increased by four, and the result minus its
33476 two least significant digits is stored in the cache.  For example,
33477 calling @samp{(pi)} with a precision of 30 computes @samp{pi} to 34
33478 digits, rounds it down to 32 digits for future use, then rounds it
33479 again to 30 digits for use in the present request.
33480 @end defmac
33482 @findex half-circle
33483 @findex quarter-circle
33484 @defun full-circle symb
33485 If the current angular mode is Degrees or HMS, this function returns the
33486 integer 360.  In Radians mode, this function returns either the
33487 corresponding value in radians to the current precision, or the formula
33488 @samp{2*pi}, depending on the Symbolic mode.  There are also similar
33489 function @code{half-circle} and @code{quarter-circle}.
33490 @end defun
33492 @defun power-of-2 n
33493 Compute two to the integer power @var{n}, as a (potentially very large)
33494 integer.  Powers of two are cached, so only the first call for a
33495 particular @var{n} is expensive.
33496 @end defun
33498 @defun integer-log2 n
33499 Compute the base-2 logarithm of @var{n}, which must be an integer which
33500 is a power of two.  If @var{n} is not a power of two, this function will
33501 return @code{nil}.
33502 @end defun
33504 @defun div-mod a b m
33505 Divide @var{a} by @var{b}, modulo @var{m}.  This returns @code{nil} if
33506 there is no solution, or if any of the arguments are not integers.
33507 @end defun
33509 @defun pow-mod a b m
33510 Compute @var{a} to the power @var{b}, modulo @var{m}.  If @var{a},
33511 @var{b}, and @var{m} are integers, this uses an especially efficient
33512 algorithm.  Otherwise, it simply computes @samp{(% (^ a b) m)}.
33513 @end defun
33515 @defun isqrt n
33516 Compute the integer square root of @var{n}.  This is the square root
33517 of @var{n} rounded down toward zero, i.e., @samp{floor(sqrt(@var{n}))}.
33518 If @var{n} is itself an integer, the computation is especially efficient.
33519 @end defun
33521 @defun to-hms a ang
33522 Convert the argument @var{a} into an HMS form.  If @var{ang} is specified,
33523 it is the angular mode in which to interpret @var{a}, either @code{deg}
33524 or @code{rad}.  Otherwise, the current angular mode is used.  If @var{a}
33525 is already an HMS form it is returned as-is.
33526 @end defun
33528 @defun from-hms a ang
33529 Convert the HMS form @var{a} into a real number.  If @var{ang} is specified,
33530 it is the angular mode in which to express the result, otherwise the
33531 current angular mode is used.  If @var{a} is already a real number, it
33532 is returned as-is.
33533 @end defun
33535 @defun to-radians a
33536 Convert the number or HMS form @var{a} to radians from the current
33537 angular mode.
33538 @end defun
33540 @defun from-radians a
33541 Convert the number @var{a} from radians to the current angular mode.
33542 If @var{a} is a formula, this returns the formula @samp{deg(@var{a})}.
33543 @end defun
33545 @defun to-radians-2 a
33546 Like @code{to-radians}, except that in Symbolic mode a degrees to
33547 radians conversion yields a formula like @samp{@var{a}*pi/180}.
33548 @end defun
33550 @defun from-radians-2 a
33551 Like @code{from-radians}, except that in Symbolic mode a radians to
33552 degrees conversion yields a formula like @samp{@var{a}*180/pi}.
33553 @end defun
33555 @defun random-digit
33556 Produce a random base-1000 digit in the range 0 to 999.
33557 @end defun
33559 @defun random-digits n
33560 Produce a random @var{n}-digit integer; this will be an integer
33561 in the interval @samp{[0, 10^@var{n})}.
33562 @end defun
33564 @defun random-float
33565 Produce a random float in the interval @samp{[0, 1)}.
33566 @end defun
33568 @defun prime-test n iters
33569 Determine whether the integer @var{n} is prime.  Return a list which has
33570 one of these forms: @samp{(nil @var{f})} means the number is non-prime
33571 because it was found to be divisible by @var{f}; @samp{(nil)} means it
33572 was found to be non-prime by table look-up (so no factors are known);
33573 @samp{(nil unknown)} means it is definitely non-prime but no factors
33574 are known because @var{n} was large enough that Fermat's probabilistic
33575 test had to be used; @samp{(t)} means the number is definitely prime;
33576 and @samp{(maybe @var{i} @var{p})} means that Fermat's test, after @var{i}
33577 iterations, is @var{p} percent sure that the number is prime.  The
33578 @var{iters} parameter is the number of Fermat iterations to use, in the
33579 case that this is necessary.  If @code{prime-test} returns ``maybe,''
33580 you can call it again with the same @var{n} to get a greater certainty;
33581 @code{prime-test} remembers where it left off.
33582 @end defun
33584 @defun to-simple-fraction f
33585 If @var{f} is a floating-point number which can be represented exactly
33586 as a small rational number. return that number, else return @var{f}.
33587 For example, 0.75 would be converted to 3:4.  This function is very
33588 fast.
33589 @end defun
33591 @defun to-fraction f tol
33592 Find a rational approximation to floating-point number @var{f} to within
33593 a specified tolerance @var{tol}; this corresponds to the algebraic
33594 function @code{frac}, and can be rather slow.
33595 @end defun
33597 @defun quarter-integer n
33598 If @var{n} is an integer or integer-valued float, this function
33599 returns zero.  If @var{n} is a half-integer (i.e., an integer plus
33600 @mathit{1:2} or 0.5), it returns 2.  If @var{n} is a quarter-integer,
33601 it returns 1 or 3.  If @var{n} is anything else, this function
33602 returns @code{nil}.
33603 @end defun
33605 @node Vector Lisp Functions, Symbolic Lisp Functions, Computational Lisp Functions, Internals
33606 @subsubsection Vector Functions
33608 @noindent
33609 The functions described here perform various operations on vectors and
33610 matrices.
33612 @defun math-concat x y
33613 Do a vector concatenation; this operation is written @samp{@var{x} | @var{y}}
33614 in a symbolic formula.  @xref{Building Vectors}.
33615 @end defun
33617 @defun vec-length v
33618 Return the length of vector @var{v}.  If @var{v} is not a vector, the
33619 result is zero.  If @var{v} is a matrix, this returns the number of
33620 rows in the matrix.
33621 @end defun
33623 @defun mat-dimens m
33624 Determine the dimensions of vector or matrix @var{m}.  If @var{m} is not
33625 a vector, the result is an empty list.  If @var{m} is a plain vector
33626 but not a matrix, the result is a one-element list containing the length
33627 of the vector.  If @var{m} is a matrix with @var{r} rows and @var{c} columns,
33628 the result is the list @samp{(@var{r} @var{c})}.  Higher-order tensors
33629 produce lists of more than two dimensions.  Note that the object
33630 @samp{[[1, 2, 3], [4, 5]]} is a vector of vectors not all the same size,
33631 and is treated by this and other Calc routines as a plain vector of two
33632 elements.
33633 @end defun
33635 @defun dimension-error
33636 Abort the current function with a message of ``Dimension error.''
33637 The Calculator will leave the function being evaluated in symbolic
33638 form; this is really just a special case of @code{reject-arg}.
33639 @end defun
33641 @defun build-vector args
33642 Return a Calc vector with @var{args} as elements.
33643 For example, @samp{(build-vector 1 2 3)} returns the Calc vector
33644 @samp{[1, 2, 3]}, stored internally as the list @samp{(vec 1 2 3)}.
33645 @end defun
33647 @defun make-vec obj dims
33648 Return a Calc vector or matrix all of whose elements are equal to
33649 @var{obj}.  For example, @samp{(make-vec 27 3 4)} returns a 3x4 matrix
33650 filled with 27's.
33651 @end defun
33653 @defun row-matrix v
33654 If @var{v} is a plain vector, convert it into a row matrix, i.e.,
33655 a matrix whose single row is @var{v}.  If @var{v} is already a matrix,
33656 leave it alone.
33657 @end defun
33659 @defun col-matrix v
33660 If @var{v} is a plain vector, convert it into a column matrix, i.e., a
33661 matrix with each element of @var{v} as a separate row.  If @var{v} is
33662 already a matrix, leave it alone.
33663 @end defun
33665 @defun map-vec f v
33666 Map the Lisp function @var{f} over the Calc vector @var{v}.  For example,
33667 @samp{(map-vec 'math-floor v)} returns a vector of the floored components
33668 of vector @var{v}.
33669 @end defun
33671 @defun map-vec-2 f a b
33672 Map the Lisp function @var{f} over the two vectors @var{a} and @var{b}.
33673 If @var{a} and @var{b} are vectors of equal length, the result is a
33674 vector of the results of calling @samp{(@var{f} @var{ai} @var{bi})}
33675 for each pair of elements @var{ai} and @var{bi}.  If either @var{a} or
33676 @var{b} is a scalar, it is matched with each value of the other vector.
33677 For example, @samp{(map-vec-2 'math-add v 1)} returns the vector @var{v}
33678 with each element increased by one.  Note that using @samp{'+} would not
33679 work here, since @code{defmath} does not expand function names everywhere,
33680 just where they are in the function position of a Lisp expression.
33681 @end defun
33683 @defun reduce-vec f v
33684 Reduce the function @var{f} over the vector @var{v}.  For example, if
33685 @var{v} is @samp{[10, 20, 30, 40]}, this calls @samp{(f (f (f 10 20) 30) 40)}.
33686 If @var{v} is a matrix, this reduces over the rows of @var{v}.
33687 @end defun
33689 @defun reduce-cols f m
33690 Reduce the function @var{f} over the columns of matrix @var{m}.  For
33691 example, if @var{m} is @samp{[[1, 2], [3, 4], [5, 6]]}, the result
33692 is a vector of the two elements @samp{(f (f 1 3) 5)} and @samp{(f (f 2 4) 6)}.
33693 @end defun
33695 @defun mat-row m n
33696 Return the @var{n}th row of matrix @var{m}.  This is equivalent to
33697 @samp{(elt m n)}.  For a slower but safer version, use @code{mrow}.
33698 (@xref{Extracting Elements}.)
33699 @end defun
33701 @defun mat-col m n
33702 Return the @var{n}th column of matrix @var{m}, in the form of a vector.
33703 The arguments are not checked for correctness.
33704 @end defun
33706 @defun mat-less-row m n
33707 Return a copy of matrix @var{m} with its @var{n}th row deleted.  The
33708 number @var{n} must be in range from 1 to the number of rows in @var{m}.
33709 @end defun
33711 @defun mat-less-col m n
33712 Return a copy of matrix @var{m} with its @var{n}th column deleted.
33713 @end defun
33715 @defun transpose m
33716 Return the transpose of matrix @var{m}.
33717 @end defun
33719 @defun flatten-vector v
33720 Flatten nested vector @var{v} into a vector of scalars.  For example,
33721 if @var{v} is @samp{[[1, 2, 3], [4, 5]]} the result is @samp{[1, 2, 3, 4, 5]}.
33722 @end defun
33724 @defun copy-matrix m
33725 If @var{m} is a matrix, return a copy of @var{m}.  This maps
33726 @code{copy-sequence} over the rows of @var{m}; in Lisp terms, each
33727 element of the result matrix will be @code{eq} to the corresponding
33728 element of @var{m}, but none of the @code{cons} cells that make up
33729 the structure of the matrix will be @code{eq}.  If @var{m} is a plain
33730 vector, this is the same as @code{copy-sequence}.
33731 @end defun
33733 @defun swap-rows m r1 r2
33734 Exchange rows @var{r1} and @var{r2} of matrix @var{m} in-place.  In
33735 other words, unlike most of the other functions described here, this
33736 function changes @var{m} itself rather than building up a new result
33737 matrix.  The return value is @var{m}, i.e., @samp{(eq (swap-rows m 1 2) m)}
33738 is true, with the side effect of exchanging the first two rows of
33739 @var{m}.
33740 @end defun
33742 @node Symbolic Lisp Functions, Formatting Lisp Functions, Vector Lisp Functions, Internals
33743 @subsubsection Symbolic Functions
33745 @noindent
33746 The functions described here operate on symbolic formulas in the
33747 Calculator.
33749 @defun calc-prepare-selection num
33750 Prepare a stack entry for selection operations.  If @var{num} is
33751 omitted, the stack entry containing the cursor is used; otherwise,
33752 it is the number of the stack entry to use.  This function stores
33753 useful information about the current stack entry into a set of
33754 variables.  @code{calc-selection-cache-num} contains the number of
33755 the stack entry involved (equal to @var{num} if you specified it);
33756 @code{calc-selection-cache-entry} contains the stack entry as a
33757 list (such as @code{calc-top-list} would return with @code{entry}
33758 as the selection mode); and @code{calc-selection-cache-comp} contains
33759 a special ``tagged'' composition (@pxref{Formatting Lisp Functions})
33760 which allows Calc to relate cursor positions in the buffer with
33761 their corresponding sub-formulas.
33763 A slight complication arises in the selection mechanism because
33764 formulas may contain small integers.  For example, in the vector
33765 @samp{[1, 2, 1]} the first and last elements are @code{eq} to each
33766 other; selections are recorded as the actual Lisp object that
33767 appears somewhere in the tree of the whole formula, but storing
33768 @code{1} would falsely select both @code{1}'s in the vector.  So
33769 @code{calc-prepare-selection} also checks the stack entry and
33770 replaces any plain integers with ``complex number'' lists of the form
33771 @samp{(cplx @var{n} 0)}.  This list will be displayed the same as a
33772 plain @var{n} and the change will be completely invisible to the
33773 user, but it will guarantee that no two sub-formulas of the stack
33774 entry will be @code{eq} to each other.  Next time the stack entry
33775 is involved in a computation, @code{calc-normalize} will replace
33776 these lists with plain numbers again, again invisibly to the user.
33777 @end defun
33779 @defun calc-encase-atoms x
33780 This modifies the formula @var{x} to ensure that each part of the
33781 formula is a unique atom, using the @samp{(cplx @var{n} 0)} trick
33782 described above.  This function may use @code{setcar} to modify
33783 the formula in-place.
33784 @end defun
33786 @defun calc-find-selected-part
33787 Find the smallest sub-formula of the current formula that contains
33788 the cursor.  This assumes @code{calc-prepare-selection} has been
33789 called already.  If the cursor is not actually on any part of the
33790 formula, this returns @code{nil}.
33791 @end defun
33793 @defun calc-change-current-selection selection
33794 Change the currently prepared stack element's selection to
33795 @var{selection}, which should be @code{eq} to some sub-formula
33796 of the stack element, or @code{nil} to unselect the formula.
33797 The stack element's appearance in the Calc buffer is adjusted
33798 to reflect the new selection.
33799 @end defun
33801 @defun calc-find-nth-part expr n
33802 Return the @var{n}th sub-formula of @var{expr}.  This function is used
33803 by the selection commands, and (unless @kbd{j b} has been used) treats
33804 sums and products as flat many-element formulas.  Thus if @var{expr}
33805 is @samp{((a + b) - c) + d}, calling @code{calc-find-nth-part} with
33806 @var{n} equal to four will return @samp{d}.
33807 @end defun
33809 @defun calc-find-parent-formula expr part
33810 Return the sub-formula of @var{expr} which immediately contains
33811 @var{part}.  If @var{expr} is @samp{a*b + (c+1)*d} and @var{part}
33812 is @code{eq} to the @samp{c+1} term of @var{expr}, then this function
33813 will return @samp{(c+1)*d}.  If @var{part} turns out not to be a
33814 sub-formula of @var{expr}, the function returns @code{nil}.  If
33815 @var{part} is @code{eq} to @var{expr}, the function returns @code{t}.
33816 This function does not take associativity into account.
33817 @end defun
33819 @defun calc-find-assoc-parent-formula expr part
33820 This is the same as @code{calc-find-parent-formula}, except that
33821 (unless @kbd{j b} has been used) it continues widening the selection
33822 to contain a complete level of the formula.  Given @samp{a} from
33823 @samp{((a + b) - c) + d}, @code{calc-find-parent-formula} will
33824 return @samp{a + b} but @code{calc-find-assoc-parent-formula} will
33825 return the whole expression.
33826 @end defun
33828 @defun calc-grow-assoc-formula expr part
33829 This expands sub-formula @var{part} of @var{expr} to encompass a
33830 complete level of the formula.  If @var{part} and its immediate
33831 parent are not compatible associative operators, or if @kbd{j b}
33832 has been used, this simply returns @var{part}.
33833 @end defun
33835 @defun calc-find-sub-formula expr part
33836 This finds the immediate sub-formula of @var{expr} which contains
33837 @var{part}.  It returns an index @var{n} such that
33838 @samp{(calc-find-nth-part @var{expr} @var{n})} would return @var{part}.
33839 If @var{part} is not a sub-formula of @var{expr}, it returns @code{nil}.
33840 If @var{part} is @code{eq} to @var{expr}, it returns @code{t}.  This
33841 function does not take associativity into account.
33842 @end defun
33844 @defun calc-replace-sub-formula expr old new
33845 This function returns a copy of formula @var{expr}, with the
33846 sub-formula that is @code{eq} to @var{old} replaced by @var{new}.
33847 @end defun
33849 @defun simplify expr
33850 Simplify the expression @var{expr} by applying various algebraic rules.
33851 This is what the @w{@kbd{a s}} (@code{calc-simplify}) command uses.  This
33852 always returns a copy of the expression; the structure @var{expr} points
33853 to remains unchanged in memory.
33855 More precisely, here is what @code{simplify} does:  The expression is
33856 first normalized and evaluated by calling @code{normalize}.  If any
33857 @code{AlgSimpRules} have been defined, they are then applied.  Then
33858 the expression is traversed in a depth-first, bottom-up fashion; at
33859 each level, any simplifications that can be made are made until no
33860 further changes are possible.  Once the entire formula has been
33861 traversed in this way, it is compared with the original formula (from
33862 before the call to @code{normalize}) and, if it has changed,
33863 the entire procedure is repeated (starting with @code{normalize})
33864 until no further changes occur.  Usually only two iterations are
33865 needed:@: one to simplify the formula, and another to verify that no
33866 further simplifications were possible.
33867 @end defun
33869 @defun simplify-extended expr
33870 Simplify the expression @var{expr}, with additional rules enabled that
33871 help do a more thorough job, while not being entirely ``safe'' in all
33872 circumstances.  (For example, this mode will simplify @samp{sqrt(x^2)}
33873 to @samp{x}, which is only valid when @var{x} is positive.)  This is
33874 implemented by temporarily binding the variable @code{math-living-dangerously}
33875 to @code{t} (using a @code{let} form) and calling @code{simplify}.
33876 Dangerous simplification rules are written to check this variable
33877 before taking any action.
33878 @end defun
33880 @defun simplify-units expr
33881 Simplify the expression @var{expr}, treating variable names as units
33882 whenever possible.  This works by binding the variable
33883 @code{math-simplifying-units} to @code{t} while calling @code{simplify}.
33884 @end defun
33886 @defmac math-defsimplify funcs body
33887 Register a new simplification rule; this is normally called as a top-level
33888 form, like @code{defun} or @code{defmath}.  If @var{funcs} is a symbol
33889 (like @code{+} or @code{calcFunc-sqrt}), this simplification rule is
33890 applied to the formulas which are calls to the specified function.  Or,
33891 @var{funcs} can be a list of such symbols; the rule applies to all
33892 functions on the list.  The @var{body} is written like the body of a
33893 function with a single argument called @code{expr}.  The body will be
33894 executed with @code{expr} bound to a formula which is a call to one of
33895 the functions @var{funcs}.  If the function body returns @code{nil}, or
33896 if it returns a result @code{equal} to the original @code{expr}, it is
33897 ignored and Calc goes on to try the next simplification rule that applies.
33898 If the function body returns something different, that new formula is
33899 substituted for @var{expr} in the original formula.
33901 At each point in the formula, rules are tried in the order of the
33902 original calls to @code{math-defsimplify}; the search stops after the
33903 first rule that makes a change.  Thus later rules for that same
33904 function will not have a chance to trigger until the next iteration
33905 of the main @code{simplify} loop.
33907 Note that, since @code{defmath} is not being used here, @var{body} must
33908 be written in true Lisp code without the conveniences that @code{defmath}
33909 provides.  If you prefer, you can have @var{body} simply call another
33910 function (defined with @code{defmath}) which does the real work.
33912 The arguments of a function call will already have been simplified
33913 before any rules for the call itself are invoked.  Since a new argument
33914 list is consed up when this happens, this means that the rule's body is
33915 allowed to rearrange the function's arguments destructively if that is
33916 convenient.  Here is a typical example of a simplification rule:
33918 @smallexample
33919 (math-defsimplify calcFunc-arcsinh
33920   (or (and (math-looks-negp (nth 1 expr))
33921            (math-neg (list 'calcFunc-arcsinh
33922                            (math-neg (nth 1 expr)))))
33923       (and (eq (car-safe (nth 1 expr)) 'calcFunc-sinh)
33924            (or math-living-dangerously
33925                (math-known-realp (nth 1 (nth 1 expr))))
33926            (nth 1 (nth 1 expr)))))
33927 @end smallexample
33929 This is really a pair of rules written with one @code{math-defsimplify}
33930 for convenience; the first replaces @samp{arcsinh(-x)} with
33931 @samp{-arcsinh(x)}, and the second, which is safe only for real @samp{x},
33932 replaces @samp{arcsinh(sinh(x))} with @samp{x}.
33933 @end defmac
33935 @defun common-constant-factor expr
33936 Check @var{expr} to see if it is a sum of terms all multiplied by the
33937 same rational value.  If so, return this value.  If not, return @code{nil}.
33938 For example, if called on @samp{6x + 9y + 12z}, it would return 3, since
33939 3 is a common factor of all the terms.
33940 @end defun
33942 @defun cancel-common-factor expr factor
33943 Assuming @var{expr} is a sum with @var{factor} as a common factor,
33944 divide each term of the sum by @var{factor}.  This is done by
33945 destructively modifying parts of @var{expr}, on the assumption that
33946 it is being used by a simplification rule (where such things are
33947 allowed; see above).  For example, consider this built-in rule for
33948 square roots:
33950 @smallexample
33951 (math-defsimplify calcFunc-sqrt
33952   (let ((fac (math-common-constant-factor (nth 1 expr))))
33953     (and fac (not (eq fac 1))
33954          (math-mul (math-normalize (list 'calcFunc-sqrt fac))
33955                    (math-normalize
33956                     (list 'calcFunc-sqrt
33957                           (math-cancel-common-factor
33958                            (nth 1 expr) fac)))))))
33959 @end smallexample
33960 @end defun
33962 @defun frac-gcd a b
33963 Compute a ``rational GCD'' of @var{a} and @var{b}, which must both be
33964 rational numbers.  This is the fraction composed of the GCD of the
33965 numerators of @var{a} and @var{b}, over the GCD of the denominators.
33966 It is used by @code{common-constant-factor}.  Note that the standard
33967 @code{gcd} function uses the LCM to combine the denominators.
33968 @end defun
33970 @defun map-tree func expr many
33971 Try applying Lisp function @var{func} to various sub-expressions of
33972 @var{expr}.  Initially, call @var{func} with @var{expr} itself as an
33973 argument.  If this returns an expression which is not @code{equal} to
33974 @var{expr}, apply @var{func} again until eventually it does return
33975 @var{expr} with no changes.  Then, if @var{expr} is a function call,
33976 recursively apply @var{func} to each of the arguments.  This keeps going
33977 until no changes occur anywhere in the expression; this final expression
33978 is returned by @code{map-tree}.  Note that, unlike simplification rules,
33979 @var{func} functions may @emph{not} make destructive changes to
33980 @var{expr}.  If a third argument @var{many} is provided, it is an
33981 integer which says how many times @var{func} may be applied; the
33982 default, as described above, is infinitely many times.
33983 @end defun
33985 @defun compile-rewrites rules
33986 Compile the rewrite rule set specified by @var{rules}, which should
33987 be a formula that is either a vector or a variable name.  If the latter,
33988 the compiled rules are saved so that later @code{compile-rules} calls
33989 for that same variable can return immediately.  If there are problems
33990 with the rules, this function calls @code{error} with a suitable
33991 message.
33992 @end defun
33994 @defun apply-rewrites expr crules heads
33995 Apply the compiled rewrite rule set @var{crules} to the expression
33996 @var{expr}.  This will make only one rewrite and only checks at the
33997 top level of the expression.  The result @code{nil} if no rules
33998 matched, or if the only rules that matched did not actually change
33999 the expression.  The @var{heads} argument is optional; if is given,
34000 it should be a list of all function names that (may) appear in
34001 @var{expr}.  The rewrite compiler tags each rule with the
34002 rarest-looking function name in the rule; if you specify @var{heads},
34003 @code{apply-rewrites} can use this information to narrow its search
34004 down to just a few rules in the rule set.
34005 @end defun
34007 @defun rewrite-heads expr
34008 Compute a @var{heads} list for @var{expr} suitable for use with
34009 @code{apply-rewrites}, as discussed above.
34010 @end defun
34012 @defun rewrite expr rules many
34013 This is an all-in-one rewrite function.  It compiles the rule set
34014 specified by @var{rules}, then uses @code{map-tree} to apply the
34015 rules throughout @var{expr} up to @var{many} (default infinity)
34016 times.
34017 @end defun
34019 @defun match-patterns pat vec not-flag
34020 Given a Calc vector @var{vec} and an uncompiled pattern set or
34021 pattern set variable @var{pat}, this function returns a new vector
34022 of all elements of @var{vec} which do (or don't, if @var{not-flag} is
34023 non-@code{nil}) match any of the patterns in @var{pat}.
34024 @end defun
34026 @defun deriv expr var value symb
34027 Compute the derivative of @var{expr} with respect to variable @var{var}
34028 (which may actually be any sub-expression).  If @var{value} is specified,
34029 the derivative is evaluated at the value of @var{var}; otherwise, the
34030 derivative is left in terms of @var{var}.  If the expression contains
34031 functions for which no derivative formula is known, new derivative
34032 functions are invented by adding primes to the names; @pxref{Calculus}.
34033 However, if @var{symb} is non-@code{nil}, the presence of undifferentiable
34034 functions in @var{expr} instead cancels the whole differentiation, and
34035 @code{deriv} returns @code{nil} instead.
34037 Derivatives of an @var{n}-argument function can be defined by
34038 adding a @code{math-derivative-@var{n}} property to the property list
34039 of the symbol for the function's derivative, which will be the
34040 function name followed by an apostrophe.  The value of the property
34041 should be a Lisp function; it is called with the same arguments as the
34042 original function call that is being differentiated.  It should return
34043 a formula for the derivative.  For example, the derivative of @code{ln}
34044 is defined by
34046 @smallexample
34047 (put 'calcFunc-ln\' 'math-derivative-1
34048      (function (lambda (u) (math-div 1 u))))
34049 @end smallexample
34051 The two-argument @code{log} function has two derivatives,
34052 @smallexample
34053 (put 'calcFunc-log\' 'math-derivative-2     ; d(log(x,b)) / dx
34054      (function (lambda (x b) ... )))
34055 (put 'calcFunc-log\'2 'math-derivative-2    ; d(log(x,b)) / db
34056      (function (lambda (x b) ... )))
34057 @end smallexample
34058 @end defun
34060 @defun tderiv expr var value symb
34061 Compute the total derivative of @var{expr}.  This is the same as
34062 @code{deriv}, except that variables other than @var{var} are not
34063 assumed to be constant with respect to @var{var}.
34064 @end defun
34066 @defun integ expr var low high
34067 Compute the integral of @var{expr} with respect to @var{var}.
34068 @xref{Calculus}, for further details.
34069 @end defun
34071 @defmac math-defintegral funcs body
34072 Define a rule for integrating a function or functions of one argument;
34073 this macro is very similar in format to @code{math-defsimplify}.
34074 The main difference is that here @var{body} is the body of a function
34075 with a single argument @code{u} which is bound to the argument to the
34076 function being integrated, not the function call itself.  Also, the
34077 variable of integration is available as @code{math-integ-var}.  If
34078 evaluation of the integral requires doing further integrals, the body
34079 should call @samp{(math-integral @var{x})} to find the integral of
34080 @var{x} with respect to @code{math-integ-var}; this function returns
34081 @code{nil} if the integral could not be done.  Some examples:
34083 @smallexample
34084 (math-defintegral calcFunc-conj
34085   (let ((int (math-integral u)))
34086     (and int
34087          (list 'calcFunc-conj int))))
34089 (math-defintegral calcFunc-cos
34090   (and (equal u math-integ-var)
34091        (math-from-radians-2 (list 'calcFunc-sin u))))
34092 @end smallexample
34094 In the @code{cos} example, we define only the integral of @samp{cos(x) dx},
34095 relying on the general integration-by-substitution facility to handle
34096 cosines of more complicated arguments.  An integration rule should return
34097 @code{nil} if it can't do the integral; if several rules are defined for
34098 the same function, they are tried in order until one returns a non-@code{nil}
34099 result.
34100 @end defmac
34102 @defmac math-defintegral-2 funcs body
34103 Define a rule for integrating a function or functions of two arguments.
34104 This is exactly analogous to @code{math-defintegral}, except that @var{body}
34105 is written as the body of a function with two arguments, @var{u} and
34106 @var{v}.
34107 @end defmac
34109 @defun solve-for lhs rhs var full
34110 Attempt to solve the equation @samp{@var{lhs} = @var{rhs}} by isolating
34111 the variable @var{var} on the lefthand side; return the resulting righthand
34112 side, or @code{nil} if the equation cannot be solved.  The variable
34113 @var{var} must appear at least once in @var{lhs} or @var{rhs}.  Note that
34114 the return value is a formula which does not contain @var{var}; this is
34115 different from the user-level @code{solve} and @code{finv} functions,
34116 which return a rearranged equation or a functional inverse, respectively.
34117 If @var{full} is non-@code{nil}, a full solution including dummy signs
34118 and dummy integers will be produced.  User-defined inverses are provided
34119 as properties in a manner similar to derivatives:
34121 @smallexample
34122 (put 'calcFunc-ln 'math-inverse
34123      (function (lambda (x) (list 'calcFunc-exp x))))
34124 @end smallexample
34126 This function can call @samp{(math-solve-get-sign @var{x})} to create
34127 a new arbitrary sign variable, returning @var{x} times that sign, and
34128 @samp{(math-solve-get-int @var{x})} to create a new arbitrary integer
34129 variable multiplied by @var{x}.  These functions simply return @var{x}
34130 if the caller requested a non-``full'' solution.
34131 @end defun
34133 @defun solve-eqn expr var full
34134 This version of @code{solve-for} takes an expression which will
34135 typically be an equation or inequality.  (If it is not, it will be
34136 interpreted as the equation @samp{@var{expr} = 0}.)  It returns an
34137 equation or inequality, or @code{nil} if no solution could be found.
34138 @end defun
34140 @defun solve-system exprs vars full
34141 This function solves a system of equations.  Generally, @var{exprs}
34142 and @var{vars} will be vectors of equal length.
34143 @xref{Solving Systems of Equations}, for other options.
34144 @end defun
34146 @defun expr-contains expr var
34147 Returns a non-@code{nil} value if @var{var} occurs as a subexpression
34148 of @var{expr}.
34150 This function might seem at first to be identical to
34151 @code{calc-find-sub-formula}.  The key difference is that
34152 @code{expr-contains} uses @code{equal} to test for matches, whereas
34153 @code{calc-find-sub-formula} uses @code{eq}.  In the formula
34154 @samp{f(a, a)}, the two @samp{a}s will be @code{equal} but not
34155 @code{eq} to each other.
34156 @end defun
34158 @defun expr-contains-count expr var
34159 Returns the number of occurrences of @var{var} as a subexpression
34160 of @var{expr}, or @code{nil} if there are no occurrences.
34161 @end defun
34163 @defun expr-depends expr var
34164 Returns true if @var{expr} refers to any variable the occurs in @var{var}.
34165 In other words, it checks if @var{expr} and @var{var} have any variables
34166 in common.
34167 @end defun
34169 @defun expr-contains-vars expr
34170 Return true if @var{expr} contains any variables, or @code{nil} if @var{expr}
34171 contains only constants and functions with constant arguments.
34172 @end defun
34174 @defun expr-subst expr old new
34175 Returns a copy of @var{expr}, with all occurrences of @var{old} replaced
34176 by @var{new}.  This treats @code{lambda} forms specially with respect
34177 to the dummy argument variables, so that the effect is always to return
34178 @var{expr} evaluated at @var{old} = @var{new}.
34179 @end defun
34181 @defun multi-subst expr old new
34182 This is like @code{expr-subst}, except that @var{old} and @var{new}
34183 are lists of expressions to be substituted simultaneously.  If one
34184 list is shorter than the other, trailing elements of the longer list
34185 are ignored.
34186 @end defun
34188 @defun expr-weight expr
34189 Returns the ``weight'' of @var{expr}, basically a count of the total
34190 number of objects and function calls that appear in @var{expr}.  For
34191 ``primitive'' objects, this will be one.
34192 @end defun
34194 @defun expr-height expr
34195 Returns the ``height'' of @var{expr}, which is the deepest level to
34196 which function calls are nested.  (Note that @samp{@var{a} + @var{b}}
34197 counts as a function call.)  For primitive objects, this returns zero.
34198 @end defun
34200 @defun polynomial-p expr var
34201 Check if @var{expr} is a polynomial in variable (or sub-expression)
34202 @var{var}.  If so, return the degree of the polynomial, that is, the
34203 highest power of @var{var} that appears in @var{expr}.  For example,
34204 for @samp{(x^2 + 3)^3 + 4} this would return 6.  This function returns
34205 @code{nil} unless @var{expr}, when expanded out by @kbd{a x}
34206 (@code{calc-expand}), would consist of a sum of terms in which @var{var}
34207 appears only raised to nonnegative integer powers.  Note that if
34208 @var{var} does not occur in @var{expr}, then @var{expr} is considered
34209 a polynomial of degree 0.
34210 @end defun
34212 @defun is-polynomial expr var degree loose
34213 Check if @var{expr} is a polynomial in variable or sub-expression
34214 @var{var}, and, if so, return a list representation of the polynomial
34215 where the elements of the list are coefficients of successive powers of
34216 @var{var}: @samp{@var{a} + @var{b} x + @var{c} x^3} would produce the
34217 list @samp{(@var{a} @var{b} 0 @var{c})}, and @samp{(x + 1)^2} would
34218 produce the list @samp{(1 2 1)}.  The highest element of the list will
34219 be non-zero, with the special exception that if @var{expr} is the
34220 constant zero, the returned value will be @samp{(0)}.  Return @code{nil}
34221 if @var{expr} is not a polynomial in @var{var}.  If @var{degree} is
34222 specified, this will not consider polynomials of degree higher than that
34223 value.  This is a good precaution because otherwise an input of
34224 @samp{(x+1)^1000} will cause a huge coefficient list to be built.  If
34225 @var{loose} is non-@code{nil}, then a looser definition of a polynomial
34226 is used in which coefficients are no longer required not to depend on
34227 @var{var}, but are only required not to take the form of polynomials
34228 themselves.  For example, @samp{sin(x) x^2 + cos(x)} is a loose
34229 polynomial with coefficients @samp{((calcFunc-cos x) 0 (calcFunc-sin
34230 x))}.  The result will never be @code{nil} in loose mode, since any
34231 expression can be interpreted as a ``constant'' loose polynomial.
34232 @end defun
34234 @defun polynomial-base expr pred
34235 Check if @var{expr} is a polynomial in any variable that occurs in it;
34236 if so, return that variable.  (If @var{expr} is a multivariate polynomial,
34237 this chooses one variable arbitrarily.)  If @var{pred} is specified, it should
34238 be a Lisp function which is called as @samp{(@var{pred} @var{subexpr})},
34239 and which should return true if @code{mpb-top-expr} (a global name for
34240 the original @var{expr}) is a suitable polynomial in @var{subexpr}.
34241 The default predicate uses @samp{(polynomial-p mpb-top-expr @var{subexpr})};
34242 you can use @var{pred} to specify additional conditions.  Or, you could
34243 have @var{pred} build up a list of every suitable @var{subexpr} that
34244 is found.
34245 @end defun
34247 @defun poly-simplify poly
34248 Simplify polynomial coefficient list @var{poly} by (destructively)
34249 clipping off trailing zeros.
34250 @end defun
34252 @defun poly-mix a ac b bc
34253 Mix two polynomial lists @var{a} and @var{b} (in the form returned by
34254 @code{is-polynomial}) in a linear combination with coefficient expressions
34255 @var{ac} and @var{bc}.  The result is a (not necessarily simplified)
34256 polynomial list representing @samp{@var{ac} @var{a} + @var{bc} @var{b}}.
34257 @end defun
34259 @defun poly-mul a b
34260 Multiply two polynomial coefficient lists @var{a} and @var{b}.  The
34261 result will be in simplified form if the inputs were simplified.
34262 @end defun
34264 @defun build-polynomial-expr poly var
34265 Construct a Calc formula which represents the polynomial coefficient
34266 list @var{poly} applied to variable @var{var}.  The @kbd{a c}
34267 (@code{calc-collect}) command uses @code{is-polynomial} to turn an
34268 expression into a coefficient list, then @code{build-polynomial-expr}
34269 to turn the list back into an expression in regular form.
34270 @end defun
34272 @defun check-unit-name var
34273 Check if @var{var} is a variable which can be interpreted as a unit
34274 name.  If so, return the units table entry for that unit.  This
34275 will be a list whose first element is the unit name (not counting
34276 prefix characters) as a symbol and whose second element is the
34277 Calc expression which defines the unit.  (Refer to the Calc sources
34278 for details on the remaining elements of this list.)  If @var{var}
34279 is not a variable or is not a unit name, return @code{nil}.
34280 @end defun
34282 @defun units-in-expr-p expr sub-exprs
34283 Return true if @var{expr} contains any variables which can be
34284 interpreted as units.  If @var{sub-exprs} is @code{t}, the entire
34285 expression is searched.  If @var{sub-exprs} is @code{nil}, this
34286 checks whether @var{expr} is directly a units expression.
34287 @end defun
34289 @defun single-units-in-expr-p expr
34290 Check whether @var{expr} contains exactly one units variable.  If so,
34291 return the units table entry for the variable.  If @var{expr} does
34292 not contain any units, return @code{nil}.  If @var{expr} contains
34293 two or more units, return the symbol @code{wrong}.
34294 @end defun
34296 @defun to-standard-units expr which
34297 Convert units expression @var{expr} to base units.  If @var{which}
34298 is @code{nil}, use Calc's native base units.  Otherwise, @var{which}
34299 can specify a units system, which is a list of two-element lists,
34300 where the first element is a Calc base symbol name and the second
34301 is an expression to substitute for it.
34302 @end defun
34304 @defun remove-units expr
34305 Return a copy of @var{expr} with all units variables replaced by ones.
34306 This expression is generally normalized before use.
34307 @end defun
34309 @defun extract-units expr
34310 Return a copy of @var{expr} with everything but units variables replaced
34311 by ones.
34312 @end defun
34314 @node Formatting Lisp Functions, Hooks, Symbolic Lisp Functions, Internals
34315 @subsubsection I/O and Formatting Functions
34317 @noindent
34318 The functions described here are responsible for parsing and formatting
34319 Calc numbers and formulas.
34321 @defun calc-eval str sep arg1 arg2 @dots{}
34322 This is the simplest interface to the Calculator from another Lisp program.
34323 @xref{Calling Calc from Your Programs}.
34324 @end defun
34326 @defun read-number str
34327 If string @var{str} contains a valid Calc number, either integer,
34328 fraction, float, or HMS form, this function parses and returns that
34329 number.  Otherwise, it returns @code{nil}.
34330 @end defun
34332 @defun read-expr str
34333 Read an algebraic expression from string @var{str}.  If @var{str} does
34334 not have the form of a valid expression, return a list of the form
34335 @samp{(error @var{pos} @var{msg})} where @var{pos} is an integer index
34336 into @var{str} of the general location of the error, and @var{msg} is
34337 a string describing the problem.
34338 @end defun
34340 @defun read-exprs str
34341 Read a list of expressions separated by commas, and return it as a
34342 Lisp list.  If an error occurs in any expressions, an error list as
34343 shown above is returned instead.
34344 @end defun
34346 @defun calc-do-alg-entry initial prompt no-norm
34347 Read an algebraic formula or formulas using the minibuffer.  All
34348 conventions of regular algebraic entry are observed.  The return value
34349 is a list of Calc formulas; there will be more than one if the user
34350 entered a list of values separated by commas.  The result is @code{nil}
34351 if the user presses Return with a blank line.  If @var{initial} is
34352 given, it is a string which the minibuffer will initially contain.
34353 If @var{prompt} is given, it is the prompt string to use; the default
34354 is ``Algebraic:''.  If @var{no-norm} is @code{t}, the formulas will
34355 be returned exactly as parsed; otherwise, they will be passed through
34356 @code{calc-normalize} first.
34358 To support the use of @kbd{$} characters in the algebraic entry, use
34359 @code{let} to bind @code{calc-dollar-values} to a list of the values
34360 to be substituted for @kbd{$}, @kbd{$$}, and so on, and bind
34361 @code{calc-dollar-used} to 0.  Upon return, @code{calc-dollar-used}
34362 will have been changed to the highest number of consecutive @kbd{$}s
34363 that actually appeared in the input.
34364 @end defun
34366 @defun format-number a
34367 Convert the real or complex number or HMS form @var{a} to string form.
34368 @end defun
34370 @defun format-flat-expr a prec
34371 Convert the arbitrary Calc number or formula @var{a} to string form,
34372 in the style used by the trail buffer and the @code{calc-edit} command.
34373 This is a simple format designed
34374 mostly to guarantee the string is of a form that can be re-parsed by
34375 @code{read-expr}.  Most formatting modes, such as digit grouping,
34376 complex number format, and point character, are ignored to ensure the
34377 result will be re-readable.  The @var{prec} parameter is normally 0; if
34378 you pass a large integer like 1000 instead, the expression will be
34379 surrounded by parentheses unless it is a plain number or variable name.
34380 @end defun
34382 @defun format-nice-expr a width
34383 This is like @code{format-flat-expr} (with @var{prec} equal to 0),
34384 except that newlines will be inserted to keep lines down to the
34385 specified @var{width}, and vectors that look like matrices or rewrite
34386 rules are written in a pseudo-matrix format.  The @code{calc-edit}
34387 command uses this when only one stack entry is being edited.
34388 @end defun
34390 @defun format-value a width
34391 Convert the Calc number or formula @var{a} to string form, using the
34392 format seen in the stack buffer.  Beware the string returned may
34393 not be re-readable by @code{read-expr}, for example, because of digit
34394 grouping.  Multi-line objects like matrices produce strings that
34395 contain newline characters to separate the lines.  The @var{w}
34396 parameter, if given, is the target window size for which to format
34397 the expressions.  If @var{w} is omitted, the width of the Calculator
34398 window is used.
34399 @end defun
34401 @defun compose-expr a prec
34402 Format the Calc number or formula @var{a} according to the current
34403 language mode, returning a ``composition.''  To learn about the
34404 structure of compositions, see the comments in the Calc source code.
34405 You can specify the format of a given type of function call by putting
34406 a @code{math-compose-@var{lang}} property on the function's symbol,
34407 whose value is a Lisp function that takes @var{a} and @var{prec} as
34408 arguments and returns a composition.  Here @var{lang} is a language
34409 mode name, one of @code{normal}, @code{big}, @code{c}, @code{pascal},
34410 @code{fortran}, @code{tex}, @code{eqn}, @code{math}, or @code{maple}.
34411 In Big mode, Calc actually tries @code{math-compose-big} first, then
34412 tries @code{math-compose-normal}.  If this property does not exist,
34413 or if the function returns @code{nil}, the function is written in the
34414 normal function-call notation for that language.
34415 @end defun
34417 @defun composition-to-string c w
34418 Convert a composition structure returned by @code{compose-expr} into
34419 a string.  Multi-line compositions convert to strings containing
34420 newline characters.  The target window size is given by @var{w}.
34421 The @code{format-value} function basically calls @code{compose-expr}
34422 followed by @code{composition-to-string}.
34423 @end defun
34425 @defun comp-width c
34426 Compute the width in characters of composition @var{c}.
34427 @end defun
34429 @defun comp-height c
34430 Compute the height in lines of composition @var{c}.
34431 @end defun
34433 @defun comp-ascent c
34434 Compute the portion of the height of composition @var{c} which is on or
34435 above the baseline.  For a one-line composition, this will be one.
34436 @end defun
34438 @defun comp-descent c
34439 Compute the portion of the height of composition @var{c} which is below
34440 the baseline.  For a one-line composition, this will be zero.
34441 @end defun
34443 @defun comp-first-char c
34444 If composition @var{c} is a ``flat'' composition, return the first
34445 (leftmost) character of the composition as an integer.  Otherwise,
34446 return @code{nil}.
34447 @end defun
34449 @defun comp-last-char c
34450 If composition @var{c} is a ``flat'' composition, return the last
34451 (rightmost) character, otherwise return @code{nil}.
34452 @end defun
34454 @comment @node Lisp Variables, Hooks, Formatting Lisp Functions, Internals
34455 @comment @subsubsection Lisp Variables
34456 @comment
34457 @comment @noindent
34458 @comment (This section is currently unfinished.)
34460 @node Hooks, , Formatting Lisp Functions, Internals
34461 @subsubsection Hooks
34463 @noindent
34464 Hooks are variables which contain Lisp functions (or lists of functions)
34465 which are called at various times.  Calc defines a number of hooks
34466 that help you to customize it in various ways.  Calc uses the Lisp
34467 function @code{run-hooks} to invoke the hooks shown below.  Several
34468 other customization-related variables are also described here.
34470 @defvar calc-load-hook
34471 This hook is called at the end of @file{calc.el}, after the file has
34472 been loaded, before any functions in it have been called, but after
34473 @code{calc-mode-map} and similar variables have been set up.
34474 @end defvar
34476 @defvar calc-ext-load-hook
34477 This hook is called at the end of @file{calc-ext.el}.
34478 @end defvar
34480 @defvar calc-start-hook
34481 This hook is called as the last step in a @kbd{M-x calc} command.
34482 At this point, the Calc buffer has been created and initialized if
34483 necessary, the Calc window and trail window have been created,
34484 and the ``Welcome to Calc'' message has been displayed.
34485 @end defvar
34487 @defvar calc-mode-hook
34488 This hook is called when the Calc buffer is being created.  Usually
34489 this will only happen once per Emacs session.  The hook is called
34490 after Emacs has switched to the new buffer, the mode-settings file
34491 has been read if necessary, and all other buffer-local variables
34492 have been set up.  After this hook returns, Calc will perform a
34493 @code{calc-refresh} operation, set up the mode line display, then
34494 evaluate any deferred @code{calc-define} properties that have not
34495 been evaluated yet.
34496 @end defvar
34498 @defvar calc-trail-mode-hook
34499 This hook is called when the Calc Trail buffer is being created.
34500 It is called as the very last step of setting up the Trail buffer.
34501 Like @code{calc-mode-hook}, this will normally happen only once
34502 per Emacs session.
34503 @end defvar
34505 @defvar calc-end-hook
34506 This hook is called by @code{calc-quit}, generally because the user
34507 presses @kbd{q} or @kbd{M-# c} while in Calc.  The Calc buffer will
34508 be the current buffer.  The hook is called as the very first
34509 step, before the Calc window is destroyed.
34510 @end defvar
34512 @defvar calc-window-hook
34513 If this hook exists, it is called to create the Calc window.
34514 Upon return, this new Calc window should be the current window.
34515 (The Calc buffer will already be the current buffer when the
34516 hook is called.)  If the hook is not defined, Calc will
34517 generally use @code{split-window}, @code{set-window-buffer},
34518 and @code{select-window} to create the Calc window.
34519 @end defvar
34521 @defvar calc-trail-window-hook
34522 If this hook exists, it is called to create the Calc Trail window.
34523 The variable @code{calc-trail-buffer} will contain the buffer
34524 which the window should use.  Unlike @code{calc-window-hook},
34525 this hook must @emph{not} switch into the new window.
34526 @end defvar
34528 @defvar calc-edit-mode-hook
34529 This hook is called by @code{calc-edit} (and the other ``edit''
34530 commands) when the temporary editing buffer is being created.
34531 The buffer will have been selected and set up to be in
34532 @code{calc-edit-mode}, but will not yet have been filled with
34533 text.  (In fact it may still have leftover text from a previous
34534 @code{calc-edit} command.)
34535 @end defvar
34537 @defvar calc-mode-save-hook
34538 This hook is called by the @code{calc-save-modes} command,
34539 after Calc's own mode features have been inserted into the
34540 Calc init file and just before the ``End of mode settings''
34541 message is inserted.
34542 @end defvar
34544 @defvar calc-reset-hook
34545 This hook is called after @kbd{M-# 0} (@code{calc-reset}) has
34546 reset all modes.  The Calc buffer will be the current buffer.
34547 @end defvar
34549 @defvar calc-other-modes
34550 This variable contains a list of strings.  The strings are
34551 concatenated at the end of the modes portion of the Calc
34552 mode line (after standard modes such as ``Deg'', ``Inv'' and
34553 ``Hyp'').  Each string should be a short, single word followed
34554 by a space.  The variable is @code{nil} by default.
34555 @end defvar
34557 @defvar calc-mode-map
34558 This is the keymap that is used by Calc mode.  The best time
34559 to adjust it is probably in a @code{calc-mode-hook}.  If the
34560 Calc extensions package (@file{calc-ext.el}) has not yet been
34561 loaded, many of these keys will be bound to @code{calc-missing-key},
34562 which is a command that loads the extensions package and
34563 ``retypes'' the key.  If your @code{calc-mode-hook} rebinds
34564 one of these keys, it will probably be overridden when the
34565 extensions are loaded.
34566 @end defvar
34568 @defvar calc-digit-map
34569 This is the keymap that is used during numeric entry.  Numeric
34570 entry uses the minibuffer, but this map binds every non-numeric
34571 key to @code{calcDigit-nondigit} which generally calls
34572 @code{exit-minibuffer} and ``retypes'' the key.
34573 @end defvar
34575 @defvar calc-alg-ent-map
34576 This is the keymap that is used during algebraic entry.  This is
34577 mostly a copy of @code{minibuffer-local-map}.
34578 @end defvar
34580 @defvar calc-store-var-map
34581 This is the keymap that is used during entry of variable names for
34582 commands like @code{calc-store} and @code{calc-recall}.  This is
34583 mostly a copy of @code{minibuffer-local-completion-map}.
34584 @end defvar
34586 @defvar calc-edit-mode-map
34587 This is the (sparse) keymap used by @code{calc-edit} and other
34588 temporary editing commands.  It binds @key{RET}, @key{LFD},
34589 and @kbd{C-c C-c} to @code{calc-edit-finish}.
34590 @end defvar
34592 @defvar calc-mode-var-list
34593 This is a list of variables which are saved by @code{calc-save-modes}.
34594 Each entry is a list of two items, the variable (as a Lisp symbol)
34595 and its default value.  When modes are being saved, each variable
34596 is compared with its default value (using @code{equal}) and any
34597 non-default variables are written out.
34598 @end defvar
34600 @defvar calc-local-var-list
34601 This is a list of variables which should be buffer-local to the
34602 Calc buffer.  Each entry is a variable name (as a Lisp symbol).
34603 These variables also have their default values manipulated by
34604 the @code{calc} and @code{calc-quit} commands; @pxref{Multiple Calculators}.
34605 Since @code{calc-mode-hook} is called after this list has been
34606 used the first time, your hook should add a variable to the
34607 list and also call @code{make-local-variable} itself.
34608 @end defvar
34610 @node Customizable Variables, Reporting Bugs, Programming, Top
34611 @appendix Customizable Variables
34613 GNU Calc is controlled by many variables, most of which can be reset
34614 from within Calc.  Some variables are less involved with actual
34615 calculation, and can be set outside of Calc using Emacs's
34616 customization facilities.  These variables are listed below.
34617 Typing @kbd{M-x customize-variable RET @var{variable-name} RET}
34618 will bring up a buffer in which the variable's value can be redefined.
34619 Typing @kbd{M-x customize-group RET calc RET} will bring up a buffer which
34620 contains all of Calc's customizable variables.  (These variables can
34621 also be reset by putting the appropriate lines in your .emacs file;
34622 @xref{Init File, ,Init File, emacs, The GNU Emacs Manual}.)
34624 Some of the customizable variables are regular expressions.  A regular
34625 expression is basically a pattern that Calc can search for.
34626 See @ref{Regexp Search,, Regular Expression Search, emacs, The GNU Emacs Manual}
34627 to see how regular expressions work.
34629 @table @code
34631 @item calc-settings-file
34633 @vindex calc-settings-file
34634 The variable @code{calc-settings-file} holds the file name in
34635 which commands like @kbd{m m} and @kbd{Z P} store ``permanent''
34636 definitions.  
34637 If @code{calc-settings-file} is not your user init file (typically
34638 @file{~/.emacs}) and if the variable @code{calc-loaded-settings-file} is
34639 @code{nil}, then Calc will automatically load your settings file (if it
34640 exists) the first time Calc is invoked.
34642 The default value for this variable is @code{"~/.calc.el"}.
34644 @item calc-gnuplot-name
34646 See @ref{Graphics}.@*
34647 The variable @code{calc-gnuplot-name} should be the name of the
34648 GNUPLOT program (a string).  If you have GNUPLOT installed on your
34649 system but Calc is unable to find it, you may need to set this
34650 variable.  (@pxref{Customizable Variables})
34651 You may also need to set some Lisp variables to show Calc how to run
34652 GNUPLOT on your system, see @ref{Devices, ,Graphical Devices} .  The default value
34653 of @code{calc-gnuplot-name} is @code{"gnuplot"}.
34655 @item  calc-gnuplot-plot-command
34656 @itemx calc-gnuplot-print-command
34658 See @ref{Devices, ,Graphical Devices}.@*
34659 The variables @code{calc-gnuplot-plot-command} and
34660 @code{calc-gnuplot-print-command} represent system commands to
34661 display and print the output of GNUPLOT, respectively.  These may be
34662 @code{nil} if no command is necessary, or strings which can include
34663 @samp{%s} to signify the name of the file to be displayed or printed.
34664 Or, these variables may contain Lisp expressions which are evaluated
34665 to display or print the output.
34667 The default value of @code{calc-gnuplot-plot-command} is @code{nil},
34668 and the default value of @code{calc-gnuplot-print-command} is
34669 @code{"lp %s"}.
34671 @item calc-language-alist
34673 See @ref{Basic Embedded Mode}.@*
34674 The variable @code{calc-language-alist} controls the languages that
34675 Calc will associate with major modes.  When Calc embedded mode is
34676 enabled, it will try to use the current major mode to
34677 determine what language should be used.  (This can be overridden using
34678 Calc's mode changing commands, @xref{Mode Settings in Embedded Mode}.)
34679 The variable @code{calc-language-alist} consists of a list of pairs of
34680 the form  @code{(@var{KEY} . @var{VALUE})}; for example, 
34681 @code{(latex-mode . latex)} is one such pair.  If Calc embedded is
34682 activated in a buffer whose major mode is @var{KEY}, it will set itself
34683 to use the language @var{VALUE}.
34685 The default value of @code{calc-language-alist} is
34686 @example
34687    ((latex-mode . latex)
34688     (tex-mode   . tex)
34689     (plain-tex-mode . tex)
34690     (context-mode . tex)
34691     (nroff-mode . eqn)
34692     (pascal-mode . pascal)
34693     (c-mode . c)
34694     (c++-mode . c)
34695     (fortran-mode . fortran)
34696     (f90-mode . fortran))
34697 @end example
34699 @item calc-embedded-announce-formula
34701 See @ref{Customizing Embedded Mode}.@*
34702 The variable @code{calc-embedded-announce-formula} helps determine
34703 what formulas @kbd{M-# a} will activate in a buffer.  It is a
34704 regular expression, and when activating embedded formulas with
34705 @kbd{M-# a}, it will tell Calc that what follows is a formula to be
34706 activated.  (Calc also uses other patterns to find formulas, such as
34707 @samp{=>} and @samp{:=}.)  
34709 The default pattern is @code{"%Embed\n\\(% .*\n\\)*"}, which checks
34710 for @samp{%Embed} followed by any number of lines beginning with
34711 @samp{%} and a space.
34713 @item  calc-embedded-open-formula
34714 @itemx calc-embedded-close-formula
34716 See @ref{Customizing Embedded Mode}.@*
34717 The variables @code{calc-embedded-open-formula} and
34718 @code{calc-embedded-open-formula} control the region that Calc will
34719 activate as a formula when Embedded mode is entered with @kbd{M-# e}.
34720 They are regular expressions; 
34721 Calc normally scans backward and forward in the buffer for the
34722 nearest text matching these regular expressions to be the ``formula
34723 delimiters''.
34725 The simplest delimiters are blank lines.  Other delimiters that
34726 Embedded mode understands by default are:
34727 @enumerate
34728 @item
34729 The @TeX{} and La@TeX{} math delimiters @samp{$ $}, @samp{$$ $$},
34730 @samp{\[ \]}, and @samp{\( \)};
34731 @item
34732 Lines beginning with @samp{\begin} and @samp{\end} (except matrix delimiters);
34733 @item
34734 Lines beginning with @samp{@@} (Texinfo delimiters).
34735 @item
34736 Lines beginning with @samp{.EQ} and @samp{.EN} (@dfn{eqn} delimiters);
34737 @item
34738 Lines containing a single @samp{%} or @samp{.\"} symbol and nothing else.
34739 @end enumerate
34741 @item  calc-embedded-open-word
34742 @itemx calc-embedded-close-word
34744 See @ref{Customizing Embedded Mode}.@*
34745 The variables @code{calc-embedded-open-word} and
34746 @code{calc-embedded-close-word} control the region that Calc will
34747 activate when Embedded mode is entered with @kbd{M-# w}.  They are
34748 regular expressions.
34750 The default values of @code{calc-embedded-open-word} and
34751 @code{calc-embedded-close-word} are @code{"^\\|[^-+0-9.eE]"} and 
34752 @code{"$\\|[^-+0-9.eE]"} respectively.
34754 @item  calc-embedded-open-plain
34755 @itemx calc-embedded-close-plain
34757 See @ref{Customizing Embedded Mode}.@*
34758 The variables @code{calc-embedded-open-plain} and
34759 @code{calc-embedded-open-plain} are used to delimit ``plain''
34760 formulas.  Note that these are actual strings, not regular
34761 expressions, because Calc must be able to write these string into a
34762 buffer as well as to recognize them.
34764 The default string for @code{calc-embedded-open-plain} is 
34765 @code{"%%% "}, note the trailing space.  The default string for 
34766 @code{calc-embedded-close-plain} is @code{" %%%\n"}, without
34767 the trailing newline here, the first line of a Big mode formula
34768 that followed might be shifted over with respect to the other lines.
34770 @item  calc-embedded-open-new-formula
34771 @itemx calc-embedded-close-new-formula
34773 See @ref{Customizing Embedded Mode}.@*
34774 The variables @code{calc-embedded-open-new-formula} and
34775 @code{calc-embedded-close-new-formula} are strings which are
34776 inserted before and after a new formula when you type @kbd{M-# f}.
34778 The default value of @code{calc-embedded-open-new-formula} is
34779 @code{"\n\n"}.  If this string begins with a newline character and the
34780 @kbd{M-# f} is typed at the beginning of a line, @kbd{M-# f} will skip
34781 this first newline to avoid introducing unnecessary blank lines in the
34782 file.  The default value of @code{calc-embedded-close-new-formula} is
34783 also @code{"\n\n"}.  The final newline is omitted by @w{@kbd{M-# f}}
34784 if typed at the end of a line.  (It follows that if @kbd{M-# f} is
34785 typed on a blank line, both a leading opening newline and a trailing
34786 closing newline are omitted.)
34788 @item  calc-embedded-open-mode
34789 @itemx calc-embedded-close-mode
34791 See @ref{Customizing Embedded Mode}.@*
34792 The variables @code{calc-embedded-open-mode} and
34793 @code{calc-embedded-close-mode} are strings which Calc will place before
34794 and after any mode annotations that it inserts.  Calc never scans for
34795 these strings; Calc always looks for the annotation itself, so it is not
34796 necessary to add them to user-written annotations.
34798 The default value of @code{calc-embedded-open-mode} is @code{"% "}
34799 and the default value of @code{calc-embedded-close-mode} is
34800 @code{"\n"}.  
34801 If you change the value of @code{calc-embedded-close-mode}, it is a good
34802 idea still to end with a newline so that mode annotations will appear on
34803 lines by themselves.
34805 @end table
34807 @node Reporting Bugs, Summary, Customizable Variables, Top
34808 @appendix Reporting Bugs
34810 @noindent
34811 If you find a bug in Calc, send e-mail to Jay Belanger,
34813 @example
34814 belanger@@truman.edu
34815 @end example
34817 @noindent
34818 There is an automatic command @kbd{M-x report-calc-bug} which helps
34819 you to report bugs.  This command prompts you for a brief subject
34820 line, then leaves you in a mail editing buffer.  Type @kbd{C-c C-c} to
34821 send your mail.  Make sure your subject line indicates that you are
34822 reporting a Calc bug; this command sends mail to the maintainer's
34823 regular mailbox.
34825 If you have suggestions for additional features for Calc, please send
34826 them.  Some have dared to suggest that Calc is already top-heavy with
34827 features; this obviously cannot be the case, so if you have ideas, send
34828 them right in.
34830 At the front of the source file, @file{calc.el}, is a list of ideas for
34831 future work.  If any enthusiastic souls wish to take it upon themselves
34832 to work on these, please send a message (using @kbd{M-x report-calc-bug})
34833 so any efforts can be coordinated.
34835 The latest version of Calc is available from Savannah, in the Emacs
34836 CVS tree.  See @uref{http://savannah.gnu.org/projects/emacs}.
34838 @c [summary]
34839 @node Summary, Key Index, Reporting Bugs, Top
34840 @appendix Calc Summary
34842 @noindent
34843 This section includes a complete list of Calc 2.02 keystroke commands.
34844 Each line lists the stack entries used by the command (top-of-stack
34845 last), the keystrokes themselves, the prompts asked by the command,
34846 and the result of the command (also with top-of-stack last).
34847 The result is expressed using the equivalent algebraic function.
34848 Commands which put no results on the stack show the full @kbd{M-x}
34849 command name in that position.  Numbers preceding the result or
34850 command name refer to notes at the end.
34852 Algebraic functions and @kbd{M-x} commands that don't have corresponding
34853 keystrokes are not listed in this summary.
34854 @xref{Command Index}.  @xref{Function Index}.
34856 @iftex
34857 @begingroup
34858 @tex
34859 \vskip-2\baselineskip \null
34860 \gdef\sumrow#1{\sumrowx#1\relax}%
34861 \gdef\sumrowx#1\:#2\:#3\:#4\:#5\:#6\relax{%
34862 \leavevmode%
34863 {\smallfonts
34864 \hbox to5em{\sl\hss#1}%
34865 \hbox to5em{\tt#2\hss}%
34866 \hbox to4em{\sl#3\hss}%
34867 \hbox to5em{\rm\hss#4}%
34868 \thinspace%
34869 {\tt#5}%
34870 {\sl#6}%
34872 \gdef\sumlpar{{\rm(}}%
34873 \gdef\sumrpar{{\rm)}}%
34874 \gdef\sumcomma{{\rm,\thinspace}}%
34875 \gdef\sumexcl{{\rm!}}%
34876 \gdef\sumbreak{\vskip-2.5\baselineskip\goodbreak}%
34877 \gdef\minus#1{{\tt-}}%
34878 @end tex
34879 @let@:=@sumsep
34880 @let@r=@sumrow
34881 @catcode`@(=@active @let(=@sumlpar
34882 @catcode`@)=@active @let)=@sumrpar
34883 @catcode`@,=@active @let,=@sumcomma
34884 @catcode`@!=@active @let!=@sumexcl
34885 @end iftex
34886 @format
34887 @iftex
34888 @advance@baselineskip-2.5pt
34889 @let@c@sumbreak
34890 @end iftex
34891 @r{       @:     M-# a  @:             @:    33  @:calc-embedded-activate@:}
34892 @r{       @:     M-# b  @:             @:        @:calc-big-or-small@:}
34893 @r{       @:     M-# c  @:             @:        @:calc@:}
34894 @r{       @:     M-# d  @:             @:        @:calc-embedded-duplicate@:}
34895 @r{       @:     M-# e  @:             @:    34  @:calc-embedded@:}
34896 @r{       @:     M-# f  @:formula      @:        @:calc-embedded-new-formula@:}
34897 @r{       @:     M-# g  @:             @:    35  @:calc-grab-region@:}
34898 @r{       @:     M-# i  @:             @:        @:calc-info@:}
34899 @r{       @:     M-# j  @:             @:        @:calc-embedded-select@:}
34900 @r{       @:     M-# k  @:             @:        @:calc-keypad@:}
34901 @r{       @:     M-# l  @:             @:        @:calc-load-everything@:}
34902 @r{       @:     M-# m  @:             @:        @:read-kbd-macro@:}
34903 @r{       @:     M-# n  @:             @:     4  @:calc-embedded-next@:}
34904 @r{       @:     M-# o  @:             @:        @:calc-other-window@:}
34905 @r{       @:     M-# p  @:             @:     4  @:calc-embedded-previous@:}
34906 @r{       @:     M-# q  @:formula      @:        @:quick-calc@:}
34907 @r{       @:     M-# r  @:             @:    36  @:calc-grab-rectangle@:}
34908 @r{       @:     M-# s  @:             @:        @:calc-info-summary@:}
34909 @r{       @:     M-# t  @:             @:        @:calc-tutorial@:}
34910 @r{       @:     M-# u  @:             @:        @:calc-embedded-update@:}
34911 @r{       @:     M-# w  @:             @:        @:calc-embedded-word@:}
34912 @r{       @:     M-# x  @:             @:        @:calc-quit@:}
34913 @r{       @:     M-# y  @:            @:1,28,49  @:calc-copy-to-buffer@:}
34914 @r{       @:     M-# z  @:             @:        @:calc-user-invocation@:}
34915 @r{       @:     M-# :  @:             @:    36  @:calc-grab-sum-down@:}
34916 @r{       @:     M-# _  @:             @:    36  @:calc-grab-sum-across@:}
34917 @r{       @:     M-# `  @:editing      @:    30  @:calc-embedded-edit@:}
34918 @r{       @:     M-# 0  @:(zero)       @:        @:calc-reset@:}
34921 @r{       @:      0-9   @:number       @:        @:@:number}
34922 @r{       @:      .     @:number       @:        @:@:0.number}
34923 @r{       @:      _     @:number       @:        @:-@:number}
34924 @r{       @:      e     @:number       @:        @:@:1e number}
34925 @r{       @:      #     @:number       @:        @:@:current-radix@tfn{#}number}
34926 @r{       @:      P     @:(in number)  @:        @:+/-@:}
34927 @r{       @:      M     @:(in number)  @:        @:mod@:}
34928 @r{       @:      @@ ' " @:  (in number)@:        @:@:HMS form}
34929 @r{       @:      h m s @:  (in number)@:        @:@:HMS form}
34932 @r{       @:      '     @:formula      @: 37,46  @:@:formula}
34933 @r{       @:      $     @:formula      @: 37,46  @:$@:formula}
34934 @r{       @:      "     @:string       @: 37,46  @:@:string}
34937 @r{    a b@:      +     @:             @:     2  @:add@:(a,b)  a+b}
34938 @r{    a b@:      -     @:             @:     2  @:sub@:(a,b)  a@minus{}b}
34939 @r{    a b@:      *     @:             @:     2  @:mul@:(a,b)  a b, a*b}
34940 @r{    a b@:      /     @:             @:     2  @:div@:(a,b)  a/b}
34941 @r{    a b@:      ^     @:             @:     2  @:pow@:(a,b)  a^b}
34942 @r{    a b@:    I ^     @:             @:     2  @:nroot@:(a,b)  a^(1/b)}
34943 @r{    a b@:      %     @:             @:     2  @:mod@:(a,b)  a%b}
34944 @r{    a b@:      \     @:             @:     2  @:idiv@:(a,b)  a\b}
34945 @r{    a b@:      :     @:             @:     2  @:fdiv@:(a,b)}
34946 @r{    a b@:      |     @:             @:     2  @:vconcat@:(a,b)  a|b}
34947 @r{    a b@:    I |     @:             @:        @:vconcat@:(b,a)  b|a}
34948 @r{    a b@:    H |     @:             @:     2  @:append@:(a,b)}
34949 @r{    a b@:  I H |     @:             @:        @:append@:(b,a)}
34950 @r{      a@:      &     @:             @:     1  @:inv@:(a)  1/a}
34951 @r{      a@:      !     @:             @:     1  @:fact@:(a)  a!}
34952 @r{      a@:      =     @:             @:     1  @:evalv@:(a)}
34953 @r{      a@:      M-%   @:             @:        @:percent@:(a)  a%}
34956 @r{  ... a@:      @key{RET}   @:             @:     1  @:@:... a a}
34957 @r{  ... a@:      @key{SPC}   @:             @:     1  @:@:... a a}
34958 @r{... a b@:      @key{TAB}   @:             @:     3  @:@:... b a}
34959 @r{. a b c@:      M-@key{TAB} @:             @:     3  @:@:... b c a}
34960 @r{... a b@:      @key{LFD}   @:             @:     1  @:@:... a b a}
34961 @r{  ... a@:      @key{DEL}   @:             @:     1  @:@:...}
34962 @r{... a b@:      M-@key{DEL} @:             @:     1  @:@:... b}
34963 @r{       @:      M-@key{RET} @:             @:     4  @:calc-last-args@:}
34964 @r{      a@:      `     @:editing      @:  1,30  @:calc-edit@:}
34967 @r{  ... a@:      C-d   @:             @:     1  @:@:...}
34968 @r{       @:      C-k   @:             @:    27  @:calc-kill@:}
34969 @r{       @:      C-w   @:             @:    27  @:calc-kill-region@:}
34970 @r{       @:      C-y   @:             @:        @:calc-yank@:}
34971 @r{       @:      C-_   @:             @:     4  @:calc-undo@:}
34972 @r{       @:      M-k   @:             @:    27  @:calc-copy-as-kill@:}
34973 @r{       @:      M-w   @:             @:    27  @:calc-copy-region-as-kill@:}
34976 @r{       @:      [     @:             @:        @:@:[...}
34977 @r{[.. a b@:      ]     @:             @:        @:@:[a,b]}
34978 @r{       @:      (     @:             @:        @:@:(...}
34979 @r{(.. a b@:      )     @:             @:        @:@:(a,b)}
34980 @r{       @:      ,     @:             @:        @:@:vector or rect complex}
34981 @r{       @:      ;     @:             @:        @:@:matrix or polar complex}
34982 @r{       @:      ..    @:             @:        @:@:interval}
34985 @r{       @:      ~     @:             @:        @:calc-num-prefix@:}
34986 @r{       @:      <     @:             @:     4  @:calc-scroll-left@:}
34987 @r{       @:      >     @:             @:     4  @:calc-scroll-right@:}
34988 @r{       @:      @{     @:             @:     4  @:calc-scroll-down@:}
34989 @r{       @:      @}     @:             @:     4  @:calc-scroll-up@:}
34990 @r{       @:      ?     @:             @:        @:calc-help@:}
34993 @r{      a@:      n     @:             @:     1  @:neg@:(a)  @minus{}a}
34994 @r{       @:      o     @:             @:     4  @:calc-realign@:}
34995 @r{       @:      p     @:precision    @:    31  @:calc-precision@:}
34996 @r{       @:      q     @:             @:        @:calc-quit@:}
34997 @r{       @:      w     @:             @:        @:calc-why@:}
34998 @r{       @:      x     @:command      @:        @:M-x calc-@:command}
34999 @r{      a@:      y     @:            @:1,28,49  @:calc-copy-to-buffer@:}
35002 @r{      a@:      A     @:             @:     1  @:abs@:(a)}
35003 @r{    a b@:      B     @:             @:     2  @:log@:(a,b)}
35004 @r{    a b@:    I B     @:             @:     2  @:alog@:(a,b)  b^a}
35005 @r{      a@:      C     @:             @:     1  @:cos@:(a)}
35006 @r{      a@:    I C     @:             @:     1  @:arccos@:(a)}
35007 @r{      a@:    H C     @:             @:     1  @:cosh@:(a)}
35008 @r{      a@:  I H C     @:             @:     1  @:arccosh@:(a)}
35009 @r{       @:      D     @:             @:     4  @:calc-redo@:}
35010 @r{      a@:      E     @:             @:     1  @:exp@:(a)}
35011 @r{      a@:    H E     @:             @:     1  @:exp10@:(a)  10.^a}
35012 @r{      a@:      F     @:             @:  1,11  @:floor@:(a,d)}
35013 @r{      a@:    I F     @:             @:  1,11  @:ceil@:(a,d)}
35014 @r{      a@:    H F     @:             @:  1,11  @:ffloor@:(a,d)}
35015 @r{      a@:  I H F     @:             @:  1,11  @:fceil@:(a,d)}
35016 @r{      a@:      G     @:             @:     1  @:arg@:(a)}
35017 @r{       @:      H     @:command      @:    32  @:@:Hyperbolic}
35018 @r{       @:      I     @:command      @:    32  @:@:Inverse}
35019 @r{      a@:      J     @:             @:     1  @:conj@:(a)}
35020 @r{       @:      K     @:command      @:    32  @:@:Keep-args}
35021 @r{      a@:      L     @:             @:     1  @:ln@:(a)}
35022 @r{      a@:    H L     @:             @:     1  @:log10@:(a)}
35023 @r{       @:      M     @:             @:        @:calc-more-recursion-depth@:}
35024 @r{       @:    I M     @:             @:        @:calc-less-recursion-depth@:}
35025 @r{      a@:      N     @:             @:     5  @:evalvn@:(a)}
35026 @r{       @:      P     @:             @:        @:@:pi}
35027 @r{       @:    I P     @:             @:        @:@:gamma}
35028 @r{       @:    H P     @:             @:        @:@:e}
35029 @r{       @:  I H P     @:             @:        @:@:phi}
35030 @r{      a@:      Q     @:             @:     1  @:sqrt@:(a)}
35031 @r{      a@:    I Q     @:             @:     1  @:sqr@:(a)  a^2}
35032 @r{      a@:      R     @:             @:  1,11  @:round@:(a,d)}
35033 @r{      a@:    I R     @:             @:  1,11  @:trunc@:(a,d)}
35034 @r{      a@:    H R     @:             @:  1,11  @:fround@:(a,d)}
35035 @r{      a@:  I H R     @:             @:  1,11  @:ftrunc@:(a,d)}
35036 @r{      a@:      S     @:             @:     1  @:sin@:(a)}
35037 @r{      a@:    I S     @:             @:     1  @:arcsin@:(a)}
35038 @r{      a@:    H S     @:             @:     1  @:sinh@:(a)}
35039 @r{      a@:  I H S     @:             @:     1  @:arcsinh@:(a)}
35040 @r{      a@:      T     @:             @:     1  @:tan@:(a)}
35041 @r{      a@:    I T     @:             @:     1  @:arctan@:(a)}
35042 @r{      a@:    H T     @:             @:     1  @:tanh@:(a)}
35043 @r{      a@:  I H T     @:             @:     1  @:arctanh@:(a)}
35044 @r{       @:      U     @:             @:     4  @:calc-undo@:}
35045 @r{       @:      X     @:             @:     4  @:calc-call-last-kbd-macro@:}
35048 @r{    a b@:      a =   @:             @:     2  @:eq@:(a,b)  a=b}
35049 @r{    a b@:      a #   @:             @:     2  @:neq@:(a,b)  a!=b}
35050 @r{    a b@:      a <   @:             @:     2  @:lt@:(a,b)  a<b}
35051 @r{    a b@:      a >   @:             @:     2  @:gt@:(a,b)  a>b}
35052 @r{    a b@:      a [   @:             @:     2  @:leq@:(a,b)  a<=b}
35053 @r{    a b@:      a ]   @:             @:     2  @:geq@:(a,b)  a>=b}
35054 @r{    a b@:      a @{   @:             @:     2  @:in@:(a,b)}
35055 @r{    a b@:      a &   @:             @:  2,45  @:land@:(a,b)  a&&b}
35056 @r{    a b@:      a |   @:             @:  2,45  @:lor@:(a,b)  a||b}
35057 @r{      a@:      a !   @:             @:  1,45  @:lnot@:(a)  !a}
35058 @r{  a b c@:      a :   @:             @:    45  @:if@:(a,b,c)  a?b:c}
35059 @r{      a@:      a .   @:             @:     1  @:rmeq@:(a)}
35060 @r{      a@:      a "   @:             @:   7,8  @:calc-expand-formula@:}
35063 @r{      a@:      a +   @:i, l, h      @:  6,38  @:sum@:(a,i,l,h)}
35064 @r{      a@:      a -   @:i, l, h      @:  6,38  @:asum@:(a,i,l,h)}
35065 @r{      a@:      a *   @:i, l, h      @:  6,38  @:prod@:(a,i,l,h)}
35066 @r{    a b@:      a _   @:             @:     2  @:subscr@:(a,b)  a_b}
35069 @r{    a b@:      a \   @:             @:     2  @:pdiv@:(a,b)}
35070 @r{    a b@:      a %   @:             @:     2  @:prem@:(a,b)}
35071 @r{    a b@:      a /   @:             @:     2  @:pdivrem@:(a,b)  [q,r]}
35072 @r{    a b@:    H a /   @:             @:     2  @:pdivide@:(a,b)  q+r/b}
35075 @r{      a@:      a a   @:             @:     1  @:apart@:(a)}
35076 @r{      a@:      a b   @:old, new     @:    38  @:subst@:(a,old,new)}
35077 @r{      a@:      a c   @:v            @:    38  @:collect@:(a,v)}
35078 @r{      a@:      a d   @:v            @:  4,38  @:deriv@:(a,v)}
35079 @r{      a@:    H a d   @:v            @:  4,38  @:tderiv@:(a,v)}
35080 @r{      a@:      a e   @:             @:        @:esimplify@:(a)}
35081 @r{      a@:      a f   @:             @:     1  @:factor@:(a)}
35082 @r{      a@:    H a f   @:             @:     1  @:factors@:(a)}
35083 @r{    a b@:      a g   @:             @:     2  @:pgcd@:(a,b)}
35084 @r{      a@:      a i   @:v            @:    38  @:integ@:(a,v)}
35085 @r{      a@:      a m   @:pats         @:    38  @:match@:(a,pats)}
35086 @r{      a@:    I a m   @:pats         @:    38  @:matchnot@:(a,pats)}
35087 @r{ data x@:      a p   @:             @:    28  @:polint@:(data,x)}
35088 @r{ data x@:    H a p   @:             @:    28  @:ratint@:(data,x)}
35089 @r{      a@:      a n   @:             @:     1  @:nrat@:(a)}
35090 @r{      a@:      a r   @:rules        @:4,8,38  @:rewrite@:(a,rules,n)}
35091 @r{      a@:      a s   @:             @:        @:simplify@:(a)}
35092 @r{      a@:      a t   @:v, n         @: 31,39  @:taylor@:(a,v,n)}
35093 @r{      a@:      a v   @:             @:   7,8  @:calc-alg-evaluate@:}
35094 @r{      a@:      a x   @:             @:   4,8  @:expand@:(a)}
35097 @r{   data@:      a F   @:model, vars  @:    48  @:fit@:(m,iv,pv,data)}
35098 @r{   data@:    I a F   @:model, vars  @:    48  @:xfit@:(m,iv,pv,data)}
35099 @r{   data@:    H a F   @:model, vars  @:    48  @:efit@:(m,iv,pv,data)}
35100 @r{      a@:      a I   @:v, l, h      @:    38  @:ninteg@:(a,v,l,h)}
35101 @r{    a b@:      a M   @:op           @:    22  @:mapeq@:(op,a,b)}
35102 @r{    a b@:    I a M   @:op           @:    22  @:mapeqr@:(op,a,b)}
35103 @r{    a b@:    H a M   @:op           @:    22  @:mapeqp@:(op,a,b)}
35104 @r{    a g@:      a N   @:v            @:    38  @:minimize@:(a,v,g)}
35105 @r{    a g@:    H a N   @:v            @:    38  @:wminimize@:(a,v,g)}
35106 @r{      a@:      a P   @:v            @:    38  @:roots@:(a,v)}
35107 @r{    a g@:      a R   @:v            @:    38  @:root@:(a,v,g)}
35108 @r{    a g@:    H a R   @:v            @:    38  @:wroot@:(a,v,g)}
35109 @r{      a@:      a S   @:v            @:    38  @:solve@:(a,v)}
35110 @r{      a@:    I a S   @:v            @:    38  @:finv@:(a,v)}
35111 @r{      a@:    H a S   @:v            @:    38  @:fsolve@:(a,v)}
35112 @r{      a@:  I H a S   @:v            @:    38  @:ffinv@:(a,v)}
35113 @r{      a@:      a T   @:i, l, h      @:  6,38  @:table@:(a,i,l,h)}
35114 @r{    a g@:      a X   @:v            @:    38  @:maximize@:(a,v,g)}
35115 @r{    a g@:    H a X   @:v            @:    38  @:wmaximize@:(a,v,g)}
35118 @r{    a b@:      b a   @:             @:     9  @:and@:(a,b,w)}
35119 @r{      a@:      b c   @:             @:     9  @:clip@:(a,w)}
35120 @r{    a b@:      b d   @:             @:     9  @:diff@:(a,b,w)}
35121 @r{      a@:      b l   @:             @:    10  @:lsh@:(a,n,w)}
35122 @r{    a n@:    H b l   @:             @:     9  @:lsh@:(a,n,w)}
35123 @r{      a@:      b n   @:             @:     9  @:not@:(a,w)}
35124 @r{    a b@:      b o   @:             @:     9  @:or@:(a,b,w)}
35125 @r{      v@:      b p   @:             @:     1  @:vpack@:(v)}
35126 @r{      a@:      b r   @:             @:    10  @:rsh@:(a,n,w)}
35127 @r{    a n@:    H b r   @:             @:     9  @:rsh@:(a,n,w)}
35128 @r{      a@:      b t   @:             @:    10  @:rot@:(a,n,w)}
35129 @r{    a n@:    H b t   @:             @:     9  @:rot@:(a,n,w)}
35130 @r{      a@:      b u   @:             @:     1  @:vunpack@:(a)}
35131 @r{       @:      b w   @:w            @:  9,50  @:calc-word-size@:}
35132 @r{    a b@:      b x   @:             @:     9  @:xor@:(a,b,w)}
35135 @r{c s l p@:      b D   @:             @:        @:ddb@:(c,s,l,p)}
35136 @r{  r n p@:      b F   @:             @:        @:fv@:(r,n,p)}
35137 @r{  r n p@:    I b F   @:             @:        @:fvb@:(r,n,p)}
35138 @r{  r n p@:    H b F   @:             @:        @:fvl@:(r,n,p)}
35139 @r{      v@:      b I   @:             @:    19  @:irr@:(v)}
35140 @r{      v@:    I b I   @:             @:    19  @:irrb@:(v)}
35141 @r{      a@:      b L   @:             @:    10  @:ash@:(a,n,w)}
35142 @r{    a n@:    H b L   @:             @:     9  @:ash@:(a,n,w)}
35143 @r{  r n a@:      b M   @:             @:        @:pmt@:(r,n,a)}
35144 @r{  r n a@:    I b M   @:             @:        @:pmtb@:(r,n,a)}
35145 @r{  r n a@:    H b M   @:             @:        @:pmtl@:(r,n,a)}
35146 @r{    r v@:      b N   @:             @:    19  @:npv@:(r,v)}
35147 @r{    r v@:    I b N   @:             @:    19  @:npvb@:(r,v)}
35148 @r{  r n p@:      b P   @:             @:        @:pv@:(r,n,p)}
35149 @r{  r n p@:    I b P   @:             @:        @:pvb@:(r,n,p)}
35150 @r{  r n p@:    H b P   @:             @:        @:pvl@:(r,n,p)}
35151 @r{      a@:      b R   @:             @:    10  @:rash@:(a,n,w)}
35152 @r{    a n@:    H b R   @:             @:     9  @:rash@:(a,n,w)}
35153 @r{  c s l@:      b S   @:             @:        @:sln@:(c,s,l)}
35154 @r{  n p a@:      b T   @:             @:        @:rate@:(n,p,a)}
35155 @r{  n p a@:    I b T   @:             @:        @:rateb@:(n,p,a)}
35156 @r{  n p a@:    H b T   @:             @:        @:ratel@:(n,p,a)}
35157 @r{c s l p@:      b Y   @:             @:        @:syd@:(c,s,l,p)}
35159 @r{  r p a@:      b #   @:             @:        @:nper@:(r,p,a)}
35160 @r{  r p a@:    I b #   @:             @:        @:nperb@:(r,p,a)}
35161 @r{  r p a@:    H b #   @:             @:        @:nperl@:(r,p,a)}
35162 @r{    a b@:      b %   @:             @:        @:relch@:(a,b)}
35165 @r{      a@:      c c   @:             @:     5  @:pclean@:(a,p)}
35166 @r{      a@:      c 0-9 @:             @:        @:pclean@:(a,p)}
35167 @r{      a@:    H c c   @:             @:     5  @:clean@:(a,p)}
35168 @r{      a@:    H c 0-9 @:             @:        @:clean@:(a,p)}
35169 @r{      a@:      c d   @:             @:     1  @:deg@:(a)}
35170 @r{      a@:      c f   @:             @:     1  @:pfloat@:(a)}
35171 @r{      a@:    H c f   @:             @:     1  @:float@:(a)}
35172 @r{      a@:      c h   @:             @:     1  @:hms@:(a)}
35173 @r{      a@:      c p   @:             @:        @:polar@:(a)}
35174 @r{      a@:    I c p   @:             @:        @:rect@:(a)}
35175 @r{      a@:      c r   @:             @:     1  @:rad@:(a)}
35178 @r{      a@:      c F   @:             @:     5  @:pfrac@:(a,p)}
35179 @r{      a@:    H c F   @:             @:     5  @:frac@:(a,p)}
35182 @r{      a@:      c %   @:             @:        @:percent@:(a*100)}
35185 @r{       @:      d .   @:char         @:    50  @:calc-point-char@:}
35186 @r{       @:      d ,   @:char         @:    50  @:calc-group-char@:}
35187 @r{       @:      d <   @:             @: 13,50  @:calc-left-justify@:}
35188 @r{       @:      d =   @:             @: 13,50  @:calc-center-justify@:}
35189 @r{       @:      d >   @:             @: 13,50  @:calc-right-justify@:}
35190 @r{       @:      d @{   @:label        @:    50  @:calc-left-label@:}
35191 @r{       @:      d @}   @:label        @:    50  @:calc-right-label@:}
35192 @r{       @:      d [   @:             @:     4  @:calc-truncate-up@:}
35193 @r{       @:      d ]   @:             @:     4  @:calc-truncate-down@:}
35194 @r{       @:      d "   @:             @: 12,50  @:calc-display-strings@:}
35195 @r{       @:      d @key{SPC} @:             @:        @:calc-refresh@:}
35196 @r{       @:      d @key{RET} @:             @:     1  @:calc-refresh-top@:}
35199 @r{       @:      d 0   @:             @:    50  @:calc-decimal-radix@:}
35200 @r{       @:      d 2   @:             @:    50  @:calc-binary-radix@:}
35201 @r{       @:      d 6   @:             @:    50  @:calc-hex-radix@:}
35202 @r{       @:      d 8   @:             @:    50  @:calc-octal-radix@:}
35205 @r{       @:      d b   @:           @:12,13,50  @:calc-line-breaking@:}
35206 @r{       @:      d c   @:             @:    50  @:calc-complex-notation@:}
35207 @r{       @:      d d   @:format       @:    50  @:calc-date-notation@:}
35208 @r{       @:      d e   @:             @:  5,50  @:calc-eng-notation@:}
35209 @r{       @:      d f   @:num          @: 31,50  @:calc-fix-notation@:}
35210 @r{       @:      d g   @:           @:12,13,50  @:calc-group-digits@:}
35211 @r{       @:      d h   @:format       @:    50  @:calc-hms-notation@:}
35212 @r{       @:      d i   @:             @:    50  @:calc-i-notation@:}
35213 @r{       @:      d j   @:             @:    50  @:calc-j-notation@:}
35214 @r{       @:      d l   @:             @: 12,50  @:calc-line-numbering@:}
35215 @r{       @:      d n   @:             @:  5,50  @:calc-normal-notation@:}
35216 @r{       @:      d o   @:format       @:    50  @:calc-over-notation@:}
35217 @r{       @:      d p   @:             @: 12,50  @:calc-show-plain@:}
35218 @r{       @:      d r   @:radix        @: 31,50  @:calc-radix@:}
35219 @r{       @:      d s   @:             @:  5,50  @:calc-sci-notation@:}
35220 @r{       @:      d t   @:             @:    27  @:calc-truncate-stack@:}
35221 @r{       @:      d w   @:             @: 12,13  @:calc-auto-why@:}
35222 @r{       @:      d z   @:             @: 12,50  @:calc-leading-zeros@:}
35225 @r{       @:      d B   @:             @:    50  @:calc-big-language@:}
35226 @r{       @:      d C   @:             @:    50  @:calc-c-language@:}
35227 @r{       @:      d E   @:             @:    50  @:calc-eqn-language@:}
35228 @r{       @:      d F   @:             @:    50  @:calc-fortran-language@:}
35229 @r{       @:      d M   @:             @:    50  @:calc-mathematica-language@:}
35230 @r{       @:      d N   @:             @:    50  @:calc-normal-language@:}
35231 @r{       @:      d O   @:             @:    50  @:calc-flat-language@:}
35232 @r{       @:      d P   @:             @:    50  @:calc-pascal-language@:}
35233 @r{       @:      d T   @:             @:    50  @:calc-tex-language@:}
35234 @r{       @:      d L   @:             @:    50  @:calc-latex-language@:}
35235 @r{       @:      d U   @:             @:    50  @:calc-unformatted-language@:}
35236 @r{       @:      d W   @:             @:    50  @:calc-maple-language@:}
35239 @r{      a@:      f [   @:             @:     4  @:decr@:(a,n)}
35240 @r{      a@:      f ]   @:             @:     4  @:incr@:(a,n)}
35243 @r{    a b@:      f b   @:             @:     2  @:beta@:(a,b)}
35244 @r{      a@:      f e   @:             @:     1  @:erf@:(a)}
35245 @r{      a@:    I f e   @:             @:     1  @:erfc@:(a)}
35246 @r{      a@:      f g   @:             @:     1  @:gamma@:(a)}
35247 @r{    a b@:      f h   @:             @:     2  @:hypot@:(a,b)}
35248 @r{      a@:      f i   @:             @:     1  @:im@:(a)}
35249 @r{    n a@:      f j   @:             @:     2  @:besJ@:(n,a)}
35250 @r{    a b@:      f n   @:             @:     2  @:min@:(a,b)}
35251 @r{      a@:      f r   @:             @:     1  @:re@:(a)}
35252 @r{      a@:      f s   @:             @:     1  @:sign@:(a)}
35253 @r{    a b@:      f x   @:             @:     2  @:max@:(a,b)}
35254 @r{    n a@:      f y   @:             @:     2  @:besY@:(n,a)}
35257 @r{      a@:      f A   @:             @:     1  @:abssqr@:(a)}
35258 @r{  x a b@:      f B   @:             @:        @:betaI@:(x,a,b)}
35259 @r{  x a b@:    H f B   @:             @:        @:betaB@:(x,a,b)}
35260 @r{      a@:      f E   @:             @:     1  @:expm1@:(a)}
35261 @r{    a x@:      f G   @:             @:     2  @:gammaP@:(a,x)}
35262 @r{    a x@:    I f G   @:             @:     2  @:gammaQ@:(a,x)}
35263 @r{    a x@:    H f G   @:             @:     2  @:gammag@:(a,x)}
35264 @r{    a x@:  I H f G   @:             @:     2  @:gammaG@:(a,x)}
35265 @r{    a b@:      f I   @:             @:     2  @:ilog@:(a,b)}
35266 @r{    a b@:    I f I   @:             @:     2  @:alog@:(a,b)  b^a}
35267 @r{      a@:      f L   @:             @:     1  @:lnp1@:(a)}
35268 @r{      a@:      f M   @:             @:     1  @:mant@:(a)}
35269 @r{      a@:      f Q   @:             @:     1  @:isqrt@:(a)}
35270 @r{      a@:    I f Q   @:             @:     1  @:sqr@:(a)  a^2}
35271 @r{    a n@:      f S   @:             @:     2  @:scf@:(a,n)}
35272 @r{    y x@:      f T   @:             @:        @:arctan2@:(y,x)}
35273 @r{      a@:      f X   @:             @:     1  @:xpon@:(a)}
35276 @r{    x y@:      g a   @:             @: 28,40  @:calc-graph-add@:}
35277 @r{       @:      g b   @:             @:    12  @:calc-graph-border@:}
35278 @r{       @:      g c   @:             @:        @:calc-graph-clear@:}
35279 @r{       @:      g d   @:             @:    41  @:calc-graph-delete@:}
35280 @r{    x y@:      g f   @:             @: 28,40  @:calc-graph-fast@:}
35281 @r{       @:      g g   @:             @:    12  @:calc-graph-grid@:}
35282 @r{       @:      g h   @:title        @:        @:calc-graph-header@:}
35283 @r{       @:      g j   @:             @:     4  @:calc-graph-juggle@:}
35284 @r{       @:      g k   @:             @:    12  @:calc-graph-key@:}
35285 @r{       @:      g l   @:             @:    12  @:calc-graph-log-x@:}
35286 @r{       @:      g n   @:name         @:        @:calc-graph-name@:}
35287 @r{       @:      g p   @:             @:    42  @:calc-graph-plot@:}
35288 @r{       @:      g q   @:             @:        @:calc-graph-quit@:}
35289 @r{       @:      g r   @:range        @:        @:calc-graph-range-x@:}
35290 @r{       @:      g s   @:             @: 12,13  @:calc-graph-line-style@:}
35291 @r{       @:      g t   @:title        @:        @:calc-graph-title-x@:}
35292 @r{       @:      g v   @:             @:        @:calc-graph-view-commands@:}
35293 @r{       @:      g x   @:display      @:        @:calc-graph-display@:}
35294 @r{       @:      g z   @:             @:    12  @:calc-graph-zero-x@:}
35297 @r{  x y z@:      g A   @:             @: 28,40  @:calc-graph-add-3d@:}
35298 @r{       @:      g C   @:command      @:        @:calc-graph-command@:}
35299 @r{       @:      g D   @:device       @: 43,44  @:calc-graph-device@:}
35300 @r{  x y z@:      g F   @:             @: 28,40  @:calc-graph-fast-3d@:}
35301 @r{       @:      g H   @:             @:    12  @:calc-graph-hide@:}
35302 @r{       @:      g K   @:             @:        @:calc-graph-kill@:}
35303 @r{       @:      g L   @:             @:    12  @:calc-graph-log-y@:}
35304 @r{       @:      g N   @:number       @: 43,51  @:calc-graph-num-points@:}
35305 @r{       @:      g O   @:filename     @: 43,44  @:calc-graph-output@:}
35306 @r{       @:      g P   @:             @:    42  @:calc-graph-print@:}
35307 @r{       @:      g R   @:range        @:        @:calc-graph-range-y@:}
35308 @r{       @:      g S   @:             @: 12,13  @:calc-graph-point-style@:}
35309 @r{       @:      g T   @:title        @:        @:calc-graph-title-y@:}
35310 @r{       @:      g V   @:             @:        @:calc-graph-view-trail@:}
35311 @r{       @:      g X   @:format       @:        @:calc-graph-geometry@:}
35312 @r{       @:      g Z   @:             @:    12  @:calc-graph-zero-y@:}
35315 @r{       @:      g C-l @:             @:    12  @:calc-graph-log-z@:}
35316 @r{       @:      g C-r @:range        @:        @:calc-graph-range-z@:}
35317 @r{       @:      g C-t @:title        @:        @:calc-graph-title-z@:}
35320 @r{       @:      h b   @:             @:        @:calc-describe-bindings@:}
35321 @r{       @:      h c   @:key          @:        @:calc-describe-key-briefly@:}
35322 @r{       @:      h f   @:function     @:        @:calc-describe-function@:}
35323 @r{       @:      h h   @:             @:        @:calc-full-help@:}
35324 @r{       @:      h i   @:             @:        @:calc-info@:}
35325 @r{       @:      h k   @:key          @:        @:calc-describe-key@:}
35326 @r{       @:      h n   @:             @:        @:calc-view-news@:}
35327 @r{       @:      h s   @:             @:        @:calc-info-summary@:}
35328 @r{       @:      h t   @:             @:        @:calc-tutorial@:}
35329 @r{       @:      h v   @:var          @:        @:calc-describe-variable@:}
35332 @r{       @:      j 1-9 @:             @:        @:calc-select-part@:}
35333 @r{       @:      j @key{RET} @:             @:    27  @:calc-copy-selection@:}
35334 @r{       @:      j @key{DEL} @:             @:    27  @:calc-del-selection@:}
35335 @r{       @:      j '   @:formula      @:    27  @:calc-enter-selection@:}
35336 @r{       @:      j `   @:editing      @: 27,30  @:calc-edit-selection@:}
35337 @r{       @:      j "   @:             @:  7,27  @:calc-sel-expand-formula@:}
35340 @r{       @:      j +   @:formula      @:    27  @:calc-sel-add-both-sides@:}
35341 @r{       @:      j -   @:formula      @:    27  @:calc-sel-sub-both-sides@:}
35342 @r{       @:      j *   @:formula      @:    27  @:calc-sel-mul-both-sides@:}
35343 @r{       @:      j /   @:formula      @:    27  @:calc-sel-div-both-sides@:}
35344 @r{       @:      j &   @:             @:    27  @:calc-sel-invert@:}
35347 @r{       @:      j a   @:             @:    27  @:calc-select-additional@:}
35348 @r{       @:      j b   @:             @:    12  @:calc-break-selections@:}
35349 @r{       @:      j c   @:             @:        @:calc-clear-selections@:}
35350 @r{       @:      j d   @:             @: 12,50  @:calc-show-selections@:}
35351 @r{       @:      j e   @:             @:    12  @:calc-enable-selections@:}
35352 @r{       @:      j l   @:             @:  4,27  @:calc-select-less@:}
35353 @r{       @:      j m   @:             @:  4,27  @:calc-select-more@:}
35354 @r{       @:      j n   @:             @:     4  @:calc-select-next@:}
35355 @r{       @:      j o   @:             @:  4,27  @:calc-select-once@:}
35356 @r{       @:      j p   @:             @:     4  @:calc-select-previous@:}
35357 @r{       @:      j r   @:rules        @:4,8,27  @:calc-rewrite-selection@:}
35358 @r{       @:      j s   @:             @:  4,27  @:calc-select-here@:}
35359 @r{       @:      j u   @:             @:    27  @:calc-unselect@:}
35360 @r{       @:      j v   @:             @:  7,27  @:calc-sel-evaluate@:}
35363 @r{       @:      j C   @:             @:    27  @:calc-sel-commute@:}
35364 @r{       @:      j D   @:             @:  4,27  @:calc-sel-distribute@:}
35365 @r{       @:      j E   @:             @:    27  @:calc-sel-jump-equals@:}
35366 @r{       @:      j I   @:             @:    27  @:calc-sel-isolate@:}
35367 @r{       @:    H j I   @:             @:    27  @:calc-sel-isolate@: (full)}
35368 @r{       @:      j L   @:             @:  4,27  @:calc-commute-left@:}
35369 @r{       @:      j M   @:             @:    27  @:calc-sel-merge@:}
35370 @r{       @:      j N   @:             @:    27  @:calc-sel-negate@:}
35371 @r{       @:      j O   @:             @:  4,27  @:calc-select-once-maybe@:}
35372 @r{       @:      j R   @:             @:  4,27  @:calc-commute-right@:}
35373 @r{       @:      j S   @:             @:  4,27  @:calc-select-here-maybe@:}
35374 @r{       @:      j U   @:             @:    27  @:calc-sel-unpack@:}
35377 @r{       @:      k a   @:             @:        @:calc-random-again@:}
35378 @r{      n@:      k b   @:             @:     1  @:bern@:(n)}
35379 @r{    n x@:    H k b   @:             @:     2  @:bern@:(n,x)}
35380 @r{    n m@:      k c   @:             @:     2  @:choose@:(n,m)}
35381 @r{    n m@:    H k c   @:             @:     2  @:perm@:(n,m)}
35382 @r{      n@:      k d   @:             @:     1  @:dfact@:(n)  n!!}
35383 @r{      n@:      k e   @:             @:     1  @:euler@:(n)}
35384 @r{    n x@:    H k e   @:             @:     2  @:euler@:(n,x)}
35385 @r{      n@:      k f   @:             @:     4  @:prfac@:(n)}
35386 @r{    n m@:      k g   @:             @:     2  @:gcd@:(n,m)}
35387 @r{    m n@:      k h   @:             @:    14  @:shuffle@:(n,m)}
35388 @r{    n m@:      k l   @:             @:     2  @:lcm@:(n,m)}
35389 @r{      n@:      k m   @:             @:     1  @:moebius@:(n)}
35390 @r{      n@:      k n   @:             @:     4  @:nextprime@:(n)}
35391 @r{      n@:    I k n   @:             @:     4  @:prevprime@:(n)}
35392 @r{      n@:      k p   @:             @:  4,28  @:calc-prime-test@:}
35393 @r{      m@:      k r   @:             @:    14  @:random@:(m)}
35394 @r{    n m@:      k s   @:             @:     2  @:stir1@:(n,m)}
35395 @r{    n m@:    H k s   @:             @:     2  @:stir2@:(n,m)}
35396 @r{      n@:      k t   @:             @:     1  @:totient@:(n)}
35399 @r{  n p x@:      k B   @:             @:        @:utpb@:(x,n,p)}
35400 @r{  n p x@:    I k B   @:             @:        @:ltpb@:(x,n,p)}
35401 @r{    v x@:      k C   @:             @:        @:utpc@:(x,v)}
35402 @r{    v x@:    I k C   @:             @:        @:ltpc@:(x,v)}
35403 @r{    n m@:      k E   @:             @:        @:egcd@:(n,m)}
35404 @r{v1 v2 x@:      k F   @:             @:        @:utpf@:(x,v1,v2)}
35405 @r{v1 v2 x@:    I k F   @:             @:        @:ltpf@:(x,v1,v2)}
35406 @r{  m s x@:      k N   @:             @:        @:utpn@:(x,m,s)}
35407 @r{  m s x@:    I k N   @:             @:        @:ltpn@:(x,m,s)}
35408 @r{    m x@:      k P   @:             @:        @:utpp@:(x,m)}
35409 @r{    m x@:    I k P   @:             @:        @:ltpp@:(x,m)}
35410 @r{    v x@:      k T   @:             @:        @:utpt@:(x,v)}
35411 @r{    v x@:    I k T   @:             @:        @:ltpt@:(x,v)}
35414 @r{       @:      m a   @:             @: 12,13  @:calc-algebraic-mode@:}
35415 @r{       @:      m d   @:             @:        @:calc-degrees-mode@:}
35416 @r{       @:      m f   @:             @:    12  @:calc-frac-mode@:}
35417 @r{       @:      m g   @:             @:    52  @:calc-get-modes@:}
35418 @r{       @:      m h   @:             @:        @:calc-hms-mode@:}
35419 @r{       @:      m i   @:             @: 12,13  @:calc-infinite-mode@:}
35420 @r{       @:      m m   @:             @:        @:calc-save-modes@:}
35421 @r{       @:      m p   @:             @:    12  @:calc-polar-mode@:}
35422 @r{       @:      m r   @:             @:        @:calc-radians-mode@:}
35423 @r{       @:      m s   @:             @:    12  @:calc-symbolic-mode@:}
35424 @r{       @:      m t   @:             @:    12  @:calc-total-algebraic-mode@:}
35425 @r{       @:      m v   @:             @: 12,13  @:calc-matrix-mode@:}
35426 @r{       @:      m w   @:             @:    13  @:calc-working@:}
35427 @r{       @:      m x   @:             @:        @:calc-always-load-extensions@:}
35430 @r{       @:      m A   @:             @:    12  @:calc-alg-simplify-mode@:}
35431 @r{       @:      m B   @:             @:    12  @:calc-bin-simplify-mode@:}
35432 @r{       @:      m C   @:             @:    12  @:calc-auto-recompute@:}
35433 @r{       @:      m D   @:             @:        @:calc-default-simplify-mode@:}
35434 @r{       @:      m E   @:             @:    12  @:calc-ext-simplify-mode@:}
35435 @r{       @:      m F   @:filename     @:    13  @:calc-settings-file-name@:}
35436 @r{       @:      m N   @:             @:    12  @:calc-num-simplify-mode@:}
35437 @r{       @:      m O   @:             @:    12  @:calc-no-simplify-mode@:}
35438 @r{       @:      m R   @:             @: 12,13  @:calc-mode-record-mode@:}
35439 @r{       @:      m S   @:             @:    12  @:calc-shift-prefix@:}
35440 @r{       @:      m U   @:             @:    12  @:calc-units-simplify-mode@:}
35443 @r{       @:      s c   @:var1, var2   @:    29  @:calc-copy-variable@:}
35444 @r{       @:      s d   @:var, decl    @:        @:calc-declare-variable@:}
35445 @r{       @:      s e   @:var, editing @: 29,30  @:calc-edit-variable@:}
35446 @r{       @:      s i   @:buffer       @:        @:calc-insert-variables@:}
35447 @r{    a b@:      s l   @:var          @:    29  @:@:a  (letting var=b)}
35448 @r{  a ...@:      s m   @:op, var      @: 22,29  @:calc-store-map@:}
35449 @r{       @:      s n   @:var          @: 29,47  @:calc-store-neg@:  (v/-1)}
35450 @r{       @:      s p   @:var          @:    29  @:calc-permanent-variable@:}
35451 @r{       @:      s r   @:var          @:    29  @:@:v  (recalled value)}
35452 @r{       @:      r 0-9 @:             @:        @:calc-recall-quick@:}
35453 @r{      a@:      s s   @:var          @: 28,29  @:calc-store@:}
35454 @r{      a@:      s 0-9 @:             @:        @:calc-store-quick@:}
35455 @r{      a@:      s t   @:var          @:    29  @:calc-store-into@:}
35456 @r{      a@:      t 0-9 @:             @:        @:calc-store-into-quick@:}
35457 @r{       @:      s u   @:var          @:    29  @:calc-unstore@:}
35458 @r{      a@:      s x   @:var          @:    29  @:calc-store-exchange@:}
35461 @r{       @:      s A   @:editing      @:    30  @:calc-edit-AlgSimpRules@:}
35462 @r{       @:      s D   @:editing      @:    30  @:calc-edit-Decls@:}
35463 @r{       @:      s E   @:editing      @:    30  @:calc-edit-EvalRules@:}
35464 @r{       @:      s F   @:editing      @:    30  @:calc-edit-FitRules@:}
35465 @r{       @:      s G   @:editing      @:    30  @:calc-edit-GenCount@:}
35466 @r{       @:      s H   @:editing      @:    30  @:calc-edit-Holidays@:}
35467 @r{       @:      s I   @:editing      @:    30  @:calc-edit-IntegLimit@:}
35468 @r{       @:      s L   @:editing      @:    30  @:calc-edit-LineStyles@:}
35469 @r{       @:      s P   @:editing      @:    30  @:calc-edit-PointStyles@:}
35470 @r{       @:      s R   @:editing      @:    30  @:calc-edit-PlotRejects@:}
35471 @r{       @:      s T   @:editing      @:    30  @:calc-edit-TimeZone@:}
35472 @r{       @:      s U   @:editing      @:    30  @:calc-edit-Units@:}
35473 @r{       @:      s X   @:editing      @:    30  @:calc-edit-ExtSimpRules@:}
35476 @r{      a@:      s +   @:var          @: 29,47  @:calc-store-plus@:  (v+a)}
35477 @r{      a@:      s -   @:var          @: 29,47  @:calc-store-minus@:  (v-a)}
35478 @r{      a@:      s *   @:var          @: 29,47  @:calc-store-times@:  (v*a)}
35479 @r{      a@:      s /   @:var          @: 29,47  @:calc-store-div@:  (v/a)}
35480 @r{      a@:      s ^   @:var          @: 29,47  @:calc-store-power@:  (v^a)}
35481 @r{      a@:      s |   @:var          @: 29,47  @:calc-store-concat@:  (v|a)}
35482 @r{       @:      s &   @:var          @: 29,47  @:calc-store-inv@:  (v^-1)}
35483 @r{       @:      s [   @:var          @: 29,47  @:calc-store-decr@:  (v-1)}
35484 @r{       @:      s ]   @:var          @: 29,47  @:calc-store-incr@:  (v-(-1))}
35485 @r{    a b@:      s :   @:             @:     2  @:assign@:(a,b)  a @tfn{:=} b}
35486 @r{      a@:      s =   @:             @:     1  @:evalto@:(a,b)  a @tfn{=>}}
35489 @r{       @:      t [   @:             @:     4  @:calc-trail-first@:}
35490 @r{       @:      t ]   @:             @:     4  @:calc-trail-last@:}
35491 @r{       @:      t <   @:             @:     4  @:calc-trail-scroll-left@:}
35492 @r{       @:      t >   @:             @:     4  @:calc-trail-scroll-right@:}
35493 @r{       @:      t .   @:             @:    12  @:calc-full-trail-vectors@:}
35496 @r{       @:      t b   @:             @:     4  @:calc-trail-backward@:}
35497 @r{       @:      t d   @:             @: 12,50  @:calc-trail-display@:}
35498 @r{       @:      t f   @:             @:     4  @:calc-trail-forward@:}
35499 @r{       @:      t h   @:             @:        @:calc-trail-here@:}
35500 @r{       @:      t i   @:             @:        @:calc-trail-in@:}
35501 @r{       @:      t k   @:             @:     4  @:calc-trail-kill@:}
35502 @r{       @:      t m   @:string       @:        @:calc-trail-marker@:}
35503 @r{       @:      t n   @:             @:     4  @:calc-trail-next@:}
35504 @r{       @:      t o   @:             @:        @:calc-trail-out@:}
35505 @r{       @:      t p   @:             @:     4  @:calc-trail-previous@:}
35506 @r{       @:      t r   @:string       @:        @:calc-trail-isearch-backward@:}
35507 @r{       @:      t s   @:string       @:        @:calc-trail-isearch-forward@:}
35508 @r{       @:      t y   @:             @:     4  @:calc-trail-yank@:}
35511 @r{      d@:      t C   @:oz, nz       @:        @:tzconv@:(d,oz,nz)}
35512 @r{d oz nz@:      t C   @:$            @:        @:tzconv@:(d,oz,nz)}
35513 @r{      d@:      t D   @:             @:    15  @:date@:(d)}
35514 @r{      d@:      t I   @:             @:     4  @:incmonth@:(d,n)}
35515 @r{      d@:      t J   @:             @:    16  @:julian@:(d,z)}
35516 @r{      d@:      t M   @:             @:    17  @:newmonth@:(d,n)}
35517 @r{       @:      t N   @:             @:    16  @:now@:(z)}
35518 @r{      d@:      t P   @:1            @:    31  @:year@:(d)}
35519 @r{      d@:      t P   @:2            @:    31  @:month@:(d)}
35520 @r{      d@:      t P   @:3            @:    31  @:day@:(d)}
35521 @r{      d@:      t P   @:4            @:    31  @:hour@:(d)}
35522 @r{      d@:      t P   @:5            @:    31  @:minute@:(d)}
35523 @r{      d@:      t P   @:6            @:    31  @:second@:(d)}
35524 @r{      d@:      t P   @:7            @:    31  @:weekday@:(d)}
35525 @r{      d@:      t P   @:8            @:    31  @:yearday@:(d)}
35526 @r{      d@:      t P   @:9            @:    31  @:time@:(d)}
35527 @r{      d@:      t U   @:             @:    16  @:unixtime@:(d,z)}
35528 @r{      d@:      t W   @:             @:    17  @:newweek@:(d,w)}
35529 @r{      d@:      t Y   @:             @:    17  @:newyear@:(d,n)}
35532 @r{    a b@:      t +   @:             @:     2  @:badd@:(a,b)}
35533 @r{    a b@:      t -   @:             @:     2  @:bsub@:(a,b)}
35536 @r{       @:      u a   @:             @:    12  @:calc-autorange-units@:}
35537 @r{      a@:      u b   @:             @:        @:calc-base-units@:}
35538 @r{      a@:      u c   @:units        @:    18  @:calc-convert-units@:}
35539 @r{   defn@:      u d   @:unit, descr  @:        @:calc-define-unit@:}
35540 @r{       @:      u e   @:             @:        @:calc-explain-units@:}
35541 @r{       @:      u g   @:unit         @:        @:calc-get-unit-definition@:}
35542 @r{       @:      u p   @:             @:        @:calc-permanent-units@:}
35543 @r{      a@:      u r   @:             @:        @:calc-remove-units@:}
35544 @r{      a@:      u s   @:             @:        @:usimplify@:(a)}
35545 @r{      a@:      u t   @:units        @:    18  @:calc-convert-temperature@:}
35546 @r{       @:      u u   @:unit         @:        @:calc-undefine-unit@:}
35547 @r{       @:      u v   @:             @:        @:calc-enter-units-table@:}
35548 @r{      a@:      u x   @:             @:        @:calc-extract-units@:}
35549 @r{      a@:      u 0-9 @:             @:        @:calc-quick-units@:}
35552 @r{  v1 v2@:      u C   @:             @:    20  @:vcov@:(v1,v2)}
35553 @r{  v1 v2@:    I u C   @:             @:    20  @:vpcov@:(v1,v2)}
35554 @r{  v1 v2@:    H u C   @:             @:    20  @:vcorr@:(v1,v2)}
35555 @r{      v@:      u G   @:             @:    19  @:vgmean@:(v)}
35556 @r{    a b@:    H u G   @:             @:     2  @:agmean@:(a,b)}
35557 @r{      v@:      u M   @:             @:    19  @:vmean@:(v)}
35558 @r{      v@:    I u M   @:             @:    19  @:vmeane@:(v)}
35559 @r{      v@:    H u M   @:             @:    19  @:vmedian@:(v)}
35560 @r{      v@:  I H u M   @:             @:    19  @:vhmean@:(v)}
35561 @r{      v@:      u N   @:             @:    19  @:vmin@:(v)}
35562 @r{      v@:      u S   @:             @:    19  @:vsdev@:(v)}
35563 @r{      v@:    I u S   @:             @:    19  @:vpsdev@:(v)}
35564 @r{      v@:    H u S   @:             @:    19  @:vvar@:(v)}
35565 @r{      v@:  I H u S   @:             @:    19  @:vpvar@:(v)}
35566 @r{       @:      u V   @:             @:        @:calc-view-units-table@:}
35567 @r{      v@:      u X   @:             @:    19  @:vmax@:(v)}
35570 @r{      v@:      u +   @:             @:    19  @:vsum@:(v)}
35571 @r{      v@:      u *   @:             @:    19  @:vprod@:(v)}
35572 @r{      v@:      u #   @:             @:    19  @:vcount@:(v)}
35575 @r{       @:      V (   @:             @:    50  @:calc-vector-parens@:}
35576 @r{       @:      V @{   @:             @:    50  @:calc-vector-braces@:}
35577 @r{       @:      V [   @:             @:    50  @:calc-vector-brackets@:}
35578 @r{       @:      V ]   @:ROCP         @:    50  @:calc-matrix-brackets@:}
35579 @r{       @:      V ,   @:             @:    50  @:calc-vector-commas@:}
35580 @r{       @:      V <   @:             @:    50  @:calc-matrix-left-justify@:}
35581 @r{       @:      V =   @:             @:    50  @:calc-matrix-center-justify@:}
35582 @r{       @:      V >   @:             @:    50  @:calc-matrix-right-justify@:}
35583 @r{       @:      V /   @:             @: 12,50  @:calc-break-vectors@:}
35584 @r{       @:      V .   @:             @: 12,50  @:calc-full-vectors@:}
35587 @r{    s t@:      V ^   @:             @:     2  @:vint@:(s,t)}
35588 @r{    s t@:      V -   @:             @:     2  @:vdiff@:(s,t)}
35589 @r{      s@:      V ~   @:             @:     1  @:vcompl@:(s)}
35590 @r{      s@:      V #   @:             @:     1  @:vcard@:(s)}
35591 @r{      s@:      V :   @:             @:     1  @:vspan@:(s)}
35592 @r{      s@:      V +   @:             @:     1  @:rdup@:(s)}
35595 @r{      m@:      V &   @:             @:     1  @:inv@:(m)  1/m}
35598 @r{      v@:      v a   @:n            @:        @:arrange@:(v,n)}
35599 @r{      a@:      v b   @:n            @:        @:cvec@:(a,n)}
35600 @r{      v@:      v c   @:n >0         @: 21,31  @:mcol@:(v,n)}
35601 @r{      v@:      v c   @:n <0         @:    31  @:mrcol@:(v,-n)}
35602 @r{      m@:      v c   @:0            @:    31  @:getdiag@:(m)}
35603 @r{      v@:      v d   @:             @:    25  @:diag@:(v,n)}
35604 @r{    v m@:      v e   @:             @:     2  @:vexp@:(v,m)}
35605 @r{  v m f@:    H v e   @:             @:     2  @:vexp@:(v,m,f)}
35606 @r{    v a@:      v f   @:             @:    26  @:find@:(v,a,n)}
35607 @r{      v@:      v h   @:             @:     1  @:head@:(v)}
35608 @r{      v@:    I v h   @:             @:     1  @:tail@:(v)}
35609 @r{      v@:    H v h   @:             @:     1  @:rhead@:(v)}
35610 @r{      v@:  I H v h   @:             @:     1  @:rtail@:(v)}
35611 @r{       @:      v i   @:n            @:    31  @:idn@:(1,n)}
35612 @r{       @:      v i   @:0            @:    31  @:idn@:(1)}
35613 @r{    h t@:      v k   @:             @:     2  @:cons@:(h,t)}
35614 @r{    h t@:    H v k   @:             @:     2  @:rcons@:(h,t)}
35615 @r{      v@:      v l   @:             @:     1  @:vlen@:(v)}
35616 @r{      v@:    H v l   @:             @:     1  @:mdims@:(v)}
35617 @r{    v m@:      v m   @:             @:     2  @:vmask@:(v,m)}
35618 @r{      v@:      v n   @:             @:     1  @:rnorm@:(v)}
35619 @r{  a b c@:      v p   @:             @:    24  @:calc-pack@:}
35620 @r{      v@:      v r   @:n >0         @: 21,31  @:mrow@:(v,n)}
35621 @r{      v@:      v r   @:n <0         @:    31  @:mrrow@:(v,-n)}
35622 @r{      m@:      v r   @:0            @:    31  @:getdiag@:(m)}
35623 @r{  v i j@:      v s   @:             @:        @:subvec@:(v,i,j)}
35624 @r{  v i j@:    I v s   @:             @:        @:rsubvec@:(v,i,j)}
35625 @r{      m@:      v t   @:             @:     1  @:trn@:(m)}
35626 @r{      v@:      v u   @:             @:    24  @:calc-unpack@:}
35627 @r{      v@:      v v   @:             @:     1  @:rev@:(v)}
35628 @r{       @:      v x   @:n            @:    31  @:index@:(n)}
35629 @r{  n s i@:  C-u v x   @:             @:        @:index@:(n,s,i)}
35632 @r{      v@:      V A   @:op           @:    22  @:apply@:(op,v)}
35633 @r{  v1 v2@:      V C   @:             @:     2  @:cross@:(v1,v2)}
35634 @r{      m@:      V D   @:             @:     1  @:det@:(m)}
35635 @r{      s@:      V E   @:             @:     1  @:venum@:(s)}
35636 @r{      s@:      V F   @:             @:     1  @:vfloor@:(s)}
35637 @r{      v@:      V G   @:             @:        @:grade@:(v)}
35638 @r{      v@:    I V G   @:             @:        @:rgrade@:(v)}
35639 @r{      v@:      V H   @:n            @:    31  @:histogram@:(v,n)}
35640 @r{    v w@:    H V H   @:n            @:    31  @:histogram@:(v,w,n)}
35641 @r{  v1 v2@:      V I   @:mop aop      @:    22  @:inner@:(mop,aop,v1,v2)}
35642 @r{      m@:      V J   @:             @:     1  @:ctrn@:(m)}
35643 @r{      m@:      V L   @:             @:     1  @:lud@:(m)}
35644 @r{      v@:      V M   @:op           @: 22,23  @:map@:(op,v)}
35645 @r{      v@:      V N   @:             @:     1  @:cnorm@:(v)}
35646 @r{  v1 v2@:      V O   @:op           @:    22  @:outer@:(op,v1,v2)}
35647 @r{      v@:      V R   @:op           @: 22,23  @:reduce@:(op,v)}
35648 @r{      v@:    I V R   @:op           @: 22,23  @:rreduce@:(op,v)}
35649 @r{    a n@:    H V R   @:op           @:    22  @:nest@:(op,a,n)}
35650 @r{      a@:  I H V R   @:op           @:    22  @:fixp@:(op,a)}
35651 @r{      v@:      V S   @:             @:        @:sort@:(v)}
35652 @r{      v@:    I V S   @:             @:        @:rsort@:(v)}
35653 @r{      m@:      V T   @:             @:     1  @:tr@:(m)}
35654 @r{      v@:      V U   @:op           @:    22  @:accum@:(op,v)}
35655 @r{      v@:    I V U   @:op           @:    22  @:raccum@:(op,v)}
35656 @r{    a n@:    H V U   @:op           @:    22  @:anest@:(op,a,n)}
35657 @r{      a@:  I H V U   @:op           @:    22  @:afixp@:(op,a)}
35658 @r{    s t@:      V V   @:             @:     2  @:vunion@:(s,t)}
35659 @r{    s t@:      V X   @:             @:     2  @:vxor@:(s,t)}
35662 @r{       @:      Y     @:             @:        @:@:user commands}
35665 @r{       @:      z     @:             @:        @:@:user commands}
35668 @r{      c@:      Z [   @:             @:    45  @:calc-kbd-if@:}
35669 @r{      c@:      Z |   @:             @:    45  @:calc-kbd-else-if@:}
35670 @r{       @:      Z :   @:             @:        @:calc-kbd-else@:}
35671 @r{       @:      Z ]   @:             @:        @:calc-kbd-end-if@:}
35674 @r{       @:      Z @{   @:             @:     4  @:calc-kbd-loop@:}
35675 @r{      c@:      Z /   @:             @:    45  @:calc-kbd-break@:}
35676 @r{       @:      Z @}   @:             @:        @:calc-kbd-end-loop@:}
35677 @r{      n@:      Z <   @:             @:        @:calc-kbd-repeat@:}
35678 @r{       @:      Z >   @:             @:        @:calc-kbd-end-repeat@:}
35679 @r{    n m@:      Z (   @:             @:        @:calc-kbd-for@:}
35680 @r{      s@:      Z )   @:             @:        @:calc-kbd-end-for@:}
35683 @r{       @:      Z C-g @:             @:        @:@:cancel if/loop command}
35686 @r{       @:      Z `   @:             @:        @:calc-kbd-push@:}
35687 @r{       @:      Z '   @:             @:        @:calc-kbd-pop@:}
35688 @r{      a@:      Z =   @:message      @:    28  @:calc-kbd-report@:}
35689 @r{       @:      Z #   @:prompt       @:        @:calc-kbd-query@:}
35692 @r{   comp@:      Z C   @:func, args   @:    50  @:calc-user-define-composition@:}
35693 @r{       @:      Z D   @:key, command @:        @:calc-user-define@:}
35694 @r{       @:      Z E   @:key, editing @:    30  @:calc-user-define-edit@:}
35695 @r{   defn@:      Z F   @:k, c, f, a, n@:    28  @:calc-user-define-formula@:}
35696 @r{       @:      Z G   @:key          @:        @:calc-get-user-defn@:}
35697 @r{       @:      Z I   @:             @:        @:calc-user-define-invocation@:}
35698 @r{       @:      Z K   @:key, command @:        @:calc-user-define-kbd-macro@:}
35699 @r{       @:      Z P   @:key          @:        @:calc-user-define-permanent@:}
35700 @r{       @:      Z S   @:             @:    30  @:calc-edit-user-syntax@:}
35701 @r{       @:      Z T   @:             @:    12  @:calc-timing@:}
35702 @r{       @:      Z U   @:key          @:        @:calc-user-undefine@:}
35704 @end format
35706 @noindent
35707 NOTES
35709 @enumerate
35710 @c 1
35711 @item
35712 Positive prefix arguments apply to @expr{n} stack entries.
35713 Negative prefix arguments apply to the @expr{-n}th stack entry.
35714 A prefix of zero applies to the entire stack.  (For @key{LFD} and
35715 @kbd{M-@key{DEL}}, the meaning of the sign is reversed.)
35717 @c 2
35718 @item
35719 Positive prefix arguments apply to @expr{n} stack entries.
35720 Negative prefix arguments apply to the top stack entry
35721 and the next @expr{-n} stack entries.
35723 @c 3
35724 @item
35725 Positive prefix arguments rotate top @expr{n} stack entries by one.
35726 Negative prefix arguments rotate the entire stack by @expr{-n}.
35727 A prefix of zero reverses the entire stack.
35729 @c 4
35730 @item
35731 Prefix argument specifies a repeat count or distance.
35733 @c 5
35734 @item
35735 Positive prefix arguments specify a precision @expr{p}.
35736 Negative prefix arguments reduce the current precision by @expr{-p}.
35738 @c 6
35739 @item
35740 A prefix argument is interpreted as an additional step-size parameter.
35741 A plain @kbd{C-u} prefix means to prompt for the step size.
35743 @c 7
35744 @item
35745 A prefix argument specifies simplification level and depth.
35746 1=Default, 2=like @kbd{a s}, 3=like @kbd{a e}.
35748 @c 8
35749 @item
35750 A negative prefix operates only on the top level of the input formula.
35752 @c 9
35753 @item
35754 Positive prefix arguments specify a word size of @expr{w} bits, unsigned.
35755 Negative prefix arguments specify a word size of @expr{w} bits, signed.
35757 @c 10
35758 @item
35759 Prefix arguments specify the shift amount @expr{n}.  The @expr{w} argument
35760 cannot be specified in the keyboard version of this command.
35762 @c 11
35763 @item
35764 From the keyboard, @expr{d} is omitted and defaults to zero.
35766 @c 12
35767 @item
35768 Mode is toggled; a positive prefix always sets the mode, and a negative
35769 prefix always clears the mode.
35771 @c 13
35772 @item
35773 Some prefix argument values provide special variations of the mode.
35775 @c 14
35776 @item
35777 A prefix argument, if any, is used for @expr{m} instead of taking
35778 @expr{m} from the stack.  @expr{M} may take any of these values:
35779 @iftex
35780 {@advance@tableindent10pt
35781 @end iftex
35782 @table @asis
35783 @item Integer
35784 Random integer in the interval @expr{[0 .. m)}.
35785 @item Float
35786 Random floating-point number in the interval @expr{[0 .. m)}.
35787 @item 0.0
35788 Gaussian with mean 1 and standard deviation 0.
35789 @item Error form
35790 Gaussian with specified mean and standard deviation.
35791 @item Interval
35792 Random integer or floating-point number in that interval.
35793 @item Vector
35794 Random element from the vector.
35795 @end table
35796 @iftex
35798 @end iftex
35800 @c 15
35801 @item
35802 A prefix argument from 1 to 6 specifies number of date components
35803 to remove from the stack.  @xref{Date Conversions}.
35805 @c 16
35806 @item
35807 A prefix argument specifies a time zone; @kbd{C-u} says to take the
35808 time zone number or name from the top of the stack.  @xref{Time Zones}.
35810 @c 17
35811 @item
35812 A prefix argument specifies a day number (0-6, 0-31, or 0-366).
35814 @c 18
35815 @item
35816 If the input has no units, you will be prompted for both the old and
35817 the new units.
35819 @c 19
35820 @item
35821 With a prefix argument, collect that many stack entries to form the
35822 input data set.  Each entry may be a single value or a vector of values.
35824 @c 20
35825 @item
35826 With a prefix argument of 1, take a single 
35827 @texline @var{n}@math{\times2}
35828 @infoline @mathit{@var{N}x2} 
35829 matrix from the stack instead of two separate data vectors.
35831 @c 21
35832 @item
35833 The row or column number @expr{n} may be given as a numeric prefix
35834 argument instead.  A plain @kbd{C-u} prefix says to take @expr{n}
35835 from the top of the stack.  If @expr{n} is a vector or interval,
35836 a subvector/submatrix of the input is created.
35838 @c 22
35839 @item
35840 The @expr{op} prompt can be answered with the key sequence for the
35841 desired function, or with @kbd{x} or @kbd{z} followed by a function name,
35842 or with @kbd{$} to take a formula from the top of the stack, or with
35843 @kbd{'} and a typed formula.  In the last two cases, the formula may
35844 be a nameless function like @samp{<#1+#2>} or @samp{<x, y : x+y>}, or it
35845 may include @kbd{$}, @kbd{$$}, etc. (where @kbd{$} will correspond to the
35846 last argument of the created function), or otherwise you will be
35847 prompted for an argument list.  The number of vectors popped from the
35848 stack by @kbd{V M} depends on the number of arguments of the function.
35850 @c 23
35851 @item
35852 One of the mapping direction keys @kbd{_} (horizontal, i.e., map
35853 by rows or reduce across), @kbd{:} (vertical, i.e., map by columns or
35854 reduce down), or @kbd{=} (map or reduce by rows) may be used before
35855 entering @expr{op}; these modify the function name by adding the letter
35856 @code{r} for ``rows,'' @code{c} for ``columns,'' @code{a} for ``across,''
35857 or @code{d} for ``down.''
35859 @c 24
35860 @item
35861 The prefix argument specifies a packing mode.  A nonnegative mode
35862 is the number of items (for @kbd{v p}) or the number of levels
35863 (for @kbd{v u}).  A negative mode is as described below.  With no
35864 prefix argument, the mode is taken from the top of the stack and
35865 may be an integer or a vector of integers.
35866 @iftex
35867 {@advance@tableindent-20pt
35868 @end iftex
35869 @table @cite
35870 @item -1
35871 (@var{2})  Rectangular complex number.
35872 @item -2
35873 (@var{2})  Polar complex number.
35874 @item -3
35875 (@var{3})  HMS form.
35876 @item -4
35877 (@var{2})  Error form.
35878 @item -5
35879 (@var{2})  Modulo form.
35880 @item -6
35881 (@var{2})  Closed interval.
35882 @item -7
35883 (@var{2})  Closed .. open interval.
35884 @item -8
35885 (@var{2})  Open .. closed interval.
35886 @item -9
35887 (@var{2})  Open interval.
35888 @item -10
35889 (@var{2})  Fraction.
35890 @item -11
35891 (@var{2})  Float with integer mantissa.
35892 @item -12
35893 (@var{2})  Float with mantissa in @expr{[1 .. 10)}.
35894 @item -13
35895 (@var{1})  Date form (using date numbers).
35896 @item -14
35897 (@var{3})  Date form (using year, month, day).
35898 @item -15
35899 (@var{6})  Date form (using year, month, day, hour, minute, second).
35900 @end table
35901 @iftex
35903 @end iftex
35905 @c 25
35906 @item
35907 A prefix argument specifies the size @expr{n} of the matrix.  With no
35908 prefix argument, @expr{n} is omitted and the size is inferred from
35909 the input vector.
35911 @c 26
35912 @item
35913 The prefix argument specifies the starting position @expr{n} (default 1).
35915 @c 27
35916 @item
35917 Cursor position within stack buffer affects this command.
35919 @c 28
35920 @item
35921 Arguments are not actually removed from the stack by this command.
35923 @c 29
35924 @item
35925 Variable name may be a single digit or a full name.
35927 @c 30
35928 @item
35929 Editing occurs in a separate buffer.  Press @kbd{C-c C-c} (or 
35930 @key{LFD}, or in some cases @key{RET}) to finish the edit, or kill the
35931 buffer with @kbd{C-x k} to cancel the edit.  The @key{LFD} key prevents evaluation
35932 of the result of the edit.
35934 @c 31
35935 @item
35936 The number prompted for can also be provided as a prefix argument.
35938 @c 32
35939 @item
35940 Press this key a second time to cancel the prefix.
35942 @c 33
35943 @item
35944 With a negative prefix, deactivate all formulas.  With a positive
35945 prefix, deactivate and then reactivate from scratch.
35947 @c 34
35948 @item
35949 Default is to scan for nearest formula delimiter symbols.  With a
35950 prefix of zero, formula is delimited by mark and point.  With a
35951 non-zero prefix, formula is delimited by scanning forward or
35952 backward by that many lines.
35954 @c 35
35955 @item
35956 Parse the region between point and mark as a vector.  A nonzero prefix
35957 parses @var{n} lines before or after point as a vector.  A zero prefix
35958 parses the current line as a vector.  A @kbd{C-u} prefix parses the
35959 region between point and mark as a single formula.
35961 @c 36
35962 @item
35963 Parse the rectangle defined by point and mark as a matrix.  A positive
35964 prefix @var{n} divides the rectangle into columns of width @var{n}.
35965 A zero or @kbd{C-u} prefix parses each line as one formula.  A negative
35966 prefix suppresses special treatment of bracketed portions of a line.
35968 @c 37
35969 @item
35970 A numeric prefix causes the current language mode to be ignored.
35972 @c 38
35973 @item
35974 Responding to a prompt with a blank line answers that and all
35975 later prompts by popping additional stack entries.
35977 @c 39
35978 @item
35979 Answer for @expr{v} may also be of the form @expr{v = v_0} or
35980 @expr{v - v_0}.
35982 @c 40
35983 @item
35984 With a positive prefix argument, stack contains many @expr{y}'s and one
35985 common @expr{x}.  With a zero prefix, stack contains a vector of
35986 @expr{y}s and a common @expr{x}.  With a negative prefix, stack
35987 contains many @expr{[x,y]} vectors.  (For 3D plots, substitute
35988 @expr{z} for @expr{y} and @expr{x,y} for @expr{x}.)
35990 @c 41
35991 @item
35992 With any prefix argument, all curves in the graph are deleted.
35994 @c 42
35995 @item
35996 With a positive prefix, refines an existing plot with more data points.
35997 With a negative prefix, forces recomputation of the plot data.
35999 @c 43
36000 @item
36001 With any prefix argument, set the default value instead of the
36002 value for this graph.
36004 @c 44
36005 @item
36006 With a negative prefix argument, set the value for the printer.
36008 @c 45
36009 @item
36010 Condition is considered ``true'' if it is a nonzero real or complex
36011 number, or a formula whose value is known to be nonzero; it is ``false''
36012 otherwise.
36014 @c 46
36015 @item
36016 Several formulas separated by commas are pushed as multiple stack
36017 entries.  Trailing @kbd{)}, @kbd{]}, @kbd{@}}, @kbd{>}, and @kbd{"}
36018 delimiters may be omitted.  The notation @kbd{$$$} refers to the value
36019 in stack level three, and causes the formula to replace the top three
36020 stack levels.  The notation @kbd{$3} refers to stack level three without
36021 causing that value to be removed from the stack.  Use @key{LFD} in place
36022 of @key{RET} to prevent evaluation; use @kbd{M-=} in place of @key{RET}
36023 to evaluate variables.
36025 @c 47
36026 @item
36027 The variable is replaced by the formula shown on the right.  The
36028 Inverse flag reverses the order of the operands, e.g., @kbd{I s - x}
36029 assigns 
36030 @texline @math{x \coloneq a-x}.
36031 @infoline @expr{x := a-x}.
36033 @c 48
36034 @item
36035 Press @kbd{?} repeatedly to see how to choose a model.  Answer the
36036 variables prompt with @expr{iv} or @expr{iv;pv} to specify
36037 independent and parameter variables.  A positive prefix argument
36038 takes @mathit{@var{n}+1} vectors from the stack; a zero prefix takes a matrix
36039 and a vector from the stack.
36041 @c 49
36042 @item
36043 With a plain @kbd{C-u} prefix, replace the current region of the
36044 destination buffer with the yanked text instead of inserting.
36046 @c 50
36047 @item
36048 All stack entries are reformatted; the @kbd{H} prefix inhibits this.
36049 The @kbd{I} prefix sets the mode temporarily, redraws the top stack
36050 entry, then restores the original setting of the mode.
36052 @c 51
36053 @item
36054 A negative prefix sets the default 3D resolution instead of the
36055 default 2D resolution.
36057 @c 52
36058 @item
36059 This grabs a vector of the form [@var{prec}, @var{wsize}, @var{ssize},
36060 @var{radix}, @var{flfmt}, @var{ang}, @var{frac}, @var{symb}, @var{polar},
36061 @var{matrix}, @var{simp}, @var{inf}].  A prefix argument from 1 to 12
36062 grabs the @var{n}th mode value only.
36063 @end enumerate
36065 @iftex
36066 (Space is provided below for you to keep your own written notes.)
36067 @page
36068 @endgroup
36069 @end iftex
36072 @c [end-summary]
36074 @node Key Index, Command Index, Summary, Top
36075 @unnumbered Index of Key Sequences
36077 @printindex ky
36079 @node Command Index, Function Index, Key Index, Top
36080 @unnumbered Index of Calculator Commands
36082 Since all Calculator commands begin with the prefix @samp{calc-}, the
36083 @kbd{x} key has been provided as a variant of @kbd{M-x} which automatically
36084 types @samp{calc-} for you.  Thus, @kbd{x last-args} is short for
36085 @kbd{M-x calc-last-args}.
36087 @printindex pg
36089 @node Function Index, Concept Index, Command Index, Top
36090 @unnumbered Index of Algebraic Functions
36092 This is a list of built-in functions and operators usable in algebraic
36093 expressions.  Their full Lisp names are derived by adding the prefix
36094 @samp{calcFunc-}, as in @code{calcFunc-sqrt}.
36095 @iftex
36096 All functions except those noted with ``*'' have corresponding
36097 Calc keystrokes and can also be found in the Calc Summary.
36098 @end iftex
36100 @printindex tp
36102 @node Concept Index, Variable Index, Function Index, Top
36103 @unnumbered Concept Index
36105 @printindex cp
36107 @node Variable Index, Lisp Function Index, Concept Index, Top
36108 @unnumbered Index of Variables
36110 The variables in this list that do not contain dashes are accessible
36111 as Calc variables.  Add a @samp{var-} prefix to get the name of the
36112 corresponding Lisp variable.
36114 The remaining variables are Lisp variables suitable for @code{setq}ing
36115 in your Calc init file or @file{.emacs} file.
36117 @printindex vr
36119 @node Lisp Function Index, , Variable Index, Top
36120 @unnumbered Index of Lisp Math Functions
36122 The following functions are meant to be used with @code{defmath}, not
36123 @code{defun} definitions.  For names that do not start with @samp{calc-},
36124 the corresponding full Lisp name is derived by adding a prefix of
36125 @samp{math-}.
36127 @printindex fn
36129 @summarycontents
36131 @c [end]
36133 @contents
36134 @bye
36137 @ignore
36138    arch-tag: 77a71809-fa4d-40be-b2cc-da3e8fb137c0
36139 @end ignore