Get rid of cl-lexical-let, keeping only lexical-let for compatibility.
[emacs.git] / lisp / emacs-lisp / cl-loaddefs.el
blob95716ae2e2970a5f118ba1190d4a7e8ce0367d99
1 ;;; cl-loaddefs.el --- automatically extracted autoloads
2 ;;
3 ;;; Code:
5 \f
6 ;;;### (autoloads (cl-prettyexpand cl-remprop cl-do-remf cl-set-getf
7 ;;;;;; cl-getf cl-get cl-tailp cl-list-length cl-nreconc cl-revappend
8 ;;;;;; cl-concatenate cl-subseq cl-float-limits cl-random-state-p
9 ;;;;;; cl-make-random-state cl-random cl-signum cl-rem cl-mod cl-round
10 ;;;;;; cl-truncate cl-ceiling cl-floor cl-isqrt cl-lcm cl-gcd cl-progv-before
11 ;;;;;; cl-set-frame-visible-p cl-map-overlays cl-map-intervals cl-map-keymap-recursively
12 ;;;;;; cl-notevery cl-notany cl-every cl-some cl-mapcon cl-mapcan
13 ;;;;;; cl-mapl cl-maplist cl-map cl-mapcar-many cl-equalp cl-coerce)
14 ;;;;;; "cl-extra" "cl-extra.el" "fecce2e361fd06364d2ffd8c0d482cd0")
15 ;;; Generated autoloads from cl-extra.el
17 (autoload 'cl-coerce "cl-extra" "\
18 Coerce OBJECT to type TYPE.
19 TYPE is a Common Lisp type specifier.
21 \(fn OBJECT TYPE)" nil nil)
23 (autoload 'cl-equalp "cl-extra" "\
24 Return t if two Lisp objects have similar structures and contents.
25 This is like `equal', except that it accepts numerically equal
26 numbers of different types (float vs. integer), and also compares
27 strings case-insensitively.
29 \(fn X Y)" nil nil)
31 (autoload 'cl-mapcar-many "cl-extra" "\
34 \(fn CL-FUNC CL-SEQS)" nil nil)
36 (autoload 'cl-map "cl-extra" "\
37 Map a FUNCTION across one or more SEQUENCEs, returning a sequence.
38 TYPE is the sequence type to return.
40 \(fn TYPE FUNCTION SEQUENCE...)" nil nil)
42 (autoload 'cl-maplist "cl-extra" "\
43 Map FUNCTION to each sublist of LIST or LISTs.
44 Like `mapcar', except applies to lists and their cdr's rather than to
45 the elements themselves.
47 \(fn FUNCTION LIST...)" nil nil)
49 (autoload 'cl-mapl "cl-extra" "\
50 Like `cl-maplist', but does not accumulate values returned by the function.
52 \(fn FUNCTION LIST...)" nil nil)
54 (autoload 'cl-mapcan "cl-extra" "\
55 Like `mapcar', but nconc's together the values returned by the function.
57 \(fn FUNCTION SEQUENCE...)" nil nil)
59 (autoload 'cl-mapcon "cl-extra" "\
60 Like `cl-maplist', but nconc's together the values returned by the function.
62 \(fn FUNCTION LIST...)" nil nil)
64 (autoload 'cl-some "cl-extra" "\
65 Return true if PREDICATE is true of any element of SEQ or SEQs.
66 If so, return the true (non-nil) value returned by PREDICATE.
68 \(fn PREDICATE SEQ...)" nil nil)
70 (autoload 'cl-every "cl-extra" "\
71 Return true if PREDICATE is true of every element of SEQ or SEQs.
73 \(fn PREDICATE SEQ...)" nil nil)
75 (autoload 'cl-notany "cl-extra" "\
76 Return true if PREDICATE is false of every element of SEQ or SEQs.
78 \(fn PREDICATE SEQ...)" nil nil)
80 (autoload 'cl-notevery "cl-extra" "\
81 Return true if PREDICATE is false of some element of SEQ or SEQs.
83 \(fn PREDICATE SEQ...)" nil nil)
85 (autoload 'cl-map-keymap-recursively "cl-extra" "\
88 \(fn CL-FUNC-REC CL-MAP &optional CL-BASE)" nil nil)
90 (autoload 'cl-map-intervals "cl-extra" "\
93 \(fn CL-FUNC &optional CL-WHAT CL-PROP CL-START CL-END)" nil nil)
95 (autoload 'cl-map-overlays "cl-extra" "\
98 \(fn CL-FUNC &optional CL-BUFFER CL-START CL-END CL-ARG)" nil nil)
100 (autoload 'cl-set-frame-visible-p "cl-extra" "\
103 \(fn FRAME VAL)" nil nil)
105 (autoload 'cl-progv-before "cl-extra" "\
108 \(fn SYMS VALUES)" nil nil)
110 (autoload 'cl-gcd "cl-extra" "\
111 Return the greatest common divisor of the arguments.
113 \(fn &rest ARGS)" nil nil)
115 (autoload 'cl-lcm "cl-extra" "\
116 Return the least common multiple of the arguments.
118 \(fn &rest ARGS)" nil nil)
120 (autoload 'cl-isqrt "cl-extra" "\
121 Return the integer square root of the argument.
123 \(fn X)" nil nil)
125 (autoload 'cl-floor "cl-extra" "\
126 Return a list of the floor of X and the fractional part of X.
127 With two arguments, return floor and remainder of their quotient.
129 \(fn X &optional Y)" nil nil)
131 (autoload 'cl-ceiling "cl-extra" "\
132 Return a list of the ceiling of X and the fractional part of X.
133 With two arguments, return ceiling and remainder of their quotient.
135 \(fn X &optional Y)" nil nil)
137 (autoload 'cl-truncate "cl-extra" "\
138 Return a list of the integer part of X and the fractional part of X.
139 With two arguments, return truncation and remainder of their quotient.
141 \(fn X &optional Y)" nil nil)
143 (autoload 'cl-round "cl-extra" "\
144 Return a list of X rounded to the nearest integer and the remainder.
145 With two arguments, return rounding and remainder of their quotient.
147 \(fn X &optional Y)" nil nil)
149 (autoload 'cl-mod "cl-extra" "\
150 The remainder of X divided by Y, with the same sign as Y.
152 \(fn X Y)" nil nil)
154 (autoload 'cl-rem "cl-extra" "\
155 The remainder of X divided by Y, with the same sign as X.
157 \(fn X Y)" nil nil)
159 (autoload 'cl-signum "cl-extra" "\
160 Return 1 if X is positive, -1 if negative, 0 if zero.
162 \(fn X)" nil nil)
164 (autoload 'cl-random "cl-extra" "\
165 Return a random nonnegative number less than LIM, an integer or float.
166 Optional second arg STATE is a random-state object.
168 \(fn LIM &optional STATE)" nil nil)
170 (autoload 'cl-make-random-state "cl-extra" "\
171 Return a copy of random-state STATE, or of the internal state if omitted.
172 If STATE is t, return a new state object seeded from the time of day.
174 \(fn &optional STATE)" nil nil)
176 (autoload 'cl-random-state-p "cl-extra" "\
177 Return t if OBJECT is a random-state object.
179 \(fn OBJECT)" nil nil)
181 (autoload 'cl-float-limits "cl-extra" "\
182 Initialize the Common Lisp floating-point parameters.
183 This sets the values of: `cl-most-positive-float', `cl-most-negative-float',
184 `cl-least-positive-float', `cl-least-negative-float', `cl-float-epsilon',
185 `cl-float-negative-epsilon', `cl-least-positive-normalized-float', and
186 `cl-least-negative-normalized-float'.
188 \(fn)" nil nil)
190 (autoload 'cl-subseq "cl-extra" "\
191 Return the subsequence of SEQ from START to END.
192 If END is omitted, it defaults to the length of the sequence.
193 If START or END is negative, it counts from the end.
195 \(fn SEQ START &optional END)" nil nil)
197 (autoload 'cl-concatenate "cl-extra" "\
198 Concatenate, into a sequence of type TYPE, the argument SEQUENCEs.
200 \(fn TYPE SEQUENCE...)" nil nil)
202 (autoload 'cl-revappend "cl-extra" "\
203 Equivalent to (append (reverse X) Y).
205 \(fn X Y)" nil nil)
207 (autoload 'cl-nreconc "cl-extra" "\
208 Equivalent to (nconc (nreverse X) Y).
210 \(fn X Y)" nil nil)
212 (autoload 'cl-list-length "cl-extra" "\
213 Return the length of list X. Return nil if list is circular.
215 \(fn X)" nil nil)
217 (autoload 'cl-tailp "cl-extra" "\
218 Return true if SUBLIST is a tail of LIST.
220 \(fn SUBLIST LIST)" nil nil)
222 (autoload 'cl-get "cl-extra" "\
223 Return the value of SYMBOL's PROPNAME property, or DEFAULT if none.
225 \(fn SYMBOL PROPNAME &optional DEFAULT)" nil nil)
227 (autoload 'cl-getf "cl-extra" "\
228 Search PROPLIST for property PROPNAME; return its value or DEFAULT.
229 PROPLIST is a list of the sort returned by `symbol-plist'.
231 \(fn PROPLIST PROPNAME &optional DEFAULT)" nil nil)
233 (autoload 'cl-set-getf "cl-extra" "\
236 \(fn PLIST TAG VAL)" nil nil)
238 (autoload 'cl-do-remf "cl-extra" "\
241 \(fn PLIST TAG)" nil nil)
243 (autoload 'cl-remprop "cl-extra" "\
244 Remove from SYMBOL's plist the property PROPNAME and its value.
246 \(fn SYMBOL PROPNAME)" nil nil)
248 (autoload 'cl-prettyexpand "cl-extra" "\
251 \(fn FORM &optional FULL)" nil nil)
253 ;;;***
255 ;;;### (autoloads (cl-defsubst cl-compiler-macroexpand cl-define-compiler-macro
256 ;;;;;; cl-assert cl-check-type cl-typep cl-deftype cl-struct-setf-expander
257 ;;;;;; cl-defstruct cl-define-modify-macro cl-callf2 cl-callf cl-letf*
258 ;;;;;; cl-letf cl-rotatef cl-shiftf cl-remf cl-do-pop cl-psetf cl-setf
259 ;;;;;; cl-get-setf-method cl-defsetf cl-define-setf-expander cl-declare
260 ;;;;;; cl-the cl-locally cl-multiple-value-setq cl-multiple-value-bind
261 ;;;;;; cl-symbol-macrolet cl-macrolet cl-labels cl-flet cl-progv
262 ;;;;;; cl-psetq cl-do-all-symbols cl-do-symbols cl-dotimes cl-dolist
263 ;;;;;; cl-do* cl-do cl-loop cl-return-from cl-return cl-block cl-etypecase
264 ;;;;;; cl-typecase cl-ecase cl-case cl-load-time-value cl-eval-when
265 ;;;;;; cl-destructuring-bind cl-function cl-defmacro cl-defun cl-gentemp
266 ;;;;;; cl-gensym) "cl-macs" "cl-macs.el" "4c0f605e3c7454488cc9d498b611f422")
267 ;;; Generated autoloads from cl-macs.el
269 (autoload 'cl-gensym "cl-macs" "\
270 Generate a new uninterned symbol.
271 The name is made by appending a number to PREFIX, default \"G\".
273 \(fn &optional PREFIX)" nil nil)
275 (autoload 'cl-gentemp "cl-macs" "\
276 Generate a new interned symbol with a unique name.
277 The name is made by appending a number to PREFIX, default \"G\".
279 \(fn &optional PREFIX)" nil nil)
281 (autoload 'cl-defun "cl-macs" "\
282 Define NAME as a function.
283 Like normal `defun', except ARGLIST allows full Common Lisp conventions,
284 and BODY is implicitly surrounded by (cl-block NAME ...).
286 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil t)
288 (put 'cl-defun 'doc-string-elt '3)
290 (put 'cl-defun 'lisp-indent-function '2)
292 (autoload 'cl-defmacro "cl-macs" "\
293 Define NAME as a macro.
294 Like normal `defmacro', except ARGLIST allows full Common Lisp conventions,
295 and BODY is implicitly surrounded by (cl-block NAME ...).
297 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil t)
299 (put 'cl-defmacro 'doc-string-elt '3)
301 (put 'cl-defmacro 'lisp-indent-function '2)
303 (autoload 'cl-function "cl-macs" "\
304 Introduce a function.
305 Like normal `function', except that if argument is a lambda form,
306 its argument list allows full Common Lisp conventions.
308 \(fn FUNC)" nil t)
310 (autoload 'cl-destructuring-bind "cl-macs" "\
313 \(fn ARGS EXPR &rest BODY)" nil t)
315 (put 'cl-destructuring-bind 'lisp-indent-function '2)
317 (autoload 'cl-eval-when "cl-macs" "\
318 Control when BODY is evaluated.
319 If `compile' is in WHEN, BODY is evaluated when compiled at top-level.
320 If `load' is in WHEN, BODY is evaluated when loaded after top-level compile.
321 If `eval' is in WHEN, BODY is evaluated when interpreted or at non-top-level.
323 \(fn (WHEN...) BODY...)" nil t)
325 (put 'cl-eval-when 'lisp-indent-function '1)
327 (autoload 'cl-load-time-value "cl-macs" "\
328 Like `progn', but evaluates the body at load time.
329 The result of the body appears to the compiler as a quoted constant.
331 \(fn FORM &optional READ-ONLY)" nil t)
333 (autoload 'cl-case "cl-macs" "\
334 Eval EXPR and choose among clauses on that value.
335 Each clause looks like (KEYLIST BODY...). EXPR is evaluated and compared
336 against each key in each KEYLIST; the corresponding BODY is evaluated.
337 If no clause succeeds, cl-case returns nil. A single atom may be used in
338 place of a KEYLIST of one atom. A KEYLIST of t or `otherwise' is
339 allowed only in the final clause, and matches if no other keys match.
340 Key values are compared by `eql'.
342 \(fn EXPR (KEYLIST BODY...)...)" nil t)
344 (put 'cl-case 'lisp-indent-function '1)
346 (autoload 'cl-ecase "cl-macs" "\
347 Like `cl-case', but error if no cl-case fits.
348 `otherwise'-clauses are not allowed.
350 \(fn EXPR (KEYLIST BODY...)...)" nil t)
352 (put 'cl-ecase 'lisp-indent-function '1)
354 (autoload 'cl-typecase "cl-macs" "\
355 Evals EXPR, chooses among clauses on that value.
356 Each clause looks like (TYPE BODY...). EXPR is evaluated and, if it
357 satisfies TYPE, the corresponding BODY is evaluated. If no clause succeeds,
358 cl-typecase returns nil. A TYPE of t or `otherwise' is allowed only in the
359 final clause, and matches if no other keys match.
361 \(fn EXPR (TYPE BODY...)...)" nil t)
363 (put 'cl-typecase 'lisp-indent-function '1)
365 (autoload 'cl-etypecase "cl-macs" "\
366 Like `cl-typecase', but error if no case fits.
367 `otherwise'-clauses are not allowed.
369 \(fn EXPR (TYPE BODY...)...)" nil t)
371 (put 'cl-etypecase 'lisp-indent-function '1)
373 (autoload 'cl-block "cl-macs" "\
374 Define a lexically-scoped block named NAME.
375 NAME may be any symbol. Code inside the BODY forms can call `cl-return-from'
376 to jump prematurely out of the block. This differs from `catch' and `throw'
377 in two respects: First, the NAME is an unevaluated symbol rather than a
378 quoted symbol or other form; and second, NAME is lexically rather than
379 dynamically scoped: Only references to it within BODY will work. These
380 references may appear inside macro expansions, but not inside functions
381 called from BODY.
383 \(fn NAME &rest BODY)" nil t)
385 (put 'cl-block 'lisp-indent-function '1)
387 (autoload 'cl-return "cl-macs" "\
388 Return from the block named nil.
389 This is equivalent to `(cl-return-from nil RESULT)'.
391 \(fn &optional RESULT)" nil t)
393 (autoload 'cl-return-from "cl-macs" "\
394 Return from the block named NAME.
395 This jumps out to the innermost enclosing `(cl-block NAME ...)' form,
396 returning RESULT from that form (or nil if RESULT is omitted).
397 This is compatible with Common Lisp, but note that `defun' and
398 `defmacro' do not create implicit blocks as they do in Common Lisp.
400 \(fn NAME &optional RESULT)" nil t)
402 (put 'cl-return-from 'lisp-indent-function '1)
404 (autoload 'cl-loop "cl-macs" "\
405 The Common Lisp `cl-loop' macro.
406 Valid clauses are:
407 for VAR from/upfrom/downfrom NUM to/upto/downto/above/below NUM by NUM,
408 for VAR in LIST by FUNC, for VAR on LIST by FUNC, for VAR = INIT then EXPR,
409 for VAR across ARRAY, repeat NUM, with VAR = INIT, while COND, until COND,
410 always COND, never COND, thereis COND, collect EXPR into VAR,
411 append EXPR into VAR, nconc EXPR into VAR, sum EXPR into VAR,
412 count EXPR into VAR, maximize EXPR into VAR, minimize EXPR into VAR,
413 if COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
414 unless COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
415 do EXPRS..., initially EXPRS..., finally EXPRS..., return EXPR,
416 finally return EXPR, named NAME.
418 \(fn CLAUSE...)" nil t)
420 (autoload 'cl-do "cl-macs" "\
421 The Common Lisp `cl-do' loop.
423 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil t)
425 (put 'cl-do 'lisp-indent-function '2)
427 (autoload 'cl-do* "cl-macs" "\
428 The Common Lisp `cl-do*' loop.
430 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil t)
432 (put 'cl-do* 'lisp-indent-function '2)
434 (autoload 'cl-dolist "cl-macs" "\
435 Loop over a list.
436 Evaluate BODY with VAR bound to each `car' from LIST, in turn.
437 Then evaluate RESULT to get return value, default nil.
438 An implicit nil block is established around the loop.
440 \(fn (VAR LIST [RESULT]) BODY...)" nil t)
442 (autoload 'cl-dotimes "cl-macs" "\
443 Loop a certain number of times.
444 Evaluate BODY with VAR bound to successive integers from 0, inclusive,
445 to COUNT, exclusive. Then evaluate RESULT to get return value, default
446 nil.
448 \(fn (VAR COUNT [RESULT]) BODY...)" nil t)
450 (autoload 'cl-do-symbols "cl-macs" "\
451 Loop over all symbols.
452 Evaluate BODY with VAR bound to each interned symbol, or to each symbol
453 from OBARRAY.
455 \(fn (VAR [OBARRAY [RESULT]]) BODY...)" nil t)
457 (put 'cl-do-symbols 'lisp-indent-function '1)
459 (autoload 'cl-do-all-symbols "cl-macs" "\
462 \(fn SPEC &rest BODY)" nil t)
464 (put 'cl-do-all-symbols 'lisp-indent-function '1)
466 (autoload 'cl-psetq "cl-macs" "\
467 Set SYMs to the values VALs in parallel.
468 This is like `setq', except that all VAL forms are evaluated (in order)
469 before assigning any symbols SYM to the corresponding values.
471 \(fn SYM VAL SYM VAL ...)" nil t)
473 (autoload 'cl-progv "cl-macs" "\
474 Bind SYMBOLS to VALUES dynamically in BODY.
475 The forms SYMBOLS and VALUES are evaluated, and must evaluate to lists.
476 Each symbol in the first list is bound to the corresponding value in the
477 second list (or made unbound if VALUES is shorter than SYMBOLS); then the
478 BODY forms are executed and their result is returned. This is much like
479 a `let' form, except that the list of symbols can be computed at run-time.
481 \(fn SYMBOLS VALUES &rest BODY)" nil t)
483 (put 'cl-progv 'lisp-indent-function '2)
485 (autoload 'cl-flet "cl-macs" "\
486 Make temporary function definitions.
487 Like `cl-labels' but the definitions are not recursive.
489 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil t)
491 (put 'cl-flet 'lisp-indent-function '1)
493 (autoload 'cl-labels "cl-macs" "\
494 Make temporary function bindings.
495 The bindings can be recursive. Assumes the use of `lexical-binding'.
497 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil t)
499 (put 'cl-labels 'lisp-indent-function '1)
501 (autoload 'cl-macrolet "cl-macs" "\
502 Make temporary macro definitions.
503 This is like `cl-flet', but for macros instead of functions.
505 \(fn ((NAME ARGLIST BODY...) ...) FORM...)" nil t)
507 (put 'cl-macrolet 'lisp-indent-function '1)
509 (autoload 'cl-symbol-macrolet "cl-macs" "\
510 Make symbol macro definitions.
511 Within the body FORMs, references to the variable NAME will be replaced
512 by EXPANSION, and (setq NAME ...) will act like (cl-setf EXPANSION ...).
514 \(fn ((NAME EXPANSION) ...) FORM...)" nil t)
516 (put 'cl-symbol-macrolet 'lisp-indent-function '1)
518 (autoload 'cl-multiple-value-bind "cl-macs" "\
519 Collect multiple return values.
520 FORM must return a list; the BODY is then executed with the first N elements
521 of this list bound (`let'-style) to each of the symbols SYM in turn. This
522 is analogous to the Common Lisp `cl-multiple-value-bind' macro, using lists to
523 simulate true multiple return values. For compatibility, (cl-values A B C) is
524 a synonym for (list A B C).
526 \(fn (SYM...) FORM BODY)" nil t)
528 (put 'cl-multiple-value-bind 'lisp-indent-function '2)
530 (autoload 'cl-multiple-value-setq "cl-macs" "\
531 Collect multiple return values.
532 FORM must return a list; the first N elements of this list are stored in
533 each of the symbols SYM in turn. This is analogous to the Common Lisp
534 `cl-multiple-value-setq' macro, using lists to simulate true multiple return
535 values. For compatibility, (cl-values A B C) is a synonym for (list A B C).
537 \(fn (SYM...) FORM)" nil t)
539 (put 'cl-multiple-value-setq 'lisp-indent-function '1)
541 (autoload 'cl-locally "cl-macs" "\
544 \(fn &rest BODY)" nil t)
546 (autoload 'cl-the "cl-macs" "\
549 \(fn TYPE FORM)" nil t)
551 (put 'cl-the 'lisp-indent-function '1)
553 (autoload 'cl-declare "cl-macs" "\
554 Declare SPECS about the current function while compiling.
555 For instance
557 (cl-declare (warn 0))
559 will turn off byte-compile warnings in the function.
560 See Info node `(cl)Declarations' for details.
562 \(fn &rest SPECS)" nil t)
564 (autoload 'cl-define-setf-expander "cl-macs" "\
565 Define a `cl-setf' method.
566 This method shows how to handle `cl-setf's to places of the form (NAME ARGS...).
567 The argument forms ARGS are bound according to ARGLIST, as if NAME were
568 going to be expanded as a macro, then the BODY forms are executed and must
569 return a list of five elements: a temporary-variables list, a value-forms
570 list, a store-variables list (of length one), a store-form, and an access-
571 form. See `cl-defsetf' for a simpler way to define most setf-methods.
573 \(fn NAME ARGLIST BODY...)" nil t)
575 (autoload 'cl-defsetf "cl-macs" "\
576 Define a `cl-setf' method.
577 This macro is an easy-to-use substitute for `cl-define-setf-expander' that works
578 well for simple place forms. In the simple `cl-defsetf' form, `cl-setf's of
579 the form (cl-setf (NAME ARGS...) VAL) are transformed to function or macro
580 calls of the form (FUNC ARGS... VAL). Example:
582 (cl-defsetf aref aset)
584 Alternate form: (cl-defsetf NAME ARGLIST (STORE) BODY...).
585 Here, the above `cl-setf' call is expanded by binding the argument forms ARGS
586 according to ARGLIST, binding the value form VAL to STORE, then executing
587 BODY, which must return a Lisp form that does the necessary `cl-setf' operation.
588 Actually, ARGLIST and STORE may be bound to temporary variables which are
589 introduced automatically to preserve proper execution order of the arguments.
590 Example:
592 (cl-defsetf nth (n x) (v) `(setcar (nthcdr ,n ,x) ,v))
594 \(fn NAME [FUNC | ARGLIST (STORE) BODY...])" nil t)
596 (autoload 'cl-get-setf-method "cl-macs" "\
597 Return a list of five values describing the setf-method for PLACE.
598 PLACE may be any Lisp form which can appear as the PLACE argument to
599 a macro like `cl-setf' or `cl-incf'.
601 \(fn PLACE &optional ENV)" nil nil)
603 (autoload 'cl-setf "cl-macs" "\
604 Set each PLACE to the value of its VAL.
605 This is a generalized version of `setq'; the PLACEs may be symbolic
606 references such as (car x) or (aref x i), as well as plain symbols.
607 For example, (cl-setf (cl-cadar x) y) is equivalent to (setcar (cdar x) y).
608 The return value is the last VAL in the list.
610 \(fn PLACE VAL PLACE VAL ...)" nil t)
612 (autoload 'cl-psetf "cl-macs" "\
613 Set PLACEs to the values VALs in parallel.
614 This is like `cl-setf', except that all VAL forms are evaluated (in order)
615 before assigning any PLACEs to the corresponding values.
617 \(fn PLACE VAL PLACE VAL ...)" nil t)
619 (autoload 'cl-do-pop "cl-macs" "\
622 \(fn PLACE)" nil nil)
624 (autoload 'cl-remf "cl-macs" "\
625 Remove TAG from property list PLACE.
626 PLACE may be a symbol, or any generalized variable allowed by `cl-setf'.
627 The form returns true if TAG was found and removed, nil otherwise.
629 \(fn PLACE TAG)" nil t)
631 (autoload 'cl-shiftf "cl-macs" "\
632 Shift left among PLACEs.
633 Example: (cl-shiftf A B C) sets A to B, B to C, and returns the old A.
634 Each PLACE may be a symbol, or any generalized variable allowed by `cl-setf'.
636 \(fn PLACE... VAL)" nil t)
638 (autoload 'cl-rotatef "cl-macs" "\
639 Rotate left among PLACEs.
640 Example: (cl-rotatef A B C) sets A to B, B to C, and C to A. It returns nil.
641 Each PLACE may be a symbol, or any generalized variable allowed by `cl-setf'.
643 \(fn PLACE...)" nil t)
645 (autoload 'cl-letf "cl-macs" "\
646 Temporarily bind to PLACEs.
647 This is the analogue of `let', but with generalized variables (in the
648 sense of `cl-setf') for the PLACEs. Each PLACE is set to the corresponding
649 VALUE, then the BODY forms are executed. On exit, either normally or
650 because of a `throw' or error, the PLACEs are set back to their original
651 values. Note that this macro is *not* available in Common Lisp.
652 As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
653 the PLACE is not modified before executing BODY.
655 \(fn ((PLACE VALUE) ...) BODY...)" nil t)
657 (put 'cl-letf 'lisp-indent-function '1)
659 (autoload 'cl-letf* "cl-macs" "\
660 Temporarily bind to PLACEs.
661 This is the analogue of `let*', but with generalized variables (in the
662 sense of `cl-setf') for the PLACEs. Each PLACE is set to the corresponding
663 VALUE, then the BODY forms are executed. On exit, either normally or
664 because of a `throw' or error, the PLACEs are set back to their original
665 values. Note that this macro is *not* available in Common Lisp.
666 As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
667 the PLACE is not modified before executing BODY.
669 \(fn ((PLACE VALUE) ...) BODY...)" nil t)
671 (put 'cl-letf* 'lisp-indent-function '1)
673 (autoload 'cl-callf "cl-macs" "\
674 Set PLACE to (FUNC PLACE ARGS...).
675 FUNC should be an unquoted function name. PLACE may be a symbol,
676 or any generalized variable allowed by `cl-setf'.
678 \(fn FUNC PLACE ARGS...)" nil t)
680 (put 'cl-callf 'lisp-indent-function '2)
682 (autoload 'cl-callf2 "cl-macs" "\
683 Set PLACE to (FUNC ARG1 PLACE ARGS...).
684 Like `cl-callf', but PLACE is the second argument of FUNC, not the first.
686 \(fn FUNC ARG1 PLACE ARGS...)" nil t)
688 (put 'cl-callf2 'lisp-indent-function '3)
690 (autoload 'cl-define-modify-macro "cl-macs" "\
691 Define a `cl-setf'-like modify macro.
692 If NAME is called, it combines its PLACE argument with the other arguments
693 from ARGLIST using FUNC: (cl-define-modify-macro cl-incf (&optional (n 1)) +)
695 \(fn NAME ARGLIST FUNC &optional DOC)" nil t)
697 (autoload 'cl-defstruct "cl-macs" "\
698 Define a struct type.
699 This macro defines a new data type called NAME that stores data
700 in SLOTs. It defines a `make-NAME' constructor, a `copy-NAME'
701 copier, a `NAME-p' predicate, and slot accessors named `NAME-SLOT'.
702 You can use the accessors to set the corresponding slots, via `cl-setf'.
704 NAME may instead take the form (NAME OPTIONS...), where each
705 OPTION is either a single keyword or (KEYWORD VALUE).
706 See Info node `(cl)Structures' for a list of valid keywords.
708 Each SLOT may instead take the form (SLOT SLOT-OPTS...), where
709 SLOT-OPTS are keyword-value pairs for that slot. Currently, only
710 one keyword is supported, `:read-only'. If this has a non-nil
711 value, that slot cannot be set via `cl-setf'.
713 \(fn NAME SLOTS...)" nil t)
715 (put 'cl-defstruct 'doc-string-elt '2)
717 (autoload 'cl-struct-setf-expander "cl-macs" "\
720 \(fn X NAME ACCESSOR PRED-FORM POS)" nil nil)
722 (autoload 'cl-deftype "cl-macs" "\
723 Define NAME as a new data type.
724 The type name can then be used in `cl-typecase', `cl-check-type', etc.
726 \(fn NAME ARGLIST &rest BODY)" nil t)
728 (put 'cl-deftype 'doc-string-elt '3)
730 (autoload 'cl-typep "cl-macs" "\
731 Check that OBJECT is of type TYPE.
732 TYPE is a Common Lisp-style type specifier.
734 \(fn OBJECT TYPE)" nil nil)
736 (autoload 'cl-check-type "cl-macs" "\
737 Verify that FORM is of type TYPE; signal an error if not.
738 STRING is an optional description of the desired type.
740 \(fn FORM TYPE &optional STRING)" nil t)
742 (autoload 'cl-assert "cl-macs" "\
743 Verify that FORM returns non-nil; signal an error if not.
744 Second arg SHOW-ARGS means to include arguments of FORM in message.
745 Other args STRING and ARGS... are arguments to be passed to `error'.
746 They are not evaluated unless the assertion fails. If STRING is
747 omitted, a default message listing FORM itself is used.
749 \(fn FORM &optional SHOW-ARGS STRING &rest ARGS)" nil t)
751 (autoload 'cl-define-compiler-macro "cl-macs" "\
752 Define a compiler-only macro.
753 This is like `defmacro', but macro expansion occurs only if the call to
754 FUNC is compiled (i.e., not interpreted). Compiler macros should be used
755 for optimizing the way calls to FUNC are compiled; the form returned by
756 BODY should do the same thing as a call to the normal function called
757 FUNC, though possibly more efficiently. Note that, like regular macros,
758 compiler macros are expanded repeatedly until no further expansions are
759 possible. Unlike regular macros, BODY can decide to \"punt\" and leave the
760 original function call alone by declaring an initial `&whole foo' parameter
761 and then returning foo.
763 \(fn FUNC ARGS &rest BODY)" nil t)
765 (autoload 'cl-compiler-macroexpand "cl-macs" "\
768 \(fn FORM)" nil nil)
770 (autoload 'cl-defsubst "cl-macs" "\
771 Define NAME as a function.
772 Like `defun', except the function is automatically declared `inline',
773 ARGLIST allows full Common Lisp conventions, and BODY is implicitly
774 surrounded by (cl-block NAME ...).
776 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil t)
778 ;;;***
780 ;;;### (autoloads (cl-tree-equal cl-nsublis cl-sublis cl-nsubst-if-not
781 ;;;;;; cl-nsubst-if cl-nsubst cl-subst-if-not cl-subst-if cl-subsetp
782 ;;;;;; cl-nset-exclusive-or cl-set-exclusive-or cl-nset-difference
783 ;;;;;; cl-set-difference cl-nintersection cl-intersection cl-nunion
784 ;;;;;; cl-union cl-rassoc-if-not cl-rassoc-if cl-rassoc cl-assoc-if-not
785 ;;;;;; cl-assoc-if cl-assoc cl--adjoin cl-member-if-not cl-member-if
786 ;;;;;; cl-member cl-merge cl-stable-sort cl-sort cl-search cl-mismatch
787 ;;;;;; cl-count-if-not cl-count-if cl-count cl-position-if-not cl-position-if
788 ;;;;;; cl-position cl-find-if-not cl-find-if cl-find cl-nsubstitute-if-not
789 ;;;;;; cl-nsubstitute-if cl-nsubstitute cl-substitute-if-not cl-substitute-if
790 ;;;;;; cl-substitute cl-delete-duplicates cl-remove-duplicates cl-delete-if-not
791 ;;;;;; cl-delete-if cl-delete cl-remove-if-not cl-remove-if cl-remove
792 ;;;;;; cl-replace cl-fill cl-reduce) "cl-seq" "cl-seq.el" "d3eaca7a24bdb10b381bb94729c5d7e9")
793 ;;; Generated autoloads from cl-seq.el
795 (autoload 'cl-reduce "cl-seq" "\
796 Reduce two-argument FUNCTION across SEQ.
798 Keywords supported: :start :end :from-end :initial-value :key
800 \(fn FUNCTION SEQ [KEYWORD VALUE]...)" nil nil)
802 (autoload 'cl-fill "cl-seq" "\
803 Fill the elements of SEQ with ITEM.
805 Keywords supported: :start :end
807 \(fn SEQ ITEM [KEYWORD VALUE]...)" nil nil)
809 (autoload 'cl-replace "cl-seq" "\
810 Replace the elements of SEQ1 with the elements of SEQ2.
811 SEQ1 is destructively modified, then returned.
813 Keywords supported: :start1 :end1 :start2 :end2
815 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
817 (autoload 'cl-remove "cl-seq" "\
818 Remove all occurrences of ITEM in SEQ.
819 This is a non-destructive function; it makes a copy of SEQ if necessary
820 to avoid corrupting the original SEQ.
822 Keywords supported: :test :test-not :key :count :start :end :from-end
824 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
826 (autoload 'cl-remove-if "cl-seq" "\
827 Remove all items satisfying PREDICATE in SEQ.
828 This is a non-destructive function; it makes a copy of SEQ if necessary
829 to avoid corrupting the original SEQ.
831 Keywords supported: :key :count :start :end :from-end
833 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
835 (autoload 'cl-remove-if-not "cl-seq" "\
836 Remove all items not satisfying PREDICATE in SEQ.
837 This is a non-destructive function; it makes a copy of SEQ if necessary
838 to avoid corrupting the original SEQ.
840 Keywords supported: :key :count :start :end :from-end
842 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
844 (autoload 'cl-delete "cl-seq" "\
845 Remove all occurrences of ITEM in SEQ.
846 This is a destructive function; it reuses the storage of SEQ whenever possible.
848 Keywords supported: :test :test-not :key :count :start :end :from-end
850 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
852 (autoload 'cl-delete-if "cl-seq" "\
853 Remove all items satisfying PREDICATE in SEQ.
854 This is a destructive function; it reuses the storage of SEQ whenever possible.
856 Keywords supported: :key :count :start :end :from-end
858 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
860 (autoload 'cl-delete-if-not "cl-seq" "\
861 Remove all items not satisfying PREDICATE in SEQ.
862 This is a destructive function; it reuses the storage of SEQ whenever possible.
864 Keywords supported: :key :count :start :end :from-end
866 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
868 (autoload 'cl-remove-duplicates "cl-seq" "\
869 Return a copy of SEQ with all duplicate elements removed.
871 Keywords supported: :test :test-not :key :start :end :from-end
873 \(fn SEQ [KEYWORD VALUE]...)" nil nil)
875 (autoload 'cl-delete-duplicates "cl-seq" "\
876 Remove all duplicate elements from SEQ (destructively).
878 Keywords supported: :test :test-not :key :start :end :from-end
880 \(fn SEQ [KEYWORD VALUE]...)" nil nil)
882 (autoload 'cl-substitute "cl-seq" "\
883 Substitute NEW for OLD in SEQ.
884 This is a non-destructive function; it makes a copy of SEQ if necessary
885 to avoid corrupting the original SEQ.
887 Keywords supported: :test :test-not :key :count :start :end :from-end
889 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
891 (autoload 'cl-substitute-if "cl-seq" "\
892 Substitute NEW for all items satisfying PREDICATE in SEQ.
893 This is a non-destructive function; it makes a copy of SEQ if necessary
894 to avoid corrupting the original SEQ.
896 Keywords supported: :key :count :start :end :from-end
898 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
900 (autoload 'cl-substitute-if-not "cl-seq" "\
901 Substitute NEW for all items not satisfying PREDICATE in SEQ.
902 This is a non-destructive function; it makes a copy of SEQ if necessary
903 to avoid corrupting the original SEQ.
905 Keywords supported: :key :count :start :end :from-end
907 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
909 (autoload 'cl-nsubstitute "cl-seq" "\
910 Substitute NEW for OLD in SEQ.
911 This is a destructive function; it reuses the storage of SEQ whenever possible.
913 Keywords supported: :test :test-not :key :count :start :end :from-end
915 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
917 (autoload 'cl-nsubstitute-if "cl-seq" "\
918 Substitute NEW for all items satisfying PREDICATE in SEQ.
919 This is a destructive function; it reuses the storage of SEQ whenever possible.
921 Keywords supported: :key :count :start :end :from-end
923 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
925 (autoload 'cl-nsubstitute-if-not "cl-seq" "\
926 Substitute NEW for all items not satisfying PREDICATE in SEQ.
927 This is a destructive function; it reuses the storage of SEQ whenever possible.
929 Keywords supported: :key :count :start :end :from-end
931 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
933 (autoload 'cl-find "cl-seq" "\
934 Find the first occurrence of ITEM in SEQ.
935 Return the matching ITEM, or nil if not found.
937 Keywords supported: :test :test-not :key :start :end :from-end
939 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
941 (autoload 'cl-find-if "cl-seq" "\
942 Find the first item satisfying PREDICATE in SEQ.
943 Return the matching item, or nil if not found.
945 Keywords supported: :key :start :end :from-end
947 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
949 (autoload 'cl-find-if-not "cl-seq" "\
950 Find the first item not satisfying PREDICATE in SEQ.
951 Return the matching item, or nil if not found.
953 Keywords supported: :key :start :end :from-end
955 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
957 (autoload 'cl-position "cl-seq" "\
958 Find the first occurrence of ITEM in SEQ.
959 Return the index of the matching item, or nil if not found.
961 Keywords supported: :test :test-not :key :start :end :from-end
963 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
965 (autoload 'cl-position-if "cl-seq" "\
966 Find the first item satisfying PREDICATE in SEQ.
967 Return the index of the matching item, or nil if not found.
969 Keywords supported: :key :start :end :from-end
971 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
973 (autoload 'cl-position-if-not "cl-seq" "\
974 Find the first item not satisfying PREDICATE in SEQ.
975 Return the index of the matching item, or nil if not found.
977 Keywords supported: :key :start :end :from-end
979 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
981 (autoload 'cl-count "cl-seq" "\
982 Count the number of occurrences of ITEM in SEQ.
984 Keywords supported: :test :test-not :key :start :end
986 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
988 (autoload 'cl-count-if "cl-seq" "\
989 Count the number of items satisfying PREDICATE in SEQ.
991 Keywords supported: :key :start :end
993 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
995 (autoload 'cl-count-if-not "cl-seq" "\
996 Count the number of items not satisfying PREDICATE in SEQ.
998 Keywords supported: :key :start :end
1000 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
1002 (autoload 'cl-mismatch "cl-seq" "\
1003 Compare SEQ1 with SEQ2, return index of first mismatching element.
1004 Return nil if the sequences match. If one sequence is a prefix of the
1005 other, the return value indicates the end of the shorter sequence.
1007 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
1009 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
1011 (autoload 'cl-search "cl-seq" "\
1012 Search for SEQ1 as a subsequence of SEQ2.
1013 Return the index of the leftmost element of the first match found;
1014 return nil if there are no matches.
1016 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
1018 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
1020 (autoload 'cl-sort "cl-seq" "\
1021 Sort the argument SEQ according to PREDICATE.
1022 This is a destructive function; it reuses the storage of SEQ if possible.
1024 Keywords supported: :key
1026 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
1028 (autoload 'cl-stable-sort "cl-seq" "\
1029 Sort the argument SEQ stably according to PREDICATE.
1030 This is a destructive function; it reuses the storage of SEQ if possible.
1032 Keywords supported: :key
1034 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
1036 (autoload 'cl-merge "cl-seq" "\
1037 Destructively merge the two sequences to produce a new sequence.
1038 TYPE is the sequence type to return, SEQ1 and SEQ2 are the two argument
1039 sequences, and PREDICATE is a `less-than' predicate on the elements.
1041 Keywords supported: :key
1043 \(fn TYPE SEQ1 SEQ2 PREDICATE [KEYWORD VALUE]...)" nil nil)
1045 (autoload 'cl-member "cl-seq" "\
1046 Find the first occurrence of ITEM in LIST.
1047 Return the sublist of LIST whose car is ITEM.
1049 Keywords supported: :test :test-not :key
1051 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1053 (autoload 'cl-member-if "cl-seq" "\
1054 Find the first item satisfying PREDICATE in LIST.
1055 Return the sublist of LIST whose car matches.
1057 Keywords supported: :key
1059 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1061 (autoload 'cl-member-if-not "cl-seq" "\
1062 Find the first item not satisfying PREDICATE in LIST.
1063 Return the sublist of LIST whose car matches.
1065 Keywords supported: :key
1067 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1069 (autoload 'cl--adjoin "cl-seq" "\
1072 \(fn CL-ITEM CL-LIST &rest CL-KEYS)" nil nil)
1074 (autoload 'cl-assoc "cl-seq" "\
1075 Find the first item whose car matches ITEM in LIST.
1077 Keywords supported: :test :test-not :key
1079 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1081 (autoload 'cl-assoc-if "cl-seq" "\
1082 Find the first item whose car satisfies PREDICATE in LIST.
1084 Keywords supported: :key
1086 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1088 (autoload 'cl-assoc-if-not "cl-seq" "\
1089 Find the first item whose car does not satisfy PREDICATE in LIST.
1091 Keywords supported: :key
1093 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1095 (autoload 'cl-rassoc "cl-seq" "\
1096 Find the first item whose cdr matches ITEM in LIST.
1098 Keywords supported: :test :test-not :key
1100 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1102 (autoload 'cl-rassoc-if "cl-seq" "\
1103 Find the first item whose cdr satisfies PREDICATE in LIST.
1105 Keywords supported: :key
1107 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1109 (autoload 'cl-rassoc-if-not "cl-seq" "\
1110 Find the first item whose cdr does not satisfy PREDICATE in LIST.
1112 Keywords supported: :key
1114 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1116 (autoload 'cl-union "cl-seq" "\
1117 Combine LIST1 and LIST2 using a set-union operation.
1118 The resulting list contains all items that appear in either LIST1 or LIST2.
1119 This is a non-destructive function; it makes a copy of the data if necessary
1120 to avoid corrupting the original LIST1 and LIST2.
1122 Keywords supported: :test :test-not :key
1124 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1126 (autoload 'cl-nunion "cl-seq" "\
1127 Combine LIST1 and LIST2 using a set-union operation.
1128 The resulting list contains all items that appear in either LIST1 or LIST2.
1129 This is a destructive function; it reuses the storage of LIST1 and LIST2
1130 whenever possible.
1132 Keywords supported: :test :test-not :key
1134 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1136 (autoload 'cl-intersection "cl-seq" "\
1137 Combine LIST1 and LIST2 using a set-intersection operation.
1138 The resulting list contains all items that appear in both LIST1 and LIST2.
1139 This is a non-destructive function; it makes a copy of the data if necessary
1140 to avoid corrupting the original LIST1 and LIST2.
1142 Keywords supported: :test :test-not :key
1144 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1146 (autoload 'cl-nintersection "cl-seq" "\
1147 Combine LIST1 and LIST2 using a set-intersection operation.
1148 The resulting list contains all items that appear in both LIST1 and LIST2.
1149 This is a destructive function; it reuses the storage of LIST1 and LIST2
1150 whenever possible.
1152 Keywords supported: :test :test-not :key
1154 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1156 (autoload 'cl-set-difference "cl-seq" "\
1157 Combine LIST1 and LIST2 using a set-difference operation.
1158 The resulting list contains all items that appear in LIST1 but not LIST2.
1159 This is a non-destructive function; it makes a copy of the data if necessary
1160 to avoid corrupting the original LIST1 and LIST2.
1162 Keywords supported: :test :test-not :key
1164 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1166 (autoload 'cl-nset-difference "cl-seq" "\
1167 Combine LIST1 and LIST2 using a set-difference operation.
1168 The resulting list contains all items that appear in LIST1 but not LIST2.
1169 This is a destructive function; it reuses the storage of LIST1 and LIST2
1170 whenever possible.
1172 Keywords supported: :test :test-not :key
1174 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1176 (autoload 'cl-set-exclusive-or "cl-seq" "\
1177 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1178 The resulting list contains all items appearing in exactly one of LIST1, LIST2.
1179 This is a non-destructive function; it makes a copy of the data if necessary
1180 to avoid corrupting the original LIST1 and LIST2.
1182 Keywords supported: :test :test-not :key
1184 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1186 (autoload 'cl-nset-exclusive-or "cl-seq" "\
1187 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1188 The resulting list contains all items appearing in exactly one of LIST1, LIST2.
1189 This is a destructive function; it reuses the storage of LIST1 and LIST2
1190 whenever possible.
1192 Keywords supported: :test :test-not :key
1194 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1196 (autoload 'cl-subsetp "cl-seq" "\
1197 Return true if LIST1 is a subset of LIST2.
1198 I.e., if every element of LIST1 also appears in LIST2.
1200 Keywords supported: :test :test-not :key
1202 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1204 (autoload 'cl-subst-if "cl-seq" "\
1205 Substitute NEW for elements matching PREDICATE in TREE (non-destructively).
1206 Return a copy of TREE with all matching elements replaced by NEW.
1208 Keywords supported: :key
1210 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1212 (autoload 'cl-subst-if-not "cl-seq" "\
1213 Substitute NEW for elts not matching PREDICATE in TREE (non-destructively).
1214 Return a copy of TREE with all non-matching elements replaced by NEW.
1216 Keywords supported: :key
1218 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1220 (autoload 'cl-nsubst "cl-seq" "\
1221 Substitute NEW for OLD everywhere in TREE (destructively).
1222 Any element of TREE which is `eql' to OLD is changed to NEW (via a call
1223 to `setcar').
1225 Keywords supported: :test :test-not :key
1227 \(fn NEW OLD TREE [KEYWORD VALUE]...)" nil nil)
1229 (autoload 'cl-nsubst-if "cl-seq" "\
1230 Substitute NEW for elements matching PREDICATE in TREE (destructively).
1231 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1233 Keywords supported: :key
1235 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1237 (autoload 'cl-nsubst-if-not "cl-seq" "\
1238 Substitute NEW for elements not matching PREDICATE in TREE (destructively).
1239 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1241 Keywords supported: :key
1243 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1245 (autoload 'cl-sublis "cl-seq" "\
1246 Perform substitutions indicated by ALIST in TREE (non-destructively).
1247 Return a copy of TREE with all matching elements replaced.
1249 Keywords supported: :test :test-not :key
1251 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1253 (autoload 'cl-nsublis "cl-seq" "\
1254 Perform substitutions indicated by ALIST in TREE (destructively).
1255 Any matching element of TREE is changed via a call to `setcar'.
1257 Keywords supported: :test :test-not :key
1259 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1261 (autoload 'cl-tree-equal "cl-seq" "\
1262 Return t if trees TREE1 and TREE2 have `eql' leaves.
1263 Atoms are compared by `eql'; cons cells are compared recursively.
1265 Keywords supported: :test :test-not :key
1267 \(fn TREE1 TREE2 [KEYWORD VALUE]...)" nil nil)
1269 ;;;***
1271 ;; Local Variables:
1272 ;; version-control: never
1273 ;; no-byte-compile: t
1274 ;; no-update-autoloads: t
1275 ;; coding: utf-8
1276 ;; End:
1277 ;;; cl-loaddefs.el ends here