(define-ibuffer-filter filename): Expand dired-directory since
[emacs.git] / lispref / numbers.texi
blob3a4f4ae75c4e36565dbe43ad6c61eec6f837948f
1 @c -*-texinfo-*-
2 @c This is part of the GNU Emacs Lisp Reference Manual.
3 @c Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999, 2003
4 @c   Free Software Foundation, Inc.
5 @c See the file elisp.texi for copying conditions.
6 @setfilename ../info/numbers
7 @node Numbers, Strings and Characters, Lisp Data Types, Top
8 @chapter Numbers
9 @cindex integers
10 @cindex numbers
12   GNU Emacs supports two numeric data types: @dfn{integers} and
13 @dfn{floating point numbers}.  Integers are whole numbers such as
14 @minus{}3, 0, 7, 13, and 511.  Their values are exact.  Floating point
15 numbers are numbers with fractional parts, such as @minus{}4.5, 0.0, or
16 2.71828.  They can also be expressed in exponential notation: 1.5e2
17 equals 150; in this example, @samp{e2} stands for ten to the second
18 power, and that is multiplied by 1.5.  Floating point values are not
19 exact; they have a fixed, limited amount of precision.
21 @menu
22 * Integer Basics::            Representation and range of integers.
23 * Float Basics::              Representation and range of floating point.
24 * Predicates on Numbers::     Testing for numbers.
25 * Comparison of Numbers::     Equality and inequality predicates.
26 * Numeric Conversions::       Converting float to integer and vice versa.
27 * Arithmetic Operations::     How to add, subtract, multiply and divide.
28 * Rounding Operations::       Explicitly rounding floating point numbers.
29 * Bitwise Operations::        Logical and, or, not, shifting.
30 * Math Functions::            Trig, exponential and logarithmic functions.
31 * Random Numbers::            Obtaining random integers, predictable or not.
32 @end menu
34 @node Integer Basics
35 @comment  node-name,  next,  previous,  up
36 @section Integer Basics
38   The range of values for an integer depends on the machine.  The
39 minimum range is @minus{}268435456 to 268435455 (29 bits; i.e.,
40 @ifnottex
41 -2**28
42 @end ifnottex
43 @tex
44 @math{-2^{28}}
45 @end tex
47 @ifnottex
48 2**28 - 1),
49 @end ifnottex
50 @tex
51 @math{2^{28}-1}),
52 @end tex
53 but some machines may provide a wider range.  Many examples in this
54 chapter assume an integer has 29 bits.
55 @cindex overflow
57   The Lisp reader reads an integer as a sequence of digits with optional
58 initial sign and optional final period.
60 @example
61  1               ; @r{The integer 1.}
62  1.              ; @r{The integer 1.}
63 +1               ; @r{Also the integer 1.}
64 -1               ; @r{The integer @minus{}1.}
65  536870913       ; @r{Also the integer 1, due to overflow.}
66  0               ; @r{The integer 0.}
67 -0               ; @r{The integer 0.}
68 @end example
70 @cindex integers in specific radix
71 @cindex radix for reading an integer
72 @cindex base for reading an integer
73 @cindex hex numbers
74 @cindex octal numbers
75 @cindex reading numbers in hex, octal, and binary
76   In addition, the Lisp reader recognizes a syntax for integers in
77 bases other than 10: @samp{#B@var{integer}} reads @var{integer} in
78 binary (radix 2), @samp{#O@var{integer}} reads @var{integer} in octal
79 (radix 8), @samp{#X@var{integer}} reads @var{integer} in hexadecimal
80 (radix 16), and @samp{#@var{radix}r@var{integer}} reads @var{integer}
81 in radix @var{radix} (where @var{radix} is between 2 and 36,
82 inclusively).  Case is not significant for the letter after @samp{#}
83 (@samp{B}, @samp{O}, etc.) that denotes the radix.
85   To understand how various functions work on integers, especially the
86 bitwise operators (@pxref{Bitwise Operations}), it is often helpful to
87 view the numbers in their binary form.
89   In 29-bit binary, the decimal integer 5 looks like this:
91 @example
92 0 0000  0000 0000  0000 0000  0000 0101
93 @end example
95 @noindent
96 (We have inserted spaces between groups of 4 bits, and two spaces
97 between groups of 8 bits, to make the binary integer easier to read.)
99   The integer @minus{}1 looks like this:
101 @example
102 1 1111  1111 1111  1111 1111  1111 1111
103 @end example
105 @noindent
106 @cindex two's complement
107 @minus{}1 is represented as 29 ones.  (This is called @dfn{two's
108 complement} notation.)
110   The negative integer, @minus{}5, is creating by subtracting 4 from
111 @minus{}1.  In binary, the decimal integer 4 is 100.  Consequently,
112 @minus{}5 looks like this:
114 @example
115 1 1111  1111 1111  1111 1111  1111 1011
116 @end example
118   In this implementation, the largest 29-bit binary integer value is
119 268,435,455 in decimal.  In binary, it looks like this:
121 @example
122 0 1111  1111 1111  1111 1111  1111 1111
123 @end example
125   Since the arithmetic functions do not check whether integers go
126 outside their range, when you add 1 to 268,435,455, the value is the
127 negative integer @minus{}268,435,456:
129 @example
130 (+ 1 268435455)
131      @result{} -268435456
132      @result{} 1 0000  0000 0000  0000 0000  0000 0000
133 @end example
135   Many of the functions described in this chapter accept markers for
136 arguments in place of numbers.  (@xref{Markers}.)  Since the actual
137 arguments to such functions may be either numbers or markers, we often
138 give these arguments the name @var{number-or-marker}.  When the argument
139 value is a marker, its position value is used and its buffer is ignored.
141 @defvar most-positive-fixnum
142 The value of this variable is the largest integer that Emacs Lisp
143 can handle.
144 @end defvar
146 @defvar most-negative-fixnum
147 The value of this variable is the smallest integer that Emacs Lisp can
148 handle.  It is negative.
149 @end defvar
151 @node Float Basics
152 @section Floating Point Basics
154   Floating point numbers are useful for representing numbers that are
155 not integral.  The precise range of floating point numbers is
156 machine-specific; it is the same as the range of the C data type
157 @code{double} on the machine you are using.
159   The read-syntax for floating point numbers requires either a decimal
160 point (with at least one digit following), an exponent, or both.  For
161 example, @samp{1500.0}, @samp{15e2}, @samp{15.0e2}, @samp{1.5e3}, and
162 @samp{.15e4} are five ways of writing a floating point number whose
163 value is 1500.  They are all equivalent.  You can also use a minus sign
164 to write negative floating point numbers, as in @samp{-1.0}.
166 @cindex @acronym{IEEE} floating point
167 @cindex positive infinity
168 @cindex negative infinity
169 @cindex infinity
170 @cindex NaN
171   Most modern computers support the @acronym{IEEE} floating point standard,
172 which provides for positive infinity and negative infinity as floating point
173 values.  It also provides for a class of values called NaN or
174 ``not-a-number''; numerical functions return such values in cases where
175 there is no correct answer.  For example, @code{(/ 0.0 0.0)} returns a
176 NaN.  For practical purposes, there's no significant difference between
177 different NaN values in Emacs Lisp, and there's no rule for precisely
178 which NaN value should be used in a particular case, so Emacs Lisp
179 doesn't try to distinguish them.  Here are the read syntaxes for
180 these special floating point values:
182 @table @asis
183 @item positive infinity
184 @samp{1.0e+INF}
185 @item negative infinity
186 @samp{-1.0e+INF}
187 @item Not-a-number
188 @samp{0.0e+NaN}.
189 @end table
191   In addition, the value @code{-0.0} is distinguishable from ordinary
192 zero in @acronym{IEEE} floating point (although @code{equal} and
193 @code{=} consider them equal values).
195   You can use @code{logb} to extract the binary exponent of a floating
196 point number (or estimate the logarithm of an integer):
198 @defun logb number
199 This function returns the binary exponent of @var{number}.  More
200 precisely, the value is the logarithm of @var{number} base 2, rounded
201 down to an integer.
203 @example
204 (logb 10)
205      @result{} 3
206 (logb 10.0e20)
207      @result{} 69
208 @end example
209 @end defun
211 @node Predicates on Numbers
212 @section Type Predicates for Numbers
214   The functions in this section test whether the argument is a number or
215 whether it is a certain sort of number.  The functions @code{integerp}
216 and @code{floatp} can take any type of Lisp object as argument (the
217 predicates would not be of much use otherwise); but the @code{zerop}
218 predicate requires a number as its argument.  See also
219 @code{integer-or-marker-p} and @code{number-or-marker-p}, in
220 @ref{Predicates on Markers}.
222 @defun floatp object
223 This predicate tests whether its argument is a floating point
224 number and returns @code{t} if so, @code{nil} otherwise.
226 @code{floatp} does not exist in Emacs versions 18 and earlier.
227 @end defun
229 @defun integerp object
230 This predicate tests whether its argument is an integer, and returns
231 @code{t} if so, @code{nil} otherwise.
232 @end defun
234 @defun numberp object
235 This predicate tests whether its argument is a number (either integer or
236 floating point), and returns @code{t} if so, @code{nil} otherwise.
237 @end defun
239 @defun wholenump object
240 @cindex natural numbers
241 The @code{wholenump} predicate (whose name comes from the phrase
242 ``whole-number-p'') tests to see whether its argument is a nonnegative
243 integer, and returns @code{t} if so, @code{nil} otherwise.  0 is
244 considered non-negative.
246 @findex natnump
247 @code{natnump} is an obsolete synonym for @code{wholenump}.
248 @end defun
250 @defun zerop number
251 This predicate tests whether its argument is zero, and returns @code{t}
252 if so, @code{nil} otherwise.  The argument must be a number.
254 These two forms are equivalent: @code{(zerop x)} @equiv{} @code{(= x 0)}.
255 @end defun
257 @node Comparison of Numbers
258 @section Comparison of Numbers
259 @cindex number equality
261   To test numbers for numerical equality, you should normally use
262 @code{=}, not @code{eq}.  There can be many distinct floating point
263 number objects with the same numeric value.  If you use @code{eq} to
264 compare them, then you test whether two values are the same
265 @emph{object}.  By contrast, @code{=} compares only the numeric values
266 of the objects.
268   At present, each integer value has a unique Lisp object in Emacs Lisp.
269 Therefore, @code{eq} is equivalent to @code{=} where integers are
270 concerned.  It is sometimes convenient to use @code{eq} for comparing an
271 unknown value with an integer, because @code{eq} does not report an
272 error if the unknown value is not a number---it accepts arguments of any
273 type.  By contrast, @code{=} signals an error if the arguments are not
274 numbers or markers.  However, it is a good idea to use @code{=} if you
275 can, even for comparing integers, just in case we change the
276 representation of integers in a future Emacs version.
278   Sometimes it is useful to compare numbers with @code{equal}; it treats
279 two numbers as equal if they have the same data type (both integers, or
280 both floating point) and the same value.  By contrast, @code{=} can
281 treat an integer and a floating point number as equal.
283   There is another wrinkle: because floating point arithmetic is not
284 exact, it is often a bad idea to check for equality of two floating
285 point values.  Usually it is better to test for approximate equality.
286 Here's a function to do this:
288 @example
289 (defvar fuzz-factor 1.0e-6)
290 (defun approx-equal (x y)
291   (or (and (= x 0) (= y 0))
292       (< (/ (abs (- x y))
293             (max (abs x) (abs y)))
294          fuzz-factor)))
295 @end example
297 @cindex CL note---integers vrs @code{eq}
298 @quotation
299 @b{Common Lisp note:} Comparing numbers in Common Lisp always requires
300 @code{=} because Common Lisp implements multi-word integers, and two
301 distinct integer objects can have the same numeric value.  Emacs Lisp
302 can have just one integer object for any given value because it has a
303 limited range of integer values.
304 @end quotation
306 @defun = number-or-marker1 number-or-marker2
307 This function tests whether its arguments are numerically equal, and
308 returns @code{t} if so, @code{nil} otherwise.
309 @end defun
311 @defun /= number-or-marker1 number-or-marker2
312 This function tests whether its arguments are numerically equal, and
313 returns @code{t} if they are not, and @code{nil} if they are.
314 @end defun
316 @defun <  number-or-marker1 number-or-marker2
317 This function tests whether its first argument is strictly less than
318 its second argument.  It returns @code{t} if so, @code{nil} otherwise.
319 @end defun
321 @defun <=  number-or-marker1 number-or-marker2
322 This function tests whether its first argument is less than or equal
323 to its second argument.  It returns @code{t} if so, @code{nil}
324 otherwise.
325 @end defun
327 @defun >  number-or-marker1 number-or-marker2
328 This function tests whether its first argument is strictly greater
329 than its second argument.  It returns @code{t} if so, @code{nil}
330 otherwise.
331 @end defun
333 @defun >=  number-or-marker1 number-or-marker2
334 This function tests whether its first argument is greater than or
335 equal to its second argument.  It returns @code{t} if so, @code{nil}
336 otherwise.
337 @end defun
339 @defun max number-or-marker &rest numbers-or-markers
340 This function returns the largest of its arguments.
341 If any of the argument is floating-point, the value is returned
342 as floating point, even if it was given as an integer.
344 @example
345 (max 20)
346      @result{} 20
347 (max 1 2.5)
348      @result{} 2.5
349 (max 1 3 2.5)
350      @result{} 3.0
351 @end example
352 @end defun
354 @defun min number-or-marker &rest numbers-or-markers
355 This function returns the smallest of its arguments.
356 If any of the argument is floating-point, the value is returned
357 as floating point, even if it was given as an integer.
359 @example
360 (min -4 1)
361      @result{} -4
362 @end example
363 @end defun
365 @defun abs number
366 This function returns the absolute value of @var{number}.
367 @end defun
369 @node Numeric Conversions
370 @section Numeric Conversions
371 @cindex rounding in conversions
373 To convert an integer to floating point, use the function @code{float}.
375 @defun float number
376 This returns @var{number} converted to floating point.
377 If @var{number} is already a floating point number, @code{float} returns
378 it unchanged.
379 @end defun
381 There are four functions to convert floating point numbers to integers;
382 they differ in how they round.  All accept an argument @var{number}
383 and an optional argument @var{divisor}.  Both arguments may be
384 integers or floating point numbers.  @var{divisor} may also be
385 @code{nil}.  If @var{divisor} is @code{nil} or omitted, these
386 functions convert @var{number} to an integer, or return it unchanged
387 if it already is an integer.  If @var{divisor} is non-@code{nil}, they
388 divide @var{number} by @var{divisor} and convert the result to an
389 integer.  An @code{arith-error} results if @var{divisor} is 0.
391 @defun truncate number &optional divisor
392 This returns @var{number}, converted to an integer by rounding towards
393 zero.
395 @example
396 (truncate 1.2)
397      @result{} 1
398 (truncate 1.7)
399      @result{} 1
400 (truncate -1.2)
401      @result{} -1
402 (truncate -1.7)
403      @result{} -1
404 @end example
405 @end defun
407 @defun floor number &optional divisor
408 This returns @var{number}, converted to an integer by rounding downward
409 (towards negative infinity).
411 If @var{divisor} is specified, this uses the kind of division
412 operation that corresponds to @code{mod}, rounding downward.
414 @example
415 (floor 1.2)
416      @result{} 1
417 (floor 1.7)
418      @result{} 1
419 (floor -1.2)
420      @result{} -2
421 (floor -1.7)
422      @result{} -2
423 (floor 5.99 3)
424      @result{} 1
425 @end example
426 @end defun
428 @defun ceiling number &optional divisor
429 This returns @var{number}, converted to an integer by rounding upward
430 (towards positive infinity).
432 @example
433 (ceiling 1.2)
434      @result{} 2
435 (ceiling 1.7)
436      @result{} 2
437 (ceiling -1.2)
438      @result{} -1
439 (ceiling -1.7)
440      @result{} -1
441 @end example
442 @end defun
444 @defun round number &optional divisor
445 This returns @var{number}, converted to an integer by rounding towards the
446 nearest integer.  Rounding a value equidistant between two integers
447 may choose the integer closer to zero, or it may prefer an even integer,
448 depending on your machine.
450 @example
451 (round 1.2)
452      @result{} 1
453 (round 1.7)
454      @result{} 2
455 (round -1.2)
456      @result{} -1
457 (round -1.7)
458      @result{} -2
459 @end example
460 @end defun
462 @node Arithmetic Operations
463 @section Arithmetic Operations
465   Emacs Lisp provides the traditional four arithmetic operations:
466 addition, subtraction, multiplication, and division.  Remainder and modulus
467 functions supplement the division functions.  The functions to
468 add or subtract 1 are provided because they are traditional in Lisp and
469 commonly used.
471   All of these functions except @code{%} return a floating point value
472 if any argument is floating.
474   It is important to note that in Emacs Lisp, arithmetic functions
475 do not check for overflow.  Thus @code{(1+ 268435455)} may evaluate to
476 @minus{}268435456, depending on your hardware.
478 @defun 1+ number-or-marker
479 This function returns @var{number-or-marker} plus 1.
480 For example,
482 @example
483 (setq foo 4)
484      @result{} 4
485 (1+ foo)
486      @result{} 5
487 @end example
489 This function is not analogous to the C operator @code{++}---it does not
490 increment a variable.  It just computes a sum.  Thus, if we continue,
492 @example
494      @result{} 4
495 @end example
497 If you want to increment the variable, you must use @code{setq},
498 like this:
500 @example
501 (setq foo (1+ foo))
502      @result{} 5
503 @end example
504 @end defun
506 @defun 1- number-or-marker
507 This function returns @var{number-or-marker} minus 1.
508 @end defun
510 @defun + &rest numbers-or-markers
511 This function adds its arguments together.  When given no arguments,
512 @code{+} returns 0.
514 @example
516      @result{} 0
517 (+ 1)
518      @result{} 1
519 (+ 1 2 3 4)
520      @result{} 10
521 @end example
522 @end defun
524 @defun - &optional number-or-marker &rest more-numbers-or-markers
525 The @code{-} function serves two purposes: negation and subtraction.
526 When @code{-} has a single argument, the value is the negative of the
527 argument.  When there are multiple arguments, @code{-} subtracts each of
528 the @var{more-numbers-or-markers} from @var{number-or-marker},
529 cumulatively.  If there are no arguments, the result is 0.
531 @example
532 (- 10 1 2 3 4)
533      @result{} 0
534 (- 10)
535      @result{} -10
537      @result{} 0
538 @end example
539 @end defun
541 @defun * &rest numbers-or-markers
542 This function multiplies its arguments together, and returns the
543 product.  When given no arguments, @code{*} returns 1.
545 @example
547      @result{} 1
548 (* 1)
549      @result{} 1
550 (* 1 2 3 4)
551      @result{} 24
552 @end example
553 @end defun
555 @defun / dividend divisor &rest divisors
556 This function divides @var{dividend} by @var{divisor} and returns the
557 quotient.  If there are additional arguments @var{divisors}, then it
558 divides @var{dividend} by each divisor in turn.  Each argument may be a
559 number or a marker.
561 If all the arguments are integers, then the result is an integer too.
562 This means the result has to be rounded.  On most machines, the result
563 is rounded towards zero after each division, but some machines may round
564 differently with negative arguments.  This is because the Lisp function
565 @code{/} is implemented using the C division operator, which also
566 permits machine-dependent rounding.  As a practical matter, all known
567 machines round in the standard fashion.
569 @cindex @code{arith-error} in division
570 If you divide an integer by 0, an @code{arith-error} error is signaled.
571 (@xref{Errors}.)  Floating point division by zero returns either
572 infinity or a NaN if your machine supports @acronym{IEEE} floating point;
573 otherwise, it signals an @code{arith-error} error.
575 @example
576 @group
577 (/ 6 2)
578      @result{} 3
579 @end group
580 (/ 5 2)
581      @result{} 2
582 (/ 5.0 2)
583      @result{} 2.5
584 (/ 5 2.0)
585      @result{} 2.5
586 (/ 5.0 2.0)
587      @result{} 2.5
588 (/ 25 3 2)
589      @result{} 4
590 (/ -17 6)
591      @result{} -2
592 @end example
594 The result of @code{(/ -17 6)} could in principle be -3 on some
595 machines.
596 @end defun
598 @defun % dividend divisor
599 @cindex remainder
600 This function returns the integer remainder after division of @var{dividend}
601 by @var{divisor}.  The arguments must be integers or markers.
603 For negative arguments, the remainder is in principle machine-dependent
604 since the quotient is; but in practice, all known machines behave alike.
606 An @code{arith-error} results if @var{divisor} is 0.
608 @example
609 (% 9 4)
610      @result{} 1
611 (% -9 4)
612      @result{} -1
613 (% 9 -4)
614      @result{} 1
615 (% -9 -4)
616      @result{} -1
617 @end example
619 For any two integers @var{dividend} and @var{divisor},
621 @example
622 @group
623 (+ (% @var{dividend} @var{divisor})
624    (* (/ @var{dividend} @var{divisor}) @var{divisor}))
625 @end group
626 @end example
628 @noindent
629 always equals @var{dividend}.
630 @end defun
632 @defun mod dividend divisor
633 @cindex modulus
634 This function returns the value of @var{dividend} modulo @var{divisor};
635 in other words, the remainder after division of @var{dividend}
636 by @var{divisor}, but with the same sign as @var{divisor}.
637 The arguments must be numbers or markers.
639 Unlike @code{%}, @code{mod} returns a well-defined result for negative
640 arguments.  It also permits floating point arguments; it rounds the
641 quotient downward (towards minus infinity) to an integer, and uses that
642 quotient to compute the remainder.
644 An @code{arith-error} results if @var{divisor} is 0.
646 @example
647 @group
648 (mod 9 4)
649      @result{} 1
650 @end group
651 @group
652 (mod -9 4)
653      @result{} 3
654 @end group
655 @group
656 (mod 9 -4)
657      @result{} -3
658 @end group
659 @group
660 (mod -9 -4)
661      @result{} -1
662 @end group
663 @group
664 (mod 5.5 2.5)
665      @result{} .5
666 @end group
667 @end example
669 For any two numbers @var{dividend} and @var{divisor},
671 @example
672 @group
673 (+ (mod @var{dividend} @var{divisor})
674    (* (floor @var{dividend} @var{divisor}) @var{divisor}))
675 @end group
676 @end example
678 @noindent
679 always equals @var{dividend}, subject to rounding error if either
680 argument is floating point.  For @code{floor}, see @ref{Numeric
681 Conversions}.
682 @end defun
684 @node Rounding Operations
685 @section Rounding Operations
686 @cindex rounding without conversion
688 The functions @code{ffloor}, @code{fceiling}, @code{fround}, and
689 @code{ftruncate} take a floating point argument and return a floating
690 point result whose value is a nearby integer.  @code{ffloor} returns the
691 nearest integer below; @code{fceiling}, the nearest integer above;
692 @code{ftruncate}, the nearest integer in the direction towards zero;
693 @code{fround}, the nearest integer.
695 @defun ffloor float
696 This function rounds @var{float} to the next lower integral value, and
697 returns that value as a floating point number.
698 @end defun
700 @defun fceiling float
701 This function rounds @var{float} to the next higher integral value, and
702 returns that value as a floating point number.
703 @end defun
705 @defun ftruncate float
706 This function rounds @var{float} towards zero to an integral value, and
707 returns that value as a floating point number.
708 @end defun
710 @defun fround float
711 This function rounds @var{float} to the nearest integral value,
712 and returns that value as a floating point number.
713 @end defun
715 @node Bitwise Operations
716 @section Bitwise Operations on Integers
718   In a computer, an integer is represented as a binary number, a
719 sequence of @dfn{bits} (digits which are either zero or one).  A bitwise
720 operation acts on the individual bits of such a sequence.  For example,
721 @dfn{shifting} moves the whole sequence left or right one or more places,
722 reproducing the same pattern ``moved over''.
724   The bitwise operations in Emacs Lisp apply only to integers.
726 @defun lsh integer1 count
727 @cindex logical shift
728 @code{lsh}, which is an abbreviation for @dfn{logical shift}, shifts the
729 bits in @var{integer1} to the left @var{count} places, or to the right
730 if @var{count} is negative, bringing zeros into the vacated bits.  If
731 @var{count} is negative, @code{lsh} shifts zeros into the leftmost
732 (most-significant) bit, producing a positive result even if
733 @var{integer1} is negative.  Contrast this with @code{ash}, below.
735 Here are two examples of @code{lsh}, shifting a pattern of bits one
736 place to the left.  We show only the low-order eight bits of the binary
737 pattern; the rest are all zero.
739 @example
740 @group
741 (lsh 5 1)
742      @result{} 10
743 ;; @r{Decimal 5 becomes decimal 10.}
744 00000101 @result{} 00001010
746 (lsh 7 1)
747      @result{} 14
748 ;; @r{Decimal 7 becomes decimal 14.}
749 00000111 @result{} 00001110
750 @end group
751 @end example
753 @noindent
754 As the examples illustrate, shifting the pattern of bits one place to
755 the left produces a number that is twice the value of the previous
756 number.
758 Shifting a pattern of bits two places to the left produces results
759 like this (with 8-bit binary numbers):
761 @example
762 @group
763 (lsh 3 2)
764      @result{} 12
765 ;; @r{Decimal 3 becomes decimal 12.}
766 00000011 @result{} 00001100
767 @end group
768 @end example
770 On the other hand, shifting one place to the right looks like this:
772 @example
773 @group
774 (lsh 6 -1)
775      @result{} 3
776 ;; @r{Decimal 6 becomes decimal 3.}
777 00000110 @result{} 00000011
778 @end group
780 @group
781 (lsh 5 -1)
782      @result{} 2
783 ;; @r{Decimal 5 becomes decimal 2.}
784 00000101 @result{} 00000010
785 @end group
786 @end example
788 @noindent
789 As the example illustrates, shifting one place to the right divides the
790 value of a positive integer by two, rounding downward.
792 The function @code{lsh}, like all Emacs Lisp arithmetic functions, does
793 not check for overflow, so shifting left can discard significant bits
794 and change the sign of the number.  For example, left shifting
795 268,435,455 produces @minus{}2 on a 29-bit machine:
797 @example
798 (lsh 268435455 1)          ; @r{left shift}
799      @result{} -2
800 @end example
802 In binary, in the 29-bit implementation, the argument looks like this:
804 @example
805 @group
806 ;; @r{Decimal 268,435,455}
807 0 1111  1111 1111  1111 1111  1111 1111
808 @end group
809 @end example
811 @noindent
812 which becomes the following when left shifted:
814 @example
815 @group
816 ;; @r{Decimal @minus{}2}
817 1 1111  1111 1111  1111 1111  1111 1110
818 @end group
819 @end example
820 @end defun
822 @defun ash integer1 count
823 @cindex arithmetic shift
824 @code{ash} (@dfn{arithmetic shift}) shifts the bits in @var{integer1}
825 to the left @var{count} places, or to the right if @var{count}
826 is negative.
828 @code{ash} gives the same results as @code{lsh} except when
829 @var{integer1} and @var{count} are both negative.  In that case,
830 @code{ash} puts ones in the empty bit positions on the left, while
831 @code{lsh} puts zeros in those bit positions.
833 Thus, with @code{ash}, shifting the pattern of bits one place to the right
834 looks like this:
836 @example
837 @group
838 (ash -6 -1) @result{} -3
839 ;; @r{Decimal @minus{}6 becomes decimal @minus{}3.}
840 1 1111  1111 1111  1111 1111  1111 1010
841      @result{}
842 1 1111  1111 1111  1111 1111  1111 1101
843 @end group
844 @end example
846 In contrast, shifting the pattern of bits one place to the right with
847 @code{lsh} looks like this:
849 @example
850 @group
851 (lsh -6 -1) @result{} 268435453
852 ;; @r{Decimal @minus{}6 becomes decimal 268,435,453.}
853 1 1111  1111 1111  1111 1111  1111 1010
854      @result{}
855 0 1111  1111 1111  1111 1111  1111 1101
856 @end group
857 @end example
859 Here are other examples:
861 @c !!! Check if lined up in smallbook format!  XDVI shows problem
862 @c     with smallbook but not with regular book! --rjc 16mar92
863 @smallexample
864 @group
865                    ;  @r{             29-bit binary values}
867 (lsh 5 2)          ;   5  =  @r{0 0000  0000 0000  0000 0000  0000 0101}
868      @result{} 20         ;      =  @r{0 0000  0000 0000  0000 0000  0001 0100}
869 @end group
870 @group
871 (ash 5 2)
872      @result{} 20
873 (lsh -5 2)         ;  -5  =  @r{1 1111  1111 1111  1111 1111  1111 1011}
874      @result{} -20        ;      =  @r{1 1111  1111 1111  1111 1111  1110 1100}
875 (ash -5 2)
876      @result{} -20
877 @end group
878 @group
879 (lsh 5 -2)         ;   5  =  @r{0 0000  0000 0000  0000 0000  0000 0101}
880      @result{} 1          ;      =  @r{0 0000  0000 0000  0000 0000  0000 0001}
881 @end group
882 @group
883 (ash 5 -2)
884      @result{} 1
885 @end group
886 @group
887 (lsh -5 -2)        ;  -5  =  @r{1 1111  1111 1111  1111 1111  1111 1011}
888      @result{} 134217726  ;      =  @r{0 0111  1111 1111  1111 1111  1111 1110}
889 @end group
890 @group
891 (ash -5 -2)        ;  -5  =  @r{1 1111  1111 1111  1111 1111  1111 1011}
892      @result{} -2         ;      =  @r{1 1111  1111 1111  1111 1111  1111 1110}
893 @end group
894 @end smallexample
895 @end defun
897 @defun logand &rest ints-or-markers
898 @cindex logical and
899 @cindex bitwise and
900 This function returns the ``logical and'' of the arguments: the
901 @var{n}th bit is set in the result if, and only if, the @var{n}th bit is
902 set in all the arguments.  (``Set'' means that the value of the bit is 1
903 rather than 0.)
905 For example, using 4-bit binary numbers, the ``logical and'' of 13 and
906 12 is 12: 1101 combined with 1100 produces 1100.
907 In both the binary numbers, the leftmost two bits are set (i.e., they
908 are 1's), so the leftmost two bits of the returned value are set.
909 However, for the rightmost two bits, each is zero in at least one of
910 the arguments, so the rightmost two bits of the returned value are 0's.
912 @noindent
913 Therefore,
915 @example
916 @group
917 (logand 13 12)
918      @result{} 12
919 @end group
920 @end example
922 If @code{logand} is not passed any argument, it returns a value of
923 @minus{}1.  This number is an identity element for @code{logand}
924 because its binary representation consists entirely of ones.  If
925 @code{logand} is passed just one argument, it returns that argument.
927 @smallexample
928 @group
929                    ; @r{               29-bit binary values}
931 (logand 14 13)     ; 14  =  @r{0 0000  0000 0000  0000 0000  0000 1110}
932                    ; 13  =  @r{0 0000  0000 0000  0000 0000  0000 1101}
933      @result{} 12         ; 12  =  @r{0 0000  0000 0000  0000 0000  0000 1100}
934 @end group
936 @group
937 (logand 14 13 4)   ; 14  =  @r{0 0000  0000 0000  0000 0000  0000 1110}
938                    ; 13  =  @r{0 0000  0000 0000  0000 0000  0000 1101}
939                    ;  4  =  @r{0 0000  0000 0000  0000 0000  0000 0100}
940      @result{} 4          ;  4  =  @r{0 0000  0000 0000  0000 0000  0000 0100}
941 @end group
943 @group
944 (logand)
945      @result{} -1         ; -1  =  @r{1 1111  1111 1111  1111 1111  1111 1111}
946 @end group
947 @end smallexample
948 @end defun
950 @defun logior &rest ints-or-markers
951 @cindex logical inclusive or
952 @cindex bitwise or
953 This function returns the ``inclusive or'' of its arguments: the @var{n}th bit
954 is set in the result if, and only if, the @var{n}th bit is set in at least
955 one of the arguments.  If there are no arguments, the result is zero,
956 which is an identity element for this operation.  If @code{logior} is
957 passed just one argument, it returns that argument.
959 @smallexample
960 @group
961                    ; @r{              29-bit binary values}
963 (logior 12 5)      ; 12  =  @r{0 0000  0000 0000  0000 0000  0000 1100}
964                    ;  5  =  @r{0 0000  0000 0000  0000 0000  0000 0101}
965      @result{} 13         ; 13  =  @r{0 0000  0000 0000  0000 0000  0000 1101}
966 @end group
968 @group
969 (logior 12 5 7)    ; 12  =  @r{0 0000  0000 0000  0000 0000  0000 1100}
970                    ;  5  =  @r{0 0000  0000 0000  0000 0000  0000 0101}
971                    ;  7  =  @r{0 0000  0000 0000  0000 0000  0000 0111}
972      @result{} 15         ; 15  =  @r{0 0000  0000 0000  0000 0000  0000 1111}
973 @end group
974 @end smallexample
975 @end defun
977 @defun logxor &rest ints-or-markers
978 @cindex bitwise exclusive or
979 @cindex logical exclusive or
980 This function returns the ``exclusive or'' of its arguments: the
981 @var{n}th bit is set in the result if, and only if, the @var{n}th bit is
982 set in an odd number of the arguments.  If there are no arguments, the
983 result is 0, which is an identity element for this operation.  If
984 @code{logxor} is passed just one argument, it returns that argument.
986 @smallexample
987 @group
988                    ; @r{              29-bit binary values}
990 (logxor 12 5)      ; 12  =  @r{0 0000  0000 0000  0000 0000  0000 1100}
991                    ;  5  =  @r{0 0000  0000 0000  0000 0000  0000 0101}
992      @result{} 9          ;  9  =  @r{0 0000  0000 0000  0000 0000  0000 1001}
993 @end group
995 @group
996 (logxor 12 5 7)    ; 12  =  @r{0 0000  0000 0000  0000 0000  0000 1100}
997                    ;  5  =  @r{0 0000  0000 0000  0000 0000  0000 0101}
998                    ;  7  =  @r{0 0000  0000 0000  0000 0000  0000 0111}
999      @result{} 14         ; 14  =  @r{0 0000  0000 0000  0000 0000  0000 1110}
1000 @end group
1001 @end smallexample
1002 @end defun
1004 @defun lognot integer
1005 @cindex logical not
1006 @cindex bitwise not
1007 This function returns the logical complement of its argument: the @var{n}th
1008 bit is one in the result if, and only if, the @var{n}th bit is zero in
1009 @var{integer}, and vice-versa.
1011 @example
1012 (lognot 5)
1013      @result{} -6
1014 ;;  5  =  @r{0 0000  0000 0000  0000 0000  0000 0101}
1015 ;; @r{becomes}
1016 ;; -6  =  @r{1 1111  1111 1111  1111 1111  1111 1010}
1017 @end example
1018 @end defun
1020 @node Math Functions
1021 @section Standard Mathematical Functions
1022 @cindex transcendental functions
1023 @cindex mathematical functions
1025   These mathematical functions allow integers as well as floating point
1026 numbers as arguments.
1028 @defun sin arg
1029 @defunx cos arg
1030 @defunx tan arg
1031 These are the ordinary trigonometric functions, with argument measured
1032 in radians.
1033 @end defun
1035 @defun asin arg
1036 The value of @code{(asin @var{arg})} is a number between
1037 @ifnottex
1038 @minus{}pi/2
1039 @end ifnottex
1040 @tex
1041 @math{-\pi/2}
1042 @end tex
1044 @ifnottex
1045 pi/2
1046 @end ifnottex
1047 @tex
1048 @math{\pi/2}
1049 @end tex
1050 (inclusive) whose sine is @var{arg}; if, however, @var{arg} is out of
1051 range (outside [-1, 1]), it signals a @code{domain-error} error.
1052 @end defun
1054 @defun acos arg
1055 The value of @code{(acos @var{arg})} is a number between 0 and
1056 @ifnottex
1058 @end ifnottex
1059 @tex
1060 @math{\pi}
1061 @end tex
1062 (inclusive) whose cosine is @var{arg}; if, however, @var{arg} is out
1063 of range (outside [-1, 1]), it signals a @code{domain-error} error.
1064 @end defun
1066 @defun atan y &optional x
1067 The value of @code{(atan @var{y})} is a number between
1068 @ifnottex
1069 @minus{}pi/2
1070 @end ifnottex
1071 @tex
1072 @math{-\pi/2}
1073 @end tex
1075 @ifnottex
1076 pi/2
1077 @end ifnottex
1078 @tex
1079 @math{\pi/2}
1080 @end tex
1081 (exclusive) whose tangent is @var{y}.  If the optional second
1082 argument @var{x} is given, the value of @code{(atan y x)} is the
1083 angle in radians between the vector @code{[@var{x}, @var{y}]} and the
1084 @code{X} axis.
1085 @end defun
1087 @defun exp arg
1088 This is the exponential function; it returns
1089 @tex
1090 @math{e}
1091 @end tex
1092 @ifnottex
1093 @i{e}
1094 @end ifnottex
1095 to the power @var{arg}.
1096 @tex
1097 @math{e}
1098 @end tex
1099 @ifnottex
1100 @i{e}
1101 @end ifnottex
1102 is a fundamental mathematical constant also called the base of natural
1103 logarithms.
1104 @end defun
1106 @defun log arg &optional base
1107 This function returns the logarithm of @var{arg}, with base @var{base}.
1108 If you don't specify @var{base}, the base
1109 @tex
1110 @math{e}
1111 @end tex
1112 @ifnottex
1113 @i{e}
1114 @end ifnottex
1115 is used.  If @var{arg} is negative, it signals a @code{domain-error}
1116 error.
1117 @end defun
1119 @ignore
1120 @defun expm1 arg
1121 This function returns @code{(1- (exp @var{arg}))}, but it is more
1122 accurate than that when @var{arg} is negative and @code{(exp @var{arg})}
1123 is close to 1.
1124 @end defun
1126 @defun log1p arg
1127 This function returns @code{(log (1+ @var{arg}))}, but it is more
1128 accurate than that when @var{arg} is so small that adding 1 to it would
1129 lose accuracy.
1130 @end defun
1131 @end ignore
1133 @defun log10 arg
1134 This function returns the logarithm of @var{arg}, with base 10.  If
1135 @var{arg} is negative, it signals a @code{domain-error} error.
1136 @code{(log10 @var{x})} @equiv{} @code{(log @var{x} 10)}, at least
1137 approximately.
1138 @end defun
1140 @defun expt x y
1141 This function returns @var{x} raised to power @var{y}.  If both
1142 arguments are integers and @var{y} is positive, the result is an
1143 integer; in this case, it is truncated to fit the range of possible
1144 integer values.
1145 @end defun
1147 @defun sqrt arg
1148 This returns the square root of @var{arg}.  If @var{arg} is negative,
1149 it signals a @code{domain-error} error.
1150 @end defun
1152 @node Random Numbers
1153 @section Random Numbers
1154 @cindex random numbers
1156 A deterministic computer program cannot generate true random numbers.
1157 For most purposes, @dfn{pseudo-random numbers} suffice.  A series of
1158 pseudo-random numbers is generated in a deterministic fashion.  The
1159 numbers are not truly random, but they have certain properties that
1160 mimic a random series.  For example, all possible values occur equally
1161 often in a pseudo-random series.
1163 In Emacs, pseudo-random numbers are generated from a ``seed'' number.
1164 Starting from any given seed, the @code{random} function always
1165 generates the same sequence of numbers.  Emacs always starts with the
1166 same seed value, so the sequence of values of @code{random} is actually
1167 the same in each Emacs run!  For example, in one operating system, the
1168 first call to @code{(random)} after you start Emacs always returns
1169 -1457731, and the second one always returns -7692030.  This
1170 repeatability is helpful for debugging.
1172 If you want random numbers that don't always come out the same, execute
1173 @code{(random t)}.  This chooses a new seed based on the current time of
1174 day and on Emacs's process @acronym{ID} number.
1176 @defun random &optional limit
1177 This function returns a pseudo-random integer.  Repeated calls return a
1178 series of pseudo-random integers.
1180 If @var{limit} is a positive integer, the value is chosen to be
1181 nonnegative and less than @var{limit}.
1183 If @var{limit} is @code{t}, it means to choose a new seed based on the
1184 current time of day and on Emacs's process @acronym{ID} number.
1185 @c "Emacs'" is incorrect usage!
1187 On some machines, any integer representable in Lisp may be the result
1188 of @code{random}.  On other machines, the result can never be larger
1189 than a certain maximum or less than a certain (negative) minimum.
1190 @end defun
1192 @ignore
1193    arch-tag: 574e8dd2-d513-4616-9844-c9a27869782e
1194 @end ignore