1 ;;; byte-opt.el --- the optimization passes of the emacs-lisp byte compiler
3 ;; Copyright (C) 1991, 1994, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
4 ;; 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
6 ;; Author: Jamie Zawinski <jwz@lucid.com>
7 ;; Hallvard Furuseth <hbf@ulrik.uio.no>
12 ;; This file is part of GNU Emacs.
14 ;; GNU Emacs is free software: you can redistribute it and/or modify
15 ;; it under the terms of the GNU General Public License as published by
16 ;; the Free Software Foundation, either version 3 of the License, or
17 ;; (at your option) any later version.
19 ;; GNU Emacs is distributed in the hope that it will be useful,
20 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
21 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 ;; GNU General Public License for more details.
24 ;; You should have received a copy of the GNU General Public License
25 ;; along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>.
29 ;; ========================================================================
30 ;; "No matter how hard you try, you can't make a racehorse out of a pig.
31 ;; You can, however, make a faster pig."
33 ;; Or, to put it another way, the Emacs byte compiler is a VW Bug. This code
34 ;; makes it be a VW Bug with fuel injection and a turbocharger... You're
35 ;; still not going to make it go faster than 70 mph, but it might be easier
41 ;; (apply (lambda (x &rest y) ...) 1 (foo))
43 ;; maintain a list of functions known not to access any global variables
44 ;; (actually, give them a 'dynamically-safe property) and then
45 ;; (let ( v1 v2 ... vM vN ) <...dynamically-safe...> ) ==>
46 ;; (let ( v1 v2 ... vM ) vN <...dynamically-safe...> )
47 ;; by recursing on this, we might be able to eliminate the entire let.
48 ;; However certain variables should never have their bindings optimized
49 ;; away, because they affect everything.
50 ;; (put 'debug-on-error 'binding-is-magic t)
51 ;; (put 'debug-on-abort 'binding-is-magic t)
52 ;; (put 'debug-on-next-call 'binding-is-magic t)
53 ;; (put 'inhibit-quit 'binding-is-magic t)
54 ;; (put 'quit-flag 'binding-is-magic t)
55 ;; (put 't 'binding-is-magic t)
56 ;; (put 'nil 'binding-is-magic t)
58 ;; (put 'gc-cons-threshold 'binding-is-magic t)
59 ;; (put 'track-mouse 'binding-is-magic t)
62 ;; Simple defsubsts often produce forms like
63 ;; (let ((v1 (f1)) (v2 (f2)) ...)
65 ;; It would be nice if we could optimize this to
67 ;; but we can't unless FN is dynamically-safe (it might be dynamically
68 ;; referring to the bindings that the lambda arglist established.)
69 ;; One of the uncountable lossages introduced by dynamic scope...
71 ;; Maybe there should be a control-structure that says "turn on
72 ;; fast-and-loose type-assumptive optimizations here." Then when
73 ;; we see a form like (car foo) we can from then on assume that
74 ;; the variable foo is of type cons, and optimize based on that.
75 ;; But, this won't win much because of (you guessed it) dynamic
76 ;; scope. Anything down the stack could change the value.
77 ;; (Another reason it doesn't work is that it is perfectly valid
78 ;; to call car with a null argument.) A better approach might
79 ;; be to allow type-specification of the form
80 ;; (put 'foo 'arg-types '(float (list integer) dynamic))
81 ;; (put 'foo 'result-type 'bool)
82 ;; It should be possible to have these types checked to a certain
85 ;; collapse common subexpressions
87 ;; It would be nice if redundant sequences could be factored out as well,
88 ;; when they are known to have no side-effects:
89 ;; (list (+ a b c) (+ a b c)) --> a b add c add dup list-2
90 ;; but beware of traps like
91 ;; (cons (list x y) (list x y))
93 ;; Tail-recursion elimination is not really possible in Emacs Lisp.
94 ;; Tail-recursion elimination is almost always impossible when all variables
95 ;; have dynamic scope, but given that the "return" byteop requires the
96 ;; binding stack to be empty (rather than emptying it itself), there can be
97 ;; no truly tail-recursive Emacs Lisp functions that take any arguments or
100 ;; Here is an example of an Emacs Lisp function which could safely be
101 ;; byte-compiled tail-recursively:
103 ;; (defun tail-map (fn list)
105 ;; (funcall fn (car list))
106 ;; (tail-map fn (cdr list)))))
108 ;; However, if there was even a single let-binding around the COND,
109 ;; it could not be byte-compiled, because there would be an "unbind"
110 ;; byte-op between the final "call" and "return." Adding a
111 ;; Bunbind_all byteop would fix this.
113 ;; (defun foo (x y z) ... (foo a b c))
114 ;; ... (const foo) (varref a) (varref b) (varref c) (call 3) END: (return)
115 ;; ... (varref a) (varbind x) (varref b) (varbind y) (varref c) (varbind z) (goto 0) END: (unbind-all) (return)
116 ;; ... (varref a) (varset x) (varref b) (varset y) (varref c) (varset z) (goto 0) END: (return)
118 ;; this also can be considered tail recursion:
120 ;; ... (const foo) (varref a) (call 1) (goto X) ... X: (return)
121 ;; could generalize this by doing the optimization
122 ;; (goto X) ... X: (return) --> (return)
124 ;; But this doesn't solve all of the problems: although by doing tail-
125 ;; recursion elimination in this way, the call-stack does not grow, the
126 ;; binding-stack would grow with each recursive step, and would eventually
127 ;; overflow. I don't believe there is any way around this without lexical
130 ;; Wouldn't it be nice if Emacs Lisp had lexical scope.
132 ;; Idea: the form (lexical-scope) in a file means that the file may be
133 ;; compiled lexically. This proclamation is file-local. Then, within
134 ;; that file, "let" would establish lexical bindings, and "let-dynamic"
135 ;; would do things the old way. (Or we could use CL "declare" forms.)
136 ;; We'd have to notice defvars and defconsts, since those variables should
137 ;; always be dynamic, and attempting to do a lexical binding of them
138 ;; should simply do a dynamic binding instead.
139 ;; But! We need to know about variables that were not necessarily defvarred
140 ;; in the file being compiled (doing a boundp check isn't good enough.)
141 ;; Fdefvar() would have to be modified to add something to the plist.
143 ;; A major disadvantage of this scheme is that the interpreter and compiler
144 ;; would have different semantics for files compiled with (dynamic-scope).
145 ;; Since this would be a file-local optimization, there would be no way to
146 ;; modify the interpreter to obey this (unless the loader was hacked
147 ;; in some grody way, but that's a really bad idea.)
149 ;; Other things to consider:
151 ;; ;; Associative math should recognize subcalls to identical function:
152 ;; (disassemble (lambda (x) (+ (+ (foo) 1) (+ (bar) 2))))
153 ;; ;; This should generate the same as (1+ x) and (1- x)
155 ;; (disassemble (lambda (x) (cons (+ x 1) (- x 1))))
156 ;; ;; An awful lot of functions always return a non-nil value. If they're
157 ;; ;; error free also they may act as true-constants.
159 ;; (disassemble (lambda (x) (and (point) (foo))))
161 ;; ;; - all but one arguments to a function are constant
162 ;; ;; - the non-constant argument is an if-expression (cond-expression?)
163 ;; ;; then the outer function can be distributed. If the guarding
164 ;; ;; condition is side-effect-free [assignment-free] then the other
165 ;; ;; arguments may be any expressions. Since, however, the code size
166 ;; ;; can increase this way they should be "simple". Compare:
168 ;; (disassemble (lambda (x) (eq (if (point) 'a 'b) 'c)))
169 ;; (disassemble (lambda (x) (if (point) (eq 'a 'c) (eq 'b 'c))))
171 ;; ;; (car (cons A B)) -> (prog1 A B)
172 ;; (disassemble (lambda (x) (car (cons (foo) 42))))
174 ;; ;; (cdr (cons A B)) -> (progn A B)
175 ;; (disassemble (lambda (x) (cdr (cons 42 (foo)))))
177 ;; ;; (car (list A B ...)) -> (prog1 A B ...)
178 ;; (disassemble (lambda (x) (car (list (foo) 42 (bar)))))
180 ;; ;; (cdr (list A B ...)) -> (progn A (list B ...))
181 ;; (disassemble (lambda (x) (cdr (list 42 (foo) (bar)))))
187 (eval-when-compile (require 'cl
))
189 (defun byte-compile-log-lap-1 (format &rest args
)
190 (if (aref byte-code-vector
0)
191 (error "The old version of the disassembler is loaded. Reload new-bytecomp as well"))
193 (apply 'format format
195 (mapcar (lambda (arg)
196 (if (not (consp arg
))
197 (if (and (symbolp arg
)
198 (string-match "^byte-" (symbol-name arg
)))
199 (intern (substring (symbol-name arg
) 5))
201 (if (integerp (setq c
(car arg
)))
202 (error "non-symbolic byte-op %s" c
))
205 (setq a
(cond ((memq c byte-goto-ops
)
206 (car (cdr (cdr arg
))))
207 ((memq c byte-constref-ops
)
210 (setq c
(symbol-name c
))
211 (if (string-match "^byte-." c
)
212 (setq c
(intern (substring c
5)))))
213 (if (eq c
'constant
) (setq c
'const
))
214 (if (and (eq (cdr arg
) 0)
215 (not (memq c
'(unbind call const
))))
217 (format "(%s %s)" c a
))))
220 (defmacro byte-compile-log-lap
(format-string &rest args
)
221 `(and (memq byte-optimize-log
'(t byte
))
222 (byte-compile-log-lap-1 ,format-string
,@args
)))
225 ;;; byte-compile optimizers to support inlining
227 (put 'inline
'byte-optimizer
'byte-optimize-inline-handler
)
229 (defun byte-optimize-inline-handler (form)
230 "byte-optimize-handler for the `inline' special-form."
234 (let ((f (car-safe sexp
)))
236 (or (cdr (assq f byte-compile-function-environment
))
237 (not (or (not (fboundp f
))
238 (cdr (assq f byte-compile-macro-environment
))
239 (and (consp (setq f
(symbol-function f
)))
242 (byte-compile-inline-expand sexp
)
247 ;; Splice the given lap code into the current instruction stream.
248 ;; If it has any labels in it, you're responsible for making sure there
249 ;; are no collisions, and that byte-compile-tag-number is reasonable
250 ;; after this is spliced in. The provided list is destroyed.
251 (defun byte-inline-lapcode (lap)
252 (setq byte-compile-output
(nconc (nreverse lap
) byte-compile-output
)))
254 (defun byte-compile-inline-expand (form)
255 (let* ((name (car form
))
256 (fn (or (cdr (assq name byte-compile-function-environment
))
257 (and (fboundp name
) (symbol-function name
)))))
260 (byte-compile-warn "attempt to inline `%s' before it was defined"
264 (when (and (consp fn
) (eq (car fn
) 'autoload
))
266 (setq fn
(or (and (fboundp name
) (symbol-function name
))
267 (cdr (assq name byte-compile-function-environment
)))))
268 (if (and (consp fn
) (eq (car fn
) 'autoload
))
269 (error "File `%s' didn't define `%s'" (nth 1 fn
) name
))
270 (if (and (symbolp fn
) (not (eq fn t
)))
271 (byte-compile-inline-expand (cons fn
(cdr form
)))
272 (if (byte-code-function-p fn
)
275 (setq string
(aref fn
1))
276 ;; Isn't it an error for `string' not to be unibyte?? --stef
277 (if (fboundp 'string-as-unibyte
)
278 (setq string
(string-as-unibyte string
)))
279 ;; `byte-compile-splice-in-already-compiled-code'
280 ;; takes care of inlining the body.
281 (cons `(lambda ,(aref fn
0)
282 (byte-code ,string
,(aref fn
2) ,(aref fn
3)))
284 (if (eq (car-safe fn
) 'lambda
)
286 ;; Give up on inlining.
289 ;; ((lambda ...) ...)
290 (defun byte-compile-unfold-lambda (form &optional name
)
291 (or name
(setq name
"anonymous lambda"))
292 (let ((lambda (car form
))
294 (if (byte-code-function-p lambda
)
295 (setq lambda
(list 'lambda
(aref lambda
0)
296 (list 'byte-code
(aref lambda
1)
297 (aref lambda
2) (aref lambda
3)))))
298 (let ((arglist (nth 1 lambda
))
299 (body (cdr (cdr lambda
)))
302 (if (and (stringp (car body
)) (cdr body
))
303 (setq body
(cdr body
)))
304 (if (and (consp (car body
)) (eq 'interactive
(car (car body
))))
305 (setq body
(cdr body
)))
307 (cond ((eq (car arglist
) '&optional
)
308 ;; ok, I'll let this slide because funcall_lambda() does...
309 ;; (if optionalp (error "multiple &optional keywords in %s" name))
310 (if restp
(error "&optional found after &rest in %s" name
))
311 (if (null (cdr arglist
))
312 (error "nothing after &optional in %s" name
))
314 ((eq (car arglist
) '&rest
)
315 ;; ...but it is by no stretch of the imagination a reasonable
316 ;; thing that funcall_lambda() allows (&rest x y) and
317 ;; (&rest x &optional y) in arglists.
318 (if (null (cdr arglist
))
319 (error "nothing after &rest in %s" name
))
320 (if (cdr (cdr arglist
))
321 (error "multiple vars after &rest in %s" name
))
324 (setq bindings
(cons (list (car arglist
)
325 (and values
(cons 'list values
)))
328 ((and (not optionalp
) (null values
))
329 (byte-compile-warn "attempt to open-code `%s' with too few arguments" name
)
330 (setq arglist nil values
'too-few
))
332 (setq bindings
(cons (list (car arglist
) (car values
))
334 values
(cdr values
))))
335 (setq arglist
(cdr arglist
)))
338 (or (eq values
'too-few
)
340 "attempt to open-code `%s' with too many arguments" name
))
343 ;; The following leads to infinite recursion when loading a
344 ;; file containing `(defsubst f () (f))', and then trying to
345 ;; byte-compile that file.
346 ;(setq body (mapcar 'byte-optimize-form body)))
350 (cons 'let
(cons (nreverse bindings
) body
))
351 (cons 'progn body
))))
352 (byte-compile-log " %s\t==>\t%s" form newform
)
356 ;;; implementing source-level optimizers
358 (defun byte-optimize-form-code-walker (form for-effect
)
360 ;; For normal function calls, We can just mapcar the optimizer the cdr. But
361 ;; we need to have special knowledge of the syntax of the special forms
362 ;; like let and defun (that's why they're special forms :-). (Actually,
363 ;; the important aspect is that they are subrs that don't evaluate all of
366 (let ((fn (car-safe form
))
368 (cond ((not (consp form
))
369 (if (not (and for-effect
370 (or byte-compile-delete-errors
376 (byte-compile-warn "malformed quote form: `%s'"
377 (prin1-to-string form
)))
378 ;; map (quote nil) to nil to simplify optimizer logic.
379 ;; map quoted constants to nil if for-effect (just because).
383 ((or (byte-code-function-p fn
)
384 (eq 'lambda
(car-safe fn
)))
385 (byte-optimize-form-code-walker
386 (byte-compile-unfold-lambda form
)
388 ((memq fn
'(let let
*))
389 ;; recursively enter the optimizer for the bindings and body
390 ;; of a let or let*. This for depth-firstness: forms that
391 ;; are more deeply nested are optimized first.
394 (mapcar (lambda (binding)
395 (if (symbolp binding
)
397 (if (cdr (cdr binding
))
398 (byte-compile-warn "malformed let binding: `%s'"
399 (prin1-to-string binding
)))
401 (byte-optimize-form (nth 1 binding
) nil
))))
403 (byte-optimize-body (cdr (cdr form
)) for-effect
))))
406 (mapcar (lambda (clause)
409 (byte-optimize-form (car clause
) nil
)
410 (byte-optimize-body (cdr clause
) for-effect
))
411 (byte-compile-warn "malformed cond form: `%s'"
412 (prin1-to-string clause
))
416 ;; as an extra added bonus, this simplifies (progn <x>) --> <x>
419 (setq tmp
(byte-optimize-body (cdr form
) for-effect
))
420 (if (cdr tmp
) (cons 'progn tmp
) (car tmp
)))
421 (byte-optimize-form (nth 1 form
) for-effect
)))
425 (cons (byte-optimize-form (nth 1 form
) for-effect
)
426 (byte-optimize-body (cdr (cdr form
)) t
)))
427 (byte-optimize-form (nth 1 form
) for-effect
)))
430 (cons (byte-optimize-form (nth 1 form
) t
)
431 (cons (byte-optimize-form (nth 2 form
) for-effect
)
432 (byte-optimize-body (cdr (cdr (cdr form
))) t
)))))
434 ((memq fn
'(save-excursion save-restriction save-current-buffer
))
435 ;; those subrs which have an implicit progn; it's not quite good
436 ;; enough to treat these like normal function calls.
437 ;; This can turn (save-excursion ...) into (save-excursion) which
438 ;; will be optimized away in the lap-optimize pass.
439 (cons fn
(byte-optimize-body (cdr form
) for-effect
)))
441 ((eq fn
'with-output-to-temp-buffer
)
442 ;; this is just like the above, except for the first argument.
445 (byte-optimize-form (nth 1 form
) nil
)
446 (byte-optimize-body (cdr (cdr form
)) for-effect
))))
449 (when (< (length form
) 3)
450 (byte-compile-warn "too few arguments for `if'"))
452 (cons (byte-optimize-form (nth 1 form
) nil
)
454 (byte-optimize-form (nth 2 form
) for-effect
)
455 (byte-optimize-body (nthcdr 3 form
) for-effect
)))))
457 ((memq fn
'(and or
)) ; remember, and/or are control structures.
458 ;; take forms off the back until we can't any more.
459 ;; In the future it could conceivably be a problem that the
460 ;; subexpressions of these forms are optimized in the reverse
461 ;; order, but it's ok for now.
463 (let ((backwards (reverse (cdr form
))))
464 (while (and backwards
465 (null (setcar backwards
466 (byte-optimize-form (car backwards
)
468 (setq backwards
(cdr backwards
)))
469 (if (and (cdr form
) (null backwards
))
471 " all subforms of %s called for effect; deleted" form
))
473 (cons fn
(nreverse (mapcar 'byte-optimize-form backwards
)))))
474 (cons fn
(mapcar 'byte-optimize-form
(cdr form
)))))
476 ((eq fn
'interactive
)
477 (byte-compile-warn "misplaced interactive spec: `%s'"
478 (prin1-to-string form
))
481 ((memq fn
'(defun defmacro function
482 condition-case save-window-excursion
))
483 ;; These forms are compiled as constants or by breaking out
484 ;; all the subexpressions and compiling them separately.
487 ((eq fn
'unwind-protect
)
488 ;; the "protected" part of an unwind-protect is compiled (and thus
489 ;; optimized) as a top-level form, so don't do it here. But the
490 ;; non-protected part has the same for-effect status as the
491 ;; unwind-protect itself. (The protected part is always for effect,
492 ;; but that isn't handled properly yet.)
494 (cons (byte-optimize-form (nth 1 form
) for-effect
)
498 ;; the body of a catch is compiled (and thus optimized) as a
499 ;; top-level form, so don't do it here. The tag is never
500 ;; for-effect. The body should have the same for-effect status
501 ;; as the catch form itself, but that isn't handled properly yet.
503 (cons (byte-optimize-form (nth 1 form
) nil
)
507 ;; Don't treat the args to `ignore' as being
508 ;; computed for effect. We want to avoid the warnings
509 ;; that might occur if they were treated that way.
510 ;; However, don't actually bother calling `ignore'.
511 `(prog1 nil .
,(mapcar 'byte-optimize-form
(cdr form
))))
513 ;; If optimization is on, this is the only place that macros are
514 ;; expanded. If optimization is off, then macroexpansion happens
515 ;; in byte-compile-form. Otherwise, the macros are already expanded
516 ;; by the time that is reached.
518 (setq form
(macroexpand form
519 byte-compile-macro-environment
))))
520 (byte-optimize-form form for-effect
))
522 ;; Support compiler macros as in cl.el.
523 ((and (fboundp 'compiler-macroexpand
)
524 (symbolp (car-safe form
))
525 (get (car-safe form
) 'cl-compiler-macro
)
528 (setq form
(compiler-macroexpand form
))))))
529 (byte-optimize-form form for-effect
))
532 (byte-compile-warn "`%s' is a malformed function"
533 (prin1-to-string fn
))
536 ((and for-effect
(setq tmp
(get fn
'side-effect-free
))
537 (or byte-compile-delete-errors
539 ;; Detect the expansion of (pop foo).
540 ;; There is no need to compile the call to `car' there.
542 (eq (car-safe (cadr form
)) 'prog1
)
543 (let ((var (cadr (cadr form
)))
544 (last (nth 2 (cadr form
))))
546 (null (nthcdr 3 (cadr form
)))
547 (eq (car-safe last
) 'setq
)
549 (eq (car-safe (nth 2 last
)) 'cdr
)
550 (eq (cadr (nth 2 last
)) var
))))
552 (byte-compile-warn "value returned from %s is unused"
553 (prin1-to-string form
))
555 (byte-compile-log " %s called for effect; deleted" fn
)
556 ;; appending a nil here might not be necessary, but it can't hurt.
558 (cons 'progn
(append (cdr form
) '(nil))) t
))
561 ;; Otherwise, no args can be considered to be for-effect,
562 ;; even if the called function is for-effect, because we
563 ;; don't know anything about that function.
564 (let ((args (mapcar #'byte-optimize-form
(cdr form
))))
565 (if (and (get fn
'pure
)
566 (byte-optimize-all-constp args
))
567 (list 'quote
(apply fn
(mapcar #'eval args
)))
570 (defun byte-optimize-all-constp (list)
571 "Non-nil if all elements of LIST satisfy `byte-compile-constp'."
573 (while (and list constant
)
574 (unless (byte-compile-constp (car list
))
576 (setq list
(cdr list
)))
579 (defun byte-optimize-form (form &optional for-effect
)
580 "The source-level pass of the optimizer."
582 ;; First, optimize all sub-forms of this one.
583 (setq form
(byte-optimize-form-code-walker form for-effect
))
585 ;; after optimizing all subforms, optimize this form until it doesn't
586 ;; optimize any further. This means that some forms will be passed through
587 ;; the optimizer many times, but that's necessary to make the for-effect
588 ;; processing do as much as possible.
591 (if (and (consp form
)
594 ;; we don't have any of these yet, but we might.
595 (setq opt
(get (car form
) 'byte-for-effect-optimizer
)))
596 (setq opt
(get (car form
) 'byte-optimizer
)))
597 (not (eq form
(setq new
(funcall opt form
)))))
599 ;; (if (equal form new) (error "bogus optimizer -- %s" opt))
600 (byte-compile-log " %s\t==>\t%s" form new
)
601 (setq new
(byte-optimize-form new for-effect
))
606 (defun byte-optimize-body (forms all-for-effect
)
607 ;; optimize the cdr of a progn or implicit progn; all forms is a list of
608 ;; forms, all but the last of which are optimized with the assumption that
609 ;; they are being called for effect. the last is for-effect as well if
610 ;; all-for-effect is true. returns a new list of forms.
615 (setq fe
(or all-for-effect
(cdr rest
)))
616 (setq new
(and (car rest
) (byte-optimize-form (car rest
) fe
)))
617 (if (or new
(not fe
))
618 (setq result
(cons new result
)))
619 (setq rest
(cdr rest
)))
623 ;; some source-level optimizers
625 ;; when writing optimizers, be VERY careful that the optimizer returns
626 ;; something not EQ to its argument if and ONLY if it has made a change.
627 ;; This implies that you cannot simply destructively modify the list;
628 ;; you must return something not EQ to it if you make an optimization.
630 ;; It is now safe to optimize code such that it introduces new bindings.
632 (defsubst byte-compile-trueconstp
(form)
633 "Return non-nil if FORM always evaluates to a non-nil value."
634 (while (eq (car-safe form
) 'progn
)
635 (setq form
(car (last (cdr form
)))))
639 ;; Can't use recursion in a defsubst.
640 ;; (progn (byte-compile-trueconstp (car (last (cdr form)))))
642 ((not (symbolp form
)))
646 (defsubst byte-compile-nilconstp
(form)
647 "Return non-nil if FORM always evaluates to a nil value."
648 (while (eq (car-safe form
) 'progn
)
649 (setq form
(car (last (cdr form
)))))
652 (quote (null (cadr form
)))
653 ;; Can't use recursion in a defsubst.
654 ;; (progn (byte-compile-nilconstp (car (last (cdr form)))))
656 ((not (symbolp form
)) nil
)
659 ;; If the function is being called with constant numeric args,
660 ;; evaluate as much as possible at compile-time. This optimizer
661 ;; assumes that the function is associative, like + or *.
662 (defun byte-optimize-associative-math (form)
667 (if (numberp (car rest
))
668 (setq constants
(cons (car rest
) constants
))
669 (setq args
(cons (car rest
) args
)))
670 (setq rest
(cdr rest
)))
674 (apply (car form
) constants
)
676 (cons (car form
) (nreverse args
))
678 (apply (car form
) constants
))
681 ;; If the function is being called with constant numeric args,
682 ;; evaluate as much as possible at compile-time. This optimizer
683 ;; assumes that the function satisfies
684 ;; (op x1 x2 ... xn) == (op ...(op (op x1 x2) x3) ...xn)
686 (defun byte-optimize-nonassociative-math (form)
687 (if (or (not (numberp (car (cdr form
))))
688 (not (numberp (car (cdr (cdr form
))))))
690 (let ((constant (car (cdr form
)))
691 (rest (cdr (cdr form
))))
692 (while (numberp (car rest
))
693 (setq constant
(funcall (car form
) constant
(car rest
))
696 (cons (car form
) (cons constant rest
))
699 ;;(defun byte-optimize-associative-two-args-math (form)
700 ;; (setq form (byte-optimize-associative-math form))
702 ;; (byte-optimize-two-args-left form)
705 ;;(defun byte-optimize-nonassociative-two-args-math (form)
706 ;; (setq form (byte-optimize-nonassociative-math form))
708 ;; (byte-optimize-two-args-right form)
711 (defun byte-optimize-approx-equal (x y
)
712 (<= (* (abs (- x y
)) 100) (abs (+ x y
))))
714 ;; Collect all the constants from FORM, after the STARTth arg,
715 ;; and apply FUN to them to make one argument at the end.
716 ;; For functions that can handle floats, that optimization
717 ;; can be incorrect because reordering can cause an overflow
718 ;; that would otherwise be avoided by encountering an arg that is a float.
719 ;; We avoid this problem by (1) not moving float constants and
720 ;; (2) not moving anything if it would cause an overflow.
721 (defun byte-optimize-delay-constants-math (form start fun
)
722 ;; Merge all FORM's constants from number START, call FUN on them
723 ;; and put the result at the end.
724 (let ((rest (nthcdr (1- start
) form
))
726 ;; t means we must check for overflow.
727 (overflow (memq fun
'(+ *))))
728 (while (cdr (setq rest
(cdr rest
)))
729 (if (integerp (car rest
))
731 (setq form
(copy-sequence form
)
732 rest
(nthcdr (1- start
) form
))
733 (while (setq rest
(cdr rest
))
734 (cond ((integerp (car rest
))
735 (setq constants
(cons (car rest
) constants
))
737 ;; If necessary, check now for overflow
738 ;; that might be caused by reordering.
740 ;; We have overflow if the result of doing the arithmetic
741 ;; on floats is not even close to the result
742 ;; of doing it on integers.
743 (not (byte-optimize-approx-equal
744 (apply fun
(mapcar 'float constants
))
745 (float (apply fun constants
)))))
747 (setq form
(nconc (delq nil form
)
748 (list (apply fun
(nreverse constants
)))))))))
751 (defsubst byte-compile-butlast
(form)
752 (nreverse (cdr (reverse form
))))
754 (defun byte-optimize-plus (form)
755 ;; Don't call `byte-optimize-delay-constants-math' (bug#1334).
756 ;;(setq form (byte-optimize-delay-constants-math form 1 '+))
757 (if (memq 0 form
) (setq form
(delq 0 (copy-sequence form
))))
758 ;; For (+ constants...), byte-optimize-predicate does the work.
759 (when (memq nil
(mapcar 'numberp
(cdr form
)))
761 ;; (+ x 1) --> (1+ x) and (+ x -1) --> (1- x).
762 ((and (= (length form
) 3)
763 (or (memq (nth 1 form
) '(1 -
1))
764 (memq (nth 2 form
) '(1 -
1))))
766 (if (memq (nth 1 form
) '(1 -
1))
767 (setq integer
(nth 1 form
) other
(nth 2 form
))
768 (setq integer
(nth 2 form
) other
(nth 1 form
)))
770 (list (if (eq integer
1) '1+ '1-
) other
))))
771 ;; Here, we could also do
772 ;; (+ x y ... 1) --> (1+ (+ x y ...))
773 ;; (+ x y ... -1) --> (1- (+ x y ...))
774 ;; The resulting bytecode is smaller, but is it faster? -- cyd
776 (byte-optimize-predicate form
))
778 (defun byte-optimize-minus (form)
779 ;; Don't call `byte-optimize-delay-constants-math' (bug#1334).
780 ;;(setq form (byte-optimize-delay-constants-math form 2 '+))
782 (when (and (nthcdr 3 form
)
783 (memq 0 (cddr form
)))
784 (setq form
(nconc (list (car form
) (cadr form
))
785 (delq 0 (copy-sequence (cddr form
)))))
786 ;; After the above, we must turn (- x) back into (- x 0)
788 (setq form
(nconc form
(list 0)))))
789 ;; For (- constants..), byte-optimize-predicate does the work.
790 (when (memq nil
(mapcar 'numberp
(cdr form
)))
792 ;; (- x 1) --> (1- x)
793 ((equal (nthcdr 2 form
) '(1))
794 (setq form
(list '1-
(nth 1 form
))))
795 ;; (- x -1) --> (1+ x)
796 ((equal (nthcdr 2 form
) '(-1))
797 (setq form
(list '1+ (nth 1 form
))))
799 ((and (eq (nth 1 form
) 0)
801 (setq form
(list '-
(nth 2 form
))))
802 ;; Here, we could also do
803 ;; (- x y ... 1) --> (1- (- x y ...))
804 ;; (- x y ... -1) --> (1+ (- x y ...))
805 ;; The resulting bytecode is smaller, but is it faster? -- cyd
807 (byte-optimize-predicate form
))
809 (defun byte-optimize-multiply (form)
810 (setq form
(byte-optimize-delay-constants-math form
1 '*))
811 ;; For (* constants..), byte-optimize-predicate does the work.
812 (when (memq nil
(mapcar 'numberp
(cdr form
)))
813 ;; After `byte-optimize-predicate', if there is a INTEGER constant
814 ;; in FORM, it is in the last element.
815 (let ((last (car (reverse (cdr form
)))))
817 ;; Would handling (* ... 0) here cause floating point errors?
819 ((eq 1 last
) (setq form
(byte-compile-butlast form
)))
821 (setq form
(list '-
(if (nthcdr 3 form
)
822 (byte-compile-butlast form
)
824 (byte-optimize-predicate form
))
826 (defun byte-optimize-divide (form)
827 (setq form
(byte-optimize-delay-constants-math form
2 '*))
828 ;; After `byte-optimize-predicate', if there is a INTEGER constant
829 ;; in FORM, it is in the last element.
830 (let ((last (car (reverse (cdr (cdr form
))))))
832 ;; Runtime error (leave it intact).
835 (memql 0.0 (cddr form
))))
836 ;; No constants in expression
837 ((not (numberp last
)))
838 ;; For (* constants..), byte-optimize-predicate does the work.
839 ((null (memq nil
(mapcar 'numberp
(cdr form
)))))
840 ;; (/ x y.. 1) --> (/ x y..)
841 ((and (eq last
1) (nthcdr 3 form
))
842 (setq form
(byte-compile-butlast form
)))
843 ;; (/ x -1), (/ x .. -1) --> (- x), (- (/ x ..))
845 (setq form
(list '-
(if (nthcdr 3 form
)
846 (byte-compile-butlast form
)
848 (byte-optimize-predicate form
))
850 (defun byte-optimize-logmumble (form)
851 (setq form
(byte-optimize-delay-constants-math form
1 (car form
)))
852 (byte-optimize-predicate
854 (setq form
(if (eq (car form
) 'logand
)
855 (cons 'progn
(cdr form
))
856 (delq 0 (copy-sequence form
)))))
857 ((and (eq (car-safe form
) 'logior
)
859 (cons 'progn
(cdr form
)))
863 (defun byte-optimize-binary-predicate (form)
864 (if (byte-compile-constp (nth 1 form
))
865 (if (byte-compile-constp (nth 2 form
))
867 (list 'quote
(eval form
))
869 ;; This can enable some lapcode optimizations.
870 (list (car form
) (nth 2 form
) (nth 1 form
)))
873 (defun byte-optimize-predicate (form)
877 (setq ok
(byte-compile-constp (car rest
))
881 (list 'quote
(eval form
))
885 (defun byte-optimize-identity (form)
886 (if (and (cdr form
) (null (cdr (cdr form
))))
888 (byte-compile-warn "identity called with %d arg%s, but requires 1"
890 (if (= 1 (length (cdr form
))) "" "s"))
893 (put 'identity
'byte-optimizer
'byte-optimize-identity
)
895 (put '+ 'byte-optimizer
'byte-optimize-plus
)
896 (put '* 'byte-optimizer
'byte-optimize-multiply
)
897 (put '-
'byte-optimizer
'byte-optimize-minus
)
898 (put '/ 'byte-optimizer
'byte-optimize-divide
)
899 (put 'max
'byte-optimizer
'byte-optimize-associative-math
)
900 (put 'min
'byte-optimizer
'byte-optimize-associative-math
)
902 (put '= 'byte-optimizer
'byte-optimize-binary-predicate
)
903 (put 'eq
'byte-optimizer
'byte-optimize-binary-predicate
)
904 (put 'equal
'byte-optimizer
'byte-optimize-binary-predicate
)
905 (put 'string
= 'byte-optimizer
'byte-optimize-binary-predicate
)
906 (put 'string-equal
'byte-optimizer
'byte-optimize-binary-predicate
)
908 (put '< 'byte-optimizer
'byte-optimize-predicate
)
909 (put '> 'byte-optimizer
'byte-optimize-predicate
)
910 (put '<= 'byte-optimizer
'byte-optimize-predicate
)
911 (put '>= 'byte-optimizer
'byte-optimize-predicate
)
912 (put '1+ 'byte-optimizer
'byte-optimize-predicate
)
913 (put '1-
'byte-optimizer
'byte-optimize-predicate
)
914 (put 'not
'byte-optimizer
'byte-optimize-predicate
)
915 (put 'null
'byte-optimizer
'byte-optimize-predicate
)
916 (put 'memq
'byte-optimizer
'byte-optimize-predicate
)
917 (put 'consp
'byte-optimizer
'byte-optimize-predicate
)
918 (put 'listp
'byte-optimizer
'byte-optimize-predicate
)
919 (put 'symbolp
'byte-optimizer
'byte-optimize-predicate
)
920 (put 'stringp
'byte-optimizer
'byte-optimize-predicate
)
921 (put 'string
< 'byte-optimizer
'byte-optimize-predicate
)
922 (put 'string-lessp
'byte-optimizer
'byte-optimize-predicate
)
924 (put 'logand
'byte-optimizer
'byte-optimize-logmumble
)
925 (put 'logior
'byte-optimizer
'byte-optimize-logmumble
)
926 (put 'logxor
'byte-optimizer
'byte-optimize-logmumble
)
927 (put 'lognot
'byte-optimizer
'byte-optimize-predicate
)
929 (put 'car
'byte-optimizer
'byte-optimize-predicate
)
930 (put 'cdr
'byte-optimizer
'byte-optimize-predicate
)
931 (put 'car-safe
'byte-optimizer
'byte-optimize-predicate
)
932 (put 'cdr-safe
'byte-optimizer
'byte-optimize-predicate
)
935 ;; I'm not convinced that this is necessary. Doesn't the optimizer loop
936 ;; take care of this? - Jamie
937 ;; I think this may some times be necessary to reduce ie (quote 5) to 5,
938 ;; so arithmetic optimizers recognize the numeric constant. - Hallvard
939 (put 'quote
'byte-optimizer
'byte-optimize-quote
)
940 (defun byte-optimize-quote (form)
941 (if (or (consp (nth 1 form
))
942 (and (symbolp (nth 1 form
))
943 (not (byte-compile-const-symbol-p form
))))
947 (defun byte-optimize-zerop (form)
948 (cond ((numberp (nth 1 form
))
950 (byte-compile-delete-errors
951 (list '= (nth 1 form
) 0))
954 (put 'zerop
'byte-optimizer
'byte-optimize-zerop
)
956 (defun byte-optimize-and (form)
957 ;; Simplify if less than 2 args.
958 ;; if there is a literal nil in the args to `and', throw it and following
959 ;; forms away, and surround the `and' with (progn ... nil).
960 (cond ((null (cdr form
)))
964 (prog1 (setq form
(copy-sequence form
))
966 (setq form
(cdr form
)))
969 ((null (cdr (cdr form
)))
971 ((byte-optimize-predicate form
))))
973 (defun byte-optimize-or (form)
974 ;; Throw away nil's, and simplify if less than 2 args.
975 ;; If there is a literal non-nil constant in the args to `or', throw away all
978 (setq form
(delq nil
(copy-sequence form
))))
980 (while (cdr (setq rest
(cdr rest
)))
981 (if (byte-compile-trueconstp (car rest
))
982 (setq form
(copy-sequence form
)
983 rest
(setcdr (memq (car rest
) form
) nil
))))
985 (byte-optimize-predicate form
)
988 (defun byte-optimize-cond (form)
989 ;; if any clauses have a literal nil as their test, throw them away.
990 ;; if any clause has a literal non-nil constant as its test, throw
991 ;; away all following clauses.
993 ;; This must be first, to reduce (cond (t ...) (nil)) to (progn t ...)
994 (while (setq rest
(assq nil
(cdr form
)))
995 (setq form
(delq rest
(copy-sequence form
))))
996 (if (memq nil
(cdr form
))
997 (setq form
(delq nil
(copy-sequence form
))))
999 (while (setq rest
(cdr rest
))
1000 (cond ((byte-compile-trueconstp (car-safe (car rest
)))
1001 ;; This branch will always be taken: kill the subsequent ones.
1002 (cond ((eq rest
(cdr form
)) ;First branch of `cond'.
1003 (setq form
`(progn ,@(car rest
))))
1005 (setq form
(copy-sequence form
))
1006 (setcdr (memq (car rest
) form
) nil
)))
1008 ((and (consp (car rest
))
1009 (byte-compile-nilconstp (caar rest
)))
1010 ;; This branch will never be taken: kill its body.
1011 (setcdr (car rest
) nil
)))))
1013 ;; Turn (cond (( <x> )) ... ) into (or <x> (cond ... ))
1014 (if (eq 'cond
(car-safe form
))
1015 (let ((clauses (cdr form
)))
1016 (if (and (consp (car clauses
))
1017 (null (cdr (car clauses
))))
1018 (list 'or
(car (car clauses
))
1020 (cons (car form
) (cdr (cdr form
)))))
1024 (defun byte-optimize-if (form)
1025 ;; (if (progn <insts> <test>) <rest>) ==> (progn <insts> (if <test> <rest>))
1026 ;; (if <true-constant> <then> <else...>) ==> <then>
1027 ;; (if <false-constant> <then> <else...>) ==> (progn <else...>)
1028 ;; (if <test> nil <else...>) ==> (if (not <test>) (progn <else...>))
1029 ;; (if <test> <then> nil) ==> (if <test> <then>)
1030 (let ((clause (nth 1 form
)))
1031 (cond ((and (eq (car-safe clause
) 'progn
)
1032 ;; `clause' is a proper list.
1033 (null (cdr (last clause
))))
1034 (if (null (cddr clause
))
1035 ;; A trivial `progn'.
1036 (byte-optimize-if `(if ,(cadr clause
) ,@(nthcdr 2 form
)))
1037 (nconc (butlast clause
)
1040 `(if ,(car (last clause
)) ,@(nthcdr 2 form
)))))))
1041 ((byte-compile-trueconstp clause
)
1042 `(progn ,clause
,(nth 2 form
)))
1043 ((byte-compile-nilconstp clause
)
1044 `(progn ,clause
,@(nthcdr 3 form
)))
1046 (if (equal '(nil) (nthcdr 3 form
))
1047 (list 'if clause
(nth 2 form
))
1049 ((or (nth 3 form
) (nthcdr 4 form
))
1051 ;; Don't make a double negative;
1052 ;; instead, take away the one that is there.
1053 (if (and (consp clause
) (memq (car clause
) '(not null
))
1054 (= (length clause
) 2)) ; (not xxxx) or (not (xxxx))
1058 (cons 'progn
(nthcdr 3 form
))
1061 (list 'progn clause nil
)))))
1063 (defun byte-optimize-while (form)
1064 (when (< (length form
) 2)
1065 (byte-compile-warn "too few arguments for `while'"))
1069 (put 'and
'byte-optimizer
'byte-optimize-and
)
1070 (put 'or
'byte-optimizer
'byte-optimize-or
)
1071 (put 'cond
'byte-optimizer
'byte-optimize-cond
)
1072 (put 'if
'byte-optimizer
'byte-optimize-if
)
1073 (put 'while
'byte-optimizer
'byte-optimize-while
)
1075 ;; byte-compile-negation-optimizer lives in bytecomp.el
1076 (put '/= 'byte-optimizer
'byte-compile-negation-optimizer
)
1077 (put 'atom
'byte-optimizer
'byte-compile-negation-optimizer
)
1078 (put 'nlistp
'byte-optimizer
'byte-compile-negation-optimizer
)
1081 (defun byte-optimize-funcall (form)
1082 ;; (funcall (lambda ...) ...) ==> ((lambda ...) ...)
1083 ;; (funcall foo ...) ==> (foo ...)
1084 (let ((fn (nth 1 form
)))
1085 (if (memq (car-safe fn
) '(quote function
))
1086 (cons (nth 1 fn
) (cdr (cdr form
)))
1089 (defun byte-optimize-apply (form)
1090 ;; If the last arg is a literal constant, turn this into a funcall.
1091 ;; The funcall optimizer can then transform (funcall 'foo ...) -> (foo ...).
1092 (let ((fn (nth 1 form
))
1093 (last (nth (1- (length form
)) form
))) ; I think this really is fastest
1094 (or (if (or (null last
)
1095 (eq (car-safe last
) 'quote
))
1096 (if (listp (nth 1 last
))
1097 (let ((butlast (nreverse (cdr (reverse (cdr (cdr form
)))))))
1098 (nconc (list 'funcall fn
) butlast
1099 (mapcar (lambda (x) (list 'quote x
)) (nth 1 last
))))
1101 "last arg to apply can't be a literal atom: `%s'"
1102 (prin1-to-string last
))
1106 (put 'funcall
'byte-optimizer
'byte-optimize-funcall
)
1107 (put 'apply
'byte-optimizer
'byte-optimize-apply
)
1110 (put 'let
'byte-optimizer
'byte-optimize-letX
)
1111 (put 'let
* 'byte-optimizer
'byte-optimize-letX
)
1112 (defun byte-optimize-letX (form)
1113 (cond ((null (nth 1 form
))
1115 (cons 'progn
(cdr (cdr form
))))
1116 ((or (nth 2 form
) (nthcdr 3 form
))
1119 ((eq (car form
) 'let
)
1120 (append '(progn) (mapcar 'car-safe
(mapcar 'cdr-safe
(nth 1 form
)))
1123 (let ((binds (reverse (nth 1 form
))))
1124 (list 'let
* (reverse (cdr binds
)) (nth 1 (car binds
)) nil
)))))
1127 (put 'nth
'byte-optimizer
'byte-optimize-nth
)
1128 (defun byte-optimize-nth (form)
1129 (if (= (safe-length form
) 3)
1130 (if (memq (nth 1 form
) '(0 1))
1131 (list 'car
(if (zerop (nth 1 form
))
1133 (list 'cdr
(nth 2 form
))))
1134 (byte-optimize-predicate form
))
1137 (put 'nthcdr
'byte-optimizer
'byte-optimize-nthcdr
)
1138 (defun byte-optimize-nthcdr (form)
1139 (if (= (safe-length form
) 3)
1140 (if (memq (nth 1 form
) '(0 1 2))
1141 (let ((count (nth 1 form
)))
1142 (setq form
(nth 2 form
))
1143 (while (>= (setq count
(1- count
)) 0)
1144 (setq form
(list 'cdr form
)))
1146 (byte-optimize-predicate form
))
1149 ;; Fixme: delete-char -> delete-region (byte-coded)
1150 ;; optimize string-as-unibyte, string-as-multibyte, string-make-unibyte,
1151 ;; string-make-multibyte for constant args.
1153 (put 'featurep
'byte-optimizer
'byte-optimize-featurep
)
1154 (defun byte-optimize-featurep (form)
1155 ;; Emacs-21's byte-code doesn't run under XEmacs or SXEmacs anyway, so we
1156 ;; can safely optimize away this test.
1157 (if (member (cdr-safe form
) '(((quote xemacs
)) ((quote sxemacs
))))
1159 (if (member (cdr-safe form
) '(((quote emacs
))))
1163 (put 'set
'byte-optimizer
'byte-optimize-set
)
1164 (defun byte-optimize-set (form)
1165 (let ((var (car-safe (cdr-safe form
))))
1167 ((and (eq (car-safe var
) 'quote
) (consp (cdr var
)))
1168 `(setq ,(cadr var
) ,@(cddr form
)))
1169 ((and (eq (car-safe var
) 'make-local-variable
)
1170 (eq (car-safe (setq var
(car-safe (cdr var
)))) 'quote
)
1172 `(progn ,(cadr form
) (setq ,(cadr var
) ,@(cddr form
))))
1175 ;; enumerating those functions which need not be called if the returned
1176 ;; value is not used. That is, something like
1177 ;; (progn (list (something-with-side-effects) (yow))
1179 ;; may safely be turned into
1180 ;; (progn (progn (something-with-side-effects) (yow))
1182 ;; Further optimizations will turn (progn (list 1 2 3) 'foo) into 'foo.
1184 ;; Some of these functions have the side effect of allocating memory
1185 ;; and it would be incorrect to replace two calls with one.
1186 ;; But we don't try to do those kinds of optimizations,
1187 ;; so it is safe to list such functions here.
1188 ;; Some of these functions return values that depend on environment
1189 ;; state, so that constant folding them would be wrong,
1190 ;; but we don't do constant folding based on this list.
1192 ;; However, at present the only optimization we normally do
1193 ;; is delete calls that need not occur, and we only do that
1194 ;; with the error-free functions.
1196 ;; I wonder if I missed any :-\)
1197 (let ((side-effect-free-fns
1198 '(%
* + -
/ /= 1+ 1-
< <= = > >= abs acos append aref ash asin atan
1200 boundp buffer-file-name buffer-local-variables buffer-modified-p
1201 buffer-substring byte-code-function-p
1202 capitalize car-less-than-car car cdr ceiling char-after char-before
1203 char-equal char-to-string char-width
1204 compare-strings concat coordinates-in-window-p
1205 copy-alist copy-sequence copy-marker cos count-lines
1207 decode-time default-boundp default-value documentation downcase
1208 elt encode-char exp expt encode-time error-message-string
1209 fboundp fceiling featurep ffloor
1210 file-directory-p file-exists-p file-locked-p file-name-absolute-p
1211 file-newer-than-file-p file-readable-p file-symlink-p file-writable-p
1212 float float-time floor format format-time-string frame-visible-p
1214 get gethash get-buffer get-buffer-window getenv get-file-buffer
1216 int-to-string intern-soft
1218 length local-variable-if-set-p local-variable-p log log10 logand
1219 logb logior lognot logxor lsh langinfo
1220 make-list make-string make-symbol
1221 marker-buffer max member memq min mod multibyte-char-to-unibyte
1222 next-window nth nthcdr number-to-string
1223 parse-colon-path plist-get plist-member
1224 prefix-numeric-value previous-window prin1-to-string propertize
1226 radians-to-degrees rassq rassoc read-from-string regexp-quote
1227 region-beginning region-end reverse round
1228 sin sqrt string string
< string
= string-equal string-lessp string-to-char
1229 string-to-int string-to-number substring sxhash symbol-function
1230 symbol-name symbol-plist symbol-value string-make-unibyte
1231 string-make-multibyte string-as-multibyte string-as-unibyte
1234 unibyte-char-to-multibyte upcase user-full-name
1235 user-login-name user-original-login-name user-variable-p
1237 window-buffer window-dedicated-p window-edges window-height
1238 window-hscroll window-minibuffer-p window-width
1240 (side-effect-and-error-free-fns
1242 bobp bolp bool-vector-p
1243 buffer-end buffer-list buffer-size buffer-string bufferp
1244 car-safe case-table-p cdr-safe char-or-string-p characterp
1245 charsetp commandp cons consp
1246 current-buffer current-global-map current-indentation
1247 current-local-map current-minor-mode-maps current-time
1248 current-time-string current-time-zone
1249 eobp eolp eq equal eventp
1250 floatp following-char framep
1251 get-largest-window get-lru-window
1253 identity ignore integerp integer-or-marker-p interactive-p
1254 invocation-directory invocation-name
1256 line-beginning-position line-end-position list listp
1257 make-marker mark mark-marker markerp max-char
1258 memory-limit minibuffer-window
1260 natnump nlistp not null number-or-marker-p numberp
1261 one-window-p overlayp
1262 point point-marker point-min point-max preceding-char primary-charset
1264 recent-keys recursion-depth
1265 safe-length selected-frame selected-window sequencep
1266 standard-case-table standard-syntax-table stringp subrp symbolp
1267 syntax-table syntax-table-p
1268 this-command-keys this-command-keys-vector this-single-command-keys
1269 this-single-command-raw-keys
1270 user-real-login-name user-real-uid user-uid
1271 vector vectorp visible-frame-list
1272 wholenump window-configuration-p window-live-p windowp
)))
1273 (while side-effect-free-fns
1274 (put (car side-effect-free-fns
) 'side-effect-free t
)
1275 (setq side-effect-free-fns
(cdr side-effect-free-fns
)))
1276 (while side-effect-and-error-free-fns
1277 (put (car side-effect-and-error-free-fns
) 'side-effect-free
'error-free
)
1278 (setq side-effect-and-error-free-fns
(cdr side-effect-and-error-free-fns
)))
1282 ;; pure functions are side-effect free functions whose values depend
1283 ;; only on their arguments. For these functions, calls with constant
1284 ;; arguments can be evaluated at compile time. This may shift run time
1285 ;; errors to compile time.
1288 '(concat symbol-name regexp-opt regexp-quote string-to-syntax
)))
1290 (put (car pure-fns
) 'pure t
)
1291 (setq pure-fns
(cdr pure-fns
)))
1294 (defun byte-compile-splice-in-already-compiled-code (form)
1295 ;; form is (byte-code "..." [...] n)
1296 (if (not (memq byte-optimize
'(t lap
)))
1297 (byte-compile-normal-call form
)
1298 (byte-inline-lapcode
1299 (byte-decompile-bytecode-1 (nth 1 form
) (nth 2 form
) t
))
1300 (setq byte-compile-maxdepth
(max (+ byte-compile-depth
(nth 3 form
))
1301 byte-compile-maxdepth
))
1302 (setq byte-compile-depth
(1+ byte-compile-depth
))))
1304 (put 'byte-code
'byte-compile
'byte-compile-splice-in-already-compiled-code
)
1307 (defconst byte-constref-ops
1308 '(byte-constant byte-constant2 byte-varref byte-varset byte-varbind
))
1310 ;; This function extracts the bitfields from variable-length opcodes.
1311 ;; Originally defined in disass.el (which no longer uses it.)
1313 (defun disassemble-offset ()
1315 ;; fetch and return the offset for the current opcode.
1316 ;; return nil if this opcode has no offset
1317 ;; OP, PTR and BYTES are used and set dynamically
1321 (cond ((< op byte-nth
)
1322 (let ((tem (logand op
7)))
1323 (setq op
(logand op
248))
1325 (setq ptr
(1+ ptr
)) ;offset in next byte
1328 (setq ptr
(1+ ptr
)) ;offset in next 2 bytes
1330 (progn (setq ptr
(1+ ptr
))
1331 (lsh (aref bytes ptr
) 8))))
1332 (t tem
)))) ;offset was in opcode
1333 ((>= op byte-constant
)
1334 (prog1 (- op byte-constant
) ;offset in opcode
1335 (setq op byte-constant
)))
1336 ((and (>= op byte-constant2
)
1337 (<= op byte-goto-if-not-nil-else-pop
))
1338 (setq ptr
(1+ ptr
)) ;offset in next 2 bytes
1340 (progn (setq ptr
(1+ ptr
))
1341 (lsh (aref bytes ptr
) 8))))
1342 ((and (>= op byte-listN
)
1343 (<= op byte-insertN
))
1344 (setq ptr
(1+ ptr
)) ;offset in next byte
1348 ;; This de-compiler is used for inline expansion of compiled functions,
1349 ;; and by the disassembler.
1351 ;; This list contains numbers, which are pc values,
1352 ;; before each instruction.
1353 (defun byte-decompile-bytecode (bytes constvec
)
1354 "Turn BYTECODE into lapcode, referring to CONSTVEC."
1355 (let ((byte-compile-constants nil
)
1356 (byte-compile-variables nil
)
1357 (byte-compile-tag-number 0))
1358 (byte-decompile-bytecode-1 bytes constvec
)))
1360 ;; As byte-decompile-bytecode, but updates
1361 ;; byte-compile-{constants, variables, tag-number}.
1362 ;; If MAKE-SPLICEABLE is true, then `return' opcodes are replaced
1363 ;; with `goto's destined for the end of the code.
1364 ;; That is for use by the compiler.
1365 ;; If MAKE-SPLICEABLE is nil, we are being called for the disassembler.
1366 ;; In that case, we put a pc value into the list
1367 ;; before each insn (or its label).
1368 (defun byte-decompile-bytecode-1 (bytes constvec
&optional make-spliceable
)
1369 (let ((length (length bytes
))
1370 (ptr 0) optr tags op offset
1373 (while (not (= ptr length
))
1375 (setq lap
(cons ptr lap
)))
1376 (setq op
(aref bytes ptr
)
1378 offset
(disassemble-offset)) ; this does dynamic-scope magic
1379 (setq op
(aref byte-code-vector op
))
1380 (cond ((memq op byte-goto-ops
)
1383 (cdr (or (assq offset tags
)
1386 (byte-compile-make-tag))
1388 ((cond ((eq op
'byte-constant2
) (setq op
'byte-constant
) t
)
1389 ((memq op byte-constref-ops
)))
1390 (setq tmp
(if (>= offset
(length constvec
))
1391 (list 'out-of-range offset
)
1392 (aref constvec offset
))
1393 offset
(if (eq op
'byte-constant
)
1394 (byte-compile-get-constant tmp
)
1395 (or (assq tmp byte-compile-variables
)
1396 (car (setq byte-compile-variables
1398 byte-compile-variables
)))))))
1399 ((and make-spliceable
1400 (eq op
'byte-return
))
1401 (if (= ptr
(1- length
))
1403 (setq offset
(or endtag
(setq endtag
(byte-compile-make-tag)))
1405 ;; lap = ( [ (pc . (op . arg)) ]* )
1406 (setq lap
(cons (cons optr
(cons op
(or offset
0)))
1408 (setq ptr
(1+ ptr
)))
1409 ;; take off the dummy nil op that we replaced a trailing "return" with.
1412 (cond ((numberp (car rest
)))
1413 ((setq tmp
(assq (car (car rest
)) tags
))
1414 ;; this addr is jumped to
1415 (setcdr rest
(cons (cons nil
(cdr tmp
))
1417 (setq tags
(delq tmp tags
))
1418 (setq rest
(cdr rest
))))
1419 (setq rest
(cdr rest
))))
1420 (if tags
(error "optimizer error: missed tags %s" tags
))
1421 (if (null (car (cdr (car lap
))))
1422 (setq lap
(cdr lap
)))
1424 (setq lap
(cons (cons nil endtag
) lap
)))
1425 ;; remove addrs, lap = ( [ (op . arg) | (TAG tagno) ]* )
1426 (mapcar (function (lambda (elt)
1433 ;;; peephole optimizer
1435 (defconst byte-tagref-ops
(cons 'TAG byte-goto-ops
))
1437 (defconst byte-conditional-ops
1438 '(byte-goto-if-nil byte-goto-if-not-nil byte-goto-if-nil-else-pop
1439 byte-goto-if-not-nil-else-pop
))
1441 (defconst byte-after-unbind-ops
1442 '(byte-constant byte-dup
1443 byte-symbolp byte-consp byte-stringp byte-listp byte-numberp byte-integerp
1445 byte-cons byte-list1 byte-list2
; byte-list3 byte-list4
1447 ;; How about other side-effect-free-ops? Is it safe to move an
1448 ;; error invocation (such as from nth) out of an unwind-protect?
1449 ;; No, it is not, because the unwind-protect forms can alter
1450 ;; the inside of the object to which nth would apply.
1451 ;; For the same reason, byte-equal was deleted from this list.
1452 "Byte-codes that can be moved past an unbind.")
1454 (defconst byte-compile-side-effect-and-error-free-ops
1455 '(byte-constant byte-dup byte-symbolp byte-consp byte-stringp byte-listp
1456 byte-integerp byte-numberp byte-eq byte-equal byte-not byte-car-safe
1457 byte-cdr-safe byte-cons byte-list1 byte-list2 byte-point byte-point-max
1458 byte-point-min byte-following-char byte-preceding-char
1459 byte-current-column byte-eolp byte-eobp byte-bolp byte-bobp
1460 byte-current-buffer byte-interactive-p
))
1462 (defconst byte-compile-side-effect-free-ops
1464 '(byte-varref byte-nth byte-memq byte-car byte-cdr byte-length byte-aref
1465 byte-symbol-value byte-get byte-concat2 byte-concat3 byte-sub1 byte-add1
1466 byte-eqlsign byte-gtr byte-lss byte-leq byte-geq byte-diff byte-negate
1467 byte-plus byte-max byte-min byte-mult byte-char-after byte-char-syntax
1468 byte-buffer-substring byte-string
= byte-string
< byte-nthcdr byte-elt
1469 byte-member byte-assq byte-quo byte-rem
)
1470 byte-compile-side-effect-and-error-free-ops
))
1472 ;; This crock is because of the way DEFVAR_BOOL variables work.
1473 ;; Consider the code
1475 ;; (defun foo (flag)
1476 ;; (let ((old-pop-ups pop-up-windows)
1477 ;; (pop-up-windows flag))
1478 ;; (cond ((not (eq pop-up-windows old-pop-ups))
1479 ;; (setq old-pop-ups pop-up-windows)
1482 ;; Uncompiled, old-pop-ups will always be set to nil or t, even if FLAG is
1483 ;; something else. But if we optimize
1486 ;; varbind pop-up-windows
1487 ;; varref pop-up-windows
1492 ;; varbind pop-up-windows
1495 ;; we break the program, because it will appear that pop-up-windows and
1496 ;; old-pop-ups are not EQ when really they are. So we have to know what
1497 ;; the BOOL variables are, and not perform this optimization on them.
1499 ;; The variable `byte-boolean-vars' is now primitive and updated
1500 ;; automatically by DEFVAR_BOOL.
1502 (defun byte-optimize-lapcode (lap &optional for-effect
)
1503 "Simple peephole optimizer. LAP is both modified and returned.
1504 If FOR-EFFECT is non-nil, the return value is assumed to be of no importance."
1508 (keep-going 'first-time
)
1511 (side-effect-free (if byte-compile-delete-errors
1512 byte-compile-side-effect-free-ops
1513 byte-compile-side-effect-and-error-free-ops
)))
1515 (or (eq keep-going
'first-time
)
1516 (byte-compile-log-lap " ---- next pass"))
1520 (setq lap0
(car rest
)
1524 ;; You may notice that sequences like "dup varset discard" are
1525 ;; optimized but sequences like "dup varset TAG1: discard" are not.
1526 ;; You may be tempted to change this; resist that temptation.
1528 ;; <side-effect-free> pop --> <deleted>
1530 ;; const-X pop --> <deleted>
1531 ;; varref-X pop --> <deleted>
1532 ;; dup pop --> <deleted>
1534 ((and (eq 'byte-discard
(car lap1
))
1535 (memq (car lap0
) side-effect-free
))
1537 (setq tmp
(aref byte-stack
+-info
(symbol-value (car lap0
))))
1538 (setq rest
(cdr rest
))
1540 (byte-compile-log-lap
1541 " %s discard\t-->\t<deleted>" lap0
)
1542 (setq lap
(delq lap0
(delq lap1 lap
))))
1544 (byte-compile-log-lap
1545 " %s discard\t-->\t<deleted> discard" lap0
)
1546 (setq lap
(delq lap0 lap
)))
1548 (byte-compile-log-lap
1549 " %s discard\t-->\tdiscard discard" lap0
)
1550 (setcar lap0
'byte-discard
)
1552 ((error "Optimizer error: too much on the stack"))))
1554 ;; goto*-X X: --> X:
1556 ((and (memq (car lap0
) byte-goto-ops
)
1557 (eq (cdr lap0
) lap1
))
1558 (cond ((eq (car lap0
) 'byte-goto
)
1559 (setq lap
(delq lap0 lap
))
1560 (setq tmp
"<deleted>"))
1561 ((memq (car lap0
) byte-goto-always-pop-ops
)
1562 (setcar lap0
(setq tmp
'byte-discard
))
1564 ((error "Depth conflict at tag %d" (nth 2 lap0
))))
1565 (and (memq byte-optimize-log
'(t byte
))
1566 (byte-compile-log " (goto %s) %s:\t-->\t%s %s:"
1567 (nth 1 lap1
) (nth 1 lap1
)
1569 (setq keep-going t
))
1571 ;; varset-X varref-X --> dup varset-X
1572 ;; varbind-X varref-X --> dup varbind-X
1573 ;; const/dup varset-X varref-X --> const/dup varset-X const/dup
1574 ;; const/dup varbind-X varref-X --> const/dup varbind-X const/dup
1575 ;; The latter two can enable other optimizations.
1577 ((and (eq 'byte-varref
(car lap2
))
1578 (eq (cdr lap1
) (cdr lap2
))
1579 (memq (car lap1
) '(byte-varset byte-varbind
)))
1580 (if (and (setq tmp
(memq (car (cdr lap2
)) byte-boolean-vars
))
1581 (not (eq (car lap0
) 'byte-constant
)))
1584 (if (memq (car lap0
) '(byte-constant byte-dup
))
1586 (setq tmp
(if (or (not tmp
)
1587 (byte-compile-const-symbol-p
1590 (byte-compile-get-constant t
)))
1591 (byte-compile-log-lap " %s %s %s\t-->\t%s %s %s"
1592 lap0 lap1 lap2 lap0 lap1
1593 (cons (car lap0
) tmp
))
1594 (setcar lap2
(car lap0
))
1596 (byte-compile-log-lap " %s %s\t-->\tdup %s" lap1 lap2 lap1
)
1597 (setcar lap2
(car lap1
))
1598 (setcar lap1
'byte-dup
)
1600 ;; The stack depth gets locally increased, so we will
1601 ;; increase maxdepth in case depth = maxdepth here.
1602 ;; This can cause the third argument to byte-code to
1603 ;; be larger than necessary.
1604 (setq add-depth
1))))
1606 ;; dup varset-X discard --> varset-X
1607 ;; dup varbind-X discard --> varbind-X
1608 ;; (the varbind variant can emerge from other optimizations)
1610 ((and (eq 'byte-dup
(car lap0
))
1611 (eq 'byte-discard
(car lap2
))
1612 (memq (car lap1
) '(byte-varset byte-varbind
)))
1613 (byte-compile-log-lap " dup %s discard\t-->\t%s" lap1 lap1
)
1616 (setq lap
(delq lap0
(delq lap2 lap
))))
1618 ;; not goto-X-if-nil --> goto-X-if-non-nil
1619 ;; not goto-X-if-non-nil --> goto-X-if-nil
1621 ;; it is wrong to do the same thing for the -else-pop variants.
1623 ((and (eq 'byte-not
(car lap0
))
1624 (or (eq 'byte-goto-if-nil
(car lap1
))
1625 (eq 'byte-goto-if-not-nil
(car lap1
))))
1626 (byte-compile-log-lap " not %s\t-->\t%s"
1629 (if (eq (car lap1
) 'byte-goto-if-nil
)
1630 'byte-goto-if-not-nil
1633 (setcar lap1
(if (eq (car lap1
) 'byte-goto-if-nil
)
1634 'byte-goto-if-not-nil
1636 (setq lap
(delq lap0 lap
))
1637 (setq keep-going t
))
1639 ;; goto-X-if-nil goto-Y X: --> goto-Y-if-non-nil X:
1640 ;; goto-X-if-non-nil goto-Y X: --> goto-Y-if-nil X:
1642 ;; it is wrong to do the same thing for the -else-pop variants.
1644 ((and (or (eq 'byte-goto-if-nil
(car lap0
))
1645 (eq 'byte-goto-if-not-nil
(car lap0
))) ; gotoX
1646 (eq 'byte-goto
(car lap1
)) ; gotoY
1647 (eq (cdr lap0
) lap2
)) ; TAG X
1648 (let ((inverse (if (eq 'byte-goto-if-nil
(car lap0
))
1649 'byte-goto-if-not-nil
'byte-goto-if-nil
)))
1650 (byte-compile-log-lap " %s %s %s:\t-->\t%s %s:"
1652 (cons inverse
(cdr lap1
)) lap2
)
1653 (setq lap
(delq lap0 lap
))
1654 (setcar lap1 inverse
)
1655 (setq keep-going t
)))
1657 ;; const goto-if-* --> whatever
1659 ((and (eq 'byte-constant
(car lap0
))
1660 (memq (car lap1
) byte-conditional-ops
))
1661 (cond ((if (or (eq (car lap1
) 'byte-goto-if-nil
)
1662 (eq (car lap1
) 'byte-goto-if-nil-else-pop
))
1664 (not (car (cdr lap0
))))
1665 (byte-compile-log-lap " %s %s\t-->\t<deleted>"
1667 (setq rest
(cdr rest
)
1668 lap
(delq lap0
(delq lap1 lap
))))
1670 (if (memq (car lap1
) byte-goto-always-pop-ops
)
1672 (byte-compile-log-lap " %s %s\t-->\t%s"
1673 lap0 lap1
(cons 'byte-goto
(cdr lap1
)))
1674 (setq lap
(delq lap0 lap
)))
1675 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
1676 (cons 'byte-goto
(cdr lap1
))))
1677 (setcar lap1
'byte-goto
)))
1678 (setq keep-going t
))
1680 ;; varref-X varref-X --> varref-X dup
1681 ;; varref-X [dup ...] varref-X --> varref-X [dup ...] dup
1682 ;; We don't optimize the const-X variations on this here,
1683 ;; because that would inhibit some goto optimizations; we
1684 ;; optimize the const-X case after all other optimizations.
1686 ((and (eq 'byte-varref
(car lap0
))
1688 (setq tmp
(cdr rest
))
1689 (while (eq (car (car tmp
)) 'byte-dup
)
1690 (setq tmp
(cdr tmp
)))
1692 (eq (cdr lap0
) (cdr (car tmp
)))
1693 (eq 'byte-varref
(car (car tmp
))))
1694 (if (memq byte-optimize-log
'(t byte
))
1696 (setq tmp2
(cdr rest
))
1697 (while (not (eq tmp tmp2
))
1698 (setq tmp2
(cdr tmp2
)
1699 str
(concat str
" dup")))
1700 (byte-compile-log-lap " %s%s %s\t-->\t%s%s dup"
1701 lap0 str lap0 lap0 str
)))
1703 (setcar (car tmp
) 'byte-dup
)
1704 (setcdr (car tmp
) 0)
1707 ;; TAG1: TAG2: --> TAG1: <deleted>
1708 ;; (and other references to TAG2 are replaced with TAG1)
1710 ((and (eq (car lap0
) 'TAG
)
1711 (eq (car lap1
) 'TAG
))
1712 (and (memq byte-optimize-log
'(t byte
))
1713 (byte-compile-log " adjacent tags %d and %d merged"
1714 (nth 1 lap1
) (nth 1 lap0
)))
1716 (while (setq tmp2
(rassq lap0 tmp3
))
1718 (setq tmp3
(cdr (memq tmp2 tmp3
))))
1719 (setq lap
(delq lap0 lap
)
1722 ;; unused-TAG: --> <deleted>
1724 ((and (eq 'TAG
(car lap0
))
1725 (not (rassq lap0 lap
)))
1726 (and (memq byte-optimize-log
'(t byte
))
1727 (byte-compile-log " unused tag %d removed" (nth 1 lap0
)))
1728 (setq lap
(delq lap0 lap
)
1731 ;; goto ... --> goto <delete until TAG or end>
1732 ;; return ... --> return <delete until TAG or end>
1734 ((and (memq (car lap0
) '(byte-goto byte-return
))
1735 (not (memq (car lap1
) '(TAG nil
))))
1738 (opt-p (memq byte-optimize-log
'(t lap
)))
1740 (while (and (setq tmp
(cdr tmp
))
1741 (not (eq 'TAG
(car (car tmp
)))))
1742 (if opt-p
(setq deleted
(cons (car tmp
) deleted
)
1743 str
(concat str
" %s")
1747 (if (eq 'TAG
(car (car tmp
)))
1748 (format "%d:" (car (cdr (car tmp
))))
1749 (or (car tmp
) ""))))
1751 (apply 'byte-compile-log-lap-1
1753 " %s\t-->\t%s <deleted> %s")
1755 (nconc (nreverse deleted
)
1756 (list tagstr lap0 tagstr
)))
1757 (byte-compile-log-lap
1758 " %s <%d unreachable op%s> %s\t-->\t%s <deleted> %s"
1759 lap0 i
(if (= i
1) "" "s")
1760 tagstr lap0 tagstr
))))
1762 (setq keep-going t
))
1764 ;; <safe-op> unbind --> unbind <safe-op>
1765 ;; (this may enable other optimizations.)
1767 ((and (eq 'byte-unbind
(car lap1
))
1768 (memq (car lap0
) byte-after-unbind-ops
))
1769 (byte-compile-log-lap " %s %s\t-->\t%s %s" lap0 lap1 lap1 lap0
)
1771 (setcar (cdr rest
) lap0
)
1772 (setq keep-going t
))
1774 ;; varbind-X unbind-N --> discard unbind-(N-1)
1775 ;; save-excursion unbind-N --> unbind-(N-1)
1776 ;; save-restriction unbind-N --> unbind-(N-1)
1778 ((and (eq 'byte-unbind
(car lap1
))
1779 (memq (car lap0
) '(byte-varbind byte-save-excursion
1780 byte-save-restriction
))
1782 (if (zerop (setcdr lap1
(1- (cdr lap1
))))
1784 (if (eq (car lap0
) 'byte-varbind
)
1785 (setcar rest
(cons 'byte-discard
0))
1786 (setq lap
(delq lap0 lap
)))
1787 (byte-compile-log-lap " %s %s\t-->\t%s %s"
1788 lap0
(cons (car lap1
) (1+ (cdr lap1
)))
1789 (if (eq (car lap0
) 'byte-varbind
)
1792 (if (and (/= 0 (cdr lap1
))
1793 (eq (car lap0
) 'byte-varbind
))
1796 (setq keep-going t
))
1798 ;; goto*-X ... X: goto-Y --> goto*-Y
1799 ;; goto-X ... X: return --> return
1801 ((and (memq (car lap0
) byte-goto-ops
)
1802 (memq (car (setq tmp
(nth 1 (memq (cdr lap0
) lap
))))
1803 '(byte-goto byte-return
)))
1804 (cond ((and (not (eq tmp lap0
))
1805 (or (eq (car lap0
) 'byte-goto
)
1806 (eq (car tmp
) 'byte-goto
)))
1807 (byte-compile-log-lap " %s [%s]\t-->\t%s"
1809 (if (eq (car tmp
) 'byte-return
)
1810 (setcar lap0
'byte-return
))
1811 (setcdr lap0
(cdr tmp
))
1812 (setq keep-going t
))))
1814 ;; goto-*-else-pop X ... X: goto-if-* --> whatever
1815 ;; goto-*-else-pop X ... X: discard --> whatever
1817 ((and (memq (car lap0
) '(byte-goto-if-nil-else-pop
1818 byte-goto-if-not-nil-else-pop
))
1819 (memq (car (car (setq tmp
(cdr (memq (cdr lap0
) lap
)))))
1821 (cons 'byte-discard byte-conditional-ops
)))
1822 (not (eq lap0
(car tmp
))))
1823 (setq tmp2
(car tmp
))
1824 (setq tmp3
(assq (car lap0
) '((byte-goto-if-nil-else-pop
1826 (byte-goto-if-not-nil-else-pop
1827 byte-goto-if-not-nil
))))
1828 (if (memq (car tmp2
) tmp3
)
1829 (progn (setcar lap0
(car tmp2
))
1830 (setcdr lap0
(cdr tmp2
))
1831 (byte-compile-log-lap " %s-else-pop [%s]\t-->\t%s"
1832 (car lap0
) tmp2 lap0
))
1833 ;; Get rid of the -else-pop's and jump one step further.
1834 (or (eq 'TAG
(car (nth 1 tmp
)))
1835 (setcdr tmp
(cons (byte-compile-make-tag)
1837 (byte-compile-log-lap " %s [%s]\t-->\t%s <skip>"
1838 (car lap0
) tmp2
(nth 1 tmp3
))
1839 (setcar lap0
(nth 1 tmp3
))
1840 (setcdr lap0
(nth 1 tmp
)))
1841 (setq keep-going t
))
1843 ;; const goto-X ... X: goto-if-* --> whatever
1844 ;; const goto-X ... X: discard --> whatever
1846 ((and (eq (car lap0
) 'byte-constant
)
1847 (eq (car lap1
) 'byte-goto
)
1848 (memq (car (car (setq tmp
(cdr (memq (cdr lap1
) lap
)))))
1850 (cons 'byte-discard byte-conditional-ops
)))
1851 (not (eq lap1
(car tmp
))))
1852 (setq tmp2
(car tmp
))
1853 (cond ((memq (car tmp2
)
1854 (if (null (car (cdr lap0
)))
1855 '(byte-goto-if-nil byte-goto-if-nil-else-pop
)
1856 '(byte-goto-if-not-nil
1857 byte-goto-if-not-nil-else-pop
)))
1858 (byte-compile-log-lap " %s goto [%s]\t-->\t%s %s"
1859 lap0 tmp2 lap0 tmp2
)
1860 (setcar lap1
(car tmp2
))
1861 (setcdr lap1
(cdr tmp2
))
1862 ;; Let next step fix the (const,goto-if*) sequence.
1863 (setq rest
(cons nil rest
)))
1865 ;; Jump one step further
1866 (byte-compile-log-lap
1867 " %s goto [%s]\t-->\t<deleted> goto <skip>"
1869 (or (eq 'TAG
(car (nth 1 tmp
)))
1870 (setcdr tmp
(cons (byte-compile-make-tag)
1872 (setcdr lap1
(car (cdr tmp
)))
1873 (setq lap
(delq lap0 lap
))))
1874 (setq keep-going t
))
1876 ;; X: varref-Y ... varset-Y goto-X -->
1877 ;; X: varref-Y Z: ... dup varset-Y goto-Z
1878 ;; (varset-X goto-BACK, BACK: varref-X --> copy the varref down.)
1879 ;; (This is so usual for while loops that it is worth handling).
1881 ((and (eq (car lap1
) 'byte-varset
)
1882 (eq (car lap2
) 'byte-goto
)
1883 (not (memq (cdr lap2
) rest
)) ;Backwards jump
1884 (eq (car (car (setq tmp
(cdr (memq (cdr lap2
) lap
)))))
1886 (eq (cdr (car tmp
)) (cdr lap1
))
1887 (not (memq (car (cdr lap1
)) byte-boolean-vars
)))
1888 ;;(byte-compile-log-lap " Pulled %s to end of loop" (car tmp))
1889 (let ((newtag (byte-compile-make-tag)))
1890 (byte-compile-log-lap
1891 " %s: %s ... %s %s\t-->\t%s: %s %s: ... %s %s %s"
1892 (nth 1 (cdr lap2
)) (car tmp
)
1894 (nth 1 (cdr lap2
)) (car tmp
)
1895 (nth 1 newtag
) 'byte-dup lap1
1896 (cons 'byte-goto newtag
)
1898 (setcdr rest
(cons (cons 'byte-dup
0) (cdr rest
)))
1899 (setcdr tmp
(cons (setcdr lap2 newtag
) (cdr tmp
))))
1901 (setq keep-going t
))
1903 ;; goto-X Y: ... X: goto-if*-Y --> goto-if-not-*-X+1 Y:
1904 ;; (This can pull the loop test to the end of the loop)
1906 ((and (eq (car lap0
) 'byte-goto
)
1907 (eq (car lap1
) 'TAG
)
1909 (cdr (car (setq tmp
(cdr (memq (cdr lap0
) lap
))))))
1910 (memq (car (car tmp
))
1911 '(byte-goto byte-goto-if-nil byte-goto-if-not-nil
1912 byte-goto-if-nil-else-pop
)))
1913 ;; (byte-compile-log-lap " %s %s, %s %s --> moved conditional"
1914 ;; lap0 lap1 (cdr lap0) (car tmp))
1915 (let ((newtag (byte-compile-make-tag)))
1916 (byte-compile-log-lap
1917 "%s %s: ... %s: %s\t-->\t%s ... %s:"
1918 lap0
(nth 1 lap1
) (nth 1 (cdr lap0
)) (car tmp
)
1919 (cons (cdr (assq (car (car tmp
))
1920 '((byte-goto-if-nil . byte-goto-if-not-nil
)
1921 (byte-goto-if-not-nil . byte-goto-if-nil
)
1922 (byte-goto-if-nil-else-pop .
1923 byte-goto-if-not-nil-else-pop
)
1924 (byte-goto-if-not-nil-else-pop .
1925 byte-goto-if-nil-else-pop
))))
1930 (setcdr tmp
(cons (setcdr lap0 newtag
) (cdr tmp
)))
1931 (if (eq (car (car tmp
)) 'byte-goto-if-nil-else-pop
)
1932 ;; We can handle this case but not the -if-not-nil case,
1933 ;; because we won't know which non-nil constant to push.
1934 (setcdr rest
(cons (cons 'byte-constant
1935 (byte-compile-get-constant nil
))
1937 (setcar lap0
(nth 1 (memq (car (car tmp
))
1938 '(byte-goto-if-nil-else-pop
1939 byte-goto-if-not-nil
1941 byte-goto-if-not-nil
1942 byte-goto byte-goto
))))
1944 (setq keep-going t
))
1946 (setq rest
(cdr rest
)))
1949 ;; Rebuild byte-compile-constants / byte-compile-variables.
1950 ;; Simple optimizations that would inhibit other optimizations if they
1951 ;; were done in the optimizing loop, and optimizations which there is no
1952 ;; need to do more than once.
1953 (setq byte-compile-constants nil
1954 byte-compile-variables nil
)
1957 (setq lap0
(car rest
)
1959 (if (memq (car lap0
) byte-constref-ops
)
1960 (if (or (eq (car lap0
) 'byte-constant
)
1961 (eq (car lap0
) 'byte-constant2
))
1962 (unless (memq (cdr lap0
) byte-compile-constants
)
1963 (setq byte-compile-constants
(cons (cdr lap0
)
1964 byte-compile-constants
)))
1965 (unless (memq (cdr lap0
) byte-compile-variables
)
1966 (setq byte-compile-variables
(cons (cdr lap0
)
1967 byte-compile-variables
)))))
1969 ;; const-C varset-X const-C --> const-C dup varset-X
1970 ;; const-C varbind-X const-C --> const-C dup varbind-X
1972 (and (eq (car lap0
) 'byte-constant
)
1973 (eq (car (nth 2 rest
)) 'byte-constant
)
1974 (eq (cdr lap0
) (cdr (nth 2 rest
)))
1975 (memq (car lap1
) '(byte-varbind byte-varset
)))
1976 (byte-compile-log-lap " %s %s %s\t-->\t%s dup %s"
1977 lap0 lap1 lap0 lap0 lap1
)
1978 (setcar (cdr (cdr rest
)) (cons (car lap1
) (cdr lap1
)))
1979 (setcar (cdr rest
) (cons 'byte-dup
0))
1982 ;; const-X [dup/const-X ...] --> const-X [dup ...] dup
1983 ;; varref-X [dup/varref-X ...] --> varref-X [dup ...] dup
1985 ((memq (car lap0
) '(byte-constant byte-varref
))
1989 (while (eq 'byte-dup
(car (car (setq tmp
(cdr tmp
))))))
1990 (and (eq (cdr lap0
) (cdr (car tmp
)))
1991 (eq (car lap0
) (car (car tmp
)))))
1992 (setcar tmp
(cons 'byte-dup
0))
1995 (byte-compile-log-lap
1996 " %s [dup/%s]...\t-->\t%s dup..." lap0 lap0 lap0
)))
1998 ;; unbind-N unbind-M --> unbind-(N+M)
2000 ((and (eq 'byte-unbind
(car lap0
))
2001 (eq 'byte-unbind
(car lap1
)))
2002 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
2004 (+ (cdr lap0
) (cdr lap1
))))
2006 (setq lap
(delq lap0 lap
))
2007 (setcdr lap1
(+ (cdr lap1
) (cdr lap0
))))
2009 (setq rest
(cdr rest
)))
2010 (setq byte-compile-maxdepth
(+ byte-compile-maxdepth add-depth
)))
2016 ;; To avoid "lisp nesting exceeds max-lisp-eval-depth" when this file compiles
2017 ;; itself, compile some of its most used recursive functions (at load time).
2020 (or (byte-code-function-p (symbol-function 'byte-optimize-form
))
2021 (assq 'byte-code
(symbol-function 'byte-optimize-form
))
2022 (let ((byte-optimize nil
)
2023 (byte-compile-warnings nil
))
2025 (or noninteractive
(message "compiling %s..." x
))
2027 (or noninteractive
(message "compiling %s...done" x
)))
2028 '(byte-optimize-form
2030 byte-optimize-predicate
2031 byte-optimize-binary-predicate
2032 ;; Inserted some more than necessary, to speed it up.
2033 byte-optimize-form-code-walker
2034 byte-optimize-lapcode
))))
2037 ;; arch-tag: 0f14076b-737e-4bef-aae6-908826ec1ff1
2038 ;;; byte-opt.el ends here