1 ;;; avl-tree.el --- balanced binary trees, AVL-trees
3 ;; Copyright (C) 1995, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
5 ;; Author: Per Cederqvist <ceder@lysator.liu.se>
6 ;; Inge Wallin <inge@lysator.liu.se>
7 ;; Thomas Bellman <bellman@lysator.liu.se>
9 ;; Created: 10 May 1991
10 ;; Keywords: extensions, data structures
12 ;; This file is part of GNU Emacs.
14 ;; GNU Emacs is free software: you can redistribute it and/or modify
15 ;; it under the terms of the GNU General Public License as published by
16 ;; the Free Software Foundation, either version 3 of the License, or
17 ;; (at your option) any later version.
19 ;; GNU Emacs is distributed in the hope that it will be useful,
20 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
21 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 ;; GNU General Public License for more details.
24 ;; You should have received a copy of the GNU General Public License
25 ;; along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>.
29 ;; An AVL tree is a nearly-perfect balanced binary tree. A tree consists of
30 ;; two elements, the root node and the compare function. The actual tree
31 ;; has a dummy node as its root with the real root in the left pointer.
33 ;; Each node of the tree consists of one data element, one left
34 ;; sub-tree and one right sub-tree. Each node also has a balance
35 ;; count, which is the difference in depth of the left and right
38 ;; The functions with names of the form "avl-tree--" are intended for
43 (eval-when-compile (require 'cl
))
45 ;; ================================================================
46 ;;; Functions and macros handling an AVL tree node.
48 (defstruct (avl-tree--node
49 ;; We force a representation without tag so it matches the
50 ;; pre-defstruct representation. Also we use the underlying
51 ;; representation in the implementation of avl-tree--node-branch.
54 (:constructor avl-tree--node-create
(left right data balance
))
56 left right data balance
)
58 (defalias 'avl-tree--node-branch
'aref
59 ;; This implementation is efficient but breaks the defstruct abstraction.
60 ;; An alternative could be
61 ;; (funcall (aref [avl-tree-left avl-tree-right avl-tree-data] branch) node)
62 "Get value of a branch of a node.
64 NODE is the node, and BRANCH is the branch.
65 0 for left pointer, 1 for right pointer and 2 for the data.\"
67 ;; The funcall/aref trick doesn't work for the setf method, unless we try
68 ;; and access the underlying setter function, but this wouldn't be
70 (defsetf avl-tree--node-branch aset
)
73 ;; ================================================================
74 ;;; Internal functions for use in the AVL tree package
77 ;; A tagged list is the pre-defstruct representation.
81 (:constructor avl-tree-create
(cmpfun))
82 (:predicate avl-tree-p
)
84 (dummyroot (avl-tree--node-create nil nil nil
0))
87 (defmacro avl-tree--root
(tree)
88 ;; Return the root node for an avl-tree. INTERNAL USE ONLY.
89 `(avl-tree--node-left (avl-tree--dummyroot tree
)))
90 (defsetf avl-tree--root
(tree) (node)
91 `(setf (avl-tree--node-left (avl-tree--dummyroot ,tree
)) ,node
))
93 ;; ----------------------------------------------------------------
96 (defun avl-tree--del-balance1 (node branch
)
97 ;; Rebalance a tree and return t if the height of the tree has shrunk.
98 (let ((br (avl-tree--node-branch node branch
))
101 ((< (avl-tree--node-balance br
) 0)
102 (setf (avl-tree--node-balance br
) 0)
105 ((= (avl-tree--node-balance br
) 0)
106 (setf (avl-tree--node-balance br
) +1)
111 (setq p1
(avl-tree--node-right br
)
112 b1
(avl-tree--node-balance p1
))
114 ;; Single RR rotation.
116 (setf (avl-tree--node-right br
) (avl-tree--node-left p1
))
117 (setf (avl-tree--node-left p1
) br
)
120 (setf (avl-tree--node-balance br
) +1)
121 (setf (avl-tree--node-balance p1
) -
1)
123 (setf (avl-tree--node-balance br
) 0)
124 (setf (avl-tree--node-balance p1
) 0)
126 (setf (avl-tree--node-branch node branch
) p1
)
129 ;; Double RL rotation.
130 (setq p2
(avl-tree--node-left p1
)
131 b2
(avl-tree--node-balance p2
))
132 (setf (avl-tree--node-left p1
) (avl-tree--node-right p2
))
133 (setf (avl-tree--node-right p2
) p1
)
134 (setf (avl-tree--node-right br
) (avl-tree--node-left p2
))
135 (setf (avl-tree--node-left p2
) br
)
136 (setf (avl-tree--node-balance br
) (if (> b2
0) -
1 0))
137 (setf (avl-tree--node-balance p1
) (if (< b2
0) +1 0))
138 (setf (avl-tree--node-branch node branch
) p2
)
139 (setf (avl-tree--node-balance p2
) 0)
142 (defun avl-tree--del-balance2 (node branch
)
143 (let ((br (avl-tree--node-branch node branch
))
146 ((> (avl-tree--node-balance br
) 0)
147 (setf (avl-tree--node-balance br
) 0)
150 ((= (avl-tree--node-balance br
) 0)
151 (setf (avl-tree--node-balance br
) -
1)
156 (setq p1
(avl-tree--node-left br
)
157 b1
(avl-tree--node-balance p1
))
159 ;; Single LL rotation.
161 (setf (avl-tree--node-left br
) (avl-tree--node-right p1
))
162 (setf (avl-tree--node-right p1
) br
)
165 (setf (avl-tree--node-balance br
) -
1)
166 (setf (avl-tree--node-balance p1
) +1)
168 (setf (avl-tree--node-balance br
) 0)
169 (setf (avl-tree--node-balance p1
) 0)
171 (setf (avl-tree--node-branch node branch
) p1
)
174 ;; Double LR rotation.
175 (setq p2
(avl-tree--node-right p1
)
176 b2
(avl-tree--node-balance p2
))
177 (setf (avl-tree--node-right p1
) (avl-tree--node-left p2
))
178 (setf (avl-tree--node-left p2
) p1
)
179 (setf (avl-tree--node-left br
) (avl-tree--node-right p2
))
180 (setf (avl-tree--node-right p2
) br
)
181 (setf (avl-tree--node-balance br
) (if (< b2
0) +1 0))
182 (setf (avl-tree--node-balance p1
) (if (> b2
0) -
1 0))
183 (setf (avl-tree--node-branch node branch
) p2
)
184 (setf (avl-tree--node-balance p2
) 0)
187 (defun avl-tree--do-del-internal (node branch q
)
188 (let ((br (avl-tree--node-branch node branch
)))
189 (if (avl-tree--node-right br
)
190 (if (avl-tree--do-del-internal br
+1 q
)
191 (avl-tree--del-balance2 node branch
))
192 (setf (avl-tree--node-data q
) (avl-tree--node-data br
))
193 (setf (avl-tree--node-branch node branch
)
194 (avl-tree--node-left br
))
197 (defun avl-tree--do-delete (cmpfun root branch data
)
198 ;; Return t if the height of the tree has shrunk.
199 (let ((br (avl-tree--node-branch root branch
)))
204 ((funcall cmpfun data
(avl-tree--node-data br
))
205 (if (avl-tree--do-delete cmpfun br
0 data
)
206 (avl-tree--del-balance1 root branch
)))
208 ((funcall cmpfun
(avl-tree--node-data br
) data
)
209 (if (avl-tree--do-delete cmpfun br
1 data
)
210 (avl-tree--del-balance2 root branch
)))
213 ;; Found it. Let's delete it.
215 ((null (avl-tree--node-right br
))
216 (setf (avl-tree--node-branch root branch
) (avl-tree--node-left br
))
219 ((null (avl-tree--node-left br
))
220 (setf (avl-tree--node-branch root branch
) (avl-tree--node-right br
))
224 (if (avl-tree--do-del-internal br
0 br
)
225 (avl-tree--del-balance1 root branch
))))))))
227 ;; ----------------------------------------------------------------
230 (defun avl-tree--enter-balance1 (node branch
)
231 ;; Rebalance a tree and return t if the height of the tree has grown.
232 (let ((br (avl-tree--node-branch node branch
))
235 ((< (avl-tree--node-balance br
) 0)
236 (setf (avl-tree--node-balance br
) 0)
239 ((= (avl-tree--node-balance br
) 0)
240 (setf (avl-tree--node-balance br
) +1)
244 ;; Tree has grown => Rebalance.
245 (setq p1
(avl-tree--node-right br
))
246 (if (> (avl-tree--node-balance p1
) 0)
247 ;; Single RR rotation.
249 (setf (avl-tree--node-right br
) (avl-tree--node-left p1
))
250 (setf (avl-tree--node-left p1
) br
)
251 (setf (avl-tree--node-balance br
) 0)
252 (setf (avl-tree--node-branch node branch
) p1
))
254 ;; Double RL rotation.
255 (setq p2
(avl-tree--node-left p1
)
256 b2
(avl-tree--node-balance p2
))
257 (setf (avl-tree--node-left p1
) (avl-tree--node-right p2
))
258 (setf (avl-tree--node-right p2
) p1
)
259 (setf (avl-tree--node-right br
) (avl-tree--node-left p2
))
260 (setf (avl-tree--node-left p2
) br
)
261 (setf (avl-tree--node-balance br
) (if (> b2
0) -
1 0))
262 (setf (avl-tree--node-balance p1
) (if (< b2
0) +1 0))
263 (setf (avl-tree--node-branch node branch
) p2
))
264 (setf (avl-tree--node-balance (avl-tree--node-branch node branch
)) 0)
267 (defun avl-tree--enter-balance2 (node branch
)
268 ;; Return t if the tree has grown.
269 (let ((br (avl-tree--node-branch node branch
))
272 ((> (avl-tree--node-balance br
) 0)
273 (setf (avl-tree--node-balance br
) 0)
276 ((= (avl-tree--node-balance br
) 0)
277 (setf (avl-tree--node-balance br
) -
1)
281 ;; Balance was -1 => Rebalance.
282 (setq p1
(avl-tree--node-left br
))
283 (if (< (avl-tree--node-balance p1
) 0)
284 ;; Single LL rotation.
286 (setf (avl-tree--node-left br
) (avl-tree--node-right p1
))
287 (setf (avl-tree--node-right p1
) br
)
288 (setf (avl-tree--node-balance br
) 0)
289 (setf (avl-tree--node-branch node branch
) p1
))
291 ;; Double LR rotation.
292 (setq p2
(avl-tree--node-right p1
)
293 b2
(avl-tree--node-balance p2
))
294 (setf (avl-tree--node-right p1
) (avl-tree--node-left p2
))
295 (setf (avl-tree--node-left p2
) p1
)
296 (setf (avl-tree--node-left br
) (avl-tree--node-right p2
))
297 (setf (avl-tree--node-right p2
) br
)
298 (setf (avl-tree--node-balance br
) (if (< b2
0) +1 0))
299 (setf (avl-tree--node-balance p1
) (if (> b2
0) -
1 0))
300 (setf (avl-tree--node-branch node branch
) p2
))
301 (setf (avl-tree--node-balance (avl-tree--node-branch node branch
)) 0)
304 (defun avl-tree--do-enter (cmpfun root branch data
)
305 ;; Return t if height of tree ROOT has grown. INTERNAL USE ONLY.
306 (let ((br (avl-tree--node-branch root branch
)))
309 ;; Data not in tree, insert it.
310 (setf (avl-tree--node-branch root branch
)
311 (avl-tree--node-create nil nil data
0))
314 ((funcall cmpfun data
(avl-tree--node-data br
))
315 (and (avl-tree--do-enter cmpfun br
0 data
)
316 (avl-tree--enter-balance2 root branch
)))
318 ((funcall cmpfun
(avl-tree--node-data br
) data
)
319 (and (avl-tree--do-enter cmpfun br
1 data
)
320 (avl-tree--enter-balance1 root branch
)))
323 (setf (avl-tree--node-data br
) data
)
326 ;; ----------------------------------------------------------------
328 (defun avl-tree--mapc (map-function root
)
329 ;; Apply MAP-FUNCTION to all nodes in the tree starting with ROOT.
330 ;; The function is applied in-order.
332 ;; Note: MAP-FUNCTION is applied to the node and not to the data itself.
333 ;; INTERNAL USE ONLY.
340 (avl-tree--node-left node
))
341 ;; Do the left subtree first.
344 (setq node
(avl-tree--node-left node
)))
345 ;; Apply the function...
346 (funcall map-function node
)
347 ;; and do the right subtree.
348 (setq node
(if (setq go-left
(avl-tree--node-right node
))
349 (avl-tree--node-right node
)
352 (defun avl-tree--do-copy (root)
353 ;; Copy the avl tree with ROOT as root.
354 ;; Highly recursive. INTERNAL USE ONLY.
357 (avl-tree--node-create
358 (avl-tree--do-copy (avl-tree--node-left root
))
359 (avl-tree--do-copy (avl-tree--node-right root
))
360 (avl-tree--node-data root
)
361 (avl-tree--node-balance root
))))
364 ;; ================================================================
365 ;;; The public functions which operate on AVL trees.
367 (defalias 'avl-tree-compare-function
'avl-tree--cmpfun
368 "Return the comparison function for the avl tree TREE.
372 (defun avl-tree-empty (tree)
373 "Return t if avl tree TREE is emtpy, otherwise return nil."
374 (null (avl-tree--root tree
)))
376 (defun avl-tree-enter (tree data
)
377 "In the avl tree TREE insert DATA.
379 (avl-tree--do-enter (avl-tree--cmpfun tree
)
380 (avl-tree--dummyroot tree
)
385 (defun avl-tree-delete (tree data
)
386 "From the avl tree TREE, delete DATA.
387 Return the element in TREE which matched DATA,
388 nil if no element matched."
389 (avl-tree--do-delete (avl-tree--cmpfun tree
)
390 (avl-tree--dummyroot tree
)
394 (defun avl-tree-member (tree data
)
395 "Return the element in the avl tree TREE which matches DATA.
396 Matching uses the compare function previously specified in
397 `avl-tree-create' when TREE was created.
399 If there is no such element in the tree, the value is nil."
400 (let ((node (avl-tree--root tree
))
401 (compare-function (avl-tree--cmpfun tree
))
406 ((funcall compare-function data
(avl-tree--node-data node
))
407 (setq node
(avl-tree--node-left node
)))
408 ((funcall compare-function
(avl-tree--node-data node
) data
)
409 (setq node
(avl-tree--node-right node
)))
413 (avl-tree--node-data node
)
416 (defun avl-tree-map (__map-function__ tree
)
417 "Apply __MAP-FUNCTION__ to all elements in the avl tree TREE."
420 (setf (avl-tree--node-data node
)
421 (funcall __map-function__
(avl-tree--node-data node
))))
422 (avl-tree--root tree
)))
424 (defun avl-tree-first (tree)
425 "Return the first element in TREE, or nil if TREE is empty."
426 (let ((node (avl-tree--root tree
)))
428 (while (avl-tree--node-left node
)
429 (setq node
(avl-tree--node-left node
)))
430 (avl-tree--node-data node
))))
432 (defun avl-tree-last (tree)
433 "Return the last element in TREE, or nil if TREE is empty."
434 (let ((node (avl-tree--root tree
)))
436 (while (avl-tree--node-right node
)
437 (setq node
(avl-tree--node-right node
)))
438 (avl-tree--node-data node
))))
440 (defun avl-tree-copy (tree)
441 "Return a copy of the avl tree TREE."
442 (let ((new-tree (avl-tree-create (avl-tree--cmpfun tree
))))
443 (setf (avl-tree--root new-tree
) (avl-tree--do-copy (avl-tree--root tree
)))
446 (defun avl-tree-flatten (tree)
447 "Return a sorted list containing all elements of TREE."
449 (let ((treelist nil
))
451 (lambda (node) (push (avl-tree--node-data node
) treelist
))
452 (avl-tree--root tree
))
455 (defun avl-tree-size (tree)
456 "Return the number of elements in TREE."
459 (lambda (data) (setq treesize
(1+ treesize
)))
460 (avl-tree--root tree
))
463 (defun avl-tree-clear (tree)
464 "Clear the avl tree TREE."
465 (setf (avl-tree--root tree
) nil
))
469 ;; arch-tag: 47e26701-43c9-4222-bd79-739eac6357a9
470 ;;; avl-tree.el ends here