gnus-article-html: Decode contents by charset.
[emacs.git] / lisp / emacs-lisp / avl-tree.el
blobcd5bae594d08a9c51c585c36fefdf2dac3e19287
1 ;;; avl-tree.el --- balanced binary trees, AVL-trees
3 ;; Copyright (C) 1995, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
5 ;; Author: Per Cederqvist <ceder@lysator.liu.se>
6 ;; Inge Wallin <inge@lysator.liu.se>
7 ;; Thomas Bellman <bellman@lysator.liu.se>
8 ;; Maintainer: FSF
9 ;; Created: 10 May 1991
10 ;; Keywords: extensions, data structures
12 ;; This file is part of GNU Emacs.
14 ;; GNU Emacs is free software: you can redistribute it and/or modify
15 ;; it under the terms of the GNU General Public License as published by
16 ;; the Free Software Foundation, either version 3 of the License, or
17 ;; (at your option) any later version.
19 ;; GNU Emacs is distributed in the hope that it will be useful,
20 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
21 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 ;; GNU General Public License for more details.
24 ;; You should have received a copy of the GNU General Public License
25 ;; along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>.
27 ;;; Commentary:
29 ;; An AVL tree is a nearly-perfect balanced binary tree. A tree consists of
30 ;; two elements, the root node and the compare function. The actual tree
31 ;; has a dummy node as its root with the real root in the left pointer.
33 ;; Each node of the tree consists of one data element, one left
34 ;; sub-tree and one right sub-tree. Each node also has a balance
35 ;; count, which is the difference in depth of the left and right
36 ;; sub-trees.
38 ;; The functions with names of the form "avl-tree--" are intended for
39 ;; internal use only.
41 ;;; Code:
43 (eval-when-compile (require 'cl))
45 ;; ================================================================
46 ;;; Functions and macros handling an AVL tree node.
48 (defstruct (avl-tree--node
49 ;; We force a representation without tag so it matches the
50 ;; pre-defstruct representation. Also we use the underlying
51 ;; representation in the implementation of avl-tree--node-branch.
52 (:type vector)
53 (:constructor nil)
54 (:constructor avl-tree--node-create (left right data balance))
55 (:copier nil))
56 left right data balance)
58 (defalias 'avl-tree--node-branch 'aref
59 ;; This implementation is efficient but breaks the defstruct abstraction.
60 ;; An alternative could be
61 ;; (funcall (aref [avl-tree-left avl-tree-right avl-tree-data] branch) node)
62 "Get value of a branch of a node.
64 NODE is the node, and BRANCH is the branch.
65 0 for left pointer, 1 for right pointer and 2 for the data.\"
66 \(fn node branch)")
67 ;; The funcall/aref trick doesn't work for the setf method, unless we try
68 ;; and access the underlying setter function, but this wouldn't be
69 ;; portable either.
70 (defsetf avl-tree--node-branch aset)
73 ;; ================================================================
74 ;;; Internal functions for use in the AVL tree package
76 (defstruct (avl-tree-
77 ;; A tagged list is the pre-defstruct representation.
78 ;; (:type list)
79 :named
80 (:constructor nil)
81 (:constructor avl-tree-create (cmpfun))
82 (:predicate avl-tree-p)
83 (:copier nil))
84 (dummyroot (avl-tree--node-create nil nil nil 0))
85 cmpfun)
87 (defmacro avl-tree--root (tree)
88 ;; Return the root node for an avl-tree. INTERNAL USE ONLY.
89 `(avl-tree--node-left (avl-tree--dummyroot tree)))
90 (defsetf avl-tree--root (tree) (node)
91 `(setf (avl-tree--node-left (avl-tree--dummyroot ,tree)) ,node))
93 ;; ----------------------------------------------------------------
94 ;; Deleting data
96 (defun avl-tree--del-balance1 (node branch)
97 ;; Rebalance a tree and return t if the height of the tree has shrunk.
98 (let ((br (avl-tree--node-branch node branch))
99 p1 b1 p2 b2 result)
100 (cond
101 ((< (avl-tree--node-balance br) 0)
102 (setf (avl-tree--node-balance br) 0)
105 ((= (avl-tree--node-balance br) 0)
106 (setf (avl-tree--node-balance br) +1)
107 nil)
110 ;; Rebalance.
111 (setq p1 (avl-tree--node-right br)
112 b1 (avl-tree--node-balance p1))
113 (if (>= b1 0)
114 ;; Single RR rotation.
115 (progn
116 (setf (avl-tree--node-right br) (avl-tree--node-left p1))
117 (setf (avl-tree--node-left p1) br)
118 (if (= 0 b1)
119 (progn
120 (setf (avl-tree--node-balance br) +1)
121 (setf (avl-tree--node-balance p1) -1)
122 (setq result nil))
123 (setf (avl-tree--node-balance br) 0)
124 (setf (avl-tree--node-balance p1) 0)
125 (setq result t))
126 (setf (avl-tree--node-branch node branch) p1)
127 result)
129 ;; Double RL rotation.
130 (setq p2 (avl-tree--node-left p1)
131 b2 (avl-tree--node-balance p2))
132 (setf (avl-tree--node-left p1) (avl-tree--node-right p2))
133 (setf (avl-tree--node-right p2) p1)
134 (setf (avl-tree--node-right br) (avl-tree--node-left p2))
135 (setf (avl-tree--node-left p2) br)
136 (setf (avl-tree--node-balance br) (if (> b2 0) -1 0))
137 (setf (avl-tree--node-balance p1) (if (< b2 0) +1 0))
138 (setf (avl-tree--node-branch node branch) p2)
139 (setf (avl-tree--node-balance p2) 0)
140 t)))))
142 (defun avl-tree--del-balance2 (node branch)
143 (let ((br (avl-tree--node-branch node branch))
144 p1 b1 p2 b2 result)
145 (cond
146 ((> (avl-tree--node-balance br) 0)
147 (setf (avl-tree--node-balance br) 0)
150 ((= (avl-tree--node-balance br) 0)
151 (setf (avl-tree--node-balance br) -1)
152 nil)
155 ;; Rebalance.
156 (setq p1 (avl-tree--node-left br)
157 b1 (avl-tree--node-balance p1))
158 (if (<= b1 0)
159 ;; Single LL rotation.
160 (progn
161 (setf (avl-tree--node-left br) (avl-tree--node-right p1))
162 (setf (avl-tree--node-right p1) br)
163 (if (= 0 b1)
164 (progn
165 (setf (avl-tree--node-balance br) -1)
166 (setf (avl-tree--node-balance p1) +1)
167 (setq result nil))
168 (setf (avl-tree--node-balance br) 0)
169 (setf (avl-tree--node-balance p1) 0)
170 (setq result t))
171 (setf (avl-tree--node-branch node branch) p1)
172 result)
174 ;; Double LR rotation.
175 (setq p2 (avl-tree--node-right p1)
176 b2 (avl-tree--node-balance p2))
177 (setf (avl-tree--node-right p1) (avl-tree--node-left p2))
178 (setf (avl-tree--node-left p2) p1)
179 (setf (avl-tree--node-left br) (avl-tree--node-right p2))
180 (setf (avl-tree--node-right p2) br)
181 (setf (avl-tree--node-balance br) (if (< b2 0) +1 0))
182 (setf (avl-tree--node-balance p1) (if (> b2 0) -1 0))
183 (setf (avl-tree--node-branch node branch) p2)
184 (setf (avl-tree--node-balance p2) 0)
185 t)))))
187 (defun avl-tree--do-del-internal (node branch q)
188 (let ((br (avl-tree--node-branch node branch)))
189 (if (avl-tree--node-right br)
190 (if (avl-tree--do-del-internal br +1 q)
191 (avl-tree--del-balance2 node branch))
192 (setf (avl-tree--node-data q) (avl-tree--node-data br))
193 (setf (avl-tree--node-branch node branch)
194 (avl-tree--node-left br))
195 t)))
197 (defun avl-tree--do-delete (cmpfun root branch data)
198 ;; Return t if the height of the tree has shrunk.
199 (let ((br (avl-tree--node-branch root branch)))
200 (cond
201 ((null br)
202 nil)
204 ((funcall cmpfun data (avl-tree--node-data br))
205 (if (avl-tree--do-delete cmpfun br 0 data)
206 (avl-tree--del-balance1 root branch)))
208 ((funcall cmpfun (avl-tree--node-data br) data)
209 (if (avl-tree--do-delete cmpfun br 1 data)
210 (avl-tree--del-balance2 root branch)))
213 ;; Found it. Let's delete it.
214 (cond
215 ((null (avl-tree--node-right br))
216 (setf (avl-tree--node-branch root branch) (avl-tree--node-left br))
219 ((null (avl-tree--node-left br))
220 (setf (avl-tree--node-branch root branch) (avl-tree--node-right br))
224 (if (avl-tree--do-del-internal br 0 br)
225 (avl-tree--del-balance1 root branch))))))))
227 ;; ----------------------------------------------------------------
228 ;; Entering data
230 (defun avl-tree--enter-balance1 (node branch)
231 ;; Rebalance a tree and return t if the height of the tree has grown.
232 (let ((br (avl-tree--node-branch node branch))
233 p1 p2 b2 result)
234 (cond
235 ((< (avl-tree--node-balance br) 0)
236 (setf (avl-tree--node-balance br) 0)
237 nil)
239 ((= (avl-tree--node-balance br) 0)
240 (setf (avl-tree--node-balance br) +1)
244 ;; Tree has grown => Rebalance.
245 (setq p1 (avl-tree--node-right br))
246 (if (> (avl-tree--node-balance p1) 0)
247 ;; Single RR rotation.
248 (progn
249 (setf (avl-tree--node-right br) (avl-tree--node-left p1))
250 (setf (avl-tree--node-left p1) br)
251 (setf (avl-tree--node-balance br) 0)
252 (setf (avl-tree--node-branch node branch) p1))
254 ;; Double RL rotation.
255 (setq p2 (avl-tree--node-left p1)
256 b2 (avl-tree--node-balance p2))
257 (setf (avl-tree--node-left p1) (avl-tree--node-right p2))
258 (setf (avl-tree--node-right p2) p1)
259 (setf (avl-tree--node-right br) (avl-tree--node-left p2))
260 (setf (avl-tree--node-left p2) br)
261 (setf (avl-tree--node-balance br) (if (> b2 0) -1 0))
262 (setf (avl-tree--node-balance p1) (if (< b2 0) +1 0))
263 (setf (avl-tree--node-branch node branch) p2))
264 (setf (avl-tree--node-balance (avl-tree--node-branch node branch)) 0)
265 nil))))
267 (defun avl-tree--enter-balance2 (node branch)
268 ;; Return t if the tree has grown.
269 (let ((br (avl-tree--node-branch node branch))
270 p1 p2 b2)
271 (cond
272 ((> (avl-tree--node-balance br) 0)
273 (setf (avl-tree--node-balance br) 0)
274 nil)
276 ((= (avl-tree--node-balance br) 0)
277 (setf (avl-tree--node-balance br) -1)
281 ;; Balance was -1 => Rebalance.
282 (setq p1 (avl-tree--node-left br))
283 (if (< (avl-tree--node-balance p1) 0)
284 ;; Single LL rotation.
285 (progn
286 (setf (avl-tree--node-left br) (avl-tree--node-right p1))
287 (setf (avl-tree--node-right p1) br)
288 (setf (avl-tree--node-balance br) 0)
289 (setf (avl-tree--node-branch node branch) p1))
291 ;; Double LR rotation.
292 (setq p2 (avl-tree--node-right p1)
293 b2 (avl-tree--node-balance p2))
294 (setf (avl-tree--node-right p1) (avl-tree--node-left p2))
295 (setf (avl-tree--node-left p2) p1)
296 (setf (avl-tree--node-left br) (avl-tree--node-right p2))
297 (setf (avl-tree--node-right p2) br)
298 (setf (avl-tree--node-balance br) (if (< b2 0) +1 0))
299 (setf (avl-tree--node-balance p1) (if (> b2 0) -1 0))
300 (setf (avl-tree--node-branch node branch) p2))
301 (setf (avl-tree--node-balance (avl-tree--node-branch node branch)) 0)
302 nil))))
304 (defun avl-tree--do-enter (cmpfun root branch data)
305 ;; Return t if height of tree ROOT has grown. INTERNAL USE ONLY.
306 (let ((br (avl-tree--node-branch root branch)))
307 (cond
308 ((null br)
309 ;; Data not in tree, insert it.
310 (setf (avl-tree--node-branch root branch)
311 (avl-tree--node-create nil nil data 0))
314 ((funcall cmpfun data (avl-tree--node-data br))
315 (and (avl-tree--do-enter cmpfun br 0 data)
316 (avl-tree--enter-balance2 root branch)))
318 ((funcall cmpfun (avl-tree--node-data br) data)
319 (and (avl-tree--do-enter cmpfun br 1 data)
320 (avl-tree--enter-balance1 root branch)))
323 (setf (avl-tree--node-data br) data)
324 nil))))
326 ;; ----------------------------------------------------------------
328 (defun avl-tree--mapc (map-function root)
329 ;; Apply MAP-FUNCTION to all nodes in the tree starting with ROOT.
330 ;; The function is applied in-order.
332 ;; Note: MAP-FUNCTION is applied to the node and not to the data itself.
333 ;; INTERNAL USE ONLY.
334 (let ((node root)
335 (stack nil)
336 (go-left t))
337 (push nil stack)
338 (while node
339 (if (and go-left
340 (avl-tree--node-left node))
341 ;; Do the left subtree first.
342 (progn
343 (push node stack)
344 (setq node (avl-tree--node-left node)))
345 ;; Apply the function...
346 (funcall map-function node)
347 ;; and do the right subtree.
348 (setq node (if (setq go-left (avl-tree--node-right node))
349 (avl-tree--node-right node)
350 (pop stack)))))))
352 (defun avl-tree--do-copy (root)
353 ;; Copy the avl tree with ROOT as root.
354 ;; Highly recursive. INTERNAL USE ONLY.
355 (if (null root)
357 (avl-tree--node-create
358 (avl-tree--do-copy (avl-tree--node-left root))
359 (avl-tree--do-copy (avl-tree--node-right root))
360 (avl-tree--node-data root)
361 (avl-tree--node-balance root))))
364 ;; ================================================================
365 ;;; The public functions which operate on AVL trees.
367 (defalias 'avl-tree-compare-function 'avl-tree--cmpfun
368 "Return the comparison function for the avl tree TREE.
370 \(fn TREE)")
372 (defun avl-tree-empty (tree)
373 "Return t if avl tree TREE is emtpy, otherwise return nil."
374 (null (avl-tree--root tree)))
376 (defun avl-tree-enter (tree data)
377 "In the avl tree TREE insert DATA.
378 Return DATA."
379 (avl-tree--do-enter (avl-tree--cmpfun tree)
380 (avl-tree--dummyroot tree)
382 data)
383 data)
385 (defun avl-tree-delete (tree data)
386 "From the avl tree TREE, delete DATA.
387 Return the element in TREE which matched DATA,
388 nil if no element matched."
389 (avl-tree--do-delete (avl-tree--cmpfun tree)
390 (avl-tree--dummyroot tree)
392 data))
394 (defun avl-tree-member (tree data)
395 "Return the element in the avl tree TREE which matches DATA.
396 Matching uses the compare function previously specified in
397 `avl-tree-create' when TREE was created.
399 If there is no such element in the tree, the value is nil."
400 (let ((node (avl-tree--root tree))
401 (compare-function (avl-tree--cmpfun tree))
402 found)
403 (while (and node
404 (not found))
405 (cond
406 ((funcall compare-function data (avl-tree--node-data node))
407 (setq node (avl-tree--node-left node)))
408 ((funcall compare-function (avl-tree--node-data node) data)
409 (setq node (avl-tree--node-right node)))
411 (setq found t))))
412 (if node
413 (avl-tree--node-data node)
414 nil)))
416 (defun avl-tree-map (__map-function__ tree)
417 "Apply __MAP-FUNCTION__ to all elements in the avl tree TREE."
418 (avl-tree--mapc
419 (lambda (node)
420 (setf (avl-tree--node-data node)
421 (funcall __map-function__ (avl-tree--node-data node))))
422 (avl-tree--root tree)))
424 (defun avl-tree-first (tree)
425 "Return the first element in TREE, or nil if TREE is empty."
426 (let ((node (avl-tree--root tree)))
427 (when node
428 (while (avl-tree--node-left node)
429 (setq node (avl-tree--node-left node)))
430 (avl-tree--node-data node))))
432 (defun avl-tree-last (tree)
433 "Return the last element in TREE, or nil if TREE is empty."
434 (let ((node (avl-tree--root tree)))
435 (when node
436 (while (avl-tree--node-right node)
437 (setq node (avl-tree--node-right node)))
438 (avl-tree--node-data node))))
440 (defun avl-tree-copy (tree)
441 "Return a copy of the avl tree TREE."
442 (let ((new-tree (avl-tree-create (avl-tree--cmpfun tree))))
443 (setf (avl-tree--root new-tree) (avl-tree--do-copy (avl-tree--root tree)))
444 new-tree))
446 (defun avl-tree-flatten (tree)
447 "Return a sorted list containing all elements of TREE."
448 (nreverse
449 (let ((treelist nil))
450 (avl-tree--mapc
451 (lambda (node) (push (avl-tree--node-data node) treelist))
452 (avl-tree--root tree))
453 treelist)))
455 (defun avl-tree-size (tree)
456 "Return the number of elements in TREE."
457 (let ((treesize 0))
458 (avl-tree--mapc
459 (lambda (data) (setq treesize (1+ treesize)))
460 (avl-tree--root tree))
461 treesize))
463 (defun avl-tree-clear (tree)
464 "Clear the avl tree TREE."
465 (setf (avl-tree--root tree) nil))
467 (provide 'avl-tree)
469 ;; arch-tag: 47e26701-43c9-4222-bd79-739eac6357a9
470 ;;; avl-tree.el ends here