1 ;;; cl-macs.el --- Common Lisp macros -*- lexical-binding: t; coding: utf-8 -*-
3 ;; Copyright (C) 1993, 2001-2012 Free Software Foundation, Inc.
5 ;; Author: Dave Gillespie <daveg@synaptics.com>
7 ;; Keywords: extensions
10 ;; This file is part of GNU Emacs.
12 ;; GNU Emacs is free software: you can redistribute it and/or modify
13 ;; it under the terms of the GNU General Public License as published by
14 ;; the Free Software Foundation, either version 3 of the License, or
15 ;; (at your option) any later version.
17 ;; GNU Emacs is distributed in the hope that it will be useful,
18 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
19 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 ;; GNU General Public License for more details.
22 ;; You should have received a copy of the GNU General Public License
23 ;; along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>.
27 ;; These are extensions to Emacs Lisp that provide a degree of
28 ;; Common Lisp compatibility, beyond what is already built-in
31 ;; This package was written by Dave Gillespie; it is a complete
32 ;; rewrite of Cesar Quiroz's original cl.el package of December 1986.
34 ;; Bug reports, comments, and suggestions are welcome!
36 ;; This file contains the portions of the Common Lisp extensions
37 ;; package which should be autoloaded, but need only be present
38 ;; if the compiler or interpreter is used---this file is not
39 ;; necessary for executing compiled code.
41 ;; See cl.el for Change Log.
49 (defmacro cl-pop2
(place)
50 (declare (debug edebug-sexps
))
51 `(prog1 (car (cdr ,place
))
52 (setq ,place
(cdr (cdr ,place
)))))
54 (defvar cl-optimize-safety
)
55 (defvar cl-optimize-speed
)
58 ;; This kludge allows macros which use cl--transform-function-property
59 ;; to be called at compile-time.
62 (or (fboundp 'cl--transform-function-property
)
63 (defun cl--transform-function-property (n p f
)
64 `(put ',n
',p
#'(lambda .
,f
)))))
68 ;;; Some predicates for analyzing Lisp forms.
69 ;; These are used by various
70 ;; macro expanders to optimize the results in certain common cases.
72 (defconst cl--simple-funcs
'(car cdr nth aref elt if and or
+ -
1+ 1- min max
73 car-safe cdr-safe progn prog1 prog2
))
74 (defconst cl--safe-funcs
'(* / % length memq list vector vectorp
77 (defun cl--simple-expr-p (x &optional size
)
78 "Check if no side effects, and executes quickly."
79 (or size
(setq size
10))
80 (if (and (consp x
) (not (memq (car x
) '(quote function cl-function
))))
81 (and (symbolp (car x
))
82 (or (memq (car x
) cl--simple-funcs
)
83 (get (car x
) 'side-effect-free
))
86 (while (and (setq x
(cdr x
))
87 (setq size
(cl--simple-expr-p (car x
) size
))))
88 (and (null x
) (>= size
0) size
)))
89 (and (> size
0) (1- size
))))
91 (defun cl--simple-exprs-p (xs)
92 (while (and xs
(cl--simple-expr-p (car xs
)))
96 (defun cl--safe-expr-p (x)
97 "Check if no side effects."
98 (or (not (and (consp x
) (not (memq (car x
) '(quote function cl-function
)))))
99 (and (symbolp (car x
))
100 (or (memq (car x
) cl--simple-funcs
)
101 (memq (car x
) cl--safe-funcs
)
102 (get (car x
) 'side-effect-free
))
104 (while (and (setq x
(cdr x
)) (cl--safe-expr-p (car x
))))
107 ;;; Check if constant (i.e., no side effects or dependencies).
108 (defun cl--const-expr-p (x)
110 (or (eq (car x
) 'quote
)
111 (and (memq (car x
) '(function cl-function
))
112 (or (symbolp (nth 1 x
))
113 (and (eq (car-safe (nth 1 x
)) 'lambda
) 'func
)))))
114 ((symbolp x
) (and (memq x
'(nil t
)) t
))
117 (defun cl--const-expr-val (x)
118 (and (macroexp-const-p x
) (if (consp x
) (nth 1 x
) x
)))
120 (defun cl-expr-access-order (x v
)
121 ;; This apparently tries to return nil iff the expression X evaluates
122 ;; the variables V in the same order as they appear in V (so as to
123 ;; be able to replace those vars with the expressions they're bound
125 ;; FIXME: This is very naive, it doesn't even check to see if those
126 ;; variables appear more than once.
127 (if (macroexp-const-p x
) v
130 (while (setq x
(cdr x
)) (setq v
(cl-expr-access-order (car x
) v
)))
132 (if (eq x
(car v
)) (cdr v
) '(t)))))
134 (defun cl--expr-contains (x y
)
135 "Count number of times X refers to Y. Return nil for 0 times."
136 ;; FIXME: This is naive, and it will cl-count Y as referred twice in
137 ;; (let ((Y 1)) Y) even though it should be 0. Also it is often called on
138 ;; non-macroexpanded code, so it may also miss some occurrences that would
139 ;; only appear in the expanded code.
140 (cond ((equal y x
) 1)
141 ((and (consp x
) (not (memq (car x
) '(quote function cl-function
))))
144 (setq sum
(+ sum
(or (cl--expr-contains (pop x
) y
) 0))))
145 (setq sum
(+ sum
(or (cl--expr-contains x y
) 0)))
146 (and (> sum
0) sum
)))
149 (defun cl--expr-contains-any (x y
)
150 (while (and y
(not (cl--expr-contains x
(car y
)))) (pop y
))
153 (defun cl--expr-depends-p (x y
)
154 "Check whether X may depend on any of the symbols in Y."
155 (and (not (macroexp-const-p x
))
156 (or (not (cl--safe-expr-p x
)) (cl--expr-contains-any x y
))))
160 (defvar cl--gensym-counter
)
162 (defun cl-gensym (&optional prefix
)
163 "Generate a new uninterned symbol.
164 The name is made by appending a number to PREFIX, default \"G\"."
165 (let ((pfix (if (stringp prefix
) prefix
"G"))
166 (num (if (integerp prefix
) prefix
167 (prog1 cl--gensym-counter
168 (setq cl--gensym-counter
(1+ cl--gensym-counter
))))))
169 (make-symbol (format "%s%d" pfix num
))))
172 (defun cl-gentemp (&optional prefix
)
173 "Generate a new interned symbol with a unique name.
174 The name is made by appending a number to PREFIX, default \"G\"."
175 (let ((pfix (if (stringp prefix
) prefix
"G"))
177 (while (intern-soft (setq name
(format "%s%d" pfix cl--gensym-counter
)))
178 (setq cl--gensym-counter
(1+ cl--gensym-counter
)))
182 ;;; Program structure.
184 (def-edebug-spec cl-declarations
185 (&rest
("cl-declare" &rest sexp
)))
187 (def-edebug-spec cl-declarations-or-string
188 (&or stringp cl-declarations
))
190 (def-edebug-spec cl-lambda-list
192 [&optional
["&optional" cl-
&optional-arg
&rest cl-
&optional-arg
]]
193 [&optional
["&rest" arg
]]
194 [&optional
["&key" [cl-
&key-arg
&rest cl-
&key-arg
]
195 &optional
"&allow-other-keys"]]
196 [&optional
["&aux" &rest
197 &or
(symbolp &optional def-form
) symbolp
]]
200 (def-edebug-spec cl-
&optional-arg
201 (&or
(arg &optional def-form arg
) arg
))
203 (def-edebug-spec cl-
&key-arg
204 (&or
([&or
(symbolp arg
) arg
] &optional def-form arg
) arg
))
207 (defmacro cl-defun
(name args
&rest body
)
208 "Define NAME as a function.
209 Like normal `defun', except ARGLIST allows full Common Lisp conventions,
210 and BODY is implicitly surrounded by (cl-block NAME ...).
212 \(fn NAME ARGLIST [DOCSTRING] BODY...)"
214 ;; Same as defun but use cl-lambda-list.
215 (&define
[&or name
("cl-setf" :name cl-setf name
)]
217 cl-declarations-or-string
218 [&optional
("interactive" interactive
)]
222 (let* ((res (cl--transform-lambda (cons args body
) name
))
223 (form `(defun ,name
,@(cdr res
))))
224 (if (car res
) `(progn ,(car res
) ,form
) form
)))
226 ;; The lambda list for macros is different from that of normal lambdas.
227 ;; Note that &environment is only allowed as first or last items in the
230 (def-edebug-spec cl-macro-list
231 (([&optional
"&environment" arg
]
233 [&optional
["&optional" &rest
234 &or
(cl-macro-arg &optional def-form cl-macro-arg
) arg
]]
235 [&optional
[[&or
"&rest" "&body"] cl-macro-arg
]]
236 [&optional
["&key" [&rest
237 [&or
([&or
(symbolp cl-macro-arg
) arg
]
238 &optional def-form cl-macro-arg
)
240 &optional
"&allow-other-keys"]]
241 [&optional
["&aux" &rest
242 &or
(symbolp &optional def-form
) symbolp
]]
243 [&optional
"&environment" arg
]
246 (def-edebug-spec cl-macro-arg
247 (&or arg cl-macro-list1
))
249 (def-edebug-spec cl-macro-list1
250 (([&optional
"&whole" arg
] ;; only allowed at lower levels
252 [&optional
["&optional" &rest
253 &or
(cl-macro-arg &optional def-form cl-macro-arg
) arg
]]
254 [&optional
[[&or
"&rest" "&body"] cl-macro-arg
]]
255 [&optional
["&key" [&rest
256 [&or
([&or
(symbolp cl-macro-arg
) arg
]
257 &optional def-form cl-macro-arg
)
259 &optional
"&allow-other-keys"]]
260 [&optional
["&aux" &rest
261 &or
(symbolp &optional def-form
) symbolp
]]
265 (defmacro cl-defmacro
(name args
&rest body
)
266 "Define NAME as a macro.
267 Like normal `defmacro', except ARGLIST allows full Common Lisp conventions,
268 and BODY is implicitly surrounded by (cl-block NAME ...).
270 \(fn NAME ARGLIST [DOCSTRING] BODY...)"
272 (&define name cl-macro-list cl-declarations-or-string def-body
))
275 (let* ((res (cl--transform-lambda (cons args body
) name
))
276 (form `(defmacro ,name
,@(cdr res
))))
277 (if (car res
) `(progn ,(car res
) ,form
) form
)))
279 (def-edebug-spec cl-lambda-expr
280 (&define
("lambda" cl-lambda-list
281 ;;cl-declarations-or-string
282 ;;[&optional ("interactive" interactive)]
285 ;; Redefine function-form to also match cl-function
286 (def-edebug-spec function-form
287 ;; form at the end could also handle "function",
288 ;; but recognize it specially to avoid wrapping function forms.
289 (&or
([&or
"quote" "function"] &or symbolp lambda-expr
)
290 ("cl-function" cl-function
)
294 (defmacro cl-function
(func)
295 "Introduce a function.
296 Like normal `function', except that if argument is a lambda form,
297 its argument list allows full Common Lisp conventions."
298 (declare (debug (&or symbolp cl-lambda-expr
)))
299 (if (eq (car-safe func
) 'lambda
)
300 (let* ((res (cl--transform-lambda (cdr func
) 'cl-none
))
301 (form `(function (lambda .
,(cdr res
)))))
302 (if (car res
) `(progn ,(car res
) ,form
) form
))
305 (defun cl--transform-function-property (func prop form
)
306 (let ((res (cl--transform-lambda form func
)))
307 `(progn ,@(cdr (cdr (car res
)))
308 (put ',func
',prop
#'(lambda .
,(cdr res
))))))
310 (defconst cl-lambda-list-keywords
311 '(&optional
&rest
&key
&allow-other-keys
&aux
&whole
&body
&environment
))
313 (defvar cl--bind-block
) (defvar cl--bind-defs
) (defvar cl--bind-enquote
)
314 (defvar cl--bind-inits
) (defvar cl--bind-lets
) (defvar cl--bind-forms
)
316 (declare-function help-add-fundoc-usage
"help-fns" (docstring arglist
))
318 (defun cl--make-usage-var (x)
319 "X can be a var or a (destructuring) lambda-list."
321 ((symbolp x
) (make-symbol (upcase (symbol-name x
))))
322 ((consp x
) (cl--make-usage-args x
))
325 (defun cl--make-usage-args (arglist)
326 ;; `orig-args' can contain &cl-defs (an internal
327 ;; CL thingy I don't understand), so remove it.
328 (let ((x (memq '&cl-defs arglist
)))
329 (when x
(setq arglist
(delq (car x
) (remq (cadr x
) arglist
)))))
334 (if (eq ?\
& (aref (symbol-name x
) 0))
336 (make-symbol (upcase (symbol-name x
)))))
338 ((memq state
'(nil &rest
)) (cl--make-usage-args x
))
339 (t ;(VAR INITFORM SVAR) or ((KEYWORD VAR) INITFORM SVAR).
341 (if (and (consp (car x
)) (eq state
'&key
))
342 (list (caar x
) (cl--make-usage-var (nth 1 (car x
))))
343 (cl--make-usage-var (car x
)))
345 (cl--make-usage-args (nthcdr 2 x
)) ;SVAR.
349 (defun cl--transform-lambda (form bind-block
)
350 (let* ((args (car form
)) (body (cdr form
)) (orig-args args
)
351 (cl--bind-block bind-block
) (cl--bind-defs nil
) (cl--bind-enquote nil
)
352 (cl--bind-inits nil
) (cl--bind-lets nil
) (cl--bind-forms nil
)
353 (header nil
) (simple-args nil
))
354 (while (or (stringp (car body
))
355 (memq (car-safe (car body
)) '(interactive cl-declare
)))
356 (push (pop body
) header
))
357 (setq args
(if (listp args
) (cl-copy-list args
) (list '&rest args
)))
358 (let ((p (last args
))) (if (cdr p
) (setcdr p
(list '&rest
(cdr p
)))))
359 (if (setq cl--bind-defs
(cadr (memq '&cl-defs args
)))
360 (setq args
(delq '&cl-defs
(delq cl--bind-defs args
))
361 cl--bind-defs
(cadr cl--bind-defs
)))
362 (if (setq cl--bind-enquote
(memq '&cl-quote args
))
363 (setq args
(delq '&cl-quote args
)))
364 (if (memq '&whole args
) (error "&whole not currently implemented"))
365 (let* ((p (memq '&environment args
)) (v (cadr p
))
366 (env-exp 'macroexpand-all-environment
))
367 (if p
(setq args
(nconc (delq (car p
) (delq v args
))
368 (list '&aux
(list v env-exp
))))))
369 (while (and args
(symbolp (car args
))
370 (not (memq (car args
) '(nil &rest
&body
&key
&aux
)))
371 (not (and (eq (car args
) '&optional
)
372 (or cl--bind-defs
(consp (cadr args
))))))
373 (push (pop args
) simple-args
))
374 (or (eq cl--bind-block
'cl-none
)
375 (setq body
(list `(cl-block ,cl--bind-block
,@body
))))
377 (cl-list* nil
(nreverse simple-args
) (nconc (nreverse header
) body
))
378 (if (memq '&optional simple-args
) (push '&optional args
))
379 (cl--do-arglist args nil
(- (length simple-args
)
380 (if (memq '&optional simple-args
) 1 0)))
381 (setq cl--bind-lets
(nreverse cl--bind-lets
))
382 (cl-list* (and cl--bind-inits
`(cl-eval-when (compile load eval
)
383 ,@(nreverse cl--bind-inits
)))
384 (nconc (nreverse simple-args
)
385 (list '&rest
(car (pop cl--bind-lets
))))
386 (nconc (let ((hdr (nreverse header
)))
387 ;; Macro expansion can take place in the middle of
388 ;; apparently harmless computation, so it should not
389 ;; touch the match-data.
392 (cons (help-add-fundoc-usage
393 (if (stringp (car hdr
)) (pop hdr
))
396 (cl--make-usage-args orig-args
))))
398 (list `(let* ,cl--bind-lets
399 ,@(nreverse cl--bind-forms
)
402 (defun cl--do-arglist (args expr
&optional num
) ; uses bind-*
404 (if (or (memq args cl-lambda-list-keywords
) (not (symbolp args
)))
405 (error "Invalid argument name: %s" args
)
406 (push (list args expr
) cl--bind-lets
))
407 (setq args
(cl-copy-list args
))
408 (let ((p (last args
))) (if (cdr p
) (setcdr p
(list '&rest
(cdr p
)))))
409 (let ((p (memq '&body args
))) (if p
(setcar p
'&rest
)))
410 (if (memq '&environment args
) (error "&environment used incorrectly"))
411 (let ((save-args args
)
412 (restarg (memq '&rest args
))
413 (safety (if (cl-compiling-file) cl-optimize-safety
3))
415 (laterarg nil
) (exactarg nil
) minarg
)
416 (or num
(setq num
0))
417 (if (listp (cadr restarg
))
418 (setq restarg
(make-symbol "--cl-rest--"))
419 (setq restarg
(cadr restarg
)))
420 (push (list restarg expr
) cl--bind-lets
)
421 (if (eq (car args
) '&whole
)
422 (push (list (cl-pop2 args
) restarg
) cl--bind-lets
))
424 (setq minarg restarg
)
425 (while (and p
(not (memq (car p
) cl-lambda-list-keywords
)))
426 (or (eq p args
) (setq minarg
(list 'cdr minarg
)))
428 (if (memq (car p
) '(nil &aux
))
429 (setq minarg
`(= (length ,restarg
)
430 ,(length (cl-ldiff args p
)))
431 exactarg
(not (eq args p
)))))
432 (while (and args
(not (memq (car args
) cl-lambda-list-keywords
)))
433 (let ((poparg (list (if (or (cdr args
) (not exactarg
)) 'pop
'car
)
437 (if (or laterarg
(= safety
0)) poparg
439 (signal 'wrong-number-of-arguments
440 (list ,(and (not (eq cl--bind-block
'cl-none
))
442 (length ,restarg
)))))))
443 (setq num
(1+ num
) laterarg t
))
444 (while (and (eq (car args
) '&optional
) (pop args
))
445 (while (and args
(not (memq (car args
) cl-lambda-list-keywords
)))
446 (let ((arg (pop args
)))
447 (or (consp arg
) (setq arg
(list arg
)))
448 (if (cddr arg
) (cl--do-arglist (nth 2 arg
) `(and ,restarg t
)))
449 (let ((def (if (cdr arg
) (nth 1 arg
)
450 (or (car cl--bind-defs
)
451 (nth 1 (assq (car arg
) cl--bind-defs
)))))
452 (poparg `(pop ,restarg
)))
453 (and def cl--bind-enquote
(setq def
`',def
))
454 (cl--do-arglist (car arg
)
455 (if def
`(if ,restarg
,poparg
,def
) poparg
))
456 (setq num
(1+ num
))))))
457 (if (eq (car args
) '&rest
)
458 (let ((arg (cl-pop2 args
)))
459 (if (consp arg
) (cl--do-arglist arg restarg
)))
460 (or (eq (car args
) '&key
) (= safety
0) exactarg
462 (signal 'wrong-number-of-arguments
464 ,(and (not (eq cl--bind-block
'cl-none
))
466 (+ ,num
(length ,restarg
)))))
468 (while (and (eq (car args
) '&key
) (pop args
))
469 (while (and args
(not (memq (car args
) cl-lambda-list-keywords
)))
470 (let ((arg (pop args
)))
471 (or (consp arg
) (setq arg
(list arg
)))
472 (let* ((karg (if (consp (car arg
)) (caar arg
)
473 (intern (format ":%s" (car arg
)))))
474 (varg (if (consp (car arg
)) (cl-cadar arg
) (car arg
)))
475 (def (if (cdr arg
) (cadr arg
)
476 (or (car cl--bind-defs
) (cadr (assq varg cl--bind-defs
)))))
477 (look `(memq ',karg
,restarg
)))
478 (and def cl--bind-enquote
(setq def
`',def
))
480 (let* ((temp (or (nth 2 arg
) (make-symbol "--cl-var--")))
481 (val `(car (cdr ,temp
))))
482 (cl--do-arglist temp look
)
485 (prog1 ,val
(setq ,temp t
))
489 `(car (cdr ,(if (null def
)
492 ,(if (eq (cl--const-expr-p def
) t
)
493 `'(nil ,(cl--const-expr-val def
))
494 `(list nil
,def
))))))))
496 (setq keys
(nreverse keys
))
497 (or (and (eq (car args
) '&allow-other-keys
) (pop args
))
498 (null keys
) (= safety
0)
499 (let* ((var (make-symbol "--cl-keys--"))
500 (allow '(:allow-other-keys
))
503 ((memq (car ,var
) ',(append keys allow
))
504 (setq ,var
(cdr (cdr ,var
))))
505 ((car (cdr (memq (quote ,@allow
) ,restarg
)))
509 ,(format "Keyword argument %%s not one of %s"
512 (push `(let ((,var
,restarg
)) ,check
) cl--bind-forms
)))
513 (while (and (eq (car args
) '&aux
) (pop args
))
514 (while (and args
(not (memq (car args
) cl-lambda-list-keywords
)))
515 (if (consp (car args
))
516 (if (and cl--bind-enquote
(cl-cadar args
))
517 (cl--do-arglist (caar args
)
518 `',(cadr (pop args
)))
519 (cl--do-arglist (caar args
) (cadr (pop args
))))
520 (cl--do-arglist (pop args
) nil
))))
521 (if args
(error "Malformed argument list %s" save-args
)))))
523 (defun cl--arglist-args (args)
524 (if (nlistp args
) (list args
)
525 (let ((res nil
) (kind nil
) arg
)
527 (setq arg
(pop args
))
528 (if (memq arg cl-lambda-list-keywords
) (setq kind arg
)
529 (if (eq arg
'&cl-defs
) (pop args
)
530 (and (consp arg
) kind
(setq arg
(car arg
)))
531 (and (consp arg
) (cdr arg
) (eq kind
'&key
) (setq arg
(cadr arg
)))
532 (setq res
(nconc res
(cl--arglist-args arg
))))))
533 (nconc res
(and args
(list args
))))))
536 (defmacro cl-destructuring-bind
(args expr
&rest body
)
538 (debug (&define cl-macro-list def-form cl-declarations def-body
)))
539 (let* ((cl--bind-lets nil
) (cl--bind-forms nil
) (cl--bind-inits nil
)
540 (cl--bind-defs nil
) (cl--bind-block 'cl-none
) (cl--bind-enquote nil
))
541 (cl--do-arglist (or args
'(&aux
)) expr
)
542 (append '(progn) cl--bind-inits
543 (list `(let* ,(nreverse cl--bind-lets
)
544 ,@(nreverse cl--bind-forms
) ,@body
)))))
547 ;;; The `cl-eval-when' form.
549 (defvar cl-not-toplevel nil
)
552 (defmacro cl-eval-when
(when &rest body
)
553 "Control when BODY is evaluated.
554 If `compile' is in WHEN, BODY is evaluated when compiled at top-level.
555 If `load' is in WHEN, BODY is evaluated when loaded after top-level compile.
556 If `eval' is in WHEN, BODY is evaluated when interpreted or at non-top-level.
558 \(fn (WHEN...) BODY...)"
559 (declare (indent 1) (debug ((&rest
&or
"compile" "load" "eval") body
)))
560 (if (and (fboundp 'cl-compiling-file
) (cl-compiling-file)
561 (not cl-not-toplevel
) (not (boundp 'for-effect
))) ; horrible kludge
562 (let ((comp (or (memq 'compile when
) (memq :compile-toplevel when
)))
564 (if (or (memq 'load when
) (memq :load-toplevel when
))
565 (if comp
(cons 'progn
(mapcar 'cl--compile-time-too body
))
566 `(if nil nil
,@body
))
567 (progn (if comp
(eval (cons 'progn body
))) nil
)))
568 (and (or (memq 'eval when
) (memq :execute when
))
569 (cons 'progn body
))))
571 (defun cl--compile-time-too (form)
572 (or (and (symbolp (car-safe form
)) (get (car-safe form
) 'byte-hunk-handler
))
573 (setq form
(macroexpand
574 form
(cons '(cl-eval-when) byte-compile-macro-environment
))))
575 (cond ((eq (car-safe form
) 'progn
)
576 (cons 'progn
(mapcar 'cl--compile-time-too
(cdr form
))))
577 ((eq (car-safe form
) 'cl-eval-when
)
578 (let ((when (nth 1 form
)))
579 (if (or (memq 'eval when
) (memq :execute when
))
580 `(cl-eval-when (compile ,@when
) ,@(cddr form
))
582 (t (eval form
) form
)))
585 (defmacro cl-load-time-value
(form &optional _read-only
)
586 "Like `progn', but evaluates the body at load time.
587 The result of the body appears to the compiler as a quoted constant."
588 (declare (debug (form &optional sexp
)))
589 (if (cl-compiling-file)
590 (let* ((temp (cl-gentemp "--cl-load-time--"))
591 (set `(set ',temp
,form
)))
592 (if (and (fboundp 'byte-compile-file-form-defmumble
)
593 (boundp 'this-kind
) (boundp 'that-one
))
594 (fset 'byte-compile-file-form
596 (fset 'byte-compile-file-form
597 ',(symbol-function 'byte-compile-file-form
))
598 (byte-compile-file-form ',set
)
599 (byte-compile-file-form form
)))
600 (print set
(symbol-value 'byte-compile--outbuffer
)))
601 `(symbol-value ',temp
))
605 ;;; Conditional control structures.
608 (defmacro cl-case
(expr &rest clauses
)
609 "Eval EXPR and choose among clauses on that value.
610 Each clause looks like (KEYLIST BODY...). EXPR is evaluated and compared
611 against each key in each KEYLIST; the corresponding BODY is evaluated.
612 If no clause succeeds, cl-case returns nil. A single atom may be used in
613 place of a KEYLIST of one atom. A KEYLIST of t or `otherwise' is
614 allowed only in the final clause, and matches if no other keys match.
615 Key values are compared by `eql'.
616 \n(fn EXPR (KEYLIST BODY...)...)"
617 (declare (indent 1) (debug (form &rest
(sexp body
))))
618 (let* ((temp (if (cl--simple-expr-p expr
3) expr
(make-symbol "--cl-var--")))
625 (cons (cond ((memq (car c
) '(t otherwise
)) t
)
626 ((eq (car c
) 'cl--ecase-error-flag
)
627 `(error "cl-ecase failed: %s, %s"
628 ,temp
',(reverse head-list
)))
630 (setq head-list
(append (car c
) head-list
))
631 `(cl-member ,temp
',(car c
)))
633 (if (memq (car c
) head-list
)
634 (error "Duplicate key in case: %s"
636 (push (car c
) head-list
)
637 `(eql ,temp
',(car c
))))
638 (or (cdr c
) '(nil)))))
640 (if (eq temp expr
) body
641 `(let ((,temp
,expr
)) ,body
))))
644 (defmacro cl-ecase
(expr &rest clauses
)
645 "Like `cl-case', but error if no cl-case fits.
646 `otherwise'-clauses are not allowed.
647 \n(fn EXPR (KEYLIST BODY...)...)"
648 (declare (indent 1) (debug cl-case
))
649 `(cl-case ,expr
,@clauses
(cl--ecase-error-flag)))
652 (defmacro cl-typecase
(expr &rest clauses
)
653 "Evals EXPR, chooses among clauses on that value.
654 Each clause looks like (TYPE BODY...). EXPR is evaluated and, if it
655 satisfies TYPE, the corresponding BODY is evaluated. If no clause succeeds,
656 cl-typecase returns nil. A TYPE of t or `otherwise' is allowed only in the
657 final clause, and matches if no other keys match.
658 \n(fn EXPR (TYPE BODY...)...)"
660 (debug (form &rest
([&or cl-type-spec
"otherwise"] body
))))
661 (let* ((temp (if (cl--simple-expr-p expr
3) expr
(make-symbol "--cl-var--")))
668 (cons (cond ((eq (car c
) 'otherwise
) t
)
669 ((eq (car c
) 'cl--ecase-error-flag
)
670 `(error "cl-etypecase failed: %s, %s"
671 ,temp
',(reverse type-list
)))
673 (push (car c
) type-list
)
674 (cl--make-type-test temp
(car c
))))
675 (or (cdr c
) '(nil)))))
677 (if (eq temp expr
) body
678 `(let ((,temp
,expr
)) ,body
))))
681 (defmacro cl-etypecase
(expr &rest clauses
)
682 "Like `cl-typecase', but error if no case fits.
683 `otherwise'-clauses are not allowed.
684 \n(fn EXPR (TYPE BODY...)...)"
685 (declare (indent 1) (debug cl-typecase
))
686 `(cl-typecase ,expr
,@clauses
(cl--ecase-error-flag)))
689 ;;; Blocks and exits.
692 (defmacro cl-block
(name &rest body
)
693 "Define a lexically-scoped block named NAME.
694 NAME may be any symbol. Code inside the BODY forms can call `cl-return-from'
695 to jump prematurely out of the block. This differs from `catch' and `throw'
696 in two respects: First, the NAME is an unevaluated symbol rather than a
697 quoted symbol or other form; and second, NAME is lexically rather than
698 dynamically scoped: Only references to it within BODY will work. These
699 references may appear inside macro expansions, but not inside functions
701 (declare (indent 1) (debug (symbolp body
)))
702 (if (cl--safe-expr-p `(progn ,@body
)) `(progn ,@body
)
704 (catch ',(intern (format "--cl-block-%s--" name
))
708 (defmacro cl-return
(&optional result
)
709 "Return from the block named nil.
710 This is equivalent to `(cl-return-from nil RESULT)'."
711 (declare (debug (&optional form
)))
712 `(cl-return-from nil
,result
))
715 (defmacro cl-return-from
(name &optional result
)
716 "Return from the block named NAME.
717 This jumps out to the innermost enclosing `(cl-block NAME ...)' form,
718 returning RESULT from that form (or nil if RESULT is omitted).
719 This is compatible with Common Lisp, but note that `defun' and
720 `defmacro' do not create implicit blocks as they do in Common Lisp."
721 (declare (indent 1) (debug (symbolp &optional form
)))
722 (let ((name2 (intern (format "--cl-block-%s--" name
))))
723 `(cl-block-throw ',name2
,result
)))
726 ;;; The "cl-loop" macro.
728 (defvar cl--loop-args
) (defvar cl--loop-accum-var
) (defvar cl--loop-accum-vars
)
729 (defvar cl--loop-bindings
) (defvar cl--loop-body
) (defvar cl--loop-destr-temps
)
730 (defvar cl--loop-finally
) (defvar cl--loop-finish-flag
)
731 (defvar cl--loop-first-flag
)
732 (defvar cl--loop-initially
) (defvar cl--loop-map-form
) (defvar cl--loop-name
)
733 (defvar cl--loop-result
) (defvar cl--loop-result-explicit
)
734 (defvar cl--loop-result-var
) (defvar cl--loop-steps
) (defvar cl--loop-symbol-macs
)
737 (defmacro cl-loop
(&rest loop-args
)
738 "The Common Lisp `cl-loop' macro.
740 for VAR from/upfrom/downfrom NUM to/upto/downto/above/below NUM by NUM,
741 for VAR in LIST by FUNC, for VAR on LIST by FUNC, for VAR = INIT then EXPR,
742 for VAR across ARRAY, repeat NUM, with VAR = INIT, while COND, until COND,
743 always COND, never COND, thereis COND, collect EXPR into VAR,
744 append EXPR into VAR, nconc EXPR into VAR, sum EXPR into VAR,
745 count EXPR into VAR, maximize EXPR into VAR, minimize EXPR into VAR,
746 if COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
747 unless COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
748 do EXPRS..., initially EXPRS..., finally EXPRS..., return EXPR,
749 finally return EXPR, named NAME.
752 (declare (debug (&rest
&or symbolp form
)))
753 (if (not (memq t
(mapcar 'symbolp
(delq nil
(delq t
(cl-copy-list loop-args
))))))
754 `(cl-block nil
(while t
,@loop-args
))
755 (let ((cl--loop-args loop-args
) (cl--loop-name nil
) (cl--loop-bindings nil
)
756 (cl--loop-body nil
) (cl--loop-steps nil
)
757 (cl--loop-result nil
) (cl--loop-result-explicit nil
)
758 (cl--loop-result-var nil
) (cl--loop-finish-flag nil
)
759 (cl--loop-accum-var nil
) (cl--loop-accum-vars nil
)
760 (cl--loop-initially nil
) (cl--loop-finally nil
)
761 (cl--loop-map-form nil
) (cl--loop-first-flag nil
)
762 (cl--loop-destr-temps nil
) (cl--loop-symbol-macs nil
))
763 (setq cl--loop-args
(append cl--loop-args
'(cl-end-loop)))
764 (while (not (eq (car cl--loop-args
) 'cl-end-loop
)) (cl-parse-loop-clause))
765 (if cl--loop-finish-flag
766 (push `((,cl--loop-finish-flag t
)) cl--loop-bindings
))
767 (if cl--loop-first-flag
768 (progn (push `((,cl--loop-first-flag t
)) cl--loop-bindings
)
769 (push `(setq ,cl--loop-first-flag nil
) cl--loop-steps
)))
770 (let* ((epilogue (nconc (nreverse cl--loop-finally
)
771 (list (or cl--loop-result-explicit cl--loop-result
))))
772 (ands (cl--loop-build-ands (nreverse cl--loop-body
)))
773 (while-body (nconc (cadr ands
) (nreverse cl--loop-steps
)))
775 (nreverse cl--loop-initially
)
776 (list (if cl--loop-map-form
777 `(cl-block --cl-finish--
779 (if (eq (car ands
) t
) while-body
780 (cons `(or ,(car ands
)
781 (cl-return-from --cl-finish--
784 '--cl-map cl--loop-map-form
))
785 `(while ,(car ands
) ,@while-body
)))
786 (if cl--loop-finish-flag
787 (if (equal epilogue
'(nil)) (list cl--loop-result-var
)
788 `((if ,cl--loop-finish-flag
789 (progn ,@epilogue
) ,cl--loop-result-var
)))
791 (if cl--loop-result-var
(push (list cl--loop-result-var
) cl--loop-bindings
))
792 (while cl--loop-bindings
793 (if (cdar cl--loop-bindings
)
794 (setq body
(list (cl--loop-let (pop cl--loop-bindings
) body t
)))
796 (while (and cl--loop-bindings
797 (not (cdar cl--loop-bindings
)))
798 (push (car (pop cl--loop-bindings
)) lets
))
799 (setq body
(list (cl--loop-let lets body nil
))))))
800 (if cl--loop-symbol-macs
801 (setq body
(list `(cl-symbol-macrolet ,cl--loop-symbol-macs
,@body
))))
802 `(cl-block ,cl--loop-name
,@body
)))))
804 ;; Below is a complete spec for cl-loop, in several parts that correspond
805 ;; to the syntax given in CLtL2. The specs do more than specify where
806 ;; the forms are; it also specifies, as much as Edebug allows, all the
807 ;; syntactically valid cl-loop clauses. The disadvantage of this
808 ;; completeness is rigidity, but the "for ... being" clause allows
809 ;; arbitrary extensions of the form: [symbolp &rest &or symbolp form].
811 ;; (def-edebug-spec cl-loop
812 ;; ([&optional ["named" symbolp]]
818 ;; loop-initial-final]
819 ;; [&rest loop-clause]
822 ;; (def-edebug-spec loop-with
825 ;; [&optional ["=" form]]
826 ;; &rest ["and" loop-var
828 ;; [&optional ["=" form]]]))
830 ;; (def-edebug-spec loop-for-as
831 ;; ([&or "for" "as"] loop-for-as-subclause
832 ;; &rest ["and" loop-for-as-subclause]))
834 ;; (def-edebug-spec loop-for-as-subclause
838 ;; [[&or "in" "on" "in-ref" "across-ref"]
839 ;; form &optional ["by" function-form]]
841 ;; ["=" form &optional ["then" form]]
844 ;; [&or "the" "each"]
846 ;; [[&or "element" "elements"]
847 ;; [&or "of" "in" "of-ref"] form
848 ;; &optional "using" ["index" symbolp]];; is this right?
849 ;; [[&or "hash-key" "hash-keys"
850 ;; "hash-value" "hash-values"]
852 ;; hash-table-p &optional ["using" ([&or "hash-value" "hash-values"
853 ;; "hash-key" "hash-keys"] sexp)]]
855 ;; [[&or "symbol" "present-symbol" "external-symbol"
856 ;; "symbols" "present-symbols" "external-symbols"]
857 ;; [&or "in" "of"] package-p]
859 ;; ;; Extensions for Emacs Lisp, including Lucid Emacs.
860 ;; [[&or "frame" "frames"
861 ;; "screen" "screens"
862 ;; "buffer" "buffers"]]
864 ;; [[&or "window" "windows"]
865 ;; [&or "of" "in"] form]
867 ;; [[&or "overlay" "overlays"
868 ;; "extent" "extents"]
869 ;; [&or "of" "in"] form
870 ;; &optional [[&or "from" "to"] form]]
872 ;; [[&or "interval" "intervals"]
873 ;; [&or "in" "of"] form
874 ;; &optional [[&or "from" "to"] form]
875 ;; ["property" form]]
877 ;; [[&or "key-code" "key-codes"
878 ;; "key-seq" "key-seqs"
879 ;; "key-binding" "key-bindings"]
880 ;; [&or "in" "of"] form
881 ;; &optional ["using" ([&or "key-code" "key-codes"
882 ;; "key-seq" "key-seqs"
883 ;; "key-binding" "key-bindings"]
885 ;; ;; For arbitrary extensions, recognize anything else.
886 ;; [symbolp &rest &or symbolp form]
889 ;; ;; arithmetic - must be last since all parts are optional.
890 ;; [[&optional [[&or "from" "downfrom" "upfrom"] form]]
891 ;; [&optional [[&or "to" "downto" "upto" "below" "above"] form]]
892 ;; [&optional ["by" form]]
895 ;; (def-edebug-spec loop-initial-final
897 ;; ;; [&optional &or "do" "doing"] ;; CLtL2 doesn't allow this.
898 ;; &rest loop-non-atomic-expr]
900 ;; [[&optional &or "do" "doing"] &rest loop-non-atomic-expr]
901 ;; ["return" form]]))
903 ;; (def-edebug-spec loop-and-clause
904 ;; (loop-clause &rest ["and" loop-clause]))
906 ;; (def-edebug-spec loop-clause
908 ;; [[&or "while" "until" "always" "never" "thereis"] form]
910 ;; [[&or "collect" "collecting"
911 ;; "append" "appending"
912 ;; "nconc" "nconcing"
913 ;; "concat" "vconcat"] form
914 ;; [&optional ["into" loop-var]]]
916 ;; [[&or "count" "counting"
918 ;; "maximize" "maximizing"
919 ;; "minimize" "minimizing"] form
920 ;; [&optional ["into" loop-var]]
923 ;; [[&or "if" "when" "unless"]
924 ;; form loop-and-clause
925 ;; [&optional ["else" loop-and-clause]]
926 ;; [&optional "end"]]
928 ;; [[&or "do" "doing"] &rest loop-non-atomic-expr]
931 ;; loop-initial-final
934 ;; (def-edebug-spec loop-non-atomic-expr
935 ;; ([¬ atom] form))
937 ;; (def-edebug-spec loop-var
938 ;; ;; The symbolp must be last alternative to recognize e.g. (a b . c)
940 ;; ;; (loop-var . [&or nil loop-var])
941 ;; ;; (symbolp . [&or nil loop-var])
942 ;; ;; (symbolp . loop-var)
943 ;; ;; (symbolp . (symbolp . [&or nil loop-var]))
944 ;; ;; (symbolp . (symbolp . loop-var))
945 ;; ;; (symbolp . (symbolp . symbolp)) == (symbolp symbolp . symbolp)
946 ;; (&or (loop-var . [&or nil loop-var]) [gate symbolp]))
948 ;; (def-edebug-spec loop-type-spec
949 ;; (&optional ["of-type" loop-d-type-spec]))
951 ;; (def-edebug-spec loop-d-type-spec
952 ;; (&or (loop-d-type-spec . [&or nil loop-d-type-spec]) cl-type-spec))
956 (defun cl-parse-loop-clause () ; uses loop-*
957 (let ((word (pop cl--loop-args
))
958 (hash-types '(hash-key hash-keys hash-value hash-values
))
959 (key-types '(key-code key-codes key-seq key-seqs
960 key-binding key-bindings
)))
963 ((null cl--loop-args
)
964 (error "Malformed `cl-loop' macro"))
967 (setq cl--loop-name
(pop cl--loop-args
)))
969 ((eq word
'initially
)
970 (if (memq (car cl--loop-args
) '(do doing
)) (pop cl--loop-args
))
971 (or (consp (car cl--loop-args
)) (error "Syntax error on `initially' clause"))
972 (while (consp (car cl--loop-args
))
973 (push (pop cl--loop-args
) cl--loop-initially
)))
976 (if (eq (car cl--loop-args
) 'return
)
977 (setq cl--loop-result-explicit
(or (cl-pop2 cl--loop-args
) '(quote nil
)))
978 (if (memq (car cl--loop-args
) '(do doing
)) (pop cl--loop-args
))
979 (or (consp (car cl--loop-args
)) (error "Syntax error on `finally' clause"))
980 (if (and (eq (caar cl--loop-args
) 'return
) (null cl--loop-name
))
981 (setq cl--loop-result-explicit
(or (nth 1 (pop cl--loop-args
)) '(quote nil
)))
982 (while (consp (car cl--loop-args
))
983 (push (pop cl--loop-args
) cl--loop-finally
)))))
985 ((memq word
'(for as
))
986 (let ((loop-for-bindings nil
) (loop-for-sets nil
) (loop-for-steps nil
)
989 ;; Use `cl-gensym' rather than `make-symbol'. It's important that
990 ;; (not (eq (symbol-name var1) (symbol-name var2))) because
991 ;; these vars get added to the macro-environment.
992 (let ((var (or (pop cl--loop-args
) (cl-gensym "--cl-var--"))))
993 (setq word
(pop cl--loop-args
))
994 (if (eq word
'being
) (setq word
(pop cl--loop-args
)))
995 (if (memq word
'(the each
)) (setq word
(pop cl--loop-args
)))
996 (if (memq word
'(buffer buffers
))
997 (setq word
'in cl--loop-args
(cons '(buffer-list) cl--loop-args
)))
1000 ((memq word
'(from downfrom upfrom to downto upto
1002 (push word cl--loop-args
)
1003 (if (memq (car cl--loop-args
) '(downto above
))
1004 (error "Must specify `from' value for downward cl-loop"))
1005 (let* ((down (or (eq (car cl--loop-args
) 'downfrom
)
1006 (memq (cl-caddr cl--loop-args
) '(downto above
))))
1007 (excl (or (memq (car cl--loop-args
) '(above below
))
1008 (memq (cl-caddr cl--loop-args
) '(above below
))))
1009 (start (and (memq (car cl--loop-args
) '(from upfrom downfrom
))
1010 (cl-pop2 cl--loop-args
)))
1011 (end (and (memq (car cl--loop-args
)
1012 '(to upto downto above below
))
1013 (cl-pop2 cl--loop-args
)))
1014 (step (and (eq (car cl--loop-args
) 'by
) (cl-pop2 cl--loop-args
)))
1015 (end-var (and (not (macroexp-const-p end
))
1016 (make-symbol "--cl-var--")))
1017 (step-var (and (not (macroexp-const-p step
))
1018 (make-symbol "--cl-var--"))))
1019 (and step
(numberp step
) (<= step
0)
1020 (error "Loop `by' value is not positive: %s" step
))
1021 (push (list var
(or start
0)) loop-for-bindings
)
1022 (if end-var
(push (list end-var end
) loop-for-bindings
))
1023 (if step-var
(push (list step-var step
)
1027 (if down
(if excl
'> '>=) (if excl
'< '<=))
1028 var
(or end-var end
)) cl--loop-body
))
1029 (push (list var
(list (if down
'-
'+) var
1030 (or step-var step
1)))
1033 ((memq word
'(in in-ref on
))
1034 (let* ((on (eq word
'on
))
1035 (temp (if (and on
(symbolp var
))
1036 var
(make-symbol "--cl-var--"))))
1037 (push (list temp
(pop cl--loop-args
)) loop-for-bindings
)
1038 (push `(consp ,temp
) cl--loop-body
)
1039 (if (eq word
'in-ref
)
1040 (push (list var
`(car ,temp
)) cl--loop-symbol-macs
)
1043 (push (list var nil
) loop-for-bindings
)
1044 (push (list var
(if on temp
`(car ,temp
)))
1047 (if (eq (car cl--loop-args
) 'by
)
1048 (let ((step (cl-pop2 cl--loop-args
)))
1049 (if (and (memq (car-safe step
)
1052 (symbolp (nth 1 step
)))
1053 (list (nth 1 step
) temp
)
1054 `(funcall ,step
,temp
)))
1059 (let* ((start (pop cl--loop-args
))
1060 (then (if (eq (car cl--loop-args
) 'then
) (cl-pop2 cl--loop-args
) start
)))
1061 (push (list var nil
) loop-for-bindings
)
1062 (if (or ands
(eq (car cl--loop-args
) 'and
))
1065 (if ,(or cl--loop-first-flag
1066 (setq cl--loop-first-flag
1067 (make-symbol "--cl-var--")))
1070 (push (list var then
) loop-for-steps
))
1072 (if (eq start then
) start
1073 `(if ,(or cl--loop-first-flag
1074 (setq cl--loop-first-flag
1075 (make-symbol "--cl-var--")))
1079 ((memq word
'(across across-ref
))
1080 (let ((temp-vec (make-symbol "--cl-vec--"))
1081 (temp-idx (make-symbol "--cl-idx--")))
1082 (push (list temp-vec
(pop cl--loop-args
)) loop-for-bindings
)
1083 (push (list temp-idx -
1) loop-for-bindings
)
1084 (push `(< (setq ,temp-idx
(1+ ,temp-idx
))
1085 (length ,temp-vec
)) cl--loop-body
)
1086 (if (eq word
'across-ref
)
1087 (push (list var
`(aref ,temp-vec
,temp-idx
))
1088 cl--loop-symbol-macs
)
1089 (push (list var nil
) loop-for-bindings
)
1090 (push (list var
`(aref ,temp-vec
,temp-idx
))
1093 ((memq word
'(element elements
))
1094 (let ((ref (or (memq (car cl--loop-args
) '(in-ref of-ref
))
1095 (and (not (memq (car cl--loop-args
) '(in of
)))
1096 (error "Expected `of'"))))
1097 (seq (cl-pop2 cl--loop-args
))
1098 (temp-seq (make-symbol "--cl-seq--"))
1099 (temp-idx (if (eq (car cl--loop-args
) 'using
)
1100 (if (and (= (length (cadr cl--loop-args
)) 2)
1101 (eq (cl-caadr cl--loop-args
) 'index
))
1102 (cadr (cl-pop2 cl--loop-args
))
1103 (error "Bad `using' clause"))
1104 (make-symbol "--cl-idx--"))))
1105 (push (list temp-seq seq
) loop-for-bindings
)
1106 (push (list temp-idx
0) loop-for-bindings
)
1108 (let ((temp-len (make-symbol "--cl-len--")))
1109 (push (list temp-len
`(length ,temp-seq
))
1111 (push (list var
`(elt ,temp-seq temp-idx
))
1112 cl--loop-symbol-macs
)
1113 (push `(< ,temp-idx
,temp-len
) cl--loop-body
))
1114 (push (list var nil
) loop-for-bindings
)
1115 (push `(and ,temp-seq
1116 (or (consp ,temp-seq
)
1117 (< ,temp-idx
(length ,temp-seq
))))
1119 (push (list var
`(if (consp ,temp-seq
)
1121 (aref ,temp-seq
,temp-idx
)))
1123 (push (list temp-idx
`(1+ ,temp-idx
))
1126 ((memq word hash-types
)
1127 (or (memq (car cl--loop-args
) '(in of
)) (error "Expected `of'"))
1128 (let* ((table (cl-pop2 cl--loop-args
))
1129 (other (if (eq (car cl--loop-args
) 'using
)
1130 (if (and (= (length (cadr cl--loop-args
)) 2)
1131 (memq (cl-caadr cl--loop-args
) hash-types
)
1132 (not (eq (cl-caadr cl--loop-args
) word
)))
1133 (cadr (cl-pop2 cl--loop-args
))
1134 (error "Bad `using' clause"))
1135 (make-symbol "--cl-var--"))))
1136 (if (memq word
'(hash-value hash-values
))
1137 (setq var
(prog1 other
(setq other var
))))
1138 (setq cl--loop-map-form
1139 `(maphash (lambda (,var
,other
) . --cl-map
) ,table
))))
1141 ((memq word
'(symbol present-symbol external-symbol
1142 symbols present-symbols external-symbols
))
1143 (let ((ob (and (memq (car cl--loop-args
) '(in of
)) (cl-pop2 cl--loop-args
))))
1144 (setq cl--loop-map-form
1145 `(mapatoms (lambda (,var
) . --cl-map
) ,ob
))))
1147 ((memq word
'(overlay overlays extent extents
))
1148 (let ((buf nil
) (from nil
) (to nil
))
1149 (while (memq (car cl--loop-args
) '(in of from to
))
1150 (cond ((eq (car cl--loop-args
) 'from
) (setq from
(cl-pop2 cl--loop-args
)))
1151 ((eq (car cl--loop-args
) 'to
) (setq to
(cl-pop2 cl--loop-args
)))
1152 (t (setq buf
(cl-pop2 cl--loop-args
)))))
1153 (setq cl--loop-map-form
1155 (lambda (,var
,(make-symbol "--cl-var--"))
1156 (progn . --cl-map
) nil
)
1159 ((memq word
'(interval intervals
))
1160 (let ((buf nil
) (prop nil
) (from nil
) (to nil
)
1161 (var1 (make-symbol "--cl-var1--"))
1162 (var2 (make-symbol "--cl-var2--")))
1163 (while (memq (car cl--loop-args
) '(in of property from to
))
1164 (cond ((eq (car cl--loop-args
) 'from
) (setq from
(cl-pop2 cl--loop-args
)))
1165 ((eq (car cl--loop-args
) 'to
) (setq to
(cl-pop2 cl--loop-args
)))
1166 ((eq (car cl--loop-args
) 'property
)
1167 (setq prop
(cl-pop2 cl--loop-args
)))
1168 (t (setq buf
(cl-pop2 cl--loop-args
)))))
1169 (if (and (consp var
) (symbolp (car var
)) (symbolp (cdr var
)))
1170 (setq var1
(car var
) var2
(cdr var
))
1171 (push (list var
`(cons ,var1
,var2
)) loop-for-sets
))
1172 (setq cl--loop-map-form
1174 (lambda (,var1
,var2
) . --cl-map
)
1175 ,buf
,prop
,from
,to
))))
1177 ((memq word key-types
)
1178 (or (memq (car cl--loop-args
) '(in of
)) (error "Expected `of'"))
1179 (let ((cl-map (cl-pop2 cl--loop-args
))
1180 (other (if (eq (car cl--loop-args
) 'using
)
1181 (if (and (= (length (cadr cl--loop-args
)) 2)
1182 (memq (cl-caadr cl--loop-args
) key-types
)
1183 (not (eq (cl-caadr cl--loop-args
) word
)))
1184 (cadr (cl-pop2 cl--loop-args
))
1185 (error "Bad `using' clause"))
1186 (make-symbol "--cl-var--"))))
1187 (if (memq word
'(key-binding key-bindings
))
1188 (setq var
(prog1 other
(setq other var
))))
1189 (setq cl--loop-map-form
1190 `(,(if (memq word
'(key-seq key-seqs
))
1191 'cl-map-keymap-recursively
'map-keymap
)
1192 (lambda (,var
,other
) . --cl-map
) ,cl-map
))))
1194 ((memq word
'(frame frames screen screens
))
1195 (let ((temp (make-symbol "--cl-var--")))
1196 (push (list var
'(selected-frame))
1198 (push (list temp nil
) loop-for-bindings
)
1199 (push `(prog1 (not (eq ,var
,temp
))
1200 (or ,temp
(setq ,temp
,var
)))
1202 (push (list var
`(next-frame ,var
))
1205 ((memq word
'(window windows
))
1206 (let ((scr (and (memq (car cl--loop-args
) '(in of
)) (cl-pop2 cl--loop-args
)))
1207 (temp (make-symbol "--cl-var--"))
1208 (minip (make-symbol "--cl-minip--")))
1209 (push (list var
(if scr
1210 `(frame-selected-window ,scr
)
1211 '(selected-window)))
1213 ;; If we started in the minibuffer, we need to
1214 ;; ensure that next-window will bring us back there
1215 ;; at some point. (Bug#7492).
1216 ;; (Consider using walk-windows instead of cl-loop if
1217 ;; you care about such things.)
1218 (push (list minip
`(minibufferp (window-buffer ,var
)))
1220 (push (list temp nil
) loop-for-bindings
)
1221 (push `(prog1 (not (eq ,var
,temp
))
1222 (or ,temp
(setq ,temp
,var
)))
1224 (push (list var
`(next-window ,var
,minip
))
1228 (let ((handler (and (symbolp word
)
1229 (get word
'cl--loop-for-handler
))))
1231 (funcall handler var
)
1232 (error "Expected a `for' preposition, found %s" word
)))))
1233 (eq (car cl--loop-args
) 'and
))
1235 (pop cl--loop-args
))
1236 (if (and ands loop-for-bindings
)
1237 (push (nreverse loop-for-bindings
) cl--loop-bindings
)
1238 (setq cl--loop-bindings
(nconc (mapcar 'list loop-for-bindings
)
1239 cl--loop-bindings
)))
1242 ,(cl--loop-let (nreverse loop-for-sets
) 'setq ands
)
1245 (push (cons (if ands
'cl-psetq
'setq
)
1246 (apply 'append
(nreverse loop-for-steps
)))
1250 (let ((temp (make-symbol "--cl-var--")))
1251 (push (list (list temp
(pop cl--loop-args
))) cl--loop-bindings
)
1252 (push `(>= (setq ,temp
(1- ,temp
)) 0) cl--loop-body
)))
1254 ((memq word
'(collect collecting
))
1255 (let ((what (pop cl--loop-args
))
1256 (var (cl--loop-handle-accum nil
'nreverse
)))
1257 (if (eq var cl--loop-accum-var
)
1258 (push `(progn (push ,what
,var
) t
) cl--loop-body
)
1260 (setq ,var
(nconc ,var
(list ,what
)))
1261 t
) cl--loop-body
))))
1263 ((memq word
'(nconc nconcing append appending
))
1264 (let ((what (pop cl--loop-args
))
1265 (var (cl--loop-handle-accum nil
'nreverse
)))
1268 ,(if (eq var cl--loop-accum-var
)
1270 (,(if (memq word
'(nconc nconcing
))
1271 #'nreverse
#'reverse
)
1274 `(,(if (memq word
'(nconc nconcing
))
1276 ,var
,what
))) t
) cl--loop-body
)))
1278 ((memq word
'(concat concating
))
1279 (let ((what (pop cl--loop-args
))
1280 (var (cl--loop-handle-accum "")))
1281 (push `(progn (cl-callf concat
,var
,what
) t
) cl--loop-body
)))
1283 ((memq word
'(vconcat vconcating
))
1284 (let ((what (pop cl--loop-args
))
1285 (var (cl--loop-handle-accum [])))
1286 (push `(progn (cl-callf vconcat
,var
,what
) t
) cl--loop-body
)))
1288 ((memq word
'(sum summing
))
1289 (let ((what (pop cl--loop-args
))
1290 (var (cl--loop-handle-accum 0)))
1291 (push `(progn (cl-incf ,var
,what
) t
) cl--loop-body
)))
1293 ((memq word
'(count counting
))
1294 (let ((what (pop cl--loop-args
))
1295 (var (cl--loop-handle-accum 0)))
1296 (push `(progn (if ,what
(cl-incf ,var
)) t
) cl--loop-body
)))
1298 ((memq word
'(minimize minimizing maximize maximizing
))
1299 (let* ((what (pop cl--loop-args
))
1300 (temp (if (cl--simple-expr-p what
) what
(make-symbol "--cl-var--")))
1301 (var (cl--loop-handle-accum nil
))
1302 (func (intern (substring (symbol-name word
) 0 3)))
1303 (set `(setq ,var
(if ,var
(,func
,var
,temp
) ,temp
))))
1304 (push `(progn ,(if (eq temp what
) set
1305 `(let ((,temp
,what
)) ,set
))
1309 (let ((bindings nil
))
1310 (while (progn (push (list (pop cl--loop-args
)
1311 (and (eq (car cl--loop-args
) '=) (cl-pop2 cl--loop-args
)))
1313 (eq (car cl--loop-args
) 'and
))
1314 (pop cl--loop-args
))
1315 (push (nreverse bindings
) cl--loop-bindings
)))
1318 (push (pop cl--loop-args
) cl--loop-body
))
1321 (push `(not ,(pop cl--loop-args
)) cl--loop-body
))
1324 (or cl--loop-finish-flag
(setq cl--loop-finish-flag
(make-symbol "--cl-flag--")))
1325 (push `(setq ,cl--loop-finish-flag
,(pop cl--loop-args
)) cl--loop-body
)
1326 (setq cl--loop-result t
))
1329 (or cl--loop-finish-flag
(setq cl--loop-finish-flag
(make-symbol "--cl-flag--")))
1330 (push `(setq ,cl--loop-finish-flag
(not ,(pop cl--loop-args
)))
1332 (setq cl--loop-result t
))
1335 (or cl--loop-finish-flag
(setq cl--loop-finish-flag
(make-symbol "--cl-flag--")))
1336 (or cl--loop-result-var
(setq cl--loop-result-var
(make-symbol "--cl-var--")))
1337 (push `(setq ,cl--loop-finish-flag
1338 (not (setq ,cl--loop-result-var
,(pop cl--loop-args
))))
1341 ((memq word
'(if when unless
))
1342 (let* ((cond (pop cl--loop-args
))
1343 (then (let ((cl--loop-body nil
))
1344 (cl-parse-loop-clause)
1345 (cl--loop-build-ands (nreverse cl--loop-body
))))
1346 (else (let ((cl--loop-body nil
))
1347 (if (eq (car cl--loop-args
) 'else
)
1348 (progn (pop cl--loop-args
) (cl-parse-loop-clause)))
1349 (cl--loop-build-ands (nreverse cl--loop-body
))))
1350 (simple (and (eq (car then
) t
) (eq (car else
) t
))))
1351 (if (eq (car cl--loop-args
) 'end
) (pop cl--loop-args
))
1352 (if (eq word
'unless
) (setq then
(prog1 else
(setq else then
))))
1353 (let ((form (cons (if simple
(cons 'progn
(nth 1 then
)) (nth 2 then
))
1354 (if simple
(nth 1 else
) (list (nth 2 else
))))))
1355 (if (cl--expr-contains form
'it
)
1356 (let ((temp (make-symbol "--cl-var--")))
1357 (push (list temp
) cl--loop-bindings
)
1358 (setq form
`(if (setq ,temp
,cond
)
1359 ,@(cl-subst temp
'it form
))))
1360 (setq form
`(if ,cond
,@form
)))
1361 (push (if simple
`(progn ,form t
) form
) cl--loop-body
))))
1363 ((memq word
'(do doing
))
1365 (or (consp (car cl--loop-args
)) (error "Syntax error on `do' clause"))
1366 (while (consp (car cl--loop-args
)) (push (pop cl--loop-args
) body
))
1367 (push (cons 'progn
(nreverse (cons t body
))) cl--loop-body
)))
1370 (or cl--loop-finish-flag
(setq cl--loop-finish-flag
(make-symbol "--cl-var--")))
1371 (or cl--loop-result-var
(setq cl--loop-result-var
(make-symbol "--cl-var--")))
1372 (push `(setq ,cl--loop-result-var
,(pop cl--loop-args
)
1373 ,cl--loop-finish-flag nil
) cl--loop-body
))
1376 (let ((handler (and (symbolp word
) (get word
'cl--loop-handler
))))
1377 (or handler
(error "Expected a cl-loop keyword, found %s" word
))
1378 (funcall handler
))))
1379 (if (eq (car cl--loop-args
) 'and
)
1380 (progn (pop cl--loop-args
) (cl-parse-loop-clause)))))
1382 (defun cl--loop-let (specs body par
) ; uses loop-*
1383 (let ((p specs
) (temps nil
) (new nil
))
1384 (while (and p
(or (symbolp (car-safe (car p
))) (null (cl-cadar p
))))
1388 (setq par nil p specs
)
1390 (or (macroexp-const-p (cl-cadar p
))
1391 (let ((temp (make-symbol "--cl-var--")))
1392 (push (list temp
(cl-cadar p
)) temps
)
1393 (setcar (cdar p
) temp
)))
1396 (if (and (consp (car specs
)) (listp (caar specs
)))
1397 (let* ((spec (caar specs
)) (nspecs nil
)
1398 (expr (cadr (pop specs
)))
1399 (temp (cdr (or (assq spec cl--loop-destr-temps
)
1400 (car (push (cons spec
(or (last spec
0)
1401 (make-symbol "--cl-var--")))
1402 cl--loop-destr-temps
))))))
1403 (push (list temp expr
) new
)
1405 (push (list (pop spec
)
1406 (and expr
(list (if spec
'pop
'car
) temp
)))
1408 (setq specs
(nconc (nreverse nspecs
) specs
)))
1409 (push (pop specs
) new
)))
1411 (let ((set (cons (if par
'cl-psetq
'setq
) (apply 'nconc
(nreverse new
)))))
1412 (if temps
`(let* ,(nreverse temps
) ,set
) set
))
1413 `(,(if par
'let
'let
*)
1414 ,(nconc (nreverse temps
) (nreverse new
)) ,@body
))))
1416 (defun cl--loop-handle-accum (def &optional func
) ; uses loop-*
1417 (if (eq (car cl--loop-args
) 'into
)
1418 (let ((var (cl-pop2 cl--loop-args
)))
1419 (or (memq var cl--loop-accum-vars
)
1420 (progn (push (list (list var def
)) cl--loop-bindings
)
1421 (push var cl--loop-accum-vars
)))
1423 (or cl--loop-accum-var
1425 (push (list (list (setq cl--loop-accum-var
(make-symbol "--cl-var--")) def
))
1427 (setq cl--loop-result
(if func
(list func cl--loop-accum-var
)
1428 cl--loop-accum-var
))
1429 cl--loop-accum-var
))))
1431 (defun cl--loop-build-ands (clauses)
1435 (if (and (eq (car-safe (car clauses
)) 'progn
)
1436 (eq (car (last (car clauses
))) t
))
1438 (setq clauses
(cons (nconc (butlast (car clauses
))
1439 (if (eq (car-safe (cadr clauses
))
1442 (list (cadr clauses
))))
1444 (setq body
(cdr (butlast (pop clauses
)))))
1445 (push (pop clauses
) ands
)))
1446 (setq ands
(or (nreverse ands
) (list t
)))
1447 (list (if (cdr ands
) (cons 'and ands
) (car ands
))
1449 (let ((full (if body
1450 (append ands
(list (cons 'progn
(append body
'(t)))))
1452 (if (cdr full
) (cons 'and full
) (car full
))))))
1455 ;;; Other iteration control structures.
1458 (defmacro cl-do
(steps endtest
&rest body
)
1459 "The Common Lisp `cl-do' loop.
1461 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)"
1464 ((&rest
&or symbolp
(symbolp &optional form form
))
1466 cl-declarations body
)))
1467 (cl-expand-do-loop steps endtest body nil
))
1470 (defmacro cl-do
* (steps endtest
&rest body
)
1471 "The Common Lisp `cl-do*' loop.
1473 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)"
1474 (declare (indent 2) (debug cl-do
))
1475 (cl-expand-do-loop steps endtest body t
))
1477 (defun cl-expand-do-loop (steps endtest body star
)
1479 (,(if star
'let
* 'let
)
1480 ,(mapcar (lambda (c) (if (consp c
) (list (car c
) (nth 1 c
)) c
))
1482 (while (not ,(car endtest
))
1484 ,@(let ((sets (mapcar (lambda (c)
1485 (and (consp c
) (cdr (cdr c
))
1486 (list (car c
) (nth 2 c
))))
1488 (setq sets
(delq nil sets
))
1490 (list (cons (if (or star
(not (cdr sets
)))
1492 (apply 'append sets
))))))
1493 ,@(or (cdr endtest
) '(nil)))))
1496 (defmacro cl-dolist
(spec &rest body
)
1498 Evaluate BODY with VAR bound to each `car' from LIST, in turn.
1499 Then evaluate RESULT to get return value, default nil.
1500 An implicit nil block is established around the loop.
1502 \(fn (VAR LIST [RESULT]) BODY...)"
1503 (declare (debug ((symbolp form
&optional form
) cl-declarations body
)))
1504 (let ((temp (make-symbol "--cl-dolist-temp--")))
1505 ;; FIXME: Copy&pasted from subr.el.
1507 ;; This is not a reliable test, but it does not matter because both
1508 ;; semantics are acceptable, tho one is slightly faster with dynamic
1509 ;; scoping and the other is slightly faster (and has cleaner semantics)
1510 ;; with lexical scoping.
1511 ,(if lexical-binding
1512 `(let ((,temp
,(nth 1 spec
)))
1514 (let ((,(car spec
) (car ,temp
)))
1516 (setq ,temp
(cdr ,temp
))))
1517 ,@(if (cdr (cdr spec
))
1518 ;; FIXME: This let often leads to "unused var" warnings.
1519 `((let ((,(car spec
) nil
)) ,@(cdr (cdr spec
))))))
1520 `(let ((,temp
,(nth 1 spec
))
1523 (setq ,(car spec
) (car ,temp
))
1525 (setq ,temp
(cdr ,temp
)))
1526 ,@(if (cdr (cdr spec
))
1527 `((setq ,(car spec
) nil
) ,@(cddr spec
))))))))
1530 (defmacro cl-dotimes
(spec &rest body
)
1531 "Loop a certain number of times.
1532 Evaluate BODY with VAR bound to successive integers from 0, inclusive,
1533 to COUNT, exclusive. Then evaluate RESULT to get return value, default
1536 \(fn (VAR COUNT [RESULT]) BODY...)"
1537 (declare (debug cl-dolist
))
1538 (let ((temp (make-symbol "--cl-dotimes-temp--"))
1540 ;; FIXME: Copy&pasted from subr.el.
1542 ;; This is not a reliable test, but it does not matter because both
1543 ;; semantics are acceptable, tho one is slightly faster with dynamic
1544 ;; scoping and the other has cleaner semantics.
1545 ,(if lexical-binding
1546 (let ((counter '--dotimes-counter--
))
1549 (while (< ,counter
,temp
)
1550 (let ((,(car spec
) ,counter
))
1552 (setq ,counter
(1+ ,counter
)))
1554 ;; FIXME: This let often leads to "unused var" warnings.
1555 `((let ((,(car spec
) ,counter
)) ,@(cddr spec
))))))
1558 (while (< ,(car spec
) ,temp
)
1560 (cl-incf ,(car spec
)))
1561 ,@(cdr (cdr spec
)))))))
1564 (defmacro cl-do-symbols
(spec &rest body
)
1565 "Loop over all symbols.
1566 Evaluate BODY with VAR bound to each interned symbol, or to each symbol
1569 \(fn (VAR [OBARRAY [RESULT]]) BODY...)"
1571 (debug ((symbolp &optional form form
) cl-declarations body
)))
1572 ;; Apparently this doesn't have an implicit block.
1575 (mapatoms #'(lambda (,(car spec
)) ,@body
)
1576 ,@(and (cadr spec
) (list (cadr spec
))))
1580 (defmacro cl-do-all-symbols
(spec &rest body
)
1581 (declare (indent 1) (debug ((symbolp &optional form
) cl-declarations body
)))
1582 `(cl-do-symbols (,(car spec
) nil
,(cadr spec
)) ,@body
))
1588 (defmacro cl-psetq
(&rest args
)
1589 "Set SYMs to the values VALs in parallel.
1590 This is like `setq', except that all VAL forms are evaluated (in order)
1591 before assigning any symbols SYM to the corresponding values.
1593 \(fn SYM VAL SYM VAL ...)"
1594 (declare (debug setq
))
1595 (cons 'cl-psetf args
))
1598 ;;; Binding control structures.
1601 (defmacro cl-progv
(symbols values
&rest body
)
1602 "Bind SYMBOLS to VALUES dynamically in BODY.
1603 The forms SYMBOLS and VALUES are evaluated, and must evaluate to lists.
1604 Each symbol in the first list is bound to the corresponding value in the
1605 second list (or made unbound if VALUES is shorter than SYMBOLS); then the
1606 BODY forms are executed and their result is returned. This is much like
1607 a `let' form, except that the list of symbols can be computed at run-time."
1608 (declare (indent 2) (debug (form form body
)))
1609 `(let ((cl-progv-save nil
))
1611 (progn (cl-progv-before ,symbols
,values
) ,@body
)
1614 (defvar cl--labels-convert-cache nil
)
1616 (defun cl--labels-convert (f)
1617 "Special macro-expander to rename (function F) references in `cl-labels'."
1619 ;; ¡¡Big Ugly Hack!! We can't use a compiler-macro because those are checked
1620 ;; *after* handling `function', but we want to stop macroexpansion from
1621 ;; being applied infinitely, so we use a cache to return the exact `form'
1622 ;; being expanded even though we don't receive it.
1623 ((eq f
(car cl--labels-convert-cache
)) (cdr cl--labels-convert-cache
))
1625 (let ((found (assq f macroexpand-all-environment
)))
1626 (if (and found
(ignore-errors
1627 (eq (cadr (cl-caddr found
)) 'cl-labels-args
)))
1628 (cadr (cl-caddr (cl-cadddr found
)))
1629 (let ((res `(function ,f
)))
1630 (setq cl--labels-convert-cache
(cons f res
))
1633 ;;; This should really have some way to shadow 'byte-compile properties, etc.
1635 (defmacro cl-flet
(bindings &rest body
)
1636 "Make temporary function definitions.
1637 Like `cl-labels' but the definitions are not recursive.
1639 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)"
1640 (declare (indent 1) (debug ((&rest
(cl-defun)) cl-declarations body
)))
1641 (let ((binds ()) (newenv macroexpand-all-environment
))
1642 (dolist (binding bindings
)
1643 (let ((var (make-symbol (format "--cl-%s--" (car binding
)))))
1644 (push (list var
`(cl-function (lambda .
,(cdr binding
)))) binds
)
1645 (push (cons (car binding
)
1646 `(lambda (&rest cl-labels-args
)
1647 (cl-list* 'funcall
',var
1650 `(let ,(nreverse binds
)
1654 ;; Don't override lexical-let's macro-expander.
1655 (if (assq 'function newenv
) newenv
1656 (cons (cons 'function
#'cl--labels-convert
) newenv
)))))))
1659 (defmacro cl-labels
(bindings &rest body
)
1660 "Make temporary function bindings.
1661 The bindings can be recursive. Assumes the use of `lexical-binding'.
1663 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)"
1664 (declare (indent 1) (debug cl-flet
))
1665 (let ((binds ()) (newenv macroexpand-all-environment
))
1666 (dolist (binding bindings
)
1667 (let ((var (make-symbol (format "--cl-%s--" (car binding
)))))
1668 (push (list var
`(cl-function (lambda .
,(cdr binding
)))) binds
)
1669 (push (cons (car binding
)
1670 `(lambda (&rest cl-labels-args
)
1671 (cl-list* 'funcall
',var
1674 (macroexpand-all `(letrec ,(nreverse binds
) ,@body
)
1675 ;; Don't override lexical-let's macro-expander.
1676 (if (assq 'function newenv
) newenv
1677 (cons (cons 'function
#'cl--labels-convert
) newenv
)))))
1679 ;; The following ought to have a better definition for use with newer
1682 (defmacro cl-macrolet
(bindings &rest body
)
1683 "Make temporary macro definitions.
1684 This is like `cl-flet', but for macros instead of functions.
1686 \(fn ((NAME ARGLIST BODY...) ...) FORM...)"
1689 ((&rest
(&define name
(&rest arg
) cl-declarations-or-string
1691 cl-declarations body
)))
1693 `(cl-macrolet (,(car bindings
)) (cl-macrolet ,(cdr bindings
) ,@body
))
1694 (if (null bindings
) (cons 'progn body
)
1695 (let* ((name (caar bindings
))
1696 (res (cl--transform-lambda (cdar bindings
) name
)))
1698 (macroexpand-all (cons 'progn body
)
1699 (cons (cons name
`(lambda ,@(cdr res
)))
1700 macroexpand-all-environment
))))))
1702 (defconst cl--old-macroexpand
1703 (if (and (boundp 'cl--old-macroexpand
)
1704 (eq (symbol-function 'macroexpand
)
1705 #'cl--sm-macroexpand
))
1707 (symbol-function 'macroexpand
)))
1709 (defun cl--sm-macroexpand (cl-macro &optional cl-env
)
1710 "Special macro expander used inside `cl-symbol-macrolet'.
1711 This function replaces `macroexpand' during macro expansion
1712 of `cl-symbol-macrolet', and does the same thing as `macroexpand'
1713 except that it additionally expands symbol macros."
1714 (let ((macroexpand-all-environment cl-env
))
1717 (setq cl-macro
(funcall cl--old-macroexpand cl-macro cl-env
))
1720 ;; Perform symbol-macro expansion.
1721 (when (cdr (assq (symbol-name cl-macro
) cl-env
))
1722 (setq cl-macro
(cadr (assq (symbol-name cl-macro
) cl-env
)))))
1723 ((eq 'setq
(car-safe cl-macro
))
1724 ;; Convert setq to cl-setf if required by symbol-macro expansion.
1725 (let* ((args (mapcar (lambda (f) (cl--sm-macroexpand f cl-env
))
1728 (while (and p
(symbolp (car p
))) (setq p
(cddr p
)))
1729 (if p
(setq cl-macro
(cons 'cl-setf args
))
1730 (setq cl-macro
(cons 'setq args
))
1731 ;; Don't loop further.
1736 (defmacro cl-symbol-macrolet
(bindings &rest body
)
1737 "Make symbol macro definitions.
1738 Within the body FORMs, references to the variable NAME will be replaced
1739 by EXPANSION, and (setq NAME ...) will act like (cl-setf EXPANSION ...).
1741 \(fn ((NAME EXPANSION) ...) FORM...)"
1742 (declare (indent 1) (debug ((&rest
(symbol sexp
)) cl-declarations body
)))
1745 `(cl-symbol-macrolet (,(car bindings
))
1746 (cl-symbol-macrolet ,(cdr bindings
) ,@body
)))
1747 ((null bindings
) (macroexp-progn body
))
1749 (let ((previous-macroexpand (symbol-function 'macroexpand
)))
1752 (fset 'macroexpand
#'cl--sm-macroexpand
)
1753 ;; FIXME: For N bindings, this will traverse `body' N times!
1754 (macroexpand-all (cons 'progn body
)
1755 (cons (list (symbol-name (caar bindings
))
1756 (cl-cadar bindings
))
1757 macroexpand-all-environment
)))
1758 (fset 'macroexpand previous-macroexpand
))))))
1760 ;;; Multiple values.
1763 (defmacro cl-multiple-value-bind
(vars form
&rest body
)
1764 "Collect multiple return values.
1765 FORM must return a list; the BODY is then executed with the first N elements
1766 of this list bound (`let'-style) to each of the symbols SYM in turn. This
1767 is analogous to the Common Lisp `cl-multiple-value-bind' macro, using lists to
1768 simulate true multiple return values. For compatibility, (cl-values A B C) is
1769 a synonym for (list A B C).
1771 \(fn (SYM...) FORM BODY)"
1772 (declare (indent 2) (debug ((&rest symbolp
) form body
)))
1773 (let ((temp (make-symbol "--cl-var--")) (n -
1))
1774 `(let* ((,temp
,form
)
1775 ,@(mapcar (lambda (v)
1776 (list v
`(nth ,(setq n
(1+ n
)) ,temp
)))
1781 (defmacro cl-multiple-value-setq
(vars form
)
1782 "Collect multiple return values.
1783 FORM must return a list; the first N elements of this list are stored in
1784 each of the symbols SYM in turn. This is analogous to the Common Lisp
1785 `cl-multiple-value-setq' macro, using lists to simulate true multiple return
1786 values. For compatibility, (cl-values A B C) is a synonym for (list A B C).
1788 \(fn (SYM...) FORM)"
1789 (declare (indent 1) (debug ((&rest symbolp
) form
)))
1790 (cond ((null vars
) `(progn ,form nil
))
1791 ((null (cdr vars
)) `(setq ,(car vars
) (car ,form
)))
1793 (let* ((temp (make-symbol "--cl-var--")) (n 0))
1794 `(let ((,temp
,form
))
1795 (prog1 (setq ,(pop vars
) (car ,temp
))
1796 (setq ,@(apply #'nconc
1798 (list v
`(nth ,(setq n
(1+ n
))
1806 (defmacro cl-locally
(&rest body
)
1810 (defmacro cl-the
(_type form
)
1811 (declare (indent 1) (debug (cl-type-spec form
)))
1814 (defvar cl-proclaim-history t
) ; for future compilers
1815 (defvar cl-declare-stack t
) ; for future compilers
1817 (defun cl-do-proclaim (spec hist
)
1818 (and hist
(listp cl-proclaim-history
) (push spec cl-proclaim-history
))
1819 (cond ((eq (car-safe spec
) 'special
)
1820 (if (boundp 'byte-compile-bound-variables
)
1821 (setq byte-compile-bound-variables
1822 (append (cdr spec
) byte-compile-bound-variables
))))
1824 ((eq (car-safe spec
) 'inline
)
1825 (while (setq spec
(cdr spec
))
1826 (or (memq (get (car spec
) 'byte-optimizer
)
1827 '(nil byte-compile-inline-expand
))
1828 (error "%s already has a byte-optimizer, can't make it inline"
1830 (put (car spec
) 'byte-optimizer
'byte-compile-inline-expand
)))
1832 ((eq (car-safe spec
) 'notinline
)
1833 (while (setq spec
(cdr spec
))
1834 (if (eq (get (car spec
) 'byte-optimizer
)
1835 'byte-compile-inline-expand
)
1836 (put (car spec
) 'byte-optimizer nil
))))
1838 ((eq (car-safe spec
) 'optimize
)
1839 (let ((speed (assq (nth 1 (assq 'speed
(cdr spec
)))
1840 '((0 nil
) (1 t
) (2 t
) (3 t
))))
1841 (safety (assq (nth 1 (assq 'safety
(cdr spec
)))
1842 '((0 t
) (1 t
) (2 t
) (3 nil
)))))
1843 (if speed
(setq cl-optimize-speed
(car speed
)
1844 byte-optimize
(nth 1 speed
)))
1845 (if safety
(setq cl-optimize-safety
(car safety
)
1846 byte-compile-delete-errors
(nth 1 safety
)))))
1848 ((and (eq (car-safe spec
) 'warn
) (boundp 'byte-compile-warnings
))
1849 (while (setq spec
(cdr spec
))
1850 (if (consp (car spec
))
1851 (if (eq (cl-cadar spec
) 0)
1852 (byte-compile-disable-warning (caar spec
))
1853 (byte-compile-enable-warning (caar spec
)))))))
1856 ;;; Process any proclamations made before cl-macs was loaded.
1857 (defvar cl-proclaims-deferred
)
1858 (let ((p (reverse cl-proclaims-deferred
)))
1859 (while p
(cl-do-proclaim (pop p
) t
))
1860 (setq cl-proclaims-deferred nil
))
1863 (defmacro cl-declare
(&rest specs
)
1864 "Declare SPECS about the current function while compiling.
1867 \(cl-declare (warn 0))
1869 will turn off byte-compile warnings in the function.
1870 See Info node `(cl)Declarations' for details."
1871 (if (cl-compiling-file)
1873 (if (listp cl-declare-stack
) (push (car specs
) cl-declare-stack
))
1874 (cl-do-proclaim (pop specs
) nil
)))
1879 ;;; Generalized variables.
1882 (defmacro cl-define-setf-expander
(func args
&rest body
)
1883 "Define a `cl-setf' method.
1884 This method shows how to handle `cl-setf's to places of the form (NAME ARGS...).
1885 The argument forms ARGS are bound according to ARGLIST, as if NAME were
1886 going to be expanded as a macro, then the BODY forms are executed and must
1887 return a list of five elements: a temporary-variables list, a value-forms
1888 list, a store-variables list (of length one), a store-form, and an access-
1889 form. See `cl-defsetf' for a simpler way to define most setf-methods.
1891 \(fn NAME ARGLIST BODY...)"
1893 (&define name cl-lambda-list cl-declarations-or-string def-body
)))
1894 `(cl-eval-when (compile load eval
)
1895 ,@(if (stringp (car body
))
1896 (list `(put ',func
'setf-documentation
,(pop body
))))
1897 ,(cl--transform-function-property
1898 func
'setf-method
(cons args body
))))
1901 (defmacro cl-defsetf
(func arg1
&rest args
)
1902 "Define a `cl-setf' method.
1903 This macro is an easy-to-use substitute for `cl-define-setf-expander' that works
1904 well for simple place forms. In the simple `cl-defsetf' form, `cl-setf's of
1905 the form (cl-setf (NAME ARGS...) VAL) are transformed to function or macro
1906 calls of the form (FUNC ARGS... VAL). Example:
1908 (cl-defsetf aref aset)
1910 Alternate form: (cl-defsetf NAME ARGLIST (STORE) BODY...).
1911 Here, the above `cl-setf' call is expanded by binding the argument forms ARGS
1912 according to ARGLIST, binding the value form VAL to STORE, then executing
1913 BODY, which must return a Lisp form that does the necessary `cl-setf' operation.
1914 Actually, ARGLIST and STORE may be bound to temporary variables which are
1915 introduced automatically to preserve proper execution order of the arguments.
1918 (cl-defsetf nth (n x) (v) `(setcar (nthcdr ,n ,x) ,v))
1920 \(fn NAME [FUNC | ARGLIST (STORE) BODY...])"
1923 [&or
[symbolp
&optional stringp
]
1924 [cl-lambda-list
(symbolp)]]
1925 cl-declarations-or-string def-body
)))
1926 (if (and (listp arg1
) (consp args
))
1927 (let* ((largs nil
) (largsr nil
)
1928 (temps nil
) (tempsr nil
)
1929 (restarg nil
) (rest-temps nil
)
1930 (store-var (car (prog1 (car args
) (setq args
(cdr args
)))))
1931 (store-temp (intern (format "--%s--temp--" store-var
)))
1932 (lets1 nil
) (lets2 nil
)
1933 (docstr nil
) (p arg1
))
1934 (if (stringp (car args
))
1935 (setq docstr
(prog1 (car args
) (setq args
(cdr args
)))))
1936 (while (and p
(not (eq (car p
) '&aux
)))
1937 (if (eq (car p
) '&rest
)
1938 (setq p
(cdr p
) restarg
(car p
))
1939 (or (memq (car p
) '(&optional
&key
&allow-other-keys
))
1940 (setq largs
(cons (if (consp (car p
)) (car (car p
)) (car p
))
1942 temps
(cons (intern (format "--%s--temp--" (car largs
)))
1945 (setq largs
(nreverse largs
) temps
(nreverse temps
))
1947 (setq largsr
(append largs
(list restarg
))
1948 rest-temps
(intern (format "--%s--temp--" restarg
))
1949 tempsr
(append temps
(list rest-temps
)))
1950 (setq largsr largs tempsr temps
))
1951 (let ((p1 largs
) (p2 temps
))
1953 (setq lets1
(cons `(,(car p2
)
1954 (make-symbol ,(format "--cl-%s--" (car p1
))))
1956 lets2
(cons (list (car p1
) (car p2
)) lets2
)
1957 p1
(cdr p1
) p2
(cdr p2
))))
1958 (if restarg
(setq lets2
(cons (list restarg rest-temps
) lets2
)))
1959 `(cl-define-setf-expander ,func
,arg1
1960 ,@(and docstr
(list docstr
))
1964 (make-symbol ,(format "--cl-%s--" store-var
)))
1967 (mapcar (lambda (_) (make-symbol "--cl-var--"))
1972 (,(if restarg
'cl-list
* 'list
) ,@tempsr
)
1973 (,(if restarg
'cl-list
* 'list
) ,@largsr
)
1977 (cons (list store-var store-temp
)
1980 (,(if restarg
'cl-list
* 'list
)
1981 ,@(cons `',func tempsr
))))))
1982 `(cl-defsetf ,func
(&rest args
) (store)
1983 ,(let ((call `(cons ',arg1
1984 (append args
(list store
)))))
1986 `(list 'progn
,call store
)
1989 ;;; Some standard place types from Common Lisp.
1990 (cl-defsetf aref aset
)
1991 (cl-defsetf car setcar
)
1992 (cl-defsetf cdr setcdr
)
1993 (cl-defsetf caar
(x) (val) `(setcar (car ,x
) ,val
))
1994 (cl-defsetf cadr
(x) (val) `(setcar (cdr ,x
) ,val
))
1995 (cl-defsetf cdar
(x) (val) `(setcdr (car ,x
) ,val
))
1996 (cl-defsetf cddr
(x) (val) `(setcdr (cdr ,x
) ,val
))
1997 (cl-defsetf elt
(seq n
) (store)
1998 `(if (listp ,seq
) (setcar (nthcdr ,n
,seq
) ,store
)
1999 (aset ,seq
,n
,store
)))
2000 (cl-defsetf get put
)
2001 (cl-defsetf cl-get
(x y
&optional d
) (store) `(put ,x
,y
,store
))
2002 (cl-defsetf gethash
(x h
&optional d
) (store) `(puthash ,x
,store
,h
))
2003 (cl-defsetf nth
(n x
) (store) `(setcar (nthcdr ,n
,x
) ,store
))
2004 (cl-defsetf cl-subseq
(seq start
&optional end
) (new)
2005 `(progn (cl-replace ,seq
,new
:start1
,start
:end1
,end
) ,new
))
2006 (cl-defsetf symbol-function fset
)
2007 (cl-defsetf symbol-plist setplist
)
2008 (cl-defsetf symbol-value set
)
2010 ;;; Various car/cdr aliases. Note that `cadr' is handled specially.
2011 (cl-defsetf cl-first setcar
)
2012 (cl-defsetf cl-second
(x) (store) `(setcar (cdr ,x
) ,store
))
2013 (cl-defsetf cl-third
(x) (store) `(setcar (cddr ,x
) ,store
))
2014 (cl-defsetf cl-fourth
(x) (store) `(setcar (cl-cdddr ,x
) ,store
))
2015 (cl-defsetf cl-fifth
(x) (store) `(setcar (nthcdr 4 ,x
) ,store
))
2016 (cl-defsetf cl-sixth
(x) (store) `(setcar (nthcdr 5 ,x
) ,store
))
2017 (cl-defsetf cl-seventh
(x) (store) `(setcar (nthcdr 6 ,x
) ,store
))
2018 (cl-defsetf cl-eighth
(x) (store) `(setcar (nthcdr 7 ,x
) ,store
))
2019 (cl-defsetf cl-ninth
(x) (store) `(setcar (nthcdr 8 ,x
) ,store
))
2020 (cl-defsetf cl-tenth
(x) (store) `(setcar (nthcdr 9 ,x
) ,store
))
2021 (cl-defsetf cl-rest setcdr
)
2023 ;;; Some more Emacs-related place types.
2024 (cl-defsetf buffer-file-name set-visited-file-name t
)
2025 (cl-defsetf buffer-modified-p
(&optional buf
) (flag)
2026 `(with-current-buffer ,buf
2027 (set-buffer-modified-p ,flag
)))
2028 (cl-defsetf buffer-name rename-buffer t
)
2029 (cl-defsetf buffer-string
() (store)
2030 `(progn (erase-buffer) (insert ,store
)))
2031 (cl-defsetf buffer-substring cl-set-buffer-substring
)
2032 (cl-defsetf current-buffer set-buffer
)
2033 (cl-defsetf current-case-table set-case-table
)
2034 (cl-defsetf current-column move-to-column t
)
2035 (cl-defsetf current-global-map use-global-map t
)
2036 (cl-defsetf current-input-mode
() (store)
2037 `(progn (apply #'set-input-mode
,store
) ,store
))
2038 (cl-defsetf current-local-map use-local-map t
)
2039 (cl-defsetf current-window-configuration set-window-configuration t
)
2040 (cl-defsetf default-file-modes set-default-file-modes t
)
2041 (cl-defsetf default-value set-default
)
2042 (cl-defsetf documentation-property put
)
2043 (cl-defsetf face-background
(f &optional s
) (x) `(set-face-background ,f
,x
,s
))
2044 (cl-defsetf face-background-pixmap
(f &optional s
) (x)
2045 `(set-face-background-pixmap ,f
,x
,s
))
2046 (cl-defsetf face-font
(f &optional s
) (x) `(set-face-font ,f
,x
,s
))
2047 (cl-defsetf face-foreground
(f &optional s
) (x) `(set-face-foreground ,f
,x
,s
))
2048 (cl-defsetf face-underline-p
(f &optional s
) (x)
2049 `(set-face-underline-p ,f
,x
,s
))
2050 (cl-defsetf file-modes set-file-modes t
)
2051 (cl-defsetf frame-height set-screen-height t
)
2052 (cl-defsetf frame-parameters modify-frame-parameters t
)
2053 (cl-defsetf frame-visible-p cl-set-frame-visible-p
)
2054 (cl-defsetf frame-width set-screen-width t
)
2055 (cl-defsetf frame-parameter set-frame-parameter t
)
2056 (cl-defsetf terminal-parameter set-terminal-parameter
)
2057 (cl-defsetf getenv setenv t
)
2058 (cl-defsetf get-register set-register
)
2059 (cl-defsetf global-key-binding global-set-key
)
2060 (cl-defsetf keymap-parent set-keymap-parent
)
2061 (cl-defsetf local-key-binding local-set-key
)
2062 (cl-defsetf mark set-mark t
)
2063 (cl-defsetf mark-marker set-mark t
)
2064 (cl-defsetf marker-position set-marker t
)
2065 (cl-defsetf match-data set-match-data t
)
2066 (cl-defsetf mouse-position
(scr) (store)
2067 `(set-mouse-position ,scr
(car ,store
) (cadr ,store
)
2069 (cl-defsetf overlay-get overlay-put
)
2070 (cl-defsetf overlay-start
(ov) (store)
2071 `(progn (move-overlay ,ov
,store
(overlay-end ,ov
)) ,store
))
2072 (cl-defsetf overlay-end
(ov) (store)
2073 `(progn (move-overlay ,ov
(overlay-start ,ov
) ,store
) ,store
))
2074 (cl-defsetf point goto-char
)
2075 (cl-defsetf point-marker goto-char t
)
2076 (cl-defsetf point-max
() (store)
2077 `(progn (narrow-to-region (point-min) ,store
) ,store
))
2078 (cl-defsetf point-min
() (store)
2079 `(progn (narrow-to-region ,store
(point-max)) ,store
))
2080 (cl-defsetf process-buffer set-process-buffer
)
2081 (cl-defsetf process-filter set-process-filter
)
2082 (cl-defsetf process-sentinel set-process-sentinel
)
2083 (cl-defsetf process-get process-put
)
2084 (cl-defsetf read-mouse-position
(scr) (store)
2085 `(set-mouse-position ,scr
(car ,store
) (cdr ,store
)))
2086 (cl-defsetf screen-height set-screen-height t
)
2087 (cl-defsetf screen-width set-screen-width t
)
2088 (cl-defsetf selected-window select-window
)
2089 (cl-defsetf selected-screen select-screen
)
2090 (cl-defsetf selected-frame select-frame
)
2091 (cl-defsetf standard-case-table set-standard-case-table
)
2092 (cl-defsetf syntax-table set-syntax-table
)
2093 (cl-defsetf visited-file-modtime set-visited-file-modtime t
)
2094 (cl-defsetf window-buffer set-window-buffer t
)
2095 (cl-defsetf window-display-table set-window-display-table t
)
2096 (cl-defsetf window-dedicated-p set-window-dedicated-p t
)
2097 (cl-defsetf window-height
() (store)
2098 `(progn (enlarge-window (- ,store
(window-height))) ,store
))
2099 (cl-defsetf window-hscroll set-window-hscroll
)
2100 (cl-defsetf window-parameter set-window-parameter
)
2101 (cl-defsetf window-point set-window-point
)
2102 (cl-defsetf window-start set-window-start
)
2103 (cl-defsetf window-width
() (store)
2104 `(progn (enlarge-window (- ,store
(window-width)) t
) ,store
))
2105 (cl-defsetf x-get-secondary-selection x-own-secondary-selection t
)
2106 (cl-defsetf x-get-selection x-own-selection t
)
2108 ;; This is a hack that allows (cl-setf (eq a 7) B) to mean either
2109 ;; (setq a 7) or (setq a nil) depending on whether B is nil or not.
2110 ;; This is useful when you have control over the PLACE but not over
2111 ;; the VALUE, as is the case in define-minor-mode's :variable.
2112 (cl-define-setf-expander eq
(place val
)
2113 (let ((method (cl-get-setf-method place macroexpand-all-environment
))
2114 (val-temp (make-symbol "--eq-val--"))
2115 (store-temp (make-symbol "--eq-store--")))
2116 (list (append (nth 0 method
) (list val-temp
))
2117 (append (nth 1 method
) (list val
))
2119 `(let ((,(car (nth 2 method
))
2120 (if ,store-temp
,val-temp
(not ,val-temp
))))
2121 ,(nth 3 method
) ,store-temp
)
2122 `(eq ,(nth 4 method
) ,val-temp
))))
2124 ;;; More complex setf-methods.
2125 ;; These should take &environment arguments, but since full arglists aren't
2126 ;; available while compiling cl-macs, we fake it by referring to the global
2127 ;; variable macroexpand-all-environment directly.
2129 (cl-define-setf-expander apply
(func arg1
&rest rest
)
2130 (or (and (memq (car-safe func
) '(quote function cl-function
))
2131 (symbolp (car-safe (cdr-safe func
))))
2132 (error "First arg to apply in cl-setf is not (function SYM): %s" func
))
2133 (let* ((form (cons (nth 1 func
) (cons arg1 rest
)))
2134 (method (cl-get-setf-method form macroexpand-all-environment
)))
2135 (list (car method
) (nth 1 method
) (nth 2 method
)
2136 (cl-setf-make-apply (nth 3 method
) (cadr func
) (car method
))
2137 (cl-setf-make-apply (nth 4 method
) (cadr func
) (car method
)))))
2139 (defun cl-setf-make-apply (form func temps
)
2140 (if (eq (car form
) 'progn
)
2141 `(progn ,(cl-setf-make-apply (cadr form
) func temps
) ,@(cddr form
))
2142 (or (equal (last form
) (last temps
))
2143 (error "%s is not suitable for use with setf-of-apply" func
))
2144 `(apply ',(car form
) ,@(cdr form
))))
2146 (cl-define-setf-expander nthcdr
(n place
)
2147 (let ((method (cl-get-setf-method place macroexpand-all-environment
))
2148 (n-temp (make-symbol "--cl-nthcdr-n--"))
2149 (store-temp (make-symbol "--cl-nthcdr-store--")))
2150 (list (cons n-temp
(car method
))
2151 (cons n
(nth 1 method
))
2153 `(let ((,(car (nth 2 method
))
2154 (cl-set-nthcdr ,n-temp
,(nth 4 method
)
2156 ,(nth 3 method
) ,store-temp
)
2157 `(nthcdr ,n-temp
,(nth 4 method
)))))
2159 (cl-define-setf-expander cl-getf
(place tag
&optional def
)
2160 (let ((method (cl-get-setf-method place macroexpand-all-environment
))
2161 (tag-temp (make-symbol "--cl-getf-tag--"))
2162 (def-temp (make-symbol "--cl-getf-def--"))
2163 (store-temp (make-symbol "--cl-getf-store--")))
2164 (list (append (car method
) (list tag-temp def-temp
))
2165 (append (nth 1 method
) (list tag def
))
2167 `(let ((,(car (nth 2 method
))
2168 (cl-set-getf ,(nth 4 method
) ,tag-temp
,store-temp
)))
2169 ,(nth 3 method
) ,store-temp
)
2170 `(cl-getf ,(nth 4 method
) ,tag-temp
,def-temp
))))
2172 (cl-define-setf-expander substring
(place from
&optional to
)
2173 (let ((method (cl-get-setf-method place macroexpand-all-environment
))
2174 (from-temp (make-symbol "--cl-substring-from--"))
2175 (to-temp (make-symbol "--cl-substring-to--"))
2176 (store-temp (make-symbol "--cl-substring-store--")))
2177 (list (append (car method
) (list from-temp to-temp
))
2178 (append (nth 1 method
) (list from to
))
2180 `(let ((,(car (nth 2 method
))
2181 (cl-set-substring ,(nth 4 method
)
2182 ,from-temp
,to-temp
,store-temp
)))
2183 ,(nth 3 method
) ,store-temp
)
2184 `(substring ,(nth 4 method
) ,from-temp
,to-temp
))))
2186 ;;; Getting and optimizing setf-methods.
2188 (defun cl-get-setf-method (place &optional env
)
2189 "Return a list of five values describing the setf-method for PLACE.
2190 PLACE may be any Lisp form which can appear as the PLACE argument to
2191 a macro like `cl-setf' or `cl-incf'."
2193 (let ((temp (make-symbol "--cl-setf--")))
2194 (list nil nil
(list temp
) `(setq ,place
,temp
) place
))
2195 (or (and (symbolp (car place
))
2196 (let* ((func (car place
))
2197 (name (symbol-name func
))
2198 (method (get func
'setf-method
))
2199 (case-fold-search nil
))
2201 (let ((macroexpand-all-environment env
))
2202 (setq method
(apply method
(cdr place
))))
2203 (if (and (consp method
) (= (length method
) 5))
2205 (error "Setf-method for %s returns malformed method"
2207 (and (string-match-p "\\`c[ad][ad][ad]?[ad]?r\\'" name
)
2208 (cl-get-setf-method (cl-compiler-macroexpand place
)))
2209 (and (eq func
'edebug-after
)
2210 (cl-get-setf-method (nth (1- (length place
)) place
)
2212 (if (eq place
(setq place
(macroexpand place env
)))
2213 (if (and (symbolp (car place
)) (fboundp (car place
))
2214 (symbolp (symbol-function (car place
))))
2215 (cl-get-setf-method (cons (symbol-function (car place
))
2217 (error "No setf-method known for %s" (car place
)))
2218 (cl-get-setf-method place env
)))))
2220 (defun cl-setf-do-modify (place opt-expr
)
2221 (let* ((method (cl-get-setf-method place macroexpand-all-environment
))
2222 (temps (car method
)) (values (nth 1 method
))
2223 (lets nil
) (subs nil
)
2224 (optimize (and (not (eq opt-expr
'no-opt
))
2225 (or (and (not (eq opt-expr
'unsafe
))
2226 (cl--safe-expr-p opt-expr
))
2227 (cl-setf-simple-store-p (car (nth 2 method
))
2229 (simple (and optimize
(consp place
) (cl--simple-exprs-p (cdr place
)))))
2231 (if (or simple
(macroexp-const-p (car values
)))
2232 (push (cons (pop temps
) (pop values
)) subs
)
2233 (push (list (pop temps
) (pop values
)) lets
)))
2234 (list (nreverse lets
)
2235 (cons (car (nth 2 method
)) (cl-sublis subs
(nth 3 method
)))
2236 (cl-sublis subs
(nth 4 method
)))))
2238 (defun cl-setf-do-store (spec val
)
2239 (let ((sym (car spec
))
2241 (if (or (macroexp-const-p val
)
2242 (and (cl--simple-expr-p val
) (eq (cl--expr-contains form sym
) 1))
2243 (cl-setf-simple-store-p sym form
))
2244 (cl-subst val sym form
)
2245 `(let ((,sym
,val
)) ,form
))))
2247 (defun cl-setf-simple-store-p (sym form
)
2248 (and (consp form
) (eq (cl--expr-contains form sym
) 1)
2249 (eq (nth (1- (length form
)) form
) sym
)
2250 (symbolp (car form
)) (fboundp (car form
))
2251 (not (eq (car-safe (symbol-function (car form
))) 'macro
))))
2253 ;;; The standard modify macros.
2255 (defmacro cl-setf
(&rest args
)
2256 "Set each PLACE to the value of its VAL.
2257 This is a generalized version of `setq'; the PLACEs may be symbolic
2258 references such as (car x) or (aref x i), as well as plain symbols.
2259 For example, (cl-setf (cl-cadar x) y) is equivalent to (setcar (cdar x) y).
2260 The return value is the last VAL in the list.
2262 \(fn PLACE VAL PLACE VAL ...)"
2263 (declare (debug (&rest
[place form
])))
2264 (if (cdr (cdr args
))
2266 (while args
(push `(cl-setf ,(pop args
) ,(pop args
)) sets
))
2267 (cons 'progn
(nreverse sets
)))
2268 (if (symbolp (car args
))
2269 (and args
(cons 'setq args
))
2270 (let* ((method (cl-setf-do-modify (car args
) (nth 1 args
)))
2271 (store (cl-setf-do-store (nth 1 method
) (nth 1 args
))))
2272 (if (car method
) `(let* ,(car method
) ,store
) store
)))))
2275 (defmacro cl-psetf
(&rest args
)
2276 "Set PLACEs to the values VALs in parallel.
2277 This is like `cl-setf', except that all VAL forms are evaluated (in order)
2278 before assigning any PLACEs to the corresponding values.
2280 \(fn PLACE VAL PLACE VAL ...)"
2281 (declare (debug cl-setf
))
2282 (let ((p args
) (simple t
) (vars nil
))
2284 (if (or (not (symbolp (car p
))) (cl--expr-depends-p (nth 1 p
) vars
))
2286 (if (memq (car p
) vars
)
2287 (error "Destination duplicated in psetf: %s" (car p
)))
2289 (or p
(error "Odd number of arguments to cl-psetf"))
2292 `(progn (cl-setf ,@args
) nil
)
2293 (setq args
(reverse args
))
2294 (let ((expr `(cl-setf ,(cadr args
) ,(car args
))))
2295 (while (setq args
(cddr args
))
2296 (setq expr
`(cl-setf ,(cadr args
) (prog1 ,(car args
) ,expr
))))
2297 `(progn ,expr nil
)))))
2300 (defun cl-do-pop (place)
2301 (if (cl--simple-expr-p place
)
2302 `(prog1 (car ,place
) (cl-setf ,place
(cdr ,place
)))
2303 (let* ((method (cl-setf-do-modify place t
))
2304 (temp (make-symbol "--cl-pop--")))
2305 `(let* (,@(car method
)
2306 (,temp
,(nth 2 method
)))
2308 ,(cl-setf-do-store (nth 1 method
) `(cdr ,temp
)))))))
2311 (defmacro cl-remf
(place tag
)
2312 "Remove TAG from property list PLACE.
2313 PLACE may be a symbol, or any generalized variable allowed by `cl-setf'.
2314 The form returns true if TAG was found and removed, nil otherwise."
2315 (declare (debug (place form
)))
2316 (let* ((method (cl-setf-do-modify place t
))
2317 (tag-temp (and (not (macroexp-const-p tag
)) (make-symbol "--cl-remf-tag--")))
2318 (val-temp (and (not (cl--simple-expr-p place
))
2319 (make-symbol "--cl-remf-place--")))
2320 (ttag (or tag-temp tag
))
2321 (tval (or val-temp
(nth 2 method
))))
2322 `(let* (,@(car method
)
2323 ,@(and val-temp
`((,val-temp
,(nth 2 method
))))
2324 ,@(and tag-temp
`((,tag-temp
,tag
))))
2325 (if (eq ,ttag
(car ,tval
))
2326 (progn ,(cl-setf-do-store (nth 1 method
) `(cddr ,tval
))
2328 `(cl-do-remf ,tval
,ttag
)))))
2331 (defmacro cl-shiftf
(place &rest args
)
2332 "Shift left among PLACEs.
2333 Example: (cl-shiftf A B C) sets A to B, B to C, and returns the old A.
2334 Each PLACE may be a symbol, or any generalized variable allowed by `cl-setf'.
2337 (declare (debug (&rest place
)))
2340 ((symbolp place
) `(prog1 ,place
(setq ,place
(cl-shiftf ,@args
))))
2342 (let ((method (cl-setf-do-modify place
'unsafe
)))
2343 `(let* ,(car method
)
2344 (prog1 ,(nth 2 method
)
2345 ,(cl-setf-do-store (nth 1 method
) `(cl-shiftf ,@args
))))))))
2348 (defmacro cl-rotatef
(&rest args
)
2349 "Rotate left among PLACEs.
2350 Example: (cl-rotatef A B C) sets A to B, B to C, and C to A. It returns nil.
2351 Each PLACE may be a symbol, or any generalized variable allowed by `cl-setf'.
2354 (declare (debug (&rest place
)))
2355 (if (not (memq nil
(mapcar 'symbolp args
)))
2360 (setq sets
(nconc sets
(list (pop args
) (car args
)))))
2361 `(cl-psetf ,@sets
,(car args
) ,first
)))
2362 (let* ((places (reverse args
))
2363 (temp (make-symbol "--cl-rotatef--"))
2366 (let ((method (cl-setf-do-modify (pop places
) 'unsafe
)))
2367 (setq form
`(let* ,(car method
)
2368 (prog1 ,(nth 2 method
)
2369 ,(cl-setf-do-store (nth 1 method
) form
))))))
2370 (let ((method (cl-setf-do-modify (car places
) 'unsafe
)))
2371 `(let* (,@(car method
) (,temp
,(nth 2 method
)))
2372 ,(cl-setf-do-store (nth 1 method
) form
) nil
)))))
2375 (defmacro cl-letf
(bindings &rest body
)
2376 "Temporarily bind to PLACEs.
2377 This is the analogue of `let', but with generalized variables (in the
2378 sense of `cl-setf') for the PLACEs. Each PLACE is set to the corresponding
2379 VALUE, then the BODY forms are executed. On exit, either normally or
2380 because of a `throw' or error, the PLACEs are set back to their original
2381 values. Note that this macro is *not* available in Common Lisp.
2382 As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
2383 the PLACE is not modified before executing BODY.
2385 \(fn ((PLACE VALUE) ...) BODY...)"
2386 (declare (indent 1) (debug ((&rest
(gate place
&optional form
)) body
)))
2387 (if (and (not (cdr bindings
)) (cdar bindings
) (symbolp (caar bindings
)))
2388 `(let ,bindings
,@body
)
2390 (rev (reverse bindings
)))
2392 (let* ((place (if (symbolp (caar rev
))
2393 `(symbol-value ',(caar rev
))
2395 (value (cl-cadar rev
))
2396 (method (cl-setf-do-modify place
'no-opt
))
2397 (save (make-symbol "--cl-letf-save--"))
2398 (bound (and (memq (car place
) '(symbol-value symbol-function
))
2399 (make-symbol "--cl-letf-bound--")))
2400 (temp (and (not (macroexp-const-p value
)) (cdr bindings
)
2401 (make-symbol "--cl-letf-val--"))))
2402 (setq lets
(nconc (car method
)
2405 (list (if (eq (car place
)
2408 (nth 1 (nth 2 method
))))
2409 (list save
`(and ,bound
2411 (list (list save
(nth 2 method
))))
2412 (and temp
(list (list temp value
)))
2417 ,@(if (cdr (car rev
))
2418 (cons (cl-setf-do-store (nth 1 method
)
2424 ,(cl-setf-do-store (nth 1 method
) save
)
2425 (,(if (eq (car place
) 'symbol-value
)
2426 #'makunbound
#'fmakunbound
)
2427 ,(nth 1 (nth 2 method
))))
2428 (cl-setf-do-store (nth 1 method
) save
))))
2430 `(let* ,lets
,@body
))))
2434 (defmacro cl-letf
* (bindings &rest body
)
2435 "Temporarily bind to PLACEs.
2436 This is the analogue of `let*', but with generalized variables (in the
2437 sense of `cl-setf') for the PLACEs. Each PLACE is set to the corresponding
2438 VALUE, then the BODY forms are executed. On exit, either normally or
2439 because of a `throw' or error, the PLACEs are set back to their original
2440 values. Note that this macro is *not* available in Common Lisp.
2441 As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
2442 the PLACE is not modified before executing BODY.
2444 \(fn ((PLACE VALUE) ...) BODY...)"
2445 (declare (indent 1) (debug cl-letf
))
2448 (setq bindings
(reverse bindings
))
2450 (setq body
(list `(cl-letf (,(pop bindings
)) ,@body
))))
2454 (defmacro cl-callf
(func place
&rest args
)
2455 "Set PLACE to (FUNC PLACE ARGS...).
2456 FUNC should be an unquoted function name. PLACE may be a symbol,
2457 or any generalized variable allowed by `cl-setf'.
2459 \(fn FUNC PLACE ARGS...)"
2460 (declare (indent 2) (debug (cl-function place
&rest form
)))
2461 (let* ((method (cl-setf-do-modify place
(cons 'list args
)))
2462 (rargs (cons (nth 2 method
) args
)))
2463 `(let* ,(car method
)
2464 ,(cl-setf-do-store (nth 1 method
)
2465 (if (symbolp func
) (cons func rargs
)
2466 `(funcall #',func
,@rargs
))))))
2469 (defmacro cl-callf2
(func arg1 place
&rest args
)
2470 "Set PLACE to (FUNC ARG1 PLACE ARGS...).
2471 Like `cl-callf', but PLACE is the second argument of FUNC, not the first.
2473 \(fn FUNC ARG1 PLACE ARGS...)"
2474 (declare (indent 3) (debug (cl-function form place
&rest form
)))
2475 (if (and (cl--safe-expr-p arg1
) (cl--simple-expr-p place
) (symbolp func
))
2476 `(cl-setf ,place
(,func
,arg1
,place
,@args
))
2477 (let* ((method (cl-setf-do-modify place
(cons 'list args
)))
2478 (temp (and (not (macroexp-const-p arg1
)) (make-symbol "--cl-arg1--")))
2479 (rargs (cl-list* (or temp arg1
) (nth 2 method
) args
)))
2480 `(let* (,@(and temp
(list (list temp arg1
))) ,@(car method
))
2481 ,(cl-setf-do-store (nth 1 method
)
2482 (if (symbolp func
) (cons func rargs
)
2483 `(funcall #',func
,@rargs
)))))))
2486 (defmacro cl-define-modify-macro
(name arglist func
&optional doc
)
2487 "Define a `cl-setf'-like modify macro.
2488 If NAME is called, it combines its PLACE argument with the other arguments
2489 from ARGLIST using FUNC: (cl-define-modify-macro cl-incf (&optional (n 1)) +)"
2491 (&define name cl-lambda-list
;; should exclude &key
2492 symbolp
&optional stringp
)))
2493 (if (memq '&key arglist
) (error "&key not allowed in cl-define-modify-macro"))
2494 (let ((place (make-symbol "--cl-place--")))
2495 `(cl-defmacro ,name
(,place
,@arglist
)
2497 (,(if (memq '&rest arglist
) #'cl-list
* #'list
)
2498 #'cl-callf
',func
,place
2499 ,@(cl--arglist-args arglist
)))))
2505 (defmacro cl-defstruct
(struct &rest descs
)
2506 "Define a struct type.
2507 This macro defines a new data type called NAME that stores data
2508 in SLOTs. It defines a `make-NAME' constructor, a `copy-NAME'
2509 copier, a `NAME-p' predicate, and slot accessors named `NAME-SLOT'.
2510 You can use the accessors to set the corresponding slots, via `cl-setf'.
2512 NAME may instead take the form (NAME OPTIONS...), where each
2513 OPTION is either a single keyword or (KEYWORD VALUE).
2514 See Info node `(cl)Structures' for a list of valid keywords.
2516 Each SLOT may instead take the form (SLOT SLOT-OPTS...), where
2517 SLOT-OPTS are keyword-value pairs for that slot. Currently, only
2518 one keyword is supported, `:read-only'. If this has a non-nil
2519 value, that slot cannot be set via `cl-setf'.
2521 \(fn NAME SLOTS...)"
2522 (declare (doc-string 2)
2524 (&define
;Makes top-level form not be wrapped.
2528 (&or
[":conc-name" symbolp
]
2529 [":constructor" symbolp
&optional cl-lambda-list
]
2531 [":predicate" symbolp
]
2532 [":include" symbolp
&rest sexp
] ;; Not finished.
2533 ;; The following are not supported.
2534 ;; [":print-function" ...]
2536 ;; [":initial-offset" ...]
2539 ;; All the above is for the following def-form.
2540 &rest
&or symbolp
(symbolp def-form
2541 &optional
":read-only" sexp
))))
2542 (let* ((name (if (consp struct
) (car struct
) struct
))
2543 (opts (cdr-safe struct
))
2546 (conc-name (concat (symbol-name name
) "-"))
2547 (constructor (intern (format "make-%s" name
)))
2549 (copier (intern (format "copy-%s" name
)))
2550 (predicate (intern (format "%s-p" name
)))
2551 (print-func nil
) (print-auto nil
)
2552 (safety (if (cl-compiling-file) cl-optimize-safety
3))
2554 (tag (intern (format "cl-struct-%s" name
)))
2555 (tag-symbol (intern (format "cl-struct-%s-tags" name
)))
2561 pred-form pred-check
)
2562 (if (stringp (car descs
))
2563 (push `(put ',name
'structure-documentation
2564 ,(pop descs
)) forms
))
2565 (setq descs
(cons '(cl-tag-slot)
2566 (mapcar (function (lambda (x) (if (consp x
) x
(list x
))))
2569 (let ((opt (if (consp (car opts
)) (caar opts
) (car opts
)))
2570 (args (cdr-safe (pop opts
))))
2571 (cond ((eq opt
:conc-name
)
2573 (setq conc-name
(if (car args
)
2574 (symbol-name (car args
)) ""))))
2575 ((eq opt
:constructor
)
2578 ;; If this defines a constructor of the same name as
2579 ;; the default one, don't define the default.
2580 (if (eq (car args
) constructor
)
2581 (setq constructor nil
))
2582 (push args constrs
))
2583 (if args
(setq constructor
(car args
)))))
2585 (if args
(setq copier
(car args
))))
2586 ((eq opt
:predicate
)
2587 (if args
(setq predicate
(car args
))))
2589 (setq include
(car args
)
2590 include-descs
(mapcar (function
2592 (if (consp x
) x
(list x
))))
2594 ((eq opt
:print-function
)
2595 (setq print-func
(car args
)))
2597 (setq type
(car args
)))
2600 ((eq opt
:initial-offset
)
2601 (setq descs
(nconc (make-list (car args
) '(cl-skip-slot))
2604 (error "Slot option %s unrecognized" opt
)))))
2607 `(progn (funcall #',print-func cl-x cl-s cl-n
) t
))
2608 (or type
(and include
(not (get include
'cl-struct-print
)))
2610 print-func
(and (or (not (or include type
)) (null print-func
))
2612 (princ ,(format "#S(%s" name
) cl-s
))))))
2614 (let ((inc-type (get include
'cl-struct-type
))
2615 (old-descs (get include
'cl-struct-slots
)))
2616 (or inc-type
(error "%s is not a struct name" include
))
2617 (and type
(not (eq (car inc-type
) type
))
2618 (error ":type disagrees with :include for %s" name
))
2619 (while include-descs
2620 (setcar (memq (or (assq (caar include-descs
) old-descs
)
2621 (error "No slot %s in included struct %s"
2622 (caar include-descs
) include
))
2624 (pop include-descs
)))
2625 (setq descs
(append old-descs
(delq (assq 'cl-tag-slot descs
) descs
))
2627 named
(assq 'cl-tag-slot descs
))
2628 (if (cadr inc-type
) (setq tag name named t
))
2629 (let ((incl include
))
2631 (push `(cl-pushnew ',tag
2632 ,(intern (format "cl-struct-%s-tags" incl
)))
2634 (setq incl
(get incl
'cl-struct-include
)))))
2637 (or (memq type
'(vector list
))
2638 (error "Invalid :type specifier: %s" type
))
2639 (if named
(setq tag name
)))
2640 (setq type
'vector named
'true
)))
2641 (or named
(setq descs
(delq (assq 'cl-tag-slot descs
) descs
)))
2642 (push `(defvar ,tag-symbol
) forms
)
2643 (setq pred-form
(and named
2644 (let ((pos (- (length descs
)
2645 (length (memq (assq 'cl-tag-slot descs
)
2647 (if (eq type
'vector
)
2648 `(and (vectorp cl-x
)
2649 (>= (length cl-x
) ,(length descs
))
2650 (memq (aref cl-x
,pos
) ,tag-symbol
))
2652 `(memq (car-safe cl-x
) ,tag-symbol
)
2654 (memq (nth ,pos cl-x
) ,tag-symbol
))))))
2655 pred-check
(and pred-form
(> safety
0)
2656 (if (and (eq (cl-caadr pred-form
) 'vectorp
)
2658 (cons 'and
(cl-cdddr pred-form
)) pred-form
)))
2659 (let ((pos 0) (descp descs
))
2661 (let* ((desc (pop descp
))
2663 (if (memq slot
'(cl-tag-slot cl-skip-slot
))
2666 (push (and (eq slot
'cl-tag-slot
) `',tag
)
2668 (if (assq slot descp
)
2669 (error "Duplicate slots named %s in %s" slot name
))
2670 (let ((accessor (intern (format "%s%s" conc-name slot
))))
2672 (push (nth 1 desc
) defaults
)
2674 'cl-defsubst accessor
'(cl-x)
2677 (list `(or ,pred-check
2678 (error "%s accessing a non-%s"
2679 ',accessor
',name
))))
2680 (list (if (eq type
'vector
) `(aref cl-x
,pos
)
2681 (if (= pos
0) '(car cl-x
)
2682 `(nth ,pos cl-x
)))))) forms
)
2683 (push (cons accessor t
) side-eff
)
2684 (push `(cl-define-setf-expander ,accessor
(cl-x)
2685 ,(if (cadr (memq :read-only
(cddr desc
)))
2686 `(progn (ignore cl-x
)
2687 (error "%s is a read-only slot"
2689 ;; If cl is loaded only for compilation,
2690 ;; the call to cl-struct-setf-expander would
2691 ;; cause a warning because it may not be
2692 ;; defined at run time. Suppress that warning.
2695 cl-struct-setf-expander
"cl-macs"
2696 (x name accessor pred-form pos
))
2697 (cl-struct-setf-expander
2698 cl-x
',name
',accessor
2699 ,(and pred-check
`',pred-check
)
2704 (list `(princ ,(format " %s" slot
) cl-s
)
2705 `(prin1 (,accessor cl-x
) cl-s
)))))))
2706 (setq pos
(1+ pos
))))
2707 (setq slots
(nreverse slots
)
2708 defaults
(nreverse defaults
))
2709 (and predicate pred-form
2710 (progn (push `(cl-defsubst ,predicate
(cl-x)
2711 ,(if (eq (car pred-form
) 'and
)
2712 (append pred-form
'(t))
2713 `(and ,pred-form t
))) forms
)
2714 (push (cons predicate
'error-free
) side-eff
)))
2716 (progn (push `(defun ,copier
(x) (copy-sequence x
)) forms
)
2717 (push (cons copier t
) side-eff
)))
2719 (push (list constructor
2720 (cons '&key
(delq nil
(copy-sequence slots
))))
2723 (let* ((name (caar constrs
))
2724 (args (cadr (pop constrs
)))
2725 (anames (cl--arglist-args args
))
2726 (make (cl-mapcar (function (lambda (s d
) (if (memq s anames
) s d
)))
2728 (push `(cl-defsubst ,name
2729 (&cl-defs
'(nil ,@descs
) ,@args
)
2730 (,type
,@make
)) forms
)
2731 (if (cl--safe-expr-p `(progn ,@(mapcar #'cl-second descs
)))
2732 (push (cons name t
) side-eff
))))
2733 (if print-auto
(nconc print-func
(list '(princ ")" cl-s
) t
)))
2736 ;; The auto-generated function does not pay attention to
2737 ;; the depth argument cl-n.
2738 (lambda (cl-x cl-s
,(if print-auto
'_cl-n
'cl-n
))
2739 (and ,pred-form
,print-func
))
2740 cl-custom-print-functions
)
2742 (push `(setq ,tag-symbol
(list ',tag
)) forms
)
2743 (push `(cl-eval-when (compile load eval
)
2744 (put ',name
'cl-struct-slots
',descs
)
2745 (put ',name
'cl-struct-type
',(list type
(eq named t
)))
2746 (put ',name
'cl-struct-include
',include
)
2747 (put ',name
'cl-struct-print
,print-auto
)
2748 ,@(mapcar (lambda (x)
2749 `(put ',(car x
) 'side-effect-free
',(cdr x
)))
2752 `(progn ,@(nreverse (cons `',name forms
)))))
2755 (defun cl-struct-setf-expander (x name accessor pred-form pos
)
2756 (let* ((temp (make-symbol "--cl-x--")) (store (make-symbol "--cl-store--")))
2757 (list (list temp
) (list x
) (list store
)
2760 (list `(or ,(cl-subst temp
'cl-x pred-form
)
2762 "%s storing a non-%s"
2764 ,(if (eq (car (get name
'cl-struct-type
)) 'vector
)
2765 `(aset ,temp
,pos
,store
)
2769 (while (>= (setq pos
(1- pos
)) 0)
2770 (setq xx
`(cdr ,xx
)))
2772 `(nthcdr ,pos
,temp
))
2774 (list accessor temp
))))
2777 ;;; Types and assertions.
2780 (defmacro cl-deftype
(name arglist
&rest body
)
2781 "Define NAME as a new data type.
2782 The type name can then be used in `cl-typecase', `cl-check-type', etc."
2783 (declare (debug cl-defmacro
) (doc-string 3))
2784 `(cl-eval-when (compile load eval
)
2785 ,(cl--transform-function-property
2786 name
'cl-deftype-handler
(cons `(&cl-defs
'('*) ,@arglist
) body
))))
2788 (defun cl--make-type-test (val type
)
2790 (cond ((get type
'cl-deftype-handler
)
2791 (cl--make-type-test val
(funcall (get type
'cl-deftype-handler
))))
2792 ((memq type
'(nil t
)) type
)
2793 ((eq type
'null
) `(null ,val
))
2794 ((eq type
'atom
) `(atom ,val
))
2795 ((eq type
'float
) `(cl-floatp-safe ,val
))
2796 ((eq type
'real
) `(numberp ,val
))
2797 ((eq type
'fixnum
) `(integerp ,val
))
2798 ;; FIXME: Should `character' accept things like ?\C-\M-a ? --Stef
2799 ((memq type
'(character string-char
)) `(characterp ,val
))
2801 (let* ((name (symbol-name type
))
2802 (namep (intern (concat name
"p"))))
2803 (if (fboundp namep
) (list namep val
)
2804 (list (intern (concat name
"-p")) val
)))))
2805 (cond ((get (car type
) 'cl-deftype-handler
)
2806 (cl--make-type-test val
(apply (get (car type
) 'cl-deftype-handler
)
2808 ((memq (car type
) '(integer float real number
))
2809 (delq t
`(and ,(cl--make-type-test val
(car type
))
2810 ,(if (memq (cadr type
) '(* nil
)) t
2811 (if (consp (cadr type
)) `(> ,val
,(cl-caadr type
))
2812 `(>= ,val
,(cadr type
))))
2813 ,(if (memq (cl-caddr type
) '(* nil
)) t
2814 (if (consp (cl-caddr type
)) `(< ,val
,(cl-caaddr type
))
2815 `(<= ,val
,(cl-caddr type
)))))))
2816 ((memq (car type
) '(and or not
))
2818 (mapcar (function (lambda (x) (cl--make-type-test val x
)))
2820 ((memq (car type
) '(member cl-member
))
2821 `(and (cl-member ,val
',(cdr type
)) t
))
2822 ((eq (car type
) 'satisfies
) (list (cadr type
) val
))
2823 (t (error "Bad type spec: %s" type
)))))
2827 (defun cl-typep (object type
) ; See compiler macro below.
2828 "Check that OBJECT is of type TYPE.
2829 TYPE is a Common Lisp-style type specifier."
2830 (let ((cl--object object
)) ;; Yuck!!
2831 (eval (cl--make-type-test 'cl--object type
))))
2834 (defmacro cl-check-type
(form type
&optional string
)
2835 "Verify that FORM is of type TYPE; signal an error if not.
2836 STRING is an optional description of the desired type."
2837 (declare (debug (place cl-type-spec
&optional stringp
)))
2838 (and (or (not (cl-compiling-file))
2839 (< cl-optimize-speed
3) (= cl-optimize-safety
3))
2840 (let* ((temp (if (cl--simple-expr-p form
3)
2841 form
(make-symbol "--cl-var--")))
2842 (body `(or ,(cl--make-type-test temp type
)
2843 (signal 'wrong-type-argument
2844 (list ,(or string
`',type
)
2846 (if (eq temp form
) `(progn ,body nil
)
2847 `(let ((,temp
,form
)) ,body nil
)))))
2850 (defmacro cl-assert
(form &optional show-args string
&rest args
)
2851 "Verify that FORM returns non-nil; signal an error if not.
2852 Second arg SHOW-ARGS means to include arguments of FORM in message.
2853 Other args STRING and ARGS... are arguments to be passed to `error'.
2854 They are not evaluated unless the assertion fails. If STRING is
2855 omitted, a default message listing FORM itself is used."
2856 (declare (debug (form &rest form
)))
2857 (and (or (not (cl-compiling-file))
2858 (< cl-optimize-speed
3) (= cl-optimize-safety
3))
2859 (let ((sargs (and show-args
2860 (delq nil
(mapcar (lambda (x)
2861 (unless (macroexp-const-p x
)
2867 `(error ,string
,@sargs
,@args
)
2868 `(signal 'cl-assertion-failed
2869 (list ',form
,@sargs
))))
2872 ;;; Compiler macros.
2875 (defmacro cl-define-compiler-macro
(func args
&rest body
)
2876 "Define a compiler-only macro.
2877 This is like `defmacro', but macro expansion occurs only if the call to
2878 FUNC is compiled (i.e., not interpreted). Compiler macros should be used
2879 for optimizing the way calls to FUNC are compiled; the form returned by
2880 BODY should do the same thing as a call to the normal function called
2881 FUNC, though possibly more efficiently. Note that, like regular macros,
2882 compiler macros are expanded repeatedly until no further expansions are
2883 possible. Unlike regular macros, BODY can decide to \"punt\" and leave the
2884 original function call alone by declaring an initial `&whole foo' parameter
2885 and then returning foo."
2886 (declare (debug cl-defmacro
))
2887 (let ((p args
) (res nil
))
2888 (while (consp p
) (push (pop p
) res
))
2889 (setq args
(nconc (nreverse res
) (and p
(list '&rest p
)))))
2890 `(cl-eval-when (compile load eval
)
2891 ,(cl--transform-function-property
2892 func
'compiler-macro
2893 (cons (if (memq '&whole args
) (delq '&whole args
)
2894 (cons '_cl-whole-arg args
)) body
))
2895 ;; This is so that describe-function can locate
2896 ;; the macro definition.
2897 (let ((file ,(or buffer-file-name
2898 (and (boundp 'byte-compile-current-file
)
2899 (stringp byte-compile-current-file
)
2900 byte-compile-current-file
))))
2901 (if file
(put ',func
'compiler-macro-file
2902 (purecopy (file-name-nondirectory file
)))))))
2905 (defun cl-compiler-macroexpand (form)
2907 (let ((func (car-safe form
)) (handler nil
))
2908 (while (and (symbolp func
)
2909 (not (setq handler
(get func
'compiler-macro
)))
2911 (or (not (eq (car-safe (symbol-function func
)) 'autoload
))
2912 (load (nth 1 (symbol-function func
)))))
2913 (setq func
(symbol-function func
)))
2915 (not (eq form
(setq form
(apply handler form
(cdr form
))))))))
2918 ;; Optimize away unused block-wrappers.
2920 (defvar cl--active-block-names nil
)
2922 (cl-define-compiler-macro cl-block-wrapper
(cl-form)
2923 (let* ((cl-entry (cons (nth 1 (nth 1 cl-form
)) nil
))
2924 (cl--active-block-names (cons cl-entry cl--active-block-names
))
2925 (cl-body (macroexpand-all ;Performs compiler-macro expansions.
2926 (cons 'progn
(cddr cl-form
))
2927 macroexpand-all-environment
)))
2928 ;; FIXME: To avoid re-applying macroexpand-all, we'd like to be able
2929 ;; to indicate that this return value is already fully expanded.
2931 `(catch ,(nth 1 cl-form
) ,@(cdr cl-body
))
2934 (cl-define-compiler-macro cl-block-throw
(cl-tag cl-value
)
2935 (let ((cl-found (assq (nth 1 cl-tag
) cl--active-block-names
)))
2936 (if cl-found
(setcdr cl-found t
)))
2937 `(throw ,cl-tag
,cl-value
))
2940 (defmacro cl-defsubst
(name args
&rest body
)
2941 "Define NAME as a function.
2942 Like `defun', except the function is automatically declared `inline',
2943 ARGLIST allows full Common Lisp conventions, and BODY is implicitly
2944 surrounded by (cl-block NAME ...).
2946 \(fn NAME ARGLIST [DOCSTRING] BODY...)"
2947 (declare (debug cl-defun
))
2948 (let* ((argns (cl--arglist-args args
)) (p argns
)
2949 (pbody (cons 'progn body
))
2950 (unsafe (not (cl--safe-expr-p pbody
))))
2951 (while (and p
(eq (cl--expr-contains args
(car p
)) 1)) (pop p
))
2953 ,(if p nil
; give up if defaults refer to earlier args
2954 `(cl-define-compiler-macro ,name
2955 ,(if (memq '&key args
)
2956 `(&whole cl-whole
&cl-quote
,@args
)
2957 (cons '&cl-quote args
))
2959 ',argns
'(cl-block ,name
,@body
)
2960 ;; We used to pass `simple' as
2961 ;; (not (or unsafe (cl-expr-access-order pbody argns)))
2962 ;; But this is much too simplistic since it
2963 ;; does not pay attention to the argvs (and
2964 ;; cl-expr-access-order itself is also too naive).
2966 ,(and (memq '&key args
) 'cl-whole
) ,unsafe
,@argns
)))
2967 (cl-defun ,name
,args
,@body
))))
2969 (defun cl-defsubst-expand (argns body simple whole unsafe
&rest argvs
)
2970 (if (and whole
(not (cl--safe-expr-p (cons 'progn argvs
)))) whole
2971 (if (cl--simple-exprs-p argvs
) (setq simple t
))
2974 (cl-mapcar (lambda (argn argv
)
2975 (if (or simple
(macroexp-const-p argv
))
2976 (progn (push (cons argn argv
) substs
)
2977 (and unsafe
(list argn argv
)))
2980 ;; FIXME: `sublis/subst' will happily substitute the symbol
2981 ;; `argn' in places where it's not used as a reference
2983 ;; FIXME: `sublis/subst' will happily copy `argv' to a different
2984 ;; scope, leading to name capture.
2985 (setq body
(cond ((null substs
) body
)
2986 ((null (cdr substs
))
2987 (cl-subst (cdar substs
) (caar substs
) body
))
2988 (t (cl-sublis substs body
))))
2989 (if lets
`(let ,lets
,body
) body
))))
2992 ;; Compile-time optimizations for some functions defined in this package.
2993 ;; Note that cl.el arranges to force cl-macs to be loaded at compile-time,
2994 ;; mainly to make sure these macros will be present.
2996 (defun cl--compiler-macro-member (form a list
&rest keys
)
2997 (let ((test (and (= (length keys
) 2) (eq (car keys
) :test
)
2998 (cl--const-expr-val (nth 1 keys
)))))
2999 (cond ((eq test
'eq
) `(memq ,a
,list
))
3000 ((eq test
'equal
) `(member ,a
,list
))
3001 ((or (null keys
) (eq test
'eql
)) `(memql ,a
,list
))
3004 (defun cl--compiler-macro-assoc (form a list
&rest keys
)
3005 (let ((test (and (= (length keys
) 2) (eq (car keys
) :test
)
3006 (cl--const-expr-val (nth 1 keys
)))))
3007 (cond ((eq test
'eq
) `(assq ,a
,list
))
3008 ((eq test
'equal
) `(assoc ,a
,list
))
3009 ((and (macroexp-const-p a
) (or (null keys
) (eq test
'eql
)))
3010 (if (cl-floatp-safe (cl--const-expr-val a
))
3011 `(assoc ,a
,list
) `(assq ,a
,list
)))
3014 (defun cl--compiler-macro-adjoin (form a list
&rest keys
)
3015 (if (and (cl--simple-expr-p a
) (cl--simple-expr-p list
)
3016 (not (memq :key keys
)))
3017 `(if (cl-member ,a
,list
,@keys
) ,list
(cons ,a
,list
))
3020 (defun cl--compiler-macro-list* (_form arg
&rest others
)
3021 (let* ((args (reverse (cons arg others
)))
3023 (while (setq args
(cdr args
))
3024 (setq form
`(cons ,(car args
) ,form
)))
3027 (defun cl--compiler-macro-get (_form sym prop
&optional def
)
3029 `(cl-getf (symbol-plist ,sym
) ,prop
,def
)
3032 (cl-define-compiler-macro cl-typep
(&whole form val type
)
3033 (if (macroexp-const-p type
)
3034 (macroexp-let² macroexp-copyable-p temp val
3035 (cl--make-type-test temp
(cl--const-expr-val type
)))
3040 (put (car y
) 'side-effect-free t
)
3041 (put (car y
) 'compiler-macro
3043 ,(if (symbolp (cadr y
))
3045 (list ',(cl-caddr y
) x
))
3046 (cons 'list
(cdr y
))))))
3047 '((cl-first 'car x
) (cl-second 'cadr x
) (cl-third 'cl-caddr x
) (cl-fourth 'cl-cadddr x
)
3048 (cl-fifth 'nth
4 x
) (cl-sixth 'nth
5 x
) (cl-seventh 'nth
6 x
)
3049 (cl-eighth 'nth
7 x
) (cl-ninth 'nth
8 x
) (cl-tenth 'nth
9 x
)
3050 (cl-rest 'cdr x
) (cl-endp 'null x
) (cl-plusp '> x
0) (cl-minusp '< x
0)
3051 (cl-caaar car caar
) (cl-caadr car cadr
) (cl-cadar car cdar
)
3052 (cl-caddr car cddr
) (cl-cdaar cdr caar
) (cl-cdadr cdr cadr
)
3053 (cl-cddar cdr cdar
) (cl-cdddr cdr cddr
) (cl-caaaar car cl-caaar
)
3054 (cl-caaadr car cl-caadr
) (cl-caadar car cl-cadar
) (cl-caaddr car cl-caddr
)
3055 (cl-cadaar car cl-cdaar
) (cl-cadadr car cl-cdadr
) (cl-caddar car cl-cddar
)
3056 (cl-cadddr car cl-cdddr
) (cl-cdaaar cdr cl-caaar
) (cl-cdaadr cdr cl-caadr
)
3057 (cl-cdadar cdr cl-cadar
) (cl-cdaddr cdr cl-caddr
) (cl-cddaar cdr cl-cdaar
)
3058 (cl-cddadr cdr cl-cdadr
) (cl-cdddar cdr cl-cddar
) (cl-cddddr cdr cl-cdddr
) ))
3060 ;;; Things that are inline.
3061 (cl-proclaim '(inline cl-floatp-safe cl-acons cl-map cl-concatenate cl-notany cl-notevery
3062 cl-set-elt cl-revappend cl-nreconc gethash
))
3064 ;;; Things that are side-effect-free.
3065 (mapc (lambda (x) (put x
'side-effect-free t
))
3066 '(cl-oddp cl-evenp cl-signum last butlast cl-ldiff cl-pairlis cl-gcd cl-lcm
3067 cl-isqrt cl-floor cl-ceiling cl-truncate cl-round cl-mod cl-rem cl-subseq
3068 cl-list-length cl-get cl-getf
))
3070 ;;; Things that are side-effect-and-error-free.
3071 (mapc (lambda (x) (put x
'side-effect-free
'error-free
))
3072 '(eql cl-floatp-safe cl-list
* cl-subst cl-acons cl-equalp cl-random-state-p
3073 copy-tree cl-sublis
))
3076 (run-hooks 'cl-macs-load-hook
)
3079 ;; byte-compile-dynamic: t
3080 ;; byte-compile-warnings: (not cl-functions)
3081 ;; generated-autoload-file: "cl-loaddefs.el"
3086 ;;; cl-macs.el ends here