1 /* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
3 internationalization features.)
5 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
6 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
24 - structure the opcode space into opcode+flag.
25 - merge with glibc's regex.[ch].
26 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
27 need to modify the compiled regexp so that re_match can be reentrant.
28 - get rid of on_failure_jump_smart by doing the optimization in re_comp
29 rather than at run-time, so that re_match can be reentrant.
32 /* AIX requires this to be the first thing in the file. */
33 #if defined _AIX && !defined REGEX_MALLOC
41 #if defined STDC_HEADERS && !defined emacs
44 /* We need this for `regex.h', and perhaps for the Emacs include files. */
45 # include <sys/types.h>
48 /* Whether to use ISO C Amendment 1 wide char functions.
49 Those should not be used for Emacs since it uses its own. */
51 #define WIDE_CHAR_SUPPORT 1
53 #define WIDE_CHAR_SUPPORT \
54 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
57 /* For platform which support the ISO C amendement 1 functionality we
58 support user defined character classes. */
60 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
66 /* We have to keep the namespace clean. */
67 # define regfree(preg) __regfree (preg)
68 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
69 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
70 # define regerror(errcode, preg, errbuf, errbuf_size) \
71 __regerror(errcode, preg, errbuf, errbuf_size)
72 # define re_set_registers(bu, re, nu, st, en) \
73 __re_set_registers (bu, re, nu, st, en)
74 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
75 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
76 # define re_match(bufp, string, size, pos, regs) \
77 __re_match (bufp, string, size, pos, regs)
78 # define re_search(bufp, string, size, startpos, range, regs) \
79 __re_search (bufp, string, size, startpos, range, regs)
80 # define re_compile_pattern(pattern, length, bufp) \
81 __re_compile_pattern (pattern, length, bufp)
82 # define re_set_syntax(syntax) __re_set_syntax (syntax)
83 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
84 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
85 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
87 /* Make sure we call libc's function even if the user overrides them. */
88 # define btowc __btowc
89 # define iswctype __iswctype
90 # define wctype __wctype
92 # define WEAK_ALIAS(a,b) weak_alias (a, b)
94 /* We are also using some library internals. */
95 # include <locale/localeinfo.h>
96 # include <locale/elem-hash.h>
97 # include <langinfo.h>
99 # define WEAK_ALIAS(a,b)
102 /* This is for other GNU distributions with internationalized messages. */
103 #if HAVE_LIBINTL_H || defined _LIBC
104 # include <libintl.h>
106 # define gettext(msgid) (msgid)
110 /* This define is so xgettext can find the internationalizable
112 # define gettext_noop(String) String
115 /* The `emacs' switch turns on certain matching commands
116 that make sense only in Emacs. */
122 /* Make syntax table lookup grant data in gl_state. */
123 # define SYNTAX_ENTRY_VIA_PROPERTY
126 # include "charset.h"
127 # include "category.h"
132 # define malloc xmalloc
136 # define realloc xrealloc
142 /* Converts the pointer to the char to BEG-based offset from the start. */
143 # define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
144 # define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
146 # define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
147 # define RE_STRING_CHAR(p, s) \
148 (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
149 # define RE_STRING_CHAR_AND_LENGTH(p, s, len) \
150 (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
152 /* Set C a (possibly multibyte) character before P. P points into a
153 string which is the virtual concatenation of STR1 (which ends at
154 END1) or STR2 (which ends at END2). */
155 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
159 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
160 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
161 re_char *d0 = dtemp; \
162 PREV_CHAR_BOUNDARY (d0, dlimit); \
163 c = STRING_CHAR (d0, dtemp - d0); \
166 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
170 #else /* not emacs */
172 /* If we are not linking with Emacs proper,
173 we can't use the relocating allocator
174 even if config.h says that we can. */
177 # if defined STDC_HEADERS || defined _LIBC
184 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
185 If nothing else has been done, use the method below. */
186 # ifdef INHIBIT_STRING_HEADER
187 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
188 # if !defined bzero && !defined bcopy
189 # undef INHIBIT_STRING_HEADER
194 /* This is the normal way of making sure we have memcpy, memcmp and bzero.
195 This is used in most programs--a few other programs avoid this
196 by defining INHIBIT_STRING_HEADER. */
197 # ifndef INHIBIT_STRING_HEADER
198 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
202 # define bzero(s, n) (memset (s, '\0', n), (s))
204 # define bzero(s, n) __bzero (s, n)
208 # include <strings.h>
210 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
213 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
218 /* Define the syntax stuff for \<, \>, etc. */
220 /* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
221 enum syntaxcode
{ Swhitespace
= 0, Sword
= 1, Ssymbol
= 2 };
223 # ifdef SWITCH_ENUM_BUG
224 # define SWITCH_ENUM_CAST(x) ((int)(x))
226 # define SWITCH_ENUM_CAST(x) (x)
229 /* Dummy macros for non-Emacs environments. */
230 # define BASE_LEADING_CODE_P(c) (0)
231 # define CHAR_CHARSET(c) 0
232 # define CHARSET_LEADING_CODE_BASE(c) 0
233 # define MAX_MULTIBYTE_LENGTH 1
234 # define RE_MULTIBYTE_P(x) 0
235 # define WORD_BOUNDARY_P(c1, c2) (0)
236 # define CHAR_HEAD_P(p) (1)
237 # define SINGLE_BYTE_CHAR_P(c) (1)
238 # define SAME_CHARSET_P(c1, c2) (1)
239 # define MULTIBYTE_FORM_LENGTH(p, s) (1)
240 # define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
241 # define STRING_CHAR(p, s) (*(p))
242 # define RE_STRING_CHAR STRING_CHAR
243 # define CHAR_STRING(c, s) (*(s) = (c), 1)
244 # define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
245 # define RE_STRING_CHAR_AND_LENGTH STRING_CHAR_AND_LENGTH
246 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
247 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
248 # define MAKE_CHAR(charset, c1, c2) (c1)
249 #endif /* not emacs */
252 # define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
253 # define RE_TRANSLATE_P(TBL) (TBL)
256 /* Get the interface, including the syntax bits. */
259 /* isalpha etc. are used for the character classes. */
264 /* 1 if C is an ASCII character. */
265 # define IS_REAL_ASCII(c) ((c) < 0200)
267 /* 1 if C is a unibyte character. */
268 # define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
270 /* The Emacs definitions should not be directly affected by locales. */
272 /* In Emacs, these are only used for single-byte characters. */
273 # define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
274 # define ISCNTRL(c) ((c) < ' ')
275 # define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
276 || ((c) >= 'a' && (c) <= 'f') \
277 || ((c) >= 'A' && (c) <= 'F'))
279 /* This is only used for single-byte characters. */
280 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
282 /* The rest must handle multibyte characters. */
284 # define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
285 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
288 # define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
289 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
292 # define ISALNUM(c) (IS_REAL_ASCII (c) \
293 ? (((c) >= 'a' && (c) <= 'z') \
294 || ((c) >= 'A' && (c) <= 'Z') \
295 || ((c) >= '0' && (c) <= '9')) \
296 : SYNTAX (c) == Sword)
298 # define ISALPHA(c) (IS_REAL_ASCII (c) \
299 ? (((c) >= 'a' && (c) <= 'z') \
300 || ((c) >= 'A' && (c) <= 'Z')) \
301 : SYNTAX (c) == Sword)
303 # define ISLOWER(c) (LOWERCASEP (c))
305 # define ISPUNCT(c) (IS_REAL_ASCII (c) \
306 ? ((c) > ' ' && (c) < 0177 \
307 && !(((c) >= 'a' && (c) <= 'z') \
308 || ((c) >= 'A' && (c) <= 'Z') \
309 || ((c) >= '0' && (c) <= '9'))) \
310 : SYNTAX (c) != Sword)
312 # define ISSPACE(c) (SYNTAX (c) == Swhitespace)
314 # define ISUPPER(c) (UPPERCASEP (c))
316 # define ISWORD(c) (SYNTAX (c) == Sword)
318 #else /* not emacs */
320 /* Jim Meyering writes:
322 "... Some ctype macros are valid only for character codes that
323 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
324 using /bin/cc or gcc but without giving an ansi option). So, all
325 ctype uses should be through macros like ISPRINT... If
326 STDC_HEADERS is defined, then autoconf has verified that the ctype
327 macros don't need to be guarded with references to isascii. ...
328 Defining isascii to 1 should let any compiler worth its salt
329 eliminate the && through constant folding."
330 Solaris defines some of these symbols so we must undefine them first. */
333 # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
334 # define ISASCII(c) 1
336 # define ISASCII(c) isascii(c)
339 /* 1 if C is an ASCII character. */
340 # define IS_REAL_ASCII(c) ((c) < 0200)
342 /* This distinction is not meaningful, except in Emacs. */
343 # define ISUNIBYTE(c) 1
346 # define ISBLANK(c) (ISASCII (c) && isblank (c))
348 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
351 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
353 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
357 # define ISPRINT(c) (ISASCII (c) && isprint (c))
358 # define ISDIGIT(c) (ISASCII (c) && isdigit (c))
359 # define ISALNUM(c) (ISASCII (c) && isalnum (c))
360 # define ISALPHA(c) (ISASCII (c) && isalpha (c))
361 # define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
362 # define ISLOWER(c) (ISASCII (c) && islower (c))
363 # define ISPUNCT(c) (ISASCII (c) && ispunct (c))
364 # define ISSPACE(c) (ISASCII (c) && isspace (c))
365 # define ISUPPER(c) (ISASCII (c) && isupper (c))
366 # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
368 # define ISWORD(c) ISALPHA(c)
371 # define TOLOWER(c) _tolower(c)
373 # define TOLOWER(c) tolower(c)
376 /* How many characters in the character set. */
377 # define CHAR_SET_SIZE 256
381 extern char *re_syntax_table
;
383 # else /* not SYNTAX_TABLE */
385 static char re_syntax_table
[CHAR_SET_SIZE
];
396 bzero (re_syntax_table
, sizeof re_syntax_table
);
398 for (c
= 0; c
< CHAR_SET_SIZE
; ++c
)
400 re_syntax_table
[c
] = Sword
;
402 re_syntax_table
['_'] = Ssymbol
;
407 # endif /* not SYNTAX_TABLE */
409 # define SYNTAX(c) re_syntax_table[(c)]
411 #endif /* not emacs */
414 # define NULL (void *)0
417 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
418 since ours (we hope) works properly with all combinations of
419 machines, compilers, `char' and `unsigned char' argument types.
420 (Per Bothner suggested the basic approach.) */
421 #undef SIGN_EXTEND_CHAR
423 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
424 #else /* not __STDC__ */
425 /* As in Harbison and Steele. */
426 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
429 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
430 use `alloca' instead of `malloc'. This is because using malloc in
431 re_search* or re_match* could cause memory leaks when C-g is used in
432 Emacs; also, malloc is slower and causes storage fragmentation. On
433 the other hand, malloc is more portable, and easier to debug.
435 Because we sometimes use alloca, some routines have to be macros,
436 not functions -- `alloca'-allocated space disappears at the end of the
437 function it is called in. */
441 # define REGEX_ALLOCATE malloc
442 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
443 # define REGEX_FREE free
445 #else /* not REGEX_MALLOC */
447 /* Emacs already defines alloca, sometimes. */
450 /* Make alloca work the best possible way. */
452 # define alloca __builtin_alloca
453 # else /* not __GNUC__ */
456 # endif /* HAVE_ALLOCA_H */
457 # endif /* not __GNUC__ */
459 # endif /* not alloca */
461 # define REGEX_ALLOCATE alloca
463 /* Assumes a `char *destination' variable. */
464 # define REGEX_REALLOCATE(source, osize, nsize) \
465 (destination = (char *) alloca (nsize), \
466 memcpy (destination, source, osize))
468 /* No need to do anything to free, after alloca. */
469 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
471 #endif /* not REGEX_MALLOC */
473 /* Define how to allocate the failure stack. */
475 #if defined REL_ALLOC && defined REGEX_MALLOC
477 # define REGEX_ALLOCATE_STACK(size) \
478 r_alloc (&failure_stack_ptr, (size))
479 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
480 r_re_alloc (&failure_stack_ptr, (nsize))
481 # define REGEX_FREE_STACK(ptr) \
482 r_alloc_free (&failure_stack_ptr)
484 #else /* not using relocating allocator */
488 # define REGEX_ALLOCATE_STACK malloc
489 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
490 # define REGEX_FREE_STACK free
492 # else /* not REGEX_MALLOC */
494 # define REGEX_ALLOCATE_STACK alloca
496 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
497 REGEX_REALLOCATE (source, osize, nsize)
498 /* No need to explicitly free anything. */
499 # define REGEX_FREE_STACK(arg) ((void)0)
501 # endif /* not REGEX_MALLOC */
502 #endif /* not using relocating allocator */
505 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
506 `string1' or just past its end. This works if PTR is NULL, which is
508 #define FIRST_STRING_P(ptr) \
509 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
511 /* (Re)Allocate N items of type T using malloc, or fail. */
512 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
513 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
514 #define RETALLOC_IF(addr, n, t) \
515 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
516 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
518 #define BYTEWIDTH 8 /* In bits. */
520 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
524 #define MAX(a, b) ((a) > (b) ? (a) : (b))
525 #define MIN(a, b) ((a) < (b) ? (a) : (b))
527 /* Type of source-pattern and string chars. */
528 typedef const unsigned char re_char
;
530 typedef char boolean
;
534 static int re_match_2_internal
_RE_ARGS ((struct re_pattern_buffer
*bufp
,
535 re_char
*string1
, int size1
,
536 re_char
*string2
, int size2
,
538 struct re_registers
*regs
,
541 /* These are the command codes that appear in compiled regular
542 expressions. Some opcodes are followed by argument bytes. A
543 command code can specify any interpretation whatsoever for its
544 arguments. Zero bytes may appear in the compiled regular expression. */
550 /* Succeed right away--no more backtracking. */
553 /* Followed by one byte giving n, then by n literal bytes. */
556 /* Matches any (more or less) character. */
559 /* Matches any one char belonging to specified set. First
560 following byte is number of bitmap bytes. Then come bytes
561 for a bitmap saying which chars are in. Bits in each byte
562 are ordered low-bit-first. A character is in the set if its
563 bit is 1. A character too large to have a bit in the map is
564 automatically not in the set.
566 If the length byte has the 0x80 bit set, then that stuff
567 is followed by a range table:
568 2 bytes of flags for character sets (low 8 bits, high 8 bits)
569 See RANGE_TABLE_WORK_BITS below.
570 2 bytes, the number of pairs that follow (upto 32767)
571 pairs, each 2 multibyte characters,
572 each multibyte character represented as 3 bytes. */
575 /* Same parameters as charset, but match any character that is
576 not one of those specified. */
579 /* Start remembering the text that is matched, for storing in a
580 register. Followed by one byte with the register number, in
581 the range 0 to one less than the pattern buffer's re_nsub
585 /* Stop remembering the text that is matched and store it in a
586 memory register. Followed by one byte with the register
587 number, in the range 0 to one less than `re_nsub' in the
591 /* Match a duplicate of something remembered. Followed by one
592 byte containing the register number. */
595 /* Fail unless at beginning of line. */
598 /* Fail unless at end of line. */
601 /* Succeeds if at beginning of buffer (if emacs) or at beginning
602 of string to be matched (if not). */
605 /* Analogously, for end of buffer/string. */
608 /* Followed by two byte relative address to which to jump. */
611 /* Followed by two-byte relative address of place to resume at
612 in case of failure. */
615 /* Like on_failure_jump, but pushes a placeholder instead of the
616 current string position when executed. */
617 on_failure_keep_string_jump
,
619 /* Just like `on_failure_jump', except that it checks that we
620 don't get stuck in an infinite loop (matching an empty string
622 on_failure_jump_loop
,
624 /* Just like `on_failure_jump_loop', except that it checks for
625 a different kind of loop (the kind that shows up with non-greedy
626 operators). This operation has to be immediately preceded
628 on_failure_jump_nastyloop
,
630 /* A smart `on_failure_jump' used for greedy * and + operators.
631 It analyses the loop before which it is put and if the
632 loop does not require backtracking, it changes itself to
633 `on_failure_keep_string_jump' and short-circuits the loop,
634 else it just defaults to changing itself into `on_failure_jump'.
635 It assumes that it is pointing to just past a `jump'. */
636 on_failure_jump_smart
,
638 /* Followed by two-byte relative address and two-byte number n.
639 After matching N times, jump to the address upon failure.
640 Does not work if N starts at 0: use on_failure_jump_loop
644 /* Followed by two-byte relative address, and two-byte number n.
645 Jump to the address N times, then fail. */
648 /* Set the following two-byte relative address to the
649 subsequent two-byte number. The address *includes* the two
653 wordbeg
, /* Succeeds if at word beginning. */
654 wordend
, /* Succeeds if at word end. */
656 wordbound
, /* Succeeds if at a word boundary. */
657 notwordbound
, /* Succeeds if not at a word boundary. */
659 symbeg
, /* Succeeds if at symbol beginning. */
660 symend
, /* Succeeds if at symbol end. */
662 /* Matches any character whose syntax is specified. Followed by
663 a byte which contains a syntax code, e.g., Sword. */
666 /* Matches any character whose syntax is not that specified. */
670 ,before_dot
, /* Succeeds if before point. */
671 at_dot
, /* Succeeds if at point. */
672 after_dot
, /* Succeeds if after point. */
674 /* Matches any character whose category-set contains the specified
675 category. The operator is followed by a byte which contains a
676 category code (mnemonic ASCII character). */
679 /* Matches any character whose category-set does not contain the
680 specified category. The operator is followed by a byte which
681 contains the category code (mnemonic ASCII character). */
686 /* Common operations on the compiled pattern. */
688 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
690 #define STORE_NUMBER(destination, number) \
692 (destination)[0] = (number) & 0377; \
693 (destination)[1] = (number) >> 8; \
696 /* Same as STORE_NUMBER, except increment DESTINATION to
697 the byte after where the number is stored. Therefore, DESTINATION
698 must be an lvalue. */
700 #define STORE_NUMBER_AND_INCR(destination, number) \
702 STORE_NUMBER (destination, number); \
703 (destination) += 2; \
706 /* Put into DESTINATION a number stored in two contiguous bytes starting
709 #define EXTRACT_NUMBER(destination, source) \
711 (destination) = *(source) & 0377; \
712 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
716 static void extract_number
_RE_ARGS ((int *dest
, re_char
*source
));
718 extract_number (dest
, source
)
722 int temp
= SIGN_EXTEND_CHAR (*(source
+ 1));
723 *dest
= *source
& 0377;
727 # ifndef EXTRACT_MACROS /* To debug the macros. */
728 # undef EXTRACT_NUMBER
729 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
730 # endif /* not EXTRACT_MACROS */
734 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
735 SOURCE must be an lvalue. */
737 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
739 EXTRACT_NUMBER (destination, source); \
744 static void extract_number_and_incr
_RE_ARGS ((int *destination
,
747 extract_number_and_incr (destination
, source
)
751 extract_number (destination
, *source
);
755 # ifndef EXTRACT_MACROS
756 # undef EXTRACT_NUMBER_AND_INCR
757 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
758 extract_number_and_incr (&dest, &src)
759 # endif /* not EXTRACT_MACROS */
763 /* Store a multibyte character in three contiguous bytes starting
764 DESTINATION, and increment DESTINATION to the byte after where the
765 character is stored. Therefore, DESTINATION must be an lvalue. */
767 #define STORE_CHARACTER_AND_INCR(destination, character) \
769 (destination)[0] = (character) & 0377; \
770 (destination)[1] = ((character) >> 8) & 0377; \
771 (destination)[2] = (character) >> 16; \
772 (destination) += 3; \
775 /* Put into DESTINATION a character stored in three contiguous bytes
776 starting at SOURCE. */
778 #define EXTRACT_CHARACTER(destination, source) \
780 (destination) = ((source)[0] \
781 | ((source)[1] << 8) \
782 | ((source)[2] << 16)); \
786 /* Macros for charset. */
788 /* Size of bitmap of charset P in bytes. P is a start of charset,
789 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
790 #define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
792 /* Nonzero if charset P has range table. */
793 #define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
795 /* Return the address of range table of charset P. But not the start
796 of table itself, but the before where the number of ranges is
797 stored. `2 +' means to skip re_opcode_t and size of bitmap,
798 and the 2 bytes of flags at the start of the range table. */
799 #define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
801 /* Extract the bit flags that start a range table. */
802 #define CHARSET_RANGE_TABLE_BITS(p) \
803 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
804 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
806 /* Test if C is listed in the bitmap of charset P. */
807 #define CHARSET_LOOKUP_BITMAP(p, c) \
808 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
809 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
811 /* Return the address of end of RANGE_TABLE. COUNT is number of
812 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
813 is start of range and end of range. `* 3' is size of each start
815 #define CHARSET_RANGE_TABLE_END(range_table, count) \
816 ((range_table) + (count) * 2 * 3)
818 /* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
819 COUNT is number of ranges in RANGE_TABLE. */
820 #define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
823 re_wchar_t range_start, range_end; \
825 re_char *range_table_end \
826 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
828 for (p = (range_table); p < range_table_end; p += 2 * 3) \
830 EXTRACT_CHARACTER (range_start, p); \
831 EXTRACT_CHARACTER (range_end, p + 3); \
833 if (range_start <= (c) && (c) <= range_end) \
842 /* Test if C is in range table of CHARSET. The flag NOT is negated if
843 C is listed in it. */
844 #define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
847 /* Number of ranges in range table. */ \
849 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
851 EXTRACT_NUMBER_AND_INCR (count, range_table); \
852 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
856 /* If DEBUG is defined, Regex prints many voluminous messages about what
857 it is doing (if the variable `debug' is nonzero). If linked with the
858 main program in `iregex.c', you can enter patterns and strings
859 interactively. And if linked with the main program in `main.c' and
860 the other test files, you can run the already-written tests. */
864 /* We use standard I/O for debugging. */
867 /* It is useful to test things that ``must'' be true when debugging. */
870 static int debug
= -100000;
872 # define DEBUG_STATEMENT(e) e
873 # define DEBUG_PRINT1(x) if (debug > 0) printf (x)
874 # define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
875 # define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
876 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
877 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
878 if (debug > 0) print_partial_compiled_pattern (s, e)
879 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
880 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
883 /* Print the fastmap in human-readable form. */
886 print_fastmap (fastmap
)
889 unsigned was_a_range
= 0;
892 while (i
< (1 << BYTEWIDTH
))
898 while (i
< (1 << BYTEWIDTH
) && fastmap
[i
])
914 /* Print a compiled pattern string in human-readable form, starting at
915 the START pointer into it and ending just before the pointer END. */
918 print_partial_compiled_pattern (start
, end
)
928 fprintf (stderr
, "(null)\n");
932 /* Loop over pattern commands. */
935 fprintf (stderr
, "%d:\t", p
- start
);
937 switch ((re_opcode_t
) *p
++)
940 fprintf (stderr
, "/no_op");
944 fprintf (stderr
, "/succeed");
949 fprintf (stderr
, "/exactn/%d", mcnt
);
952 fprintf (stderr
, "/%c", *p
++);
958 fprintf (stderr
, "/start_memory/%d", *p
++);
962 fprintf (stderr
, "/stop_memory/%d", *p
++);
966 fprintf (stderr
, "/duplicate/%d", *p
++);
970 fprintf (stderr
, "/anychar");
976 register int c
, last
= -100;
977 register int in_range
= 0;
978 int length
= CHARSET_BITMAP_SIZE (p
- 1);
979 int has_range_table
= CHARSET_RANGE_TABLE_EXISTS_P (p
- 1);
981 fprintf (stderr
, "/charset [%s",
982 (re_opcode_t
) *(p
- 1) == charset_not
? "^" : "");
985 fprintf (stderr
, " !extends past end of pattern! ");
987 for (c
= 0; c
< 256; c
++)
989 && (p
[1 + (c
/8)] & (1 << (c
% 8))))
991 /* Are we starting a range? */
992 if (last
+ 1 == c
&& ! in_range
)
994 fprintf (stderr
, "-");
997 /* Have we broken a range? */
998 else if (last
+ 1 != c
&& in_range
)
1000 fprintf (stderr
, "%c", last
);
1005 fprintf (stderr
, "%c", c
);
1011 fprintf (stderr
, "%c", last
);
1013 fprintf (stderr
, "]");
1017 if (has_range_table
)
1020 fprintf (stderr
, "has-range-table");
1022 /* ??? Should print the range table; for now, just skip it. */
1023 p
+= 2; /* skip range table bits */
1024 EXTRACT_NUMBER_AND_INCR (count
, p
);
1025 p
= CHARSET_RANGE_TABLE_END (p
, count
);
1031 fprintf (stderr
, "/begline");
1035 fprintf (stderr
, "/endline");
1038 case on_failure_jump
:
1039 extract_number_and_incr (&mcnt
, &p
);
1040 fprintf (stderr
, "/on_failure_jump to %d", p
+ mcnt
- start
);
1043 case on_failure_keep_string_jump
:
1044 extract_number_and_incr (&mcnt
, &p
);
1045 fprintf (stderr
, "/on_failure_keep_string_jump to %d", p
+ mcnt
- start
);
1048 case on_failure_jump_nastyloop
:
1049 extract_number_and_incr (&mcnt
, &p
);
1050 fprintf (stderr
, "/on_failure_jump_nastyloop to %d", p
+ mcnt
- start
);
1053 case on_failure_jump_loop
:
1054 extract_number_and_incr (&mcnt
, &p
);
1055 fprintf (stderr
, "/on_failure_jump_loop to %d", p
+ mcnt
- start
);
1058 case on_failure_jump_smart
:
1059 extract_number_and_incr (&mcnt
, &p
);
1060 fprintf (stderr
, "/on_failure_jump_smart to %d", p
+ mcnt
- start
);
1064 extract_number_and_incr (&mcnt
, &p
);
1065 fprintf (stderr
, "/jump to %d", p
+ mcnt
- start
);
1069 extract_number_and_incr (&mcnt
, &p
);
1070 extract_number_and_incr (&mcnt2
, &p
);
1071 fprintf (stderr
, "/succeed_n to %d, %d times", p
- 2 + mcnt
- start
, mcnt2
);
1075 extract_number_and_incr (&mcnt
, &p
);
1076 extract_number_and_incr (&mcnt2
, &p
);
1077 fprintf (stderr
, "/jump_n to %d, %d times", p
- 2 + mcnt
- start
, mcnt2
);
1081 extract_number_and_incr (&mcnt
, &p
);
1082 extract_number_and_incr (&mcnt2
, &p
);
1083 fprintf (stderr
, "/set_number_at location %d to %d", p
- 2 + mcnt
- start
, mcnt2
);
1087 fprintf (stderr
, "/wordbound");
1091 fprintf (stderr
, "/notwordbound");
1095 fprintf (stderr
, "/wordbeg");
1099 fprintf (stderr
, "/wordend");
1103 fprintf (stderr
, "/symbeg");
1107 fprintf (stderr
, "/symend");
1111 fprintf (stderr
, "/syntaxspec");
1113 fprintf (stderr
, "/%d", mcnt
);
1117 fprintf (stderr
, "/notsyntaxspec");
1119 fprintf (stderr
, "/%d", mcnt
);
1124 fprintf (stderr
, "/before_dot");
1128 fprintf (stderr
, "/at_dot");
1132 fprintf (stderr
, "/after_dot");
1136 fprintf (stderr
, "/categoryspec");
1138 fprintf (stderr
, "/%d", mcnt
);
1141 case notcategoryspec
:
1142 fprintf (stderr
, "/notcategoryspec");
1144 fprintf (stderr
, "/%d", mcnt
);
1149 fprintf (stderr
, "/begbuf");
1153 fprintf (stderr
, "/endbuf");
1157 fprintf (stderr
, "?%d", *(p
-1));
1160 fprintf (stderr
, "\n");
1163 fprintf (stderr
, "%d:\tend of pattern.\n", p
- start
);
1168 print_compiled_pattern (bufp
)
1169 struct re_pattern_buffer
*bufp
;
1171 re_char
*buffer
= bufp
->buffer
;
1173 print_partial_compiled_pattern (buffer
, buffer
+ bufp
->used
);
1174 printf ("%ld bytes used/%ld bytes allocated.\n",
1175 bufp
->used
, bufp
->allocated
);
1177 if (bufp
->fastmap_accurate
&& bufp
->fastmap
)
1179 printf ("fastmap: ");
1180 print_fastmap (bufp
->fastmap
);
1183 printf ("re_nsub: %d\t", bufp
->re_nsub
);
1184 printf ("regs_alloc: %d\t", bufp
->regs_allocated
);
1185 printf ("can_be_null: %d\t", bufp
->can_be_null
);
1186 printf ("no_sub: %d\t", bufp
->no_sub
);
1187 printf ("not_bol: %d\t", bufp
->not_bol
);
1188 printf ("not_eol: %d\t", bufp
->not_eol
);
1189 printf ("syntax: %lx\n", bufp
->syntax
);
1191 /* Perhaps we should print the translate table? */
1196 print_double_string (where
, string1
, size1
, string2
, size2
)
1209 if (FIRST_STRING_P (where
))
1211 for (this_char
= where
- string1
; this_char
< size1
; this_char
++)
1212 putchar (string1
[this_char
]);
1217 for (this_char
= where
- string2
; this_char
< size2
; this_char
++)
1218 putchar (string2
[this_char
]);
1222 #else /* not DEBUG */
1227 # define DEBUG_STATEMENT(e)
1228 # define DEBUG_PRINT1(x)
1229 # define DEBUG_PRINT2(x1, x2)
1230 # define DEBUG_PRINT3(x1, x2, x3)
1231 # define DEBUG_PRINT4(x1, x2, x3, x4)
1232 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1233 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1235 #endif /* not DEBUG */
1237 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1238 also be assigned to arbitrarily: each pattern buffer stores its own
1239 syntax, so it can be changed between regex compilations. */
1240 /* This has no initializer because initialized variables in Emacs
1241 become read-only after dumping. */
1242 reg_syntax_t re_syntax_options
;
1245 /* Specify the precise syntax of regexps for compilation. This provides
1246 for compatibility for various utilities which historically have
1247 different, incompatible syntaxes.
1249 The argument SYNTAX is a bit mask comprised of the various bits
1250 defined in regex.h. We return the old syntax. */
1253 re_set_syntax (syntax
)
1254 reg_syntax_t syntax
;
1256 reg_syntax_t ret
= re_syntax_options
;
1258 re_syntax_options
= syntax
;
1261 WEAK_ALIAS (__re_set_syntax
, re_set_syntax
)
1263 /* Regexp to use to replace spaces, or NULL meaning don't. */
1264 static re_char
*whitespace_regexp
;
1267 re_set_whitespace_regexp (regexp
)
1270 whitespace_regexp
= (re_char
*) regexp
;
1272 WEAK_ALIAS (__re_set_syntax
, re_set_syntax
)
1274 /* This table gives an error message for each of the error codes listed
1275 in regex.h. Obviously the order here has to be same as there.
1276 POSIX doesn't require that we do anything for REG_NOERROR,
1277 but why not be nice? */
1279 static const char *re_error_msgid
[] =
1281 gettext_noop ("Success"), /* REG_NOERROR */
1282 gettext_noop ("No match"), /* REG_NOMATCH */
1283 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1284 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1285 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1286 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1287 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1288 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1289 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1290 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1291 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1292 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1293 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1294 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1295 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1296 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1297 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1298 gettext_noop ("Range striding over charsets") /* REG_ERANGEX */
1301 /* Avoiding alloca during matching, to placate r_alloc. */
1303 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1304 searching and matching functions should not call alloca. On some
1305 systems, alloca is implemented in terms of malloc, and if we're
1306 using the relocating allocator routines, then malloc could cause a
1307 relocation, which might (if the strings being searched are in the
1308 ralloc heap) shift the data out from underneath the regexp
1311 Here's another reason to avoid allocation: Emacs
1312 processes input from X in a signal handler; processing X input may
1313 call malloc; if input arrives while a matching routine is calling
1314 malloc, then we're scrod. But Emacs can't just block input while
1315 calling matching routines; then we don't notice interrupts when
1316 they come in. So, Emacs blocks input around all regexp calls
1317 except the matching calls, which it leaves unprotected, in the
1318 faith that they will not malloc. */
1320 /* Normally, this is fine. */
1321 #define MATCH_MAY_ALLOCATE
1323 /* When using GNU C, we are not REALLY using the C alloca, no matter
1324 what config.h may say. So don't take precautions for it. */
1329 /* The match routines may not allocate if (1) they would do it with malloc
1330 and (2) it's not safe for them to use malloc.
1331 Note that if REL_ALLOC is defined, matching would not use malloc for the
1332 failure stack, but we would still use it for the register vectors;
1333 so REL_ALLOC should not affect this. */
1334 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1335 # undef MATCH_MAY_ALLOCATE
1339 /* Failure stack declarations and macros; both re_compile_fastmap and
1340 re_match_2 use a failure stack. These have to be macros because of
1341 REGEX_ALLOCATE_STACK. */
1344 /* Approximate number of failure points for which to initially allocate space
1345 when matching. If this number is exceeded, we allocate more
1346 space, so it is not a hard limit. */
1347 #ifndef INIT_FAILURE_ALLOC
1348 # define INIT_FAILURE_ALLOC 20
1351 /* Roughly the maximum number of failure points on the stack. Would be
1352 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
1353 This is a variable only so users of regex can assign to it; we never
1354 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1355 before using it, so it should probably be a byte-count instead. */
1356 # if defined MATCH_MAY_ALLOCATE
1357 /* Note that 4400 was enough to cause a crash on Alpha OSF/1,
1358 whose default stack limit is 2mb. In order for a larger
1359 value to work reliably, you have to try to make it accord
1360 with the process stack limit. */
1361 size_t re_max_failures
= 40000;
1363 size_t re_max_failures
= 4000;
1366 union fail_stack_elt
1369 /* This should be the biggest `int' that's no bigger than a pointer. */
1373 typedef union fail_stack_elt fail_stack_elt_t
;
1377 fail_stack_elt_t
*stack
;
1379 size_t avail
; /* Offset of next open position. */
1380 size_t frame
; /* Offset of the cur constructed frame. */
1383 #define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
1384 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1387 /* Define macros to initialize and free the failure stack.
1388 Do `return -2' if the alloc fails. */
1390 #ifdef MATCH_MAY_ALLOCATE
1391 # define INIT_FAIL_STACK() \
1393 fail_stack.stack = (fail_stack_elt_t *) \
1394 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1395 * sizeof (fail_stack_elt_t)); \
1397 if (fail_stack.stack == NULL) \
1400 fail_stack.size = INIT_FAILURE_ALLOC; \
1401 fail_stack.avail = 0; \
1402 fail_stack.frame = 0; \
1405 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1407 # define INIT_FAIL_STACK() \
1409 fail_stack.avail = 0; \
1410 fail_stack.frame = 0; \
1413 # define RESET_FAIL_STACK() ((void)0)
1417 /* Double the size of FAIL_STACK, up to a limit
1418 which allows approximately `re_max_failures' items.
1420 Return 1 if succeeds, and 0 if either ran out of memory
1421 allocating space for it or it was already too large.
1423 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1425 /* Factor to increase the failure stack size by
1426 when we increase it.
1427 This used to be 2, but 2 was too wasteful
1428 because the old discarded stacks added up to as much space
1429 were as ultimate, maximum-size stack. */
1430 #define FAIL_STACK_GROWTH_FACTOR 4
1432 #define GROW_FAIL_STACK(fail_stack) \
1433 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1434 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
1436 : ((fail_stack).stack \
1437 = (fail_stack_elt_t *) \
1438 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1439 (fail_stack).size * sizeof (fail_stack_elt_t), \
1440 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1441 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1442 * FAIL_STACK_GROWTH_FACTOR))), \
1444 (fail_stack).stack == NULL \
1446 : ((fail_stack).size \
1447 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1448 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1449 * FAIL_STACK_GROWTH_FACTOR)) \
1450 / sizeof (fail_stack_elt_t)), \
1454 /* Push a pointer value onto the failure stack.
1455 Assumes the variable `fail_stack'. Probably should only
1456 be called from within `PUSH_FAILURE_POINT'. */
1457 #define PUSH_FAILURE_POINTER(item) \
1458 fail_stack.stack[fail_stack.avail++].pointer = (item)
1460 /* This pushes an integer-valued item onto the failure stack.
1461 Assumes the variable `fail_stack'. Probably should only
1462 be called from within `PUSH_FAILURE_POINT'. */
1463 #define PUSH_FAILURE_INT(item) \
1464 fail_stack.stack[fail_stack.avail++].integer = (item)
1466 /* Push a fail_stack_elt_t value onto the failure stack.
1467 Assumes the variable `fail_stack'. Probably should only
1468 be called from within `PUSH_FAILURE_POINT'. */
1469 #define PUSH_FAILURE_ELT(item) \
1470 fail_stack.stack[fail_stack.avail++] = (item)
1472 /* These three POP... operations complement the three PUSH... operations.
1473 All assume that `fail_stack' is nonempty. */
1474 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1475 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1476 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1478 /* Individual items aside from the registers. */
1479 #define NUM_NONREG_ITEMS 3
1481 /* Used to examine the stack (to detect infinite loops). */
1482 #define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
1483 #define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
1484 #define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1485 #define TOP_FAILURE_HANDLE() fail_stack.frame
1488 #define ENSURE_FAIL_STACK(space) \
1489 while (REMAINING_AVAIL_SLOTS <= space) { \
1490 if (!GROW_FAIL_STACK (fail_stack)) \
1492 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1493 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1496 /* Push register NUM onto the stack. */
1497 #define PUSH_FAILURE_REG(num) \
1499 char *destination; \
1500 ENSURE_FAIL_STACK(3); \
1501 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1502 num, regstart[num], regend[num]); \
1503 PUSH_FAILURE_POINTER (regstart[num]); \
1504 PUSH_FAILURE_POINTER (regend[num]); \
1505 PUSH_FAILURE_INT (num); \
1508 /* Change the counter's value to VAL, but make sure that it will
1509 be reset when backtracking. */
1510 #define PUSH_NUMBER(ptr,val) \
1512 char *destination; \
1514 ENSURE_FAIL_STACK(3); \
1515 EXTRACT_NUMBER (c, ptr); \
1516 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
1517 PUSH_FAILURE_INT (c); \
1518 PUSH_FAILURE_POINTER (ptr); \
1519 PUSH_FAILURE_INT (-1); \
1520 STORE_NUMBER (ptr, val); \
1523 /* Pop a saved register off the stack. */
1524 #define POP_FAILURE_REG_OR_COUNT() \
1526 int reg = POP_FAILURE_INT (); \
1529 /* It's a counter. */ \
1530 /* Here, we discard `const', making re_match non-reentrant. */ \
1531 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
1532 reg = POP_FAILURE_INT (); \
1533 STORE_NUMBER (ptr, reg); \
1534 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
1538 regend[reg] = POP_FAILURE_POINTER (); \
1539 regstart[reg] = POP_FAILURE_POINTER (); \
1540 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1541 reg, regstart[reg], regend[reg]); \
1545 /* Check that we are not stuck in an infinite loop. */
1546 #define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1548 int failure = TOP_FAILURE_HANDLE (); \
1549 /* Check for infinite matching loops */ \
1550 while (failure > 0 \
1551 && (FAILURE_STR (failure) == string_place \
1552 || FAILURE_STR (failure) == NULL)) \
1554 assert (FAILURE_PAT (failure) >= bufp->buffer \
1555 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
1556 if (FAILURE_PAT (failure) == pat_cur) \
1561 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
1562 failure = NEXT_FAILURE_HANDLE(failure); \
1564 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1567 /* Push the information about the state we will need
1568 if we ever fail back to it.
1570 Requires variables fail_stack, regstart, regend and
1571 num_regs be declared. GROW_FAIL_STACK requires `destination' be
1574 Does `return FAILURE_CODE' if runs out of memory. */
1576 #define PUSH_FAILURE_POINT(pattern, string_place) \
1578 char *destination; \
1579 /* Must be int, so when we don't save any registers, the arithmetic \
1580 of 0 + -1 isn't done as unsigned. */ \
1582 DEBUG_STATEMENT (nfailure_points_pushed++); \
1583 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
1584 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1585 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1587 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1589 DEBUG_PRINT1 ("\n"); \
1591 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1592 PUSH_FAILURE_INT (fail_stack.frame); \
1594 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1595 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1596 DEBUG_PRINT1 ("'\n"); \
1597 PUSH_FAILURE_POINTER (string_place); \
1599 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1600 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1601 PUSH_FAILURE_POINTER (pattern); \
1603 /* Close the frame by moving the frame pointer past it. */ \
1604 fail_stack.frame = fail_stack.avail; \
1607 /* Estimate the size of data pushed by a typical failure stack entry.
1608 An estimate is all we need, because all we use this for
1609 is to choose a limit for how big to make the failure stack. */
1610 /* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
1611 #define TYPICAL_FAILURE_SIZE 20
1613 /* How many items can still be added to the stack without overflowing it. */
1614 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1617 /* Pops what PUSH_FAIL_STACK pushes.
1619 We restore into the parameters, all of which should be lvalues:
1620 STR -- the saved data position.
1621 PAT -- the saved pattern position.
1622 REGSTART, REGEND -- arrays of string positions.
1624 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1625 `pend', `string1', `size1', `string2', and `size2'. */
1627 #define POP_FAILURE_POINT(str, pat) \
1629 assert (!FAIL_STACK_EMPTY ()); \
1631 /* Remove failure points and point to how many regs pushed. */ \
1632 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1633 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1634 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1636 /* Pop the saved registers. */ \
1637 while (fail_stack.frame < fail_stack.avail) \
1638 POP_FAILURE_REG_OR_COUNT (); \
1640 pat = POP_FAILURE_POINTER (); \
1641 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1642 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1644 /* If the saved string location is NULL, it came from an \
1645 on_failure_keep_string_jump opcode, and we want to throw away the \
1646 saved NULL, thus retaining our current position in the string. */ \
1647 str = POP_FAILURE_POINTER (); \
1648 DEBUG_PRINT2 (" Popping string %p: `", str); \
1649 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1650 DEBUG_PRINT1 ("'\n"); \
1652 fail_stack.frame = POP_FAILURE_INT (); \
1653 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
1655 assert (fail_stack.avail >= 0); \
1656 assert (fail_stack.frame <= fail_stack.avail); \
1658 DEBUG_STATEMENT (nfailure_points_popped++); \
1659 } while (0) /* POP_FAILURE_POINT */
1663 /* Registers are set to a sentinel when they haven't yet matched. */
1664 #define REG_UNSET(e) ((e) == NULL)
1666 /* Subroutine declarations and macros for regex_compile. */
1668 static reg_errcode_t regex_compile
_RE_ARGS ((re_char
*pattern
, size_t size
,
1669 reg_syntax_t syntax
,
1670 struct re_pattern_buffer
*bufp
));
1671 static void store_op1
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
, int arg
));
1672 static void store_op2
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1673 int arg1
, int arg2
));
1674 static void insert_op1
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1675 int arg
, unsigned char *end
));
1676 static void insert_op2
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1677 int arg1
, int arg2
, unsigned char *end
));
1678 static boolean at_begline_loc_p
_RE_ARGS ((re_char
*pattern
,
1680 reg_syntax_t syntax
));
1681 static boolean at_endline_loc_p
_RE_ARGS ((re_char
*p
,
1683 reg_syntax_t syntax
));
1684 static re_char
*skip_one_char
_RE_ARGS ((re_char
*p
));
1685 static int analyse_first
_RE_ARGS ((re_char
*p
, re_char
*pend
,
1686 char *fastmap
, const int multibyte
));
1688 /* Fetch the next character in the uncompiled pattern, with no
1690 #define PATFETCH(c) \
1693 if (p == pend) return REG_EEND; \
1694 c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len); \
1699 /* If `translate' is non-null, return translate[D], else just D. We
1700 cast the subscript to translate because some data is declared as
1701 `char *', to avoid warnings when a string constant is passed. But
1702 when we use a character as a subscript we must make it unsigned. */
1704 # define TRANSLATE(d) \
1705 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
1709 /* Macros for outputting the compiled pattern into `buffer'. */
1711 /* If the buffer isn't allocated when it comes in, use this. */
1712 #define INIT_BUF_SIZE 32
1714 /* Make sure we have at least N more bytes of space in buffer. */
1715 #define GET_BUFFER_SPACE(n) \
1716 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
1719 /* Make sure we have one more byte of buffer space and then add C to it. */
1720 #define BUF_PUSH(c) \
1722 GET_BUFFER_SPACE (1); \
1723 *b++ = (unsigned char) (c); \
1727 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1728 #define BUF_PUSH_2(c1, c2) \
1730 GET_BUFFER_SPACE (2); \
1731 *b++ = (unsigned char) (c1); \
1732 *b++ = (unsigned char) (c2); \
1736 /* As with BUF_PUSH_2, except for three bytes. */
1737 #define BUF_PUSH_3(c1, c2, c3) \
1739 GET_BUFFER_SPACE (3); \
1740 *b++ = (unsigned char) (c1); \
1741 *b++ = (unsigned char) (c2); \
1742 *b++ = (unsigned char) (c3); \
1746 /* Store a jump with opcode OP at LOC to location TO. We store a
1747 relative address offset by the three bytes the jump itself occupies. */
1748 #define STORE_JUMP(op, loc, to) \
1749 store_op1 (op, loc, (to) - (loc) - 3)
1751 /* Likewise, for a two-argument jump. */
1752 #define STORE_JUMP2(op, loc, to, arg) \
1753 store_op2 (op, loc, (to) - (loc) - 3, arg)
1755 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1756 #define INSERT_JUMP(op, loc, to) \
1757 insert_op1 (op, loc, (to) - (loc) - 3, b)
1759 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1760 #define INSERT_JUMP2(op, loc, to, arg) \
1761 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1764 /* This is not an arbitrary limit: the arguments which represent offsets
1765 into the pattern are two bytes long. So if 2^15 bytes turns out to
1766 be too small, many things would have to change. */
1767 # define MAX_BUF_SIZE (1L << 15)
1769 #if 0 /* This is when we thought it could be 2^16 bytes. */
1770 /* Any other compiler which, like MSC, has allocation limit below 2^16
1771 bytes will have to use approach similar to what was done below for
1772 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1773 reallocating to 0 bytes. Such thing is not going to work too well.
1774 You have been warned!! */
1775 #if defined _MSC_VER && !defined WIN32
1776 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1777 # define MAX_BUF_SIZE 65500L
1779 # define MAX_BUF_SIZE (1L << 16)
1783 /* Extend the buffer by twice its current size via realloc and
1784 reset the pointers that pointed into the old block to point to the
1785 correct places in the new one. If extending the buffer results in it
1786 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1787 #if __BOUNDED_POINTERS__
1788 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1789 # define MOVE_BUFFER_POINTER(P) \
1790 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
1791 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1794 SET_HIGH_BOUND (b); \
1795 SET_HIGH_BOUND (begalt); \
1796 if (fixup_alt_jump) \
1797 SET_HIGH_BOUND (fixup_alt_jump); \
1799 SET_HIGH_BOUND (laststart); \
1800 if (pending_exact) \
1801 SET_HIGH_BOUND (pending_exact); \
1804 # define MOVE_BUFFER_POINTER(P) (P) += incr
1805 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
1807 #define EXTEND_BUFFER() \
1809 re_char *old_buffer = bufp->buffer; \
1810 if (bufp->allocated == MAX_BUF_SIZE) \
1812 bufp->allocated <<= 1; \
1813 if (bufp->allocated > MAX_BUF_SIZE) \
1814 bufp->allocated = MAX_BUF_SIZE; \
1815 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
1816 if (bufp->buffer == NULL) \
1817 return REG_ESPACE; \
1818 /* If the buffer moved, move all the pointers into it. */ \
1819 if (old_buffer != bufp->buffer) \
1821 int incr = bufp->buffer - old_buffer; \
1822 MOVE_BUFFER_POINTER (b); \
1823 MOVE_BUFFER_POINTER (begalt); \
1824 if (fixup_alt_jump) \
1825 MOVE_BUFFER_POINTER (fixup_alt_jump); \
1827 MOVE_BUFFER_POINTER (laststart); \
1828 if (pending_exact) \
1829 MOVE_BUFFER_POINTER (pending_exact); \
1831 ELSE_EXTEND_BUFFER_HIGH_BOUND \
1835 /* Since we have one byte reserved for the register number argument to
1836 {start,stop}_memory, the maximum number of groups we can report
1837 things about is what fits in that byte. */
1838 #define MAX_REGNUM 255
1840 /* But patterns can have more than `MAX_REGNUM' registers. We just
1841 ignore the excess. */
1842 typedef int regnum_t
;
1845 /* Macros for the compile stack. */
1847 /* Since offsets can go either forwards or backwards, this type needs to
1848 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1849 /* int may be not enough when sizeof(int) == 2. */
1850 typedef long pattern_offset_t
;
1854 pattern_offset_t begalt_offset
;
1855 pattern_offset_t fixup_alt_jump
;
1856 pattern_offset_t laststart_offset
;
1858 } compile_stack_elt_t
;
1863 compile_stack_elt_t
*stack
;
1865 unsigned avail
; /* Offset of next open position. */
1866 } compile_stack_type
;
1869 #define INIT_COMPILE_STACK_SIZE 32
1871 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1872 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1874 /* The next available element. */
1875 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1877 /* Explicit quit checking is only used on NTemacs. */
1878 #if defined WINDOWSNT && defined emacs && defined QUIT
1879 extern int immediate_quit
;
1880 # define IMMEDIATE_QUIT_CHECK \
1882 if (immediate_quit) QUIT; \
1885 # define IMMEDIATE_QUIT_CHECK ((void)0)
1888 /* Structure to manage work area for range table. */
1889 struct range_table_work_area
1891 int *table
; /* actual work area. */
1892 int allocated
; /* allocated size for work area in bytes. */
1893 int used
; /* actually used size in words. */
1894 int bits
; /* flag to record character classes */
1897 /* Make sure that WORK_AREA can hold more N multibyte characters.
1898 This is used only in set_image_of_range and set_image_of_range_1.
1899 It expects WORK_AREA to be a pointer.
1900 If it can't get the space, it returns from the surrounding function. */
1902 #define EXTEND_RANGE_TABLE(work_area, n) \
1904 if (((work_area)->used + (n)) * sizeof (int) > (work_area)->allocated) \
1906 extend_range_table_work_area (work_area); \
1907 if ((work_area)->table == 0) \
1908 return (REG_ESPACE); \
1912 #define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1913 (work_area).bits |= (bit)
1915 /* Bits used to implement the multibyte-part of the various character classes
1916 such as [:alnum:] in a charset's range table. */
1917 #define BIT_WORD 0x1
1918 #define BIT_LOWER 0x2
1919 #define BIT_PUNCT 0x4
1920 #define BIT_SPACE 0x8
1921 #define BIT_UPPER 0x10
1922 #define BIT_MULTIBYTE 0x20
1924 /* Set a range START..END to WORK_AREA.
1925 The range is passed through TRANSLATE, so START and END
1926 should be untranslated. */
1927 #define SET_RANGE_TABLE_WORK_AREA(work_area, start, end) \
1930 tem = set_image_of_range (&work_area, start, end, translate); \
1932 FREE_STACK_RETURN (tem); \
1935 /* Free allocated memory for WORK_AREA. */
1936 #define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1938 if ((work_area).table) \
1939 free ((work_area).table); \
1942 #define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
1943 #define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1944 #define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
1945 #define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1948 /* Set the bit for character C in a list. */
1949 #define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
1952 /* Get the next unsigned number in the uncompiled pattern. */
1953 #define GET_UNSIGNED_NUMBER(num) \
1956 FREE_STACK_RETURN (REG_EBRACE); \
1960 while ('0' <= c && c <= '9') \
1966 num = num * 10 + c - '0'; \
1967 if (num / 10 != prev) \
1968 FREE_STACK_RETURN (REG_BADBR); \
1970 FREE_STACK_RETURN (REG_EBRACE); \
1976 #if ! WIDE_CHAR_SUPPORT
1978 /* Map a string to the char class it names (if any). */
1983 const char *string
= str
;
1984 if (STREQ (string
, "alnum")) return RECC_ALNUM
;
1985 else if (STREQ (string
, "alpha")) return RECC_ALPHA
;
1986 else if (STREQ (string
, "word")) return RECC_WORD
;
1987 else if (STREQ (string
, "ascii")) return RECC_ASCII
;
1988 else if (STREQ (string
, "nonascii")) return RECC_NONASCII
;
1989 else if (STREQ (string
, "graph")) return RECC_GRAPH
;
1990 else if (STREQ (string
, "lower")) return RECC_LOWER
;
1991 else if (STREQ (string
, "print")) return RECC_PRINT
;
1992 else if (STREQ (string
, "punct")) return RECC_PUNCT
;
1993 else if (STREQ (string
, "space")) return RECC_SPACE
;
1994 else if (STREQ (string
, "upper")) return RECC_UPPER
;
1995 else if (STREQ (string
, "unibyte")) return RECC_UNIBYTE
;
1996 else if (STREQ (string
, "multibyte")) return RECC_MULTIBYTE
;
1997 else if (STREQ (string
, "digit")) return RECC_DIGIT
;
1998 else if (STREQ (string
, "xdigit")) return RECC_XDIGIT
;
1999 else if (STREQ (string
, "cntrl")) return RECC_CNTRL
;
2000 else if (STREQ (string
, "blank")) return RECC_BLANK
;
2004 /* True iff CH is in the char class CC. */
2006 re_iswctype (ch
, cc
)
2012 case RECC_ALNUM
: return ISALNUM (ch
);
2013 case RECC_ALPHA
: return ISALPHA (ch
);
2014 case RECC_BLANK
: return ISBLANK (ch
);
2015 case RECC_CNTRL
: return ISCNTRL (ch
);
2016 case RECC_DIGIT
: return ISDIGIT (ch
);
2017 case RECC_GRAPH
: return ISGRAPH (ch
);
2018 case RECC_LOWER
: return ISLOWER (ch
);
2019 case RECC_PRINT
: return ISPRINT (ch
);
2020 case RECC_PUNCT
: return ISPUNCT (ch
);
2021 case RECC_SPACE
: return ISSPACE (ch
);
2022 case RECC_UPPER
: return ISUPPER (ch
);
2023 case RECC_XDIGIT
: return ISXDIGIT (ch
);
2024 case RECC_ASCII
: return IS_REAL_ASCII (ch
);
2025 case RECC_NONASCII
: return !IS_REAL_ASCII (ch
);
2026 case RECC_UNIBYTE
: return ISUNIBYTE (ch
);
2027 case RECC_MULTIBYTE
: return !ISUNIBYTE (ch
);
2028 case RECC_WORD
: return ISWORD (ch
);
2029 case RECC_ERROR
: return false;
2035 /* Return a bit-pattern to use in the range-table bits to match multibyte
2036 chars of class CC. */
2038 re_wctype_to_bit (cc
)
2043 case RECC_NONASCII
: case RECC_PRINT
: case RECC_GRAPH
:
2044 case RECC_MULTIBYTE
: return BIT_MULTIBYTE
;
2045 case RECC_ALPHA
: case RECC_ALNUM
: case RECC_WORD
: return BIT_WORD
;
2046 case RECC_LOWER
: return BIT_LOWER
;
2047 case RECC_UPPER
: return BIT_UPPER
;
2048 case RECC_PUNCT
: return BIT_PUNCT
;
2049 case RECC_SPACE
: return BIT_SPACE
;
2050 case RECC_ASCII
: case RECC_DIGIT
: case RECC_XDIGIT
: case RECC_CNTRL
:
2051 case RECC_BLANK
: case RECC_UNIBYTE
: case RECC_ERROR
: return 0;
2058 /* Filling in the work area of a range. */
2060 /* Actually extend the space in WORK_AREA. */
2063 extend_range_table_work_area (work_area
)
2064 struct range_table_work_area
*work_area
;
2066 work_area
->allocated
+= 16 * sizeof (int);
2067 if (work_area
->table
)
2069 = (int *) realloc (work_area
->table
, work_area
->allocated
);
2072 = (int *) malloc (work_area
->allocated
);
2077 /* Carefully find the ranges of codes that are equivalent
2078 under case conversion to the range start..end when passed through
2079 TRANSLATE. Handle the case where non-letters can come in between
2080 two upper-case letters (which happens in Latin-1).
2081 Also handle the case of groups of more than 2 case-equivalent chars.
2083 The basic method is to look at consecutive characters and see
2084 if they can form a run that can be handled as one.
2086 Returns -1 if successful, REG_ESPACE if ran out of space. */
2089 set_image_of_range_1 (work_area
, start
, end
, translate
)
2090 RE_TRANSLATE_TYPE translate
;
2091 struct range_table_work_area
*work_area
;
2092 re_wchar_t start
, end
;
2094 /* `one_case' indicates a character, or a run of characters,
2095 each of which is an isolate (no case-equivalents).
2096 This includes all ASCII non-letters.
2098 `two_case' indicates a character, or a run of characters,
2099 each of which has two case-equivalent forms.
2100 This includes all ASCII letters.
2102 `strange' indicates a character that has more than one
2105 enum case_type
{one_case
, two_case
, strange
};
2107 /* Describe the run that is in progress,
2108 which the next character can try to extend.
2109 If run_type is strange, that means there really is no run.
2110 If run_type is one_case, then run_start...run_end is the run.
2111 If run_type is two_case, then the run is run_start...run_end,
2112 and the case-equivalents end at run_eqv_end. */
2114 enum case_type run_type
= strange
;
2115 int run_start
, run_end
, run_eqv_end
;
2117 Lisp_Object eqv_table
;
2119 if (!RE_TRANSLATE_P (translate
))
2121 EXTEND_RANGE_TABLE (work_area
, 2);
2122 work_area
->table
[work_area
->used
++] = (start
);
2123 work_area
->table
[work_area
->used
++] = (end
);
2127 eqv_table
= XCHAR_TABLE (translate
)->extras
[2];
2129 for (; start
<= end
; start
++)
2131 enum case_type this_type
;
2132 int eqv
= RE_TRANSLATE (eqv_table
, start
);
2133 int minchar
, maxchar
;
2135 /* Classify this character */
2137 this_type
= one_case
;
2138 else if (RE_TRANSLATE (eqv_table
, eqv
) == start
)
2139 this_type
= two_case
;
2141 this_type
= strange
;
2144 minchar
= start
, maxchar
= eqv
;
2146 minchar
= eqv
, maxchar
= start
;
2148 /* Can this character extend the run in progress? */
2149 if (this_type
== strange
|| this_type
!= run_type
2150 || !(minchar
== run_end
+ 1
2151 && (run_type
== two_case
2152 ? maxchar
== run_eqv_end
+ 1 : 1)))
2155 Record each of its equivalent ranges. */
2156 if (run_type
== one_case
)
2158 EXTEND_RANGE_TABLE (work_area
, 2);
2159 work_area
->table
[work_area
->used
++] = run_start
;
2160 work_area
->table
[work_area
->used
++] = run_end
;
2162 else if (run_type
== two_case
)
2164 EXTEND_RANGE_TABLE (work_area
, 4);
2165 work_area
->table
[work_area
->used
++] = run_start
;
2166 work_area
->table
[work_area
->used
++] = run_end
;
2167 work_area
->table
[work_area
->used
++]
2168 = RE_TRANSLATE (eqv_table
, run_start
);
2169 work_area
->table
[work_area
->used
++]
2170 = RE_TRANSLATE (eqv_table
, run_end
);
2175 if (this_type
== strange
)
2177 /* For a strange character, add each of its equivalents, one
2178 by one. Don't start a range. */
2181 EXTEND_RANGE_TABLE (work_area
, 2);
2182 work_area
->table
[work_area
->used
++] = eqv
;
2183 work_area
->table
[work_area
->used
++] = eqv
;
2184 eqv
= RE_TRANSLATE (eqv_table
, eqv
);
2186 while (eqv
!= start
);
2189 /* Add this char to the run, or start a new run. */
2190 else if (run_type
== strange
)
2192 /* Initialize a new range. */
2193 run_type
= this_type
;
2196 run_eqv_end
= RE_TRANSLATE (eqv_table
, run_end
);
2200 /* Extend a running range. */
2202 run_eqv_end
= RE_TRANSLATE (eqv_table
, run_end
);
2206 /* If a run is still in progress at the end, finish it now
2207 by recording its equivalent ranges. */
2208 if (run_type
== one_case
)
2210 EXTEND_RANGE_TABLE (work_area
, 2);
2211 work_area
->table
[work_area
->used
++] = run_start
;
2212 work_area
->table
[work_area
->used
++] = run_end
;
2214 else if (run_type
== two_case
)
2216 EXTEND_RANGE_TABLE (work_area
, 4);
2217 work_area
->table
[work_area
->used
++] = run_start
;
2218 work_area
->table
[work_area
->used
++] = run_end
;
2219 work_area
->table
[work_area
->used
++]
2220 = RE_TRANSLATE (eqv_table
, run_start
);
2221 work_area
->table
[work_area
->used
++]
2222 = RE_TRANSLATE (eqv_table
, run_end
);
2230 /* Record the the image of the range start..end when passed through
2231 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2232 and is not even necessarily contiguous.
2233 Normally we approximate it with the smallest contiguous range that contains
2234 all the chars we need. However, for Latin-1 we go to extra effort
2237 This function is not called for ASCII ranges.
2239 Returns -1 if successful, REG_ESPACE if ran out of space. */
2242 set_image_of_range (work_area
, start
, end
, translate
)
2243 RE_TRANSLATE_TYPE translate
;
2244 struct range_table_work_area
*work_area
;
2245 re_wchar_t start
, end
;
2247 re_wchar_t cmin
, cmax
;
2250 /* For Latin-1 ranges, use set_image_of_range_1
2251 to get proper handling of ranges that include letters and nonletters.
2252 For a range that includes the whole of Latin-1, this is not necessary.
2253 For other character sets, we don't bother to get this right. */
2254 if (RE_TRANSLATE_P (translate
) && start
< 04400
2255 && !(start
< 04200 && end
>= 04377))
2262 tem
= set_image_of_range_1 (work_area
, start
, newend
, translate
);
2272 EXTEND_RANGE_TABLE (work_area
, 2);
2273 work_area
->table
[work_area
->used
++] = (start
);
2274 work_area
->table
[work_area
->used
++] = (end
);
2276 cmin
= -1, cmax
= -1;
2278 if (RE_TRANSLATE_P (translate
))
2282 for (ch
= start
; ch
<= end
; ch
++)
2284 re_wchar_t c
= TRANSLATE (ch
);
2285 if (! (start
<= c
&& c
<= end
))
2291 cmin
= MIN (cmin
, c
);
2292 cmax
= MAX (cmax
, c
);
2299 EXTEND_RANGE_TABLE (work_area
, 2);
2300 work_area
->table
[work_area
->used
++] = (cmin
);
2301 work_area
->table
[work_area
->used
++] = (cmax
);
2308 #ifndef MATCH_MAY_ALLOCATE
2310 /* If we cannot allocate large objects within re_match_2_internal,
2311 we make the fail stack and register vectors global.
2312 The fail stack, we grow to the maximum size when a regexp
2314 The register vectors, we adjust in size each time we
2315 compile a regexp, according to the number of registers it needs. */
2317 static fail_stack_type fail_stack
;
2319 /* Size with which the following vectors are currently allocated.
2320 That is so we can make them bigger as needed,
2321 but never make them smaller. */
2322 static int regs_allocated_size
;
2324 static re_char
** regstart
, ** regend
;
2325 static re_char
**best_regstart
, **best_regend
;
2327 /* Make the register vectors big enough for NUM_REGS registers,
2328 but don't make them smaller. */
2331 regex_grow_registers (num_regs
)
2334 if (num_regs
> regs_allocated_size
)
2336 RETALLOC_IF (regstart
, num_regs
, re_char
*);
2337 RETALLOC_IF (regend
, num_regs
, re_char
*);
2338 RETALLOC_IF (best_regstart
, num_regs
, re_char
*);
2339 RETALLOC_IF (best_regend
, num_regs
, re_char
*);
2341 regs_allocated_size
= num_regs
;
2345 #endif /* not MATCH_MAY_ALLOCATE */
2347 static boolean group_in_compile_stack
_RE_ARGS ((compile_stack_type
2351 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2352 Returns one of error codes defined in `regex.h', or zero for success.
2354 Assumes the `allocated' (and perhaps `buffer') and `translate'
2355 fields are set in BUFP on entry.
2357 If it succeeds, results are put in BUFP (if it returns an error, the
2358 contents of BUFP are undefined):
2359 `buffer' is the compiled pattern;
2360 `syntax' is set to SYNTAX;
2361 `used' is set to the length of the compiled pattern;
2362 `fastmap_accurate' is zero;
2363 `re_nsub' is the number of subexpressions in PATTERN;
2364 `not_bol' and `not_eol' are zero;
2366 The `fastmap' field is neither examined nor set. */
2368 /* Insert the `jump' from the end of last alternative to "here".
2369 The space for the jump has already been allocated. */
2370 #define FIXUP_ALT_JUMP() \
2372 if (fixup_alt_jump) \
2373 STORE_JUMP (jump, fixup_alt_jump, b); \
2377 /* Return, freeing storage we allocated. */
2378 #define FREE_STACK_RETURN(value) \
2380 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2381 free (compile_stack.stack); \
2385 static reg_errcode_t
2386 regex_compile (pattern
, size
, syntax
, bufp
)
2389 reg_syntax_t syntax
;
2390 struct re_pattern_buffer
*bufp
;
2392 /* We fetch characters from PATTERN here. */
2393 register re_wchar_t c
, c1
;
2395 /* A random temporary spot in PATTERN. */
2398 /* Points to the end of the buffer, where we should append. */
2399 register unsigned char *b
;
2401 /* Keeps track of unclosed groups. */
2402 compile_stack_type compile_stack
;
2404 /* Points to the current (ending) position in the pattern. */
2406 /* `const' makes AIX compiler fail. */
2407 unsigned char *p
= pattern
;
2409 re_char
*p
= pattern
;
2411 re_char
*pend
= pattern
+ size
;
2413 /* How to translate the characters in the pattern. */
2414 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
2416 /* Address of the count-byte of the most recently inserted `exactn'
2417 command. This makes it possible to tell if a new exact-match
2418 character can be added to that command or if the character requires
2419 a new `exactn' command. */
2420 unsigned char *pending_exact
= 0;
2422 /* Address of start of the most recently finished expression.
2423 This tells, e.g., postfix * where to find the start of its
2424 operand. Reset at the beginning of groups and alternatives. */
2425 unsigned char *laststart
= 0;
2427 /* Address of beginning of regexp, or inside of last group. */
2428 unsigned char *begalt
;
2430 /* Place in the uncompiled pattern (i.e., the {) to
2431 which to go back if the interval is invalid. */
2432 re_char
*beg_interval
;
2434 /* Address of the place where a forward jump should go to the end of
2435 the containing expression. Each alternative of an `or' -- except the
2436 last -- ends with a forward jump of this sort. */
2437 unsigned char *fixup_alt_jump
= 0;
2439 /* Counts open-groups as they are encountered. Remembered for the
2440 matching close-group on the compile stack, so the same register
2441 number is put in the stop_memory as the start_memory. */
2442 regnum_t regnum
= 0;
2444 /* Work area for range table of charset. */
2445 struct range_table_work_area range_table_work
;
2447 /* If the object matched can contain multibyte characters. */
2448 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
2450 /* Nonzero if we have pushed down into a subpattern. */
2451 int in_subpattern
= 0;
2453 /* These hold the values of p, pattern, and pend from the main
2454 pattern when we have pushed into a subpattern. */
2456 re_char
*main_pattern
;
2461 DEBUG_PRINT1 ("\nCompiling pattern: ");
2464 unsigned debug_count
;
2466 for (debug_count
= 0; debug_count
< size
; debug_count
++)
2467 putchar (pattern
[debug_count
]);
2472 /* Initialize the compile stack. */
2473 compile_stack
.stack
= TALLOC (INIT_COMPILE_STACK_SIZE
, compile_stack_elt_t
);
2474 if (compile_stack
.stack
== NULL
)
2477 compile_stack
.size
= INIT_COMPILE_STACK_SIZE
;
2478 compile_stack
.avail
= 0;
2480 range_table_work
.table
= 0;
2481 range_table_work
.allocated
= 0;
2483 /* Initialize the pattern buffer. */
2484 bufp
->syntax
= syntax
;
2485 bufp
->fastmap_accurate
= 0;
2486 bufp
->not_bol
= bufp
->not_eol
= 0;
2488 /* Set `used' to zero, so that if we return an error, the pattern
2489 printer (for debugging) will think there's no pattern. We reset it
2493 /* Always count groups, whether or not bufp->no_sub is set. */
2496 #if !defined emacs && !defined SYNTAX_TABLE
2497 /* Initialize the syntax table. */
2498 init_syntax_once ();
2501 if (bufp
->allocated
== 0)
2504 { /* If zero allocated, but buffer is non-null, try to realloc
2505 enough space. This loses if buffer's address is bogus, but
2506 that is the user's responsibility. */
2507 RETALLOC (bufp
->buffer
, INIT_BUF_SIZE
, unsigned char);
2510 { /* Caller did not allocate a buffer. Do it for them. */
2511 bufp
->buffer
= TALLOC (INIT_BUF_SIZE
, unsigned char);
2513 if (!bufp
->buffer
) FREE_STACK_RETURN (REG_ESPACE
);
2515 bufp
->allocated
= INIT_BUF_SIZE
;
2518 begalt
= b
= bufp
->buffer
;
2520 /* Loop through the uncompiled pattern until we're at the end. */
2525 /* If this is the end of an included regexp,
2526 pop back to the main regexp and try again. */
2530 pattern
= main_pattern
;
2535 /* If this is the end of the main regexp, we are done. */
2547 /* If there's no special whitespace regexp, treat
2548 spaces normally. And don't try to do this recursively. */
2549 if (!whitespace_regexp
|| in_subpattern
)
2552 /* Peek past following spaces. */
2559 /* If the spaces are followed by a repetition op,
2560 treat them normally. */
2562 && (*p1
== '*' || *p1
== '+' || *p1
== '?'
2563 || (*p1
== '\\' && p1
+ 1 != pend
&& p1
[1] == '{')))
2566 /* Replace the spaces with the whitespace regexp. */
2570 main_pattern
= pattern
;
2571 p
= pattern
= whitespace_regexp
;
2572 pend
= p
+ strlen (p
);
2578 if ( /* If at start of pattern, it's an operator. */
2580 /* If context independent, it's an operator. */
2581 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2582 /* Otherwise, depends on what's come before. */
2583 || at_begline_loc_p (pattern
, p
, syntax
))
2584 BUF_PUSH ((syntax
& RE_NO_NEWLINE_ANCHOR
) ? begbuf
: begline
);
2593 if ( /* If at end of pattern, it's an operator. */
2595 /* If context independent, it's an operator. */
2596 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2597 /* Otherwise, depends on what's next. */
2598 || at_endline_loc_p (p
, pend
, syntax
))
2599 BUF_PUSH ((syntax
& RE_NO_NEWLINE_ANCHOR
) ? endbuf
: endline
);
2608 if ((syntax
& RE_BK_PLUS_QM
)
2609 || (syntax
& RE_LIMITED_OPS
))
2613 /* If there is no previous pattern... */
2616 if (syntax
& RE_CONTEXT_INVALID_OPS
)
2617 FREE_STACK_RETURN (REG_BADRPT
);
2618 else if (!(syntax
& RE_CONTEXT_INDEP_OPS
))
2623 /* 1 means zero (many) matches is allowed. */
2624 boolean zero_times_ok
= 0, many_times_ok
= 0;
2627 /* If there is a sequence of repetition chars, collapse it
2628 down to just one (the right one). We can't combine
2629 interval operators with these because of, e.g., `a{2}*',
2630 which should only match an even number of `a's. */
2634 if ((syntax
& RE_FRUGAL
)
2635 && c
== '?' && (zero_times_ok
|| many_times_ok
))
2639 zero_times_ok
|= c
!= '+';
2640 many_times_ok
|= c
!= '?';
2646 || (!(syntax
& RE_BK_PLUS_QM
)
2647 && (*p
== '+' || *p
== '?')))
2649 else if (syntax
& RE_BK_PLUS_QM
&& *p
== '\\')
2652 FREE_STACK_RETURN (REG_EESCAPE
);
2653 if (p
[1] == '+' || p
[1] == '?')
2654 PATFETCH (c
); /* Gobble up the backslash. */
2660 /* If we get here, we found another repeat character. */
2664 /* Star, etc. applied to an empty pattern is equivalent
2665 to an empty pattern. */
2666 if (!laststart
|| laststart
== b
)
2669 /* Now we know whether or not zero matches is allowed
2670 and also whether or not two or more matches is allowed. */
2675 boolean simple
= skip_one_char (laststart
) == b
;
2676 unsigned int startoffset
= 0;
2678 /* Check if the loop can match the empty string. */
2679 (simple
|| !analyse_first (laststart
, b
, NULL
, 0))
2680 ? on_failure_jump
: on_failure_jump_loop
;
2681 assert (skip_one_char (laststart
) <= b
);
2683 if (!zero_times_ok
&& simple
)
2684 { /* Since simple * loops can be made faster by using
2685 on_failure_keep_string_jump, we turn simple P+
2686 into PP* if P is simple. */
2687 unsigned char *p1
, *p2
;
2688 startoffset
= b
- laststart
;
2689 GET_BUFFER_SPACE (startoffset
);
2690 p1
= b
; p2
= laststart
;
2696 GET_BUFFER_SPACE (6);
2699 STORE_JUMP (ofj
, b
, b
+ 6);
2701 /* Simple * loops can use on_failure_keep_string_jump
2702 depending on what follows. But since we don't know
2703 that yet, we leave the decision up to
2704 on_failure_jump_smart. */
2705 INSERT_JUMP (simple
? on_failure_jump_smart
: ofj
,
2706 laststart
+ startoffset
, b
+ 6);
2708 STORE_JUMP (jump
, b
, laststart
+ startoffset
);
2713 /* A simple ? pattern. */
2714 assert (zero_times_ok
);
2715 GET_BUFFER_SPACE (3);
2716 INSERT_JUMP (on_failure_jump
, laststart
, b
+ 3);
2720 else /* not greedy */
2721 { /* I wish the greedy and non-greedy cases could be merged. */
2723 GET_BUFFER_SPACE (7); /* We might use less. */
2726 boolean emptyp
= analyse_first (laststart
, b
, NULL
, 0);
2728 /* The non-greedy multiple match looks like
2729 a repeat..until: we only need a conditional jump
2730 at the end of the loop. */
2731 if (emptyp
) BUF_PUSH (no_op
);
2732 STORE_JUMP (emptyp
? on_failure_jump_nastyloop
2733 : on_failure_jump
, b
, laststart
);
2737 /* The repeat...until naturally matches one or more.
2738 To also match zero times, we need to first jump to
2739 the end of the loop (its conditional jump). */
2740 INSERT_JUMP (jump
, laststart
, b
);
2746 /* non-greedy a?? */
2747 INSERT_JUMP (jump
, laststart
, b
+ 3);
2749 INSERT_JUMP (on_failure_jump
, laststart
, laststart
+ 6);
2766 CLEAR_RANGE_TABLE_WORK_USED (range_table_work
);
2768 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2770 /* Ensure that we have enough space to push a charset: the
2771 opcode, the length count, and the bitset; 34 bytes in all. */
2772 GET_BUFFER_SPACE (34);
2776 /* We test `*p == '^' twice, instead of using an if
2777 statement, so we only need one BUF_PUSH. */
2778 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
2782 /* Remember the first position in the bracket expression. */
2785 /* Push the number of bytes in the bitmap. */
2786 BUF_PUSH ((1 << BYTEWIDTH
) / BYTEWIDTH
);
2788 /* Clear the whole map. */
2789 bzero (b
, (1 << BYTEWIDTH
) / BYTEWIDTH
);
2791 /* charset_not matches newline according to a syntax bit. */
2792 if ((re_opcode_t
) b
[-2] == charset_not
2793 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
2794 SET_LIST_BIT ('\n');
2796 /* Read in characters and ranges, setting map bits. */
2799 boolean escaped_char
= false;
2800 const unsigned char *p2
= p
;
2802 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2804 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2805 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2806 So the translation is done later in a loop. Example:
2807 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
2810 /* \ might escape characters inside [...] and [^...]. */
2811 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
2813 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2816 escaped_char
= true;
2820 /* Could be the end of the bracket expression. If it's
2821 not (i.e., when the bracket expression is `[]' so
2822 far), the ']' character bit gets set way below. */
2823 if (c
== ']' && p2
!= p1
)
2827 /* What should we do for the character which is
2828 greater than 0x7F, but not BASE_LEADING_CODE_P?
2831 /* See if we're at the beginning of a possible character
2834 if (!escaped_char
&&
2835 syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
2837 /* Leave room for the null. */
2838 unsigned char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
2839 const unsigned char *class_beg
;
2845 /* If pattern is `[[:'. */
2846 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2851 if ((c
== ':' && *p
== ']') || p
== pend
)
2853 if (c1
< CHAR_CLASS_MAX_LENGTH
)
2856 /* This is in any case an invalid class name. */
2861 /* If isn't a word bracketed by `[:' and `:]':
2862 undo the ending character, the letters, and
2863 leave the leading `:' and `[' (but set bits for
2865 if (c
== ':' && *p
== ']')
2870 cc
= re_wctype (str
);
2873 FREE_STACK_RETURN (REG_ECTYPE
);
2875 /* Throw away the ] at the end of the character
2879 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2881 /* Most character classes in a multibyte match
2882 just set a flag. Exceptions are is_blank,
2883 is_digit, is_cntrl, and is_xdigit, since
2884 they can only match ASCII characters. We
2885 don't need to handle them for multibyte.
2886 They are distinguished by a negative wctype. */
2889 SET_RANGE_TABLE_WORK_AREA_BIT (range_table_work
,
2890 re_wctype_to_bit (cc
));
2892 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ++ch
)
2894 int translated
= TRANSLATE (ch
);
2895 if (re_iswctype (btowc (ch
), cc
))
2896 SET_LIST_BIT (translated
);
2899 /* Repeat the loop. */
2904 /* Go back to right after the "[:". */
2908 /* Because the `:' may starts the range, we
2909 can't simply set bit and repeat the loop.
2910 Instead, just set it to C and handle below. */
2915 if (p
< pend
&& p
[0] == '-' && p
[1] != ']')
2918 /* Discard the `-'. */
2921 /* Fetch the character which ends the range. */
2924 if (SINGLE_BYTE_CHAR_P (c
))
2926 if (! SINGLE_BYTE_CHAR_P (c1
))
2928 /* Handle a range starting with a
2929 character of less than 256, and ending
2930 with a character of not less than 256.
2931 Split that into two ranges, the low one
2932 ending at 0377, and the high one
2933 starting at the smallest character in
2934 the charset of C1 and ending at C1. */
2935 int charset
= CHAR_CHARSET (c1
);
2936 re_wchar_t c2
= MAKE_CHAR (charset
, 0, 0);
2938 SET_RANGE_TABLE_WORK_AREA (range_table_work
,
2943 else if (!SAME_CHARSET_P (c
, c1
))
2944 FREE_STACK_RETURN (REG_ERANGEX
);
2947 /* Range from C to C. */
2950 /* Set the range ... */
2951 if (SINGLE_BYTE_CHAR_P (c
))
2952 /* ... into bitmap. */
2954 re_wchar_t this_char
;
2955 re_wchar_t range_start
= c
, range_end
= c1
;
2957 /* If the start is after the end, the range is empty. */
2958 if (range_start
> range_end
)
2960 if (syntax
& RE_NO_EMPTY_RANGES
)
2961 FREE_STACK_RETURN (REG_ERANGE
);
2962 /* Else, repeat the loop. */
2966 for (this_char
= range_start
; this_char
<= range_end
;
2968 SET_LIST_BIT (TRANSLATE (this_char
));
2972 /* ... into range table. */
2973 SET_RANGE_TABLE_WORK_AREA (range_table_work
, c
, c1
);
2976 /* Discard any (non)matching list bytes that are all 0 at the
2977 end of the map. Decrease the map-length byte too. */
2978 while ((int) b
[-1] > 0 && b
[b
[-1] - 1] == 0)
2982 /* Build real range table from work area. */
2983 if (RANGE_TABLE_WORK_USED (range_table_work
)
2984 || RANGE_TABLE_WORK_BITS (range_table_work
))
2987 int used
= RANGE_TABLE_WORK_USED (range_table_work
);
2989 /* Allocate space for COUNT + RANGE_TABLE. Needs two
2990 bytes for flags, two for COUNT, and three bytes for
2992 GET_BUFFER_SPACE (4 + used
* 3);
2994 /* Indicate the existence of range table. */
2995 laststart
[1] |= 0x80;
2997 /* Store the character class flag bits into the range table.
2998 If not in emacs, these flag bits are always 0. */
2999 *b
++ = RANGE_TABLE_WORK_BITS (range_table_work
) & 0xff;
3000 *b
++ = RANGE_TABLE_WORK_BITS (range_table_work
) >> 8;
3002 STORE_NUMBER_AND_INCR (b
, used
/ 2);
3003 for (i
= 0; i
< used
; i
++)
3004 STORE_CHARACTER_AND_INCR
3005 (b
, RANGE_TABLE_WORK_ELT (range_table_work
, i
));
3012 if (syntax
& RE_NO_BK_PARENS
)
3019 if (syntax
& RE_NO_BK_PARENS
)
3026 if (syntax
& RE_NEWLINE_ALT
)
3033 if (syntax
& RE_NO_BK_VBAR
)
3040 if (syntax
& RE_INTERVALS
&& syntax
& RE_NO_BK_BRACES
)
3041 goto handle_interval
;
3047 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
3049 /* Do not translate the character after the \, so that we can
3050 distinguish, e.g., \B from \b, even if we normally would
3051 translate, e.g., B to b. */
3057 if (syntax
& RE_NO_BK_PARENS
)
3058 goto normal_backslash
;
3065 /* Look for a special (?...) construct */
3066 if ((syntax
& RE_SHY_GROUPS
) && *p
== '?')
3068 PATFETCH (c
); /* Gobble up the '?'. */
3072 case ':': shy
= 1; break;
3074 /* Only (?:...) is supported right now. */
3075 FREE_STACK_RETURN (REG_BADPAT
);
3086 if (COMPILE_STACK_FULL
)
3088 RETALLOC (compile_stack
.stack
, compile_stack
.size
<< 1,
3089 compile_stack_elt_t
);
3090 if (compile_stack
.stack
== NULL
) return REG_ESPACE
;
3092 compile_stack
.size
<<= 1;
3095 /* These are the values to restore when we hit end of this
3096 group. They are all relative offsets, so that if the
3097 whole pattern moves because of realloc, they will still
3099 COMPILE_STACK_TOP
.begalt_offset
= begalt
- bufp
->buffer
;
3100 COMPILE_STACK_TOP
.fixup_alt_jump
3101 = fixup_alt_jump
? fixup_alt_jump
- bufp
->buffer
+ 1 : 0;
3102 COMPILE_STACK_TOP
.laststart_offset
= b
- bufp
->buffer
;
3103 COMPILE_STACK_TOP
.regnum
= shy
? -regnum
: regnum
;
3106 start_memory for groups beyond the last one we can
3107 represent in the compiled pattern. */
3108 if (regnum
<= MAX_REGNUM
&& !shy
)
3109 BUF_PUSH_2 (start_memory
, regnum
);
3111 compile_stack
.avail
++;
3116 /* If we've reached MAX_REGNUM groups, then this open
3117 won't actually generate any code, so we'll have to
3118 clear pending_exact explicitly. */
3124 if (syntax
& RE_NO_BK_PARENS
) goto normal_backslash
;
3126 if (COMPILE_STACK_EMPTY
)
3128 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
3129 goto normal_backslash
;
3131 FREE_STACK_RETURN (REG_ERPAREN
);
3137 /* See similar code for backslashed left paren above. */
3138 if (COMPILE_STACK_EMPTY
)
3140 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
3143 FREE_STACK_RETURN (REG_ERPAREN
);
3146 /* Since we just checked for an empty stack above, this
3147 ``can't happen''. */
3148 assert (compile_stack
.avail
!= 0);
3150 /* We don't just want to restore into `regnum', because
3151 later groups should continue to be numbered higher,
3152 as in `(ab)c(de)' -- the second group is #2. */
3153 regnum_t this_group_regnum
;
3155 compile_stack
.avail
--;
3156 begalt
= bufp
->buffer
+ COMPILE_STACK_TOP
.begalt_offset
;
3158 = COMPILE_STACK_TOP
.fixup_alt_jump
3159 ? bufp
->buffer
+ COMPILE_STACK_TOP
.fixup_alt_jump
- 1
3161 laststart
= bufp
->buffer
+ COMPILE_STACK_TOP
.laststart_offset
;
3162 this_group_regnum
= COMPILE_STACK_TOP
.regnum
;
3163 /* If we've reached MAX_REGNUM groups, then this open
3164 won't actually generate any code, so we'll have to
3165 clear pending_exact explicitly. */
3168 /* We're at the end of the group, so now we know how many
3169 groups were inside this one. */
3170 if (this_group_regnum
<= MAX_REGNUM
&& this_group_regnum
> 0)
3171 BUF_PUSH_2 (stop_memory
, this_group_regnum
);
3176 case '|': /* `\|'. */
3177 if (syntax
& RE_LIMITED_OPS
|| syntax
& RE_NO_BK_VBAR
)
3178 goto normal_backslash
;
3180 if (syntax
& RE_LIMITED_OPS
)
3183 /* Insert before the previous alternative a jump which
3184 jumps to this alternative if the former fails. */
3185 GET_BUFFER_SPACE (3);
3186 INSERT_JUMP (on_failure_jump
, begalt
, b
+ 6);
3190 /* The alternative before this one has a jump after it
3191 which gets executed if it gets matched. Adjust that
3192 jump so it will jump to this alternative's analogous
3193 jump (put in below, which in turn will jump to the next
3194 (if any) alternative's such jump, etc.). The last such
3195 jump jumps to the correct final destination. A picture:
3201 If we are at `b', then fixup_alt_jump right now points to a
3202 three-byte space after `a'. We'll put in the jump, set
3203 fixup_alt_jump to right after `b', and leave behind three
3204 bytes which we'll fill in when we get to after `c'. */
3208 /* Mark and leave space for a jump after this alternative,
3209 to be filled in later either by next alternative or
3210 when know we're at the end of a series of alternatives. */
3212 GET_BUFFER_SPACE (3);
3221 /* If \{ is a literal. */
3222 if (!(syntax
& RE_INTERVALS
)
3223 /* If we're at `\{' and it's not the open-interval
3225 || (syntax
& RE_NO_BK_BRACES
))
3226 goto normal_backslash
;
3230 /* If got here, then the syntax allows intervals. */
3232 /* At least (most) this many matches must be made. */
3233 int lower_bound
= 0, upper_bound
= -1;
3237 GET_UNSIGNED_NUMBER (lower_bound
);
3240 GET_UNSIGNED_NUMBER (upper_bound
);
3242 /* Interval such as `{1}' => match exactly once. */
3243 upper_bound
= lower_bound
;
3245 if (lower_bound
< 0 || upper_bound
> RE_DUP_MAX
3246 || (upper_bound
>= 0 && lower_bound
> upper_bound
))
3247 FREE_STACK_RETURN (REG_BADBR
);
3249 if (!(syntax
& RE_NO_BK_BRACES
))
3252 FREE_STACK_RETURN (REG_BADBR
);
3254 FREE_STACK_RETURN (REG_EESCAPE
);
3259 FREE_STACK_RETURN (REG_BADBR
);
3261 /* We just parsed a valid interval. */
3263 /* If it's invalid to have no preceding re. */
3266 if (syntax
& RE_CONTEXT_INVALID_OPS
)
3267 FREE_STACK_RETURN (REG_BADRPT
);
3268 else if (syntax
& RE_CONTEXT_INDEP_OPS
)
3271 goto unfetch_interval
;
3274 if (upper_bound
== 0)
3275 /* If the upper bound is zero, just drop the sub pattern
3278 else if (lower_bound
== 1 && upper_bound
== 1)
3279 /* Just match it once: nothing to do here. */
3282 /* Otherwise, we have a nontrivial interval. When
3283 we're all done, the pattern will look like:
3284 set_number_at <jump count> <upper bound>
3285 set_number_at <succeed_n count> <lower bound>
3286 succeed_n <after jump addr> <succeed_n count>
3288 jump_n <succeed_n addr> <jump count>
3289 (The upper bound and `jump_n' are omitted if
3290 `upper_bound' is 1, though.) */
3292 { /* If the upper bound is > 1, we need to insert
3293 more at the end of the loop. */
3294 unsigned int nbytes
= (upper_bound
< 0 ? 3
3295 : upper_bound
> 1 ? 5 : 0);
3296 unsigned int startoffset
= 0;
3298 GET_BUFFER_SPACE (20); /* We might use less. */
3300 if (lower_bound
== 0)
3302 /* A succeed_n that starts with 0 is really a
3303 a simple on_failure_jump_loop. */
3304 INSERT_JUMP (on_failure_jump_loop
, laststart
,
3310 /* Initialize lower bound of the `succeed_n', even
3311 though it will be set during matching by its
3312 attendant `set_number_at' (inserted next),
3313 because `re_compile_fastmap' needs to know.
3314 Jump to the `jump_n' we might insert below. */
3315 INSERT_JUMP2 (succeed_n
, laststart
,
3320 /* Code to initialize the lower bound. Insert
3321 before the `succeed_n'. The `5' is the last two
3322 bytes of this `set_number_at', plus 3 bytes of
3323 the following `succeed_n'. */
3324 insert_op2 (set_number_at
, laststart
, 5, lower_bound
, b
);
3329 if (upper_bound
< 0)
3331 /* A negative upper bound stands for infinity,
3332 in which case it degenerates to a plain jump. */
3333 STORE_JUMP (jump
, b
, laststart
+ startoffset
);
3336 else if (upper_bound
> 1)
3337 { /* More than one repetition is allowed, so
3338 append a backward jump to the `succeed_n'
3339 that starts this interval.
3341 When we've reached this during matching,
3342 we'll have matched the interval once, so
3343 jump back only `upper_bound - 1' times. */
3344 STORE_JUMP2 (jump_n
, b
, laststart
+ startoffset
,
3348 /* The location we want to set is the second
3349 parameter of the `jump_n'; that is `b-2' as
3350 an absolute address. `laststart' will be
3351 the `set_number_at' we're about to insert;
3352 `laststart+3' the number to set, the source
3353 for the relative address. But we are
3354 inserting into the middle of the pattern --
3355 so everything is getting moved up by 5.
3356 Conclusion: (b - 2) - (laststart + 3) + 5,
3357 i.e., b - laststart.
3359 We insert this at the beginning of the loop
3360 so that if we fail during matching, we'll
3361 reinitialize the bounds. */
3362 insert_op2 (set_number_at
, laststart
, b
- laststart
,
3363 upper_bound
- 1, b
);
3368 beg_interval
= NULL
;
3373 /* If an invalid interval, match the characters as literals. */
3374 assert (beg_interval
);
3376 beg_interval
= NULL
;
3378 /* normal_char and normal_backslash need `c'. */
3381 if (!(syntax
& RE_NO_BK_BRACES
))
3383 assert (p
> pattern
&& p
[-1] == '\\');
3384 goto normal_backslash
;
3390 /* There is no way to specify the before_dot and after_dot
3391 operators. rms says this is ok. --karl */
3399 BUF_PUSH_2 (syntaxspec
, syntax_spec_code
[c
]);
3405 BUF_PUSH_2 (notsyntaxspec
, syntax_spec_code
[c
]);
3411 BUF_PUSH_2 (categoryspec
, c
);
3417 BUF_PUSH_2 (notcategoryspec
, c
);
3423 if (syntax
& RE_NO_GNU_OPS
)
3426 BUF_PUSH_2 (syntaxspec
, Sword
);
3431 if (syntax
& RE_NO_GNU_OPS
)
3434 BUF_PUSH_2 (notsyntaxspec
, Sword
);
3439 if (syntax
& RE_NO_GNU_OPS
)
3445 if (syntax
& RE_NO_GNU_OPS
)
3451 if (syntax
& RE_NO_GNU_OPS
)
3460 FREE_STACK_RETURN (REG_BADPAT
);
3464 if (syntax
& RE_NO_GNU_OPS
)
3466 BUF_PUSH (wordbound
);
3470 if (syntax
& RE_NO_GNU_OPS
)
3472 BUF_PUSH (notwordbound
);
3476 if (syntax
& RE_NO_GNU_OPS
)
3482 if (syntax
& RE_NO_GNU_OPS
)
3487 case '1': case '2': case '3': case '4': case '5':
3488 case '6': case '7': case '8': case '9':
3492 if (syntax
& RE_NO_BK_REFS
)
3493 goto normal_backslash
;
3497 /* Can't back reference to a subexpression before its end. */
3498 if (reg
> regnum
|| group_in_compile_stack (compile_stack
, reg
))
3499 FREE_STACK_RETURN (REG_ESUBREG
);
3502 BUF_PUSH_2 (duplicate
, reg
);
3509 if (syntax
& RE_BK_PLUS_QM
)
3512 goto normal_backslash
;
3516 /* You might think it would be useful for \ to mean
3517 not to translate; but if we don't translate it
3518 it will never match anything. */
3525 /* Expects the character in `c'. */
3527 /* If no exactn currently being built. */
3530 /* If last exactn not at current position. */
3531 || pending_exact
+ *pending_exact
+ 1 != b
3533 /* We have only one byte following the exactn for the count. */
3534 || *pending_exact
>= (1 << BYTEWIDTH
) - MAX_MULTIBYTE_LENGTH
3536 /* If followed by a repetition operator. */
3537 || (p
!= pend
&& (*p
== '*' || *p
== '^'))
3538 || ((syntax
& RE_BK_PLUS_QM
)
3539 ? p
+ 1 < pend
&& *p
== '\\' && (p
[1] == '+' || p
[1] == '?')
3540 : p
!= pend
&& (*p
== '+' || *p
== '?'))
3541 || ((syntax
& RE_INTERVALS
)
3542 && ((syntax
& RE_NO_BK_BRACES
)
3543 ? p
!= pend
&& *p
== '{'
3544 : p
+ 1 < pend
&& p
[0] == '\\' && p
[1] == '{')))
3546 /* Start building a new exactn. */
3550 BUF_PUSH_2 (exactn
, 0);
3551 pending_exact
= b
- 1;
3554 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH
);
3560 len
= CHAR_STRING (c
, b
);
3564 (*pending_exact
) += len
;
3569 } /* while p != pend */
3572 /* Through the pattern now. */
3576 if (!COMPILE_STACK_EMPTY
)
3577 FREE_STACK_RETURN (REG_EPAREN
);
3579 /* If we don't want backtracking, force success
3580 the first time we reach the end of the compiled pattern. */
3581 if (syntax
& RE_NO_POSIX_BACKTRACKING
)
3584 /* We have succeeded; set the length of the buffer. */
3585 bufp
->used
= b
- bufp
->buffer
;
3590 re_compile_fastmap (bufp
);
3591 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3592 print_compiled_pattern (bufp
);
3597 #ifndef MATCH_MAY_ALLOCATE
3598 /* Initialize the failure stack to the largest possible stack. This
3599 isn't necessary unless we're trying to avoid calling alloca in
3600 the search and match routines. */
3602 int num_regs
= bufp
->re_nsub
+ 1;
3604 if (fail_stack
.size
< re_max_failures
* TYPICAL_FAILURE_SIZE
)
3606 fail_stack
.size
= re_max_failures
* TYPICAL_FAILURE_SIZE
;
3608 if (! fail_stack
.stack
)
3610 = (fail_stack_elt_t
*) malloc (fail_stack
.size
3611 * sizeof (fail_stack_elt_t
));
3614 = (fail_stack_elt_t
*) realloc (fail_stack
.stack
,
3616 * sizeof (fail_stack_elt_t
)));
3619 regex_grow_registers (num_regs
);
3621 #endif /* not MATCH_MAY_ALLOCATE */
3623 FREE_STACK_RETURN (REG_NOERROR
);
3624 } /* regex_compile */
3626 /* Subroutines for `regex_compile'. */
3628 /* Store OP at LOC followed by two-byte integer parameter ARG. */
3631 store_op1 (op
, loc
, arg
)
3636 *loc
= (unsigned char) op
;
3637 STORE_NUMBER (loc
+ 1, arg
);
3641 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3644 store_op2 (op
, loc
, arg1
, arg2
)
3649 *loc
= (unsigned char) op
;
3650 STORE_NUMBER (loc
+ 1, arg1
);
3651 STORE_NUMBER (loc
+ 3, arg2
);
3655 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3656 for OP followed by two-byte integer parameter ARG. */
3659 insert_op1 (op
, loc
, arg
, end
)
3665 register unsigned char *pfrom
= end
;
3666 register unsigned char *pto
= end
+ 3;
3668 while (pfrom
!= loc
)
3671 store_op1 (op
, loc
, arg
);
3675 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3678 insert_op2 (op
, loc
, arg1
, arg2
, end
)
3684 register unsigned char *pfrom
= end
;
3685 register unsigned char *pto
= end
+ 5;
3687 while (pfrom
!= loc
)
3690 store_op2 (op
, loc
, arg1
, arg2
);
3694 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3695 after an alternative or a begin-subexpression. We assume there is at
3696 least one character before the ^. */
3699 at_begline_loc_p (pattern
, p
, syntax
)
3700 re_char
*pattern
, *p
;
3701 reg_syntax_t syntax
;
3703 re_char
*prev
= p
- 2;
3704 boolean prev_prev_backslash
= prev
> pattern
&& prev
[-1] == '\\';
3707 /* After a subexpression? */
3708 (*prev
== '(' && (syntax
& RE_NO_BK_PARENS
|| prev_prev_backslash
))
3709 /* After an alternative? */
3710 || (*prev
== '|' && (syntax
& RE_NO_BK_VBAR
|| prev_prev_backslash
))
3711 /* After a shy subexpression? */
3712 || ((syntax
& RE_SHY_GROUPS
) && prev
- 2 >= pattern
3713 && prev
[-1] == '?' && prev
[-2] == '('
3714 && (syntax
& RE_NO_BK_PARENS
3715 || (prev
- 3 >= pattern
&& prev
[-3] == '\\')));
3719 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3720 at least one character after the $, i.e., `P < PEND'. */
3723 at_endline_loc_p (p
, pend
, syntax
)
3725 reg_syntax_t syntax
;
3728 boolean next_backslash
= *next
== '\\';
3729 re_char
*next_next
= p
+ 1 < pend
? p
+ 1 : 0;
3732 /* Before a subexpression? */
3733 (syntax
& RE_NO_BK_PARENS
? *next
== ')'
3734 : next_backslash
&& next_next
&& *next_next
== ')')
3735 /* Before an alternative? */
3736 || (syntax
& RE_NO_BK_VBAR
? *next
== '|'
3737 : next_backslash
&& next_next
&& *next_next
== '|');
3741 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3742 false if it's not. */
3745 group_in_compile_stack (compile_stack
, regnum
)
3746 compile_stack_type compile_stack
;
3751 for (this_element
= compile_stack
.avail
- 1;
3754 if (compile_stack
.stack
[this_element
].regnum
== regnum
)
3761 If fastmap is non-NULL, go through the pattern and fill fastmap
3762 with all the possible leading chars. If fastmap is NULL, don't
3763 bother filling it up (obviously) and only return whether the
3764 pattern could potentially match the empty string.
3766 Return 1 if p..pend might match the empty string.
3767 Return 0 if p..pend matches at least one char.
3768 Return -1 if fastmap was not updated accurately. */
3771 analyse_first (p
, pend
, fastmap
, multibyte
)
3774 const int multibyte
;
3779 /* If all elements for base leading-codes in fastmap is set, this
3780 flag is set true. */
3781 boolean match_any_multibyte_characters
= false;
3785 /* The loop below works as follows:
3786 - It has a working-list kept in the PATTERN_STACK and which basically
3787 starts by only containing a pointer to the first operation.
3788 - If the opcode we're looking at is a match against some set of
3789 chars, then we add those chars to the fastmap and go on to the
3790 next work element from the worklist (done via `break').
3791 - If the opcode is a control operator on the other hand, we either
3792 ignore it (if it's meaningless at this point, such as `start_memory')
3793 or execute it (if it's a jump). If the jump has several destinations
3794 (i.e. `on_failure_jump'), then we push the other destination onto the
3796 We guarantee termination by ignoring backward jumps (more or less),
3797 so that `p' is monotonically increasing. More to the point, we
3798 never set `p' (or push) anything `<= p1'. */
3802 /* `p1' is used as a marker of how far back a `on_failure_jump'
3803 can go without being ignored. It is normally equal to `p'
3804 (which prevents any backward `on_failure_jump') except right
3805 after a plain `jump', to allow patterns such as:
3808 10: on_failure_jump 3
3809 as used for the *? operator. */
3812 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
3819 /* If the first character has to match a backreference, that means
3820 that the group was empty (since it already matched). Since this
3821 is the only case that interests us here, we can assume that the
3822 backreference must match the empty string. */
3827 /* Following are the cases which match a character. These end
3833 int c
= RE_STRING_CHAR (p
+ 1, pend
- p
);
3835 if (SINGLE_BYTE_CHAR_P (c
))
3844 /* We could put all the chars except for \n (and maybe \0)
3845 but we don't bother since it is generally not worth it. */
3846 if (!fastmap
) break;
3851 /* Chars beyond end of bitmap are possible matches.
3852 All the single-byte codes can occur in multibyte buffers.
3853 So any that are not listed in the charset
3854 are possible matches, even in multibyte buffers. */
3855 if (!fastmap
) break;
3856 for (j
= CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
;
3857 j
< (1 << BYTEWIDTH
); j
++)
3861 if (!fastmap
) break;
3862 not = (re_opcode_t
) *(p
- 1) == charset_not
;
3863 for (j
= CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
- 1, p
++;
3865 if (!!(p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
))) ^ not)
3868 if ((not && multibyte
)
3869 /* Any character set can possibly contain a character
3870 which doesn't match the specified set of characters. */
3871 || (CHARSET_RANGE_TABLE_EXISTS_P (&p
[-2])
3872 && CHARSET_RANGE_TABLE_BITS (&p
[-2]) != 0))
3873 /* If we can match a character class, we can match
3874 any character set. */
3876 set_fastmap_for_multibyte_characters
:
3877 if (match_any_multibyte_characters
== false)
3879 for (j
= 0x80; j
< 0xA0; j
++) /* XXX */
3880 if (BASE_LEADING_CODE_P (j
))
3882 match_any_multibyte_characters
= true;
3886 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p
[-2])
3887 && match_any_multibyte_characters
== false)
3889 /* Set fastmap[I] 1 where I is a base leading code of each
3890 multibyte character in the range table. */
3893 /* Make P points the range table. `+ 2' is to skip flag
3894 bits for a character class. */
3895 p
+= CHARSET_BITMAP_SIZE (&p
[-2]) + 2;
3897 /* Extract the number of ranges in range table into COUNT. */
3898 EXTRACT_NUMBER_AND_INCR (count
, p
);
3899 for (; count
> 0; count
--, p
+= 2 * 3) /* XXX */
3901 /* Extract the start of each range. */
3902 EXTRACT_CHARACTER (c
, p
);
3903 j
= CHAR_CHARSET (c
);
3904 fastmap
[CHARSET_LEADING_CODE_BASE (j
)] = 1;
3911 if (!fastmap
) break;
3913 not = (re_opcode_t
)p
[-1] == notsyntaxspec
;
3915 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3916 if ((SYNTAX (j
) == (enum syntaxcode
) k
) ^ not)
3920 /* This match depends on text properties. These end with
3921 aborting optimizations. */
3925 case notcategoryspec
:
3926 if (!fastmap
) break;
3927 not = (re_opcode_t
)p
[-1] == notcategoryspec
;
3929 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3930 if ((CHAR_HAS_CATEGORY (j
, k
)) ^ not)
3934 /* Any character set can possibly contain a character
3935 whose category is K (or not). */
3936 goto set_fastmap_for_multibyte_characters
;
3939 /* All cases after this match the empty string. These end with
3961 EXTRACT_NUMBER_AND_INCR (j
, p
);
3963 /* Backward jumps can only go back to code that we've already
3964 visited. `re_compile' should make sure this is true. */
3967 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
))
3969 case on_failure_jump
:
3970 case on_failure_keep_string_jump
:
3971 case on_failure_jump_loop
:
3972 case on_failure_jump_nastyloop
:
3973 case on_failure_jump_smart
:
3979 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
3980 to jump back to "just after here". */
3983 case on_failure_jump
:
3984 case on_failure_keep_string_jump
:
3985 case on_failure_jump_nastyloop
:
3986 case on_failure_jump_loop
:
3987 case on_failure_jump_smart
:
3988 EXTRACT_NUMBER_AND_INCR (j
, p
);
3990 ; /* Backward jump to be ignored. */
3992 { /* We have to look down both arms.
3993 We first go down the "straight" path so as to minimize
3994 stack usage when going through alternatives. */
3995 int r
= analyse_first (p
, pend
, fastmap
, multibyte
);
4003 /* This code simply does not properly handle forward jump_n. */
4004 DEBUG_STATEMENT (EXTRACT_NUMBER (j
, p
); assert (j
< 0));
4006 /* jump_n can either jump or fall through. The (backward) jump
4007 case has already been handled, so we only need to look at the
4008 fallthrough case. */
4012 /* If N == 0, it should be an on_failure_jump_loop instead. */
4013 DEBUG_STATEMENT (EXTRACT_NUMBER (j
, p
+ 2); assert (j
> 0));
4015 /* We only care about one iteration of the loop, so we don't
4016 need to consider the case where this behaves like an
4033 abort (); /* We have listed all the cases. */
4036 /* Getting here means we have found the possible starting
4037 characters for one path of the pattern -- and that the empty
4038 string does not match. We need not follow this path further. */
4042 /* We reached the end without matching anything. */
4045 } /* analyse_first */
4047 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4048 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4049 characters can start a string that matches the pattern. This fastmap
4050 is used by re_search to skip quickly over impossible starting points.
4052 Character codes above (1 << BYTEWIDTH) are not represented in the
4053 fastmap, but the leading codes are represented. Thus, the fastmap
4054 indicates which character sets could start a match.
4056 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4057 area as BUFP->fastmap.
4059 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4062 Returns 0 if we succeed, -2 if an internal error. */
4065 re_compile_fastmap (bufp
)
4066 struct re_pattern_buffer
*bufp
;
4068 char *fastmap
= bufp
->fastmap
;
4071 assert (fastmap
&& bufp
->buffer
);
4073 bzero (fastmap
, 1 << BYTEWIDTH
); /* Assume nothing's valid. */
4074 bufp
->fastmap_accurate
= 1; /* It will be when we're done. */
4076 analysis
= analyse_first (bufp
->buffer
, bufp
->buffer
+ bufp
->used
,
4077 fastmap
, RE_MULTIBYTE_P (bufp
));
4078 bufp
->can_be_null
= (analysis
!= 0);
4080 } /* re_compile_fastmap */
4082 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4083 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4084 this memory for recording register information. STARTS and ENDS
4085 must be allocated using the malloc library routine, and must each
4086 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4088 If NUM_REGS == 0, then subsequent matches should allocate their own
4091 Unless this function is called, the first search or match using
4092 PATTERN_BUFFER will allocate its own register data, without
4093 freeing the old data. */
4096 re_set_registers (bufp
, regs
, num_regs
, starts
, ends
)
4097 struct re_pattern_buffer
*bufp
;
4098 struct re_registers
*regs
;
4100 regoff_t
*starts
, *ends
;
4104 bufp
->regs_allocated
= REGS_REALLOCATE
;
4105 regs
->num_regs
= num_regs
;
4106 regs
->start
= starts
;
4111 bufp
->regs_allocated
= REGS_UNALLOCATED
;
4113 regs
->start
= regs
->end
= (regoff_t
*) 0;
4116 WEAK_ALIAS (__re_set_registers
, re_set_registers
)
4118 /* Searching routines. */
4120 /* Like re_search_2, below, but only one string is specified, and
4121 doesn't let you say where to stop matching. */
4124 re_search (bufp
, string
, size
, startpos
, range
, regs
)
4125 struct re_pattern_buffer
*bufp
;
4127 int size
, startpos
, range
;
4128 struct re_registers
*regs
;
4130 return re_search_2 (bufp
, NULL
, 0, string
, size
, startpos
, range
,
4133 WEAK_ALIAS (__re_search
, re_search
)
4135 /* Head address of virtual concatenation of string. */
4136 #define HEAD_ADDR_VSTRING(P) \
4137 (((P) >= size1 ? string2 : string1))
4139 /* End address of virtual concatenation of string. */
4140 #define STOP_ADDR_VSTRING(P) \
4141 (((P) >= size1 ? string2 + size2 : string1 + size1))
4143 /* Address of POS in the concatenation of virtual string. */
4144 #define POS_ADDR_VSTRING(POS) \
4145 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
4147 /* Using the compiled pattern in BUFP->buffer, first tries to match the
4148 virtual concatenation of STRING1 and STRING2, starting first at index
4149 STARTPOS, then at STARTPOS + 1, and so on.
4151 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4153 RANGE is how far to scan while trying to match. RANGE = 0 means try
4154 only at STARTPOS; in general, the last start tried is STARTPOS +
4157 In REGS, return the indices of the virtual concatenation of STRING1
4158 and STRING2 that matched the entire BUFP->buffer and its contained
4161 Do not consider matching one past the index STOP in the virtual
4162 concatenation of STRING1 and STRING2.
4164 We return either the position in the strings at which the match was
4165 found, -1 if no match, or -2 if error (such as failure
4169 re_search_2 (bufp
, str1
, size1
, str2
, size2
, startpos
, range
, regs
, stop
)
4170 struct re_pattern_buffer
*bufp
;
4171 const char *str1
, *str2
;
4175 struct re_registers
*regs
;
4179 re_char
*string1
= (re_char
*) str1
;
4180 re_char
*string2
= (re_char
*) str2
;
4181 register char *fastmap
= bufp
->fastmap
;
4182 register RE_TRANSLATE_TYPE translate
= bufp
->translate
;
4183 int total_size
= size1
+ size2
;
4184 int endpos
= startpos
+ range
;
4185 boolean anchored_start
;
4187 /* Nonzero if we have to concern multibyte character. */
4188 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
4190 /* Check for out-of-range STARTPOS. */
4191 if (startpos
< 0 || startpos
> total_size
)
4194 /* Fix up RANGE if it might eventually take us outside
4195 the virtual concatenation of STRING1 and STRING2.
4196 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
4198 range
= 0 - startpos
;
4199 else if (endpos
> total_size
)
4200 range
= total_size
- startpos
;
4202 /* If the search isn't to be a backwards one, don't waste time in a
4203 search for a pattern anchored at beginning of buffer. */
4204 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == begbuf
&& range
> 0)
4213 /* In a forward search for something that starts with \=.
4214 don't keep searching past point. */
4215 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == at_dot
&& range
> 0)
4217 range
= PT_BYTE
- BEGV_BYTE
- startpos
;
4223 /* Update the fastmap now if not correct already. */
4224 if (fastmap
&& !bufp
->fastmap_accurate
)
4225 re_compile_fastmap (bufp
);
4227 /* See whether the pattern is anchored. */
4228 anchored_start
= (bufp
->buffer
[0] == begline
);
4231 gl_state
.object
= re_match_object
;
4233 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos
));
4235 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object
, charpos
, 1);
4239 /* Loop through the string, looking for a place to start matching. */
4242 /* If the pattern is anchored,
4243 skip quickly past places we cannot match.
4244 We don't bother to treat startpos == 0 specially
4245 because that case doesn't repeat. */
4246 if (anchored_start
&& startpos
> 0)
4248 if (! ((startpos
<= size1
? string1
[startpos
- 1]
4249 : string2
[startpos
- size1
- 1])
4254 /* If a fastmap is supplied, skip quickly over characters that
4255 cannot be the start of a match. If the pattern can match the
4256 null string, however, we don't need to skip characters; we want
4257 the first null string. */
4258 if (fastmap
&& startpos
< total_size
&& !bufp
->can_be_null
)
4260 register re_char
*d
;
4261 register re_wchar_t buf_ch
;
4263 d
= POS_ADDR_VSTRING (startpos
);
4265 if (range
> 0) /* Searching forwards. */
4267 register int lim
= 0;
4270 if (startpos
< size1
&& startpos
+ range
>= size1
)
4271 lim
= range
- (size1
- startpos
);
4273 /* Written out as an if-else to avoid testing `translate'
4275 if (RE_TRANSLATE_P (translate
))
4282 buf_ch
= STRING_CHAR_AND_LENGTH (d
, range
- lim
,
4285 buf_ch
= RE_TRANSLATE (translate
, buf_ch
);
4290 range
-= buf_charlen
;
4295 /* Convert *d to integer to shut up GCC's
4296 whining about comparison that is always
4301 && !fastmap
[RE_TRANSLATE (translate
, di
)])
4309 while (range
> lim
&& !fastmap
[*d
])
4315 startpos
+= irange
- range
;
4317 else /* Searching backwards. */
4319 int room
= (startpos
>= size1
4320 ? size2
+ size1
- startpos
4321 : size1
- startpos
);
4322 buf_ch
= RE_STRING_CHAR (d
, room
);
4323 buf_ch
= TRANSLATE (buf_ch
);
4325 if (! (buf_ch
>= 0400
4326 || fastmap
[buf_ch
]))
4331 /* If can't match the null string, and that's all we have left, fail. */
4332 if (range
>= 0 && startpos
== total_size
&& fastmap
4333 && !bufp
->can_be_null
)
4336 val
= re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
4337 startpos
, regs
, stop
);
4338 #ifndef REGEX_MALLOC
4355 /* Update STARTPOS to the next character boundary. */
4358 re_char
*p
= POS_ADDR_VSTRING (startpos
);
4359 re_char
*pend
= STOP_ADDR_VSTRING (startpos
);
4360 int len
= MULTIBYTE_FORM_LENGTH (p
, pend
- p
);
4378 /* Update STARTPOS to the previous character boundary. */
4381 re_char
*p
= POS_ADDR_VSTRING (startpos
) + 1;
4383 re_char
*phead
= HEAD_ADDR_VSTRING (startpos
);
4385 /* Find the head of multibyte form. */
4386 PREV_CHAR_BOUNDARY (p
, phead
);
4387 range
+= p0
- 1 - p
;
4391 startpos
-= p0
- 1 - p
;
4397 WEAK_ALIAS (__re_search_2
, re_search_2
)
4399 /* Declarations and macros for re_match_2. */
4401 static int bcmp_translate
_RE_ARGS((re_char
*s1
, re_char
*s2
,
4403 RE_TRANSLATE_TYPE translate
,
4404 const int multibyte
));
4406 /* This converts PTR, a pointer into one of the search strings `string1'
4407 and `string2' into an offset from the beginning of that string. */
4408 #define POINTER_TO_OFFSET(ptr) \
4409 (FIRST_STRING_P (ptr) \
4410 ? ((regoff_t) ((ptr) - string1)) \
4411 : ((regoff_t) ((ptr) - string2 + size1)))
4413 /* Call before fetching a character with *d. This switches over to
4414 string2 if necessary.
4415 Check re_match_2_internal for a discussion of why end_match_2 might
4416 not be within string2 (but be equal to end_match_1 instead). */
4417 #define PREFETCH() \
4420 /* End of string2 => fail. */ \
4421 if (dend == end_match_2) \
4423 /* End of string1 => advance to string2. */ \
4425 dend = end_match_2; \
4428 /* Call before fetching a char with *d if you already checked other limits.
4429 This is meant for use in lookahead operations like wordend, etc..
4430 where we might need to look at parts of the string that might be
4431 outside of the LIMITs (i.e past `stop'). */
4432 #define PREFETCH_NOLIMIT() \
4436 dend = end_match_2; \
4439 /* Test if at very beginning or at very end of the virtual concatenation
4440 of `string1' and `string2'. If only one string, it's `string2'. */
4441 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
4442 #define AT_STRINGS_END(d) ((d) == end2)
4445 /* Test if D points to a character which is word-constituent. We have
4446 two special cases to check for: if past the end of string1, look at
4447 the first character in string2; and if before the beginning of
4448 string2, look at the last character in string1. */
4449 #define WORDCHAR_P(d) \
4450 (SYNTAX ((d) == end1 ? *string2 \
4451 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
4454 /* Disabled due to a compiler bug -- see comment at case wordbound */
4456 /* The comment at case wordbound is following one, but we don't use
4457 AT_WORD_BOUNDARY anymore to support multibyte form.
4459 The DEC Alpha C compiler 3.x generates incorrect code for the
4460 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4461 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4462 macro and introducing temporary variables works around the bug. */
4465 /* Test if the character before D and the one at D differ with respect
4466 to being word-constituent. */
4467 #define AT_WORD_BOUNDARY(d) \
4468 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4469 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
4472 /* Free everything we malloc. */
4473 #ifdef MATCH_MAY_ALLOCATE
4474 # define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4475 # define FREE_VARIABLES() \
4477 REGEX_FREE_STACK (fail_stack.stack); \
4478 FREE_VAR (regstart); \
4479 FREE_VAR (regend); \
4480 FREE_VAR (best_regstart); \
4481 FREE_VAR (best_regend); \
4484 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
4485 #endif /* not MATCH_MAY_ALLOCATE */
4488 /* Optimization routines. */
4490 /* If the operation is a match against one or more chars,
4491 return a pointer to the next operation, else return NULL. */
4496 switch (SWITCH_ENUM_CAST (*p
++))
4507 if (CHARSET_RANGE_TABLE_EXISTS_P (p
- 1))
4510 p
= CHARSET_RANGE_TABLE (p
- 1);
4511 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4512 p
= CHARSET_RANGE_TABLE_END (p
, mcnt
);
4515 p
+= 1 + CHARSET_BITMAP_SIZE (p
- 1);
4522 case notcategoryspec
:
4534 /* Jump over non-matching operations. */
4536 skip_noops (p
, pend
)
4542 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
))
4551 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4562 /* Non-zero if "p1 matches something" implies "p2 fails". */
4564 mutually_exclusive_p (bufp
, p1
, p2
)
4565 struct re_pattern_buffer
*bufp
;
4569 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
4570 unsigned char *pend
= bufp
->buffer
+ bufp
->used
;
4572 assert (p1
>= bufp
->buffer
&& p1
< pend
4573 && p2
>= bufp
->buffer
&& p2
<= pend
);
4575 /* Skip over open/close-group commands.
4576 If what follows this loop is a ...+ construct,
4577 look at what begins its body, since we will have to
4578 match at least one of that. */
4579 p2
= skip_noops (p2
, pend
);
4580 /* The same skip can be done for p1, except that this function
4581 is only used in the case where p1 is a simple match operator. */
4582 /* p1 = skip_noops (p1, pend); */
4584 assert (p1
>= bufp
->buffer
&& p1
< pend
4585 && p2
>= bufp
->buffer
&& p2
<= pend
);
4587 op2
= p2
== pend
? succeed
: *p2
;
4589 switch (SWITCH_ENUM_CAST (op2
))
4593 /* If we're at the end of the pattern, we can change. */
4594 if (skip_one_char (p1
))
4596 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4604 register re_wchar_t c
4605 = (re_opcode_t
) *p2
== endline
? '\n'
4606 : RE_STRING_CHAR (p2
+ 2, pend
- p2
- 2);
4608 if ((re_opcode_t
) *p1
== exactn
)
4610 if (c
!= RE_STRING_CHAR (p1
+ 2, pend
- p1
- 2))
4612 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c
, p1
[2]);
4617 else if ((re_opcode_t
) *p1
== charset
4618 || (re_opcode_t
) *p1
== charset_not
)
4620 int not = (re_opcode_t
) *p1
== charset_not
;
4622 /* Test if C is listed in charset (or charset_not)
4624 if (SINGLE_BYTE_CHAR_P (c
))
4626 if (c
< CHARSET_BITMAP_SIZE (p1
) * BYTEWIDTH
4627 && p1
[2 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
4630 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1
))
4631 CHARSET_LOOKUP_RANGE_TABLE (not, c
, p1
);
4633 /* `not' is equal to 1 if c would match, which means
4634 that we can't change to pop_failure_jump. */
4637 DEBUG_PRINT1 (" No match => fast loop.\n");
4641 else if ((re_opcode_t
) *p1
== anychar
4644 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4652 if ((re_opcode_t
) *p1
== exactn
)
4653 /* Reuse the code above. */
4654 return mutually_exclusive_p (bufp
, p2
, p1
);
4656 /* It is hard to list up all the character in charset
4657 P2 if it includes multibyte character. Give up in
4659 else if (!multibyte
|| !CHARSET_RANGE_TABLE_EXISTS_P (p2
))
4661 /* Now, we are sure that P2 has no range table.
4662 So, for the size of bitmap in P2, `p2[1]' is
4663 enough. But P1 may have range table, so the
4664 size of bitmap table of P1 is extracted by
4665 using macro `CHARSET_BITMAP_SIZE'.
4667 Since we know that all the character listed in
4668 P2 is ASCII, it is enough to test only bitmap
4671 if ((re_opcode_t
) *p1
== charset
)
4674 /* We win if the charset inside the loop
4675 has no overlap with the one after the loop. */
4678 && idx
< CHARSET_BITMAP_SIZE (p1
));
4680 if ((p2
[2 + idx
] & p1
[2 + idx
]) != 0)
4684 || idx
== CHARSET_BITMAP_SIZE (p1
))
4686 DEBUG_PRINT1 (" No match => fast loop.\n");
4690 else if ((re_opcode_t
) *p1
== charset_not
)
4693 /* We win if the charset_not inside the loop lists
4694 every character listed in the charset after. */
4695 for (idx
= 0; idx
< (int) p2
[1]; idx
++)
4696 if (! (p2
[2 + idx
] == 0
4697 || (idx
< CHARSET_BITMAP_SIZE (p1
)
4698 && ((p2
[2 + idx
] & ~ p1
[2 + idx
]) == 0))))
4703 DEBUG_PRINT1 (" No match => fast loop.\n");
4712 switch (SWITCH_ENUM_CAST (*p1
))
4716 /* Reuse the code above. */
4717 return mutually_exclusive_p (bufp
, p2
, p1
);
4719 /* When we have two charset_not, it's very unlikely that
4720 they don't overlap. The union of the two sets of excluded
4721 chars should cover all possible chars, which, as a matter of
4722 fact, is virtually impossible in multibyte buffers. */
4728 return ((re_opcode_t
) *p1
== syntaxspec
&& p1
[1] == Sword
);
4730 return ((re_opcode_t
) *p1
== syntaxspec
4731 && (p1
[1] == Ssymbol
|| p1
[1] == Sword
));
4733 return ((re_opcode_t
) *p1
== syntaxspec
&& p1
[1] == p2
[1]);
4736 return ((re_opcode_t
) *p1
== notsyntaxspec
&& p1
[1] == Sword
);
4738 return ((re_opcode_t
) *p1
== notsyntaxspec
4739 && (p1
[1] == Ssymbol
|| p1
[1] == Sword
));
4741 return ((re_opcode_t
) *p1
== notsyntaxspec
&& p1
[1] == p2
[1]);
4744 return (((re_opcode_t
) *p1
== notsyntaxspec
4745 || (re_opcode_t
) *p1
== syntaxspec
)
4750 return ((re_opcode_t
) *p1
== notcategoryspec
&& p1
[1] == p2
[1]);
4751 case notcategoryspec
:
4752 return ((re_opcode_t
) *p1
== categoryspec
&& p1
[1] == p2
[1]);
4764 /* Matching routines. */
4766 #ifndef emacs /* Emacs never uses this. */
4767 /* re_match is like re_match_2 except it takes only a single string. */
4770 re_match (bufp
, string
, size
, pos
, regs
)
4771 struct re_pattern_buffer
*bufp
;
4774 struct re_registers
*regs
;
4776 int result
= re_match_2_internal (bufp
, NULL
, 0, (re_char
*) string
, size
,
4778 # if defined C_ALLOCA && !defined REGEX_MALLOC
4783 WEAK_ALIAS (__re_match
, re_match
)
4784 #endif /* not emacs */
4787 /* In Emacs, this is the string or buffer in which we
4788 are matching. It is used for looking up syntax properties. */
4789 Lisp_Object re_match_object
;
4792 /* re_match_2 matches the compiled pattern in BUFP against the
4793 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4794 and SIZE2, respectively). We start matching at POS, and stop
4797 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
4798 store offsets for the substring each group matched in REGS. See the
4799 documentation for exactly how many groups we fill.
4801 We return -1 if no match, -2 if an internal error (such as the
4802 failure stack overflowing). Otherwise, we return the length of the
4803 matched substring. */
4806 re_match_2 (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
4807 struct re_pattern_buffer
*bufp
;
4808 const char *string1
, *string2
;
4811 struct re_registers
*regs
;
4818 gl_state
.object
= re_match_object
;
4819 charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos
));
4820 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object
, charpos
, 1);
4823 result
= re_match_2_internal (bufp
, (re_char
*) string1
, size1
,
4824 (re_char
*) string2
, size2
,
4826 #if defined C_ALLOCA && !defined REGEX_MALLOC
4831 WEAK_ALIAS (__re_match_2
, re_match_2
)
4833 /* This is a separate function so that we can force an alloca cleanup
4836 re_match_2_internal (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
4837 struct re_pattern_buffer
*bufp
;
4838 re_char
*string1
, *string2
;
4841 struct re_registers
*regs
;
4844 /* General temporaries. */
4849 /* Just past the end of the corresponding string. */
4850 re_char
*end1
, *end2
;
4852 /* Pointers into string1 and string2, just past the last characters in
4853 each to consider matching. */
4854 re_char
*end_match_1
, *end_match_2
;
4856 /* Where we are in the data, and the end of the current string. */
4859 /* Used sometimes to remember where we were before starting matching
4860 an operator so that we can go back in case of failure. This "atomic"
4861 behavior of matching opcodes is indispensable to the correctness
4862 of the on_failure_keep_string_jump optimization. */
4865 /* Where we are in the pattern, and the end of the pattern. */
4866 re_char
*p
= bufp
->buffer
;
4867 re_char
*pend
= p
+ bufp
->used
;
4869 /* We use this to map every character in the string. */
4870 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
4872 /* Nonzero if we have to concern multibyte character. */
4873 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
4875 /* Failure point stack. Each place that can handle a failure further
4876 down the line pushes a failure point on this stack. It consists of
4877 regstart, and regend for all registers corresponding to
4878 the subexpressions we're currently inside, plus the number of such
4879 registers, and, finally, two char *'s. The first char * is where
4880 to resume scanning the pattern; the second one is where to resume
4881 scanning the strings. */
4882 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
4883 fail_stack_type fail_stack
;
4886 unsigned nfailure_points_pushed
= 0, nfailure_points_popped
= 0;
4889 #if defined REL_ALLOC && defined REGEX_MALLOC
4890 /* This holds the pointer to the failure stack, when
4891 it is allocated relocatably. */
4892 fail_stack_elt_t
*failure_stack_ptr
;
4895 /* We fill all the registers internally, independent of what we
4896 return, for use in backreferences. The number here includes
4897 an element for register zero. */
4898 size_t num_regs
= bufp
->re_nsub
+ 1;
4900 /* Information on the contents of registers. These are pointers into
4901 the input strings; they record just what was matched (on this
4902 attempt) by a subexpression part of the pattern, that is, the
4903 regnum-th regstart pointer points to where in the pattern we began
4904 matching and the regnum-th regend points to right after where we
4905 stopped matching the regnum-th subexpression. (The zeroth register
4906 keeps track of what the whole pattern matches.) */
4907 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4908 re_char
**regstart
, **regend
;
4911 /* The following record the register info as found in the above
4912 variables when we find a match better than any we've seen before.
4913 This happens as we backtrack through the failure points, which in
4914 turn happens only if we have not yet matched the entire string. */
4915 unsigned best_regs_set
= false;
4916 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4917 re_char
**best_regstart
, **best_regend
;
4920 /* Logically, this is `best_regend[0]'. But we don't want to have to
4921 allocate space for that if we're not allocating space for anything
4922 else (see below). Also, we never need info about register 0 for
4923 any of the other register vectors, and it seems rather a kludge to
4924 treat `best_regend' differently than the rest. So we keep track of
4925 the end of the best match so far in a separate variable. We
4926 initialize this to NULL so that when we backtrack the first time
4927 and need to test it, it's not garbage. */
4928 re_char
*match_end
= NULL
;
4931 /* Counts the total number of registers pushed. */
4932 unsigned num_regs_pushed
= 0;
4935 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
4939 #ifdef MATCH_MAY_ALLOCATE
4940 /* Do not bother to initialize all the register variables if there are
4941 no groups in the pattern, as it takes a fair amount of time. If
4942 there are groups, we include space for register 0 (the whole
4943 pattern), even though we never use it, since it simplifies the
4944 array indexing. We should fix this. */
4947 regstart
= REGEX_TALLOC (num_regs
, re_char
*);
4948 regend
= REGEX_TALLOC (num_regs
, re_char
*);
4949 best_regstart
= REGEX_TALLOC (num_regs
, re_char
*);
4950 best_regend
= REGEX_TALLOC (num_regs
, re_char
*);
4952 if (!(regstart
&& regend
&& best_regstart
&& best_regend
))
4960 /* We must initialize all our variables to NULL, so that
4961 `FREE_VARIABLES' doesn't try to free them. */
4962 regstart
= regend
= best_regstart
= best_regend
= NULL
;
4964 #endif /* MATCH_MAY_ALLOCATE */
4966 /* The starting position is bogus. */
4967 if (pos
< 0 || pos
> size1
+ size2
)
4973 /* Initialize subexpression text positions to -1 to mark ones that no
4974 start_memory/stop_memory has been seen for. Also initialize the
4975 register information struct. */
4976 for (reg
= 1; reg
< num_regs
; reg
++)
4977 regstart
[reg
] = regend
[reg
] = NULL
;
4979 /* We move `string1' into `string2' if the latter's empty -- but not if
4980 `string1' is null. */
4981 if (size2
== 0 && string1
!= NULL
)
4988 end1
= string1
+ size1
;
4989 end2
= string2
+ size2
;
4991 /* `p' scans through the pattern as `d' scans through the data.
4992 `dend' is the end of the input string that `d' points within. `d'
4993 is advanced into the following input string whenever necessary, but
4994 this happens before fetching; therefore, at the beginning of the
4995 loop, `d' can be pointing at the end of a string, but it cannot
4999 /* Only match within string2. */
5000 d
= string2
+ pos
- size1
;
5001 dend
= end_match_2
= string2
+ stop
- size1
;
5002 end_match_1
= end1
; /* Just to give it a value. */
5008 /* Only match within string1. */
5009 end_match_1
= string1
+ stop
;
5011 When we reach end_match_1, PREFETCH normally switches to string2.
5012 But in the present case, this means that just doing a PREFETCH
5013 makes us jump from `stop' to `gap' within the string.
5014 What we really want here is for the search to stop as
5015 soon as we hit end_match_1. That's why we set end_match_2
5016 to end_match_1 (since PREFETCH fails as soon as we hit
5018 end_match_2
= end_match_1
;
5021 { /* It's important to use this code when stop == size so that
5022 moving `d' from end1 to string2 will not prevent the d == dend
5023 check from catching the end of string. */
5025 end_match_2
= string2
+ stop
- size1
;
5031 DEBUG_PRINT1 ("The compiled pattern is: ");
5032 DEBUG_PRINT_COMPILED_PATTERN (bufp
, p
, pend
);
5033 DEBUG_PRINT1 ("The string to match is: `");
5034 DEBUG_PRINT_DOUBLE_STRING (d
, string1
, size1
, string2
, size2
);
5035 DEBUG_PRINT1 ("'\n");
5037 /* This loops over pattern commands. It exits by returning from the
5038 function if the match is complete, or it drops through if the match
5039 fails at this starting point in the input data. */
5042 DEBUG_PRINT2 ("\n%p: ", p
);
5045 { /* End of pattern means we might have succeeded. */
5046 DEBUG_PRINT1 ("end of pattern ... ");
5048 /* If we haven't matched the entire string, and we want the
5049 longest match, try backtracking. */
5050 if (d
!= end_match_2
)
5052 /* 1 if this match ends in the same string (string1 or string2)
5053 as the best previous match. */
5054 boolean same_str_p
= (FIRST_STRING_P (match_end
)
5055 == FIRST_STRING_P (d
));
5056 /* 1 if this match is the best seen so far. */
5057 boolean best_match_p
;
5059 /* AIX compiler got confused when this was combined
5060 with the previous declaration. */
5062 best_match_p
= d
> match_end
;
5064 best_match_p
= !FIRST_STRING_P (d
);
5066 DEBUG_PRINT1 ("backtracking.\n");
5068 if (!FAIL_STACK_EMPTY ())
5069 { /* More failure points to try. */
5071 /* If exceeds best match so far, save it. */
5072 if (!best_regs_set
|| best_match_p
)
5074 best_regs_set
= true;
5077 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5079 for (reg
= 1; reg
< num_regs
; reg
++)
5081 best_regstart
[reg
] = regstart
[reg
];
5082 best_regend
[reg
] = regend
[reg
];
5088 /* If no failure points, don't restore garbage. And if
5089 last match is real best match, don't restore second
5091 else if (best_regs_set
&& !best_match_p
)
5094 /* Restore best match. It may happen that `dend ==
5095 end_match_1' while the restored d is in string2.
5096 For example, the pattern `x.*y.*z' against the
5097 strings `x-' and `y-z-', if the two strings are
5098 not consecutive in memory. */
5099 DEBUG_PRINT1 ("Restoring best registers.\n");
5102 dend
= ((d
>= string1
&& d
<= end1
)
5103 ? end_match_1
: end_match_2
);
5105 for (reg
= 1; reg
< num_regs
; reg
++)
5107 regstart
[reg
] = best_regstart
[reg
];
5108 regend
[reg
] = best_regend
[reg
];
5111 } /* d != end_match_2 */
5114 DEBUG_PRINT1 ("Accepting match.\n");
5116 /* If caller wants register contents data back, do it. */
5117 if (regs
&& !bufp
->no_sub
)
5119 /* Have the register data arrays been allocated? */
5120 if (bufp
->regs_allocated
== REGS_UNALLOCATED
)
5121 { /* No. So allocate them with malloc. We need one
5122 extra element beyond `num_regs' for the `-1' marker
5124 regs
->num_regs
= MAX (RE_NREGS
, num_regs
+ 1);
5125 regs
->start
= TALLOC (regs
->num_regs
, regoff_t
);
5126 regs
->end
= TALLOC (regs
->num_regs
, regoff_t
);
5127 if (regs
->start
== NULL
|| regs
->end
== NULL
)
5132 bufp
->regs_allocated
= REGS_REALLOCATE
;
5134 else if (bufp
->regs_allocated
== REGS_REALLOCATE
)
5135 { /* Yes. If we need more elements than were already
5136 allocated, reallocate them. If we need fewer, just
5138 if (regs
->num_regs
< num_regs
+ 1)
5140 regs
->num_regs
= num_regs
+ 1;
5141 RETALLOC (regs
->start
, regs
->num_regs
, regoff_t
);
5142 RETALLOC (regs
->end
, regs
->num_regs
, regoff_t
);
5143 if (regs
->start
== NULL
|| regs
->end
== NULL
)
5152 /* These braces fend off a "empty body in an else-statement"
5153 warning under GCC when assert expands to nothing. */
5154 assert (bufp
->regs_allocated
== REGS_FIXED
);
5157 /* Convert the pointer data in `regstart' and `regend' to
5158 indices. Register zero has to be set differently,
5159 since we haven't kept track of any info for it. */
5160 if (regs
->num_regs
> 0)
5162 regs
->start
[0] = pos
;
5163 regs
->end
[0] = POINTER_TO_OFFSET (d
);
5166 /* Go through the first `min (num_regs, regs->num_regs)'
5167 registers, since that is all we initialized. */
5168 for (reg
= 1; reg
< MIN (num_regs
, regs
->num_regs
); reg
++)
5170 if (REG_UNSET (regstart
[reg
]) || REG_UNSET (regend
[reg
]))
5171 regs
->start
[reg
] = regs
->end
[reg
] = -1;
5175 = (regoff_t
) POINTER_TO_OFFSET (regstart
[reg
]);
5177 = (regoff_t
) POINTER_TO_OFFSET (regend
[reg
]);
5181 /* If the regs structure we return has more elements than
5182 were in the pattern, set the extra elements to -1. If
5183 we (re)allocated the registers, this is the case,
5184 because we always allocate enough to have at least one
5186 for (reg
= num_regs
; reg
< regs
->num_regs
; reg
++)
5187 regs
->start
[reg
] = regs
->end
[reg
] = -1;
5188 } /* regs && !bufp->no_sub */
5190 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5191 nfailure_points_pushed
, nfailure_points_popped
,
5192 nfailure_points_pushed
- nfailure_points_popped
);
5193 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed
);
5195 mcnt
= POINTER_TO_OFFSET (d
) - pos
;
5197 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt
);
5203 /* Otherwise match next pattern command. */
5204 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
5206 /* Ignore these. Used to ignore the n of succeed_n's which
5207 currently have n == 0. */
5209 DEBUG_PRINT1 ("EXECUTING no_op.\n");
5213 DEBUG_PRINT1 ("EXECUTING succeed.\n");
5216 /* Match the next n pattern characters exactly. The following
5217 byte in the pattern defines n, and the n bytes after that
5218 are the characters to match. */
5221 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt
);
5223 /* Remember the start point to rollback upon failure. */
5226 /* This is written out as an if-else so we don't waste time
5227 testing `translate' inside the loop. */
5228 if (RE_TRANSLATE_P (translate
))
5233 int pat_charlen
, buf_charlen
;
5234 unsigned int pat_ch
, buf_ch
;
5237 pat_ch
= STRING_CHAR_AND_LENGTH (p
, pend
- p
, pat_charlen
);
5238 buf_ch
= STRING_CHAR_AND_LENGTH (d
, dend
- d
, buf_charlen
);
5240 if (RE_TRANSLATE (translate
, buf_ch
)
5249 mcnt
-= pat_charlen
;
5255 /* Avoid compiler whining about comparison being
5261 if (RE_TRANSLATE (translate
, di
) != *p
++)
5286 /* Match any character except possibly a newline or a null. */
5292 DEBUG_PRINT1 ("EXECUTING anychar.\n");
5295 buf_ch
= RE_STRING_CHAR_AND_LENGTH (d
, dend
- d
, buf_charlen
);
5296 buf_ch
= TRANSLATE (buf_ch
);
5298 if ((!(bufp
->syntax
& RE_DOT_NEWLINE
)
5300 || ((bufp
->syntax
& RE_DOT_NOT_NULL
)
5301 && buf_ch
== '\000'))
5304 DEBUG_PRINT2 (" Matched `%d'.\n", *d
);
5313 register unsigned int c
;
5314 boolean
not = (re_opcode_t
) *(p
- 1) == charset_not
;
5317 /* Start of actual range_table, or end of bitmap if there is no
5319 re_char
*range_table
;
5321 /* Nonzero if there is a range table. */
5322 int range_table_exists
;
5324 /* Number of ranges of range table. This is not included
5325 in the initial byte-length of the command. */
5328 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
5330 range_table_exists
= CHARSET_RANGE_TABLE_EXISTS_P (&p
[-1]);
5332 if (range_table_exists
)
5334 range_table
= CHARSET_RANGE_TABLE (&p
[-1]); /* Past the bitmap. */
5335 EXTRACT_NUMBER_AND_INCR (count
, range_table
);
5339 c
= RE_STRING_CHAR_AND_LENGTH (d
, dend
- d
, len
);
5340 c
= TRANSLATE (c
); /* The character to match. */
5342 if (SINGLE_BYTE_CHAR_P (c
))
5343 { /* Lookup bitmap. */
5344 /* Cast to `unsigned' instead of `unsigned char' in
5345 case the bit list is a full 32 bytes long. */
5346 if (c
< (unsigned) (CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
)
5347 && p
[1 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
5351 else if (range_table_exists
)
5353 int class_bits
= CHARSET_RANGE_TABLE_BITS (&p
[-1]);
5355 if ( (class_bits
& BIT_LOWER
&& ISLOWER (c
))
5356 | (class_bits
& BIT_MULTIBYTE
)
5357 | (class_bits
& BIT_PUNCT
&& ISPUNCT (c
))
5358 | (class_bits
& BIT_SPACE
&& ISSPACE (c
))
5359 | (class_bits
& BIT_UPPER
&& ISUPPER (c
))
5360 | (class_bits
& BIT_WORD
&& ISWORD (c
)))
5363 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c
, range_table
, count
);
5367 if (range_table_exists
)
5368 p
= CHARSET_RANGE_TABLE_END (range_table
, count
);
5370 p
+= CHARSET_BITMAP_SIZE (&p
[-1]) + 1;
5372 if (!not) goto fail
;
5379 /* The beginning of a group is represented by start_memory.
5380 The argument is the register number. The text
5381 matched within the group is recorded (in the internal
5382 registers data structure) under the register number. */
5384 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p
);
5386 /* In case we need to undo this operation (via backtracking). */
5387 PUSH_FAILURE_REG ((unsigned int)*p
);
5390 regend
[*p
] = NULL
; /* probably unnecessary. -sm */
5391 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart
[*p
]));
5393 /* Move past the register number and inner group count. */
5398 /* The stop_memory opcode represents the end of a group. Its
5399 argument is the same as start_memory's: the register number. */
5401 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p
);
5403 assert (!REG_UNSET (regstart
[*p
]));
5404 /* Strictly speaking, there should be code such as:
5406 assert (REG_UNSET (regend[*p]));
5407 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5409 But the only info to be pushed is regend[*p] and it is known to
5410 be UNSET, so there really isn't anything to push.
5411 Not pushing anything, on the other hand deprives us from the
5412 guarantee that regend[*p] is UNSET since undoing this operation
5413 will not reset its value properly. This is not important since
5414 the value will only be read on the next start_memory or at
5415 the very end and both events can only happen if this stop_memory
5419 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend
[*p
]));
5421 /* Move past the register number and the inner group count. */
5426 /* \<digit> has been turned into a `duplicate' command which is
5427 followed by the numeric value of <digit> as the register number. */
5430 register re_char
*d2
, *dend2
;
5431 int regno
= *p
++; /* Get which register to match against. */
5432 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno
);
5434 /* Can't back reference a group which we've never matched. */
5435 if (REG_UNSET (regstart
[regno
]) || REG_UNSET (regend
[regno
]))
5438 /* Where in input to try to start matching. */
5439 d2
= regstart
[regno
];
5441 /* Remember the start point to rollback upon failure. */
5444 /* Where to stop matching; if both the place to start and
5445 the place to stop matching are in the same string, then
5446 set to the place to stop, otherwise, for now have to use
5447 the end of the first string. */
5449 dend2
= ((FIRST_STRING_P (regstart
[regno
])
5450 == FIRST_STRING_P (regend
[regno
]))
5451 ? regend
[regno
] : end_match_1
);
5454 /* If necessary, advance to next segment in register
5458 if (dend2
== end_match_2
) break;
5459 if (dend2
== regend
[regno
]) break;
5461 /* End of string1 => advance to string2. */
5463 dend2
= regend
[regno
];
5465 /* At end of register contents => success */
5466 if (d2
== dend2
) break;
5468 /* If necessary, advance to next segment in data. */
5471 /* How many characters left in this segment to match. */
5474 /* Want how many consecutive characters we can match in
5475 one shot, so, if necessary, adjust the count. */
5476 if (mcnt
> dend2
- d2
)
5479 /* Compare that many; failure if mismatch, else move
5481 if (RE_TRANSLATE_P (translate
)
5482 ? bcmp_translate (d
, d2
, mcnt
, translate
, multibyte
)
5483 : memcmp (d
, d2
, mcnt
))
5488 d
+= mcnt
, d2
+= mcnt
;
5494 /* begline matches the empty string at the beginning of the string
5495 (unless `not_bol' is set in `bufp'), and after newlines. */
5497 DEBUG_PRINT1 ("EXECUTING begline.\n");
5499 if (AT_STRINGS_BEG (d
))
5501 if (!bufp
->not_bol
) break;
5506 GET_CHAR_BEFORE_2 (c
, d
, string1
, end1
, string2
, end2
);
5510 /* In all other cases, we fail. */
5514 /* endline is the dual of begline. */
5516 DEBUG_PRINT1 ("EXECUTING endline.\n");
5518 if (AT_STRINGS_END (d
))
5520 if (!bufp
->not_eol
) break;
5524 PREFETCH_NOLIMIT ();
5531 /* Match at the very beginning of the data. */
5533 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5534 if (AT_STRINGS_BEG (d
))
5539 /* Match at the very end of the data. */
5541 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
5542 if (AT_STRINGS_END (d
))
5547 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5548 pushes NULL as the value for the string on the stack. Then
5549 `POP_FAILURE_POINT' will keep the current value for the
5550 string, instead of restoring it. To see why, consider
5551 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5552 then the . fails against the \n. But the next thing we want
5553 to do is match the \n against the \n; if we restored the
5554 string value, we would be back at the foo.
5556 Because this is used only in specific cases, we don't need to
5557 check all the things that `on_failure_jump' does, to make
5558 sure the right things get saved on the stack. Hence we don't
5559 share its code. The only reason to push anything on the
5560 stack at all is that otherwise we would have to change
5561 `anychar's code to do something besides goto fail in this
5562 case; that seems worse than this. */
5563 case on_failure_keep_string_jump
:
5564 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5565 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5568 PUSH_FAILURE_POINT (p
- 3, NULL
);
5571 /* A nasty loop is introduced by the non-greedy *? and +?.
5572 With such loops, the stack only ever contains one failure point
5573 at a time, so that a plain on_failure_jump_loop kind of
5574 cycle detection cannot work. Worse yet, such a detection
5575 can not only fail to detect a cycle, but it can also wrongly
5576 detect a cycle (between different instantiations of the same
5578 So the method used for those nasty loops is a little different:
5579 We use a special cycle-detection-stack-frame which is pushed
5580 when the on_failure_jump_nastyloop failure-point is *popped*.
5581 This special frame thus marks the beginning of one iteration
5582 through the loop and we can hence easily check right here
5583 whether something matched between the beginning and the end of
5585 case on_failure_jump_nastyloop
:
5586 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5587 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5590 assert ((re_opcode_t
)p
[-4] == no_op
);
5593 CHECK_INFINITE_LOOP (p
- 4, d
);
5595 /* If there's a cycle, just continue without pushing
5596 this failure point. The failure point is the "try again"
5597 option, which shouldn't be tried.
5598 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5599 PUSH_FAILURE_POINT (p
- 3, d
);
5603 /* Simple loop detecting on_failure_jump: just check on the
5604 failure stack if the same spot was already hit earlier. */
5605 case on_failure_jump_loop
:
5607 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5608 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5612 CHECK_INFINITE_LOOP (p
- 3, d
);
5614 /* If there's a cycle, get out of the loop, as if the matching
5615 had failed. We used to just `goto fail' here, but that was
5616 aborting the search a bit too early: we want to keep the
5617 empty-loop-match and keep matching after the loop.
5618 We want (x?)*y\1z to match both xxyz and xxyxz. */
5621 PUSH_FAILURE_POINT (p
- 3, d
);
5626 /* Uses of on_failure_jump:
5628 Each alternative starts with an on_failure_jump that points
5629 to the beginning of the next alternative. Each alternative
5630 except the last ends with a jump that in effect jumps past
5631 the rest of the alternatives. (They really jump to the
5632 ending jump of the following alternative, because tensioning
5633 these jumps is a hassle.)
5635 Repeats start with an on_failure_jump that points past both
5636 the repetition text and either the following jump or
5637 pop_failure_jump back to this on_failure_jump. */
5638 case on_failure_jump
:
5639 IMMEDIATE_QUIT_CHECK
;
5640 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5641 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5644 PUSH_FAILURE_POINT (p
-3, d
);
5647 /* This operation is used for greedy *.
5648 Compare the beginning of the repeat with what in the
5649 pattern follows its end. If we can establish that there
5650 is nothing that they would both match, i.e., that we
5651 would have to backtrack because of (as in, e.g., `a*a')
5652 then we can use a non-backtracking loop based on
5653 on_failure_keep_string_jump instead of on_failure_jump. */
5654 case on_failure_jump_smart
:
5655 IMMEDIATE_QUIT_CHECK
;
5656 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5657 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5660 re_char
*p1
= p
; /* Next operation. */
5661 /* Here, we discard `const', making re_match non-reentrant. */
5662 unsigned char *p2
= (unsigned char*) p
+ mcnt
; /* Jump dest. */
5663 unsigned char *p3
= (unsigned char*) p
- 3; /* opcode location. */
5665 p
-= 3; /* Reset so that we will re-execute the
5666 instruction once it's been changed. */
5668 EXTRACT_NUMBER (mcnt
, p2
- 2);
5670 /* Ensure this is a indeed the trivial kind of loop
5671 we are expecting. */
5672 assert (skip_one_char (p1
) == p2
- 3);
5673 assert ((re_opcode_t
) p2
[-3] == jump
&& p2
+ mcnt
== p
);
5674 DEBUG_STATEMENT (debug
+= 2);
5675 if (mutually_exclusive_p (bufp
, p1
, p2
))
5677 /* Use a fast `on_failure_keep_string_jump' loop. */
5678 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
5679 *p3
= (unsigned char) on_failure_keep_string_jump
;
5680 STORE_NUMBER (p2
- 2, mcnt
+ 3);
5684 /* Default to a safe `on_failure_jump' loop. */
5685 DEBUG_PRINT1 (" smart default => slow loop.\n");
5686 *p3
= (unsigned char) on_failure_jump
;
5688 DEBUG_STATEMENT (debug
-= 2);
5692 /* Unconditionally jump (without popping any failure points). */
5695 IMMEDIATE_QUIT_CHECK
;
5696 EXTRACT_NUMBER_AND_INCR (mcnt
, p
); /* Get the amount to jump. */
5697 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt
);
5698 p
+= mcnt
; /* Do the jump. */
5699 DEBUG_PRINT2 ("(to %p).\n", p
);
5703 /* Have to succeed matching what follows at least n times.
5704 After that, handle like `on_failure_jump'. */
5706 /* Signedness doesn't matter since we only compare MCNT to 0. */
5707 EXTRACT_NUMBER (mcnt
, p
+ 2);
5708 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt
);
5710 /* Originally, mcnt is how many times we HAVE to succeed. */
5713 /* Here, we discard `const', making re_match non-reentrant. */
5714 unsigned char *p2
= (unsigned char*) p
+ 2; /* counter loc. */
5717 PUSH_NUMBER (p2
, mcnt
);
5720 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5725 /* Signedness doesn't matter since we only compare MCNT to 0. */
5726 EXTRACT_NUMBER (mcnt
, p
+ 2);
5727 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt
);
5729 /* Originally, this is how many times we CAN jump. */
5732 /* Here, we discard `const', making re_match non-reentrant. */
5733 unsigned char *p2
= (unsigned char*) p
+ 2; /* counter loc. */
5735 PUSH_NUMBER (p2
, mcnt
);
5736 goto unconditional_jump
;
5738 /* If don't have to jump any more, skip over the rest of command. */
5745 unsigned char *p2
; /* Location of the counter. */
5746 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
5748 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5749 /* Here, we discard `const', making re_match non-reentrant. */
5750 p2
= (unsigned char*) p
+ mcnt
;
5751 /* Signedness doesn't matter since we only copy MCNT's bits . */
5752 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5753 DEBUG_PRINT3 (" Setting %p to %d.\n", p2
, mcnt
);
5754 PUSH_NUMBER (p2
, mcnt
);
5760 not = (re_opcode_t
) *(p
- 1) == notwordbound
;
5761 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
5763 /* We SUCCEED (or FAIL) in one of the following cases: */
5765 /* Case 1: D is at the beginning or the end of string. */
5766 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
5770 /* C1 is the character before D, S1 is the syntax of C1, C2
5771 is the character at D, and S2 is the syntax of C2. */
5775 int offset
= PTR_TO_OFFSET (d
- 1);
5776 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5777 UPDATE_SYNTAX_TABLE (charpos
);
5779 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
5782 UPDATE_SYNTAX_TABLE_FORWARD (charpos
+ 1);
5784 PREFETCH_NOLIMIT ();
5785 c2
= RE_STRING_CHAR (d
, dend
- d
);
5788 if (/* Case 2: Only one of S1 and S2 is Sword. */
5789 ((s1
== Sword
) != (s2
== Sword
))
5790 /* Case 3: Both of S1 and S2 are Sword, and macro
5791 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
5792 || ((s1
== Sword
) && WORD_BOUNDARY_P (c1
, c2
)))
5801 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5803 /* We FAIL in one of the following cases: */
5805 /* Case 1: D is at the end of string. */
5806 if (AT_STRINGS_END (d
))
5810 /* C1 is the character before D, S1 is the syntax of C1, C2
5811 is the character at D, and S2 is the syntax of C2. */
5815 int offset
= PTR_TO_OFFSET (d
);
5816 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5817 UPDATE_SYNTAX_TABLE (charpos
);
5820 c2
= RE_STRING_CHAR (d
, dend
- d
);
5823 /* Case 2: S2 is not Sword. */
5827 /* Case 3: D is not at the beginning of string ... */
5828 if (!AT_STRINGS_BEG (d
))
5830 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
5832 UPDATE_SYNTAX_TABLE_BACKWARD (charpos
- 1);
5836 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
5838 if ((s1
== Sword
) && !WORD_BOUNDARY_P (c1
, c2
))
5845 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5847 /* We FAIL in one of the following cases: */
5849 /* Case 1: D is at the beginning of string. */
5850 if (AT_STRINGS_BEG (d
))
5854 /* C1 is the character before D, S1 is the syntax of C1, C2
5855 is the character at D, and S2 is the syntax of C2. */
5859 int offset
= PTR_TO_OFFSET (d
) - 1;
5860 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5861 UPDATE_SYNTAX_TABLE (charpos
);
5863 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
5866 /* Case 2: S1 is not Sword. */
5870 /* Case 3: D is not at the end of string ... */
5871 if (!AT_STRINGS_END (d
))
5873 PREFETCH_NOLIMIT ();
5874 c2
= RE_STRING_CHAR (d
, dend
- d
);
5876 UPDATE_SYNTAX_TABLE_FORWARD (charpos
+ 1);
5880 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
5882 if ((s2
== Sword
) && !WORD_BOUNDARY_P (c1
, c2
))
5889 DEBUG_PRINT1 ("EXECUTING symbeg.\n");
5891 /* We FAIL in one of the following cases: */
5893 /* Case 1: D is at the end of string. */
5894 if (AT_STRINGS_END (d
))
5898 /* C1 is the character before D, S1 is the syntax of C1, C2
5899 is the character at D, and S2 is the syntax of C2. */
5903 int offset
= PTR_TO_OFFSET (d
);
5904 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5905 UPDATE_SYNTAX_TABLE (charpos
);
5908 c2
= RE_STRING_CHAR (d
, dend
- d
);
5911 /* Case 2: S2 is neither Sword nor Ssymbol. */
5912 if (s2
!= Sword
&& s2
!= Ssymbol
)
5915 /* Case 3: D is not at the beginning of string ... */
5916 if (!AT_STRINGS_BEG (d
))
5918 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
5920 UPDATE_SYNTAX_TABLE_BACKWARD (charpos
- 1);
5924 /* ... and S1 is Sword or Ssymbol. */
5925 if (s1
== Sword
|| s1
== Ssymbol
)
5932 DEBUG_PRINT1 ("EXECUTING symend.\n");
5934 /* We FAIL in one of the following cases: */
5936 /* Case 1: D is at the beginning of string. */
5937 if (AT_STRINGS_BEG (d
))
5941 /* C1 is the character before D, S1 is the syntax of C1, C2
5942 is the character at D, and S2 is the syntax of C2. */
5946 int offset
= PTR_TO_OFFSET (d
) - 1;
5947 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5948 UPDATE_SYNTAX_TABLE (charpos
);
5950 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
5953 /* Case 2: S1 is neither Ssymbol nor Sword. */
5954 if (s1
!= Sword
&& s1
!= Ssymbol
)
5957 /* Case 3: D is not at the end of string ... */
5958 if (!AT_STRINGS_END (d
))
5960 PREFETCH_NOLIMIT ();
5961 c2
= RE_STRING_CHAR (d
, dend
- d
);
5963 UPDATE_SYNTAX_TABLE_FORWARD (charpos
+ 1);
5967 /* ... and S2 is Sword or Ssymbol. */
5968 if (s2
== Sword
|| s2
== Ssymbol
)
5976 not = (re_opcode_t
) *(p
- 1) == notsyntaxspec
;
5978 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt
);
5982 int offset
= PTR_TO_OFFSET (d
);
5983 int pos1
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5984 UPDATE_SYNTAX_TABLE (pos1
);
5991 c
= RE_STRING_CHAR_AND_LENGTH (d
, dend
- d
, len
);
5993 if ((SYNTAX (c
) != (enum syntaxcode
) mcnt
) ^ not)
6001 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
6002 if (PTR_BYTE_POS (d
) >= PT_BYTE
)
6007 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
6008 if (PTR_BYTE_POS (d
) != PT_BYTE
)
6013 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
6014 if (PTR_BYTE_POS (d
) <= PT_BYTE
)
6019 case notcategoryspec
:
6020 not = (re_opcode_t
) *(p
- 1) == notcategoryspec
;
6022 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt
);
6028 c
= RE_STRING_CHAR_AND_LENGTH (d
, dend
- d
, len
);
6030 if ((!CHAR_HAS_CATEGORY (c
, mcnt
)) ^ not)
6041 continue; /* Successfully executed one pattern command; keep going. */
6044 /* We goto here if a matching operation fails. */
6046 IMMEDIATE_QUIT_CHECK
;
6047 if (!FAIL_STACK_EMPTY ())
6050 /* A restart point is known. Restore to that state. */
6051 DEBUG_PRINT1 ("\nFAIL:\n");
6052 POP_FAILURE_POINT (str
, pat
);
6053 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *pat
++))
6055 case on_failure_keep_string_jump
:
6056 assert (str
== NULL
);
6057 goto continue_failure_jump
;
6059 case on_failure_jump_nastyloop
:
6060 assert ((re_opcode_t
)pat
[-2] == no_op
);
6061 PUSH_FAILURE_POINT (pat
- 2, str
);
6064 case on_failure_jump_loop
:
6065 case on_failure_jump
:
6068 continue_failure_jump
:
6069 EXTRACT_NUMBER_AND_INCR (mcnt
, pat
);
6074 /* A special frame used for nastyloops. */
6081 assert (p
>= bufp
->buffer
&& p
<= pend
);
6083 if (d
>= string1
&& d
<= end1
)
6087 break; /* Matching at this starting point really fails. */
6091 goto restore_best_regs
;
6095 return -1; /* Failure to match. */
6098 /* Subroutine definitions for re_match_2. */
6100 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
6101 bytes; nonzero otherwise. */
6104 bcmp_translate (s1
, s2
, len
, translate
, multibyte
)
6107 RE_TRANSLATE_TYPE translate
;
6108 const int multibyte
;
6110 register re_char
*p1
= s1
, *p2
= s2
;
6111 re_char
*p1_end
= s1
+ len
;
6112 re_char
*p2_end
= s2
+ len
;
6114 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
6115 different lengths, but relying on a single `len' would break this. -sm */
6116 while (p1
< p1_end
&& p2
< p2_end
)
6118 int p1_charlen
, p2_charlen
;
6119 re_wchar_t p1_ch
, p2_ch
;
6121 p1_ch
= RE_STRING_CHAR_AND_LENGTH (p1
, p1_end
- p1
, p1_charlen
);
6122 p2_ch
= RE_STRING_CHAR_AND_LENGTH (p2
, p2_end
- p2
, p2_charlen
);
6124 if (RE_TRANSLATE (translate
, p1_ch
)
6125 != RE_TRANSLATE (translate
, p2_ch
))
6128 p1
+= p1_charlen
, p2
+= p2_charlen
;
6131 if (p1
!= p1_end
|| p2
!= p2_end
)
6137 /* Entry points for GNU code. */
6139 /* re_compile_pattern is the GNU regular expression compiler: it
6140 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6141 Returns 0 if the pattern was valid, otherwise an error string.
6143 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6144 are set in BUFP on entry.
6146 We call regex_compile to do the actual compilation. */
6149 re_compile_pattern (pattern
, length
, bufp
)
6150 const char *pattern
;
6152 struct re_pattern_buffer
*bufp
;
6156 /* GNU code is written to assume at least RE_NREGS registers will be set
6157 (and at least one extra will be -1). */
6158 bufp
->regs_allocated
= REGS_UNALLOCATED
;
6160 /* And GNU code determines whether or not to get register information
6161 by passing null for the REGS argument to re_match, etc., not by
6165 ret
= regex_compile ((re_char
*) pattern
, length
, re_syntax_options
, bufp
);
6169 return gettext (re_error_msgid
[(int) ret
]);
6171 WEAK_ALIAS (__re_compile_pattern
, re_compile_pattern
)
6173 /* Entry points compatible with 4.2 BSD regex library. We don't define
6174 them unless specifically requested. */
6176 #if defined _REGEX_RE_COMP || defined _LIBC
6178 /* BSD has one and only one pattern buffer. */
6179 static struct re_pattern_buffer re_comp_buf
;
6183 /* Make these definitions weak in libc, so POSIX programs can redefine
6184 these names if they don't use our functions, and still use
6185 regcomp/regexec below without link errors. */
6195 if (!re_comp_buf
.buffer
)
6196 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6197 return (char *) gettext ("No previous regular expression");
6201 if (!re_comp_buf
.buffer
)
6203 re_comp_buf
.buffer
= (unsigned char *) malloc (200);
6204 if (re_comp_buf
.buffer
== NULL
)
6205 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6206 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
6207 re_comp_buf
.allocated
= 200;
6209 re_comp_buf
.fastmap
= (char *) malloc (1 << BYTEWIDTH
);
6210 if (re_comp_buf
.fastmap
== NULL
)
6211 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6212 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
6215 /* Since `re_exec' always passes NULL for the `regs' argument, we
6216 don't need to initialize the pattern buffer fields which affect it. */
6218 ret
= regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
6223 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6224 return (char *) gettext (re_error_msgid
[(int) ret
]);
6235 const int len
= strlen (s
);
6237 0 <= re_search (&re_comp_buf
, s
, len
, 0, len
, (struct re_registers
*) 0);
6239 #endif /* _REGEX_RE_COMP */
6241 /* POSIX.2 functions. Don't define these for Emacs. */
6245 /* regcomp takes a regular expression as a string and compiles it.
6247 PREG is a regex_t *. We do not expect any fields to be initialized,
6248 since POSIX says we shouldn't. Thus, we set
6250 `buffer' to the compiled pattern;
6251 `used' to the length of the compiled pattern;
6252 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6253 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6254 RE_SYNTAX_POSIX_BASIC;
6255 `fastmap' to an allocated space for the fastmap;
6256 `fastmap_accurate' to zero;
6257 `re_nsub' to the number of subexpressions in PATTERN.
6259 PATTERN is the address of the pattern string.
6261 CFLAGS is a series of bits which affect compilation.
6263 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6264 use POSIX basic syntax.
6266 If REG_NEWLINE is set, then . and [^...] don't match newline.
6267 Also, regexec will try a match beginning after every newline.
6269 If REG_ICASE is set, then we considers upper- and lowercase
6270 versions of letters to be equivalent when matching.
6272 If REG_NOSUB is set, then when PREG is passed to regexec, that
6273 routine will report only success or failure, and nothing about the
6276 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
6277 the return codes and their meanings.) */
6280 regcomp (preg
, pattern
, cflags
)
6281 regex_t
*__restrict preg
;
6282 const char *__restrict pattern
;
6287 = (cflags
& REG_EXTENDED
) ?
6288 RE_SYNTAX_POSIX_EXTENDED
: RE_SYNTAX_POSIX_BASIC
;
6290 /* regex_compile will allocate the space for the compiled pattern. */
6292 preg
->allocated
= 0;
6295 /* Try to allocate space for the fastmap. */
6296 preg
->fastmap
= (char *) malloc (1 << BYTEWIDTH
);
6298 if (cflags
& REG_ICASE
)
6303 = (RE_TRANSLATE_TYPE
) malloc (CHAR_SET_SIZE
6304 * sizeof (*(RE_TRANSLATE_TYPE
)0));
6305 if (preg
->translate
== NULL
)
6306 return (int) REG_ESPACE
;
6308 /* Map uppercase characters to corresponding lowercase ones. */
6309 for (i
= 0; i
< CHAR_SET_SIZE
; i
++)
6310 preg
->translate
[i
] = ISUPPER (i
) ? TOLOWER (i
) : i
;
6313 preg
->translate
= NULL
;
6315 /* If REG_NEWLINE is set, newlines are treated differently. */
6316 if (cflags
& REG_NEWLINE
)
6317 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6318 syntax
&= ~RE_DOT_NEWLINE
;
6319 syntax
|= RE_HAT_LISTS_NOT_NEWLINE
;
6322 syntax
|= RE_NO_NEWLINE_ANCHOR
;
6324 preg
->no_sub
= !!(cflags
& REG_NOSUB
);
6326 /* POSIX says a null character in the pattern terminates it, so we
6327 can use strlen here in compiling the pattern. */
6328 ret
= regex_compile ((re_char
*) pattern
, strlen (pattern
), syntax
, preg
);
6330 /* POSIX doesn't distinguish between an unmatched open-group and an
6331 unmatched close-group: both are REG_EPAREN. */
6332 if (ret
== REG_ERPAREN
)
6335 if (ret
== REG_NOERROR
&& preg
->fastmap
)
6336 { /* Compute the fastmap now, since regexec cannot modify the pattern
6338 re_compile_fastmap (preg
);
6339 if (preg
->can_be_null
)
6340 { /* The fastmap can't be used anyway. */
6341 free (preg
->fastmap
);
6342 preg
->fastmap
= NULL
;
6347 WEAK_ALIAS (__regcomp
, regcomp
)
6350 /* regexec searches for a given pattern, specified by PREG, in the
6353 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
6354 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
6355 least NMATCH elements, and we set them to the offsets of the
6356 corresponding matched substrings.
6358 EFLAGS specifies `execution flags' which affect matching: if
6359 REG_NOTBOL is set, then ^ does not match at the beginning of the
6360 string; if REG_NOTEOL is set, then $ does not match at the end.
6362 We return 0 if we find a match and REG_NOMATCH if not. */
6365 regexec (preg
, string
, nmatch
, pmatch
, eflags
)
6366 const regex_t
*__restrict preg
;
6367 const char *__restrict string
;
6369 regmatch_t pmatch
[__restrict_arr
];
6373 struct re_registers regs
;
6374 regex_t private_preg
;
6375 int len
= strlen (string
);
6376 boolean want_reg_info
= !preg
->no_sub
&& nmatch
> 0 && pmatch
;
6378 private_preg
= *preg
;
6380 private_preg
.not_bol
= !!(eflags
& REG_NOTBOL
);
6381 private_preg
.not_eol
= !!(eflags
& REG_NOTEOL
);
6383 /* The user has told us exactly how many registers to return
6384 information about, via `nmatch'. We have to pass that on to the
6385 matching routines. */
6386 private_preg
.regs_allocated
= REGS_FIXED
;
6390 regs
.num_regs
= nmatch
;
6391 regs
.start
= TALLOC (nmatch
* 2, regoff_t
);
6392 if (regs
.start
== NULL
)
6393 return (int) REG_NOMATCH
;
6394 regs
.end
= regs
.start
+ nmatch
;
6397 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6398 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6399 was a little bit longer but still only matching the real part.
6400 This works because the `endline' will check for a '\n' and will find a
6401 '\0', correctly deciding that this is not the end of a line.
6402 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6403 a convenient '\0' there. For all we know, the string could be preceded
6404 by '\n' which would throw things off. */
6406 /* Perform the searching operation. */
6407 ret
= re_search (&private_preg
, string
, len
,
6408 /* start: */ 0, /* range: */ len
,
6409 want_reg_info
? ®s
: (struct re_registers
*) 0);
6411 /* Copy the register information to the POSIX structure. */
6418 for (r
= 0; r
< nmatch
; r
++)
6420 pmatch
[r
].rm_so
= regs
.start
[r
];
6421 pmatch
[r
].rm_eo
= regs
.end
[r
];
6425 /* If we needed the temporary register info, free the space now. */
6429 /* We want zero return to mean success, unlike `re_search'. */
6430 return ret
>= 0 ? (int) REG_NOERROR
: (int) REG_NOMATCH
;
6432 WEAK_ALIAS (__regexec
, regexec
)
6435 /* Returns a message corresponding to an error code, ERRCODE, returned
6436 from either regcomp or regexec. We don't use PREG here. */
6439 regerror (errcode
, preg
, errbuf
, errbuf_size
)
6441 const regex_t
*preg
;
6449 || errcode
>= (sizeof (re_error_msgid
) / sizeof (re_error_msgid
[0])))
6450 /* Only error codes returned by the rest of the code should be passed
6451 to this routine. If we are given anything else, or if other regex
6452 code generates an invalid error code, then the program has a bug.
6453 Dump core so we can fix it. */
6456 msg
= gettext (re_error_msgid
[errcode
]);
6458 msg_size
= strlen (msg
) + 1; /* Includes the null. */
6460 if (errbuf_size
!= 0)
6462 if (msg_size
> errbuf_size
)
6464 strncpy (errbuf
, msg
, errbuf_size
- 1);
6465 errbuf
[errbuf_size
- 1] = 0;
6468 strcpy (errbuf
, msg
);
6473 WEAK_ALIAS (__regerror
, regerror
)
6476 /* Free dynamically allocated space used by PREG. */
6482 if (preg
->buffer
!= NULL
)
6483 free (preg
->buffer
);
6484 preg
->buffer
= NULL
;
6486 preg
->allocated
= 0;
6489 if (preg
->fastmap
!= NULL
)
6490 free (preg
->fastmap
);
6491 preg
->fastmap
= NULL
;
6492 preg
->fastmap_accurate
= 0;
6494 if (preg
->translate
!= NULL
)
6495 free (preg
->translate
);
6496 preg
->translate
= NULL
;
6498 WEAK_ALIAS (__regfree
, regfree
)
6500 #endif /* not emacs */
6502 /* arch-tag: 4ffd68ba-2a9e-435b-a21a-018990f9eeb2
6503 (do not change this comment) */