Conditionalize the changes below on not __linux__.
[emacs.git] / src / unexelf.c
blob60e82cc6a95f1bf39c41bb0af6ed3a13a588f74f
1 /* Copyright (C) 1985, 1986, 1987, 1988, 1990, 1992
2 Free Software Foundation, Inc.
4 This file is part of GNU Emacs.
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA.
21 In other words, you are welcome to use, share and improve this program.
22 You are forbidden to forbid anyone else to use, share and improve
23 what you give them. Help stamp out software-hoarding! */
27 * unexec.c - Convert a running program into an a.out file.
29 * Author: Spencer W. Thomas
30 * Computer Science Dept.
31 * University of Utah
32 * Date: Tue Mar 2 1982
33 * Modified heavily since then.
35 * Synopsis:
36 * unexec (new_name, a_name, data_start, bss_start, entry_address)
37 * char *new_name, *a_name;
38 * unsigned data_start, bss_start, entry_address;
40 * Takes a snapshot of the program and makes an a.out format file in the
41 * file named by the string argument new_name.
42 * If a_name is non-NULL, the symbol table will be taken from the given file.
43 * On some machines, an existing a_name file is required.
45 * The boundaries within the a.out file may be adjusted with the data_start
46 * and bss_start arguments. Either or both may be given as 0 for defaults.
48 * Data_start gives the boundary between the text segment and the data
49 * segment of the program. The text segment can contain shared, read-only
50 * program code and literal data, while the data segment is always unshared
51 * and unprotected. Data_start gives the lowest unprotected address.
52 * The value you specify may be rounded down to a suitable boundary
53 * as required by the machine you are using.
55 * Specifying zero for data_start means the boundary between text and data
56 * should not be the same as when the program was loaded.
57 * If NO_REMAP is defined, the argument data_start is ignored and the
58 * segment boundaries are never changed.
60 * Bss_start indicates how much of the data segment is to be saved in the
61 * a.out file and restored when the program is executed. It gives the lowest
62 * unsaved address, and is rounded up to a page boundary. The default when 0
63 * is given assumes that the entire data segment is to be stored, including
64 * the previous data and bss as well as any additional storage allocated with
65 * break (2).
67 * The new file is set up to start at entry_address.
69 * If you make improvements I'd like to get them too.
70 * harpo!utah-cs!thomas, thomas@Utah-20
74 /* Even more heavily modified by james@bigtex.cactus.org of Dell Computer Co.
75 * ELF support added.
77 * Basic theory: the data space of the running process needs to be
78 * dumped to the output file. Normally we would just enlarge the size
79 * of .data, scooting everything down. But we can't do that in ELF,
80 * because there is often something between the .data space and the
81 * .bss space.
83 * In the temacs dump below, notice that the Global Offset Table
84 * (.got) and the Dynamic link data (.dynamic) come between .data1 and
85 * .bss. It does not work to overlap .data with these fields.
87 * The solution is to create a new .data segment. This segment is
88 * filled with data from the current process. Since the contents of
89 * various sections refer to sections by index, the new .data segment
90 * is made the last in the table to avoid changing any existing index.
92 * This is an example of how the section headers are changed. "Addr"
93 * is a process virtual address. "Offset" is a file offset.
95 raid:/nfs/raid/src/dist-18.56/src> dump -h temacs
97 temacs:
99 **** SECTION HEADER TABLE ****
100 [No] Type Flags Addr Offset Size Name
101 Link Info Adralgn Entsize
103 [1] 1 2 0x80480d4 0xd4 0x13 .interp
104 0 0 0x1 0
106 [2] 5 2 0x80480e8 0xe8 0x388 .hash
107 3 0 0x4 0x4
109 [3] 11 2 0x8048470 0x470 0x7f0 .dynsym
110 4 1 0x4 0x10
112 [4] 3 2 0x8048c60 0xc60 0x3ad .dynstr
113 0 0 0x1 0
115 [5] 9 2 0x8049010 0x1010 0x338 .rel.plt
116 3 7 0x4 0x8
118 [6] 1 6 0x8049348 0x1348 0x3 .init
119 0 0 0x4 0
121 [7] 1 6 0x804934c 0x134c 0x680 .plt
122 0 0 0x4 0x4
124 [8] 1 6 0x80499cc 0x19cc 0x3c56f .text
125 0 0 0x4 0
127 [9] 1 6 0x8085f3c 0x3df3c 0x3 .fini
128 0 0 0x4 0
130 [10] 1 2 0x8085f40 0x3df40 0x69c .rodata
131 0 0 0x4 0
133 [11] 1 2 0x80865dc 0x3e5dc 0xd51 .rodata1
134 0 0 0x4 0
136 [12] 1 3 0x8088330 0x3f330 0x20afc .data
137 0 0 0x4 0
139 [13] 1 3 0x80a8e2c 0x5fe2c 0x89d .data1
140 0 0 0x4 0
142 [14] 1 3 0x80a96cc 0x606cc 0x1a8 .got
143 0 0 0x4 0x4
145 [15] 6 3 0x80a9874 0x60874 0x80 .dynamic
146 4 0 0x4 0x8
148 [16] 8 3 0x80a98f4 0x608f4 0x449c .bss
149 0 0 0x4 0
151 [17] 2 0 0 0x608f4 0x9b90 .symtab
152 18 371 0x4 0x10
154 [18] 3 0 0 0x6a484 0x8526 .strtab
155 0 0 0x1 0
157 [19] 3 0 0 0x729aa 0x93 .shstrtab
158 0 0 0x1 0
160 [20] 1 0 0 0x72a3d 0x68b7 .comment
161 0 0 0x1 0
163 raid:/nfs/raid/src/dist-18.56/src> dump -h xemacs
165 xemacs:
167 **** SECTION HEADER TABLE ****
168 [No] Type Flags Addr Offset Size Name
169 Link Info Adralgn Entsize
171 [1] 1 2 0x80480d4 0xd4 0x13 .interp
172 0 0 0x1 0
174 [2] 5 2 0x80480e8 0xe8 0x388 .hash
175 3 0 0x4 0x4
177 [3] 11 2 0x8048470 0x470 0x7f0 .dynsym
178 4 1 0x4 0x10
180 [4] 3 2 0x8048c60 0xc60 0x3ad .dynstr
181 0 0 0x1 0
183 [5] 9 2 0x8049010 0x1010 0x338 .rel.plt
184 3 7 0x4 0x8
186 [6] 1 6 0x8049348 0x1348 0x3 .init
187 0 0 0x4 0
189 [7] 1 6 0x804934c 0x134c 0x680 .plt
190 0 0 0x4 0x4
192 [8] 1 6 0x80499cc 0x19cc 0x3c56f .text
193 0 0 0x4 0
195 [9] 1 6 0x8085f3c 0x3df3c 0x3 .fini
196 0 0 0x4 0
198 [10] 1 2 0x8085f40 0x3df40 0x69c .rodata
199 0 0 0x4 0
201 [11] 1 2 0x80865dc 0x3e5dc 0xd51 .rodata1
202 0 0 0x4 0
204 [12] 1 3 0x8088330 0x3f330 0x20afc .data
205 0 0 0x4 0
207 [13] 1 3 0x80a8e2c 0x5fe2c 0x89d .data1
208 0 0 0x4 0
210 [14] 1 3 0x80a96cc 0x606cc 0x1a8 .got
211 0 0 0x4 0x4
213 [15] 6 3 0x80a9874 0x60874 0x80 .dynamic
214 4 0 0x4 0x8
216 [16] 8 3 0x80c6800 0x7d800 0 .bss
217 0 0 0x4 0
219 [17] 2 0 0 0x7d800 0x9b90 .symtab
220 18 371 0x4 0x10
222 [18] 3 0 0 0x87390 0x8526 .strtab
223 0 0 0x1 0
225 [19] 3 0 0 0x8f8b6 0x93 .shstrtab
226 0 0 0x1 0
228 [20] 1 0 0 0x8f949 0x68b7 .comment
229 0 0 0x1 0
231 [21] 1 3 0x80a98f4 0x608f4 0x1cf0c .data
232 0 0 0x4 0
234 * This is an example of how the file header is changed. "Shoff" is
235 * the section header offset within the file. Since that table is
236 * after the new .data section, it is moved. "Shnum" is the number of
237 * sections, which we increment.
239 * "Phoff" is the file offset to the program header. "Phentsize" and
240 * "Shentsz" are the program and section header entries sizes respectively.
241 * These can be larger than the apparent struct sizes.
243 raid:/nfs/raid/src/dist-18.56/src> dump -f temacs
245 temacs:
247 **** ELF HEADER ****
248 Class Data Type Machine Version
249 Entry Phoff Shoff Flags Ehsize
250 Phentsize Phnum Shentsz Shnum Shstrndx
252 1 1 2 3 1
253 0x80499cc 0x34 0x792f4 0 0x34
254 0x20 5 0x28 21 19
256 raid:/nfs/raid/src/dist-18.56/src> dump -f xemacs
258 xemacs:
260 **** ELF HEADER ****
261 Class Data Type Machine Version
262 Entry Phoff Shoff Flags Ehsize
263 Phentsize Phnum Shentsz Shnum Shstrndx
265 1 1 2 3 1
266 0x80499cc 0x34 0x96200 0 0x34
267 0x20 5 0x28 22 19
269 * These are the program headers. "Offset" is the file offset to the
270 * segment. "Vaddr" is the memory load address. "Filesz" is the
271 * segment size as it appears in the file, and "Memsz" is the size in
272 * memory. Below, the third segment is the code and the fourth is the
273 * data: the difference between Filesz and Memsz is .bss
275 raid:/nfs/raid/src/dist-18.56/src> dump -o temacs
277 temacs:
278 ***** PROGRAM EXECUTION HEADER *****
279 Type Offset Vaddr Paddr
280 Filesz Memsz Flags Align
282 6 0x34 0x8048034 0
283 0xa0 0xa0 5 0
285 3 0xd4 0 0
286 0x13 0 4 0
288 1 0x34 0x8048034 0
289 0x3f2f9 0x3f2f9 5 0x1000
291 1 0x3f330 0x8088330 0
292 0x215c4 0x25a60 7 0x1000
294 2 0x60874 0x80a9874 0
295 0x80 0 7 0
297 raid:/nfs/raid/src/dist-18.56/src> dump -o xemacs
299 xemacs:
300 ***** PROGRAM EXECUTION HEADER *****
301 Type Offset Vaddr Paddr
302 Filesz Memsz Flags Align
304 6 0x34 0x8048034 0
305 0xa0 0xa0 5 0
307 3 0xd4 0 0
308 0x13 0 4 0
310 1 0x34 0x8048034 0
311 0x3f2f9 0x3f2f9 5 0x1000
313 1 0x3f330 0x8088330 0
314 0x3e4d0 0x3e4d0 7 0x1000
316 2 0x60874 0x80a9874 0
317 0x80 0 7 0
322 /* Modified by wtien@urbana.mcd.mot.com of Motorola Inc.
324 * The above mechanism does not work if the unexeced ELF file is being
325 * re-layout by other applications (such as `strip'). All the applications
326 * that re-layout the internal of ELF will layout all sections in ascending
327 * order of their file offsets. After the re-layout, the data2 section will
328 * still be the LAST section in the section header vector, but its file offset
329 * is now being pushed far away down, and causes part of it not to be mapped
330 * in (ie. not covered by the load segment entry in PHDR vector), therefore
331 * causes the new binary to fail.
333 * The solution is to modify the unexec algorithm to insert the new data2
334 * section header right before the new bss section header, so their file
335 * offsets will be in the ascending order. Since some of the section's (all
336 * sections AFTER the bss section) indexes are now changed, we also need to
337 * modify some fields to make them point to the right sections. This is done
338 * by macro PATCH_INDEX. All the fields that need to be patched are:
340 * 1. ELF header e_shstrndx field.
341 * 2. section header sh_link and sh_info field.
342 * 3. symbol table entry st_shndx field.
344 * The above example now should look like:
346 **** SECTION HEADER TABLE ****
347 [No] Type Flags Addr Offset Size Name
348 Link Info Adralgn Entsize
350 [1] 1 2 0x80480d4 0xd4 0x13 .interp
351 0 0 0x1 0
353 [2] 5 2 0x80480e8 0xe8 0x388 .hash
354 3 0 0x4 0x4
356 [3] 11 2 0x8048470 0x470 0x7f0 .dynsym
357 4 1 0x4 0x10
359 [4] 3 2 0x8048c60 0xc60 0x3ad .dynstr
360 0 0 0x1 0
362 [5] 9 2 0x8049010 0x1010 0x338 .rel.plt
363 3 7 0x4 0x8
365 [6] 1 6 0x8049348 0x1348 0x3 .init
366 0 0 0x4 0
368 [7] 1 6 0x804934c 0x134c 0x680 .plt
369 0 0 0x4 0x4
371 [8] 1 6 0x80499cc 0x19cc 0x3c56f .text
372 0 0 0x4 0
374 [9] 1 6 0x8085f3c 0x3df3c 0x3 .fini
375 0 0 0x4 0
377 [10] 1 2 0x8085f40 0x3df40 0x69c .rodata
378 0 0 0x4 0
380 [11] 1 2 0x80865dc 0x3e5dc 0xd51 .rodata1
381 0 0 0x4 0
383 [12] 1 3 0x8088330 0x3f330 0x20afc .data
384 0 0 0x4 0
386 [13] 1 3 0x80a8e2c 0x5fe2c 0x89d .data1
387 0 0 0x4 0
389 [14] 1 3 0x80a96cc 0x606cc 0x1a8 .got
390 0 0 0x4 0x4
392 [15] 6 3 0x80a9874 0x60874 0x80 .dynamic
393 4 0 0x4 0x8
395 [16] 1 3 0x80a98f4 0x608f4 0x1cf0c .data
396 0 0 0x4 0
398 [17] 8 3 0x80c6800 0x7d800 0 .bss
399 0 0 0x4 0
401 [18] 2 0 0 0x7d800 0x9b90 .symtab
402 19 371 0x4 0x10
404 [19] 3 0 0 0x87390 0x8526 .strtab
405 0 0 0x1 0
407 [20] 3 0 0 0x8f8b6 0x93 .shstrtab
408 0 0 0x1 0
410 [21] 1 0 0 0x8f949 0x68b7 .comment
411 0 0 0x1 0
415 #include <sys/types.h>
416 #include <stdio.h>
417 #include <sys/stat.h>
418 #include <memory.h>
419 #include <string.h>
420 #include <errno.h>
421 #include <unistd.h>
422 #include <fcntl.h>
423 #include <elf.h>
424 #include <sys/mman.h>
426 #ifndef emacs
427 #define fatal(a, b, c) fprintf (stderr, a, b, c), exit (1)
428 #else
429 #include <config.h>
430 extern void fatal (char *, ...);
431 #endif
433 #ifndef ELF_BSS_SECTION_NAME
434 #define ELF_BSS_SECTION_NAME ".bss"
435 #endif
437 /* Get the address of a particular section or program header entry,
438 * accounting for the size of the entries.
441 On PPC Reference Platform running Solaris 2.5.1
442 the plt section is also of type NOBI like the bss section.
443 (not really stored) and therefore sections after the bss
444 section start at the plt offset. The plt section is always
445 the one just before the bss section.
446 Thus, we modify the test from
447 if (NEW_SECTION_H (nn).sh_offset >= new_data2_offset)
449 if (NEW_SECTION_H (nn).sh_offset >=
450 OLD_SECTION_H (old_bss_index-1).sh_offset)
451 This is just a hack. We should put the new data section
452 before the .plt section.
453 And we should not have this routine at all but use
454 the libelf library to read the old file and create the new
455 file.
456 The changed code is minimal and depends on prep set in m/prep.h
457 Erik Deumens
458 Quantum Theory Project
459 University of Florida
460 deumens@qtp.ufl.edu
461 Apr 23, 1996
464 #define OLD_SECTION_H(n) \
465 (*(Elf32_Shdr *) ((byte *) old_section_h + old_file_h->e_shentsize * (n)))
466 #define NEW_SECTION_H(n) \
467 (*(Elf32_Shdr *) ((byte *) new_section_h + new_file_h->e_shentsize * (n)))
468 #define OLD_PROGRAM_H(n) \
469 (*(Elf32_Phdr *) ((byte *) old_program_h + old_file_h->e_phentsize * (n)))
470 #define NEW_PROGRAM_H(n) \
471 (*(Elf32_Phdr *) ((byte *) new_program_h + new_file_h->e_phentsize * (n)))
473 #define PATCH_INDEX(n) \
474 do { \
475 if ((int) (n) >= old_bss_index) \
476 (n)++; } while (0)
477 typedef unsigned char byte;
479 /* Round X up to a multiple of Y. */
482 round_up (x, y)
483 int x, y;
485 int rem = x % y;
486 if (rem == 0)
487 return x;
488 return x - rem + y;
491 /* ****************************************************************
492 * unexec
494 * driving logic.
496 * In ELF, this works by replacing the old .bss section with a new
497 * .data section, and inserting an empty .bss immediately afterwards.
500 void
501 unexec (new_name, old_name, data_start, bss_start, entry_address)
502 char *new_name, *old_name;
503 unsigned data_start, bss_start, entry_address;
505 int new_file, old_file, new_file_size;
507 /* Pointers to the base of the image of the two files. */
508 caddr_t old_base, new_base;
510 /* Pointers to the file, program and section headers for the old and new
511 * files.
513 Elf32_Ehdr *old_file_h, *new_file_h;
514 Elf32_Phdr *old_program_h, *new_program_h;
515 Elf32_Shdr *old_section_h, *new_section_h;
517 /* Point to the section name table in the old file */
518 char *old_section_names;
520 Elf32_Addr old_bss_addr, new_bss_addr;
521 Elf32_Word old_bss_size, new_data2_size;
522 Elf32_Off new_data2_offset;
523 Elf32_Addr new_data2_addr;
525 int n, nn, old_bss_index, old_data_index, new_data2_index;
526 struct stat stat_buf;
528 /* Open the old file & map it into the address space. */
530 old_file = open (old_name, O_RDONLY);
532 if (old_file < 0)
533 fatal ("Can't open %s for reading: errno %d\n", old_name, errno);
535 if (fstat (old_file, &stat_buf) == -1)
536 fatal ("Can't fstat (%s): errno %d\n", old_name, errno);
538 old_base = mmap (0, stat_buf.st_size, PROT_READ, MAP_SHARED, old_file, 0);
540 if (old_base == (caddr_t) -1)
541 fatal ("Can't mmap (%s): errno %d\n", old_name, errno);
543 #ifdef DEBUG
544 fprintf (stderr, "mmap (%s, %x) -> %x\n", old_name, stat_buf.st_size,
545 old_base);
546 #endif
548 /* Get pointers to headers & section names */
550 old_file_h = (Elf32_Ehdr *) old_base;
551 old_program_h = (Elf32_Phdr *) ((byte *) old_base + old_file_h->e_phoff);
552 old_section_h = (Elf32_Shdr *) ((byte *) old_base + old_file_h->e_shoff);
553 old_section_names = (char *) old_base
554 + OLD_SECTION_H (old_file_h->e_shstrndx).sh_offset;
556 /* Find the old .bss section. Figure out parameters of the new
557 * data2 and bss sections.
560 for (old_bss_index = 1; old_bss_index < (int) old_file_h->e_shnum;
561 old_bss_index++)
563 #ifdef DEBUG
564 fprintf (stderr, "Looking for .bss - found %s\n",
565 old_section_names + OLD_SECTION_H (old_bss_index).sh_name);
566 #endif
567 if (!strcmp (old_section_names + OLD_SECTION_H (old_bss_index).sh_name,
568 ELF_BSS_SECTION_NAME))
569 break;
571 if (old_bss_index == old_file_h->e_shnum)
572 fatal ("Can't find .bss in %s.\n", old_name, 0);
574 old_bss_addr = OLD_SECTION_H (old_bss_index).sh_addr;
575 old_bss_size = OLD_SECTION_H (old_bss_index).sh_size;
576 #if defined(emacs) || !defined(DEBUG)
577 new_bss_addr = (Elf32_Addr) sbrk (0);
578 #else
579 new_bss_addr = old_bss_addr + old_bss_size + 0x1234;
580 #endif
581 new_data2_addr = old_bss_addr;
582 new_data2_size = new_bss_addr - old_bss_addr;
583 new_data2_offset = OLD_SECTION_H (old_bss_index).sh_offset;
585 #ifdef DEBUG
586 fprintf (stderr, "old_bss_index %d\n", old_bss_index);
587 fprintf (stderr, "old_bss_addr %x\n", old_bss_addr);
588 fprintf (stderr, "old_bss_size %x\n", old_bss_size);
589 fprintf (stderr, "new_bss_addr %x\n", new_bss_addr);
590 fprintf (stderr, "new_data2_addr %x\n", new_data2_addr);
591 fprintf (stderr, "new_data2_size %x\n", new_data2_size);
592 fprintf (stderr, "new_data2_offset %x\n", new_data2_offset);
593 #endif
595 if ((unsigned) new_bss_addr < (unsigned) old_bss_addr + old_bss_size)
596 fatal (".bss shrank when undumping???\n", 0, 0);
598 /* Set the output file to the right size and mmap it. Set
599 * pointers to various interesting objects. stat_buf still has
600 * old_file data.
603 new_file = open (new_name, O_RDWR | O_CREAT, 0666);
604 if (new_file < 0)
605 fatal ("Can't creat (%s): errno %d\n", new_name, errno);
607 new_file_size = stat_buf.st_size + old_file_h->e_shentsize + new_data2_size;
609 if (ftruncate (new_file, new_file_size))
610 fatal ("Can't ftruncate (%s): errno %d\n", new_name, errno);
612 #ifdef UNEXEC_USE_MAP_PRIVATE
613 new_base = mmap (0, new_file_size, PROT_READ | PROT_WRITE, MAP_PRIVATE,
614 new_file, 0);
615 #else
616 new_base = mmap (0, new_file_size, PROT_READ | PROT_WRITE, MAP_SHARED,
617 new_file, 0);
618 #endif
620 if (new_base == (caddr_t) -1)
621 fatal ("Can't mmap (%s): errno %d\n", new_name, errno);
623 new_file_h = (Elf32_Ehdr *) new_base;
624 new_program_h = (Elf32_Phdr *) ((byte *) new_base + old_file_h->e_phoff);
625 new_section_h = (Elf32_Shdr *)
626 ((byte *) new_base + old_file_h->e_shoff + new_data2_size);
628 /* Make our new file, program and section headers as copies of the
629 * originals.
632 memcpy (new_file_h, old_file_h, old_file_h->e_ehsize);
633 memcpy (new_program_h, old_program_h,
634 old_file_h->e_phnum * old_file_h->e_phentsize);
636 /* Modify the e_shstrndx if necessary. */
637 PATCH_INDEX (new_file_h->e_shstrndx);
639 /* Fix up file header. We'll add one section. Section header is
640 * further away now.
643 new_file_h->e_shoff += new_data2_size;
644 new_file_h->e_shnum += 1;
646 #ifdef DEBUG
647 fprintf (stderr, "Old section offset %x\n", old_file_h->e_shoff);
648 fprintf (stderr, "Old section count %d\n", old_file_h->e_shnum);
649 fprintf (stderr, "New section offset %x\n", new_file_h->e_shoff);
650 fprintf (stderr, "New section count %d\n", new_file_h->e_shnum);
651 #endif
653 /* Fix up a new program header. Extend the writable data segment so
654 * that the bss area is covered too. Find that segment by looking
655 * for a segment that ends just before the .bss area. Make sure
656 * that no segments are above the new .data2. Put a loop at the end
657 * to adjust the offset and address of any segment that is above
658 * data2, just in case we decide to allow this later.
661 for (n = new_file_h->e_phnum - 1; n >= 0; n--)
663 /* Compute maximum of all requirements for alignment of section. */
664 int alignment = (NEW_PROGRAM_H (n)).p_align;
665 if ((OLD_SECTION_H (old_bss_index)).sh_addralign > alignment)
666 alignment = OLD_SECTION_H (old_bss_index).sh_addralign;
668 if (NEW_PROGRAM_H (n).p_vaddr + NEW_PROGRAM_H (n).p_filesz > old_bss_addr)
669 fatal ("Program segment above .bss in %s\n", old_name, 0);
671 if (NEW_PROGRAM_H (n).p_type == PT_LOAD
672 && (round_up ((NEW_PROGRAM_H (n)).p_vaddr
673 + (NEW_PROGRAM_H (n)).p_filesz,
674 alignment)
675 == round_up (old_bss_addr, alignment)))
676 break;
678 if (n < 0)
679 fatal ("Couldn't find segment next to .bss in %s\n", old_name, 0);
681 NEW_PROGRAM_H (n).p_filesz += new_data2_size;
682 NEW_PROGRAM_H (n).p_memsz = NEW_PROGRAM_H (n).p_filesz;
684 #if 0 /* Maybe allow section after data2 - does this ever happen? */
685 for (n = new_file_h->e_phnum - 1; n >= 0; n--)
687 if (NEW_PROGRAM_H (n).p_vaddr
688 && NEW_PROGRAM_H (n).p_vaddr >= new_data2_addr)
689 NEW_PROGRAM_H (n).p_vaddr += new_data2_size - old_bss_size;
691 if (NEW_PROGRAM_H (n).p_offset >= new_data2_offset)
692 NEW_PROGRAM_H (n).p_offset += new_data2_size;
694 #endif
696 /* Fix up section headers based on new .data2 section. Any section
697 * whose offset or virtual address is after the new .data2 section
698 * gets its value adjusted. .bss size becomes zero and new address
699 * is set. data2 section header gets added by copying the existing
700 * .data header and modifying the offset, address and size.
702 for (old_data_index = 1; old_data_index < (int) old_file_h->e_shnum;
703 old_data_index++)
704 if (!strcmp (old_section_names + OLD_SECTION_H (old_data_index).sh_name,
705 ".data"))
706 break;
707 if (old_data_index == old_file_h->e_shnum)
708 fatal ("Can't find .data in %s.\n", old_name, 0);
710 /* Walk through all section headers, insert the new data2 section right
711 before the new bss section. */
712 for (n = 1, nn = 1; n < (int) old_file_h->e_shnum; n++, nn++)
714 caddr_t src;
715 /* If it is bss section, insert the new data2 section before it. */
716 if (n == old_bss_index)
718 /* Steal the data section header for this data2 section. */
719 memcpy (&NEW_SECTION_H (nn), &OLD_SECTION_H (old_data_index),
720 new_file_h->e_shentsize);
722 NEW_SECTION_H (nn).sh_addr = new_data2_addr;
723 NEW_SECTION_H (nn).sh_offset = new_data2_offset;
724 NEW_SECTION_H (nn).sh_size = new_data2_size;
725 /* Use the bss section's alignment. This will assure that the
726 new data2 section always be placed in the same spot as the old
727 bss section by any other application. */
728 NEW_SECTION_H (nn).sh_addralign = OLD_SECTION_H (n).sh_addralign;
730 /* Now copy over what we have in the memory now. */
731 memcpy (NEW_SECTION_H (nn).sh_offset + new_base,
732 (caddr_t) OLD_SECTION_H (n).sh_addr,
733 new_data2_size);
734 nn++;
737 memcpy (&NEW_SECTION_H (nn), &OLD_SECTION_H (n),
738 old_file_h->e_shentsize);
740 /* The new bss section's size is zero, and its file offset and virtual
741 address should be off by NEW_DATA2_SIZE. */
742 if (n == old_bss_index)
744 /* NN should be `old_bss_index + 1' at this point. */
745 NEW_SECTION_H (nn).sh_offset += new_data2_size;
746 NEW_SECTION_H (nn).sh_addr += new_data2_size;
747 /* Let the new bss section address alignment be the same as the
748 section address alignment followed the old bss section, so
749 this section will be placed in exactly the same place. */
750 NEW_SECTION_H (nn).sh_addralign = OLD_SECTION_H (nn).sh_addralign;
751 NEW_SECTION_H (nn).sh_size = 0;
753 else
755 /* Any section that was original placed AFTER the bss
756 section should now be off by NEW_DATA2_SIZE. */
757 #ifdef SOLARIS_POWERPC
758 /* On PPC Reference Platform running Solaris 2.5.1
759 the plt section is also of type NOBI like the bss section.
760 (not really stored) and therefore sections after the bss
761 section start at the plt offset. The plt section is always
762 the one just before the bss section.
763 It would be better to put the new data section before
764 the .plt section, or use libelf instead.
765 Erik Deumens, deumens@qtp.ufl.edu. */
766 if (NEW_SECTION_H (nn).sh_offset
767 >= OLD_SECTION_H (old_bss_index-1).sh_offset)
768 NEW_SECTION_H (nn).sh_offset += new_data2_size;
769 #else
770 if (round_up (NEW_SECTION_H (nn).sh_offset,
771 OLD_SECTION_H (old_bss_index).sh_addralign)
772 >= new_data2_offset)
773 NEW_SECTION_H (nn).sh_offset += new_data2_size;
774 #endif
775 /* Any section that was originally placed after the section
776 header table should now be off by the size of one section
777 header table entry. */
778 if (NEW_SECTION_H (nn).sh_offset > new_file_h->e_shoff)
779 NEW_SECTION_H (nn).sh_offset += new_file_h->e_shentsize;
782 /* If any section hdr refers to the section after the new .data
783 section, make it refer to next one because we have inserted
784 a new section in between. */
786 PATCH_INDEX (NEW_SECTION_H (nn).sh_link);
787 /* For symbol tables, info is a symbol table index,
788 so don't change it. */
789 if (NEW_SECTION_H (nn).sh_type != SHT_SYMTAB
790 && NEW_SECTION_H (nn).sh_type != SHT_DYNSYM)
791 PATCH_INDEX (NEW_SECTION_H (nn).sh_info);
793 /* Now, start to copy the content of sections. */
794 if (NEW_SECTION_H (nn).sh_type == SHT_NULL
795 || NEW_SECTION_H (nn).sh_type == SHT_NOBITS)
796 continue;
798 /* Write out the sections. .data and .data1 (and data2, called
799 ".data" in the strings table) get copied from the current process
800 instead of the old file. */
801 if (!strcmp (old_section_names + NEW_SECTION_H (n).sh_name, ".data")
802 || !strcmp ((old_section_names + NEW_SECTION_H (n).sh_name),
803 ".data1"))
804 src = (caddr_t) OLD_SECTION_H (n).sh_addr;
805 else
806 src = old_base + OLD_SECTION_H (n).sh_offset;
808 memcpy (NEW_SECTION_H (nn).sh_offset + new_base, src,
809 NEW_SECTION_H (nn).sh_size);
811 /* If it is the symbol table, its st_shndx field needs to be patched. */
812 if (NEW_SECTION_H (nn).sh_type == SHT_SYMTAB
813 || NEW_SECTION_H (nn).sh_type == SHT_DYNSYM)
815 Elf32_Shdr *spt = &NEW_SECTION_H (nn);
816 unsigned int num = spt->sh_size / spt->sh_entsize;
817 Elf32_Sym * sym = (Elf32_Sym *) (NEW_SECTION_H (nn).sh_offset +
818 new_base);
819 for (; num--; sym++)
821 if ((sym->st_shndx == SHN_UNDEF)
822 || (sym->st_shndx == SHN_ABS)
823 || (sym->st_shndx == SHN_COMMON))
824 continue;
826 PATCH_INDEX (sym->st_shndx);
831 /* Update the symbol values of _edata and _end. */
832 for (n = new_file_h->e_shnum - 1; n; n--)
834 byte *symnames;
835 Elf32_Sym *symp, *symendp;
837 if (NEW_SECTION_H (n).sh_type != SHT_DYNSYM
838 && NEW_SECTION_H (n).sh_type != SHT_SYMTAB)
839 continue;
841 symnames = ((byte *) new_base
842 + NEW_SECTION_H (NEW_SECTION_H (n).sh_link).sh_offset);
843 symp = (Elf32_Sym *) (NEW_SECTION_H (n).sh_offset + new_base);
844 symendp = (Elf32_Sym *) ((byte *)symp + NEW_SECTION_H (n).sh_size);
846 for (; symp < symendp; symp ++)
847 if (strcmp ((char *) (symnames + symp->st_name), "_end") == 0
848 || strcmp ((char *) (symnames + symp->st_name), "_edata") == 0)
849 memcpy (&symp->st_value, &new_bss_addr, sizeof (new_bss_addr));
852 /* This loop seeks out relocation sections for the data section, so
853 that it can undo relocations performed by the runtime linker. */
854 for (n = new_file_h->e_shnum - 1; n; n--)
856 Elf32_Shdr section = NEW_SECTION_H (n);
857 switch (section.sh_type) {
858 default:
859 break;
860 case SHT_REL:
861 case SHT_RELA:
862 /* This code handles two different size structs, but there should
863 be no harm in that provided that r_offset is always the first
864 member. */
865 nn = section.sh_info;
866 if (!strcmp (old_section_names + NEW_SECTION_H (nn).sh_name, ".data")
867 || !strcmp ((old_section_names + NEW_SECTION_H (nn).sh_name),
868 ".data1"))
870 Elf32_Addr offset = NEW_SECTION_H (nn).sh_addr -
871 NEW_SECTION_H (nn).sh_offset;
872 caddr_t reloc = old_base + section.sh_offset, end;
873 for (end = reloc + section.sh_size; reloc < end;
874 reloc += section.sh_entsize)
876 Elf32_Addr addr = ((Elf32_Rel *) reloc)->r_offset - offset;
877 memcpy (new_base + addr, old_base + addr, 4);
880 break;
884 #ifdef UNEXEC_USE_MAP_PRIVATE
885 if (lseek (new_file, 0, SEEK_SET) == -1)
886 fatal ("Can't rewind (%s): errno %d\n", new_name, errno);
888 if (write (new_file, new_base, new_file_size) != new_file_size)
889 fatal ("Can't write (%s): errno %d\n", new_name, errno);
890 #endif
892 /* Close the files and make the new file executable. */
894 if (close (old_file))
895 fatal ("Can't close (%s): errno %d\n", old_name, errno);
897 if (close (new_file))
898 fatal ("Can't close (%s): errno %d\n", new_name, errno);
900 if (stat (new_name, &stat_buf) == -1)
901 fatal ("Can't stat (%s): errno %d\n", new_name, errno);
903 n = umask (777);
904 umask (n);
905 stat_buf.st_mode |= 0111 & ~n;
906 if (chmod (new_name, stat_buf.st_mode) == -1)
907 fatal ("Can't chmod (%s): errno %d\n", new_name, errno);