(tags): Depend on $(lwlibdir)/TAGS.
[emacs.git] / lisp / international / ccl.el
blob5da5cab6ed8ef17a3f3773883b36b7eb96eaeac2
1 ;;; ccl.el --- CCL (Code Conversion Language) compiler
3 ;; Copyright (C) 1995 Electrotechnical Laboratory, JAPAN.
4 ;; Licensed to the Free Software Foundation.
6 ;; Keywords: CCL, mule, multilingual, character set, coding-system
8 ;; This file is part of GNU Emacs.
10 ;; GNU Emacs is free software; you can redistribute it and/or modify
11 ;; it under the terms of the GNU General Public License as published by
12 ;; the Free Software Foundation; either version 2, or (at your option)
13 ;; any later version.
15 ;; GNU Emacs is distributed in the hope that it will be useful,
16 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
17 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 ;; GNU General Public License for more details.
20 ;; You should have received a copy of the GNU General Public License
21 ;; along with GNU Emacs; see the file COPYING. If not, write to the
22 ;; Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 ;; Boston, MA 02111-1307, USA.
25 ;;; Commentary:
27 ;; CCL (Code Conversion Language) is a simple programming language to
28 ;; be used for various kind of code conversion. CCL program is
29 ;; compiled to CCL code (vector of integers) and executed by CCL
30 ;; interpreter of Emacs.
32 ;; CCL is used for code conversion at process I/O and file I/O for
33 ;; non-standard coding-system. In addition, it is used for
34 ;; calculating a code point of X's font from a character code.
35 ;; However, since CCL is designed as a powerful programming language,
36 ;; it can be used for more generic calculation. For instance,
37 ;; combination of three or more arithmetic operations can be
38 ;; calculated faster than Emacs Lisp.
40 ;; Syntax and semantics of CCL program is described in the
41 ;; documentation of `define-ccl-program'.
43 ;;; Code:
45 (defgroup ccl nil
46 "CCL (Code Conversion Language) compiler."
47 :prefix "ccl-"
48 :group 'i18n)
50 (defconst ccl-command-table
51 [if branch loop break repeat write-repeat write-read-repeat
52 read read-if read-branch write call end
53 read-multibyte-character write-multibyte-character
54 translate-character
55 iterate-multiple-map map-multiple map-single]
56 "Vector of CCL commands (symbols).")
58 ;; Put a property to each symbol of CCL commands for the compiler.
59 (let (op (i 0) (len (length ccl-command-table)))
60 (while (< i len)
61 (setq op (aref ccl-command-table i))
62 (put op 'ccl-compile-function (intern (format "ccl-compile-%s" op)))
63 (setq i (1+ i))))
65 (defconst ccl-code-table
66 [set-register
67 set-short-const
68 set-const
69 set-array
70 jump
71 jump-cond
72 write-register-jump
73 write-register-read-jump
74 write-const-jump
75 write-const-read-jump
76 write-string-jump
77 write-array-read-jump
78 read-jump
79 branch
80 read-register
81 write-expr-const
82 read-branch
83 write-register
84 write-expr-register
85 call
86 write-const-string
87 write-array
88 end
89 set-assign-expr-const
90 set-assign-expr-register
91 set-expr-const
92 set-expr-register
93 jump-cond-expr-const
94 jump-cond-expr-register
95 read-jump-cond-expr-const
96 read-jump-cond-expr-register
97 ex-cmd
99 "Vector of CCL compiled codes (symbols).")
101 (defconst ccl-extended-code-table
102 [read-multibyte-character
103 write-multibyte-character
104 translate-character
105 translate-character-const-tbl
106 nil nil nil nil nil nil nil nil nil nil nil nil ; 0x04-0x0f
107 iterate-multiple-map
108 map-multiple
109 map-single
111 "Vector of CCL extended compiled codes (symbols).")
113 ;; Put a property to each symbol of CCL codes for the disassembler.
114 (let (code (i 0) (len (length ccl-code-table)))
115 (while (< i len)
116 (setq code (aref ccl-code-table i))
117 (put code 'ccl-code i)
118 (put code 'ccl-dump-function (intern (format "ccl-dump-%s" code)))
119 (setq i (1+ i))))
121 (let (code (i 0) (len (length ccl-extended-code-table)))
122 (while (< i len)
123 (setq code (aref ccl-extended-code-table i))
124 (if code
125 (progn
126 (put code 'ccl-ex-code i)
127 (put code 'ccl-dump-function (intern (format "ccl-dump-%s" code)))))
128 (setq i (1+ i))))
130 (defconst ccl-jump-code-list
131 '(jump jump-cond write-register-jump write-register-read-jump
132 write-const-jump write-const-read-jump write-string-jump
133 write-array-read-jump read-jump))
135 ;; Put a property `jump-flag' to each CCL code which execute jump in
136 ;; some way.
137 (let ((l ccl-jump-code-list))
138 (while l
139 (put (car l) 'jump-flag t)
140 (setq l (cdr l))))
142 (defconst ccl-register-table
143 [r0 r1 r2 r3 r4 r5 r6 r7]
144 "Vector of CCL registers (symbols).")
146 ;; Put a property to indicate register number to each symbol of CCL.
147 ;; registers.
148 (let (reg (i 0) (len (length ccl-register-table)))
149 (while (< i len)
150 (setq reg (aref ccl-register-table i))
151 (put reg 'ccl-register-number i)
152 (setq i (1+ i))))
154 (defconst ccl-arith-table
155 [+ - * / % & | ^ << >> <8 >8 // nil nil nil
156 < > == <= >= != de-sjis en-sjis]
157 "Vector of CCL arithmetic/logical operators (symbols).")
159 ;; Put a property to each symbol of CCL operators for the compiler.
160 (let (arith (i 0) (len (length ccl-arith-table)))
161 (while (< i len)
162 (setq arith (aref ccl-arith-table i))
163 (if arith (put arith 'ccl-arith-code i))
164 (setq i (1+ i))))
166 (defconst ccl-assign-arith-table
167 [+= -= *= /= %= &= |= ^= <<= >>= <8= >8= //=]
168 "Vector of CCL assignment operators (symbols).")
170 ;; Put a property to each symbol of CCL assignment operators for the compiler.
171 (let (arith (i 0) (len (length ccl-assign-arith-table)))
172 (while (< i len)
173 (setq arith (aref ccl-assign-arith-table i))
174 (put arith 'ccl-self-arith-code i)
175 (setq i (1+ i))))
177 (defvar ccl-program-vector nil
178 "Working vector of CCL codes produced by CCL compiler.")
179 (defvar ccl-current-ic 0
180 "The current index for `ccl-program-vector'.")
182 ;; Embed integer DATA in `ccl-program-vector' at `ccl-current-ic' and
183 ;; increment it. If IC is specified, embed DATA at IC.
184 (defun ccl-embed-data (data &optional ic)
185 (if ic
186 (aset ccl-program-vector ic data)
187 (let ((len (length ccl-program-vector)))
188 (if (>= ccl-current-ic len)
189 (let ((new (make-vector (* len 2) nil)))
190 (while (> len 0)
191 (setq len (1- len))
192 (aset new len (aref ccl-program-vector len)))
193 (setq ccl-program-vector new))))
194 (aset ccl-program-vector ccl-current-ic data)
195 (setq ccl-current-ic (1+ ccl-current-ic))))
197 ;; Embed pair of SYMBOL and PROP where (get SYMBOL PROP) should give
198 ;; proper index number for SYMBOL. PROP should be
199 ;; `translation-table-id', `code-conversion-map-id', or
200 ;; `ccl-program-idx'.
201 (defun ccl-embed-symbol (symbol prop)
202 (ccl-embed-data (cons symbol prop)))
204 ;; Embed string STR of length LEN in `ccl-program-vector' at
205 ;; `ccl-current-ic'.
206 (defun ccl-embed-string (len str)
207 (let ((i 0))
208 (while (< i len)
209 (ccl-embed-data (logior (ash (aref str i) 16)
210 (if (< (1+ i) len)
211 (ash (aref str (1+ i)) 8)
213 (if (< (+ i 2) len)
214 (aref str (+ i 2))
215 0)))
216 (setq i (+ i 3)))))
218 ;; Embed a relative jump address to `ccl-current-ic' in
219 ;; `ccl-program-vector' at IC without altering the other bit field.
220 (defun ccl-embed-current-address (ic)
221 (let ((relative (- ccl-current-ic (1+ ic))))
222 (aset ccl-program-vector ic
223 (logior (aref ccl-program-vector ic) (ash relative 8)))))
225 ;; Embed CCL code for the operation OP and arguments REG and DATA in
226 ;; `ccl-program-vector' at `ccl-current-ic' in the following format.
227 ;; |----------------- integer (28-bit) ------------------|
228 ;; |------------ 20-bit ------------|- 3-bit --|- 5-bit -|
229 ;; |------------- DATA -------------|-- REG ---|-- OP ---|
230 ;; If REG2 is specified, embed a code in the following format.
231 ;; |------- 17-bit ------|- 3-bit --|- 3-bit --|- 5-bit -|
232 ;; |-------- DATA -------|-- REG2 --|-- REG ---|-- OP ---|
234 ;; If REG is a CCL register symbol (e.g. r0, r1...), the register
235 ;; number is embedded. If OP is one of unconditional jumps, DATA is
236 ;; changed to an relative jump address.
238 (defun ccl-embed-code (op reg data &optional reg2)
239 (if (and (> data 0) (get op 'jump-flag))
240 ;; DATA is an absolute jump address. Make it relative to the
241 ;; next of jump code.
242 (setq data (- data (1+ ccl-current-ic))))
243 (let ((code (logior (get op 'ccl-code)
244 (ash
245 (if (symbolp reg) (get reg 'ccl-register-number) reg) 5)
246 (if reg2
247 (logior (ash (get reg2 'ccl-register-number) 8)
248 (ash data 11))
249 (ash data 8)))))
250 (ccl-embed-data code)))
252 ;; extended ccl command format
253 ;; |- 14-bit -|- 3-bit --|- 3-bit --|- 3-bit --|- 5-bit -|
254 ;; |- EX-OP --|-- REG3 --|-- REG2 --|-- REG ---|-- OP ---|
255 (defun ccl-embed-extended-command (ex-op reg reg2 reg3)
256 (let ((data (logior (ash (get ex-op 'ccl-ex-code) 3)
257 (if (symbolp reg3)
258 (get reg3 'ccl-register-number)
259 0))))
260 (ccl-embed-code 'ex-cmd reg data reg2)))
262 ;; Just advance `ccl-current-ic' by INC.
263 (defun ccl-increment-ic (inc)
264 (setq ccl-current-ic (+ ccl-current-ic inc)))
266 ;; If non-nil, index of the start of the current loop.
267 (defvar ccl-loop-head nil)
268 ;; If non-nil, list of absolute addresses of the breaking points of
269 ;; the current loop.
270 (defvar ccl-breaks nil)
272 ;;;###autoload
273 (defun ccl-compile (ccl-program)
274 "Return the compiled code of CCL-PROGRAM as a vector of integers."
275 (if (or (null (consp ccl-program))
276 (null (integerp (car ccl-program)))
277 (null (listp (car (cdr ccl-program)))))
278 (error "CCL: Invalid CCL program: %s" ccl-program))
279 (if (null (vectorp ccl-program-vector))
280 (setq ccl-program-vector (make-vector 8192 0)))
281 (setq ccl-loop-head nil ccl-breaks nil)
282 (setq ccl-current-ic 0)
284 ;; The first element is the buffer magnification.
285 (ccl-embed-data (car ccl-program))
287 ;; The second element is the address of the start CCL code for
288 ;; processing end of input buffer (we call it eof-processor). We
289 ;; set it later.
290 (ccl-increment-ic 1)
292 ;; Compile the main body of the CCL program.
293 (ccl-compile-1 (car (cdr ccl-program)))
295 ;; Embed the address of eof-processor.
296 (ccl-embed-data ccl-current-ic 1)
298 ;; Then compile eof-processor.
299 (if (nth 2 ccl-program)
300 (ccl-compile-1 (nth 2 ccl-program)))
302 ;; At last, embed termination code.
303 (ccl-embed-code 'end 0 0)
305 (let ((vec (make-vector ccl-current-ic 0))
306 (i 0))
307 (while (< i ccl-current-ic)
308 (aset vec i (aref ccl-program-vector i))
309 (setq i (1+ i)))
310 vec))
312 ;; Signal syntax error.
313 (defun ccl-syntax-error (cmd)
314 (error "CCL: Syntax error: %s" cmd))
316 ;; Check if ARG is a valid CCL register.
317 (defun ccl-check-register (arg cmd)
318 (if (get arg 'ccl-register-number)
320 (error "CCL: Invalid register %s in %s." arg cmd)))
322 ;; Check if ARG is a valid CCL command.
323 (defun ccl-check-compile-function (arg cmd)
324 (or (get arg 'ccl-compile-function)
325 (error "CCL: Invalid command: %s" cmd)))
327 ;; In the following code, most ccl-compile-XXXX functions return t if
328 ;; they end with unconditional jump, else return nil.
330 ;; Compile CCL-BLOCK (see the syntax above).
331 (defun ccl-compile-1 (ccl-block)
332 (let (unconditional-jump
333 cmd)
334 (if (or (integerp ccl-block)
335 (stringp ccl-block)
336 (and ccl-block (symbolp (car ccl-block))))
337 ;; This block consists of single statement.
338 (setq ccl-block (list ccl-block)))
340 ;; Now CCL-BLOCK is a list of statements. Compile them one by
341 ;; one.
342 (while ccl-block
343 (setq cmd (car ccl-block))
344 (setq unconditional-jump
345 (cond ((integerp cmd)
346 ;; SET statement for the register 0.
347 (ccl-compile-set (list 'r0 '= cmd)))
349 ((stringp cmd)
350 ;; WRITE statement of string argument.
351 (ccl-compile-write-string cmd))
353 ((listp cmd)
354 ;; The other statements.
355 (cond ((eq (nth 1 cmd) '=)
356 ;; SET statement of the form `(REG = EXPRESSION)'.
357 (ccl-compile-set cmd))
359 ((and (symbolp (nth 1 cmd))
360 (get (nth 1 cmd) 'ccl-self-arith-code))
361 ;; SET statement with an assignment operation.
362 (ccl-compile-self-set cmd))
365 (funcall (ccl-check-compile-function (car cmd) cmd)
366 cmd))))
369 (ccl-syntax-error cmd))))
370 (setq ccl-block (cdr ccl-block)))
371 unconditional-jump))
373 (defconst ccl-max-short-const (ash 1 19))
374 (defconst ccl-min-short-const (ash -1 19))
376 ;; Compile SET statement.
377 (defun ccl-compile-set (cmd)
378 (let ((rrr (ccl-check-register (car cmd) cmd))
379 (right (nth 2 cmd)))
380 (cond ((listp right)
381 ;; CMD has the form `(RRR = (XXX OP YYY))'.
382 (ccl-compile-expression rrr right))
384 ((integerp right)
385 ;; CMD has the form `(RRR = integer)'.
386 (if (and (<= right ccl-max-short-const)
387 (>= right ccl-min-short-const))
388 (ccl-embed-code 'set-short-const rrr right)
389 (ccl-embed-code 'set-const rrr 0)
390 (ccl-embed-data right)))
393 ;; CMD has the form `(RRR = rrr [ array ])'.
394 (ccl-check-register right cmd)
395 (let ((ary (nth 3 cmd)))
396 (if (vectorp ary)
397 (let ((i 0) (len (length ary)))
398 (ccl-embed-code 'set-array rrr len right)
399 (while (< i len)
400 (ccl-embed-data (aref ary i))
401 (setq i (1+ i))))
402 (ccl-embed-code 'set-register rrr 0 right))))))
403 nil)
405 ;; Compile SET statement with ASSIGNMENT_OPERATOR.
406 (defun ccl-compile-self-set (cmd)
407 (let ((rrr (ccl-check-register (car cmd) cmd))
408 (right (nth 2 cmd)))
409 (if (listp right)
410 ;; CMD has the form `(RRR ASSIGN_OP (XXX OP YYY))', compile
411 ;; the right hand part as `(r7 = (XXX OP YYY))' (note: the
412 ;; register 7 can be used for storing temporary value).
413 (progn
414 (ccl-compile-expression 'r7 right)
415 (setq right 'r7)))
416 ;; Now CMD has the form `(RRR ASSIGN_OP ARG)'. Compile it as
417 ;; `(RRR = (RRR OP ARG))'.
418 (ccl-compile-expression
420 (list rrr (intern (substring (symbol-name (nth 1 cmd)) 0 -1)) right)))
421 nil)
423 ;; Compile SET statement of the form `(RRR = EXPR)'.
424 (defun ccl-compile-expression (rrr expr)
425 (let ((left (car expr))
426 (op (get (nth 1 expr) 'ccl-arith-code))
427 (right (nth 2 expr)))
428 (if (listp left)
429 (progn
430 ;; EXPR has the form `((EXPR2 OP2 ARG) OP RIGHT)'. Compile
431 ;; the first term as `(r7 = (EXPR2 OP2 ARG)).'
432 (ccl-compile-expression 'r7 left)
433 (setq left 'r7)))
435 ;; Now EXPR has the form (LEFT OP RIGHT).
436 (if (and (eq rrr left)
437 (< op (length ccl-assign-arith-table)))
438 ;; Compile this SET statement as `(RRR OP= RIGHT)'.
439 (if (integerp right)
440 (progn
441 (ccl-embed-code 'set-assign-expr-const rrr (ash op 3) 'r0)
442 (ccl-embed-data right))
443 (ccl-check-register right expr)
444 (ccl-embed-code 'set-assign-expr-register rrr (ash op 3) right))
446 ;; Compile this SET statement as `(RRR = (LEFT OP RIGHT))'.
447 (if (integerp right)
448 (progn
449 (ccl-embed-code 'set-expr-const rrr (ash op 3) left)
450 (ccl-embed-data right))
451 (ccl-check-register right expr)
452 (ccl-embed-code 'set-expr-register
454 (logior (ash op 3) (get right 'ccl-register-number))
455 left)))))
457 ;; Compile WRITE statement with string argument.
458 (defun ccl-compile-write-string (str)
459 (setq str (string-as-unibyte str))
460 (let ((len (length str)))
461 (ccl-embed-code 'write-const-string 1 len)
462 (ccl-embed-string len str))
463 nil)
465 ;; Compile IF statement of the form `(if CONDITION TRUE-PART FALSE-PART)'.
466 ;; If READ-FLAG is non-nil, this statement has the form
467 ;; `(read-if (REG OPERATOR ARG) TRUE-PART FALSE-PART)'.
468 (defun ccl-compile-if (cmd &optional read-flag)
469 (if (and (/= (length cmd) 3) (/= (length cmd) 4))
470 (error "CCL: Invalid number of arguments: %s" cmd))
471 (let ((condition (nth 1 cmd))
472 (true-cmds (nth 2 cmd))
473 (false-cmds (nth 3 cmd))
474 jump-cond-address
475 false-ic)
476 (if (and (listp condition)
477 (listp (car condition)))
478 ;; If CONDITION is a nested expression, the inner expression
479 ;; should be compiled at first as SET statement, i.e.:
480 ;; `(if ((X OP2 Y) OP Z) ...)' is compiled into two statements:
481 ;; `(r7 = (X OP2 Y)) (if (r7 OP Z) ...)'.
482 (progn
483 (ccl-compile-expression 'r7 (car condition))
484 (setq condition (cons 'r7 (cdr condition)))
485 (setq cmd (cons (car cmd)
486 (cons condition (cdr (cdr cmd)))))))
488 (setq jump-cond-address ccl-current-ic)
489 ;; Compile CONDITION.
490 (if (symbolp condition)
491 ;; CONDITION is a register.
492 (progn
493 (ccl-check-register condition cmd)
494 (ccl-embed-code 'jump-cond condition 0))
495 ;; CONDITION is a simple expression of the form (RRR OP ARG).
496 (let ((rrr (car condition))
497 (op (get (nth 1 condition) 'ccl-arith-code))
498 (arg (nth 2 condition)))
499 (ccl-check-register rrr cmd)
500 (if (integerp arg)
501 (progn
502 (ccl-embed-code (if read-flag 'read-jump-cond-expr-const
503 'jump-cond-expr-const)
504 rrr 0)
505 (ccl-embed-data op)
506 (ccl-embed-data arg))
507 (ccl-check-register arg cmd)
508 (ccl-embed-code (if read-flag 'read-jump-cond-expr-register
509 'jump-cond-expr-register)
510 rrr 0)
511 (ccl-embed-data op)
512 (ccl-embed-data (get arg 'ccl-register-number)))))
514 ;; Compile TRUE-PART.
515 (let ((unconditional-jump (ccl-compile-1 true-cmds)))
516 (if (null false-cmds)
517 ;; This is the place to jump to if condition is false.
518 (progn
519 (ccl-embed-current-address jump-cond-address)
520 (setq unconditional-jump nil))
521 (let (end-true-part-address)
522 (if (not unconditional-jump)
523 (progn
524 ;; If TRUE-PART does not end with unconditional jump, we
525 ;; have to jump to the end of FALSE-PART from here.
526 (setq end-true-part-address ccl-current-ic)
527 (ccl-embed-code 'jump 0 0)))
528 ;; This is the place to jump to if CONDITION is false.
529 (ccl-embed-current-address jump-cond-address)
530 ;; Compile FALSE-PART.
531 (setq unconditional-jump
532 (and (ccl-compile-1 false-cmds) unconditional-jump))
533 (if end-true-part-address
534 ;; This is the place to jump to after the end of TRUE-PART.
535 (ccl-embed-current-address end-true-part-address))))
536 unconditional-jump)))
538 ;; Compile BRANCH statement.
539 (defun ccl-compile-branch (cmd)
540 (if (< (length cmd) 3)
541 (error "CCL: Invalid number of arguments: %s" cmd))
542 (ccl-compile-branch-blocks 'branch
543 (ccl-compile-branch-expression (nth 1 cmd) cmd)
544 (cdr (cdr cmd))))
546 ;; Compile READ statement of the form `(read-branch EXPR BLOCK0 BLOCK1 ...)'.
547 (defun ccl-compile-read-branch (cmd)
548 (if (< (length cmd) 3)
549 (error "CCL: Invalid number of arguments: %s" cmd))
550 (ccl-compile-branch-blocks 'read-branch
551 (ccl-compile-branch-expression (nth 1 cmd) cmd)
552 (cdr (cdr cmd))))
554 ;; Compile EXPRESSION part of BRANCH statement and return register
555 ;; which holds a value of the expression.
556 (defun ccl-compile-branch-expression (expr cmd)
557 (if (listp expr)
558 ;; EXPR has the form `(EXPR2 OP ARG)'. Compile it as SET
559 ;; statement of the form `(r7 = (EXPR2 OP ARG))'.
560 (progn
561 (ccl-compile-expression 'r7 expr)
562 'r7)
563 (ccl-check-register expr cmd)))
565 ;; Compile BLOCKs of BRANCH statement. CODE is 'branch or 'read-branch.
566 ;; REG is a register which holds a value of EXPRESSION part. BLOCKs
567 ;; is a list of CCL-BLOCKs.
568 (defun ccl-compile-branch-blocks (code rrr blocks)
569 (let ((branches (length blocks))
570 branch-idx
571 jump-table-head-address
572 empty-block-indexes
573 block-tail-addresses
574 block-unconditional-jump)
575 (ccl-embed-code code rrr branches)
576 (setq jump-table-head-address ccl-current-ic)
577 ;; The size of jump table is the number of blocks plus 1 (for the
578 ;; case RRR is out of range).
579 (ccl-increment-ic (1+ branches))
580 (setq empty-block-indexes (list branches))
581 ;; Compile each block.
582 (setq branch-idx 0)
583 (while blocks
584 (if (null (car blocks))
585 ;; This block is empty.
586 (setq empty-block-indexes (cons branch-idx empty-block-indexes)
587 block-unconditional-jump t)
588 ;; This block is not empty.
589 (ccl-embed-data (- ccl-current-ic jump-table-head-address)
590 (+ jump-table-head-address branch-idx))
591 (setq block-unconditional-jump (ccl-compile-1 (car blocks)))
592 (if (not block-unconditional-jump)
593 (progn
594 ;; Jump address of the end of branches are embedded later.
595 ;; For the moment, just remember where to embed them.
596 (setq block-tail-addresses
597 (cons ccl-current-ic block-tail-addresses))
598 (ccl-embed-code 'jump 0 0))))
599 (setq branch-idx (1+ branch-idx))
600 (setq blocks (cdr blocks)))
601 (if (not block-unconditional-jump)
602 ;; We don't need jump code at the end of the last block.
603 (setq block-tail-addresses (cdr block-tail-addresses)
604 ccl-current-ic (1- ccl-current-ic)))
605 ;; Embed jump address at the tailing jump commands of blocks.
606 (while block-tail-addresses
607 (ccl-embed-current-address (car block-tail-addresses))
608 (setq block-tail-addresses (cdr block-tail-addresses)))
609 ;; For empty blocks, make entries in the jump table point directly here.
610 (while empty-block-indexes
611 (ccl-embed-data (- ccl-current-ic jump-table-head-address)
612 (+ jump-table-head-address (car empty-block-indexes)))
613 (setq empty-block-indexes (cdr empty-block-indexes))))
614 ;; Branch command ends by unconditional jump if RRR is out of range.
615 nil)
617 ;; Compile LOOP statement.
618 (defun ccl-compile-loop (cmd)
619 (if (< (length cmd) 2)
620 (error "CCL: Invalid number of arguments: %s" cmd))
621 (let* ((ccl-loop-head ccl-current-ic)
622 (ccl-breaks nil)
623 unconditional-jump)
624 (setq cmd (cdr cmd))
625 (if cmd
626 (progn
627 (setq unconditional-jump t)
628 (while cmd
629 (setq unconditional-jump
630 (and (ccl-compile-1 (car cmd)) unconditional-jump))
631 (setq cmd (cdr cmd)))
632 (if (not ccl-breaks)
633 unconditional-jump
634 ;; Embed jump address for break statements encountered in
635 ;; this loop.
636 (while ccl-breaks
637 (ccl-embed-current-address (car ccl-breaks))
638 (setq ccl-breaks (cdr ccl-breaks))))
639 nil))))
641 ;; Compile BREAK statement.
642 (defun ccl-compile-break (cmd)
643 (if (/= (length cmd) 1)
644 (error "CCL: Invalid number of arguments: %s" cmd))
645 (if (null ccl-loop-head)
646 (error "CCL: No outer loop: %s" cmd))
647 (setq ccl-breaks (cons ccl-current-ic ccl-breaks))
648 (ccl-embed-code 'jump 0 0)
651 ;; Compile REPEAT statement.
652 (defun ccl-compile-repeat (cmd)
653 (if (/= (length cmd) 1)
654 (error "CCL: Invalid number of arguments: %s" cmd))
655 (if (null ccl-loop-head)
656 (error "CCL: No outer loop: %s" cmd))
657 (ccl-embed-code 'jump 0 ccl-loop-head)
660 ;; Compile WRITE-REPEAT statement.
661 (defun ccl-compile-write-repeat (cmd)
662 (if (/= (length cmd) 2)
663 (error "CCL: Invalid number of arguments: %s" cmd))
664 (if (null ccl-loop-head)
665 (error "CCL: No outer loop: %s" cmd))
666 (let ((arg (nth 1 cmd)))
667 (cond ((integerp arg)
668 (ccl-embed-code 'write-const-jump 0 ccl-loop-head)
669 (ccl-embed-data arg))
670 ((stringp arg)
671 (setq arg (string-as-unibyte arg))
672 (let ((len (length arg))
673 (i 0))
674 (ccl-embed-code 'write-string-jump 0 ccl-loop-head)
675 (ccl-embed-data len)
676 (ccl-embed-string len arg)))
678 (ccl-check-register arg cmd)
679 (ccl-embed-code 'write-register-jump arg ccl-loop-head))))
682 ;; Compile WRITE-READ-REPEAT statement.
683 (defun ccl-compile-write-read-repeat (cmd)
684 (if (or (< (length cmd) 2) (> (length cmd) 3))
685 (error "CCL: Invalid number of arguments: %s" cmd))
686 (if (null ccl-loop-head)
687 (error "CCL: No outer loop: %s" cmd))
688 (let ((rrr (ccl-check-register (nth 1 cmd) cmd))
689 (arg (nth 2 cmd)))
690 (cond ((null arg)
691 (ccl-embed-code 'write-register-read-jump rrr ccl-loop-head))
692 ((integerp arg)
693 (ccl-embed-code 'write-const-read-jump rrr arg ccl-loop-head))
694 ((vectorp arg)
695 (let ((len (length arg))
696 (i 0))
697 (ccl-embed-code 'write-array-read-jump rrr ccl-loop-head)
698 (ccl-embed-data len)
699 (while (< i len)
700 (ccl-embed-data (aref arg i))
701 (setq i (1+ i)))))
703 (error "CCL: Invalid argument %s: %s" arg cmd)))
704 (ccl-embed-code 'read-jump rrr ccl-loop-head))
707 ;; Compile READ statement.
708 (defun ccl-compile-read (cmd)
709 (if (< (length cmd) 2)
710 (error "CCL: Invalid number of arguments: %s" cmd))
711 (let* ((args (cdr cmd))
712 (i (1- (length args))))
713 (while args
714 (let ((rrr (ccl-check-register (car args) cmd)))
715 (ccl-embed-code 'read-register rrr i)
716 (setq args (cdr args) i (1- i)))))
717 nil)
719 ;; Compile READ-IF statement.
720 (defun ccl-compile-read-if (cmd)
721 (ccl-compile-if cmd 'read))
723 ;; Compile WRITE statement.
724 (defun ccl-compile-write (cmd)
725 (if (< (length cmd) 2)
726 (error "CCL: Invalid number of arguments: %s" cmd))
727 (let ((rrr (nth 1 cmd)))
728 (cond ((integerp rrr)
729 (ccl-embed-code 'write-const-string 0 rrr))
730 ((stringp rrr)
731 (ccl-compile-write-string rrr))
732 ((and (symbolp rrr) (vectorp (nth 2 cmd)))
733 (ccl-check-register rrr cmd)
734 ;; CMD has the form `(write REG ARRAY)'.
735 (let* ((arg (nth 2 cmd))
736 (len (length arg))
737 (i 0))
738 (ccl-embed-code 'write-array rrr len)
739 (while (< i len)
740 (if (not (integerp (aref arg i)))
741 (error "CCL: Invalid argument %s: %s" arg cmd))
742 (ccl-embed-data (aref arg i))
743 (setq i (1+ i)))))
745 ((symbolp rrr)
746 ;; CMD has the form `(write REG ...)'.
747 (let* ((args (cdr cmd))
748 (i (1- (length args))))
749 (while args
750 (setq rrr (ccl-check-register (car args) cmd))
751 (ccl-embed-code 'write-register rrr i)
752 (setq args (cdr args) i (1- i)))))
754 ((listp rrr)
755 ;; CMD has the form `(write (LEFT OP RIGHT))'.
756 (let ((left (car rrr))
757 (op (get (nth 1 rrr) 'ccl-arith-code))
758 (right (nth 2 rrr)))
759 (if (listp left)
760 (progn
761 ;; RRR has the form `((EXPR OP2 ARG) OP RIGHT)'.
762 ;; Compile the first term as `(r7 = (EXPR OP2 ARG))'.
763 (ccl-compile-expression 'r7 left)
764 (setq left 'r7)))
765 ;; Now RRR has the form `(ARG OP RIGHT)'.
766 (if (integerp right)
767 (progn
768 (ccl-embed-code 'write-expr-const 0 (ash op 3) left)
769 (ccl-embed-data right))
770 (ccl-check-register right rrr)
771 (ccl-embed-code 'write-expr-register 0
772 (logior (ash op 3)
773 (get right 'ccl-register-number))))))
776 (error "CCL: Invalid argument: %s" cmd))))
777 nil)
779 ;; Compile CALL statement.
780 (defun ccl-compile-call (cmd)
781 (if (/= (length cmd) 2)
782 (error "CCL: Invalid number of arguments: %s" cmd))
783 (if (not (symbolp (nth 1 cmd)))
784 (error "CCL: Subroutine should be a symbol: %s" cmd))
785 (ccl-embed-code 'call 1 0)
786 (ccl-embed-symbol (nth 1 cmd) 'ccl-program-idx)
787 nil)
789 ;; Compile END statement.
790 (defun ccl-compile-end (cmd)
791 (if (/= (length cmd) 1)
792 (error "CCL: Invalid number of arguments: %s" cmd))
793 (ccl-embed-code 'end 0 0)
796 ;; Compile read-multibyte-character
797 (defun ccl-compile-read-multibyte-character (cmd)
798 (if (/= (length cmd) 3)
799 (error "CCL: Invalid number of arguments: %s" cmd))
800 (let ((RRR (nth 1 cmd))
801 (rrr (nth 2 cmd)))
802 (ccl-check-register rrr cmd)
803 (ccl-check-register RRR cmd)
804 (ccl-embed-extended-command 'read-multibyte-character rrr RRR 0))
805 nil)
807 ;; Compile write-multibyte-character
808 (defun ccl-compile-write-multibyte-character (cmd)
809 (if (/= (length cmd) 3)
810 (error "CCL: Invalid number of arguments: %s" cmd))
811 (let ((RRR (nth 1 cmd))
812 (rrr (nth 2 cmd)))
813 (ccl-check-register rrr cmd)
814 (ccl-check-register RRR cmd)
815 (ccl-embed-extended-command 'write-multibyte-character rrr RRR 0))
816 nil)
818 ;; Compile translate-character
819 (defun ccl-compile-translate-character (cmd)
820 (if (/= (length cmd) 4)
821 (error "CCL: Invalid number of arguments: %s" cmd))
822 (let ((Rrr (nth 1 cmd))
823 (RRR (nth 2 cmd))
824 (rrr (nth 3 cmd)))
825 (ccl-check-register rrr cmd)
826 (ccl-check-register RRR cmd)
827 (cond ((and (symbolp Rrr) (not (get Rrr 'ccl-register-number)))
828 (ccl-embed-extended-command 'translate-character-const-tbl
829 rrr RRR 0)
830 (ccl-embed-symbol Rrr 'translation-table-id))
832 (ccl-check-register Rrr cmd)
833 (ccl-embed-extended-command 'translate-character rrr RRR Rrr))))
834 nil)
836 (defun ccl-compile-iterate-multiple-map (cmd)
837 (ccl-compile-multiple-map-function 'iterate-multiple-map cmd)
838 nil)
840 (defun ccl-compile-map-multiple (cmd)
841 (if (/= (length cmd) 4)
842 (error "CCL: Invalid number of arguments: %s" cmd))
843 (let (func arg)
844 (setq func
845 (lambda (arg mp)
846 (let ((len 0) result add)
847 (while arg
848 (if (consp (car arg))
849 (setq add (funcall func (car arg) t)
850 result (append result add)
851 add (+ (- (car add)) 1))
852 (setq result
853 (append result
854 (list (car arg)))
855 add 1))
856 (setq arg (cdr arg)
857 len (+ len add)))
858 (if mp
859 (cons (- len) result)
860 result))))
861 (setq arg (append (list (nth 0 cmd) (nth 1 cmd) (nth 2 cmd))
862 (funcall func (nth 3 cmd) nil)))
863 (ccl-compile-multiple-map-function 'map-multiple arg))
864 nil)
866 (defun ccl-compile-map-single (cmd)
867 (if (/= (length cmd) 4)
868 (error "CCL: Invalid number of arguments: %s" cmd))
869 (let ((RRR (nth 1 cmd))
870 (rrr (nth 2 cmd))
871 (map (nth 3 cmd))
873 (ccl-check-register rrr cmd)
874 (ccl-check-register RRR cmd)
875 (ccl-embed-extended-command 'map-single rrr RRR 0)
876 (cond ((symbolp map)
877 (if (get map 'code-conversion-map)
878 (ccl-embed-symbol map 'code-conversion-map-id)
879 (error "CCL: Invalid map: %s" map)))
881 (error "CCL: Invalid type of arguments: %s" cmd))))
882 nil)
884 (defun ccl-compile-multiple-map-function (command cmd)
885 (if (< (length cmd) 4)
886 (error "CCL: Invalid number of arguments: %s" cmd))
887 (let ((RRR (nth 1 cmd))
888 (rrr (nth 2 cmd))
889 (args (nthcdr 3 cmd))
890 map)
891 (ccl-check-register rrr cmd)
892 (ccl-check-register RRR cmd)
893 (ccl-embed-extended-command command rrr RRR 0)
894 (ccl-embed-data (length args))
895 (while args
896 (setq map (car args))
897 (cond ((symbolp map)
898 (if (get map 'code-conversion-map)
899 (ccl-embed-symbol map 'code-conversion-map-id)
900 (error "CCL: Invalid map: %s" map)))
901 ((numberp map)
902 (ccl-embed-data map))
904 (error "CCL: Invalid type of arguments: %s" cmd)))
905 (setq args (cdr args)))))
908 ;;; CCL dump staffs
910 ;; To avoid byte-compiler warning.
911 (defvar ccl-code)
913 ;;;###autoload
914 (defun ccl-dump (ccl-code)
915 "Disassemble compiled CCL-CODE."
916 (let ((len (length ccl-code))
917 (buffer-mag (aref ccl-code 0)))
918 (cond ((= buffer-mag 0)
919 (insert "Don't output anything.\n"))
920 ((= buffer-mag 1)
921 (insert "Out-buffer must be as large as in-buffer.\n"))
923 (insert
924 (format "Out-buffer must be %d times bigger than in-buffer.\n"
925 buffer-mag))))
926 (insert "Main-body:\n")
927 (setq ccl-current-ic 2)
928 (if (> (aref ccl-code 1) 0)
929 (progn
930 (while (< ccl-current-ic (aref ccl-code 1))
931 (ccl-dump-1))
932 (insert "At EOF:\n")))
933 (while (< ccl-current-ic len)
934 (ccl-dump-1))
937 ;; Return a CCL code in `ccl-code' at `ccl-current-ic'.
938 (defun ccl-get-next-code ()
939 (prog1
940 (aref ccl-code ccl-current-ic)
941 (setq ccl-current-ic (1+ ccl-current-ic))))
943 (defun ccl-dump-1 ()
944 (let* ((code (ccl-get-next-code))
945 (cmd (aref ccl-code-table (logand code 31)))
946 (rrr (ash (logand code 255) -5))
947 (cc (ash code -8)))
948 (insert (format "%5d:[%s] " (1- ccl-current-ic) cmd))
949 (funcall (get cmd 'ccl-dump-function) rrr cc)))
951 (defun ccl-dump-set-register (rrr cc)
952 (insert (format "r%d = r%d\n" rrr cc)))
954 (defun ccl-dump-set-short-const (rrr cc)
955 (insert (format "r%d = %d\n" rrr cc)))
957 (defun ccl-dump-set-const (rrr ignore)
958 (insert (format "r%d = %d\n" rrr (ccl-get-next-code))))
960 (defun ccl-dump-set-array (rrr cc)
961 (let ((rrr2 (logand cc 7))
962 (len (ash cc -3))
963 (i 0))
964 (insert (format "r%d = array[r%d] of length %d\n\t"
965 rrr rrr2 len))
966 (while (< i len)
967 (insert (format "%d " (ccl-get-next-code)))
968 (setq i (1+ i)))
969 (insert "\n")))
971 (defun ccl-dump-jump (ignore cc &optional address)
972 (insert (format "jump to %d(" (+ (or address ccl-current-ic) cc)))
973 (if (>= cc 0)
974 (insert "+"))
975 (insert (format "%d)\n" (1+ cc))))
977 (defun ccl-dump-jump-cond (rrr cc)
978 (insert (format "if (r%d == 0), " rrr))
979 (ccl-dump-jump nil cc))
981 (defun ccl-dump-write-register-jump (rrr cc)
982 (insert (format "write r%d, " rrr))
983 (ccl-dump-jump nil cc))
985 (defun ccl-dump-write-register-read-jump (rrr cc)
986 (insert (format "write r%d, read r%d, " rrr rrr))
987 (ccl-dump-jump nil cc)
988 (ccl-get-next-code) ; Skip dummy READ-JUMP
991 (defun ccl-extract-arith-op (cc)
992 (aref ccl-arith-table (ash cc -6)))
994 (defun ccl-dump-write-expr-const (ignore cc)
995 (insert (format "write (r%d %s %d)\n"
996 (logand cc 7)
997 (ccl-extract-arith-op cc)
998 (ccl-get-next-code))))
1000 (defun ccl-dump-write-expr-register (ignore cc)
1001 (insert (format "write (r%d %s r%d)\n"
1002 (logand cc 7)
1003 (ccl-extract-arith-op cc)
1004 (logand (ash cc -3) 7))))
1006 (defun ccl-dump-insert-char (cc)
1007 (cond ((= cc ?\t) (insert " \"^I\""))
1008 ((= cc ?\n) (insert " \"^J\""))
1009 (t (insert (format " \"%c\"" cc)))))
1011 (defun ccl-dump-write-const-jump (ignore cc)
1012 (let ((address ccl-current-ic))
1013 (insert "write char")
1014 (ccl-dump-insert-char (ccl-get-next-code))
1015 (insert ", ")
1016 (ccl-dump-jump nil cc address)))
1018 (defun ccl-dump-write-const-read-jump (rrr cc)
1019 (let ((address ccl-current-ic))
1020 (insert "write char")
1021 (ccl-dump-insert-char (ccl-get-next-code))
1022 (insert (format ", read r%d, " rrr))
1023 (ccl-dump-jump cc address)
1024 (ccl-get-next-code) ; Skip dummy READ-JUMP
1027 (defun ccl-dump-write-string-jump (ignore cc)
1028 (let ((address ccl-current-ic)
1029 (len (ccl-get-next-code))
1030 (i 0))
1031 (insert "write \"")
1032 (while (< i len)
1033 (let ((code (ccl-get-next-code)))
1034 (insert (ash code -16))
1035 (if (< (1+ i) len) (insert (logand (ash code -8) 255)))
1036 (if (< (+ i 2) len) (insert (logand code 255))))
1037 (setq i (+ i 3)))
1038 (insert "\", ")
1039 (ccl-dump-jump nil cc address)))
1041 (defun ccl-dump-write-array-read-jump (rrr cc)
1042 (let ((address ccl-current-ic)
1043 (len (ccl-get-next-code))
1044 (i 0))
1045 (insert (format "write array[r%d] of length %d,\n\t" rrr len))
1046 (while (< i len)
1047 (ccl-dump-insert-char (ccl-get-next-code))
1048 (setq i (1+ i)))
1049 (insert (format "\n\tthen read r%d, " rrr))
1050 (ccl-dump-jump nil cc address)
1051 (ccl-get-next-code) ; Skip dummy READ-JUMP.
1054 (defun ccl-dump-read-jump (rrr cc)
1055 (insert (format "read r%d, " rrr))
1056 (ccl-dump-jump nil cc))
1058 (defun ccl-dump-branch (rrr len)
1059 (let ((jump-table-head ccl-current-ic)
1060 (i 0))
1061 (insert (format "jump to array[r%d] of length %d\n\t" rrr len))
1062 (while (<= i len)
1063 (insert (format "%d " (+ jump-table-head (ccl-get-next-code))))
1064 (setq i (1+ i)))
1065 (insert "\n")))
1067 (defun ccl-dump-read-register (rrr cc)
1068 (insert (format "read r%d (%d remaining)\n" rrr cc)))
1070 (defun ccl-dump-read-branch (rrr len)
1071 (insert (format "read r%d, " rrr))
1072 (ccl-dump-branch rrr len))
1074 (defun ccl-dump-write-register (rrr cc)
1075 (insert (format "write r%d (%d remaining)\n" rrr cc)))
1077 (defun ccl-dump-call (ignore cc)
1078 (insert (format "call subroutine #%d\n" cc)))
1080 (defun ccl-dump-write-const-string (rrr cc)
1081 (if (= rrr 0)
1082 (progn
1083 (insert "write char")
1084 (ccl-dump-insert-char cc)
1085 (newline))
1086 (let ((len cc)
1087 (i 0))
1088 (insert "write \"")
1089 (while (< i len)
1090 (let ((code (ccl-get-next-code)))
1091 (insert (format "%c" (lsh code -16)))
1092 (if (< (1+ i) len)
1093 (insert (format "%c" (logand (lsh code -8) 255))))
1094 (if (< (+ i 2) len)
1095 (insert (format "%c" (logand code 255))))
1096 (setq i (+ i 3))))
1097 (insert "\"\n"))))
1099 (defun ccl-dump-write-array (rrr cc)
1100 (let ((i 0))
1101 (insert (format "write array[r%d] of length %d\n\t" rrr cc))
1102 (while (< i cc)
1103 (ccl-dump-insert-char (ccl-get-next-code))
1104 (setq i (1+ i)))
1105 (insert "\n")))
1107 (defun ccl-dump-end (&rest ignore)
1108 (insert "end\n"))
1110 (defun ccl-dump-set-assign-expr-const (rrr cc)
1111 (insert (format "r%d %s= %d\n"
1113 (ccl-extract-arith-op cc)
1114 (ccl-get-next-code))))
1116 (defun ccl-dump-set-assign-expr-register (rrr cc)
1117 (insert (format "r%d %s= r%d\n"
1119 (ccl-extract-arith-op cc)
1120 (logand cc 7))))
1122 (defun ccl-dump-set-expr-const (rrr cc)
1123 (insert (format "r%d = r%d %s %d\n"
1125 (logand cc 7)
1126 (ccl-extract-arith-op cc)
1127 (ccl-get-next-code))))
1129 (defun ccl-dump-set-expr-register (rrr cc)
1130 (insert (format "r%d = r%d %s r%d\n"
1132 (logand cc 7)
1133 (ccl-extract-arith-op cc)
1134 (logand (ash cc -3) 7))))
1136 (defun ccl-dump-jump-cond-expr-const (rrr cc)
1137 (let ((address ccl-current-ic))
1138 (insert (format "if !(r%d %s %d), "
1140 (aref ccl-arith-table (ccl-get-next-code))
1141 (ccl-get-next-code)))
1142 (ccl-dump-jump nil cc address)))
1144 (defun ccl-dump-jump-cond-expr-register (rrr cc)
1145 (let ((address ccl-current-ic))
1146 (insert (format "if !(r%d %s r%d), "
1148 (aref ccl-arith-table (ccl-get-next-code))
1149 (ccl-get-next-code)))
1150 (ccl-dump-jump nil cc address)))
1152 (defun ccl-dump-read-jump-cond-expr-const (rrr cc)
1153 (insert (format "read r%d, " rrr))
1154 (ccl-dump-jump-cond-expr-const rrr cc))
1156 (defun ccl-dump-read-jump-cond-expr-register (rrr cc)
1157 (insert (format "read r%d, " rrr))
1158 (ccl-dump-jump-cond-expr-register rrr cc))
1160 (defun ccl-dump-binary (ccl-code)
1161 (let ((len (length ccl-code))
1162 (i 2))
1163 (while (< i len)
1164 (let ((code (aref ccl-code i))
1165 (j 27))
1166 (while (>= j 0)
1167 (insert (if (= (logand code (ash 1 j)) 0) ?0 ?1))
1168 (setq j (1- j)))
1169 (setq code (logand code 31))
1170 (if (< code (length ccl-code-table))
1171 (insert (format ":%s" (aref ccl-code-table code))))
1172 (insert "\n"))
1173 (setq i (1+ i)))))
1175 (defun ccl-dump-ex-cmd (rrr cc)
1176 (let* ((RRR (logand cc ?\x7))
1177 (Rrr (logand (ash cc -3) ?\x7))
1178 (ex-op (aref ccl-extended-code-table (logand (ash cc -6) ?\x3fff))))
1179 (insert (format "<%s> " ex-op))
1180 (funcall (get ex-op 'ccl-dump-function) rrr RRR Rrr)))
1182 (defun ccl-dump-read-multibyte-character (rrr RRR Rrr)
1183 (insert (format "read-multibyte-character r%d r%d\n" RRR rrr)))
1185 (defun ccl-dump-write-multibyte-character (rrr RRR Rrr)
1186 (insert (format "write-multibyte-character r%d r%d\n" RRR rrr)))
1188 (defun ccl-dump-translate-character (rrr RRR Rrr)
1189 (insert (format "translation table(r%d) r%d r%d\n" Rrr RRR rrr)))
1191 (defun ccl-dump-translate-character-const-tbl (rrr RRR Rrr)
1192 (let ((tbl (ccl-get-next-code)))
1193 (insert (format "translation table(%S) r%d r%d\n" tbl RRR rrr))))
1195 (defun ccl-dump-iterate-multiple-map (rrr RRR Rrr)
1196 (let ((notbl (ccl-get-next-code))
1197 (i 0) id)
1198 (insert (format "iterate-multiple-map r%d r%d\n" RRR rrr))
1199 (insert (format "\tnumber of maps is %d .\n\t [" notbl))
1200 (while (< i notbl)
1201 (setq id (ccl-get-next-code))
1202 (insert (format "%S" id))
1203 (setq i (1+ i)))
1204 (insert "]\n")))
1206 (defun ccl-dump-map-multiple (rrr RRR Rrr)
1207 (let ((notbl (ccl-get-next-code))
1208 (i 0) id)
1209 (insert (format "map-multiple r%d r%d\n" RRR rrr))
1210 (insert (format "\tnumber of maps and separators is %d\n\t [" notbl))
1211 (while (< i notbl)
1212 (setq id (ccl-get-next-code))
1213 (if (= id -1)
1214 (insert "]\n\t [")
1215 (insert (format "%S " id)))
1216 (setq i (1+ i)))
1217 (insert "]\n")))
1219 (defun ccl-dump-map-single (rrr RRR Rrr)
1220 (let ((id (ccl-get-next-code)))
1221 (insert (format "map-single r%d r%d map(%S)\n" RRR rrr id))))
1224 ;; CCL emulation staffs
1226 ;; Not yet implemented.
1228 ;; Auto-loaded functions.
1230 ;;;###autoload
1231 (defmacro declare-ccl-program (name &optional vector)
1232 "Declare NAME as a name of CCL program.
1234 This macro exists for backward compatibility. In the old version of
1235 Emacs, to compile a CCL program which calls another CCL program not
1236 yet defined, it must be declared as a CCL program in advance. But,
1237 now CCL program names are resolved not at compile time but before
1238 execution.
1240 Optional arg VECTOR is a compiled CCL code of the CCL program."
1241 `(put ',name 'ccl-program-idx (register-ccl-program ',name ,vector)))
1243 ;;;###autoload
1244 (defmacro define-ccl-program (name ccl-program &optional doc)
1245 "Set NAME the compiled code of CCL-PROGRAM.
1247 CCL-PROGRAM has this form:
1248 (BUFFER_MAGNIFICATION
1249 CCL_MAIN_CODE
1250 [ CCL_EOF_CODE ])
1252 BUFFER_MAGNIFICATION is an integer value specifying the approximate
1253 output buffer magnification size compared with the bytes of input data
1254 text. If the value is zero, the CCL program can't execute `read' and
1255 `write' commands.
1257 CCL_MAIN_CODE and CCL_EOF_CODE are CCL program codes. CCL_MAIN_CODE
1258 executed at first. If there's no more input data when `read' command
1259 is executed in CCL_MAIN_CODE, CCL_EOF_CODE is executed. If
1260 CCL_MAIN_CODE is terminated, CCL_EOF_CODE is not executed.
1262 Here's the syntax of CCL program code in BNF notation. The lines
1263 starting by two semicolons (and optional leading spaces) describe the
1264 semantics.
1266 CCL_MAIN_CODE := CCL_BLOCK
1268 CCL_EOF_CODE := CCL_BLOCK
1270 CCL_BLOCK := STATEMENT | (STATEMENT [STATEMENT ...])
1272 STATEMENT :=
1273 SET | IF | BRANCH | LOOP | REPEAT | BREAK | READ | WRITE | CALL
1274 | TRANSLATE | END
1276 SET := (REG = EXPRESSION)
1277 | (REG ASSIGNMENT_OPERATOR EXPRESSION)
1278 ;; The following form is the same as (r0 = integer).
1279 | integer
1281 EXPRESSION := ARG | (EXPRESSION OPERATOR ARG)
1283 ;; Evaluate EXPRESSION. If the result is nonzero, execute
1284 ;; CCL_BLOCK_0. Otherwise, execute CCL_BLOCK_1.
1285 IF := (if EXPRESSION CCL_BLOCK_0 CCL_BLOCK_1)
1287 ;; Evaluate EXPRESSION. Provided that the result is N, execute
1288 ;; CCL_BLOCK_N.
1289 BRANCH := (branch EXPRESSION CCL_BLOCK_0 [CCL_BLOCK_1 ...])
1291 ;; Execute STATEMENTs until (break) or (end) is executed.
1292 LOOP := (loop STATEMENT [STATEMENT ...])
1294 ;; Terminate the most inner loop.
1295 BREAK := (break)
1297 REPEAT :=
1298 ;; Jump to the head of the most inner loop.
1299 (repeat)
1300 ;; Same as: ((write [REG | integer | string])
1301 ;; (repeat))
1302 | (write-repeat [REG | integer | string])
1303 ;; Same as: ((write REG [ARRAY])
1304 ;; (read REG)
1305 ;; (repeat))
1306 | (write-read-repeat REG [ARRAY])
1307 ;; Same as: ((write integer)
1308 ;; (read REG)
1309 ;; (repeat))
1310 | (write-read-repeat REG integer)
1312 READ := ;; Set REG_0 to a byte read from the input text, set REG_1
1313 ;; to the next byte read, and so on.
1314 (read REG_0 [REG_1 ...])
1315 ;; Same as: ((read REG)
1316 ;; (if (REG OPERATOR ARG) CCL_BLOCK_0 CCL_BLOCK_1))
1317 | (read-if (REG OPERATOR ARG) CCL_BLOCK_0 CCL_BLOCK_1)
1318 ;; Same as: ((read REG)
1319 ;; (branch REG CCL_BLOCK_0 [CCL_BLOCK_1 ...]))
1320 | (read-branch REG CCL_BLOCK_0 [CCL_BLOCK_1 ...])
1321 ;; Read a character from the input text while parsing
1322 ;; multibyte representation, set REG_0 to the charset ID of
1323 ;; the character, set REG_1 to the code point of the
1324 ;; character. If the dimension of charset is two, set REG_1
1325 ;; to ((CODE0 << 7) | CODE1), where CODE0 is the first code
1326 ;; point and CODE1 is the second code point.
1327 | (read-multibyte-character REG_0 REG_1)
1329 WRITE :=
1330 ;; Write REG_0, REG_1, ... to the output buffer. If REG_N is
1331 ;; a multibyte character, write the corresponding multibyte
1332 ;; representation.
1333 (write REG_0 [REG_1 ...])
1334 ;; Same as: ((r7 = EXPRESSION)
1335 ;; (write r7))
1336 | (write EXPRESSION)
1337 ;; Write the value of `integer' to the output buffer. If it
1338 ;; is a multibyte character, write the corresponding multibyte
1339 ;; representation.
1340 | (write integer)
1341 ;; Write the byte sequence of `string' as is to the output
1342 ;; buffer.
1343 | (write string)
1344 ;; Same as: (write string)
1345 | string
1346 ;; Provided that the value of REG is N, write Nth element of
1347 ;; ARRAY to the output buffer. If it is a multibyte
1348 ;; character, write the corresponding multibyte
1349 ;; representation.
1350 | (write REG ARRAY)
1351 ;; Write a multibyte representation of a character whose
1352 ;; charset ID is REG_0 and code point is REG_1. If the
1353 ;; dimension of the charset is two, REG_1 should be ((CODE0 <<
1354 ;; 7) | CODE1), where CODE0 is the first code point and CODE1
1355 ;; is the second code point of the character.
1356 | (write-multibyte-character REG_0 REG_1)
1358 ;; Call CCL program whose name is ccl-program-name.
1359 CALL := (call ccl-program-name)
1361 ;; Terminate the CCL program.
1362 END := (end)
1364 ;; CCL registers that can contain any integer value. As r7 is also
1365 ;; used by CCL interpreter, its value is changed unexpectedly.
1366 REG := r0 | r1 | r2 | r3 | r4 | r5 | r6 | r7
1368 ARG := REG | integer
1370 OPERATOR :=
1371 ;; Normal arithmethic operators (same meaning as C code).
1372 + | - | * | / | %
1374 ;; Bitwize operators (same meaning as C code)
1375 | & | `|' | ^
1377 ;; Shifting operators (same meaning as C code)
1378 | << | >>
1380 ;; (REG = ARG_0 <8 ARG_1) means:
1381 ;; (REG = ((ARG_0 << 8) | ARG_1))
1382 | <8
1384 ;; (REG = ARG_0 >8 ARG_1) means:
1385 ;; ((REG = (ARG_0 >> 8))
1386 ;; (r7 = (ARG_0 & 255)))
1387 | >8
1389 ;; (REG = ARG_0 // ARG_1) means:
1390 ;; ((REG = (ARG_0 / ARG_1))
1391 ;; (r7 = (ARG_0 % ARG_1)))
1392 | //
1394 ;; Normal comparing operators (same meaning as C code)
1395 | < | > | == | <= | >= | !=
1397 ;; If ARG_0 and ARG_1 are higher and lower byte of Shift-JIS
1398 ;; code, and CHAR is the corresponding JISX0208 character,
1399 ;; (REG = ARG_0 de-sjis ARG_1) means:
1400 ;; ((REG = CODE0)
1401 ;; (r7 = CODE1))
1402 ;; where CODE0 is the first code point of CHAR, CODE1 is the
1403 ;; second code point of CHAR.
1404 | de-sjis
1406 ;; If ARG_0 and ARG_1 are the first and second code point of
1407 ;; JISX0208 character CHAR, and SJIS is the correponding
1408 ;; Shift-JIS code,
1409 ;; (REG = ARG_0 en-sjis ARG_1) means:
1410 ;; ((REG = HIGH)
1411 ;; (r7 = LOW))
1412 ;; where HIGH is the higher byte of SJIS, LOW is the lower
1413 ;; byte of SJIS.
1414 | en-sjis
1416 ASSIGNMENT_OPERATOR :=
1417 ;; Same meaning as C code
1418 += | -= | *= | /= | %= | &= | `|=' | ^= | <<= | >>=
1420 ;; (REG <8= ARG) is the same as:
1421 ;; ((REG <<= 8)
1422 ;; (REG |= ARG))
1423 | <8=
1425 ;; (REG >8= ARG) is the same as:
1426 ;; ((r7 = (REG & 255))
1427 ;; (REG >>= 8))
1429 ;; (REG //= ARG) is the same as:
1430 ;; ((r7 = (REG % ARG))
1431 ;; (REG /= ARG))
1432 | //=
1434 ARRAY := `[' integer ... `]'
1437 TRANSLATE :=
1438 (translate-character REG(table) REG(charset) REG(codepoint))
1439 | (translate-character SYMBOL REG(charset) REG(codepoint))
1440 ;; SYMBOL must refer to a table defined by `define-translation-table'.
1441 MAP :=
1442 (iterate-multiple-map REG REG MAP-IDs)
1443 | (map-multiple REG REG (MAP-SET))
1444 | (map-single REG REG MAP-ID)
1445 MAP-IDs := MAP-ID ...
1446 MAP-SET := MAP-IDs | (MAP-IDs) MAP-SET
1447 MAP-ID := integer
1449 `(let ((prog ,(ccl-compile (eval ccl-program))))
1450 (defconst ,name prog ,doc)
1451 (put ',name 'ccl-program-idx (register-ccl-program ',name prog))
1452 nil))
1454 ;;;###autoload
1455 (defmacro check-ccl-program (ccl-program &optional name)
1456 "Check validity of CCL-PROGRAM.
1457 If CCL-PROGRAM is a symbol denoting a CCL program, return
1458 CCL-PROGRAM, else return nil.
1459 If CCL-PROGRAM is a vector and optional arg NAME (symbol) is supplied,
1460 register CCL-PROGRAM by name NAME, and return NAME."
1461 `(if (ccl-program-p ,ccl-program)
1462 (if (vectorp ,ccl-program)
1463 (progn
1464 (register-ccl-program ,name ,ccl-program)
1465 ,name)
1466 ,ccl-program)))
1468 ;;;###autoload
1469 (defun ccl-execute-with-args (ccl-prog &rest args)
1470 "Execute CCL-PROGRAM with registers initialized by the remaining args.
1471 The return value is a vector of resulting CCL registers.
1473 See the documentation of `define-ccl-program' for the detail of CCL program."
1474 (let ((reg (make-vector 8 0))
1475 (i 0))
1476 (while (and args (< i 8))
1477 (if (not (integerp (car args)))
1478 (error "Arguments should be integer"))
1479 (aset reg i (car args))
1480 (setq args (cdr args) i (1+ i)))
1481 (ccl-execute ccl-prog reg)
1482 reg))
1484 (provide 'ccl)
1486 ;; ccl.el ends here