1 /* CCL (Code Conversion Language) interpreter.
2 Copyright (C) 2001-2013 Free Software Foundation, Inc.
3 Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
4 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 National Institute of Advanced Industrial Science and Technology (AIST)
6 Registration Number H14PRO021
8 National Institute of Advanced Industrial Science and Technology (AIST)
9 Registration Number H13PRO009
11 This file is part of GNU Emacs.
13 GNU Emacs is free software: you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation, either version 3 of the License, or
16 (at your option) any later version.
18 GNU Emacs is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
32 #include "character.h"
37 Lisp_Object Qccl
, Qcclp
;
39 /* This symbol is a property which associates with ccl program vector.
40 Ex: (get 'ccl-big5-encoder 'ccl-program) returns ccl program vector. */
41 static Lisp_Object Qccl_program
;
43 /* These symbols are properties which associate with code conversion
44 map and their ID respectively. */
45 static Lisp_Object Qcode_conversion_map
;
46 static Lisp_Object Qcode_conversion_map_id
;
48 /* Symbols of ccl program have this property, a value of the property
49 is an index for Vccl_program_table. */
50 static Lisp_Object Qccl_program_idx
;
52 /* Table of registered CCL programs. Each element is a vector of
53 NAME, CCL_PROG, RESOLVEDP, and UPDATEDP, where NAME (symbol) is the
54 name of the program, CCL_PROG (vector) is the compiled code of the
55 program, RESOLVEDP (t or nil) is the flag to tell if symbols in
56 CCL_PROG is already resolved to index numbers or not, UPDATEDP (t
57 or nil) is the flat to tell if the CCL program is updated after it
59 static Lisp_Object Vccl_program_table
;
61 /* Return a hash table of id number ID. */
62 #define GET_HASH_TABLE(id) \
63 (XHASH_TABLE (XCDR (AREF (Vtranslation_hash_table_vector, (id)))))
65 /* CCL (Code Conversion Language) is a simple language which has
66 operations on one input buffer, one output buffer, and 7 registers.
67 The syntax of CCL is described in `ccl.el'. Emacs Lisp function
68 `ccl-compile' compiles a CCL program and produces a CCL code which
69 is a vector of integers. The structure of this vector is as
70 follows: The 1st element: buffer-magnification, a factor for the
71 size of output buffer compared with the size of input buffer. The
72 2nd element: address of CCL code to be executed when encountered
73 with end of input stream. The 3rd and the remaining elements: CCL
76 /* Header of CCL compiled code */
77 #define CCL_HEADER_BUF_MAG 0
78 #define CCL_HEADER_EOF 1
79 #define CCL_HEADER_MAIN 2
81 /* CCL code is a sequence of 28-bit integers. Each contains a CCL
82 command and/or arguments in the following format:
84 |----------------- integer (28-bit) ------------------|
85 |------- 17-bit ------|- 3-bit --|- 3-bit --|- 5-bit -|
86 |--constant argument--|-register-|-register-|-command-|
87 ccccccccccccccccc RRR rrr XXXXX
89 |------- relative address -------|-register-|-command-|
90 cccccccccccccccccccc rrr XXXXX
92 |------------- constant or other args ----------------|
93 cccccccccccccccccccccccccccc
95 where `cc...c' is a 17-bit, 20-bit, or 28-bit integer indicating a
96 constant value or a relative/absolute jump address, `RRR'
97 and `rrr' are CCL register number, `XXXXX' is one of the following
100 #define CCL_CODE_MAX ((1 << (28 - 1)) - 1)
101 #define CCL_CODE_MIN (-1 - CCL_CODE_MAX)
105 Each comment fields shows one or more lines for command syntax and
106 the following lines for semantics of the command. In semantics, IC
107 stands for Instruction Counter. */
109 #define CCL_SetRegister 0x00 /* Set register a register value:
110 1:00000000000000000RRRrrrXXXXX
111 ------------------------------
115 #define CCL_SetShortConst 0x01 /* Set register a short constant value:
116 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
117 ------------------------------
118 reg[rrr] = CCCCCCCCCCCCCCCCCCC;
121 #define CCL_SetConst 0x02 /* Set register a constant value:
122 1:00000000000000000000rrrXXXXX
124 ------------------------------
129 #define CCL_SetArray 0x03 /* Set register an element of array:
130 1:CCCCCCCCCCCCCCCCCRRRrrrXXXXX
134 ------------------------------
135 if (0 <= reg[RRR] < CC..C)
136 reg[rrr] = ELEMENT[reg[RRR]];
140 #define CCL_Jump 0x04 /* Jump:
141 1:A--D--D--R--E--S--S-000XXXXX
142 ------------------------------
146 /* Note: If CC..C is greater than 0, the second code is omitted. */
148 #define CCL_JumpCond 0x05 /* Jump conditional:
149 1:A--D--D--R--E--S--S-rrrXXXXX
150 ------------------------------
156 #define CCL_WriteRegisterJump 0x06 /* Write register and jump:
157 1:A--D--D--R--E--S--S-rrrXXXXX
158 ------------------------------
163 #define CCL_WriteRegisterReadJump 0x07 /* Write register, read, and jump:
164 1:A--D--D--R--E--S--S-rrrXXXXX
165 2:A--D--D--R--E--S--S-rrrYYYYY
166 -----------------------------
172 /* Note: If read is suspended, the resumed execution starts from the
173 second code (YYYYY == CCL_ReadJump). */
175 #define CCL_WriteConstJump 0x08 /* Write constant and jump:
176 1:A--D--D--R--E--S--S-000XXXXX
178 ------------------------------
183 #define CCL_WriteConstReadJump 0x09 /* Write constant, read, and jump:
184 1:A--D--D--R--E--S--S-rrrXXXXX
186 3:A--D--D--R--E--S--S-rrrYYYYY
187 -----------------------------
193 /* Note: If read is suspended, the resumed execution starts from the
194 second code (YYYYY == CCL_ReadJump). */
196 #define CCL_WriteStringJump 0x0A /* Write string and jump:
197 1:A--D--D--R--E--S--S-000XXXXX
199 3:000MSTRIN[0]STRIN[1]STRIN[2]
201 ------------------------------
203 write_multibyte_string (STRING, LENGTH);
205 write_string (STRING, LENGTH);
209 #define CCL_WriteArrayReadJump 0x0B /* Write an array element, read, and jump:
210 1:A--D--D--R--E--S--S-rrrXXXXX
215 N:A--D--D--R--E--S--S-rrrYYYYY
216 ------------------------------
217 if (0 <= reg[rrr] < LENGTH)
218 write (ELEMENT[reg[rrr]]);
219 IC += LENGTH + 2; (... pointing at N+1)
223 /* Note: If read is suspended, the resumed execution starts from the
224 Nth code (YYYYY == CCL_ReadJump). */
226 #define CCL_ReadJump 0x0C /* Read and jump:
227 1:A--D--D--R--E--S--S-rrrYYYYY
228 -----------------------------
233 #define CCL_Branch 0x0D /* Jump by branch table:
234 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
235 2:A--D--D--R--E-S-S[0]000XXXXX
236 3:A--D--D--R--E-S-S[1]000XXXXX
238 ------------------------------
239 if (0 <= reg[rrr] < CC..C)
240 IC += ADDRESS[reg[rrr]];
242 IC += ADDRESS[CC..C];
245 #define CCL_ReadRegister 0x0E /* Read bytes into registers:
246 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
247 2:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
249 ------------------------------
254 #define CCL_WriteExprConst 0x0F /* write result of expression:
255 1:00000OPERATION000RRR000XXXXX
257 ------------------------------
258 write (reg[RRR] OPERATION CONSTANT);
262 /* Note: If the Nth read is suspended, the resumed execution starts
263 from the Nth code. */
265 #define CCL_ReadBranch 0x10 /* Read one byte into a register,
266 and jump by branch table:
267 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
268 2:A--D--D--R--E-S-S[0]000XXXXX
269 3:A--D--D--R--E-S-S[1]000XXXXX
271 ------------------------------
273 if (0 <= reg[rrr] < CC..C)
274 IC += ADDRESS[reg[rrr]];
276 IC += ADDRESS[CC..C];
279 #define CCL_WriteRegister 0x11 /* Write registers:
280 1:CCCCCCCCCCCCCCCCCCCrrrXXXXX
281 2:CCCCCCCCCCCCCCCCCCCrrrXXXXX
283 ------------------------------
289 /* Note: If the Nth write is suspended, the resumed execution
290 starts from the Nth code. */
292 #define CCL_WriteExprRegister 0x12 /* Write result of expression
293 1:00000OPERATIONRrrRRR000XXXXX
294 ------------------------------
295 write (reg[RRR] OPERATION reg[Rrr]);
298 #define CCL_Call 0x13 /* Call the CCL program whose ID is
300 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX
301 [2:00000000cccccccccccccccccccc]
302 ------------------------------
310 #define CCL_WriteConstString 0x14 /* Write a constant or a string:
311 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
312 [2:000MSTRIN[0]STRIN[1]STRIN[2]]
314 -----------------------------
319 write_multibyte_string (STRING, CC..C);
321 write_string (STRING, CC..C);
322 IC += (CC..C + 2) / 3;
325 #define CCL_WriteArray 0x15 /* Write an element of array:
326 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
330 ------------------------------
331 if (0 <= reg[rrr] < CC..C)
332 write (ELEMENT[reg[rrr]]);
336 #define CCL_End 0x16 /* Terminate:
337 1:00000000000000000000000XXXXX
338 ------------------------------
342 /* The following two codes execute an assignment arithmetic/logical
343 operation. The form of the operation is like REG OP= OPERAND. */
345 #define CCL_ExprSelfConst 0x17 /* REG OP= constant:
346 1:00000OPERATION000000rrrXXXXX
348 ------------------------------
349 reg[rrr] OPERATION= CONSTANT;
352 #define CCL_ExprSelfReg 0x18 /* REG1 OP= REG2:
353 1:00000OPERATION000RRRrrrXXXXX
354 ------------------------------
355 reg[rrr] OPERATION= reg[RRR];
358 /* The following codes execute an arithmetic/logical operation. The
359 form of the operation is like REG_X = REG_Y OP OPERAND2. */
361 #define CCL_SetExprConst 0x19 /* REG_X = REG_Y OP constant:
362 1:00000OPERATION000RRRrrrXXXXX
364 ------------------------------
365 reg[rrr] = reg[RRR] OPERATION CONSTANT;
369 #define CCL_SetExprReg 0x1A /* REG1 = REG2 OP REG3:
370 1:00000OPERATIONRrrRRRrrrXXXXX
371 ------------------------------
372 reg[rrr] = reg[RRR] OPERATION reg[Rrr];
375 #define CCL_JumpCondExprConst 0x1B /* Jump conditional according to
376 an operation on constant:
377 1:A--D--D--R--E--S--S-rrrXXXXX
380 -----------------------------
381 reg[7] = reg[rrr] OPERATION CONSTANT;
388 #define CCL_JumpCondExprReg 0x1C /* Jump conditional according to
389 an operation on register:
390 1:A--D--D--R--E--S--S-rrrXXXXX
393 -----------------------------
394 reg[7] = reg[rrr] OPERATION reg[RRR];
401 #define CCL_ReadJumpCondExprConst 0x1D /* Read and jump conditional according
402 to an operation on constant:
403 1:A--D--D--R--E--S--S-rrrXXXXX
406 -----------------------------
408 reg[7] = reg[rrr] OPERATION CONSTANT;
415 #define CCL_ReadJumpCondExprReg 0x1E /* Read and jump conditional according
416 to an operation on register:
417 1:A--D--D--R--E--S--S-rrrXXXXX
420 -----------------------------
422 reg[7] = reg[rrr] OPERATION reg[RRR];
429 #define CCL_Extension 0x1F /* Extended CCL code
430 1:ExtendedCOMMNDRrrRRRrrrXXXXX
433 ------------------------------
434 extended_command (rrr,RRR,Rrr,ARGS)
438 Here after, Extended CCL Instructions.
439 Bit length of extended command is 14.
440 Therefore, the instruction code range is 0..16384(0x3fff).
443 /* Read a multibyte character.
444 A code point is stored into reg[rrr]. A charset ID is stored into
447 #define CCL_ReadMultibyteChar2 0x00 /* Read Multibyte Character
448 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
450 /* Write a multibyte character.
451 Write a character whose code point is reg[rrr] and the charset ID
454 #define CCL_WriteMultibyteChar2 0x01 /* Write Multibyte Character
455 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
457 /* Translate a character whose code point is reg[rrr] and the charset
458 ID is reg[RRR] by a translation table whose ID is reg[Rrr].
460 A translated character is set in reg[rrr] (code point) and reg[RRR]
463 #define CCL_TranslateCharacter 0x02 /* Translate a multibyte character
464 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
466 /* Translate a character whose code point is reg[rrr] and the charset
467 ID is reg[RRR] by a translation table whose ID is ARGUMENT.
469 A translated character is set in reg[rrr] (code point) and reg[RRR]
472 #define CCL_TranslateCharacterConstTbl 0x03 /* Translate a multibyte character
473 1:ExtendedCOMMNDRrrRRRrrrXXXXX
474 2:ARGUMENT(Translation Table ID)
477 /* Iterate looking up MAPs for reg[rrr] starting from the Nth (N =
478 reg[RRR]) MAP until some value is found.
480 Each MAP is a Lisp vector whose element is number, nil, t, or
482 If the element is nil, ignore the map and proceed to the next map.
483 If the element is t or lambda, finish without changing reg[rrr].
484 If the element is a number, set reg[rrr] to the number and finish.
486 Detail of the map structure is described in the comment for
487 CCL_MapMultiple below. */
489 #define CCL_IterateMultipleMap 0x10 /* Iterate multiple maps
490 1:ExtendedCOMMNDXXXRRRrrrXXXXX
497 /* Map the code in reg[rrr] by MAPs starting from the Nth (N =
500 MAPs are supplied in the succeeding CCL codes as follows:
502 When CCL program gives this nested structure of map to this command:
505 (MAP-ID121 MAP-ID122 MAP-ID123)
508 (MAP-ID211 (MAP-ID2111) MAP-ID212)
510 the compiled CCL codes has this sequence:
511 CCL_MapMultiple (CCL code of this command)
512 16 (total number of MAPs and SEPARATORs)
530 A value of each SEPARATOR follows this rule:
531 MAP-SET := SEPARATOR [(MAP-ID | MAP-SET)]+
532 SEPARATOR := -(number of MAP-IDs and SEPARATORs in the MAP-SET)
534 (*)....Nest level of MAP-SET must not be over than MAX_MAP_SET_LEVEL.
536 When some map fails to map (i.e. it doesn't have a value for
537 reg[rrr]), the mapping is treated as identity.
539 The mapping is iterated for all maps in each map set (set of maps
540 separated by SEPARATOR) except in the case that lambda is
541 encountered. More precisely, the mapping proceeds as below:
543 At first, VAL0 is set to reg[rrr], and it is translated by the
544 first map to VAL1. Then, VAL1 is translated by the next map to
545 VAL2. This mapping is iterated until the last map is used. The
546 result of the mapping is the last value of VAL?. When the mapping
547 process reached to the end of the map set, it moves to the next
548 map set. If the next does not exit, the mapping process terminates,
549 and regard the last value as a result.
551 But, when VALm is mapped to VALn and VALn is not a number, the
552 mapping proceed as below:
554 If VALn is nil, the last map is ignored and the mapping of VALm
555 proceed to the next map.
557 In VALn is t, VALm is reverted to reg[rrr] and the mapping of VALm
558 proceed to the next map.
560 If VALn is lambda, move to the next map set like reaching to the
561 end of the current map set.
563 If VALn is a symbol, call the CCL program referred by it.
564 Then, use reg[rrr] as a mapped value except for -1, -2 and -3.
565 Such special values are regarded as nil, t, and lambda respectively.
567 Each map is a Lisp vector of the following format (a) or (b):
568 (a)......[STARTPOINT VAL1 VAL2 ...]
569 (b)......[t VAL STARTPOINT ENDPOINT],
571 STARTPOINT is an offset to be used for indexing a map,
572 ENDPOINT is a maximum index number of a map,
573 VAL and VALn is a number, nil, t, or lambda.
575 Valid index range of a map of type (a) is:
576 STARTPOINT <= index < STARTPOINT + map_size - 1
577 Valid index range of a map of type (b) is:
578 STARTPOINT <= index < ENDPOINT */
580 #define CCL_MapMultiple 0x11 /* Mapping by multiple code conversion maps
581 1:ExtendedCOMMNDXXXRRRrrrXXXXX
593 #define MAX_MAP_SET_LEVEL 30
601 static tr_stack mapping_stack
[MAX_MAP_SET_LEVEL
];
602 static tr_stack
*mapping_stack_pointer
;
604 /* If this variable is non-zero, it indicates the stack_idx
605 of immediately called by CCL_MapMultiple. */
606 static int stack_idx_of_map_multiple
;
608 #define PUSH_MAPPING_STACK(restlen, orig) \
611 mapping_stack_pointer->rest_length = (restlen); \
612 mapping_stack_pointer->orig_val = (orig); \
613 mapping_stack_pointer++; \
617 #define POP_MAPPING_STACK(restlen, orig) \
620 mapping_stack_pointer--; \
621 (restlen) = mapping_stack_pointer->rest_length; \
622 (orig) = mapping_stack_pointer->orig_val; \
626 #define CCL_CALL_FOR_MAP_INSTRUCTION(symbol, ret_ic) \
629 struct ccl_program called_ccl; \
630 if (stack_idx >= 256 \
631 || (setup_ccl_program (&called_ccl, (symbol)) != 0)) \
635 ccl_prog = ccl_prog_stack_struct[0].ccl_prog; \
636 ic = ccl_prog_stack_struct[0].ic; \
637 eof_ic = ccl_prog_stack_struct[0].eof_ic; \
641 ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog; \
642 ccl_prog_stack_struct[stack_idx].ic = (ret_ic); \
643 ccl_prog_stack_struct[stack_idx].eof_ic = eof_ic; \
645 ccl_prog = called_ccl.prog; \
646 ic = CCL_HEADER_MAIN; \
647 eof_ic = XFASTINT (ccl_prog[CCL_HEADER_EOF]); \
652 #define CCL_MapSingle 0x12 /* Map by single code conversion map
653 1:ExtendedCOMMNDXXXRRRrrrXXXXX
655 ------------------------------
656 Map reg[rrr] by MAP-ID.
657 If some valid mapping is found,
658 set reg[rrr] to the result,
663 #define CCL_LookupIntConstTbl 0x13 /* Lookup multibyte character by
664 integer key. Afterwards R7 set
665 to 1 if lookup succeeded.
666 1:ExtendedCOMMNDRrrRRRXXXXXXXX
667 2:ARGUMENT(Hash table ID) */
669 #define CCL_LookupCharConstTbl 0x14 /* Lookup integer by multibyte
670 character key. Afterwards R7 set
671 to 1 if lookup succeeded.
672 1:ExtendedCOMMNDRrrRRRrrrXXXXX
673 2:ARGUMENT(Hash table ID) */
675 /* CCL arithmetic/logical operators. */
676 #define CCL_PLUS 0x00 /* X = Y + Z */
677 #define CCL_MINUS 0x01 /* X = Y - Z */
678 #define CCL_MUL 0x02 /* X = Y * Z */
679 #define CCL_DIV 0x03 /* X = Y / Z */
680 #define CCL_MOD 0x04 /* X = Y % Z */
681 #define CCL_AND 0x05 /* X = Y & Z */
682 #define CCL_OR 0x06 /* X = Y | Z */
683 #define CCL_XOR 0x07 /* X = Y ^ Z */
684 #define CCL_LSH 0x08 /* X = Y << Z */
685 #define CCL_RSH 0x09 /* X = Y >> Z */
686 #define CCL_LSH8 0x0A /* X = (Y << 8) | Z */
687 #define CCL_RSH8 0x0B /* X = Y >> 8, r[7] = Y & 0xFF */
688 #define CCL_DIVMOD 0x0C /* X = Y / Z, r[7] = Y % Z */
689 #define CCL_LS 0x10 /* X = (X < Y) */
690 #define CCL_GT 0x11 /* X = (X > Y) */
691 #define CCL_EQ 0x12 /* X = (X == Y) */
692 #define CCL_LE 0x13 /* X = (X <= Y) */
693 #define CCL_GE 0x14 /* X = (X >= Y) */
694 #define CCL_NE 0x15 /* X = (X != Y) */
696 #define CCL_DECODE_SJIS 0x16 /* X = HIGHER_BYTE (DE-SJIS (Y, Z))
697 r[7] = LOWER_BYTE (DE-SJIS (Y, Z)) */
698 #define CCL_ENCODE_SJIS 0x17 /* X = HIGHER_BYTE (SJIS (Y, Z))
699 r[7] = LOWER_BYTE (SJIS (Y, Z) */
701 /* Terminate CCL program successfully. */
702 #define CCL_SUCCESS \
705 ccl->status = CCL_STAT_SUCCESS; \
710 /* Suspend CCL program because of reading from empty input buffer or
711 writing to full output buffer. When this program is resumed, the
712 same I/O command is executed. */
713 #define CCL_SUSPEND(stat) \
717 ccl->status = stat; \
722 /* Terminate CCL program because of invalid command. Should not occur
723 in the normal case. */
726 #define CCL_INVALID_CMD \
729 ccl->status = CCL_STAT_INVALID_CMD; \
730 goto ccl_error_handler; \
736 #define CCL_INVALID_CMD \
739 ccl_debug_hook (this_ic); \
740 ccl->status = CCL_STAT_INVALID_CMD; \
741 goto ccl_error_handler; \
747 /* Use "&" rather than "&&" to suppress a bogus GCC warning; see
748 <http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43772>. */
749 #define ASCENDING_ORDER(lo, med, hi) (((lo) <= (med)) & ((med) <= (hi)))
751 #define GET_CCL_RANGE(var, ccl_prog, ic, lo, hi) \
754 EMACS_INT prog_word = XINT ((ccl_prog)[ic]); \
755 if (! ASCENDING_ORDER (lo, prog_word, hi)) \
761 #define GET_CCL_CODE(code, ccl_prog, ic) \
762 GET_CCL_RANGE (code, ccl_prog, ic, CCL_CODE_MIN, CCL_CODE_MAX)
764 #define IN_INT_RANGE(val) ASCENDING_ORDER (INT_MIN, val, INT_MAX)
766 /* Encode one character CH to multibyte form and write to the current
767 output buffer. If CH is less than 256, CH is written as is. */
768 #define CCL_WRITE_CHAR(ch) \
772 else if (dst < dst_end) \
775 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
778 /* Write a string at ccl_prog[IC] of length LEN to the current output
780 #define CCL_WRITE_STRING(len) \
785 else if (dst + len <= dst_end) \
787 if (XFASTINT (ccl_prog[ic]) & 0x1000000) \
788 for (ccli = 0; ccli < len; ccli++) \
789 *dst++ = XFASTINT (ccl_prog[ic + ccli]) & 0xFFFFFF; \
791 for (ccli = 0; ccli < len; ccli++) \
792 *dst++ = ((XFASTINT (ccl_prog[ic + (ccli / 3)])) \
793 >> ((2 - (ccli % 3)) * 8)) & 0xFF; \
796 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
799 /* Read one byte from the current input buffer into Rth register. */
800 #define CCL_READ_CHAR(r) \
804 else if (src < src_end) \
806 else if (ccl->last_block) \
813 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC); \
816 /* Decode CODE by a charset whose id is ID. If ID is 0, return CODE
817 as is for backward compatibility. Assume that we can use the
818 variable `charset'. */
820 #define CCL_DECODE_CHAR(id, code) \
821 ((id) == 0 ? (code) \
822 : (charset = CHARSET_FROM_ID ((id)), DECODE_CHAR (charset, (code))))
824 /* Encode character C by some of charsets in CHARSET_LIST. Set ID to
825 the id of the used charset, ENCODED to the result of encoding.
826 Assume that we can use the variable `charset'. */
828 #define CCL_ENCODE_CHAR(c, charset_list, id, encoded) \
832 charset = char_charset ((c), (charset_list), &ncode); \
833 if (! charset && ! NILP (charset_list)) \
834 charset = char_charset ((c), Qnil, &ncode); \
837 (id) = CHARSET_ID (charset); \
842 /* Execute CCL code on characters at SOURCE (length SRC_SIZE). The
843 resulting text goes to a place pointed by DESTINATION, the length
844 of which should not exceed DST_SIZE. As a side effect, how many
845 characters are consumed and produced are recorded in CCL->consumed
846 and CCL->produced, and the contents of CCL registers are updated.
847 If SOURCE or DESTINATION is NULL, only operations on registers are
851 #define CCL_DEBUG_BACKTRACE_LEN 256
852 int ccl_backtrace_table
[CCL_DEBUG_BACKTRACE_LEN
];
853 int ccl_backtrace_idx
;
856 ccl_debug_hook (int ic
)
863 struct ccl_prog_stack
865 Lisp_Object
*ccl_prog
; /* Pointer to an array of CCL code. */
866 int ic
; /* Instruction Counter. */
867 int eof_ic
; /* Instruction Counter to jump on EOF. */
870 /* For the moment, we only support depth 256 of stack. */
871 static struct ccl_prog_stack ccl_prog_stack_struct
[256];
874 ccl_driver (struct ccl_program
*ccl
, int *source
, int *destination
, int src_size
, int dst_size
, Lisp_Object charset_list
)
876 register int *reg
= ccl
->reg
;
877 register int ic
= ccl
->ic
;
878 register int code
= 0, field1
, field2
;
879 register Lisp_Object
*ccl_prog
= ccl
->prog
;
880 int *src
= source
, *src_end
= src
+ src_size
;
881 int *dst
= destination
, *dst_end
= dst
+ dst_size
;
884 int stack_idx
= ccl
->stack_idx
;
885 /* Instruction counter of the current CCL code. */
887 struct charset
*charset
;
888 int eof_ic
= ccl
->eof_ic
;
891 if (ccl
->buf_magnification
== 0) /* We can't read/produce any bytes. */
894 /* Set mapping stack pointer. */
895 mapping_stack_pointer
= mapping_stack
;
898 ccl_backtrace_idx
= 0;
905 ccl_backtrace_table
[ccl_backtrace_idx
++] = ic
;
906 if (ccl_backtrace_idx
>= CCL_DEBUG_BACKTRACE_LEN
)
907 ccl_backtrace_idx
= 0;
908 ccl_backtrace_table
[ccl_backtrace_idx
] = 0;
911 if (!NILP (Vquit_flag
) && NILP (Vinhibit_quit
))
913 /* We can't just signal Qquit, instead break the loop as if
914 the whole data is processed. Don't reset Vquit_flag, it
915 must be handled later at a safer place. */
917 src
= source
+ src_size
;
918 ccl
->status
= CCL_STAT_QUIT
;
923 GET_CCL_CODE (code
, ccl_prog
, ic
++);
925 field2
= (code
& 0xFF) >> 5;
928 #define RRR (field1 & 7)
929 #define Rrr ((field1 >> 3) & 7)
931 #define EXCMD (field1 >> 6)
935 case CCL_SetRegister
: /* 00000000000000000RRRrrrXXXXX */
939 case CCL_SetShortConst
: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
943 case CCL_SetConst
: /* 00000000000000000000rrrXXXXX */
944 reg
[rrr
] = XINT (ccl_prog
[ic
++]);
947 case CCL_SetArray
: /* CCCCCCCCCCCCCCCCCCCCRRRrrrXXXXX */
951 reg
[rrr
] = XINT (ccl_prog
[ic
+ i
]);
955 case CCL_Jump
: /* A--D--D--R--E--S--S-000XXXXX */
959 case CCL_JumpCond
: /* A--D--D--R--E--S--S-rrrXXXXX */
964 case CCL_WriteRegisterJump
: /* A--D--D--R--E--S--S-rrrXXXXX */
970 case CCL_WriteRegisterReadJump
: /* A--D--D--R--E--S--S-rrrXXXXX */
974 CCL_READ_CHAR (reg
[rrr
]);
978 case CCL_WriteConstJump
: /* A--D--D--R--E--S--S-000XXXXX */
979 i
= XINT (ccl_prog
[ic
]);
984 case CCL_WriteConstReadJump
: /* A--D--D--R--E--S--S-rrrXXXXX */
985 i
= XINT (ccl_prog
[ic
]);
988 CCL_READ_CHAR (reg
[rrr
]);
992 case CCL_WriteStringJump
: /* A--D--D--R--E--S--S-000XXXXX */
993 j
= XINT (ccl_prog
[ic
++]);
994 CCL_WRITE_STRING (j
);
998 case CCL_WriteArrayReadJump
: /* A--D--D--R--E--S--S-rrrXXXXX */
1000 j
= XINT (ccl_prog
[ic
]);
1001 if (0 <= i
&& i
< j
)
1003 i
= XINT (ccl_prog
[ic
+ 1 + i
]);
1007 CCL_READ_CHAR (reg
[rrr
]);
1008 ic
+= ADDR
- (j
+ 2);
1011 case CCL_ReadJump
: /* A--D--D--R--E--S--S-rrrYYYYY */
1012 CCL_READ_CHAR (reg
[rrr
]);
1016 case CCL_ReadBranch
: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1017 CCL_READ_CHAR (reg
[rrr
]);
1018 /* fall through ... */
1019 case CCL_Branch
: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1021 int ioff
= 0 <= reg
[rrr
] && reg
[rrr
] < field1
? reg
[rrr
] : field1
;
1022 int incr
= XINT (ccl_prog
[ic
+ ioff
]);
1027 case CCL_ReadRegister
: /* CCCCCCCCCCCCCCCCCCCCrrXXXXX */
1030 CCL_READ_CHAR (reg
[rrr
]);
1032 GET_CCL_CODE (code
, ccl_prog
, ic
++);
1034 field2
= (code
& 0xFF) >> 5;
1038 case CCL_WriteExprConst
: /* 1:00000OPERATION000RRR000XXXXX */
1041 j
= XINT (ccl_prog
[ic
]);
1043 jump_address
= ic
+ 1;
1046 case CCL_WriteRegister
: /* CCCCCCCCCCCCCCCCCCCrrrXXXXX */
1052 GET_CCL_CODE (code
, ccl_prog
, ic
++);
1054 field2
= (code
& 0xFF) >> 5;
1058 case CCL_WriteExprRegister
: /* 1:00000OPERATIONRrrRRR000XXXXX */
1066 case CCL_Call
: /* 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX */
1071 /* If FFF is nonzero, the CCL program ID is in the
1074 prog_id
= XINT (ccl_prog
[ic
++]);
1078 if (stack_idx
>= 256
1080 || prog_id
>= ASIZE (Vccl_program_table
)
1081 || (slot
= AREF (Vccl_program_table
, prog_id
), !VECTORP (slot
))
1082 || !VECTORP (AREF (slot
, 1)))
1086 ccl_prog
= ccl_prog_stack_struct
[0].ccl_prog
;
1087 ic
= ccl_prog_stack_struct
[0].ic
;
1088 eof_ic
= ccl_prog_stack_struct
[0].eof_ic
;
1093 ccl_prog_stack_struct
[stack_idx
].ccl_prog
= ccl_prog
;
1094 ccl_prog_stack_struct
[stack_idx
].ic
= ic
;
1095 ccl_prog_stack_struct
[stack_idx
].eof_ic
= eof_ic
;
1097 ccl_prog
= XVECTOR (AREF (slot
, 1))->contents
;
1098 ic
= CCL_HEADER_MAIN
;
1099 eof_ic
= XFASTINT (ccl_prog
[CCL_HEADER_EOF
]);
1103 case CCL_WriteConstString
: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1105 CCL_WRITE_CHAR (field1
);
1108 CCL_WRITE_STRING (field1
);
1109 ic
+= (field1
+ 2) / 3;
1113 case CCL_WriteArray
: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1115 if (0 <= i
&& i
< field1
)
1117 j
= XINT (ccl_prog
[ic
+ i
]);
1123 case CCL_End
: /* 0000000000000000000000XXXXX */
1127 ccl_prog
= ccl_prog_stack_struct
[stack_idx
].ccl_prog
;
1128 ic
= ccl_prog_stack_struct
[stack_idx
].ic
;
1129 eof_ic
= ccl_prog_stack_struct
[stack_idx
].eof_ic
;
1136 /* ccl->ic should points to this command code again to
1137 suppress further processing. */
1141 case CCL_ExprSelfConst
: /* 00000OPERATION000000rrrXXXXX */
1142 i
= XINT (ccl_prog
[ic
++]);
1146 case CCL_ExprSelfReg
: /* 00000OPERATION000RRRrrrXXXXX */
1153 case CCL_PLUS
: reg
[rrr
] += i
; break;
1154 case CCL_MINUS
: reg
[rrr
] -= i
; break;
1155 case CCL_MUL
: reg
[rrr
] *= i
; break;
1156 case CCL_DIV
: reg
[rrr
] /= i
; break;
1157 case CCL_MOD
: reg
[rrr
] %= i
; break;
1158 case CCL_AND
: reg
[rrr
] &= i
; break;
1159 case CCL_OR
: reg
[rrr
] |= i
; break;
1160 case CCL_XOR
: reg
[rrr
] ^= i
; break;
1161 case CCL_LSH
: reg
[rrr
] <<= i
; break;
1162 case CCL_RSH
: reg
[rrr
] >>= i
; break;
1163 case CCL_LSH8
: reg
[rrr
] <<= 8; reg
[rrr
] |= i
; break;
1164 case CCL_RSH8
: reg
[7] = reg
[rrr
] & 0xFF; reg
[rrr
] >>= 8; break;
1165 case CCL_DIVMOD
: reg
[7] = reg
[rrr
] % i
; reg
[rrr
] /= i
; break;
1166 case CCL_LS
: reg
[rrr
] = reg
[rrr
] < i
; break;
1167 case CCL_GT
: reg
[rrr
] = reg
[rrr
] > i
; break;
1168 case CCL_EQ
: reg
[rrr
] = reg
[rrr
] == i
; break;
1169 case CCL_LE
: reg
[rrr
] = reg
[rrr
] <= i
; break;
1170 case CCL_GE
: reg
[rrr
] = reg
[rrr
] >= i
; break;
1171 case CCL_NE
: reg
[rrr
] = reg
[rrr
] != i
; break;
1172 default: CCL_INVALID_CMD
;
1176 case CCL_SetExprConst
: /* 00000OPERATION000RRRrrrXXXXX */
1178 j
= XINT (ccl_prog
[ic
++]);
1183 case CCL_SetExprReg
: /* 00000OPERATIONRrrRRRrrrXXXXX */
1190 case CCL_ReadJumpCondExprConst
: /* A--D--D--R--E--S--S-rrrXXXXX */
1191 CCL_READ_CHAR (reg
[rrr
]);
1192 case CCL_JumpCondExprConst
: /* A--D--D--R--E--S--S-rrrXXXXX */
1194 jump_address
= ic
+ ADDR
;
1195 op
= XINT (ccl_prog
[ic
++]);
1196 j
= XINT (ccl_prog
[ic
++]);
1200 case CCL_ReadJumpCondExprReg
: /* A--D--D--R--E--S--S-rrrXXXXX */
1201 CCL_READ_CHAR (reg
[rrr
]);
1202 case CCL_JumpCondExprReg
:
1204 jump_address
= ic
+ ADDR
;
1205 op
= XINT (ccl_prog
[ic
++]);
1206 GET_CCL_RANGE (j
, ccl_prog
, ic
++, 0, 7);
1213 case CCL_PLUS
: reg
[rrr
] = i
+ j
; break;
1214 case CCL_MINUS
: reg
[rrr
] = i
- j
; break;
1215 case CCL_MUL
: reg
[rrr
] = i
* j
; break;
1216 case CCL_DIV
: reg
[rrr
] = i
/ j
; break;
1217 case CCL_MOD
: reg
[rrr
] = i
% j
; break;
1218 case CCL_AND
: reg
[rrr
] = i
& j
; break;
1219 case CCL_OR
: reg
[rrr
] = i
| j
; break;
1220 case CCL_XOR
: reg
[rrr
] = i
^ j
; break;
1221 case CCL_LSH
: reg
[rrr
] = i
<< j
; break;
1222 case CCL_RSH
: reg
[rrr
] = i
>> j
; break;
1223 case CCL_LSH8
: reg
[rrr
] = (i
<< 8) | j
; break;
1224 case CCL_RSH8
: reg
[rrr
] = i
>> 8; reg
[7] = i
& 0xFF; break;
1225 case CCL_DIVMOD
: reg
[rrr
] = i
/ j
; reg
[7] = i
% j
; break;
1226 case CCL_LS
: reg
[rrr
] = i
< j
; break;
1227 case CCL_GT
: reg
[rrr
] = i
> j
; break;
1228 case CCL_EQ
: reg
[rrr
] = i
== j
; break;
1229 case CCL_LE
: reg
[rrr
] = i
<= j
; break;
1230 case CCL_GE
: reg
[rrr
] = i
>= j
; break;
1231 case CCL_NE
: reg
[rrr
] = i
!= j
; break;
1232 case CCL_DECODE_SJIS
:
1240 case CCL_ENCODE_SJIS
:
1248 default: CCL_INVALID_CMD
;
1251 if (code
== CCL_WriteExprConst
|| code
== CCL_WriteExprRegister
)
1264 case CCL_ReadMultibyteChar2
:
1268 CCL_ENCODE_CHAR (i
, charset_list
, reg
[RRR
], reg
[rrr
]);
1271 case CCL_WriteMultibyteChar2
:
1274 i
= CCL_DECODE_CHAR (reg
[RRR
], reg
[rrr
]);
1278 case CCL_TranslateCharacter
:
1279 i
= CCL_DECODE_CHAR (reg
[RRR
], reg
[rrr
]);
1280 op
= translate_char (GET_TRANSLATION_TABLE (reg
[Rrr
]), i
);
1281 CCL_ENCODE_CHAR (op
, charset_list
, reg
[RRR
], reg
[rrr
]);
1284 case CCL_TranslateCharacterConstTbl
:
1287 GET_CCL_RANGE (eop
, ccl_prog
, ic
++, 0,
1288 (VECTORP (Vtranslation_table_vector
)
1289 ? ASIZE (Vtranslation_table_vector
)
1291 i
= CCL_DECODE_CHAR (reg
[RRR
], reg
[rrr
]);
1292 op
= translate_char (GET_TRANSLATION_TABLE (eop
), i
);
1293 CCL_ENCODE_CHAR (op
, charset_list
, reg
[RRR
], reg
[rrr
]);
1297 case CCL_LookupIntConstTbl
:
1300 struct Lisp_Hash_Table
*h
;
1301 GET_CCL_RANGE (eop
, ccl_prog
, ic
++, 0,
1302 (VECTORP (Vtranslation_hash_table_vector
)
1303 ? ASIZE (Vtranslation_hash_table_vector
)
1305 h
= GET_HASH_TABLE (eop
);
1307 eop
= hash_lookup (h
, make_number (reg
[RRR
]), NULL
);
1311 opl
= HASH_VALUE (h
, eop
);
1312 if (! (IN_INT_RANGE (eop
) && CHARACTERP (opl
)))
1314 reg
[RRR
] = charset_unicode
;
1316 reg
[7] = 1; /* r7 true for success */
1323 case CCL_LookupCharConstTbl
:
1326 struct Lisp_Hash_Table
*h
;
1327 GET_CCL_RANGE (eop
, ccl_prog
, ic
++, 0,
1328 (VECTORP (Vtranslation_hash_table_vector
)
1329 ? ASIZE (Vtranslation_hash_table_vector
)
1331 i
= CCL_DECODE_CHAR (reg
[RRR
], reg
[rrr
]);
1332 h
= GET_HASH_TABLE (eop
);
1334 eop
= hash_lookup (h
, make_number (i
), NULL
);
1338 opl
= HASH_VALUE (h
, eop
);
1339 if (! (INTEGERP (opl
) && IN_INT_RANGE (XINT (opl
))))
1341 reg
[RRR
] = XINT (opl
);
1342 reg
[7] = 1; /* r7 true for success */
1349 case CCL_IterateMultipleMap
:
1351 Lisp_Object map
, content
, attrib
, value
;
1356 j
= XINT (ccl_prog
[ic
++]); /* number of maps. */
1359 if ((j
> reg
[RRR
]) && (j
>= 0))
1373 if (!VECTORP (Vcode_conversion_map_vector
)) continue;
1374 size
= ASIZE (Vcode_conversion_map_vector
);
1375 point
= XINT (ccl_prog
[ic
++]);
1376 if (! (0 <= point
&& point
< size
)) continue;
1377 map
= AREF (Vcode_conversion_map_vector
, point
);
1379 /* Check map validity. */
1380 if (!CONSP (map
)) continue;
1382 if (!VECTORP (map
)) continue;
1384 if (size
<= 1) continue;
1386 content
= AREF (map
, 0);
1389 [STARTPOINT VAL1 VAL2 ...] or
1390 [t ELEMENT STARTPOINT ENDPOINT] */
1391 if (INTEGERP (content
))
1393 point
= XINT (content
);
1394 if (!(point
<= op
&& op
- point
+ 1 < size
)) continue;
1395 content
= AREF (map
, op
- point
+ 1);
1397 else if (EQ (content
, Qt
))
1399 if (size
!= 4) continue;
1400 if (INTEGERP (AREF (map
, 2))
1401 && XINT (AREF (map
, 2)) <= op
1402 && INTEGERP (AREF (map
, 3))
1403 && op
< XINT (AREF (map
, 3)))
1404 content
= AREF (map
, 1);
1413 else if (INTEGERP (content
) && IN_INT_RANGE (XINT (content
)))
1416 reg
[rrr
] = XINT (content
);
1419 else if (EQ (content
, Qt
) || EQ (content
, Qlambda
))
1424 else if (CONSP (content
))
1426 attrib
= XCAR (content
);
1427 value
= XCDR (content
);
1428 if (! (INTEGERP (attrib
) && INTEGERP (value
)
1429 && IN_INT_RANGE (XINT (value
))))
1432 reg
[rrr
] = XINT (value
);
1435 else if (SYMBOLP (content
))
1436 CCL_CALL_FOR_MAP_INSTRUCTION (content
, fin_ic
);
1446 case CCL_MapMultiple
:
1448 Lisp_Object map
, content
, attrib
, value
;
1450 ptrdiff_t size
, map_vector_size
;
1451 int map_set_rest_length
, fin_ic
;
1452 int current_ic
= this_ic
;
1454 /* inhibit recursive call on MapMultiple. */
1455 if (stack_idx_of_map_multiple
> 0)
1457 if (stack_idx_of_map_multiple
<= stack_idx
)
1459 stack_idx_of_map_multiple
= 0;
1460 mapping_stack_pointer
= mapping_stack
;
1465 mapping_stack_pointer
= mapping_stack
;
1466 stack_idx_of_map_multiple
= 0;
1468 /* Get number of maps and separators. */
1469 map_set_rest_length
= XINT (ccl_prog
[ic
++]);
1471 fin_ic
= ic
+ map_set_rest_length
;
1474 if ((map_set_rest_length
> reg
[RRR
]) && (reg
[RRR
] >= 0))
1478 map_set_rest_length
-= i
;
1484 mapping_stack_pointer
= mapping_stack
;
1488 if (mapping_stack_pointer
<= (mapping_stack
+ 1))
1490 /* Set up initial state. */
1491 mapping_stack_pointer
= mapping_stack
;
1492 PUSH_MAPPING_STACK (0, op
);
1497 /* Recover after calling other ccl program. */
1500 POP_MAPPING_STACK (map_set_rest_length
, orig_op
);
1501 POP_MAPPING_STACK (map_set_rest_length
, reg
[rrr
]);
1505 /* Regard it as Qnil. */
1509 map_set_rest_length
--;
1512 /* Regard it as Qt. */
1516 map_set_rest_length
--;
1519 /* Regard it as Qlambda. */
1521 i
+= map_set_rest_length
;
1522 ic
+= map_set_rest_length
;
1523 map_set_rest_length
= 0;
1526 /* Regard it as normal mapping. */
1527 i
+= map_set_rest_length
;
1528 ic
+= map_set_rest_length
;
1529 POP_MAPPING_STACK (map_set_rest_length
, reg
[rrr
]);
1533 if (!VECTORP (Vcode_conversion_map_vector
))
1535 map_vector_size
= ASIZE (Vcode_conversion_map_vector
);
1538 for (;map_set_rest_length
> 0;i
++, ic
++, map_set_rest_length
--)
1540 point
= XINT (ccl_prog
[ic
]);
1543 /* +1 is for including separator. */
1545 if (mapping_stack_pointer
1546 >= &mapping_stack
[MAX_MAP_SET_LEVEL
])
1548 PUSH_MAPPING_STACK (map_set_rest_length
- point
,
1550 map_set_rest_length
= point
;
1555 if (point
>= map_vector_size
) continue;
1556 map
= AREF (Vcode_conversion_map_vector
, point
);
1558 /* Check map validity. */
1559 if (!CONSP (map
)) continue;
1561 if (!VECTORP (map
)) continue;
1563 if (size
<= 1) continue;
1565 content
= AREF (map
, 0);
1568 [STARTPOINT VAL1 VAL2 ...] or
1569 [t ELEMENT STARTPOINT ENDPOINT] */
1570 if (INTEGERP (content
))
1572 point
= XINT (content
);
1573 if (!(point
<= op
&& op
- point
+ 1 < size
)) continue;
1574 content
= AREF (map
, op
- point
+ 1);
1576 else if (EQ (content
, Qt
))
1578 if (size
!= 4) continue;
1579 if (INTEGERP (AREF (map
, 2))
1580 && XINT (AREF (map
, 2)) <= op
1581 && INTEGERP (AREF (map
, 3))
1582 && op
< XINT (AREF (map
, 3)))
1583 content
= AREF (map
, 1);
1594 if (INTEGERP (content
) && IN_INT_RANGE (XINT (content
)))
1596 op
= XINT (content
);
1597 i
+= map_set_rest_length
- 1;
1598 ic
+= map_set_rest_length
- 1;
1599 POP_MAPPING_STACK (map_set_rest_length
, reg
[rrr
]);
1600 map_set_rest_length
++;
1602 else if (CONSP (content
))
1604 attrib
= XCAR (content
);
1605 value
= XCDR (content
);
1606 if (! (INTEGERP (attrib
) && INTEGERP (value
)
1607 && IN_INT_RANGE (XINT (value
))))
1610 i
+= map_set_rest_length
- 1;
1611 ic
+= map_set_rest_length
- 1;
1612 POP_MAPPING_STACK (map_set_rest_length
, reg
[rrr
]);
1613 map_set_rest_length
++;
1615 else if (EQ (content
, Qt
))
1619 else if (EQ (content
, Qlambda
))
1621 i
+= map_set_rest_length
;
1622 ic
+= map_set_rest_length
;
1625 else if (SYMBOLP (content
))
1627 if (mapping_stack_pointer
1628 >= &mapping_stack
[MAX_MAP_SET_LEVEL
])
1630 PUSH_MAPPING_STACK (map_set_rest_length
, reg
[rrr
]);
1631 PUSH_MAPPING_STACK (map_set_rest_length
, op
);
1632 stack_idx_of_map_multiple
= stack_idx
+ 1;
1633 CCL_CALL_FOR_MAP_INSTRUCTION (content
, current_ic
);
1638 if (mapping_stack_pointer
<= (mapping_stack
+ 1))
1640 POP_MAPPING_STACK (map_set_rest_length
, reg
[rrr
]);
1641 i
+= map_set_rest_length
;
1642 ic
+= map_set_rest_length
;
1643 POP_MAPPING_STACK (map_set_rest_length
, reg
[rrr
]);
1653 Lisp_Object map
, attrib
, value
, content
;
1655 j
= XINT (ccl_prog
[ic
++]); /* map_id */
1657 if (! (VECTORP (Vcode_conversion_map_vector
)
1658 && j
< ASIZE (Vcode_conversion_map_vector
)))
1663 map
= AREF (Vcode_conversion_map_vector
, j
);
1670 if (! (VECTORP (map
)
1672 && INTEGERP (AREF (map
, 0))
1673 && XINT (AREF (map
, 0)) <= op
1674 && op
- XINT (AREF (map
, 0)) + 1 < ASIZE (map
)))
1679 point
= op
- XINT (AREF (map
, 0)) + 1;
1681 content
= AREF (map
, point
);
1684 else if (TYPE_RANGED_INTEGERP (int, content
))
1685 reg
[rrr
] = XINT (content
);
1686 else if (EQ (content
, Qt
));
1687 else if (CONSP (content
))
1689 attrib
= XCAR (content
);
1690 value
= XCDR (content
);
1691 if (!INTEGERP (attrib
)
1692 || !TYPE_RANGED_INTEGERP (int, value
))
1694 reg
[rrr
] = XINT (value
);
1697 else if (SYMBOLP (content
))
1698 CCL_CALL_FOR_MAP_INSTRUCTION (content
, ic
);
1715 /* The suppress_error member is set when e.g. a CCL-based coding
1716 system is used for terminal output. */
1717 if (!ccl
->suppress_error
&& destination
)
1719 /* We can insert an error message only if DESTINATION is
1720 specified and we still have a room to store the message
1728 switch (ccl
->status
)
1730 case CCL_STAT_INVALID_CMD
:
1731 msglen
= sprintf (msg
,
1732 "\nCCL: Invalid command %x (ccl_code = %x) at %d.",
1733 code
& 0x1F, code
, this_ic
);
1736 int i
= ccl_backtrace_idx
- 1;
1739 if (dst
+ msglen
<= (dst_bytes
? dst_end
: src
))
1741 memcpy (dst
, msg
, msglen
);
1745 for (j
= 0; j
< CCL_DEBUG_BACKTRACE_LEN
; j
++, i
--)
1747 if (i
< 0) i
= CCL_DEBUG_BACKTRACE_LEN
- 1;
1748 if (ccl_backtrace_table
[i
] == 0)
1750 msglen
= sprintf (msg
, " %d", ccl_backtrace_table
[i
]);
1751 if (dst
+ msglen
> (dst_bytes
? dst_end
: src
))
1753 memcpy (dst
, msg
, msglen
);
1762 msglen
= ccl
->quit_silently
? 0 : sprintf (msg
, "\nCCL: Quitted.");
1766 msglen
= sprintf (msg
, "\nCCL: Unknown error type (%d)", ccl
->status
);
1769 if (msglen
<= dst_end
- dst
)
1771 for (i
= 0; i
< msglen
; i
++)
1775 if (ccl
->status
== CCL_STAT_INVALID_CMD
)
1777 #if 0 /* If the remaining bytes contain 0x80..0x9F, copying them
1778 results in an invalid multibyte sequence. */
1780 /* Copy the remaining source data. */
1781 int i
= src_end
- src
;
1782 if (dst_bytes
&& (dst_end
- dst
) < i
)
1784 memcpy (dst
, src
, i
);
1788 /* Signal that we've consumed everything. */
1796 ccl
->stack_idx
= stack_idx
;
1797 ccl
->prog
= ccl_prog
;
1798 ccl
->consumed
= src
- source
;
1800 ccl
->produced
= dst
- destination
;
1805 /* Resolve symbols in the specified CCL code (Lisp vector). This
1806 function converts symbols of code conversion maps and character
1807 translation tables embedded in the CCL code into their ID numbers.
1809 The return value is a new vector in which all symbols are resolved,
1810 Qt if resolving of some symbol failed,
1811 or nil if CCL contains invalid data. */
1814 resolve_symbol_ccl_program (Lisp_Object ccl
)
1816 int i
, veclen
, unresolved
= 0;
1817 Lisp_Object result
, contents
, val
;
1819 if (! (CCL_HEADER_MAIN
< ASIZE (ccl
) && ASIZE (ccl
) <= INT_MAX
))
1821 result
= Fcopy_sequence (ccl
);
1822 veclen
= ASIZE (result
);
1824 for (i
= 0; i
< veclen
; i
++)
1826 contents
= AREF (result
, i
);
1827 if (TYPE_RANGED_INTEGERP (int, contents
))
1829 else if (CONSP (contents
)
1830 && SYMBOLP (XCAR (contents
))
1831 && SYMBOLP (XCDR (contents
)))
1833 /* This is the new style for embedding symbols. The form is
1834 (SYMBOL . PROPERTY). (get SYMBOL PROPERTY) should give
1836 val
= Fget (XCAR (contents
), XCDR (contents
));
1837 if (RANGED_INTEGERP (0, val
, INT_MAX
))
1838 ASET (result
, i
, val
);
1843 else if (SYMBOLP (contents
))
1845 /* This is the old style for embedding symbols. This style
1846 may lead to a bug if, for instance, a translation table
1847 and a code conversion map have the same name. */
1848 val
= Fget (contents
, Qtranslation_table_id
);
1849 if (RANGED_INTEGERP (0, val
, INT_MAX
))
1850 ASET (result
, i
, val
);
1853 val
= Fget (contents
, Qcode_conversion_map_id
);
1854 if (RANGED_INTEGERP (0, val
, INT_MAX
))
1855 ASET (result
, i
, val
);
1858 val
= Fget (contents
, Qccl_program_idx
);
1859 if (RANGED_INTEGERP (0, val
, INT_MAX
))
1860 ASET (result
, i
, val
);
1870 if (! (0 <= XINT (AREF (result
, CCL_HEADER_BUF_MAG
))
1871 && ASCENDING_ORDER (0, XINT (AREF (result
, CCL_HEADER_EOF
)),
1875 return (unresolved
? Qt
: result
);
1878 /* Return the compiled code (vector) of CCL program CCL_PROG.
1879 CCL_PROG is a name (symbol) of the program or already compiled
1880 code. If necessary, resolve symbols in the compiled code to index
1881 numbers. If we failed to get the compiled code or to resolve
1882 symbols, return Qnil. */
1885 ccl_get_compiled_code (Lisp_Object ccl_prog
, ptrdiff_t *idx
)
1887 Lisp_Object val
, slot
;
1889 if (VECTORP (ccl_prog
))
1891 val
= resolve_symbol_ccl_program (ccl_prog
);
1893 return (VECTORP (val
) ? val
: Qnil
);
1895 if (!SYMBOLP (ccl_prog
))
1898 val
= Fget (ccl_prog
, Qccl_program_idx
);
1900 || XINT (val
) >= ASIZE (Vccl_program_table
))
1902 slot
= AREF (Vccl_program_table
, XINT (val
));
1903 if (! VECTORP (slot
)
1904 || ASIZE (slot
) != 4
1905 || ! VECTORP (AREF (slot
, 1)))
1908 if (NILP (AREF (slot
, 2)))
1910 val
= resolve_symbol_ccl_program (AREF (slot
, 1));
1911 if (! VECTORP (val
))
1913 ASET (slot
, 1, val
);
1916 return AREF (slot
, 1);
1919 /* Setup fields of the structure pointed by CCL appropriately for the
1920 execution of CCL program CCL_PROG. CCL_PROG is the name (symbol)
1921 of the CCL program or the already compiled code (vector).
1922 Return 0 if we succeed this setup, else return -1.
1924 If CCL_PROG is nil, we just reset the structure pointed by CCL. */
1926 setup_ccl_program (struct ccl_program
*ccl
, Lisp_Object ccl_prog
)
1930 if (! NILP (ccl_prog
))
1932 struct Lisp_Vector
*vp
;
1934 ccl_prog
= ccl_get_compiled_code (ccl_prog
, &ccl
->idx
);
1935 if (! VECTORP (ccl_prog
))
1937 vp
= XVECTOR (ccl_prog
);
1938 ccl
->size
= vp
->header
.size
;
1939 ccl
->prog
= vp
->contents
;
1940 ccl
->eof_ic
= XINT (vp
->contents
[CCL_HEADER_EOF
]);
1941 ccl
->buf_magnification
= XINT (vp
->contents
[CCL_HEADER_BUF_MAG
]);
1946 slot
= AREF (Vccl_program_table
, ccl
->idx
);
1947 ASET (slot
, 3, Qnil
);
1950 ccl
->ic
= CCL_HEADER_MAIN
;
1951 for (i
= 0; i
< 8; i
++)
1953 ccl
->last_block
= 0;
1954 ccl
->private_state
= 0;
1957 ccl
->suppress_error
= 0;
1958 ccl
->eight_bit_control
= 0;
1959 ccl
->quit_silently
= 0;
1964 DEFUN ("ccl-program-p", Fccl_program_p
, Sccl_program_p
, 1, 1, 0,
1965 doc
: /* Return t if OBJECT is a CCL program name or a compiled CCL program code.
1966 See the documentation of `define-ccl-program' for the detail of CCL program. */)
1967 (Lisp_Object object
)
1971 if (VECTORP (object
))
1973 val
= resolve_symbol_ccl_program (object
);
1974 return (VECTORP (val
) ? Qt
: Qnil
);
1976 if (!SYMBOLP (object
))
1979 val
= Fget (object
, Qccl_program_idx
);
1980 return ((! NATNUMP (val
)
1981 || XINT (val
) >= ASIZE (Vccl_program_table
))
1985 DEFUN ("ccl-execute", Fccl_execute
, Sccl_execute
, 2, 2, 0,
1986 doc
: /* Execute CCL-PROGRAM with registers initialized by REGISTERS.
1988 CCL-PROGRAM is a CCL program name (symbol)
1989 or compiled code generated by `ccl-compile' (for backward compatibility.
1990 In the latter case, the execution overhead is bigger than in the former).
1991 No I/O commands should appear in CCL-PROGRAM.
1993 REGISTERS is a vector of [R0 R1 ... R7] where RN is an initial value
1994 for the Nth register.
1996 As side effect, each element of REGISTERS holds the value of
1997 the corresponding register after the execution.
1999 See the documentation of `define-ccl-program' for a definition of CCL
2001 (Lisp_Object ccl_prog
, Lisp_Object reg
)
2003 struct ccl_program ccl
;
2006 if (setup_ccl_program (&ccl
, ccl_prog
) < 0)
2007 error ("Invalid CCL program");
2010 if (ASIZE (reg
) != 8)
2011 error ("Length of vector REGISTERS is not 8");
2013 for (i
= 0; i
< 8; i
++)
2014 ccl
.reg
[i
] = (TYPE_RANGED_INTEGERP (int, AREF (reg
, i
))
2015 ? XINT (AREF (reg
, i
))
2018 ccl_driver (&ccl
, NULL
, NULL
, 0, 0, Qnil
);
2020 if (ccl
.status
!= CCL_STAT_SUCCESS
)
2021 error ("Error in CCL program at %dth code", ccl
.ic
);
2023 for (i
= 0; i
< 8; i
++)
2024 ASET (reg
, i
, make_number (ccl
.reg
[i
]));
2028 DEFUN ("ccl-execute-on-string", Fccl_execute_on_string
, Sccl_execute_on_string
,
2030 doc
: /* Execute CCL-PROGRAM with initial STATUS on STRING.
2032 CCL-PROGRAM is a symbol registered by `register-ccl-program',
2033 or a compiled code generated by `ccl-compile' (for backward compatibility,
2034 in this case, the execution is slower).
2036 Read buffer is set to STRING, and write buffer is allocated automatically.
2038 STATUS is a vector of [R0 R1 ... R7 IC], where
2039 R0..R7 are initial values of corresponding registers,
2040 IC is the instruction counter specifying from where to start the program.
2041 If R0..R7 are nil, they are initialized to 0.
2042 If IC is nil, it is initialized to head of the CCL program.
2044 If optional 4th arg CONTINUE is non-nil, keep IC on read operation
2045 when read buffer is exhausted, else, IC is always set to the end of
2046 CCL-PROGRAM on exit.
2048 It returns the contents of write buffer as a string,
2049 and as side effect, STATUS is updated.
2050 If the optional 5th arg UNIBYTE-P is non-nil, the returned string
2051 is a unibyte string. By default it is a multibyte string.
2053 See the documentation of `define-ccl-program' for the detail of CCL program.
2054 usage: (ccl-execute-on-string CCL-PROGRAM STATUS STRING &optional CONTINUE UNIBYTE-P) */)
2055 (Lisp_Object ccl_prog
, Lisp_Object status
, Lisp_Object str
, Lisp_Object contin
, Lisp_Object unibyte_p
)
2058 struct ccl_program ccl
;
2060 ptrdiff_t outbufsize
;
2061 unsigned char *outbuf
, *outp
;
2062 ptrdiff_t str_chars
, str_bytes
;
2063 #define CCL_EXECUTE_BUF_SIZE 1024
2064 int source
[CCL_EXECUTE_BUF_SIZE
], destination
[CCL_EXECUTE_BUF_SIZE
];
2065 ptrdiff_t consumed_chars
, consumed_bytes
, produced_chars
;
2066 int buf_magnification
;
2068 if (setup_ccl_program (&ccl
, ccl_prog
) < 0)
2069 error ("Invalid CCL program");
2071 CHECK_VECTOR (status
);
2072 if (ASIZE (status
) != 9)
2073 error ("Length of vector STATUS is not 9");
2076 str_chars
= SCHARS (str
);
2077 str_bytes
= SBYTES (str
);
2079 for (i
= 0; i
< 8; i
++)
2081 if (NILP (AREF (status
, i
)))
2082 ASET (status
, i
, make_number (0));
2083 if (TYPE_RANGED_INTEGERP (int, AREF (status
, i
)))
2084 ccl
.reg
[i
] = XINT (AREF (status
, i
));
2086 if (INTEGERP (AREF (status
, i
)))
2088 i
= XFASTINT (AREF (status
, 8));
2089 if (ccl
.ic
< i
&& i
< ccl
.size
)
2093 buf_magnification
= ccl
.buf_magnification
? ccl
.buf_magnification
: 1;
2095 if ((min (PTRDIFF_MAX
, SIZE_MAX
) - 256) / buf_magnification
< str_bytes
)
2096 memory_full (SIZE_MAX
);
2097 outbufsize
= (ccl
.buf_magnification
2098 ? str_bytes
* ccl
.buf_magnification
+ 256
2100 outp
= outbuf
= xmalloc (outbufsize
);
2102 consumed_chars
= consumed_bytes
= 0;
2106 const unsigned char *p
= SDATA (str
) + consumed_bytes
;
2107 const unsigned char *endp
= SDATA (str
) + str_bytes
;
2111 if (endp
- p
== str_chars
- consumed_chars
)
2112 while (j
< CCL_EXECUTE_BUF_SIZE
&& p
< endp
)
2115 while (j
< CCL_EXECUTE_BUF_SIZE
&& p
< endp
)
2116 source
[j
++] = STRING_CHAR_ADVANCE (p
);
2117 consumed_chars
+= j
;
2118 consumed_bytes
= p
- SDATA (str
);
2120 if (consumed_bytes
== str_bytes
)
2121 ccl
.last_block
= NILP (contin
);
2126 int max_expansion
= NILP (unibyte_p
) ? MAX_MULTIBYTE_LENGTH
: 1;
2127 ptrdiff_t offset
, shortfall
;
2128 ccl_driver (&ccl
, src
, destination
, src_size
, CCL_EXECUTE_BUF_SIZE
,
2130 produced_chars
+= ccl
.produced
;
2131 offset
= outp
- outbuf
;
2132 shortfall
= ccl
.produced
* max_expansion
- (outbufsize
- offset
);
2135 outbuf
= xpalloc (outbuf
, &outbufsize
, shortfall
, -1, 1);
2136 outp
= outbuf
+ offset
;
2138 if (NILP (unibyte_p
))
2140 for (j
= 0; j
< ccl
.produced
; j
++)
2141 CHAR_STRING_ADVANCE (destination
[j
], outp
);
2145 for (j
= 0; j
< ccl
.produced
; j
++)
2146 *outp
++ = destination
[j
];
2148 src
+= ccl
.consumed
;
2149 src_size
-= ccl
.consumed
;
2150 if (ccl
.status
!= CCL_STAT_SUSPEND_BY_DST
)
2154 if (ccl
.status
!= CCL_STAT_SUSPEND_BY_SRC
2155 || str_chars
== consumed_chars
)
2159 if (ccl
.status
== CCL_STAT_INVALID_CMD
)
2160 error ("Error in CCL program at %dth code", ccl
.ic
);
2161 if (ccl
.status
== CCL_STAT_QUIT
)
2162 error ("CCL program interrupted at %dth code", ccl
.ic
);
2164 for (i
= 0; i
< 8; i
++)
2165 ASET (status
, i
, make_number (ccl
.reg
[i
]));
2166 ASET (status
, 8, make_number (ccl
.ic
));
2168 if (NILP (unibyte_p
))
2169 val
= make_multibyte_string ((char *) outbuf
, produced_chars
,
2172 val
= make_unibyte_string ((char *) outbuf
, produced_chars
);
2178 DEFUN ("register-ccl-program", Fregister_ccl_program
, Sregister_ccl_program
,
2180 doc
: /* Register CCL program CCL-PROG as NAME in `ccl-program-table'.
2181 CCL-PROG should be a compiled CCL program (vector), or nil.
2182 If it is nil, just reserve NAME as a CCL program name.
2183 Return index number of the registered CCL program. */)
2184 (Lisp_Object name
, Lisp_Object ccl_prog
)
2186 ptrdiff_t len
= ASIZE (Vccl_program_table
);
2188 Lisp_Object resolved
;
2190 CHECK_SYMBOL (name
);
2192 if (!NILP (ccl_prog
))
2194 CHECK_VECTOR (ccl_prog
);
2195 resolved
= resolve_symbol_ccl_program (ccl_prog
);
2196 if (NILP (resolved
))
2197 error ("Error in CCL program");
2198 if (VECTORP (resolved
))
2200 ccl_prog
= resolved
;
2207 for (idx
= 0; idx
< len
; idx
++)
2211 slot
= AREF (Vccl_program_table
, idx
);
2212 if (!VECTORP (slot
))
2213 /* This is the first unused slot. Register NAME here. */
2216 if (EQ (name
, AREF (slot
, 0)))
2218 /* Update this slot. */
2219 ASET (slot
, 1, ccl_prog
);
2220 ASET (slot
, 2, resolved
);
2222 return make_number (idx
);
2227 /* Extend the table. */
2228 Vccl_program_table
= larger_vector (Vccl_program_table
, 1, -1);
2231 Lisp_Object elt
= make_uninit_vector (4);
2233 ASET (elt
, 0, name
);
2234 ASET (elt
, 1, ccl_prog
);
2235 ASET (elt
, 2, resolved
);
2237 ASET (Vccl_program_table
, idx
, elt
);
2240 Fput (name
, Qccl_program_idx
, make_number (idx
));
2241 return make_number (idx
);
2244 /* Register code conversion map.
2245 A code conversion map consists of numbers, Qt, Qnil, and Qlambda.
2246 The first element is the start code point.
2247 The other elements are mapped numbers.
2248 Symbol t means to map to an original number before mapping.
2249 Symbol nil means that the corresponding element is empty.
2250 Symbol lambda means to terminate mapping here.
2253 DEFUN ("register-code-conversion-map", Fregister_code_conversion_map
,
2254 Sregister_code_conversion_map
,
2256 doc
: /* Register SYMBOL as code conversion map MAP.
2257 Return index number of the registered map. */)
2258 (Lisp_Object symbol
, Lisp_Object map
)
2264 CHECK_SYMBOL (symbol
);
2266 if (! VECTORP (Vcode_conversion_map_vector
))
2267 error ("Invalid code-conversion-map-vector");
2269 len
= ASIZE (Vcode_conversion_map_vector
);
2271 for (i
= 0; i
< len
; i
++)
2273 Lisp_Object slot
= AREF (Vcode_conversion_map_vector
, i
);
2278 if (EQ (symbol
, XCAR (slot
)))
2280 idx
= make_number (i
);
2281 XSETCDR (slot
, map
);
2282 Fput (symbol
, Qcode_conversion_map
, map
);
2283 Fput (symbol
, Qcode_conversion_map_id
, idx
);
2289 Vcode_conversion_map_vector
= larger_vector (Vcode_conversion_map_vector
,
2292 idx
= make_number (i
);
2293 Fput (symbol
, Qcode_conversion_map
, map
);
2294 Fput (symbol
, Qcode_conversion_map_id
, idx
);
2295 ASET (Vcode_conversion_map_vector
, i
, Fcons (symbol
, map
));
2303 staticpro (&Vccl_program_table
);
2304 Vccl_program_table
= Fmake_vector (make_number (32), Qnil
);
2306 DEFSYM (Qccl
, "ccl");
2307 DEFSYM (Qcclp
, "cclp");
2308 DEFSYM (Qccl_program
, "ccl-program");
2309 DEFSYM (Qccl_program_idx
, "ccl-program-idx");
2310 DEFSYM (Qcode_conversion_map
, "code-conversion-map");
2311 DEFSYM (Qcode_conversion_map_id
, "code-conversion-map-id");
2313 DEFVAR_LISP ("code-conversion-map-vector", Vcode_conversion_map_vector
,
2314 doc
: /* Vector of code conversion maps. */);
2315 Vcode_conversion_map_vector
= Fmake_vector (make_number (16), Qnil
);
2317 DEFVAR_LISP ("font-ccl-encoder-alist", Vfont_ccl_encoder_alist
,
2318 doc
: /* Alist of fontname patterns vs corresponding CCL program.
2319 Each element looks like (REGEXP . CCL-CODE),
2320 where CCL-CODE is a compiled CCL program.
2321 When a font whose name matches REGEXP is used for displaying a character,
2322 CCL-CODE is executed to calculate the code point in the font
2323 from the charset number and position code(s) of the character which are set
2324 in CCL registers R0, R1, and R2 before the execution.
2325 The code point in the font is set in CCL registers R1 and R2
2326 when the execution terminated.
2327 If the font is single-byte font, the register R2 is not used. */);
2328 Vfont_ccl_encoder_alist
= Qnil
;
2330 DEFVAR_LISP ("translation-hash-table-vector", Vtranslation_hash_table_vector
,
2331 doc
: /* Vector containing all translation hash tables ever defined.
2332 Comprises pairs (SYMBOL . TABLE) where SYMBOL and TABLE were set up by calls
2333 to `define-translation-hash-table'. The vector is indexed by the table id
2335 Vtranslation_hash_table_vector
= Qnil
;
2337 defsubr (&Sccl_program_p
);
2338 defsubr (&Sccl_execute
);
2339 defsubr (&Sccl_execute_on_string
);
2340 defsubr (&Sregister_ccl_program
);
2341 defsubr (&Sregister_code_conversion_map
);