(Thumbnails): Minor cleanup.
[emacs.git] / man / calc.texi
blobea51a896e23f9204ca2aad7994bb5ebd9a886ba0
1 \input texinfo                  @c -*-texinfo-*-
2 @comment %**start of header (This is for running Texinfo on a region.)
3 @c smallbook
4 @setfilename ../info/calc
5 @c [title]
6 @settitle GNU Emacs Calc 2.1 Manual
7 @setchapternewpage odd
8 @comment %**end of header (This is for running Texinfo on a region.)
10 @c The following macros are used for conditional output for single lines.
11 @c @texline foo
12 @c    `foo' will appear only in TeX output
13 @c @infoline foo
14 @c    `foo' will appear only in non-TeX output
16 @c @expr{expr} will typeset an expression;
17 @c $x$ in TeX, @samp{x} otherwise.
19 @iftex
20 @macro texline
21 @end macro
22 @alias infoline=comment
23 @alias expr=math
24 @alias tfn=code
25 @alias mathit=expr
26 @macro cpi{}
27 @math{@pi{}}
28 @end macro
29 @macro cpiover{den}
30 @math{@pi/\den\}
31 @end macro
32 @end iftex
34 @ifnottex
35 @alias texline=comment
36 @macro infoline{stuff}
37 \stuff\
38 @end macro
39 @alias expr=samp
40 @alias tfn=t
41 @alias mathit=i
42 @macro cpi{}
43 @expr{pi}
44 @end macro
45 @macro cpiover{den}
46 @expr{pi/\den\}
47 @end macro
48 @end ifnottex
51 @tex
52 % Suggested by Karl Berry <karl@@freefriends.org>
53 \gdef\!{\mskip-\thinmuskip}
54 @end tex
56 @c Fix some other things specifically for this manual.
57 @iftex
58 @finalout
59 @mathcode`@:=`@:  @c Make Calc fractions come out right in math mode
60 @tex
61 \gdef\coloneq{\mathrel{\mathord:\mathord=}}
63 \gdef\beforedisplay{\vskip-10pt}
64 \gdef\afterdisplay{\vskip-5pt}
65 \gdef\beforedisplayh{\vskip-25pt}
66 \gdef\afterdisplayh{\vskip-10pt}
67 @end tex
68 @newdimen@kyvpos @kyvpos=0pt
69 @newdimen@kyhpos @kyhpos=0pt
70 @newcount@calcclubpenalty @calcclubpenalty=1000
71 @ignore
72 @newcount@calcpageno
73 @newtoks@calcoldeverypar @calcoldeverypar=@everypar
74 @everypar={@calceverypar@the@calcoldeverypar}
75 @ifx@turnoffactive@undefinedzzz@def@turnoffactive{}@fi
76 @ifx@ninett@undefinedzzz@font@ninett=cmtt9@fi
77 @catcode`@\=0 \catcode`\@=11
78 \r@ggedbottomtrue
79 \catcode`\@=0 @catcode`@\=@active
80 @end ignore
81 @end iftex
83 @copying
84 This file documents Calc, the GNU Emacs calculator.
86 Copyright @copyright{} 1990, 1991, 2001, 2002, 2003, 2004,
87 2005, 2006 Free Software Foundation, Inc.
89 @quotation
90 Permission is granted to copy, distribute and/or modify this document
91 under the terms of the GNU Free Documentation License, Version 1.2 or
92 any later version published by the Free Software Foundation; with the
93 Invariant Sections being just ``GNU GENERAL PUBLIC LICENSE'', with the
94 Front-Cover texts being ``A GNU Manual,'' and with the Back-Cover
95 Texts as in (a) below.
97 (a) The FSF's Back-Cover Text is: ``You have freedom to copy and modify
98 this GNU Manual, like GNU software.  Copies published by the Free
99 Software Foundation raise funds for GNU development.''
100 @end quotation
101 @end copying
103 @dircategory Emacs
104 @direntry
105 * Calc: (calc).         Advanced desk calculator and mathematical tool.
106 @end direntry
108 @titlepage
109 @sp 6
110 @center @titlefont{Calc Manual}
111 @sp 4
112 @center GNU Emacs Calc Version 2.1
113 @c [volume]
114 @sp 1
115 @center March 2005
116 @sp 5
117 @center Dave Gillespie
118 @center daveg@@synaptics.com
119 @page
121 @vskip 0pt plus 1filll
122 Copyright @copyright{} 1990, 1991, 2001, 2002, 2003, 2004,
123    2005, 2006 Free Software Foundation, Inc.
124 @insertcopying
125 @end titlepage
127 @c [begin]
128 @ifinfo
129 @node Top, , (dir), (dir)
130 @chapter The GNU Emacs Calculator
132 @noindent
133 @dfn{Calc} is an advanced desk calculator and mathematical tool
134 that runs as part of the GNU Emacs environment.
136 This manual is divided into three major parts: ``Getting Started,''
137 the ``Calc Tutorial,'' and the ``Calc Reference.''  The Tutorial
138 introduces all the major aspects of Calculator use in an easy,
139 hands-on way.  The remainder of the manual is a complete reference to
140 the features of the Calculator.
142 For help in the Emacs Info system (which you are using to read this
143 file), type @kbd{?}.  (You can also type @kbd{h} to run through a
144 longer Info tutorial.)
146 @end ifinfo
147 @menu
148 * Copying::               How you can copy and share Calc.
150 * Getting Started::       General description and overview.
151 * Interactive Tutorial::
152 * Tutorial::              A step-by-step introduction for beginners.
154 * Introduction::          Introduction to the Calc reference manual.
155 * Data Types::            Types of objects manipulated by Calc.
156 * Stack and Trail::       Manipulating the stack and trail buffers.
157 * Mode Settings::         Adjusting display format and other modes.
158 * Arithmetic::            Basic arithmetic functions.
159 * Scientific Functions::  Transcendentals and other scientific functions.
160 * Matrix Functions::      Operations on vectors and matrices.
161 * Algebra::               Manipulating expressions algebraically.
162 * Units::                 Operations on numbers with units.
163 * Store and Recall::      Storing and recalling variables.
164 * Graphics::              Commands for making graphs of data.
165 * Kill and Yank::         Moving data into and out of Calc.
166 * Keypad Mode::           Operating Calc from a keypad.
167 * Embedded Mode::         Working with formulas embedded in a file.
168 * Programming::           Calc as a programmable calculator.
170 * Customizing Calc:: Customizing Calc.
171 * Reporting Bugs::        How to report bugs and make suggestions.
173 * Summary::               Summary of Calc commands and functions.
175 * Key Index::             The standard Calc key sequences.
176 * Command Index::         The interactive Calc commands.
177 * Function Index::        Functions (in algebraic formulas).
178 * Concept Index::         General concepts.
179 * Variable Index::        Variables used by Calc (both user and internal).
180 * Lisp Function Index::   Internal Lisp math functions.
181 @end menu
183 @node Copying, Getting Started, Top, Top
184 @unnumbered GNU GENERAL PUBLIC LICENSE
185 @center Version 2, June 1991
187 @c This file is intended to be included in another file.
189 @display
190 Copyright @copyright{} 1989, 1991 Free Software Foundation, Inc.
191 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA
193 Everyone is permitted to copy and distribute verbatim copies
194 of this license document, but changing it is not allowed.
195 @end display
197 @unnumberedsec Preamble
199   The licenses for most software are designed to take away your
200 freedom to share and change it.  By contrast, the GNU General Public
201 License is intended to guarantee your freedom to share and change free
202 software---to make sure the software is free for all its users.  This
203 General Public License applies to most of the Free Software
204 Foundation's software and to any other program whose authors commit to
205 using it.  (Some other Free Software Foundation software is covered by
206 the GNU Library General Public License instead.)  You can apply it to
207 your programs, too.
209   When we speak of free software, we are referring to freedom, not
210 price.  Our General Public Licenses are designed to make sure that you
211 have the freedom to distribute copies of free software (and charge for
212 this service if you wish), that you receive source code or can get it
213 if you want it, that you can change the software or use pieces of it
214 in new free programs; and that you know you can do these things.
216   To protect your rights, we need to make restrictions that forbid
217 anyone to deny you these rights or to ask you to surrender the rights.
218 These restrictions translate to certain responsibilities for you if you
219 distribute copies of the software, or if you modify it.
221   For example, if you distribute copies of such a program, whether
222 gratis or for a fee, you must give the recipients all the rights that
223 you have.  You must make sure that they, too, receive or can get the
224 source code.  And you must show them these terms so they know their
225 rights.
227   We protect your rights with two steps: (1) copyright the software, and
228 (2) offer you this license which gives you legal permission to copy,
229 distribute and/or modify the software.
231   Also, for each author's protection and ours, we want to make certain
232 that everyone understands that there is no warranty for this free
233 software.  If the software is modified by someone else and passed on, we
234 want its recipients to know that what they have is not the original, so
235 that any problems introduced by others will not reflect on the original
236 authors' reputations.
238   Finally, any free program is threatened constantly by software
239 patents.  We wish to avoid the danger that redistributors of a free
240 program will individually obtain patent licenses, in effect making the
241 program proprietary.  To prevent this, we have made it clear that any
242 patent must be licensed for everyone's free use or not licensed at all.
244   The precise terms and conditions for copying, distribution and
245 modification follow.
247 @iftex
248 @unnumberedsec TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
249 @end iftex
250 @ifinfo
251 @center TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
252 @end ifinfo
254 @enumerate 0
255 @item
256 This License applies to any program or other work which contains
257 a notice placed by the copyright holder saying it may be distributed
258 under the terms of this General Public License.  The ``Program'', below,
259 refers to any such program or work, and a ``work based on the Program''
260 means either the Program or any derivative work under copyright law:
261 that is to say, a work containing the Program or a portion of it,
262 either verbatim or with modifications and/or translated into another
263 language.  (Hereinafter, translation is included without limitation in
264 the term ``modification''.)  Each licensee is addressed as ``you''.
266 Activities other than copying, distribution and modification are not
267 covered by this License; they are outside its scope.  The act of
268 running the Program is not restricted, and the output from the Program
269 is covered only if its contents constitute a work based on the
270 Program (independent of having been made by running the Program).
271 Whether that is true depends on what the Program does.
273 @item
274 You may copy and distribute verbatim copies of the Program's
275 source code as you receive it, in any medium, provided that you
276 conspicuously and appropriately publish on each copy an appropriate
277 copyright notice and disclaimer of warranty; keep intact all the
278 notices that refer to this License and to the absence of any warranty;
279 and give any other recipients of the Program a copy of this License
280 along with the Program.
282 You may charge a fee for the physical act of transferring a copy, and
283 you may at your option offer warranty protection in exchange for a fee.
285 @item
286 You may modify your copy or copies of the Program or any portion
287 of it, thus forming a work based on the Program, and copy and
288 distribute such modifications or work under the terms of Section 1
289 above, provided that you also meet all of these conditions:
291 @enumerate a
292 @item
293 You must cause the modified files to carry prominent notices
294 stating that you changed the files and the date of any change.
296 @item
297 You must cause any work that you distribute or publish, that in
298 whole or in part contains or is derived from the Program or any
299 part thereof, to be licensed as a whole at no charge to all third
300 parties under the terms of this License.
302 @item
303 If the modified program normally reads commands interactively
304 when run, you must cause it, when started running for such
305 interactive use in the most ordinary way, to print or display an
306 announcement including an appropriate copyright notice and a
307 notice that there is no warranty (or else, saying that you provide
308 a warranty) and that users may redistribute the program under
309 these conditions, and telling the user how to view a copy of this
310 License.  (Exception: if the Program itself is interactive but
311 does not normally print such an announcement, your work based on
312 the Program is not required to print an announcement.)
313 @end enumerate
315 These requirements apply to the modified work as a whole.  If
316 identifiable sections of that work are not derived from the Program,
317 and can be reasonably considered independent and separate works in
318 themselves, then this License, and its terms, do not apply to those
319 sections when you distribute them as separate works.  But when you
320 distribute the same sections as part of a whole which is a work based
321 on the Program, the distribution of the whole must be on the terms of
322 this License, whose permissions for other licensees extend to the
323 entire whole, and thus to each and every part regardless of who wrote it.
325 Thus, it is not the intent of this section to claim rights or contest
326 your rights to work written entirely by you; rather, the intent is to
327 exercise the right to control the distribution of derivative or
328 collective works based on the Program.
330 In addition, mere aggregation of another work not based on the Program
331 with the Program (or with a work based on the Program) on a volume of
332 a storage or distribution medium does not bring the other work under
333 the scope of this License.
335 @item
336 You may copy and distribute the Program (or a work based on it,
337 under Section 2) in object code or executable form under the terms of
338 Sections 1 and 2 above provided that you also do one of the following:
340 @enumerate a
341 @item
342 Accompany it with the complete corresponding machine-readable
343 source code, which must be distributed under the terms of Sections
344 1 and 2 above on a medium customarily used for software interchange; or,
346 @item
347 Accompany it with a written offer, valid for at least three
348 years, to give any third party, for a charge no more than your
349 cost of physically performing source distribution, a complete
350 machine-readable copy of the corresponding source code, to be
351 distributed under the terms of Sections 1 and 2 above on a medium
352 customarily used for software interchange; or,
354 @item
355 Accompany it with the information you received as to the offer
356 to distribute corresponding source code.  (This alternative is
357 allowed only for noncommercial distribution and only if you
358 received the program in object code or executable form with such
359 an offer, in accord with Subsection b above.)
360 @end enumerate
362 The source code for a work means the preferred form of the work for
363 making modifications to it.  For an executable work, complete source
364 code means all the source code for all modules it contains, plus any
365 associated interface definition files, plus the scripts used to
366 control compilation and installation of the executable.  However, as a
367 special exception, the source code distributed need not include
368 anything that is normally distributed (in either source or binary
369 form) with the major components (compiler, kernel, and so on) of the
370 operating system on which the executable runs, unless that component
371 itself accompanies the executable.
373 If distribution of executable or object code is made by offering
374 access to copy from a designated place, then offering equivalent
375 access to copy the source code from the same place counts as
376 distribution of the source code, even though third parties are not
377 compelled to copy the source along with the object code.
379 @item
380 You may not copy, modify, sublicense, or distribute the Program
381 except as expressly provided under this License.  Any attempt
382 otherwise to copy, modify, sublicense or distribute the Program is
383 void, and will automatically terminate your rights under this License.
384 However, parties who have received copies, or rights, from you under
385 this License will not have their licenses terminated so long as such
386 parties remain in full compliance.
388 @item
389 You are not required to accept this License, since you have not
390 signed it.  However, nothing else grants you permission to modify or
391 distribute the Program or its derivative works.  These actions are
392 prohibited by law if you do not accept this License.  Therefore, by
393 modifying or distributing the Program (or any work based on the
394 Program), you indicate your acceptance of this License to do so, and
395 all its terms and conditions for copying, distributing or modifying
396 the Program or works based on it.
398 @item
399 Each time you redistribute the Program (or any work based on the
400 Program), the recipient automatically receives a license from the
401 original licensor to copy, distribute or modify the Program subject to
402 these terms and conditions.  You may not impose any further
403 restrictions on the recipients' exercise of the rights granted herein.
404 You are not responsible for enforcing compliance by third parties to
405 this License.
407 @item
408 If, as a consequence of a court judgment or allegation of patent
409 infringement or for any other reason (not limited to patent issues),
410 conditions are imposed on you (whether by court order, agreement or
411 otherwise) that contradict the conditions of this License, they do not
412 excuse you from the conditions of this License.  If you cannot
413 distribute so as to satisfy simultaneously your obligations under this
414 License and any other pertinent obligations, then as a consequence you
415 may not distribute the Program at all.  For example, if a patent
416 license would not permit royalty-free redistribution of the Program by
417 all those who receive copies directly or indirectly through you, then
418 the only way you could satisfy both it and this License would be to
419 refrain entirely from distribution of the Program.
421 If any portion of this section is held invalid or unenforceable under
422 any particular circumstance, the balance of the section is intended to
423 apply and the section as a whole is intended to apply in other
424 circumstances.
426 It is not the purpose of this section to induce you to infringe any
427 patents or other property right claims or to contest validity of any
428 such claims; this section has the sole purpose of protecting the
429 integrity of the free software distribution system, which is
430 implemented by public license practices.  Many people have made
431 generous contributions to the wide range of software distributed
432 through that system in reliance on consistent application of that
433 system; it is up to the author/donor to decide if he or she is willing
434 to distribute software through any other system and a licensee cannot
435 impose that choice.
437 This section is intended to make thoroughly clear what is believed to
438 be a consequence of the rest of this License.
440 @item
441 If the distribution and/or use of the Program is restricted in
442 certain countries either by patents or by copyrighted interfaces, the
443 original copyright holder who places the Program under this License
444 may add an explicit geographical distribution limitation excluding
445 those countries, so that distribution is permitted only in or among
446 countries not thus excluded.  In such case, this License incorporates
447 the limitation as if written in the body of this License.
449 @item
450 The Free Software Foundation may publish revised and/or new versions
451 of the General Public License from time to time.  Such new versions will
452 be similar in spirit to the present version, but may differ in detail to
453 address new problems or concerns.
455 Each version is given a distinguishing version number.  If the Program
456 specifies a version number of this License which applies to it and ``any
457 later version'', you have the option of following the terms and conditions
458 either of that version or of any later version published by the Free
459 Software Foundation.  If the Program does not specify a version number of
460 this License, you may choose any version ever published by the Free Software
461 Foundation.
463 @item
464 If you wish to incorporate parts of the Program into other free
465 programs whose distribution conditions are different, write to the author
466 to ask for permission.  For software which is copyrighted by the Free
467 Software Foundation, write to the Free Software Foundation; we sometimes
468 make exceptions for this.  Our decision will be guided by the two goals
469 of preserving the free status of all derivatives of our free software and
470 of promoting the sharing and reuse of software generally.
472 @iftex
473 @heading NO WARRANTY
474 @end iftex
475 @ifinfo
476 @center NO WARRANTY
477 @end ifinfo
479 @item
480 BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
481 FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.  EXCEPT WHEN
482 OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
483 PROVIDE THE PROGRAM ``AS IS'' WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
484 OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
485 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE ENTIRE RISK AS
486 TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.  SHOULD THE
487 PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
488 REPAIR OR CORRECTION.
490 @item
491 IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
492 WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
493 REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
494 INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
495 OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
496 TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
497 YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
498 PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
499 POSSIBILITY OF SUCH DAMAGES.
500 @end enumerate
502 @iftex
503 @heading END OF TERMS AND CONDITIONS
504 @end iftex
505 @ifinfo
506 @center END OF TERMS AND CONDITIONS
507 @end ifinfo
509 @page
510 @unnumberedsec Appendix: How to Apply These Terms to Your New Programs
512   If you develop a new program, and you want it to be of the greatest
513 possible use to the public, the best way to achieve this is to make it
514 free software which everyone can redistribute and change under these terms.
516   To do so, attach the following notices to the program.  It is safest
517 to attach them to the start of each source file to most effectively
518 convey the exclusion of warranty; and each file should have at least
519 the ``copyright'' line and a pointer to where the full notice is found.
521 @smallexample
522 @var{one line to give the program's name and a brief idea of what it does.}
523 Copyright (C) @var{yyyy}  @var{name of author}
525 This program is free software; you can redistribute it and/or modify
526 it under the terms of the GNU General Public License as published by
527 the Free Software Foundation; either version 2 of the License, or
528 (at your option) any later version.
530 This program is distributed in the hope that it will be useful,
531 but WITHOUT ANY WARRANTY; without even the implied warranty of
532 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
533 GNU General Public License for more details.
535 You should have received a copy of the GNU General Public License
536 along with this program; if not, write to the Free Software
537 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
538 @end smallexample
540 Also add information on how to contact you by electronic and paper mail.
542 If the program is interactive, make it output a short notice like this
543 when it starts in an interactive mode:
545 @smallexample
546 Gnomovision version 69, Copyright (C) 19@var{yy} @var{name of author}
547 Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
548 This is free software, and you are welcome to redistribute it
549 under certain conditions; type `show c' for details.
550 @end smallexample
552 The hypothetical commands @samp{show w} and @samp{show c} should show
553 the appropriate parts of the General Public License.  Of course, the
554 commands you use may be called something other than @samp{show w} and
555 @samp{show c}; they could even be mouse-clicks or menu items---whatever
556 suits your program.
558 You should also get your employer (if you work as a programmer) or your
559 school, if any, to sign a ``copyright disclaimer'' for the program, if
560 necessary.  Here is a sample; alter the names:
562 @example
563 Yoyodyne, Inc., hereby disclaims all copyright interest in the program
564 `Gnomovision' (which makes passes at compilers) written by James Hacker.
566 @var{signature of Ty Coon}, 1 April 1989
567 Ty Coon, President of Vice
568 @end example
570 This General Public License does not permit incorporating your program into
571 proprietary programs.  If your program is a subroutine library, you may
572 consider it more useful to permit linking proprietary applications with the
573 library.  If this is what you want to do, use the GNU Library General
574 Public License instead of this License.
576 @node Getting Started, Tutorial, Copying, Top
577 @chapter Getting Started
578 @noindent
579 This chapter provides a general overview of Calc, the GNU Emacs
580 Calculator:  What it is, how to start it and how to exit from it,
581 and what are the various ways that it can be used.
583 @menu
584 * What is Calc::
585 * About This Manual::
586 * Notations Used in This Manual::
587 * Demonstration of Calc::
588 * Using Calc::
589 * History and Acknowledgements::
590 @end menu
592 @node What is Calc, About This Manual, Getting Started, Getting Started
593 @section What is Calc?
595 @noindent
596 @dfn{Calc} is an advanced calculator and mathematical tool that runs as
597 part of the GNU Emacs environment.  Very roughly based on the HP-28/48
598 series of calculators, its many features include:
600 @itemize @bullet
601 @item
602 Choice of algebraic or RPN (stack-based) entry of calculations.
604 @item
605 Arbitrary precision integers and floating-point numbers.
607 @item
608 Arithmetic on rational numbers, complex numbers (rectangular and polar),
609 error forms with standard deviations, open and closed intervals, vectors
610 and matrices, dates and times, infinities, sets, quantities with units,
611 and algebraic formulas.
613 @item
614 Mathematical operations such as logarithms and trigonometric functions.
616 @item
617 Programmer's features (bitwise operations, non-decimal numbers).
619 @item
620 Financial functions such as future value and internal rate of return.
622 @item
623 Number theoretical features such as prime factorization and arithmetic
624 modulo @var{m} for any @var{m}.
626 @item
627 Algebraic manipulation features, including symbolic calculus.
629 @item
630 Moving data to and from regular editing buffers.
632 @item
633 Embedded mode for manipulating Calc formulas and data directly
634 inside any editing buffer.
636 @item
637 Graphics using GNUPLOT, a versatile (and free) plotting program.
639 @item
640 Easy programming using keyboard macros, algebraic formulas,
641 algebraic rewrite rules, or extended Emacs Lisp.
642 @end itemize
644 Calc tries to include a little something for everyone; as a result it is
645 large and might be intimidating to the first-time user.  If you plan to
646 use Calc only as a traditional desk calculator, all you really need to
647 read is the ``Getting Started'' chapter of this manual and possibly the
648 first few sections of the tutorial.  As you become more comfortable with
649 the program you can learn its additional features.  Calc does not
650 have the scope and depth of a fully-functional symbolic math package,
651 but Calc has the advantages of convenience, portability, and freedom.
653 @node About This Manual, Notations Used in This Manual, What is Calc, Getting Started
654 @section About This Manual
656 @noindent
657 This document serves as a complete description of the GNU Emacs
658 Calculator.  It works both as an introduction for novices, and as
659 a reference for experienced users.  While it helps to have some
660 experience with GNU Emacs in order to get the most out of Calc,
661 this manual ought to be readable even if you don't know or use Emacs
662 regularly.
664 @ifinfo
665 The manual is divided into three major parts:@: the ``Getting
666 Started'' chapter you are reading now, the Calc tutorial (chapter 2),
667 and the Calc reference manual (the remaining chapters and appendices).
668 @end ifinfo
669 @iftex
670 The manual is divided into three major parts:@: the ``Getting
671 Started'' chapter you are reading now, the Calc tutorial (chapter 2),
672 and the Calc reference manual (the remaining chapters and appendices).
673 @c [when-split]
674 @c This manual has been printed in two volumes, the @dfn{Tutorial} and the
675 @c @dfn{Reference}.  Both volumes include a copy of the ``Getting Started''
676 @c chapter.
677 @end iftex
679 If you are in a hurry to use Calc, there is a brief ``demonstration''
680 below which illustrates the major features of Calc in just a couple of
681 pages.  If you don't have time to go through the full tutorial, this
682 will show you everything you need to know to begin.
683 @xref{Demonstration of Calc}.
685 The tutorial chapter walks you through the various parts of Calc
686 with lots of hands-on examples and explanations.  If you are new
687 to Calc and you have some time, try going through at least the
688 beginning of the tutorial.  The tutorial includes about 70 exercises
689 with answers.  These exercises give you some guided practice with
690 Calc, as well as pointing out some interesting and unusual ways
691 to use its features.
693 The reference section discusses Calc in complete depth.  You can read
694 the reference from start to finish if you want to learn every aspect
695 of Calc.  Or, you can look in the table of contents or the Concept
696 Index to find the parts of the manual that discuss the things you
697 need to know.
699 @cindex Marginal notes
700 Every Calc keyboard command is listed in the Calc Summary, and also
701 in the Key Index.  Algebraic functions, @kbd{M-x} commands, and
702 variables also have their own indices.  
703 @texline Each
704 @infoline In the printed manual, each
705 paragraph that is referenced in the Key or Function Index is marked
706 in the margin with its index entry.
708 @c [fix-ref Help Commands]
709 You can access this manual on-line at any time within Calc by
710 pressing the @kbd{h i} key sequence.  Outside of the Calc window,
711 you can press @kbd{C-x * i} to read the manual on-line.  Also, you
712 can jump directly to the Tutorial by pressing @kbd{h t} or @kbd{C-x * t},
713 or to the Summary by pressing @kbd{h s} or @kbd{C-x * s}.  Within Calc,
714 you can also go to the part of the manual describing any Calc key,
715 function, or variable using @w{@kbd{h k}}, @kbd{h f}, or @kbd{h v},
716 respectively.  @xref{Help Commands}.
718 The Calc manual can be printed, but because the manual is so large, you
719 should only make a printed copy if you really need it.  To print the
720 manual, you will need the @TeX{} typesetting program (this is a free
721 program by Donald Knuth at Stanford University) as well as the
722 @file{texindex} program and @file{texinfo.tex} file, both of which can
723 be obtained from the FSF as part of the @code{texinfo} package.
724 To print the Calc manual in one huge tome, you will need the
725 source code to this manual, @file{calc.texi}, available as part of the
726 Emacs source.  Once you have this file, type @kbd{texi2dvi calc.texi}.
727 Alternatively, change to the @file{man} subdirectory of the Emacs
728 source distribution, and type @kbd{make calc.dvi}. (Don't worry if you
729 get some ``overfull box'' warnings while @TeX{} runs.)
730 The result will be a device-independent output file called
731 @file{calc.dvi}, which you must print in whatever way is right
732 for your system.  On many systems, the command is
734 @example
735 lpr -d calc.dvi
736 @end example
738 @noindent
741 @example
742 dvips calc.dvi
743 @end example
745 @c Printed copies of this manual are also available from the Free Software
746 @c Foundation.
748 @node Notations Used in This Manual, Demonstration of Calc, About This Manual, Getting Started
749 @section Notations Used in This Manual
751 @noindent
752 This section describes the various notations that are used
753 throughout the Calc manual.
755 In keystroke sequences, uppercase letters mean you must hold down
756 the shift key while typing the letter.  Keys pressed with Control
757 held down are shown as @kbd{C-x}.  Keys pressed with Meta held down
758 are shown as @kbd{M-x}.  Other notations are @key{RET} for the
759 Return key, @key{SPC} for the space bar, @key{TAB} for the Tab key,
760 @key{DEL} for the Delete key, and @key{LFD} for the Line-Feed key.
761 The @key{DEL} key is called Backspace on some keyboards, it is
762 whatever key you would use to correct a simple typing error when
763 regularly using Emacs.
765 (If you don't have the @key{LFD} or @key{TAB} keys on your keyboard,
766 the @kbd{C-j} and @kbd{C-i} keys are equivalent to them, respectively.
767 If you don't have a Meta key, look for Alt or Extend Char.  You can
768 also press @key{ESC} or @kbd{C-[} first to get the same effect, so
769 that @kbd{M-x}, @kbd{@key{ESC} x}, and @kbd{C-[ x} are all equivalent.)
771 Sometimes the @key{RET} key is not shown when it is ``obvious''
772 that you must press @key{RET} to proceed.  For example, the @key{RET}
773 is usually omitted in key sequences like @kbd{M-x calc-keypad @key{RET}}.
775 Commands are generally shown like this:  @kbd{p} (@code{calc-precision})
776 or @kbd{C-x * k} (@code{calc-keypad}).  This means that the command is
777 normally used by pressing the @kbd{p} key or @kbd{C-x * k} key sequence,
778 but it also has the full-name equivalent shown, e.g., @kbd{M-x calc-precision}.
780 Commands that correspond to functions in algebraic notation
781 are written:  @kbd{C} (@code{calc-cos}) [@code{cos}].  This means
782 the @kbd{C} key is equivalent to @kbd{M-x calc-cos}, and that
783 the corresponding function in an algebraic-style formula would
784 be @samp{cos(@var{x})}.
786 A few commands don't have key equivalents:  @code{calc-sincos}
787 [@code{sincos}].
789 @node Demonstration of Calc, Using Calc, Notations Used in This Manual, Getting Started
790 @section A Demonstration of Calc
792 @noindent
793 @cindex Demonstration of Calc
794 This section will show some typical small problems being solved with
795 Calc.  The focus is more on demonstration than explanation, but
796 everything you see here will be covered more thoroughly in the
797 Tutorial.
799 To begin, start Emacs if necessary (usually the command @code{emacs}
800 does this), and type @kbd{C-x * c} to start the
801 Calculator.  (You can also use @kbd{M-x calc} if this doesn't work.
802 @xref{Starting Calc}, for various ways of starting the Calculator.)
804 Be sure to type all the sample input exactly, especially noting the
805 difference between lower-case and upper-case letters.  Remember,
806 @key{RET}, @key{TAB}, @key{DEL}, and @key{SPC} are the Return, Tab,
807 Delete, and Space keys.
809 @strong{RPN calculation.}  In RPN, you type the input number(s) first,
810 then the command to operate on the numbers.
812 @noindent
813 Type @kbd{2 @key{RET} 3 + Q} to compute 
814 @texline @math{\sqrt{2+3} = 2.2360679775}.
815 @infoline the square root of 2+3, which is 2.2360679775.
817 @noindent
818 Type @kbd{P 2 ^} to compute 
819 @texline @math{\pi^2 = 9.86960440109}.
820 @infoline the value of `pi' squared, 9.86960440109.
822 @noindent
823 Type @key{TAB} to exchange the order of these two results.
825 @noindent
826 Type @kbd{- I H S} to subtract these results and compute the Inverse
827 Hyperbolic sine of the difference, 2.72996136574.
829 @noindent
830 Type @key{DEL} to erase this result.
832 @strong{Algebraic calculation.}  You can also enter calculations using
833 conventional ``algebraic'' notation.  To enter an algebraic formula,
834 use the apostrophe key.
836 @noindent
837 Type @kbd{' sqrt(2+3) @key{RET}} to compute 
838 @texline @math{\sqrt{2+3}}.
839 @infoline the square root of 2+3.
841 @noindent
842 Type @kbd{' pi^2 @key{RET}} to enter 
843 @texline @math{\pi^2}.
844 @infoline `pi' squared.  
845 To evaluate this symbolic formula as a number, type @kbd{=}.
847 @noindent
848 Type @kbd{' arcsinh($ - $$) @key{RET}} to subtract the second-most-recent
849 result from the most-recent and compute the Inverse Hyperbolic sine.
851 @strong{Keypad mode.}  If you are using the X window system, press
852 @w{@kbd{C-x * k}} to get Keypad mode.  (If you don't use X, skip to
853 the next section.)
855 @noindent
856 Click on the @key{2}, @key{ENTER}, @key{3}, @key{+}, and @key{SQRT}
857 ``buttons'' using your left mouse button.
859 @noindent
860 Click on @key{PI}, @key{2}, and @tfn{y^x}.
862 @noindent
863 Click on @key{INV}, then @key{ENTER} to swap the two results.
865 @noindent
866 Click on @key{-}, @key{INV}, @key{HYP}, and @key{SIN}.
868 @noindent
869 Click on @key{<-} to erase the result, then click @key{OFF} to turn
870 the Keypad Calculator off.
872 @strong{Grabbing data.}  Type @kbd{C-x * x} if necessary to exit Calc.
873 Now select the following numbers as an Emacs region:  ``Mark'' the
874 front of the list by typing @kbd{C-@key{SPC}} or @kbd{C-@@} there,
875 then move to the other end of the list.  (Either get this list from
876 the on-line copy of this manual, accessed by @w{@kbd{C-x * i}}, or just
877 type these numbers into a scratch file.)  Now type @kbd{C-x * g} to
878 ``grab'' these numbers into Calc.
880 @example
881 @group
882 1.23  1.97
883 1.6   2
884 1.19  1.08
885 @end group
886 @end example
888 @noindent
889 The result @samp{[1.23, 1.97, 1.6, 2, 1.19, 1.08]} is a Calc ``vector.''
890 Type @w{@kbd{V R +}} to compute the sum of these numbers.
892 @noindent
893 Type @kbd{U} to Undo this command, then type @kbd{V R *} to compute
894 the product of the numbers.
896 @noindent
897 You can also grab data as a rectangular matrix.  Place the cursor on
898 the upper-leftmost @samp{1} and set the mark, then move to just after
899 the lower-right @samp{8} and press @kbd{C-x * r}.
901 @noindent
902 Type @kbd{v t} to transpose this 
903 @texline @math{3\times2}
904 @infoline 3x2 
905 matrix into a 
906 @texline @math{2\times3}
907 @infoline 2x3
908 matrix.  Type @w{@kbd{v u}} to unpack the rows into two separate
909 vectors.  Now type @w{@kbd{V R + @key{TAB} V R +}} to compute the sums
910 of the two original columns. (There is also a special
911 grab-and-sum-columns command, @kbd{C-x * :}.)
913 @strong{Units conversion.}  Units are entered algebraically.
914 Type @w{@kbd{' 43 mi/hr @key{RET}}} to enter the quantity 43 miles-per-hour.
915 Type @w{@kbd{u c km/hr @key{RET}}}.  Type @w{@kbd{u c m/s @key{RET}}}.
917 @strong{Date arithmetic.}  Type @kbd{t N} to get the current date and
918 time.  Type @kbd{90 +} to find the date 90 days from now.  Type
919 @kbd{' <25 dec 87> @key{RET}} to enter a date, then @kbd{- 7 /} to see how
920 many weeks have passed since then.
922 @strong{Algebra.}  Algebraic entries can also include formulas
923 or equations involving variables.  Type @kbd{@w{' [x + y} = a, x y = 1] @key{RET}}
924 to enter a pair of equations involving three variables.
925 (Note the leading apostrophe in this example; also, note that the space
926 between @samp{x y} is required.)  Type @w{@kbd{a S x,y @key{RET}}} to solve
927 these equations for the variables @expr{x} and @expr{y}.
929 @noindent
930 Type @kbd{d B} to view the solutions in more readable notation.
931 Type @w{@kbd{d C}} to view them in C language notation, @kbd{d T}
932 to view them in the notation for the @TeX{} typesetting system,
933 and @kbd{d L} to view them in the notation for the La@TeX{} typesetting
934 system.  Type @kbd{d N} to return to normal notation.
936 @noindent
937 Type @kbd{7.5}, then @kbd{s l a @key{RET}} to let @expr{a = 7.5} in these formulas.
938 (That's a letter @kbd{l}, not a numeral @kbd{1}.)
940 @iftex
941 @strong{Help functions.}  You can read about any command in the on-line
942 manual.  Type @kbd{C-x * c} to return to Calc after each of these
943 commands: @kbd{h k t N} to read about the @kbd{t N} command,
944 @kbd{h f sqrt @key{RET}} to read about the @code{sqrt} function, and
945 @kbd{h s} to read the Calc summary.
946 @end iftex
947 @ifinfo
948 @strong{Help functions.}  You can read about any command in the on-line
949 manual.  Remember to type the letter @kbd{l}, then @kbd{C-x * c}, to
950 return here after each of these commands: @w{@kbd{h k t N}} to read
951 about the @w{@kbd{t N}} command, @kbd{h f sqrt @key{RET}} to read about the
952 @code{sqrt} function, and @kbd{h s} to read the Calc summary.
953 @end ifinfo
955 Press @key{DEL} repeatedly to remove any leftover results from the stack.
956 To exit from Calc, press @kbd{q} or @kbd{C-x * c} again.
958 @node Using Calc, History and Acknowledgements, Demonstration of Calc, Getting Started
959 @section Using Calc
961 @noindent
962 Calc has several user interfaces that are specialized for
963 different kinds of tasks.  As well as Calc's standard interface,
964 there are Quick mode, Keypad mode, and Embedded mode.
966 @menu
967 * Starting Calc::
968 * The Standard Interface::
969 * Quick Mode Overview::
970 * Keypad Mode Overview::
971 * Standalone Operation::
972 * Embedded Mode Overview::
973 * Other C-x * Commands::
974 @end menu
976 @node Starting Calc, The Standard Interface, Using Calc, Using Calc
977 @subsection Starting Calc
979 @noindent
980 On most systems, you can type @kbd{C-x *} to start the Calculator.
981 The key sequence @kbd{C-x *} is bound to the command @code{calc-dispatch}, 
982 which can be rebound if convenient (@pxref{Customizing Calc}).
984 When you press @kbd{C-x *}, Emacs waits for you to press a second key to
985 complete the command.  In this case, you will follow @kbd{C-x *} with a
986 letter (upper- or lower-case, it doesn't matter for @kbd{C-x *}) that says
987 which Calc interface you want to use.
989 To get Calc's standard interface, type @kbd{C-x * c}.  To get
990 Keypad mode, type @kbd{C-x * k}.  Type @kbd{C-x * ?} to get a brief
991 list of the available options, and type a second @kbd{?} to get
992 a complete list.
994 To ease typing, @kbd{C-x * *} also works to start Calc.  It starts the
995 same interface (either @kbd{C-x * c} or @w{@kbd{C-x * k}}) that you last
996 used, selecting the @kbd{C-x * c} interface by default.
998 If @kbd{C-x *} doesn't work for you, you can always type explicit
999 commands like @kbd{M-x calc} (for the standard user interface) or
1000 @w{@kbd{M-x calc-keypad}} (for Keypad mode).  First type @kbd{M-x}
1001 (that's Meta with the letter @kbd{x}), then, at the prompt,
1002 type the full command (like @kbd{calc-keypad}) and press Return.
1004 The same commands (like @kbd{C-x * c} or @kbd{C-x * *}) that start
1005 the Calculator also turn it off if it is already on.
1007 @node The Standard Interface, Quick Mode Overview, Starting Calc, Using Calc
1008 @subsection The Standard Calc Interface
1010 @noindent
1011 @cindex Standard user interface
1012 Calc's standard interface acts like a traditional RPN calculator,
1013 operated by the normal Emacs keyboard.  When you type @kbd{C-x * c}
1014 to start the Calculator, the Emacs screen splits into two windows
1015 with the file you were editing on top and Calc on the bottom.
1017 @smallexample
1018 @group
1021 --**-Emacs: myfile             (Fundamental)----All----------------------
1022 --- Emacs Calculator Mode ---                   |Emacs Calc Mode v2.1 ...
1023 2:  17.3                                        |    17.3
1024 1:  -5                                          |    3
1025     .                                           |    2
1026                                                 |    4
1027                                                 |  * 8
1028                                                 |  ->-5
1029                                                 |
1030 --%%-Calc: 12 Deg       (Calculator)----All----- --%%-Emacs: *Calc Trail*
1031 @end group
1032 @end smallexample
1034 In this figure, the mode-line for @file{myfile} has moved up and the
1035 ``Calculator'' window has appeared below it.  As you can see, Calc
1036 actually makes two windows side-by-side.  The lefthand one is
1037 called the @dfn{stack window} and the righthand one is called the
1038 @dfn{trail window.}  The stack holds the numbers involved in the
1039 calculation you are currently performing.  The trail holds a complete
1040 record of all calculations you have done.  In a desk calculator with
1041 a printer, the trail corresponds to the paper tape that records what
1042 you do.
1044 In this case, the trail shows that four numbers (17.3, 3, 2, and 4)
1045 were first entered into the Calculator, then the 2 and 4 were
1046 multiplied to get 8, then the 3 and 8 were subtracted to get @mathit{-5}.
1047 (The @samp{>} symbol shows that this was the most recent calculation.)
1048 The net result is the two numbers 17.3 and @mathit{-5} sitting on the stack.
1050 Most Calculator commands deal explicitly with the stack only, but
1051 there is a set of commands that allow you to search back through
1052 the trail and retrieve any previous result.
1054 Calc commands use the digits, letters, and punctuation keys.
1055 Shifted (i.e., upper-case) letters are different from lowercase
1056 letters.  Some letters are @dfn{prefix} keys that begin two-letter
1057 commands.  For example, @kbd{e} means ``enter exponent'' and shifted
1058 @kbd{E} means @expr{e^x}.  With the @kbd{d} (``display modes'') prefix
1059 the letter ``e'' takes on very different meanings:  @kbd{d e} means
1060 ``engineering notation'' and @kbd{d E} means ``@dfn{eqn} language mode.''
1062 There is nothing stopping you from switching out of the Calc
1063 window and back into your editing window, say by using the Emacs
1064 @w{@kbd{C-x o}} (@code{other-window}) command.  When the cursor is
1065 inside a regular window, Emacs acts just like normal.  When the
1066 cursor is in the Calc stack or trail windows, keys are interpreted
1067 as Calc commands.
1069 When you quit by pressing @kbd{C-x * c} a second time, the Calculator
1070 windows go away but the actual Stack and Trail are not gone, just
1071 hidden.  When you press @kbd{C-x * c} once again you will get the
1072 same stack and trail contents you had when you last used the
1073 Calculator.
1075 The Calculator does not remember its state between Emacs sessions.
1076 Thus if you quit Emacs and start it again, @kbd{C-x * c} will give you
1077 a fresh stack and trail.  There is a command (@kbd{m m}) that lets
1078 you save your favorite mode settings between sessions, though.
1079 One of the things it saves is which user interface (standard or
1080 Keypad) you last used; otherwise, a freshly started Emacs will
1081 always treat @kbd{C-x * *} the same as @kbd{C-x * c}.
1083 The @kbd{q} key is another equivalent way to turn the Calculator off.
1085 If you type @kbd{C-x * b} first and then @kbd{C-x * c}, you get a
1086 full-screen version of Calc (@code{full-calc}) in which the stack and
1087 trail windows are still side-by-side but are now as tall as the whole
1088 Emacs screen.  When you press @kbd{q} or @kbd{C-x * c} again to quit,
1089 the file you were editing before reappears.  The @kbd{C-x * b} key
1090 switches back and forth between ``big'' full-screen mode and the
1091 normal partial-screen mode.
1093 Finally, @kbd{C-x * o} (@code{calc-other-window}) is like @kbd{C-x * c}
1094 except that the Calc window is not selected.  The buffer you were
1095 editing before remains selected instead.  @kbd{C-x * o} is a handy
1096 way to switch out of Calc momentarily to edit your file; type
1097 @kbd{C-x * c} to switch back into Calc when you are done.
1099 @node Quick Mode Overview, Keypad Mode Overview, The Standard Interface, Using Calc
1100 @subsection Quick Mode (Overview)
1102 @noindent
1103 @dfn{Quick mode} is a quick way to use Calc when you don't need the
1104 full complexity of the stack and trail.  To use it, type @kbd{C-x * q}
1105 (@code{quick-calc}) in any regular editing buffer.
1107 Quick mode is very simple:  It prompts you to type any formula in
1108 standard algebraic notation (like @samp{4 - 2/3}) and then displays
1109 the result at the bottom of the Emacs screen (@mathit{3.33333333333}
1110 in this case).  You are then back in the same editing buffer you
1111 were in before, ready to continue editing or to type @kbd{C-x * q}
1112 again to do another quick calculation.  The result of the calculation
1113 will also be in the Emacs ``kill ring'' so that a @kbd{C-y} command
1114 at this point will yank the result into your editing buffer.
1116 Calc mode settings affect Quick mode, too, though you will have to
1117 go into regular Calc (with @kbd{C-x * c}) to change the mode settings.
1119 @c [fix-ref Quick Calculator mode]
1120 @xref{Quick Calculator}, for further information.
1122 @node Keypad Mode Overview, Standalone Operation, Quick Mode Overview, Using Calc
1123 @subsection Keypad Mode (Overview)
1125 @noindent
1126 @dfn{Keypad mode} is a mouse-based interface to the Calculator.
1127 It is designed for use with terminals that support a mouse.  If you
1128 don't have a mouse, you will have to operate Keypad mode with your
1129 arrow keys (which is probably more trouble than it's worth).
1131 Type @kbd{C-x * k} to turn Keypad mode on or off.  Once again you
1132 get two new windows, this time on the righthand side of the screen
1133 instead of at the bottom.  The upper window is the familiar Calc
1134 Stack; the lower window is a picture of a typical calculator keypad.
1136 @tex
1137 \dimen0=\pagetotal%
1138 \advance \dimen0 by 24\baselineskip%
1139 \ifdim \dimen0>\pagegoal \vfill\eject \fi%
1140 \medskip
1141 @end tex
1142 @smallexample
1143 @group
1144 |--- Emacs Calculator Mode ---
1145 |2:  17.3
1146 |1:  -5
1147 |    .
1148 |--%%-Calc: 12 Deg       (Calcul
1149 |----+-----Calc 2.1------+----1
1150 |FLR |CEIL|RND |TRNC|CLN2|FLT |
1151 |----+----+----+----+----+----|
1152 | LN |EXP |    |ABS |IDIV|MOD |
1153 |----+----+----+----+----+----|
1154 |SIN |COS |TAN |SQRT|y^x |1/x |
1155 |----+----+----+----+----+----|
1156 |  ENTER  |+/- |EEX |UNDO| <- |
1157 |-----+---+-+--+--+-+---++----|
1158 | INV |  7  |  8  |  9  |  /  |
1159 |-----+-----+-----+-----+-----|
1160 | HYP |  4  |  5  |  6  |  *  |
1161 |-----+-----+-----+-----+-----|
1162 |EXEC |  1  |  2  |  3  |  -  |
1163 |-----+-----+-----+-----+-----|
1164 | OFF |  0  |  .  | PI  |  +  |
1165 |-----+-----+-----+-----+-----+
1166 @end group
1167 @end smallexample
1169 Keypad mode is much easier for beginners to learn, because there
1170 is no need to memorize lots of obscure key sequences.  But not all
1171 commands in regular Calc are available on the Keypad.  You can
1172 always switch the cursor into the Calc stack window to use
1173 standard Calc commands if you need.  Serious Calc users, though,
1174 often find they prefer the standard interface over Keypad mode.
1176 To operate the Calculator, just click on the ``buttons'' of the
1177 keypad using your left mouse button.  To enter the two numbers
1178 shown here you would click @w{@kbd{1 7 .@: 3 ENTER 5 +/- ENTER}}; to
1179 add them together you would then click @kbd{+} (to get 12.3 on
1180 the stack).
1182 If you click the right mouse button, the top three rows of the
1183 keypad change to show other sets of commands, such as advanced
1184 math functions, vector operations, and operations on binary
1185 numbers.
1187 Because Keypad mode doesn't use the regular keyboard, Calc leaves
1188 the cursor in your original editing buffer.  You can type in
1189 this buffer in the usual way while also clicking on the Calculator
1190 keypad.  One advantage of Keypad mode is that you don't need an
1191 explicit command to switch between editing and calculating.
1193 If you press @kbd{C-x * b} first, you get a full-screen Keypad mode
1194 (@code{full-calc-keypad}) with three windows:  The keypad in the lower
1195 left, the stack in the lower right, and the trail on top.
1197 @c [fix-ref Keypad Mode]
1198 @xref{Keypad Mode}, for further information.
1200 @node Standalone Operation, Embedded Mode Overview, Keypad Mode Overview, Using Calc
1201 @subsection Standalone Operation
1203 @noindent
1204 @cindex Standalone Operation
1205 If you are not in Emacs at the moment but you wish to use Calc,
1206 you must start Emacs first.  If all you want is to run Calc, you
1207 can give the commands:
1209 @example
1210 emacs -f full-calc
1211 @end example
1213 @noindent
1216 @example
1217 emacs -f full-calc-keypad
1218 @end example
1220 @noindent
1221 which run a full-screen Calculator (as if by @kbd{C-x * b C-x * c}) or
1222 a full-screen X-based Calculator (as if by @kbd{C-x * b C-x * k}).
1223 In standalone operation, quitting the Calculator (by pressing
1224 @kbd{q} or clicking on the keypad @key{EXIT} button) quits Emacs
1225 itself.
1227 @node Embedded Mode Overview, Other C-x * Commands, Standalone Operation, Using Calc
1228 @subsection Embedded Mode (Overview)
1230 @noindent
1231 @dfn{Embedded mode} is a way to use Calc directly from inside an
1232 editing buffer.  Suppose you have a formula written as part of a
1233 document like this:
1235 @smallexample
1236 @group
1237 The derivative of
1239                                    ln(ln(x))
1242 @end group
1243 @end smallexample
1245 @noindent
1246 and you wish to have Calc compute and format the derivative for
1247 you and store this derivative in the buffer automatically.  To
1248 do this with Embedded mode, first copy the formula down to where
1249 you want the result to be:
1251 @smallexample
1252 @group
1253 The derivative of
1255                                    ln(ln(x))
1259                                    ln(ln(x))
1260 @end group
1261 @end smallexample
1263 Now, move the cursor onto this new formula and press @kbd{C-x * e}.
1264 Calc will read the formula (using the surrounding blank lines to
1265 tell how much text to read), then push this formula (invisibly)
1266 onto the Calc stack.  The cursor will stay on the formula in the
1267 editing buffer, but the buffer's mode line will change to look
1268 like the Calc mode line (with mode indicators like @samp{12 Deg}
1269 and so on).  Even though you are still in your editing buffer,
1270 the keyboard now acts like the Calc keyboard, and any new result
1271 you get is copied from the stack back into the buffer.  To take
1272 the derivative, you would type @kbd{a d x @key{RET}}.
1274 @smallexample
1275 @group
1276 The derivative of
1278                                    ln(ln(x))
1282 1 / ln(x) x
1283 @end group
1284 @end smallexample
1286 To make this look nicer, you might want to press @kbd{d =} to center
1287 the formula, and even @kbd{d B} to use Big display mode.
1289 @smallexample
1290 @group
1291 The derivative of
1293                                    ln(ln(x))
1296 % [calc-mode: justify: center]
1297 % [calc-mode: language: big]
1299                                        1
1300                                     -------
1301                                     ln(x) x
1302 @end group
1303 @end smallexample
1305 Calc has added annotations to the file to help it remember the modes
1306 that were used for this formula.  They are formatted like comments
1307 in the @TeX{} typesetting language, just in case you are using @TeX{} or
1308 La@TeX{}. (In this example @TeX{} is not being used, so you might want
1309 to move these comments up to the top of the file or otherwise put them
1310 out of the way.)
1312 As an extra flourish, we can add an equation number using a
1313 righthand label:  Type @kbd{d @} (1) @key{RET}}.
1315 @smallexample
1316 @group
1317 % [calc-mode: justify: center]
1318 % [calc-mode: language: big]
1319 % [calc-mode: right-label: " (1)"]
1321                                        1
1322                                     -------                      (1)
1323                                     ln(x) x
1324 @end group
1325 @end smallexample
1327 To leave Embedded mode, type @kbd{C-x * e} again.  The mode line
1328 and keyboard will revert to the way they were before.
1330 The related command @kbd{C-x * w} operates on a single word, which
1331 generally means a single number, inside text.  It uses any
1332 non-numeric characters rather than blank lines to delimit the
1333 formula it reads.  Here's an example of its use:
1335 @smallexample
1336 A slope of one-third corresponds to an angle of 1 degrees.
1337 @end smallexample
1339 Place the cursor on the @samp{1}, then type @kbd{C-x * w} to enable
1340 Embedded mode on that number.  Now type @kbd{3 /} (to get one-third),
1341 and @kbd{I T} (the Inverse Tangent converts a slope into an angle),
1342 then @w{@kbd{C-x * w}} again to exit Embedded mode.
1344 @smallexample
1345 A slope of one-third corresponds to an angle of 18.4349488229 degrees.
1346 @end smallexample
1348 @c [fix-ref Embedded Mode]
1349 @xref{Embedded Mode}, for full details.
1351 @node Other C-x * Commands, , Embedded Mode Overview, Using Calc
1352 @subsection Other @kbd{C-x *} Commands
1354 @noindent
1355 Two more Calc-related commands are @kbd{C-x * g} and @kbd{C-x * r},
1356 which ``grab'' data from a selected region of a buffer into the
1357 Calculator.  The region is defined in the usual Emacs way, by
1358 a ``mark'' placed at one end of the region, and the Emacs
1359 cursor or ``point'' placed at the other.
1361 The @kbd{C-x * g} command reads the region in the usual left-to-right,
1362 top-to-bottom order.  The result is packaged into a Calc vector
1363 of numbers and placed on the stack.  Calc (in its standard
1364 user interface) is then started.  Type @kbd{v u} if you want
1365 to unpack this vector into separate numbers on the stack.  Also,
1366 @kbd{C-u C-x * g} interprets the region as a single number or
1367 formula.
1369 The @kbd{C-x * r} command reads a rectangle, with the point and
1370 mark defining opposite corners of the rectangle.  The result
1371 is a matrix of numbers on the Calculator stack.
1373 Complementary to these is @kbd{C-x * y}, which ``yanks'' the
1374 value at the top of the Calc stack back into an editing buffer.
1375 If you type @w{@kbd{C-x * y}} while in such a buffer, the value is
1376 yanked at the current position.  If you type @kbd{C-x * y} while
1377 in the Calc buffer, Calc makes an educated guess as to which
1378 editing buffer you want to use.  The Calc window does not have
1379 to be visible in order to use this command, as long as there
1380 is something on the Calc stack.
1382 Here, for reference, is the complete list of @kbd{C-x *} commands.
1383 The shift, control, and meta keys are ignored for the keystroke
1384 following @kbd{C-x *}.
1386 @noindent
1387 Commands for turning Calc on and off:
1389 @table @kbd
1390 @item *
1391 Turn Calc on or off, employing the same user interface as last time.
1393 @item =, +, -, /, \, &, #
1394 Alternatives for @kbd{*}.
1396 @item C
1397 Turn Calc on or off using its standard bottom-of-the-screen
1398 interface.  If Calc is already turned on but the cursor is not
1399 in the Calc window, move the cursor into the window.
1401 @item O
1402 Same as @kbd{C}, but don't select the new Calc window.  If
1403 Calc is already turned on and the cursor is in the Calc window,
1404 move it out of that window.
1406 @item B
1407 Control whether @kbd{C-x * c} and @kbd{C-x * k} use the full screen.
1409 @item Q
1410 Use Quick mode for a single short calculation.
1412 @item K
1413 Turn Calc Keypad mode on or off.
1415 @item E
1416 Turn Calc Embedded mode on or off at the current formula.
1418 @item J
1419 Turn Calc Embedded mode on or off, select the interesting part.
1421 @item W
1422 Turn Calc Embedded mode on or off at the current word (number).
1424 @item Z
1425 Turn Calc on in a user-defined way, as defined by a @kbd{Z I} command.
1427 @item X
1428 Quit Calc; turn off standard, Keypad, or Embedded mode if on.
1429 (This is like @kbd{q} or @key{OFF} inside of Calc.)
1430 @end table
1431 @iftex
1432 @sp 2
1433 @end iftex
1435 @noindent
1436 Commands for moving data into and out of the Calculator:
1438 @table @kbd
1439 @item G
1440 Grab the region into the Calculator as a vector.
1442 @item R
1443 Grab the rectangular region into the Calculator as a matrix.
1445 @item :
1446 Grab the rectangular region and compute the sums of its columns.
1448 @item _
1449 Grab the rectangular region and compute the sums of its rows.
1451 @item Y
1452 Yank a value from the Calculator into the current editing buffer.
1453 @end table
1454 @iftex
1455 @sp 2
1456 @end iftex
1458 @noindent
1459 Commands for use with Embedded mode:
1461 @table @kbd
1462 @item A
1463 ``Activate'' the current buffer.  Locate all formulas that
1464 contain @samp{:=} or @samp{=>} symbols and record their locations
1465 so that they can be updated automatically as variables are changed.
1467 @item D
1468 Duplicate the current formula immediately below and select
1469 the duplicate.
1471 @item F
1472 Insert a new formula at the current point.
1474 @item N
1475 Move the cursor to the next active formula in the buffer.
1477 @item P
1478 Move the cursor to the previous active formula in the buffer.
1480 @item U
1481 Update (i.e., as if by the @kbd{=} key) the formula at the current point.
1483 @item `
1484 Edit (as if by @code{calc-edit}) the formula at the current point.
1485 @end table
1486 @iftex
1487 @sp 2
1488 @end iftex
1490 @noindent
1491 Miscellaneous commands:
1493 @table @kbd
1494 @item I
1495 Run the Emacs Info system to read the Calc manual.
1496 (This is the same as @kbd{h i} inside of Calc.)
1498 @item T
1499 Run the Emacs Info system to read the Calc Tutorial.
1501 @item S
1502 Run the Emacs Info system to read the Calc Summary.
1504 @item L
1505 Load Calc entirely into memory.  (Normally the various parts
1506 are loaded only as they are needed.)
1508 @item M
1509 Read a region of written keystroke names (like @kbd{C-n a b c @key{RET}})
1510 and record them as the current keyboard macro.
1512 @item 0
1513 (This is the ``zero'' digit key.)  Reset the Calculator to
1514 its initial state:  Empty stack, and initial mode settings.
1515 @end table
1517 @node History and Acknowledgements, , Using Calc, Getting Started
1518 @section History and Acknowledgements
1520 @noindent
1521 Calc was originally started as a two-week project to occupy a lull
1522 in the author's schedule.  Basically, a friend asked if I remembered
1523 the value of 
1524 @texline @math{2^{32}}.
1525 @infoline @expr{2^32}.  
1526 I didn't offhand, but I said, ``that's easy, just call up an
1527 @code{xcalc}.''  @code{Xcalc} duly reported that the answer to our
1528 question was @samp{4.294967e+09}---with no way to see the full ten
1529 digits even though we knew they were there in the program's memory!  I
1530 was so annoyed, I vowed to write a calculator of my own, once and for
1531 all.
1533 I chose Emacs Lisp, a) because I had always been curious about it
1534 and b) because, being only a text editor extension language after
1535 all, Emacs Lisp would surely reach its limits long before the project
1536 got too far out of hand.
1538 To make a long story short, Emacs Lisp turned out to be a distressingly
1539 solid implementation of Lisp, and the humble task of calculating
1540 turned out to be more open-ended than one might have expected.
1542 Emacs Lisp doesn't have built-in floating point math, so it had to be
1543 simulated in software.  In fact, Emacs integers will only comfortably
1544 fit six decimal digits or so---not enough for a decent calculator.  So
1545 I had to write my own high-precision integer code as well, and once I had
1546 this I figured that arbitrary-size integers were just as easy as large
1547 integers.  Arbitrary floating-point precision was the logical next step.
1548 Also, since the large integer arithmetic was there anyway it seemed only
1549 fair to give the user direct access to it, which in turn made it practical
1550 to support fractions as well as floats.  All these features inspired me
1551 to look around for other data types that might be worth having.
1553 Around this time, my friend Rick Koshi showed me his nifty new HP-28
1554 calculator.  It allowed the user to manipulate formulas as well as
1555 numerical quantities, and it could also operate on matrices.  I
1556 decided that these would be good for Calc to have, too.  And once
1557 things had gone this far, I figured I might as well take a look at
1558 serious algebra systems for further ideas.  Since these systems did
1559 far more than I could ever hope to implement, I decided to focus on
1560 rewrite rules and other programming features so that users could
1561 implement what they needed for themselves.
1563 Rick complained that matrices were hard to read, so I put in code to
1564 format them in a 2D style.  Once these routines were in place, Big mode
1565 was obligatory.  Gee, what other language modes would be useful?
1567 Scott Hemphill and Allen Knutson, two friends with a strong mathematical
1568 bent, contributed ideas and algorithms for a number of Calc features
1569 including modulo forms, primality testing, and float-to-fraction conversion.
1571 Units were added at the eager insistence of Mass Sivilotti.  Later,
1572 Ulrich Mueller at CERN and Przemek Klosowski at NIST provided invaluable
1573 expert assistance with the units table.  As far as I can remember, the
1574 idea of using algebraic formulas and variables to represent units dates
1575 back to an ancient article in Byte magazine about muMath, an early
1576 algebra system for microcomputers.
1578 Many people have contributed to Calc by reporting bugs and suggesting
1579 features, large and small.  A few deserve special mention:  Tim Peters,
1580 who helped develop the ideas that led to the selection commands, rewrite
1581 rules, and many other algebra features; 
1582 @texline Fran\c{c}ois
1583 @infoline Francois
1584 Pinard, who contributed an early prototype of the Calc Summary appendix
1585 as well as providing valuable suggestions in many other areas of Calc;
1586 Carl Witty, whose eagle eyes discovered many typographical and factual
1587 errors in the Calc manual; Tim Kay, who drove the development of
1588 Embedded mode; Ove Ewerlid, who made many suggestions relating to the
1589 algebra commands and contributed some code for polynomial operations;
1590 Randal Schwartz, who suggested the @code{calc-eval} function; Robert
1591 J. Chassell, who suggested the Calc Tutorial and exercises; and Juha
1592 Sarlin, who first worked out how to split Calc into quickly-loading
1593 parts.  Bob Weiner helped immensely with the Lucid Emacs port.
1595 @cindex Bibliography
1596 @cindex Knuth, Art of Computer Programming
1597 @cindex Numerical Recipes
1598 @c Should these be expanded into more complete references?
1599 Among the books used in the development of Calc were Knuth's @emph{Art
1600 of Computer Programming} (especially volume II, @emph{Seminumerical
1601 Algorithms}); @emph{Numerical Recipes} by Press, Flannery, Teukolsky,
1602 and Vetterling; Bevington's @emph{Data Reduction and Error Analysis
1603 for the Physical Sciences}; @emph{Concrete Mathematics} by Graham,
1604 Knuth, and Patashnik; Steele's @emph{Common Lisp, the Language}; the
1605 @emph{CRC Standard Math Tables} (William H. Beyer, ed.); and
1606 Abramowitz and Stegun's venerable @emph{Handbook of Mathematical
1607 Functions}.  Also, of course, Calc could not have been written without
1608 the excellent @emph{GNU Emacs Lisp Reference Manual}, by Bil Lewis and
1609 Dan LaLiberte.
1611 Final thanks go to Richard Stallman, without whose fine implementations
1612 of the Emacs editor, language, and environment, Calc would have been
1613 finished in two weeks.
1615 @c [tutorial]
1617 @ifinfo
1618 @c This node is accessed by the `C-x * t' command.
1619 @node Interactive Tutorial, , , Top
1620 @chapter Tutorial
1622 @noindent
1623 Some brief instructions on using the Emacs Info system for this tutorial:
1625 Press the space bar and Delete keys to go forward and backward in a
1626 section by screenfuls (or use the regular Emacs scrolling commands
1627 for this).
1629 Press @kbd{n} or @kbd{p} to go to the Next or Previous section.
1630 If the section has a @dfn{menu}, press a digit key like @kbd{1}
1631 or @kbd{2} to go to a sub-section from the menu.  Press @kbd{u} to
1632 go back up from a sub-section to the menu it is part of.
1634 Exercises in the tutorial all have cross-references to the
1635 appropriate page of the ``answers'' section.  Press @kbd{f}, then
1636 the exercise number, to see the answer to an exercise.  After
1637 you have followed a cross-reference, you can press the letter
1638 @kbd{l} to return to where you were before.
1640 You can press @kbd{?} at any time for a brief summary of Info commands.
1642 Press @kbd{1} now to enter the first section of the Tutorial.
1644 @menu
1645 * Tutorial::
1646 @end menu
1647 @end ifinfo
1649 @node Tutorial, Introduction, Getting Started, Top
1650 @chapter Tutorial
1652 @noindent
1653 This chapter explains how to use Calc and its many features, in
1654 a step-by-step, tutorial way.  You are encouraged to run Calc and
1655 work along with the examples as you read (@pxref{Starting Calc}).
1656 If you are already familiar with advanced calculators, you may wish
1657 @c [not-split]
1658 to skip on to the rest of this manual.
1659 @c [when-split]
1660 @c to skip on to volume II of this manual, the @dfn{Calc Reference}.
1662 @c [fix-ref Embedded Mode]
1663 This tutorial describes the standard user interface of Calc only.
1664 The Quick mode and Keypad mode interfaces are fairly
1665 self-explanatory.  @xref{Embedded Mode}, for a description of
1666 the Embedded mode interface.
1668 @ifinfo
1669 The easiest way to read this tutorial on-line is to have two windows on
1670 your Emacs screen, one with Calc and one with the Info system.  (If you
1671 have a printed copy of the manual you can use that instead.)  Press
1672 @kbd{C-x * c} to turn Calc on or to switch into the Calc window, and
1673 press @kbd{C-x * i} to start the Info system or to switch into its window.
1674 Or, you may prefer to use the tutorial in printed form.
1675 @end ifinfo
1676 @iftex
1677 The easiest way to read this tutorial on-line is to have two windows on
1678 your Emacs screen, one with Calc and one with the Info system.  (If you
1679 have a printed copy of the manual you can use that instead.)  Press
1680 @kbd{C-x * c} to turn Calc on or to switch into the Calc window, and
1681 press @kbd{C-x * i} to start the Info system or to switch into its window.
1682 @end iftex
1684 This tutorial is designed to be done in sequence.  But the rest of this
1685 manual does not assume you have gone through the tutorial.  The tutorial
1686 does not cover everything in the Calculator, but it touches on most
1687 general areas.
1689 @ifinfo
1690 You may wish to print out a copy of the Calc Summary and keep notes on
1691 it as you learn Calc.  @xref{About This Manual}, to see how to make a
1692 printed summary.  @xref{Summary}.
1693 @end ifinfo
1694 @iftex
1695 The Calc Summary at the end of the reference manual includes some blank
1696 space for your own use.  You may wish to keep notes there as you learn
1697 Calc.
1698 @end iftex
1700 @menu
1701 * Basic Tutorial::
1702 * Arithmetic Tutorial::
1703 * Vector/Matrix Tutorial::
1704 * Types Tutorial::
1705 * Algebra Tutorial::
1706 * Programming Tutorial::
1708 * Answers to Exercises::
1709 @end menu
1711 @node Basic Tutorial, Arithmetic Tutorial, Tutorial, Tutorial
1712 @section Basic Tutorial
1714 @noindent
1715 In this section, we learn how RPN and algebraic-style calculations
1716 work, how to undo and redo an operation done by mistake, and how
1717 to control various modes of the Calculator.
1719 @menu
1720 * RPN Tutorial::            Basic operations with the stack.
1721 * Algebraic Tutorial::      Algebraic entry; variables.
1722 * Undo Tutorial::           If you make a mistake: Undo and the trail.
1723 * Modes Tutorial::          Common mode-setting commands.
1724 @end menu
1726 @node RPN Tutorial, Algebraic Tutorial, Basic Tutorial, Basic Tutorial
1727 @subsection RPN Calculations and the Stack
1729 @cindex RPN notation
1730 @ifinfo
1731 @noindent
1732 Calc normally uses RPN notation.  You may be familiar with the RPN
1733 system from Hewlett-Packard calculators, FORTH, or PostScript.
1734 (Reverse Polish Notation, RPN, is named after the Polish mathematician
1735 Jan Lukasiewicz.)
1736 @end ifinfo
1737 @tex
1738 \noindent
1739 Calc normally uses RPN notation.  You may be familiar with the RPN
1740 system from Hewlett-Packard calculators, FORTH, or PostScript.
1741 (Reverse Polish Notation, RPN, is named after the Polish mathematician
1742 Jan \L ukasiewicz.)
1743 @end tex
1745 The central component of an RPN calculator is the @dfn{stack}.  A
1746 calculator stack is like a stack of dishes.  New dishes (numbers) are
1747 added at the top of the stack, and numbers are normally only removed
1748 from the top of the stack.
1750 @cindex Operators
1751 @cindex Operands
1752 In an operation like @expr{2+3}, the 2 and 3 are called the @dfn{operands}
1753 and the @expr{+} is the @dfn{operator}.  In an RPN calculator you always
1754 enter the operands first, then the operator.  Each time you type a
1755 number, Calc adds or @dfn{pushes} it onto the top of the Stack.
1756 When you press an operator key like @kbd{+}, Calc @dfn{pops} the appropriate
1757 number of operands from the stack and pushes back the result.
1759 Thus we could add the numbers 2 and 3 in an RPN calculator by typing:
1760 @kbd{2 @key{RET} 3 @key{RET} +}.  (The @key{RET} key, Return, corresponds to
1761 the @key{ENTER} key on traditional RPN calculators.)  Try this now if
1762 you wish; type @kbd{C-x * c} to switch into the Calc window (you can type
1763 @kbd{C-x * c} again or @kbd{C-x * o} to switch back to the Tutorial window).
1764 The first four keystrokes ``push'' the numbers 2 and 3 onto the stack.
1765 The @kbd{+} key ``pops'' the top two numbers from the stack, adds them,
1766 and pushes the result (5) back onto the stack.  Here's how the stack
1767 will look at various points throughout the calculation:
1769 @smallexample
1770 @group
1771     .          1:  2          2:  2          1:  5              .
1772                    .          1:  3              .
1773                                   .
1775   C-x * c          2 @key{RET}          3 @key{RET}            +             @key{DEL}
1776 @end group
1777 @end smallexample
1779 The @samp{.} symbol is a marker that represents the top of the stack.
1780 Note that the ``top'' of the stack is really shown at the bottom of
1781 the Stack window.  This may seem backwards, but it turns out to be
1782 less distracting in regular use.
1784 @cindex Stack levels
1785 @cindex Levels of stack
1786 The numbers @samp{1:} and @samp{2:} on the left are @dfn{stack level
1787 numbers}.  Old RPN calculators always had four stack levels called
1788 @expr{x}, @expr{y}, @expr{z}, and @expr{t}.  Calc's stack can grow
1789 as large as you like, so it uses numbers instead of letters.  Some
1790 stack-manipulation commands accept a numeric argument that says
1791 which stack level to work on.  Normal commands like @kbd{+} always
1792 work on the top few levels of the stack.
1794 @c [fix-ref Truncating the Stack]
1795 The Stack buffer is just an Emacs buffer, and you can move around in
1796 it using the regular Emacs motion commands.  But no matter where the
1797 cursor is, even if you have scrolled the @samp{.} marker out of
1798 view, most Calc commands always move the cursor back down to level 1
1799 before doing anything.  It is possible to move the @samp{.} marker
1800 upwards through the stack, temporarily ``hiding'' some numbers from
1801 commands like @kbd{+}.  This is called @dfn{stack truncation} and
1802 we will not cover it in this tutorial; @pxref{Truncating the Stack},
1803 if you are interested.
1805 You don't really need the second @key{RET} in @kbd{2 @key{RET} 3
1806 @key{RET} +}.  That's because if you type any operator name or
1807 other non-numeric key when you are entering a number, the Calculator
1808 automatically enters that number and then does the requested command.
1809 Thus @kbd{2 @key{RET} 3 +} will work just as well.
1811 Examples in this tutorial will often omit @key{RET} even when the
1812 stack displays shown would only happen if you did press @key{RET}:
1814 @smallexample
1815 @group
1816 1:  2          2:  2          1:  5
1817     .          1:  3              .
1818                    .
1820   2 @key{RET}            3              +
1821 @end group
1822 @end smallexample
1824 @noindent
1825 Here, after pressing @kbd{3} the stack would really show @samp{1:  2}
1826 with @samp{Calc:@: 3} in the minibuffer.  In these situations, you can
1827 press the optional @key{RET} to see the stack as the figure shows.
1829 (@bullet{}) @strong{Exercise 1.}  (This tutorial will include exercises
1830 at various points.  Try them if you wish.  Answers to all the exercises
1831 are located at the end of the Tutorial chapter.  Each exercise will
1832 include a cross-reference to its particular answer.  If you are
1833 reading with the Emacs Info system, press @kbd{f} and the
1834 exercise number to go to the answer, then the letter @kbd{l} to
1835 return to where you were.)
1837 @noindent
1838 Here's the first exercise:  What will the keystrokes @kbd{1 @key{RET} 2
1839 @key{RET} 3 @key{RET} 4 + * -} compute?  (@samp{*} is the symbol for
1840 multiplication.)  Figure it out by hand, then try it with Calc to see
1841 if you're right.  @xref{RPN Answer 1, 1}. (@bullet{})
1843 (@bullet{}) @strong{Exercise 2.}  Compute 
1844 @texline @math{(2\times4) + (7\times9.4) + {5\over4}}
1845 @infoline @expr{2*4 + 7*9.5 + 5/4} 
1846 using the stack.  @xref{RPN Answer 2, 2}. (@bullet{})
1848 The @key{DEL} key is called Backspace on some keyboards.  It is
1849 whatever key you would use to correct a simple typing error when
1850 regularly using Emacs.  The @key{DEL} key pops and throws away the
1851 top value on the stack.  (You can still get that value back from
1852 the Trail if you should need it later on.)  There are many places
1853 in this tutorial where we assume you have used @key{DEL} to erase the
1854 results of the previous example at the beginning of a new example.
1855 In the few places where it is really important to use @key{DEL} to
1856 clear away old results, the text will remind you to do so.
1858 (It won't hurt to let things accumulate on the stack, except that
1859 whenever you give a display-mode-changing command Calc will have to
1860 spend a long time reformatting such a large stack.)
1862 Since the @kbd{-} key is also an operator (it subtracts the top two
1863 stack elements), how does one enter a negative number?  Calc uses
1864 the @kbd{_} (underscore) key to act like the minus sign in a number.
1865 So, typing @kbd{-5 @key{RET}} won't work because the @kbd{-} key
1866 will try to do a subtraction, but @kbd{_5 @key{RET}} works just fine.
1868 You can also press @kbd{n}, which means ``change sign.''  It changes
1869 the number at the top of the stack (or the number being entered)
1870 from positive to negative or vice-versa:  @kbd{5 n @key{RET}}.
1872 @cindex Duplicating a stack entry
1873 If you press @key{RET} when you're not entering a number, the effect
1874 is to duplicate the top number on the stack.  Consider this calculation:
1876 @smallexample
1877 @group
1878 1:  3          2:  3          1:  9          2:  9          1:  81
1879     .          1:  3              .          1:  9              .
1880                    .                             .
1882   3 @key{RET}           @key{RET}             *             @key{RET}             *
1883 @end group
1884 @end smallexample
1886 @noindent
1887 (Of course, an easier way to do this would be @kbd{3 @key{RET} 4 ^},
1888 to raise 3 to the fourth power.)
1890 The space-bar key (denoted @key{SPC} here) performs the same function
1891 as @key{RET}; you could replace all three occurrences of @key{RET} in
1892 the above example with @key{SPC} and the effect would be the same.
1894 @cindex Exchanging stack entries
1895 Another stack manipulation key is @key{TAB}.  This exchanges the top
1896 two stack entries.  Suppose you have computed @kbd{2 @key{RET} 3 +}
1897 to get 5, and then you realize what you really wanted to compute
1898 was @expr{20 / (2+3)}.
1900 @smallexample
1901 @group
1902 1:  5          2:  5          2:  20         1:  4
1903     .          1:  20         1:  5              .
1904                    .              .
1906  2 @key{RET} 3 +         20            @key{TAB}             /
1907 @end group
1908 @end smallexample
1910 @noindent
1911 Planning ahead, the calculation would have gone like this:
1913 @smallexample
1914 @group
1915 1:  20         2:  20         3:  20         2:  20         1:  4
1916     .          1:  2          2:  2          1:  5              .
1917                    .          1:  3              .
1918                                   .
1920   20 @key{RET}         2 @key{RET}            3              +              /
1921 @end group
1922 @end smallexample
1924 A related stack command is @kbd{M-@key{TAB}} (hold @key{META} and type
1925 @key{TAB}).  It rotates the top three elements of the stack upward,
1926 bringing the object in level 3 to the top.
1928 @smallexample
1929 @group
1930 1:  10         2:  10         3:  10         3:  20         3:  30
1931     .          1:  20         2:  20         2:  30         2:  10
1932                    .          1:  30         1:  10         1:  20
1933                                   .              .              .
1935   10 @key{RET}         20 @key{RET}         30 @key{RET}         M-@key{TAB}          M-@key{TAB}
1936 @end group
1937 @end smallexample
1939 (@bullet{}) @strong{Exercise 3.} Suppose the numbers 10, 20, and 30 are
1940 on the stack.  Figure out how to add one to the number in level 2
1941 without affecting the rest of the stack.  Also figure out how to add
1942 one to the number in level 3.  @xref{RPN Answer 3, 3}. (@bullet{})
1944 Operations like @kbd{+}, @kbd{-}, @kbd{*}, @kbd{/}, and @kbd{^} pop two
1945 arguments from the stack and push a result.  Operations like @kbd{n} and
1946 @kbd{Q} (square root) pop a single number and push the result.  You can
1947 think of them as simply operating on the top element of the stack.
1949 @smallexample
1950 @group
1951 1:  3          1:  9          2:  9          1:  25         1:  5
1952     .              .          1:  16             .              .
1953                                   .
1955   3 @key{RET}          @key{RET} *        4 @key{RET} @key{RET} *        +              Q
1956 @end group
1957 @end smallexample
1959 @noindent
1960 (Note that capital @kbd{Q} means to hold down the Shift key while
1961 typing @kbd{q}.  Remember, plain unshifted @kbd{q} is the Quit command.)
1963 @cindex Pythagorean Theorem
1964 Here we've used the Pythagorean Theorem to determine the hypotenuse of a
1965 right triangle.  Calc actually has a built-in command for that called
1966 @kbd{f h}, but let's suppose we can't remember the necessary keystrokes.
1967 We can still enter it by its full name using @kbd{M-x} notation:
1969 @smallexample
1970 @group
1971 1:  3          2:  3          1:  5
1972     .          1:  4              .
1973                    .
1975   3 @key{RET}          4 @key{RET}      M-x calc-hypot
1976 @end group
1977 @end smallexample
1979 All Calculator commands begin with the word @samp{calc-}.  Since it
1980 gets tiring to type this, Calc provides an @kbd{x} key which is just
1981 like the regular Emacs @kbd{M-x} key except that it types the @samp{calc-}
1982 prefix for you:
1984 @smallexample
1985 @group
1986 1:  3          2:  3          1:  5
1987     .          1:  4              .
1988                    .
1990   3 @key{RET}          4 @key{RET}         x hypot
1991 @end group
1992 @end smallexample
1994 What happens if you take the square root of a negative number?
1996 @smallexample
1997 @group
1998 1:  4          1:  -4         1:  (0, 2)
1999     .              .              .
2001   4 @key{RET}            n              Q
2002 @end group
2003 @end smallexample
2005 @noindent
2006 The notation @expr{(a, b)} represents a complex number.
2007 Complex numbers are more traditionally written @expr{a + b i};
2008 Calc can display in this format, too, but for now we'll stick to the
2009 @expr{(a, b)} notation.
2011 If you don't know how complex numbers work, you can safely ignore this
2012 feature.  Complex numbers only arise from operations that would be
2013 errors in a calculator that didn't have complex numbers.  (For example,
2014 taking the square root or logarithm of a negative number produces a
2015 complex result.)
2017 Complex numbers are entered in the notation shown.  The @kbd{(} and
2018 @kbd{,} and @kbd{)} keys manipulate ``incomplete complex numbers.''
2020 @smallexample
2021 @group
2022 1:  ( ...      2:  ( ...      1:  (2, ...    1:  (2, ...    1:  (2, 3)
2023     .          1:  2              .              3              .
2024                    .                             .
2026     (              2              ,              3              )
2027 @end group
2028 @end smallexample
2030 You can perform calculations while entering parts of incomplete objects.
2031 However, an incomplete object cannot actually participate in a calculation:
2033 @smallexample
2034 @group
2035 1:  ( ...      2:  ( ...      3:  ( ...      1:  ( ...      1:  ( ...
2036     .          1:  2          2:  2              5              5
2037                    .          1:  3              .              .
2038                                   .
2039                                                              (error)
2040     (             2 @key{RET}           3              +              +
2041 @end group
2042 @end smallexample
2044 @noindent
2045 Adding 5 to an incomplete object makes no sense, so the last command
2046 produces an error message and leaves the stack the same.
2048 Incomplete objects can't participate in arithmetic, but they can be
2049 moved around by the regular stack commands.
2051 @smallexample
2052 @group
2053 2:  2          3:  2          3:  3          1:  ( ...      1:  (2, 3)
2054 1:  3          2:  3          2:  ( ...          2              .
2055     .          1:  ( ...      1:  2              3
2056                    .              .              .
2058 2 @key{RET} 3 @key{RET}        (            M-@key{TAB}          M-@key{TAB}            )
2059 @end group
2060 @end smallexample
2062 @noindent
2063 Note that the @kbd{,} (comma) key did not have to be used here.
2064 When you press @kbd{)} all the stack entries between the incomplete
2065 entry and the top are collected, so there's never really a reason
2066 to use the comma.  It's up to you.
2068 (@bullet{}) @strong{Exercise 4.}  To enter the complex number @expr{(2, 3)},
2069 your friend Joe typed @kbd{( 2 , @key{SPC} 3 )}.  What happened?
2070 (Joe thought of a clever way to correct his mistake in only two
2071 keystrokes, but it didn't quite work.  Try it to find out why.)
2072 @xref{RPN Answer 4, 4}. (@bullet{})
2074 Vectors are entered the same way as complex numbers, but with square
2075 brackets in place of parentheses.  We'll meet vectors again later in
2076 the tutorial.
2078 Any Emacs command can be given a @dfn{numeric prefix argument} by
2079 typing a series of @key{META}-digits beforehand.  If @key{META} is
2080 awkward for you, you can instead type @kbd{C-u} followed by the
2081 necessary digits.  Numeric prefix arguments can be negative, as in
2082 @kbd{M-- M-3 M-5} or @w{@kbd{C-u - 3 5}}.  Calc commands use numeric
2083 prefix arguments in a variety of ways.  For example, a numeric prefix
2084 on the @kbd{+} operator adds any number of stack entries at once:
2086 @smallexample
2087 @group
2088 1:  10         2:  10         3:  10         3:  10         1:  60
2089     .          1:  20         2:  20         2:  20             .
2090                    .          1:  30         1:  30
2091                                   .              .
2093   10 @key{RET}         20 @key{RET}         30 @key{RET}         C-u 3            +
2094 @end group
2095 @end smallexample
2097 For stack manipulation commands like @key{RET}, a positive numeric
2098 prefix argument operates on the top @var{n} stack entries at once.  A
2099 negative argument operates on the entry in level @var{n} only.  An
2100 argument of zero operates on the entire stack.  In this example, we copy
2101 the second-to-top element of the stack:
2103 @smallexample
2104 @group
2105 1:  10         2:  10         3:  10         3:  10         4:  10
2106     .          1:  20         2:  20         2:  20         3:  20
2107                    .          1:  30         1:  30         2:  30
2108                                   .              .          1:  20
2109                                                                 .
2111   10 @key{RET}         20 @key{RET}         30 @key{RET}         C-u -2          @key{RET}
2112 @end group
2113 @end smallexample
2115 @cindex Clearing the stack
2116 @cindex Emptying the stack
2117 Another common idiom is @kbd{M-0 @key{DEL}}, which clears the stack.
2118 (The @kbd{M-0} numeric prefix tells @key{DEL} to operate on the
2119 entire stack.)
2121 @node Algebraic Tutorial, Undo Tutorial, RPN Tutorial, Basic Tutorial
2122 @subsection Algebraic-Style Calculations
2124 @noindent
2125 If you are not used to RPN notation, you may prefer to operate the
2126 Calculator in Algebraic mode, which is closer to the way
2127 non-RPN calculators work.  In Algebraic mode, you enter formulas
2128 in traditional @expr{2+3} notation.
2130 You don't really need any special ``mode'' to enter algebraic formulas.
2131 You can enter a formula at any time by pressing the apostrophe (@kbd{'})
2132 key.  Answer the prompt with the desired formula, then press @key{RET}.
2133 The formula is evaluated and the result is pushed onto the RPN stack.
2134 If you don't want to think in RPN at all, you can enter your whole
2135 computation as a formula, read the result from the stack, then press
2136 @key{DEL} to delete it from the stack.
2138 Try pressing the apostrophe key, then @kbd{2+3+4}, then @key{RET}.
2139 The result should be the number 9.
2141 Algebraic formulas use the operators @samp{+}, @samp{-}, @samp{*},
2142 @samp{/}, and @samp{^}.  You can use parentheses to make the order
2143 of evaluation clear.  In the absence of parentheses, @samp{^} is
2144 evaluated first, then @samp{*}, then @samp{/}, then finally
2145 @samp{+} and @samp{-}.  For example, the expression
2147 @example
2148 2 + 3*4*5 / 6*7^8 - 9
2149 @end example
2151 @noindent
2152 is equivalent to
2154 @example
2155 2 + ((3*4*5) / (6*(7^8)) - 9
2156 @end example
2158 @noindent
2159 or, in large mathematical notation,
2161 @ifinfo
2162 @example
2163 @group
2164     3 * 4 * 5
2165 2 + --------- - 9
2166           8
2167      6 * 7
2168 @end group
2169 @end example
2170 @end ifinfo
2171 @tex
2172 \turnoffactive
2173 \beforedisplay
2174 $$ 2 + { 3 \times 4 \times 5 \over 6 \times 7^8 } - 9 $$
2175 \afterdisplay
2176 @end tex
2178 @noindent
2179 The result of this expression will be the number @mathit{-6.99999826533}.
2181 Calc's order of evaluation is the same as for most computer languages,
2182 except that @samp{*} binds more strongly than @samp{/}, as the above
2183 example shows.  As in normal mathematical notation, the @samp{*} symbol
2184 can often be omitted:  @samp{2 a} is the same as @samp{2*a}.
2186 Operators at the same level are evaluated from left to right, except
2187 that @samp{^} is evaluated from right to left.  Thus, @samp{2-3-4} is
2188 equivalent to @samp{(2-3)-4} or @mathit{-5}, whereas @samp{2^3^4} is equivalent
2189 to @samp{2^(3^4)} (a very large integer; try it!).
2191 If you tire of typing the apostrophe all the time, there is
2192 Algebraic mode, where Calc automatically senses
2193 when you are about to type an algebraic expression.  To enter this
2194 mode, press the two letters @w{@kbd{m a}}.  (An @samp{Alg} indicator
2195 should appear in the Calc window's mode line.)
2197 Press @kbd{m a}, then @kbd{2+3+4} with no apostrophe, then @key{RET}.
2199 In Algebraic mode, when you press any key that would normally begin
2200 entering a number (such as a digit, a decimal point, or the @kbd{_}
2201 key), or if you press @kbd{(} or @kbd{[}, Calc automatically begins
2202 an algebraic entry.
2204 Functions which do not have operator symbols like @samp{+} and @samp{*}
2205 must be entered in formulas using function-call notation.  For example,
2206 the function name corresponding to the square-root key @kbd{Q} is
2207 @code{sqrt}.  To compute a square root in a formula, you would use
2208 the notation @samp{sqrt(@var{x})}.
2210 Press the apostrophe, then type @kbd{sqrt(5*2) - 3}.  The result should
2211 be @expr{0.16227766017}.
2213 Note that if the formula begins with a function name, you need to use
2214 the apostrophe even if you are in Algebraic mode.  If you type @kbd{arcsin}
2215 out of the blue, the @kbd{a r} will be taken as an Algebraic Rewrite
2216 command, and the @kbd{csin} will be taken as the name of the rewrite
2217 rule to use!
2219 Some people prefer to enter complex numbers and vectors in algebraic
2220 form because they find RPN entry with incomplete objects to be too
2221 distracting, even though they otherwise use Calc as an RPN calculator.
2223 Still in Algebraic mode, type:
2225 @smallexample
2226 @group
2227 1:  (2, 3)     2:  (2, 3)     1:  (8, -1)    2:  (8, -1)    1:  (9, -1)
2228     .          1:  (1, -2)        .          1:  1              .
2229                    .                             .
2231  (2,3) @key{RET}      (1,-2) @key{RET}        *              1 @key{RET}          +
2232 @end group
2233 @end smallexample
2235 Algebraic mode allows us to enter complex numbers without pressing
2236 an apostrophe first, but it also means we need to press @key{RET}
2237 after every entry, even for a simple number like @expr{1}.
2239 (You can type @kbd{C-u m a} to enable a special Incomplete Algebraic
2240 mode in which the @kbd{(} and @kbd{[} keys use algebraic entry even
2241 though regular numeric keys still use RPN numeric entry.  There is also
2242 Total Algebraic mode, started by typing @kbd{m t}, in which all
2243 normal keys begin algebraic entry.  You must then use the @key{META} key
2244 to type Calc commands:  @kbd{M-m t} to get back out of Total Algebraic
2245 mode, @kbd{M-q} to quit, etc.)
2247 If you're still in Algebraic mode, press @kbd{m a} again to turn it off.
2249 Actual non-RPN calculators use a mixture of algebraic and RPN styles.
2250 In general, operators of two numbers (like @kbd{+} and @kbd{*})
2251 use algebraic form, but operators of one number (like @kbd{n} and @kbd{Q})
2252 use RPN form.  Also, a non-RPN calculator allows you to see the
2253 intermediate results of a calculation as you go along.  You can
2254 accomplish this in Calc by performing your calculation as a series
2255 of algebraic entries, using the @kbd{$} sign to tie them together.
2256 In an algebraic formula, @kbd{$} represents the number on the top
2257 of the stack.  Here, we perform the calculation 
2258 @texline @math{\sqrt{2\times4+1}},
2259 @infoline @expr{sqrt(2*4+1)},
2260 which on a traditional calculator would be done by pressing
2261 @kbd{2 * 4 + 1 =} and then the square-root key.
2263 @smallexample
2264 @group
2265 1:  8          1:  9          1:  3
2266     .              .              .
2268   ' 2*4 @key{RET}        $+1 @key{RET}        Q
2269 @end group
2270 @end smallexample
2272 @noindent
2273 Notice that we didn't need to press an apostrophe for the @kbd{$+1},
2274 because the dollar sign always begins an algebraic entry.
2276 (@bullet{}) @strong{Exercise 1.}  How could you get the same effect as
2277 pressing @kbd{Q} but using an algebraic entry instead?  How about
2278 if the @kbd{Q} key on your keyboard were broken?
2279 @xref{Algebraic Answer 1, 1}. (@bullet{})
2281 The notations @kbd{$$}, @kbd{$$$}, and so on stand for higher stack
2282 entries.  For example, @kbd{' $$+$ @key{RET}} is just like typing @kbd{+}.
2284 Algebraic formulas can include @dfn{variables}.  To store in a
2285 variable, press @kbd{s s}, then type the variable name, then press
2286 @key{RET}.  (There are actually two flavors of store command:
2287 @kbd{s s} stores a number in a variable but also leaves the number
2288 on the stack, while @w{@kbd{s t}} removes a number from the stack and
2289 stores it in the variable.)  A variable name should consist of one
2290 or more letters or digits, beginning with a letter.
2292 @smallexample
2293 @group
2294 1:  17             .          1:  a + a^2    1:  306
2295     .                             .              .
2297     17          s t a @key{RET}      ' a+a^2 @key{RET}       =
2298 @end group
2299 @end smallexample
2301 @noindent
2302 The @kbd{=} key @dfn{evaluates} a formula by replacing all its
2303 variables by the values that were stored in them.
2305 For RPN calculations, you can recall a variable's value on the
2306 stack either by entering its name as a formula and pressing @kbd{=},
2307 or by using the @kbd{s r} command.
2309 @smallexample
2310 @group
2311 1:  17         2:  17         3:  17         2:  17         1:  306
2312     .          1:  17         2:  17         1:  289            .
2313                    .          1:  2              .
2314                                   .
2316   s r a @key{RET}     ' a @key{RET} =         2              ^              +
2317 @end group
2318 @end smallexample
2320 If you press a single digit for a variable name (as in @kbd{s t 3}, you
2321 get one of ten @dfn{quick variables} @code{q0} through @code{q9}.
2322 They are ``quick'' simply because you don't have to type the letter
2323 @code{q} or the @key{RET} after their names.  In fact, you can type
2324 simply @kbd{s 3} as a shorthand for @kbd{s s 3}, and likewise for
2325 @kbd{t 3} and @w{@kbd{r 3}}.
2327 Any variables in an algebraic formula for which you have not stored
2328 values are left alone, even when you evaluate the formula.
2330 @smallexample
2331 @group
2332 1:  2 a + 2 b     1:  34 + 2 b
2333     .                 .
2335  ' 2a+2b @key{RET}          =
2336 @end group
2337 @end smallexample
2339 Calls to function names which are undefined in Calc are also left
2340 alone, as are calls for which the value is undefined.
2342 @smallexample
2343 @group
2344 1:  2 + log10(0) + log10(x) + log10(5, 6) + foo(3)
2345     .
2347  ' log10(100) + log10(0) + log10(x) + log10(5,6) + foo(3) @key{RET}
2348 @end group
2349 @end smallexample
2351 @noindent
2352 In this example, the first call to @code{log10} works, but the other
2353 calls are not evaluated.  In the second call, the logarithm is
2354 undefined for that value of the argument; in the third, the argument
2355 is symbolic, and in the fourth, there are too many arguments.  In the
2356 fifth case, there is no function called @code{foo}.  You will see a
2357 ``Wrong number of arguments'' message referring to @samp{log10(5,6)}.
2358 Press the @kbd{w} (``why'') key to see any other messages that may
2359 have arisen from the last calculation.  In this case you will get
2360 ``logarithm of zero,'' then ``number expected: @code{x}''.  Calc
2361 automatically displays the first message only if the message is
2362 sufficiently important; for example, Calc considers ``wrong number
2363 of arguments'' and ``logarithm of zero'' to be important enough to
2364 report automatically, while a message like ``number expected: @code{x}''
2365 will only show up if you explicitly press the @kbd{w} key.
2367 (@bullet{}) @strong{Exercise 2.}  Joe entered the formula @samp{2 x y},
2368 stored 5 in @code{x}, pressed @kbd{=}, and got the expected result,
2369 @samp{10 y}.  He then tried the same for the formula @samp{2 x (1+y)},
2370 expecting @samp{10 (1+y)}, but it didn't work.  Why not?
2371 @xref{Algebraic Answer 2, 2}. (@bullet{})
2373 (@bullet{}) @strong{Exercise 3.}  What result would you expect
2374 @kbd{1 @key{RET} 0 /} to give?  What if you then type @kbd{0 *}?
2375 @xref{Algebraic Answer 3, 3}. (@bullet{})
2377 One interesting way to work with variables is to use the
2378 @dfn{evaluates-to} (@samp{=>}) operator.  It works like this:
2379 Enter a formula algebraically in the usual way, but follow
2380 the formula with an @samp{=>} symbol.  (There is also an @kbd{s =}
2381 command which builds an @samp{=>} formula using the stack.)  On
2382 the stack, you will see two copies of the formula with an @samp{=>}
2383 between them.  The lefthand formula is exactly like you typed it;
2384 the righthand formula has been evaluated as if by typing @kbd{=}.
2386 @smallexample
2387 @group
2388 2:  2 + 3 => 5                     2:  2 + 3 => 5
2389 1:  2 a + 2 b => 34 + 2 b          1:  2 a + 2 b => 20 + 2 b
2390     .                                  .
2392 ' 2+3 => @key{RET}  ' 2a+2b @key{RET} s =          10 s t a @key{RET}
2393 @end group
2394 @end smallexample
2396 @noindent
2397 Notice that the instant we stored a new value in @code{a}, all
2398 @samp{=>} operators already on the stack that referred to @expr{a}
2399 were updated to use the new value.  With @samp{=>}, you can push a
2400 set of formulas on the stack, then change the variables experimentally
2401 to see the effects on the formulas' values.
2403 You can also ``unstore'' a variable when you are through with it:
2405 @smallexample
2406 @group
2407 2:  2 + 5 => 5
2408 1:  2 a + 2 b => 2 a + 2 b
2409     .
2411     s u a @key{RET}
2412 @end group
2413 @end smallexample
2415 We will encounter formulas involving variables and functions again
2416 when we discuss the algebra and calculus features of the Calculator.
2418 @node Undo Tutorial, Modes Tutorial, Algebraic Tutorial, Basic Tutorial
2419 @subsection Undo and Redo
2421 @noindent
2422 If you make a mistake, you can usually correct it by pressing shift-@kbd{U},
2423 the ``undo'' command.  First, clear the stack (@kbd{M-0 @key{DEL}}) and exit
2424 and restart Calc (@kbd{C-x * * C-x * *}) to make sure things start off
2425 with a clean slate.  Now:
2427 @smallexample
2428 @group
2429 1:  2          2:  2          1:  8          2:  2          1:  6
2430     .          1:  3              .          1:  3              .
2431                    .                             .
2433    2 @key{RET}           3              ^              U              *
2434 @end group
2435 @end smallexample
2437 You can undo any number of times.  Calc keeps a complete record of
2438 all you have done since you last opened the Calc window.  After the
2439 above example, you could type:
2441 @smallexample
2442 @group
2443 1:  6          2:  2          1:  2              .              .
2444     .          1:  3              .
2445                    .
2446                                                              (error)
2447                    U              U              U              U
2448 @end group
2449 @end smallexample
2451 You can also type @kbd{D} to ``redo'' a command that you have undone
2452 mistakenly.
2454 @smallexample
2455 @group
2456     .          1:  2          2:  2          1:  6          1:  6
2457                    .          1:  3              .              .
2458                                   .
2459                                                              (error)
2460                    D              D              D              D
2461 @end group
2462 @end smallexample
2464 @noindent
2465 It was not possible to redo past the @expr{6}, since that was placed there
2466 by something other than an undo command.
2468 @cindex Time travel
2469 You can think of undo and redo as a sort of ``time machine.''  Press
2470 @kbd{U} to go backward in time, @kbd{D} to go forward.  If you go
2471 backward and do something (like @kbd{*}) then, as any science fiction
2472 reader knows, you have changed your future and you cannot go forward
2473 again.  Thus, the inability to redo past the @expr{6} even though there
2474 was an earlier undo command.
2476 You can always recall an earlier result using the Trail.  We've ignored
2477 the trail so far, but it has been faithfully recording everything we
2478 did since we loaded the Calculator.  If the Trail is not displayed,
2479 press @kbd{t d} now to turn it on.
2481 Let's try grabbing an earlier result.  The @expr{8} we computed was
2482 undone by a @kbd{U} command, and was lost even to Redo when we pressed
2483 @kbd{*}, but it's still there in the trail.  There should be a little
2484 @samp{>} arrow (the @dfn{trail pointer}) resting on the last trail
2485 entry.  If there isn't, press @kbd{t ]} to reset the trail pointer.
2486 Now, press @w{@kbd{t p}} to move the arrow onto the line containing
2487 @expr{8}, and press @w{@kbd{t y}} to ``yank'' that number back onto the
2488 stack.
2490 If you press @kbd{t ]} again, you will see that even our Yank command
2491 went into the trail.
2493 Let's go further back in time.  Earlier in the tutorial we computed
2494 a huge integer using the formula @samp{2^3^4}.  We don't remember
2495 what it was, but the first digits were ``241''.  Press @kbd{t r}
2496 (which stands for trail-search-reverse), then type @kbd{241}.
2497 The trail cursor will jump back to the next previous occurrence of
2498 the string ``241'' in the trail.  This is just a regular Emacs
2499 incremental search; you can now press @kbd{C-s} or @kbd{C-r} to
2500 continue the search forwards or backwards as you like.
2502 To finish the search, press @key{RET}.  This halts the incremental
2503 search and leaves the trail pointer at the thing we found.  Now we
2504 can type @kbd{t y} to yank that number onto the stack.  If we hadn't
2505 remembered the ``241'', we could simply have searched for @kbd{2^3^4},
2506 then pressed @kbd{@key{RET} t n} to halt and then move to the next item.
2508 You may have noticed that all the trail-related commands begin with
2509 the letter @kbd{t}.  (The store-and-recall commands, on the other hand,
2510 all began with @kbd{s}.)  Calc has so many commands that there aren't
2511 enough keys for all of them, so various commands are grouped into
2512 two-letter sequences where the first letter is called the @dfn{prefix}
2513 key.  If you type a prefix key by accident, you can press @kbd{C-g}
2514 to cancel it.  (In fact, you can press @kbd{C-g} to cancel almost
2515 anything in Emacs.)  To get help on a prefix key, press that key
2516 followed by @kbd{?}.  Some prefixes have several lines of help,
2517 so you need to press @kbd{?} repeatedly to see them all.  
2518 You can also type @kbd{h h} to see all the help at once.
2520 Try pressing @kbd{t ?} now.  You will see a line of the form,
2522 @smallexample
2523 trail/time: Display; Fwd, Back; Next, Prev, Here, [, ]; Yank:  [MORE]  t-
2524 @end smallexample
2526 @noindent
2527 The word ``trail'' indicates that the @kbd{t} prefix key contains
2528 trail-related commands.  Each entry on the line shows one command,
2529 with a single capital letter showing which letter you press to get
2530 that command.  We have used @kbd{t n}, @kbd{t p}, @kbd{t ]}, and
2531 @kbd{t y} so far.  The @samp{[MORE]} means you can press @kbd{?}
2532 again to see more @kbd{t}-prefix commands.  Notice that the commands
2533 are roughly divided (by semicolons) into related groups.
2535 When you are in the help display for a prefix key, the prefix is
2536 still active.  If you press another key, like @kbd{y} for example,
2537 it will be interpreted as a @kbd{t y} command.  If all you wanted
2538 was to look at the help messages, press @kbd{C-g} afterwards to cancel
2539 the prefix.
2541 One more way to correct an error is by editing the stack entries.
2542 The actual Stack buffer is marked read-only and must not be edited
2543 directly, but you can press @kbd{`} (the backquote or accent grave)
2544 to edit a stack entry.
2546 Try entering @samp{3.141439} now.  If this is supposed to represent
2547 @cpi{}, it's got several errors.  Press @kbd{`} to edit this number.
2548 Now use the normal Emacs cursor motion and editing keys to change
2549 the second 4 to a 5, and to transpose the 3 and the 9.  When you
2550 press @key{RET}, the number on the stack will be replaced by your
2551 new number.  This works for formulas, vectors, and all other types
2552 of values you can put on the stack.  The @kbd{`} key also works
2553 during entry of a number or algebraic formula.
2555 @node Modes Tutorial, , Undo Tutorial, Basic Tutorial
2556 @subsection Mode-Setting Commands
2558 @noindent
2559 Calc has many types of @dfn{modes} that affect the way it interprets
2560 your commands or the way it displays data.  We have already seen one
2561 mode, namely Algebraic mode.  There are many others, too; we'll
2562 try some of the most common ones here.
2564 Perhaps the most fundamental mode in Calc is the current @dfn{precision}.
2565 Notice the @samp{12} on the Calc window's mode line:
2567 @smallexample
2568 --%%-Calc: 12 Deg       (Calculator)----All------
2569 @end smallexample
2571 @noindent
2572 Most of the symbols there are Emacs things you don't need to worry
2573 about, but the @samp{12} and the @samp{Deg} are mode indicators.
2574 The @samp{12} means that calculations should always be carried to
2575 12 significant figures.  That is why, when we type @kbd{1 @key{RET} 7 /},
2576 we get @expr{0.142857142857} with exactly 12 digits, not counting
2577 leading and trailing zeros.
2579 You can set the precision to anything you like by pressing @kbd{p},
2580 then entering a suitable number.  Try pressing @kbd{p 30 @key{RET}},
2581 then doing @kbd{1 @key{RET} 7 /} again:
2583 @smallexample
2584 @group
2585 1:  0.142857142857
2586 2:  0.142857142857142857142857142857
2587     .
2588 @end group
2589 @end smallexample
2591 Although the precision can be set arbitrarily high, Calc always
2592 has to have @emph{some} value for the current precision.  After
2593 all, the true value @expr{1/7} is an infinitely repeating decimal;
2594 Calc has to stop somewhere.
2596 Of course, calculations are slower the more digits you request.
2597 Press @w{@kbd{p 12}} now to set the precision back down to the default.
2599 Calculations always use the current precision.  For example, even
2600 though we have a 30-digit value for @expr{1/7} on the stack, if
2601 we use it in a calculation in 12-digit mode it will be rounded
2602 down to 12 digits before it is used.  Try it; press @key{RET} to
2603 duplicate the number, then @w{@kbd{1 +}}.  Notice that the @key{RET}
2604 key didn't round the number, because it doesn't do any calculation.
2605 But the instant we pressed @kbd{+}, the number was rounded down.
2607 @smallexample
2608 @group
2609 1:  0.142857142857
2610 2:  0.142857142857142857142857142857
2611 3:  1.14285714286
2612     .
2613 @end group
2614 @end smallexample
2616 @noindent
2617 In fact, since we added a digit on the left, we had to lose one
2618 digit on the right from even the 12-digit value of @expr{1/7}.
2620 How did we get more than 12 digits when we computed @samp{2^3^4}?  The
2621 answer is that Calc makes a distinction between @dfn{integers} and
2622 @dfn{floating-point} numbers, or @dfn{floats}.  An integer is a number
2623 that does not contain a decimal point.  There is no such thing as an
2624 ``infinitely repeating fraction integer,'' so Calc doesn't have to limit
2625 itself.  If you asked for @samp{2^10000} (don't try this!), you would
2626 have to wait a long time but you would eventually get an exact answer.
2627 If you ask for @samp{2.^10000}, you will quickly get an answer which is
2628 correct only to 12 places.  The decimal point tells Calc that it should
2629 use floating-point arithmetic to get the answer, not exact integer
2630 arithmetic.
2632 You can use the @kbd{F} (@code{calc-floor}) command to convert a
2633 floating-point value to an integer, and @kbd{c f} (@code{calc-float})
2634 to convert an integer to floating-point form.
2636 Let's try entering that last calculation:
2638 @smallexample
2639 @group
2640 1:  2.         2:  2.         1:  1.99506311689e3010
2641     .          1:  10000          .
2642                    .
2644   2.0 @key{RET}          10000 @key{RET}      ^
2645 @end group
2646 @end smallexample
2648 @noindent
2649 @cindex Scientific notation, entry of
2650 Notice the letter @samp{e} in there.  It represents ``times ten to the
2651 power of,'' and is used by Calc automatically whenever writing the
2652 number out fully would introduce more extra zeros than you probably
2653 want to see.  You can enter numbers in this notation, too.
2655 @smallexample
2656 @group
2657 1:  2.         2:  2.         1:  1.99506311678e3010
2658     .          1:  10000.         .
2659                    .
2661   2.0 @key{RET}          1e4 @key{RET}        ^
2662 @end group
2663 @end smallexample
2665 @cindex Round-off errors
2666 @noindent
2667 Hey, the answer is different!  Look closely at the middle columns
2668 of the two examples.  In the first, the stack contained the
2669 exact integer @expr{10000}, but in the second it contained
2670 a floating-point value with a decimal point.  When you raise a
2671 number to an integer power, Calc uses repeated squaring and
2672 multiplication to get the answer.  When you use a floating-point
2673 power, Calc uses logarithms and exponentials.  As you can see,
2674 a slight error crept in during one of these methods.  Which
2675 one should we trust?  Let's raise the precision a bit and find
2676 out:
2678 @smallexample
2679 @group
2680     .          1:  2.         2:  2.         1:  1.995063116880828e3010
2681                    .          1:  10000.         .
2682                                   .
2684  p 16 @key{RET}        2. @key{RET}           1e4            ^    p 12 @key{RET}
2685 @end group
2686 @end smallexample
2688 @noindent
2689 @cindex Guard digits
2690 Presumably, it doesn't matter whether we do this higher-precision
2691 calculation using an integer or floating-point power, since we
2692 have added enough ``guard digits'' to trust the first 12 digits
2693 no matter what.  And the verdict is@dots{}  Integer powers were more
2694 accurate; in fact, the result was only off by one unit in the
2695 last place.
2697 @cindex Guard digits
2698 Calc does many of its internal calculations to a slightly higher
2699 precision, but it doesn't always bump the precision up enough.
2700 In each case, Calc added about two digits of precision during
2701 its calculation and then rounded back down to 12 digits
2702 afterward.  In one case, it was enough; in the other, it
2703 wasn't.  If you really need @var{x} digits of precision, it
2704 never hurts to do the calculation with a few extra guard digits.
2706 What if we want guard digits but don't want to look at them?
2707 We can set the @dfn{float format}.  Calc supports four major
2708 formats for floating-point numbers, called @dfn{normal},
2709 @dfn{fixed-point}, @dfn{scientific notation}, and @dfn{engineering
2710 notation}.  You get them by pressing @w{@kbd{d n}}, @kbd{d f},
2711 @kbd{d s}, and @kbd{d e}, respectively.  In each case, you can
2712 supply a numeric prefix argument which says how many digits
2713 should be displayed.  As an example, let's put a few numbers
2714 onto the stack and try some different display modes.  First,
2715 use @kbd{M-0 @key{DEL}} to clear the stack, then enter the four
2716 numbers shown here:
2718 @smallexample
2719 @group
2720 4:  12345      4:  12345      4:  12345      4:  12345      4:  12345
2721 3:  12345.     3:  12300.     3:  1.2345e4   3:  1.23e4     3:  12345.000
2722 2:  123.45     2:  123.       2:  1.2345e2   2:  1.23e2     2:  123.450
2723 1:  12.345     1:  12.3       1:  1.2345e1   1:  1.23e1     1:  12.345
2724     .              .              .              .              .
2726    d n          M-3 d n          d s          M-3 d s        M-3 d f
2727 @end group
2728 @end smallexample
2730 @noindent
2731 Notice that when we typed @kbd{M-3 d n}, the numbers were rounded down
2732 to three significant digits, but then when we typed @kbd{d s} all
2733 five significant figures reappeared.  The float format does not
2734 affect how numbers are stored, it only affects how they are
2735 displayed.  Only the current precision governs the actual rounding
2736 of numbers in the Calculator's memory.
2738 Engineering notation, not shown here, is like scientific notation
2739 except the exponent (the power-of-ten part) is always adjusted to be
2740 a multiple of three (as in ``kilo,'' ``micro,'' etc.).  As a result
2741 there will be one, two, or three digits before the decimal point.
2743 Whenever you change a display-related mode, Calc redraws everything
2744 in the stack.  This may be slow if there are many things on the stack,
2745 so Calc allows you to type shift-@kbd{H} before any mode command to
2746 prevent it from updating the stack.  Anything Calc displays after the
2747 mode-changing command will appear in the new format.
2749 @smallexample
2750 @group
2751 4:  12345      4:  12345      4:  12345      4:  12345      4:  12345
2752 3:  12345.000  3:  12345.000  3:  12345.000  3:  1.2345e4   3:  12345.
2753 2:  123.450    2:  123.450    2:  1.2345e1   2:  1.2345e1   2:  123.45
2754 1:  12.345     1:  1.2345e1   1:  1.2345e2   1:  1.2345e2   1:  12.345
2755     .              .              .              .              .
2757     H d s          @key{DEL} U          @key{TAB}            d @key{SPC}          d n
2758 @end group
2759 @end smallexample
2761 @noindent
2762 Here the @kbd{H d s} command changes to scientific notation but without
2763 updating the screen.  Deleting the top stack entry and undoing it back
2764 causes it to show up in the new format; swapping the top two stack
2765 entries reformats both entries.  The @kbd{d @key{SPC}} command refreshes the
2766 whole stack.  The @kbd{d n} command changes back to the normal float
2767 format; since it doesn't have an @kbd{H} prefix, it also updates all
2768 the stack entries to be in @kbd{d n} format.
2770 Notice that the integer @expr{12345} was not affected by any
2771 of the float formats.  Integers are integers, and are always
2772 displayed exactly.
2774 @cindex Large numbers, readability
2775 Large integers have their own problems.  Let's look back at
2776 the result of @kbd{2^3^4}.
2778 @example
2779 2417851639229258349412352
2780 @end example
2782 @noindent
2783 Quick---how many digits does this have?  Try typing @kbd{d g}:
2785 @example
2786 2,417,851,639,229,258,349,412,352
2787 @end example
2789 @noindent
2790 Now how many digits does this have?  It's much easier to tell!
2791 We can actually group digits into clumps of any size.  Some
2792 people prefer @kbd{M-5 d g}:
2794 @example
2795 24178,51639,22925,83494,12352
2796 @end example
2798 Let's see what happens to floating-point numbers when they are grouped.
2799 First, type @kbd{p 25 @key{RET}} to make sure we have enough precision
2800 to get ourselves into trouble.  Now, type @kbd{1e13 /}:
2802 @example
2803 24,17851,63922.9258349412352
2804 @end example
2806 @noindent
2807 The integer part is grouped but the fractional part isn't.  Now try
2808 @kbd{M-- M-5 d g} (that's meta-minus-sign, meta-five):
2810 @example
2811 24,17851,63922.92583,49412,352
2812 @end example
2814 If you find it hard to tell the decimal point from the commas, try
2815 changing the grouping character to a space with @kbd{d , @key{SPC}}:
2817 @example
2818 24 17851 63922.92583 49412 352
2819 @end example
2821 Type @kbd{d , ,} to restore the normal grouping character, then
2822 @kbd{d g} again to turn grouping off.  Also, press @kbd{p 12} to
2823 restore the default precision.
2825 Press @kbd{U} enough times to get the original big integer back.
2826 (Notice that @kbd{U} does not undo each mode-setting command; if
2827 you want to undo a mode-setting command, you have to do it yourself.)
2828 Now, type @kbd{d r 16 @key{RET}}:
2830 @example
2831 16#200000000000000000000
2832 @end example
2834 @noindent
2835 The number is now displayed in @dfn{hexadecimal}, or ``base-16'' form.
2836 Suddenly it looks pretty simple; this should be no surprise, since we
2837 got this number by computing a power of two, and 16 is a power of 2.
2838 In fact, we can use @w{@kbd{d r 2 @key{RET}}} to see it in actual binary
2839 form:
2841 @example
2842 2#1000000000000000000000000000000000000000000000000000000 @dots{}
2843 @end example
2845 @noindent
2846 We don't have enough space here to show all the zeros!  They won't
2847 fit on a typical screen, either, so you will have to use horizontal
2848 scrolling to see them all.  Press @kbd{<} and @kbd{>} to scroll the
2849 stack window left and right by half its width.  Another way to view
2850 something large is to press @kbd{`} (back-quote) to edit the top of
2851 stack in a separate window.  (Press @kbd{C-c C-c} when you are done.)
2853 You can enter non-decimal numbers using the @kbd{#} symbol, too.
2854 Let's see what the hexadecimal number @samp{5FE} looks like in
2855 binary.  Type @kbd{16#5FE} (the letters can be typed in upper or
2856 lower case; they will always appear in upper case).  It will also
2857 help to turn grouping on with @kbd{d g}:
2859 @example
2860 2#101,1111,1110
2861 @end example
2863 Notice that @kbd{d g} groups by fours by default if the display radix
2864 is binary or hexadecimal, but by threes if it is decimal, octal, or any
2865 other radix.
2867 Now let's see that number in decimal; type @kbd{d r 10}:
2869 @example
2870 1,534
2871 @end example
2873 Numbers are not @emph{stored} with any particular radix attached.  They're
2874 just numbers; they can be entered in any radix, and are always displayed
2875 in whatever radix you've chosen with @kbd{d r}.  The current radix applies
2876 to integers, fractions, and floats.
2878 @cindex Roundoff errors, in non-decimal numbers
2879 (@bullet{}) @strong{Exercise 1.}  Your friend Joe tried to enter one-third
2880 as @samp{3#0.1} in @kbd{d r 3} mode with a precision of 12.  He got
2881 @samp{3#0.0222222...} (with 25 2's) in the display.  When he multiplied
2882 that by three, he got @samp{3#0.222222...} instead of the expected
2883 @samp{3#1}.  Next, Joe entered @samp{3#0.2} and, to his great relief,
2884 saw @samp{3#0.2} on the screen.  But when he typed @kbd{2 /}, he got
2885 @samp{3#0.10000001} (some zeros omitted).  What's going on here?
2886 @xref{Modes Answer 1, 1}. (@bullet{})
2888 @cindex Scientific notation, in non-decimal numbers
2889 (@bullet{}) @strong{Exercise 2.}  Scientific notation works in non-decimal
2890 modes in the natural way (the exponent is a power of the radix instead of
2891 a power of ten, although the exponent itself is always written in decimal).
2892 Thus @samp{8#1.23e3 = 8#1230.0}.  Suppose we have the hexadecimal number
2893 @samp{f.e8f} times 16 to the 15th power:  We write @samp{16#f.e8fe15}.
2894 What is wrong with this picture?  What could we write instead that would
2895 work better?  @xref{Modes Answer 2, 2}. (@bullet{})
2897 The @kbd{m} prefix key has another set of modes, relating to the way
2898 Calc interprets your inputs and does computations.  Whereas @kbd{d}-prefix
2899 modes generally affect the way things look, @kbd{m}-prefix modes affect
2900 the way they are actually computed.
2902 The most popular @kbd{m}-prefix mode is the @dfn{angular mode}.  Notice
2903 the @samp{Deg} indicator in the mode line.  This means that if you use
2904 a command that interprets a number as an angle, it will assume the
2905 angle is measured in degrees.  For example,
2907 @smallexample
2908 @group
2909 1:  45         1:  0.707106781187   1:  0.500000000001    1:  0.5
2910     .              .                    .                     .
2912     45             S                    2 ^                   c 1
2913 @end group
2914 @end smallexample
2916 @noindent
2917 The shift-@kbd{S} command computes the sine of an angle.  The sine
2918 of 45 degrees is 
2919 @texline @math{\sqrt{2}/2};
2920 @infoline @expr{sqrt(2)/2}; 
2921 squaring this yields @expr{2/4 = 0.5}.  However, there has been a slight
2922 roundoff error because the representation of 
2923 @texline @math{\sqrt{2}/2}
2924 @infoline @expr{sqrt(2)/2} 
2925 wasn't exact.  The @kbd{c 1} command is a handy way to clean up numbers
2926 in this case; it temporarily reduces the precision by one digit while it
2927 re-rounds the number on the top of the stack.
2929 @cindex Roundoff errors, examples
2930 (@bullet{}) @strong{Exercise 3.}  Your friend Joe computed the sine
2931 of 45 degrees as shown above, then, hoping to avoid an inexact
2932 result, he increased the precision to 16 digits before squaring.
2933 What happened?  @xref{Modes Answer 3, 3}. (@bullet{})
2935 To do this calculation in radians, we would type @kbd{m r} first.
2936 (The indicator changes to @samp{Rad}.)  45 degrees corresponds to
2937 @cpiover{4} radians.  To get @cpi{}, press the @kbd{P} key.  (Once
2938 again, this is a shifted capital @kbd{P}.  Remember, unshifted
2939 @kbd{p} sets the precision.)
2941 @smallexample
2942 @group
2943 1:  3.14159265359   1:  0.785398163398   1:  0.707106781187
2944     .                   .                .
2946     P                   4 /       m r    S
2947 @end group
2948 @end smallexample
2950 Likewise, inverse trigonometric functions generate results in
2951 either radians or degrees, depending on the current angular mode.
2953 @smallexample
2954 @group
2955 1:  0.707106781187   1:  0.785398163398   1:  45.
2956     .                    .                    .
2958     .5 Q        m r      I S        m d       U I S
2959 @end group
2960 @end smallexample
2962 @noindent
2963 Here we compute the Inverse Sine of 
2964 @texline @math{\sqrt{0.5}},
2965 @infoline @expr{sqrt(0.5)}, 
2966 first in radians, then in degrees.
2968 Use @kbd{c d} and @kbd{c r} to convert a number from radians to degrees
2969 and vice-versa.
2971 @smallexample
2972 @group
2973 1:  45         1:  0.785398163397     1:  45.
2974     .              .                      .
2976     45             c r                    c d
2977 @end group
2978 @end smallexample
2980 Another interesting mode is @dfn{Fraction mode}.  Normally,
2981 dividing two integers produces a floating-point result if the
2982 quotient can't be expressed as an exact integer.  Fraction mode
2983 causes integer division to produce a fraction, i.e., a rational
2984 number, instead.
2986 @smallexample
2987 @group
2988 2:  12         1:  1.33333333333    1:  4:3
2989 1:  9              .                    .
2990     .
2992  12 @key{RET} 9          /          m f       U /      m f
2993 @end group
2994 @end smallexample
2996 @noindent
2997 In the first case, we get an approximate floating-point result.
2998 In the second case, we get an exact fractional result (four-thirds).
3000 You can enter a fraction at any time using @kbd{:} notation.
3001 (Calc uses @kbd{:} instead of @kbd{/} as the fraction separator
3002 because @kbd{/} is already used to divide the top two stack
3003 elements.)  Calculations involving fractions will always
3004 produce exact fractional results; Fraction mode only says
3005 what to do when dividing two integers.
3007 @cindex Fractions vs. floats
3008 @cindex Floats vs. fractions
3009 (@bullet{}) @strong{Exercise 4.}  If fractional arithmetic is exact,
3010 why would you ever use floating-point numbers instead?
3011 @xref{Modes Answer 4, 4}. (@bullet{})
3013 Typing @kbd{m f} doesn't change any existing values in the stack.
3014 In the above example, we had to Undo the division and do it over
3015 again when we changed to Fraction mode.  But if you use the
3016 evaluates-to operator you can get commands like @kbd{m f} to
3017 recompute for you.
3019 @smallexample
3020 @group
3021 1:  12 / 9 => 1.33333333333    1:  12 / 9 => 1.333    1:  12 / 9 => 4:3
3022     .                              .                      .
3024    ' 12/9 => @key{RET}                   p 4 @key{RET}                m f
3025 @end group
3026 @end smallexample
3028 @noindent
3029 In this example, the righthand side of the @samp{=>} operator
3030 on the stack is recomputed when we change the precision, then
3031 again when we change to Fraction mode.  All @samp{=>} expressions
3032 on the stack are recomputed every time you change any mode that
3033 might affect their values.
3035 @node Arithmetic Tutorial, Vector/Matrix Tutorial, Basic Tutorial, Tutorial
3036 @section Arithmetic Tutorial
3038 @noindent
3039 In this section, we explore the arithmetic and scientific functions
3040 available in the Calculator.
3042 The standard arithmetic commands are @kbd{+}, @kbd{-}, @kbd{*}, @kbd{/},
3043 and @kbd{^}.  Each normally takes two numbers from the top of the stack
3044 and pushes back a result.  The @kbd{n} and @kbd{&} keys perform
3045 change-sign and reciprocal operations, respectively.
3047 @smallexample
3048 @group
3049 1:  5          1:  0.2        1:  5.         1:  -5.        1:  5.
3050     .              .              .              .              .
3052     5              &              &              n              n
3053 @end group
3054 @end smallexample
3056 @cindex Binary operators
3057 You can apply a ``binary operator'' like @kbd{+} across any number of
3058 stack entries by giving it a numeric prefix.  You can also apply it
3059 pairwise to several stack elements along with the top one if you use
3060 a negative prefix.
3062 @smallexample
3063 @group
3064 3:  2          1:  9          3:  2          4:  2          3:  12
3065 2:  3              .          2:  3          3:  3          2:  13
3066 1:  4                         1:  4          2:  4          1:  14
3067     .                             .          1:  10             .
3068                                                  .
3070 2 @key{RET} 3 @key{RET} 4     M-3 +           U              10          M-- M-3 +
3071 @end group
3072 @end smallexample
3074 @cindex Unary operators
3075 You can apply a ``unary operator'' like @kbd{&} to the top @var{n}
3076 stack entries with a numeric prefix, too.
3078 @smallexample
3079 @group
3080 3:  2          3:  0.5                3:  0.5
3081 2:  3          2:  0.333333333333     2:  3.
3082 1:  4          1:  0.25               1:  4.
3083     .              .                      .
3085 2 @key{RET} 3 @key{RET} 4      M-3 &                  M-2 &
3086 @end group
3087 @end smallexample
3089 Notice that the results here are left in floating-point form.
3090 We can convert them back to integers by pressing @kbd{F}, the
3091 ``floor'' function.  This function rounds down to the next lower
3092 integer.  There is also @kbd{R}, which rounds to the nearest
3093 integer.
3095 @smallexample
3096 @group
3097 7:  2.         7:  2          7:  2
3098 6:  2.4        6:  2          6:  2
3099 5:  2.5        5:  2          5:  3
3100 4:  2.6        4:  2          4:  3
3101 3:  -2.        3:  -2         3:  -2
3102 2:  -2.4       2:  -3         2:  -2
3103 1:  -2.6       1:  -3         1:  -3
3104     .              .              .
3106                   M-7 F        U M-7 R
3107 @end group
3108 @end smallexample
3110 Since dividing-and-flooring (i.e., ``integer quotient'') is such a
3111 common operation, Calc provides a special command for that purpose, the
3112 backslash @kbd{\}.  Another common arithmetic operator is @kbd{%}, which
3113 computes the remainder that would arise from a @kbd{\} operation, i.e.,
3114 the ``modulo'' of two numbers.  For example,
3116 @smallexample
3117 @group
3118 2:  1234       1:  12         2:  1234       1:  34
3119 1:  100            .          1:  100            .
3120     .                             .
3122 1234 @key{RET} 100       \              U              %
3123 @end group
3124 @end smallexample
3126 These commands actually work for any real numbers, not just integers.
3128 @smallexample
3129 @group
3130 2:  3.1415     1:  3          2:  3.1415     1:  0.1415
3131 1:  1              .          1:  1              .
3132     .                             .
3134 3.1415 @key{RET} 1       \              U              %
3135 @end group
3136 @end smallexample
3138 (@bullet{}) @strong{Exercise 1.}  The @kbd{\} command would appear to be a
3139 frill, since you could always do the same thing with @kbd{/ F}.  Think
3140 of a situation where this is not true---@kbd{/ F} would be inadequate.
3141 Now think of a way you could get around the problem if Calc didn't
3142 provide a @kbd{\} command.  @xref{Arithmetic Answer 1, 1}. (@bullet{})
3144 We've already seen the @kbd{Q} (square root) and @kbd{S} (sine)
3145 commands.  Other commands along those lines are @kbd{C} (cosine),
3146 @kbd{T} (tangent), @kbd{E} (@expr{e^x}) and @kbd{L} (natural
3147 logarithm).  These can be modified by the @kbd{I} (inverse) and
3148 @kbd{H} (hyperbolic) prefix keys.
3150 Let's compute the sine and cosine of an angle, and verify the
3151 identity 
3152 @texline @math{\sin^2x + \cos^2x = 1}.
3153 @infoline @expr{sin(x)^2 + cos(x)^2 = 1}.  
3154 We'll arbitrarily pick @mathit{-64} degrees as a good value for @expr{x}.
3155 With the angular mode set to degrees (type @w{@kbd{m d}}), do:
3157 @smallexample
3158 @group
3159 2:  -64        2:  -64        2:  -0.89879   2:  -0.89879   1:  1.
3160 1:  -64        1:  -0.89879   1:  -64        1:  0.43837        .
3161     .              .              .              .
3163  64 n @key{RET} @key{RET}      S              @key{TAB}            C              f h
3164 @end group
3165 @end smallexample
3167 @noindent
3168 (For brevity, we're showing only five digits of the results here.
3169 You can of course do these calculations to any precision you like.)
3171 Remember, @kbd{f h} is the @code{calc-hypot}, or square-root of sum
3172 of squares, command.
3174 Another identity is 
3175 @texline @math{\displaystyle\tan x = {\sin x \over \cos x}}.
3176 @infoline @expr{tan(x) = sin(x) / cos(x)}.
3177 @smallexample
3178 @group
3180 2:  -0.89879   1:  -2.0503    1:  -64.
3181 1:  0.43837        .              .
3182     .
3184     U              /              I T
3185 @end group
3186 @end smallexample
3188 A physical interpretation of this calculation is that if you move
3189 @expr{0.89879} units downward and @expr{0.43837} units to the right,
3190 your direction of motion is @mathit{-64} degrees from horizontal.  Suppose
3191 we move in the opposite direction, up and to the left:
3193 @smallexample
3194 @group
3195 2:  -0.89879   2:  0.89879    1:  -2.0503    1:  -64.
3196 1:  0.43837    1:  -0.43837       .              .
3197     .              .
3199     U U            M-2 n          /              I T
3200 @end group
3201 @end smallexample
3203 @noindent
3204 How can the angle be the same?  The answer is that the @kbd{/} operation
3205 loses information about the signs of its inputs.  Because the quotient
3206 is negative, we know exactly one of the inputs was negative, but we
3207 can't tell which one.  There is an @kbd{f T} [@code{arctan2}] function which
3208 computes the inverse tangent of the quotient of a pair of numbers.
3209 Since you feed it the two original numbers, it has enough information
3210 to give you a full 360-degree answer.
3212 @smallexample
3213 @group
3214 2:  0.89879    1:  116.       3:  116.       2:  116.       1:  180.
3215 1:  -0.43837       .          2:  -0.89879   1:  -64.           .
3216     .                         1:  0.43837        .
3217                                   .
3219     U U            f T         M-@key{RET} M-2 n       f T            -
3220 @end group
3221 @end smallexample
3223 @noindent
3224 The resulting angles differ by 180 degrees; in other words, they
3225 point in opposite directions, just as we would expect.
3227 The @key{META}-@key{RET} we used in the third step is the
3228 ``last-arguments'' command.  It is sort of like Undo, except that it
3229 restores the arguments of the last command to the stack without removing
3230 the command's result.  It is useful in situations like this one,
3231 where we need to do several operations on the same inputs.  We could
3232 have accomplished the same thing by using @kbd{M-2 @key{RET}} to duplicate
3233 the top two stack elements right after the @kbd{U U}, then a pair of
3234 @kbd{M-@key{TAB}} commands to cycle the 116 up around the duplicates.
3236 A similar identity is supposed to hold for hyperbolic sines and cosines,
3237 except that it is the @emph{difference}
3238 @texline @math{\cosh^2x - \sinh^2x}
3239 @infoline @expr{cosh(x)^2 - sinh(x)^2} 
3240 that always equals one.  Let's try to verify this identity.
3242 @smallexample
3243 @group
3244 2:  -64        2:  -64        2:  -64        2:  9.7192e54  2:  9.7192e54
3245 1:  -64        1:  -3.1175e27 1:  9.7192e54  1:  -64        1:  9.7192e54
3246     .              .              .              .              .
3248  64 n @key{RET} @key{RET}      H C            2 ^            @key{TAB}            H S 2 ^
3249 @end group
3250 @end smallexample
3252 @noindent
3253 @cindex Roundoff errors, examples
3254 Something's obviously wrong, because when we subtract these numbers
3255 the answer will clearly be zero!  But if you think about it, if these
3256 numbers @emph{did} differ by one, it would be in the 55th decimal
3257 place.  The difference we seek has been lost entirely to roundoff
3258 error.
3260 We could verify this hypothesis by doing the actual calculation with,
3261 say, 60 decimal places of precision.  This will be slow, but not
3262 enormously so.  Try it if you wish; sure enough, the answer is
3263 0.99999, reasonably close to 1.
3265 Of course, a more reasonable way to verify the identity is to use
3266 a more reasonable value for @expr{x}!
3268 @cindex Common logarithm
3269 Some Calculator commands use the Hyperbolic prefix for other purposes.
3270 The logarithm and exponential functions, for example, work to the base
3271 @expr{e} normally but use base-10 instead if you use the Hyperbolic
3272 prefix.
3274 @smallexample
3275 @group
3276 1:  1000       1:  6.9077     1:  1000       1:  3
3277     .              .              .              .
3279     1000           L              U              H L
3280 @end group
3281 @end smallexample
3283 @noindent
3284 First, we mistakenly compute a natural logarithm.  Then we undo
3285 and compute a common logarithm instead.
3287 The @kbd{B} key computes a general base-@var{b} logarithm for any
3288 value of @var{b}.
3290 @smallexample
3291 @group
3292 2:  1000       1:  3          1:  1000.      2:  1000.      1:  6.9077
3293 1:  10             .              .          1:  2.71828        .
3294     .                                            .
3296  1000 @key{RET} 10       B              H E            H P            B
3297 @end group
3298 @end smallexample
3300 @noindent
3301 Here we first use @kbd{B} to compute the base-10 logarithm, then use
3302 the ``hyperbolic'' exponential as a cheap hack to recover the number
3303 1000, then use @kbd{B} again to compute the natural logarithm.  Note
3304 that @kbd{P} with the hyperbolic prefix pushes the constant @expr{e}
3305 onto the stack.
3307 You may have noticed that both times we took the base-10 logarithm
3308 of 1000, we got an exact integer result.  Calc always tries to give
3309 an exact rational result for calculations involving rational numbers
3310 where possible.  But when we used @kbd{H E}, the result was a
3311 floating-point number for no apparent reason.  In fact, if we had
3312 computed @kbd{10 @key{RET} 3 ^} we @emph{would} have gotten an
3313 exact integer 1000.  But the @kbd{H E} command is rigged to generate
3314 a floating-point result all of the time so that @kbd{1000 H E} will
3315 not waste time computing a thousand-digit integer when all you
3316 probably wanted was @samp{1e1000}.
3318 (@bullet{}) @strong{Exercise 2.}  Find a pair of integer inputs to
3319 the @kbd{B} command for which Calc could find an exact rational
3320 result but doesn't.  @xref{Arithmetic Answer 2, 2}. (@bullet{})
3322 The Calculator also has a set of functions relating to combinatorics
3323 and statistics.  You may be familiar with the @dfn{factorial} function,
3324 which computes the product of all the integers up to a given number.
3326 @smallexample
3327 @group
3328 1:  100        1:  93326215443...    1:  100.       1:  9.3326e157
3329     .              .                     .              .
3331     100            !                     U c f          !
3332 @end group
3333 @end smallexample
3335 @noindent
3336 Recall, the @kbd{c f} command converts the integer or fraction at the
3337 top of the stack to floating-point format.  If you take the factorial
3338 of a floating-point number, you get a floating-point result
3339 accurate to the current precision.  But if you give @kbd{!} an
3340 exact integer, you get an exact integer result (158 digits long
3341 in this case).
3343 If you take the factorial of a non-integer, Calc uses a generalized
3344 factorial function defined in terms of Euler's Gamma function
3345 @texline @math{\Gamma(n)}
3346 @infoline @expr{gamma(n)}
3347 (which is itself available as the @kbd{f g} command).
3349 @smallexample
3350 @group
3351 3:  4.         3:  24.               1:  5.5        1:  52.342777847
3352 2:  4.5        2:  52.3427777847         .              .
3353 1:  5.         1:  120.
3354     .              .
3356                    M-3 !              M-0 @key{DEL} 5.5       f g
3357 @end group
3358 @end smallexample
3360 @noindent
3361 Here we verify the identity 
3362 @texline @math{n! = \Gamma(n+1)}.
3363 @infoline @expr{@var{n}!@: = gamma(@var{n}+1)}.
3365 The binomial coefficient @var{n}-choose-@var{m}
3366 @texline or @math{\displaystyle {n \choose m}}
3367 is defined by
3368 @texline @math{\displaystyle {n! \over m! \, (n-m)!}}
3369 @infoline @expr{n!@: / m!@: (n-m)!}
3370 for all reals @expr{n} and @expr{m}.  The intermediate results in this
3371 formula can become quite large even if the final result is small; the
3372 @kbd{k c} command computes a binomial coefficient in a way that avoids
3373 large intermediate values.
3375 The @kbd{k} prefix key defines several common functions out of
3376 combinatorics and number theory.  Here we compute the binomial
3377 coefficient 30-choose-20, then determine its prime factorization.
3379 @smallexample
3380 @group
3381 2:  30         1:  30045015   1:  [3, 3, 5, 7, 11, 13, 23, 29]
3382 1:  20             .              .
3383     .
3385  30 @key{RET} 20         k c            k f
3386 @end group
3387 @end smallexample
3389 @noindent
3390 You can verify these prime factors by using @kbd{v u} to ``unpack''
3391 this vector into 8 separate stack entries, then @kbd{M-8 *} to
3392 multiply them back together.  The result is the original number,
3393 30045015.
3395 @cindex Hash tables
3396 Suppose a program you are writing needs a hash table with at least
3397 10000 entries.  It's best to use a prime number as the actual size
3398 of a hash table.  Calc can compute the next prime number after 10000:
3400 @smallexample
3401 @group
3402 1:  10000      1:  10007      1:  9973
3403     .              .              .
3405     10000          k n            I k n
3406 @end group
3407 @end smallexample
3409 @noindent
3410 Just for kicks we've also computed the next prime @emph{less} than
3411 10000.
3413 @c [fix-ref Financial Functions]
3414 @xref{Financial Functions}, for a description of the Calculator
3415 commands that deal with business and financial calculations (functions
3416 like @code{pv}, @code{rate}, and @code{sln}).
3418 @c [fix-ref Binary Number Functions]
3419 @xref{Binary Functions}, to read about the commands for operating
3420 on binary numbers (like @code{and}, @code{xor}, and @code{lsh}).
3422 @node Vector/Matrix Tutorial, Types Tutorial, Arithmetic Tutorial, Tutorial
3423 @section Vector/Matrix Tutorial
3425 @noindent
3426 A @dfn{vector} is a list of numbers or other Calc data objects.
3427 Calc provides a large set of commands that operate on vectors.  Some
3428 are familiar operations from vector analysis.  Others simply treat
3429 a vector as a list of objects.
3431 @menu
3432 * Vector Analysis Tutorial::
3433 * Matrix Tutorial::
3434 * List Tutorial::
3435 @end menu
3437 @node Vector Analysis Tutorial, Matrix Tutorial, Vector/Matrix Tutorial, Vector/Matrix Tutorial
3438 @subsection Vector Analysis
3440 @noindent
3441 If you add two vectors, the result is a vector of the sums of the
3442 elements, taken pairwise.
3444 @smallexample
3445 @group
3446 1:  [1, 2, 3]     2:  [1, 2, 3]     1:  [8, 8, 3]
3447     .             1:  [7, 6, 0]         .
3448                       .
3450     [1,2,3]  s 1      [7 6 0]  s 2      +
3451 @end group
3452 @end smallexample
3454 @noindent
3455 Note that we can separate the vector elements with either commas or
3456 spaces.  This is true whether we are using incomplete vectors or
3457 algebraic entry.  The @kbd{s 1} and @kbd{s 2} commands save these
3458 vectors so we can easily reuse them later.
3460 If you multiply two vectors, the result is the sum of the products
3461 of the elements taken pairwise.  This is called the @dfn{dot product}
3462 of the vectors.
3464 @smallexample
3465 @group
3466 2:  [1, 2, 3]     1:  19
3467 1:  [7, 6, 0]         .
3468     .
3470     r 1 r 2           *
3471 @end group
3472 @end smallexample
3474 @cindex Dot product
3475 The dot product of two vectors is equal to the product of their
3476 lengths times the cosine of the angle between them.  (Here the vector
3477 is interpreted as a line from the origin @expr{(0,0,0)} to the
3478 specified point in three-dimensional space.)  The @kbd{A}
3479 (absolute value) command can be used to compute the length of a
3480 vector.
3482 @smallexample
3483 @group
3484 3:  19            3:  19          1:  0.550782    1:  56.579
3485 2:  [1, 2, 3]     2:  3.741657        .               .
3486 1:  [7, 6, 0]     1:  9.219544
3487     .                 .
3489     M-@key{RET}             M-2 A          * /             I C
3490 @end group
3491 @end smallexample
3493 @noindent
3494 First we recall the arguments to the dot product command, then
3495 we compute the absolute values of the top two stack entries to
3496 obtain the lengths of the vectors, then we divide the dot product
3497 by the product of the lengths to get the cosine of the angle.
3498 The inverse cosine finds that the angle between the vectors
3499 is about 56 degrees.
3501 @cindex Cross product
3502 @cindex Perpendicular vectors
3503 The @dfn{cross product} of two vectors is a vector whose length
3504 is the product of the lengths of the inputs times the sine of the
3505 angle between them, and whose direction is perpendicular to both
3506 input vectors.  Unlike the dot product, the cross product is
3507 defined only for three-dimensional vectors.  Let's double-check
3508 our computation of the angle using the cross product.
3510 @smallexample
3511 @group
3512 2:  [1, 2, 3]  3:  [-18, 21, -8]  1:  [-0.52, 0.61, -0.23]  1:  56.579
3513 1:  [7, 6, 0]  2:  [1, 2, 3]          .                         .
3514     .          1:  [7, 6, 0]
3515                    .
3517     r 1 r 2        V C  s 3  M-@key{RET}    M-2 A * /                 A I S
3518 @end group
3519 @end smallexample
3521 @noindent
3522 First we recall the original vectors and compute their cross product,
3523 which we also store for later reference.  Now we divide the vector
3524 by the product of the lengths of the original vectors.  The length of
3525 this vector should be the sine of the angle; sure enough, it is!
3527 @c [fix-ref General Mode Commands]
3528 Vector-related commands generally begin with the @kbd{v} prefix key.
3529 Some are uppercase letters and some are lowercase.  To make it easier
3530 to type these commands, the shift-@kbd{V} prefix key acts the same as
3531 the @kbd{v} key.  (@xref{General Mode Commands}, for a way to make all
3532 prefix keys have this property.)
3534 If we take the dot product of two perpendicular vectors we expect
3535 to get zero, since the cosine of 90 degrees is zero.  Let's check
3536 that the cross product is indeed perpendicular to both inputs:
3538 @smallexample
3539 @group
3540 2:  [1, 2, 3]      1:  0          2:  [7, 6, 0]      1:  0
3541 1:  [-18, 21, -8]      .          1:  [-18, 21, -8]      .
3542     .                                 .
3544     r 1 r 3            *          @key{DEL} r 2 r 3            *
3545 @end group
3546 @end smallexample
3548 @cindex Normalizing a vector
3549 @cindex Unit vectors
3550 (@bullet{}) @strong{Exercise 1.}  Given a vector on the top of the
3551 stack, what keystrokes would you use to @dfn{normalize} the
3552 vector, i.e., to reduce its length to one without changing its
3553 direction?  @xref{Vector Answer 1, 1}. (@bullet{})
3555 (@bullet{}) @strong{Exercise 2.}  Suppose a certain particle can be
3556 at any of several positions along a ruler.  You have a list of
3557 those positions in the form of a vector, and another list of the
3558 probabilities for the particle to be at the corresponding positions.
3559 Find the average position of the particle.
3560 @xref{Vector Answer 2, 2}. (@bullet{})
3562 @node Matrix Tutorial, List Tutorial, Vector Analysis Tutorial, Vector/Matrix Tutorial
3563 @subsection Matrices
3565 @noindent
3566 A @dfn{matrix} is just a vector of vectors, all the same length.
3567 This means you can enter a matrix using nested brackets.  You can
3568 also use the semicolon character to enter a matrix.  We'll show
3569 both methods here:
3571 @smallexample
3572 @group
3573 1:  [ [ 1, 2, 3 ]             1:  [ [ 1, 2, 3 ]
3574       [ 4, 5, 6 ] ]                 [ 4, 5, 6 ] ]
3575     .                             .
3577   [[1 2 3] [4 5 6]]             ' [1 2 3; 4 5 6] @key{RET}
3578 @end group
3579 @end smallexample
3581 @noindent
3582 We'll be using this matrix again, so type @kbd{s 4} to save it now.
3584 Note that semicolons work with incomplete vectors, but they work
3585 better in algebraic entry.  That's why we use the apostrophe in
3586 the second example.
3588 When two matrices are multiplied, the lefthand matrix must have
3589 the same number of columns as the righthand matrix has rows.
3590 Row @expr{i}, column @expr{j} of the result is effectively the
3591 dot product of row @expr{i} of the left matrix by column @expr{j}
3592 of the right matrix.
3594 If we try to duplicate this matrix and multiply it by itself,
3595 the dimensions are wrong and the multiplication cannot take place:
3597 @smallexample
3598 @group
3599 1:  [ [ 1, 2, 3 ]   * [ [ 1, 2, 3 ]
3600       [ 4, 5, 6 ] ]     [ 4, 5, 6 ] ]
3601     .
3603     @key{RET} *
3604 @end group
3605 @end smallexample
3607 @noindent
3608 Though rather hard to read, this is a formula which shows the product
3609 of two matrices.  The @samp{*} function, having invalid arguments, has
3610 been left in symbolic form.
3612 We can multiply the matrices if we @dfn{transpose} one of them first.
3614 @smallexample
3615 @group
3616 2:  [ [ 1, 2, 3 ]       1:  [ [ 14, 32 ]      1:  [ [ 17, 22, 27 ]
3617       [ 4, 5, 6 ] ]           [ 32, 77 ] ]          [ 22, 29, 36 ]
3618 1:  [ [ 1, 4 ]              .                       [ 27, 36, 45 ] ]
3619       [ 2, 5 ]                                    .
3620       [ 3, 6 ] ]
3621     .
3623     U v t                   *                     U @key{TAB} *
3624 @end group
3625 @end smallexample
3627 Matrix multiplication is not commutative; indeed, switching the
3628 order of the operands can even change the dimensions of the result
3629 matrix, as happened here!
3631 If you multiply a plain vector by a matrix, it is treated as a
3632 single row or column depending on which side of the matrix it is
3633 on.  The result is a plain vector which should also be interpreted
3634 as a row or column as appropriate.
3636 @smallexample
3637 @group
3638 2:  [ [ 1, 2, 3 ]      1:  [14, 32]
3639       [ 4, 5, 6 ] ]        .
3640 1:  [1, 2, 3]
3641     .
3643     r 4 r 1                *
3644 @end group
3645 @end smallexample
3647 Multiplying in the other order wouldn't work because the number of
3648 rows in the matrix is different from the number of elements in the
3649 vector.
3651 (@bullet{}) @strong{Exercise 1.}  Use @samp{*} to sum along the rows
3652 of the above 
3653 @texline @math{2\times3}
3654 @infoline 2x3 
3655 matrix to get @expr{[6, 15]}.  Now use @samp{*} to sum along the columns
3656 to get @expr{[5, 7, 9]}. 
3657 @xref{Matrix Answer 1, 1}. (@bullet{})
3659 @cindex Identity matrix
3660 An @dfn{identity matrix} is a square matrix with ones along the
3661 diagonal and zeros elsewhere.  It has the property that multiplication
3662 by an identity matrix, on the left or on the right, always produces
3663 the original matrix.
3665 @smallexample
3666 @group
3667 1:  [ [ 1, 2, 3 ]      2:  [ [ 1, 2, 3 ]      1:  [ [ 1, 2, 3 ]
3668       [ 4, 5, 6 ] ]          [ 4, 5, 6 ] ]          [ 4, 5, 6 ] ]
3669     .                  1:  [ [ 1, 0, 0 ]          .
3670                              [ 0, 1, 0 ]
3671                              [ 0, 0, 1 ] ]
3672                            .
3674     r 4                    v i 3 @key{RET}              *
3675 @end group
3676 @end smallexample
3678 If a matrix is square, it is often possible to find its @dfn{inverse},
3679 that is, a matrix which, when multiplied by the original matrix, yields
3680 an identity matrix.  The @kbd{&} (reciprocal) key also computes the
3681 inverse of a matrix.
3683 @smallexample
3684 @group
3685 1:  [ [ 1, 2, 3 ]      1:  [ [   -2.4,     1.2,   -0.2 ]
3686       [ 4, 5, 6 ]            [    2.8,    -1.4,    0.4 ]
3687       [ 7, 6, 0 ] ]          [ -0.73333, 0.53333, -0.2 ] ]
3688     .                      .
3690     r 4 r 2 |  s 5         &
3691 @end group
3692 @end smallexample
3694 @noindent
3695 The vertical bar @kbd{|} @dfn{concatenates} numbers, vectors, and
3696 matrices together.  Here we have used it to add a new row onto
3697 our matrix to make it square.
3699 We can multiply these two matrices in either order to get an identity.
3701 @smallexample
3702 @group
3703 1:  [ [ 1., 0., 0. ]      1:  [ [ 1., 0., 0. ]
3704       [ 0., 1., 0. ]            [ 0., 1., 0. ]
3705       [ 0., 0., 1. ] ]          [ 0., 0., 1. ] ]
3706     .                         .
3708     M-@key{RET}  *                  U @key{TAB} *
3709 @end group
3710 @end smallexample
3712 @cindex Systems of linear equations
3713 @cindex Linear equations, systems of
3714 Matrix inverses are related to systems of linear equations in algebra.
3715 Suppose we had the following set of equations:
3717 @ifinfo
3718 @group
3719 @example
3720     a + 2b + 3c = 6
3721    4a + 5b + 6c = 2
3722    7a + 6b      = 3
3723 @end example
3724 @end group
3725 @end ifinfo
3726 @tex
3727 \turnoffactive
3728 \beforedisplayh
3729 $$ \openup1\jot \tabskip=0pt plus1fil
3730 \halign to\displaywidth{\tabskip=0pt
3731    $\hfil#$&$\hfil{}#{}$&
3732    $\hfil#$&$\hfil{}#{}$&
3733    $\hfil#$&${}#\hfil$\tabskip=0pt plus1fil\cr
3734   a&+&2b&+&3c&=6 \cr
3735  4a&+&5b&+&6c&=2 \cr
3736  7a&+&6b& &  &=3 \cr}
3738 \afterdisplayh
3739 @end tex
3741 @noindent
3742 This can be cast into the matrix equation,
3744 @ifinfo
3745 @group
3746 @example
3747    [ [ 1, 2, 3 ]     [ [ a ]     [ [ 6 ]
3748      [ 4, 5, 6 ]   *   [ b ]   =   [ 2 ]
3749      [ 7, 6, 0 ] ]     [ c ] ]     [ 3 ] ]
3750 @end example
3751 @end group
3752 @end ifinfo
3753 @tex
3754 \turnoffactive
3755 \beforedisplay
3756 $$ \pmatrix{ 1 & 2 & 3 \cr 4 & 5 & 6 \cr 7 & 6 & 0 }
3757    \times
3758    \pmatrix{ a \cr b \cr c } = \pmatrix{ 6 \cr 2 \cr 3 }
3760 \afterdisplay
3761 @end tex
3763 We can solve this system of equations by multiplying both sides by the
3764 inverse of the matrix.  Calc can do this all in one step:
3766 @smallexample
3767 @group
3768 2:  [6, 2, 3]          1:  [-12.6, 15.2, -3.93333]
3769 1:  [ [ 1, 2, 3 ]          .
3770       [ 4, 5, 6 ]
3771       [ 7, 6, 0 ] ]
3772     .
3774     [6,2,3] r 5            /
3775 @end group
3776 @end smallexample
3778 @noindent
3779 The result is the @expr{[a, b, c]} vector that solves the equations.
3780 (Dividing by a square matrix is equivalent to multiplying by its
3781 inverse.)
3783 Let's verify this solution:
3785 @smallexample
3786 @group
3787 2:  [ [ 1, 2, 3 ]                1:  [6., 2., 3.]
3788       [ 4, 5, 6 ]                    .
3789       [ 7, 6, 0 ] ]
3790 1:  [-12.6, 15.2, -3.93333]
3791     .
3793     r 5  @key{TAB}                         *
3794 @end group
3795 @end smallexample
3797 @noindent
3798 Note that we had to be careful about the order in which we multiplied
3799 the matrix and vector.  If we multiplied in the other order, Calc would
3800 assume the vector was a row vector in order to make the dimensions
3801 come out right, and the answer would be incorrect.  If you
3802 don't feel safe letting Calc take either interpretation of your
3803 vectors, use explicit 
3804 @texline @math{N\times1}
3805 @infoline Nx1
3807 @texline @math{1\times N}
3808 @infoline 1xN
3809 matrices instead.  In this case, you would enter the original column
3810 vector as @samp{[[6], [2], [3]]} or @samp{[6; 2; 3]}.
3812 (@bullet{}) @strong{Exercise 2.}  Algebraic entry allows you to make
3813 vectors and matrices that include variables.  Solve the following
3814 system of equations to get expressions for @expr{x} and @expr{y}
3815 in terms of @expr{a} and @expr{b}.
3817 @ifinfo
3818 @group
3819 @example
3820    x + a y = 6
3821    x + b y = 10
3822 @end example
3823 @end group
3824 @end ifinfo
3825 @tex
3826 \turnoffactive
3827 \beforedisplay
3828 $$ \eqalign{ x &+ a y = 6 \cr
3829              x &+ b y = 10}
3831 \afterdisplay
3832 @end tex
3834 @noindent
3835 @xref{Matrix Answer 2, 2}. (@bullet{})
3837 @cindex Least-squares for over-determined systems
3838 @cindex Over-determined systems of equations
3839 (@bullet{}) @strong{Exercise 3.}  A system of equations is ``over-determined''
3840 if it has more equations than variables.  It is often the case that
3841 there are no values for the variables that will satisfy all the
3842 equations at once, but it is still useful to find a set of values
3843 which ``nearly'' satisfy all the equations.  In terms of matrix equations,
3844 you can't solve @expr{A X = B} directly because the matrix @expr{A}
3845 is not square for an over-determined system.  Matrix inversion works
3846 only for square matrices.  One common trick is to multiply both sides
3847 on the left by the transpose of @expr{A}:
3848 @ifinfo
3849 @samp{trn(A)*A*X = trn(A)*B}.
3850 @end ifinfo
3851 @tex
3852 \turnoffactive
3853 $A^T A \, X = A^T B$, where $A^T$ is the transpose \samp{trn(A)}.
3854 @end tex
3855 Now 
3856 @texline @math{A^T A}
3857 @infoline @expr{trn(A)*A} 
3858 is a square matrix so a solution is possible.  It turns out that the
3859 @expr{X} vector you compute in this way will be a ``least-squares''
3860 solution, which can be regarded as the ``closest'' solution to the set
3861 of equations.  Use Calc to solve the following over-determined
3862 system:
3864 @ifinfo
3865 @group
3866 @example
3867     a + 2b + 3c = 6
3868    4a + 5b + 6c = 2
3869    7a + 6b      = 3
3870    2a + 4b + 6c = 11
3871 @end example
3872 @end group
3873 @end ifinfo
3874 @tex
3875 \turnoffactive
3876 \beforedisplayh
3877 $$ \openup1\jot \tabskip=0pt plus1fil
3878 \halign to\displaywidth{\tabskip=0pt
3879    $\hfil#$&$\hfil{}#{}$&
3880    $\hfil#$&$\hfil{}#{}$&
3881    $\hfil#$&${}#\hfil$\tabskip=0pt plus1fil\cr
3882   a&+&2b&+&3c&=6 \cr
3883  4a&+&5b&+&6c&=2 \cr
3884  7a&+&6b& &  &=3 \cr
3885  2a&+&4b&+&6c&=11 \cr}
3887 \afterdisplayh
3888 @end tex
3890 @noindent
3891 @xref{Matrix Answer 3, 3}. (@bullet{})
3893 @node List Tutorial, , Matrix Tutorial, Vector/Matrix Tutorial
3894 @subsection Vectors as Lists
3896 @noindent
3897 @cindex Lists
3898 Although Calc has a number of features for manipulating vectors and
3899 matrices as mathematical objects, you can also treat vectors as
3900 simple lists of values.  For example, we saw that the @kbd{k f}
3901 command returns a vector which is a list of the prime factors of a
3902 number.
3904 You can pack and unpack stack entries into vectors:
3906 @smallexample
3907 @group
3908 3:  10         1:  [10, 20, 30]     3:  10
3909 2:  20             .                2:  20
3910 1:  30                              1:  30
3911     .                                   .
3913                    M-3 v p              v u
3914 @end group
3915 @end smallexample
3917 You can also build vectors out of consecutive integers, or out
3918 of many copies of a given value:
3920 @smallexample
3921 @group
3922 1:  [1, 2, 3, 4]    2:  [1, 2, 3, 4]    2:  [1, 2, 3, 4]
3923     .               1:  17              1:  [17, 17, 17, 17]
3924                         .                   .
3926     v x 4 @key{RET}           17                  v b 4 @key{RET}
3927 @end group
3928 @end smallexample
3930 You can apply an operator to every element of a vector using the
3931 @dfn{map} command.
3933 @smallexample
3934 @group
3935 1:  [17, 34, 51, 68]   1:  [289, 1156, 2601, 4624]  1:  [17, 34, 51, 68]
3936     .                      .                            .
3938     V M *                  2 V M ^                      V M Q
3939 @end group
3940 @end smallexample
3942 @noindent
3943 In the first step, we multiply the vector of integers by the vector
3944 of 17's elementwise.  In the second step, we raise each element to
3945 the power two.  (The general rule is that both operands must be
3946 vectors of the same length, or else one must be a vector and the
3947 other a plain number.)  In the final step, we take the square root
3948 of each element.
3950 (@bullet{}) @strong{Exercise 1.}  Compute a vector of powers of two
3951 from 
3952 @texline @math{2^{-4}}
3953 @infoline @expr{2^-4} 
3954 to @expr{2^4}.  @xref{List Answer 1, 1}. (@bullet{})
3956 You can also @dfn{reduce} a binary operator across a vector.
3957 For example, reducing @samp{*} computes the product of all the
3958 elements in the vector:
3960 @smallexample
3961 @group
3962 1:  123123     1:  [3, 7, 11, 13, 41]      1:  123123
3963     .              .                           .
3965     123123         k f                         V R *
3966 @end group
3967 @end smallexample
3969 @noindent
3970 In this example, we decompose 123123 into its prime factors, then
3971 multiply those factors together again to yield the original number.
3973 We could compute a dot product ``by hand'' using mapping and
3974 reduction:
3976 @smallexample
3977 @group
3978 2:  [1, 2, 3]     1:  [7, 12, 0]     1:  19
3979 1:  [7, 6, 0]         .                  .
3980     .
3982     r 1 r 2           V M *              V R +
3983 @end group
3984 @end smallexample
3986 @noindent
3987 Recalling two vectors from the previous section, we compute the
3988 sum of pairwise products of the elements to get the same answer
3989 for the dot product as before.
3991 A slight variant of vector reduction is the @dfn{accumulate} operation,
3992 @kbd{V U}.  This produces a vector of the intermediate results from
3993 a corresponding reduction.  Here we compute a table of factorials:
3995 @smallexample
3996 @group
3997 1:  [1, 2, 3, 4, 5, 6]    1:  [1, 2, 6, 24, 120, 720]
3998     .                         .
4000     v x 6 @key{RET}                 V U *
4001 @end group
4002 @end smallexample
4004 Calc allows vectors to grow as large as you like, although it gets
4005 rather slow if vectors have more than about a hundred elements.
4006 Actually, most of the time is spent formatting these large vectors
4007 for display, not calculating on them.  Try the following experiment
4008 (if your computer is very fast you may need to substitute a larger
4009 vector size).
4011 @smallexample
4012 @group
4013 1:  [1, 2, 3, 4, ...      1:  [2, 3, 4, 5, ...
4014     .                         .
4016     v x 500 @key{RET}               1 V M +
4017 @end group
4018 @end smallexample
4020 Now press @kbd{v .} (the letter @kbd{v}, then a period) and try the
4021 experiment again.  In @kbd{v .} mode, long vectors are displayed
4022 ``abbreviated'' like this:
4024 @smallexample
4025 @group
4026 1:  [1, 2, 3, ..., 500]   1:  [2, 3, 4, ..., 501]
4027     .                         .
4029     v x 500 @key{RET}               1 V M +
4030 @end group
4031 @end smallexample
4033 @noindent
4034 (where now the @samp{...} is actually part of the Calc display).
4035 You will find both operations are now much faster.  But notice that
4036 even in @w{@kbd{v .}} mode, the full vectors are still shown in the Trail.
4037 Type @w{@kbd{t .}} to cause the trail to abbreviate as well, and try the
4038 experiment one more time.  Operations on long vectors are now quite
4039 fast!  (But of course if you use @kbd{t .} you will lose the ability
4040 to get old vectors back using the @kbd{t y} command.)
4042 An easy way to view a full vector when @kbd{v .} mode is active is
4043 to press @kbd{`} (back-quote) to edit the vector; editing always works
4044 with the full, unabbreviated value.
4046 @cindex Least-squares for fitting a straight line
4047 @cindex Fitting data to a line
4048 @cindex Line, fitting data to
4049 @cindex Data, extracting from buffers
4050 @cindex Columns of data, extracting
4051 As a larger example, let's try to fit a straight line to some data,
4052 using the method of least squares.  (Calc has a built-in command for
4053 least-squares curve fitting, but we'll do it by hand here just to
4054 practice working with vectors.)  Suppose we have the following list
4055 of values in a file we have loaded into Emacs:
4057 @smallexample
4058   x        y
4059  ---      ---
4060  1.34    0.234
4061  1.41    0.298
4062  1.49    0.402
4063  1.56    0.412
4064  1.64    0.466
4065  1.73    0.473
4066  1.82    0.601
4067  1.91    0.519
4068  2.01    0.603
4069  2.11    0.637
4070  2.22    0.645
4071  2.33    0.705
4072  2.45    0.917
4073  2.58    1.009
4074  2.71    0.971
4075  2.85    1.062
4076  3.00    1.148
4077  3.15    1.157
4078  3.32    1.354
4079 @end smallexample
4081 @noindent
4082 If you are reading this tutorial in printed form, you will find it
4083 easiest to press @kbd{C-x * i} to enter the on-line Info version of
4084 the manual and find this table there.  (Press @kbd{g}, then type
4085 @kbd{List Tutorial}, to jump straight to this section.)
4087 Position the cursor at the upper-left corner of this table, just
4088 to the left of the @expr{1.34}.  Press @kbd{C-@@} to set the mark.
4089 (On your system this may be @kbd{C-2}, @kbd{C-@key{SPC}}, or @kbd{NUL}.)
4090 Now position the cursor to the lower-right, just after the @expr{1.354}.
4091 You have now defined this region as an Emacs ``rectangle.''  Still
4092 in the Info buffer, type @kbd{C-x * r}.  This command
4093 (@code{calc-grab-rectangle}) will pop you back into the Calculator, with
4094 the contents of the rectangle you specified in the form of a matrix.
4096 @smallexample
4097 @group
4098 1:  [ [ 1.34, 0.234 ]
4099       [ 1.41, 0.298 ]
4100       @dots{}
4101 @end group
4102 @end smallexample
4104 @noindent
4105 (You may wish to use @kbd{v .} mode to abbreviate the display of this
4106 large matrix.)
4108 We want to treat this as a pair of lists.  The first step is to
4109 transpose this matrix into a pair of rows.  Remember, a matrix is
4110 just a vector of vectors.  So we can unpack the matrix into a pair
4111 of row vectors on the stack.
4113 @smallexample
4114 @group
4115 1:  [ [ 1.34,  1.41,  1.49,  ... ]     2:  [1.34, 1.41, 1.49, ... ]
4116       [ 0.234, 0.298, 0.402, ... ] ]   1:  [0.234, 0.298, 0.402, ... ]
4117     .                                      .
4119     v t                                    v u
4120 @end group
4121 @end smallexample
4123 @noindent
4124 Let's store these in quick variables 1 and 2, respectively.
4126 @smallexample
4127 @group
4128 1:  [1.34, 1.41, 1.49, ... ]        .
4129     .
4131     t 2                             t 1
4132 @end group
4133 @end smallexample
4135 @noindent
4136 (Recall that @kbd{t 2} is a variant of @kbd{s 2} that removes the
4137 stored value from the stack.)
4139 In a least squares fit, the slope @expr{m} is given by the formula
4141 @ifinfo
4142 @example
4143 m = (N sum(x y) - sum(x) sum(y)) / (N sum(x^2) - sum(x)^2)
4144 @end example
4145 @end ifinfo
4146 @tex
4147 \turnoffactive
4148 \beforedisplay
4149 $$ m = {N \sum x y - \sum x \sum y  \over
4150         N \sum x^2 - \left( \sum x \right)^2} $$
4151 \afterdisplay
4152 @end tex
4154 @noindent
4155 where 
4156 @texline @math{\sum x}
4157 @infoline @expr{sum(x)} 
4158 represents the sum of all the values of @expr{x}.  While there is an
4159 actual @code{sum} function in Calc, it's easier to sum a vector using a
4160 simple reduction.  First, let's compute the four different sums that
4161 this formula uses.
4163 @smallexample
4164 @group
4165 1:  41.63                 1:  98.0003
4166     .                         .
4168  r 1 V R +   t 3           r 1 2 V M ^ V R +   t 4
4170 @end group
4171 @end smallexample
4172 @noindent
4173 @smallexample
4174 @group
4175 1:  13.613                1:  33.36554
4176     .                         .
4178  r 2 V R +   t 5           r 1 r 2 V M * V R +   t 6
4179 @end group
4180 @end smallexample
4182 @ifinfo
4183 @noindent
4184 These are @samp{sum(x)}, @samp{sum(x^2)}, @samp{sum(y)}, and @samp{sum(x y)},
4185 respectively.  (We could have used @kbd{*} to compute @samp{sum(x^2)} and
4186 @samp{sum(x y)}.)
4187 @end ifinfo
4188 @tex
4189 \turnoffactive
4190 These are $\sum x$, $\sum x^2$, $\sum y$, and $\sum x y$,
4191 respectively.  (We could have used \kbd{*} to compute $\sum x^2$ and
4192 $\sum x y$.)
4193 @end tex
4195 Finally, we also need @expr{N}, the number of data points.  This is just
4196 the length of either of our lists.
4198 @smallexample
4199 @group
4200 1:  19
4201     .
4203  r 1 v l   t 7
4204 @end group
4205 @end smallexample
4207 @noindent
4208 (That's @kbd{v} followed by a lower-case @kbd{l}.)
4210 Now we grind through the formula:
4212 @smallexample
4213 @group
4214 1:  633.94526  2:  633.94526  1:  67.23607
4215     .          1:  566.70919      .
4216                    .
4218  r 7 r 6 *      r 3 r 5 *         -
4220 @end group
4221 @end smallexample
4222 @noindent
4223 @smallexample
4224 @group
4225 2:  67.23607   3:  67.23607   2:  67.23607   1:  0.52141679
4226 1:  1862.0057  2:  1862.0057  1:  128.9488       .
4227     .          1:  1733.0569      .
4228                    .
4230  r 7 r 4 *      r 3 2 ^           -              /   t 8
4231 @end group
4232 @end smallexample
4234 That gives us the slope @expr{m}.  The y-intercept @expr{b} can now
4235 be found with the simple formula,
4237 @ifinfo
4238 @example
4239 b = (sum(y) - m sum(x)) / N
4240 @end example
4241 @end ifinfo
4242 @tex
4243 \turnoffactive
4244 \beforedisplay
4245 $$ b = {\sum y - m \sum x \over N} $$
4246 \afterdisplay
4247 \vskip10pt
4248 @end tex
4250 @smallexample
4251 @group
4252 1:  13.613     2:  13.613     1:  -8.09358   1:  -0.425978
4253     .          1:  21.70658       .              .
4254                    .
4256    r 5            r 8 r 3 *       -              r 7 /   t 9
4257 @end group
4258 @end smallexample
4260 Let's ``plot'' this straight line approximation, 
4261 @texline @math{y \approx m x + b},
4262 @infoline @expr{m x + b}, 
4263 and compare it with the original data.
4265 @smallexample
4266 @group
4267 1:  [0.699, 0.735, ... ]    1:  [0.273, 0.309, ... ]
4268     .                           .
4270     r 1 r 8 *                   r 9 +    s 0
4271 @end group
4272 @end smallexample
4274 @noindent
4275 Notice that multiplying a vector by a constant, and adding a constant
4276 to a vector, can be done without mapping commands since these are
4277 common operations from vector algebra.  As far as Calc is concerned,
4278 we've just been doing geometry in 19-dimensional space!
4280 We can subtract this vector from our original @expr{y} vector to get
4281 a feel for the error of our fit.  Let's find the maximum error:
4283 @smallexample
4284 @group
4285 1:  [0.0387, 0.0112, ... ]   1:  [0.0387, 0.0112, ... ]   1:  0.0897
4286     .                            .                            .
4288     r 2 -                        V M A                        V R X
4289 @end group
4290 @end smallexample
4292 @noindent
4293 First we compute a vector of differences, then we take the absolute
4294 values of these differences, then we reduce the @code{max} function
4295 across the vector.  (The @code{max} function is on the two-key sequence
4296 @kbd{f x}; because it is so common to use @code{max} in a vector
4297 operation, the letters @kbd{X} and @kbd{N} are also accepted for
4298 @code{max} and @code{min} in this context.  In general, you answer
4299 the @kbd{V M} or @kbd{V R} prompt with the actual key sequence that
4300 invokes the function you want.  You could have typed @kbd{V R f x} or
4301 even @kbd{V R x max @key{RET}} if you had preferred.)
4303 If your system has the GNUPLOT program, you can see graphs of your
4304 data and your straight line to see how well they match.  (If you have
4305 GNUPLOT 3.0 or higher, the following instructions will work regardless
4306 of the kind of display you have.  Some GNUPLOT 2.0, non-X-windows systems
4307 may require additional steps to view the graphs.)
4309 Let's start by plotting the original data.  Recall the ``@var{x}'' and ``@var{y}''
4310 vectors onto the stack and press @kbd{g f}.  This ``fast'' graphing
4311 command does everything you need to do for simple, straightforward
4312 plotting of data.
4314 @smallexample
4315 @group
4316 2:  [1.34, 1.41, 1.49, ... ]
4317 1:  [0.234, 0.298, 0.402, ... ]
4318     .
4320     r 1 r 2    g f
4321 @end group
4322 @end smallexample
4324 If all goes well, you will shortly get a new window containing a graph
4325 of the data.  (If not, contact your GNUPLOT or Calc installer to find
4326 out what went wrong.)  In the X window system, this will be a separate
4327 graphics window.  For other kinds of displays, the default is to
4328 display the graph in Emacs itself using rough character graphics.
4329 Press @kbd{q} when you are done viewing the character graphics.
4331 Next, let's add the line we got from our least-squares fit.
4332 @ifinfo
4333 (If you are reading this tutorial on-line while running Calc, typing
4334 @kbd{g a} may cause the tutorial to disappear from its window and be
4335 replaced by a buffer named @samp{*Gnuplot Commands*}.  The tutorial
4336 will reappear when you terminate GNUPLOT by typing @kbd{g q}.) 
4337 @end ifinfo
4339 @smallexample
4340 @group
4341 2:  [1.34, 1.41, 1.49, ... ]
4342 1:  [0.273, 0.309, 0.351, ... ]
4343     .
4345     @key{DEL} r 0    g a  g p
4346 @end group
4347 @end smallexample
4349 It's not very useful to get symbols to mark the data points on this
4350 second curve; you can type @kbd{g S g p} to remove them.  Type @kbd{g q}
4351 when you are done to remove the X graphics window and terminate GNUPLOT.
4353 (@bullet{}) @strong{Exercise 2.}  An earlier exercise showed how to do
4354 least squares fitting to a general system of equations.  Our 19 data
4355 points are really 19 equations of the form @expr{y_i = m x_i + b} for
4356 different pairs of @expr{(x_i,y_i)}.  Use the matrix-transpose method
4357 to solve for @expr{m} and @expr{b}, duplicating the above result.
4358 @xref{List Answer 2, 2}. (@bullet{})
4360 @cindex Geometric mean
4361 (@bullet{}) @strong{Exercise 3.}  If the input data do not form a
4362 rectangle, you can use @w{@kbd{C-x * g}} (@code{calc-grab-region})
4363 to grab the data the way Emacs normally works with regions---it reads
4364 left-to-right, top-to-bottom, treating line breaks the same as spaces.
4365 Use this command to find the geometric mean of the following numbers.
4366 (The geometric mean is the @var{n}th root of the product of @var{n} numbers.)
4368 @example
4369 2.3  6  22  15.1  7
4370   15  14  7.5
4371   2.5
4372 @end example
4374 @noindent
4375 The @kbd{C-x * g} command accepts numbers separated by spaces or commas,
4376 with or without surrounding vector brackets.
4377 @xref{List Answer 3, 3}. (@bullet{})
4379 @ifinfo
4380 As another example, a theorem about binomial coefficients tells
4381 us that the alternating sum of binomial coefficients
4382 @var{n}-choose-0 minus @var{n}-choose-1 plus @var{n}-choose-2, and so
4383 on up to @var{n}-choose-@var{n},
4384 always comes out to zero.  Let's verify this
4385 for @expr{n=6}.
4386 @end ifinfo
4387 @tex
4388 As another example, a theorem about binomial coefficients tells
4389 us that the alternating sum of binomial coefficients
4390 ${n \choose 0} - {n \choose 1} + {n \choose 2} - \cdots \pm {n \choose n}$
4391 always comes out to zero.  Let's verify this
4392 for \cite{n=6}.
4393 @end tex
4395 @smallexample
4396 @group
4397 1:  [1, 2, 3, 4, 5, 6, 7]     1:  [0, 1, 2, 3, 4, 5, 6]
4398     .                             .
4400     v x 7 @key{RET}                     1 -
4402 @end group
4403 @end smallexample
4404 @noindent
4405 @smallexample
4406 @group
4407 1:  [1, -6, 15, -20, 15, -6, 1]          1:  0
4408     .                                        .
4410     V M ' (-1)^$ choose(6,$) @key{RET}             V R +
4411 @end group
4412 @end smallexample
4414 The @kbd{V M '} command prompts you to enter any algebraic expression
4415 to define the function to map over the vector.  The symbol @samp{$}
4416 inside this expression represents the argument to the function.
4417 The Calculator applies this formula to each element of the vector,
4418 substituting each element's value for the @samp{$} sign(s) in turn.
4420 To define a two-argument function, use @samp{$$} for the first
4421 argument and @samp{$} for the second:  @kbd{V M ' $$-$ @key{RET}} is
4422 equivalent to @kbd{V M -}.  This is analogous to regular algebraic
4423 entry, where @samp{$$} would refer to the next-to-top stack entry
4424 and @samp{$} would refer to the top stack entry, and @kbd{' $$-$ @key{RET}}
4425 would act exactly like @kbd{-}.
4427 Notice that the @kbd{V M '} command has recorded two things in the
4428 trail:  The result, as usual, and also a funny-looking thing marked
4429 @samp{oper} that represents the operator function you typed in.
4430 The function is enclosed in @samp{< >} brackets, and the argument is
4431 denoted by a @samp{#} sign.  If there were several arguments, they
4432 would be shown as @samp{#1}, @samp{#2}, and so on.  (For example,
4433 @kbd{V M ' $$-$} will put the function @samp{<#1 - #2>} on the
4434 trail.)  This object is a ``nameless function''; you can use nameless
4435 @w{@samp{< >}} notation to answer the @kbd{V M '} prompt if you like.
4436 Nameless function notation has the interesting, occasionally useful
4437 property that a nameless function is not actually evaluated until
4438 it is used.  For example, @kbd{V M ' $+random(2.0)} evaluates
4439 @samp{random(2.0)} once and adds that random number to all elements
4440 of the vector, but @kbd{V M ' <#+random(2.0)>} evaluates the
4441 @samp{random(2.0)} separately for each vector element.
4443 Another group of operators that are often useful with @kbd{V M} are
4444 the relational operators:  @kbd{a =}, for example, compares two numbers
4445 and gives the result 1 if they are equal, or 0 if not.  Similarly,
4446 @w{@kbd{a <}} checks for one number being less than another.
4448 Other useful vector operations include @kbd{v v}, to reverse a
4449 vector end-for-end; @kbd{V S}, to sort the elements of a vector
4450 into increasing order; and @kbd{v r} and @w{@kbd{v c}}, to extract
4451 one row or column of a matrix, or (in both cases) to extract one
4452 element of a plain vector.  With a negative argument, @kbd{v r}
4453 and @kbd{v c} instead delete one row, column, or vector element.
4455 @cindex Divisor functions
4456 (@bullet{}) @strong{Exercise 4.}  The @expr{k}th @dfn{divisor function}
4457 @tex
4458 $\sigma_k(n)$
4459 @end tex
4460 is the sum of the @expr{k}th powers of all the divisors of an
4461 integer @expr{n}.  Figure out a method for computing the divisor
4462 function for reasonably small values of @expr{n}.  As a test,
4463 the 0th and 1st divisor functions of 30 are 8 and 72, respectively.
4464 @xref{List Answer 4, 4}. (@bullet{})
4466 @cindex Square-free numbers
4467 @cindex Duplicate values in a list
4468 (@bullet{}) @strong{Exercise 5.}  The @kbd{k f} command produces a
4469 list of prime factors for a number.  Sometimes it is important to
4470 know that a number is @dfn{square-free}, i.e., that no prime occurs
4471 more than once in its list of prime factors.  Find a sequence of
4472 keystrokes to tell if a number is square-free; your method should
4473 leave 1 on the stack if it is, or 0 if it isn't.
4474 @xref{List Answer 5, 5}. (@bullet{})
4476 @cindex Triangular lists
4477 (@bullet{}) @strong{Exercise 6.}  Build a list of lists that looks
4478 like the following diagram.  (You may wish to use the @kbd{v /}
4479 command to enable multi-line display of vectors.)
4481 @smallexample
4482 @group
4483 1:  [ [1],
4484       [1, 2],
4485       [1, 2, 3],
4486       [1, 2, 3, 4],
4487       [1, 2, 3, 4, 5],
4488       [1, 2, 3, 4, 5, 6] ]
4489 @end group
4490 @end smallexample
4492 @noindent
4493 @xref{List Answer 6, 6}. (@bullet{})
4495 (@bullet{}) @strong{Exercise 7.}  Build the following list of lists.
4497 @smallexample
4498 @group
4499 1:  [ [0],
4500       [1, 2],
4501       [3, 4, 5],
4502       [6, 7, 8, 9],
4503       [10, 11, 12, 13, 14],
4504       [15, 16, 17, 18, 19, 20] ]
4505 @end group
4506 @end smallexample
4508 @noindent
4509 @xref{List Answer 7, 7}. (@bullet{})
4511 @cindex Maximizing a function over a list of values
4512 @c [fix-ref Numerical Solutions]
4513 (@bullet{}) @strong{Exercise 8.}  Compute a list of values of Bessel's
4514 @texline @math{J_1(x)}
4515 @infoline @expr{J1} 
4516 function @samp{besJ(1,x)} for @expr{x} from 0 to 5 in steps of 0.25.
4517 Find the value of @expr{x} (from among the above set of values) for
4518 which @samp{besJ(1,x)} is a maximum.  Use an ``automatic'' method,
4519 i.e., just reading along the list by hand to find the largest value
4520 is not allowed!  (There is an @kbd{a X} command which does this kind
4521 of thing automatically; @pxref{Numerical Solutions}.)
4522 @xref{List Answer 8, 8}. (@bullet{})
4524 @cindex Digits, vectors of
4525 (@bullet{}) @strong{Exercise 9.}  You are given an integer in the range
4526 @texline @math{0 \le N < 10^m}
4527 @infoline @expr{0 <= N < 10^m} 
4528 for @expr{m=12} (i.e., an integer of less than
4529 twelve digits).  Convert this integer into a vector of @expr{m}
4530 digits, each in the range from 0 to 9.  In vector-of-digits notation,
4531 add one to this integer to produce a vector of @expr{m+1} digits
4532 (since there could be a carry out of the most significant digit).
4533 Convert this vector back into a regular integer.  A good integer
4534 to try is 25129925999.  @xref{List Answer 9, 9}. (@bullet{})
4536 (@bullet{}) @strong{Exercise 10.}  Your friend Joe tried to use
4537 @kbd{V R a =} to test if all numbers in a list were equal.  What
4538 happened?  How would you do this test?  @xref{List Answer 10, 10}. (@bullet{})
4540 (@bullet{}) @strong{Exercise 11.}  The area of a circle of radius one
4541 is @cpi{}.  The area of the 
4542 @texline @math{2\times2}
4543 @infoline 2x2
4544 square that encloses that circle is 4.  So if we throw @var{n} darts at
4545 random points in the square, about @cpiover{4} of them will land inside
4546 the circle.  This gives us an entertaining way to estimate the value of 
4547 @cpi{}.  The @w{@kbd{k r}}
4548 command picks a random number between zero and the value on the stack.
4549 We could get a random floating-point number between @mathit{-1} and 1 by typing
4550 @w{@kbd{2.0 k r 1 -}}.  Build a vector of 100 random @expr{(x,y)} points in
4551 this square, then use vector mapping and reduction to count how many
4552 points lie inside the unit circle.  Hint:  Use the @kbd{v b} command.
4553 @xref{List Answer 11, 11}. (@bullet{})
4555 @cindex Matchstick problem
4556 (@bullet{}) @strong{Exercise 12.}  The @dfn{matchstick problem} provides
4557 another way to calculate @cpi{}.  Say you have an infinite field
4558 of vertical lines with a spacing of one inch.  Toss a one-inch matchstick
4559 onto the field.  The probability that the matchstick will land crossing
4560 a line turns out to be 
4561 @texline @math{2/\pi}.
4562 @infoline @expr{2/pi}.  
4563 Toss 100 matchsticks to estimate @cpi{}.  (If you want still more fun,
4564 the probability that the GCD (@w{@kbd{k g}}) of two large integers is
4565 one turns out to be 
4566 @texline @math{6/\pi^2}.
4567 @infoline @expr{6/pi^2}.
4568 That provides yet another way to estimate @cpi{}.)
4569 @xref{List Answer 12, 12}. (@bullet{})
4571 (@bullet{}) @strong{Exercise 13.}  An algebraic entry of a string in
4572 double-quote marks, @samp{"hello"}, creates a vector of the numerical
4573 (ASCII) codes of the characters (here, @expr{[104, 101, 108, 108, 111]}).
4574 Sometimes it is convenient to compute a @dfn{hash code} of a string,
4575 which is just an integer that represents the value of that string.
4576 Two equal strings have the same hash code; two different strings
4577 @dfn{probably} have different hash codes.  (For example, Calc has
4578 over 400 function names, but Emacs can quickly find the definition for
4579 any given name because it has sorted the functions into ``buckets'' by
4580 their hash codes.  Sometimes a few names will hash into the same bucket,
4581 but it is easier to search among a few names than among all the names.)
4582 One popular hash function is computed as follows:  First set @expr{h = 0}.
4583 Then, for each character from the string in turn, set @expr{h = 3h + c_i}
4584 where @expr{c_i} is the character's ASCII code.  If we have 511 buckets,
4585 we then take the hash code modulo 511 to get the bucket number.  Develop a
4586 simple command or commands for converting string vectors into hash codes.
4587 The hash code for @samp{"Testing, 1, 2, 3"} is 1960915098, which modulo
4588 511 is 121.  @xref{List Answer 13, 13}. (@bullet{})
4590 (@bullet{}) @strong{Exercise 14.}  The @kbd{H V R} and @kbd{H V U}
4591 commands do nested function evaluations.  @kbd{H V U} takes a starting
4592 value and a number of steps @var{n} from the stack; it then applies the
4593 function you give to the starting value 0, 1, 2, up to @var{n} times
4594 and returns a vector of the results.  Use this command to create a
4595 ``random walk'' of 50 steps.  Start with the two-dimensional point
4596 @expr{(0,0)}; then take one step a random distance between @mathit{-1} and 1
4597 in both @expr{x} and @expr{y}; then take another step, and so on.  Use the
4598 @kbd{g f} command to display this random walk.  Now modify your random
4599 walk to walk a unit distance, but in a random direction, at each step.
4600 (Hint:  The @code{sincos} function returns a vector of the cosine and
4601 sine of an angle.)  @xref{List Answer 14, 14}. (@bullet{})
4603 @node Types Tutorial, Algebra Tutorial, Vector/Matrix Tutorial, Tutorial
4604 @section Types Tutorial
4606 @noindent
4607 Calc understands a variety of data types as well as simple numbers.
4608 In this section, we'll experiment with each of these types in turn.
4610 The numbers we've been using so far have mainly been either @dfn{integers}
4611 or @dfn{floats}.  We saw that floats are usually a good approximation to
4612 the mathematical concept of real numbers, but they are only approximations
4613 and are susceptible to roundoff error.  Calc also supports @dfn{fractions},
4614 which can exactly represent any rational number.
4616 @smallexample
4617 @group
4618 1:  3628800    2:  3628800    1:  518400:7   1:  518414:7   1:  7:518414
4619     .          1:  49             .              .              .
4620                    .
4622     10 !           49 @key{RET}         :              2 +            &
4623 @end group
4624 @end smallexample
4626 @noindent
4627 The @kbd{:} command divides two integers to get a fraction; @kbd{/}
4628 would normally divide integers to get a floating-point result.
4629 Notice we had to type @key{RET} between the @kbd{49} and the @kbd{:}
4630 since the @kbd{:} would otherwise be interpreted as part of a
4631 fraction beginning with 49.
4633 You can convert between floating-point and fractional format using
4634 @kbd{c f} and @kbd{c F}:
4636 @smallexample
4637 @group
4638 1:  1.35027217629e-5    1:  7:518414
4639     .                       .
4641     c f                     c F
4642 @end group
4643 @end smallexample
4645 The @kbd{c F} command replaces a floating-point number with the
4646 ``simplest'' fraction whose floating-point representation is the
4647 same, to within the current precision.
4649 @smallexample
4650 @group
4651 1:  3.14159265359   1:  1146408:364913   1:  3.1416   1:  355:113
4652     .                   .                    .            .
4654     P                   c F      @key{DEL}       p 5 @key{RET} P      c F
4655 @end group
4656 @end smallexample
4658 (@bullet{}) @strong{Exercise 1.}  A calculation has produced the
4659 result 1.26508260337.  You suspect it is the square root of the
4660 product of @cpi{} and some rational number.  Is it?  (Be sure
4661 to allow for roundoff error!)  @xref{Types Answer 1, 1}. (@bullet{})
4663 @dfn{Complex numbers} can be stored in both rectangular and polar form.
4665 @smallexample
4666 @group
4667 1:  -9     1:  (0, 3)    1:  (3; 90.)   1:  (6; 90.)   1:  (2.4495; 45.)
4668     .          .             .              .              .
4670     9 n        Q             c p            2 *            Q
4671 @end group
4672 @end smallexample
4674 @noindent
4675 The square root of @mathit{-9} is by default rendered in rectangular form
4676 (@w{@expr{0 + 3i}}), but we can convert it to polar form (3 with a
4677 phase angle of 90 degrees).  All the usual arithmetic and scientific
4678 operations are defined on both types of complex numbers.
4680 Another generalized kind of number is @dfn{infinity}.  Infinity
4681 isn't really a number, but it can sometimes be treated like one.
4682 Calc uses the symbol @code{inf} to represent positive infinity,
4683 i.e., a value greater than any real number.  Naturally, you can
4684 also write @samp{-inf} for minus infinity, a value less than any
4685 real number.  The word @code{inf} can only be input using
4686 algebraic entry.
4688 @smallexample
4689 @group
4690 2:  inf        2:  -inf       2:  -inf       2:  -inf       1:  nan
4691 1:  -17        1:  -inf       1:  -inf       1:  inf            .
4692     .              .              .              .
4694 ' inf @key{RET} 17 n     *  @key{RET}         72 +           A              +
4695 @end group
4696 @end smallexample
4698 @noindent
4699 Since infinity is infinitely large, multiplying it by any finite
4700 number (like @mathit{-17}) has no effect, except that since @mathit{-17}
4701 is negative, it changes a plus infinity to a minus infinity.
4702 (``A huge positive number, multiplied by @mathit{-17}, yields a huge
4703 negative number.'')  Adding any finite number to infinity also
4704 leaves it unchanged.  Taking an absolute value gives us plus
4705 infinity again.  Finally, we add this plus infinity to the minus
4706 infinity we had earlier.  If you work it out, you might expect
4707 the answer to be @mathit{-72} for this.  But the 72 has been completely
4708 lost next to the infinities; by the time we compute @w{@samp{inf - inf}}
4709 the finite difference between them, if any, is undetectable.
4710 So we say the result is @dfn{indeterminate}, which Calc writes
4711 with the symbol @code{nan} (for Not A Number).
4713 Dividing by zero is normally treated as an error, but you can get
4714 Calc to write an answer in terms of infinity by pressing @kbd{m i}
4715 to turn on Infinite mode.
4717 @smallexample
4718 @group
4719 3:  nan        2:  nan        2:  nan        2:  nan        1:  nan
4720 2:  1          1:  1 / 0      1:  uinf       1:  uinf           .
4721 1:  0              .              .              .
4722     .
4724   1 @key{RET} 0          /       m i    U /            17 n *         +
4725 @end group
4726 @end smallexample
4728 @noindent
4729 Dividing by zero normally is left unevaluated, but after @kbd{m i}
4730 it instead gives an infinite result.  The answer is actually
4731 @code{uinf}, ``undirected infinity.''  If you look at a graph of
4732 @expr{1 / x} around @w{@expr{x = 0}}, you'll see that it goes toward
4733 plus infinity as you approach zero from above, but toward minus
4734 infinity as you approach from below.  Since we said only @expr{1 / 0},
4735 Calc knows that the answer is infinite but not in which direction.
4736 That's what @code{uinf} means.  Notice that multiplying @code{uinf}
4737 by a negative number still leaves plain @code{uinf}; there's no
4738 point in saying @samp{-uinf} because the sign of @code{uinf} is
4739 unknown anyway.  Finally, we add @code{uinf} to our @code{nan},
4740 yielding @code{nan} again.  It's easy to see that, because
4741 @code{nan} means ``totally unknown'' while @code{uinf} means
4742 ``unknown sign but known to be infinite,'' the more mysterious
4743 @code{nan} wins out when it is combined with @code{uinf}, or, for
4744 that matter, with anything else.
4746 (@bullet{}) @strong{Exercise 2.}  Predict what Calc will answer
4747 for each of these formulas:  @samp{inf / inf}, @samp{exp(inf)},
4748 @samp{exp(-inf)}, @samp{sqrt(-inf)}, @samp{sqrt(uinf)},
4749 @samp{abs(uinf)}, @samp{ln(0)}.
4750 @xref{Types Answer 2, 2}. (@bullet{})
4752 (@bullet{}) @strong{Exercise 3.}  We saw that @samp{inf - inf = nan},
4753 which stands for an unknown value.  Can @code{nan} stand for
4754 a complex number?  Can it stand for infinity?
4755 @xref{Types Answer 3, 3}. (@bullet{})
4757 @dfn{HMS forms} represent a value in terms of hours, minutes, and
4758 seconds.
4760 @smallexample
4761 @group
4762 1:  2@@ 30' 0"     1:  3@@ 30' 0"     2:  3@@ 30' 0"     1:  2.
4763     .                 .             1:  1@@ 45' 0."        .
4764                                         .
4766   2@@ 30' @key{RET}          1 +               @key{RET} 2 /           /
4767 @end group
4768 @end smallexample
4770 HMS forms can also be used to hold angles in degrees, minutes, and
4771 seconds.
4773 @smallexample
4774 @group
4775 1:  0.5        1:  26.56505   1:  26@@ 33' 54.18"    1:  0.44721
4776     .              .              .                     .
4778     0.5            I T            c h                   S
4779 @end group
4780 @end smallexample
4782 @noindent
4783 First we convert the inverse tangent of 0.5 to degrees-minutes-seconds
4784 form, then we take the sine of that angle.  Note that the trigonometric
4785 functions will accept HMS forms directly as input.
4787 @cindex Beatles
4788 (@bullet{}) @strong{Exercise 4.}  The Beatles' @emph{Abbey Road} is
4789 47 minutes and 26 seconds long, and contains 17 songs.  What is the
4790 average length of a song on @emph{Abbey Road}?  If the Extended Disco
4791 Version of @emph{Abbey Road} added 20 seconds to the length of each
4792 song, how long would the album be?  @xref{Types Answer 4, 4}. (@bullet{})
4794 A @dfn{date form} represents a date, or a date and time.  Dates must
4795 be entered using algebraic entry.  Date forms are surrounded by
4796 @samp{< >} symbols; most standard formats for dates are recognized.
4798 @smallexample
4799 @group
4800 2:  <Sun Jan 13, 1991>                    1:  2.25
4801 1:  <6:00pm Thu Jan 10, 1991>                 .
4802     .
4804 ' <13 Jan 1991>, <1/10/91, 6pm> @key{RET}           -
4805 @end group
4806 @end smallexample
4808 @noindent
4809 In this example, we enter two dates, then subtract to find the
4810 number of days between them.  It is also possible to add an
4811 HMS form or a number (of days) to a date form to get another
4812 date form.
4814 @smallexample
4815 @group
4816 1:  <4:45:59pm Mon Jan 14, 1991>     1:  <2:50:59am Thu Jan 17, 1991>
4817     .                                    .
4819     t N                                  2 + 10@@ 5' +
4820 @end group
4821 @end smallexample
4823 @c [fix-ref Date Arithmetic]
4824 @noindent
4825 The @kbd{t N} (``now'') command pushes the current date and time on the
4826 stack; then we add two days, ten hours and five minutes to the date and
4827 time.  Other date-and-time related commands include @kbd{t J}, which
4828 does Julian day conversions, @kbd{t W}, which finds the beginning of
4829 the week in which a date form lies, and @kbd{t I}, which increments a
4830 date by one or several months.  @xref{Date Arithmetic}, for more.
4832 (@bullet{}) @strong{Exercise 5.}  How many days until the next
4833 Friday the 13th?  @xref{Types Answer 5, 5}. (@bullet{})
4835 (@bullet{}) @strong{Exercise 6.}  How many leap years will there be
4836 between now and the year 10001 A.D.?  @xref{Types Answer 6, 6}. (@bullet{})
4838 @cindex Slope and angle of a line
4839 @cindex Angle and slope of a line
4840 An @dfn{error form} represents a mean value with an attached standard
4841 deviation, or error estimate.  Suppose our measurements indicate that
4842 a certain telephone pole is about 30 meters away, with an estimated
4843 error of 1 meter, and 8 meters tall, with an estimated error of 0.2
4844 meters.  What is the slope of a line from here to the top of the
4845 pole, and what is the equivalent angle in degrees?
4847 @smallexample
4848 @group
4849 1:  8 +/- 0.2    2:  8 +/- 0.2   1:  0.266 +/- 0.011   1:  14.93 +/- 0.594
4850     .            1:  30 +/- 1        .                     .
4851                      .
4853     8 p .2 @key{RET}       30 p 1          /                     I T
4854 @end group
4855 @end smallexample
4857 @noindent
4858 This means that the angle is about 15 degrees, and, assuming our
4859 original error estimates were valid standard deviations, there is about
4860 a 60% chance that the result is correct within 0.59 degrees.
4862 @cindex Torus, volume of
4863 (@bullet{}) @strong{Exercise 7.}  The volume of a torus (a donut shape) is
4864 @texline @math{2 \pi^2 R r^2}
4865 @infoline @w{@expr{2 pi^2 R r^2}} 
4866 where @expr{R} is the radius of the circle that
4867 defines the center of the tube and @expr{r} is the radius of the tube
4868 itself.  Suppose @expr{R} is 20 cm and @expr{r} is 4 cm, each known to
4869 within 5 percent.  What is the volume and the relative uncertainty of
4870 the volume?  @xref{Types Answer 7, 7}. (@bullet{})
4872 An @dfn{interval form} represents a range of values.  While an
4873 error form is best for making statistical estimates, intervals give
4874 you exact bounds on an answer.  Suppose we additionally know that
4875 our telephone pole is definitely between 28 and 31 meters away,
4876 and that it is between 7.7 and 8.1 meters tall.
4878 @smallexample
4879 @group
4880 1:  [7.7 .. 8.1]  2:  [7.7 .. 8.1]  1:  [0.24 .. 0.28]  1:  [13.9 .. 16.1]
4881     .             1:  [28 .. 31]        .                   .
4882                       .
4884   [ 7.7 .. 8.1 ]    [ 28 .. 31 ]        /                   I T
4885 @end group
4886 @end smallexample
4888 @noindent
4889 If our bounds were correct, then the angle to the top of the pole
4890 is sure to lie in the range shown.
4892 The square brackets around these intervals indicate that the endpoints
4893 themselves are allowable values.  In other words, the distance to the
4894 telephone pole is between 28 and 31, @emph{inclusive}.  You can also
4895 make an interval that is exclusive of its endpoints by writing
4896 parentheses instead of square brackets.  You can even make an interval
4897 which is inclusive (``closed'') on one end and exclusive (``open'') on
4898 the other.
4900 @smallexample
4901 @group
4902 1:  [1 .. 10)    1:  (0.1 .. 1]   2:  (0.1 .. 1]   1:  (0.2 .. 3)
4903     .                .            1:  [2 .. 3)         .
4904                                       .
4906   [ 1 .. 10 )        &              [ 2 .. 3 )         *
4907 @end group
4908 @end smallexample
4910 @noindent
4911 The Calculator automatically keeps track of which end values should
4912 be open and which should be closed.  You can also make infinite or
4913 semi-infinite intervals by using @samp{-inf} or @samp{inf} for one
4914 or both endpoints.
4916 (@bullet{}) @strong{Exercise 8.}  What answer would you expect from
4917 @samp{@w{1 /} @w{(0 .. 10)}}?  What about @samp{@w{1 /} @w{(-10 .. 0)}}?  What
4918 about @samp{@w{1 /} @w{[0 .. 10]}} (where the interval actually includes
4919 zero)?  What about @samp{@w{1 /} @w{(-10 .. 10)}}?
4920 @xref{Types Answer 8, 8}. (@bullet{})
4922 (@bullet{}) @strong{Exercise 9.}  Two easy ways of squaring a number
4923 are @kbd{@key{RET} *} and @w{@kbd{2 ^}}.  Normally these produce the same
4924 answer.  Would you expect this still to hold true for interval forms?
4925 If not, which of these will result in a larger interval?
4926 @xref{Types Answer 9, 9}. (@bullet{})
4928 A @dfn{modulo form} is used for performing arithmetic modulo @var{m}.
4929 For example, arithmetic involving time is generally done modulo 12
4930 or 24 hours.
4932 @smallexample
4933 @group
4934 1:  17 mod 24    1:  3 mod 24     1:  21 mod 24    1:  9 mod 24
4935     .                .                .                .
4937     17 M 24 @key{RET}      10 +             n                5 /
4938 @end group
4939 @end smallexample
4941 @noindent
4942 In this last step, Calc has divided by 5 modulo 24; i.e., it has found a
4943 new number which, when multiplied by 5 modulo 24, produces the original
4944 number, 21.  If @var{m} is prime and the divisor is not a multiple of
4945 @var{m}, it is always possible to find such a number.  For non-prime
4946 @var{m} like 24, it is only sometimes possible. 
4948 @smallexample
4949 @group
4950 1:  10 mod 24    1:  16 mod 24    1:  1000000...   1:  16
4951     .                .                .                .
4953     10 M 24 @key{RET}      100 ^            10 @key{RET} 100 ^     24 %
4954 @end group
4955 @end smallexample
4957 @noindent
4958 These two calculations get the same answer, but the first one is
4959 much more efficient because it avoids the huge intermediate value
4960 that arises in the second one.
4962 @cindex Fermat, primality test of
4963 (@bullet{}) @strong{Exercise 10.}  A theorem of Pierre de Fermat
4964 says that 
4965 @texline @w{@math{x^{n-1} \bmod n = 1}}
4966 @infoline @expr{x^(n-1) mod n = 1}
4967 if @expr{n} is a prime number and @expr{x} is an integer less than
4968 @expr{n}.  If @expr{n} is @emph{not} a prime number, this will
4969 @emph{not} be true for most values of @expr{x}.  Thus we can test
4970 informally if a number is prime by trying this formula for several
4971 values of @expr{x}.  Use this test to tell whether the following numbers
4972 are prime: 811749613, 15485863.  @xref{Types Answer 10, 10}. (@bullet{})
4974 It is possible to use HMS forms as parts of error forms, intervals,
4975 modulo forms, or as the phase part of a polar complex number.
4976 For example, the @code{calc-time} command pushes the current time
4977 of day on the stack as an HMS/modulo form.
4979 @smallexample
4980 @group
4981 1:  17@@ 34' 45" mod 24@@ 0' 0"     1:  6@@ 22' 15" mod 24@@ 0' 0"
4982     .                                 .
4984     x time @key{RET}                        n
4985 @end group
4986 @end smallexample
4988 @noindent
4989 This calculation tells me it is six hours and 22 minutes until midnight.
4991 (@bullet{}) @strong{Exercise 11.}  A rule of thumb is that one year
4992 is about 
4993 @texline @math{\pi \times 10^7}
4994 @infoline @w{@expr{pi * 10^7}} 
4995 seconds.  What time will it be that many seconds from right now?
4996 @xref{Types Answer 11, 11}. (@bullet{})
4998 (@bullet{}) @strong{Exercise 12.}  You are preparing to order packaging
4999 for the CD release of the Extended Disco Version of @emph{Abbey Road}.
5000 You are told that the songs will actually be anywhere from 20 to 60
5001 seconds longer than the originals.  One CD can hold about 75 minutes
5002 of music.  Should you order single or double packages?
5003 @xref{Types Answer 12, 12}. (@bullet{})
5005 Another kind of data the Calculator can manipulate is numbers with
5006 @dfn{units}.  This isn't strictly a new data type; it's simply an
5007 application of algebraic expressions, where we use variables with
5008 suggestive names like @samp{cm} and @samp{in} to represent units
5009 like centimeters and inches.
5011 @smallexample
5012 @group
5013 1:  2 in        1:  5.08 cm      1:  0.027778 fath   1:  0.0508 m
5014     .               .                .                   .
5016     ' 2in @key{RET}       u c cm @key{RET}       u c fath @key{RET}        u b
5017 @end group
5018 @end smallexample
5020 @noindent
5021 We enter the quantity ``2 inches'' (actually an algebraic expression
5022 which means two times the variable @samp{in}), then we convert it
5023 first to centimeters, then to fathoms, then finally to ``base'' units,
5024 which in this case means meters.
5026 @smallexample
5027 @group
5028 1:  9 acre     1:  3 sqrt(acre)   1:  190.84 m   1:  190.84 m + 30 cm
5029     .              .                  .              .
5031  ' 9 acre @key{RET}      Q                  u s            ' $+30 cm @key{RET}
5033 @end group
5034 @end smallexample
5035 @noindent
5036 @smallexample
5037 @group
5038 1:  191.14 m     1:  36536.3046 m^2    1:  365363046 cm^2
5039     .                .                     .
5041     u s              2 ^                   u c cgs
5042 @end group
5043 @end smallexample
5045 @noindent
5046 Since units expressions are really just formulas, taking the square
5047 root of @samp{acre} is undefined.  After all, @code{acre} might be an
5048 algebraic variable that you will someday assign a value.  We use the
5049 ``units-simplify'' command to simplify the expression with variables
5050 being interpreted as unit names.
5052 In the final step, we have converted not to a particular unit, but to a
5053 units system.  The ``cgs'' system uses centimeters instead of meters
5054 as its standard unit of length.
5056 There is a wide variety of units defined in the Calculator.
5058 @smallexample
5059 @group
5060 1:  55 mph     1:  88.5139 kph   1:   88.5139 km / hr   1:  8.201407e-8 c
5061     .              .                  .                     .
5063  ' 55 mph @key{RET}      u c kph @key{RET}        u c km/hr @key{RET}         u c c @key{RET}
5064 @end group
5065 @end smallexample
5067 @noindent
5068 We express a speed first in miles per hour, then in kilometers per
5069 hour, then again using a slightly more explicit notation, then
5070 finally in terms of fractions of the speed of light.
5072 Temperature conversions are a bit more tricky.  There are two ways to
5073 interpret ``20 degrees Fahrenheit''---it could mean an actual
5074 temperature, or it could mean a change in temperature.  For normal
5075 units there is no difference, but temperature units have an offset
5076 as well as a scale factor and so there must be two explicit commands
5077 for them.
5079 @smallexample
5080 @group
5081 1:  20 degF       1:  11.1111 degC     1:  -20:3 degC    1:  -6.666 degC
5082     .                 .                    .                 .
5084   ' 20 degF @key{RET}       u c degC @key{RET}         U u t degC @key{RET}    c f
5085 @end group
5086 @end smallexample
5088 @noindent
5089 First we convert a change of 20 degrees Fahrenheit into an equivalent
5090 change in degrees Celsius (or Centigrade).  Then, we convert the
5091 absolute temperature 20 degrees Fahrenheit into Celsius.  Since
5092 this comes out as an exact fraction, we then convert to floating-point
5093 for easier comparison with the other result.
5095 For simple unit conversions, you can put a plain number on the stack.
5096 Then @kbd{u c} and @kbd{u t} will prompt for both old and new units.
5097 When you use this method, you're responsible for remembering which
5098 numbers are in which units:
5100 @smallexample
5101 @group
5102 1:  55         1:  88.5139              1:  8.201407e-8
5103     .              .                        .
5105     55             u c mph @key{RET} kph @key{RET}      u c km/hr @key{RET} c @key{RET}
5106 @end group
5107 @end smallexample
5109 To see a complete list of built-in units, type @kbd{u v}.  Press
5110 @w{@kbd{C-x * c}} again to re-enter the Calculator when you're done looking
5111 at the units table.
5113 (@bullet{}) @strong{Exercise 13.}  How many seconds are there really
5114 in a year?  @xref{Types Answer 13, 13}. (@bullet{})
5116 @cindex Speed of light
5117 (@bullet{}) @strong{Exercise 14.}  Supercomputer designs are limited by
5118 the speed of light (and of electricity, which is nearly as fast).
5119 Suppose a computer has a 4.1 ns (nanosecond) clock cycle, and its
5120 cabinet is one meter across.  Is speed of light going to be a
5121 significant factor in its design?  @xref{Types Answer 14, 14}. (@bullet{})
5123 (@bullet{}) @strong{Exercise 15.}  Sam the Slug normally travels about
5124 five yards in an hour.  He has obtained a supply of Power Pills; each
5125 Power Pill he eats doubles his speed.  How many Power Pills can he
5126 swallow and still travel legally on most US highways?
5127 @xref{Types Answer 15, 15}. (@bullet{})
5129 @node Algebra Tutorial, Programming Tutorial, Types Tutorial, Tutorial
5130 @section Algebra and Calculus Tutorial
5132 @noindent
5133 This section shows how to use Calc's algebra facilities to solve
5134 equations, do simple calculus problems, and manipulate algebraic
5135 formulas.
5137 @menu
5138 * Basic Algebra Tutorial::
5139 * Rewrites Tutorial::
5140 @end menu
5142 @node Basic Algebra Tutorial, Rewrites Tutorial, Algebra Tutorial, Algebra Tutorial
5143 @subsection Basic Algebra
5145 @noindent
5146 If you enter a formula in Algebraic mode that refers to variables,
5147 the formula itself is pushed onto the stack.  You can manipulate
5148 formulas as regular data objects.
5150 @smallexample
5151 @group
5152 1:  2 x^2 - 6       1:  6 - 2 x^2       1:  (6 - 2 x^2) (3 x^2 + y)
5153     .                   .                   .
5155     ' 2x^2-6 @key{RET}        n                   ' 3x^2+y @key{RET} *
5156 @end group
5157 @end smallexample
5159 (@bullet{}) @strong{Exercise 1.}  Do @kbd{' x @key{RET} Q 2 ^} and
5160 @kbd{' x @key{RET} 2 ^ Q} both wind up with the same result (@samp{x})?
5161 Why or why not?  @xref{Algebra Answer 1, 1}. (@bullet{})
5163 There are also commands for doing common algebraic operations on
5164 formulas.  Continuing with the formula from the last example,
5166 @smallexample
5167 @group
5168 1:  18 x^2 + 6 y - 6 x^4 - 2 x^2 y    1:  (18 - 2 y) x^2 - 6 x^4 + 6 y
5169     .                                     .
5171     a x                                   a c x @key{RET}
5172 @end group
5173 @end smallexample
5175 @noindent
5176 First we ``expand'' using the distributive law, then we ``collect''
5177 terms involving like powers of @expr{x}.
5179 Let's find the value of this expression when @expr{x} is 2 and @expr{y}
5180 is one-half.
5182 @smallexample
5183 @group
5184 1:  17 x^2 - 6 x^4 + 3      1:  -25
5185     .                           .
5187     1:2 s l y @key{RET}               2 s l x @key{RET}
5188 @end group
5189 @end smallexample
5191 @noindent
5192 The @kbd{s l} command means ``let''; it takes a number from the top of
5193 the stack and temporarily assigns it as the value of the variable
5194 you specify.  It then evaluates (as if by the @kbd{=} key) the
5195 next expression on the stack.  After this command, the variable goes
5196 back to its original value, if any.
5198 (An earlier exercise in this tutorial involved storing a value in the
5199 variable @code{x}; if this value is still there, you will have to
5200 unstore it with @kbd{s u x @key{RET}} before the above example will work
5201 properly.)
5203 @cindex Maximum of a function using Calculus
5204 Let's find the maximum value of our original expression when @expr{y}
5205 is one-half and @expr{x} ranges over all possible values.  We can
5206 do this by taking the derivative with respect to @expr{x} and examining
5207 values of @expr{x} for which the derivative is zero.  If the second
5208 derivative of the function at that value of @expr{x} is negative,
5209 the function has a local maximum there.
5211 @smallexample
5212 @group
5213 1:  17 x^2 - 6 x^4 + 3      1:  34 x - 24 x^3
5214     .                           .
5216     U @key{DEL}  s 1                  a d x @key{RET}   s 2
5217 @end group
5218 @end smallexample
5220 @noindent
5221 Well, the derivative is clearly zero when @expr{x} is zero.  To find
5222 the other root(s), let's divide through by @expr{x} and then solve:
5224 @smallexample
5225 @group
5226 1:  (34 x - 24 x^3) / x    1:  34 x / x - 24 x^3 / x    1:  34 - 24 x^2
5227     .                          .                            .
5229     ' x @key{RET} /                  a x                          a s
5231 @end group
5232 @end smallexample
5233 @noindent
5234 @smallexample
5235 @group
5236 1:  34 - 24 x^2 = 0        1:  x = 1.19023
5237     .                          .
5239     0 a =  s 3                 a S x @key{RET}
5240 @end group
5241 @end smallexample
5243 @noindent
5244 Notice the use of @kbd{a s} to ``simplify'' the formula.  When the
5245 default algebraic simplifications don't do enough, you can use
5246 @kbd{a s} to tell Calc to spend more time on the job.
5248 Now we compute the second derivative and plug in our values of @expr{x}:
5250 @smallexample
5251 @group
5252 1:  1.19023        2:  1.19023         2:  1.19023
5253     .              1:  34 x - 24 x^3   1:  34 - 72 x^2
5254                        .                   .
5256     a .                r 2                 a d x @key{RET} s 4
5257 @end group
5258 @end smallexample
5260 @noindent
5261 (The @kbd{a .} command extracts just the righthand side of an equation.
5262 Another method would have been to use @kbd{v u} to unpack the equation
5263 @w{@samp{x = 1.19}} to @samp{x} and @samp{1.19}, then use @kbd{M-- M-2 @key{DEL}}
5264 to delete the @samp{x}.)
5266 @smallexample
5267 @group
5268 2:  34 - 72 x^2   1:  -68.         2:  34 - 72 x^2     1:  34
5269 1:  1.19023           .            1:  0                   .
5270     .                                  .
5272     @key{TAB}               s l x @key{RET}        U @key{DEL} 0             s l x @key{RET}
5273 @end group
5274 @end smallexample
5276 @noindent
5277 The first of these second derivatives is negative, so we know the function
5278 has a maximum value at @expr{x = 1.19023}.  (The function also has a
5279 local @emph{minimum} at @expr{x = 0}.)
5281 When we solved for @expr{x}, we got only one value even though
5282 @expr{34 - 24 x^2 = 0} is a quadratic equation that ought to have
5283 two solutions.  The reason is that @w{@kbd{a S}} normally returns a
5284 single ``principal'' solution.  If it needs to come up with an
5285 arbitrary sign (as occurs in the quadratic formula) it picks @expr{+}.
5286 If it needs an arbitrary integer, it picks zero.  We can get a full
5287 solution by pressing @kbd{H} (the Hyperbolic flag) before @kbd{a S}.
5289 @smallexample
5290 @group
5291 1:  34 - 24 x^2 = 0    1:  x = 1.19023 s1      1:  x = -1.19023
5292     .                      .                       .
5294     r 3                    H a S x @key{RET}  s 5        1 n  s l s1 @key{RET}
5295 @end group
5296 @end smallexample
5298 @noindent
5299 Calc has invented the variable @samp{s1} to represent an unknown sign;
5300 it is supposed to be either @mathit{+1} or @mathit{-1}.  Here we have used
5301 the ``let'' command to evaluate the expression when the sign is negative.
5302 If we plugged this into our second derivative we would get the same,
5303 negative, answer, so @expr{x = -1.19023} is also a maximum.
5305 To find the actual maximum value, we must plug our two values of @expr{x}
5306 into the original formula.
5308 @smallexample
5309 @group
5310 2:  17 x^2 - 6 x^4 + 3    1:  24.08333 s1^2 - 12.04166 s1^4 + 3
5311 1:  x = 1.19023 s1            .
5312     .
5314     r 1 r 5                   s l @key{RET}
5315 @end group
5316 @end smallexample
5318 @noindent
5319 (Here we see another way to use @kbd{s l}; if its input is an equation
5320 with a variable on the lefthand side, then @kbd{s l} treats the equation
5321 like an assignment to that variable if you don't give a variable name.)
5323 It's clear that this will have the same value for either sign of
5324 @code{s1}, but let's work it out anyway, just for the exercise:
5326 @smallexample
5327 @group
5328 2:  [-1, 1]              1:  [15.04166, 15.04166]
5329 1:  24.08333 s1^2 ...        .
5330     .
5332   [ 1 n , 1 ] @key{TAB}            V M $ @key{RET}
5333 @end group
5334 @end smallexample
5336 @noindent
5337 Here we have used a vector mapping operation to evaluate the function
5338 at several values of @samp{s1} at once.  @kbd{V M $} is like @kbd{V M '}
5339 except that it takes the formula from the top of the stack.  The
5340 formula is interpreted as a function to apply across the vector at the
5341 next-to-top stack level.  Since a formula on the stack can't contain
5342 @samp{$} signs, Calc assumes the variables in the formula stand for
5343 different arguments.  It prompts you for an @dfn{argument list}, giving
5344 the list of all variables in the formula in alphabetical order as the
5345 default list.  In this case the default is @samp{(s1)}, which is just
5346 what we want so we simply press @key{RET} at the prompt.
5348 If there had been several different values, we could have used
5349 @w{@kbd{V R X}} to find the global maximum.
5351 Calc has a built-in @kbd{a P} command that solves an equation using
5352 @w{@kbd{H a S}} and returns a vector of all the solutions.  It simply
5353 automates the job we just did by hand.  Applied to our original
5354 cubic polynomial, it would produce the vector of solutions
5355 @expr{[1.19023, -1.19023, 0]}.  (There is also an @kbd{a X} command
5356 which finds a local maximum of a function.  It uses a numerical search
5357 method rather than examining the derivatives, and thus requires you
5358 to provide some kind of initial guess to show it where to look.)
5360 (@bullet{}) @strong{Exercise 2.}  Given a vector of the roots of a
5361 polynomial (such as the output of an @kbd{a P} command), what
5362 sequence of commands would you use to reconstruct the original
5363 polynomial?  (The answer will be unique to within a constant
5364 multiple; choose the solution where the leading coefficient is one.)
5365 @xref{Algebra Answer 2, 2}. (@bullet{})
5367 The @kbd{m s} command enables Symbolic mode, in which formulas
5368 like @samp{sqrt(5)} that can't be evaluated exactly are left in
5369 symbolic form rather than giving a floating-point approximate answer.
5370 Fraction mode (@kbd{m f}) is also useful when doing algebra.
5372 @smallexample
5373 @group
5374 2:  34 x - 24 x^3        2:  34 x - 24 x^3
5375 1:  34 x - 24 x^3        1:  [sqrt(51) / 6, sqrt(51) / -6, 0]
5376     .                        .
5378     r 2  @key{RET}     m s  m f    a P x @key{RET}
5379 @end group
5380 @end smallexample
5382 One more mode that makes reading formulas easier is Big mode.
5384 @smallexample
5385 @group
5386                3
5387 2:  34 x - 24 x
5389       ____   ____
5390      V 51   V 51
5391 1:  [-----, -----, 0]
5392        6     -6
5394     .
5396     d B
5397 @end group
5398 @end smallexample
5400 Here things like powers, square roots, and quotients and fractions
5401 are displayed in a two-dimensional pictorial form.  Calc has other
5402 language modes as well, such as C mode, FORTRAN mode, @TeX{} mode
5403 and La@TeX{} mode.
5405 @smallexample
5406 @group
5407 2:  34*x - 24*pow(x, 3)               2:  34*x - 24*x**3
5408 1:  @{sqrt(51) / 6, sqrt(51) / -6, 0@}  1:  /sqrt(51) / 6, sqrt(51) / -6, 0/
5409     .                                     .
5411     d C                                   d F
5413 @end group
5414 @end smallexample
5415 @noindent
5416 @smallexample
5417 @group
5418 3:  34 x - 24 x^3
5419 2:  [@{\sqrt@{51@} \over 6@}, @{\sqrt@{51@} \over -6@}, 0]
5420 1:  @{2 \over 3@} \sqrt@{5@}
5421     .
5423     d T   ' 2 \sqrt@{5@} \over 3 @key{RET}
5424 @end group
5425 @end smallexample
5427 @noindent
5428 As you can see, language modes affect both entry and display of
5429 formulas.  They affect such things as the names used for built-in
5430 functions, the set of arithmetic operators and their precedences,
5431 and notations for vectors and matrices.
5433 Notice that @samp{sqrt(51)} may cause problems with older
5434 implementations of C and FORTRAN, which would require something more
5435 like @samp{sqrt(51.0)}.  It is always wise to check over the formulas
5436 produced by the various language modes to make sure they are fully
5437 correct.
5439 Type @kbd{m s}, @kbd{m f}, and @kbd{d N} to reset these modes.  (You
5440 may prefer to remain in Big mode, but all the examples in the tutorial
5441 are shown in normal mode.)
5443 @cindex Area under a curve
5444 What is the area under the portion of this curve from @expr{x = 1} to @expr{2}?
5445 This is simply the integral of the function:
5447 @smallexample
5448 @group
5449 1:  17 x^2 - 6 x^4 + 3     1:  5.6666 x^3 - 1.2 x^5 + 3 x
5450     .                          .
5452     r 1                        a i x
5453 @end group
5454 @end smallexample
5456 @noindent
5457 We want to evaluate this at our two values for @expr{x} and subtract.
5458 One way to do it is again with vector mapping and reduction:
5460 @smallexample
5461 @group
5462 2:  [2, 1]            1:  [12.93333, 7.46666]    1:  5.46666
5463 1:  5.6666 x^3 ...        .                          .
5465    [ 2 , 1 ] @key{TAB}          V M $ @key{RET}                  V R -
5466 @end group
5467 @end smallexample
5469 (@bullet{}) @strong{Exercise 3.}  Find the integral from 1 to @expr{y}
5470 of 
5471 @texline @math{x \sin \pi x}
5472 @infoline @w{@expr{x sin(pi x)}} 
5473 (where the sine is calculated in radians).  Find the values of the
5474 integral for integers @expr{y} from 1 to 5.  @xref{Algebra Answer 3,
5475 3}. (@bullet{})
5477 Calc's integrator can do many simple integrals symbolically, but many
5478 others are beyond its capabilities.  Suppose we wish to find the area
5479 under the curve 
5480 @texline @math{\sin x \ln x}
5481 @infoline @expr{sin(x) ln(x)} 
5482 over the same range of @expr{x}.  If you entered this formula and typed
5483 @kbd{a i x @key{RET}} (don't bother to try this), Calc would work for a
5484 long time but would be unable to find a solution.  In fact, there is no
5485 closed-form solution to this integral.  Now what do we do?
5487 @cindex Integration, numerical
5488 @cindex Numerical integration
5489 One approach would be to do the integral numerically.  It is not hard
5490 to do this by hand using vector mapping and reduction.  It is rather
5491 slow, though, since the sine and logarithm functions take a long time.
5492 We can save some time by reducing the working precision.
5494 @smallexample
5495 @group
5496 3:  10                  1:  [1, 1.1, 1.2,  ...  , 1.8, 1.9]
5497 2:  1                       .
5498 1:  0.1
5499     .
5501  10 @key{RET} 1 @key{RET} .1 @key{RET}        C-u v x
5502 @end group
5503 @end smallexample
5505 @noindent
5506 (Note that we have used the extended version of @kbd{v x}; we could
5507 also have used plain @kbd{v x} as follows:  @kbd{v x 10 @key{RET} 9 + .1 *}.)
5509 @smallexample
5510 @group
5511 2:  [1, 1.1, ... ]              1:  [0., 0.084941, 0.16993, ... ]
5512 1:  sin(x) ln(x)                    .
5513     .
5515     ' sin(x) ln(x) @key{RET}  s 1    m r  p 5 @key{RET}   V M $ @key{RET}
5517 @end group
5518 @end smallexample
5519 @noindent
5520 @smallexample
5521 @group
5522 1:  3.4195     0.34195
5523     .          .
5525     V R +      0.1 *
5526 @end group
5527 @end smallexample
5529 @noindent
5530 (If you got wildly different results, did you remember to switch
5531 to Radians mode?)
5533 Here we have divided the curve into ten segments of equal width;
5534 approximating these segments as rectangular boxes (i.e., assuming
5535 the curve is nearly flat at that resolution), we compute the areas
5536 of the boxes (height times width), then sum the areas.  (It is
5537 faster to sum first, then multiply by the width, since the width
5538 is the same for every box.)
5540 The true value of this integral turns out to be about 0.374, so
5541 we're not doing too well.  Let's try another approach.
5543 @smallexample
5544 @group
5545 1:  sin(x) ln(x)    1:  0.84147 x - 0.84147 + 0.11957 (x - 1)^2 - ...
5546     .                   .
5548     r 1                 a t x=1 @key{RET} 4 @key{RET}
5549 @end group
5550 @end smallexample
5552 @noindent
5553 Here we have computed the Taylor series expansion of the function
5554 about the point @expr{x=1}.  We can now integrate this polynomial
5555 approximation, since polynomials are easy to integrate.
5557 @smallexample
5558 @group
5559 1:  0.42074 x^2 + ...    1:  [-0.0446, -0.42073]      1:  0.3761
5560     .                        .                            .
5562     a i x @key{RET}            [ 2 , 1 ] @key{TAB}  V M $ @key{RET}         V R -
5563 @end group
5564 @end smallexample
5566 @noindent
5567 Better!  By increasing the precision and/or asking for more terms
5568 in the Taylor series, we can get a result as accurate as we like.
5569 (Taylor series converge better away from singularities in the
5570 function such as the one at @code{ln(0)}, so it would also help to
5571 expand the series about the points @expr{x=2} or @expr{x=1.5} instead
5572 of @expr{x=1}.)
5574 @cindex Simpson's rule
5575 @cindex Integration by Simpson's rule
5576 (@bullet{}) @strong{Exercise 4.}  Our first method approximated the
5577 curve by stairsteps of width 0.1; the total area was then the sum
5578 of the areas of the rectangles under these stairsteps.  Our second
5579 method approximated the function by a polynomial, which turned out
5580 to be a better approximation than stairsteps.  A third method is
5581 @dfn{Simpson's rule}, which is like the stairstep method except
5582 that the steps are not required to be flat.  Simpson's rule boils
5583 down to the formula,
5585 @ifinfo
5586 @example
5587 (h/3) * (f(a) + 4 f(a+h) + 2 f(a+2h) + 4 f(a+3h) + ...
5588               + 2 f(a+(n-2)*h) + 4 f(a+(n-1)*h) + f(a+n*h))
5589 @end example
5590 @end ifinfo
5591 @tex
5592 \turnoffactive
5593 \beforedisplay
5594 $$ \displaylines{
5595       \qquad {h \over 3} (f(a) + 4 f(a+h) + 2 f(a+2h) + 4 f(a+3h) + \cdots
5596    \hfill \cr \hfill    {} + 2 f(a+(n-2)h) + 4 f(a+(n-1)h) + f(a+n h)) \qquad
5597 } $$
5598 \afterdisplay
5599 @end tex
5601 @noindent
5602 where @expr{n} (which must be even) is the number of slices and @expr{h}
5603 is the width of each slice.  These are 10 and 0.1 in our example.
5604 For reference, here is the corresponding formula for the stairstep
5605 method:
5607 @ifinfo
5608 @example
5609 h * (f(a) + f(a+h) + f(a+2h) + f(a+3h) + ...
5610           + f(a+(n-2)*h) + f(a+(n-1)*h))
5611 @end example
5612 @end ifinfo
5613 @tex
5614 \turnoffactive
5615 \beforedisplay
5616 $$ h (f(a) + f(a+h) + f(a+2h) + f(a+3h) + \cdots
5617            + f(a+(n-2)h) + f(a+(n-1)h)) $$
5618 \afterdisplay
5619 @end tex
5621 Compute the integral from 1 to 2 of 
5622 @texline @math{\sin x \ln x}
5623 @infoline @expr{sin(x) ln(x)} 
5624 using Simpson's rule with 10 slices.  
5625 @xref{Algebra Answer 4, 4}. (@bullet{})
5627 Calc has a built-in @kbd{a I} command for doing numerical integration.
5628 It uses @dfn{Romberg's method}, which is a more sophisticated cousin
5629 of Simpson's rule.  In particular, it knows how to keep refining the
5630 result until the current precision is satisfied.
5632 @c [fix-ref Selecting Sub-Formulas]
5633 Aside from the commands we've seen so far, Calc also provides a
5634 large set of commands for operating on parts of formulas.  You
5635 indicate the desired sub-formula by placing the cursor on any part
5636 of the formula before giving a @dfn{selection} command.  Selections won't
5637 be covered in the tutorial; @pxref{Selecting Subformulas}, for
5638 details and examples.
5640 @c hard exercise: simplify (2^(n r) - 2^(r*(n - 1))) / (2^r - 1) 2^(n - 1)
5641 @c                to 2^((n-1)*(r-1)).
5643 @node Rewrites Tutorial, , Basic Algebra Tutorial, Algebra Tutorial
5644 @subsection Rewrite Rules
5646 @noindent
5647 No matter how many built-in commands Calc provided for doing algebra,
5648 there would always be something you wanted to do that Calc didn't have
5649 in its repertoire.  So Calc also provides a @dfn{rewrite rule} system
5650 that you can use to define your own algebraic manipulations.
5652 Suppose we want to simplify this trigonometric formula:
5654 @smallexample
5655 @group
5656 1:  1 / cos(x) - sin(x) tan(x)
5657     .
5659     ' 1/cos(x) - sin(x) tan(x) @key{RET}   s 1
5660 @end group
5661 @end smallexample
5663 @noindent
5664 If we were simplifying this by hand, we'd probably replace the
5665 @samp{tan} with a @samp{sin/cos} first, then combine over a common
5666 denominator.  There is no Calc command to do the former; the @kbd{a n}
5667 algebra command will do the latter but we'll do both with rewrite
5668 rules just for practice.
5670 Rewrite rules are written with the @samp{:=} symbol.
5672 @smallexample
5673 @group
5674 1:  1 / cos(x) - sin(x)^2 / cos(x)
5675     .
5677     a r tan(a) := sin(a)/cos(a) @key{RET}
5678 @end group
5679 @end smallexample
5681 @noindent
5682 (The ``assignment operator'' @samp{:=} has several uses in Calc.  All
5683 by itself the formula @samp{tan(a) := sin(a)/cos(a)} doesn't do anything,
5684 but when it is given to the @kbd{a r} command, that command interprets
5685 it as a rewrite rule.)
5687 The lefthand side, @samp{tan(a)}, is called the @dfn{pattern} of the
5688 rewrite rule.  Calc searches the formula on the stack for parts that
5689 match the pattern.  Variables in a rewrite pattern are called
5690 @dfn{meta-variables}, and when matching the pattern each meta-variable
5691 can match any sub-formula.  Here, the meta-variable @samp{a} matched
5692 the actual variable @samp{x}.
5694 When the pattern part of a rewrite rule matches a part of the formula,
5695 that part is replaced by the righthand side with all the meta-variables
5696 substituted with the things they matched.  So the result is
5697 @samp{sin(x) / cos(x)}.  Calc's normal algebraic simplifications then
5698 mix this in with the rest of the original formula.
5700 To merge over a common denominator, we can use another simple rule:
5702 @smallexample
5703 @group
5704 1:  (1 - sin(x)^2) / cos(x)
5705     .
5707     a r a/x + b/x := (a+b)/x @key{RET}
5708 @end group
5709 @end smallexample
5711 This rule points out several interesting features of rewrite patterns.
5712 First, if a meta-variable appears several times in a pattern, it must
5713 match the same thing everywhere.  This rule detects common denominators
5714 because the same meta-variable @samp{x} is used in both of the
5715 denominators.
5717 Second, meta-variable names are independent from variables in the
5718 target formula.  Notice that the meta-variable @samp{x} here matches
5719 the subformula @samp{cos(x)}; Calc never confuses the two meanings of
5720 @samp{x}.
5722 And third, rewrite patterns know a little bit about the algebraic
5723 properties of formulas.  The pattern called for a sum of two quotients;
5724 Calc was able to match a difference of two quotients by matching
5725 @samp{a = 1}, @samp{b = -sin(x)^2}, and @samp{x = cos(x)}.
5727 @c [fix-ref Algebraic Properties of Rewrite Rules]
5728 We could just as easily have written @samp{a/x - b/x := (a-b)/x} for
5729 the rule.  It would have worked just the same in all cases.  (If we
5730 really wanted the rule to apply only to @samp{+} or only to @samp{-},
5731 we could have used the @code{plain} symbol.  @xref{Algebraic Properties
5732 of Rewrite Rules}, for some examples of this.)
5734 One more rewrite will complete the job.  We want to use the identity
5735 @samp{sin(x)^2 + cos(x)^2 = 1}, but of course we must first rearrange
5736 the identity in a way that matches our formula.  The obvious rule
5737 would be @samp{@w{1 - sin(x)^2} := cos(x)^2}, but a little thought shows
5738 that the rule @samp{sin(x)^2 := 1 - cos(x)^2} will also work.  The
5739 latter rule has a more general pattern so it will work in many other
5740 situations, too.
5742 @smallexample
5743 @group
5744 1:  (1 + cos(x)^2 - 1) / cos(x)           1:  cos(x)
5745     .                                         .
5747     a r sin(x)^2 := 1 - cos(x)^2 @key{RET}          a s
5748 @end group
5749 @end smallexample
5751 You may ask, what's the point of using the most general rule if you
5752 have to type it in every time anyway?  The answer is that Calc allows
5753 you to store a rewrite rule in a variable, then give the variable
5754 name in the @kbd{a r} command.  In fact, this is the preferred way to
5755 use rewrites.  For one, if you need a rule once you'll most likely
5756 need it again later.  Also, if the rule doesn't work quite right you
5757 can simply Undo, edit the variable, and run the rule again without
5758 having to retype it.
5760 @smallexample
5761 @group
5762 ' tan(x) := sin(x)/cos(x) @key{RET}      s t tsc @key{RET}
5763 ' a/x + b/x := (a+b)/x @key{RET}         s t merge @key{RET}
5764 ' sin(x)^2 := 1 - cos(x)^2 @key{RET}     s t sinsqr @key{RET}
5766 1:  1 / cos(x) - sin(x) tan(x)     1:  cos(x)
5767     .                                  .
5769     r 1                a r tsc @key{RET}  a r merge @key{RET}  a r sinsqr @key{RET}  a s
5770 @end group
5771 @end smallexample
5773 To edit a variable, type @kbd{s e} and the variable name, use regular
5774 Emacs editing commands as necessary, then type @kbd{C-c C-c} to store
5775 the edited value back into the variable. 
5776 You can also use @w{@kbd{s e}} to create a new variable if you wish.
5778 Notice that the first time you use each rule, Calc puts up a ``compiling''
5779 message briefly.  The pattern matcher converts rules into a special
5780 optimized pattern-matching language rather than using them directly.
5781 This allows @kbd{a r} to apply even rather complicated rules very
5782 efficiently.  If the rule is stored in a variable, Calc compiles it
5783 only once and stores the compiled form along with the variable.  That's
5784 another good reason to store your rules in variables rather than
5785 entering them on the fly.
5787 (@bullet{}) @strong{Exercise 1.}  Type @kbd{m s} to get Symbolic
5788 mode, then enter the formula @samp{@w{(2 + sqrt(2))} / @w{(1 + sqrt(2))}}.
5789 Using a rewrite rule, simplify this formula by multiplying the top and
5790 bottom by the conjugate @w{@samp{1 - sqrt(2)}}.  The result will have
5791 to be expanded by the distributive law; do this with another
5792 rewrite.  @xref{Rewrites Answer 1, 1}. (@bullet{})
5794 The @kbd{a r} command can also accept a vector of rewrite rules, or
5795 a variable containing a vector of rules.
5797 @smallexample
5798 @group
5799 1:  [tsc, merge, sinsqr]          1:  [tan(x) := sin(x) / cos(x), ... ]
5800     .                                 .
5802     ' [tsc,merge,sinsqr] @key{RET}          =
5804 @end group
5805 @end smallexample
5806 @noindent
5807 @smallexample
5808 @group
5809 1:  1 / cos(x) - sin(x) tan(x)    1:  cos(x)
5810     .                                 .
5812     s t trig @key{RET}  r 1                 a r trig @key{RET}  a s
5813 @end group
5814 @end smallexample
5816 @c [fix-ref Nested Formulas with Rewrite Rules]
5817 Calc tries all the rules you give against all parts of the formula,
5818 repeating until no further change is possible.  (The exact order in
5819 which things are tried is rather complex, but for simple rules like
5820 the ones we've used here the order doesn't really matter.
5821 @xref{Nested Formulas with Rewrite Rules}.)
5823 Calc actually repeats only up to 100 times, just in case your rule set
5824 has gotten into an infinite loop.  You can give a numeric prefix argument
5825 to @kbd{a r} to specify any limit.  In particular, @kbd{M-1 a r} does
5826 only one rewrite at a time.
5828 @smallexample
5829 @group
5830 1:  1 / cos(x) - sin(x)^2 / cos(x)    1:  (1 - sin(x)^2) / cos(x)
5831     .                                     .
5833     r 1  M-1 a r trig @key{RET}                 M-1 a r trig @key{RET}
5834 @end group
5835 @end smallexample
5837 You can type @kbd{M-0 a r} if you want no limit at all on the number
5838 of rewrites that occur.
5840 Rewrite rules can also be @dfn{conditional}.  Simply follow the rule
5841 with a @samp{::} symbol and the desired condition.  For example,
5843 @smallexample
5844 @group
5845 1:  exp(2 pi i) + exp(3 pi i) + exp(4 pi i)
5846     .
5848     ' exp(2 pi i) + exp(3 pi i) + exp(4 pi i) @key{RET}
5850 @end group
5851 @end smallexample
5852 @noindent
5853 @smallexample
5854 @group
5855 1:  1 + exp(3 pi i) + 1
5856     .
5858     a r exp(k pi i) := 1 :: k % 2 = 0 @key{RET}
5859 @end group
5860 @end smallexample
5862 @noindent
5863 (Recall, @samp{k % 2} is the remainder from dividing @samp{k} by 2,
5864 which will be zero only when @samp{k} is an even integer.)
5866 An interesting point is that the variables @samp{pi} and @samp{i}
5867 were matched literally rather than acting as meta-variables.
5868 This is because they are special-constant variables.  The special
5869 constants @samp{e}, @samp{phi}, and so on also match literally.
5870 A common error with rewrite
5871 rules is to write, say, @samp{f(a,b,c,d,e) := g(a+b+c+d+e)}, expecting
5872 to match any @samp{f} with five arguments but in fact matching
5873 only when the fifth argument is literally @samp{e}!
5875 @cindex Fibonacci numbers
5876 @ignore
5877 @starindex
5878 @end ignore
5879 @tindex fib
5880 Rewrite rules provide an interesting way to define your own functions.
5881 Suppose we want to define @samp{fib(n)} to produce the @var{n}th
5882 Fibonacci number.  The first two Fibonacci numbers are each 1;
5883 later numbers are formed by summing the two preceding numbers in
5884 the sequence.  This is easy to express in a set of three rules:
5886 @smallexample
5887 @group
5888 ' [fib(1) := 1, fib(2) := 1, fib(n) := fib(n-1) + fib(n-2)] @key{RET}  s t fib
5890 1:  fib(7)               1:  13
5891     .                        .
5893     ' fib(7) @key{RET}             a r fib @key{RET}
5894 @end group
5895 @end smallexample
5897 One thing that is guaranteed about the order that rewrites are tried
5898 is that, for any given subformula, earlier rules in the rule set will
5899 be tried for that subformula before later ones.  So even though the
5900 first and third rules both match @samp{fib(1)}, we know the first will
5901 be used preferentially.
5903 This rule set has one dangerous bug:  Suppose we apply it to the
5904 formula @samp{fib(x)}?  (Don't actually try this.)  The third rule
5905 will match @samp{fib(x)} and replace it with @w{@samp{fib(x-1) + fib(x-2)}}.
5906 Each of these will then be replaced to get @samp{fib(x-2) + 2 fib(x-3) +
5907 fib(x-4)}, and so on, expanding forever.  What we really want is to apply
5908 the third rule only when @samp{n} is an integer greater than two.  Type
5909 @w{@kbd{s e fib @key{RET}}}, then edit the third rule to:
5911 @smallexample
5912 fib(n) := fib(n-1) + fib(n-2) :: integer(n) :: n > 2
5913 @end smallexample
5915 @noindent
5916 Now:
5918 @smallexample
5919 @group
5920 1:  fib(6) + fib(x) + fib(0)      1:  8 + fib(x) + fib(0)
5921     .                                 .
5923     ' fib(6)+fib(x)+fib(0) @key{RET}        a r fib @key{RET}
5924 @end group
5925 @end smallexample
5927 @noindent
5928 We've created a new function, @code{fib}, and a new command,
5929 @w{@kbd{a r fib @key{RET}}}, which means ``evaluate all @code{fib} calls in
5930 this formula.''  To make things easier still, we can tell Calc to
5931 apply these rules automatically by storing them in the special
5932 variable @code{EvalRules}.
5934 @smallexample
5935 @group
5936 1:  [fib(1) := ...]    .                1:  [8, 13]
5937     .                                       .
5939     s r fib @key{RET}        s t EvalRules @key{RET}    ' [fib(6), fib(7)] @key{RET}
5940 @end group
5941 @end smallexample
5943 It turns out that this rule set has the problem that it does far
5944 more work than it needs to when @samp{n} is large.  Consider the
5945 first few steps of the computation of @samp{fib(6)}:
5947 @smallexample
5948 @group
5949 fib(6) =
5950 fib(5)              +               fib(4) =
5951 fib(4)     +      fib(3)     +      fib(3)     +      fib(2) =
5952 fib(3) + fib(2) + fib(2) + fib(1) + fib(2) + fib(1) + 1 = ...
5953 @end group
5954 @end smallexample
5956 @noindent
5957 Note that @samp{fib(3)} appears three times here.  Unless Calc's
5958 algebraic simplifier notices the multiple @samp{fib(3)}s and combines
5959 them (and, as it happens, it doesn't), this rule set does lots of
5960 needless recomputation.  To cure the problem, type @code{s e EvalRules}
5961 to edit the rules (or just @kbd{s E}, a shorthand command for editing
5962 @code{EvalRules}) and add another condition:
5964 @smallexample
5965 fib(n) := fib(n-1) + fib(n-2) :: integer(n) :: n > 2 :: remember
5966 @end smallexample
5968 @noindent
5969 If a @samp{:: remember} condition appears anywhere in a rule, then if
5970 that rule succeeds Calc will add another rule that describes that match
5971 to the front of the rule set.  (Remembering works in any rule set, but
5972 for technical reasons it is most effective in @code{EvalRules}.)  For
5973 example, if the rule rewrites @samp{fib(7)} to something that evaluates
5974 to 13, then the rule @samp{fib(7) := 13} will be added to the rule set.
5976 Type @kbd{' fib(8) @key{RET}} to compute the eighth Fibonacci number, then
5977 type @kbd{s E} again to see what has happened to the rule set.
5979 With the @code{remember} feature, our rule set can now compute
5980 @samp{fib(@var{n})} in just @var{n} steps.  In the process it builds
5981 up a table of all Fibonacci numbers up to @var{n}.  After we have
5982 computed the result for a particular @var{n}, we can get it back
5983 (and the results for all smaller @var{n}) later in just one step.
5985 All Calc operations will run somewhat slower whenever @code{EvalRules}
5986 contains any rules.  You should type @kbd{s u EvalRules @key{RET}} now to
5987 un-store the variable.
5989 (@bullet{}) @strong{Exercise 2.}  Sometimes it is possible to reformulate
5990 a problem to reduce the amount of recursion necessary to solve it.
5991 Create a rule that, in about @var{n} simple steps and without recourse
5992 to the @code{remember} option, replaces @samp{fib(@var{n}, 1, 1)} with
5993 @samp{fib(1, @var{x}, @var{y})} where @var{x} and @var{y} are the
5994 @var{n}th and @var{n+1}st Fibonacci numbers, respectively.  This rule is
5995 rather clunky to use, so add a couple more rules to make the ``user
5996 interface'' the same as for our first version: enter @samp{fib(@var{n})},
5997 get back a plain number.  @xref{Rewrites Answer 2, 2}. (@bullet{})
5999 There are many more things that rewrites can do.  For example, there
6000 are @samp{&&&} and @samp{|||} pattern operators that create ``and''
6001 and ``or'' combinations of rules.  As one really simple example, we
6002 could combine our first two Fibonacci rules thusly:
6004 @example
6005 [fib(1 ||| 2) := 1, fib(n) := ... ]
6006 @end example
6008 @noindent
6009 That means ``@code{fib} of something matching either 1 or 2 rewrites
6010 to 1.''
6012 You can also make meta-variables optional by enclosing them in @code{opt}.
6013 For example, the pattern @samp{a + b x} matches @samp{2 + 3 x} but not
6014 @samp{2 + x} or @samp{3 x} or @samp{x}.  The pattern @samp{opt(a) + opt(b) x}
6015 matches all of these forms, filling in a default of zero for @samp{a}
6016 and one for @samp{b}.
6018 (@bullet{}) @strong{Exercise 3.}  Your friend Joe had @samp{2 + 3 x}
6019 on the stack and tried to use the rule
6020 @samp{opt(a) + opt(b) x := f(a, b, x)}.  What happened?
6021 @xref{Rewrites Answer 3, 3}. (@bullet{})
6023 (@bullet{}) @strong{Exercise 4.}  Starting with a positive integer @expr{a},
6024 divide @expr{a} by two if it is even, otherwise compute @expr{3 a + 1}.
6025 Now repeat this step over and over.  A famous unproved conjecture
6026 is that for any starting @expr{a}, the sequence always eventually
6027 reaches 1.  Given the formula @samp{seq(@var{a}, 0)}, write a set of
6028 rules that convert this into @samp{seq(1, @var{n})} where @var{n}
6029 is the number of steps it took the sequence to reach the value 1.
6030 Now enhance the rules to accept @samp{seq(@var{a})} as a starting
6031 configuration, and to stop with just the number @var{n} by itself.
6032 Now make the result be a vector of values in the sequence, from @var{a}
6033 to 1.  (The formula @samp{@var{x}|@var{y}} appends the vectors @var{x}
6034 and @var{y}.)  For example, rewriting @samp{seq(6)} should yield the
6035 vector @expr{[6, 3, 10, 5, 16, 8, 4, 2, 1]}.
6036 @xref{Rewrites Answer 4, 4}. (@bullet{})
6038 (@bullet{}) @strong{Exercise 5.}  Define, using rewrite rules, a function
6039 @samp{nterms(@var{x})} that returns the number of terms in the sum
6040 @var{x}, or 1 if @var{x} is not a sum.  (A @dfn{sum} for our purposes
6041 is one or more non-sum terms separated by @samp{+} or @samp{-} signs,
6042 so that @expr{2 - 3 (x + y) + x y} is a sum of three terms.)
6043 @xref{Rewrites Answer 5, 5}. (@bullet{})
6045 (@bullet{}) @strong{Exercise 6.}  A Taylor series for a function is an
6046 infinite series that exactly equals the value of that function at
6047 values of @expr{x} near zero.
6049 @ifinfo
6050 @example
6051 cos(x) = 1 - x^2 / 2! + x^4 / 4! - x^6 / 6! + ...
6052 @end example
6053 @end ifinfo
6054 @tex
6055 \turnoffactive
6056 \beforedisplay
6057 $$ \cos x = 1 - {x^2 \over 2!} + {x^4 \over 4!} - {x^6 \over 6!} + \cdots $$
6058 \afterdisplay
6059 @end tex
6061 The @kbd{a t} command produces a @dfn{truncated Taylor series} which
6062 is obtained by dropping all the terms higher than, say, @expr{x^2}.
6063 Calc represents the truncated Taylor series as a polynomial in @expr{x}.
6064 Mathematicians often write a truncated series using a ``big-O'' notation
6065 that records what was the lowest term that was truncated.
6067 @ifinfo
6068 @example
6069 cos(x) = 1 - x^2 / 2! + O(x^3)
6070 @end example
6071 @end ifinfo
6072 @tex
6073 \turnoffactive
6074 \beforedisplay
6075 $$ \cos x = 1 - {x^2 \over 2!} + O(x^3) $$
6076 \afterdisplay
6077 @end tex
6079 @noindent
6080 The meaning of @expr{O(x^3)} is ``a quantity which is negligibly small
6081 if @expr{x^3} is considered negligibly small as @expr{x} goes to zero.''
6083 The exercise is to create rewrite rules that simplify sums and products of
6084 power series represented as @samp{@var{polynomial} + O(@var{var}^@var{n})}.
6085 For example, given @samp{1 - x^2 / 2 + O(x^3)} and @samp{x - x^3 / 6 + O(x^4)}
6086 on the stack, we want to be able to type @kbd{*} and get the result
6087 @samp{x - 2:3 x^3 + O(x^4)}.  Don't worry if the terms of the sum are
6088 rearranged or if @kbd{a s} needs to be typed after rewriting.  (This one
6089 is rather tricky; the solution at the end of this chapter uses 6 rewrite
6090 rules.  Hint:  The @samp{constant(x)} condition tests whether @samp{x} is
6091 a number.)  @xref{Rewrites Answer 6, 6}. (@bullet{})
6093 Just for kicks, try adding the rule @code{2+3 := 6} to @code{EvalRules}.
6094 What happens?  (Be sure to remove this rule afterward, or you might get
6095 a nasty surprise when you use Calc to balance your checkbook!)
6097 @xref{Rewrite Rules}, for the whole story on rewrite rules.
6099 @node Programming Tutorial, Answers to Exercises, Algebra Tutorial, Tutorial
6100 @section Programming Tutorial
6102 @noindent
6103 The Calculator is written entirely in Emacs Lisp, a highly extensible
6104 language.  If you know Lisp, you can program the Calculator to do
6105 anything you like.  Rewrite rules also work as a powerful programming
6106 system.  But Lisp and rewrite rules take a while to master, and often
6107 all you want to do is define a new function or repeat a command a few
6108 times.  Calc has features that allow you to do these things easily.
6110 One very limited form of programming is defining your own functions.
6111 Calc's @kbd{Z F} command allows you to define a function name and
6112 key sequence to correspond to any formula.  Programming commands use
6113 the shift-@kbd{Z} prefix; the user commands they create use the lower
6114 case @kbd{z} prefix.
6116 @smallexample
6117 @group
6118 1:  1 + x + x^2 / 2 + x^3 / 6         1:  1 + x + x^2 / 2 + x^3 / 6
6119     .                                     .
6121     ' 1 + x + x^2/2! + x^3/3! @key{RET}         Z F e myexp @key{RET} @key{RET} @key{RET} y
6122 @end group
6123 @end smallexample
6125 This polynomial is a Taylor series approximation to @samp{exp(x)}.
6126 The @kbd{Z F} command asks a number of questions.  The above answers
6127 say that the key sequence for our function should be @kbd{z e}; the
6128 @kbd{M-x} equivalent should be @code{calc-myexp}; the name of the
6129 function in algebraic formulas should also be @code{myexp}; the
6130 default argument list @samp{(x)} is acceptable; and finally @kbd{y}
6131 answers the question ``leave it in symbolic form for non-constant
6132 arguments?''
6134 @smallexample
6135 @group
6136 1:  1.3495     2:  1.3495     3:  1.3495
6137     .          1:  1.34986    2:  1.34986
6138                    .          1:  myexp(a + 1)
6139                                   .
6141     .3 z e         .3 E           ' a+1 @key{RET} z e
6142 @end group
6143 @end smallexample
6145 @noindent
6146 First we call our new @code{exp} approximation with 0.3 as an
6147 argument, and compare it with the true @code{exp} function.  Then
6148 we note that, as requested, if we try to give @kbd{z e} an
6149 argument that isn't a plain number, it leaves the @code{myexp}
6150 function call in symbolic form.  If we had answered @kbd{n} to the
6151 final question, @samp{myexp(a + 1)} would have evaluated by plugging
6152 in @samp{a + 1} for @samp{x} in the defining formula.
6154 @cindex Sine integral Si(x)
6155 @ignore
6156 @starindex
6157 @end ignore
6158 @tindex Si
6159 (@bullet{}) @strong{Exercise 1.}  The ``sine integral'' function
6160 @texline @math{{\rm Si}(x)}
6161 @infoline @expr{Si(x)} 
6162 is defined as the integral of @samp{sin(t)/t} for
6163 @expr{t = 0} to @expr{x} in radians.  (It was invented because this
6164 integral has no solution in terms of basic functions; if you give it
6165 to Calc's @kbd{a i} command, it will ponder it for a long time and then
6166 give up.)  We can use the numerical integration command, however,
6167 which in algebraic notation is written like @samp{ninteg(f(t), t, 0, x)}
6168 with any integrand @samp{f(t)}.  Define a @kbd{z s} command and
6169 @code{Si} function that implement this.  You will need to edit the
6170 default argument list a bit.  As a test, @samp{Si(1)} should return
6171 0.946083. (If you don't get this answer, you might want to check that
6172 Calc is in Radians mode.  Also, @code{ninteg} will run a lot faster if
6173 you reduce the precision to, say, six digits beforehand.)
6174 @xref{Programming Answer 1, 1}. (@bullet{})
6176 The simplest way to do real ``programming'' of Emacs is to define a
6177 @dfn{keyboard macro}.  A keyboard macro is simply a sequence of
6178 keystrokes which Emacs has stored away and can play back on demand.
6179 For example, if you find yourself typing @kbd{H a S x @key{RET}} often,
6180 you may wish to program a keyboard macro to type this for you.
6182 @smallexample
6183 @group
6184 1:  y = sqrt(x)          1:  x = y^2
6185     .                        .
6187     ' y=sqrt(x) @key{RET}       C-x ( H a S x @key{RET} C-x )
6189 1:  y = cos(x)           1:  x = s1 arccos(y) + 2 pi n1
6190     .                        .
6192     ' y=cos(x) @key{RET}           X
6193 @end group
6194 @end smallexample
6196 @noindent
6197 When you type @kbd{C-x (}, Emacs begins recording.  But it is also
6198 still ready to execute your keystrokes, so you're really ``training''
6199 Emacs by walking it through the procedure once.  When you type
6200 @w{@kbd{C-x )}}, the macro is recorded.  You can now type @kbd{X} to
6201 re-execute the same keystrokes.
6203 You can give a name to your macro by typing @kbd{Z K}.
6205 @smallexample
6206 @group
6207 1:  .              1:  y = x^4         1:  x = s2 sqrt(s1 sqrt(y))
6208                        .                   .
6210   Z K x @key{RET}            ' y=x^4 @key{RET}         z x
6211 @end group
6212 @end smallexample
6214 @noindent
6215 Notice that we use shift-@kbd{Z} to define the command, and lower-case
6216 @kbd{z} to call it up.
6218 Keyboard macros can call other macros.
6220 @smallexample
6221 @group
6222 1:  abs(x)        1:  x = s1 y                1:  2 / x    1:  x = 2 / y
6223     .                 .                           .            .
6225  ' abs(x) @key{RET}   C-x ( ' y @key{RET} a = z x C-x )    ' 2/x @key{RET}       X
6226 @end group
6227 @end smallexample
6229 (@bullet{}) @strong{Exercise 2.}  Define a keyboard macro to negate
6230 the item in level 3 of the stack, without disturbing the rest of
6231 the stack.  @xref{Programming Answer 2, 2}. (@bullet{})
6233 (@bullet{}) @strong{Exercise 3.}  Define keyboard macros to compute
6234 the following functions:
6236 @enumerate
6237 @item
6238 Compute 
6239 @texline @math{\displaystyle{\sin x \over x}},
6240 @infoline @expr{sin(x) / x}, 
6241 where @expr{x} is the number on the top of the stack.
6243 @item
6244 Compute the base-@expr{b} logarithm, just like the @kbd{B} key except
6245 the arguments are taken in the opposite order.
6247 @item
6248 Produce a vector of integers from 1 to the integer on the top of
6249 the stack.
6250 @end enumerate
6251 @noindent
6252 @xref{Programming Answer 3, 3}. (@bullet{})
6254 (@bullet{}) @strong{Exercise 4.}  Define a keyboard macro to compute
6255 the average (mean) value of a list of numbers.
6256 @xref{Programming Answer 4, 4}. (@bullet{})
6258 In many programs, some of the steps must execute several times.
6259 Calc has @dfn{looping} commands that allow this.  Loops are useful
6260 inside keyboard macros, but actually work at any time.
6262 @smallexample
6263 @group
6264 1:  x^6          2:  x^6        1: 360 x^2
6265     .            1:  4             .
6266                      .
6268   ' x^6 @key{RET}          4         Z < a d x @key{RET} Z >
6269 @end group
6270 @end smallexample
6272 @noindent
6273 Here we have computed the fourth derivative of @expr{x^6} by
6274 enclosing a derivative command in a ``repeat loop'' structure.
6275 This structure pops a repeat count from the stack, then
6276 executes the body of the loop that many times.
6278 If you make a mistake while entering the body of the loop,
6279 type @w{@kbd{Z C-g}} to cancel the loop command.
6281 @cindex Fibonacci numbers
6282 Here's another example:
6284 @smallexample
6285 @group
6286 3:  1               2:  10946
6287 2:  1               1:  17711
6288 1:  20                  .
6289     .
6291 1 @key{RET} @key{RET} 20       Z < @key{TAB} C-j + Z >
6292 @end group
6293 @end smallexample
6295 @noindent
6296 The numbers in levels 2 and 1 should be the 21st and 22nd Fibonacci
6297 numbers, respectively.  (To see what's going on, try a few repetitions
6298 of the loop body by hand; @kbd{C-j}, also on the Line-Feed or @key{LFD}
6299 key if you have one, makes a copy of the number in level 2.)
6301 @cindex Golden ratio
6302 @cindex Phi, golden ratio
6303 A fascinating property of the Fibonacci numbers is that the @expr{n}th
6304 Fibonacci number can be found directly by computing 
6305 @texline @math{\phi^n / \sqrt{5}}
6306 @infoline @expr{phi^n / sqrt(5)}
6307 and then rounding to the nearest integer, where 
6308 @texline @math{\phi} (``phi''),
6309 @infoline @expr{phi}, 
6310 the ``golden ratio,'' is 
6311 @texline @math{(1 + \sqrt{5}) / 2}.
6312 @infoline @expr{(1 + sqrt(5)) / 2}. 
6313 (For convenience, this constant is available from the @code{phi}
6314 variable, or the @kbd{I H P} command.)
6316 @smallexample
6317 @group
6318 1:  1.61803         1:  24476.0000409    1:  10945.9999817    1:  10946
6319     .                   .                    .                    .
6321     I H P               21 ^                 5 Q /                R
6322 @end group
6323 @end smallexample
6325 @cindex Continued fractions
6326 (@bullet{}) @strong{Exercise 5.}  The @dfn{continued fraction}
6327 representation of 
6328 @texline @math{\phi}
6329 @infoline @expr{phi} 
6330 is 
6331 @texline @math{1 + 1/(1 + 1/(1 + 1/( \ldots )))}.
6332 @infoline @expr{1 + 1/(1 + 1/(1 + 1/( ...@: )))}.
6333 We can compute an approximate value by carrying this however far
6334 and then replacing the innermost 
6335 @texline @math{1/( \ldots )}
6336 @infoline @expr{1/( ...@: )} 
6337 by 1.  Approximate
6338 @texline @math{\phi}
6339 @infoline @expr{phi} 
6340 using a twenty-term continued fraction.
6341 @xref{Programming Answer 5, 5}. (@bullet{})
6343 (@bullet{}) @strong{Exercise 6.}  Linear recurrences like the one for
6344 Fibonacci numbers can be expressed in terms of matrices.  Given a
6345 vector @w{@expr{[a, b]}} determine a matrix which, when multiplied by this
6346 vector, produces the vector @expr{[b, c]}, where @expr{a}, @expr{b} and
6347 @expr{c} are three successive Fibonacci numbers.  Now write a program
6348 that, given an integer @expr{n}, computes the @expr{n}th Fibonacci number
6349 using matrix arithmetic.  @xref{Programming Answer 6, 6}. (@bullet{})
6351 @cindex Harmonic numbers
6352 A more sophisticated kind of loop is the @dfn{for} loop.  Suppose
6353 we wish to compute the 20th ``harmonic'' number, which is equal to
6354 the sum of the reciprocals of the integers from 1 to 20.
6356 @smallexample
6357 @group
6358 3:  0               1:  3.597739
6359 2:  1                   .
6360 1:  20
6361     .
6363 0 @key{RET} 1 @key{RET} 20         Z ( & + 1 Z )
6364 @end group
6365 @end smallexample
6367 @noindent
6368 The ``for'' loop pops two numbers, the lower and upper limits, then
6369 repeats the body of the loop as an internal counter increases from
6370 the lower limit to the upper one.  Just before executing the loop
6371 body, it pushes the current loop counter.  When the loop body
6372 finishes, it pops the ``step,'' i.e., the amount by which to
6373 increment the loop counter.  As you can see, our loop always
6374 uses a step of one.
6376 This harmonic number function uses the stack to hold the running
6377 total as well as for the various loop housekeeping functions.  If
6378 you find this disorienting, you can sum in a variable instead:
6380 @smallexample
6381 @group
6382 1:  0         2:  1                  .            1:  3.597739
6383     .         1:  20                                  .
6384                   .
6386     0 t 7       1 @key{RET} 20      Z ( & s + 7 1 Z )       r 7
6387 @end group
6388 @end smallexample
6390 @noindent
6391 The @kbd{s +} command adds the top-of-stack into the value in a
6392 variable (and removes that value from the stack).
6394 It's worth noting that many jobs that call for a ``for'' loop can
6395 also be done more easily by Calc's high-level operations.  Two
6396 other ways to compute harmonic numbers are to use vector mapping
6397 and reduction (@kbd{v x 20}, then @w{@kbd{V M &}}, then @kbd{V R +}),
6398 or to use the summation command @kbd{a +}.  Both of these are
6399 probably easier than using loops.  However, there are some
6400 situations where loops really are the way to go:
6402 (@bullet{}) @strong{Exercise 7.}  Use a ``for'' loop to find the first
6403 harmonic number which is greater than 4.0.
6404 @xref{Programming Answer 7, 7}. (@bullet{})
6406 Of course, if we're going to be using variables in our programs,
6407 we have to worry about the programs clobbering values that the
6408 caller was keeping in those same variables.  This is easy to
6409 fix, though:
6411 @smallexample
6412 @group
6413     .        1:  0.6667       1:  0.6667     3:  0.6667
6414                  .                .          2:  3.597739
6415                                              1:  0.6667
6416                                                  .
6418    Z `    p 4 @key{RET} 2 @key{RET} 3 /   s 7 s s a @key{RET}    Z '  r 7 s r a @key{RET}
6419 @end group
6420 @end smallexample
6422 @noindent
6423 When we type @kbd{Z `} (that's a back-quote character), Calc saves
6424 its mode settings and the contents of the ten ``quick variables''
6425 for later reference.  When we type @kbd{Z '} (that's an apostrophe
6426 now), Calc restores those saved values.  Thus the @kbd{p 4} and
6427 @kbd{s 7} commands have no effect outside this sequence.  Wrapping
6428 this around the body of a keyboard macro ensures that it doesn't
6429 interfere with what the user of the macro was doing.  Notice that
6430 the contents of the stack, and the values of named variables,
6431 survive past the @kbd{Z '} command.
6433 @cindex Bernoulli numbers, approximate
6434 The @dfn{Bernoulli numbers} are a sequence with the interesting
6435 property that all of the odd Bernoulli numbers are zero, and the
6436 even ones, while difficult to compute, can be roughly approximated
6437 by the formula 
6438 @texline @math{\displaystyle{2 n! \over (2 \pi)^n}}.
6439 @infoline @expr{2 n!@: / (2 pi)^n}.  
6440 Let's write a keyboard macro to compute (approximate) Bernoulli numbers.
6441 (Calc has a command, @kbd{k b}, to compute exact Bernoulli numbers, but
6442 this command is very slow for large @expr{n} since the higher Bernoulli
6443 numbers are very large fractions.)
6445 @smallexample
6446 @group
6447 1:  10               1:  0.0756823
6448     .                    .
6450     10     C-x ( @key{RET} 2 % Z [ @key{DEL} 0 Z : ' 2 $! / (2 pi)^$ @key{RET} = Z ] C-x )
6451 @end group
6452 @end smallexample
6454 @noindent
6455 You can read @kbd{Z [} as ``then,'' @kbd{Z :} as ``else,'' and
6456 @kbd{Z ]} as ``end-if.''  There is no need for an explicit ``if''
6457 command.  For the purposes of @w{@kbd{Z [}}, the condition is ``true''
6458 if the value it pops from the stack is a nonzero number, or ``false''
6459 if it pops zero or something that is not a number (like a formula).
6460 Here we take our integer argument modulo 2; this will be nonzero
6461 if we're asking for an odd Bernoulli number.
6463 The actual tenth Bernoulli number is @expr{5/66}.
6465 @smallexample
6466 @group
6467 3:  0.0756823    1:  0          1:  0.25305    1:  0          1:  1.16659
6468 2:  5:66             .              .              .              .
6469 1:  0.0757575
6470     .
6472 10 k b @key{RET} c f   M-0 @key{DEL} 11 X   @key{DEL} 12 X       @key{DEL} 13 X       @key{DEL} 14 X
6473 @end group
6474 @end smallexample
6476 Just to exercise loops a bit more, let's compute a table of even
6477 Bernoulli numbers.
6479 @smallexample
6480 @group
6481 3:  []             1:  [0.10132, 0.03079, 0.02340, 0.033197, ...]
6482 2:  2                  .
6483 1:  30
6484     .
6486  [ ] 2 @key{RET} 30          Z ( X | 2 Z )
6487 @end group
6488 @end smallexample
6490 @noindent
6491 The vertical-bar @kbd{|} is the vector-concatenation command.  When
6492 we execute it, the list we are building will be in stack level 2
6493 (initially this is an empty list), and the next Bernoulli number
6494 will be in level 1.  The effect is to append the Bernoulli number
6495 onto the end of the list.  (To create a table of exact fractional
6496 Bernoulli numbers, just replace @kbd{X} with @kbd{k b} in the above
6497 sequence of keystrokes.)
6499 With loops and conditionals, you can program essentially anything
6500 in Calc.  One other command that makes looping easier is @kbd{Z /},
6501 which takes a condition from the stack and breaks out of the enclosing
6502 loop if the condition is true (non-zero).  You can use this to make
6503 ``while'' and ``until'' style loops.
6505 If you make a mistake when entering a keyboard macro, you can edit
6506 it using @kbd{Z E}.  First, you must attach it to a key with @kbd{Z K}.
6507 One technique is to enter a throwaway dummy definition for the macro,
6508 then enter the real one in the edit command.
6510 @smallexample
6511 @group
6512 1:  3                   1:  3           Calc Macro Edit Mode.
6513     .                       .           Original keys: 1 <return> 2 +
6515                                         1                          ;; calc digits
6516                                         RET                        ;; calc-enter
6517                                         2                          ;; calc digits
6518                                         +                          ;; calc-plus
6520 C-x ( 1 @key{RET} 2 + C-x )    Z K h @key{RET}      Z E h
6521 @end group
6522 @end smallexample
6524 @noindent
6525 A keyboard macro is stored as a pure keystroke sequence.  The
6526 @file{edmacro} package (invoked by @kbd{Z E}) scans along the
6527 macro and tries to decode it back into human-readable steps.
6528 Descriptions of the keystrokes are given as comments, which begin with
6529 @samp{;;}, and which are ignored when the edited macro is saved.
6530 Spaces and line breaks are also ignored when the edited macro is saved.
6531 To enter a space into the macro, type @code{SPC}.  All the special
6532 characters @code{RET}, @code{LFD}, @code{TAB}, @code{SPC}, @code{DEL},
6533 and @code{NUL} must be written in all uppercase, as must the prefixes
6534 @code{C-} and @code{M-}.
6536 Let's edit in a new definition, for computing harmonic numbers.
6537 First, erase the four lines of the old definition.  Then, type
6538 in the new definition (or use Emacs @kbd{M-w} and @kbd{C-y} commands
6539 to copy it from this page of the Info file; you can of course skip
6540 typing the comments, which begin with @samp{;;}).
6542 @smallexample
6543 Z`                      ;; calc-kbd-push     (Save local values)
6544 0                       ;; calc digits       (Push a zero onto the stack)
6545 st                      ;; calc-store-into   (Store it in the following variable)
6546 1                       ;; calc quick variable  (Quick variable q1)
6547 1                       ;; calc digits       (Initial value for the loop) 
6548 TAB                     ;; calc-roll-down    (Swap initial and final)
6549 Z(                      ;; calc-kbd-for      (Begin the "for" loop)
6550 &                       ;; calc-inv          (Take the reciprocal)
6551 s+                      ;; calc-store-plus   (Add to the following variable)
6552 1                       ;; calc quick variable  (Quick variable q1)
6553 1                       ;; calc digits       (The loop step is 1)
6554 Z)                      ;; calc-kbd-end-for  (End the "for" loop)
6555 sr                      ;; calc-recall       (Recall the final accumulated value)
6556 1                       ;; calc quick variable (Quick variable q1)
6557 Z'                      ;; calc-kbd-pop      (Restore values)
6558 @end smallexample
6560 @noindent
6561 Press @kbd{C-c C-c} to finish editing and return to the Calculator.
6563 @smallexample
6564 @group
6565 1:  20         1:  3.597739
6566     .              .
6568     20             z h
6569 @end group
6570 @end smallexample
6572 The @file{edmacro} package defines a handy @code{read-kbd-macro} command
6573 which reads the current region of the current buffer as a sequence of
6574 keystroke names, and defines that sequence on the @kbd{X} 
6575 (and @kbd{C-x e}) key.  Because this is so useful, Calc puts this
6576 command on the @kbd{C-x * m} key.  Try reading in this macro in the
6577 following form:  Press @kbd{C-@@} (or @kbd{C-@key{SPC}}) at 
6578 one end of the text below, then type @kbd{C-x * m} at the other.
6580 @example
6581 @group
6582 Z ` 0 t 1
6583     1 TAB
6584     Z (  & s + 1  1 Z )
6585     r 1
6586 Z '
6587 @end group
6588 @end example
6590 (@bullet{}) @strong{Exercise 8.}  A general algorithm for solving
6591 equations numerically is @dfn{Newton's Method}.  Given the equation
6592 @expr{f(x) = 0} for any function @expr{f}, and an initial guess
6593 @expr{x_0} which is reasonably close to the desired solution, apply
6594 this formula over and over:
6596 @ifinfo
6597 @example
6598 new_x = x - f(x)/f'(x)
6599 @end example
6600 @end ifinfo
6601 @tex
6602 \beforedisplay
6603 $$ x_{\rm new} = x - {f(x) \over f'(x)} $$
6604 \afterdisplay
6605 @end tex
6607 @noindent
6608 where @expr{f'(x)} is the derivative of @expr{f}.  The @expr{x}
6609 values will quickly converge to a solution, i.e., eventually
6610 @texline @math{x_{\rm new}}
6611 @infoline @expr{new_x} 
6612 and @expr{x} will be equal to within the limits
6613 of the current precision.  Write a program which takes a formula
6614 involving the variable @expr{x}, and an initial guess @expr{x_0},
6615 on the stack, and produces a value of @expr{x} for which the formula
6616 is zero.  Use it to find a solution of 
6617 @texline @math{\sin(\cos x) = 0.5}
6618 @infoline @expr{sin(cos(x)) = 0.5}
6619 near @expr{x = 4.5}.  (Use angles measured in radians.)  Note that
6620 the built-in @w{@kbd{a R}} (@code{calc-find-root}) command uses Newton's
6621 method when it is able.  @xref{Programming Answer 8, 8}. (@bullet{})
6623 @cindex Digamma function
6624 @cindex Gamma constant, Euler's
6625 @cindex Euler's gamma constant
6626 (@bullet{}) @strong{Exercise 9.}  The @dfn{digamma} function 
6627 @texline @math{\psi(z) (``psi'')}
6628 @infoline @expr{psi(z)}
6629 is defined as the derivative of 
6630 @texline @math{\ln \Gamma(z)}.
6631 @infoline @expr{ln(gamma(z))}.  
6632 For large values of @expr{z}, it can be approximated by the infinite sum
6634 @ifinfo
6635 @example
6636 psi(z) ~= ln(z) - 1/2z - sum(bern(2 n) / 2 n z^(2 n), n, 1, inf)
6637 @end example
6638 @end ifinfo
6639 @tex
6640 \beforedisplay
6641 $$ \psi(z) \approx \ln z - {1\over2z} -
6642    \sum_{n=1}^\infty {\code{bern}(2 n) \over 2 n z^{2n}}
6644 \afterdisplay
6645 @end tex
6647 @noindent
6648 where 
6649 @texline @math{\sum}
6650 @infoline @expr{sum} 
6651 represents the sum over @expr{n} from 1 to infinity
6652 (or to some limit high enough to give the desired accuracy), and
6653 the @code{bern} function produces (exact) Bernoulli numbers.
6654 While this sum is not guaranteed to converge, in practice it is safe.
6655 An interesting mathematical constant is Euler's gamma, which is equal
6656 to about 0.5772.  One way to compute it is by the formula,
6657 @texline @math{\gamma = -\psi(1)}.
6658 @infoline @expr{gamma = -psi(1)}.  
6659 Unfortunately, 1 isn't a large enough argument
6660 for the above formula to work (5 is a much safer value for @expr{z}).
6661 Fortunately, we can compute 
6662 @texline @math{\psi(1)}
6663 @infoline @expr{psi(1)} 
6664 from 
6665 @texline @math{\psi(5)}
6666 @infoline @expr{psi(5)} 
6667 using the recurrence 
6668 @texline @math{\psi(z+1) = \psi(z) + {1 \over z}}.
6669 @infoline @expr{psi(z+1) = psi(z) + 1/z}.  
6670 Your task:  Develop a program to compute 
6671 @texline @math{\psi(z)};
6672 @infoline @expr{psi(z)}; 
6673 it should ``pump up'' @expr{z}
6674 if necessary to be greater than 5, then use the above summation
6675 formula.  Use looping commands to compute the sum.  Use your function
6676 to compute 
6677 @texline @math{\gamma}
6678 @infoline @expr{gamma} 
6679 to twelve decimal places.  (Calc has a built-in command
6680 for Euler's constant, @kbd{I P}, which you can use to check your answer.)
6681 @xref{Programming Answer 9, 9}. (@bullet{})
6683 @cindex Polynomial, list of coefficients
6684 (@bullet{}) @strong{Exercise 10.}  Given a polynomial in @expr{x} and
6685 a number @expr{m} on the stack, where the polynomial is of degree
6686 @expr{m} or less (i.e., does not have any terms higher than @expr{x^m}),
6687 write a program to convert the polynomial into a list-of-coefficients
6688 notation.  For example, @expr{5 x^4 + (x + 1)^2} with @expr{m = 6}
6689 should produce the list @expr{[1, 2, 1, 0, 5, 0, 0]}.  Also develop
6690 a way to convert from this form back to the standard algebraic form.
6691 @xref{Programming Answer 10, 10}. (@bullet{})
6693 @cindex Recursion
6694 (@bullet{}) @strong{Exercise 11.}  The @dfn{Stirling numbers of the
6695 first kind} are defined by the recurrences,
6697 @ifinfo
6698 @example
6699 s(n,n) = 1   for n >= 0,
6700 s(n,0) = 0   for n > 0,
6701 s(n+1,m) = s(n,m-1) - n s(n,m)   for n >= m >= 1.
6702 @end example
6703 @end ifinfo
6704 @tex
6705 \turnoffactive
6706 \beforedisplay
6707 $$ \eqalign{ s(n,n)   &= 1 \qquad \hbox{for } n \ge 0,  \cr
6708              s(n,0)   &= 0 \qquad \hbox{for } n > 0, \cr
6709              s(n+1,m) &= s(n,m-1) - n \, s(n,m) \qquad
6710                           \hbox{for } n \ge m \ge 1.}
6712 \afterdisplay
6713 \vskip5pt
6714 (These numbers are also sometimes written $\displaystyle{n \brack m}$.)
6715 @end tex
6717 This can be implemented using a @dfn{recursive} program in Calc; the
6718 program must invoke itself in order to calculate the two righthand
6719 terms in the general formula.  Since it always invokes itself with
6720 ``simpler'' arguments, it's easy to see that it must eventually finish
6721 the computation.  Recursion is a little difficult with Emacs keyboard
6722 macros since the macro is executed before its definition is complete.
6723 So here's the recommended strategy:  Create a ``dummy macro'' and assign
6724 it to a key with, e.g., @kbd{Z K s}.  Now enter the true definition,
6725 using the @kbd{z s} command to call itself recursively, then assign it
6726 to the same key with @kbd{Z K s}.  Now the @kbd{z s} command will run
6727 the complete recursive program.  (Another way is to use @w{@kbd{Z E}}
6728 or @kbd{C-x * m} (@code{read-kbd-macro}) to read the whole macro at once,
6729 thus avoiding the ``training'' phase.)  The task:  Write a program
6730 that computes Stirling numbers of the first kind, given @expr{n} and
6731 @expr{m} on the stack.  Test it with @emph{small} inputs like
6732 @expr{s(4,2)}.  (There is a built-in command for Stirling numbers,
6733 @kbd{k s}, which you can use to check your answers.)
6734 @xref{Programming Answer 11, 11}. (@bullet{})
6736 The programming commands we've seen in this part of the tutorial
6737 are low-level, general-purpose operations.  Often you will find
6738 that a higher-level function, such as vector mapping or rewrite
6739 rules, will do the job much more easily than a detailed, step-by-step
6740 program can:
6742 (@bullet{}) @strong{Exercise 12.}  Write another program for
6743 computing Stirling numbers of the first kind, this time using
6744 rewrite rules.  Once again, @expr{n} and @expr{m} should be taken
6745 from the stack.  @xref{Programming Answer 12, 12}. (@bullet{})
6747 @example
6749 @end example
6750 This ends the tutorial section of the Calc manual.  Now you know enough
6751 about Calc to use it effectively for many kinds of calculations.  But
6752 Calc has many features that were not even touched upon in this tutorial.
6753 @c [not-split]
6754 The rest of this manual tells the whole story.
6755 @c [when-split]
6756 @c Volume II of this manual, the @dfn{Calc Reference}, tells the whole story.
6758 @page
6759 @node Answers to Exercises, , Programming Tutorial, Tutorial
6760 @section Answers to Exercises
6762 @noindent
6763 This section includes answers to all the exercises in the Calc tutorial.
6765 @menu
6766 * RPN Answer 1::           1 @key{RET} 2 @key{RET} 3 @key{RET} 4 + * -
6767 * RPN Answer 2::           2*4 + 7*9.5 + 5/4
6768 * RPN Answer 3::           Operating on levels 2 and 3
6769 * RPN Answer 4::           Joe's complex problems
6770 * Algebraic Answer 1::     Simulating Q command
6771 * Algebraic Answer 2::     Joe's algebraic woes
6772 * Algebraic Answer 3::     1 / 0
6773 * Modes Answer 1::         3#0.1 = 3#0.0222222?
6774 * Modes Answer 2::         16#f.e8fe15
6775 * Modes Answer 3::         Joe's rounding bug
6776 * Modes Answer 4::         Why floating point?
6777 * Arithmetic Answer 1::    Why the \ command?
6778 * Arithmetic Answer 2::    Tripping up the B command
6779 * Vector Answer 1::        Normalizing a vector
6780 * Vector Answer 2::        Average position
6781 * Matrix Answer 1::        Row and column sums
6782 * Matrix Answer 2::        Symbolic system of equations
6783 * Matrix Answer 3::        Over-determined system
6784 * List Answer 1::          Powers of two
6785 * List Answer 2::          Least-squares fit with matrices
6786 * List Answer 3::          Geometric mean
6787 * List Answer 4::          Divisor function
6788 * List Answer 5::          Duplicate factors
6789 * List Answer 6::          Triangular list
6790 * List Answer 7::          Another triangular list
6791 * List Answer 8::          Maximum of Bessel function
6792 * List Answer 9::          Integers the hard way
6793 * List Answer 10::         All elements equal
6794 * List Answer 11::         Estimating pi with darts
6795 * List Answer 12::         Estimating pi with matchsticks
6796 * List Answer 13::         Hash codes
6797 * List Answer 14::         Random walk
6798 * Types Answer 1::         Square root of pi times rational
6799 * Types Answer 2::         Infinities
6800 * Types Answer 3::         What can "nan" be?
6801 * Types Answer 4::         Abbey Road
6802 * Types Answer 5::         Friday the 13th
6803 * Types Answer 6::         Leap years
6804 * Types Answer 7::         Erroneous donut
6805 * Types Answer 8::         Dividing intervals
6806 * Types Answer 9::         Squaring intervals
6807 * Types Answer 10::        Fermat's primality test
6808 * Types Answer 11::        pi * 10^7 seconds
6809 * Types Answer 12::        Abbey Road on CD
6810 * Types Answer 13::        Not quite pi * 10^7 seconds
6811 * Types Answer 14::        Supercomputers and c
6812 * Types Answer 15::        Sam the Slug
6813 * Algebra Answer 1::       Squares and square roots
6814 * Algebra Answer 2::       Building polynomial from roots
6815 * Algebra Answer 3::       Integral of x sin(pi x)
6816 * Algebra Answer 4::       Simpson's rule
6817 * Rewrites Answer 1::      Multiplying by conjugate
6818 * Rewrites Answer 2::      Alternative fib rule
6819 * Rewrites Answer 3::      Rewriting opt(a) + opt(b) x
6820 * Rewrites Answer 4::      Sequence of integers
6821 * Rewrites Answer 5::      Number of terms in sum
6822 * Rewrites Answer 6::      Truncated Taylor series
6823 * Programming Answer 1::   Fresnel's C(x)
6824 * Programming Answer 2::   Negate third stack element
6825 * Programming Answer 3::   Compute sin(x) / x, etc.
6826 * Programming Answer 4::   Average value of a list
6827 * Programming Answer 5::   Continued fraction phi
6828 * Programming Answer 6::   Matrix Fibonacci numbers
6829 * Programming Answer 7::   Harmonic number greater than 4
6830 * Programming Answer 8::   Newton's method
6831 * Programming Answer 9::   Digamma function
6832 * Programming Answer 10::  Unpacking a polynomial
6833 * Programming Answer 11::  Recursive Stirling numbers
6834 * Programming Answer 12::  Stirling numbers with rewrites
6835 @end menu
6837 @c The following kludgery prevents the individual answers from
6838 @c being entered on the table of contents.
6839 @tex
6840 \global\let\oldwrite=\write
6841 \gdef\skipwrite#1#2{\let\write=\oldwrite}
6842 \global\let\oldchapternofonts=\chapternofonts
6843 \gdef\chapternofonts{\let\write=\skipwrite\oldchapternofonts}
6844 @end tex
6846 @node RPN Answer 1, RPN Answer 2, Answers to Exercises, Answers to Exercises
6847 @subsection RPN Tutorial Exercise 1
6849 @noindent
6850 @kbd{1 @key{RET} 2 @key{RET} 3 @key{RET} 4 + * -}
6852 The result is 
6853 @texline @math{1 - (2 \times (3 + 4)) = -13}.
6854 @infoline @expr{1 - (2 * (3 + 4)) = -13}.
6856 @node RPN Answer 2, RPN Answer 3, RPN Answer 1, Answers to Exercises
6857 @subsection RPN Tutorial Exercise 2
6859 @noindent
6860 @texline @math{2\times4 + 7\times9.5 + {5\over4} = 75.75}
6861 @infoline @expr{2*4 + 7*9.5 + 5/4 = 75.75}
6863 After computing the intermediate term 
6864 @texline @math{2\times4 = 8},
6865 @infoline @expr{2*4 = 8}, 
6866 you can leave that result on the stack while you compute the second
6867 term.  With both of these results waiting on the stack you can then
6868 compute the final term, then press @kbd{+ +} to add everything up.
6870 @smallexample
6871 @group
6872 2:  2          1:  8          3:  8          2:  8
6873 1:  4              .          2:  7          1:  66.5
6874     .                         1:  9.5            .
6875                                   .
6877   2 @key{RET} 4          *          7 @key{RET} 9.5          *
6879 @end group
6880 @end smallexample
6881 @noindent
6882 @smallexample
6883 @group
6884 4:  8          3:  8          2:  8          1:  75.75
6885 3:  66.5       2:  66.5       1:  67.75          .
6886 2:  5          1:  1.25           .
6887 1:  4              .
6888     .
6890   5 @key{RET} 4          /              +              +
6891 @end group
6892 @end smallexample
6894 Alternatively, you could add the first two terms before going on
6895 with the third term.
6897 @smallexample
6898 @group
6899 2:  8          1:  74.5       3:  74.5       2:  74.5       1:  75.75
6900 1:  66.5           .          2:  5          1:  1.25           .
6901     .                         1:  4              .
6902                                   .
6904    ...             +            5 @key{RET} 4          /              +
6905 @end group
6906 @end smallexample
6908 On an old-style RPN calculator this second method would have the
6909 advantage of using only three stack levels.  But since Calc's stack
6910 can grow arbitrarily large this isn't really an issue.  Which method
6911 you choose is purely a matter of taste.
6913 @node RPN Answer 3, RPN Answer 4, RPN Answer 2, Answers to Exercises
6914 @subsection RPN Tutorial Exercise 3
6916 @noindent
6917 The @key{TAB} key provides a way to operate on the number in level 2.
6919 @smallexample
6920 @group
6921 3:  10         3:  10         4:  10         3:  10         3:  10
6922 2:  20         2:  30         3:  30         2:  30         2:  21
6923 1:  30         1:  20         2:  20         1:  21         1:  30
6924     .              .          1:  1              .              .
6925                                   .
6927                   @key{TAB}             1              +             @key{TAB}
6928 @end group
6929 @end smallexample
6931 Similarly, @kbd{M-@key{TAB}} gives you access to the number in level 3.
6933 @smallexample
6934 @group
6935 3:  10         3:  21         3:  21         3:  30         3:  11
6936 2:  21         2:  30         2:  30         2:  11         2:  21
6937 1:  30         1:  10         1:  11         1:  21         1:  30
6938     .              .              .              .              .
6940                   M-@key{TAB}           1 +           M-@key{TAB}          M-@key{TAB}
6941 @end group
6942 @end smallexample
6944 @node RPN Answer 4, Algebraic Answer 1, RPN Answer 3, Answers to Exercises
6945 @subsection RPN Tutorial Exercise 4
6947 @noindent
6948 Either @kbd{( 2 , 3 )} or @kbd{( 2 @key{SPC} 3 )} would have worked,
6949 but using both the comma and the space at once yields:
6951 @smallexample
6952 @group
6953 1:  ( ...      2:  ( ...      1:  (2, ...    2:  (2, ...    2:  (2, ...
6954     .          1:  2              .          1:  (2, ...    1:  (2, 3)
6955                    .                             .              .
6957     (              2              ,             @key{SPC}            3 )
6958 @end group
6959 @end smallexample
6961 Joe probably tried to type @kbd{@key{TAB} @key{DEL}} to swap the
6962 extra incomplete object to the top of the stack and delete it.
6963 But a feature of Calc is that @key{DEL} on an incomplete object
6964 deletes just one component out of that object, so he had to press
6965 @key{DEL} twice to finish the job.
6967 @smallexample
6968 @group
6969 2:  (2, ...    2:  (2, 3)     2:  (2, 3)     1:  (2, 3)
6970 1:  (2, 3)     1:  (2, ...    1:  ( ...          .
6971     .              .              .
6973                   @key{TAB}            @key{DEL}            @key{DEL}
6974 @end group
6975 @end smallexample
6977 (As it turns out, deleting the second-to-top stack entry happens often
6978 enough that Calc provides a special key, @kbd{M-@key{DEL}}, to do just that.
6979 @kbd{M-@key{DEL}} is just like @kbd{@key{TAB} @key{DEL}}, except that it doesn't exhibit
6980 the ``feature'' that tripped poor Joe.)
6982 @node Algebraic Answer 1, Algebraic Answer 2, RPN Answer 4, Answers to Exercises
6983 @subsection Algebraic Entry Tutorial Exercise 1
6985 @noindent
6986 Type @kbd{' sqrt($) @key{RET}}.
6988 If the @kbd{Q} key is broken, you could use @kbd{' $^0.5 @key{RET}}.
6989 Or, RPN style, @kbd{0.5 ^}.
6991 (Actually, @samp{$^1:2}, using the fraction one-half as the power, is
6992 a closer equivalent, since @samp{9^0.5} yields @expr{3.0} whereas
6993 @samp{sqrt(9)} and @samp{9^1:2} yield the exact integer @expr{3}.)
6995 @node Algebraic Answer 2, Algebraic Answer 3, Algebraic Answer 1, Answers to Exercises
6996 @subsection Algebraic Entry Tutorial Exercise 2
6998 @noindent
6999 In the formula @samp{2 x (1+y)}, @samp{x} was interpreted as a function
7000 name with @samp{1+y} as its argument.  Assigning a value to a variable
7001 has no relation to a function by the same name.  Joe needed to use an
7002 explicit @samp{*} symbol here:  @samp{2 x*(1+y)}.
7004 @node Algebraic Answer 3, Modes Answer 1, Algebraic Answer 2, Answers to Exercises
7005 @subsection Algebraic Entry Tutorial Exercise 3
7007 @noindent
7008 The result from @kbd{1 @key{RET} 0 /} will be the formula @expr{1 / 0}.
7009 The ``function'' @samp{/} cannot be evaluated when its second argument
7010 is zero, so it is left in symbolic form.  When you now type @kbd{0 *},
7011 the result will be zero because Calc uses the general rule that ``zero
7012 times anything is zero.''
7014 @c [fix-ref Infinities]
7015 The @kbd{m i} command enables an @dfn{Infinite mode} in which @expr{1 / 0}
7016 results in a special symbol that represents ``infinity.''  If you
7017 multiply infinity by zero, Calc uses another special new symbol to
7018 show that the answer is ``indeterminate.''  @xref{Infinities}, for
7019 further discussion of infinite and indeterminate values.
7021 @node Modes Answer 1, Modes Answer 2, Algebraic Answer 3, Answers to Exercises
7022 @subsection Modes Tutorial Exercise 1
7024 @noindent
7025 Calc always stores its numbers in decimal, so even though one-third has
7026 an exact base-3 representation (@samp{3#0.1}), it is still stored as
7027 0.3333333 (chopped off after 12 or however many decimal digits) inside
7028 the calculator's memory.  When this inexact number is converted back
7029 to base 3 for display, it may still be slightly inexact.  When we
7030 multiply this number by 3, we get 0.999999, also an inexact value.
7032 When Calc displays a number in base 3, it has to decide how many digits
7033 to show.  If the current precision is 12 (decimal) digits, that corresponds
7034 to @samp{12 / log10(3) = 25.15} base-3 digits.  Because 25.15 is not an
7035 exact integer, Calc shows only 25 digits, with the result that stored
7036 numbers carry a little bit of extra information that may not show up on
7037 the screen.  When Joe entered @samp{3#0.2}, the stored number 0.666666
7038 happened to round to a pleasing value when it lost that last 0.15 of a
7039 digit, but it was still inexact in Calc's memory.  When he divided by 2,
7040 he still got the dreaded inexact value 0.333333.  (Actually, he divided
7041 0.666667 by 2 to get 0.333334, which is why he got something a little
7042 higher than @code{3#0.1} instead of a little lower.)
7044 If Joe didn't want to be bothered with all this, he could have typed
7045 @kbd{M-24 d n} to display with one less digit than the default.  (If
7046 you give @kbd{d n} a negative argument, it uses default-minus-that,
7047 so @kbd{M-- d n} would be an easier way to get the same effect.)  Those
7048 inexact results would still be lurking there, but they would now be
7049 rounded to nice, natural-looking values for display purposes.  (Remember,
7050 @samp{0.022222} in base 3 is like @samp{0.099999} in base 10; rounding
7051 off one digit will round the number up to @samp{0.1}.)  Depending on the
7052 nature of your work, this hiding of the inexactness may be a benefit or
7053 a danger.  With the @kbd{d n} command, Calc gives you the choice.
7055 Incidentally, another consequence of all this is that if you type
7056 @kbd{M-30 d n} to display more digits than are ``really there,''
7057 you'll see garbage digits at the end of the number.  (In decimal
7058 display mode, with decimally-stored numbers, these garbage digits are
7059 always zero so they vanish and you don't notice them.)  Because Calc
7060 rounds off that 0.15 digit, there is the danger that two numbers could
7061 be slightly different internally but still look the same.  If you feel
7062 uneasy about this, set the @kbd{d n} precision to be a little higher
7063 than normal; you'll get ugly garbage digits, but you'll always be able
7064 to tell two distinct numbers apart.
7066 An interesting side note is that most computers store their
7067 floating-point numbers in binary, and convert to decimal for display.
7068 Thus everyday programs have the same problem:  Decimal 0.1 cannot be
7069 represented exactly in binary (try it: @kbd{0.1 d 2}), so @samp{0.1 * 10}
7070 comes out as an inexact approximation to 1 on some machines (though
7071 they generally arrange to hide it from you by rounding off one digit as
7072 we did above).  Because Calc works in decimal instead of binary, you can
7073 be sure that numbers that look exact @emph{are} exact as long as you stay
7074 in decimal display mode.
7076 It's not hard to show that any number that can be represented exactly
7077 in binary, octal, or hexadecimal is also exact in decimal, so the kinds
7078 of problems we saw in this exercise are likely to be severe only when
7079 you use a relatively unusual radix like 3.
7081 @node Modes Answer 2, Modes Answer 3, Modes Answer 1, Answers to Exercises
7082 @subsection Modes Tutorial Exercise 2
7084 If the radix is 15 or higher, we can't use the letter @samp{e} to mark
7085 the exponent because @samp{e} is interpreted as a digit.  When Calc
7086 needs to display scientific notation in a high radix, it writes
7087 @samp{16#F.E8F*16.^15}.  You can enter a number like this as an
7088 algebraic entry.  Also, pressing @kbd{e} without any digits before it
7089 normally types @kbd{1e}, but in a high radix it types @kbd{16.^} and
7090 puts you in algebraic entry:  @kbd{16#f.e8f @key{RET} e 15 @key{RET} *} is another
7091 way to enter this number.
7093 The reason Calc puts a decimal point in the @samp{16.^} is to prevent
7094 huge integers from being generated if the exponent is large (consider
7095 @samp{16#1.23*16^1000}, where we compute @samp{16^1000} as a giant
7096 exact integer and then throw away most of the digits when we multiply
7097 it by the floating-point @samp{16#1.23}).  While this wouldn't normally
7098 matter for display purposes, it could give you a nasty surprise if you
7099 copied that number into a file and later moved it back into Calc.
7101 @node Modes Answer 3, Modes Answer 4, Modes Answer 2, Answers to Exercises
7102 @subsection Modes Tutorial Exercise 3
7104 @noindent
7105 The answer he got was @expr{0.5000000000006399}.
7107 The problem is not that the square operation is inexact, but that the
7108 sine of 45 that was already on the stack was accurate to only 12 places.
7109 Arbitrary-precision calculations still only give answers as good as
7110 their inputs.
7112 The real problem is that there is no 12-digit number which, when
7113 squared, comes out to 0.5 exactly.  The @kbd{f [} and @kbd{f ]}
7114 commands decrease or increase a number by one unit in the last
7115 place (according to the current precision).  They are useful for
7116 determining facts like this.
7118 @smallexample
7119 @group
7120 1:  0.707106781187      1:  0.500000000001
7121     .                       .
7123     45 S                    2 ^
7125 @end group
7126 @end smallexample
7127 @noindent
7128 @smallexample
7129 @group
7130 1:  0.707106781187      1:  0.707106781186      1:  0.499999999999
7131     .                       .                       .
7133     U  @key{DEL}                  f [                     2 ^
7134 @end group
7135 @end smallexample
7137 A high-precision calculation must be carried out in high precision
7138 all the way.  The only number in the original problem which was known
7139 exactly was the quantity 45 degrees, so the precision must be raised
7140 before anything is done after the number 45 has been entered in order
7141 for the higher precision to be meaningful.
7143 @node Modes Answer 4, Arithmetic Answer 1, Modes Answer 3, Answers to Exercises
7144 @subsection Modes Tutorial Exercise 4
7146 @noindent
7147 Many calculations involve real-world quantities, like the width and
7148 height of a piece of wood or the volume of a jar.  Such quantities
7149 can't be measured exactly anyway, and if the data that is input to
7150 a calculation is inexact, doing exact arithmetic on it is a waste
7151 of time.
7153 Fractions become unwieldy after too many calculations have been
7154 done with them.  For example, the sum of the reciprocals of the
7155 integers from 1 to 10 is 7381:2520.  The sum from 1 to 30 is
7156 9304682830147:2329089562800.  After a point it will take a long
7157 time to add even one more term to this sum, but a floating-point
7158 calculation of the sum will not have this problem.
7160 Also, rational numbers cannot express the results of all calculations.
7161 There is no fractional form for the square root of two, so if you type
7162 @w{@kbd{2 Q}}, Calc has no choice but to give you a floating-point answer.
7164 @node Arithmetic Answer 1, Arithmetic Answer 2, Modes Answer 4, Answers to Exercises
7165 @subsection Arithmetic Tutorial Exercise 1
7167 @noindent
7168 Dividing two integers that are larger than the current precision may
7169 give a floating-point result that is inaccurate even when rounded
7170 down to an integer.  Consider @expr{123456789 / 2} when the current
7171 precision is 6 digits.  The true answer is @expr{61728394.5}, but
7172 with a precision of 6 this will be rounded to 
7173 @texline @math{12345700.0/2.0 = 61728500.0}.
7174 @infoline @expr{12345700.@: / 2.@: = 61728500.}.
7175 The result, when converted to an integer, will be off by 106.
7177 Here are two solutions:  Raise the precision enough that the
7178 floating-point round-off error is strictly to the right of the
7179 decimal point.  Or, convert to Fraction mode so that @expr{123456789 / 2}
7180 produces the exact fraction @expr{123456789:2}, which can be rounded
7181 down by the @kbd{F} command without ever switching to floating-point
7182 format.
7184 @node Arithmetic Answer 2, Vector Answer 1, Arithmetic Answer 1, Answers to Exercises
7185 @subsection Arithmetic Tutorial Exercise 2
7187 @noindent
7188 @kbd{27 @key{RET} 9 B} could give the exact result @expr{3:2}, but it
7189 does a floating-point calculation instead and produces @expr{1.5}.
7191 Calc will find an exact result for a logarithm if the result is an integer
7192 or (when in Fraction mode) the reciprocal of an integer.  But there is
7193 no efficient way to search the space of all possible rational numbers
7194 for an exact answer, so Calc doesn't try.
7196 @node Vector Answer 1, Vector Answer 2, Arithmetic Answer 2, Answers to Exercises
7197 @subsection Vector Tutorial Exercise 1
7199 @noindent
7200 Duplicate the vector, compute its length, then divide the vector
7201 by its length:  @kbd{@key{RET} A /}.
7203 @smallexample
7204 @group
7205 1:  [1, 2, 3]  2:  [1, 2, 3]      1:  [0.27, 0.53, 0.80]  1:  1.
7206     .          1:  3.74165738677      .                       .
7207                    .
7209     r 1            @key{RET} A              /                       A
7210 @end group
7211 @end smallexample
7213 The final @kbd{A} command shows that the normalized vector does
7214 indeed have unit length.
7216 @node Vector Answer 2, Matrix Answer 1, Vector Answer 1, Answers to Exercises
7217 @subsection Vector Tutorial Exercise 2
7219 @noindent
7220 The average position is equal to the sum of the products of the
7221 positions times their corresponding probabilities.  This is the
7222 definition of the dot product operation.  So all you need to do
7223 is to put the two vectors on the stack and press @kbd{*}.
7225 @node Matrix Answer 1, Matrix Answer 2, Vector Answer 2, Answers to Exercises
7226 @subsection Matrix Tutorial Exercise 1
7228 @noindent
7229 The trick is to multiply by a vector of ones.  Use @kbd{r 4 [1 1 1] *} to
7230 get the row sum.  Similarly, use @kbd{[1 1] r 4 *} to get the column sum.
7232 @node Matrix Answer 2, Matrix Answer 3, Matrix Answer 1, Answers to Exercises
7233 @subsection Matrix Tutorial Exercise 2
7235 @ifinfo
7236 @example
7237 @group
7238    x + a y = 6
7239    x + b y = 10
7240 @end group
7241 @end example
7242 @end ifinfo
7243 @tex
7244 \turnoffactive
7245 \beforedisplay
7246 $$ \eqalign{ x &+ a y = 6 \cr
7247              x &+ b y = 10}
7249 \afterdisplay
7250 @end tex
7252 Just enter the righthand side vector, then divide by the lefthand side
7253 matrix as usual.
7255 @smallexample
7256 @group
7257 1:  [6, 10]    2:  [6, 10]         1:  [6 - 4 a / (b - a), 4 / (b - a) ]
7258     .          1:  [ [ 1, a ]          .
7259                      [ 1, b ] ]
7260                    .
7262 ' [6 10] @key{RET}     ' [1 a; 1 b] @key{RET}      /
7263 @end group
7264 @end smallexample
7266 This can be made more readable using @kbd{d B} to enable Big display
7267 mode:
7269 @smallexample
7270 @group
7271           4 a     4
7272 1:  [6 - -----, -----]
7273          b - a  b - a
7274 @end group
7275 @end smallexample
7277 Type @kbd{d N} to return to Normal display mode afterwards.
7279 @node Matrix Answer 3, List Answer 1, Matrix Answer 2, Answers to Exercises
7280 @subsection Matrix Tutorial Exercise 3
7282 @noindent
7283 To solve 
7284 @texline @math{A^T A \, X = A^T B},
7285 @infoline @expr{trn(A) * A * X = trn(A) * B}, 
7286 first we compute
7287 @texline @math{A' = A^T A}
7288 @infoline @expr{A2 = trn(A) * A} 
7289 and 
7290 @texline @math{B' = A^T B};
7291 @infoline @expr{B2 = trn(A) * B}; 
7292 now, we have a system 
7293 @texline @math{A' X = B'}
7294 @infoline @expr{A2 * X = B2} 
7295 which we can solve using Calc's @samp{/} command.
7297 @ifinfo
7298 @example
7299 @group
7300     a + 2b + 3c = 6
7301    4a + 5b + 6c = 2
7302    7a + 6b      = 3
7303    2a + 4b + 6c = 11
7304 @end group
7305 @end example
7306 @end ifinfo
7307 @tex
7308 \turnoffactive
7309 \beforedisplayh
7310 $$ \openup1\jot \tabskip=0pt plus1fil
7311 \halign to\displaywidth{\tabskip=0pt
7312    $\hfil#$&$\hfil{}#{}$&
7313    $\hfil#$&$\hfil{}#{}$&
7314    $\hfil#$&${}#\hfil$\tabskip=0pt plus1fil\cr
7315   a&+&2b&+&3c&=6 \cr
7316  4a&+&5b&+&6c&=2 \cr
7317  7a&+&6b& &  &=3 \cr
7318  2a&+&4b&+&6c&=11 \cr}
7320 \afterdisplayh
7321 @end tex
7323 The first step is to enter the coefficient matrix.  We'll store it in
7324 quick variable number 7 for later reference.  Next, we compute the
7325 @texline @math{B'}
7326 @infoline @expr{B2} 
7327 vector.
7329 @smallexample
7330 @group
7331 1:  [ [ 1, 2, 3 ]             2:  [ [ 1, 4, 7, 2 ]     1:  [57, 84, 96]
7332       [ 4, 5, 6 ]                   [ 2, 5, 6, 4 ]         .
7333       [ 7, 6, 0 ]                   [ 3, 6, 0, 6 ] ]
7334       [ 2, 4, 6 ] ]           1:  [6, 2, 3, 11]
7335     .                             .
7337 ' [1 2 3; 4 5 6; 7 6 0; 2 4 6] @key{RET}  s 7  v t  [6 2 3 11]   *
7338 @end group
7339 @end smallexample
7341 @noindent
7342 Now we compute the matrix 
7343 @texline @math{A'}
7344 @infoline @expr{A2} 
7345 and divide.
7347 @smallexample
7348 @group
7349 2:  [57, 84, 96]          1:  [-11.64, 14.08, -3.64]
7350 1:  [ [ 70, 72, 39 ]          .
7351       [ 72, 81, 60 ]
7352       [ 39, 60, 81 ] ]
7353     .
7355     r 7 v t r 7 *             /
7356 @end group
7357 @end smallexample
7359 @noindent
7360 (The actual computed answer will be slightly inexact due to
7361 round-off error.)
7363 Notice that the answers are similar to those for the 
7364 @texline @math{3\times3}
7365 @infoline 3x3
7366 system solved in the text.  That's because the fourth equation that was 
7367 added to the system is almost identical to the first one multiplied
7368 by two.  (If it were identical, we would have gotten the exact same
7369 answer since the 
7370 @texline @math{4\times3}
7371 @infoline 4x3
7372 system would be equivalent to the original 
7373 @texline @math{3\times3}
7374 @infoline 3x3
7375 system.)
7377 Since the first and fourth equations aren't quite equivalent, they
7378 can't both be satisfied at once.  Let's plug our answers back into
7379 the original system of equations to see how well they match.
7381 @smallexample
7382 @group
7383 2:  [-11.64, 14.08, -3.64]     1:  [5.6, 2., 3., 11.2]
7384 1:  [ [ 1, 2, 3 ]                  .
7385       [ 4, 5, 6 ]
7386       [ 7, 6, 0 ]
7387       [ 2, 4, 6 ] ]
7388     .
7390     r 7                            @key{TAB} *
7391 @end group
7392 @end smallexample
7394 @noindent
7395 This is reasonably close to our original @expr{B} vector,
7396 @expr{[6, 2, 3, 11]}.
7398 @node List Answer 1, List Answer 2, Matrix Answer 3, Answers to Exercises
7399 @subsection List Tutorial Exercise 1
7401 @noindent
7402 We can use @kbd{v x} to build a vector of integers.  This needs to be
7403 adjusted to get the range of integers we desire.  Mapping @samp{-}
7404 across the vector will accomplish this, although it turns out the
7405 plain @samp{-} key will work just as well.
7407 @smallexample
7408 @group
7409 2:  2                              2:  2
7410 1:  [1, 2, 3, 4, 5, 6, 7, 8, 9]    1:  [-4, -3, -2, -1, 0, 1, 2, 3, 4]
7411     .                                  .
7413     2  v x 9 @key{RET}                       5 V M -   or   5 -
7414 @end group
7415 @end smallexample
7417 @noindent
7418 Now we use @kbd{V M ^} to map the exponentiation operator across the
7419 vector.
7421 @smallexample
7422 @group
7423 1:  [0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16]
7424     .
7426     V M ^
7427 @end group
7428 @end smallexample
7430 @node List Answer 2, List Answer 3, List Answer 1, Answers to Exercises
7431 @subsection List Tutorial Exercise 2
7433 @noindent
7434 Given @expr{x} and @expr{y} vectors in quick variables 1 and 2 as before,
7435 the first job is to form the matrix that describes the problem.
7437 @ifinfo
7438 @example
7439    m*x + b*1 = y
7440 @end example
7441 @end ifinfo
7442 @tex
7443 \turnoffactive
7444 \beforedisplay
7445 $$ m \times x + b \times 1 = y $$
7446 \afterdisplay
7447 @end tex
7449 Thus we want a 
7450 @texline @math{19\times2}
7451 @infoline 19x2
7452 matrix with our @expr{x} vector as one column and
7453 ones as the other column.  So, first we build the column of ones, then
7454 we combine the two columns to form our @expr{A} matrix.
7456 @smallexample
7457 @group
7458 2:  [1.34, 1.41, 1.49, ... ]    1:  [ [ 1.34, 1 ]
7459 1:  [1, 1, 1, ...]                    [ 1.41, 1 ]
7460     .                                 [ 1.49, 1 ]
7461                                       @dots{}
7463     r 1 1 v b 19 @key{RET}                M-2 v p v t   s 3
7464 @end group
7465 @end smallexample
7467 @noindent
7468 Now we compute 
7469 @texline @math{A^T y}
7470 @infoline @expr{trn(A) * y} 
7471 and 
7472 @texline @math{A^T A}
7473 @infoline @expr{trn(A) * A} 
7474 and divide.
7476 @smallexample
7477 @group
7478 1:  [33.36554, 13.613]    2:  [33.36554, 13.613]
7479     .                     1:  [ [ 98.0003, 41.63 ]
7480                                 [  41.63,   19   ] ]
7481                               .
7483  v t r 2 *                    r 3 v t r 3 *
7484 @end group
7485 @end smallexample
7487 @noindent
7488 (Hey, those numbers look familiar!)
7490 @smallexample
7491 @group
7492 1:  [0.52141679, -0.425978]
7493     .
7495     /
7496 @end group
7497 @end smallexample
7499 Since we were solving equations of the form 
7500 @texline @math{m \times x + b \times 1 = y},
7501 @infoline @expr{m*x + b*1 = y}, 
7502 these numbers should be @expr{m} and @expr{b}, respectively.  Sure
7503 enough, they agree exactly with the result computed using @kbd{V M} and
7504 @kbd{V R}!
7506 The moral of this story:  @kbd{V M} and @kbd{V R} will probably solve
7507 your problem, but there is often an easier way using the higher-level
7508 arithmetic functions!
7510 @c [fix-ref Curve Fitting]
7511 In fact, there is a built-in @kbd{a F} command that does least-squares
7512 fits.  @xref{Curve Fitting}.
7514 @node List Answer 3, List Answer 4, List Answer 2, Answers to Exercises
7515 @subsection List Tutorial Exercise 3
7517 @noindent
7518 Move to one end of the list and press @kbd{C-@@} (or @kbd{C-@key{SPC}} or
7519 whatever) to set the mark, then move to the other end of the list
7520 and type @w{@kbd{C-x * g}}.
7522 @smallexample
7523 @group
7524 1:  [2.3, 6, 22, 15.1, 7, 15, 14, 7.5, 2.5]
7525     .
7526 @end group
7527 @end smallexample
7529 To make things interesting, let's assume we don't know at a glance
7530 how many numbers are in this list.  Then we could type:
7532 @smallexample
7533 @group
7534 2:  [2.3, 6, 22, ... ]     2:  [2.3, 6, 22, ... ]
7535 1:  [2.3, 6, 22, ... ]     1:  126356422.5
7536     .                          .
7538     @key{RET}                        V R *
7540 @end group
7541 @end smallexample
7542 @noindent
7543 @smallexample
7544 @group
7545 2:  126356422.5            2:  126356422.5     1:  7.94652913734
7546 1:  [2.3, 6, 22, ... ]     1:  9                   .
7547     .                          .
7549     @key{TAB}                        v l                 I ^
7550 @end group
7551 @end smallexample
7553 @noindent
7554 (The @kbd{I ^} command computes the @var{n}th root of a number.
7555 You could also type @kbd{& ^} to take the reciprocal of 9 and
7556 then raise the number to that power.)
7558 @node List Answer 4, List Answer 5, List Answer 3, Answers to Exercises
7559 @subsection List Tutorial Exercise 4
7561 @noindent
7562 A number @expr{j} is a divisor of @expr{n} if 
7563 @texline @math{n \mathbin{\hbox{\code{\%}}} j = 0}.
7564 @infoline @samp{n % j = 0}.  
7565 The first step is to get a vector that identifies the divisors.
7567 @smallexample
7568 @group
7569 2:  30                  2:  [0, 0, 0, 2, ...]    1:  [1, 1, 1, 0, ...]
7570 1:  [1, 2, 3, 4, ...]   1:  0                        .
7571     .                       .
7573  30 @key{RET} v x 30 @key{RET}   s 1    V M %  0                 V M a =  s 2
7574 @end group
7575 @end smallexample
7577 @noindent
7578 This vector has 1's marking divisors of 30 and 0's marking non-divisors.
7580 The zeroth divisor function is just the total number of divisors.
7581 The first divisor function is the sum of the divisors.
7583 @smallexample
7584 @group
7585 1:  8      3:  8                    2:  8                    2:  8
7586            2:  [1, 2, 3, 4, ...]    1:  [1, 2, 3, 0, ...]    1:  72
7587            1:  [1, 1, 1, 0, ...]        .                        .
7588                .
7590    V R +       r 1 r 2                  V M *                  V R +
7591 @end group
7592 @end smallexample
7594 @noindent
7595 Once again, the last two steps just compute a dot product for which
7596 a simple @kbd{*} would have worked equally well.
7598 @node List Answer 5, List Answer 6, List Answer 4, Answers to Exercises
7599 @subsection List Tutorial Exercise 5
7601 @noindent
7602 The obvious first step is to obtain the list of factors with @kbd{k f}.
7603 This list will always be in sorted order, so if there are duplicates
7604 they will be right next to each other.  A suitable method is to compare
7605 the list with a copy of itself shifted over by one.
7607 @smallexample
7608 @group
7609 1:  [3, 7, 7, 7, 19]   2:  [3, 7, 7, 7, 19]     2:  [3, 7, 7, 7, 19, 0]
7610     .                  1:  [3, 7, 7, 7, 19, 0]  1:  [0, 3, 7, 7, 7, 19]
7611                            .                        .
7613     19551 k f              @key{RET} 0 |                  @key{TAB} 0 @key{TAB} |
7615 @end group
7616 @end smallexample
7617 @noindent
7618 @smallexample
7619 @group
7620 1:  [0, 0, 1, 1, 0, 0]   1:  2          1:  0
7621     .                        .              .
7623     V M a =                  V R +          0 a =
7624 @end group
7625 @end smallexample
7627 @noindent
7628 Note that we have to arrange for both vectors to have the same length
7629 so that the mapping operation works; no prime factor will ever be
7630 zero, so adding zeros on the left and right is safe.  From then on
7631 the job is pretty straightforward.
7633 Incidentally, Calc provides the 
7634 @texline @dfn{M@"obius} @math{\mu}
7635 @infoline @dfn{Moebius mu} 
7636 function which is zero if and only if its argument is square-free.  It
7637 would be a much more convenient way to do the above test in practice.
7639 @node List Answer 6, List Answer 7, List Answer 5, Answers to Exercises
7640 @subsection List Tutorial Exercise 6
7642 @noindent
7643 First use @kbd{v x 6 @key{RET}} to get a list of integers, then @kbd{V M v x}
7644 to get a list of lists of integers!
7646 @node List Answer 7, List Answer 8, List Answer 6, Answers to Exercises
7647 @subsection List Tutorial Exercise 7
7649 @noindent
7650 Here's one solution.  First, compute the triangular list from the previous
7651 exercise and type @kbd{1 -} to subtract one from all the elements.
7653 @smallexample
7654 @group
7655 1:  [ [0],
7656       [0, 1],
7657       [0, 1, 2],
7658       @dots{}
7660     1 -
7661 @end group
7662 @end smallexample
7664 The numbers down the lefthand edge of the list we desire are called
7665 the ``triangular numbers'' (now you know why!).  The @expr{n}th
7666 triangular number is the sum of the integers from 1 to @expr{n}, and
7667 can be computed directly by the formula 
7668 @texline @math{n (n+1) \over 2}.
7669 @infoline @expr{n * (n+1) / 2}.
7671 @smallexample
7672 @group
7673 2:  [ [0], [0, 1], ... ]    2:  [ [0], [0, 1], ... ]
7674 1:  [0, 1, 2, 3, 4, 5]      1:  [0, 1, 3, 6, 10, 15]
7675     .                           .
7677     v x 6 @key{RET} 1 -               V M ' $ ($+1)/2 @key{RET}
7678 @end group
7679 @end smallexample
7681 @noindent
7682 Adding this list to the above list of lists produces the desired
7683 result:
7685 @smallexample
7686 @group
7687 1:  [ [0],
7688       [1, 2],
7689       [3, 4, 5],
7690       [6, 7, 8, 9],
7691       [10, 11, 12, 13, 14],
7692       [15, 16, 17, 18, 19, 20] ]
7693       .
7695       V M +
7696 @end group
7697 @end smallexample
7699 If we did not know the formula for triangular numbers, we could have
7700 computed them using a @kbd{V U +} command.  We could also have
7701 gotten them the hard way by mapping a reduction across the original
7702 triangular list.
7704 @smallexample
7705 @group
7706 2:  [ [0], [0, 1], ... ]    2:  [ [0], [0, 1], ... ]
7707 1:  [ [0], [0, 1], ... ]    1:  [0, 1, 3, 6, 10, 15]
7708     .                           .
7710     @key{RET}                         V M V R +
7711 @end group
7712 @end smallexample
7714 @noindent
7715 (This means ``map a @kbd{V R +} command across the vector,'' and
7716 since each element of the main vector is itself a small vector,
7717 @kbd{V R +} computes the sum of its elements.)
7719 @node List Answer 8, List Answer 9, List Answer 7, Answers to Exercises
7720 @subsection List Tutorial Exercise 8
7722 @noindent
7723 The first step is to build a list of values of @expr{x}.
7725 @smallexample
7726 @group
7727 1:  [1, 2, 3, ..., 21]  1:  [0, 1, 2, ..., 20]  1:  [0, 0.25, 0.5, ..., 5]
7728     .                       .                       .
7730     v x 21 @key{RET}              1 -                     4 /  s 1
7731 @end group
7732 @end smallexample
7734 Next, we compute the Bessel function values.
7736 @smallexample
7737 @group
7738 1:  [0., 0.124, 0.242, ..., -0.328]
7739     .
7741     V M ' besJ(1,$) @key{RET}
7742 @end group
7743 @end smallexample
7745 @noindent
7746 (Another way to do this would be @kbd{1 @key{TAB} V M f j}.)
7748 A way to isolate the maximum value is to compute the maximum using
7749 @kbd{V R X}, then compare all the Bessel values with that maximum.
7751 @smallexample
7752 @group
7753 2:  [0., 0.124, 0.242, ... ]   1:  [0, 0, 0, ... ]    2:  [0, 0, 0, ... ]
7754 1:  0.5801562                      .                  1:  1
7755     .                                                     .
7757     @key{RET} V R X                      V M a =                @key{RET} V R +    @key{DEL}
7758 @end group
7759 @end smallexample
7761 @noindent
7762 It's a good idea to verify, as in the last step above, that only
7763 one value is equal to the maximum.  (After all, a plot of 
7764 @texline @math{\sin x}
7765 @infoline @expr{sin(x)}
7766 might have many points all equal to the maximum value, 1.)
7768 The vector we have now has a single 1 in the position that indicates
7769 the maximum value of @expr{x}.  Now it is a simple matter to convert
7770 this back into the corresponding value itself.
7772 @smallexample
7773 @group
7774 2:  [0, 0, 0, ... ]         1:  [0, 0., 0., ... ]    1:  1.75
7775 1:  [0, 0.25, 0.5, ... ]        .                        .
7776     .
7778     r 1                         V M *                    V R +
7779 @end group
7780 @end smallexample
7782 If @kbd{a =} had produced more than one @expr{1} value, this method
7783 would have given the sum of all maximum @expr{x} values; not very
7784 useful!  In this case we could have used @kbd{v m} (@code{calc-mask-vector})
7785 instead.  This command deletes all elements of a ``data'' vector that
7786 correspond to zeros in a ``mask'' vector, leaving us with, in this
7787 example, a vector of maximum @expr{x} values.
7789 The built-in @kbd{a X} command maximizes a function using more
7790 efficient methods.  Just for illustration, let's use @kbd{a X}
7791 to maximize @samp{besJ(1,x)} over this same interval.
7793 @smallexample
7794 @group
7795 2:  besJ(1, x)                 1:  [1.84115, 0.581865]
7796 1:  [0 .. 5]                       .
7797     .
7799 ' besJ(1,x), [0..5] @key{RET}            a X x @key{RET}
7800 @end group
7801 @end smallexample
7803 @noindent
7804 The output from @kbd{a X} is a vector containing the value of @expr{x}
7805 that maximizes the function, and the function's value at that maximum.
7806 As you can see, our simple search got quite close to the right answer.
7808 @node List Answer 9, List Answer 10, List Answer 8, Answers to Exercises
7809 @subsection List Tutorial Exercise 9
7811 @noindent
7812 Step one is to convert our integer into vector notation.
7814 @smallexample
7815 @group
7816 1:  25129925999           3:  25129925999
7817     .                     2:  10
7818                           1:  [11, 10, 9, ..., 1, 0]
7819                               .
7821     25129925999 @key{RET}           10 @key{RET} 12 @key{RET} v x 12 @key{RET} -
7823 @end group
7824 @end smallexample
7825 @noindent
7826 @smallexample
7827 @group
7828 1:  25129925999              1:  [0, 2, 25, 251, 2512, ... ]
7829 2:  [100000000000, ... ]         .
7830     .
7832     V M ^   s 1                  V M \
7833 @end group
7834 @end smallexample
7836 @noindent
7837 (Recall, the @kbd{\} command computes an integer quotient.)
7839 @smallexample
7840 @group
7841 1:  [0, 2, 5, 1, 2, 9, 9, 2, 5, 9, 9, 9]
7842     .
7844     10 V M %   s 2
7845 @end group
7846 @end smallexample
7848 Next we must increment this number.  This involves adding one to
7849 the last digit, plus handling carries.  There is a carry to the
7850 left out of a digit if that digit is a nine and all the digits to
7851 the right of it are nines.
7853 @smallexample
7854 @group
7855 1:  [0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1]   1:  [1, 1, 1, 0, 0, 1, ... ]
7856     .                                          .
7858     9 V M a =                                  v v
7860 @end group
7861 @end smallexample
7862 @noindent
7863 @smallexample
7864 @group
7865 1:  [1, 1, 1, 0, 0, 0, ... ]   1:  [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1]
7866     .                              .
7868     V U *                          v v 1 |
7869 @end group
7870 @end smallexample
7872 @noindent
7873 Accumulating @kbd{*} across a vector of ones and zeros will preserve
7874 only the initial run of ones.  These are the carries into all digits
7875 except the rightmost digit.  Concatenating a one on the right takes
7876 care of aligning the carries properly, and also adding one to the
7877 rightmost digit.
7879 @smallexample
7880 @group
7881 2:  [0, 0, 0, 0, ... ]     1:  [0, 0, 2, 5, 1, 2, 9, 9, 2, 6, 0, 0, 0]
7882 1:  [0, 0, 2, 5, ... ]         .
7883     .
7885     0 r 2 |                    V M +  10 V M %
7886 @end group
7887 @end smallexample
7889 @noindent
7890 Here we have concatenated 0 to the @emph{left} of the original number;
7891 this takes care of shifting the carries by one with respect to the
7892 digits that generated them.
7894 Finally, we must convert this list back into an integer.
7896 @smallexample
7897 @group
7898 3:  [0, 0, 2, 5, ... ]        2:  [0, 0, 2, 5, ... ]
7899 2:  1000000000000             1:  [1000000000000, 100000000000, ... ]
7900 1:  [100000000000, ... ]          .
7901     .
7903     10 @key{RET} 12 ^  r 1              |
7905 @end group
7906 @end smallexample
7907 @noindent
7908 @smallexample
7909 @group
7910 1:  [0, 0, 20000000000, 5000000000, ... ]    1:  25129926000
7911     .                                            .
7913     V M *                                        V R +
7914 @end group
7915 @end smallexample
7917 @noindent
7918 Another way to do this final step would be to reduce the formula
7919 @w{@samp{10 $$ + $}} across the vector of digits.
7921 @smallexample
7922 @group
7923 1:  [0, 0, 2, 5, ... ]        1:  25129926000
7924     .                             .
7926                                   V R ' 10 $$ + $ @key{RET}
7927 @end group
7928 @end smallexample
7930 @node List Answer 10, List Answer 11, List Answer 9, Answers to Exercises
7931 @subsection List Tutorial Exercise 10
7933 @noindent
7934 For the list @expr{[a, b, c, d]}, the result is @expr{((a = b) = c) = d},
7935 which will compare @expr{a} and @expr{b} to produce a 1 or 0, which is
7936 then compared with @expr{c} to produce another 1 or 0, which is then
7937 compared with @expr{d}.  This is not at all what Joe wanted.
7939 Here's a more correct method:
7941 @smallexample
7942 @group
7943 1:  [7, 7, 7, 8, 7]      2:  [7, 7, 7, 8, 7]
7944     .                    1:  7
7945                              .
7947   ' [7,7,7,8,7] @key{RET}          @key{RET} v r 1 @key{RET}
7949 @end group
7950 @end smallexample
7951 @noindent
7952 @smallexample
7953 @group
7954 1:  [1, 1, 1, 0, 1]      1:  0
7955     .                        .
7957     V M a =                  V R *
7958 @end group
7959 @end smallexample
7961 @node List Answer 11, List Answer 12, List Answer 10, Answers to Exercises
7962 @subsection List Tutorial Exercise 11
7964 @noindent
7965 The circle of unit radius consists of those points @expr{(x,y)} for which
7966 @expr{x^2 + y^2 < 1}.  We start by generating a vector of @expr{x^2}
7967 and a vector of @expr{y^2}.
7969 We can make this go a bit faster by using the @kbd{v .} and @kbd{t .}
7970 commands.
7972 @smallexample
7973 @group
7974 2:  [2., 2., ..., 2.]          2:  [2., 2., ..., 2.]
7975 1:  [2., 2., ..., 2.]          1:  [1.16, 1.98, ..., 0.81]
7976     .                              .
7978  v . t .  2. v b 100 @key{RET} @key{RET}       V M k r
7980 @end group
7981 @end smallexample
7982 @noindent
7983 @smallexample
7984 @group
7985 2:  [2., 2., ..., 2.]          1:  [0.026, 0.96, ..., 0.036]
7986 1:  [0.026, 0.96, ..., 0.036]  2:  [0.53, 0.81, ..., 0.094]
7987     .                              .
7989     1 -  2 V M ^                   @key{TAB}  V M k r  1 -  2 V M ^
7990 @end group
7991 @end smallexample
7993 Now we sum the @expr{x^2} and @expr{y^2} values, compare with 1 to
7994 get a vector of 1/0 truth values, then sum the truth values.
7996 @smallexample
7997 @group
7998 1:  [0.56, 1.78, ..., 0.13]    1:  [1, 0, ..., 1]    1:  84
7999     .                              .                     .
8001     +                              1 V M a <             V R +
8002 @end group
8003 @end smallexample
8005 @noindent
8006 The ratio @expr{84/100} should approximate the ratio @cpiover{4}.
8008 @smallexample
8009 @group
8010 1:  0.84       1:  3.36       2:  3.36       1:  1.0695
8011     .              .          1:  3.14159        .
8013     100 /          4 *            P              /
8014 @end group
8015 @end smallexample
8017 @noindent
8018 Our estimate, 3.36, is off by about 7%.  We could get a better estimate
8019 by taking more points (say, 1000), but it's clear that this method is
8020 not very efficient!
8022 (Naturally, since this example uses random numbers your own answer
8023 will be slightly different from the one shown here!)
8025 If you typed @kbd{v .} and @kbd{t .} before, type them again to
8026 return to full-sized display of vectors.
8028 @node List Answer 12, List Answer 13, List Answer 11, Answers to Exercises
8029 @subsection List Tutorial Exercise 12
8031 @noindent
8032 This problem can be made a lot easier by taking advantage of some
8033 symmetries.  First of all, after some thought it's clear that the
8034 @expr{y} axis can be ignored altogether.  Just pick a random @expr{x}
8035 component for one end of the match, pick a random direction 
8036 @texline @math{\theta},
8037 @infoline @expr{theta},
8038 and see if @expr{x} and 
8039 @texline @math{x + \cos \theta}
8040 @infoline @expr{x + cos(theta)} 
8041 (which is the @expr{x} coordinate of the other endpoint) cross a line.
8042 The lines are at integer coordinates, so this happens when the two
8043 numbers surround an integer.
8045 Since the two endpoints are equivalent, we may as well choose the leftmost
8046 of the two endpoints as @expr{x}.  Then @expr{theta} is an angle pointing
8047 to the right, in the range -90 to 90 degrees.  (We could use radians, but
8048 it would feel like cheating to refer to @cpiover{2} radians while trying
8049 to estimate @cpi{}!)
8051 In fact, since the field of lines is infinite we can choose the
8052 coordinates 0 and 1 for the lines on either side of the leftmost
8053 endpoint.  The rightmost endpoint will be between 0 and 1 if the
8054 match does not cross a line, or between 1 and 2 if it does.  So:
8055 Pick random @expr{x} and 
8056 @texline @math{\theta},
8057 @infoline @expr{theta}, 
8058 compute
8059 @texline @math{x + \cos \theta},
8060 @infoline @expr{x + cos(theta)},
8061 and count how many of the results are greater than one.  Simple!
8063 We can make this go a bit faster by using the @kbd{v .} and @kbd{t .}
8064 commands.
8066 @smallexample
8067 @group
8068 1:  [0.52, 0.71, ..., 0.72]    2:  [0.52, 0.71, ..., 0.72]
8069     .                          1:  [78.4, 64.5, ..., -42.9]
8070                                    .
8072 v . t . 1. v b 100 @key{RET}  V M k r    180. v b 100 @key{RET}  V M k r  90 -
8073 @end group
8074 @end smallexample
8076 @noindent
8077 (The next step may be slow, depending on the speed of your computer.)
8079 @smallexample
8080 @group
8081 2:  [0.52, 0.71, ..., 0.72]    1:  [0.72, 1.14, ..., 1.45]
8082 1:  [0.20, 0.43, ..., 0.73]        .
8083     .
8085     m d  V M C                     +
8087 @end group
8088 @end smallexample
8089 @noindent
8090 @smallexample
8091 @group
8092 1:  [0, 1, ..., 1]       1:  0.64            1:  3.125
8093     .                        .                   .
8095     1 V M a >                V R + 100 /         2 @key{TAB} /
8096 @end group
8097 @end smallexample
8099 Let's try the third method, too.  We'll use random integers up to
8100 one million.  The @kbd{k r} command with an integer argument picks
8101 a random integer.
8103 @smallexample
8104 @group
8105 2:  [1000000, 1000000, ..., 1000000]   2:  [78489, 527587, ..., 814975]
8106 1:  [1000000, 1000000, ..., 1000000]   1:  [324014, 358783, ..., 955450]
8107     .                                      .
8109     1000000 v b 100 @key{RET} @key{RET}                V M k r  @key{TAB}  V M k r
8111 @end group
8112 @end smallexample
8113 @noindent
8114 @smallexample
8115 @group
8116 1:  [1, 1, ..., 25]      1:  [1, 1, ..., 0]     1:  0.56
8117     .                        .                      .
8119     V M k g                  1 V M a =              V R + 100 /
8121 @end group
8122 @end smallexample
8123 @noindent
8124 @smallexample
8125 @group
8126 1:  10.714        1:  3.273
8127     .                 .
8129     6 @key{TAB} /           Q
8130 @end group
8131 @end smallexample
8133 For a proof of this property of the GCD function, see section 4.5.2,
8134 exercise 10, of Knuth's @emph{Art of Computer Programming}, volume II.
8136 If you typed @kbd{v .} and @kbd{t .} before, type them again to
8137 return to full-sized display of vectors.
8139 @node List Answer 13, List Answer 14, List Answer 12, Answers to Exercises
8140 @subsection List Tutorial Exercise 13
8142 @noindent
8143 First, we put the string on the stack as a vector of ASCII codes.
8145 @smallexample
8146 @group
8147 1:  [84, 101, 115, ..., 51]
8148     .
8150     "Testing, 1, 2, 3 @key{RET}
8151 @end group
8152 @end smallexample
8154 @noindent
8155 Note that the @kbd{"} key, like @kbd{$}, initiates algebraic entry so
8156 there was no need to type an apostrophe.  Also, Calc didn't mind that
8157 we omitted the closing @kbd{"}.  (The same goes for all closing delimiters
8158 like @kbd{)} and @kbd{]} at the end of a formula.
8160 We'll show two different approaches here.  In the first, we note that
8161 if the input vector is @expr{[a, b, c, d]}, then the hash code is
8162 @expr{3 (3 (3a + b) + c) + d = 27a + 9b + 3c + d}.  In other words,
8163 it's a sum of descending powers of three times the ASCII codes.
8165 @smallexample
8166 @group
8167 2:  [84, 101, 115, ..., 51]    2:  [84, 101, 115, ..., 51]
8168 1:  16                         1:  [15, 14, 13, ..., 0]
8169     .                              .
8171     @key{RET} v l                        v x 16 @key{RET} -
8173 @end group
8174 @end smallexample
8175 @noindent
8176 @smallexample
8177 @group
8178 2:  [84, 101, 115, ..., 51]    1:  1960915098    1:  121
8179 1:  [14348907, ..., 1]             .                 .
8180     .
8182     3 @key{TAB} V M ^                    *                 511 %
8183 @end group
8184 @end smallexample
8186 @noindent
8187 Once again, @kbd{*} elegantly summarizes most of the computation.
8188 But there's an even more elegant approach:  Reduce the formula
8189 @kbd{3 $$ + $} across the vector.  Recall that this represents a
8190 function of two arguments that computes its first argument times three
8191 plus its second argument.
8193 @smallexample
8194 @group
8195 1:  [84, 101, 115, ..., 51]    1:  1960915098
8196     .                              .
8198     "Testing, 1, 2, 3 @key{RET}          V R ' 3$$+$ @key{RET}
8199 @end group
8200 @end smallexample
8202 @noindent
8203 If you did the decimal arithmetic exercise, this will be familiar.
8204 Basically, we're turning a base-3 vector of digits into an integer,
8205 except that our ``digits'' are much larger than real digits.
8207 Instead of typing @kbd{511 %} again to reduce the result, we can be
8208 cleverer still and notice that rather than computing a huge integer
8209 and taking the modulo at the end, we can take the modulo at each step
8210 without affecting the result.  While this means there are more
8211 arithmetic operations, the numbers we operate on remain small so
8212 the operations are faster.
8214 @smallexample
8215 @group
8216 1:  [84, 101, 115, ..., 51]    1:  121
8217     .                              .
8219     "Testing, 1, 2, 3 @key{RET}          V R ' (3$$+$)%511 @key{RET}
8220 @end group
8221 @end smallexample
8223 Why does this work?  Think about a two-step computation:
8224 @w{@expr{3 (3a + b) + c}}.  Taking a result modulo 511 basically means
8225 subtracting off enough 511's to put the result in the desired range.
8226 So the result when we take the modulo after every step is,
8228 @ifinfo
8229 @example
8230 3 (3 a + b - 511 m) + c - 511 n
8231 @end example
8232 @end ifinfo
8233 @tex
8234 \turnoffactive
8235 \beforedisplay
8236 $$ 3 (3 a + b - 511 m) + c - 511 n $$
8237 \afterdisplay
8238 @end tex
8240 @noindent
8241 for some suitable integers @expr{m} and @expr{n}.  Expanding out by
8242 the distributive law yields
8244 @ifinfo
8245 @example
8246 9 a + 3 b + c - 511*3 m - 511 n
8247 @end example
8248 @end ifinfo
8249 @tex
8250 \turnoffactive
8251 \beforedisplay
8252 $$ 9 a + 3 b + c - 511\times3 m - 511 n $$
8253 \afterdisplay
8254 @end tex
8256 @noindent
8257 The @expr{m} term in the latter formula is redundant because any
8258 contribution it makes could just as easily be made by the @expr{n}
8259 term.  So we can take it out to get an equivalent formula with
8260 @expr{n' = 3m + n},
8262 @ifinfo
8263 @example
8264 9 a + 3 b + c - 511 n'
8265 @end example
8266 @end ifinfo
8267 @tex
8268 \turnoffactive
8269 \beforedisplay
8270 $$ 9 a + 3 b + c - 511 n' $$
8271 \afterdisplay
8272 @end tex
8274 @noindent
8275 which is just the formula for taking the modulo only at the end of
8276 the calculation.  Therefore the two methods are essentially the same.
8278 Later in the tutorial we will encounter @dfn{modulo forms}, which
8279 basically automate the idea of reducing every intermediate result
8280 modulo some value @var{m}.
8282 @node List Answer 14, Types Answer 1, List Answer 13, Answers to Exercises
8283 @subsection List Tutorial Exercise 14
8285 We want to use @kbd{H V U} to nest a function which adds a random
8286 step to an @expr{(x,y)} coordinate.  The function is a bit long, but
8287 otherwise the problem is quite straightforward.
8289 @smallexample
8290 @group
8291 2:  [0, 0]     1:  [ [    0,       0    ]
8292 1:  50               [  0.4288, -0.1695 ]
8293     .                [ -0.4787, -0.9027 ]
8294                      ...
8296     [0,0] 50       H V U ' <# + [random(2.0)-1, random(2.0)-1]> @key{RET}
8297 @end group
8298 @end smallexample
8300 Just as the text recommended, we used @samp{< >} nameless function
8301 notation to keep the two @code{random} calls from being evaluated
8302 before nesting even begins.
8304 We now have a vector of @expr{[x, y]} sub-vectors, which by Calc's
8305 rules acts like a matrix.  We can transpose this matrix and unpack
8306 to get a pair of vectors, @expr{x} and @expr{y}, suitable for graphing.
8308 @smallexample
8309 @group
8310 2:  [ 0, 0.4288, -0.4787, ... ]
8311 1:  [ 0, -0.1696, -0.9027, ... ]
8312     .
8314     v t  v u  g f
8315 @end group
8316 @end smallexample
8318 Incidentally, because the @expr{x} and @expr{y} are completely
8319 independent in this case, we could have done two separate commands
8320 to create our @expr{x} and @expr{y} vectors of numbers directly.
8322 To make a random walk of unit steps, we note that @code{sincos} of
8323 a random direction exactly gives us an @expr{[x, y]} step of unit
8324 length; in fact, the new nesting function is even briefer, though
8325 we might want to lower the precision a bit for it.
8327 @smallexample
8328 @group
8329 2:  [0, 0]     1:  [ [    0,      0    ]
8330 1:  50               [  0.1318, 0.9912 ]
8331     .                [ -0.5965, 0.3061 ]
8332                      ...
8334     [0,0] 50   m d  p 6 @key{RET}   H V U ' <# + sincos(random(360.0))> @key{RET}
8335 @end group
8336 @end smallexample
8338 Another @kbd{v t v u g f} sequence will graph this new random walk.
8340 An interesting twist on these random walk functions would be to use
8341 complex numbers instead of 2-vectors to represent points on the plane.
8342 In the first example, we'd use something like @samp{random + random*(0,1)},
8343 and in the second we could use polar complex numbers with random phase
8344 angles.  (This exercise was first suggested in this form by Randal
8345 Schwartz.)
8347 @node Types Answer 1, Types Answer 2, List Answer 14, Answers to Exercises
8348 @subsection Types Tutorial Exercise 1
8350 @noindent
8351 If the number is the square root of @cpi{} times a rational number,
8352 then its square, divided by @cpi{}, should be a rational number.
8354 @smallexample
8355 @group
8356 1:  1.26508260337    1:  0.509433962268   1:  2486645810:4881193627
8357     .                    .                    .
8359                          2 ^ P /              c F
8360 @end group
8361 @end smallexample
8363 @noindent
8364 Technically speaking this is a rational number, but not one that is
8365 likely to have arisen in the original problem.  More likely, it just
8366 happens to be the fraction which most closely represents some
8367 irrational number to within 12 digits.
8369 But perhaps our result was not quite exact.  Let's reduce the
8370 precision slightly and try again:
8372 @smallexample
8373 @group
8374 1:  0.509433962268     1:  27:53
8375     .                      .
8377     U p 10 @key{RET}             c F
8378 @end group
8379 @end smallexample
8381 @noindent
8382 Aha!  It's unlikely that an irrational number would equal a fraction
8383 this simple to within ten digits, so our original number was probably
8384 @texline @math{\sqrt{27 \pi / 53}}.
8385 @infoline @expr{sqrt(27 pi / 53)}.
8387 Notice that we didn't need to re-round the number when we reduced the
8388 precision.  Remember, arithmetic operations always round their inputs
8389 to the current precision before they begin.
8391 @node Types Answer 2, Types Answer 3, Types Answer 1, Answers to Exercises
8392 @subsection Types Tutorial Exercise 2
8394 @noindent
8395 @samp{inf / inf = nan}.  Perhaps @samp{1} is the ``obvious'' answer.
8396 But if @w{@samp{17 inf = inf}}, then @samp{17 inf / inf = inf / inf = 17}, too.
8398 @samp{exp(inf) = inf}.  It's tempting to say that the exponential
8399 of infinity must be ``bigger'' than ``regular'' infinity, but as
8400 far as Calc is concerned all infinities are as just as big.
8401 In other words, as @expr{x} goes to infinity, @expr{e^x} also goes
8402 to infinity, but the fact the @expr{e^x} grows much faster than
8403 @expr{x} is not relevant here.
8405 @samp{exp(-inf) = 0}.  Here we have a finite answer even though
8406 the input is infinite.
8408 @samp{sqrt(-inf) = (0, 1) inf}.  Remember that @expr{(0, 1)}
8409 represents the imaginary number @expr{i}.  Here's a derivation:
8410 @samp{sqrt(-inf) = @w{sqrt((-1) * inf)} = sqrt(-1) * sqrt(inf)}.
8411 The first part is, by definition, @expr{i}; the second is @code{inf}
8412 because, once again, all infinities are the same size.
8414 @samp{sqrt(uinf) = uinf}.  In fact, we do know something about the
8415 direction because @code{sqrt} is defined to return a value in the
8416 right half of the complex plane.  But Calc has no notation for this,
8417 so it settles for the conservative answer @code{uinf}.
8419 @samp{abs(uinf) = inf}.  No matter which direction @expr{x} points,
8420 @samp{abs(x)} always points along the positive real axis.
8422 @samp{ln(0) = -inf}.  Here we have an infinite answer to a finite
8423 input.  As in the @expr{1 / 0} case, Calc will only use infinities
8424 here if you have turned on Infinite mode.  Otherwise, it will
8425 treat @samp{ln(0)} as an error.
8427 @node Types Answer 3, Types Answer 4, Types Answer 2, Answers to Exercises
8428 @subsection Types Tutorial Exercise 3
8430 @noindent
8431 We can make @samp{inf - inf} be any real number we like, say,
8432 @expr{a}, just by claiming that we added @expr{a} to the first
8433 infinity but not to the second.  This is just as true for complex
8434 values of @expr{a}, so @code{nan} can stand for a complex number.
8435 (And, similarly, @code{uinf} can stand for an infinity that points
8436 in any direction in the complex plane, such as @samp{(0, 1) inf}).
8438 In fact, we can multiply the first @code{inf} by two.  Surely
8439 @w{@samp{2 inf - inf = inf}}, but also @samp{2 inf - inf = inf - inf = nan}.
8440 So @code{nan} can even stand for infinity.  Obviously it's just
8441 as easy to make it stand for minus infinity as for plus infinity.
8443 The moral of this story is that ``infinity'' is a slippery fish
8444 indeed, and Calc tries to handle it by having a very simple model
8445 for infinities (only the direction counts, not the ``size''); but
8446 Calc is careful to write @code{nan} any time this simple model is
8447 unable to tell what the true answer is.
8449 @node Types Answer 4, Types Answer 5, Types Answer 3, Answers to Exercises
8450 @subsection Types Tutorial Exercise 4
8452 @smallexample
8453 @group
8454 2:  0@@ 47' 26"              1:  0@@ 2' 47.411765"
8455 1:  17                          .
8456     .
8458     0@@ 47' 26" @key{RET} 17           /
8459 @end group
8460 @end smallexample
8462 @noindent
8463 The average song length is two minutes and 47.4 seconds.
8465 @smallexample
8466 @group
8467 2:  0@@ 2' 47.411765"     1:  0@@ 3' 7.411765"    1:  0@@ 53' 6.000005"
8468 1:  0@@ 0' 20"                .                      .
8469     .
8471     20"                      +                      17 *
8472 @end group
8473 @end smallexample
8475 @noindent
8476 The album would be 53 minutes and 6 seconds long.
8478 @node Types Answer 5, Types Answer 6, Types Answer 4, Answers to Exercises
8479 @subsection Types Tutorial Exercise 5
8481 @noindent
8482 Let's suppose it's January 14, 1991.  The easiest thing to do is
8483 to keep trying 13ths of months until Calc reports a Friday.
8484 We can do this by manually entering dates, or by using @kbd{t I}:
8486 @smallexample
8487 @group
8488 1:  <Wed Feb 13, 1991>    1:  <Wed Mar 13, 1991>   1:  <Sat Apr 13, 1991>
8489     .                         .                        .
8491     ' <2/13> @key{RET}       @key{DEL}    ' <3/13> @key{RET}             t I
8492 @end group
8493 @end smallexample
8495 @noindent
8496 (Calc assumes the current year if you don't say otherwise.)
8498 This is getting tedious---we can keep advancing the date by typing
8499 @kbd{t I} over and over again, but let's automate the job by using
8500 vector mapping.  The @kbd{t I} command actually takes a second
8501 ``how-many-months'' argument, which defaults to one.  This
8502 argument is exactly what we want to map over:
8504 @smallexample
8505 @group
8506 2:  <Sat Apr 13, 1991>     1:  [<Mon May 13, 1991>, <Thu Jun 13, 1991>,
8507 1:  [1, 2, 3, 4, 5, 6]          <Sat Jul 13, 1991>, <Tue Aug 13, 1991>,
8508     .                           <Fri Sep 13, 1991>, <Sun Oct 13, 1991>]
8509                                .
8511     v x 6 @key{RET}                  V M t I
8512 @end group
8513 @end smallexample
8515 @noindent
8516 Et voil@`a, September 13, 1991 is a Friday.
8518 @smallexample
8519 @group
8520 1:  242
8521     .
8523 ' <sep 13> - <jan 14> @key{RET}
8524 @end group
8525 @end smallexample
8527 @noindent
8528 And the answer to our original question:  242 days to go.
8530 @node Types Answer 6, Types Answer 7, Types Answer 5, Answers to Exercises
8531 @subsection Types Tutorial Exercise 6
8533 @noindent
8534 The full rule for leap years is that they occur in every year divisible
8535 by four, except that they don't occur in years divisible by 100, except
8536 that they @emph{do} in years divisible by 400.  We could work out the
8537 answer by carefully counting the years divisible by four and the
8538 exceptions, but there is a much simpler way that works even if we
8539 don't know the leap year rule.
8541 Let's assume the present year is 1991.  Years have 365 days, except
8542 that leap years (whenever they occur) have 366 days.  So let's count
8543 the number of days between now and then, and compare that to the
8544 number of years times 365.  The number of extra days we find must be
8545 equal to the number of leap years there were.
8547 @smallexample
8548 @group
8549 1:  <Mon Jan 1, 10001>     2:  <Mon Jan 1, 10001>     1:  2925593
8550     .                      1:  <Tue Jan 1, 1991>          .
8551                                .
8553   ' <jan 1 10001> @key{RET}         ' <jan 1 1991> @key{RET}          -
8555 @end group
8556 @end smallexample
8557 @noindent
8558 @smallexample
8559 @group
8560 3:  2925593       2:  2925593     2:  2925593     1:  1943
8561 2:  10001         1:  8010        1:  2923650         .
8562 1:  1991              .               .
8563     .
8565   10001 @key{RET} 1991      -               365 *           -
8566 @end group
8567 @end smallexample
8569 @c [fix-ref Date Forms]
8570 @noindent
8571 There will be 1943 leap years before the year 10001.  (Assuming,
8572 of course, that the algorithm for computing leap years remains
8573 unchanged for that long.  @xref{Date Forms}, for some interesting
8574 background information in that regard.)
8576 @node Types Answer 7, Types Answer 8, Types Answer 6, Answers to Exercises
8577 @subsection Types Tutorial Exercise 7
8579 @noindent
8580 The relative errors must be converted to absolute errors so that
8581 @samp{+/-} notation may be used.
8583 @smallexample
8584 @group
8585 1:  1.              2:  1.
8586     .               1:  0.2
8587                         .
8589     20 @key{RET} .05 *        4 @key{RET} .05 *
8590 @end group
8591 @end smallexample
8593 Now we simply chug through the formula.
8595 @smallexample
8596 @group
8597 1:  19.7392088022    1:  394.78 +/- 19.739    1:  6316.5 +/- 706.21
8598     .                    .                        .
8600     2 P 2 ^ *            20 p 1 *                 4 p .2 @key{RET} 2 ^ *
8601 @end group
8602 @end smallexample
8604 It turns out the @kbd{v u} command will unpack an error form as
8605 well as a vector.  This saves us some retyping of numbers.
8607 @smallexample
8608 @group
8609 3:  6316.5 +/- 706.21     2:  6316.5 +/- 706.21
8610 2:  6316.5                1:  0.1118
8611 1:  706.21                    .
8612     .
8614     @key{RET} v u                   @key{TAB} /
8615 @end group
8616 @end smallexample
8618 @noindent
8619 Thus the volume is 6316 cubic centimeters, within about 11 percent.
8621 @node Types Answer 8, Types Answer 9, Types Answer 7, Answers to Exercises
8622 @subsection Types Tutorial Exercise 8
8624 @noindent
8625 The first answer is pretty simple:  @samp{1 / (0 .. 10) = (0.1 .. inf)}.
8626 Since a number in the interval @samp{(0 .. 10)} can get arbitrarily
8627 close to zero, its reciprocal can get arbitrarily large, so the answer
8628 is an interval that effectively means, ``any number greater than 0.1''
8629 but with no upper bound.
8631 The second answer, similarly, is @samp{1 / (-10 .. 0) = (-inf .. -0.1)}.
8633 Calc normally treats division by zero as an error, so that the formula
8634 @w{@samp{1 / 0}} is left unsimplified.  Our third problem,
8635 @w{@samp{1 / [0 .. 10]}}, also (potentially) divides by zero because zero
8636 is now a member of the interval.  So Calc leaves this one unevaluated, too.
8638 If you turn on Infinite mode by pressing @kbd{m i}, you will
8639 instead get the answer @samp{[0.1 .. inf]}, which includes infinity
8640 as a possible value.
8642 The fourth calculation, @samp{1 / (-10 .. 10)}, has the same problem.
8643 Zero is buried inside the interval, but it's still a possible value.
8644 It's not hard to see that the actual result of @samp{1 / (-10 .. 10)}
8645 will be either greater than @mathit{0.1}, or less than @mathit{-0.1}.  Thus
8646 the interval goes from minus infinity to plus infinity, with a ``hole''
8647 in it from @mathit{-0.1} to @mathit{0.1}.  Calc doesn't have any way to
8648 represent this, so it just reports @samp{[-inf .. inf]} as the answer.
8649 It may be disappointing to hear ``the answer lies somewhere between
8650 minus infinity and plus infinity, inclusive,'' but that's the best
8651 that interval arithmetic can do in this case.
8653 @node Types Answer 9, Types Answer 10, Types Answer 8, Answers to Exercises
8654 @subsection Types Tutorial Exercise 9
8656 @smallexample
8657 @group
8658 1:  [-3 .. 3]       2:  [-3 .. 3]     2:  [0 .. 9]
8659     .               1:  [0 .. 9]      1:  [-9 .. 9]
8660                         .                 .
8662     [ 3 n .. 3 ]        @key{RET} 2 ^           @key{TAB} @key{RET} *
8663 @end group
8664 @end smallexample
8666 @noindent
8667 In the first case the result says, ``if a number is between @mathit{-3} and
8668 3, its square is between 0 and 9.''  The second case says, ``the product
8669 of two numbers each between @mathit{-3} and 3 is between @mathit{-9} and 9.''
8671 An interval form is not a number; it is a symbol that can stand for
8672 many different numbers.  Two identical-looking interval forms can stand
8673 for different numbers.
8675 The same issue arises when you try to square an error form.
8677 @node Types Answer 10, Types Answer 11, Types Answer 9, Answers to Exercises
8678 @subsection Types Tutorial Exercise 10
8680 @noindent
8681 Testing the first number, we might arbitrarily choose 17 for @expr{x}.
8683 @smallexample
8684 @group
8685 1:  17 mod 811749613   2:  17 mod 811749613   1:  533694123 mod 811749613
8686     .                      811749612              .
8687                            .
8689     17 M 811749613 @key{RET}     811749612              ^
8690 @end group
8691 @end smallexample
8693 @noindent
8694 Since 533694123 is (considerably) different from 1, the number 811749613
8695 must not be prime.
8697 It's awkward to type the number in twice as we did above.  There are
8698 various ways to avoid this, and algebraic entry is one.  In fact, using
8699 a vector mapping operation we can perform several tests at once.  Let's
8700 use this method to test the second number.
8702 @smallexample
8703 @group
8704 2:  [17, 42, 100000]               1:  [1 mod 15485863, 1 mod ... ]
8705 1:  15485863                           .
8706     .
8708  [17 42 100000] 15485863 @key{RET}           V M ' ($$ mod $)^($-1) @key{RET}
8709 @end group
8710 @end smallexample
8712 @noindent
8713 The result is three ones (modulo @expr{n}), so it's very probable that
8714 15485863 is prime.  (In fact, this number is the millionth prime.)
8716 Note that the functions @samp{($$^($-1)) mod $} or @samp{$$^($-1) % $}
8717 would have been hopelessly inefficient, since they would have calculated
8718 the power using full integer arithmetic.
8720 Calc has a @kbd{k p} command that does primality testing.  For small
8721 numbers it does an exact test; for large numbers it uses a variant
8722 of the Fermat test we used here.  You can use @kbd{k p} repeatedly
8723 to prove that a large integer is prime with any desired probability.
8725 @node Types Answer 11, Types Answer 12, Types Answer 10, Answers to Exercises
8726 @subsection Types Tutorial Exercise 11
8728 @noindent
8729 There are several ways to insert a calculated number into an HMS form.
8730 One way to convert a number of seconds to an HMS form is simply to
8731 multiply the number by an HMS form representing one second:
8733 @smallexample
8734 @group
8735 1:  31415926.5359     2:  31415926.5359     1:  8726@@ 38' 46.5359"
8736     .                 1:  0@@ 0' 1"              .
8737                           .
8739     P 1e7 *               0@@ 0' 1"              *
8741 @end group
8742 @end smallexample
8743 @noindent
8744 @smallexample
8745 @group
8746 2:  8726@@ 38' 46.5359"             1:  6@@ 6' 2.5359" mod 24@@ 0' 0"
8747 1:  15@@ 27' 16" mod 24@@ 0' 0"          .
8748     .
8750     x time @key{RET}                         +
8751 @end group
8752 @end smallexample
8754 @noindent
8755 It will be just after six in the morning.
8757 The algebraic @code{hms} function can also be used to build an
8758 HMS form:
8760 @smallexample
8761 @group
8762 1:  hms(0, 0, 10000000. pi)       1:  8726@@ 38' 46.5359"
8763     .                                 .
8765   ' hms(0, 0, 1e7 pi) @key{RET}             =
8766 @end group
8767 @end smallexample
8769 @noindent
8770 The @kbd{=} key is necessary to evaluate the symbol @samp{pi} to
8771 the actual number 3.14159...
8773 @node Types Answer 12, Types Answer 13, Types Answer 11, Answers to Exercises
8774 @subsection Types Tutorial Exercise 12
8776 @noindent
8777 As we recall, there are 17 songs of about 2 minutes and 47 seconds
8778 each.
8780 @smallexample
8781 @group
8782 2:  0@@ 2' 47"                    1:  [0@@ 3' 7" .. 0@@ 3' 47"]
8783 1:  [0@@ 0' 20" .. 0@@ 1' 0"]          .
8784     .
8786     [ 0@@ 20" .. 0@@ 1' ]              +
8788 @end group
8789 @end smallexample
8790 @noindent
8791 @smallexample
8792 @group
8793 1:  [0@@ 52' 59." .. 1@@ 4' 19."]
8794     .
8796     17 *
8797 @end group
8798 @end smallexample
8800 @noindent
8801 No matter how long it is, the album will fit nicely on one CD.
8803 @node Types Answer 13, Types Answer 14, Types Answer 12, Answers to Exercises
8804 @subsection Types Tutorial Exercise 13
8806 @noindent
8807 Type @kbd{' 1 yr @key{RET} u c s @key{RET}}.  The answer is 31557600 seconds.
8809 @node Types Answer 14, Types Answer 15, Types Answer 13, Answers to Exercises
8810 @subsection Types Tutorial Exercise 14
8812 @noindent
8813 How long will it take for a signal to get from one end of the computer
8814 to the other?
8816 @smallexample
8817 @group
8818 1:  m / c         1:  3.3356 ns
8819     .                 .
8821  ' 1 m / c @key{RET}        u c ns @key{RET}
8822 @end group
8823 @end smallexample
8825 @noindent
8826 (Recall, @samp{c} is a ``unit'' corresponding to the speed of light.)
8828 @smallexample
8829 @group
8830 1:  3.3356 ns     1:  0.81356 ns / ns     1:  0.81356
8831 2:  4.1 ns            .                       .
8832     .
8834   ' 4.1 ns @key{RET}        /                       u s
8835 @end group
8836 @end smallexample
8838 @noindent
8839 Thus a signal could take up to 81 percent of a clock cycle just to
8840 go from one place to another inside the computer, assuming the signal
8841 could actually attain the full speed of light.  Pretty tight!
8843 @node Types Answer 15, Algebra Answer 1, Types Answer 14, Answers to Exercises
8844 @subsection Types Tutorial Exercise 15
8846 @noindent
8847 The speed limit is 55 miles per hour on most highways.  We want to
8848 find the ratio of Sam's speed to the US speed limit.
8850 @smallexample
8851 @group
8852 1:  55 mph         2:  55 mph           3:  11 hr mph / yd
8853     .              1:  5 yd / hr            .
8854                        .
8856   ' 55 mph @key{RET}       ' 5 yd/hr @key{RET}          /
8857 @end group
8858 @end smallexample
8860 The @kbd{u s} command cancels out these units to get a plain
8861 number.  Now we take the logarithm base two to find the final
8862 answer, assuming that each successive pill doubles his speed.
8864 @smallexample
8865 @group
8866 1:  19360.       2:  19360.       1:  14.24
8867     .            1:  2                .
8868                      .
8870     u s              2                B
8871 @end group
8872 @end smallexample
8874 @noindent
8875 Thus Sam can take up to 14 pills without a worry.
8877 @node Algebra Answer 1, Algebra Answer 2, Types Answer 15, Answers to Exercises
8878 @subsection Algebra Tutorial Exercise 1
8880 @noindent
8881 @c [fix-ref Declarations]
8882 The result @samp{sqrt(x)^2} is simplified back to @expr{x} by the
8883 Calculator, but @samp{sqrt(x^2)} is not.  (Consider what happens
8884 if @w{@expr{x = -4}}.)  If @expr{x} is real, this formula could be
8885 simplified to @samp{abs(x)}, but for general complex arguments even
8886 that is not safe.  (@xref{Declarations}, for a way to tell Calc
8887 that @expr{x} is known to be real.)
8889 @node Algebra Answer 2, Algebra Answer 3, Algebra Answer 1, Answers to Exercises
8890 @subsection Algebra Tutorial Exercise 2
8892 @noindent
8893 Suppose our roots are @expr{[a, b, c]}.  We want a polynomial which
8894 is zero when @expr{x} is any of these values.  The trivial polynomial
8895 @expr{x-a} is zero when @expr{x=a}, so the product @expr{(x-a)(x-b)(x-c)}
8896 will do the job.  We can use @kbd{a c x} to write this in a more
8897 familiar form.
8899 @smallexample
8900 @group
8901 1:  34 x - 24 x^3          1:  [1.19023, -1.19023, 0]
8902     .                          .
8904     r 2                        a P x @key{RET}
8906 @end group
8907 @end smallexample
8908 @noindent
8909 @smallexample
8910 @group
8911 1:  [x - 1.19023, x + 1.19023, x]     1:  (x - 1.19023) (x + 1.19023) x
8912     .                                     .
8914     V M ' x-$ @key{RET}                         V R *
8916 @end group
8917 @end smallexample
8918 @noindent
8919 @smallexample
8920 @group
8921 1:  x^3 - 1.41666 x        1:  34 x - 24 x^3
8922     .                          .
8924     a c x @key{RET}                  24 n *  a x
8925 @end group
8926 @end smallexample
8928 @noindent
8929 Sure enough, our answer (multiplied by a suitable constant) is the
8930 same as the original polynomial.
8932 @node Algebra Answer 3, Algebra Answer 4, Algebra Answer 2, Answers to Exercises
8933 @subsection Algebra Tutorial Exercise 3
8935 @smallexample
8936 @group
8937 1:  x sin(pi x)         1:  (sin(pi x) - pi x cos(pi x)) / pi^2
8938     .                       .
8940   ' x sin(pi x) @key{RET}   m r   a i x @key{RET}
8942 @end group
8943 @end smallexample
8944 @noindent
8945 @smallexample
8946 @group
8947 1:  [y, 1]
8948 2:  (sin(pi x) - pi x cos(pi x)) / pi^2
8949     .
8951   ' [y,1] @key{RET} @key{TAB}
8953 @end group
8954 @end smallexample
8955 @noindent
8956 @smallexample
8957 @group
8958 1:  [(sin(pi y) - pi y cos(pi y)) / pi^2, (sin(pi) - pi cos(pi)) / pi^2]
8959     .
8961     V M $ @key{RET}
8963 @end group
8964 @end smallexample
8965 @noindent
8966 @smallexample
8967 @group
8968 1:  (sin(pi y) - pi y cos(pi y)) / pi^2 + (pi cos(pi) - sin(pi)) / pi^2
8969     .
8971     V R -
8973 @end group
8974 @end smallexample
8975 @noindent
8976 @smallexample
8977 @group
8978 1:  (sin(3.14159 y) - 3.14159 y cos(3.14159 y)) / 9.8696 - 0.3183
8979     .
8981     =
8983 @end group
8984 @end smallexample
8985 @noindent
8986 @smallexample
8987 @group
8988 1:  [0., -0.95493, 0.63662, -1.5915, 1.2732]
8989     .
8991     v x 5 @key{RET}  @key{TAB}  V M $ @key{RET}
8992 @end group
8993 @end smallexample
8995 @node Algebra Answer 4, Rewrites Answer 1, Algebra Answer 3, Answers to Exercises
8996 @subsection Algebra Tutorial Exercise 4
8998 @noindent
8999 The hard part is that @kbd{V R +} is no longer sufficient to add up all
9000 the contributions from the slices, since the slices have varying
9001 coefficients.  So first we must come up with a vector of these
9002 coefficients.  Here's one way:
9004 @smallexample
9005 @group
9006 2:  -1                 2:  3                    1:  [4, 2, ..., 4]
9007 1:  [1, 2, ..., 9]     1:  [-1, 1, ..., -1]         .
9008     .                      .
9010     1 n v x 9 @key{RET}          V M ^  3 @key{TAB}             -
9012 @end group
9013 @end smallexample
9014 @noindent
9015 @smallexample
9016 @group
9017 1:  [4, 2, ..., 4, 1]      1:  [1, 4, 2, ..., 4, 1]
9018     .                          .
9020     1 |                        1 @key{TAB} |
9021 @end group
9022 @end smallexample
9024 @noindent
9025 Now we compute the function values.  Note that for this method we need
9026 eleven values, including both endpoints of the desired interval.
9028 @smallexample
9029 @group
9030 2:  [1, 4, 2, ..., 4, 1]
9031 1:  [1, 1.1, 1.2,  ...  , 1.8, 1.9, 2.]
9032     .
9034  11 @key{RET} 1 @key{RET} .1 @key{RET}  C-u v x
9036 @end group
9037 @end smallexample
9038 @noindent
9039 @smallexample
9040 @group
9041 2:  [1, 4, 2, ..., 4, 1]
9042 1:  [0., 0.084941, 0.16993, ... ]
9043     .
9045     ' sin(x) ln(x) @key{RET}   m r  p 5 @key{RET}   V M $ @key{RET}
9046 @end group
9047 @end smallexample
9049 @noindent
9050 Once again this calls for @kbd{V M * V R +}; a simple @kbd{*} does the
9051 same thing.
9053 @smallexample
9054 @group
9055 1:  11.22      1:  1.122      1:  0.374
9056     .              .              .
9058     *              .1 *           3 /
9059 @end group
9060 @end smallexample
9062 @noindent
9063 Wow!  That's even better than the result from the Taylor series method.
9065 @node Rewrites Answer 1, Rewrites Answer 2, Algebra Answer 4, Answers to Exercises
9066 @subsection Rewrites Tutorial Exercise 1
9068 @noindent
9069 We'll use Big mode to make the formulas more readable.
9071 @smallexample
9072 @group
9073                                                ___
9074                                           2 + V 2
9075 1:  (2 + sqrt(2)) / (1 + sqrt(2))     1:  --------
9076     .                                          ___
9077                                           1 + V 2
9079                                           .
9081   ' (2+sqrt(2)) / (1+sqrt(2)) @key{RET}         d B
9082 @end group
9083 @end smallexample
9085 @noindent
9086 Multiplying by the conjugate helps because @expr{(a+b) (a-b) = a^2 - b^2}.
9088 @smallexample
9089 @group
9090           ___    ___
9091 1:  (2 + V 2 ) (V 2  - 1)
9092     .
9094   a r a/(b+c) := a*(b-c) / (b^2-c^2) @key{RET}
9096 @end group
9097 @end smallexample
9098 @noindent
9099 @smallexample
9100 @group
9101          ___                         ___
9102 1:  2 + V 2  - 2                1:  V 2
9103     .                               .
9105   a r a*(b+c) := a*b + a*c          a s
9106 @end group
9107 @end smallexample
9109 @noindent
9110 (We could have used @kbd{a x} instead of a rewrite rule for the
9111 second step.)
9113 The multiply-by-conjugate rule turns out to be useful in many
9114 different circumstances, such as when the denominator involves
9115 sines and cosines or the imaginary constant @code{i}.
9117 @node Rewrites Answer 2, Rewrites Answer 3, Rewrites Answer 1, Answers to Exercises
9118 @subsection Rewrites Tutorial Exercise 2
9120 @noindent
9121 Here is the rule set:
9123 @smallexample
9124 @group
9125 [ fib(n) := fib(n, 1, 1) :: integer(n) :: n >= 1,
9126   fib(1, x, y) := x,
9127   fib(n, x, y) := fib(n-1, y, x+y) ]
9128 @end group
9129 @end smallexample
9131 @noindent
9132 The first rule turns a one-argument @code{fib} that people like to write
9133 into a three-argument @code{fib} that makes computation easier.  The
9134 second rule converts back from three-argument form once the computation
9135 is done.  The third rule does the computation itself.  It basically
9136 says that if @expr{x} and @expr{y} are two consecutive Fibonacci numbers,
9137 then @expr{y} and @expr{x+y} are the next (overlapping) pair of Fibonacci
9138 numbers.
9140 Notice that because the number @expr{n} was ``validated'' by the
9141 conditions on the first rule, there is no need to put conditions on
9142 the other rules because the rule set would never get that far unless
9143 the input were valid.  That further speeds computation, since no
9144 extra conditions need to be checked at every step.
9146 Actually, a user with a nasty sense of humor could enter a bad
9147 three-argument @code{fib} call directly, say, @samp{fib(0, 1, 1)},
9148 which would get the rules into an infinite loop.  One thing that would
9149 help keep this from happening by accident would be to use something like
9150 @samp{ZzFib} instead of @code{fib} as the name of the three-argument
9151 function.
9153 @node Rewrites Answer 3, Rewrites Answer 4, Rewrites Answer 2, Answers to Exercises
9154 @subsection Rewrites Tutorial Exercise 3
9156 @noindent
9157 He got an infinite loop.  First, Calc did as expected and rewrote
9158 @w{@samp{2 + 3 x}} to @samp{f(2, 3, x)}.  Then it looked for ways to
9159 apply the rule again, and found that @samp{f(2, 3, x)} looks like
9160 @samp{a + b x} with @w{@samp{a = 0}} and @samp{b = 1}, so it rewrote to
9161 @samp{f(0, 1, f(2, 3, x))}.  It then wrapped another @samp{f(0, 1, ...)}
9162 around that, and so on, ad infinitum.  Joe should have used @kbd{M-1 a r}
9163 to make sure the rule applied only once.
9165 (Actually, even the first step didn't work as he expected.  What Calc
9166 really gives for @kbd{M-1 a r} in this situation is @samp{f(3 x, 1, 2)},
9167 treating 2 as the ``variable,'' and @samp{3 x} as a constant being added
9168 to it.  While this may seem odd, it's just as valid a solution as the
9169 ``obvious'' one.  One way to fix this would be to add the condition
9170 @samp{:: variable(x)} to the rule, to make sure the thing that matches
9171 @samp{x} is indeed a variable, or to change @samp{x} to @samp{quote(x)}
9172 on the lefthand side, so that the rule matches the actual variable
9173 @samp{x} rather than letting @samp{x} stand for something else.)
9175 @node Rewrites Answer 4, Rewrites Answer 5, Rewrites Answer 3, Answers to Exercises
9176 @subsection Rewrites Tutorial Exercise 4
9178 @noindent
9179 @ignore
9180 @starindex
9181 @end ignore
9182 @tindex seq
9183 Here is a suitable set of rules to solve the first part of the problem:
9185 @smallexample
9186 @group
9187 [ seq(n, c) := seq(n/2,  c+1) :: n%2 = 0,
9188   seq(n, c) := seq(3n+1, c+1) :: n%2 = 1 :: n > 1 ]
9189 @end group
9190 @end smallexample
9192 Given the initial formula @samp{seq(6, 0)}, application of these
9193 rules produces the following sequence of formulas:
9195 @example
9196 seq( 3, 1)
9197 seq(10, 2)
9198 seq( 5, 3)
9199 seq(16, 4)
9200 seq( 8, 5)
9201 seq( 4, 6)
9202 seq( 2, 7)
9203 seq( 1, 8)
9204 @end example
9206 @noindent
9207 whereupon neither of the rules match, and rewriting stops.
9209 We can pretty this up a bit with a couple more rules:
9211 @smallexample
9212 @group
9213 [ seq(n) := seq(n, 0),
9214   seq(1, c) := c,
9215   ... ]
9216 @end group
9217 @end smallexample
9219 @noindent
9220 Now, given @samp{seq(6)} as the starting configuration, we get 8
9221 as the result.
9223 The change to return a vector is quite simple:
9225 @smallexample
9226 @group
9227 [ seq(n) := seq(n, []) :: integer(n) :: n > 0,
9228   seq(1, v) := v | 1,
9229   seq(n, v) := seq(n/2,  v | n) :: n%2 = 0,
9230   seq(n, v) := seq(3n+1, v | n) :: n%2 = 1 ]
9231 @end group
9232 @end smallexample
9234 @noindent
9235 Given @samp{seq(6)}, the result is @samp{[6, 3, 10, 5, 16, 8, 4, 2, 1]}.
9237 Notice that the @expr{n > 1} guard is no longer necessary on the last
9238 rule since the @expr{n = 1} case is now detected by another rule.
9239 But a guard has been added to the initial rule to make sure the
9240 initial value is suitable before the computation begins.
9242 While still a good idea, this guard is not as vitally important as it
9243 was for the @code{fib} function, since calling, say, @samp{seq(x, [])}
9244 will not get into an infinite loop.  Calc will not be able to prove
9245 the symbol @samp{x} is either even or odd, so none of the rules will
9246 apply and the rewrites will stop right away.
9248 @node Rewrites Answer 5, Rewrites Answer 6, Rewrites Answer 4, Answers to Exercises
9249 @subsection Rewrites Tutorial Exercise 5
9251 @noindent
9252 @ignore
9253 @starindex
9254 @end ignore
9255 @tindex nterms
9256 If @expr{x} is the sum @expr{a + b}, then `@tfn{nterms(}@var{x}@tfn{)}' must
9257 be `@tfn{nterms(}@var{a}@tfn{)}' plus `@tfn{nterms(}@var{b}@tfn{)}'.  If @expr{x}
9258 is not a sum, then `@tfn{nterms(}@var{x}@tfn{)}' = 1.
9260 @smallexample
9261 @group
9262 [ nterms(a + b) := nterms(a) + nterms(b),
9263   nterms(x)     := 1 ]
9264 @end group
9265 @end smallexample
9267 @noindent
9268 Here we have taken advantage of the fact that earlier rules always
9269 match before later rules; @samp{nterms(x)} will only be tried if we
9270 already know that @samp{x} is not a sum.
9272 @node Rewrites Answer 6, Programming Answer 1, Rewrites Answer 5, Answers to Exercises
9273 @subsection Rewrites Tutorial Exercise 6
9275 @noindent
9276 Here is a rule set that will do the job:
9278 @smallexample
9279 @group
9280 [ a*(b + c) := a*b + a*c,
9281   opt(a) O(x^n) + opt(b) O(x^m) := O(x^n) :: n <= m
9282      :: constant(a) :: constant(b),
9283   opt(a) O(x^n) + opt(b) x^m := O(x^n) :: n <= m
9284      :: constant(a) :: constant(b),
9285   a O(x^n) := O(x^n) :: constant(a),
9286   x^opt(m) O(x^n) := O(x^(n+m)),
9287   O(x^n) O(x^m) := O(x^(n+m)) ]
9288 @end group
9289 @end smallexample
9291 If we really want the @kbd{+} and @kbd{*} keys to operate naturally
9292 on power series, we should put these rules in @code{EvalRules}.  For
9293 testing purposes, it is better to put them in a different variable,
9294 say, @code{O}, first.
9296 The first rule just expands products of sums so that the rest of the
9297 rules can assume they have an expanded-out polynomial to work with.
9298 Note that this rule does not mention @samp{O} at all, so it will
9299 apply to any product-of-sum it encounters---this rule may surprise
9300 you if you put it into @code{EvalRules}!
9302 In the second rule, the sum of two O's is changed to the smaller O.
9303 The optional constant coefficients are there mostly so that
9304 @samp{O(x^2) - O(x^3)} and @samp{O(x^3) - O(x^2)} are handled
9305 as well as @samp{O(x^2) + O(x^3)}.
9307 The third rule absorbs higher powers of @samp{x} into O's.
9309 The fourth rule says that a constant times a negligible quantity
9310 is still negligible.  (This rule will also match @samp{O(x^3) / 4},
9311 with @samp{a = 1/4}.)
9313 The fifth rule rewrites, for example, @samp{x^2 O(x^3)} to @samp{O(x^5)}.
9314 (It is easy to see that if one of these forms is negligible, the other
9315 is, too.)  Notice the @samp{x^opt(m)} to pick up terms like
9316 @w{@samp{x O(x^3)}}.  Optional powers will match @samp{x} as @samp{x^1}
9317 but not 1 as @samp{x^0}.  This turns out to be exactly what we want here.
9319 The sixth rule is the corresponding rule for products of two O's.
9321 Another way to solve this problem would be to create a new ``data type''
9322 that represents truncated power series.  We might represent these as
9323 function calls @samp{series(@var{coefs}, @var{x})} where @var{coefs} is
9324 a vector of coefficients for @expr{x^0}, @expr{x^1}, @expr{x^2}, and so
9325 on.  Rules would exist for sums and products of such @code{series}
9326 objects, and as an optional convenience could also know how to combine a
9327 @code{series} object with a normal polynomial.  (With this, and with a
9328 rule that rewrites @samp{O(x^n)} to the equivalent @code{series} form,
9329 you could still enter power series in exactly the same notation as
9330 before.)  Operations on such objects would probably be more efficient,
9331 although the objects would be a bit harder to read.
9333 @c [fix-ref Compositions]
9334 Some other symbolic math programs provide a power series data type
9335 similar to this.  Mathematica, for example, has an object that looks
9336 like @samp{PowerSeries[@var{x}, @var{x0}, @var{coefs}, @var{nmin},
9337 @var{nmax}, @var{den}]}, where @var{x0} is the point about which the
9338 power series is taken (we've been assuming this was always zero),
9339 and @var{nmin}, @var{nmax}, and @var{den} allow pseudo-power-series
9340 with fractional or negative powers.  Also, the @code{PowerSeries}
9341 objects have a special display format that makes them look like
9342 @samp{2 x^2 + O(x^4)} when they are printed out.  (@xref{Compositions},
9343 for a way to do this in Calc, although for something as involved as
9344 this it would probably be better to write the formatting routine
9345 in Lisp.)
9347 @node Programming Answer 1, Programming Answer 2, Rewrites Answer 6, Answers to Exercises
9348 @subsection Programming Tutorial Exercise 1
9350 @noindent
9351 Just enter the formula @samp{ninteg(sin(t)/t, t, 0, x)}, type
9352 @kbd{Z F}, and answer the questions.  Since this formula contains two
9353 variables, the default argument list will be @samp{(t x)}.  We want to
9354 change this to @samp{(x)} since @expr{t} is really a dummy variable
9355 to be used within @code{ninteg}.
9357 The exact keystrokes are @kbd{Z F s Si @key{RET} @key{RET} C-b C-b @key{DEL} @key{DEL} @key{RET} y}.
9358 (The @kbd{C-b C-b @key{DEL} @key{DEL}} are what fix the argument list.)
9360 @node Programming Answer 2, Programming Answer 3, Programming Answer 1, Answers to Exercises
9361 @subsection Programming Tutorial Exercise 2
9363 @noindent
9364 One way is to move the number to the top of the stack, operate on
9365 it, then move it back:  @kbd{C-x ( M-@key{TAB} n M-@key{TAB} M-@key{TAB} C-x )}.
9367 Another way is to negate the top three stack entries, then negate
9368 again the top two stack entries:  @kbd{C-x ( M-3 n M-2 n C-x )}.
9370 Finally, it turns out that a negative prefix argument causes a
9371 command like @kbd{n} to operate on the specified stack entry only,
9372 which is just what we want:  @kbd{C-x ( M-- 3 n C-x )}.
9374 Just for kicks, let's also do it algebraically:
9375 @w{@kbd{C-x ( ' -$$$, $$, $ @key{RET} C-x )}}.
9377 @node Programming Answer 3, Programming Answer 4, Programming Answer 2, Answers to Exercises
9378 @subsection Programming Tutorial Exercise 3
9380 @noindent
9381 Each of these functions can be computed using the stack, or using
9382 algebraic entry, whichever way you prefer:
9384 @noindent
9385 Computing 
9386 @texline @math{\displaystyle{\sin x \over x}}:
9387 @infoline @expr{sin(x) / x}:
9389 Using the stack:  @kbd{C-x (  @key{RET} S @key{TAB} /  C-x )}.
9391 Using algebraic entry:  @kbd{C-x (  ' sin($)/$ @key{RET}  C-x )}.
9393 @noindent
9394 Computing the logarithm:
9396 Using the stack:  @kbd{C-x (  @key{TAB} B  C-x )}
9398 Using algebraic entry:  @kbd{C-x (  ' log($,$$) @key{RET}  C-x )}.
9400 @noindent
9401 Computing the vector of integers:
9403 Using the stack:  @kbd{C-x (  1 @key{RET} 1  C-u v x  C-x )}.  (Recall that
9404 @kbd{C-u v x} takes the vector size, starting value, and increment
9405 from the stack.)
9407 Alternatively:  @kbd{C-x (  ~ v x  C-x )}.  (The @kbd{~} key pops a
9408 number from the stack and uses it as the prefix argument for the
9409 next command.)
9411 Using algebraic entry:  @kbd{C-x (  ' index($) @key{RET}  C-x )}.
9413 @node Programming Answer 4, Programming Answer 5, Programming Answer 3, Answers to Exercises
9414 @subsection Programming Tutorial Exercise 4
9416 @noindent
9417 Here's one way:  @kbd{C-x ( @key{RET} V R + @key{TAB} v l / C-x )}.
9419 @node Programming Answer 5, Programming Answer 6, Programming Answer 4, Answers to Exercises
9420 @subsection Programming Tutorial Exercise 5
9422 @smallexample
9423 @group
9424 2:  1              1:  1.61803398502         2:  1.61803398502
9425 1:  20                 .                     1:  1.61803398875
9426     .                                            .
9428    1 @key{RET} 20         Z < & 1 + Z >                I H P
9429 @end group
9430 @end smallexample
9432 @noindent
9433 This answer is quite accurate.
9435 @node Programming Answer 6, Programming Answer 7, Programming Answer 5, Answers to Exercises
9436 @subsection Programming Tutorial Exercise 6
9438 @noindent
9439 Here is the matrix:
9441 @example
9442 [ [ 0, 1 ]   * [a, b] = [b, a + b]
9443   [ 1, 1 ] ]
9444 @end example
9446 @noindent
9447 Thus @samp{[0, 1; 1, 1]^n * [1, 1]} computes Fibonacci numbers @expr{n+1}
9448 and @expr{n+2}.  Here's one program that does the job:
9450 @example
9451 C-x ( ' [0, 1; 1, 1] ^ ($-1) * [1, 1] @key{RET} v u @key{DEL} C-x )
9452 @end example
9454 @noindent
9455 This program is quite efficient because Calc knows how to raise a
9456 matrix (or other value) to the power @expr{n} in only 
9457 @texline @math{\log_2 n}
9458 @infoline @expr{log(n,2)}
9459 steps.  For example, this program can compute the 1000th Fibonacci
9460 number (a 209-digit integer!) in about 10 steps; even though the
9461 @kbd{Z < ... Z >} solution had much simpler steps, it would have
9462 required so many steps that it would not have been practical.
9464 @node Programming Answer 7, Programming Answer 8, Programming Answer 6, Answers to Exercises
9465 @subsection Programming Tutorial Exercise 7
9467 @noindent
9468 The trick here is to compute the harmonic numbers differently, so that
9469 the loop counter itself accumulates the sum of reciprocals.  We use
9470 a separate variable to hold the integer counter.
9472 @smallexample
9473 @group
9474 1:  1          2:  1       1:  .
9475     .          1:  4
9476                    .
9478     1 t 1       1 @key{RET} 4      Z ( t 2 r 1 1 + s 1 & Z )
9479 @end group
9480 @end smallexample
9482 @noindent
9483 The body of the loop goes as follows:  First save the harmonic sum
9484 so far in variable 2.  Then delete it from the stack; the for loop
9485 itself will take care of remembering it for us.  Next, recall the
9486 count from variable 1, add one to it, and feed its reciprocal to
9487 the for loop to use as the step value.  The for loop will increase
9488 the ``loop counter'' by that amount and keep going until the
9489 loop counter exceeds 4.
9491 @smallexample
9492 @group
9493 2:  31                  3:  31
9494 1:  3.99498713092       2:  3.99498713092
9495     .                   1:  4.02724519544
9496                             .
9498     r 1 r 2                 @key{RET} 31 & +
9499 @end group
9500 @end smallexample
9502 Thus we find that the 30th harmonic number is 3.99, and the 31st
9503 harmonic number is 4.02.
9505 @node Programming Answer 8, Programming Answer 9, Programming Answer 7, Answers to Exercises
9506 @subsection Programming Tutorial Exercise 8
9508 @noindent
9509 The first step is to compute the derivative @expr{f'(x)} and thus
9510 the formula 
9511 @texline @math{\displaystyle{x - {f(x) \over f'(x)}}}.
9512 @infoline @expr{x - f(x)/f'(x)}.
9514 (Because this definition is long, it will be repeated in concise form
9515 below.  You can use @w{@kbd{C-x * m}} to load it from there.  While you are
9516 entering a @kbd{Z ` Z '} body in a macro, Calc simply collects
9517 keystrokes without executing them.  In the following diagrams we'll
9518 pretend Calc actually executed the keystrokes as you typed them,
9519 just for purposes of illustration.)
9521 @smallexample
9522 @group
9523 2:  sin(cos(x)) - 0.5            3:  4.5
9524 1:  4.5                          2:  sin(cos(x)) - 0.5
9525     .                            1:  -(sin(x) cos(cos(x)))
9526                                      .
9528 ' sin(cos(x))-0.5 @key{RET} 4.5  m r  C-x ( Z `  @key{TAB} @key{RET} a d x @key{RET}
9530 @end group
9531 @end smallexample
9532 @noindent
9533 @smallexample
9534 @group
9535 2:  4.5
9536 1:  x + (sin(cos(x)) - 0.5) / sin(x) cos(cos(x))
9537     .
9539     /  ' x @key{RET} @key{TAB} -   t 1
9540 @end group
9541 @end smallexample
9543 Now, we enter the loop.  We'll use a repeat loop with a 20-repetition
9544 limit just in case the method fails to converge for some reason.
9545 (Normally, the @w{@kbd{Z /}} command will stop the loop before all 20
9546 repetitions are done.)
9548 @smallexample
9549 @group
9550 1:  4.5         3:  4.5                     2:  4.5
9551     .           2:  x + (sin(cos(x)) ...    1:  5.24196456928
9552                 1:  4.5                         .
9553                     .
9555   20 Z <          @key{RET} r 1 @key{TAB}                 s l x @key{RET}
9556 @end group
9557 @end smallexample
9559 This is the new guess for @expr{x}.  Now we compare it with the
9560 old one to see if we've converged.
9562 @smallexample
9563 @group
9564 3:  5.24196     2:  5.24196     1:  5.24196     1:  5.26345856348
9565 2:  5.24196     1:  0               .               .
9566 1:  4.5             .
9567     .
9569   @key{RET} M-@key{TAB}         a =             Z /             Z > Z ' C-x )
9570 @end group
9571 @end smallexample
9573 The loop converges in just a few steps to this value.  To check
9574 the result, we can simply substitute it back into the equation.
9576 @smallexample
9577 @group
9578 2:  5.26345856348
9579 1:  0.499999999997
9580     .
9582  @key{RET} ' sin(cos($)) @key{RET}
9583 @end group
9584 @end smallexample
9586 Let's test the new definition again:
9588 @smallexample
9589 @group
9590 2:  x^2 - 9           1:  3.
9591 1:  1                     .
9592     .
9594   ' x^2-9 @key{RET} 1           X
9595 @end group
9596 @end smallexample
9598 Once again, here's the full Newton's Method definition:
9600 @example
9601 @group
9602 C-x ( Z `  @key{TAB} @key{RET} a d x @key{RET}  /  ' x @key{RET} @key{TAB} -  t 1
9603            20 Z <  @key{RET} r 1 @key{TAB}  s l x @key{RET}
9604                    @key{RET} M-@key{TAB}  a =  Z /
9605               Z >
9606       Z '
9607 C-x )
9608 @end group
9609 @end example
9611 @c [fix-ref Nesting and Fixed Points]
9612 It turns out that Calc has a built-in command for applying a formula
9613 repeatedly until it converges to a number.  @xref{Nesting and Fixed Points},
9614 to see how to use it.
9616 @c [fix-ref Root Finding]
9617 Also, of course, @kbd{a R} is a built-in command that uses Newton's
9618 method (among others) to look for numerical solutions to any equation.
9619 @xref{Root Finding}.
9621 @node Programming Answer 9, Programming Answer 10, Programming Answer 8, Answers to Exercises
9622 @subsection Programming Tutorial Exercise 9
9624 @noindent
9625 The first step is to adjust @expr{z} to be greater than 5.  A simple
9626 ``for'' loop will do the job here.  If @expr{z} is less than 5, we
9627 reduce the problem using 
9628 @texline @math{\psi(z) = \psi(z+1) - 1/z}.
9629 @infoline @expr{psi(z) = psi(z+1) - 1/z}.  We go
9630 on to compute 
9631 @texline @math{\psi(z+1)},
9632 @infoline @expr{psi(z+1)}, 
9633 and remember to add back a factor of @expr{-1/z} when we're done.  This
9634 step is repeated until @expr{z > 5}.
9636 (Because this definition is long, it will be repeated in concise form
9637 below.  You can use @w{@kbd{C-x * m}} to load it from there.  While you are
9638 entering a @kbd{Z ` Z '} body in a macro, Calc simply collects
9639 keystrokes without executing them.  In the following diagrams we'll
9640 pretend Calc actually executed the keystrokes as you typed them,
9641 just for purposes of illustration.)
9643 @smallexample
9644 @group
9645 1:  1.             1:  1.
9646     .                  .
9648  1.0 @key{RET}       C-x ( Z `  s 1  0 t 2
9649 @end group
9650 @end smallexample
9652 Here, variable 1 holds @expr{z} and variable 2 holds the adjustment
9653 factor.  If @expr{z < 5}, we use a loop to increase it.
9655 (By the way, we started with @samp{1.0} instead of the integer 1 because
9656 otherwise the calculation below will try to do exact fractional arithmetic,
9657 and will never converge because fractions compare equal only if they
9658 are exactly equal, not just equal to within the current precision.)
9660 @smallexample
9661 @group
9662 3:  1.      2:  1.       1:  6.
9663 2:  1.      1:  1            .
9664 1:  5           .
9665     .
9667   @key{RET} 5        a <    Z [  5 Z (  & s + 2  1 s + 1  1 Z ) r 1  Z ]
9668 @end group
9669 @end smallexample
9671 Now we compute the initial part of the sum:  
9672 @texline @math{\ln z - {1 \over 2z}}
9673 @infoline @expr{ln(z) - 1/2z}
9674 minus the adjustment factor.
9676 @smallexample
9677 @group
9678 2:  1.79175946923      2:  1.7084261359      1:  -0.57490719743
9679 1:  0.0833333333333    1:  2.28333333333         .
9680     .                      .
9682     L  r 1 2 * &           -  r 2                -
9683 @end group
9684 @end smallexample
9686 Now we evaluate the series.  We'll use another ``for'' loop counting
9687 up the value of @expr{2 n}.  (Calc does have a summation command,
9688 @kbd{a +}, but we'll use loops just to get more practice with them.)
9690 @smallexample
9691 @group
9692 3:  -0.5749       3:  -0.5749        4:  -0.5749      2:  -0.5749
9693 2:  2             2:  1:6            3:  1:6          1:  2.3148e-3
9694 1:  40            1:  2              2:  2                .
9695     .                 .              1:  36.
9696                                          .
9698    2 @key{RET} 40        Z ( @key{RET} k b @key{TAB}     @key{RET} r 1 @key{TAB} ^      * /
9700 @end group
9701 @end smallexample
9702 @noindent
9703 @smallexample
9704 @group
9705 3:  -0.5749       3:  -0.5772      2:  -0.5772     1:  -0.577215664892
9706 2:  -0.5749       2:  -0.5772      1:  0               .
9707 1:  2.3148e-3     1:  -0.5749          .
9708     .                 .
9710   @key{TAB} @key{RET} M-@key{TAB}       - @key{RET} M-@key{TAB}      a =     Z /    2  Z )  Z ' C-x )
9711 @end group
9712 @end smallexample
9714 This is the value of 
9715 @texline @math{-\gamma},
9716 @infoline @expr{- gamma}, 
9717 with a slight bit of roundoff error.  To get a full 12 digits, let's use
9718 a higher precision:
9720 @smallexample
9721 @group
9722 2:  -0.577215664892      2:  -0.577215664892
9723 1:  1.                   1:  -0.577215664901532
9725     1. @key{RET}                   p 16 @key{RET} X
9726 @end group
9727 @end smallexample
9729 Here's the complete sequence of keystrokes:
9731 @example
9732 @group
9733 C-x ( Z `  s 1  0 t 2
9734            @key{RET} 5 a <  Z [  5 Z (  & s + 2  1 s + 1  1 Z ) r 1  Z ]
9735            L r 1 2 * & - r 2 -
9736            2 @key{RET} 40  Z (  @key{RET} k b @key{TAB} @key{RET} r 1 @key{TAB} ^ * /
9737                           @key{TAB} @key{RET} M-@key{TAB} - @key{RET} M-@key{TAB} a = Z /
9738                   2  Z )
9739       Z '
9740 C-x )
9741 @end group
9742 @end example
9744 @node Programming Answer 10, Programming Answer 11, Programming Answer 9, Answers to Exercises
9745 @subsection Programming Tutorial Exercise 10
9747 @noindent
9748 Taking the derivative of a term of the form @expr{x^n} will produce
9749 a term like 
9750 @texline @math{n x^{n-1}}.
9751 @infoline @expr{n x^(n-1)}.  
9752 Taking the derivative of a constant
9753 produces zero.  From this it is easy to see that the @expr{n}th
9754 derivative of a polynomial, evaluated at @expr{x = 0}, will equal the
9755 coefficient on the @expr{x^n} term times @expr{n!}.
9757 (Because this definition is long, it will be repeated in concise form
9758 below.  You can use @w{@kbd{C-x * m}} to load it from there.  While you are
9759 entering a @kbd{Z ` Z '} body in a macro, Calc simply collects
9760 keystrokes without executing them.  In the following diagrams we'll
9761 pretend Calc actually executed the keystrokes as you typed them,
9762 just for purposes of illustration.)
9764 @smallexample
9765 @group
9766 2:  5 x^4 + (x + 1)^2          3:  5 x^4 + (x + 1)^2
9767 1:  6                          2:  0
9768     .                          1:  6
9769                                    .
9771   ' 5 x^4 + (x+1)^2 @key{RET} 6        C-x ( Z `  [ ] t 1  0 @key{TAB}
9772 @end group
9773 @end smallexample
9775 @noindent
9776 Variable 1 will accumulate the vector of coefficients.
9778 @smallexample
9779 @group
9780 2:  0              3:  0                  2:  5 x^4 + ...
9781 1:  5 x^4 + ...    2:  5 x^4 + ...        1:  1
9782     .              1:  1                      .
9783                        .
9785    Z ( @key{TAB}         @key{RET} 0 s l x @key{RET}            M-@key{TAB} ! /  s | 1
9786 @end group
9787 @end smallexample
9789 @noindent
9790 Note that @kbd{s | 1} appends the top-of-stack value to the vector
9791 in a variable; it is completely analogous to @kbd{s + 1}.  We could
9792 have written instead, @kbd{r 1 @key{TAB} | t 1}.
9794 @smallexample
9795 @group
9796 1:  20 x^3 + 2 x + 2      1:  0         1:  [1, 2, 1, 0, 5, 0, 0]
9797     .                         .             .
9799     a d x @key{RET}                 1 Z )         @key{DEL} r 1  Z ' C-x )
9800 @end group
9801 @end smallexample
9803 To convert back, a simple method is just to map the coefficients
9804 against a table of powers of @expr{x}.
9806 @smallexample
9807 @group
9808 2:  [1, 2, 1, 0, 5, 0, 0]    2:  [1, 2, 1, 0, 5, 0, 0]
9809 1:  6                        1:  [0, 1, 2, 3, 4, 5, 6]
9810     .                            .
9812     6 @key{RET}                        1 + 0 @key{RET} 1 C-u v x
9814 @end group
9815 @end smallexample
9816 @noindent
9817 @smallexample
9818 @group
9819 2:  [1, 2, 1, 0, 5, 0, 0]    2:  1 + 2 x + x^2 + 5 x^4
9820 1:  [1, x, x^2, x^3, ... ]       .
9821     .
9823     ' x @key{RET} @key{TAB} V M ^            *
9824 @end group
9825 @end smallexample
9827 Once again, here are the whole polynomial to/from vector programs:
9829 @example
9830 @group
9831 C-x ( Z `  [ ] t 1  0 @key{TAB}
9832            Z (  @key{TAB} @key{RET} 0 s l x @key{RET} M-@key{TAB} ! /  s | 1
9833                 a d x @key{RET}
9834          1 Z ) r 1
9835       Z '
9836 C-x )
9838 C-x (  1 + 0 @key{RET} 1 C-u v x ' x @key{RET} @key{TAB} V M ^ *  C-x )
9839 @end group
9840 @end example
9842 @node Programming Answer 11, Programming Answer 12, Programming Answer 10, Answers to Exercises
9843 @subsection Programming Tutorial Exercise 11
9845 @noindent
9846 First we define a dummy program to go on the @kbd{z s} key.  The true
9847 @w{@kbd{z s}} key is supposed to take two numbers from the stack and
9848 return one number, so @key{DEL} as a dummy definition will make
9849 sure the stack comes out right.
9851 @smallexample
9852 @group
9853 2:  4          1:  4                         2:  4
9854 1:  2              .                         1:  2
9855     .                                            .
9857   4 @key{RET} 2       C-x ( @key{DEL} C-x )  Z K s @key{RET}       2
9858 @end group
9859 @end smallexample
9861 The last step replaces the 2 that was eaten during the creation
9862 of the dummy @kbd{z s} command.  Now we move on to the real
9863 definition.  The recurrence needs to be rewritten slightly,
9864 to the form @expr{s(n,m) = s(n-1,m-1) - (n-1) s(n-1,m)}.
9866 (Because this definition is long, it will be repeated in concise form
9867 below.  You can use @kbd{C-x * m} to load it from there.)
9869 @smallexample
9870 @group
9871 2:  4        4:  4       3:  4       2:  4
9872 1:  2        3:  2       2:  2       1:  2
9873     .        2:  4       1:  0           .
9874              1:  2           .
9875                  .
9877   C-x (       M-2 @key{RET}        a =         Z [  @key{DEL} @key{DEL} 1  Z :
9879 @end group
9880 @end smallexample
9881 @noindent
9882 @smallexample
9883 @group
9884 4:  4       2:  4                     2:  3      4:  3    4:  3    3:  3
9885 3:  2       1:  2                     1:  2      3:  2    3:  2    2:  2
9886 2:  2           .                         .      2:  3    2:  3    1:  3
9887 1:  0                                            1:  2    1:  1        .
9888     .                                                .        .
9890   @key{RET} 0   a = Z [  @key{DEL} @key{DEL} 0  Z :  @key{TAB} 1 - @key{TAB}   M-2 @key{RET}     1 -      z s
9891 @end group
9892 @end smallexample
9894 @noindent
9895 (Note that the value 3 that our dummy @kbd{z s} produces is not correct;
9896 it is merely a placeholder that will do just as well for now.)
9898 @smallexample
9899 @group
9900 3:  3               4:  3           3:  3       2:  3      1:  -6
9901 2:  3               3:  3           2:  3       1:  9          .
9902 1:  2               2:  3           1:  3           .
9903     .               1:  2               .
9904                         .
9906  M-@key{TAB} M-@key{TAB}     @key{TAB} @key{RET} M-@key{TAB}         z s          *          -
9908 @end group
9909 @end smallexample
9910 @noindent
9911 @smallexample
9912 @group
9913 1:  -6                          2:  4          1:  11      2:  11
9914     .                           1:  2              .       1:  11
9915                                     .                          .
9917   Z ] Z ] C-x )   Z K s @key{RET}      @key{DEL} 4 @key{RET} 2       z s      M-@key{RET} k s
9918 @end group
9919 @end smallexample
9921 Even though the result that we got during the definition was highly
9922 bogus, once the definition is complete the @kbd{z s} command gets
9923 the right answers.
9925 Here's the full program once again:
9927 @example
9928 @group
9929 C-x (  M-2 @key{RET} a =
9930        Z [  @key{DEL} @key{DEL} 1
9931        Z :  @key{RET} 0 a =
9932             Z [  @key{DEL} @key{DEL} 0
9933             Z :  @key{TAB} 1 - @key{TAB} M-2 @key{RET} 1 - z s
9934                  M-@key{TAB} M-@key{TAB} @key{TAB} @key{RET} M-@key{TAB} z s * -
9935             Z ]
9936        Z ]
9937 C-x )
9938 @end group
9939 @end example
9941 You can read this definition using @kbd{C-x * m} (@code{read-kbd-macro})
9942 followed by @kbd{Z K s}, without having to make a dummy definition
9943 first, because @code{read-kbd-macro} doesn't need to execute the
9944 definition as it reads it in.  For this reason, @code{C-x * m} is often
9945 the easiest way to create recursive programs in Calc.
9947 @node Programming Answer 12, , Programming Answer 11, Answers to Exercises
9948 @subsection Programming Tutorial Exercise 12
9950 @noindent
9951 This turns out to be a much easier way to solve the problem.  Let's
9952 denote Stirling numbers as calls of the function @samp{s}.
9954 First, we store the rewrite rules corresponding to the definition of
9955 Stirling numbers in a convenient variable:
9957 @smallexample
9958 s e StirlingRules @key{RET}
9959 [ s(n,n) := 1  :: n >= 0,
9960   s(n,0) := 0  :: n > 0,
9961   s(n,m) := s(n-1,m-1) - (n-1) s(n-1,m) :: n >= m :: m >= 1 ]
9962 C-c C-c
9963 @end smallexample
9965 Now, it's just a matter of applying the rules:
9967 @smallexample
9968 @group
9969 2:  4          1:  s(4, 2)              1:  11
9970 1:  2              .                        .
9971     .
9973   4 @key{RET} 2       C-x (  ' s($$,$) @key{RET}     a r StirlingRules @key{RET}  C-x )
9974 @end group
9975 @end smallexample
9977 As in the case of the @code{fib} rules, it would be useful to put these
9978 rules in @code{EvalRules} and to add a @samp{:: remember} condition to
9979 the last rule.
9981 @c This ends the table-of-contents kludge from above:
9982 @tex
9983 \global\let\chapternofonts=\oldchapternofonts
9984 @end tex
9986 @c [reference]
9988 @node Introduction, Data Types, Tutorial, Top
9989 @chapter Introduction
9991 @noindent
9992 This chapter is the beginning of the Calc reference manual.
9993 It covers basic concepts such as the stack, algebraic and
9994 numeric entry, undo, numeric prefix arguments, etc.
9996 @c [when-split]
9997 @c (Chapter 2, the Tutorial, has been printed in a separate volume.)
9999 @menu
10000 * Basic Commands::
10001 * Help Commands::
10002 * Stack Basics::
10003 * Numeric Entry::
10004 * Algebraic Entry::
10005 * Quick Calculator::
10006 * Prefix Arguments::
10007 * Undo::
10008 * Error Messages::
10009 * Multiple Calculators::
10010 * Troubleshooting Commands::
10011 @end menu
10013 @node Basic Commands, Help Commands, Introduction, Introduction
10014 @section Basic Commands
10016 @noindent
10017 @pindex calc
10018 @pindex calc-mode
10019 @cindex Starting the Calculator
10020 @cindex Running the Calculator
10021 To start the Calculator in its standard interface, type @kbd{M-x calc}.
10022 By default this creates a pair of small windows, @samp{*Calculator*}
10023 and @samp{*Calc Trail*}.  The former displays the contents of the
10024 Calculator stack and is manipulated exclusively through Calc commands.
10025 It is possible (though not usually necessary) to create several Calc
10026 mode buffers each of which has an independent stack, undo list, and
10027 mode settings.  There is exactly one Calc Trail buffer; it records a
10028 list of the results of all calculations that have been done.  The
10029 Calc Trail buffer uses a variant of Calc mode, so Calculator commands
10030 still work when the trail buffer's window is selected.  It is possible
10031 to turn the trail window off, but the @samp{*Calc Trail*} buffer itself
10032 still exists and is updated silently.  @xref{Trail Commands}.
10034 @kindex C-x * c
10035 @kindex C-x * *
10036 @ignore
10037 @mindex @null
10038 @end ignore
10039 In most installations, the @kbd{C-x * c} key sequence is a more
10040 convenient way to start the Calculator.  Also, @kbd{C-x * *} 
10041 is a synonym for @kbd{C-x * c} unless you last used Calc
10042 in its Keypad mode.
10044 @kindex x
10045 @kindex M-x
10046 @pindex calc-execute-extended-command
10047 Most Calc commands use one or two keystrokes.  Lower- and upper-case
10048 letters are distinct.  Commands may also be entered in full @kbd{M-x} form;
10049 for some commands this is the only form.  As a convenience, the @kbd{x}
10050 key (@code{calc-execute-extended-command})
10051 is like @kbd{M-x} except that it enters the initial string @samp{calc-}
10052 for you.  For example, the following key sequences are equivalent:
10053 @kbd{S}, @kbd{M-x calc-sin @key{RET}}, @kbd{x sin @key{RET}}.
10055 @cindex Extensions module
10056 @cindex @file{calc-ext} module
10057 The Calculator exists in many parts.  When you type @kbd{C-x * c}, the
10058 Emacs ``auto-load'' mechanism will bring in only the first part, which
10059 contains the basic arithmetic functions.  The other parts will be
10060 auto-loaded the first time you use the more advanced commands like trig
10061 functions or matrix operations.  This is done to improve the response time
10062 of the Calculator in the common case when all you need to do is a
10063 little arithmetic.  If for some reason the Calculator fails to load an
10064 extension module automatically, you can force it to load all the
10065 extensions by using the @kbd{C-x * L} (@code{calc-load-everything})
10066 command.  @xref{Mode Settings}.
10068 If you type @kbd{M-x calc} or @kbd{C-x * c} with any numeric prefix argument,
10069 the Calculator is loaded if necessary, but it is not actually started.
10070 If the argument is positive, the @file{calc-ext} extensions are also
10071 loaded if necessary.  User-written Lisp code that wishes to make use
10072 of Calc's arithmetic routines can use @samp{(calc 0)} or @samp{(calc 1)}
10073 to auto-load the Calculator.
10075 @kindex C-x * b
10076 @pindex full-calc
10077 If you type @kbd{C-x * b}, then next time you use @kbd{C-x * c} you
10078 will get a Calculator that uses the full height of the Emacs screen.
10079 When full-screen mode is on, @kbd{C-x * c} runs the @code{full-calc}
10080 command instead of @code{calc}.  From the Unix shell you can type
10081 @samp{emacs -f full-calc} to start a new Emacs specifically for use
10082 as a calculator.  When Calc is started from the Emacs command line
10083 like this, Calc's normal ``quit'' commands actually quit Emacs itself.
10085 @kindex C-x * o
10086 @pindex calc-other-window
10087 The @kbd{C-x * o} command is like @kbd{C-x * c} except that the Calc
10088 window is not actually selected.  If you are already in the Calc
10089 window, @kbd{C-x * o} switches you out of it.  (The regular Emacs
10090 @kbd{C-x o} command would also work for this, but it has a
10091 tendency to drop you into the Calc Trail window instead, which
10092 @kbd{C-x * o} takes care not to do.)
10094 @ignore
10095 @mindex C-x * q
10096 @end ignore
10097 For one quick calculation, you can type @kbd{C-x * q} (@code{quick-calc})
10098 which prompts you for a formula (like @samp{2+3/4}).  The result is
10099 displayed at the bottom of the Emacs screen without ever creating
10100 any special Calculator windows.  @xref{Quick Calculator}.
10102 @ignore
10103 @mindex C-x * k
10104 @end ignore
10105 Finally, if you are using the X window system you may want to try
10106 @kbd{C-x * k} (@code{calc-keypad}) which runs Calc with a
10107 ``calculator keypad'' picture as well as a stack display.  Click on
10108 the keys with the mouse to operate the calculator.  @xref{Keypad Mode}.
10110 @kindex q
10111 @pindex calc-quit
10112 @cindex Quitting the Calculator
10113 @cindex Exiting the Calculator
10114 The @kbd{q} key (@code{calc-quit}) exits Calc mode and closes the
10115 Calculator's window(s).  It does not delete the Calculator buffers.
10116 If you type @kbd{M-x calc} again, the Calculator will reappear with the
10117 contents of the stack intact.  Typing @kbd{C-x * c} or @kbd{C-x * *}
10118 again from inside the Calculator buffer is equivalent to executing
10119 @code{calc-quit}; you can think of @kbd{C-x * *} as toggling the
10120 Calculator on and off.
10122 @kindex C-x * x
10123 The @kbd{C-x * x} command also turns the Calculator off, no matter which
10124 user interface (standard, Keypad, or Embedded) is currently active.
10125 It also cancels @code{calc-edit} mode if used from there.
10127 @kindex d @key{SPC}
10128 @pindex calc-refresh
10129 @cindex Refreshing a garbled display
10130 @cindex Garbled displays, refreshing
10131 The @kbd{d @key{SPC}} key sequence (@code{calc-refresh}) redraws the contents
10132 of the Calculator buffer from memory.  Use this if the contents of the
10133 buffer have been damaged somehow.
10135 @ignore
10136 @mindex o
10137 @end ignore
10138 The @kbd{o} key (@code{calc-realign}) moves the cursor back to its
10139 ``home'' position at the bottom of the Calculator buffer.
10141 @kindex <
10142 @kindex >
10143 @pindex calc-scroll-left
10144 @pindex calc-scroll-right
10145 @cindex Horizontal scrolling
10146 @cindex Scrolling
10147 @cindex Wide text, scrolling
10148 The @kbd{<} and @kbd{>} keys are bound to @code{calc-scroll-left} and
10149 @code{calc-scroll-right}.  These are just like the normal horizontal
10150 scrolling commands except that they scroll one half-screen at a time by
10151 default.  (Calc formats its output to fit within the bounds of the
10152 window whenever it can.)
10154 @kindex @{
10155 @kindex @}
10156 @pindex calc-scroll-down
10157 @pindex calc-scroll-up
10158 @cindex Vertical scrolling
10159 The @kbd{@{} and @kbd{@}} keys are bound to @code{calc-scroll-down}
10160 and @code{calc-scroll-up}.  They scroll up or down by one-half the
10161 height of the Calc window.
10163 @kindex C-x * 0
10164 @pindex calc-reset
10165 The @kbd{C-x * 0} command (@code{calc-reset}; that's @kbd{C-x *} followed
10166 by a zero) resets the Calculator to its initial state.  This clears
10167 the stack, resets all the modes to their initial values (the values
10168 that were saved with @kbd{m m} (@code{calc-save-modes})), clears the
10169 caches (@pxref{Caches}), and so on.  (It does @emph{not} erase the
10170 values of any variables.) With an argument of 0, Calc will be reset to
10171 its default state; namely, the modes will be given their default values.
10172 With a positive prefix argument, @kbd{C-x * 0} preserves the contents of
10173 the stack but resets everything else to its initial state; with a
10174 negative prefix argument, @kbd{C-x * 0} preserves the contents of the
10175 stack but resets everything else to its default state.
10177 @pindex calc-version
10178 The @kbd{M-x calc-version} command displays the current version number
10179 of Calc and the name of the person who installed it on your system.
10180 (This information is also present in the @samp{*Calc Trail*} buffer,
10181 and in the output of the @kbd{h h} command.)
10183 @node Help Commands, Stack Basics, Basic Commands, Introduction
10184 @section Help Commands
10186 @noindent
10187 @cindex Help commands
10188 @kindex ?
10189 @pindex calc-help
10190 The @kbd{?} key (@code{calc-help}) displays a series of brief help messages.
10191 Some keys (such as @kbd{b} and @kbd{d}) are prefix keys, like Emacs'
10192 @key{ESC} and @kbd{C-x} prefixes.  You can type
10193 @kbd{?} after a prefix to see a list of commands beginning with that
10194 prefix.  (If the message includes @samp{[MORE]}, press @kbd{?} again
10195 to see additional commands for that prefix.)
10197 @kindex h h
10198 @pindex calc-full-help
10199 The @kbd{h h} (@code{calc-full-help}) command displays all the @kbd{?}
10200 responses at once.  When printed, this makes a nice, compact (three pages)
10201 summary of Calc keystrokes.
10203 In general, the @kbd{h} key prefix introduces various commands that
10204 provide help within Calc.  Many of the @kbd{h} key functions are
10205 Calc-specific analogues to the @kbd{C-h} functions for Emacs help.
10207 @kindex h i
10208 @kindex C-x * i
10209 @kindex i
10210 @pindex calc-info
10211 The @kbd{h i} (@code{calc-info}) command runs the Emacs Info system
10212 to read this manual on-line.  This is basically the same as typing
10213 @kbd{C-h i} (the regular way to run the Info system), then, if Info
10214 is not already in the Calc manual, selecting the beginning of the
10215 manual.  The @kbd{C-x * i} command is another way to read the Calc
10216 manual; it is different from @kbd{h i} in that it works any time,
10217 not just inside Calc.  The plain @kbd{i} key is also equivalent to
10218 @kbd{h i}, though this key is obsolete and may be replaced with a
10219 different command in a future version of Calc.
10221 @kindex h t
10222 @kindex C-x * t
10223 @pindex calc-tutorial
10224 The @kbd{h t} (@code{calc-tutorial}) command runs the Info system on
10225 the Tutorial section of the Calc manual.  It is like @kbd{h i},
10226 except that it selects the starting node of the tutorial rather
10227 than the beginning of the whole manual.  (It actually selects the
10228 node ``Interactive Tutorial'' which tells a few things about
10229 using the Info system before going on to the actual tutorial.)
10230 The @kbd{C-x * t} key is equivalent to @kbd{h t} (but it works at
10231 all times).
10233 @kindex h s
10234 @kindex C-x * s
10235 @pindex calc-info-summary
10236 The @kbd{h s} (@code{calc-info-summary}) command runs the Info system
10237 on the Summary node of the Calc manual.  @xref{Summary}.  The @kbd{C-x * s}
10238 key is equivalent to @kbd{h s}.
10240 @kindex h k
10241 @pindex calc-describe-key
10242 The @kbd{h k} (@code{calc-describe-key}) command looks up a key
10243 sequence in the Calc manual.  For example, @kbd{h k H a S} looks
10244 up the documentation on the @kbd{H a S} (@code{calc-solve-for})
10245 command.  This works by looking up the textual description of
10246 the key(s) in the Key Index of the manual, then jumping to the
10247 node indicated by the index.
10249 Most Calc commands do not have traditional Emacs documentation
10250 strings, since the @kbd{h k} command is both more convenient and
10251 more instructive.  This means the regular Emacs @kbd{C-h k}
10252 (@code{describe-key}) command will not be useful for Calc keystrokes.
10254 @kindex h c
10255 @pindex calc-describe-key-briefly
10256 The @kbd{h c} (@code{calc-describe-key-briefly}) command reads a
10257 key sequence and displays a brief one-line description of it at
10258 the bottom of the screen.  It looks for the key sequence in the
10259 Summary node of the Calc manual; if it doesn't find the sequence
10260 there, it acts just like its regular Emacs counterpart @kbd{C-h c}
10261 (@code{describe-key-briefly}).  For example, @kbd{h c H a S}
10262 gives the description:
10264 @smallexample
10265 H a S runs calc-solve-for:  a `H a S' v  => fsolve(a,v)  (?=notes)
10266 @end smallexample
10268 @noindent
10269 which means the command @kbd{H a S} or @kbd{H M-x calc-solve-for}
10270 takes a value @expr{a} from the stack, prompts for a value @expr{v},
10271 then applies the algebraic function @code{fsolve} to these values.
10272 The @samp{?=notes} message means you can now type @kbd{?} to see
10273 additional notes from the summary that apply to this command.
10275 @kindex h f
10276 @pindex calc-describe-function
10277 The @kbd{h f} (@code{calc-describe-function}) command looks up an
10278 algebraic function or a command name in the Calc manual.  Enter an
10279 algebraic function name to look up that function in the Function
10280 Index or enter a command name beginning with @samp{calc-} to look it 
10281 up in the Command Index.  This command will also look up operator
10282 symbols that can appear in algebraic formulas, like @samp{%} and 
10283 @samp{=>}.
10285 @kindex h v
10286 @pindex calc-describe-variable
10287 The @kbd{h v} (@code{calc-describe-variable}) command looks up a
10288 variable in the Calc manual.  Enter a variable name like @code{pi} or
10289 @code{PlotRejects}.
10291 @kindex h b
10292 @pindex describe-bindings
10293 The @kbd{h b} (@code{calc-describe-bindings}) command is just like
10294 @kbd{C-h b}, except that only local (Calc-related) key bindings are
10295 listed.
10297 @kindex h n
10298 The @kbd{h n} or @kbd{h C-n} (@code{calc-view-news}) command displays
10299 the ``news'' or change history of Calc.  This is kept in the file
10300 @file{README}, which Calc looks for in the same directory as the Calc
10301 source files.
10303 @kindex h C-c
10304 @kindex h C-d
10305 @kindex h C-w
10306 The @kbd{h C-c}, @kbd{h C-d}, and @kbd{h C-w} keys display copying,
10307 distribution, and warranty information about Calc.  These work by
10308 pulling up the appropriate parts of the ``Copying'' or ``Reporting
10309 Bugs'' sections of the manual.
10311 @node Stack Basics, Numeric Entry, Help Commands, Introduction
10312 @section Stack Basics
10314 @noindent
10315 @cindex Stack basics
10316 @c [fix-tut RPN Calculations and the Stack]
10317 Calc uses RPN notation.  If you are not familiar with RPN, @pxref{RPN
10318 Tutorial}.
10320 To add the numbers 1 and 2 in Calc you would type the keys:
10321 @kbd{1 @key{RET} 2 +}.
10322 (@key{RET} corresponds to the @key{ENTER} key on most calculators.)
10323 The first three keystrokes ``push'' the numbers 1 and 2 onto the stack.  The
10324 @kbd{+} key always ``pops'' the top two numbers from the stack, adds them,
10325 and pushes the result (3) back onto the stack.  This number is ready for
10326 further calculations:  @kbd{5 -} pushes 5 onto the stack, then pops the
10327 3 and 5, subtracts them, and pushes the result (@mathit{-2}).
10329 Note that the ``top'' of the stack actually appears at the @emph{bottom}
10330 of the buffer.  A line containing a single @samp{.} character signifies
10331 the end of the buffer; Calculator commands operate on the number(s)
10332 directly above this line.  The @kbd{d t} (@code{calc-truncate-stack})
10333 command allows you to move the @samp{.} marker up and down in the stack;
10334 @pxref{Truncating the Stack}.
10336 @kindex d l
10337 @pindex calc-line-numbering
10338 Stack elements are numbered consecutively, with number 1 being the top of
10339 the stack.  These line numbers are ordinarily displayed on the lefthand side
10340 of the window.  The @kbd{d l} (@code{calc-line-numbering}) command controls
10341 whether these numbers appear.  (Line numbers may be turned off since they
10342 slow the Calculator down a bit and also clutter the display.)
10344 @kindex o
10345 @pindex calc-realign
10346 The unshifted letter @kbd{o} (@code{calc-realign}) command repositions
10347 the cursor to its top-of-stack ``home'' position.  It also undoes any
10348 horizontal scrolling in the window.  If you give it a numeric prefix
10349 argument, it instead moves the cursor to the specified stack element.
10351 The @key{RET} (or equivalent @key{SPC}) key is only required to separate
10352 two consecutive numbers.
10353 (After all, if you typed @kbd{1 2} by themselves the Calculator
10354 would enter the number 12.)  If you press @key{RET} or @key{SPC} @emph{not}
10355 right after typing a number, the key duplicates the number on the top of
10356 the stack.  @kbd{@key{RET} *} is thus a handy way to square a number.
10358 The @key{DEL} key pops and throws away the top number on the stack.
10359 The @key{TAB} key swaps the top two objects on the stack.
10360 @xref{Stack and Trail}, for descriptions of these and other stack-related
10361 commands.
10363 @node Numeric Entry, Algebraic Entry, Stack Basics, Introduction
10364 @section Numeric Entry
10366 @noindent
10367 @kindex 0-9
10368 @kindex .
10369 @kindex e
10370 @cindex Numeric entry
10371 @cindex Entering numbers
10372 Pressing a digit or other numeric key begins numeric entry using the
10373 minibuffer.  The number is pushed on the stack when you press the @key{RET}
10374 or @key{SPC} keys.  If you press any other non-numeric key, the number is
10375 pushed onto the stack and the appropriate operation is performed.  If
10376 you press a numeric key which is not valid, the key is ignored.
10378 @cindex Minus signs
10379 @cindex Negative numbers, entering
10380 @kindex _
10381 There are three different concepts corresponding to the word ``minus,''
10382 typified by @expr{a-b} (subtraction), @expr{-x}
10383 (change-sign), and @expr{-5} (negative number).  Calc uses three
10384 different keys for these operations, respectively:
10385 @kbd{-}, @kbd{n}, and @kbd{_} (the underscore).  The @kbd{-} key subtracts
10386 the two numbers on the top of the stack.  The @kbd{n} key changes the sign
10387 of the number on the top of the stack or the number currently being entered.
10388 The @kbd{_} key begins entry of a negative number or changes the sign of
10389 the number currently being entered.  The following sequences all enter the
10390 number @mathit{-5} onto the stack:  @kbd{0 @key{RET} 5 -}, @kbd{5 n @key{RET}},
10391 @kbd{5 @key{RET} n}, @kbd{_ 5 @key{RET}}, @kbd{5 _ @key{RET}}.
10393 Some other keys are active during numeric entry, such as @kbd{#} for
10394 non-decimal numbers, @kbd{:} for fractions, and @kbd{@@} for HMS forms.
10395 These notations are described later in this manual with the corresponding
10396 data types.  @xref{Data Types}.
10398 During numeric entry, the only editing key available is @key{DEL}.
10400 @node Algebraic Entry, Quick Calculator, Numeric Entry, Introduction
10401 @section Algebraic Entry
10403 @noindent
10404 @kindex '
10405 @pindex calc-algebraic-entry
10406 @cindex Algebraic notation
10407 @cindex Formulas, entering
10408 Calculations can also be entered in algebraic form.  This is accomplished
10409 by typing the apostrophe key, @kbd{'}, followed by the expression in
10410 standard format:  @kbd{@key{'} 2+3*4 @key{RET}} computes
10411 @texline @math{2+(3\times4) = 14}
10412 @infoline @expr{2+(3*4) = 14} 
10413 and pushes that on the stack.  If you wish you can
10414 ignore the RPN aspect of Calc altogether and simply enter algebraic
10415 expressions in this way.  You may want to use @key{DEL} every so often to
10416 clear previous results off the stack.
10418 You can press the apostrophe key during normal numeric entry to switch
10419 the half-entered number into Algebraic entry mode.  One reason to do this
10420 would be to use the full Emacs cursor motion and editing keys, which are
10421 available during algebraic entry but not during numeric entry.
10423 In the same vein, during either numeric or algebraic entry you can
10424 press @kbd{`} (backquote) to switch to @code{calc-edit} mode, where
10425 you complete your half-finished entry in a separate buffer.
10426 @xref{Editing Stack Entries}.
10428 @kindex m a
10429 @pindex calc-algebraic-mode
10430 @cindex Algebraic Mode
10431 If you prefer algebraic entry, you can use the command @kbd{m a}
10432 (@code{calc-algebraic-mode}) to set Algebraic mode.  In this mode,
10433 digits and other keys that would normally start numeric entry instead
10434 start full algebraic entry; as long as your formula begins with a digit
10435 you can omit the apostrophe.  Open parentheses and square brackets also
10436 begin algebraic entry.  You can still do RPN calculations in this mode,
10437 but you will have to press @key{RET} to terminate every number:
10438 @kbd{2 @key{RET} 3 @key{RET} * 4 @key{RET} +} would accomplish the same
10439 thing as @kbd{2*3+4 @key{RET}}.
10441 @cindex Incomplete Algebraic Mode
10442 If you give a numeric prefix argument like @kbd{C-u} to the @kbd{m a}
10443 command, it enables Incomplete Algebraic mode; this is like regular
10444 Algebraic mode except that it applies to the @kbd{(} and @kbd{[} keys
10445 only.  Numeric keys still begin a numeric entry in this mode.
10447 @kindex m t
10448 @pindex calc-total-algebraic-mode
10449 @cindex Total Algebraic Mode
10450 The @kbd{m t} (@code{calc-total-algebraic-mode}) gives you an even
10451 stronger algebraic-entry mode, in which @emph{all} regular letter and
10452 punctuation keys begin algebraic entry.  Use this if you prefer typing
10453 @w{@kbd{sqrt( )}} instead of @kbd{Q}, @w{@kbd{factor( )}} instead of
10454 @kbd{a f}, and so on.  To type regular Calc commands when you are in
10455 Total Algebraic mode, hold down the @key{META} key.  Thus @kbd{M-q}
10456 is the command to quit Calc, @kbd{M-p} sets the precision, and
10457 @kbd{M-m t} (or @kbd{M-m M-t}, if you prefer) turns Total Algebraic
10458 mode back off again.  Meta keys also terminate algebraic entry, so
10459 that @kbd{2+3 M-S} is equivalent to @kbd{2+3 @key{RET} M-S}.  The symbol
10460 @samp{Alg*} will appear in the mode line whenever you are in this mode.
10462 Pressing @kbd{'} (the apostrophe) a second time re-enters the previous
10463 algebraic formula.  You can then use the normal Emacs editing keys to
10464 modify this formula to your liking before pressing @key{RET}.
10466 @kindex $
10467 @cindex Formulas, referring to stack
10468 Within a formula entered from the keyboard, the symbol @kbd{$}
10469 represents the number on the top of the stack.  If an entered formula
10470 contains any @kbd{$} characters, the Calculator replaces the top of
10471 stack with that formula rather than simply pushing the formula onto the
10472 stack.  Thus, @kbd{' 1+2 @key{RET}} pushes 3 on the stack, and @kbd{$*2
10473 @key{RET}} replaces it with 6.  Note that the @kbd{$} key always
10474 initiates algebraic entry; the @kbd{'} is unnecessary if @kbd{$} is the
10475 first character in the new formula.
10477 Higher stack elements can be accessed from an entered formula with the
10478 symbols @kbd{$$}, @kbd{$$$}, and so on.  The number of stack elements
10479 removed (to be replaced by the entered values) equals the number of dollar
10480 signs in the longest such symbol in the formula.  For example, @samp{$$+$$$}
10481 adds the second and third stack elements, replacing the top three elements
10482 with the answer.  (All information about the top stack element is thus lost
10483 since no single @samp{$} appears in this formula.)
10485 A slightly different way to refer to stack elements is with a dollar
10486 sign followed by a number:  @samp{$1}, @samp{$2}, and so on are much
10487 like @samp{$}, @samp{$$}, etc., except that stack entries referred
10488 to numerically are not replaced by the algebraic entry.  That is, while
10489 @samp{$+1} replaces 5 on the stack with 6, @samp{$1+1} leaves the 5
10490 on the stack and pushes an additional 6.
10492 If a sequence of formulas are entered separated by commas, each formula
10493 is pushed onto the stack in turn.  For example, @samp{1,2,3} pushes
10494 those three numbers onto the stack (leaving the 3 at the top), and
10495 @samp{$+1,$-1} replaces a 5 on the stack with 4 followed by 6.  Also,
10496 @samp{$,$$} exchanges the top two elements of the stack, just like the
10497 @key{TAB} key.
10499 You can finish an algebraic entry with @kbd{M-=} or @kbd{M-@key{RET}} instead
10500 of @key{RET}.  This uses @kbd{=} to evaluate the variables in each
10501 formula that goes onto the stack.  (Thus @kbd{' pi @key{RET}} pushes
10502 the variable @samp{pi}, but @kbd{' pi M-@key{RET}} pushes 3.1415.)
10504 If you finish your algebraic entry by pressing @key{LFD} (or @kbd{C-j})
10505 instead of @key{RET}, Calc disables the default simplifications
10506 (as if by @kbd{m O}; @pxref{Simplification Modes}) while the entry
10507 is being pushed on the stack.  Thus @kbd{' 1+2 @key{RET}} pushes 3
10508 on the stack, but @kbd{' 1+2 @key{LFD}} pushes the formula @expr{1+2};
10509 you might then press @kbd{=} when it is time to evaluate this formula.
10511 @node Quick Calculator, Prefix Arguments, Algebraic Entry, Introduction
10512 @section ``Quick Calculator'' Mode
10514 @noindent
10515 @kindex C-x * q
10516 @pindex quick-calc
10517 @cindex Quick Calculator
10518 There is another way to invoke the Calculator if all you need to do
10519 is make one or two quick calculations.  Type @kbd{C-x * q} (or
10520 @kbd{M-x quick-calc}), then type any formula as an algebraic entry.
10521 The Calculator will compute the result and display it in the echo
10522 area, without ever actually putting up a Calc window.
10524 You can use the @kbd{$} character in a Quick Calculator formula to
10525 refer to the previous Quick Calculator result.  Older results are
10526 not retained; the Quick Calculator has no effect on the full
10527 Calculator's stack or trail.  If you compute a result and then
10528 forget what it was, just run @code{C-x * q} again and enter
10529 @samp{$} as the formula.
10531 If this is the first time you have used the Calculator in this Emacs
10532 session, the @kbd{C-x * q} command will create the @code{*Calculator*}
10533 buffer and perform all the usual initializations; it simply will
10534 refrain from putting that buffer up in a new window.  The Quick
10535 Calculator refers to the @code{*Calculator*} buffer for all mode
10536 settings.  Thus, for example, to set the precision that the Quick
10537 Calculator uses, simply run the full Calculator momentarily and use
10538 the regular @kbd{p} command.
10540 If you use @code{C-x * q} from inside the Calculator buffer, the
10541 effect is the same as pressing the apostrophe key (algebraic entry).
10543 The result of a Quick calculation is placed in the Emacs ``kill ring''
10544 as well as being displayed.  A subsequent @kbd{C-y} command will
10545 yank the result into the editing buffer.  You can also use this
10546 to yank the result into the next @kbd{C-x * q} input line as a more
10547 explicit alternative to @kbd{$} notation, or to yank the result
10548 into the Calculator stack after typing @kbd{C-x * c}.
10550 If you finish your formula by typing @key{LFD} (or @kbd{C-j}) instead
10551 of @key{RET}, the result is inserted immediately into the current
10552 buffer rather than going into the kill ring.
10554 Quick Calculator results are actually evaluated as if by the @kbd{=}
10555 key (which replaces variable names by their stored values, if any).
10556 If the formula you enter is an assignment to a variable using the
10557 @samp{:=} operator, say, @samp{foo := 2 + 3} or @samp{foo := foo + 1},
10558 then the result of the evaluation is stored in that Calc variable.
10559 @xref{Store and Recall}.
10561 If the result is an integer and the current display radix is decimal,
10562 the number will also be displayed in hex and octal formats.  If the
10563 integer is in the range from 1 to 126, it will also be displayed as
10564 an ASCII character.
10566 For example, the quoted character @samp{"x"} produces the vector
10567 result @samp{[120]} (because 120 is the ASCII code of the lower-case
10568 `x'; @pxref{Strings}).  Since this is a vector, not an integer, it
10569 is displayed only according to the current mode settings.  But
10570 running Quick Calc again and entering @samp{120} will produce the
10571 result @samp{120 (16#78, 8#170, x)} which shows the number in its
10572 decimal, hexadecimal, octal, and ASCII forms.
10574 Please note that the Quick Calculator is not any faster at loading
10575 or computing the answer than the full Calculator; the name ``quick''
10576 merely refers to the fact that it's much less hassle to use for
10577 small calculations.
10579 @node Prefix Arguments, Undo, Quick Calculator, Introduction
10580 @section Numeric Prefix Arguments
10582 @noindent
10583 Many Calculator commands use numeric prefix arguments.  Some, such as
10584 @kbd{d s} (@code{calc-sci-notation}), set a parameter to the value of
10585 the prefix argument or use a default if you don't use a prefix.
10586 Others (like @kbd{d f} (@code{calc-fix-notation})) require an argument
10587 and prompt for a number if you don't give one as a prefix.
10589 As a rule, stack-manipulation commands accept a numeric prefix argument
10590 which is interpreted as an index into the stack.  A positive argument
10591 operates on the top @var{n} stack entries; a negative argument operates
10592 on the @var{n}th stack entry in isolation; and a zero argument operates
10593 on the entire stack.
10595 Most commands that perform computations (such as the arithmetic and
10596 scientific functions) accept a numeric prefix argument that allows the
10597 operation to be applied across many stack elements.  For unary operations
10598 (that is, functions of one argument like absolute value or complex
10599 conjugate), a positive prefix argument applies that function to the top
10600 @var{n} stack entries simultaneously, and a negative argument applies it
10601 to the @var{n}th stack entry only.  For binary operations (functions of
10602 two arguments like addition, GCD, and vector concatenation), a positive
10603 prefix argument ``reduces'' the function across the top @var{n}
10604 stack elements (for example, @kbd{C-u 5 +} sums the top 5 stack entries;
10605 @pxref{Reducing and Mapping}), and a negative argument maps the next-to-top
10606 @var{n} stack elements with the top stack element as a second argument
10607 (for example, @kbd{7 c-u -5 +} adds 7 to the top 5 stack elements).
10608 This feature is not available for operations which use the numeric prefix
10609 argument for some other purpose.
10611 Numeric prefixes are specified the same way as always in Emacs:  Press
10612 a sequence of @key{META}-digits, or press @key{ESC} followed by digits,
10613 or press @kbd{C-u} followed by digits.  Some commands treat plain
10614 @kbd{C-u} (without any actual digits) specially.
10616 @kindex ~
10617 @pindex calc-num-prefix
10618 You can type @kbd{~} (@code{calc-num-prefix}) to pop an integer from the
10619 top of the stack and enter it as the numeric prefix for the next command.
10620 For example, @kbd{C-u 16 p} sets the precision to 16 digits; an alternate
10621 (silly) way to do this would be @kbd{2 @key{RET} 4 ^ ~ p}, i.e., compute 2
10622 to the fourth power and set the precision to that value.
10624 Conversely, if you have typed a numeric prefix argument the @kbd{~} key
10625 pushes it onto the stack in the form of an integer.
10627 @node Undo, Error Messages, Prefix Arguments, Introduction
10628 @section Undoing Mistakes
10630 @noindent
10631 @kindex U
10632 @kindex C-_
10633 @pindex calc-undo
10634 @cindex Mistakes, undoing
10635 @cindex Undoing mistakes
10636 @cindex Errors, undoing
10637 The shift-@kbd{U} key (@code{calc-undo}) undoes the most recent operation.
10638 If that operation added or dropped objects from the stack, those objects
10639 are removed or restored.  If it was a ``store'' operation, you are
10640 queried whether or not to restore the variable to its original value.
10641 The @kbd{U} key may be pressed any number of times to undo successively
10642 farther back in time; with a numeric prefix argument it undoes a
10643 specified number of operations.  The undo history is cleared only by the
10644 @kbd{q} (@code{calc-quit}) command.  (Recall that @kbd{C-x * c} is
10645 synonymous with @code{calc-quit} while inside the Calculator; this
10646 also clears the undo history.)
10648 Currently the mode-setting commands (like @code{calc-precision}) are not
10649 undoable.  You can undo past a point where you changed a mode, but you
10650 will need to reset the mode yourself.
10652 @kindex D
10653 @pindex calc-redo
10654 @cindex Redoing after an Undo
10655 The shift-@kbd{D} key (@code{calc-redo}) redoes an operation that was
10656 mistakenly undone.  Pressing @kbd{U} with a negative prefix argument is
10657 equivalent to executing @code{calc-redo}.  You can redo any number of
10658 times, up to the number of recent consecutive undo commands.  Redo
10659 information is cleared whenever you give any command that adds new undo
10660 information, i.e., if you undo, then enter a number on the stack or make
10661 any other change, then it will be too late to redo.
10663 @kindex M-@key{RET}
10664 @pindex calc-last-args
10665 @cindex Last-arguments feature
10666 @cindex Arguments, restoring
10667 The @kbd{M-@key{RET}} key (@code{calc-last-args}) is like undo in that
10668 it restores the arguments of the most recent command onto the stack;
10669 however, it does not remove the result of that command.  Given a numeric
10670 prefix argument, this command applies to the @expr{n}th most recent
10671 command which removed items from the stack; it pushes those items back
10672 onto the stack.
10674 The @kbd{K} (@code{calc-keep-args}) command provides a related function
10675 to @kbd{M-@key{RET}}.  @xref{Stack and Trail}.
10677 It is also possible to recall previous results or inputs using the trail.
10678 @xref{Trail Commands}.
10680 The standard Emacs @kbd{C-_} undo key is recognized as a synonym for @kbd{U}.
10682 @node Error Messages, Multiple Calculators, Undo, Introduction
10683 @section Error Messages
10685 @noindent
10686 @kindex w
10687 @pindex calc-why
10688 @cindex Errors, messages
10689 @cindex Why did an error occur?
10690 Many situations that would produce an error message in other calculators
10691 simply create unsimplified formulas in the Emacs Calculator.  For example,
10692 @kbd{1 @key{RET} 0 /} pushes the formula @expr{1 / 0}; @w{@kbd{0 L}} pushes
10693 the formula @samp{ln(0)}.  Floating-point overflow and underflow are also
10694 reasons for this to happen.
10696 When a function call must be left in symbolic form, Calc usually
10697 produces a message explaining why.  Messages that are probably
10698 surprising or indicative of user errors are displayed automatically.
10699 Other messages are simply kept in Calc's memory and are displayed only
10700 if you type @kbd{w} (@code{calc-why}).  You can also press @kbd{w} if
10701 the same computation results in several messages.  (The first message
10702 will end with @samp{[w=more]} in this case.)
10704 @kindex d w
10705 @pindex calc-auto-why
10706 The @kbd{d w} (@code{calc-auto-why}) command controls when error messages
10707 are displayed automatically.  (Calc effectively presses @kbd{w} for you
10708 after your computation finishes.)  By default, this occurs only for
10709 ``important'' messages.  The other possible modes are to report
10710 @emph{all} messages automatically, or to report none automatically (so
10711 that you must always press @kbd{w} yourself to see the messages).
10713 @node Multiple Calculators, Troubleshooting Commands, Error Messages, Introduction
10714 @section Multiple Calculators
10716 @noindent
10717 @pindex another-calc
10718 It is possible to have any number of Calc mode buffers at once.
10719 Usually this is done by executing @kbd{M-x another-calc}, which
10720 is similar to @kbd{C-x * c} except that if a @samp{*Calculator*}
10721 buffer already exists, a new, independent one with a name of the
10722 form @samp{*Calculator*<@var{n}>} is created.  You can also use the
10723 command @code{calc-mode} to put any buffer into Calculator mode, but
10724 this would ordinarily never be done.
10726 The @kbd{q} (@code{calc-quit}) command does not destroy a Calculator buffer;
10727 it only closes its window.  Use @kbd{M-x kill-buffer} to destroy a
10728 Calculator buffer.
10730 Each Calculator buffer keeps its own stack, undo list, and mode settings
10731 such as precision, angular mode, and display formats.  In Emacs terms,
10732 variables such as @code{calc-stack} are buffer-local variables.  The
10733 global default values of these variables are used only when a new
10734 Calculator buffer is created.  The @code{calc-quit} command saves
10735 the stack and mode settings of the buffer being quit as the new defaults.
10737 There is only one trail buffer, @samp{*Calc Trail*}, used by all
10738 Calculator buffers.
10740 @node Troubleshooting Commands, , Multiple Calculators, Introduction
10741 @section Troubleshooting Commands
10743 @noindent
10744 This section describes commands you can use in case a computation
10745 incorrectly fails or gives the wrong answer.
10747 @xref{Reporting Bugs}, if you find a problem that appears to be due
10748 to a bug or deficiency in Calc.
10750 @menu
10751 * Autoloading Problems::
10752 * Recursion Depth::
10753 * Caches::
10754 * Debugging Calc::
10755 @end menu
10757 @node Autoloading Problems, Recursion Depth, Troubleshooting Commands, Troubleshooting Commands
10758 @subsection Autoloading Problems
10760 @noindent
10761 The Calc program is split into many component files; components are
10762 loaded automatically as you use various commands that require them.
10763 Occasionally Calc may lose track of when a certain component is
10764 necessary; typically this means you will type a command and it won't
10765 work because some function you've never heard of was undefined.
10767 @kindex C-x * L
10768 @pindex calc-load-everything
10769 If this happens, the easiest workaround is to type @kbd{C-x * L}
10770 (@code{calc-load-everything}) to force all the parts of Calc to be
10771 loaded right away.  This will cause Emacs to take up a lot more
10772 memory than it would otherwise, but it's guaranteed to fix the problem.
10774 @node Recursion Depth, Caches, Autoloading Problems, Troubleshooting Commands
10775 @subsection Recursion Depth
10777 @noindent
10778 @kindex M
10779 @kindex I M
10780 @pindex calc-more-recursion-depth
10781 @pindex calc-less-recursion-depth
10782 @cindex Recursion depth
10783 @cindex ``Computation got stuck'' message
10784 @cindex @code{max-lisp-eval-depth}
10785 @cindex @code{max-specpdl-size}
10786 Calc uses recursion in many of its calculations.  Emacs Lisp keeps a
10787 variable @code{max-lisp-eval-depth} which limits the amount of recursion
10788 possible in an attempt to recover from program bugs.  If a calculation
10789 ever halts incorrectly with the message ``Computation got stuck or
10790 ran too long,'' use the @kbd{M} command (@code{calc-more-recursion-depth})
10791 to increase this limit.  (Of course, this will not help if the
10792 calculation really did get stuck due to some problem inside Calc.)
10794 The limit is always increased (multiplied) by a factor of two.  There
10795 is also an @kbd{I M} (@code{calc-less-recursion-depth}) command which
10796 decreases this limit by a factor of two, down to a minimum value of 200.
10797 The default value is 1000.
10799 These commands also double or halve @code{max-specpdl-size}, another
10800 internal Lisp recursion limit.  The minimum value for this limit is 600.
10802 @node Caches, Debugging Calc, Recursion Depth, Troubleshooting Commands
10803 @subsection Caches
10805 @noindent
10806 @cindex Caches
10807 @cindex Flushing caches
10808 Calc saves certain values after they have been computed once.  For
10809 example, the @kbd{P} (@code{calc-pi}) command initially ``knows'' the
10810 constant @cpi{} to about 20 decimal places; if the current precision
10811 is greater than this, it will recompute @cpi{} using a series
10812 approximation.  This value will not need to be recomputed ever again
10813 unless you raise the precision still further.  Many operations such as
10814 logarithms and sines make use of similarly cached values such as
10815 @cpiover{4} and 
10816 @texline @math{\ln 2}.
10817 @infoline @expr{ln(2)}.  
10818 The visible effect of caching is that
10819 high-precision computations may seem to do extra work the first time.
10820 Other things cached include powers of two (for the binary arithmetic
10821 functions), matrix inverses and determinants, symbolic integrals, and
10822 data points computed by the graphing commands.
10824 @pindex calc-flush-caches
10825 If you suspect a Calculator cache has become corrupt, you can use the
10826 @code{calc-flush-caches} command to reset all caches to the empty state.
10827 (This should only be necessary in the event of bugs in the Calculator.)
10828 The @kbd{C-x * 0} (with the zero key) command also resets caches along
10829 with all other aspects of the Calculator's state.
10831 @node Debugging Calc, , Caches, Troubleshooting Commands
10832 @subsection Debugging Calc
10834 @noindent
10835 A few commands exist to help in the debugging of Calc commands.
10836 @xref{Programming}, to see the various ways that you can write
10837 your own Calc commands.
10839 @kindex Z T
10840 @pindex calc-timing
10841 The @kbd{Z T} (@code{calc-timing}) command turns on and off a mode
10842 in which the timing of slow commands is reported in the Trail.
10843 Any Calc command that takes two seconds or longer writes a line
10844 to the Trail showing how many seconds it took.  This value is
10845 accurate only to within one second.
10847 All steps of executing a command are included; in particular, time
10848 taken to format the result for display in the stack and trail is
10849 counted.  Some prompts also count time taken waiting for them to
10850 be answered, while others do not; this depends on the exact
10851 implementation of the command.  For best results, if you are timing
10852 a sequence that includes prompts or multiple commands, define a
10853 keyboard macro to run the whole sequence at once.  Calc's @kbd{X}
10854 command (@pxref{Keyboard Macros}) will then report the time taken
10855 to execute the whole macro.
10857 Another advantage of the @kbd{X} command is that while it is
10858 executing, the stack and trail are not updated from step to step.
10859 So if you expect the output of your test sequence to leave a result
10860 that may take a long time to format and you don't wish to count
10861 this formatting time, end your sequence with a @key{DEL} keystroke
10862 to clear the result from the stack.  When you run the sequence with
10863 @kbd{X}, Calc will never bother to format the large result.
10865 Another thing @kbd{Z T} does is to increase the Emacs variable
10866 @code{gc-cons-threshold} to a much higher value (two million; the
10867 usual default in Calc is 250,000) for the duration of each command.
10868 This generally prevents garbage collection during the timing of
10869 the command, though it may cause your Emacs process to grow
10870 abnormally large.  (Garbage collection time is a major unpredictable
10871 factor in the timing of Emacs operations.)
10873 Another command that is useful when debugging your own Lisp
10874 extensions to Calc is @kbd{M-x calc-pass-errors}, which disables
10875 the error handler that changes the ``@code{max-lisp-eval-depth}
10876 exceeded'' message to the much more friendly ``Computation got
10877 stuck or ran too long.''  This handler interferes with the Emacs
10878 Lisp debugger's @code{debug-on-error} mode.  Errors are reported
10879 in the handler itself rather than at the true location of the
10880 error.  After you have executed @code{calc-pass-errors}, Lisp
10881 errors will be reported correctly but the user-friendly message
10882 will be lost.
10884 @node Data Types, Stack and Trail, Introduction, Top
10885 @chapter Data Types
10887 @noindent
10888 This chapter discusses the various types of objects that can be placed
10889 on the Calculator stack, how they are displayed, and how they are
10890 entered.  (@xref{Data Type Formats}, for information on how these data
10891 types are represented as underlying Lisp objects.)
10893 Integers, fractions, and floats are various ways of describing real
10894 numbers.  HMS forms also for many purposes act as real numbers.  These
10895 types can be combined to form complex numbers, modulo forms, error forms,
10896 or interval forms.  (But these last four types cannot be combined
10897 arbitrarily:@: error forms may not contain modulo forms, for example.)
10898 Finally, all these types of numbers may be combined into vectors,
10899 matrices, or algebraic formulas.
10901 @menu
10902 * Integers::                The most basic data type.
10903 * Fractions::               This and above are called @dfn{rationals}.
10904 * Floats::                  This and above are called @dfn{reals}.
10905 * Complex Numbers::         This and above are called @dfn{numbers}.
10906 * Infinities::
10907 * Vectors and Matrices::
10908 * Strings::
10909 * HMS Forms::
10910 * Date Forms::
10911 * Modulo Forms::
10912 * Error Forms::
10913 * Interval Forms::
10914 * Incomplete Objects::
10915 * Variables::
10916 * Formulas::
10917 @end menu
10919 @node Integers, Fractions, Data Types, Data Types
10920 @section Integers
10922 @noindent
10923 @cindex Integers
10924 The Calculator stores integers to arbitrary precision.  Addition,
10925 subtraction, and multiplication of integers always yields an exact
10926 integer result.  (If the result of a division or exponentiation of
10927 integers is not an integer, it is expressed in fractional or
10928 floating-point form according to the current Fraction mode.
10929 @xref{Fraction Mode}.)
10931 A decimal integer is represented as an optional sign followed by a
10932 sequence of digits.  Grouping (@pxref{Grouping Digits}) can be used to
10933 insert a comma at every third digit for display purposes, but you
10934 must not type commas during the entry of numbers.
10936 @kindex #
10937 A non-decimal integer is represented as an optional sign, a radix
10938 between 2 and 36, a @samp{#} symbol, and one or more digits.  For radix 11
10939 and above, the letters A through Z (upper- or lower-case) count as
10940 digits and do not terminate numeric entry mode.  @xref{Radix Modes}, for how
10941 to set the default radix for display of integers.  Numbers of any radix
10942 may be entered at any time.  If you press @kbd{#} at the beginning of a
10943 number, the current display radix is used.
10945 @node Fractions, Floats, Integers, Data Types
10946 @section Fractions
10948 @noindent
10949 @cindex Fractions
10950 A @dfn{fraction} is a ratio of two integers.  Fractions are traditionally
10951 written ``2/3'' but Calc uses the notation @samp{2:3}.  (The @kbd{/} key
10952 performs RPN division; the following two sequences push the number
10953 @samp{2:3} on the stack:  @kbd{2 :@: 3 @key{RET}}, or @kbd{2 @key{RET} 3 /}
10954 assuming Fraction mode has been enabled.)
10955 When the Calculator produces a fractional result it always reduces it to
10956 simplest form, which may in fact be an integer.
10958 Fractions may also be entered in a three-part form, where @samp{2:3:4}
10959 represents two-and-three-quarters.  @xref{Fraction Formats}, for fraction
10960 display formats.
10962 Non-decimal fractions are entered and displayed as
10963 @samp{@var{radix}#@var{num}:@var{denom}} (or in the analogous three-part
10964 form).  The numerator and denominator always use the same radix.
10966 @node Floats, Complex Numbers, Fractions, Data Types
10967 @section Floats
10969 @noindent
10970 @cindex Floating-point numbers
10971 A floating-point number or @dfn{float} is a number stored in scientific
10972 notation.  The number of significant digits in the fractional part is
10973 governed by the current floating precision (@pxref{Precision}).  The
10974 range of acceptable values is from 
10975 @texline @math{10^{-3999999}}
10976 @infoline @expr{10^-3999999} 
10977 (inclusive) to 
10978 @texline @math{10^{4000000}}
10979 @infoline @expr{10^4000000}
10980 (exclusive), plus the corresponding negative values and zero.
10982 Calculations that would exceed the allowable range of values (such
10983 as @samp{exp(exp(20))}) are left in symbolic form by Calc.  The
10984 messages ``floating-point overflow'' or ``floating-point underflow''
10985 indicate that during the calculation a number would have been produced
10986 that was too large or too close to zero, respectively, to be represented
10987 by Calc.  This does not necessarily mean the final result would have
10988 overflowed, just that an overflow occurred while computing the result.
10989 (In fact, it could report an underflow even though the final result
10990 would have overflowed!)
10992 If a rational number and a float are mixed in a calculation, the result
10993 will in general be expressed as a float.  Commands that require an integer
10994 value (such as @kbd{k g} [@code{gcd}]) will also accept integer-valued
10995 floats, i.e., floating-point numbers with nothing after the decimal point.
10997 Floats are identified by the presence of a decimal point and/or an
10998 exponent.  In general a float consists of an optional sign, digits
10999 including an optional decimal point, and an optional exponent consisting
11000 of an @samp{e}, an optional sign, and up to seven exponent digits.
11001 For example, @samp{23.5e-2} is 23.5 times ten to the minus-second power,
11002 or 0.235.
11004 Floating-point numbers are normally displayed in decimal notation with
11005 all significant figures shown.  Exceedingly large or small numbers are
11006 displayed in scientific notation.  Various other display options are
11007 available.  @xref{Float Formats}.
11009 @cindex Accuracy of calculations
11010 Floating-point numbers are stored in decimal, not binary.  The result
11011 of each operation is rounded to the nearest value representable in the
11012 number of significant digits specified by the current precision,
11013 rounding away from zero in the case of a tie.  Thus (in the default
11014 display mode) what you see is exactly what you get.  Some operations such
11015 as square roots and transcendental functions are performed with several
11016 digits of extra precision and then rounded down, in an effort to make the
11017 final result accurate to the full requested precision.  However,
11018 accuracy is not rigorously guaranteed.  If you suspect the validity of a
11019 result, try doing the same calculation in a higher precision.  The
11020 Calculator's arithmetic is not intended to be IEEE-conformant in any
11021 way.
11023 While floats are always @emph{stored} in decimal, they can be entered
11024 and displayed in any radix just like integers and fractions.  The
11025 notation @samp{@var{radix}#@var{ddd}.@var{ddd}} is a floating-point
11026 number whose digits are in the specified radix.  Note that the @samp{.}
11027 is more aptly referred to as a ``radix point'' than as a decimal
11028 point in this case.  The number @samp{8#123.4567} is defined as
11029 @samp{8#1234567 * 8^-4}.  If the radix is 14 or less, you can use
11030 @samp{e} notation to write a non-decimal number in scientific notation.
11031 The exponent is written in decimal, and is considered to be a power
11032 of the radix: @samp{8#1234567e-4}.  If the radix is 15 or above, the
11033 letter @samp{e} is a digit, so scientific notation must be written
11034 out, e.g., @samp{16#123.4567*16^2}.  The first two exercises of the
11035 Modes Tutorial explore some of the properties of non-decimal floats.
11037 @node Complex Numbers, Infinities, Floats, Data Types
11038 @section Complex Numbers
11040 @noindent
11041 @cindex Complex numbers
11042 There are two supported formats for complex numbers: rectangular and
11043 polar.  The default format is rectangular, displayed in the form
11044 @samp{(@var{real},@var{imag})} where @var{real} is the real part and
11045 @var{imag} is the imaginary part, each of which may be any real number.
11046 Rectangular complex numbers can also be displayed in @samp{@var{a}+@var{b}i}
11047 notation; @pxref{Complex Formats}.
11049 Polar complex numbers are displayed in the form 
11050 @texline `@tfn{(}@var{r}@tfn{;}@math{\theta}@tfn{)}'
11051 @infoline `@tfn{(}@var{r}@tfn{;}@var{theta}@tfn{)}'
11052 where @var{r} is the nonnegative magnitude and 
11053 @texline @math{\theta}
11054 @infoline @var{theta} 
11055 is the argument or phase angle.  The range of 
11056 @texline @math{\theta}
11057 @infoline @var{theta} 
11058 depends on the current angular mode (@pxref{Angular Modes}); it is
11059 generally between @mathit{-180} and @mathit{+180} degrees or the equivalent range
11060 in radians. 
11062 Complex numbers are entered in stages using incomplete objects.
11063 @xref{Incomplete Objects}.
11065 Operations on rectangular complex numbers yield rectangular complex
11066 results, and similarly for polar complex numbers.  Where the two types
11067 are mixed, or where new complex numbers arise (as for the square root of
11068 a negative real), the current @dfn{Polar mode} is used to determine the
11069 type.  @xref{Polar Mode}.
11071 A complex result in which the imaginary part is zero (or the phase angle
11072 is 0 or 180 degrees or @cpi{} radians) is automatically converted to a real
11073 number.
11075 @node Infinities, Vectors and Matrices, Complex Numbers, Data Types
11076 @section Infinities
11078 @noindent
11079 @cindex Infinity
11080 @cindex @code{inf} variable
11081 @cindex @code{uinf} variable
11082 @cindex @code{nan} variable
11083 @vindex inf
11084 @vindex uinf
11085 @vindex nan
11086 The word @code{inf} represents the mathematical concept of @dfn{infinity}.
11087 Calc actually has three slightly different infinity-like values:
11088 @code{inf}, @code{uinf}, and @code{nan}.  These are just regular
11089 variable names (@pxref{Variables}); you should avoid using these
11090 names for your own variables because Calc gives them special
11091 treatment.  Infinities, like all variable names, are normally
11092 entered using algebraic entry.
11094 Mathematically speaking, it is not rigorously correct to treat
11095 ``infinity'' as if it were a number, but mathematicians often do
11096 so informally.  When they say that @samp{1 / inf = 0}, what they
11097 really mean is that @expr{1 / x}, as @expr{x} becomes larger and
11098 larger, becomes arbitrarily close to zero.  So you can imagine
11099 that if @expr{x} got ``all the way to infinity,'' then @expr{1 / x}
11100 would go all the way to zero.  Similarly, when they say that
11101 @samp{exp(inf) = inf}, they mean that 
11102 @texline @math{e^x}
11103 @infoline @expr{exp(x)} 
11104 grows without bound as @expr{x} grows.  The symbol @samp{-inf} likewise
11105 stands for an infinitely negative real value; for example, we say that
11106 @samp{exp(-inf) = 0}.  You can have an infinity pointing in any
11107 direction on the complex plane:  @samp{sqrt(-inf) = i inf}.
11109 The same concept of limits can be used to define @expr{1 / 0}.  We
11110 really want the value that @expr{1 / x} approaches as @expr{x}
11111 approaches zero.  But if all we have is @expr{1 / 0}, we can't
11112 tell which direction @expr{x} was coming from.  If @expr{x} was
11113 positive and decreasing toward zero, then we should say that
11114 @samp{1 / 0 = inf}.  But if @expr{x} was negative and increasing
11115 toward zero, the answer is @samp{1 / 0 = -inf}.  In fact, @expr{x}
11116 could be an imaginary number, giving the answer @samp{i inf} or
11117 @samp{-i inf}.  Calc uses the special symbol @samp{uinf} to mean
11118 @dfn{undirected infinity}, i.e., a value which is infinitely
11119 large but with an unknown sign (or direction on the complex plane).
11121 Calc actually has three modes that say how infinities are handled.
11122 Normally, infinities never arise from calculations that didn't
11123 already have them.  Thus, @expr{1 / 0} is treated simply as an
11124 error and left unevaluated.  The @kbd{m i} (@code{calc-infinite-mode})
11125 command (@pxref{Infinite Mode}) enables a mode in which
11126 @expr{1 / 0} evaluates to @code{uinf} instead.  There is also
11127 an alternative type of infinite mode which says to treat zeros
11128 as if they were positive, so that @samp{1 / 0 = inf}.  While this
11129 is less mathematically correct, it may be the answer you want in
11130 some cases.
11132 Since all infinities are ``as large'' as all others, Calc simplifies,
11133 e.g., @samp{5 inf} to @samp{inf}.  Another example is
11134 @samp{5 - inf = -inf}, where the @samp{-inf} is so large that
11135 adding a finite number like five to it does not affect it.
11136 Note that @samp{a - inf} also results in @samp{-inf}; Calc assumes
11137 that variables like @code{a} always stand for finite quantities.
11138 Just to show that infinities really are all the same size,
11139 note that @samp{sqrt(inf) = inf^2 = exp(inf) = inf} in Calc's
11140 notation.
11142 It's not so easy to define certain formulas like @samp{0 * inf} and
11143 @samp{inf / inf}.  Depending on where these zeros and infinities
11144 came from, the answer could be literally anything.  The latter
11145 formula could be the limit of @expr{x / x} (giving a result of one),
11146 or @expr{2 x / x} (giving two), or @expr{x^2 / x} (giving @code{inf}),
11147 or @expr{x / x^2} (giving zero).  Calc uses the symbol @code{nan}
11148 to represent such an @dfn{indeterminate} value.  (The name ``nan''
11149 comes from analogy with the ``NAN'' concept of IEEE standard
11150 arithmetic; it stands for ``Not A Number.''  This is somewhat of a
11151 misnomer, since @code{nan} @emph{does} stand for some number or
11152 infinity, it's just that @emph{which} number it stands for
11153 cannot be determined.)  In Calc's notation, @samp{0 * inf = nan}
11154 and @samp{inf / inf = nan}.  A few other common indeterminate
11155 expressions are @samp{inf - inf} and @samp{inf ^ 0}.  Also,
11156 @samp{0 / 0 = nan} if you have turned on Infinite mode
11157 (as described above).
11159 Infinities are especially useful as parts of @dfn{intervals}.
11160 @xref{Interval Forms}.
11162 @node Vectors and Matrices, Strings, Infinities, Data Types
11163 @section Vectors and Matrices
11165 @noindent
11166 @cindex Vectors
11167 @cindex Plain vectors
11168 @cindex Matrices
11169 The @dfn{vector} data type is flexible and general.  A vector is simply a
11170 list of zero or more data objects.  When these objects are numbers, the
11171 whole is a vector in the mathematical sense.  When these objects are
11172 themselves vectors of equal (nonzero) length, the whole is a @dfn{matrix}.
11173 A vector which is not a matrix is referred to here as a @dfn{plain vector}.
11175 A vector is displayed as a list of values separated by commas and enclosed
11176 in square brackets:  @samp{[1, 2, 3]}.  Thus the following is a 2 row by
11177 3 column matrix:  @samp{[[1, 2, 3], [4, 5, 6]]}.  Vectors, like complex
11178 numbers, are entered as incomplete objects.  @xref{Incomplete Objects}.
11179 During algebraic entry, vectors are entered all at once in the usual
11180 brackets-and-commas form.  Matrices may be entered algebraically as nested
11181 vectors, or using the shortcut notation @w{@samp{[1, 2, 3; 4, 5, 6]}},
11182 with rows separated by semicolons.  The commas may usually be omitted
11183 when entering vectors:  @samp{[1 2 3]}.  Curly braces may be used in
11184 place of brackets: @samp{@{1, 2, 3@}}, but the commas are required in
11185 this case.
11187 Traditional vector and matrix arithmetic is also supported;
11188 @pxref{Basic Arithmetic} and @pxref{Matrix Functions}.
11189 Many other operations are applied to vectors element-wise.  For example,
11190 the complex conjugate of a vector is a vector of the complex conjugates
11191 of its elements.
11193 @ignore
11194 @starindex
11195 @end ignore
11196 @tindex vec
11197 Algebraic functions for building vectors include @samp{vec(a, b, c)}
11198 to build @samp{[a, b, c]}, @samp{cvec(a, n, m)} to build an 
11199 @texline @math{n\times m}
11200 @infoline @var{n}x@var{m}
11201 matrix of @samp{a}s, and @samp{index(n)} to build a vector of integers
11202 from 1 to @samp{n}.
11204 @node Strings, HMS Forms, Vectors and Matrices, Data Types
11205 @section Strings
11207 @noindent
11208 @kindex "
11209 @cindex Strings
11210 @cindex Character strings
11211 Character strings are not a special data type in the Calculator.
11212 Rather, a string is represented simply as a vector all of whose
11213 elements are integers in the range 0 to 255 (ASCII codes).  You can
11214 enter a string at any time by pressing the @kbd{"} key.  Quotation
11215 marks and backslashes are written @samp{\"} and @samp{\\}, respectively,
11216 inside strings.  Other notations introduced by backslashes are:
11218 @example
11219 @group
11220 \a     7          \^@@    0
11221 \b     8          \^a-z  1-26
11222 \e     27         \^[    27
11223 \f     12         \^\\   28
11224 \n     10         \^]    29
11225 \r     13         \^^    30
11226 \t     9          \^_    31
11227                   \^?    127
11228 @end group
11229 @end example
11231 @noindent
11232 Finally, a backslash followed by three octal digits produces any
11233 character from its ASCII code.
11235 @kindex d "
11236 @pindex calc-display-strings
11237 Strings are normally displayed in vector-of-integers form.  The
11238 @w{@kbd{d "}} (@code{calc-display-strings}) command toggles a mode in
11239 which any vectors of small integers are displayed as quoted strings
11240 instead.
11242 The backslash notations shown above are also used for displaying
11243 strings.  Characters 128 and above are not translated by Calc; unless
11244 you have an Emacs modified for 8-bit fonts, these will show up in
11245 backslash-octal-digits notation.  For characters below 32, and
11246 for character 127, Calc uses the backslash-letter combination if
11247 there is one, or otherwise uses a @samp{\^} sequence.
11249 The only Calc feature that uses strings is @dfn{compositions};
11250 @pxref{Compositions}.  Strings also provide a convenient
11251 way to do conversions between ASCII characters and integers.
11253 @ignore
11254 @starindex
11255 @end ignore
11256 @tindex string
11257 There is a @code{string} function which provides a different display
11258 format for strings.  Basically, @samp{string(@var{s})}, where @var{s}
11259 is a vector of integers in the proper range, is displayed as the
11260 corresponding string of characters with no surrounding quotation
11261 marks or other modifications.  Thus @samp{string("ABC")} (or
11262 @samp{string([65 66 67])}) will look like @samp{ABC} on the stack.
11263 This happens regardless of whether @w{@kbd{d "}} has been used.  The
11264 only way to turn it off is to use @kbd{d U} (unformatted language
11265 mode) which will display @samp{string("ABC")} instead.
11267 Control characters are displayed somewhat differently by @code{string}.
11268 Characters below 32, and character 127, are shown using @samp{^} notation
11269 (same as shown above, but without the backslash).  The quote and
11270 backslash characters are left alone, as are characters 128 and above.
11272 @ignore
11273 @starindex
11274 @end ignore
11275 @tindex bstring
11276 The @code{bstring} function is just like @code{string} except that
11277 the resulting string is breakable across multiple lines if it doesn't
11278 fit all on one line.  Potential break points occur at every space
11279 character in the string.
11281 @node HMS Forms, Date Forms, Strings, Data Types
11282 @section HMS Forms
11284 @noindent
11285 @cindex Hours-minutes-seconds forms
11286 @cindex Degrees-minutes-seconds forms
11287 @dfn{HMS} stands for Hours-Minutes-Seconds; when used as an angular
11288 argument, the interpretation is Degrees-Minutes-Seconds.  All functions
11289 that operate on angles accept HMS forms.  These are interpreted as
11290 degrees regardless of the current angular mode.  It is also possible to
11291 use HMS as the angular mode so that calculated angles are expressed in
11292 degrees, minutes, and seconds.
11294 @kindex @@
11295 @ignore
11296 @mindex @null
11297 @end ignore
11298 @kindex ' (HMS forms)
11299 @ignore
11300 @mindex @null
11301 @end ignore
11302 @kindex " (HMS forms)
11303 @ignore
11304 @mindex @null
11305 @end ignore
11306 @kindex h (HMS forms)
11307 @ignore
11308 @mindex @null
11309 @end ignore
11310 @kindex o (HMS forms)
11311 @ignore
11312 @mindex @null
11313 @end ignore
11314 @kindex m (HMS forms)
11315 @ignore
11316 @mindex @null
11317 @end ignore
11318 @kindex s (HMS forms)
11319 The default format for HMS values is
11320 @samp{@var{hours}@@ @var{mins}' @var{secs}"}.  During entry, the letters
11321 @samp{h} (for ``hours'') or
11322 @samp{o} (approximating the ``degrees'' symbol) are accepted as well as
11323 @samp{@@}, @samp{m} is accepted in place of @samp{'}, and @samp{s} is
11324 accepted in place of @samp{"}.
11325 The @var{hours} value is an integer (or integer-valued float).
11326 The @var{mins} value is an integer or integer-valued float between 0 and 59.
11327 The @var{secs} value is a real number between 0 (inclusive) and 60
11328 (exclusive).  A positive HMS form is interpreted as @var{hours} +
11329 @var{mins}/60 + @var{secs}/3600.  A negative HMS form is interpreted
11330 as @mathit{- @var{hours}} @mathit{-} @var{mins}/60 @mathit{-} @var{secs}/3600.
11331 Display format for HMS forms is quite flexible.  @xref{HMS Formats}.
11333 HMS forms can be added and subtracted.  When they are added to numbers,
11334 the numbers are interpreted according to the current angular mode.  HMS
11335 forms can also be multiplied and divided by real numbers.  Dividing
11336 two HMS forms produces a real-valued ratio of the two angles.
11338 @pindex calc-time
11339 @cindex Time of day
11340 Just for kicks, @kbd{M-x calc-time} pushes the current time of day on
11341 the stack as an HMS form.
11343 @node Date Forms, Modulo Forms, HMS Forms, Data Types
11344 @section Date Forms
11346 @noindent
11347 @cindex Date forms
11348 A @dfn{date form} represents a date and possibly an associated time.
11349 Simple date arithmetic is supported:  Adding a number to a date
11350 produces a new date shifted by that many days; adding an HMS form to
11351 a date shifts it by that many hours.  Subtracting two date forms
11352 computes the number of days between them (represented as a simple
11353 number).  Many other operations, such as multiplying two date forms,
11354 are nonsensical and are not allowed by Calc.
11356 Date forms are entered and displayed enclosed in @samp{< >} brackets.
11357 The default format is, e.g., @samp{<Wed Jan 9, 1991>} for dates,
11358 or @samp{<3:32:20pm Wed Jan 9, 1991>} for dates with times.
11359 Input is flexible; date forms can be entered in any of the usual
11360 notations for dates and times.  @xref{Date Formats}.
11362 Date forms are stored internally as numbers, specifically the number
11363 of days since midnight on the morning of January 1 of the year 1 AD.
11364 If the internal number is an integer, the form represents a date only;
11365 if the internal number is a fraction or float, the form represents
11366 a date and time.  For example, @samp{<6:00am Wed Jan 9, 1991>}
11367 is represented by the number 726842.25.  The standard precision of
11368 12 decimal digits is enough to ensure that a (reasonable) date and
11369 time can be stored without roundoff error.
11371 If the current precision is greater than 12, date forms will keep
11372 additional digits in the seconds position.  For example, if the
11373 precision is 15, the seconds will keep three digits after the
11374 decimal point.  Decreasing the precision below 12 may cause the
11375 time part of a date form to become inaccurate.  This can also happen
11376 if astronomically high years are used, though this will not be an
11377 issue in everyday (or even everymillennium) use.  Note that date
11378 forms without times are stored as exact integers, so roundoff is
11379 never an issue for them.
11381 You can use the @kbd{v p} (@code{calc-pack}) and @kbd{v u}
11382 (@code{calc-unpack}) commands to get at the numerical representation
11383 of a date form.  @xref{Packing and Unpacking}.
11385 Date forms can go arbitrarily far into the future or past.  Negative
11386 year numbers represent years BC.  Calc uses a combination of the
11387 Gregorian and Julian calendars, following the history of Great
11388 Britain and the British colonies.  This is the same calendar that
11389 is used by the @code{cal} program in most Unix implementations.
11391 @cindex Julian calendar
11392 @cindex Gregorian calendar
11393 Some historical background:  The Julian calendar was created by
11394 Julius Caesar in the year 46 BC as an attempt to fix the gradual
11395 drift caused by the lack of leap years in the calendar used
11396 until that time.  The Julian calendar introduced an extra day in
11397 all years divisible by four.  After some initial confusion, the
11398 calendar was adopted around the year we call 8 AD.  Some centuries
11399 later it became apparent that the Julian year of 365.25 days was
11400 itself not quite right.  In 1582 Pope Gregory XIII introduced the
11401 Gregorian calendar, which added the new rule that years divisible
11402 by 100, but not by 400, were not to be considered leap years
11403 despite being divisible by four.  Many countries delayed adoption
11404 of the Gregorian calendar because of religious differences;
11405 in Britain it was put off until the year 1752, by which time
11406 the Julian calendar had fallen eleven days behind the true
11407 seasons.  So the switch to the Gregorian calendar in early
11408 September 1752 introduced a discontinuity:  The day after
11409 Sep 2, 1752 is Sep 14, 1752.  Calc follows this convention.
11410 To take another example, Russia waited until 1918 before
11411 adopting the new calendar, and thus needed to remove thirteen
11412 days (between Feb 1, 1918 and Feb 14, 1918).  This means that
11413 Calc's reckoning will be inconsistent with Russian history between
11414 1752 and 1918, and similarly for various other countries.
11416 Today's timekeepers introduce an occasional ``leap second'' as
11417 well, but Calc does not take these minor effects into account.
11418 (If it did, it would have to report a non-integer number of days
11419 between, say, @samp{<12:00am Mon Jan 1, 1900>} and
11420 @samp{<12:00am Sat Jan 1, 2000>}.)
11422 Calc uses the Julian calendar for all dates before the year 1752,
11423 including dates BC when the Julian calendar technically had not
11424 yet been invented.  Thus the claim that day number @mathit{-10000} is
11425 called ``August 16, 28 BC'' should be taken with a grain of salt.
11427 Please note that there is no ``year 0''; the day before
11428 @samp{<Sat Jan 1, +1>} is @samp{<Fri Dec 31, -1>}.  These are
11429 days 0 and @mathit{-1} respectively in Calc's internal numbering scheme.
11431 @cindex Julian day counting
11432 Another day counting system in common use is, confusingly, also
11433 called ``Julian.''  It was invented in 1583 by Joseph Justus
11434 Scaliger, who named it in honor of his father Julius Caesar
11435 Scaliger.  For obscure reasons he chose to start his day
11436 numbering on Jan 1, 4713 BC at noon, which in Calc's scheme
11437 is @mathit{-1721423.5} (recall that Calc starts at midnight instead
11438 of noon).  Thus to convert a Calc date code obtained by
11439 unpacking a date form into a Julian day number, simply add
11440 1721423.5.  The Julian code for @samp{6:00am Jan 9, 1991}
11441 is 2448265.75.  The built-in @kbd{t J} command performs
11442 this conversion for you.
11444 @cindex Unix time format
11445 The Unix operating system measures time as an integer number of
11446 seconds since midnight, Jan 1, 1970.  To convert a Calc date
11447 value into a Unix time stamp, first subtract 719164 (the code
11448 for @samp{<Jan 1, 1970>}), then multiply by 86400 (the number of
11449 seconds in a day) and press @kbd{R} to round to the nearest
11450 integer.  If you have a date form, you can simply subtract the
11451 day @samp{<Jan 1, 1970>} instead of unpacking and subtracting
11452 719164.  Likewise, divide by 86400 and add @samp{<Jan 1, 1970>}
11453 to convert from Unix time to a Calc date form.  (Note that
11454 Unix normally maintains the time in the GMT time zone; you may
11455 need to subtract five hours to get New York time, or eight hours
11456 for California time.  The same is usually true of Julian day
11457 counts.)  The built-in @kbd{t U} command performs these
11458 conversions.
11460 @node Modulo Forms, Error Forms, Date Forms, Data Types
11461 @section Modulo Forms
11463 @noindent
11464 @cindex Modulo forms
11465 A @dfn{modulo form} is a real number which is taken modulo (i.e., within
11466 an integer multiple of) some value @var{M}.  Arithmetic modulo @var{M}
11467 often arises in number theory.  Modulo forms are written
11468 `@var{a} @tfn{mod} @var{M}',
11469 where @var{a} and @var{M} are real numbers or HMS forms, and
11470 @texline @math{0 \le a < M}.
11471 @infoline @expr{0 <= a < @var{M}}.
11472 In many applications @expr{a} and @expr{M} will be
11473 integers but this is not required.
11475 @ignore
11476 @mindex M
11477 @end ignore
11478 @kindex M (modulo forms)
11479 @ignore
11480 @mindex mod
11481 @end ignore
11482 @tindex mod (operator)
11483 To create a modulo form during numeric entry, press the shift-@kbd{M}
11484 key to enter the word @samp{mod}.  As a special convenience, pressing
11485 shift-@kbd{M} a second time automatically enters the value of @expr{M}
11486 that was most recently used before.  During algebraic entry, either
11487 type @samp{mod} by hand or press @kbd{M-m} (that's @kbd{@key{META}-m}).
11488 Once again, pressing this a second time enters the current modulo.
11490 Modulo forms are not to be confused with the modulo operator @samp{%}.
11491 The expression @samp{27 % 10} means to compute 27 modulo 10 to produce
11492 the result 7.  Further computations treat this 7 as just a regular integer.
11493 The expression @samp{27 mod 10} produces the result @samp{7 mod 10};
11494 further computations with this value are again reduced modulo 10 so that
11495 the result always lies in the desired range.
11497 When two modulo forms with identical @expr{M}'s are added or multiplied,
11498 the Calculator simply adds or multiplies the values, then reduces modulo
11499 @expr{M}.  If one argument is a modulo form and the other a plain number,
11500 the plain number is treated like a compatible modulo form.  It is also
11501 possible to raise modulo forms to powers; the result is the value raised
11502 to the power, then reduced modulo @expr{M}.  (When all values involved
11503 are integers, this calculation is done much more efficiently than
11504 actually computing the power and then reducing.)
11506 @cindex Modulo division
11507 Two modulo forms `@var{a} @tfn{mod} @var{M}' and `@var{b} @tfn{mod} @var{M}'
11508 can be divided if @expr{a}, @expr{b}, and @expr{M} are all
11509 integers.  The result is the modulo form which, when multiplied by
11510 `@var{b} @tfn{mod} @var{M}', produces `@var{a} @tfn{mod} @var{M}'.  If
11511 there is no solution to this equation (which can happen only when
11512 @expr{M} is non-prime), or if any of the arguments are non-integers, the
11513 division is left in symbolic form.  Other operations, such as square
11514 roots, are not yet supported for modulo forms.  (Note that, although
11515 @w{`@tfn{(}@var{a} @tfn{mod} @var{M}@tfn{)^.5}'} will compute a ``modulo square root''
11516 in the sense of reducing 
11517 @texline @math{\sqrt a}
11518 @infoline @expr{sqrt(a)} 
11519 modulo @expr{M}, this is not a useful definition from the
11520 number-theoretical point of view.)
11522 It is possible to mix HMS forms and modulo forms.  For example, an
11523 HMS form modulo 24 could be used to manipulate clock times; an HMS
11524 form modulo 360 would be suitable for angles.  Making the modulo @expr{M}
11525 also be an HMS form eliminates troubles that would arise if the angular
11526 mode were inadvertently set to Radians, in which case
11527 @w{@samp{2@@ 0' 0" mod 24}} would be interpreted as two degrees modulo
11528 24 radians!
11530 Modulo forms cannot have variables or formulas for components.  If you
11531 enter the formula @samp{(x + 2) mod 5}, Calc propagates the modulus
11532 to each of the coefficients:  @samp{(1 mod 5) x + (2 mod 5)}.
11534 You can use @kbd{v p} and @kbd{%} to modify modulo forms.
11535 @xref{Packing and Unpacking}.  @xref{Basic Arithmetic}.
11537 @ignore
11538 @starindex
11539 @end ignore
11540 @tindex makemod
11541 The algebraic function @samp{makemod(a, m)} builds the modulo form
11542 @w{@samp{a mod m}}.
11544 @node Error Forms, Interval Forms, Modulo Forms, Data Types
11545 @section Error Forms
11547 @noindent
11548 @cindex Error forms
11549 @cindex Standard deviations
11550 An @dfn{error form} is a number with an associated standard
11551 deviation, as in @samp{2.3 +/- 0.12}.  The notation
11552 @texline `@var{x} @tfn{+/-} @math{\sigma}' 
11553 @infoline `@var{x} @tfn{+/-} sigma' 
11554 stands for an uncertain value which follows
11555 a normal or Gaussian distribution of mean @expr{x} and standard
11556 deviation or ``error'' 
11557 @texline @math{\sigma}.
11558 @infoline @expr{sigma}.
11559 Both the mean and the error can be either numbers or
11560 formulas.  Generally these are real numbers but the mean may also be
11561 complex.  If the error is negative or complex, it is changed to its
11562 absolute value.  An error form with zero error is converted to a
11563 regular number by the Calculator.
11565 All arithmetic and transcendental functions accept error forms as input.
11566 Operations on the mean-value part work just like operations on regular
11567 numbers.  The error part for any function @expr{f(x)} (such as 
11568 @texline @math{\sin x}
11569 @infoline @expr{sin(x)})
11570 is defined by the error of @expr{x} times the derivative of @expr{f}
11571 evaluated at the mean value of @expr{x}.  For a two-argument function
11572 @expr{f(x,y)} (such as addition) the error is the square root of the sum
11573 of the squares of the errors due to @expr{x} and @expr{y}.
11574 @tex
11575 $$ \eqalign{
11576   f(x \hbox{\code{ +/- }} \sigma)
11577     &= f(x) \hbox{\code{ +/- }} \sigma \left| {df(x) \over dx} \right| \cr
11578   f(x \hbox{\code{ +/- }} \sigma_x, y \hbox{\code{ +/- }} \sigma_y)
11579     &= f(x,y) \hbox{\code{ +/- }}
11580         \sqrt{\left(\sigma_x \left| {\partial f(x,y) \over \partial x}
11581                              \right| \right)^2
11582              +\left(\sigma_y \left| {\partial f(x,y) \over \partial y}
11583                              \right| \right)^2 } \cr
11584 } $$
11585 @end tex
11586 Note that this
11587 definition assumes the errors in @expr{x} and @expr{y} are uncorrelated.
11588 A side effect of this definition is that @samp{(2 +/- 1) * (2 +/- 1)}
11589 is not the same as @samp{(2 +/- 1)^2}; the former represents the product
11590 of two independent values which happen to have the same probability
11591 distributions, and the latter is the product of one random value with itself.
11592 The former will produce an answer with less error, since on the average
11593 the two independent errors can be expected to cancel out.
11595 Consult a good text on error analysis for a discussion of the proper use
11596 of standard deviations.  Actual errors often are neither Gaussian-distributed
11597 nor uncorrelated, and the above formulas are valid only when errors
11598 are small.  As an example, the error arising from
11599 @texline `@tfn{sin(}@var{x} @tfn{+/-} @math{\sigma}@tfn{)}' 
11600 @infoline `@tfn{sin(}@var{x} @tfn{+/-} @var{sigma}@tfn{)}' 
11601 is 
11602 @texline `@math{\sigma} @tfn{abs(cos(}@var{x}@tfn{))}'.  
11603 @infoline `@var{sigma} @tfn{abs(cos(}@var{x}@tfn{))}'.  
11604 When @expr{x} is close to zero,
11605 @texline @math{\cos x}
11606 @infoline @expr{cos(x)} 
11607 is close to one so the error in the sine is close to 
11608 @texline @math{\sigma};
11609 @infoline @expr{sigma};
11610 this makes sense, since 
11611 @texline @math{\sin x}
11612 @infoline @expr{sin(x)} 
11613 is approximately @expr{x} near zero, so a given error in @expr{x} will
11614 produce about the same error in the sine.  Likewise, near 90 degrees
11615 @texline @math{\cos x}
11616 @infoline @expr{cos(x)} 
11617 is nearly zero and so the computed error is
11618 small:  The sine curve is nearly flat in that region, so an error in @expr{x}
11619 has relatively little effect on the value of 
11620 @texline @math{\sin x}.
11621 @infoline @expr{sin(x)}.  
11622 However, consider @samp{sin(90 +/- 1000)}.  The cosine of 90 is zero, so
11623 Calc will report zero error!  We get an obviously wrong result because
11624 we have violated the small-error approximation underlying the error
11625 analysis.  If the error in @expr{x} had been small, the error in
11626 @texline @math{\sin x}
11627 @infoline @expr{sin(x)} 
11628 would indeed have been negligible.
11630 @ignore
11631 @mindex p
11632 @end ignore
11633 @kindex p (error forms)
11634 @tindex +/-
11635 To enter an error form during regular numeric entry, use the @kbd{p}
11636 (``plus-or-minus'') key to type the @samp{+/-} symbol.  (If you try actually
11637 typing @samp{+/-} the @kbd{+} key will be interpreted as the Calculator's
11638 @kbd{+} command!)  Within an algebraic formula, you can press @kbd{M-p} to
11639 type the @samp{+/-} symbol, or type it out by hand.
11641 Error forms and complex numbers can be mixed; the formulas shown above
11642 are used for complex numbers, too; note that if the error part evaluates
11643 to a complex number its absolute value (or the square root of the sum of
11644 the squares of the absolute values of the two error contributions) is
11645 used.  Mathematically, this corresponds to a radially symmetric Gaussian
11646 distribution of numbers on the complex plane.  However, note that Calc
11647 considers an error form with real components to represent a real number,
11648 not a complex distribution around a real mean.
11650 Error forms may also be composed of HMS forms.  For best results, both
11651 the mean and the error should be HMS forms if either one is.
11653 @ignore
11654 @starindex
11655 @end ignore
11656 @tindex sdev
11657 The algebraic function @samp{sdev(a, b)} builds the error form @samp{a +/- b}.
11659 @node Interval Forms, Incomplete Objects, Error Forms, Data Types
11660 @section Interval Forms
11662 @noindent
11663 @cindex Interval forms
11664 An @dfn{interval} is a subset of consecutive real numbers.  For example,
11665 the interval @samp{[2 ..@: 4]} represents all the numbers from 2 to 4,
11666 inclusive.  If you multiply it by the interval @samp{[0.5 ..@: 2]} you
11667 obtain @samp{[1 ..@: 8]}.  This calculation represents the fact that if
11668 you multiply some number in the range @samp{[2 ..@: 4]} by some other
11669 number in the range @samp{[0.5 ..@: 2]}, your result will lie in the range
11670 from 1 to 8.  Interval arithmetic is used to get a worst-case estimate
11671 of the possible range of values a computation will produce, given the
11672 set of possible values of the input.
11674 @ifinfo
11675 Calc supports several varieties of intervals, including @dfn{closed}
11676 intervals of the type shown above, @dfn{open} intervals such as
11677 @samp{(2 ..@: 4)}, which represents the range of numbers from 2 to 4
11678 @emph{exclusive}, and @dfn{semi-open} intervals in which one end
11679 uses a round parenthesis and the other a square bracket.  In mathematical
11680 terms,
11681 @samp{[2 ..@: 4]} means @expr{2 <= x <= 4}, whereas
11682 @samp{[2 ..@: 4)} represents @expr{2 <= x < 4},
11683 @samp{(2 ..@: 4]} represents @expr{2 < x <= 4}, and
11684 @samp{(2 ..@: 4)} represents @expr{2 < x < 4}.
11685 @end ifinfo
11686 @tex
11687 Calc supports several varieties of intervals, including \dfn{closed}
11688 intervals of the type shown above, \dfn{open} intervals such as
11689 \samp{(2 ..\: 4)}, which represents the range of numbers from 2 to 4
11690 \emph{exclusive}, and \dfn{semi-open} intervals in which one end
11691 uses a round parenthesis and the other a square bracket.  In mathematical
11692 terms,
11693 $$ \eqalign{
11694    [2 \hbox{\cite{..}} 4]  &\quad\hbox{means}\quad  2 \le x \le 4  \cr
11695    [2 \hbox{\cite{..}} 4)  &\quad\hbox{means}\quad  2 \le x  <  4  \cr
11696    (2 \hbox{\cite{..}} 4]  &\quad\hbox{means}\quad  2  <  x \le 4  \cr
11697    (2 \hbox{\cite{..}} 4)  &\quad\hbox{means}\quad  2  <  x  <  4  \cr
11698 } $$
11699 @end tex
11701 The lower and upper limits of an interval must be either real numbers
11702 (or HMS or date forms), or symbolic expressions which are assumed to be
11703 real-valued, or @samp{-inf} and @samp{inf}.  In general the lower limit
11704 must be less than the upper limit.  A closed interval containing only
11705 one value, @samp{[3 ..@: 3]}, is converted to a plain number (3)
11706 automatically.  An interval containing no values at all (such as
11707 @samp{[3 ..@: 2]} or @samp{[2 ..@: 2)}) can be represented but is not
11708 guaranteed to behave well when used in arithmetic.  Note that the
11709 interval @samp{[3 .. inf)} represents all real numbers greater than
11710 or equal to 3, and @samp{(-inf .. inf)} represents all real numbers.
11711 In fact, @samp{[-inf .. inf]} represents all real numbers including
11712 the real infinities.
11714 Intervals are entered in the notation shown here, either as algebraic
11715 formulas, or using incomplete forms.  (@xref{Incomplete Objects}.)
11716 In algebraic formulas, multiple periods in a row are collected from
11717 left to right, so that @samp{1...1e2} is interpreted as @samp{1.0 ..@: 1e2}
11718 rather than @samp{1 ..@: 0.1e2}.  Add spaces or zeros if you want to
11719 get the other interpretation.  If you omit the lower or upper limit,
11720 a default of @samp{-inf} or @samp{inf} (respectively) is furnished.
11722 Infinite mode also affects operations on intervals
11723 (@pxref{Infinities}).  Calc will always introduce an open infinity,
11724 as in @samp{1 / (0 .. 2] = [0.5 .. inf)}.  But closed infinities,
11725 @w{@samp{1 / [0 .. 2] = [0.5 .. inf]}}, arise only in Infinite mode;
11726 otherwise they are left unevaluated.  Note that the ``direction'' of
11727 a zero is not an issue in this case since the zero is always assumed
11728 to be continuous with the rest of the interval.  For intervals that
11729 contain zero inside them Calc is forced to give the result,
11730 @samp{1 / (-2 .. 2) = [-inf .. inf]}.
11732 While it may seem that intervals and error forms are similar, they are
11733 based on entirely different concepts of inexact quantities.  An error
11734 form 
11735 @texline `@var{x} @tfn{+/-} @math{\sigma}' 
11736 @infoline `@var{x} @tfn{+/-} @var{sigma}' 
11737 means a variable is random, and its value could
11738 be anything but is ``probably'' within one 
11739 @texline @math{\sigma} 
11740 @infoline @var{sigma} 
11741 of the mean value @expr{x}. An interval 
11742 `@tfn{[}@var{a} @tfn{..@:} @var{b}@tfn{]}' means a
11743 variable's value is unknown, but guaranteed to lie in the specified
11744 range.  Error forms are statistical or ``average case'' approximations;
11745 interval arithmetic tends to produce ``worst case'' bounds on an
11746 answer.
11748 Intervals may not contain complex numbers, but they may contain
11749 HMS forms or date forms.
11751 @xref{Set Operations}, for commands that interpret interval forms
11752 as subsets of the set of real numbers.
11754 @ignore
11755 @starindex
11756 @end ignore
11757 @tindex intv
11758 The algebraic function @samp{intv(n, a, b)} builds an interval form
11759 from @samp{a} to @samp{b}; @samp{n} is an integer code which must
11760 be 0 for @samp{(..)}, 1 for @samp{(..]}, 2 for @samp{[..)}, or
11761 3 for @samp{[..]}.
11763 Please note that in fully rigorous interval arithmetic, care would be
11764 taken to make sure that the computation of the lower bound rounds toward
11765 minus infinity, while upper bound computations round toward plus
11766 infinity.  Calc's arithmetic always uses a round-to-nearest mode,
11767 which means that roundoff errors could creep into an interval
11768 calculation to produce intervals slightly smaller than they ought to
11769 be.  For example, entering @samp{[1..2]} and pressing @kbd{Q 2 ^}
11770 should yield the interval @samp{[1..2]} again, but in fact it yields the
11771 (slightly too small) interval @samp{[1..1.9999999]} due to roundoff
11772 error.
11774 @node Incomplete Objects, Variables, Interval Forms, Data Types
11775 @section Incomplete Objects
11777 @noindent
11778 @ignore
11779 @mindex [ ]
11780 @end ignore
11781 @kindex [
11782 @ignore
11783 @mindex ( )
11784 @end ignore
11785 @kindex (
11786 @kindex ,
11787 @ignore
11788 @mindex @null
11789 @end ignore
11790 @kindex ]
11791 @ignore
11792 @mindex @null
11793 @end ignore
11794 @kindex )
11795 @cindex Incomplete vectors
11796 @cindex Incomplete complex numbers
11797 @cindex Incomplete interval forms
11798 When @kbd{(} or @kbd{[} is typed to begin entering a complex number or
11799 vector, respectively, the effect is to push an @dfn{incomplete} complex
11800 number or vector onto the stack.  The @kbd{,} key adds the value(s) at
11801 the top of the stack onto the current incomplete object.  The @kbd{)}
11802 and @kbd{]} keys ``close'' the incomplete object after adding any values
11803 on the top of the stack in front of the incomplete object.
11805 As a result, the sequence of keystrokes @kbd{[ 2 , 3 @key{RET} 2 * , 9 ]}
11806 pushes the vector @samp{[2, 6, 9]} onto the stack.  Likewise, @kbd{( 1 , 2 Q )}
11807 pushes the complex number @samp{(1, 1.414)} (approximately).
11809 If several values lie on the stack in front of the incomplete object,
11810 all are collected and appended to the object.  Thus the @kbd{,} key
11811 is redundant:  @kbd{[ 2 @key{RET} 3 @key{RET} 2 * 9 ]}.  Some people
11812 prefer the equivalent @key{SPC} key to @key{RET}.
11814 As a special case, typing @kbd{,} immediately after @kbd{(}, @kbd{[}, or
11815 @kbd{,} adds a zero or duplicates the preceding value in the list being
11816 formed.  Typing @key{DEL} during incomplete entry removes the last item
11817 from the list.
11819 @kindex ;
11820 The @kbd{;} key is used in the same way as @kbd{,} to create polar complex
11821 numbers:  @kbd{( 1 ; 2 )}.  When entering a vector, @kbd{;} is useful for
11822 creating a matrix.  In particular, @kbd{[ [ 1 , 2 ; 3 , 4 ; 5 , 6 ] ]} is
11823 equivalent to @kbd{[ [ 1 , 2 ] , [ 3 , 4 ] , [ 5 , 6 ] ]}.
11825 @kindex ..
11826 @pindex calc-dots
11827 Incomplete entry is also used to enter intervals.  For example,
11828 @kbd{[ 2 ..@: 4 )} enters a semi-open interval.  Note that when you type
11829 the first period, it will be interpreted as a decimal point, but when
11830 you type a second period immediately afterward, it is re-interpreted as
11831 part of the interval symbol.  Typing @kbd{..} corresponds to executing
11832 the @code{calc-dots} command.
11834 If you find incomplete entry distracting, you may wish to enter vectors
11835 and complex numbers as algebraic formulas by pressing the apostrophe key.
11837 @node Variables, Formulas, Incomplete Objects, Data Types
11838 @section Variables
11840 @noindent
11841 @cindex Variables, in formulas
11842 A @dfn{variable} is somewhere between a storage register on a conventional
11843 calculator, and a variable in a programming language.  (In fact, a Calc
11844 variable is really just an Emacs Lisp variable that contains a Calc number
11845 or formula.)  A variable's name is normally composed of letters and digits.
11846 Calc also allows apostrophes and @code{#} signs in variable names.
11847 (The Calc variable @code{foo} corresponds to the Emacs Lisp variable
11848 @code{var-foo}, but unless you access the variable from within Emacs
11849 Lisp, you don't need to worry about it.  Variable names in algebraic
11850 formulas implicitly have @samp{var-} prefixed to their names.  The
11851 @samp{#} character in variable names used in algebraic formulas
11852 corresponds to a dash @samp{-} in the Lisp variable name.  If the name
11853 contains any dashes, the prefix @samp{var-} is @emph{not} automatically
11854 added.  Thus the two formulas @samp{foo + 1} and @samp{var#foo + 1} both
11855 refer to the same variable.)
11857 In a command that takes a variable name, you can either type the full
11858 name of a variable, or type a single digit to use one of the special
11859 convenience variables @code{q0} through @code{q9}.  For example,
11860 @kbd{3 s s 2} stores the number 3 in variable @code{q2}, and
11861 @w{@kbd{3 s s foo @key{RET}}} stores that number in variable
11862 @code{foo}.
11864 To push a variable itself (as opposed to the variable's value) on the
11865 stack, enter its name as an algebraic expression using the apostrophe
11866 (@key{'}) key.
11868 @kindex =
11869 @pindex calc-evaluate
11870 @cindex Evaluation of variables in a formula
11871 @cindex Variables, evaluation
11872 @cindex Formulas, evaluation
11873 The @kbd{=} (@code{calc-evaluate}) key ``evaluates'' a formula by
11874 replacing all variables in the formula which have been given values by a
11875 @code{calc-store} or @code{calc-let} command by their stored values.
11876 Other variables are left alone.  Thus a variable that has not been
11877 stored acts like an abstract variable in algebra; a variable that has
11878 been stored acts more like a register in a traditional calculator.
11879 With a positive numeric prefix argument, @kbd{=} evaluates the top
11880 @var{n} stack entries; with a negative argument, @kbd{=} evaluates
11881 the @var{n}th stack entry.
11883 @cindex @code{e} variable
11884 @cindex @code{pi} variable
11885 @cindex @code{i} variable
11886 @cindex @code{phi} variable
11887 @cindex @code{gamma} variable
11888 @vindex e
11889 @vindex pi
11890 @vindex i
11891 @vindex phi
11892 @vindex gamma
11893 A few variables are called @dfn{special constants}.  Their names are
11894 @samp{e}, @samp{pi}, @samp{i}, @samp{phi}, and @samp{gamma}.
11895 (@xref{Scientific Functions}.)  When they are evaluated with @kbd{=},
11896 their values are calculated if necessary according to the current precision
11897 or complex polar mode.  If you wish to use these symbols for other purposes,
11898 simply undefine or redefine them using @code{calc-store}.
11900 The variables @samp{inf}, @samp{uinf}, and @samp{nan} stand for
11901 infinite or indeterminate values.  It's best not to use them as
11902 regular variables, since Calc uses special algebraic rules when
11903 it manipulates them.  Calc displays a warning message if you store
11904 a value into any of these special variables.
11906 @xref{Store and Recall}, for a discussion of commands dealing with variables.
11908 @node Formulas, , Variables, Data Types
11909 @section Formulas
11911 @noindent
11912 @cindex Formulas
11913 @cindex Expressions
11914 @cindex Operators in formulas
11915 @cindex Precedence of operators
11916 When you press the apostrophe key you may enter any expression or formula
11917 in algebraic form.  (Calc uses the terms ``expression'' and ``formula''
11918 interchangeably.)  An expression is built up of numbers, variable names,
11919 and function calls, combined with various arithmetic operators.
11920 Parentheses may
11921 be used to indicate grouping.  Spaces are ignored within formulas, except
11922 that spaces are not permitted within variable names or numbers.
11923 Arithmetic operators, in order from highest to lowest precedence, and
11924 with their equivalent function names, are:
11926 @samp{_} [@code{subscr}] (subscripts);
11928 postfix @samp{%} [@code{percent}] (as in @samp{25% = 0.25});
11930 prefix @samp{+} and @samp{-} [@code{neg}] (as in @samp{-x})
11931 and prefix @samp{!} [@code{lnot}] (logical ``not,'' as in @samp{!x});
11933 @samp{+/-} [@code{sdev}] (the standard deviation symbol) and
11934 @samp{mod} [@code{makemod}] (the symbol for modulo forms);
11936 postfix @samp{!} [@code{fact}] (factorial, as in @samp{n!})
11937 and postfix @samp{!!} [@code{dfact}] (double factorial);
11939 @samp{^} [@code{pow}] (raised-to-the-power-of);
11941 @samp{*} [@code{mul}];
11943 @samp{/} [@code{div}], @samp{%} [@code{mod}] (modulo), and
11944 @samp{\} [@code{idiv}] (integer division);
11946 infix @samp{+} [@code{add}] and @samp{-} [@code{sub}] (as in @samp{x-y});
11948 @samp{|} [@code{vconcat}] (vector concatenation);
11950 relations @samp{=} [@code{eq}], @samp{!=} [@code{neq}], @samp{<} [@code{lt}],
11951 @samp{>} [@code{gt}], @samp{<=} [@code{leq}], and @samp{>=} [@code{geq}];
11953 @samp{&&} [@code{land}] (logical ``and'');
11955 @samp{||} [@code{lor}] (logical ``or'');
11957 the C-style ``if'' operator @samp{a?b:c} [@code{if}];
11959 @samp{!!!} [@code{pnot}] (rewrite pattern ``not'');
11961 @samp{&&&} [@code{pand}] (rewrite pattern ``and'');
11963 @samp{|||} [@code{por}] (rewrite pattern ``or'');
11965 @samp{:=} [@code{assign}] (for assignments and rewrite rules);
11967 @samp{::} [@code{condition}] (rewrite pattern condition);
11969 @samp{=>} [@code{evalto}].
11971 Note that, unlike in usual computer notation, multiplication binds more
11972 strongly than division:  @samp{a*b/c*d} is equivalent to 
11973 @texline @math{a b \over c d}.
11974 @infoline @expr{(a*b)/(c*d)}.
11976 @cindex Multiplication, implicit
11977 @cindex Implicit multiplication
11978 The multiplication sign @samp{*} may be omitted in many cases.  In particular,
11979 if the righthand side is a number, variable name, or parenthesized
11980 expression, the @samp{*} may be omitted.  Implicit multiplication has the
11981 same precedence as the explicit @samp{*} operator.  The one exception to
11982 the rule is that a variable name followed by a parenthesized expression,
11983 as in @samp{f(x)},
11984 is interpreted as a function call, not an implicit @samp{*}.  In many
11985 cases you must use a space if you omit the @samp{*}:  @samp{2a} is the
11986 same as @samp{2*a}, and @samp{a b} is the same as @samp{a*b}, but @samp{ab}
11987 is a variable called @code{ab}, @emph{not} the product of @samp{a} and
11988 @samp{b}!  Also note that @samp{f (x)} is still a function call.
11990 @cindex Implicit comma in vectors
11991 The rules are slightly different for vectors written with square brackets.
11992 In vectors, the space character is interpreted (like the comma) as a
11993 separator of elements of the vector.  Thus @w{@samp{[ 2a b+c d ]}} is
11994 equivalent to @samp{[2*a, b+c, d]}, whereas @samp{2a b+c d} is equivalent
11995 to @samp{2*a*b + c*d}.
11996 Note that spaces around the brackets, and around explicit commas, are
11997 ignored.  To force spaces to be interpreted as multiplication you can
11998 enclose a formula in parentheses as in @samp{[(a b) 2(c d)]}, which is
11999 interpreted as @samp{[a*b, 2*c*d]}.  An implicit comma is also inserted
12000 between @samp{][}, as in the matrix @samp{[[1 2][3 4]]}.
12002 Vectors that contain commas (not embedded within nested parentheses or
12003 brackets) do not treat spaces specially:  @samp{[a b, 2 c d]} is a vector
12004 of two elements.  Also, if it would be an error to treat spaces as
12005 separators, but not otherwise, then Calc will ignore spaces:
12006 @w{@samp{[a - b]}} is a vector of one element, but @w{@samp{[a -b]}} is
12007 a vector of two elements.  Finally, vectors entered with curly braces
12008 instead of square brackets do not give spaces any special treatment.
12009 When Calc displays a vector that does not contain any commas, it will
12010 insert parentheses if necessary to make the meaning clear:
12011 @w{@samp{[(a b)]}}.
12013 The expression @samp{5%-2} is ambiguous; is this five-percent minus two,
12014 or five modulo minus-two?  Calc always interprets the leftmost symbol as
12015 an infix operator preferentially (modulo, in this case), so you would
12016 need to write @samp{(5%)-2} to get the former interpretation.
12018 @cindex Function call notation
12019 A function call is, e.g., @samp{sin(1+x)}.  (The Calc algebraic function
12020 @code{foo} corresponds to the Emacs Lisp function @code{calcFunc-foo},
12021 but unless you access the function from within Emacs Lisp, you don't
12022 need to worry about it.)  Most mathematical Calculator commands like
12023 @code{calc-sin} have function equivalents like @code{sin}.
12024 If no Lisp function is defined for a function called by a formula, the
12025 call is left as it is during algebraic manipulation: @samp{f(x+y)} is
12026 left alone.  Beware that many innocent-looking short names like @code{in}
12027 and @code{re} have predefined meanings which could surprise you; however,
12028 single letters or single letters followed by digits are always safe to
12029 use for your own function names.  @xref{Function Index}.
12031 In the documentation for particular commands, the notation @kbd{H S}
12032 (@code{calc-sinh}) [@code{sinh}] means that the key sequence @kbd{H S}, the
12033 command @kbd{M-x calc-sinh}, and the algebraic function @code{sinh(x)} all
12034 represent the same operation.
12036 Commands that interpret (``parse'') text as algebraic formulas include
12037 algebraic entry (@kbd{'}), editing commands like @kbd{`} which parse
12038 the contents of the editing buffer when you finish, the @kbd{C-x * g}
12039 and @w{@kbd{C-x * r}} commands, the @kbd{C-y} command, the X window system
12040 ``paste'' mouse operation, and Embedded mode.  All of these operations
12041 use the same rules for parsing formulas; in particular, language modes
12042 (@pxref{Language Modes}) affect them all in the same way.
12044 When you read a large amount of text into the Calculator (say a vector
12045 which represents a big set of rewrite rules; @pxref{Rewrite Rules}),
12046 you may wish to include comments in the text.  Calc's formula parser
12047 ignores the symbol @samp{%%} and anything following it on a line:
12049 @example
12050 [ a + b,   %% the sum of "a" and "b"
12051   c + d,
12052   %% last line is coming up:
12053   e + f ]
12054 @end example
12056 @noindent
12057 This is parsed exactly the same as @samp{[ a + b, c + d, e + f ]}.
12059 @xref{Syntax Tables}, for a way to create your own operators and other
12060 input notations.  @xref{Compositions}, for a way to create new display
12061 formats.
12063 @xref{Algebra}, for commands for manipulating formulas symbolically.
12065 @node Stack and Trail, Mode Settings, Data Types, Top
12066 @chapter Stack and Trail Commands
12068 @noindent
12069 This chapter describes the Calc commands for manipulating objects on the
12070 stack and in the trail buffer.  (These commands operate on objects of any
12071 type, such as numbers, vectors, formulas, and incomplete objects.)
12073 @menu
12074 * Stack Manipulation::
12075 * Editing Stack Entries::
12076 * Trail Commands::
12077 * Keep Arguments::
12078 @end menu
12080 @node Stack Manipulation, Editing Stack Entries, Stack and Trail, Stack and Trail
12081 @section Stack Manipulation Commands
12083 @noindent
12084 @kindex @key{RET}
12085 @kindex @key{SPC}
12086 @pindex calc-enter
12087 @cindex Duplicating stack entries
12088 To duplicate the top object on the stack, press @key{RET} or @key{SPC}
12089 (two equivalent keys for the @code{calc-enter} command).
12090 Given a positive numeric prefix argument, these commands duplicate
12091 several elements at the top of the stack.
12092 Given a negative argument,
12093 these commands duplicate the specified element of the stack.
12094 Given an argument of zero, they duplicate the entire stack.
12095 For example, with @samp{10 20 30} on the stack,
12096 @key{RET} creates @samp{10 20 30 30},
12097 @kbd{C-u 2 @key{RET}} creates @samp{10 20 30 20 30},
12098 @kbd{C-u - 2 @key{RET}} creates @samp{10 20 30 20}, and
12099 @kbd{C-u 0 @key{RET}} creates @samp{10 20 30 10 20 30}.
12101 @kindex @key{LFD}
12102 @pindex calc-over
12103 The @key{LFD} (@code{calc-over}) command (on a key marked Line-Feed if you
12104 have it, else on @kbd{C-j}) is like @code{calc-enter}
12105 except that the sign of the numeric prefix argument is interpreted
12106 oppositely.  Also, with no prefix argument the default argument is 2.
12107 Thus with @samp{10 20 30} on the stack, @key{LFD} and @kbd{C-u 2 @key{LFD}}
12108 are both equivalent to @kbd{C-u - 2 @key{RET}}, producing
12109 @samp{10 20 30 20}.
12111 @kindex @key{DEL}
12112 @kindex C-d
12113 @pindex calc-pop
12114 @cindex Removing stack entries
12115 @cindex Deleting stack entries
12116 To remove the top element from the stack, press @key{DEL} (@code{calc-pop}).
12117 The @kbd{C-d} key is a synonym for @key{DEL}.
12118 (If the top element is an incomplete object with at least one element, the
12119 last element is removed from it.)  Given a positive numeric prefix argument,
12120 several elements are removed.  Given a negative argument, the specified
12121 element of the stack is deleted.  Given an argument of zero, the entire
12122 stack is emptied.
12123 For example, with @samp{10 20 30} on the stack,
12124 @key{DEL} leaves @samp{10 20},
12125 @kbd{C-u 2 @key{DEL}} leaves @samp{10},
12126 @kbd{C-u - 2 @key{DEL}} leaves @samp{10 30}, and
12127 @kbd{C-u 0 @key{DEL}} leaves an empty stack.
12129 @kindex M-@key{DEL}
12130 @pindex calc-pop-above
12131 The @kbd{M-@key{DEL}} (@code{calc-pop-above}) command is to @key{DEL} what
12132 @key{LFD} is to @key{RET}:  It interprets the sign of the numeric
12133 prefix argument in the opposite way, and the default argument is 2.
12134 Thus @kbd{M-@key{DEL}} by itself removes the second-from-top stack element,
12135 leaving the first, third, fourth, and so on; @kbd{M-3 M-@key{DEL}} deletes
12136 the third stack element.
12138 @kindex @key{TAB}
12139 @pindex calc-roll-down
12140 To exchange the top two elements of the stack, press @key{TAB}
12141 (@code{calc-roll-down}).  Given a positive numeric prefix argument, the
12142 specified number of elements at the top of the stack are rotated downward.
12143 Given a negative argument, the entire stack is rotated downward the specified
12144 number of times.  Given an argument of zero, the entire stack is reversed
12145 top-for-bottom.
12146 For example, with @samp{10 20 30 40 50} on the stack,
12147 @key{TAB} creates @samp{10 20 30 50 40},
12148 @kbd{C-u 3 @key{TAB}} creates @samp{10 20 50 30 40},
12149 @kbd{C-u - 2 @key{TAB}} creates @samp{40 50 10 20 30}, and
12150 @kbd{C-u 0 @key{TAB}} creates @samp{50 40 30 20 10}.
12152 @kindex M-@key{TAB}
12153 @pindex calc-roll-up
12154 The command @kbd{M-@key{TAB}} (@code{calc-roll-up}) is analogous to @key{TAB}
12155 except that it rotates upward instead of downward.  Also, the default
12156 with no prefix argument is to rotate the top 3 elements.
12157 For example, with @samp{10 20 30 40 50} on the stack,
12158 @kbd{M-@key{TAB}} creates @samp{10 20 40 50 30},
12159 @kbd{C-u 4 M-@key{TAB}} creates @samp{10 30 40 50 20},
12160 @kbd{C-u - 2 M-@key{TAB}} creates @samp{30 40 50 10 20}, and
12161 @kbd{C-u 0 M-@key{TAB}} creates @samp{50 40 30 20 10}.
12163 A good way to view the operation of @key{TAB} and @kbd{M-@key{TAB}} is in
12164 terms of moving a particular element to a new position in the stack.
12165 With a positive argument @var{n}, @key{TAB} moves the top stack
12166 element down to level @var{n}, making room for it by pulling all the
12167 intervening stack elements toward the top.  @kbd{M-@key{TAB}} moves the
12168 element at level @var{n} up to the top.  (Compare with @key{LFD},
12169 which copies instead of moving the element in level @var{n}.)
12171 With a negative argument @mathit{-@var{n}}, @key{TAB} rotates the stack
12172 to move the object in level @var{n} to the deepest place in the
12173 stack, and the object in level @mathit{@var{n}+1} to the top.  @kbd{M-@key{TAB}}
12174 rotates the deepest stack element to be in level @mathit{n}, also
12175 putting the top stack element in level @mathit{@var{n}+1}.
12177 @xref{Selecting Subformulas}, for a way to apply these commands to
12178 any portion of a vector or formula on the stack.
12180 @node Editing Stack Entries, Trail Commands, Stack Manipulation, Stack and Trail
12181 @section Editing Stack Entries
12183 @noindent
12184 @kindex `
12185 @pindex calc-edit
12186 @pindex calc-edit-finish
12187 @cindex Editing the stack with Emacs
12188 The backquote, @kbd{`} (@code{calc-edit}) command creates a temporary
12189 buffer (@samp{*Calc Edit*}) for editing the top-of-stack value using
12190 regular Emacs commands.  With a numeric prefix argument, it edits the
12191 specified number of stack entries at once.  (An argument of zero edits
12192 the entire stack; a negative argument edits one specific stack entry.)
12194 When you are done editing, press @kbd{C-c C-c} to finish and return
12195 to Calc.  The @key{RET} and @key{LFD} keys also work to finish most
12196 sorts of editing, though in some cases Calc leaves @key{RET} with its
12197 usual meaning (``insert a newline'') if it's a situation where you
12198 might want to insert new lines into the editing buffer.
12200 When you finish editing, the Calculator parses the lines of text in
12201 the @samp{*Calc Edit*} buffer as numbers or formulas, replaces the
12202 original stack elements in the original buffer with these new values,
12203 then kills the @samp{*Calc Edit*} buffer.  The original Calculator buffer
12204 continues to exist during editing, but for best results you should be
12205 careful not to change it until you have finished the edit.  You can
12206 also cancel the edit by killing the buffer with @kbd{C-x k}.
12208 The formula is normally reevaluated as it is put onto the stack.
12209 For example, editing @samp{a + 2} to @samp{3 + 2} and pressing
12210 @kbd{C-c C-c} will push 5 on the stack.  If you use @key{LFD} to
12211 finish, Calc will put the result on the stack without evaluating it.
12213 If you give a prefix argument to @kbd{C-c C-c},
12214 Calc will not kill the @samp{*Calc Edit*} buffer.  You can switch
12215 back to that buffer and continue editing if you wish.  However, you
12216 should understand that if you initiated the edit with @kbd{`}, the
12217 @kbd{C-c C-c} operation will be programmed to replace the top of the
12218 stack with the new edited value, and it will do this even if you have
12219 rearranged the stack in the meanwhile.  This is not so much of a problem
12220 with other editing commands, though, such as @kbd{s e}
12221 (@code{calc-edit-variable}; @pxref{Operations on Variables}).
12223 If the @code{calc-edit} command involves more than one stack entry,
12224 each line of the @samp{*Calc Edit*} buffer is interpreted as a
12225 separate formula.  Otherwise, the entire buffer is interpreted as
12226 one formula, with line breaks ignored.  (You can use @kbd{C-o} or
12227 @kbd{C-q C-j} to insert a newline in the buffer without pressing @key{RET}.)
12229 The @kbd{`} key also works during numeric or algebraic entry.  The
12230 text entered so far is moved to the @code{*Calc Edit*} buffer for
12231 more extensive editing than is convenient in the minibuffer.
12233 @node Trail Commands, Keep Arguments, Editing Stack Entries, Stack and Trail
12234 @section Trail Commands
12236 @noindent
12237 @cindex Trail buffer
12238 The commands for manipulating the Calc Trail buffer are two-key sequences
12239 beginning with the @kbd{t} prefix.
12241 @kindex t d
12242 @pindex calc-trail-display
12243 The @kbd{t d} (@code{calc-trail-display}) command turns display of the
12244 trail on and off.  Normally the trail display is toggled on if it was off,
12245 off if it was on.  With a numeric prefix of zero, this command always
12246 turns the trail off; with a prefix of one, it always turns the trail on.
12247 The other trail-manipulation commands described here automatically turn
12248 the trail on.  Note that when the trail is off values are still recorded
12249 there; they are simply not displayed.  To set Emacs to turn the trail
12250 off by default, type @kbd{t d} and then save the mode settings with
12251 @kbd{m m} (@code{calc-save-modes}).
12253 @kindex t i
12254 @pindex calc-trail-in
12255 @kindex t o
12256 @pindex calc-trail-out
12257 The @kbd{t i} (@code{calc-trail-in}) and @kbd{t o}
12258 (@code{calc-trail-out}) commands switch the cursor into and out of the
12259 Calc Trail window.  In practice they are rarely used, since the commands
12260 shown below are a more convenient way to move around in the
12261 trail, and they work ``by remote control'' when the cursor is still
12262 in the Calculator window.
12264 @cindex Trail pointer
12265 There is a @dfn{trail pointer} which selects some entry of the trail at
12266 any given time.  The trail pointer looks like a @samp{>} symbol right
12267 before the selected number.  The following commands operate on the
12268 trail pointer in various ways.
12270 @kindex t y
12271 @pindex calc-trail-yank
12272 @cindex Retrieving previous results
12273 The @kbd{t y} (@code{calc-trail-yank}) command reads the selected value in
12274 the trail and pushes it onto the Calculator stack.  It allows you to
12275 re-use any previously computed value without retyping.  With a numeric
12276 prefix argument @var{n}, it yanks the value @var{n} lines above the current
12277 trail pointer.
12279 @kindex t <
12280 @pindex calc-trail-scroll-left
12281 @kindex t >
12282 @pindex calc-trail-scroll-right
12283 The @kbd{t <} (@code{calc-trail-scroll-left}) and @kbd{t >}
12284 (@code{calc-trail-scroll-right}) commands horizontally scroll the trail
12285 window left or right by one half of its width.
12287 @kindex t n
12288 @pindex calc-trail-next
12289 @kindex t p
12290 @pindex calc-trail-previous
12291 @kindex t f
12292 @pindex calc-trail-forward
12293 @kindex t b
12294 @pindex calc-trail-backward
12295 The @kbd{t n} (@code{calc-trail-next}) and @kbd{t p}
12296 (@code{calc-trail-previous)} commands move the trail pointer down or up
12297 one line.  The @kbd{t f} (@code{calc-trail-forward}) and @kbd{t b}
12298 (@code{calc-trail-backward}) commands move the trail pointer down or up
12299 one screenful at a time.  All of these commands accept numeric prefix
12300 arguments to move several lines or screenfuls at a time.
12302 @kindex t [
12303 @pindex calc-trail-first
12304 @kindex t ]
12305 @pindex calc-trail-last
12306 @kindex t h
12307 @pindex calc-trail-here
12308 The @kbd{t [} (@code{calc-trail-first}) and @kbd{t ]}
12309 (@code{calc-trail-last}) commands move the trail pointer to the first or
12310 last line of the trail.  The @kbd{t h} (@code{calc-trail-here}) command
12311 moves the trail pointer to the cursor position; unlike the other trail
12312 commands, @kbd{t h} works only when Calc Trail is the selected window.
12314 @kindex t s
12315 @pindex calc-trail-isearch-forward
12316 @kindex t r
12317 @pindex calc-trail-isearch-backward
12318 @ifinfo
12319 The @kbd{t s} (@code{calc-trail-isearch-forward}) and @kbd{t r}
12320 (@code{calc-trail-isearch-backward}) commands perform an incremental
12321 search forward or backward through the trail.  You can press @key{RET}
12322 to terminate the search; the trail pointer moves to the current line.
12323 If you cancel the search with @kbd{C-g}, the trail pointer stays where
12324 it was when the search began.
12325 @end ifinfo
12326 @tex
12327 The @kbd{t s} (@code{calc-trail-isearch-forward}) and @kbd{t r}
12328 (@code{calc-trail-isearch-backward}) com\-mands perform an incremental
12329 search forward or backward through the trail.  You can press @key{RET}
12330 to terminate the search; the trail pointer moves to the current line.
12331 If you cancel the search with @kbd{C-g}, the trail pointer stays where
12332 it was when the search began.
12333 @end tex
12335 @kindex t m
12336 @pindex calc-trail-marker
12337 The @kbd{t m} (@code{calc-trail-marker}) command allows you to enter a
12338 line of text of your own choosing into the trail.  The text is inserted
12339 after the line containing the trail pointer; this usually means it is
12340 added to the end of the trail.  Trail markers are useful mainly as the
12341 targets for later incremental searches in the trail.
12343 @kindex t k
12344 @pindex calc-trail-kill
12345 The @kbd{t k} (@code{calc-trail-kill}) command removes the selected line
12346 from the trail.  The line is saved in the Emacs kill ring suitable for
12347 yanking into another buffer, but it is not easy to yank the text back
12348 into the trail buffer.  With a numeric prefix argument, this command
12349 kills the @var{n} lines below or above the selected one.
12351 The @kbd{t .} (@code{calc-full-trail-vectors}) command is described
12352 elsewhere; @pxref{Vector and Matrix Formats}.
12354 @node Keep Arguments, , Trail Commands, Stack and Trail
12355 @section Keep Arguments
12357 @noindent
12358 @kindex K
12359 @pindex calc-keep-args
12360 The @kbd{K} (@code{calc-keep-args}) command acts like a prefix for
12361 the following command.  It prevents that command from removing its
12362 arguments from the stack.  For example, after @kbd{2 @key{RET} 3 +},
12363 the stack contains the sole number 5, but after @kbd{2 @key{RET} 3 K +},
12364 the stack contains the arguments and the result: @samp{2 3 5}.
12366 With the exception of keyboard macros, this works for all commands that
12367 take arguments off the stack. (To avoid potentially unpleasant behavior,
12368 a @kbd{K} prefix before a keyboard macro will be ignored.  A @kbd{K}
12369 prefix called @emph{within} the keyboard macro will still take effect.)  
12370 As another example, @kbd{K a s} simplifies a formula, pushing the
12371 simplified version of the formula onto the stack after the original
12372 formula (rather than replacing the original formula).  Note that you
12373 could get the same effect by typing @kbd{@key{RET} a s}, copying the
12374 formula and then simplifying the copy. One difference is that for a very
12375 large formula the time taken to format the intermediate copy in
12376 @kbd{@key{RET} a s} could be noticeable; @kbd{K a s} would avoid this
12377 extra work. 
12379 Even stack manipulation commands are affected.  @key{TAB} works by
12380 popping two values and pushing them back in the opposite order,
12381 so @kbd{2 @key{RET} 3 K @key{TAB}} produces @samp{2 3 3 2}.
12383 A few Calc commands provide other ways of doing the same thing.
12384 For example, @kbd{' sin($)} replaces the number on the stack with
12385 its sine using algebraic entry; to push the sine and keep the
12386 original argument you could use either @kbd{' sin($1)} or
12387 @kbd{K ' sin($)}.  @xref{Algebraic Entry}.  Also, the @kbd{s s}
12388 command is effectively the same as @kbd{K s t}.  @xref{Storing Variables}.
12390 If you execute a command and then decide you really wanted to keep
12391 the argument, you can press @kbd{M-@key{RET}} (@code{calc-last-args}).
12392 This command pushes the last arguments that were popped by any command
12393 onto the stack.  Note that the order of things on the stack will be
12394 different than with @kbd{K}:  @kbd{2 @key{RET} 3 + M-@key{RET}} leaves
12395 @samp{5 2 3} on the stack instead of @samp{2 3 5}.  @xref{Undo}.
12397 @node Mode Settings, Arithmetic, Stack and Trail, Top
12398 @chapter Mode Settings
12400 @noindent
12401 This chapter describes commands that set modes in the Calculator.
12402 They do not affect the contents of the stack, although they may change
12403 the @emph{appearance} or @emph{interpretation} of the stack's contents.
12405 @menu
12406 * General Mode Commands::
12407 * Precision::
12408 * Inverse and Hyperbolic::
12409 * Calculation Modes::
12410 * Simplification Modes::
12411 * Declarations::
12412 * Display Modes::
12413 * Language Modes::
12414 * Modes Variable::
12415 * Calc Mode Line::
12416 @end menu
12418 @node General Mode Commands, Precision, Mode Settings, Mode Settings
12419 @section General Mode Commands
12421 @noindent
12422 @kindex m m
12423 @pindex calc-save-modes
12424 @cindex Continuous memory
12425 @cindex Saving mode settings
12426 @cindex Permanent mode settings
12427 @cindex Calc init file, mode settings
12428 You can save all of the current mode settings in your Calc init file 
12429 (the file given by the variable @code{calc-settings-file}, typically
12430 @file{~/.calc.el}) with the @kbd{m m} (@code{calc-save-modes}) command.
12431 This will cause Emacs to reestablish these modes each time it starts up.
12432 The modes saved in the file include everything controlled by the @kbd{m}
12433 and @kbd{d} prefix keys, the current precision and binary word size,
12434 whether or not the trail is displayed, the current height of the Calc
12435 window, and more.  The current interface (used when you type @kbd{C-x * *}) 
12436 is also saved.  If there were already saved mode settings in the
12437 file, they are replaced.  Otherwise, the new mode information is
12438 appended to the end of the file.
12440 @kindex m R
12441 @pindex calc-mode-record-mode
12442 The @kbd{m R} (@code{calc-mode-record-mode}) command tells Calc to
12443 record all the mode settings (as if by pressing @kbd{m m}) every
12444 time a mode setting changes.  If the modes are saved this way, then this
12445 ``automatic mode recording'' mode is also saved.
12446 Type @kbd{m R} again to disable this method of recording the mode
12447 settings.  To turn it off permanently, the @kbd{m m} command will also be
12448 necessary.   (If Embedded mode is enabled, other options for recording
12449 the modes are available; @pxref{Mode Settings in Embedded Mode}.)
12451 @kindex m F
12452 @pindex calc-settings-file-name
12453 The @kbd{m F} (@code{calc-settings-file-name}) command allows you to
12454 choose a different file than the current value of @code{calc-settings-file}
12455 for @kbd{m m}, @kbd{Z P}, and similar commands to save permanent information.
12456 You are prompted for a file name.  All Calc modes are then reset to
12457 their default values, then settings from the file you named are loaded
12458 if this file exists, and this file becomes the one that Calc will
12459 use in the future for commands like @kbd{m m}.  The default settings
12460 file name is @file{~/.calc.el}.  You can see the current file name by
12461 giving a blank response to the @kbd{m F} prompt.  See also the
12462 discussion of the @code{calc-settings-file} variable; @pxref{Customizing Calc}.
12464 If the file name you give is your user init file (typically
12465 @file{~/.emacs}), @kbd{m F} will not automatically load the new file.  This
12466 is because your user init file may contain other things you don't want
12467 to reread.  You can give 
12468 a numeric prefix argument of 1 to @kbd{m F} to force it to read the
12469 file no matter what.  Conversely, an argument of @mathit{-1} tells
12470 @kbd{m F} @emph{not} to read the new file.  An argument of 2 or @mathit{-2}
12471 tells @kbd{m F} not to reset the modes to their defaults beforehand,
12472 which is useful if you intend your new file to have a variant of the
12473 modes present in the file you were using before.
12475 @kindex m x
12476 @pindex calc-always-load-extensions
12477 The @kbd{m x} (@code{calc-always-load-extensions}) command enables a mode
12478 in which the first use of Calc loads the entire program, including all
12479 extensions modules.  Otherwise, the extensions modules will not be loaded
12480 until the various advanced Calc features are used.  Since this mode only
12481 has effect when Calc is first loaded, @kbd{m x} is usually followed by
12482 @kbd{m m} to make the mode-setting permanent.  To load all of Calc just
12483 once, rather than always in the future, you can press @kbd{C-x * L}.
12485 @kindex m S
12486 @pindex calc-shift-prefix
12487 The @kbd{m S} (@code{calc-shift-prefix}) command enables a mode in which
12488 all of Calc's letter prefix keys may be typed shifted as well as unshifted.
12489 If you are typing, say, @kbd{a S} (@code{calc-solve-for}) quite often
12490 you might find it easier to turn this mode on so that you can type
12491 @kbd{A S} instead.  When this mode is enabled, the commands that used to
12492 be on those single shifted letters (e.g., @kbd{A} (@code{calc-abs})) can
12493 now be invoked by pressing the shifted letter twice: @kbd{A A}.  Note
12494 that the @kbd{v} prefix key always works both shifted and unshifted, and
12495 the @kbd{z} and @kbd{Z} prefix keys are always distinct.  Also, the @kbd{h}
12496 prefix is not affected by this mode.  Press @kbd{m S} again to disable
12497 shifted-prefix mode.
12499 @node Precision, Inverse and Hyperbolic, General Mode Commands, Mode Settings
12500 @section Precision
12502 @noindent
12503 @kindex p
12504 @pindex calc-precision
12505 @cindex Precision of calculations
12506 The @kbd{p} (@code{calc-precision}) command controls the precision to
12507 which floating-point calculations are carried.  The precision must be
12508 at least 3 digits and may be arbitrarily high, within the limits of
12509 memory and time.  This affects only floats:  Integer and rational
12510 calculations are always carried out with as many digits as necessary.
12512 The @kbd{p} key prompts for the current precision.  If you wish you
12513 can instead give the precision as a numeric prefix argument.
12515 Many internal calculations are carried to one or two digits higher
12516 precision than normal.  Results are rounded down afterward to the
12517 current precision.  Unless a special display mode has been selected,
12518 floats are always displayed with their full stored precision, i.e.,
12519 what you see is what you get.  Reducing the current precision does not
12520 round values already on the stack, but those values will be rounded
12521 down before being used in any calculation.  The @kbd{c 0} through
12522 @kbd{c 9} commands (@pxref{Conversions}) can be used to round an
12523 existing value to a new precision.
12525 @cindex Accuracy of calculations
12526 It is important to distinguish the concepts of @dfn{precision} and
12527 @dfn{accuracy}.  In the normal usage of these words, the number
12528 123.4567 has a precision of 7 digits but an accuracy of 4 digits.
12529 The precision is the total number of digits not counting leading
12530 or trailing zeros (regardless of the position of the decimal point).
12531 The accuracy is simply the number of digits after the decimal point
12532 (again not counting trailing zeros).  In Calc you control the precision,
12533 not the accuracy of computations.  If you were to set the accuracy
12534 instead, then calculations like @samp{exp(100)} would generate many
12535 more digits than you would typically need, while @samp{exp(-100)} would
12536 probably round to zero!  In Calc, both these computations give you
12537 exactly 12 (or the requested number of) significant digits.
12539 The only Calc features that deal with accuracy instead of precision
12540 are fixed-point display mode for floats (@kbd{d f}; @pxref{Float Formats}),
12541 and the rounding functions like @code{floor} and @code{round}
12542 (@pxref{Integer Truncation}).  Also, @kbd{c 0} through @kbd{c 9}
12543 deal with both precision and accuracy depending on the magnitudes
12544 of the numbers involved.
12546 If you need to work with a particular fixed accuracy (say, dollars and
12547 cents with two digits after the decimal point), one solution is to work
12548 with integers and an ``implied'' decimal point.  For example, $8.99
12549 divided by 6 would be entered @kbd{899 @key{RET} 6 /}, yielding 149.833
12550 (actually $1.49833 with our implied decimal point); pressing @kbd{R}
12551 would round this to 150 cents, i.e., $1.50.
12553 @xref{Floats}, for still more on floating-point precision and related
12554 issues.
12556 @node Inverse and Hyperbolic, Calculation Modes, Precision, Mode Settings
12557 @section Inverse and Hyperbolic Flags
12559 @noindent
12560 @kindex I
12561 @pindex calc-inverse
12562 There is no single-key equivalent to the @code{calc-arcsin} function.
12563 Instead, you must first press @kbd{I} (@code{calc-inverse}) to set
12564 the @dfn{Inverse Flag}, then press @kbd{S} (@code{calc-sin}).
12565 The @kbd{I} key actually toggles the Inverse Flag.  When this flag
12566 is set, the word @samp{Inv} appears in the mode line.
12568 @kindex H
12569 @pindex calc-hyperbolic
12570 Likewise, the @kbd{H} key (@code{calc-hyperbolic}) sets or clears the
12571 Hyperbolic Flag, which transforms @code{calc-sin} into @code{calc-sinh}.
12572 If both of these flags are set at once, the effect will be
12573 @code{calc-arcsinh}.  (The Hyperbolic flag is also used by some
12574 non-trigonometric commands; for example @kbd{H L} computes a base-10,
12575 instead of base-@mathit{e}, logarithm.)
12577 Command names like @code{calc-arcsin} are provided for completeness, and
12578 may be executed with @kbd{x} or @kbd{M-x}.  Their effect is simply to
12579 toggle the Inverse and/or Hyperbolic flags and then execute the
12580 corresponding base command (@code{calc-sin} in this case).
12582 The Inverse and Hyperbolic flags apply only to the next Calculator
12583 command, after which they are automatically cleared.  (They are also
12584 cleared if the next keystroke is not a Calc command.)  Digits you
12585 type after @kbd{I} or @kbd{H} (or @kbd{K}) are treated as prefix
12586 arguments for the next command, not as numeric entries.  The same
12587 is true of @kbd{C-u}, but not of the minus sign (@kbd{K -} means to
12588 subtract and keep arguments).
12590 The third Calc prefix flag, @kbd{K} (keep-arguments), is discussed
12591 elsewhere.  @xref{Keep Arguments}.
12593 @node Calculation Modes, Simplification Modes, Inverse and Hyperbolic, Mode Settings
12594 @section Calculation Modes
12596 @noindent
12597 The commands in this section are two-key sequences beginning with
12598 the @kbd{m} prefix.  (That's the letter @kbd{m}, not the @key{META} key.)
12599 The @samp{m a} (@code{calc-algebraic-mode}) command is described elsewhere
12600 (@pxref{Algebraic Entry}).
12602 @menu
12603 * Angular Modes::
12604 * Polar Mode::
12605 * Fraction Mode::
12606 * Infinite Mode::
12607 * Symbolic Mode::
12608 * Matrix Mode::
12609 * Automatic Recomputation::
12610 * Working Message::
12611 @end menu
12613 @node Angular Modes, Polar Mode, Calculation Modes, Calculation Modes
12614 @subsection Angular Modes
12616 @noindent
12617 @cindex Angular mode
12618 The Calculator supports three notations for angles: radians, degrees,
12619 and degrees-minutes-seconds.  When a number is presented to a function
12620 like @code{sin} that requires an angle, the current angular mode is
12621 used to interpret the number as either radians or degrees.  If an HMS
12622 form is presented to @code{sin}, it is always interpreted as
12623 degrees-minutes-seconds.
12625 Functions that compute angles produce a number in radians, a number in
12626 degrees, or an HMS form depending on the current angular mode.  If the
12627 result is a complex number and the current mode is HMS, the number is
12628 instead expressed in degrees.  (Complex-number calculations would
12629 normally be done in Radians mode, though.  Complex numbers are converted
12630 to degrees by calculating the complex result in radians and then
12631 multiplying by 180 over @cpi{}.)
12633 @kindex m r
12634 @pindex calc-radians-mode
12635 @kindex m d
12636 @pindex calc-degrees-mode
12637 @kindex m h
12638 @pindex calc-hms-mode
12639 The @kbd{m r} (@code{calc-radians-mode}), @kbd{m d} (@code{calc-degrees-mode}),
12640 and @kbd{m h} (@code{calc-hms-mode}) commands control the angular mode.
12641 The current angular mode is displayed on the Emacs mode line.
12642 The default angular mode is Degrees.
12644 @node Polar Mode, Fraction Mode, Angular Modes, Calculation Modes
12645 @subsection Polar Mode
12647 @noindent
12648 @cindex Polar mode
12649 The Calculator normally ``prefers'' rectangular complex numbers in the
12650 sense that rectangular form is used when the proper form can not be
12651 decided from the input.  This might happen by multiplying a rectangular
12652 number by a polar one, by taking the square root of a negative real
12653 number, or by entering @kbd{( 2 @key{SPC} 3 )}.
12655 @kindex m p
12656 @pindex calc-polar-mode
12657 The @kbd{m p} (@code{calc-polar-mode}) command toggles complex-number
12658 preference between rectangular and polar forms.  In Polar mode, all
12659 of the above example situations would produce polar complex numbers.
12661 @node Fraction Mode, Infinite Mode, Polar Mode, Calculation Modes
12662 @subsection Fraction Mode
12664 @noindent
12665 @cindex Fraction mode
12666 @cindex Division of integers
12667 Division of two integers normally yields a floating-point number if the
12668 result cannot be expressed as an integer.  In some cases you would
12669 rather get an exact fractional answer.  One way to accomplish this is
12670 to use the @kbd{:} (@code{calc-fdiv}) [@code{fdiv}] command, which
12671 divides the two integers on the top of the stack to produce a fraction:
12672 @kbd{6 @key{RET} 4 :} produces @expr{3:2} even though 
12673 @kbd{6 @key{RET} 4 /} produces @expr{1.5}.
12675 @kindex m f
12676 @pindex calc-frac-mode
12677 To set the Calculator to produce fractional results for normal integer
12678 divisions, use the @kbd{m f} (@code{calc-frac-mode}) command.
12679 For example, @expr{8/4} produces @expr{2} in either mode,
12680 but @expr{6/4} produces @expr{3:2} in Fraction mode, @expr{1.5} in
12681 Float mode.
12683 At any time you can use @kbd{c f} (@code{calc-float}) to convert a
12684 fraction to a float, or @kbd{c F} (@code{calc-fraction}) to convert a
12685 float to a fraction.  @xref{Conversions}.
12687 @node Infinite Mode, Symbolic Mode, Fraction Mode, Calculation Modes
12688 @subsection Infinite Mode
12690 @noindent
12691 @cindex Infinite mode
12692 The Calculator normally treats results like @expr{1 / 0} as errors;
12693 formulas like this are left in unsimplified form.  But Calc can be
12694 put into a mode where such calculations instead produce ``infinite''
12695 results.
12697 @kindex m i
12698 @pindex calc-infinite-mode
12699 The @kbd{m i} (@code{calc-infinite-mode}) command turns this mode
12700 on and off.  When the mode is off, infinities do not arise except
12701 in calculations that already had infinities as inputs.  (One exception
12702 is that infinite open intervals like @samp{[0 .. inf)} can be
12703 generated; however, intervals closed at infinity (@samp{[0 .. inf]})
12704 will not be generated when Infinite mode is off.)
12706 With Infinite mode turned on, @samp{1 / 0} will generate @code{uinf},
12707 an undirected infinity.  @xref{Infinities}, for a discussion of the
12708 difference between @code{inf} and @code{uinf}.  Also, @expr{0 / 0}
12709 evaluates to @code{nan}, the ``indeterminate'' symbol.  Various other
12710 functions can also return infinities in this mode; for example,
12711 @samp{ln(0) = -inf}, and @samp{gamma(-7) = uinf}.  Once again,
12712 note that @samp{exp(inf) = inf} regardless of Infinite mode because
12713 this calculation has infinity as an input.
12715 @cindex Positive Infinite mode
12716 The @kbd{m i} command with a numeric prefix argument of zero,
12717 i.e., @kbd{C-u 0 m i}, turns on a Positive Infinite mode in
12718 which zero is treated as positive instead of being directionless.
12719 Thus, @samp{1 / 0 = inf} and @samp{-1 / 0 = -inf} in this mode.
12720 Note that zero never actually has a sign in Calc; there are no
12721 separate representations for @mathit{+0} and @mathit{-0}.  Positive
12722 Infinite mode merely changes the interpretation given to the
12723 single symbol, @samp{0}.  One consequence of this is that, while
12724 you might expect @samp{1 / -0 = -inf}, actually @samp{1 / -0}
12725 is equivalent to @samp{1 / 0}, which is equal to positive @code{inf}.
12727 @node Symbolic Mode, Matrix Mode, Infinite Mode, Calculation Modes
12728 @subsection Symbolic Mode
12730 @noindent
12731 @cindex Symbolic mode
12732 @cindex Inexact results
12733 Calculations are normally performed numerically wherever possible.
12734 For example, the @code{calc-sqrt} command, or @code{sqrt} function in an
12735 algebraic expression, produces a numeric answer if the argument is a
12736 number or a symbolic expression if the argument is an expression:
12737 @kbd{2 Q} pushes 1.4142 but @kbd{@key{'} x+1 @key{RET} Q} pushes @samp{sqrt(x+1)}.
12739 @kindex m s
12740 @pindex calc-symbolic-mode
12741 In @dfn{Symbolic mode}, controlled by the @kbd{m s} (@code{calc-symbolic-mode})
12742 command, functions which would produce inexact, irrational results are
12743 left in symbolic form.  Thus @kbd{16 Q} pushes 4, but @kbd{2 Q} pushes
12744 @samp{sqrt(2)}.
12746 @kindex N
12747 @pindex calc-eval-num
12748 The shift-@kbd{N} (@code{calc-eval-num}) command evaluates numerically
12749 the expression at the top of the stack, by temporarily disabling
12750 @code{calc-symbolic-mode} and executing @kbd{=} (@code{calc-evaluate}).
12751 Given a numeric prefix argument, it also
12752 sets the floating-point precision to the specified value for the duration
12753 of the command.
12755 To evaluate a formula numerically without expanding the variables it
12756 contains, you can use the key sequence @kbd{m s a v m s} (this uses
12757 @code{calc-alg-evaluate}, which resimplifies but doesn't evaluate
12758 variables.)
12760 @node Matrix Mode, Automatic Recomputation, Symbolic Mode, Calculation Modes
12761 @subsection Matrix and Scalar Modes
12763 @noindent
12764 @cindex Matrix mode
12765 @cindex Scalar mode
12766 Calc sometimes makes assumptions during algebraic manipulation that
12767 are awkward or incorrect when vectors and matrices are involved.
12768 Calc has two modes, @dfn{Matrix mode} and @dfn{Scalar mode}, which
12769 modify its behavior around vectors in useful ways.
12771 @kindex m v
12772 @pindex calc-matrix-mode
12773 Press @kbd{m v} (@code{calc-matrix-mode}) once to enter Matrix mode.
12774 In this mode, all objects are assumed to be matrices unless provably
12775 otherwise.  One major effect is that Calc will no longer consider
12776 multiplication to be commutative.  (Recall that in matrix arithmetic,
12777 @samp{A*B} is not the same as @samp{B*A}.)  This assumption affects
12778 rewrite rules and algebraic simplification.  Another effect of this
12779 mode is that calculations that would normally produce constants like
12780 0 and 1 (e.g., @expr{a - a} and @expr{a / a}, respectively) will now
12781 produce function calls that represent ``generic'' zero or identity
12782 matrices: @samp{idn(0)}, @samp{idn(1)}.  The @code{idn} function
12783 @samp{idn(@var{a},@var{n})} returns @var{a} times an @var{n}x@var{n}
12784 identity matrix; if @var{n} is omitted, it doesn't know what
12785 dimension to use and so the @code{idn} call remains in symbolic
12786 form.  However, if this generic identity matrix is later combined
12787 with a matrix whose size is known, it will be converted into
12788 a true identity matrix of the appropriate size.  On the other hand,
12789 if it is combined with a scalar (as in @samp{idn(1) + 2}), Calc
12790 will assume it really was a scalar after all and produce, e.g., 3.
12792 Press @kbd{m v} a second time to get Scalar mode.  Here, objects are
12793 assumed @emph{not} to be vectors or matrices unless provably so.
12794 For example, normally adding a variable to a vector, as in
12795 @samp{[x, y, z] + a}, will leave the sum in symbolic form because
12796 as far as Calc knows, @samp{a} could represent either a number or
12797 another 3-vector.  In Scalar mode, @samp{a} is assumed to be a
12798 non-vector, and the addition is evaluated to @samp{[x+a, y+a, z+a]}.
12800 Press @kbd{m v} a third time to return to the normal mode of operation.
12802 If you press @kbd{m v} with a numeric prefix argument @var{n}, you
12803 get a special ``dimensioned'' Matrix mode in which matrices of
12804 unknown size are assumed to be @var{n}x@var{n} square matrices.
12805 Then, the function call @samp{idn(1)} will expand into an actual
12806 matrix rather than representing a ``generic'' matrix.  Simply typing
12807 @kbd{C-u m v} will get you a square Matrix mode, in which matrices of
12808 unknown size are assumed to be square matrices of unspecified size.
12810 @cindex Declaring scalar variables
12811 Of course these modes are approximations to the true state of
12812 affairs, which is probably that some quantities will be matrices
12813 and others will be scalars.  One solution is to ``declare''
12814 certain variables or functions to be scalar-valued.
12815 @xref{Declarations}, to see how to make declarations in Calc.
12817 There is nothing stopping you from declaring a variable to be
12818 scalar and then storing a matrix in it; however, if you do, the
12819 results you get from Calc may not be valid.  Suppose you let Calc
12820 get the result @samp{[x+a, y+a, z+a]} shown above, and then stored
12821 @samp{[1, 2, 3]} in @samp{a}.  The result would not be the same as
12822 for @samp{[x, y, z] + [1, 2, 3]}, but that's because you have broken
12823 your earlier promise to Calc that @samp{a} would be scalar.
12825 Another way to mix scalars and matrices is to use selections
12826 (@pxref{Selecting Subformulas}).  Use Matrix mode when operating on
12827 your formula normally; then, to apply Scalar mode to a certain part
12828 of the formula without affecting the rest just select that part,
12829 change into Scalar mode and press @kbd{=} to resimplify the part
12830 under this mode, then change back to Matrix mode before deselecting.
12832 @node Automatic Recomputation, Working Message, Matrix Mode, Calculation Modes
12833 @subsection Automatic Recomputation
12835 @noindent
12836 The @dfn{evaluates-to} operator, @samp{=>}, has the special
12837 property that any @samp{=>} formulas on the stack are recomputed
12838 whenever variable values or mode settings that might affect them
12839 are changed.  @xref{Evaluates-To Operator}.
12841 @kindex m C
12842 @pindex calc-auto-recompute
12843 The @kbd{m C} (@code{calc-auto-recompute}) command turns this
12844 automatic recomputation on and off.  If you turn it off, Calc will
12845 not update @samp{=>} operators on the stack (nor those in the
12846 attached Embedded mode buffer, if there is one).  They will not
12847 be updated unless you explicitly do so by pressing @kbd{=} or until
12848 you press @kbd{m C} to turn recomputation back on.  (While automatic
12849 recomputation is off, you can think of @kbd{m C m C} as a command
12850 to update all @samp{=>} operators while leaving recomputation off.)
12852 To update @samp{=>} operators in an Embedded buffer while
12853 automatic recomputation is off, use @w{@kbd{C-x * u}}.
12854 @xref{Embedded Mode}.
12856 @node Working Message, , Automatic Recomputation, Calculation Modes
12857 @subsection Working Messages
12859 @noindent
12860 @cindex Performance
12861 @cindex Working messages
12862 Since the Calculator is written entirely in Emacs Lisp, which is not
12863 designed for heavy numerical work, many operations are quite slow.
12864 The Calculator normally displays the message @samp{Working...} in the
12865 echo area during any command that may be slow.  In addition, iterative
12866 operations such as square roots and trigonometric functions display the
12867 intermediate result at each step.  Both of these types of messages can
12868 be disabled if you find them distracting.
12870 @kindex m w
12871 @pindex calc-working
12872 Type @kbd{m w} (@code{calc-working}) with a numeric prefix of 0 to
12873 disable all ``working'' messages.  Use a numeric prefix of 1 to enable
12874 only the plain @samp{Working...} message.  Use a numeric prefix of 2 to
12875 see intermediate results as well.  With no numeric prefix this displays
12876 the current mode.
12878 While it may seem that the ``working'' messages will slow Calc down
12879 considerably, experiments have shown that their impact is actually
12880 quite small.  But if your terminal is slow you may find that it helps
12881 to turn the messages off.
12883 @node Simplification Modes, Declarations, Calculation Modes, Mode Settings
12884 @section Simplification Modes
12886 @noindent
12887 The current @dfn{simplification mode} controls how numbers and formulas
12888 are ``normalized'' when being taken from or pushed onto the stack.
12889 Some normalizations are unavoidable, such as rounding floating-point
12890 results to the current precision, and reducing fractions to simplest
12891 form.  Others, such as simplifying a formula like @expr{a+a} (or @expr{2+3}),
12892 are done by default but can be turned off when necessary.
12894 When you press a key like @kbd{+} when @expr{2} and @expr{3} are on the
12895 stack, Calc pops these numbers, normalizes them, creates the formula
12896 @expr{2+3}, normalizes it, and pushes the result.  Of course the standard
12897 rules for normalizing @expr{2+3} will produce the result @expr{5}.
12899 Simplification mode commands consist of the lower-case @kbd{m} prefix key
12900 followed by a shifted letter.
12902 @kindex m O
12903 @pindex calc-no-simplify-mode
12904 The @kbd{m O} (@code{calc-no-simplify-mode}) command turns off all optional
12905 simplifications.  These would leave a formula like @expr{2+3} alone.  In
12906 fact, nothing except simple numbers are ever affected by normalization
12907 in this mode.
12909 @kindex m N
12910 @pindex calc-num-simplify-mode
12911 The @kbd{m N} (@code{calc-num-simplify-mode}) command turns off simplification
12912 of any formulas except those for which all arguments are constants.  For
12913 example, @expr{1+2} is simplified to @expr{3}, and @expr{a+(2-2)} is
12914 simplified to @expr{a+0} but no further, since one argument of the sum
12915 is not a constant.  Unfortunately, @expr{(a+2)-2} is @emph{not} simplified
12916 because the top-level @samp{-} operator's arguments are not both
12917 constant numbers (one of them is the formula @expr{a+2}).
12918 A constant is a number or other numeric object (such as a constant
12919 error form or modulo form), or a vector all of whose
12920 elements are constant.
12922 @kindex m D
12923 @pindex calc-default-simplify-mode
12924 The @kbd{m D} (@code{calc-default-simplify-mode}) command restores the
12925 default simplifications for all formulas.  This includes many easy and
12926 fast algebraic simplifications such as @expr{a+0} to @expr{a}, and
12927 @expr{a + 2 a} to @expr{3 a}, as well as evaluating functions like
12928 @expr{@tfn{deriv}(x^2, x)} to @expr{2 x}.
12930 @kindex m B
12931 @pindex calc-bin-simplify-mode
12932 The @kbd{m B} (@code{calc-bin-simplify-mode}) mode applies the default
12933 simplifications to a result and then, if the result is an integer,
12934 uses the @kbd{b c} (@code{calc-clip}) command to clip the integer according
12935 to the current binary word size.  @xref{Binary Functions}.  Real numbers
12936 are rounded to the nearest integer and then clipped; other kinds of
12937 results (after the default simplifications) are left alone.
12939 @kindex m A
12940 @pindex calc-alg-simplify-mode
12941 The @kbd{m A} (@code{calc-alg-simplify-mode}) mode does algebraic
12942 simplification; it applies all the default simplifications, and also
12943 the more powerful (and slower) simplifications made by @kbd{a s}
12944 (@code{calc-simplify}).  @xref{Algebraic Simplifications}.
12946 @kindex m E
12947 @pindex calc-ext-simplify-mode
12948 The @kbd{m E} (@code{calc-ext-simplify-mode}) mode does ``extended''
12949 algebraic simplification, as by the @kbd{a e} (@code{calc-simplify-extended})
12950 command.  @xref{Unsafe Simplifications}.
12952 @kindex m U
12953 @pindex calc-units-simplify-mode
12954 The @kbd{m U} (@code{calc-units-simplify-mode}) mode does units
12955 simplification; it applies the command @kbd{u s}
12956 (@code{calc-simplify-units}), which in turn
12957 is a superset of @kbd{a s}.  In this mode, variable names which
12958 are identifiable as unit names (like @samp{mm} for ``millimeters'')
12959 are simplified with their unit definitions in mind.
12961 A common technique is to set the simplification mode down to the lowest
12962 amount of simplification you will allow to be applied automatically, then
12963 use manual commands like @kbd{a s} and @kbd{c c} (@code{calc-clean}) to
12964 perform higher types of simplifications on demand.  @xref{Algebraic
12965 Definitions}, for another sample use of No-Simplification mode.
12967 @node Declarations, Display Modes, Simplification Modes, Mode Settings
12968 @section Declarations
12970 @noindent
12971 A @dfn{declaration} is a statement you make that promises you will
12972 use a certain variable or function in a restricted way.  This may
12973 give Calc the freedom to do things that it couldn't do if it had to
12974 take the fully general situation into account.
12976 @menu
12977 * Declaration Basics::
12978 * Kinds of Declarations::
12979 * Functions for Declarations::
12980 @end menu
12982 @node Declaration Basics, Kinds of Declarations, Declarations, Declarations
12983 @subsection Declaration Basics
12985 @noindent
12986 @kindex s d
12987 @pindex calc-declare-variable
12988 The @kbd{s d} (@code{calc-declare-variable}) command is the easiest
12989 way to make a declaration for a variable.  This command prompts for
12990 the variable name, then prompts for the declaration.  The default
12991 at the declaration prompt is the previous declaration, if any.
12992 You can edit this declaration, or press @kbd{C-k} to erase it and
12993 type a new declaration.  (Or, erase it and press @key{RET} to clear
12994 the declaration, effectively ``undeclaring'' the variable.)
12996 A declaration is in general a vector of @dfn{type symbols} and
12997 @dfn{range} values.  If there is only one type symbol or range value,
12998 you can write it directly rather than enclosing it in a vector.
12999 For example, @kbd{s d foo @key{RET} real @key{RET}} declares @code{foo} to
13000 be a real number, and @kbd{s d bar @key{RET} [int, const, [1..6]] @key{RET}}
13001 declares @code{bar} to be a constant integer between 1 and 6.
13002 (Actually, you can omit the outermost brackets and Calc will
13003 provide them for you: @kbd{s d bar @key{RET} int, const, [1..6] @key{RET}}.)
13005 @cindex @code{Decls} variable
13006 @vindex Decls
13007 Declarations in Calc are kept in a special variable called @code{Decls}.
13008 This variable encodes the set of all outstanding declarations in
13009 the form of a matrix.  Each row has two elements:  A variable or
13010 vector of variables declared by that row, and the declaration
13011 specifier as described above.  You can use the @kbd{s D} command to
13012 edit this variable if you wish to see all the declarations at once.
13013 @xref{Operations on Variables}, for a description of this command
13014 and the @kbd{s p} command that allows you to save your declarations
13015 permanently if you wish.
13017 Items being declared can also be function calls.  The arguments in
13018 the call are ignored; the effect is to say that this function returns
13019 values of the declared type for any valid arguments.  The @kbd{s d}
13020 command declares only variables, so if you wish to make a function
13021 declaration you will have to edit the @code{Decls} matrix yourself.
13023 For example, the declaration matrix
13025 @smallexample
13026 @group
13027 [ [ foo,       real       ]
13028   [ [j, k, n], int        ]
13029   [ f(1,2,3),  [0 .. inf) ] ]
13030 @end group
13031 @end smallexample
13033 @noindent
13034 declares that @code{foo} represents a real number, @code{j}, @code{k}
13035 and @code{n} represent integers, and the function @code{f} always
13036 returns a real number in the interval shown.
13038 @vindex All
13039 If there is a declaration for the variable @code{All}, then that
13040 declaration applies to all variables that are not otherwise declared.
13041 It does not apply to function names.  For example, using the row
13042 @samp{[All, real]} says that all your variables are real unless they
13043 are explicitly declared without @code{real} in some other row.
13044 The @kbd{s d} command declares @code{All} if you give a blank
13045 response to the variable-name prompt.
13047 @node Kinds of Declarations, Functions for Declarations, Declaration Basics, Declarations
13048 @subsection Kinds of Declarations
13050 @noindent
13051 The type-specifier part of a declaration (that is, the second prompt
13052 in the @kbd{s d} command) can be a type symbol, an interval, or a
13053 vector consisting of zero or more type symbols followed by zero or
13054 more intervals or numbers that represent the set of possible values
13055 for the variable.
13057 @smallexample
13058 @group
13059 [ [ a, [1, 2, 3, 4, 5] ]
13060   [ b, [1 .. 5]        ]
13061   [ c, [int, 1 .. 5]   ] ]
13062 @end group
13063 @end smallexample
13065 Here @code{a} is declared to contain one of the five integers shown;
13066 @code{b} is any number in the interval from 1 to 5 (any real number
13067 since we haven't specified), and @code{c} is any integer in that
13068 interval.  Thus the declarations for @code{a} and @code{c} are
13069 nearly equivalent (see below).
13071 The type-specifier can be the empty vector @samp{[]} to say that
13072 nothing is known about a given variable's value.  This is the same
13073 as not declaring the variable at all except that it overrides any
13074 @code{All} declaration which would otherwise apply.
13076 The initial value of @code{Decls} is the empty vector @samp{[]}.
13077 If @code{Decls} has no stored value or if the value stored in it
13078 is not valid, it is ignored and there are no declarations as far
13079 as Calc is concerned.  (The @kbd{s d} command will replace such a
13080 malformed value with a fresh empty matrix, @samp{[]}, before recording
13081 the new declaration.)  Unrecognized type symbols are ignored.
13083 The following type symbols describe what sorts of numbers will be
13084 stored in a variable:
13086 @table @code
13087 @item int
13088 Integers.
13089 @item numint
13090 Numerical integers.  (Integers or integer-valued floats.)
13091 @item frac
13092 Fractions.  (Rational numbers which are not integers.)
13093 @item rat
13094 Rational numbers.  (Either integers or fractions.)
13095 @item float
13096 Floating-point numbers.
13097 @item real
13098 Real numbers.  (Integers, fractions, or floats.  Actually,
13099 intervals and error forms with real components also count as
13100 reals here.)
13101 @item pos
13102 Positive real numbers.  (Strictly greater than zero.)
13103 @item nonneg
13104 Nonnegative real numbers.  (Greater than or equal to zero.)
13105 @item number
13106 Numbers.  (Real or complex.)
13107 @end table
13109 Calc uses this information to determine when certain simplifications
13110 of formulas are safe.  For example, @samp{(x^y)^z} cannot be
13111 simplified to @samp{x^(y z)} in general; for example,
13112 @samp{((-3)^2)^1:2} is 3, but @samp{(-3)^(2*1:2) = (-3)^1} is @mathit{-3}.
13113 However, this simplification @emph{is} safe if @code{z} is known
13114 to be an integer, or if @code{x} is known to be a nonnegative
13115 real number.  If you have given declarations that allow Calc to
13116 deduce either of these facts, Calc will perform this simplification
13117 of the formula.
13119 Calc can apply a certain amount of logic when using declarations.
13120 For example, @samp{(x^y)^(2n+1)} will be simplified if @code{n}
13121 has been declared @code{int}; Calc knows that an integer times an
13122 integer, plus an integer, must always be an integer.  (In fact,
13123 Calc would simplify @samp{(-x)^(2n+1)} to @samp{-(x^(2n+1))} since
13124 it is able to determine that @samp{2n+1} must be an odd integer.)
13126 Similarly, @samp{(abs(x)^y)^z} will be simplified to @samp{abs(x)^(y z)}
13127 because Calc knows that the @code{abs} function always returns a
13128 nonnegative real.  If you had a @code{myabs} function that also had
13129 this property, you could get Calc to recognize it by adding the row
13130 @samp{[myabs(), nonneg]} to the @code{Decls} matrix.
13132 One instance of this simplification is @samp{sqrt(x^2)} (since the
13133 @code{sqrt} function is effectively a one-half power).  Normally
13134 Calc leaves this formula alone.  After the command
13135 @kbd{s d x @key{RET} real @key{RET}}, however, it can simplify the formula to
13136 @samp{abs(x)}.  And after @kbd{s d x @key{RET} nonneg @key{RET}}, Calc can
13137 simplify this formula all the way to @samp{x}.
13139 If there are any intervals or real numbers in the type specifier,
13140 they comprise the set of possible values that the variable or
13141 function being declared can have.  In particular, the type symbol
13142 @code{real} is effectively the same as the range @samp{[-inf .. inf]}
13143 (note that infinity is included in the range of possible values);
13144 @code{pos} is the same as @samp{(0 .. inf]}, and @code{nonneg} is
13145 the same as @samp{[0 .. inf]}.  Saying @samp{[real, [-5 .. 5]]} is
13146 redundant because the fact that the variable is real can be
13147 deduced just from the interval, but @samp{[int, [-5 .. 5]]} and
13148 @samp{[rat, [-5 .. 5]]} are useful combinations.
13150 Note that the vector of intervals or numbers is in the same format
13151 used by Calc's set-manipulation commands.  @xref{Set Operations}.
13153 The type specifier @samp{[1, 2, 3]} is equivalent to
13154 @samp{[numint, 1, 2, 3]}, @emph{not} to @samp{[int, 1, 2, 3]}.
13155 In other words, the range of possible values means only that
13156 the variable's value must be numerically equal to a number in
13157 that range, but not that it must be equal in type as well.
13158 Calc's set operations act the same way; @samp{in(2, [1., 2., 3.])}
13159 and @samp{in(1.5, [1:2, 3:2, 5:2])} both report ``true.''
13161 If you use a conflicting combination of type specifiers, the
13162 results are unpredictable.  An example is @samp{[pos, [0 .. 5]]},
13163 where the interval does not lie in the range described by the
13164 type symbol.
13166 ``Real'' declarations mostly affect simplifications involving powers
13167 like the one described above.  Another case where they are used
13168 is in the @kbd{a P} command which returns a list of all roots of a
13169 polynomial; if the variable has been declared real, only the real
13170 roots (if any) will be included in the list.
13172 ``Integer'' declarations are used for simplifications which are valid
13173 only when certain values are integers (such as @samp{(x^y)^z}
13174 shown above).
13176 Another command that makes use of declarations is @kbd{a s}, when
13177 simplifying equations and inequalities.  It will cancel @code{x}
13178 from both sides of @samp{a x = b x} only if it is sure @code{x}
13179 is non-zero, say, because it has a @code{pos} declaration.
13180 To declare specifically that @code{x} is real and non-zero,
13181 use @samp{[[-inf .. 0), (0 .. inf]]}.  (There is no way in the
13182 current notation to say that @code{x} is nonzero but not necessarily
13183 real.)  The @kbd{a e} command does ``unsafe'' simplifications,
13184 including cancelling @samp{x} from the equation when @samp{x} is
13185 not known to be nonzero.
13187 Another set of type symbols distinguish between scalars and vectors.
13189 @table @code
13190 @item scalar
13191 The value is not a vector.
13192 @item vector
13193 The value is a vector.
13194 @item matrix
13195 The value is a matrix (a rectangular vector of vectors).
13196 @item sqmatrix
13197 The value is a square matrix.
13198 @end table
13200 These type symbols can be combined with the other type symbols
13201 described above; @samp{[int, matrix]} describes an object which
13202 is a matrix of integers.
13204 Scalar/vector declarations are used to determine whether certain
13205 algebraic operations are safe.  For example, @samp{[a, b, c] + x}
13206 is normally not simplified to @samp{[a + x, b + x, c + x]}, but
13207 it will be if @code{x} has been declared @code{scalar}.  On the
13208 other hand, multiplication is usually assumed to be commutative,
13209 but the terms in @samp{x y} will never be exchanged if both @code{x}
13210 and @code{y} are known to be vectors or matrices.  (Calc currently
13211 never distinguishes between @code{vector} and @code{matrix}
13212 declarations.)
13214 @xref{Matrix Mode}, for a discussion of Matrix mode and
13215 Scalar mode, which are similar to declaring @samp{[All, matrix]}
13216 or @samp{[All, scalar]} but much more convenient.
13218 One more type symbol that is recognized is used with the @kbd{H a d}
13219 command for taking total derivatives of a formula.  @xref{Calculus}.
13221 @table @code
13222 @item const
13223 The value is a constant with respect to other variables.
13224 @end table
13226 Calc does not check the declarations for a variable when you store
13227 a value in it.  However, storing @mathit{-3.5} in a variable that has
13228 been declared @code{pos}, @code{int}, or @code{matrix} may have
13229 unexpected effects; Calc may evaluate @samp{sqrt(x^2)} to @expr{3.5}
13230 if it substitutes the value first, or to @expr{-3.5} if @code{x}
13231 was declared @code{pos} and the formula @samp{sqrt(x^2)} is
13232 simplified to @samp{x} before the value is substituted.  Before
13233 using a variable for a new purpose, it is best to use @kbd{s d}
13234 or @kbd{s D} to check to make sure you don't still have an old
13235 declaration for the variable that will conflict with its new meaning.
13237 @node Functions for Declarations, , Kinds of Declarations, Declarations
13238 @subsection Functions for Declarations
13240 @noindent
13241 Calc has a set of functions for accessing the current declarations
13242 in a convenient manner.  These functions return 1 if the argument
13243 can be shown to have the specified property, or 0 if the argument
13244 can be shown @emph{not} to have that property; otherwise they are
13245 left unevaluated.  These functions are suitable for use with rewrite
13246 rules (@pxref{Conditional Rewrite Rules}) or programming constructs
13247 (@pxref{Conditionals in Macros}).  They can be entered only using
13248 algebraic notation.  @xref{Logical Operations}, for functions
13249 that perform other tests not related to declarations.
13251 For example, @samp{dint(17)} returns 1 because 17 is an integer, as
13252 do @samp{dint(n)} and @samp{dint(2 n - 3)} if @code{n} has been declared
13253 @code{int}, but @samp{dint(2.5)} and @samp{dint(n + 0.5)} return 0.
13254 Calc consults knowledge of its own built-in functions as well as your
13255 own declarations: @samp{dint(floor(x))} returns 1.
13257 @ignore
13258 @starindex
13259 @end ignore
13260 @tindex dint
13261 @ignore
13262 @starindex
13263 @end ignore
13264 @tindex dnumint
13265 @ignore
13266 @starindex
13267 @end ignore
13268 @tindex dnatnum
13269 The @code{dint} function checks if its argument is an integer.
13270 The @code{dnatnum} function checks if its argument is a natural
13271 number, i.e., a nonnegative integer.  The @code{dnumint} function
13272 checks if its argument is numerically an integer, i.e., either an
13273 integer or an integer-valued float.  Note that these and the other
13274 data type functions also accept vectors or matrices composed of
13275 suitable elements, and that real infinities @samp{inf} and @samp{-inf}
13276 are considered to be integers for the purposes of these functions.
13278 @ignore
13279 @starindex
13280 @end ignore
13281 @tindex drat
13282 The @code{drat} function checks if its argument is rational, i.e.,
13283 an integer or fraction.  Infinities count as rational, but intervals
13284 and error forms do not.
13286 @ignore
13287 @starindex
13288 @end ignore
13289 @tindex dreal
13290 The @code{dreal} function checks if its argument is real.  This
13291 includes integers, fractions, floats, real error forms, and intervals.
13293 @ignore
13294 @starindex
13295 @end ignore
13296 @tindex dimag
13297 The @code{dimag} function checks if its argument is imaginary,
13298 i.e., is mathematically equal to a real number times @expr{i}.
13300 @ignore
13301 @starindex
13302 @end ignore
13303 @tindex dpos
13304 @ignore
13305 @starindex
13306 @end ignore
13307 @tindex dneg
13308 @ignore
13309 @starindex
13310 @end ignore
13311 @tindex dnonneg
13312 The @code{dpos} function checks for positive (but nonzero) reals.
13313 The @code{dneg} function checks for negative reals.  The @code{dnonneg}
13314 function checks for nonnegative reals, i.e., reals greater than or
13315 equal to zero.  Note that the @kbd{a s} command can simplify an
13316 expression like @expr{x > 0} to 1 or 0 using @code{dpos}, and that
13317 @kbd{a s} is effectively applied to all conditions in rewrite rules,
13318 so the actual functions @code{dpos}, @code{dneg}, and @code{dnonneg}
13319 are rarely necessary.
13321 @ignore
13322 @starindex
13323 @end ignore
13324 @tindex dnonzero
13325 The @code{dnonzero} function checks that its argument is nonzero.
13326 This includes all nonzero real or complex numbers, all intervals that
13327 do not include zero, all nonzero modulo forms, vectors all of whose
13328 elements are nonzero, and variables or formulas whose values can be
13329 deduced to be nonzero.  It does not include error forms, since they
13330 represent values which could be anything including zero.  (This is
13331 also the set of objects considered ``true'' in conditional contexts.)
13333 @ignore
13334 @starindex
13335 @end ignore
13336 @tindex deven
13337 @ignore
13338 @starindex
13339 @end ignore
13340 @tindex dodd
13341 The @code{deven} function returns 1 if its argument is known to be
13342 an even integer (or integer-valued float); it returns 0 if its argument
13343 is known not to be even (because it is known to be odd or a non-integer).
13344 The @kbd{a s} command uses this to simplify a test of the form
13345 @samp{x % 2 = 0}.  There is also an analogous @code{dodd} function.
13347 @ignore
13348 @starindex
13349 @end ignore
13350 @tindex drange
13351 The @code{drange} function returns a set (an interval or a vector
13352 of intervals and/or numbers; @pxref{Set Operations}) that describes
13353 the set of possible values of its argument.  If the argument is
13354 a variable or a function with a declaration, the range is copied
13355 from the declaration.  Otherwise, the possible signs of the
13356 expression are determined using a method similar to @code{dpos},
13357 etc., and a suitable set like @samp{[0 .. inf]} is returned.  If
13358 the expression is not provably real, the @code{drange} function
13359 remains unevaluated.
13361 @ignore
13362 @starindex
13363 @end ignore
13364 @tindex dscalar
13365 The @code{dscalar} function returns 1 if its argument is provably
13366 scalar, or 0 if its argument is provably non-scalar.  It is left
13367 unevaluated if this cannot be determined.  (If Matrix mode or Scalar
13368 mode is in effect, this function returns 1 or 0, respectively,
13369 if it has no other information.)  When Calc interprets a condition
13370 (say, in a rewrite rule) it considers an unevaluated formula to be
13371 ``false.''  Thus, @samp{dscalar(a)} is ``true'' only if @code{a} is
13372 provably scalar, and @samp{!dscalar(a)} is ``true'' only if @code{a}
13373 is provably non-scalar; both are ``false'' if there is insufficient
13374 information to tell.
13376 @node Display Modes, Language Modes, Declarations, Mode Settings
13377 @section Display Modes
13379 @noindent
13380 The commands in this section are two-key sequences beginning with the
13381 @kbd{d} prefix.  The @kbd{d l} (@code{calc-line-numbering}) and @kbd{d b}
13382 (@code{calc-line-breaking}) commands are described elsewhere;
13383 @pxref{Stack Basics} and @pxref{Normal Language Modes}, respectively.
13384 Display formats for vectors and matrices are also covered elsewhere;
13385 @pxref{Vector and Matrix Formats}.
13387 One thing all display modes have in common is their treatment of the
13388 @kbd{H} prefix.  This prefix causes any mode command that would normally
13389 refresh the stack to leave the stack display alone.  The word ``Dirty''
13390 will appear in the mode line when Calc thinks the stack display may not
13391 reflect the latest mode settings.
13393 @kindex d @key{RET}
13394 @pindex calc-refresh-top
13395 The @kbd{d @key{RET}} (@code{calc-refresh-top}) command reformats the
13396 top stack entry according to all the current modes.  Positive prefix
13397 arguments reformat the top @var{n} entries; negative prefix arguments
13398 reformat the specified entry, and a prefix of zero is equivalent to
13399 @kbd{d @key{SPC}} (@code{calc-refresh}), which reformats the entire stack.
13400 For example, @kbd{H d s M-2 d @key{RET}} changes to scientific notation
13401 but reformats only the top two stack entries in the new mode.
13403 The @kbd{I} prefix has another effect on the display modes.  The mode
13404 is set only temporarily; the top stack entry is reformatted according
13405 to that mode, then the original mode setting is restored.  In other
13406 words, @kbd{I d s} is equivalent to @kbd{H d s d @key{RET} H d (@var{old mode})}.
13408 @menu
13409 * Radix Modes::
13410 * Grouping Digits::
13411 * Float Formats::
13412 * Complex Formats::
13413 * Fraction Formats::
13414 * HMS Formats::
13415 * Date Formats::
13416 * Truncating the Stack::
13417 * Justification::
13418 * Labels::
13419 @end menu
13421 @node Radix Modes, Grouping Digits, Display Modes, Display Modes
13422 @subsection Radix Modes
13424 @noindent
13425 @cindex Radix display
13426 @cindex Non-decimal numbers
13427 @cindex Decimal and non-decimal numbers
13428 Calc normally displays numbers in decimal (@dfn{base-10} or @dfn{radix-10})
13429 notation.  Calc can actually display in any radix from two (binary) to 36.
13430 When the radix is above 10, the letters @code{A} to @code{Z} are used as
13431 digits.  When entering such a number, letter keys are interpreted as
13432 potential digits rather than terminating numeric entry mode.
13434 @kindex d 2
13435 @kindex d 8
13436 @kindex d 6
13437 @kindex d 0
13438 @cindex Hexadecimal integers
13439 @cindex Octal integers
13440 The key sequences @kbd{d 2}, @kbd{d 8}, @kbd{d 6}, and @kbd{d 0} select
13441 binary, octal, hexadecimal, and decimal as the current display radix,
13442 respectively.  Numbers can always be entered in any radix, though the
13443 current radix is used as a default if you press @kbd{#} without any initial
13444 digits.  A number entered without a @kbd{#} is @emph{always} interpreted
13445 as decimal.
13447 @kindex d r
13448 @pindex calc-radix
13449 To set the radix generally, use @kbd{d r} (@code{calc-radix}) and enter
13450 an integer from 2 to 36.  You can specify the radix as a numeric prefix
13451 argument; otherwise you will be prompted for it.
13453 @kindex d z
13454 @pindex calc-leading-zeros
13455 @cindex Leading zeros
13456 Integers normally are displayed with however many digits are necessary to
13457 represent the integer and no more.  The @kbd{d z} (@code{calc-leading-zeros})
13458 command causes integers to be padded out with leading zeros according to the
13459 current binary word size.  (@xref{Binary Functions}, for a discussion of
13460 word size.)  If the absolute value of the word size is @expr{w}, all integers
13461 are displayed with at least enough digits to represent 
13462 @texline @math{2^w-1}
13463 @infoline @expr{(2^w)-1} 
13464 in the current radix.  (Larger integers will still be displayed in their
13465 entirety.) 
13467 @node Grouping Digits, Float Formats, Radix Modes, Display Modes
13468 @subsection Grouping Digits
13470 @noindent
13471 @kindex d g
13472 @pindex calc-group-digits
13473 @cindex Grouping digits
13474 @cindex Digit grouping
13475 Long numbers can be hard to read if they have too many digits.  For
13476 example, the factorial of 30 is 33 digits long!  Press @kbd{d g}
13477 (@code{calc-group-digits}) to enable @dfn{Grouping} mode, in which digits
13478 are displayed in clumps of 3 or 4 (depending on the current radix)
13479 separated by commas.
13481 The @kbd{d g} command toggles grouping on and off.
13482 With a numeric prefix of 0, this command displays the current state of
13483 the grouping flag; with an argument of minus one it disables grouping;
13484 with a positive argument @expr{N} it enables grouping on every @expr{N}
13485 digits.  For floating-point numbers, grouping normally occurs only
13486 before the decimal point.  A negative prefix argument @expr{-N} enables
13487 grouping every @expr{N} digits both before and after the decimal point.
13489 @kindex d ,
13490 @pindex calc-group-char
13491 The @kbd{d ,} (@code{calc-group-char}) command allows you to choose any
13492 character as the grouping separator.  The default is the comma character.
13493 If you find it difficult to read vectors of large integers grouped with
13494 commas, you may wish to use spaces or some other character instead.
13495 This command takes the next character you type, whatever it is, and
13496 uses it as the digit separator.  As a special case, @kbd{d , \} selects
13497 @samp{\,} (@TeX{}'s thin-space symbol) as the digit separator.
13499 Please note that grouped numbers will not generally be parsed correctly
13500 if re-read in textual form, say by the use of @kbd{C-x * y} and @kbd{C-x * g}.
13501 (@xref{Kill and Yank}, for details on these commands.)  One exception is
13502 the @samp{\,} separator, which doesn't interfere with parsing because it
13503 is ignored by @TeX{} language mode.
13505 @node Float Formats, Complex Formats, Grouping Digits, Display Modes
13506 @subsection Float Formats
13508 @noindent
13509 Floating-point quantities are normally displayed in standard decimal
13510 form, with scientific notation used if the exponent is especially high
13511 or low.  All significant digits are normally displayed.  The commands
13512 in this section allow you to choose among several alternative display
13513 formats for floats.
13515 @kindex d n
13516 @pindex calc-normal-notation
13517 The @kbd{d n} (@code{calc-normal-notation}) command selects the normal
13518 display format.  All significant figures in a number are displayed.
13519 With a positive numeric prefix, numbers are rounded if necessary to
13520 that number of significant digits.  With a negative numerix prefix,
13521 the specified number of significant digits less than the current
13522 precision is used.  (Thus @kbd{C-u -2 d n} displays 10 digits if the
13523 current precision is 12.)
13525 @kindex d f
13526 @pindex calc-fix-notation
13527 The @kbd{d f} (@code{calc-fix-notation}) command selects fixed-point
13528 notation.  The numeric argument is the number of digits after the
13529 decimal point, zero or more.  This format will relax into scientific
13530 notation if a nonzero number would otherwise have been rounded all the
13531 way to zero.  Specifying a negative number of digits is the same as
13532 for a positive number, except that small nonzero numbers will be rounded
13533 to zero rather than switching to scientific notation.
13535 @kindex d s
13536 @pindex calc-sci-notation
13537 @cindex Scientific notation, display of
13538 The @kbd{d s} (@code{calc-sci-notation}) command selects scientific
13539 notation.  A positive argument sets the number of significant figures
13540 displayed, of which one will be before and the rest after the decimal
13541 point.  A negative argument works the same as for @kbd{d n} format.
13542 The default is to display all significant digits.
13544 @kindex d e
13545 @pindex calc-eng-notation
13546 @cindex Engineering notation, display of
13547 The @kbd{d e} (@code{calc-eng-notation}) command selects engineering
13548 notation.  This is similar to scientific notation except that the
13549 exponent is rounded down to a multiple of three, with from one to three
13550 digits before the decimal point.  An optional numeric prefix sets the
13551 number of significant digits to display, as for @kbd{d s}.
13553 It is important to distinguish between the current @emph{precision} and
13554 the current @emph{display format}.  After the commands @kbd{C-u 10 p}
13555 and @kbd{C-u 6 d n} the Calculator computes all results to ten
13556 significant figures but displays only six.  (In fact, intermediate
13557 calculations are often carried to one or two more significant figures,
13558 but values placed on the stack will be rounded down to ten figures.)
13559 Numbers are never actually rounded to the display precision for storage,
13560 except by commands like @kbd{C-k} and @kbd{C-x * y} which operate on the
13561 actual displayed text in the Calculator buffer.
13563 @kindex d .
13564 @pindex calc-point-char
13565 The @kbd{d .} (@code{calc-point-char}) command selects the character used
13566 as a decimal point.  Normally this is a period; users in some countries
13567 may wish to change this to a comma.  Note that this is only a display
13568 style; on entry, periods must always be used to denote floating-point
13569 numbers, and commas to separate elements in a list.
13571 @node Complex Formats, Fraction Formats, Float Formats, Display Modes
13572 @subsection Complex Formats
13574 @noindent
13575 @kindex d c
13576 @pindex calc-complex-notation
13577 There are three supported notations for complex numbers in rectangular
13578 form.  The default is as a pair of real numbers enclosed in parentheses
13579 and separated by a comma: @samp{(a,b)}.  The @kbd{d c}
13580 (@code{calc-complex-notation}) command selects this style.
13582 @kindex d i
13583 @pindex calc-i-notation
13584 @kindex d j
13585 @pindex calc-j-notation
13586 The other notations are @kbd{d i} (@code{calc-i-notation}), in which
13587 numbers are displayed in @samp{a+bi} form, and @kbd{d j}
13588 (@code{calc-j-notation}) which displays the form @samp{a+bj} preferred
13589 in some disciplines.
13591 @cindex @code{i} variable
13592 @vindex i
13593 Complex numbers are normally entered in @samp{(a,b)} format.
13594 If you enter @samp{2+3i} as an algebraic formula, it will be stored as
13595 the formula @samp{2 + 3 * i}.  However, if you use @kbd{=} to evaluate
13596 this formula and you have not changed the variable @samp{i}, the @samp{i}
13597 will be interpreted as @samp{(0,1)} and the formula will be simplified
13598 to @samp{(2,3)}.  Other commands (like @code{calc-sin}) will @emph{not}
13599 interpret the formula @samp{2 + 3 * i} as a complex number.
13600 @xref{Variables}, under ``special constants.''
13602 @node Fraction Formats, HMS Formats, Complex Formats, Display Modes
13603 @subsection Fraction Formats
13605 @noindent
13606 @kindex d o
13607 @pindex calc-over-notation
13608 Display of fractional numbers is controlled by the @kbd{d o}
13609 (@code{calc-over-notation}) command.  By default, a number like
13610 eight thirds is displayed in the form @samp{8:3}.  The @kbd{d o} command
13611 prompts for a one- or two-character format.  If you give one character,
13612 that character is used as the fraction separator.  Common separators are
13613 @samp{:} and @samp{/}.  (During input of numbers, the @kbd{:} key must be
13614 used regardless of the display format; in particular, the @kbd{/} is used
13615 for RPN-style division, @emph{not} for entering fractions.)
13617 If you give two characters, fractions use ``integer-plus-fractional-part''
13618 notation.  For example, the format @samp{+/} would display eight thirds
13619 as @samp{2+2/3}.  If two colons are present in a number being entered,
13620 the number is interpreted in this form (so that the entries @kbd{2:2:3}
13621 and @kbd{8:3} are equivalent).
13623 It is also possible to follow the one- or two-character format with
13624 a number.  For example:  @samp{:10} or @samp{+/3}.  In this case,
13625 Calc adjusts all fractions that are displayed to have the specified
13626 denominator, if possible.  Otherwise it adjusts the denominator to
13627 be a multiple of the specified value.  For example, in @samp{:6} mode
13628 the fraction @expr{1:6} will be unaffected, but @expr{2:3} will be
13629 displayed as @expr{4:6}, @expr{1:2} will be displayed as @expr{3:6},
13630 and @expr{1:8} will be displayed as @expr{3:24}.  Integers are also
13631 affected by this mode:  3 is displayed as @expr{18:6}.  Note that the
13632 format @samp{:1} writes fractions the same as @samp{:}, but it writes
13633 integers as @expr{n:1}.
13635 The fraction format does not affect the way fractions or integers are
13636 stored, only the way they appear on the screen.  The fraction format
13637 never affects floats.
13639 @node HMS Formats, Date Formats, Fraction Formats, Display Modes
13640 @subsection HMS Formats
13642 @noindent
13643 @kindex d h
13644 @pindex calc-hms-notation
13645 The @kbd{d h} (@code{calc-hms-notation}) command controls the display of
13646 HMS (hours-minutes-seconds) forms.  It prompts for a string which
13647 consists basically of an ``hours'' marker, optional punctuation, a
13648 ``minutes'' marker, more optional punctuation, and a ``seconds'' marker.
13649 Punctuation is zero or more spaces, commas, or semicolons.  The hours
13650 marker is one or more non-punctuation characters.  The minutes and
13651 seconds markers must be single non-punctuation characters.
13653 The default HMS format is @samp{@@ ' "}, producing HMS values of the form
13654 @samp{23@@ 30' 15.75"}.  The format @samp{deg, ms} would display this same
13655 value as @samp{23deg, 30m15.75s}.  During numeric entry, the @kbd{h} or @kbd{o}
13656 keys are recognized as synonyms for @kbd{@@} regardless of display format.
13657 The @kbd{m} and @kbd{s} keys are recognized as synonyms for @kbd{'} and
13658 @kbd{"}, respectively, but only if an @kbd{@@} (or @kbd{h} or @kbd{o}) has
13659 already been typed; otherwise, they have their usual meanings
13660 (@kbd{m-} prefix and @kbd{s-} prefix).  Thus, @kbd{5 "}, @kbd{0 @@ 5 "}, and
13661 @kbd{0 h 5 s} are some of the ways to enter the quantity ``five seconds.''
13662 The @kbd{'} key is recognized as ``minutes'' only if @kbd{@@} (or @kbd{h} or
13663 @kbd{o}) has already been pressed; otherwise it means to switch to algebraic
13664 entry.
13666 @node Date Formats, Truncating the Stack, HMS Formats, Display Modes
13667 @subsection Date Formats
13669 @noindent
13670 @kindex d d
13671 @pindex calc-date-notation
13672 The @kbd{d d} (@code{calc-date-notation}) command controls the display
13673 of date forms (@pxref{Date Forms}).  It prompts for a string which
13674 contains letters that represent the various parts of a date and time.
13675 To show which parts should be omitted when the form represents a pure
13676 date with no time, parts of the string can be enclosed in @samp{< >}
13677 marks.  If you don't include @samp{< >} markers in the format, Calc
13678 guesses at which parts, if any, should be omitted when formatting
13679 pure dates.
13681 The default format is:  @samp{<H:mm:SSpp >Www Mmm D, YYYY}.
13682 An example string in this format is @samp{3:32pm Wed Jan 9, 1991}.
13683 If you enter a blank format string, this default format is
13684 reestablished.
13686 Calc uses @samp{< >} notation for nameless functions as well as for
13687 dates.  @xref{Specifying Operators}.  To avoid confusion with nameless
13688 functions, your date formats should avoid using the @samp{#} character.
13690 @menu
13691 * Date Formatting Codes::
13692 * Free-Form Dates::
13693 * Standard Date Formats::
13694 @end menu
13696 @node Date Formatting Codes, Free-Form Dates, Date Formats, Date Formats
13697 @subsubsection Date Formatting Codes
13699 @noindent
13700 When displaying a date, the current date format is used.  All
13701 characters except for letters and @samp{<} and @samp{>} are
13702 copied literally when dates are formatted.  The portion between
13703 @samp{< >} markers is omitted for pure dates, or included for
13704 date/time forms.  Letters are interpreted according to the table
13705 below.
13707 When dates are read in during algebraic entry, Calc first tries to
13708 match the input string to the current format either with or without
13709 the time part.  The punctuation characters (including spaces) must
13710 match exactly; letter fields must correspond to suitable text in
13711 the input.  If this doesn't work, Calc checks if the input is a
13712 simple number; if so, the number is interpreted as a number of days
13713 since Jan 1, 1 AD.  Otherwise, Calc tries a much more relaxed and
13714 flexible algorithm which is described in the next section.
13716 Weekday names are ignored during reading.
13718 Two-digit year numbers are interpreted as lying in the range
13719 from 1941 to 2039.  Years outside that range are always
13720 entered and displayed in full.  Year numbers with a leading
13721 @samp{+} sign are always interpreted exactly, allowing the
13722 entry and display of the years 1 through 99 AD.
13724 Here is a complete list of the formatting codes for dates:
13726 @table @asis
13727 @item Y
13728 Year:  ``91'' for 1991, ``7'' for 2007, ``+23'' for 23 AD.
13729 @item YY
13730 Year:  ``91'' for 1991, ``07'' for 2007, ``+23'' for 23 AD.
13731 @item BY
13732 Year:  ``91'' for 1991, `` 7'' for 2007, ``+23'' for 23 AD.
13733 @item YYY
13734 Year:  ``1991'' for 1991, ``23'' for 23 AD.
13735 @item YYYY
13736 Year:  ``1991'' for 1991, ``+23'' for 23 AD.
13737 @item aa
13738 Year:  ``ad'' or blank.
13739 @item AA
13740 Year:  ``AD'' or blank.
13741 @item aaa
13742 Year:  ``ad '' or blank.  (Note trailing space.)
13743 @item AAA
13744 Year:  ``AD '' or blank.
13745 @item aaaa
13746 Year:  ``a.d.'' or blank.
13747 @item AAAA
13748 Year:  ``A.D.'' or blank.
13749 @item bb
13750 Year:  ``bc'' or blank.
13751 @item BB
13752 Year:  ``BC'' or blank.
13753 @item bbb
13754 Year:  `` bc'' or blank.  (Note leading space.)
13755 @item BBB
13756 Year:  `` BC'' or blank.
13757 @item bbbb
13758 Year:  ``b.c.'' or blank.
13759 @item BBBB
13760 Year:  ``B.C.'' or blank.
13761 @item M
13762 Month:  ``8'' for August.
13763 @item MM
13764 Month:  ``08'' for August.
13765 @item BM
13766 Month:  `` 8'' for August.
13767 @item MMM
13768 Month:  ``AUG'' for August.
13769 @item Mmm
13770 Month:  ``Aug'' for August.
13771 @item mmm
13772 Month:  ``aug'' for August.
13773 @item MMMM
13774 Month:  ``AUGUST'' for August.
13775 @item Mmmm
13776 Month:  ``August'' for August.
13777 @item D
13778 Day:  ``7'' for 7th day of month.
13779 @item DD
13780 Day:  ``07'' for 7th day of month.
13781 @item BD
13782 Day:  `` 7'' for 7th day of month.
13783 @item W
13784 Weekday:  ``0'' for Sunday, ``6'' for Saturday.
13785 @item WWW
13786 Weekday:  ``SUN'' for Sunday.
13787 @item Www
13788 Weekday:  ``Sun'' for Sunday.
13789 @item www
13790 Weekday:  ``sun'' for Sunday.
13791 @item WWWW
13792 Weekday:  ``SUNDAY'' for Sunday.
13793 @item Wwww
13794 Weekday:  ``Sunday'' for Sunday.
13795 @item d
13796 Day of year:  ``34'' for Feb. 3.
13797 @item ddd
13798 Day of year:  ``034'' for Feb. 3.
13799 @item bdd
13800 Day of year:  `` 34'' for Feb. 3.
13801 @item h
13802 Hour:  ``5'' for 5 AM; ``17'' for 5 PM.
13803 @item hh
13804 Hour:  ``05'' for 5 AM; ``17'' for 5 PM.
13805 @item bh
13806 Hour:  `` 5'' for 5 AM; ``17'' for 5 PM.
13807 @item H
13808 Hour:  ``5'' for 5 AM and 5 PM.
13809 @item HH
13810 Hour:  ``05'' for 5 AM and 5 PM.
13811 @item BH
13812 Hour:  `` 5'' for 5 AM and 5 PM.
13813 @item p
13814 AM/PM:  ``a'' or ``p''.
13815 @item P
13816 AM/PM:  ``A'' or ``P''.
13817 @item pp
13818 AM/PM:  ``am'' or ``pm''.
13819 @item PP
13820 AM/PM:  ``AM'' or ``PM''.
13821 @item pppp
13822 AM/PM:  ``a.m.'' or ``p.m.''.
13823 @item PPPP
13824 AM/PM:  ``A.M.'' or ``P.M.''.
13825 @item m
13826 Minutes:  ``7'' for 7.
13827 @item mm
13828 Minutes:  ``07'' for 7.
13829 @item bm
13830 Minutes:  `` 7'' for 7.
13831 @item s
13832 Seconds:  ``7'' for 7;  ``7.23'' for 7.23.
13833 @item ss
13834 Seconds:  ``07'' for 7;  ``07.23'' for 7.23.
13835 @item bs
13836 Seconds:  `` 7'' for 7;  `` 7.23'' for 7.23.
13837 @item SS
13838 Optional seconds:  ``07'' for 7;  blank for 0.
13839 @item BS
13840 Optional seconds:  `` 7'' for 7;  blank for 0.
13841 @item N
13842 Numeric date/time:  ``726842.25'' for 6:00am Wed Jan 9, 1991.
13843 @item n
13844 Numeric date:  ``726842'' for any time on Wed Jan 9, 1991.
13845 @item J
13846 Julian date/time:  ``2448265.75'' for 6:00am Wed Jan 9, 1991.
13847 @item j
13848 Julian date:  ``2448266'' for any time on Wed Jan 9, 1991.
13849 @item U
13850 Unix time:  ``663400800'' for 6:00am Wed Jan 9, 1991.
13851 @item X
13852 Brackets suppression.  An ``X'' at the front of the format
13853 causes the surrounding @w{@samp{< >}} delimiters to be omitted
13854 when formatting dates.  Note that the brackets are still
13855 required for algebraic entry.
13856 @end table
13858 If ``SS'' or ``BS'' (optional seconds) is preceded by a colon, the
13859 colon is also omitted if the seconds part is zero.
13861 If ``bb,'' ``bbb'' or ``bbbb'' or their upper-case equivalents
13862 appear in the format, then negative year numbers are displayed
13863 without a minus sign.  Note that ``aa'' and ``bb'' are mutually
13864 exclusive.  Some typical usages would be @samp{YYYY AABB};
13865 @samp{AAAYYYYBBB}; @samp{YYYYBBB}.
13867 The formats ``YY,'' ``YYYY,'' ``MM,'' ``DD,'' ``ddd,'' ``hh,'' ``HH,''
13868 ``mm,'' ``ss,'' and ``SS'' actually match any number of digits during
13869 reading unless several of these codes are strung together with no
13870 punctuation in between, in which case the input must have exactly as
13871 many digits as there are letters in the format.
13873 The ``j,'' ``J,'' and ``U'' formats do not make any time zone
13874 adjustment.  They effectively use @samp{julian(x,0)} and
13875 @samp{unixtime(x,0)} to make the conversion; @pxref{Date Arithmetic}.
13877 @node Free-Form Dates, Standard Date Formats, Date Formatting Codes, Date Formats
13878 @subsubsection Free-Form Dates
13880 @noindent
13881 When reading a date form during algebraic entry, Calc falls back
13882 on the algorithm described here if the input does not exactly
13883 match the current date format.  This algorithm generally
13884 ``does the right thing'' and you don't have to worry about it,
13885 but it is described here in full detail for the curious.
13887 Calc does not distinguish between upper- and lower-case letters
13888 while interpreting dates.
13890 First, the time portion, if present, is located somewhere in the
13891 text and then removed.  The remaining text is then interpreted as
13892 the date.
13894 A time is of the form @samp{hh:mm:ss}, possibly with the seconds
13895 part omitted and possibly with an AM/PM indicator added to indicate
13896 12-hour time.  If the AM/PM is present, the minutes may also be
13897 omitted.  The AM/PM part may be any of the words @samp{am},
13898 @samp{pm}, @samp{noon}, or @samp{midnight}; each of these may be
13899 abbreviated to one letter, and the alternate forms @samp{a.m.},
13900 @samp{p.m.}, and @samp{mid} are also understood.  Obviously
13901 @samp{noon} and @samp{midnight} are allowed only on 12:00:00.
13902 The words @samp{noon}, @samp{mid}, and @samp{midnight} are also
13903 recognized with no number attached.
13905 If there is no AM/PM indicator, the time is interpreted in 24-hour
13906 format.
13908 To read the date portion, all words and numbers are isolated
13909 from the string; other characters are ignored.  All words must
13910 be either month names or day-of-week names (the latter of which
13911 are ignored).  Names can be written in full or as three-letter
13912 abbreviations.
13914 Large numbers, or numbers with @samp{+} or @samp{-} signs,
13915 are interpreted as years.  If one of the other numbers is
13916 greater than 12, then that must be the day and the remaining
13917 number in the input is therefore the month.  Otherwise, Calc
13918 assumes the month, day and year are in the same order that they
13919 appear in the current date format.  If the year is omitted, the
13920 current year is taken from the system clock.
13922 If there are too many or too few numbers, or any unrecognizable
13923 words, then the input is rejected.
13925 If there are any large numbers (of five digits or more) other than
13926 the year, they are ignored on the assumption that they are something
13927 like Julian dates that were included along with the traditional
13928 date components when the date was formatted.
13930 One of the words @samp{ad}, @samp{a.d.}, @samp{bc}, or @samp{b.c.}
13931 may optionally be used; the latter two are equivalent to a
13932 minus sign on the year value.
13934 If you always enter a four-digit year, and use a name instead
13935 of a number for the month, there is no danger of ambiguity.
13937 @node Standard Date Formats, , Free-Form Dates, Date Formats
13938 @subsubsection Standard Date Formats
13940 @noindent
13941 There are actually ten standard date formats, numbered 0 through 9.
13942 Entering a blank line at the @kbd{d d} command's prompt gives
13943 you format number 1, Calc's usual format.  You can enter any digit
13944 to select the other formats.
13946 To create your own standard date formats, give a numeric prefix
13947 argument from 0 to 9 to the @w{@kbd{d d}} command.  The format you
13948 enter will be recorded as the new standard format of that
13949 number, as well as becoming the new current date format.
13950 You can save your formats permanently with the @w{@kbd{m m}}
13951 command (@pxref{Mode Settings}).
13953 @table @asis
13954 @item 0
13955 @samp{N}  (Numerical format)
13956 @item 1
13957 @samp{<H:mm:SSpp >Www Mmm D, YYYY}  (American format)
13958 @item 2
13959 @samp{D Mmm YYYY<, h:mm:SS>}  (European format)
13960 @item 3
13961 @samp{Www Mmm BD< hh:mm:ss> YYYY}  (Unix written date format)
13962 @item 4
13963 @samp{M/D/Y< H:mm:SSpp>}  (American slashed format)
13964 @item 5
13965 @samp{D.M.Y< h:mm:SS>}  (European dotted format)
13966 @item 6
13967 @samp{M-D-Y< H:mm:SSpp>}  (American dashed format)
13968 @item 7
13969 @samp{D-M-Y< h:mm:SS>}  (European dashed format)
13970 @item 8
13971 @samp{j<, h:mm:ss>}  (Julian day plus time)
13972 @item 9
13973 @samp{YYddd< hh:mm:ss>}  (Year-day format)
13974 @end table
13976 @node Truncating the Stack, Justification, Date Formats, Display Modes
13977 @subsection Truncating the Stack
13979 @noindent
13980 @kindex d t
13981 @pindex calc-truncate-stack
13982 @cindex Truncating the stack
13983 @cindex Narrowing the stack
13984 The @kbd{d t} (@code{calc-truncate-stack}) command moves the @samp{.}@:
13985 line that marks the top-of-stack up or down in the Calculator buffer.
13986 The number right above that line is considered to the be at the top of
13987 the stack.  Any numbers below that line are ``hidden'' from all stack
13988 operations (although still visible to the user).  This is similar to the
13989 Emacs ``narrowing'' feature, except that the values below the @samp{.}
13990 are @emph{visible}, just temporarily frozen.  This feature allows you to
13991 keep several independent calculations running at once in different parts
13992 of the stack, or to apply a certain command to an element buried deep in
13993 the stack.
13995 Pressing @kbd{d t} by itself moves the @samp{.} to the line the cursor
13996 is on.  Thus, this line and all those below it become hidden.  To un-hide
13997 these lines, move down to the end of the buffer and press @w{@kbd{d t}}.
13998 With a positive numeric prefix argument @expr{n}, @kbd{d t} hides the
13999 bottom @expr{n} values in the buffer.  With a negative argument, it hides
14000 all but the top @expr{n} values.  With an argument of zero, it hides zero
14001 values, i.e., moves the @samp{.} all the way down to the bottom.
14003 @kindex d [
14004 @pindex calc-truncate-up
14005 @kindex d ]
14006 @pindex calc-truncate-down
14007 The @kbd{d [} (@code{calc-truncate-up}) and @kbd{d ]}
14008 (@code{calc-truncate-down}) commands move the @samp{.} up or down one
14009 line at a time (or several lines with a prefix argument).
14011 @node Justification, Labels, Truncating the Stack, Display Modes
14012 @subsection Justification
14014 @noindent
14015 @kindex d <
14016 @pindex calc-left-justify
14017 @kindex d =
14018 @pindex calc-center-justify
14019 @kindex d >
14020 @pindex calc-right-justify
14021 Values on the stack are normally left-justified in the window.  You can
14022 control this arrangement by typing @kbd{d <} (@code{calc-left-justify}),
14023 @kbd{d >} (@code{calc-right-justify}), or @kbd{d =}
14024 (@code{calc-center-justify}).  For example, in Right-Justification mode,
14025 stack entries are displayed flush-right against the right edge of the
14026 window.
14028 If you change the width of the Calculator window you may have to type
14029 @kbd{d @key{SPC}} (@code{calc-refresh}) to re-align right-justified or centered
14030 text.
14032 Right-justification is especially useful together with fixed-point
14033 notation (see @code{d f}; @code{calc-fix-notation}).  With these modes
14034 together, the decimal points on numbers will always line up.
14036 With a numeric prefix argument, the justification commands give you
14037 a little extra control over the display.  The argument specifies the
14038 horizontal ``origin'' of a display line.  It is also possible to
14039 specify a maximum line width using the @kbd{d b} command (@pxref{Normal
14040 Language Modes}).  For reference, the precise rules for formatting and
14041 breaking lines are given below.  Notice that the interaction between
14042 origin and line width is slightly different in each justification
14043 mode.
14045 In Left-Justified mode, the line is indented by a number of spaces
14046 given by the origin (default zero).  If the result is longer than the
14047 maximum line width, if given, or too wide to fit in the Calc window
14048 otherwise, then it is broken into lines which will fit; each broken
14049 line is indented to the origin.
14051 In Right-Justified mode, lines are shifted right so that the rightmost
14052 character is just before the origin, or just before the current
14053 window width if no origin was specified.  If the line is too long
14054 for this, then it is broken; the current line width is used, if
14055 specified, or else the origin is used as a width if that is
14056 specified, or else the line is broken to fit in the window.
14058 In Centering mode, the origin is the column number of the center of
14059 each stack entry.  If a line width is specified, lines will not be
14060 allowed to go past that width; Calc will either indent less or
14061 break the lines if necessary.  If no origin is specified, half the
14062 line width or Calc window width is used.
14064 Note that, in each case, if line numbering is enabled the display
14065 is indented an additional four spaces to make room for the line
14066 number.  The width of the line number is taken into account when
14067 positioning according to the current Calc window width, but not
14068 when positioning by explicit origins and widths.  In the latter
14069 case, the display is formatted as specified, and then uniformly
14070 shifted over four spaces to fit the line numbers.
14072 @node Labels, , Justification, Display Modes
14073 @subsection Labels
14075 @noindent
14076 @kindex d @{
14077 @pindex calc-left-label
14078 The @kbd{d @{} (@code{calc-left-label}) command prompts for a string,
14079 then displays that string to the left of every stack entry.  If the
14080 entries are left-justified (@pxref{Justification}), then they will
14081 appear immediately after the label (unless you specified an origin
14082 greater than the length of the label).  If the entries are centered
14083 or right-justified, the label appears on the far left and does not
14084 affect the horizontal position of the stack entry.
14086 Give a blank string (with @kbd{d @{ @key{RET}}) to turn the label off.
14088 @kindex d @}
14089 @pindex calc-right-label
14090 The @kbd{d @}} (@code{calc-right-label}) command similarly adds a
14091 label on the righthand side.  It does not affect positioning of
14092 the stack entries unless they are right-justified.  Also, if both
14093 a line width and an origin are given in Right-Justified mode, the
14094 stack entry is justified to the origin and the righthand label is
14095 justified to the line width.
14097 One application of labels would be to add equation numbers to
14098 formulas you are manipulating in Calc and then copying into a
14099 document (possibly using Embedded mode).  The equations would
14100 typically be centered, and the equation numbers would be on the
14101 left or right as you prefer.
14103 @node Language Modes, Modes Variable, Display Modes, Mode Settings
14104 @section Language Modes
14106 @noindent
14107 The commands in this section change Calc to use a different notation for
14108 entry and display of formulas, corresponding to the conventions of some
14109 other common language such as Pascal or La@TeX{}.  Objects displayed on the
14110 stack or yanked from the Calculator to an editing buffer will be formatted
14111 in the current language; objects entered in algebraic entry or yanked from
14112 another buffer will be interpreted according to the current language.
14114 The current language has no effect on things written to or read from the
14115 trail buffer, nor does it affect numeric entry.  Only algebraic entry is
14116 affected.  You can make even algebraic entry ignore the current language
14117 and use the standard notation by giving a numeric prefix, e.g., @kbd{C-u '}.
14119 For example, suppose the formula @samp{2*a[1] + atan(a[2])} occurs in a C
14120 program; elsewhere in the program you need the derivatives of this formula
14121 with respect to @samp{a[1]} and @samp{a[2]}.  First, type @kbd{d C}
14122 to switch to C notation.  Now use @code{C-u C-x * g} to grab the formula
14123 into the Calculator, @kbd{a d a[1] @key{RET}} to differentiate with respect
14124 to the first variable, and @kbd{C-x * y} to yank the formula for the derivative
14125 back into your C program.  Press @kbd{U} to undo the differentiation and
14126 repeat with @kbd{a d a[2] @key{RET}} for the other derivative.
14128 Without being switched into C mode first, Calc would have misinterpreted
14129 the brackets in @samp{a[1]} and @samp{a[2]}, would not have known that
14130 @code{atan} was equivalent to Calc's built-in @code{arctan} function,
14131 and would have written the formula back with notations (like implicit
14132 multiplication) which would not have been valid for a C program.
14134 As another example, suppose you are maintaining a C program and a La@TeX{}
14135 document, each of which needs a copy of the same formula.  You can grab the
14136 formula from the program in C mode, switch to La@TeX{} mode, and yank the
14137 formula into the document in La@TeX{} math-mode format.
14139 Language modes are selected by typing the letter @kbd{d} followed by a
14140 shifted letter key.
14142 @menu
14143 * Normal Language Modes::
14144 * C FORTRAN Pascal::
14145 * TeX and LaTeX Language Modes::
14146 * Eqn Language Mode::
14147 * Mathematica Language Mode::
14148 * Maple Language Mode::
14149 * Compositions::
14150 * Syntax Tables::
14151 @end menu
14153 @node Normal Language Modes, C FORTRAN Pascal, Language Modes, Language Modes
14154 @subsection Normal Language Modes
14156 @noindent
14157 @kindex d N
14158 @pindex calc-normal-language
14159 The @kbd{d N} (@code{calc-normal-language}) command selects the usual
14160 notation for Calc formulas, as described in the rest of this manual.
14161 Matrices are displayed in a multi-line tabular format, but all other
14162 objects are written in linear form, as they would be typed from the
14163 keyboard.
14165 @kindex d O
14166 @pindex calc-flat-language
14167 @cindex Matrix display
14168 The @kbd{d O} (@code{calc-flat-language}) command selects a language
14169 identical with the normal one, except that matrices are written in
14170 one-line form along with everything else.  In some applications this
14171 form may be more suitable for yanking data into other buffers.
14173 @kindex d b
14174 @pindex calc-line-breaking
14175 @cindex Line breaking
14176 @cindex Breaking up long lines
14177 Even in one-line mode, long formulas or vectors will still be split
14178 across multiple lines if they exceed the width of the Calculator window.
14179 The @kbd{d b} (@code{calc-line-breaking}) command turns this line-breaking
14180 feature on and off.  (It works independently of the current language.)
14181 If you give a numeric prefix argument of five or greater to the @kbd{d b}
14182 command, that argument will specify the line width used when breaking
14183 long lines.
14185 @kindex d B
14186 @pindex calc-big-language
14187 The @kbd{d B} (@code{calc-big-language}) command selects a language
14188 which uses textual approximations to various mathematical notations,
14189 such as powers, quotients, and square roots:
14191 @example
14192   ____________
14193  | a + 1    2
14194  | ----- + c
14195 \|   b
14196 @end example
14198 @noindent
14199 in place of @samp{sqrt((a+1)/b + c^2)}.
14201 Subscripts like @samp{a_i} are displayed as actual subscripts in Big
14202 mode.  Double subscripts, @samp{a_i_j} (@samp{subscr(subscr(a, i), j)})
14203 are displayed as @samp{a} with subscripts separated by commas:
14204 @samp{i, j}.  They must still be entered in the usual underscore
14205 notation.
14207 One slight ambiguity of Big notation is that
14209 @example
14210   3
14211 - -
14212   4
14213 @end example
14215 @noindent
14216 can represent either the negative rational number @expr{-3:4}, or the
14217 actual expression @samp{-(3/4)}; but the latter formula would normally
14218 never be displayed because it would immediately be evaluated to
14219 @expr{-3:4} or @expr{-0.75}, so this ambiguity is not a problem in
14220 typical use.
14222 Non-decimal numbers are displayed with subscripts.  Thus there is no
14223 way to tell the difference between @samp{16#C2} and @samp{C2_16},
14224 though generally you will know which interpretation is correct.
14225 Logarithms @samp{log(x,b)} and @samp{log10(x)} also use subscripts
14226 in Big mode.
14228 In Big mode, stack entries often take up several lines.  To aid
14229 readability, stack entries are separated by a blank line in this mode.
14230 You may find it useful to expand the Calc window's height using
14231 @kbd{C-x ^} (@code{enlarge-window}) or to make the Calc window the only
14232 one on the screen with @kbd{C-x 1} (@code{delete-other-windows}).
14234 Long lines are currently not rearranged to fit the window width in
14235 Big mode, so you may need to use the @kbd{<} and @kbd{>} keys
14236 to scroll across a wide formula.  For really big formulas, you may
14237 even need to use @kbd{@{} and @kbd{@}} to scroll up and down.
14239 @kindex d U
14240 @pindex calc-unformatted-language
14241 The @kbd{d U} (@code{calc-unformatted-language}) command altogether disables
14242 the use of operator notation in formulas.  In this mode, the formula
14243 shown above would be displayed:
14245 @example
14246 sqrt(add(div(add(a, 1), b), pow(c, 2)))
14247 @end example
14249 These four modes differ only in display format, not in the format
14250 expected for algebraic entry.  The standard Calc operators work in
14251 all four modes, and unformatted notation works in any language mode
14252 (except that Mathematica mode expects square brackets instead of
14253 parentheses).
14255 @node C FORTRAN Pascal, TeX and LaTeX Language Modes, Normal Language Modes, Language Modes
14256 @subsection C, FORTRAN, and Pascal Modes
14258 @noindent
14259 @kindex d C
14260 @pindex calc-c-language
14261 @cindex C language
14262 The @kbd{d C} (@code{calc-c-language}) command selects the conventions
14263 of the C language for display and entry of formulas.  This differs from
14264 the normal language mode in a variety of (mostly minor) ways.  In
14265 particular, C language operators and operator precedences are used in
14266 place of Calc's usual ones.  For example, @samp{a^b} means @samp{xor(a,b)}
14267 in C mode; a value raised to a power is written as a function call,
14268 @samp{pow(a,b)}.
14270 In C mode, vectors and matrices use curly braces instead of brackets.
14271 Octal and hexadecimal values are written with leading @samp{0} or @samp{0x}
14272 rather than using the @samp{#} symbol.  Array subscripting is
14273 translated into @code{subscr} calls, so that @samp{a[i]} in C
14274 mode is the same as @samp{a_i} in Normal mode.  Assignments
14275 turn into the @code{assign} function, which Calc normally displays
14276 using the @samp{:=} symbol.
14278 The variables @code{pi} and @code{e} would be displayed @samp{pi}
14279 and @samp{e} in Normal mode, but in C mode they are displayed as
14280 @samp{M_PI} and @samp{M_E}, corresponding to the names of constants
14281 typically provided in the @file{<math.h>} header.  Functions whose
14282 names are different in C are translated automatically for entry and
14283 display purposes.  For example, entering @samp{asin(x)} will push the
14284 formula @samp{arcsin(x)} onto the stack; this formula will be displayed
14285 as @samp{asin(x)} as long as C mode is in effect.
14287 @kindex d P
14288 @pindex calc-pascal-language
14289 @cindex Pascal language
14290 The @kbd{d P} (@code{calc-pascal-language}) command selects Pascal
14291 conventions.  Like C mode, Pascal mode interprets array brackets and uses
14292 a different table of operators.  Hexadecimal numbers are entered and
14293 displayed with a preceding dollar sign.  (Thus the regular meaning of
14294 @kbd{$2} during algebraic entry does not work in Pascal mode, though
14295 @kbd{$} (and @kbd{$$}, etc.) not followed by digits works the same as
14296 always.)  No special provisions are made for other non-decimal numbers,
14297 vectors, and so on, since there is no universally accepted standard way
14298 of handling these in Pascal.
14300 @kindex d F
14301 @pindex calc-fortran-language
14302 @cindex FORTRAN language
14303 The @kbd{d F} (@code{calc-fortran-language}) command selects FORTRAN
14304 conventions.  Various function names are transformed into FORTRAN
14305 equivalents.  Vectors are written as @samp{/1, 2, 3/}, and may be
14306 entered this way or using square brackets.  Since FORTRAN uses round
14307 parentheses for both function calls and array subscripts, Calc displays
14308 both in the same way; @samp{a(i)} is interpreted as a function call
14309 upon reading, and subscripts must be entered as @samp{subscr(a, i)}.
14310 Also, if the variable @code{a} has been declared to have type
14311 @code{vector} or @code{matrix} then @samp{a(i)} will be parsed as a
14312 subscript.  (@xref{Declarations}.)  Usually it doesn't matter, though;
14313 if you enter the subscript expression @samp{a(i)} and Calc interprets
14314 it as a function call, you'll never know the difference unless you
14315 switch to another language mode or replace @code{a} with an actual
14316 vector (or unless @code{a} happens to be the name of a built-in
14317 function!).
14319 Underscores are allowed in variable and function names in all of these
14320 language modes.  The underscore here is equivalent to the @samp{#} in
14321 Normal mode, or to hyphens in the underlying Emacs Lisp variable names.
14323 FORTRAN and Pascal modes normally do not adjust the case of letters in
14324 formulas.  Most built-in Calc names use lower-case letters.  If you use a
14325 positive numeric prefix argument with @kbd{d P} or @kbd{d F}, these
14326 modes will use upper-case letters exclusively for display, and will
14327 convert to lower-case on input.  With a negative prefix, these modes
14328 convert to lower-case for display and input.
14330 @node TeX and LaTeX Language Modes, Eqn Language Mode, C FORTRAN Pascal, Language Modes
14331 @subsection @TeX{} and La@TeX{} Language Modes
14333 @noindent
14334 @kindex d T
14335 @pindex calc-tex-language
14336 @cindex TeX language
14337 @kindex d L
14338 @pindex calc-latex-language
14339 @cindex LaTeX language
14340 The @kbd{d T} (@code{calc-tex-language}) command selects the conventions
14341 of ``math mode'' in Donald Knuth's @TeX{} typesetting language,
14342 and the @kbd{d L} (@code{calc-latex-language}) command selects the
14343 conventions of ``math mode'' in La@TeX{}, a typesetting language that
14344 uses @TeX{} as its formatting engine.  Calc's La@TeX{} language mode can
14345 read any formula that the @TeX{} language mode can, although La@TeX{}
14346 mode may display it differently.
14348 Formulas are entered and displayed in the appropriate notation;
14349 @texline @math{\sin(a/b)}
14350 @infoline @expr{sin(a/b)}
14351 will appear as @samp{\sin\left( a \over b \right)} in @TeX{} mode and
14352 @samp{\sin\left(\frac@{a@}@{b@}\right)} in La@TeX{} mode.
14353 Math formulas are often enclosed by @samp{$ $} signs in @TeX{} and
14354 La@TeX{}; these should be omitted when interfacing with Calc.  To Calc,
14355 the @samp{$} sign has the same meaning it always does in algebraic
14356 formulas (a reference to an existing entry on the stack).
14358 Complex numbers are displayed as in @samp{3 + 4i}.  Fractions and
14359 quotients are written using @code{\over} in @TeX{} mode (as in 
14360 @code{@{a \over b@}}) and @code{\frac} in La@TeX{} mode (as in
14361 @code{\frac@{a@}@{b@}});  binomial coefficients are written with
14362 @code{\choose} in @TeX{} mode (as in @code{@{a \choose b@}}) and
14363 @code{\binom} in La@TeX{} mode (as in @code{\binom@{a@}@{b@}}).
14364 Interval forms are written with @code{\ldots}, and error forms are
14365 written with @code{\pm}. Absolute values are written as in 
14366 @samp{|x + 1|}, and the floor and ceiling functions are written with
14367 @code{\lfloor}, @code{\rfloor}, etc. The words @code{\left} and
14368 @code{\right} are ignored when reading formulas in @TeX{} and La@TeX{}
14369 modes.  Both @code{inf} and @code{uinf} are written as @code{\infty};
14370 when read, @code{\infty} always translates to @code{inf}.
14372 Function calls are written the usual way, with the function name followed
14373 by the arguments in parentheses.  However, functions for which @TeX{}
14374 and La@TeX{} have special names (like @code{\sin}) will use curly braces
14375 instead of parentheses for very simple arguments.  During input, curly
14376 braces and parentheses work equally well for grouping, but when the
14377 document is formatted the curly braces will be invisible.  Thus the
14378 printed result is 
14379 @texline @math{\sin{2 x}}
14380 @infoline @expr{sin 2x} 
14381 but 
14382 @texline @math{\sin(2 + x)}.
14383 @infoline @expr{sin(2 + x)}.
14385 Function and variable names not treated specially by @TeX{} and La@TeX{}
14386 are simply written out as-is, which will cause them to come out in
14387 italic letters in the printed document.  If you invoke @kbd{d T} or
14388 @kbd{d L} with a positive numeric prefix argument, names of more than
14389 one character will instead be enclosed in a protective commands that
14390 will prevent them from being typeset in the math italics; they will be
14391 written @samp{\hbox@{@var{name}@}} in @TeX{} mode and 
14392 @samp{\text@{@var{name}@}} in La@TeX{} mode.  The
14393 @samp{\hbox@{ @}} and @samp{\text@{ @}} notations are ignored during
14394 reading.  If you use a negative prefix argument, such function names are
14395 written @samp{\@var{name}}, and function names that begin with @code{\} during
14396 reading have the @code{\} removed.  (Note that in this mode, long
14397 variable names are still written with @code{\hbox} or @code{\text}.
14398 However, you can always make an actual variable name like @code{\bar} in
14399 any @TeX{} mode.)
14401 During reading, text of the form @samp{\matrix@{ ...@: @}} is replaced
14402 by @samp{[ ...@: ]}.  The same also applies to @code{\pmatrix} and
14403 @code{\bmatrix}.  In La@TeX{} mode this also applies to 
14404 @samp{\begin@{matrix@} ... \end@{matrix@}},
14405 @samp{\begin@{bmatrix@} ... \end@{bmatrix@}},
14406 @samp{\begin@{pmatrix@} ... \end@{pmatrix@}}, as well as
14407 @samp{\begin@{smallmatrix@} ... \end@{smallmatrix@}}.
14408 The symbol @samp{&} is interpreted as a comma,
14409 and the symbols @samp{\cr} and @samp{\\} are interpreted as semicolons.
14410 During output, matrices are displayed in @samp{\matrix@{ a & b \\ c & d@}}
14411 format in @TeX{} mode and in 
14412 @samp{\begin@{pmatrix@} a & b \\ c & d \end@{pmatrix@}} format in
14413 La@TeX{} mode; you may need to edit this afterwards to change to your
14414 preferred matrix form.  If you invoke @kbd{d T} or @kbd{d L} with an
14415 argument of 2 or -2, then matrices will be displayed in two-dimensional
14416 form, such as 
14418 @example
14419 \begin@{pmatrix@}
14420 a & b \\
14421 c & d
14422 \end@{pmatrix@}
14423 @end example
14425 @noindent
14426 This may be convenient for isolated matrices, but could lead to
14427 expressions being displayed like
14429 @example
14430 \begin@{pmatrix@} \times x
14431 a & b \\
14432 c & d
14433 \end@{pmatrix@}
14434 @end example
14436 @noindent
14437 While this wouldn't bother Calc, it is incorrect La@TeX{}.
14438 (Similarly for @TeX{}.)
14440 Accents like @code{\tilde} and @code{\bar} translate into function
14441 calls internally (@samp{tilde(x)}, @samp{bar(x)}).  The @code{\underline}
14442 sequence is treated as an accent.  The @code{\vec} accent corresponds
14443 to the function name @code{Vec}, because @code{vec} is the name of
14444 a built-in Calc function.  The following table shows the accents
14445 in Calc, @TeX{}, La@TeX{} and @dfn{eqn} (described in the next section):
14447 @iftex
14448 @begingroup
14449 @let@calcindexershow=@calcindexernoshow  @c Suppress marginal notes
14450 @let@calcindexersh=@calcindexernoshow
14451 @end iftex
14452 @ignore
14453 @starindex
14454 @end ignore
14455 @tindex acute
14456 @ignore
14457 @starindex
14458 @end ignore
14459 @tindex Acute
14460 @ignore
14461 @starindex
14462 @end ignore
14463 @tindex bar
14464 @ignore
14465 @starindex
14466 @end ignore
14467 @tindex Bar
14468 @ignore
14469 @starindex
14470 @end ignore
14471 @tindex breve
14472 @ignore
14473 @starindex
14474 @end ignore
14475 @tindex Breve
14476 @ignore
14477 @starindex
14478 @end ignore
14479 @tindex check
14480 @ignore
14481 @starindex
14482 @end ignore
14483 @tindex Check
14484 @ignore
14485 @starindex
14486 @end ignore
14487 @tindex dddot
14488 @ignore
14489 @starindex
14490 @end ignore
14491 @tindex ddddot
14492 @ignore
14493 @starindex
14494 @end ignore
14495 @tindex dot
14496 @ignore
14497 @starindex
14498 @end ignore
14499 @tindex Dot
14500 @ignore
14501 @starindex
14502 @end ignore
14503 @tindex dotdot
14504 @ignore
14505 @starindex
14506 @end ignore
14507 @tindex DotDot
14508 @ignore
14509 @starindex
14510 @end ignore
14511 @tindex dyad
14512 @ignore
14513 @starindex
14514 @end ignore
14515 @tindex grave
14516 @ignore
14517 @starindex
14518 @end ignore
14519 @tindex Grave
14520 @ignore
14521 @starindex
14522 @end ignore
14523 @tindex hat
14524 @ignore
14525 @starindex
14526 @end ignore
14527 @tindex Hat
14528 @ignore
14529 @starindex
14530 @end ignore
14531 @tindex Prime
14532 @ignore
14533 @starindex
14534 @end ignore
14535 @tindex tilde
14536 @ignore
14537 @starindex
14538 @end ignore
14539 @tindex Tilde
14540 @ignore
14541 @starindex
14542 @end ignore
14543 @tindex under
14544 @ignore
14545 @starindex
14546 @end ignore
14547 @tindex Vec
14548 @ignore
14549 @starindex
14550 @end ignore
14551 @tindex VEC
14552 @iftex
14553 @endgroup
14554 @end iftex
14555 @example
14556 Calc      TeX           LaTeX         eqn
14557 ----      ---           -----         ---
14558 acute     \acute        \acute        
14559 Acute                   \Acute        
14560 bar       \bar          \bar          bar
14561 Bar                     \Bar
14562 breve     \breve        \breve        
14563 Breve                   \Breve        
14564 check     \check        \check        
14565 Check                   \Check        
14566 dddot                   \dddot
14567 ddddot                  \ddddot
14568 dot       \dot          \dot          dot
14569 Dot                     \Dot
14570 dotdot    \ddot         \ddot         dotdot
14571 DotDot                  \Ddot         
14572 dyad                                  dyad
14573 grave     \grave        \grave        
14574 Grave                   \Grave        
14575 hat       \hat          \hat          hat
14576 Hat                     \Hat          
14577 Prime                                 prime
14578 tilde     \tilde        \tilde        tilde
14579 Tilde                   \Tilde
14580 under     \underline    \underline    under
14581 Vec       \vec          \vec          vec
14582 VEC                     \Vec
14583 @end example
14585 The @samp{=>} (evaluates-to) operator appears as a @code{\to} symbol:
14586 @samp{@{@var{a} \to @var{b}@}}.  @TeX{} defines @code{\to} as an
14587 alias for @code{\rightarrow}.  However, if the @samp{=>} is the
14588 top-level expression being formatted, a slightly different notation
14589 is used:  @samp{\evalto @var{a} \to @var{b}}.  The @code{\evalto}
14590 word is ignored by Calc's input routines, and is undefined in @TeX{}.
14591 You will typically want to include one of the following definitions
14592 at the top of a @TeX{} file that uses @code{\evalto}:
14594 @example
14595 \def\evalto@{@}
14596 \def\evalto#1\to@{@}
14597 @end example
14599 The first definition formats evaluates-to operators in the usual
14600 way.  The second causes only the @var{b} part to appear in the
14601 printed document; the @var{a} part and the arrow are hidden.
14602 Another definition you may wish to use is @samp{\let\to=\Rightarrow}
14603 which causes @code{\to} to appear more like Calc's @samp{=>} symbol.
14604 @xref{Evaluates-To Operator}, for a discussion of @code{evalto}.
14606 The complete set of @TeX{} control sequences that are ignored during
14607 reading is:
14609 @example
14610 \hbox  \mbox  \text  \left  \right
14611 \,  \>  \:  \;  \!  \quad  \qquad  \hfil  \hfill
14612 \displaystyle  \textstyle  \dsize  \tsize
14613 \scriptstyle  \scriptscriptstyle  \ssize  \ssize
14614 \rm  \bf  \it  \sl  \roman  \bold  \italic  \slanted
14615 \cal  \mit  \Cal  \Bbb  \frak  \goth
14616 \evalto
14617 @end example
14619 Note that, because these symbols are ignored, reading a @TeX{} or
14620 La@TeX{} formula into Calc and writing it back out may lose spacing and
14621 font information. 
14623 Also, the ``discretionary multiplication sign'' @samp{\*} is read
14624 the same as @samp{*}.
14626 @ifinfo
14627 The @TeX{} version of this manual includes some printed examples at the
14628 end of this section.
14629 @end ifinfo
14630 @iftex
14631 Here are some examples of how various Calc formulas are formatted in @TeX{}:
14633 @example
14634 @group
14635 sin(a^2 / b_i)
14636 \sin\left( {a^2 \over b_i} \right)
14637 @end group
14638 @end example
14639 @tex
14640 $$ \sin\left( a^2 \over b_i \right) $$
14641 @end tex
14642 @sp 1
14644 @example
14645 @group
14646 [(3, 4), 3:4, 3 +/- 4, [3 .. inf)]
14647 [3 + 4i, @{3 \over 4@}, 3 \pm 4, [3 \ldots \infty)]
14648 @end group
14649 @end example
14650 @tex
14651 \turnoffactive
14652 $$ [3 + 4i, {3 \over 4}, 3 \pm 4, [ 3 \ldots \infty)] $$
14653 @end tex
14654 @sp 1
14656 @example
14657 @group
14658 [abs(a), abs(a / b), floor(a), ceil(a / b)]
14659 [|a|, \left| a \over b \right|,
14660  \lfloor a \rfloor, \left\lceil a \over b \right\rceil]
14661 @end group
14662 @end example
14663 @tex
14664 $$ [|a|, \left| a \over b \right|,
14665     \lfloor a \rfloor, \left\lceil a \over b \right\rceil] $$
14666 @end tex
14667 @sp 1
14669 @example
14670 @group
14671 [sin(a), sin(2 a), sin(2 + a), sin(a / b)]
14672 [\sin@{a@}, \sin@{2 a@}, \sin(2 + a),
14673  \sin\left( @{a \over b@} \right)]
14674 @end group
14675 @end example
14676 @tex
14677 \turnoffactive
14678 $$ [\sin{a}, \sin{2 a}, \sin(2 + a), \sin\left( {a \over b} \right)] $$
14679 @end tex
14680 @sp 2
14682 First with plain @kbd{d T}, then with @kbd{C-u d T}, then finally with
14683 @kbd{C-u - d T} (using the example definition
14684 @samp{\def\foo#1@{\tilde F(#1)@}}:
14686 @example
14687 @group
14688 [f(a), foo(bar), sin(pi)]
14689 [f(a), foo(bar), \sin{\pi}]
14690 [f(a), \hbox@{foo@}(\hbox@{bar@}), \sin@{\pi@}]
14691 [f(a), \foo@{\hbox@{bar@}@}, \sin@{\pi@}]
14692 @end group
14693 @end example
14694 @tex
14695 $$ [f(a), foo(bar), \sin{\pi}] $$
14696 $$ [f(a), \hbox{foo}(\hbox{bar}), \sin{\pi}] $$
14697 $$ [f(a), \tilde F(\hbox{bar}), \sin{\pi}] $$
14698 @end tex
14699 @sp 2
14701 First with @samp{\def\evalto@{@}}, then with @samp{\def\evalto#1\to@{@}}:
14703 @example
14704 @group
14705 2 + 3 => 5
14706 \evalto 2 + 3 \to 5
14707 @end group
14708 @end example
14709 @tex
14710 \turnoffactive
14711 $$ 2 + 3 \to 5 $$
14712 $$ 5 $$
14713 @end tex
14714 @sp 2
14716 First with standard @code{\to}, then with @samp{\let\to\Rightarrow}:
14718 @example
14719 @group
14720 [2 + 3 => 5, a / 2 => (b + c) / 2]
14721 [@{2 + 3 \to 5@}, @{@{a \over 2@} \to @{b + c \over 2@}@}]
14722 @end group
14723 @end example
14724 @tex
14725 \turnoffactive
14726 $$ [{2 + 3 \to 5}, {{a \over 2} \to {b + c \over 2}}] $$
14727 {\let\to\Rightarrow
14728 $$ [{2 + 3 \to 5}, {{a \over 2} \to {b + c \over 2}}] $$}
14729 @end tex
14730 @sp 2
14732 Matrices normally, then changing @code{\matrix} to @code{\pmatrix}:
14734 @example
14735 @group
14736 [ [ a / b, 0 ], [ 0, 2^(x + 1) ] ]
14737 \matrix@{ @{a \over b@} & 0 \\ 0 & 2^@{(x + 1)@} @}
14738 \pmatrix@{ @{a \over b@} & 0 \\ 0 & 2^@{(x + 1)@} @}
14739 @end group
14740 @end example
14741 @tex
14742 \turnoffactive
14743 $$ \matrix{ {a \over b} & 0 \cr 0 & 2^{(x + 1)} } $$
14744 $$ \pmatrix{ {a \over b} & 0 \cr 0 & 2^{(x + 1)} } $$
14745 @end tex
14746 @sp 2
14747 @end iftex
14749 @node Eqn Language Mode, Mathematica Language Mode, TeX and LaTeX Language Modes, Language Modes
14750 @subsection Eqn Language Mode
14752 @noindent
14753 @kindex d E
14754 @pindex calc-eqn-language
14755 @dfn{Eqn} is another popular formatter for math formulas.  It is
14756 designed for use with the TROFF text formatter, and comes standard
14757 with many versions of Unix.  The @kbd{d E} (@code{calc-eqn-language})
14758 command selects @dfn{eqn} notation.
14760 The @dfn{eqn} language's main idiosyncrasy is that whitespace plays
14761 a significant part in the parsing of the language.  For example,
14762 @samp{sqrt x+1 + y} treats @samp{x+1} as the argument of the
14763 @code{sqrt} operator.  @dfn{Eqn} also understands more conventional
14764 grouping using curly braces:  @samp{sqrt@{x+1@} + y}.  Braces are
14765 required only when the argument contains spaces.
14767 In Calc's @dfn{eqn} mode, however, curly braces are required to
14768 delimit arguments of operators like @code{sqrt}.  The first of the
14769 above examples would treat only the @samp{x} as the argument of
14770 @code{sqrt}, and in fact @samp{sin x+1} would be interpreted as
14771 @samp{sin * x + 1}, because @code{sin} is not a special operator
14772 in the @dfn{eqn} language.  If you always surround the argument
14773 with curly braces, Calc will never misunderstand.
14775 Calc also understands parentheses as grouping characters.  Another
14776 peculiarity of @dfn{eqn}'s syntax makes it advisable to separate
14777 words with spaces from any surrounding characters that aren't curly
14778 braces, so Calc writes @samp{sin ( x + y )} in @dfn{eqn} mode.
14779 (The spaces around @code{sin} are important to make @dfn{eqn}
14780 recognize that @code{sin} should be typeset in a roman font, and
14781 the spaces around @code{x} and @code{y} are a good idea just in
14782 case the @dfn{eqn} document has defined special meanings for these
14783 names, too.)
14785 Powers and subscripts are written with the @code{sub} and @code{sup}
14786 operators, respectively.  Note that the caret symbol @samp{^} is
14787 treated the same as a space in @dfn{eqn} mode, as is the @samp{~}
14788 symbol (these are used to introduce spaces of various widths into
14789 the typeset output of @dfn{eqn}).
14791 As in La@TeX{} mode, Calc's formatter omits parentheses around the
14792 arguments of functions like @code{ln} and @code{sin} if they are
14793 ``simple-looking''; in this case Calc surrounds the argument with
14794 braces, separated by a @samp{~} from the function name: @samp{sin~@{x@}}.
14796 Font change codes (like @samp{roman @var{x}}) and positioning codes
14797 (like @samp{~} and @samp{down @var{n} @var{x}}) are ignored by the
14798 @dfn{eqn} reader.  Also ignored are the words @code{left}, @code{right},
14799 @code{mark}, and @code{lineup}.  Quotation marks in @dfn{eqn} mode input
14800 are treated the same as curly braces: @samp{sqrt "1+x"} is equivalent to
14801 @samp{sqrt @{1+x@}}; this is only an approximation to the true meaning
14802 of quotes in @dfn{eqn}, but it is good enough for most uses.
14804 Accent codes (@samp{@var{x} dot}) are handled by treating them as
14805 function calls (@samp{dot(@var{x})}) internally.  
14806 @xref{TeX and LaTeX Language Modes}, for a table of these accent
14807 functions.  The @code{prime} accent is treated specially if it occurs on
14808 a variable or function name: @samp{f prime prime @w{( x prime )}} is
14809 stored internally as @samp{f'@w{'}(x')}.  For example, taking the
14810 derivative of @samp{f(2 x)} with @kbd{a d x} will produce @samp{2 f'(2
14811 x)}, which @dfn{eqn} mode will display as @samp{2 f prime ( 2 x )}.
14813 Assignments are written with the @samp{<-} (left-arrow) symbol,
14814 and @code{evalto} operators are written with @samp{->} or
14815 @samp{evalto ... ->} (@pxref{TeX and LaTeX Language Modes}, for a discussion
14816 of this).  The regular Calc symbols @samp{:=} and @samp{=>} are also
14817 recognized for these operators during reading.
14819 Vectors in @dfn{eqn} mode use regular Calc square brackets, but
14820 matrices are formatted as @samp{matrix @{ ccol @{ a above b @} ... @}}.
14821 The words @code{lcol} and @code{rcol} are recognized as synonyms
14822 for @code{ccol} during input, and are generated instead of @code{ccol}
14823 if the matrix justification mode so specifies.
14825 @node Mathematica Language Mode, Maple Language Mode, Eqn Language Mode, Language Modes
14826 @subsection Mathematica Language Mode
14828 @noindent
14829 @kindex d M
14830 @pindex calc-mathematica-language
14831 @cindex Mathematica language
14832 The @kbd{d M} (@code{calc-mathematica-language}) command selects the
14833 conventions of Mathematica.  Notable differences in Mathematica mode
14834 are that the names of built-in functions are capitalized, and function
14835 calls use square brackets instead of parentheses.  Thus the Calc
14836 formula @samp{sin(2 x)} is entered and displayed @w{@samp{Sin[2 x]}} in
14837 Mathematica mode.
14839 Vectors and matrices use curly braces in Mathematica.  Complex numbers
14840 are written @samp{3 + 4 I}.  The standard special constants in Calc are
14841 written @code{Pi}, @code{E}, @code{I}, @code{GoldenRatio}, @code{EulerGamma},
14842 @code{Infinity}, @code{ComplexInfinity}, and @code{Indeterminate} in
14843 Mathematica mode.
14844 Non-decimal numbers are written, e.g., @samp{16^^7fff}.  Floating-point
14845 numbers in scientific notation are written @samp{1.23*10.^3}.
14846 Subscripts use double square brackets: @samp{a[[i]]}.
14848 @node Maple Language Mode, Compositions, Mathematica Language Mode, Language Modes
14849 @subsection Maple Language Mode
14851 @noindent
14852 @kindex d W
14853 @pindex calc-maple-language
14854 @cindex Maple language
14855 The @kbd{d W} (@code{calc-maple-language}) command selects the
14856 conventions of Maple.
14858 Maple's language is much like C.  Underscores are allowed in symbol
14859 names; square brackets are used for subscripts; explicit @samp{*}s for
14860 multiplications are required.  Use either @samp{^} or @samp{**} to
14861 denote powers.
14863 Maple uses square brackets for lists and curly braces for sets.  Calc
14864 interprets both notations as vectors, and displays vectors with square
14865 brackets.  This means Maple sets will be converted to lists when they
14866 pass through Calc.  As a special case, matrices are written as calls
14867 to the function @code{matrix}, given a list of lists as the argument,
14868 and can be read in this form or with all-capitals @code{MATRIX}.
14870 The Maple interval notation @samp{2 .. 3} has no surrounding brackets;
14871 Calc reads @samp{2 .. 3} as the closed interval @samp{[2 .. 3]}, and
14872 writes any kind of interval as @samp{2 .. 3}.  This means you cannot
14873 see the difference between an open and a closed interval while in
14874 Maple display mode.
14876 Maple writes complex numbers as @samp{3 + 4*I}.  Its special constants
14877 are @code{Pi}, @code{E}, @code{I}, and @code{infinity} (all three of
14878 @code{inf}, @code{uinf}, and @code{nan} display as @code{infinity}).
14879 Floating-point numbers are written @samp{1.23*10.^3}.
14881 Among things not currently handled by Calc's Maple mode are the
14882 various quote symbols, procedures and functional operators, and
14883 inert (@samp{&}) operators.
14885 @node Compositions, Syntax Tables, Maple Language Mode, Language Modes
14886 @subsection Compositions
14888 @noindent
14889 @cindex Compositions
14890 There are several @dfn{composition functions} which allow you to get
14891 displays in a variety of formats similar to those in Big language
14892 mode.  Most of these functions do not evaluate to anything; they are
14893 placeholders which are left in symbolic form by Calc's evaluator but
14894 are recognized by Calc's display formatting routines.
14896 Two of these, @code{string} and @code{bstring}, are described elsewhere.
14897 @xref{Strings}.  For example, @samp{string("ABC")} is displayed as
14898 @samp{ABC}.  When viewed on the stack it will be indistinguishable from
14899 the variable @code{ABC}, but internally it will be stored as
14900 @samp{string([65, 66, 67])} and can still be manipulated this way; for
14901 example, the selection and vector commands @kbd{j 1 v v j u} would
14902 select the vector portion of this object and reverse the elements, then
14903 deselect to reveal a string whose characters had been reversed.
14905 The composition functions do the same thing in all language modes
14906 (although their components will of course be formatted in the current
14907 language mode).  The one exception is Unformatted mode (@kbd{d U}),
14908 which does not give the composition functions any special treatment.
14909 The functions are discussed here because of their relationship to
14910 the language modes.
14912 @menu
14913 * Composition Basics::
14914 * Horizontal Compositions::
14915 * Vertical Compositions::
14916 * Other Compositions::
14917 * Information about Compositions::
14918 * User-Defined Compositions::
14919 @end menu
14921 @node Composition Basics, Horizontal Compositions, Compositions, Compositions
14922 @subsubsection Composition Basics
14924 @noindent
14925 Compositions are generally formed by stacking formulas together
14926 horizontally or vertically in various ways.  Those formulas are
14927 themselves compositions.  @TeX{} users will find this analogous
14928 to @TeX{}'s ``boxes.''  Each multi-line composition has a
14929 @dfn{baseline}; horizontal compositions use the baselines to
14930 decide how formulas should be positioned relative to one another.
14931 For example, in the Big mode formula
14933 @example
14934 @group
14935           2
14936      a + b
14937 17 + ------
14938        c
14939 @end group
14940 @end example
14942 @noindent
14943 the second term of the sum is four lines tall and has line three as
14944 its baseline.  Thus when the term is combined with 17, line three
14945 is placed on the same level as the baseline of 17.
14947 @tex
14948 \bigskip
14949 @end tex
14951 Another important composition concept is @dfn{precedence}.  This is
14952 an integer that represents the binding strength of various operators.
14953 For example, @samp{*} has higher precedence (195) than @samp{+} (180),
14954 which means that @samp{(a * b) + c} will be formatted without the
14955 parentheses, but @samp{a * (b + c)} will keep the parentheses.
14957 The operator table used by normal and Big language modes has the
14958 following precedences:
14960 @example
14961 _     1200   @r{(subscripts)}
14962 %     1100   @r{(as in n}%@r{)}
14963 -     1000   @r{(as in }-@r{n)}
14964 !     1000   @r{(as in }!@r{n)}
14965 mod    400
14966 +/-    300
14967 !!     210    @r{(as in n}!!@r{)}
14968 !      210    @r{(as in n}!@r{)}
14969 ^      200
14970 *      195    @r{(or implicit multiplication)}
14971 / % \  190
14972 + -    180    @r{(as in a}+@r{b)}
14973 |      170
14974 < =    160    @r{(and other relations)}
14975 &&     110
14976 ||     100
14977 ? :     90
14978 !!!     85
14979 &&&     80
14980 |||     75
14981 :=      50
14982 ::      45
14983 =>      40
14984 @end example
14986 The general rule is that if an operator with precedence @expr{n}
14987 occurs as an argument to an operator with precedence @expr{m}, then
14988 the argument is enclosed in parentheses if @expr{n < m}.  Top-level
14989 expressions and expressions which are function arguments, vector
14990 components, etc., are formatted with precedence zero (so that they
14991 normally never get additional parentheses).
14993 For binary left-associative operators like @samp{+}, the righthand
14994 argument is actually formatted with one-higher precedence than shown
14995 in the table.  This makes sure @samp{(a + b) + c} omits the parentheses,
14996 but the unnatural form @samp{a + (b + c)} keeps its parentheses.
14997 Right-associative operators like @samp{^} format the lefthand argument
14998 with one-higher precedence.
15000 @ignore
15001 @starindex
15002 @end ignore
15003 @tindex cprec
15004 The @code{cprec} function formats an expression with an arbitrary
15005 precedence.  For example, @samp{cprec(abc, 185)} will combine into
15006 sums and products as follows:  @samp{7 + abc}, @samp{7 (abc)} (because
15007 this @code{cprec} form has higher precedence than addition, but lower
15008 precedence than multiplication).
15010 @tex
15011 \bigskip
15012 @end tex
15014 A final composition issue is @dfn{line breaking}.  Calc uses two
15015 different strategies for ``flat'' and ``non-flat'' compositions.
15016 A non-flat composition is anything that appears on multiple lines
15017 (not counting line breaking).  Examples would be matrices and Big
15018 mode powers and quotients.  Non-flat compositions are displayed
15019 exactly as specified.  If they come out wider than the current
15020 window, you must use horizontal scrolling (@kbd{<} and @kbd{>}) to
15021 view them.
15023 Flat compositions, on the other hand, will be broken across several
15024 lines if they are too wide to fit the window.  Certain points in a
15025 composition are noted internally as @dfn{break points}.  Calc's
15026 general strategy is to fill each line as much as possible, then to
15027 move down to the next line starting at the first break point that
15028 didn't fit.  However, the line breaker understands the hierarchical
15029 structure of formulas.  It will not break an ``inner'' formula if
15030 it can use an earlier break point from an ``outer'' formula instead.
15031 For example, a vector of sums might be formatted as:
15033 @example
15034 @group
15035 [ a + b + c, d + e + f,
15036   g + h + i, j + k + l, m ]
15037 @end group
15038 @end example
15040 @noindent
15041 If the @samp{m} can fit, then so, it seems, could the @samp{g}.
15042 But Calc prefers to break at the comma since the comma is part
15043 of a ``more outer'' formula.  Calc would break at a plus sign
15044 only if it had to, say, if the very first sum in the vector had
15045 itself been too large to fit.
15047 Of the composition functions described below, only @code{choriz}
15048 generates break points.  The @code{bstring} function (@pxref{Strings})
15049 also generates breakable items:  A break point is added after every
15050 space (or group of spaces) except for spaces at the very beginning or
15051 end of the string.
15053 Composition functions themselves count as levels in the formula
15054 hierarchy, so a @code{choriz} that is a component of a larger
15055 @code{choriz} will be less likely to be broken.  As a special case,
15056 if a @code{bstring} occurs as a component of a @code{choriz} or
15057 @code{choriz}-like object (such as a vector or a list of arguments
15058 in a function call), then the break points in that @code{bstring}
15059 will be on the same level as the break points of the surrounding
15060 object.
15062 @node Horizontal Compositions, Vertical Compositions, Composition Basics, Compositions
15063 @subsubsection Horizontal Compositions
15065 @noindent
15066 @ignore
15067 @starindex
15068 @end ignore
15069 @tindex choriz
15070 The @code{choriz} function takes a vector of objects and composes
15071 them horizontally.  For example, @samp{choriz([17, a b/c, d])} formats
15072 as @w{@samp{17a b / cd}} in Normal language mode, or as
15074 @example
15075 @group
15076   a b
15077 17---d
15078    c
15079 @end group
15080 @end example
15082 @noindent
15083 in Big language mode.  This is actually one case of the general
15084 function @samp{choriz(@var{vec}, @var{sep}, @var{prec})}, where
15085 either or both of @var{sep} and @var{prec} may be omitted.
15086 @var{Prec} gives the @dfn{precedence} to use when formatting
15087 each of the components of @var{vec}.  The default precedence is
15088 the precedence from the surrounding environment.
15090 @var{Sep} is a string (i.e., a vector of character codes as might
15091 be entered with @code{" "} notation) which should separate components
15092 of the composition.  Also, if @var{sep} is given, the line breaker
15093 will allow lines to be broken after each occurrence of @var{sep}.
15094 If @var{sep} is omitted, the composition will not be breakable
15095 (unless any of its component compositions are breakable).
15097 For example, @samp{2 choriz([a, b c, d = e], " + ", 180)} is
15098 formatted as @samp{2 a + b c + (d = e)}.  To get the @code{choriz}
15099 to have precedence 180 ``outwards'' as well as ``inwards,''
15100 enclose it in a @code{cprec} form:  @samp{2 cprec(choriz(...), 180)}
15101 formats as @samp{2 (a + b c + (d = e))}.
15103 The baseline of a horizontal composition is the same as the
15104 baselines of the component compositions, which are all aligned.
15106 @node Vertical Compositions, Other Compositions, Horizontal Compositions, Compositions
15107 @subsubsection Vertical Compositions
15109 @noindent
15110 @ignore
15111 @starindex
15112 @end ignore
15113 @tindex cvert
15114 The @code{cvert} function makes a vertical composition.  Each
15115 component of the vector is centered in a column.  The baseline of
15116 the result is by default the top line of the resulting composition.
15117 For example, @samp{f(cvert([a, bb, ccc]), cvert([a^2 + 1, b^2]))}
15118 formats in Big mode as
15120 @example
15121 @group
15122 f( a ,  2    )
15123   bb   a  + 1
15124   ccc     2
15125          b
15126 @end group
15127 @end example
15129 @ignore
15130 @starindex
15131 @end ignore
15132 @tindex cbase
15133 There are several special composition functions that work only as
15134 components of a vertical composition.  The @code{cbase} function
15135 controls the baseline of the vertical composition; the baseline
15136 will be the same as the baseline of whatever component is enclosed
15137 in @code{cbase}.  Thus @samp{f(cvert([a, cbase(bb), ccc]),
15138 cvert([a^2 + 1, cbase(b^2)]))} displays as
15140 @example
15141 @group
15142         2
15143        a  + 1
15144    a      2
15145 f(bb ,   b   )
15146   ccc
15147 @end group
15148 @end example
15150 @ignore
15151 @starindex
15152 @end ignore
15153 @tindex ctbase
15154 @ignore
15155 @starindex
15156 @end ignore
15157 @tindex cbbase
15158 There are also @code{ctbase} and @code{cbbase} functions which
15159 make the baseline of the vertical composition equal to the top
15160 or bottom line (rather than the baseline) of that component.
15161 Thus @samp{cvert([cbase(a / b)]) + cvert([ctbase(a / b)]) +
15162 cvert([cbbase(a / b)])} gives
15164 @example
15165 @group
15166         a
15167 a       -
15168 - + a + b
15169 b   -
15170     b
15171 @end group
15172 @end example
15174 There should be only one @code{cbase}, @code{ctbase}, or @code{cbbase}
15175 function in a given vertical composition.  These functions can also
15176 be written with no arguments:  @samp{ctbase()} is a zero-height object
15177 which means the baseline is the top line of the following item, and
15178 @samp{cbbase()} means the baseline is the bottom line of the preceding
15179 item.
15181 @ignore
15182 @starindex
15183 @end ignore
15184 @tindex crule
15185 The @code{crule} function builds a ``rule,'' or horizontal line,
15186 across a vertical composition.  By itself @samp{crule()} uses @samp{-}
15187 characters to build the rule.  You can specify any other character,
15188 e.g., @samp{crule("=")}.  The argument must be a character code or
15189 vector of exactly one character code.  It is repeated to match the
15190 width of the widest item in the stack.  For example, a quotient
15191 with a thick line is @samp{cvert([a + 1, cbase(crule("=")), b^2])}:
15193 @example
15194 @group
15195 a + 1
15196 =====
15197   2
15199 @end group
15200 @end example
15202 @ignore
15203 @starindex
15204 @end ignore
15205 @tindex clvert
15206 @ignore
15207 @starindex
15208 @end ignore
15209 @tindex crvert
15210 Finally, the functions @code{clvert} and @code{crvert} act exactly
15211 like @code{cvert} except that the items are left- or right-justified
15212 in the stack.  Thus @samp{clvert([a, bb, ccc]) + crvert([a, bb, ccc])}
15213 gives:
15215 @example
15216 @group
15217 a   +   a
15218 bb     bb
15219 ccc   ccc
15220 @end group
15221 @end example
15223 Like @code{choriz}, the vertical compositions accept a second argument
15224 which gives the precedence to use when formatting the components.
15225 Vertical compositions do not support separator strings.
15227 @node Other Compositions, Information about Compositions, Vertical Compositions, Compositions
15228 @subsubsection Other Compositions
15230 @noindent
15231 @ignore
15232 @starindex
15233 @end ignore
15234 @tindex csup
15235 The @code{csup} function builds a superscripted expression.  For
15236 example, @samp{csup(a, b)} looks the same as @samp{a^b} does in Big
15237 language mode.  This is essentially a horizontal composition of
15238 @samp{a} and @samp{b}, where @samp{b} is shifted up so that its
15239 bottom line is one above the baseline.
15241 @ignore
15242 @starindex
15243 @end ignore
15244 @tindex csub
15245 Likewise, the @code{csub} function builds a subscripted expression.
15246 This shifts @samp{b} down so that its top line is one below the
15247 bottom line of @samp{a} (note that this is not quite analogous to
15248 @code{csup}).  Other arrangements can be obtained by using
15249 @code{choriz} and @code{cvert} directly.
15251 @ignore
15252 @starindex
15253 @end ignore
15254 @tindex cflat
15255 The @code{cflat} function formats its argument in ``flat'' mode,
15256 as obtained by @samp{d O}, if the current language mode is normal
15257 or Big.  It has no effect in other language modes.  For example,
15258 @samp{a^(b/c)} is formatted by Big mode like @samp{csup(a, cflat(b/c))}
15259 to improve its readability.
15261 @ignore
15262 @starindex
15263 @end ignore
15264 @tindex cspace
15265 The @code{cspace} function creates horizontal space.  For example,
15266 @samp{cspace(4)} is effectively the same as @samp{string("    ")}.
15267 A second string (i.e., vector of characters) argument is repeated
15268 instead of the space character.  For example, @samp{cspace(4, "ab")}
15269 looks like @samp{abababab}.  If the second argument is not a string,
15270 it is formatted in the normal way and then several copies of that
15271 are composed together:  @samp{cspace(4, a^2)} yields
15273 @example
15274 @group
15275  2 2 2 2
15276 a a a a
15277 @end group
15278 @end example
15280 @noindent
15281 If the number argument is zero, this is a zero-width object.
15283 @ignore
15284 @starindex
15285 @end ignore
15286 @tindex cvspace
15287 The @code{cvspace} function creates vertical space, or a vertical
15288 stack of copies of a certain string or formatted object.  The
15289 baseline is the center line of the resulting stack.  A numerical
15290 argument of zero will produce an object which contributes zero
15291 height if used in a vertical composition.
15293 @ignore
15294 @starindex
15295 @end ignore
15296 @tindex ctspace
15297 @ignore
15298 @starindex
15299 @end ignore
15300 @tindex cbspace
15301 There are also @code{ctspace} and @code{cbspace} functions which
15302 create vertical space with the baseline the same as the baseline
15303 of the top or bottom copy, respectively, of the second argument.
15304 Thus @samp{cvspace(2, a/b) + ctspace(2, a/b) + cbspace(2, a/b)}
15305 displays as:
15307 @example
15308 @group
15309         a
15310         -
15311 a       b
15312 -   a   a
15313 b + - + -
15314 a   b   b
15315 -   a
15316 b   -
15317     b
15318 @end group
15319 @end example
15321 @node Information about Compositions, User-Defined Compositions, Other Compositions, Compositions
15322 @subsubsection Information about Compositions
15324 @noindent
15325 The functions in this section are actual functions; they compose their
15326 arguments according to the current language and other display modes,
15327 then return a certain measurement of the composition as an integer.
15329 @ignore
15330 @starindex
15331 @end ignore
15332 @tindex cwidth
15333 The @code{cwidth} function measures the width, in characters, of a
15334 composition.  For example, @samp{cwidth(a + b)} is 5, and
15335 @samp{cwidth(a / b)} is 5 in Normal mode, 1 in Big mode, and 11 in
15336 @TeX{} mode (for @samp{@{a \over b@}}).  The argument may involve
15337 the composition functions described in this section.
15339 @ignore
15340 @starindex
15341 @end ignore
15342 @tindex cheight
15343 The @code{cheight} function measures the height of a composition.
15344 This is the total number of lines in the argument's printed form.
15346 @ignore
15347 @starindex
15348 @end ignore
15349 @tindex cascent
15350 @ignore
15351 @starindex
15352 @end ignore
15353 @tindex cdescent
15354 The functions @code{cascent} and @code{cdescent} measure the amount
15355 of the height that is above (and including) the baseline, or below
15356 the baseline, respectively.  Thus @samp{cascent(@var{x}) + cdescent(@var{x})}
15357 always equals @samp{cheight(@var{x})}.  For a one-line formula like
15358 @samp{a + b}, @code{cascent} returns 1 and @code{cdescent} returns 0.
15359 For @samp{a / b} in Big mode, @code{cascent} returns 2 and @code{cdescent}
15360 returns 1.  The only formula for which @code{cascent} will return zero
15361 is @samp{cvspace(0)} or equivalents.
15363 @node User-Defined Compositions, , Information about Compositions, Compositions
15364 @subsubsection User-Defined Compositions
15366 @noindent
15367 @kindex Z C
15368 @pindex calc-user-define-composition
15369 The @kbd{Z C} (@code{calc-user-define-composition}) command lets you
15370 define the display format for any algebraic function.  You provide a
15371 formula containing a certain number of argument variables on the stack.
15372 Any time Calc formats a call to the specified function in the current
15373 language mode and with that number of arguments, Calc effectively
15374 replaces the function call with that formula with the arguments
15375 replaced.
15377 Calc builds the default argument list by sorting all the variable names
15378 that appear in the formula into alphabetical order.  You can edit this
15379 argument list before pressing @key{RET} if you wish.  Any variables in
15380 the formula that do not appear in the argument list will be displayed
15381 literally; any arguments that do not appear in the formula will not
15382 affect the display at all.
15384 You can define formats for built-in functions, for functions you have
15385 defined with @kbd{Z F} (@pxref{Algebraic Definitions}), or for functions
15386 which have no definitions but are being used as purely syntactic objects.
15387 You can define different formats for each language mode, and for each
15388 number of arguments, using a succession of @kbd{Z C} commands.  When
15389 Calc formats a function call, it first searches for a format defined
15390 for the current language mode (and number of arguments); if there is
15391 none, it uses the format defined for the Normal language mode.  If
15392 neither format exists, Calc uses its built-in standard format for that
15393 function (usually just @samp{@var{func}(@var{args})}).
15395 If you execute @kbd{Z C} with the number 0 on the stack instead of a
15396 formula, any defined formats for the function in the current language
15397 mode will be removed.  The function will revert to its standard format.
15399 For example, the default format for the binomial coefficient function
15400 @samp{choose(n, m)} in the Big language mode is
15402 @example
15403 @group
15405 ( )
15407 @end group
15408 @end example
15410 @noindent
15411 You might prefer the notation,
15413 @example
15414 @group
15416 n m
15417 @end group
15418 @end example
15420 @noindent
15421 To define this notation, first make sure you are in Big mode,
15422 then put the formula
15424 @smallexample
15425 choriz([cvert([cvspace(1), n]), C, cvert([cvspace(1), m])])
15426 @end smallexample
15428 @noindent
15429 on the stack and type @kbd{Z C}.  Answer the first prompt with
15430 @code{choose}.  The second prompt will be the default argument list
15431 of @samp{(C m n)}.  Edit this list to be @samp{(n m)} and press
15432 @key{RET}.  Now, try it out:  For example, turn simplification
15433 off with @kbd{m O} and enter @samp{choose(a,b) + choose(7,3)}
15434 as an algebraic entry.
15436 @example
15437 @group
15438  C  +  C
15439 a b   7 3
15440 @end group
15441 @end example
15443 As another example, let's define the usual notation for Stirling
15444 numbers of the first kind, @samp{stir1(n, m)}.  This is just like
15445 the regular format for binomial coefficients but with square brackets
15446 instead of parentheses.
15448 @smallexample
15449 choriz([string("["), cvert([n, cbase(cvspace(1)), m]), string("]")])
15450 @end smallexample
15452 Now type @kbd{Z C stir1 @key{RET}}, edit the argument list to
15453 @samp{(n m)}, and type @key{RET}.
15455 The formula provided to @kbd{Z C} usually will involve composition
15456 functions, but it doesn't have to.  Putting the formula @samp{a + b + c}
15457 onto the stack and typing @kbd{Z C foo @key{RET} @key{RET}} would define
15458 the function @samp{foo(x,y,z)} to display like @samp{x + y + z}.
15459 This ``sum'' will act exactly like a real sum for all formatting
15460 purposes (it will be parenthesized the same, and so on).  However
15461 it will be computationally unrelated to a sum.  For example, the
15462 formula @samp{2 * foo(1, 2, 3)} will display as @samp{2 (1 + 2 + 3)}.
15463 Operator precedences have caused the ``sum'' to be written in
15464 parentheses, but the arguments have not actually been summed.
15465 (Generally a display format like this would be undesirable, since
15466 it can easily be confused with a real sum.)
15468 The special function @code{eval} can be used inside a @kbd{Z C}
15469 composition formula to cause all or part of the formula to be
15470 evaluated at display time.  For example, if the formula is
15471 @samp{a + eval(b + c)}, then @samp{foo(1, 2, 3)} will be displayed
15472 as @samp{1 + 5}.  Evaluation will use the default simplifications,
15473 regardless of the current simplification mode.  There are also
15474 @code{evalsimp} and @code{evalextsimp} which simplify as if by
15475 @kbd{a s} and @kbd{a e} (respectively).  Note that these ``functions''
15476 operate only in the context of composition formulas (and also in
15477 rewrite rules, where they serve a similar purpose; @pxref{Rewrite
15478 Rules}).  On the stack, a call to @code{eval} will be left in
15479 symbolic form.
15481 It is not a good idea to use @code{eval} except as a last resort.
15482 It can cause the display of formulas to be extremely slow.  For
15483 example, while @samp{eval(a + b)} might seem quite fast and simple,
15484 there are several situations where it could be slow.  For example,
15485 @samp{a} and/or @samp{b} could be polar complex numbers, in which
15486 case doing the sum requires trigonometry.  Or, @samp{a} could be
15487 the factorial @samp{fact(100)} which is unevaluated because you
15488 have typed @kbd{m O}; @code{eval} will evaluate it anyway to
15489 produce a large, unwieldy integer.
15491 You can save your display formats permanently using the @kbd{Z P}
15492 command (@pxref{Creating User Keys}).
15494 @node Syntax Tables, , Compositions, Language Modes
15495 @subsection Syntax Tables
15497 @noindent
15498 @cindex Syntax tables
15499 @cindex Parsing formulas, customized
15500 Syntax tables do for input what compositions do for output:  They
15501 allow you to teach custom notations to Calc's formula parser.
15502 Calc keeps a separate syntax table for each language mode.
15504 (Note that the Calc ``syntax tables'' discussed here are completely
15505 unrelated to the syntax tables described in the Emacs manual.)
15507 @kindex Z S
15508 @pindex calc-edit-user-syntax
15509 The @kbd{Z S} (@code{calc-edit-user-syntax}) command edits the
15510 syntax table for the current language mode.  If you want your
15511 syntax to work in any language, define it in the Normal language
15512 mode.  Type @kbd{C-c C-c} to finish editing the syntax table, or
15513 @kbd{C-x k} to cancel the edit.  The @kbd{m m} command saves all
15514 the syntax tables along with the other mode settings;
15515 @pxref{General Mode Commands}.
15517 @menu
15518 * Syntax Table Basics::
15519 * Precedence in Syntax Tables::
15520 * Advanced Syntax Patterns::
15521 * Conditional Syntax Rules::
15522 @end menu
15524 @node Syntax Table Basics, Precedence in Syntax Tables, Syntax Tables, Syntax Tables
15525 @subsubsection Syntax Table Basics
15527 @noindent
15528 @dfn{Parsing} is the process of converting a raw string of characters,
15529 such as you would type in during algebraic entry, into a Calc formula.
15530 Calc's parser works in two stages.  First, the input is broken down
15531 into @dfn{tokens}, such as words, numbers, and punctuation symbols
15532 like @samp{+}, @samp{:=}, and @samp{+/-}.  Space between tokens is
15533 ignored (except when it serves to separate adjacent words).  Next,
15534 the parser matches this string of tokens against various built-in
15535 syntactic patterns, such as ``an expression followed by @samp{+}
15536 followed by another expression'' or ``a name followed by @samp{(},
15537 zero or more expressions separated by commas, and @samp{)}.''
15539 A @dfn{syntax table} is a list of user-defined @dfn{syntax rules},
15540 which allow you to specify new patterns to define your own
15541 favorite input notations.  Calc's parser always checks the syntax
15542 table for the current language mode, then the table for the Normal
15543 language mode, before it uses its built-in rules to parse an
15544 algebraic formula you have entered.  Each syntax rule should go on
15545 its own line; it consists of a @dfn{pattern}, a @samp{:=} symbol,
15546 and a Calc formula with an optional @dfn{condition}.  (Syntax rules
15547 resemble algebraic rewrite rules, but the notation for patterns is
15548 completely different.)
15550 A syntax pattern is a list of tokens, separated by spaces.
15551 Except for a few special symbols, tokens in syntax patterns are
15552 matched literally, from left to right.  For example, the rule,
15554 @example
15555 foo ( ) := 2+3
15556 @end example
15558 @noindent
15559 would cause Calc to parse the formula @samp{4+foo()*5} as if it
15560 were @samp{4+(2+3)*5}.  Notice that the parentheses were written
15561 as two separate tokens in the rule.  As a result, the rule works
15562 for both @samp{foo()} and @w{@samp{foo (  )}}.  If we had written
15563 the rule as @samp{foo () := 2+3}, then Calc would treat @samp{()}
15564 as a single, indivisible token, so that @w{@samp{foo( )}} would
15565 not be recognized by the rule.  (It would be parsed as a regular
15566 zero-argument function call instead.)  In fact, this rule would
15567 also make trouble for the rest of Calc's parser:  An unrelated
15568 formula like @samp{bar()} would now be tokenized into @samp{bar ()}
15569 instead of @samp{bar ( )}, so that the standard parser for function
15570 calls would no longer recognize it!
15572 While it is possible to make a token with a mixture of letters
15573 and punctuation symbols, this is not recommended.  It is better to
15574 break it into several tokens, as we did with @samp{foo()} above.
15576 The symbol @samp{#} in a syntax pattern matches any Calc expression.
15577 On the righthand side, the things that matched the @samp{#}s can
15578 be referred to as @samp{#1}, @samp{#2}, and so on (where @samp{#1}
15579 matches the leftmost @samp{#} in the pattern).  For example, these
15580 rules match a user-defined function, prefix operator, infix operator,
15581 and postfix operator, respectively:
15583 @example
15584 foo ( # ) := myfunc(#1)
15585 foo # := myprefix(#1)
15586 # foo # := myinfix(#1,#2)
15587 # foo := mypostfix(#1)
15588 @end example
15590 Thus @samp{foo(3)} will parse as @samp{myfunc(3)}, and @samp{2+3 foo}
15591 will parse as @samp{mypostfix(2+3)}.
15593 It is important to write the first two rules in the order shown,
15594 because Calc tries rules in order from first to last.  If the
15595 pattern @samp{foo #} came first, it would match anything that could
15596 match the @samp{foo ( # )} rule, since an expression in parentheses
15597 is itself a valid expression.  Thus the @w{@samp{foo ( # )}} rule would
15598 never get to match anything.  Likewise, the last two rules must be
15599 written in the order shown or else @samp{3 foo 4} will be parsed as
15600 @samp{mypostfix(3) * 4}.  (Of course, the best way to avoid these
15601 ambiguities is not to use the same symbol in more than one way at
15602 the same time!  In case you're not convinced, try the following
15603 exercise:  How will the above rules parse the input @samp{foo(3,4)},
15604 if at all?  Work it out for yourself, then try it in Calc and see.)
15606 Calc is quite flexible about what sorts of patterns are allowed.
15607 The only rule is that every pattern must begin with a literal
15608 token (like @samp{foo} in the first two patterns above), or with
15609 a @samp{#} followed by a literal token (as in the last two
15610 patterns).  After that, any mixture is allowed, although putting
15611 two @samp{#}s in a row will not be very useful since two
15612 expressions with nothing between them will be parsed as one
15613 expression that uses implicit multiplication.
15615 As a more practical example, Maple uses the notation
15616 @samp{sum(a(i), i=1..10)} for sums, which Calc's Maple mode doesn't
15617 recognize at present.  To handle this syntax, we simply add the
15618 rule,
15620 @example
15621 sum ( # , # = # .. # ) := sum(#1,#2,#3,#4)
15622 @end example
15624 @noindent
15625 to the Maple mode syntax table.  As another example, C mode can't
15626 read assignment operators like @samp{++} and @samp{*=}.  We can
15627 define these operators quite easily:
15629 @example
15630 # *= # := muleq(#1,#2)
15631 # ++ := postinc(#1)
15632 ++ # := preinc(#1)
15633 @end example
15635 @noindent
15636 To complete the job, we would use corresponding composition functions
15637 and @kbd{Z C} to cause these functions to display in their respective
15638 Maple and C notations.  (Note that the C example ignores issues of
15639 operator precedence, which are discussed in the next section.)
15641 You can enclose any token in quotes to prevent its usual
15642 interpretation in syntax patterns:
15644 @example
15645 # ":=" # := becomes(#1,#2)
15646 @end example
15648 Quotes also allow you to include spaces in a token, although once
15649 again it is generally better to use two tokens than one token with
15650 an embedded space.  To include an actual quotation mark in a quoted
15651 token, precede it with a backslash.  (This also works to include
15652 backslashes in tokens.)
15654 @example
15655 # "bad token" # "/\"\\" # := silly(#1,#2,#3)
15656 @end example
15658 @noindent
15659 This will parse @samp{3 bad token 4 /"\ 5} to @samp{silly(3,4,5)}.
15661 The token @kbd{#} has a predefined meaning in Calc's formula parser;
15662 it is not valid to use @samp{"#"} in a syntax rule.  However, longer
15663 tokens that include the @samp{#} character are allowed.  Also, while
15664 @samp{"$"} and @samp{"\""} are allowed as tokens, their presence in
15665 the syntax table will prevent those characters from working in their
15666 usual ways (referring to stack entries and quoting strings,
15667 respectively).
15669 Finally, the notation @samp{%%} anywhere in a syntax table causes
15670 the rest of the line to be ignored as a comment.
15672 @node Precedence in Syntax Tables, Advanced Syntax Patterns, Syntax Table Basics, Syntax Tables
15673 @subsubsection Precedence
15675 @noindent
15676 Different operators are generally assigned different @dfn{precedences}.
15677 By default, an operator defined by a rule like
15679 @example
15680 # foo # := foo(#1,#2)
15681 @end example
15683 @noindent
15684 will have an extremely low precedence, so that @samp{2*3+4 foo 5 == 6}
15685 will be parsed as @samp{(2*3+4) foo (5 == 6)}.  To change the
15686 precedence of an operator, use the notation @samp{#/@var{p}} in
15687 place of @samp{#}, where @var{p} is an integer precedence level.
15688 For example, 185 lies between the precedences for @samp{+} and
15689 @samp{*}, so if we change this rule to
15691 @example
15692 #/185 foo #/186 := foo(#1,#2)
15693 @end example
15695 @noindent
15696 then @samp{2+3 foo 4*5} will be parsed as @samp{2+(3 foo (4*5))}.
15697 Also, because we've given the righthand expression slightly higher
15698 precedence, our new operator will be left-associative:
15699 @samp{1 foo 2 foo 3} will be parsed as @samp{(1 foo 2) foo 3}.
15700 By raising the precedence of the lefthand expression instead, we
15701 can create a right-associative operator.
15703 @xref{Composition Basics}, for a table of precedences of the
15704 standard Calc operators.  For the precedences of operators in other
15705 language modes, look in the Calc source file @file{calc-lang.el}.
15707 @node Advanced Syntax Patterns, Conditional Syntax Rules, Precedence in Syntax Tables, Syntax Tables
15708 @subsubsection Advanced Syntax Patterns
15710 @noindent
15711 To match a function with a variable number of arguments, you could
15712 write
15714 @example
15715 foo ( # ) := myfunc(#1)
15716 foo ( # , # ) := myfunc(#1,#2)
15717 foo ( # , # , # ) := myfunc(#1,#2,#3)
15718 @end example
15720 @noindent
15721 but this isn't very elegant.  To match variable numbers of items,
15722 Calc uses some notations inspired regular expressions and the
15723 ``extended BNF'' style used by some language designers.
15725 @example
15726 foo ( @{ # @}*, ) := apply(myfunc,#1)
15727 @end example
15729 The token @samp{@{} introduces a repeated or optional portion.
15730 One of the three tokens @samp{@}*}, @samp{@}+}, or @samp{@}?}
15731 ends the portion.  These will match zero or more, one or more,
15732 or zero or one copies of the enclosed pattern, respectively.
15733 In addition, @samp{@}*} and @samp{@}+} can be followed by a
15734 separator token (with no space in between, as shown above).
15735 Thus @samp{@{ # @}*,} matches nothing, or one expression, or
15736 several expressions separated by commas.
15738 A complete @samp{@{ ... @}} item matches as a vector of the
15739 items that matched inside it.  For example, the above rule will
15740 match @samp{foo(1,2,3)} to get @samp{apply(myfunc,[1,2,3])}.
15741 The Calc @code{apply} function takes a function name and a vector
15742 of arguments and builds a call to the function with those
15743 arguments, so the net result is the formula @samp{myfunc(1,2,3)}.
15745 If the body of a @samp{@{ ... @}} contains several @samp{#}s
15746 (or nested @samp{@{ ... @}} constructs), then the items will be
15747 strung together into the resulting vector.  If the body
15748 does not contain anything but literal tokens, the result will
15749 always be an empty vector.
15751 @example
15752 foo ( @{ # , # @}+, ) := bar(#1)
15753 foo ( @{ @{ # @}*, @}*; ) := matrix(#1)
15754 @end example
15756 @noindent
15757 will parse @samp{foo(1, 2, 3, 4)} as @samp{bar([1, 2, 3, 4])}, and
15758 @samp{foo(1, 2; 3, 4)} as @samp{matrix([[1, 2], [3, 4]])}.  Also, after
15759 some thought it's easy to see how this pair of rules will parse
15760 @samp{foo(1, 2, 3)} as @samp{matrix([[1, 2, 3]])}, since the first
15761 rule will only match an even number of arguments.  The rule
15763 @example
15764 foo ( # @{ , # , # @}? ) := bar(#1,#2)
15765 @end example
15767 @noindent
15768 will parse @samp{foo(2,3,4)} as @samp{bar(2,[3,4])}, and
15769 @samp{foo(2)} as @samp{bar(2,[])}.
15771 The notation @samp{@{ ... @}?.} (note the trailing period) works
15772 just the same as regular @samp{@{ ... @}?}, except that it does not
15773 count as an argument; the following two rules are equivalent:
15775 @example
15776 foo ( # , @{ also @}? # ) := bar(#1,#3)
15777 foo ( # , @{ also @}?. # ) := bar(#1,#2)
15778 @end example
15780 @noindent
15781 Note that in the first case the optional text counts as @samp{#2},
15782 which will always be an empty vector, but in the second case no
15783 empty vector is produced.
15785 Another variant is @samp{@{ ... @}?$}, which means the body is
15786 optional only at the end of the input formula.  All built-in syntax
15787 rules in Calc use this for closing delimiters, so that during
15788 algebraic entry you can type @kbd{[sqrt(2), sqrt(3 @key{RET}}, omitting
15789 the closing parenthesis and bracket.  Calc does this automatically
15790 for trailing @samp{)}, @samp{]}, and @samp{>} tokens in syntax
15791 rules, but you can use @samp{@{ ... @}?$} explicitly to get
15792 this effect with any token (such as @samp{"@}"} or @samp{end}).
15793 Like @samp{@{ ... @}?.}, this notation does not count as an
15794 argument.  Conversely, you can use quotes, as in @samp{")"}, to
15795 prevent a closing-delimiter token from being automatically treated
15796 as optional.
15798 Calc's parser does not have full backtracking, which means some
15799 patterns will not work as you might expect:
15801 @example
15802 foo ( @{ # , @}? # , # ) := bar(#1,#2,#3)
15803 @end example
15805 @noindent
15806 Here we are trying to make the first argument optional, so that
15807 @samp{foo(2,3)} parses as @samp{bar([],2,3)}.  Unfortunately, Calc
15808 first tries to match @samp{2,} against the optional part of the
15809 pattern, finds a match, and so goes ahead to match the rest of the
15810 pattern.  Later on it will fail to match the second comma, but it
15811 doesn't know how to go back and try the other alternative at that
15812 point.  One way to get around this would be to use two rules:
15814 @example
15815 foo ( # , # , # ) := bar([#1],#2,#3)
15816 foo ( # , # ) := bar([],#1,#2)
15817 @end example
15819 More precisely, when Calc wants to match an optional or repeated
15820 part of a pattern, it scans forward attempting to match that part.
15821 If it reaches the end of the optional part without failing, it
15822 ``finalizes'' its choice and proceeds.  If it fails, though, it
15823 backs up and tries the other alternative.  Thus Calc has ``partial''
15824 backtracking.  A fully backtracking parser would go on to make sure
15825 the rest of the pattern matched before finalizing the choice.
15827 @node Conditional Syntax Rules, , Advanced Syntax Patterns, Syntax Tables
15828 @subsubsection Conditional Syntax Rules
15830 @noindent
15831 It is possible to attach a @dfn{condition} to a syntax rule.  For
15832 example, the rules
15834 @example
15835 foo ( # ) := ifoo(#1) :: integer(#1)
15836 foo ( # ) := gfoo(#1)
15837 @end example
15839 @noindent
15840 will parse @samp{foo(3)} as @samp{ifoo(3)}, but will parse
15841 @samp{foo(3.5)} and @samp{foo(x)} as calls to @code{gfoo}.  Any
15842 number of conditions may be attached; all must be true for the
15843 rule to succeed.  A condition is ``true'' if it evaluates to a
15844 nonzero number.  @xref{Logical Operations}, for a list of Calc
15845 functions like @code{integer} that perform logical tests.
15847 The exact sequence of events is as follows:  When Calc tries a
15848 rule, it first matches the pattern as usual.  It then substitutes
15849 @samp{#1}, @samp{#2}, etc., in the conditions, if any.  Next, the
15850 conditions are simplified and evaluated in order from left to right,
15851 as if by the @w{@kbd{a s}} algebra command (@pxref{Simplifying Formulas}).
15852 Each result is true if it is a nonzero number, or an expression
15853 that can be proven to be nonzero (@pxref{Declarations}).  If the
15854 results of all conditions are true, the expression (such as
15855 @samp{ifoo(#1)}) has its @samp{#}s substituted, and that is the
15856 result of the parse.  If the result of any condition is false, Calc
15857 goes on to try the next rule in the syntax table.
15859 Syntax rules also support @code{let} conditions, which operate in
15860 exactly the same way as they do in algebraic rewrite rules.
15861 @xref{Other Features of Rewrite Rules}, for details.  A @code{let}
15862 condition is always true, but as a side effect it defines a
15863 variable which can be used in later conditions, and also in the
15864 expression after the @samp{:=} sign:
15866 @example
15867 foo ( # ) := hifoo(x) :: let(x := #1 + 0.5) :: dnumint(x)
15868 @end example
15870 @noindent
15871 The @code{dnumint} function tests if a value is numerically an
15872 integer, i.e., either a true integer or an integer-valued float.
15873 This rule will parse @code{foo} with a half-integer argument,
15874 like @samp{foo(3.5)}, to a call like @samp{hifoo(4.)}.
15876 The lefthand side of a syntax rule @code{let} must be a simple
15877 variable, not the arbitrary pattern that is allowed in rewrite
15878 rules.
15880 The @code{matches} function is also treated specially in syntax
15881 rule conditions (again, in the same way as in rewrite rules).
15882 @xref{Matching Commands}.  If the matching pattern contains
15883 meta-variables, then those meta-variables may be used in later
15884 conditions and in the result expression.  The arguments to
15885 @code{matches} are not evaluated in this situation.
15887 @example
15888 sum ( # , # ) := sum(#1,a,b,c) :: matches(#2, a=[b..c])
15889 @end example
15891 @noindent
15892 This is another way to implement the Maple mode @code{sum} notation.
15893 In this approach, we allow @samp{#2} to equal the whole expression
15894 @samp{i=1..10}.  Then, we use @code{matches} to break it apart into
15895 its components.  If the expression turns out not to match the pattern,
15896 the syntax rule will fail.  Note that @kbd{Z S} always uses Calc's
15897 Normal language mode for editing expressions in syntax rules, so we
15898 must use regular Calc notation for the interval @samp{[b..c]} that
15899 will correspond to the Maple mode interval @samp{1..10}.
15901 @node Modes Variable, Calc Mode Line, Language Modes, Mode Settings
15902 @section The @code{Modes} Variable
15904 @noindent
15905 @kindex m g
15906 @pindex calc-get-modes
15907 The @kbd{m g} (@code{calc-get-modes}) command pushes onto the stack
15908 a vector of numbers that describes the various mode settings that
15909 are in effect.  With a numeric prefix argument, it pushes only the
15910 @var{n}th mode, i.e., the @var{n}th element of this vector.  Keyboard
15911 macros can use the @kbd{m g} command to modify their behavior based
15912 on the current mode settings.
15914 @cindex @code{Modes} variable
15915 @vindex Modes
15916 The modes vector is also available in the special variable
15917 @code{Modes}.  In other words, @kbd{m g} is like @kbd{s r Modes @key{RET}}.
15918 It will not work to store into this variable; in fact, if you do,
15919 @code{Modes} will cease to track the current modes.  (The @kbd{m g}
15920 command will continue to work, however.)
15922 In general, each number in this vector is suitable as a numeric
15923 prefix argument to the associated mode-setting command.  (Recall
15924 that the @kbd{~} key takes a number from the stack and gives it as
15925 a numeric prefix to the next command.)
15927 The elements of the modes vector are as follows:
15929 @enumerate
15930 @item
15931 Current precision.  Default is 12; associated command is @kbd{p}.
15933 @item
15934 Binary word size.  Default is 32; associated command is @kbd{b w}.
15936 @item
15937 Stack size (not counting the value about to be pushed by @kbd{m g}).
15938 This is zero if @kbd{m g} is executed with an empty stack.
15940 @item
15941 Number radix.  Default is 10; command is @kbd{d r}.
15943 @item
15944 Floating-point format.  This is the number of digits, plus the
15945 constant 0 for normal notation, 10000 for scientific notation,
15946 20000 for engineering notation, or 30000 for fixed-point notation.
15947 These codes are acceptable as prefix arguments to the @kbd{d n}
15948 command, but note that this may lose information:  For example,
15949 @kbd{d s} and @kbd{C-u 12 d s} have similar (but not quite
15950 identical) effects if the current precision is 12, but they both
15951 produce a code of 10012, which will be treated by @kbd{d n} as
15952 @kbd{C-u 12 d s}.  If the precision then changes, the float format
15953 will still be frozen at 12 significant figures.
15955 @item
15956 Angular mode.  Default is 1 (degrees).  Other values are 2 (radians)
15957 and 3 (HMS).  The @kbd{m d} command accepts these prefixes.
15959 @item
15960 Symbolic mode.  Value is 0 or 1; default is 0.  Command is @kbd{m s}.
15962 @item
15963 Fraction mode.  Value is 0 or 1; default is 0.  Command is @kbd{m f}.
15965 @item
15966 Polar mode.  Value is 0 (rectangular) or 1 (polar); default is 0.
15967 Command is @kbd{m p}.
15969 @item
15970 Matrix/Scalar mode.  Default value is @mathit{-1}.  Value is 0 for Scalar
15971 mode, @mathit{-2} for Matrix mode, @mathit{-3} for square Matrix mode,
15972 or @var{N} for  
15973 @texline @math{N\times N}
15974 @infoline @var{N}x@var{N} 
15975 Matrix mode.  Command is @kbd{m v}.
15977 @item
15978 Simplification mode.  Default is 1.  Value is @mathit{-1} for off (@kbd{m O}),
15979 0 for @kbd{m N}, 2 for @kbd{m B}, 3 for @kbd{m A}, 4 for @kbd{m E},
15980 or 5 for @w{@kbd{m U}}.  The @kbd{m D} command accepts these prefixes.
15982 @item
15983 Infinite mode.  Default is @mathit{-1} (off).  Value is 1 if the mode is on,
15984 or 0 if the mode is on with positive zeros.  Command is @kbd{m i}.
15985 @end enumerate
15987 For example, the sequence @kbd{M-1 m g @key{RET} 2 + ~ p} increases the
15988 precision by two, leaving a copy of the old precision on the stack.
15989 Later, @kbd{~ p} will restore the original precision using that
15990 stack value.  (This sequence might be especially useful inside a
15991 keyboard macro.)
15993 As another example, @kbd{M-3 m g 1 - ~ @key{DEL}} deletes all but the
15994 oldest (bottommost) stack entry.
15996 Yet another example:  The HP-48 ``round'' command rounds a number
15997 to the current displayed precision.  You could roughly emulate this
15998 in Calc with the sequence @kbd{M-5 m g 10000 % ~ c c}.  (This
15999 would not work for fixed-point mode, but it wouldn't be hard to
16000 do a full emulation with the help of the @kbd{Z [} and @kbd{Z ]}
16001 programming commands.  @xref{Conditionals in Macros}.)
16003 @node Calc Mode Line, , Modes Variable, Mode Settings
16004 @section The Calc Mode Line
16006 @noindent
16007 @cindex Mode line indicators
16008 This section is a summary of all symbols that can appear on the
16009 Calc mode line, the highlighted bar that appears under the Calc
16010 stack window (or under an editing window in Embedded mode).
16012 The basic mode line format is:
16014 @example
16015 --%%-Calc: 12 Deg @var{other modes}       (Calculator)
16016 @end example
16018 The @samp{%%} is the Emacs symbol for ``read-only''; it shows that
16019 regular Emacs commands are not allowed to edit the stack buffer
16020 as if it were text.
16022 The word @samp{Calc:} changes to @samp{CalcEmbed:} if Embedded mode
16023 is enabled.  The words after this describe the various Calc modes
16024 that are in effect.
16026 The first mode is always the current precision, an integer.
16027 The second mode is always the angular mode, either @code{Deg},
16028 @code{Rad}, or @code{Hms}.
16030 Here is a complete list of the remaining symbols that can appear
16031 on the mode line:
16033 @table @code
16034 @item Alg
16035 Algebraic mode (@kbd{m a}; @pxref{Algebraic Entry}).
16037 @item Alg[(
16038 Incomplete algebraic mode (@kbd{C-u m a}).
16040 @item Alg*
16041 Total algebraic mode (@kbd{m t}).
16043 @item Symb
16044 Symbolic mode (@kbd{m s}; @pxref{Symbolic Mode}).
16046 @item Matrix
16047 Matrix mode (@kbd{m v}; @pxref{Matrix Mode}).
16049 @item Matrix@var{n}
16050 Dimensioned Matrix mode (@kbd{C-u @var{n} m v}; @pxref{Matrix Mode}).
16052 @item SqMatrix
16053 Square Matrix mode (@kbd{C-u m v}; @pxref{Matrix Mode}).
16055 @item Scalar
16056 Scalar mode (@kbd{m v}; @pxref{Matrix Mode}).
16058 @item Polar
16059 Polar complex mode (@kbd{m p}; @pxref{Polar Mode}).
16061 @item Frac
16062 Fraction mode (@kbd{m f}; @pxref{Fraction Mode}).
16064 @item Inf
16065 Infinite mode (@kbd{m i}; @pxref{Infinite Mode}).
16067 @item +Inf
16068 Positive Infinite mode (@kbd{C-u 0 m i}).
16070 @item NoSimp
16071 Default simplifications off (@kbd{m O}; @pxref{Simplification Modes}).
16073 @item NumSimp
16074 Default simplifications for numeric arguments only (@kbd{m N}).
16076 @item BinSimp@var{w}
16077 Binary-integer simplification mode; word size @var{w} (@kbd{m B}, @kbd{b w}).
16079 @item AlgSimp
16080 Algebraic simplification mode (@kbd{m A}).
16082 @item ExtSimp
16083 Extended algebraic simplification mode (@kbd{m E}).
16085 @item UnitSimp
16086 Units simplification mode (@kbd{m U}).
16088 @item Bin
16089 Current radix is 2 (@kbd{d 2}; @pxref{Radix Modes}).
16091 @item Oct
16092 Current radix is 8 (@kbd{d 8}).
16094 @item Hex
16095 Current radix is 16 (@kbd{d 6}).
16097 @item Radix@var{n}
16098 Current radix is @var{n} (@kbd{d r}).
16100 @item Zero
16101 Leading zeros (@kbd{d z}; @pxref{Radix Modes}).
16103 @item Big
16104 Big language mode (@kbd{d B}; @pxref{Normal Language Modes}).
16106 @item Flat
16107 One-line normal language mode (@kbd{d O}).
16109 @item Unform
16110 Unformatted language mode (@kbd{d U}).
16112 @item C
16113 C language mode (@kbd{d C}; @pxref{C FORTRAN Pascal}).
16115 @item Pascal
16116 Pascal language mode (@kbd{d P}).
16118 @item Fortran
16119 FORTRAN language mode (@kbd{d F}).
16121 @item TeX
16122 @TeX{} language mode (@kbd{d T}; @pxref{TeX and LaTeX Language Modes}).
16124 @item LaTeX
16125 La@TeX{} language mode (@kbd{d L}; @pxref{TeX and LaTeX Language Modes}).
16127 @item Eqn
16128 @dfn{Eqn} language mode (@kbd{d E}; @pxref{Eqn Language Mode}).
16130 @item Math
16131 Mathematica language mode (@kbd{d M}; @pxref{Mathematica Language Mode}).
16133 @item Maple
16134 Maple language mode (@kbd{d W}; @pxref{Maple Language Mode}).
16136 @item Norm@var{n}
16137 Normal float mode with @var{n} digits (@kbd{d n}; @pxref{Float Formats}).
16139 @item Fix@var{n}
16140 Fixed point mode with @var{n} digits after the point (@kbd{d f}).
16142 @item Sci
16143 Scientific notation mode (@kbd{d s}).
16145 @item Sci@var{n}
16146 Scientific notation with @var{n} digits (@kbd{d s}).
16148 @item Eng
16149 Engineering notation mode (@kbd{d e}).
16151 @item Eng@var{n}
16152 Engineering notation with @var{n} digits (@kbd{d e}).
16154 @item Left@var{n}
16155 Left-justified display indented by @var{n} (@kbd{d <}; @pxref{Justification}).
16157 @item Right
16158 Right-justified display (@kbd{d >}).
16160 @item Right@var{n}
16161 Right-justified display with width @var{n} (@kbd{d >}).
16163 @item Center
16164 Centered display (@kbd{d =}).
16166 @item Center@var{n}
16167 Centered display with center column @var{n} (@kbd{d =}).
16169 @item Wid@var{n}
16170 Line breaking with width @var{n} (@kbd{d b}; @pxref{Normal Language Modes}).
16172 @item Wide
16173 No line breaking (@kbd{d b}).
16175 @item Break
16176 Selections show deep structure (@kbd{j b}; @pxref{Making Selections}).
16178 @item Save
16179 Record modes in @file{~/.calc.el} (@kbd{m R}; @pxref{General Mode Commands}).
16181 @item Local
16182 Record modes in Embedded buffer (@kbd{m R}).
16184 @item LocEdit
16185 Record modes as editing-only in Embedded buffer (@kbd{m R}).
16187 @item LocPerm
16188 Record modes as permanent-only in Embedded buffer (@kbd{m R}).
16190 @item Global
16191 Record modes as global in Embedded buffer (@kbd{m R}).
16193 @item Manual
16194 Automatic recomputation turned off (@kbd{m C}; @pxref{Automatic
16195 Recomputation}).
16197 @item Graph
16198 GNUPLOT process is alive in background (@pxref{Graphics}).
16200 @item Sel
16201 Top-of-stack has a selection (Embedded only; @pxref{Making Selections}).
16203 @item Dirty
16204 The stack display may not be up-to-date (@pxref{Display Modes}).
16206 @item Inv
16207 ``Inverse'' prefix was pressed (@kbd{I}; @pxref{Inverse and Hyperbolic}).
16209 @item Hyp
16210 ``Hyperbolic'' prefix was pressed (@kbd{H}).
16212 @item Keep
16213 ``Keep-arguments'' prefix was pressed (@kbd{K}).
16215 @item Narrow
16216 Stack is truncated (@kbd{d t}; @pxref{Truncating the Stack}).
16217 @end table
16219 In addition, the symbols @code{Active} and @code{~Active} can appear
16220 as minor modes on an Embedded buffer's mode line.  @xref{Embedded Mode}.
16222 @node Arithmetic, Scientific Functions, Mode Settings, Top
16223 @chapter Arithmetic Functions
16225 @noindent
16226 This chapter describes the Calc commands for doing simple calculations
16227 on numbers, such as addition, absolute value, and square roots.  These
16228 commands work by removing the top one or two values from the stack,
16229 performing the desired operation, and pushing the result back onto the
16230 stack.  If the operation cannot be performed, the result pushed is a
16231 formula instead of a number, such as @samp{2/0} (because division by zero
16232 is invalid) or @samp{sqrt(x)} (because the argument @samp{x} is a formula).
16234 Most of the commands described here can be invoked by a single keystroke.
16235 Some of the more obscure ones are two-letter sequences beginning with
16236 the @kbd{f} (``functions'') prefix key.
16238 @xref{Prefix Arguments}, for a discussion of the effect of numeric
16239 prefix arguments on commands in this chapter which do not otherwise
16240 interpret a prefix argument.
16242 @menu
16243 * Basic Arithmetic::
16244 * Integer Truncation::
16245 * Complex Number Functions::
16246 * Conversions::
16247 * Date Arithmetic::
16248 * Financial Functions::
16249 * Binary Functions::
16250 @end menu
16252 @node Basic Arithmetic, Integer Truncation, Arithmetic, Arithmetic
16253 @section Basic Arithmetic
16255 @noindent
16256 @kindex +
16257 @pindex calc-plus
16258 @ignore
16259 @mindex @null
16260 @end ignore
16261 @tindex +
16262 The @kbd{+} (@code{calc-plus}) command adds two numbers.  The numbers may
16263 be any of the standard Calc data types.  The resulting sum is pushed back
16264 onto the stack.
16266 If both arguments of @kbd{+} are vectors or matrices (of matching dimensions),
16267 the result is a vector or matrix sum.  If one argument is a vector and the
16268 other a scalar (i.e., a non-vector), the scalar is added to each of the
16269 elements of the vector to form a new vector.  If the scalar is not a
16270 number, the operation is left in symbolic form:  Suppose you added @samp{x}
16271 to the vector @samp{[1,2]}.  You may want the result @samp{[1+x,2+x]}, or
16272 you may plan to substitute a 2-vector for @samp{x} in the future.  Since
16273 the Calculator can't tell which interpretation you want, it makes the
16274 safest assumption.  @xref{Reducing and Mapping}, for a way to add @samp{x}
16275 to every element of a vector.
16277 If either argument of @kbd{+} is a complex number, the result will in general
16278 be complex.  If one argument is in rectangular form and the other polar,
16279 the current Polar mode determines the form of the result.  If Symbolic
16280 mode is enabled, the sum may be left as a formula if the necessary
16281 conversions for polar addition are non-trivial.
16283 If both arguments of @kbd{+} are HMS forms, the forms are added according to
16284 the usual conventions of hours-minutes-seconds notation.  If one argument
16285 is an HMS form and the other is a number, that number is converted from
16286 degrees or radians (depending on the current Angular mode) to HMS format
16287 and then the two HMS forms are added.
16289 If one argument of @kbd{+} is a date form, the other can be either a
16290 real number, which advances the date by a certain number of days, or
16291 an HMS form, which advances the date by a certain amount of time.
16292 Subtracting two date forms yields the number of days between them.
16293 Adding two date forms is meaningless, but Calc interprets it as the
16294 subtraction of one date form and the negative of the other.  (The
16295 negative of a date form can be understood by remembering that dates
16296 are stored as the number of days before or after Jan 1, 1 AD.)
16298 If both arguments of @kbd{+} are error forms, the result is an error form
16299 with an appropriately computed standard deviation.  If one argument is an
16300 error form and the other is a number, the number is taken to have zero error.
16301 Error forms may have symbolic formulas as their mean and/or error parts;
16302 adding these will produce a symbolic error form result.  However, adding an
16303 error form to a plain symbolic formula (as in @samp{(a +/- b) + c}) will not
16304 work, for the same reasons just mentioned for vectors.  Instead you must
16305 write @samp{(a +/- b) + (c +/- 0)}.
16307 If both arguments of @kbd{+} are modulo forms with equal values of @expr{M},
16308 or if one argument is a modulo form and the other a plain number, the
16309 result is a modulo form which represents the sum, modulo @expr{M}, of
16310 the two values.
16312 If both arguments of @kbd{+} are intervals, the result is an interval
16313 which describes all possible sums of the possible input values.  If
16314 one argument is a plain number, it is treated as the interval
16315 @w{@samp{[x ..@: x]}}.
16317 If one argument of @kbd{+} is an infinity and the other is not, the
16318 result is that same infinity.  If both arguments are infinite and in
16319 the same direction, the result is the same infinity, but if they are
16320 infinite in different directions the result is @code{nan}.
16322 @kindex -
16323 @pindex calc-minus
16324 @ignore
16325 @mindex @null
16326 @end ignore
16327 @tindex -
16328 The @kbd{-} (@code{calc-minus}) command subtracts two values.  The top
16329 number on the stack is subtracted from the one behind it, so that the
16330 computation @kbd{5 @key{RET} 2 -} produces 3, not @mathit{-3}.  All options
16331 available for @kbd{+} are available for @kbd{-} as well.
16333 @kindex *
16334 @pindex calc-times
16335 @ignore
16336 @mindex @null
16337 @end ignore
16338 @tindex *
16339 The @kbd{*} (@code{calc-times}) command multiplies two numbers.  If one
16340 argument is a vector and the other a scalar, the scalar is multiplied by
16341 the elements of the vector to produce a new vector.  If both arguments
16342 are vectors, the interpretation depends on the dimensions of the
16343 vectors:  If both arguments are matrices, a matrix multiplication is
16344 done.  If one argument is a matrix and the other a plain vector, the
16345 vector is interpreted as a row vector or column vector, whichever is
16346 dimensionally correct.  If both arguments are plain vectors, the result
16347 is a single scalar number which is the dot product of the two vectors.
16349 If one argument of @kbd{*} is an HMS form and the other a number, the
16350 HMS form is multiplied by that amount.  It is an error to multiply two
16351 HMS forms together, or to attempt any multiplication involving date
16352 forms.  Error forms, modulo forms, and intervals can be multiplied;
16353 see the comments for addition of those forms.  When two error forms
16354 or intervals are multiplied they are considered to be statistically
16355 independent; thus, @samp{[-2 ..@: 3] * [-2 ..@: 3]} is @samp{[-6 ..@: 9]},
16356 whereas @w{@samp{[-2 ..@: 3] ^ 2}} is @samp{[0 ..@: 9]}.
16358 @kindex /
16359 @pindex calc-divide
16360 @ignore
16361 @mindex @null
16362 @end ignore
16363 @tindex /
16364 The @kbd{/} (@code{calc-divide}) command divides two numbers.  When
16365 dividing a scalar @expr{B} by a square matrix @expr{A}, the computation
16366 performed is @expr{B} times the inverse of @expr{A}.  This also occurs
16367 if @expr{B} is itself a vector or matrix, in which case the effect is
16368 to solve the set of linear equations represented by @expr{B}.  If @expr{B}
16369 is a matrix with the same number of rows as @expr{A}, or a plain vector
16370 (which is interpreted here as a column vector), then the equation
16371 @expr{A X = B} is solved for the vector or matrix @expr{X}.  Otherwise,
16372 if @expr{B} is a non-square matrix with the same number of @emph{columns}
16373 as @expr{A}, the equation @expr{X A = B} is solved.  If you wish a vector
16374 @expr{B} to be interpreted as a row vector to be solved as @expr{X A = B},
16375 make it into a one-row matrix with @kbd{C-u 1 v p} first.  To force a
16376 left-handed solution with a square matrix @expr{B}, transpose @expr{A} and
16377 @expr{B} before dividing, then transpose the result.
16379 HMS forms can be divided by real numbers or by other HMS forms.  Error
16380 forms can be divided in any combination of ways.  Modulo forms where both
16381 values and the modulo are integers can be divided to get an integer modulo
16382 form result.  Intervals can be divided; dividing by an interval that
16383 encompasses zero or has zero as a limit will result in an infinite
16384 interval.
16386 @kindex ^
16387 @pindex calc-power
16388 @ignore
16389 @mindex @null
16390 @end ignore
16391 @tindex ^
16392 The @kbd{^} (@code{calc-power}) command raises a number to a power.  If
16393 the power is an integer, an exact result is computed using repeated
16394 multiplications.  For non-integer powers, Calc uses Newton's method or
16395 logarithms and exponentials.  Square matrices can be raised to integer
16396 powers.  If either argument is an error (or interval or modulo) form,
16397 the result is also an error (or interval or modulo) form.
16399 @kindex I ^
16400 @tindex nroot
16401 If you press the @kbd{I} (inverse) key first, the @kbd{I ^} command
16402 computes an Nth root:  @kbd{125 @key{RET} 3 I ^} computes the number 5.
16403 (This is entirely equivalent to @kbd{125 @key{RET} 1:3 ^}.)
16405 @kindex \
16406 @pindex calc-idiv
16407 @tindex idiv
16408 @ignore
16409 @mindex @null
16410 @end ignore
16411 @tindex \
16412 The @kbd{\} (@code{calc-idiv}) command divides two numbers on the stack
16413 to produce an integer result.  It is equivalent to dividing with
16414 @key{/}, then rounding down with @kbd{F} (@code{calc-floor}), only a bit
16415 more convenient and efficient.  Also, since it is an all-integer
16416 operation when the arguments are integers, it avoids problems that
16417 @kbd{/ F} would have with floating-point roundoff.
16419 @kindex %
16420 @pindex calc-mod
16421 @ignore
16422 @mindex @null
16423 @end ignore
16424 @tindex %
16425 The @kbd{%} (@code{calc-mod}) command performs a ``modulo'' (or ``remainder'')
16426 operation.  Mathematically, @samp{a%b = a - (a\b)*b}, and is defined
16427 for all real numbers @expr{a} and @expr{b} (except @expr{b=0}).  For
16428 positive @expr{b}, the result will always be between 0 (inclusive) and
16429 @expr{b} (exclusive).  Modulo does not work for HMS forms and error forms.
16430 If @expr{a} is a modulo form, its modulo is changed to @expr{b}, which
16431 must be positive real number.
16433 @kindex :
16434 @pindex calc-fdiv
16435 @tindex fdiv
16436 The @kbd{:} (@code{calc-fdiv}) [@code{fdiv}] command
16437 divides the two integers on the top of the stack to produce a fractional
16438 result.  This is a convenient shorthand for enabling Fraction mode (with
16439 @kbd{m f}) temporarily and using @samp{/}.  Note that during numeric entry
16440 the @kbd{:} key is interpreted as a fraction separator, so to divide 8 by 6
16441 you would have to type @kbd{8 @key{RET} 6 @key{RET} :}.  (Of course, in
16442 this case, it would be much easier simply to enter the fraction directly
16443 as @kbd{8:6 @key{RET}}!)
16445 @kindex n
16446 @pindex calc-change-sign
16447 The @kbd{n} (@code{calc-change-sign}) command negates the number on the top
16448 of the stack.  It works on numbers, vectors and matrices, HMS forms, date
16449 forms, error forms, intervals, and modulo forms.
16451 @kindex A
16452 @pindex calc-abs
16453 @tindex abs
16454 The @kbd{A} (@code{calc-abs}) [@code{abs}] command computes the absolute
16455 value of a number.  The result of @code{abs} is always a nonnegative
16456 real number:  With a complex argument, it computes the complex magnitude.
16457 With a vector or matrix argument, it computes the Frobenius norm, i.e.,
16458 the square root of the sum of the squares of the absolute values of the
16459 elements.  The absolute value of an error form is defined by replacing
16460 the mean part with its absolute value and leaving the error part the same.
16461 The absolute value of a modulo form is undefined.  The absolute value of
16462 an interval is defined in the obvious way.
16464 @kindex f A
16465 @pindex calc-abssqr
16466 @tindex abssqr
16467 The @kbd{f A} (@code{calc-abssqr}) [@code{abssqr}] command computes the
16468 absolute value squared of a number, vector or matrix, or error form.
16470 @kindex f s
16471 @pindex calc-sign
16472 @tindex sign
16473 The @kbd{f s} (@code{calc-sign}) [@code{sign}] command returns 1 if its
16474 argument is positive, @mathit{-1} if its argument is negative, or 0 if its
16475 argument is zero.  In algebraic form, you can also write @samp{sign(a,x)}
16476 which evaluates to @samp{x * sign(a)}, i.e., either @samp{x}, @samp{-x}, or
16477 zero depending on the sign of @samp{a}.
16479 @kindex &
16480 @pindex calc-inv
16481 @tindex inv
16482 @cindex Reciprocal
16483 The @kbd{&} (@code{calc-inv}) [@code{inv}] command computes the
16484 reciprocal of a number, i.e., @expr{1 / x}.  Operating on a square
16485 matrix, it computes the inverse of that matrix.
16487 @kindex Q
16488 @pindex calc-sqrt
16489 @tindex sqrt
16490 The @kbd{Q} (@code{calc-sqrt}) [@code{sqrt}] command computes the square
16491 root of a number.  For a negative real argument, the result will be a
16492 complex number whose form is determined by the current Polar mode.
16494 @kindex f h
16495 @pindex calc-hypot
16496 @tindex hypot
16497 The @kbd{f h} (@code{calc-hypot}) [@code{hypot}] command computes the square
16498 root of the sum of the squares of two numbers.  That is, @samp{hypot(a,b)}
16499 is the length of the hypotenuse of a right triangle with sides @expr{a}
16500 and @expr{b}.  If the arguments are complex numbers, their squared
16501 magnitudes are used.
16503 @kindex f Q
16504 @pindex calc-isqrt
16505 @tindex isqrt
16506 The @kbd{f Q} (@code{calc-isqrt}) [@code{isqrt}] command computes the
16507 integer square root of an integer.  This is the true square root of the
16508 number, rounded down to an integer.  For example, @samp{isqrt(10)}
16509 produces 3.  Note that, like @kbd{\} [@code{idiv}], this uses exact
16510 integer arithmetic throughout to avoid roundoff problems.  If the input
16511 is a floating-point number or other non-integer value, this is exactly
16512 the same as @samp{floor(sqrt(x))}.
16514 @kindex f n
16515 @kindex f x
16516 @pindex calc-min
16517 @tindex min
16518 @pindex calc-max
16519 @tindex max
16520 The @kbd{f n} (@code{calc-min}) [@code{min}] and @kbd{f x} (@code{calc-max})
16521 [@code{max}] commands take the minimum or maximum of two real numbers,
16522 respectively.  These commands also work on HMS forms, date forms,
16523 intervals, and infinities.  (In algebraic expressions, these functions
16524 take any number of arguments and return the maximum or minimum among
16525 all the arguments.)
16527 @kindex f M
16528 @kindex f X
16529 @pindex calc-mant-part
16530 @tindex mant
16531 @pindex calc-xpon-part
16532 @tindex xpon
16533 The @kbd{f M} (@code{calc-mant-part}) [@code{mant}] function extracts
16534 the ``mantissa'' part @expr{m} of its floating-point argument; @kbd{f X}
16535 (@code{calc-xpon-part}) [@code{xpon}] extracts the ``exponent'' part
16536 @expr{e}.  The original number is equal to 
16537 @texline @math{m \times 10^e},
16538 @infoline @expr{m * 10^e},
16539 where @expr{m} is in the interval @samp{[1.0 ..@: 10.0)} except that
16540 @expr{m=e=0} if the original number is zero.  For integers
16541 and fractions, @code{mant} returns the number unchanged and @code{xpon}
16542 returns zero.  The @kbd{v u} (@code{calc-unpack}) command can also be
16543 used to ``unpack'' a floating-point number; this produces an integer
16544 mantissa and exponent, with the constraint that the mantissa is not
16545 a multiple of ten (again except for the @expr{m=e=0} case).
16547 @kindex f S
16548 @pindex calc-scale-float
16549 @tindex scf
16550 The @kbd{f S} (@code{calc-scale-float}) [@code{scf}] function scales a number
16551 by a given power of ten.  Thus, @samp{scf(mant(x), xpon(x)) = x} for any
16552 real @samp{x}.  The second argument must be an integer, but the first
16553 may actually be any numeric value.  For example, @samp{scf(5,-2) = 0.05}
16554 or @samp{1:20} depending on the current Fraction mode.
16556 @kindex f [
16557 @kindex f ]
16558 @pindex calc-decrement
16559 @pindex calc-increment
16560 @tindex decr
16561 @tindex incr
16562 The @kbd{f [} (@code{calc-decrement}) [@code{decr}] and @kbd{f ]}
16563 (@code{calc-increment}) [@code{incr}] functions decrease or increase
16564 a number by one unit.  For integers, the effect is obvious.  For
16565 floating-point numbers, the change is by one unit in the last place.
16566 For example, incrementing @samp{12.3456} when the current precision
16567 is 6 digits yields @samp{12.3457}.  If the current precision had been
16568 8 digits, the result would have been @samp{12.345601}.  Incrementing
16569 @samp{0.0} produces 
16570 @texline @math{10^{-p}},
16571 @infoline @expr{10^-p}, 
16572 where @expr{p} is the current
16573 precision.  These operations are defined only on integers and floats.
16574 With numeric prefix arguments, they change the number by @expr{n} units.
16576 Note that incrementing followed by decrementing, or vice-versa, will
16577 almost but not quite always cancel out.  Suppose the precision is
16578 6 digits and the number @samp{9.99999} is on the stack.  Incrementing
16579 will produce @samp{10.0000}; decrementing will produce @samp{9.9999}.
16580 One digit has been dropped.  This is an unavoidable consequence of the
16581 way floating-point numbers work.
16583 Incrementing a date/time form adjusts it by a certain number of seconds.
16584 Incrementing a pure date form adjusts it by a certain number of days.
16586 @node Integer Truncation, Complex Number Functions, Basic Arithmetic, Arithmetic
16587 @section Integer Truncation
16589 @noindent
16590 There are four commands for truncating a real number to an integer,
16591 differing mainly in their treatment of negative numbers.  All of these
16592 commands have the property that if the argument is an integer, the result
16593 is the same integer.  An integer-valued floating-point argument is converted
16594 to integer form.
16596 If you press @kbd{H} (@code{calc-hyperbolic}) first, the result will be
16597 expressed as an integer-valued floating-point number.
16599 @cindex Integer part of a number
16600 @kindex F
16601 @pindex calc-floor
16602 @tindex floor
16603 @tindex ffloor
16604 @ignore
16605 @mindex @null
16606 @end ignore
16607 @kindex H F
16608 The @kbd{F} (@code{calc-floor}) [@code{floor} or @code{ffloor}] command
16609 truncates a real number to the next lower integer, i.e., toward minus
16610 infinity.  Thus @kbd{3.6 F} produces 3, but @kbd{_3.6 F} produces
16611 @mathit{-4}.
16613 @kindex I F
16614 @pindex calc-ceiling
16615 @tindex ceil
16616 @tindex fceil
16617 @ignore
16618 @mindex @null
16619 @end ignore
16620 @kindex H I F
16621 The @kbd{I F} (@code{calc-ceiling}) [@code{ceil} or @code{fceil}]
16622 command truncates toward positive infinity.  Thus @kbd{3.6 I F} produces
16623 4, and @kbd{_3.6 I F} produces @mathit{-3}.
16625 @kindex R
16626 @pindex calc-round
16627 @tindex round
16628 @tindex fround
16629 @ignore
16630 @mindex @null
16631 @end ignore
16632 @kindex H R
16633 The @kbd{R} (@code{calc-round}) [@code{round} or @code{fround}] command
16634 rounds to the nearest integer.  When the fractional part is .5 exactly,
16635 this command rounds away from zero.  (All other rounding in the
16636 Calculator uses this convention as well.)  Thus @kbd{3.5 R} produces 4
16637 but @kbd{3.4 R} produces 3; @kbd{_3.5 R} produces @mathit{-4}.
16639 @kindex I R
16640 @pindex calc-trunc
16641 @tindex trunc
16642 @tindex ftrunc
16643 @ignore
16644 @mindex @null
16645 @end ignore
16646 @kindex H I R
16647 The @kbd{I R} (@code{calc-trunc}) [@code{trunc} or @code{ftrunc}]
16648 command truncates toward zero.  In other words, it ``chops off''
16649 everything after the decimal point.  Thus @kbd{3.6 I R} produces 3 and
16650 @kbd{_3.6 I R} produces @mathit{-3}.
16652 These functions may not be applied meaningfully to error forms, but they
16653 do work for intervals.  As a convenience, applying @code{floor} to a
16654 modulo form floors the value part of the form.  Applied to a vector,
16655 these functions operate on all elements of the vector one by one.
16656 Applied to a date form, they operate on the internal numerical
16657 representation of dates, converting a date/time form into a pure date.
16659 @ignore
16660 @starindex
16661 @end ignore
16662 @tindex rounde
16663 @ignore
16664 @starindex
16665 @end ignore
16666 @tindex roundu
16667 @ignore
16668 @starindex
16669 @end ignore
16670 @tindex frounde
16671 @ignore
16672 @starindex
16673 @end ignore
16674 @tindex froundu
16675 There are two more rounding functions which can only be entered in
16676 algebraic notation.  The @code{roundu} function is like @code{round}
16677 except that it rounds up, toward plus infinity, when the fractional
16678 part is .5.  This distinction matters only for negative arguments.
16679 Also, @code{rounde} rounds to an even number in the case of a tie,
16680 rounding up or down as necessary.  For example, @samp{rounde(3.5)} and
16681 @samp{rounde(4.5)} both return 4, but @samp{rounde(5.5)} returns 6.
16682 The advantage of round-to-even is that the net error due to rounding
16683 after a long calculation tends to cancel out to zero.  An important
16684 subtle point here is that the number being fed to @code{rounde} will
16685 already have been rounded to the current precision before @code{rounde}
16686 begins.  For example, @samp{rounde(2.500001)} with a current precision
16687 of 6 will incorrectly, or at least surprisingly, yield 2 because the
16688 argument will first have been rounded down to @expr{2.5} (which
16689 @code{rounde} sees as an exact tie between 2 and 3).
16691 Each of these functions, when written in algebraic formulas, allows
16692 a second argument which specifies the number of digits after the
16693 decimal point to keep.  For example, @samp{round(123.4567, 2)} will
16694 produce the answer 123.46, and @samp{round(123.4567, -1)} will
16695 produce 120 (i.e., the cutoff is one digit to the @emph{left} of
16696 the decimal point).  A second argument of zero is equivalent to
16697 no second argument at all.
16699 @cindex Fractional part of a number
16700 To compute the fractional part of a number (i.e., the amount which, when
16701 added to `@tfn{floor(}@var{n}@tfn{)}', will produce @var{n}) just take @var{n}
16702 modulo 1 using the @code{%} command.
16704 Note also the @kbd{\} (integer quotient), @kbd{f I} (integer logarithm),
16705 and @kbd{f Q} (integer square root) commands, which are analogous to
16706 @kbd{/}, @kbd{B}, and @kbd{Q}, respectively, except that they take integer
16707 arguments and return the result rounded down to an integer.
16709 @node Complex Number Functions, Conversions, Integer Truncation, Arithmetic
16710 @section Complex Number Functions
16712 @noindent
16713 @kindex J
16714 @pindex calc-conj
16715 @tindex conj
16716 The @kbd{J} (@code{calc-conj}) [@code{conj}] command computes the
16717 complex conjugate of a number.  For complex number @expr{a+bi}, the
16718 complex conjugate is @expr{a-bi}.  If the argument is a real number,
16719 this command leaves it the same.  If the argument is a vector or matrix,
16720 this command replaces each element by its complex conjugate.
16722 @kindex G
16723 @pindex calc-argument
16724 @tindex arg
16725 The @kbd{G} (@code{calc-argument}) [@code{arg}] command computes the
16726 ``argument'' or polar angle of a complex number.  For a number in polar
16727 notation, this is simply the second component of the pair
16728 @texline `@tfn{(}@var{r}@tfn{;}@math{\theta}@tfn{)}'.
16729 @infoline `@tfn{(}@var{r}@tfn{;}@var{theta}@tfn{)}'.
16730 The result is expressed according to the current angular mode and will
16731 be in the range @mathit{-180} degrees (exclusive) to @mathit{+180} degrees
16732 (inclusive), or the equivalent range in radians.
16734 @pindex calc-imaginary
16735 The @code{calc-imaginary} command multiplies the number on the
16736 top of the stack by the imaginary number @expr{i = (0,1)}.  This
16737 command is not normally bound to a key in Calc, but it is available
16738 on the @key{IMAG} button in Keypad mode.
16740 @kindex f r
16741 @pindex calc-re
16742 @tindex re
16743 The @kbd{f r} (@code{calc-re}) [@code{re}] command replaces a complex number
16744 by its real part.  This command has no effect on real numbers.  (As an
16745 added convenience, @code{re} applied to a modulo form extracts
16746 the value part.)
16748 @kindex f i
16749 @pindex calc-im
16750 @tindex im
16751 The @kbd{f i} (@code{calc-im}) [@code{im}] command replaces a complex number
16752 by its imaginary part; real numbers are converted to zero.  With a vector
16753 or matrix argument, these functions operate element-wise.
16755 @ignore
16756 @mindex v p
16757 @end ignore
16758 @kindex v p (complex)
16759 @pindex calc-pack
16760 The @kbd{v p} (@code{calc-pack}) command can pack the top two numbers on
16761 the stack into a composite object such as a complex number.  With
16762 a prefix argument of @mathit{-1}, it produces a rectangular complex number;
16763 with an argument of @mathit{-2}, it produces a polar complex number.
16764 (Also, @pxref{Building Vectors}.)
16766 @ignore
16767 @mindex v u
16768 @end ignore
16769 @kindex v u (complex)
16770 @pindex calc-unpack
16771 The @kbd{v u} (@code{calc-unpack}) command takes the complex number
16772 (or other composite object) on the top of the stack and unpacks it
16773 into its separate components.
16775 @node Conversions, Date Arithmetic, Complex Number Functions, Arithmetic
16776 @section Conversions
16778 @noindent
16779 The commands described in this section convert numbers from one form
16780 to another; they are two-key sequences beginning with the letter @kbd{c}.
16782 @kindex c f
16783 @pindex calc-float
16784 @tindex pfloat
16785 The @kbd{c f} (@code{calc-float}) [@code{pfloat}] command converts the
16786 number on the top of the stack to floating-point form.  For example,
16787 @expr{23} is converted to @expr{23.0}, @expr{3:2} is converted to
16788 @expr{1.5}, and @expr{2.3} is left the same.  If the value is a composite
16789 object such as a complex number or vector, each of the components is
16790 converted to floating-point.  If the value is a formula, all numbers
16791 in the formula are converted to floating-point.  Note that depending
16792 on the current floating-point precision, conversion to floating-point
16793 format may lose information.
16795 As a special exception, integers which appear as powers or subscripts
16796 are not floated by @kbd{c f}.  If you really want to float a power,
16797 you can use a @kbd{j s} command to select the power followed by @kbd{c f}.
16798 Because @kbd{c f} cannot examine the formula outside of the selection,
16799 it does not notice that the thing being floated is a power.
16800 @xref{Selecting Subformulas}.
16802 The normal @kbd{c f} command is ``pervasive'' in the sense that it
16803 applies to all numbers throughout the formula.  The @code{pfloat}
16804 algebraic function never stays around in a formula; @samp{pfloat(a + 1)}
16805 changes to @samp{a + 1.0} as soon as it is evaluated.
16807 @kindex H c f
16808 @tindex float
16809 With the Hyperbolic flag, @kbd{H c f} [@code{float}] operates
16810 only on the number or vector of numbers at the top level of its
16811 argument.  Thus, @samp{float(1)} is 1.0, but @samp{float(a + 1)}
16812 is left unevaluated because its argument is not a number.
16814 You should use @kbd{H c f} if you wish to guarantee that the final
16815 value, once all the variables have been assigned, is a float; you
16816 would use @kbd{c f} if you wish to do the conversion on the numbers
16817 that appear right now.
16819 @kindex c F
16820 @pindex calc-fraction
16821 @tindex pfrac
16822 The @kbd{c F} (@code{calc-fraction}) [@code{pfrac}] command converts a
16823 floating-point number into a fractional approximation.  By default, it
16824 produces a fraction whose decimal representation is the same as the
16825 input number, to within the current precision.  You can also give a
16826 numeric prefix argument to specify a tolerance, either directly, or,
16827 if the prefix argument is zero, by using the number on top of the stack
16828 as the tolerance.  If the tolerance is a positive integer, the fraction
16829 is correct to within that many significant figures.  If the tolerance is
16830 a non-positive integer, it specifies how many digits fewer than the current
16831 precision to use.  If the tolerance is a floating-point number, the
16832 fraction is correct to within that absolute amount.
16834 @kindex H c F
16835 @tindex frac
16836 The @code{pfrac} function is pervasive, like @code{pfloat}.
16837 There is also a non-pervasive version, @kbd{H c F} [@code{frac}],
16838 which is analogous to @kbd{H c f} discussed above.
16840 @kindex c d
16841 @pindex calc-to-degrees
16842 @tindex deg
16843 The @kbd{c d} (@code{calc-to-degrees}) [@code{deg}] command converts a
16844 number into degrees form.  The value on the top of the stack may be an
16845 HMS form (interpreted as degrees-minutes-seconds), or a real number which
16846 will be interpreted in radians regardless of the current angular mode.
16848 @kindex c r
16849 @pindex calc-to-radians
16850 @tindex rad
16851 The @kbd{c r} (@code{calc-to-radians}) [@code{rad}] command converts an
16852 HMS form or angle in degrees into an angle in radians.
16854 @kindex c h
16855 @pindex calc-to-hms
16856 @tindex hms
16857 The @kbd{c h} (@code{calc-to-hms}) [@code{hms}] command converts a real
16858 number, interpreted according to the current angular mode, to an HMS
16859 form describing the same angle.  In algebraic notation, the @code{hms}
16860 function also accepts three arguments: @samp{hms(@var{h}, @var{m}, @var{s})}.
16861 (The three-argument version is independent of the current angular mode.)
16863 @pindex calc-from-hms
16864 The @code{calc-from-hms} command converts the HMS form on the top of the
16865 stack into a real number according to the current angular mode.
16867 @kindex c p
16868 @kindex I c p
16869 @pindex calc-polar
16870 @tindex polar
16871 @tindex rect
16872 The @kbd{c p} (@code{calc-polar}) command converts the complex number on
16873 the top of the stack from polar to rectangular form, or from rectangular
16874 to polar form, whichever is appropriate.  Real numbers are left the same.
16875 This command is equivalent to the @code{rect} or @code{polar}
16876 functions in algebraic formulas, depending on the direction of
16877 conversion.  (It uses @code{polar}, except that if the argument is
16878 already a polar complex number, it uses @code{rect} instead.  The
16879 @kbd{I c p} command always uses @code{rect}.)
16881 @kindex c c
16882 @pindex calc-clean
16883 @tindex pclean
16884 The @kbd{c c} (@code{calc-clean}) [@code{pclean}] command ``cleans'' the
16885 number on the top of the stack.  Floating point numbers are re-rounded
16886 according to the current precision.  Polar numbers whose angular
16887 components have strayed from the @mathit{-180} to @mathit{+180} degree range
16888 are normalized.  (Note that results will be undesirable if the current
16889 angular mode is different from the one under which the number was
16890 produced!)  Integers and fractions are generally unaffected by this
16891 operation.  Vectors and formulas are cleaned by cleaning each component
16892 number (i.e., pervasively).
16894 If the simplification mode is set below the default level, it is raised
16895 to the default level for the purposes of this command.  Thus, @kbd{c c}
16896 applies the default simplifications even if their automatic application
16897 is disabled.  @xref{Simplification Modes}.
16899 @cindex Roundoff errors, correcting
16900 A numeric prefix argument to @kbd{c c} sets the floating-point precision
16901 to that value for the duration of the command.  A positive prefix (of at
16902 least 3) sets the precision to the specified value; a negative or zero
16903 prefix decreases the precision by the specified amount.
16905 @kindex c 0-9
16906 @pindex calc-clean-num
16907 The keystroke sequences @kbd{c 0} through @kbd{c 9} are equivalent
16908 to @kbd{c c} with the corresponding negative prefix argument.  If roundoff
16909 errors have changed 2.0 into 1.999999, typing @kbd{c 1} to clip off one
16910 decimal place often conveniently does the trick.
16912 The @kbd{c c} command with a numeric prefix argument, and the @kbd{c 0}
16913 through @kbd{c 9} commands, also ``clip'' very small floating-point
16914 numbers to zero.  If the exponent is less than or equal to the negative
16915 of the specified precision, the number is changed to 0.0.  For example,
16916 if the current precision is 12, then @kbd{c 2} changes the vector
16917 @samp{[1e-8, 1e-9, 1e-10, 1e-11]} to @samp{[1e-8, 1e-9, 0, 0]}.
16918 Numbers this small generally arise from roundoff noise.
16920 If the numbers you are using really are legitimately this small,
16921 you should avoid using the @kbd{c 0} through @kbd{c 9} commands.
16922 (The plain @kbd{c c} command rounds to the current precision but
16923 does not clip small numbers.)
16925 One more property of @kbd{c 0} through @kbd{c 9}, and of @kbd{c c} with
16926 a prefix argument, is that integer-valued floats are converted to
16927 plain integers, so that @kbd{c 1} on @samp{[1., 1.5, 2., 2.5, 3.]}
16928 produces @samp{[1, 1.5, 2, 2.5, 3]}.  This is not done for huge
16929 numbers (@samp{1e100} is technically an integer-valued float, but
16930 you wouldn't want it automatically converted to a 100-digit integer).
16932 @kindex H c 0-9
16933 @kindex H c c
16934 @tindex clean
16935 With the Hyperbolic flag, @kbd{H c c} and @kbd{H c 0} through @kbd{H c 9}
16936 operate non-pervasively [@code{clean}].
16938 @node Date Arithmetic, Financial Functions, Conversions, Arithmetic
16939 @section Date Arithmetic
16941 @noindent
16942 @cindex Date arithmetic, additional functions
16943 The commands described in this section perform various conversions
16944 and calculations involving date forms (@pxref{Date Forms}).  They
16945 use the @kbd{t} (for time/date) prefix key followed by shifted
16946 letters.
16948 The simplest date arithmetic is done using the regular @kbd{+} and @kbd{-}
16949 commands.  In particular, adding a number to a date form advances the
16950 date form by a certain number of days; adding an HMS form to a date
16951 form advances the date by a certain amount of time; and subtracting two
16952 date forms produces a difference measured in days.  The commands
16953 described here provide additional, more specialized operations on dates.
16955 Many of these commands accept a numeric prefix argument; if you give
16956 plain @kbd{C-u} as the prefix, these commands will instead take the
16957 additional argument from the top of the stack.
16959 @menu
16960 * Date Conversions::
16961 * Date Functions::
16962 * Time Zones::
16963 * Business Days::
16964 @end menu
16966 @node Date Conversions, Date Functions, Date Arithmetic, Date Arithmetic
16967 @subsection Date Conversions
16969 @noindent
16970 @kindex t D
16971 @pindex calc-date
16972 @tindex date
16973 The @kbd{t D} (@code{calc-date}) [@code{date}] command converts a
16974 date form into a number, measured in days since Jan 1, 1 AD.  The
16975 result will be an integer if @var{date} is a pure date form, or a
16976 fraction or float if @var{date} is a date/time form.  Or, if its
16977 argument is a number, it converts this number into a date form.
16979 With a numeric prefix argument, @kbd{t D} takes that many objects
16980 (up to six) from the top of the stack and interprets them in one
16981 of the following ways:
16983 The @samp{date(@var{year}, @var{month}, @var{day})} function
16984 builds a pure date form out of the specified year, month, and
16985 day, which must all be integers.  @var{Year} is a year number,
16986 such as 1991 (@emph{not} the same as 91!).  @var{Month} must be
16987 an integer in the range 1 to 12; @var{day} must be in the range
16988 1 to 31.  If the specified month has fewer than 31 days and
16989 @var{day} is too large, the equivalent day in the following
16990 month will be used.
16992 The @samp{date(@var{month}, @var{day})} function builds a
16993 pure date form using the current year, as determined by the
16994 real-time clock.
16996 The @samp{date(@var{year}, @var{month}, @var{day}, @var{hms})}
16997 function builds a date/time form using an @var{hms} form.
16999 The @samp{date(@var{year}, @var{month}, @var{day}, @var{hour},
17000 @var{minute}, @var{second})} function builds a date/time form.
17001 @var{hour} should be an integer in the range 0 to 23;
17002 @var{minute} should be an integer in the range 0 to 59;
17003 @var{second} should be any real number in the range @samp{[0 .. 60)}.
17004 The last two arguments default to zero if omitted.
17006 @kindex t J
17007 @pindex calc-julian
17008 @tindex julian
17009 @cindex Julian day counts, conversions
17010 The @kbd{t J} (@code{calc-julian}) [@code{julian}] command converts
17011 a date form into a Julian day count, which is the number of days
17012 since noon on Jan 1, 4713 BC.  A pure date is converted to an integer
17013 Julian count representing noon of that day.  A date/time form is
17014 converted to an exact floating-point Julian count, adjusted to
17015 interpret the date form in the current time zone but the Julian
17016 day count in Greenwich Mean Time.  A numeric prefix argument allows
17017 you to specify the time zone; @pxref{Time Zones}.  Use a prefix of
17018 zero to suppress the time zone adjustment.  Note that pure date forms
17019 are never time-zone adjusted.
17021 This command can also do the opposite conversion, from a Julian day
17022 count (either an integer day, or a floating-point day and time in
17023 the GMT zone), into a pure date form or a date/time form in the
17024 current or specified time zone.
17026 @kindex t U
17027 @pindex calc-unix-time
17028 @tindex unixtime
17029 @cindex Unix time format, conversions
17030 The @kbd{t U} (@code{calc-unix-time}) [@code{unixtime}] command
17031 converts a date form into a Unix time value, which is the number of
17032 seconds since midnight on Jan 1, 1970, or vice-versa.  The numeric result
17033 will be an integer if the current precision is 12 or less; for higher
17034 precisions, the result may be a float with (@var{precision}@minus{}12)
17035 digits after the decimal.  Just as for @kbd{t J}, the numeric time
17036 is interpreted in the GMT time zone and the date form is interpreted
17037 in the current or specified zone.  Some systems use Unix-like
17038 numbering but with the local time zone; give a prefix of zero to
17039 suppress the adjustment if so.
17041 @kindex t C
17042 @pindex calc-convert-time-zones
17043 @tindex tzconv
17044 @cindex Time Zones, converting between
17045 The @kbd{t C} (@code{calc-convert-time-zones}) [@code{tzconv}]
17046 command converts a date form from one time zone to another.  You
17047 are prompted for each time zone name in turn; you can answer with
17048 any suitable Calc time zone expression (@pxref{Time Zones}).
17049 If you answer either prompt with a blank line, the local time
17050 zone is used for that prompt.  You can also answer the first
17051 prompt with @kbd{$} to take the two time zone names from the
17052 stack (and the date to be converted from the third stack level).
17054 @node Date Functions, Business Days, Date Conversions, Date Arithmetic
17055 @subsection Date Functions
17057 @noindent
17058 @kindex t N
17059 @pindex calc-now
17060 @tindex now
17061 The @kbd{t N} (@code{calc-now}) [@code{now}] command pushes the
17062 current date and time on the stack as a date form.  The time is
17063 reported in terms of the specified time zone; with no numeric prefix
17064 argument, @kbd{t N} reports for the current time zone.
17066 @kindex t P
17067 @pindex calc-date-part
17068 The @kbd{t P} (@code{calc-date-part}) command extracts one part
17069 of a date form.  The prefix argument specifies the part; with no
17070 argument, this command prompts for a part code from 1 to 9.
17071 The various part codes are described in the following paragraphs.
17073 @tindex year
17074 The @kbd{M-1 t P} [@code{year}] function extracts the year number
17075 from a date form as an integer, e.g., 1991.  This and the
17076 following functions will also accept a real number for an
17077 argument, which is interpreted as a standard Calc day number.
17078 Note that this function will never return zero, since the year
17079 1 BC immediately precedes the year 1 AD.
17081 @tindex month
17082 The @kbd{M-2 t P} [@code{month}] function extracts the month number
17083 from a date form as an integer in the range 1 to 12.
17085 @tindex day
17086 The @kbd{M-3 t P} [@code{day}] function extracts the day number
17087 from a date form as an integer in the range 1 to 31.
17089 @tindex hour
17090 The @kbd{M-4 t P} [@code{hour}] function extracts the hour from
17091 a date form as an integer in the range 0 (midnight) to 23.  Note
17092 that 24-hour time is always used.  This returns zero for a pure
17093 date form.  This function (and the following two) also accept
17094 HMS forms as input.
17096 @tindex minute
17097 The @kbd{M-5 t P} [@code{minute}] function extracts the minute
17098 from a date form as an integer in the range 0 to 59.
17100 @tindex second
17101 The @kbd{M-6 t P} [@code{second}] function extracts the second
17102 from a date form.  If the current precision is 12 or less,
17103 the result is an integer in the range 0 to 59.  For higher
17104 precisions, the result may instead be a floating-point number.
17106 @tindex weekday
17107 The @kbd{M-7 t P} [@code{weekday}] function extracts the weekday
17108 number from a date form as an integer in the range 0 (Sunday)
17109 to 6 (Saturday).
17111 @tindex yearday
17112 The @kbd{M-8 t P} [@code{yearday}] function extracts the day-of-year
17113 number from a date form as an integer in the range 1 (January 1)
17114 to 366 (December 31 of a leap year).
17116 @tindex time
17117 The @kbd{M-9 t P} [@code{time}] function extracts the time portion
17118 of a date form as an HMS form.  This returns @samp{0@@ 0' 0"}
17119 for a pure date form.
17121 @kindex t M
17122 @pindex calc-new-month
17123 @tindex newmonth
17124 The @kbd{t M} (@code{calc-new-month}) [@code{newmonth}] command
17125 computes a new date form that represents the first day of the month
17126 specified by the input date.  The result is always a pure date
17127 form; only the year and month numbers of the input are retained.
17128 With a numeric prefix argument @var{n} in the range from 1 to 31,
17129 @kbd{t M} computes the @var{n}th day of the month.  (If @var{n}
17130 is greater than the actual number of days in the month, or if
17131 @var{n} is zero, the last day of the month is used.)
17133 @kindex t Y
17134 @pindex calc-new-year
17135 @tindex newyear
17136 The @kbd{t Y} (@code{calc-new-year}) [@code{newyear}] command
17137 computes a new pure date form that represents the first day of
17138 the year specified by the input.  The month, day, and time
17139 of the input date form are lost.  With a numeric prefix argument
17140 @var{n} in the range from 1 to 366, @kbd{t Y} computes the
17141 @var{n}th day of the year (366 is treated as 365 in non-leap
17142 years).  A prefix argument of 0 computes the last day of the
17143 year (December 31).  A negative prefix argument from @mathit{-1} to
17144 @mathit{-12} computes the first day of the @var{n}th month of the year.
17146 @kindex t W
17147 @pindex calc-new-week
17148 @tindex newweek
17149 The @kbd{t W} (@code{calc-new-week}) [@code{newweek}] command
17150 computes a new pure date form that represents the Sunday on or before
17151 the input date.  With a numeric prefix argument, it can be made to
17152 use any day of the week as the starting day; the argument must be in
17153 the range from 0 (Sunday) to 6 (Saturday).  This function always
17154 subtracts between 0 and 6 days from the input date.
17156 Here's an example use of @code{newweek}:  Find the date of the next
17157 Wednesday after a given date.  Using @kbd{M-3 t W} or @samp{newweek(d, 3)}
17158 will give you the @emph{preceding} Wednesday, so @samp{newweek(d+7, 3)}
17159 will give you the following Wednesday.  A further look at the definition
17160 of @code{newweek} shows that if the input date is itself a Wednesday,
17161 this formula will return the Wednesday one week in the future.  An
17162 exercise for the reader is to modify this formula to yield the same day
17163 if the input is already a Wednesday.  Another interesting exercise is
17164 to preserve the time-of-day portion of the input (@code{newweek} resets
17165 the time to midnight; hint:@: how can @code{newweek} be defined in terms
17166 of the @code{weekday} function?).
17168 @ignore
17169 @starindex
17170 @end ignore
17171 @tindex pwday
17172 The @samp{pwday(@var{date})} function (not on any key) computes the
17173 day-of-month number of the Sunday on or before @var{date}.  With
17174 two arguments, @samp{pwday(@var{date}, @var{day})} computes the day
17175 number of the Sunday on or before day number @var{day} of the month
17176 specified by @var{date}.  The @var{day} must be in the range from
17177 7 to 31; if the day number is greater than the actual number of days
17178 in the month, the true number of days is used instead.  Thus
17179 @samp{pwday(@var{date}, 7)} finds the first Sunday of the month, and
17180 @samp{pwday(@var{date}, 31)} finds the last Sunday of the month.
17181 With a third @var{weekday} argument, @code{pwday} can be made to look
17182 for any day of the week instead of Sunday.
17184 @kindex t I
17185 @pindex calc-inc-month
17186 @tindex incmonth
17187 The @kbd{t I} (@code{calc-inc-month}) [@code{incmonth}] command
17188 increases a date form by one month, or by an arbitrary number of
17189 months specified by a numeric prefix argument.  The time portion,
17190 if any, of the date form stays the same.  The day also stays the
17191 same, except that if the new month has fewer days the day
17192 number may be reduced to lie in the valid range.  For example,
17193 @samp{incmonth(<Jan 31, 1991>)} produces @samp{<Feb 28, 1991>}.
17194 Because of this, @kbd{t I t I} and @kbd{M-2 t I} do not always give
17195 the same results (@samp{<Mar 28, 1991>} versus @samp{<Mar 31, 1991>}
17196 in this case).
17198 @ignore
17199 @starindex
17200 @end ignore
17201 @tindex incyear
17202 The @samp{incyear(@var{date}, @var{step})} function increases
17203 a date form by the specified number of years, which may be
17204 any positive or negative integer.  Note that @samp{incyear(d, n)}
17205 is equivalent to @w{@samp{incmonth(d, 12*n)}}, but these do not have
17206 simple equivalents in terms of day arithmetic because
17207 months and years have varying lengths.  If the @var{step}
17208 argument is omitted, 1 year is assumed.  There is no keyboard
17209 command for this function; use @kbd{C-u 12 t I} instead.
17211 There is no @code{newday} function at all because @kbd{F} [@code{floor}]
17212 serves this purpose.  Similarly, instead of @code{incday} and
17213 @code{incweek} simply use @expr{d + n} or @expr{d + 7 n}.
17215 @xref{Basic Arithmetic}, for the @kbd{f ]} [@code{incr}] command
17216 which can adjust a date/time form by a certain number of seconds.
17218 @node Business Days, Time Zones, Date Functions, Date Arithmetic
17219 @subsection Business Days
17221 @noindent
17222 Often time is measured in ``business days'' or ``working days,''
17223 where weekends and holidays are skipped.  Calc's normal date
17224 arithmetic functions use calendar days, so that subtracting two
17225 consecutive Mondays will yield a difference of 7 days.  By contrast,
17226 subtracting two consecutive Mondays would yield 5 business days
17227 (assuming two-day weekends and the absence of holidays).
17229 @kindex t +
17230 @kindex t -
17231 @tindex badd
17232 @tindex bsub
17233 @pindex calc-business-days-plus
17234 @pindex calc-business-days-minus
17235 The @kbd{t +} (@code{calc-business-days-plus}) [@code{badd}]
17236 and @kbd{t -} (@code{calc-business-days-minus}) [@code{bsub}]
17237 commands perform arithmetic using business days.  For @kbd{t +},
17238 one argument must be a date form and the other must be a real
17239 number (positive or negative).  If the number is not an integer,
17240 then a certain amount of time is added as well as a number of
17241 days; for example, adding 0.5 business days to a time in Friday
17242 evening will produce a time in Monday morning.  It is also
17243 possible to add an HMS form; adding @samp{12@@ 0' 0"} also adds
17244 half a business day.  For @kbd{t -}, the arguments are either a
17245 date form and a number or HMS form, or two date forms, in which
17246 case the result is the number of business days between the two
17247 dates.
17249 @cindex @code{Holidays} variable
17250 @vindex Holidays
17251 By default, Calc considers any day that is not a Saturday or
17252 Sunday to be a business day.  You can define any number of
17253 additional holidays by editing the variable @code{Holidays}.
17254 (There is an @w{@kbd{s H}} convenience command for editing this
17255 variable.)  Initially, @code{Holidays} contains the vector
17256 @samp{[sat, sun]}.  Entries in the @code{Holidays} vector may
17257 be any of the following kinds of objects:
17259 @itemize @bullet
17260 @item
17261 Date forms (pure dates, not date/time forms).  These specify
17262 particular days which are to be treated as holidays.
17264 @item
17265 Intervals of date forms.  These specify a range of days, all of
17266 which are holidays (e.g., Christmas week).  @xref{Interval Forms}.
17268 @item
17269 Nested vectors of date forms.  Each date form in the vector is
17270 considered to be a holiday.
17272 @item
17273 Any Calc formula which evaluates to one of the above three things.
17274 If the formula involves the variable @expr{y}, it stands for a
17275 yearly repeating holiday; @expr{y} will take on various year
17276 numbers like 1992.  For example, @samp{date(y, 12, 25)} specifies
17277 Christmas day, and @samp{newweek(date(y, 11, 7), 4) + 21} specifies
17278 Thanksgiving (which is held on the fourth Thursday of November).
17279 If the formula involves the variable @expr{m}, that variable
17280 takes on month numbers from 1 to 12:  @samp{date(y, m, 15)} is
17281 a holiday that takes place on the 15th of every month.
17283 @item
17284 A weekday name, such as @code{sat} or @code{sun}.  This is really
17285 a variable whose name is a three-letter, lower-case day name.
17287 @item
17288 An interval of year numbers (integers).  This specifies the span of
17289 years over which this holiday list is to be considered valid.  Any
17290 business-day arithmetic that goes outside this range will result
17291 in an error message.  Use this if you are including an explicit
17292 list of holidays, rather than a formula to generate them, and you
17293 want to make sure you don't accidentally go beyond the last point
17294 where the holidays you entered are complete.  If there is no
17295 limiting interval in the @code{Holidays} vector, the default
17296 @samp{[1 .. 2737]} is used.  (This is the absolute range of years
17297 for which Calc's business-day algorithms will operate.)
17299 @item
17300 An interval of HMS forms.  This specifies the span of hours that
17301 are to be considered one business day.  For example, if this
17302 range is @samp{[9@@ 0' 0" .. 17@@ 0' 0"]} (i.e., 9am to 5pm), then
17303 the business day is only eight hours long, so that @kbd{1.5 t +}
17304 on @samp{<4:00pm Fri Dec 13, 1991>} will add one business day and
17305 four business hours to produce @samp{<12:00pm Tue Dec 17, 1991>}.
17306 Likewise, @kbd{t -} will now express differences in time as
17307 fractions of an eight-hour day.  Times before 9am will be treated
17308 as 9am by business date arithmetic, and times at or after 5pm will
17309 be treated as 4:59:59pm.  If there is no HMS interval in @code{Holidays},
17310 the full 24-hour day @samp{[0@ 0' 0" .. 24@ 0' 0"]} is assumed.
17311 (Regardless of the type of bounds you specify, the interval is
17312 treated as inclusive on the low end and exclusive on the high end,
17313 so that the work day goes from 9am up to, but not including, 5pm.)
17314 @end itemize
17316 If the @code{Holidays} vector is empty, then @kbd{t +} and
17317 @kbd{t -} will act just like @kbd{+} and @kbd{-} because there will
17318 then be no difference between business days and calendar days.
17320 Calc expands the intervals and formulas you give into a complete
17321 list of holidays for internal use.  This is done mainly to make
17322 sure it can detect multiple holidays.  (For example,
17323 @samp{<Jan 1, 1989>} is both New Year's Day and a Sunday, but
17324 Calc's algorithms take care to count it only once when figuring
17325 the number of holidays between two dates.)
17327 Since the complete list of holidays for all the years from 1 to
17328 2737 would be huge, Calc actually computes only the part of the
17329 list between the smallest and largest years that have been involved
17330 in business-day calculations so far.  Normally, you won't have to
17331 worry about this.  Keep in mind, however, that if you do one
17332 calculation for 1992, and another for 1792, even if both involve
17333 only a small range of years, Calc will still work out all the
17334 holidays that fall in that 200-year span.
17336 If you add a (positive) number of days to a date form that falls on a
17337 weekend or holiday, the date form is treated as if it were the most
17338 recent business day.  (Thus adding one business day to a Friday,
17339 Saturday, or Sunday will all yield the following Monday.)  If you
17340 subtract a number of days from a weekend or holiday, the date is
17341 effectively on the following business day.  (So subtracting one business
17342 day from Saturday, Sunday, or Monday yields the preceding Friday.)  The
17343 difference between two dates one or both of which fall on holidays
17344 equals the number of actual business days between them.  These
17345 conventions are consistent in the sense that, if you add @var{n}
17346 business days to any date, the difference between the result and the
17347 original date will come out to @var{n} business days.  (It can't be
17348 completely consistent though; a subtraction followed by an addition
17349 might come out a bit differently, since @kbd{t +} is incapable of
17350 producing a date that falls on a weekend or holiday.)
17352 @ignore
17353 @starindex
17354 @end ignore
17355 @tindex holiday
17356 There is a @code{holiday} function, not on any keys, that takes
17357 any date form and returns 1 if that date falls on a weekend or
17358 holiday, as defined in @code{Holidays}, or 0 if the date is a
17359 business day.
17361 @node Time Zones, , Business Days, Date Arithmetic
17362 @subsection Time Zones
17364 @noindent
17365 @cindex Time zones
17366 @cindex Daylight savings time
17367 Time zones and daylight savings time are a complicated business.
17368 The conversions to and from Julian and Unix-style dates automatically
17369 compute the correct time zone and daylight savings adjustment to use,
17370 provided they can figure out this information.  This section describes
17371 Calc's time zone adjustment algorithm in detail, in case you want to
17372 do conversions in different time zones or in case Calc's algorithms
17373 can't determine the right correction to use.
17375 Adjustments for time zones and daylight savings time are done by
17376 @kbd{t U}, @kbd{t J}, @kbd{t N}, and @kbd{t C}, but not by any other
17377 commands.  In particular, @samp{<may 1 1991> - <apr 1 1991>} evaluates
17378 to exactly 30 days even though there is a daylight-savings
17379 transition in between.  This is also true for Julian pure dates:
17380 @samp{julian(<may 1 1991>) - julian(<apr 1 1991>)}.  But Julian
17381 and Unix date/times will adjust for daylight savings time:
17382 @samp{julian(<12am may 1 1991>) - julian(<12am apr 1 1991>)}
17383 evaluates to @samp{29.95834} (that's 29 days and 23 hours)
17384 because one hour was lost when daylight savings commenced on
17385 April 7, 1991.
17387 In brief, the idiom @samp{julian(@var{date1}) - julian(@var{date2})}
17388 computes the actual number of 24-hour periods between two dates, whereas
17389 @samp{@var{date1} - @var{date2}} computes the number of calendar
17390 days between two dates without taking daylight savings into account.
17392 @pindex calc-time-zone
17393 @ignore
17394 @starindex
17395 @end ignore
17396 @tindex tzone
17397 The @code{calc-time-zone} [@code{tzone}] command converts the time
17398 zone specified by its numeric prefix argument into a number of
17399 seconds difference from Greenwich mean time (GMT).  If the argument
17400 is a number, the result is simply that value multiplied by 3600.
17401 Typical arguments for North America are 5 (Eastern) or 8 (Pacific).  If
17402 Daylight Savings time is in effect, one hour should be subtracted from
17403 the normal difference.
17405 If you give a prefix of plain @kbd{C-u}, @code{calc-time-zone} (like other
17406 date arithmetic commands that include a time zone argument) takes the
17407 zone argument from the top of the stack.  (In the case of @kbd{t J}
17408 and @kbd{t U}, the normal argument is then taken from the second-to-top
17409 stack position.)  This allows you to give a non-integer time zone
17410 adjustment.  The time-zone argument can also be an HMS form, or
17411 it can be a variable which is a time zone name in upper- or lower-case.
17412 For example @samp{tzone(PST) = tzone(8)} and @samp{tzone(pdt) = tzone(7)}
17413 (for Pacific standard and daylight savings times, respectively).
17415 North American and European time zone names are defined as follows;
17416 note that for each time zone there is one name for standard time,
17417 another for daylight savings time, and a third for ``generalized'' time
17418 in which the daylight savings adjustment is computed from context.
17420 @smallexample
17421 @group
17422 YST  PST  MST  CST  EST  AST    NST    GMT   WET     MET    MEZ
17423  9    8    7    6    5    4     3.5     0     -1      -2     -2
17425 YDT  PDT  MDT  CDT  EDT  ADT    NDT    BST  WETDST  METDST  MESZ
17426  8    7    6    5    4    3     2.5     -1    -2      -3     -3
17428 YGT  PGT  MGT  CGT  EGT  AGT    NGT    BGT   WEGT    MEGT   MEGZ
17429 9/8  8/7  7/6  6/5  5/4  4/3  3.5/2.5  0/-1 -1/-2   -2/-3  -2/-3
17430 @end group
17431 @end smallexample
17433 @vindex math-tzone-names
17434 To define time zone names that do not appear in the above table,
17435 you must modify the Lisp variable @code{math-tzone-names}.  This
17436 is a list of lists describing the different time zone names; its
17437 structure is best explained by an example.  The three entries for
17438 Pacific Time look like this:
17440 @smallexample
17441 @group
17442 ( ( "PST" 8 0 )    ; Name as an upper-case string, then standard
17443   ( "PDT" 8 -1 )   ; adjustment, then daylight savings adjustment.
17444   ( "PGT" 8 "PST" "PDT" ) )   ; Generalized time zone.
17445 @end group
17446 @end smallexample
17448 @cindex @code{TimeZone} variable
17449 @vindex TimeZone
17450 With no arguments, @code{calc-time-zone} or @samp{tzone()} obtains an
17451 argument from the Calc variable @code{TimeZone} if a value has been
17452 stored for that variable.  If not, Calc runs the Unix @samp{date}
17453 command and looks for one of the above time zone names in the output;
17454 if this does not succeed, @samp{tzone()} leaves itself unevaluated.
17455 The time zone name in the @samp{date} output may be followed by a signed
17456 adjustment, e.g., @samp{GMT+5} or @samp{GMT+0500} which specifies a
17457 number of hours and minutes to be added to the base time zone.
17458 Calc stores the time zone it finds into @code{TimeZone} to speed
17459 later calls to @samp{tzone()}.
17461 The special time zone name @code{local} is equivalent to no argument,
17462 i.e., it uses the local time zone as obtained from the @code{date}
17463 command.
17465 If the time zone name found is one of the standard or daylight
17466 savings zone names from the above table, and Calc's internal
17467 daylight savings algorithm says that time and zone are consistent
17468 (e.g., @code{PDT} accompanies a date that Calc's algorithm would also
17469 consider to be daylight savings, or @code{PST} accompanies a date
17470 that Calc would consider to be standard time), then Calc substitutes
17471 the corresponding generalized time zone (like @code{PGT}).
17473 If your system does not have a suitable @samp{date} command, you
17474 may wish to put a @samp{(setq var-TimeZone ...)} in your Emacs
17475 initialization file to set the time zone.  (Since you are interacting
17476 with the variable @code{TimeZone} directly from Emacs Lisp, the
17477 @code{var-} prefix needs to be present.)  The easiest way to do
17478 this is to edit the @code{TimeZone} variable using Calc's @kbd{s T}
17479 command, then use the @kbd{s p} (@code{calc-permanent-variable})
17480 command to save the value of @code{TimeZone} permanently.
17482 The @kbd{t J} and @code{t U} commands with no numeric prefix
17483 arguments do the same thing as @samp{tzone()}.  If the current
17484 time zone is a generalized time zone, e.g., @code{EGT}, Calc
17485 examines the date being converted to tell whether to use standard
17486 or daylight savings time.  But if the current time zone is explicit,
17487 e.g., @code{EST} or @code{EDT}, then that adjustment is used exactly
17488 and Calc's daylight savings algorithm is not consulted.
17490 Some places don't follow the usual rules for daylight savings time.
17491 The state of Arizona, for example, does not observe daylight savings
17492 time.  If you run Calc during the winter season in Arizona, the
17493 Unix @code{date} command will report @code{MST} time zone, which
17494 Calc will change to @code{MGT}.  If you then convert a time that
17495 lies in the summer months, Calc will apply an incorrect daylight
17496 savings time adjustment.  To avoid this, set your @code{TimeZone}
17497 variable explicitly to @code{MST} to force the use of standard,
17498 non-daylight-savings time.
17500 @vindex math-daylight-savings-hook
17501 @findex math-std-daylight-savings
17502 By default Calc always considers daylight savings time to begin at
17503 2 a.m.@: on the first Sunday of April, and to end at 2 a.m.@: on the
17504 last Sunday of October.  This is the rule that has been in effect
17505 in North America since 1987.  If you are in a country that uses
17506 different rules for computing daylight savings time, you have two
17507 choices:  Write your own daylight savings hook, or control time
17508 zones explicitly by setting the @code{TimeZone} variable and/or
17509 always giving a time-zone argument for the conversion functions.
17511 The Lisp variable @code{math-daylight-savings-hook} holds the
17512 name of a function that is used to compute the daylight savings
17513 adjustment for a given date.  The default is
17514 @code{math-std-daylight-savings}, which computes an adjustment
17515 (either 0 or @mathit{-1}) using the North American rules given above.
17517 The daylight savings hook function is called with four arguments:
17518 The date, as a floating-point number in standard Calc format;
17519 a six-element list of the date decomposed into year, month, day,
17520 hour, minute, and second, respectively; a string which contains
17521 the generalized time zone name in upper-case, e.g., @code{"WEGT"};
17522 and a special adjustment to be applied to the hour value when
17523 converting into a generalized time zone (see below).
17525 @findex math-prev-weekday-in-month
17526 The Lisp function @code{math-prev-weekday-in-month} is useful for
17527 daylight savings computations.  This is an internal version of
17528 the user-level @code{pwday} function described in the previous
17529 section. It takes four arguments:  The floating-point date value,
17530 the corresponding six-element date list, the day-of-month number,
17531 and the weekday number (0-6).
17533 The default daylight savings hook ignores the time zone name, but a
17534 more sophisticated hook could use different algorithms for different
17535 time zones.  It would also be possible to use different algorithms
17536 depending on the year number, but the default hook always uses the
17537 algorithm for 1987 and later.  Here is a listing of the default
17538 daylight savings hook:
17540 @smallexample
17541 (defun math-std-daylight-savings (date dt zone bump)
17542   (cond ((< (nth 1 dt) 4) 0)
17543         ((= (nth 1 dt) 4)
17544          (let ((sunday (math-prev-weekday-in-month date dt 7 0)))
17545            (cond ((< (nth 2 dt) sunday) 0)
17546                  ((= (nth 2 dt) sunday)
17547                   (if (>= (nth 3 dt) (+ 3 bump)) -1 0))
17548                  (t -1))))
17549         ((< (nth 1 dt) 10) -1)
17550         ((= (nth 1 dt) 10)
17551          (let ((sunday (math-prev-weekday-in-month date dt 31 0)))
17552            (cond ((< (nth 2 dt) sunday) -1)
17553                  ((= (nth 2 dt) sunday)
17554                   (if (>= (nth 3 dt) (+ 2 bump)) 0 -1))
17555                  (t 0))))
17556         (t 0))
17558 @end smallexample
17560 @noindent
17561 The @code{bump} parameter is equal to zero when Calc is converting
17562 from a date form in a generalized time zone into a GMT date value.
17563 It is @mathit{-1} when Calc is converting in the other direction.  The
17564 adjustments shown above ensure that the conversion behaves correctly
17565 and reasonably around the 2 a.m.@: transition in each direction.
17567 There is a ``missing'' hour between 2 a.m.@: and 3 a.m.@: at the
17568 beginning of daylight savings time; converting a date/time form that
17569 falls in this hour results in a time value for the following hour,
17570 from 3 a.m.@: to 4 a.m.  At the end of daylight savings time, the
17571 hour from 1 a.m.@: to 2 a.m.@: repeats itself; converting a date/time
17572 form that falls in this hour results in a time value for the first
17573 manifestation of that time (@emph{not} the one that occurs one hour later).
17575 If @code{math-daylight-savings-hook} is @code{nil}, then the
17576 daylight savings adjustment is always taken to be zero.
17578 In algebraic formulas, @samp{tzone(@var{zone}, @var{date})}
17579 computes the time zone adjustment for a given zone name at a
17580 given date.  The @var{date} is ignored unless @var{zone} is a
17581 generalized time zone.  If @var{date} is a date form, the
17582 daylight savings computation is applied to it as it appears.
17583 If @var{date} is a numeric date value, it is adjusted for the
17584 daylight-savings version of @var{zone} before being given to
17585 the daylight savings hook.  This odd-sounding rule ensures
17586 that the daylight-savings computation is always done in
17587 local time, not in the GMT time that a numeric @var{date}
17588 is typically represented in.
17590 @ignore
17591 @starindex
17592 @end ignore
17593 @tindex dsadj
17594 The @samp{dsadj(@var{date}, @var{zone})} function computes the
17595 daylight savings adjustment that is appropriate for @var{date} in
17596 time zone @var{zone}.  If @var{zone} is explicitly in or not in
17597 daylight savings time (e.g., @code{PDT} or @code{PST}) the
17598 @var{date} is ignored.  If @var{zone} is a generalized time zone,
17599 the algorithms described above are used.  If @var{zone} is omitted,
17600 the computation is done for the current time zone.
17602 @xref{Reporting Bugs}, for the address of Calc's author, if you
17603 should wish to contribute your improved versions of
17604 @code{math-tzone-names} and @code{math-daylight-savings-hook}
17605 to the Calc distribution.
17607 @node Financial Functions, Binary Functions, Date Arithmetic, Arithmetic
17608 @section Financial Functions
17610 @noindent
17611 Calc's financial or business functions use the @kbd{b} prefix
17612 key followed by a shifted letter.  (The @kbd{b} prefix followed by
17613 a lower-case letter is used for operations on binary numbers.)
17615 Note that the rate and the number of intervals given to these
17616 functions must be on the same time scale, e.g., both months or
17617 both years.  Mixing an annual interest rate with a time expressed
17618 in months will give you very wrong answers!
17620 It is wise to compute these functions to a higher precision than
17621 you really need, just to make sure your answer is correct to the
17622 last penny; also, you may wish to check the definitions at the end
17623 of this section to make sure the functions have the meaning you expect.
17625 @menu
17626 * Percentages::
17627 * Future Value::
17628 * Present Value::
17629 * Related Financial Functions::
17630 * Depreciation Functions::
17631 * Definitions of Financial Functions::
17632 @end menu
17634 @node Percentages, Future Value, Financial Functions, Financial Functions
17635 @subsection Percentages
17637 @kindex M-%
17638 @pindex calc-percent
17639 @tindex %
17640 @tindex percent
17641 The @kbd{M-%} (@code{calc-percent}) command takes a percentage value,
17642 say 5.4, and converts it to an equivalent actual number.  For example,
17643 @kbd{5.4 M-%} enters 0.054 on the stack.  (That's the @key{META} or
17644 @key{ESC} key combined with @kbd{%}.)
17646 Actually, @kbd{M-%} creates a formula of the form @samp{5.4%}.
17647 You can enter @samp{5.4%} yourself during algebraic entry.  The
17648 @samp{%} operator simply means, ``the preceding value divided by
17649 100.''  The @samp{%} operator has very high precedence, so that
17650 @samp{1+8%} is interpreted as @samp{1+(8%)}, not as @samp{(1+8)%}.
17651 (The @samp{%} operator is just a postfix notation for the
17652 @code{percent} function, just like @samp{20!} is the notation for
17653 @samp{fact(20)}, or twenty-factorial.)
17655 The formula @samp{5.4%} would normally evaluate immediately to
17656 0.054, but the @kbd{M-%} command suppresses evaluation as it puts
17657 the formula onto the stack.  However, the next Calc command that
17658 uses the formula @samp{5.4%} will evaluate it as its first step.
17659 The net effect is that you get to look at @samp{5.4%} on the stack,
17660 but Calc commands see it as @samp{0.054}, which is what they expect.
17662 In particular, @samp{5.4%} and @samp{0.054} are suitable values
17663 for the @var{rate} arguments of the various financial functions,
17664 but the number @samp{5.4} is probably @emph{not} suitable---it
17665 represents a rate of 540 percent!
17667 The key sequence @kbd{M-% *} effectively means ``percent-of.''
17668 For example, @kbd{68 @key{RET} 25 M-% *} computes 17, which is 25% of
17669 68 (and also 68% of 25, which comes out to the same thing).
17671 @kindex c %
17672 @pindex calc-convert-percent
17673 The @kbd{c %} (@code{calc-convert-percent}) command converts the
17674 value on the top of the stack from numeric to percentage form.
17675 For example, if 0.08 is on the stack, @kbd{c %} converts it to
17676 @samp{8%}.  The quantity is the same, it's just represented
17677 differently.  (Contrast this with @kbd{M-%}, which would convert
17678 this number to @samp{0.08%}.)  The @kbd{=} key is a convenient way
17679 to convert a formula like @samp{8%} back to numeric form, 0.08.
17681 To compute what percentage one quantity is of another quantity,
17682 use @kbd{/ c %}.  For example, @w{@kbd{17 @key{RET} 68 / c %}} displays
17683 @samp{25%}.
17685 @kindex b %
17686 @pindex calc-percent-change
17687 @tindex relch
17688 The @kbd{b %} (@code{calc-percent-change}) [@code{relch}] command
17689 calculates the percentage change from one number to another.
17690 For example, @kbd{40 @key{RET} 50 b %} produces the answer @samp{25%},
17691 since 50 is 25% larger than 40.  A negative result represents a
17692 decrease:  @kbd{50 @key{RET} 40 b %} produces @samp{-20%}, since 40 is
17693 20% smaller than 50.  (The answers are different in magnitude
17694 because, in the first case, we're increasing by 25% of 40, but
17695 in the second case, we're decreasing by 20% of 50.)  The effect
17696 of @kbd{40 @key{RET} 50 b %} is to compute @expr{(50-40)/40}, converting
17697 the answer to percentage form as if by @kbd{c %}.
17699 @node Future Value, Present Value, Percentages, Financial Functions
17700 @subsection Future Value
17702 @noindent
17703 @kindex b F
17704 @pindex calc-fin-fv
17705 @tindex fv
17706 The @kbd{b F} (@code{calc-fin-fv}) [@code{fv}] command computes
17707 the future value of an investment.  It takes three arguments
17708 from the stack:  @samp{fv(@var{rate}, @var{n}, @var{payment})}.
17709 If you give payments of @var{payment} every year for @var{n}
17710 years, and the money you have paid earns interest at @var{rate} per
17711 year, then this function tells you what your investment would be
17712 worth at the end of the period.  (The actual interval doesn't
17713 have to be years, as long as @var{n} and @var{rate} are expressed
17714 in terms of the same intervals.)  This function assumes payments
17715 occur at the @emph{end} of each interval.
17717 @kindex I b F
17718 @tindex fvb
17719 The @kbd{I b F} [@code{fvb}] command does the same computation,
17720 but assuming your payments are at the beginning of each interval.
17721 Suppose you plan to deposit $1000 per year in a savings account
17722 earning 5.4% interest, starting right now.  How much will be
17723 in the account after five years?  @code{fvb(5.4%, 5, 1000) = 5870.73}.
17724 Thus you will have earned $870 worth of interest over the years.
17725 Using the stack, this calculation would have been
17726 @kbd{5.4 M-% 5 @key{RET} 1000 I b F}.  Note that the rate is expressed
17727 as a number between 0 and 1, @emph{not} as a percentage.
17729 @kindex H b F
17730 @tindex fvl
17731 The @kbd{H b F} [@code{fvl}] command computes the future value
17732 of an initial lump sum investment.  Suppose you could deposit
17733 those five thousand dollars in the bank right now; how much would
17734 they be worth in five years?  @code{fvl(5.4%, 5, 5000) = 6503.89}.
17736 The algebraic functions @code{fv} and @code{fvb} accept an optional
17737 fourth argument, which is used as an initial lump sum in the sense
17738 of @code{fvl}.  In other words, @code{fv(@var{rate}, @var{n},
17739 @var{payment}, @var{initial}) = fv(@var{rate}, @var{n}, @var{payment})
17740 + fvl(@var{rate}, @var{n}, @var{initial})}.
17742 To illustrate the relationships between these functions, we could
17743 do the @code{fvb} calculation ``by hand'' using @code{fvl}.  The
17744 final balance will be the sum of the contributions of our five
17745 deposits at various times.  The first deposit earns interest for
17746 five years:  @code{fvl(5.4%, 5, 1000) = 1300.78}.  The second
17747 deposit only earns interest for four years:  @code{fvl(5.4%, 4, 1000) =
17748 1234.13}.  And so on down to the last deposit, which earns one
17749 year's interest:  @code{fvl(5.4%, 1, 1000) = 1054.00}.  The sum of
17750 these five values is, sure enough, $5870.73, just as was computed
17751 by @code{fvb} directly.
17753 What does @code{fv(5.4%, 5, 1000) = 5569.96} mean?  The payments
17754 are now at the ends of the periods.  The end of one year is the same
17755 as the beginning of the next, so what this really means is that we've
17756 lost the payment at year zero (which contributed $1300.78), but we're
17757 now counting the payment at year five (which, since it didn't have
17758 a chance to earn interest, counts as $1000).  Indeed, @expr{5569.96 =
17759 5870.73 - 1300.78 + 1000} (give or take a bit of roundoff error).
17761 @node Present Value, Related Financial Functions, Future Value, Financial Functions
17762 @subsection Present Value
17764 @noindent
17765 @kindex b P
17766 @pindex calc-fin-pv
17767 @tindex pv
17768 The @kbd{b P} (@code{calc-fin-pv}) [@code{pv}] command computes
17769 the present value of an investment.  Like @code{fv}, it takes
17770 three arguments:  @code{pv(@var{rate}, @var{n}, @var{payment})}.
17771 It computes the present value of a series of regular payments.
17772 Suppose you have the chance to make an investment that will
17773 pay $2000 per year over the next four years; as you receive
17774 these payments you can put them in the bank at 9% interest.
17775 You want to know whether it is better to make the investment, or
17776 to keep the money in the bank where it earns 9% interest right
17777 from the start.  The calculation @code{pv(9%, 4, 2000)} gives the
17778 result 6479.44.  If your initial investment must be less than this,
17779 say, $6000, then the investment is worthwhile.  But if you had to
17780 put up $7000, then it would be better just to leave it in the bank.
17782 Here is the interpretation of the result of @code{pv}:  You are
17783 trying to compare the return from the investment you are
17784 considering, which is @code{fv(9%, 4, 2000) = 9146.26}, with
17785 the return from leaving the money in the bank, which is
17786 @code{fvl(9%, 4, @var{x})} where @var{x} is the amount of money
17787 you would have to put up in advance.  The @code{pv} function
17788 finds the break-even point, @expr{x = 6479.44}, at which
17789 @code{fvl(9%, 4, 6479.44)} is also equal to 9146.26.  This is
17790 the largest amount you should be willing to invest.
17792 @kindex I b P
17793 @tindex pvb
17794 The @kbd{I b P} [@code{pvb}] command solves the same problem,
17795 but with payments occurring at the beginning of each interval.
17796 It has the same relationship to @code{fvb} as @code{pv} has
17797 to @code{fv}.  For example @code{pvb(9%, 4, 2000) = 7062.59},
17798 a larger number than @code{pv} produced because we get to start
17799 earning interest on the return from our investment sooner.
17801 @kindex H b P
17802 @tindex pvl
17803 The @kbd{H b P} [@code{pvl}] command computes the present value of
17804 an investment that will pay off in one lump sum at the end of the
17805 period.  For example, if we get our $8000 all at the end of the
17806 four years, @code{pvl(9%, 4, 8000) = 5667.40}.  This is much
17807 less than @code{pv} reported, because we don't earn any interest
17808 on the return from this investment.  Note that @code{pvl} and
17809 @code{fvl} are simple inverses:  @code{fvl(9%, 4, 5667.40) = 8000}.
17811 You can give an optional fourth lump-sum argument to @code{pv}
17812 and @code{pvb}; this is handled in exactly the same way as the
17813 fourth argument for @code{fv} and @code{fvb}.
17815 @kindex b N
17816 @pindex calc-fin-npv
17817 @tindex npv
17818 The @kbd{b N} (@code{calc-fin-npv}) [@code{npv}] command computes
17819 the net present value of a series of irregular investments.
17820 The first argument is the interest rate.  The second argument is
17821 a vector which represents the expected return from the investment
17822 at the end of each interval.  For example, if the rate represents
17823 a yearly interest rate, then the vector elements are the return
17824 from the first year, second year, and so on.
17826 Thus, @code{npv(9%, [2000,2000,2000,2000]) = pv(9%, 4, 2000) = 6479.44}.
17827 Obviously this function is more interesting when the payments are
17828 not all the same!
17830 The @code{npv} function can actually have two or more arguments.
17831 Multiple arguments are interpreted in the same way as for the
17832 vector statistical functions like @code{vsum}.
17833 @xref{Single-Variable Statistics}.  Basically, if there are several
17834 payment arguments, each either a vector or a plain number, all these
17835 values are collected left-to-right into the complete list of payments.
17836 A numeric prefix argument on the @kbd{b N} command says how many
17837 payment values or vectors to take from the stack.
17839 @kindex I b N
17840 @tindex npvb
17841 The @kbd{I b N} [@code{npvb}] command computes the net present
17842 value where payments occur at the beginning of each interval
17843 rather than at the end.
17845 @node Related Financial Functions, Depreciation Functions, Present Value, Financial Functions
17846 @subsection Related Financial Functions
17848 @noindent
17849 The functions in this section are basically inverses of the
17850 present value functions with respect to the various arguments.
17852 @kindex b M
17853 @pindex calc-fin-pmt
17854 @tindex pmt
17855 The @kbd{b M} (@code{calc-fin-pmt}) [@code{pmt}] command computes
17856 the amount of periodic payment necessary to amortize a loan.
17857 Thus @code{pmt(@var{rate}, @var{n}, @var{amount})} equals the
17858 value of @var{payment} such that @code{pv(@var{rate}, @var{n},
17859 @var{payment}) = @var{amount}}.
17861 @kindex I b M
17862 @tindex pmtb
17863 The @kbd{I b M} [@code{pmtb}] command does the same computation
17864 but using @code{pvb} instead of @code{pv}.  Like @code{pv} and
17865 @code{pvb}, these functions can also take a fourth argument which
17866 represents an initial lump-sum investment.
17868 @kindex H b M
17869 The @kbd{H b M} key just invokes the @code{fvl} function, which is
17870 the inverse of @code{pvl}.  There is no explicit @code{pmtl} function.
17872 @kindex b #
17873 @pindex calc-fin-nper
17874 @tindex nper
17875 The @kbd{b #} (@code{calc-fin-nper}) [@code{nper}] command computes
17876 the number of regular payments necessary to amortize a loan.
17877 Thus @code{nper(@var{rate}, @var{payment}, @var{amount})} equals
17878 the value of @var{n} such that @code{pv(@var{rate}, @var{n},
17879 @var{payment}) = @var{amount}}.  If @var{payment} is too small
17880 ever to amortize a loan for @var{amount} at interest rate @var{rate},
17881 the @code{nper} function is left in symbolic form.
17883 @kindex I b #
17884 @tindex nperb
17885 The @kbd{I b #} [@code{nperb}] command does the same computation
17886 but using @code{pvb} instead of @code{pv}.  You can give a fourth
17887 lump-sum argument to these functions, but the computation will be
17888 rather slow in the four-argument case.
17890 @kindex H b #
17891 @tindex nperl
17892 The @kbd{H b #} [@code{nperl}] command does the same computation
17893 using @code{pvl}.  By exchanging @var{payment} and @var{amount} you
17894 can also get the solution for @code{fvl}.  For example,
17895 @code{nperl(8%, 2000, 1000) = 9.006}, so if you place $1000 in a
17896 bank account earning 8%, it will take nine years to grow to $2000.
17898 @kindex b T
17899 @pindex calc-fin-rate
17900 @tindex rate
17901 The @kbd{b T} (@code{calc-fin-rate}) [@code{rate}] command computes
17902 the rate of return on an investment.  This is also an inverse of @code{pv}:
17903 @code{rate(@var{n}, @var{payment}, @var{amount})} computes the value of
17904 @var{rate} such that @code{pv(@var{rate}, @var{n}, @var{payment}) =
17905 @var{amount}}.  The result is expressed as a formula like @samp{6.3%}.
17907 @kindex I b T
17908 @kindex H b T
17909 @tindex rateb
17910 @tindex ratel
17911 The @kbd{I b T} [@code{rateb}] and @kbd{H b T} [@code{ratel}]
17912 commands solve the analogous equations with @code{pvb} or @code{pvl}
17913 in place of @code{pv}.  Also, @code{rate} and @code{rateb} can
17914 accept an optional fourth argument just like @code{pv} and @code{pvb}.
17915 To redo the above example from a different perspective,
17916 @code{ratel(9, 2000, 1000) = 8.00597%}, which says you will need an
17917 interest rate of 8% in order to double your account in nine years.
17919 @kindex b I
17920 @pindex calc-fin-irr
17921 @tindex irr
17922 The @kbd{b I} (@code{calc-fin-irr}) [@code{irr}] command is the
17923 analogous function to @code{rate} but for net present value.
17924 Its argument is a vector of payments.  Thus @code{irr(@var{payments})}
17925 computes the @var{rate} such that @code{npv(@var{rate}, @var{payments}) = 0};
17926 this rate is known as the @dfn{internal rate of return}.
17928 @kindex I b I
17929 @tindex irrb
17930 The @kbd{I b I} [@code{irrb}] command computes the internal rate of
17931 return assuming payments occur at the beginning of each period.
17933 @node Depreciation Functions, Definitions of Financial Functions, Related Financial Functions, Financial Functions
17934 @subsection Depreciation Functions
17936 @noindent
17937 The functions in this section calculate @dfn{depreciation}, which is
17938 the amount of value that a possession loses over time.  These functions
17939 are characterized by three parameters:  @var{cost}, the original cost
17940 of the asset; @var{salvage}, the value the asset will have at the end
17941 of its expected ``useful life''; and @var{life}, the number of years
17942 (or other periods) of the expected useful life.
17944 There are several methods for calculating depreciation that differ in
17945 the way they spread the depreciation over the lifetime of the asset.
17947 @kindex b S
17948 @pindex calc-fin-sln
17949 @tindex sln
17950 The @kbd{b S} (@code{calc-fin-sln}) [@code{sln}] command computes the
17951 ``straight-line'' depreciation.  In this method, the asset depreciates
17952 by the same amount every year (or period).  For example,
17953 @samp{sln(12000, 2000, 5)} returns 2000.  The asset costs $12000
17954 initially and will be worth $2000 after five years; it loses $2000
17955 per year.
17957 @kindex b Y
17958 @pindex calc-fin-syd
17959 @tindex syd
17960 The @kbd{b Y} (@code{calc-fin-syd}) [@code{syd}] command computes the
17961 accelerated ``sum-of-years'-digits'' depreciation.  Here the depreciation
17962 is higher during the early years of the asset's life.  Since the
17963 depreciation is different each year, @kbd{b Y} takes a fourth @var{period}
17964 parameter which specifies which year is requested, from 1 to @var{life}.
17965 If @var{period} is outside this range, the @code{syd} function will
17966 return zero.
17968 @kindex b D
17969 @pindex calc-fin-ddb
17970 @tindex ddb
17971 The @kbd{b D} (@code{calc-fin-ddb}) [@code{ddb}] command computes an
17972 accelerated depreciation using the double-declining balance method.
17973 It also takes a fourth @var{period} parameter.
17975 For symmetry, the @code{sln} function will accept a @var{period}
17976 parameter as well, although it will ignore its value except that the
17977 return value will as usual be zero if @var{period} is out of range.
17979 For example, pushing the vector @expr{[1,2,3,4,5]} (perhaps with @kbd{v x 5})
17980 and then mapping @kbd{V M ' [sln(12000,2000,5,$), syd(12000,2000,5,$),
17981 ddb(12000,2000,5,$)] @key{RET}} produces a matrix that allows us to compare
17982 the three depreciation methods:
17984 @example
17985 @group
17986 [ [ 2000, 3333, 4800 ]
17987   [ 2000, 2667, 2880 ]
17988   [ 2000, 2000, 1728 ]
17989   [ 2000, 1333,  592 ]
17990   [ 2000,  667,   0  ] ]
17991 @end group
17992 @end example
17994 @noindent
17995 (Values have been rounded to nearest integers in this figure.)
17996 We see that @code{sln} depreciates by the same amount each year,
17997 @kbd{syd} depreciates more at the beginning and less at the end,
17998 and @kbd{ddb} weights the depreciation even more toward the beginning.
18000 Summing columns with @kbd{V R : +} yields @expr{[10000, 10000, 10000]};
18001 the total depreciation in any method is (by definition) the
18002 difference between the cost and the salvage value.
18004 @node Definitions of Financial Functions, , Depreciation Functions, Financial Functions
18005 @subsection Definitions
18007 @noindent
18008 For your reference, here are the actual formulas used to compute
18009 Calc's financial functions.
18011 Calc will not evaluate a financial function unless the @var{rate} or
18012 @var{n} argument is known.  However, @var{payment} or @var{amount} can
18013 be a variable.  Calc expands these functions according to the
18014 formulas below for symbolic arguments only when you use the @kbd{a "}
18015 (@code{calc-expand-formula}) command, or when taking derivatives or
18016 integrals or solving equations involving the functions.
18018 @ifinfo
18019 These formulas are shown using the conventions of Big display
18020 mode (@kbd{d B}); for example, the formula for @code{fv} written
18021 linearly is @samp{pmt * ((1 + rate)^n) - 1) / rate}.
18023 @example
18024                                         n
18025                               (1 + rate)  - 1
18026 fv(rate, n, pmt) =      pmt * ---------------
18027                                    rate
18029                                          n
18030                               ((1 + rate)  - 1) (1 + rate)
18031 fvb(rate, n, pmt) =     pmt * ----------------------------
18032                                          rate
18034                                         n
18035 fvl(rate, n, pmt) =     pmt * (1 + rate)
18037                                             -n
18038                               1 - (1 + rate)
18039 pv(rate, n, pmt) =      pmt * ----------------
18040                                     rate
18042                                              -n
18043                               (1 - (1 + rate)  ) (1 + rate)
18044 pvb(rate, n, pmt) =     pmt * -----------------------------
18045                                          rate
18047                                         -n
18048 pvl(rate, n, pmt) =     pmt * (1 + rate)
18050                                     -1               -2               -3
18051 npv(rate, [a, b, c]) =  a*(1 + rate)   + b*(1 + rate)   + c*(1 + rate)
18053                                         -1               -2
18054 npvb(rate, [a, b, c]) = a + b*(1 + rate)   + c*(1 + rate)
18056                                              -n
18057                         (amt - x * (1 + rate)  ) * rate
18058 pmt(rate, n, amt, x) =  -------------------------------
18059                                              -n
18060                                1 - (1 + rate)
18062                                              -n
18063                         (amt - x * (1 + rate)  ) * rate
18064 pmtb(rate, n, amt, x) = -------------------------------
18065                                         -n
18066                          (1 - (1 + rate)  ) (1 + rate)
18068                                    amt * rate
18069 nper(rate, pmt, amt) =  - log(1 - ------------, 1 + rate)
18070                                       pmt
18072                                     amt * rate
18073 nperb(rate, pmt, amt) = - log(1 - ---------------, 1 + rate)
18074                                   pmt * (1 + rate)
18076                               amt
18077 nperl(rate, pmt, amt) = - log(---, 1 + rate)
18078                               pmt
18080                            1/n
18081                         pmt
18082 ratel(n, pmt, amt) =    ------ - 1
18083                            1/n
18084                         amt
18086                         cost - salv
18087 sln(cost, salv, life) = -----------
18088                            life
18090                              (cost - salv) * (life - per + 1)
18091 syd(cost, salv, life, per) = --------------------------------
18092                                   life * (life + 1) / 2
18094                              book * 2
18095 ddb(cost, salv, life, per) = --------,  book = cost - depreciation so far
18096                                life
18097 @end example
18098 @end ifinfo
18099 @tex
18100 \turnoffactive
18101 $$ \code{fv}(r, n, p) = p { (1 + r)^n - 1 \over r } $$
18102 $$ \code{fvb}(r, n, p) = p { ((1 + r)^n - 1) (1 + r) \over r } $$
18103 $$ \code{fvl}(r, n, p) = p (1 + r)^n $$
18104 $$ \code{pv}(r, n, p) = p { 1 - (1 + r)^{-n} \over r } $$
18105 $$ \code{pvb}(r, n, p) = p { (1 - (1 + r)^{-n}) (1 + r) \over r } $$
18106 $$ \code{pvl}(r, n, p) = p (1 + r)^{-n} $$
18107 $$ \code{npv}(r, [a,b,c]) = a (1 + r)^{-1} + b (1 + r)^{-2} + c (1 + r)^{-3} $$
18108 $$ \code{npvb}(r, [a,b,c]) = a + b (1 + r)^{-1} + c (1 + r)^{-2} $$
18109 $$ \code{pmt}(r, n, a, x) = { (a - x (1 + r)^{-n}) r \over 1 - (1 + r)^{-n} }$$
18110 $$ \code{pmtb}(r, n, a, x) = { (a - x (1 + r)^{-n}) r \over
18111                                (1 - (1 + r)^{-n}) (1 + r) } $$
18112 $$ \code{nper}(r, p, a) = -\code{log}(1 - { a r \over p }, 1 + r) $$
18113 $$ \code{nperb}(r, p, a) = -\code{log}(1 - { a r \over p (1 + r) }, 1 + r) $$
18114 $$ \code{nperl}(r, p, a) = -\code{log}({a \over p}, 1 + r) $$
18115 $$ \code{ratel}(n, p, a) = { p^{1/n} \over a^{1/n} } - 1 $$
18116 $$ \code{sln}(c, s, l) = { c - s \over l } $$
18117 $$ \code{syd}(c, s, l, p) = { (c - s) (l - p + 1) \over l (l+1) / 2 } $$
18118 $$ \code{ddb}(c, s, l, p) = { 2 (c - \hbox{depreciation so far}) \over l } $$
18119 @end tex
18121 @noindent
18122 In @code{pmt} and @code{pmtb}, @expr{x=0} if omitted.
18124 These functions accept any numeric objects, including error forms,
18125 intervals, and even (though not very usefully) complex numbers.  The
18126 above formulas specify exactly the behavior of these functions with
18127 all sorts of inputs.
18129 Note that if the first argument to the @code{log} in @code{nper} is
18130 negative, @code{nper} leaves itself in symbolic form rather than
18131 returning a (financially meaningless) complex number.
18133 @samp{rate(num, pmt, amt)} solves the equation
18134 @samp{pv(rate, num, pmt) = amt} for @samp{rate} using @kbd{H a R}
18135 (@code{calc-find-root}), with the interval @samp{[.01% .. 100%]}
18136 for an initial guess.  The @code{rateb} function is the same except
18137 that it uses @code{pvb}.  Note that @code{ratel} can be solved
18138 directly; its formula is shown in the above list.
18140 Similarly, @samp{irr(pmts)} solves the equation @samp{npv(rate, pmts) = 0}
18141 for @samp{rate}.
18143 If you give a fourth argument to @code{nper} or @code{nperb}, Calc
18144 will also use @kbd{H a R} to solve the equation using an initial
18145 guess interval of @samp{[0 .. 100]}.
18147 A fourth argument to @code{fv} simply sums the two components
18148 calculated from the above formulas for @code{fv} and @code{fvl}.
18149 The same is true of @code{fvb}, @code{pv}, and @code{pvb}.
18151 The @kbd{ddb} function is computed iteratively; the ``book'' value
18152 starts out equal to @var{cost}, and decreases according to the above
18153 formula for the specified number of periods.  If the book value
18154 would decrease below @var{salvage}, it only decreases to @var{salvage}
18155 and the depreciation is zero for all subsequent periods.  The @code{ddb}
18156 function returns the amount the book value decreased in the specified
18157 period.
18159 @node Binary Functions, , Financial Functions, Arithmetic
18160 @section Binary Number Functions
18162 @noindent
18163 The commands in this chapter all use two-letter sequences beginning with
18164 the @kbd{b} prefix.
18166 @cindex Binary numbers
18167 The ``binary'' operations actually work regardless of the currently
18168 displayed radix, although their results make the most sense in a radix
18169 like 2, 8, or 16 (as obtained by the @kbd{d 2}, @kbd{d 8}, or @w{@kbd{d 6}}
18170 commands, respectively).  You may also wish to enable display of leading
18171 zeros with @kbd{d z}.  @xref{Radix Modes}.
18173 @cindex Word size for binary operations
18174 The Calculator maintains a current @dfn{word size} @expr{w}, an
18175 arbitrary positive or negative integer.  For a positive word size, all
18176 of the binary operations described here operate modulo @expr{2^w}.  In
18177 particular, negative arguments are converted to positive integers modulo
18178 @expr{2^w} by all binary functions.
18180 If the word size is negative, binary operations produce 2's complement
18181 integers from 
18182 @texline @math{-2^{-w-1}}
18183 @infoline @expr{-(2^(-w-1))} 
18184 to 
18185 @texline @math{2^{-w-1}-1}
18186 @infoline @expr{2^(-w-1)-1} 
18187 inclusive.  Either mode accepts inputs in any range; the sign of
18188 @expr{w} affects only the results produced.
18190 @kindex b c
18191 @pindex calc-clip
18192 @tindex clip
18193 The @kbd{b c} (@code{calc-clip})
18194 [@code{clip}] command can be used to clip a number by reducing it modulo
18195 @expr{2^w}.  The commands described in this chapter automatically clip
18196 their results to the current word size.  Note that other operations like
18197 addition do not use the current word size, since integer addition
18198 generally is not ``binary.''  (However, @pxref{Simplification Modes},
18199 @code{calc-bin-simplify-mode}.)  For example, with a word size of 8
18200 bits @kbd{b c} converts a number to the range 0 to 255; with a word
18201 size of @mathit{-8} @kbd{b c} converts to the range @mathit{-128} to 127.
18203 @kindex b w
18204 @pindex calc-word-size
18205 The default word size is 32 bits.  All operations except the shifts and
18206 rotates allow you to specify a different word size for that one
18207 operation by giving a numeric prefix argument:  @kbd{C-u 8 b c} clips the
18208 top of stack to the range 0 to 255 regardless of the current word size.
18209 To set the word size permanently, use @kbd{b w} (@code{calc-word-size}).
18210 This command displays a prompt with the current word size; press @key{RET}
18211 immediately to keep this word size, or type a new word size at the prompt.
18213 When the binary operations are written in symbolic form, they take an
18214 optional second (or third) word-size parameter.  When a formula like
18215 @samp{and(a,b)} is finally evaluated, the word size current at that time
18216 will be used, but when @samp{and(a,b,-8)} is evaluated, a word size of
18217 @mathit{-8} will always be used.  A symbolic binary function will be left
18218 in symbolic form unless the all of its argument(s) are integers or
18219 integer-valued floats.
18221 If either or both arguments are modulo forms for which @expr{M} is a
18222 power of two, that power of two is taken as the word size unless a
18223 numeric prefix argument overrides it.  The current word size is never
18224 consulted when modulo-power-of-two forms are involved.
18226 @kindex b a
18227 @pindex calc-and
18228 @tindex and
18229 The @kbd{b a} (@code{calc-and}) [@code{and}] command computes the bitwise
18230 AND of the two numbers on the top of the stack.  In other words, for each
18231 of the @expr{w} binary digits of the two numbers (pairwise), the corresponding
18232 bit of the result is 1 if and only if both input bits are 1:
18233 @samp{and(2#1100, 2#1010) = 2#1000}.
18235 @kindex b o
18236 @pindex calc-or
18237 @tindex or
18238 The @kbd{b o} (@code{calc-or}) [@code{or}] command computes the bitwise
18239 inclusive OR of two numbers.  A bit is 1 if either of the input bits, or
18240 both, are 1:  @samp{or(2#1100, 2#1010) = 2#1110}.
18242 @kindex b x
18243 @pindex calc-xor
18244 @tindex xor
18245 The @kbd{b x} (@code{calc-xor}) [@code{xor}] command computes the bitwise
18246 exclusive OR of two numbers.  A bit is 1 if exactly one of the input bits
18247 is 1:  @samp{xor(2#1100, 2#1010) = 2#0110}.
18249 @kindex b d
18250 @pindex calc-diff
18251 @tindex diff
18252 The @kbd{b d} (@code{calc-diff}) [@code{diff}] command computes the bitwise
18253 difference of two numbers; this is defined by @samp{diff(a,b) = and(a,not(b))},
18254 so that @samp{diff(2#1100, 2#1010) = 2#0100}.
18256 @kindex b n
18257 @pindex calc-not
18258 @tindex not
18259 The @kbd{b n} (@code{calc-not}) [@code{not}] command computes the bitwise
18260 NOT of a number.  A bit is 1 if the input bit is 0 and vice-versa.
18262 @kindex b l
18263 @pindex calc-lshift-binary
18264 @tindex lsh
18265 The @kbd{b l} (@code{calc-lshift-binary}) [@code{lsh}] command shifts a
18266 number left by one bit, or by the number of bits specified in the numeric
18267 prefix argument.  A negative prefix argument performs a logical right shift,
18268 in which zeros are shifted in on the left.  In symbolic form, @samp{lsh(a)}
18269 is short for @samp{lsh(a,1)}, which in turn is short for @samp{lsh(a,n,w)}.
18270 Bits shifted ``off the end,'' according to the current word size, are lost.
18272 @kindex H b l
18273 @kindex H b r
18274 @ignore
18275 @mindex @idots
18276 @end ignore
18277 @kindex H b L
18278 @ignore
18279 @mindex @null
18280 @end ignore
18281 @kindex H b R
18282 @ignore
18283 @mindex @null
18284 @end ignore
18285 @kindex H b t
18286 The @kbd{H b l} command also does a left shift, but it takes two arguments
18287 from the stack (the value to shift, and, at top-of-stack, the number of
18288 bits to shift).  This version interprets the prefix argument just like
18289 the regular binary operations, i.e., as a word size.  The Hyperbolic flag
18290 has a similar effect on the rest of the binary shift and rotate commands.
18292 @kindex b r
18293 @pindex calc-rshift-binary
18294 @tindex rsh
18295 The @kbd{b r} (@code{calc-rshift-binary}) [@code{rsh}] command shifts a
18296 number right by one bit, or by the number of bits specified in the numeric
18297 prefix argument:  @samp{rsh(a,n) = lsh(a,-n)}.
18299 @kindex b L
18300 @pindex calc-lshift-arith
18301 @tindex ash
18302 The @kbd{b L} (@code{calc-lshift-arith}) [@code{ash}] command shifts a
18303 number left.  It is analogous to @code{lsh}, except that if the shift
18304 is rightward (the prefix argument is negative), an arithmetic shift
18305 is performed as described below.
18307 @kindex b R
18308 @pindex calc-rshift-arith
18309 @tindex rash
18310 The @kbd{b R} (@code{calc-rshift-arith}) [@code{rash}] command performs
18311 an ``arithmetic'' shift to the right, in which the leftmost bit (according
18312 to the current word size) is duplicated rather than shifting in zeros.
18313 This corresponds to dividing by a power of two where the input is interpreted
18314 as a signed, twos-complement number.  (The distinction between the @samp{rsh}
18315 and @samp{rash} operations is totally independent from whether the word
18316 size is positive or negative.)  With a negative prefix argument, this
18317 performs a standard left shift.
18319 @kindex b t
18320 @pindex calc-rotate-binary
18321 @tindex rot
18322 The @kbd{b t} (@code{calc-rotate-binary}) [@code{rot}] command rotates a
18323 number one bit to the left.  The leftmost bit (according to the current
18324 word size) is dropped off the left and shifted in on the right.  With a
18325 numeric prefix argument, the number is rotated that many bits to the left
18326 or right.
18328 @xref{Set Operations}, for the @kbd{b p} and @kbd{b u} commands that
18329 pack and unpack binary integers into sets.  (For example, @kbd{b u}
18330 unpacks the number @samp{2#11001} to the set of bit-numbers
18331 @samp{[0, 3, 4]}.)  Type @kbd{b u V #} to count the number of ``1''
18332 bits in a binary integer.
18334 Another interesting use of the set representation of binary integers
18335 is to reverse the bits in, say, a 32-bit integer.  Type @kbd{b u} to
18336 unpack; type @kbd{31 @key{TAB} -} to replace each bit-number in the set
18337 with 31 minus that bit-number; type @kbd{b p} to pack the set back
18338 into a binary integer.
18340 @node Scientific Functions, Matrix Functions, Arithmetic, Top
18341 @chapter Scientific Functions
18343 @noindent
18344 The functions described here perform trigonometric and other transcendental
18345 calculations.  They generally produce floating-point answers correct to the
18346 full current precision.  The @kbd{H} (Hyperbolic) and @kbd{I} (Inverse)
18347 flag keys must be used to get some of these functions from the keyboard.
18349 @kindex P
18350 @pindex calc-pi
18351 @cindex @code{pi} variable
18352 @vindex pi
18353 @kindex H P
18354 @cindex @code{e} variable
18355 @vindex e
18356 @kindex I P
18357 @cindex @code{gamma} variable
18358 @vindex gamma
18359 @cindex Gamma constant, Euler's
18360 @cindex Euler's gamma constant
18361 @kindex H I P
18362 @cindex @code{phi} variable
18363 @cindex Phi, golden ratio
18364 @cindex Golden ratio
18365 One miscellaneous command is shift-@kbd{P} (@code{calc-pi}), which pushes
18366 the value of @cpi{} (at the current precision) onto the stack.  With the
18367 Hyperbolic flag, it pushes the value @expr{e}, the base of natural logarithms.
18368 With the Inverse flag, it pushes Euler's constant 
18369 @texline @math{\gamma}
18370 @infoline @expr{gamma} 
18371 (about 0.5772).  With both Inverse and Hyperbolic, it
18372 pushes the ``golden ratio'' 
18373 @texline @math{\phi}
18374 @infoline @expr{phi} 
18375 (about 1.618).  (At present, Euler's constant is not available
18376 to unlimited precision; Calc knows only the first 100 digits.)
18377 In Symbolic mode, these commands push the
18378 actual variables @samp{pi}, @samp{e}, @samp{gamma}, and @samp{phi},
18379 respectively, instead of their values; @pxref{Symbolic Mode}.
18381 @ignore
18382 @mindex Q
18383 @end ignore
18384 @ignore
18385 @mindex I Q
18386 @end ignore
18387 @kindex I Q
18388 @tindex sqr
18389 The @kbd{Q} (@code{calc-sqrt}) [@code{sqrt}] function is described elsewhere;
18390 @pxref{Basic Arithmetic}.  With the Inverse flag [@code{sqr}], this command
18391 computes the square of the argument.
18393 @xref{Prefix Arguments}, for a discussion of the effect of numeric
18394 prefix arguments on commands in this chapter which do not otherwise
18395 interpret a prefix argument.
18397 @menu
18398 * Logarithmic Functions::
18399 * Trigonometric and Hyperbolic Functions::
18400 * Advanced Math Functions::
18401 * Branch Cuts::
18402 * Random Numbers::
18403 * Combinatorial Functions::
18404 * Probability Distribution Functions::
18405 @end menu
18407 @node Logarithmic Functions, Trigonometric and Hyperbolic Functions, Scientific Functions, Scientific Functions
18408 @section Logarithmic Functions
18410 @noindent
18411 @kindex L
18412 @pindex calc-ln
18413 @tindex ln
18414 @ignore
18415 @mindex @null
18416 @end ignore
18417 @kindex I E
18418 The shift-@kbd{L} (@code{calc-ln}) [@code{ln}] command computes the natural
18419 logarithm of the real or complex number on the top of the stack.  With
18420 the Inverse flag it computes the exponential function instead, although
18421 this is redundant with the @kbd{E} command.
18423 @kindex E
18424 @pindex calc-exp
18425 @tindex exp
18426 @ignore
18427 @mindex @null
18428 @end ignore
18429 @kindex I L
18430 The shift-@kbd{E} (@code{calc-exp}) [@code{exp}] command computes the
18431 exponential, i.e., @expr{e} raised to the power of the number on the stack.
18432 The meanings of the Inverse and Hyperbolic flags follow from those for
18433 the @code{calc-ln} command.
18435 @kindex H L
18436 @kindex H E
18437 @pindex calc-log10
18438 @tindex log10
18439 @tindex exp10
18440 @ignore
18441 @mindex @null
18442 @end ignore
18443 @kindex H I L
18444 @ignore
18445 @mindex @null
18446 @end ignore
18447 @kindex H I E
18448 The @kbd{H L} (@code{calc-log10}) [@code{log10}] command computes the common
18449 (base-10) logarithm of a number.  (With the Inverse flag [@code{exp10}],
18450 it raises ten to a given power.)  Note that the common logarithm of a
18451 complex number is computed by taking the natural logarithm and dividing
18452 by 
18453 @texline @math{\ln10}.
18454 @infoline @expr{ln(10)}.
18456 @kindex B
18457 @kindex I B
18458 @pindex calc-log
18459 @tindex log
18460 @tindex alog
18461 The @kbd{B} (@code{calc-log}) [@code{log}] command computes a logarithm
18462 to any base.  For example, @kbd{1024 @key{RET} 2 B} produces 10, since
18463 @texline @math{2^{10} = 1024}.
18464 @infoline @expr{2^10 = 1024}.  
18465 In certain cases like @samp{log(3,9)}, the result
18466 will be either @expr{1:2} or @expr{0.5} depending on the current Fraction
18467 mode setting.  With the Inverse flag [@code{alog}], this command is
18468 similar to @kbd{^} except that the order of the arguments is reversed.
18470 @kindex f I
18471 @pindex calc-ilog
18472 @tindex ilog
18473 The @kbd{f I} (@code{calc-ilog}) [@code{ilog}] command computes the
18474 integer logarithm of a number to any base.  The number and the base must
18475 themselves be positive integers.  This is the true logarithm, rounded
18476 down to an integer.  Thus @kbd{ilog(x,10)} is 3 for all @expr{x} in the
18477 range from 1000 to 9999.  If both arguments are positive integers, exact
18478 integer arithmetic is used; otherwise, this is equivalent to
18479 @samp{floor(log(x,b))}.
18481 @kindex f E
18482 @pindex calc-expm1
18483 @tindex expm1
18484 The @kbd{f E} (@code{calc-expm1}) [@code{expm1}] command computes
18485 @texline @math{e^x - 1},
18486 @infoline @expr{exp(x)-1}, 
18487 but using an algorithm that produces a more accurate
18488 answer when the result is close to zero, i.e., when 
18489 @texline @math{e^x}
18490 @infoline @expr{exp(x)} 
18491 is close to one.
18493 @kindex f L
18494 @pindex calc-lnp1
18495 @tindex lnp1
18496 The @kbd{f L} (@code{calc-lnp1}) [@code{lnp1}] command computes
18497 @texline @math{\ln(x+1)},
18498 @infoline @expr{ln(x+1)}, 
18499 producing a more accurate answer when @expr{x} is close to zero.
18501 @node Trigonometric and Hyperbolic Functions, Advanced Math Functions, Logarithmic Functions, Scientific Functions
18502 @section Trigonometric/Hyperbolic Functions
18504 @noindent
18505 @kindex S
18506 @pindex calc-sin
18507 @tindex sin
18508 The shift-@kbd{S} (@code{calc-sin}) [@code{sin}] command computes the sine
18509 of an angle or complex number.  If the input is an HMS form, it is interpreted
18510 as degrees-minutes-seconds; otherwise, the input is interpreted according
18511 to the current angular mode.  It is best to use Radians mode when operating
18512 on complex numbers.
18514 Calc's ``units'' mechanism includes angular units like @code{deg},
18515 @code{rad}, and @code{grad}.  While @samp{sin(45 deg)} is not evaluated
18516 all the time, the @kbd{u s} (@code{calc-simplify-units}) command will
18517 simplify @samp{sin(45 deg)} by taking the sine of 45 degrees, regardless
18518 of the current angular mode.  @xref{Basic Operations on Units}.
18520 Also, the symbolic variable @code{pi} is not ordinarily recognized in
18521 arguments to trigonometric functions, as in @samp{sin(3 pi / 4)}, but
18522 the @kbd{a s} (@code{calc-simplify}) command recognizes many such
18523 formulas when the current angular mode is Radians @emph{and} Symbolic
18524 mode is enabled; this example would be replaced by @samp{sqrt(2) / 2}.
18525 @xref{Symbolic Mode}.  Beware, this simplification occurs even if you
18526 have stored a different value in the variable @samp{pi}; this is one
18527 reason why changing built-in variables is a bad idea.  Arguments of
18528 the form @expr{x} plus a multiple of @cpiover{2} are also simplified.
18529 Calc includes similar formulas for @code{cos} and @code{tan}.
18531 The @kbd{a s} command knows all angles which are integer multiples of
18532 @cpiover{12}, @cpiover{10}, or @cpiover{8} radians.  In Degrees mode,
18533 analogous simplifications occur for integer multiples of 15 or 18
18534 degrees, and for arguments plus multiples of 90 degrees.
18536 @kindex I S
18537 @pindex calc-arcsin
18538 @tindex arcsin
18539 With the Inverse flag, @code{calc-sin} computes an arcsine.  This is also
18540 available as the @code{calc-arcsin} command or @code{arcsin} algebraic
18541 function.  The returned argument is converted to degrees, radians, or HMS
18542 notation depending on the current angular mode.
18544 @kindex H S
18545 @pindex calc-sinh
18546 @tindex sinh
18547 @kindex H I S
18548 @pindex calc-arcsinh
18549 @tindex arcsinh
18550 With the Hyperbolic flag, @code{calc-sin} computes the hyperbolic
18551 sine, also available as @code{calc-sinh} [@code{sinh}].  With the
18552 Hyperbolic and Inverse flags, it computes the hyperbolic arcsine
18553 (@code{calc-arcsinh}) [@code{arcsinh}].
18555 @kindex C
18556 @pindex calc-cos
18557 @tindex cos
18558 @ignore
18559 @mindex @idots
18560 @end ignore
18561 @kindex I C
18562 @pindex calc-arccos
18563 @ignore
18564 @mindex @null
18565 @end ignore
18566 @tindex arccos
18567 @ignore
18568 @mindex @null
18569 @end ignore
18570 @kindex H C
18571 @pindex calc-cosh
18572 @ignore
18573 @mindex @null
18574 @end ignore
18575 @tindex cosh
18576 @ignore
18577 @mindex @null
18578 @end ignore
18579 @kindex H I C
18580 @pindex calc-arccosh
18581 @ignore
18582 @mindex @null
18583 @end ignore
18584 @tindex arccosh
18585 @ignore
18586 @mindex @null
18587 @end ignore
18588 @kindex T
18589 @pindex calc-tan
18590 @ignore
18591 @mindex @null
18592 @end ignore
18593 @tindex tan
18594 @ignore
18595 @mindex @null
18596 @end ignore
18597 @kindex I T
18598 @pindex calc-arctan
18599 @ignore
18600 @mindex @null
18601 @end ignore
18602 @tindex arctan
18603 @ignore
18604 @mindex @null
18605 @end ignore
18606 @kindex H T
18607 @pindex calc-tanh
18608 @ignore
18609 @mindex @null
18610 @end ignore
18611 @tindex tanh
18612 @ignore
18613 @mindex @null
18614 @end ignore
18615 @kindex H I T
18616 @pindex calc-arctanh
18617 @ignore
18618 @mindex @null
18619 @end ignore
18620 @tindex arctanh
18621 The shift-@kbd{C} (@code{calc-cos}) [@code{cos}] command computes the cosine
18622 of an angle or complex number, and shift-@kbd{T} (@code{calc-tan}) [@code{tan}]
18623 computes the tangent, along with all the various inverse and hyperbolic
18624 variants of these functions.
18626 @kindex f T
18627 @pindex calc-arctan2
18628 @tindex arctan2
18629 The @kbd{f T} (@code{calc-arctan2}) [@code{arctan2}] command takes two
18630 numbers from the stack and computes the arc tangent of their ratio.  The
18631 result is in the full range from @mathit{-180} (exclusive) to @mathit{+180}
18632 (inclusive) degrees, or the analogous range in radians.  A similar
18633 result would be obtained with @kbd{/} followed by @kbd{I T}, but the
18634 value would only be in the range from @mathit{-90} to @mathit{+90} degrees
18635 since the division loses information about the signs of the two
18636 components, and an error might result from an explicit division by zero
18637 which @code{arctan2} would avoid.  By (arbitrary) definition,
18638 @samp{arctan2(0,0)=0}.
18640 @pindex calc-sincos
18641 @ignore
18642 @starindex
18643 @end ignore
18644 @tindex sincos
18645 @ignore
18646 @starindex
18647 @end ignore
18648 @ignore
18649 @mindex arc@idots
18650 @end ignore
18651 @tindex arcsincos
18652 The @code{calc-sincos} [@code{sincos}] command computes the sine and
18653 cosine of a number, returning them as a vector of the form
18654 @samp{[@var{cos}, @var{sin}]}.
18655 With the Inverse flag [@code{arcsincos}], this command takes a two-element
18656 vector as an argument and computes @code{arctan2} of the elements.
18657 (This command does not accept the Hyperbolic flag.)
18659 @pindex calc-sec
18660 @tindex sec
18661 @pindex calc-csc
18662 @tindex csc
18663 @pindex calc-cot
18664 @tindex cot
18665 @pindex calc-sech
18666 @tindex sech
18667 @pindex calc-csch
18668 @tindex csch
18669 @pindex calc-coth
18670 @tindex coth
18671 The remaining trigonometric functions, @code{calc-sec} [@code{sec}],
18672 @code{calc-csc} [@code{csc}] and @code{calc-sec} [@code{sec}], are also
18673 available.  With the Hyperbolic flag, these compute their hyperbolic
18674 counterparts, which are also available separately as @code{calc-sech}
18675 [@code{sech}], @code{calc-csch} [@code{csch}] and @code{calc-sech}
18676 [@code{sech}].  (These commmands do not accept the Inverse flag.)
18678 @node Advanced Math Functions, Branch Cuts, Trigonometric and Hyperbolic Functions, Scientific Functions
18679 @section Advanced Mathematical Functions
18681 @noindent
18682 Calc can compute a variety of less common functions that arise in
18683 various branches of mathematics.  All of the functions described in
18684 this section allow arbitrary complex arguments and, except as noted,
18685 will work to arbitrarily large precisions.  They can not at present
18686 handle error forms or intervals as arguments.
18688 NOTE:  These functions are still experimental.  In particular, their
18689 accuracy is not guaranteed in all domains.  It is advisable to set the
18690 current precision comfortably higher than you actually need when
18691 using these functions.  Also, these functions may be impractically
18692 slow for some values of the arguments.
18694 @kindex f g
18695 @pindex calc-gamma
18696 @tindex gamma
18697 The @kbd{f g} (@code{calc-gamma}) [@code{gamma}] command computes the Euler
18698 gamma function.  For positive integer arguments, this is related to the
18699 factorial function:  @samp{gamma(n+1) = fact(n)}.  For general complex
18700 arguments the gamma function can be defined by the following definite
18701 integral:  
18702 @texline @math{\Gamma(a) = \int_0^\infty t^{a-1} e^t dt}.
18703 @infoline @expr{gamma(a) = integ(t^(a-1) exp(t), t, 0, inf)}.  
18704 (The actual implementation uses far more efficient computational methods.)
18706 @kindex f G
18707 @tindex gammaP
18708 @ignore
18709 @mindex @idots
18710 @end ignore
18711 @kindex I f G
18712 @ignore
18713 @mindex @null
18714 @end ignore
18715 @kindex H f G
18716 @ignore
18717 @mindex @null
18718 @end ignore
18719 @kindex H I f G
18720 @pindex calc-inc-gamma
18721 @ignore
18722 @mindex @null
18723 @end ignore
18724 @tindex gammaQ
18725 @ignore
18726 @mindex @null
18727 @end ignore
18728 @tindex gammag
18729 @ignore
18730 @mindex @null
18731 @end ignore
18732 @tindex gammaG
18733 The @kbd{f G} (@code{calc-inc-gamma}) [@code{gammaP}] command computes
18734 the incomplete gamma function, denoted @samp{P(a,x)}.  This is defined by
18735 the integral, 
18736 @texline @math{P(a,x) = \left( \int_0^x t^{a-1} e^t dt \right) / \Gamma(a)}.
18737 @infoline @expr{gammaP(a,x) = integ(t^(a-1) exp(t), t, 0, x) / gamma(a)}.
18738 This implies that @samp{gammaP(a,inf) = 1} for any @expr{a} (see the
18739 definition of the normal gamma function).
18741 Several other varieties of incomplete gamma function are defined.
18742 The complement of @expr{P(a,x)}, called @expr{Q(a,x) = 1-P(a,x)} by
18743 some authors, is computed by the @kbd{I f G} [@code{gammaQ}] command.
18744 You can think of this as taking the other half of the integral, from
18745 @expr{x} to infinity.
18747 @ifinfo
18748 The functions corresponding to the integrals that define @expr{P(a,x)}
18749 and @expr{Q(a,x)} but without the normalizing @expr{1/gamma(a)}
18750 factor are called @expr{g(a,x)} and @expr{G(a,x)}, respectively
18751 (where @expr{g} and @expr{G} represent the lower- and upper-case Greek
18752 letter gamma).  You can obtain these using the @kbd{H f G} [@code{gammag}]
18753 and @kbd{H I f G} [@code{gammaG}] commands.
18754 @end ifinfo
18755 @tex
18756 \turnoffactive
18757 The functions corresponding to the integrals that define $P(a,x)$
18758 and $Q(a,x)$ but without the normalizing $1/\Gamma(a)$
18759 factor are called $\gamma(a,x)$ and $\Gamma(a,x)$, respectively.
18760 You can obtain these using the \kbd{H f G} [\code{gammag}] and
18761 \kbd{I H f G} [\code{gammaG}] commands.
18762 @end tex
18764 @kindex f b
18765 @pindex calc-beta
18766 @tindex beta
18767 The @kbd{f b} (@code{calc-beta}) [@code{beta}] command computes the
18768 Euler beta function, which is defined in terms of the gamma function as
18769 @texline @math{B(a,b) = \Gamma(a) \Gamma(b) / \Gamma(a+b)},
18770 @infoline @expr{beta(a,b) = gamma(a) gamma(b) / gamma(a+b)}, 
18771 or by
18772 @texline @math{B(a,b) = \int_0^1 t^{a-1} (1-t)^{b-1} dt}.
18773 @infoline @expr{beta(a,b) = integ(t^(a-1) (1-t)^(b-1), t, 0, 1)}.
18775 @kindex f B
18776 @kindex H f B
18777 @pindex calc-inc-beta
18778 @tindex betaI
18779 @tindex betaB
18780 The @kbd{f B} (@code{calc-inc-beta}) [@code{betaI}] command computes
18781 the incomplete beta function @expr{I(x,a,b)}.  It is defined by
18782 @texline @math{I(x,a,b) = \left( \int_0^x t^{a-1} (1-t)^{b-1} dt \right) / B(a,b)}.
18783 @infoline @expr{betaI(x,a,b) = integ(t^(a-1) (1-t)^(b-1), t, 0, x) / beta(a,b)}.
18784 Once again, the @kbd{H} (hyperbolic) prefix gives the corresponding
18785 un-normalized version [@code{betaB}].
18787 @kindex f e
18788 @kindex I f e
18789 @pindex calc-erf
18790 @tindex erf
18791 @tindex erfc
18792 The @kbd{f e} (@code{calc-erf}) [@code{erf}] command computes the
18793 error function 
18794 @texline @math{\hbox{erf}(x) = {2 \over \sqrt{\pi}} \int_0^x e^{-t^2} dt}.
18795 @infoline @expr{erf(x) = 2 integ(exp(-(t^2)), t, 0, x) / sqrt(pi)}.
18796 The complementary error function @kbd{I f e} (@code{calc-erfc}) [@code{erfc}]
18797 is the corresponding integral from @samp{x} to infinity; the sum
18798 @texline @math{\hbox{erf}(x) + \hbox{erfc}(x) = 1}.
18799 @infoline @expr{erf(x) + erfc(x) = 1}.
18801 @kindex f j
18802 @kindex f y
18803 @pindex calc-bessel-J
18804 @pindex calc-bessel-Y
18805 @tindex besJ
18806 @tindex besY
18807 The @kbd{f j} (@code{calc-bessel-J}) [@code{besJ}] and @kbd{f y}
18808 (@code{calc-bessel-Y}) [@code{besY}] commands compute the Bessel
18809 functions of the first and second kinds, respectively.
18810 In @samp{besJ(n,x)} and @samp{besY(n,x)} the ``order'' parameter
18811 @expr{n} is often an integer, but is not required to be one.
18812 Calc's implementation of the Bessel functions currently limits the
18813 precision to 8 digits, and may not be exact even to that precision.
18814 Use with care!
18816 @node Branch Cuts, Random Numbers, Advanced Math Functions, Scientific Functions
18817 @section Branch Cuts and Principal Values
18819 @noindent
18820 @cindex Branch cuts
18821 @cindex Principal values
18822 All of the logarithmic, trigonometric, and other scientific functions are
18823 defined for complex numbers as well as for reals.
18824 This section describes the values
18825 returned in cases where the general result is a family of possible values.
18826 Calc follows section 12.5.3 of Steele's @dfn{Common Lisp, the Language},
18827 second edition, in these matters.  This section will describe each
18828 function briefly; for a more detailed discussion (including some nifty
18829 diagrams), consult Steele's book.
18831 Note that the branch cuts for @code{arctan} and @code{arctanh} were
18832 changed between the first and second editions of Steele.  Versions of
18833 Calc starting with 2.00 follow the second edition.
18835 The new branch cuts exactly match those of the HP-28/48 calculators.
18836 They also match those of Mathematica 1.2, except that Mathematica's
18837 @code{arctan} cut is always in the right half of the complex plane,
18838 and its @code{arctanh} cut is always in the top half of the plane.
18839 Calc's cuts are continuous with quadrants I and III for @code{arctan},
18840 or II and IV for @code{arctanh}.
18842 Note:  The current implementations of these functions with complex arguments
18843 are designed with proper behavior around the branch cuts in mind, @emph{not}
18844 efficiency or accuracy.  You may need to increase the floating precision
18845 and wait a while to get suitable answers from them.
18847 For @samp{sqrt(a+bi)}:  When @expr{a<0} and @expr{b} is small but positive
18848 or zero, the result is close to the @expr{+i} axis.  For @expr{b} small and
18849 negative, the result is close to the @expr{-i} axis.  The result always lies
18850 in the right half of the complex plane.
18852 For @samp{ln(a+bi)}:  The real part is defined as @samp{ln(abs(a+bi))}.
18853 The imaginary part is defined as @samp{arg(a+bi) = arctan2(b,a)}.
18854 Thus the branch cuts for @code{sqrt} and @code{ln} both lie on the
18855 negative real axis.
18857 The following table describes these branch cuts in another way.
18858 If the real and imaginary parts of @expr{z} are as shown, then
18859 the real and imaginary parts of @expr{f(z)} will be as shown.
18860 Here @code{eps} stands for a small positive value; each
18861 occurrence of @code{eps} may stand for a different small value.
18863 @smallexample
18864      z           sqrt(z)       ln(z)
18865 ----------------------------------------
18866    +,   0         +,  0       any, 0
18867    -,   0         0,  +       any, pi
18868    -, +eps      +eps, +      +eps, +
18869    -, -eps      +eps, -      +eps, -
18870 @end smallexample
18872 For @samp{z1^z2}:  This is defined by @samp{exp(ln(z1)*z2)}.
18873 One interesting consequence of this is that @samp{(-8)^1:3} does
18874 not evaluate to @mathit{-2} as you might expect, but to the complex
18875 number @expr{(1., 1.732)}.  Both of these are valid cube roots
18876 of @mathit{-8} (as is @expr{(1., -1.732)}); Calc chooses a perhaps
18877 less-obvious root for the sake of mathematical consistency.
18879 For @samp{arcsin(z)}:  This is defined by @samp{-i*ln(i*z + sqrt(1-z^2))}.
18880 The branch cuts are on the real axis, less than @mathit{-1} and greater than 1.
18882 For @samp{arccos(z)}:  This is defined by @samp{-i*ln(z + i*sqrt(1-z^2))},
18883 or equivalently by @samp{pi/2 - arcsin(z)}.  The branch cuts are on
18884 the real axis, less than @mathit{-1} and greater than 1.
18886 For @samp{arctan(z)}:  This is defined by
18887 @samp{(ln(1+i*z) - ln(1-i*z)) / (2*i)}.  The branch cuts are on the
18888 imaginary axis, below @expr{-i} and above @expr{i}.
18890 For @samp{arcsinh(z)}:  This is defined by @samp{ln(z + sqrt(1+z^2))}.
18891 The branch cuts are on the imaginary axis, below @expr{-i} and
18892 above @expr{i}.
18894 For @samp{arccosh(z)}:  This is defined by
18895 @samp{ln(z + (z+1)*sqrt((z-1)/(z+1)))}.  The branch cut is on the
18896 real axis less than 1.
18898 For @samp{arctanh(z)}:  This is defined by @samp{(ln(1+z) - ln(1-z)) / 2}.
18899 The branch cuts are on the real axis, less than @mathit{-1} and greater than 1.
18901 The following tables for @code{arcsin}, @code{arccos}, and
18902 @code{arctan} assume the current angular mode is Radians.  The
18903 hyperbolic functions operate independently of the angular mode.
18905 @smallexample
18906        z             arcsin(z)            arccos(z)
18907 -------------------------------------------------------
18908  (-1..1),  0      (-pi/2..pi/2), 0       (0..pi), 0
18909  (-1..1), +eps    (-pi/2..pi/2), +eps    (0..pi), -eps
18910  (-1..1), -eps    (-pi/2..pi/2), -eps    (0..pi), +eps
18911    <-1,    0          -pi/2,     +         pi,    -
18912    <-1,  +eps      -pi/2 + eps,  +      pi - eps, -
18913    <-1,  -eps      -pi/2 + eps,  -      pi - eps, +
18914     >1,    0           pi/2,     -          0,    +
18915     >1,  +eps       pi/2 - eps,  +        +eps,   -
18916     >1,  -eps       pi/2 - eps,  -        +eps,   +
18917 @end smallexample
18919 @smallexample
18920        z            arccosh(z)         arctanh(z)
18921 -----------------------------------------------------
18922  (-1..1),  0        0,  (0..pi)       any,     0
18923  (-1..1), +eps    +eps, (0..pi)       any,    +eps
18924  (-1..1), -eps    +eps, (-pi..0)      any,    -eps
18925    <-1,    0        +,    pi           -,     pi/2
18926    <-1,  +eps       +,  pi - eps       -,  pi/2 - eps
18927    <-1,  -eps       +, -pi + eps       -, -pi/2 + eps
18928     >1,    0        +,     0           +,    -pi/2
18929     >1,  +eps       +,   +eps          +,  pi/2 - eps
18930     >1,  -eps       +,   -eps          +, -pi/2 + eps
18931 @end smallexample
18933 @smallexample
18934        z           arcsinh(z)           arctan(z)
18935 -----------------------------------------------------
18936    0, (-1..1)    0, (-pi/2..pi/2)         0,     any
18937    0,   <-1      -,    -pi/2            -pi/2,    -
18938  +eps,  <-1      +, -pi/2 + eps       pi/2 - eps, -
18939  -eps,  <-1      -, -pi/2 + eps      -pi/2 + eps, -
18940    0,    >1      +,     pi/2             pi/2,    +
18941  +eps,   >1      +,  pi/2 - eps       pi/2 - eps, +
18942  -eps,   >1      -,  pi/2 - eps      -pi/2 + eps, +
18943 @end smallexample
18945 Finally, the following identities help to illustrate the relationship
18946 between the complex trigonometric and hyperbolic functions.  They
18947 are valid everywhere, including on the branch cuts.
18949 @smallexample
18950 sin(i*z)  = i*sinh(z)       arcsin(i*z)  = i*arcsinh(z)
18951 cos(i*z)  =   cosh(z)       arcsinh(i*z) = i*arcsin(z)
18952 tan(i*z)  = i*tanh(z)       arctan(i*z)  = i*arctanh(z)
18953 sinh(i*z) = i*sin(z)        cosh(i*z)    =   cos(z)
18954 @end smallexample
18956 The ``advanced math'' functions (gamma, Bessel, etc.@:) are also defined
18957 for general complex arguments, but their branch cuts and principal values
18958 are not rigorously specified at present.
18960 @node Random Numbers, Combinatorial Functions, Branch Cuts, Scientific Functions
18961 @section Random Numbers
18963 @noindent
18964 @kindex k r
18965 @pindex calc-random
18966 @tindex random
18967 The @kbd{k r} (@code{calc-random}) [@code{random}] command produces
18968 random numbers of various sorts.
18970 Given a positive numeric prefix argument @expr{M}, it produces a random
18971 integer @expr{N} in the range 
18972 @texline @math{0 \le N < M}.
18973 @infoline @expr{0 <= N < M}.  
18974 Each of the @expr{M} values appears with equal probability.
18976 With no numeric prefix argument, the @kbd{k r} command takes its argument
18977 from the stack instead.  Once again, if this is a positive integer @expr{M}
18978 the result is a random integer less than @expr{M}.  However, note that
18979 while numeric prefix arguments are limited to six digits or so, an @expr{M}
18980 taken from the stack can be arbitrarily large.  If @expr{M} is negative,
18981 the result is a random integer in the range 
18982 @texline @math{M < N \le 0}.
18983 @infoline @expr{M < N <= 0}.
18985 If the value on the stack is a floating-point number @expr{M}, the result
18986 is a random floating-point number @expr{N} in the range 
18987 @texline @math{0 \le N < M}
18988 @infoline @expr{0 <= N < M}
18989 or 
18990 @texline @math{M < N \le 0},
18991 @infoline @expr{M < N <= 0}, 
18992 according to the sign of @expr{M}.
18994 If @expr{M} is zero, the result is a Gaussian-distributed random real
18995 number; the distribution has a mean of zero and a standard deviation
18996 of one.  The algorithm used generates random numbers in pairs; thus,
18997 every other call to this function will be especially fast.
18999 If @expr{M} is an error form 
19000 @texline @math{m} @code{+/-} @math{\sigma}
19001 @infoline @samp{m +/- s} 
19002 where @var{m} and 
19003 @texline @math{\sigma}
19004 @infoline @var{s} 
19005 are both real numbers, the result uses a Gaussian distribution with mean
19006 @var{m} and standard deviation 
19007 @texline @math{\sigma}.
19008 @infoline @var{s}.
19010 If @expr{M} is an interval form, the lower and upper bounds specify the
19011 acceptable limits of the random numbers.  If both bounds are integers,
19012 the result is a random integer in the specified range.  If either bound
19013 is floating-point, the result is a random real number in the specified
19014 range.  If the interval is open at either end, the result will be sure
19015 not to equal that end value.  (This makes a big difference for integer
19016 intervals, but for floating-point intervals it's relatively minor:
19017 with a precision of 6, @samp{random([1.0..2.0))} will return any of one
19018 million numbers from 1.00000 to 1.99999; @samp{random([1.0..2.0])} may
19019 additionally return 2.00000, but the probability of this happening is
19020 extremely small.)
19022 If @expr{M} is a vector, the result is one element taken at random from
19023 the vector.  All elements of the vector are given equal probabilities.
19025 @vindex RandSeed
19026 The sequence of numbers produced by @kbd{k r} is completely random by
19027 default, i.e., the sequence is seeded each time you start Calc using
19028 the current time and other information.  You can get a reproducible
19029 sequence by storing a particular ``seed value'' in the Calc variable
19030 @code{RandSeed}.  Any integer will do for a seed; integers of from 1
19031 to 12 digits are good.  If you later store a different integer into
19032 @code{RandSeed}, Calc will switch to a different pseudo-random
19033 sequence.  If you ``unstore'' @code{RandSeed}, Calc will re-seed itself
19034 from the current time.  If you store the same integer that you used
19035 before back into @code{RandSeed}, you will get the exact same sequence
19036 of random numbers as before.
19038 @pindex calc-rrandom
19039 The @code{calc-rrandom} command (not on any key) produces a random real
19040 number between zero and one.  It is equivalent to @samp{random(1.0)}.
19042 @kindex k a
19043 @pindex calc-random-again
19044 The @kbd{k a} (@code{calc-random-again}) command produces another random
19045 number, re-using the most recent value of @expr{M}.  With a numeric
19046 prefix argument @var{n}, it produces @var{n} more random numbers using
19047 that value of @expr{M}.
19049 @kindex k h
19050 @pindex calc-shuffle
19051 @tindex shuffle
19052 The @kbd{k h} (@code{calc-shuffle}) command produces a vector of several
19053 random values with no duplicates.  The value on the top of the stack
19054 specifies the set from which the random values are drawn, and may be any
19055 of the @expr{M} formats described above.  The numeric prefix argument
19056 gives the length of the desired list.  (If you do not provide a numeric
19057 prefix argument, the length of the list is taken from the top of the
19058 stack, and @expr{M} from second-to-top.)
19060 If @expr{M} is a floating-point number, zero, or an error form (so
19061 that the random values are being drawn from the set of real numbers)
19062 there is little practical difference between using @kbd{k h} and using
19063 @kbd{k r} several times.  But if the set of possible values consists
19064 of just a few integers, or the elements of a vector, then there is
19065 a very real chance that multiple @kbd{k r}'s will produce the same
19066 number more than once.  The @kbd{k h} command produces a vector whose
19067 elements are always distinct.  (Actually, there is a slight exception:
19068 If @expr{M} is a vector, no given vector element will be drawn more
19069 than once, but if several elements of @expr{M} are equal, they may
19070 each make it into the result vector.)
19072 One use of @kbd{k h} is to rearrange a list at random.  This happens
19073 if the prefix argument is equal to the number of values in the list:
19074 @kbd{[1, 1.5, 2, 2.5, 3] 5 k h} might produce the permuted list
19075 @samp{[2.5, 1, 1.5, 3, 2]}.  As a convenient feature, if the argument
19076 @var{n} is negative it is replaced by the size of the set represented
19077 by @expr{M}.  Naturally, this is allowed only when @expr{M} specifies
19078 a small discrete set of possibilities.
19080 To do the equivalent of @kbd{k h} but with duplications allowed,
19081 given @expr{M} on the stack and with @var{n} just entered as a numeric
19082 prefix, use @kbd{v b} to build a vector of copies of @expr{M}, then use
19083 @kbd{V M k r} to ``map'' the normal @kbd{k r} function over the
19084 elements of this vector.  @xref{Matrix Functions}.
19086 @menu
19087 * Random Number Generator::     (Complete description of Calc's algorithm)
19088 @end menu
19090 @node Random Number Generator, , Random Numbers, Random Numbers
19091 @subsection Random Number Generator
19093 Calc's random number generator uses several methods to ensure that
19094 the numbers it produces are highly random.  Knuth's @emph{Art of
19095 Computer Programming}, Volume II, contains a thorough description
19096 of the theory of random number generators and their measurement and
19097 characterization.
19099 If @code{RandSeed} has no stored value, Calc calls Emacs' built-in
19100 @code{random} function to get a stream of random numbers, which it
19101 then treats in various ways to avoid problems inherent in the simple
19102 random number generators that many systems use to implement @code{random}.
19104 When Calc's random number generator is first invoked, it ``seeds''
19105 the low-level random sequence using the time of day, so that the
19106 random number sequence will be different every time you use Calc.
19108 Since Emacs Lisp doesn't specify the range of values that will be
19109 returned by its @code{random} function, Calc exercises the function
19110 several times to estimate the range.  When Calc subsequently uses
19111 the @code{random} function, it takes only 10 bits of the result
19112 near the most-significant end.  (It avoids at least the bottom
19113 four bits, preferably more, and also tries to avoid the top two
19114 bits.)  This strategy works well with the linear congruential
19115 generators that are typically used to implement @code{random}.
19117 If @code{RandSeed} contains an integer, Calc uses this integer to
19118 seed an ``additive congruential'' method (Knuth's algorithm 3.2.2A,
19119 computing 
19120 @texline @math{X_{n-55} - X_{n-24}}.
19121 @infoline @expr{X_n-55 - X_n-24}).  
19122 This method expands the seed
19123 value into a large table which is maintained internally; the variable
19124 @code{RandSeed} is changed from, e.g., 42 to the vector @expr{[42]}
19125 to indicate that the seed has been absorbed into this table.  When
19126 @code{RandSeed} contains a vector, @kbd{k r} and related commands
19127 continue to use the same internal table as last time.  There is no
19128 way to extract the complete state of the random number generator
19129 so that you can restart it from any point; you can only restart it
19130 from the same initial seed value.  A simple way to restart from the
19131 same seed is to type @kbd{s r RandSeed} to get the seed vector,
19132 @kbd{v u} to unpack it back into a number, then @kbd{s t RandSeed}
19133 to reseed the generator with that number.
19135 Calc uses a ``shuffling'' method as described in algorithm 3.2.2B
19136 of Knuth.  It fills a table with 13 random 10-bit numbers.  Then,
19137 to generate a new random number, it uses the previous number to
19138 index into the table, picks the value it finds there as the new
19139 random number, then replaces that table entry with a new value
19140 obtained from a call to the base random number generator (either
19141 the additive congruential generator or the @code{random} function
19142 supplied by the system).  If there are any flaws in the base
19143 generator, shuffling will tend to even them out.  But if the system
19144 provides an excellent @code{random} function, shuffling will not
19145 damage its randomness.
19147 To create a random integer of a certain number of digits, Calc
19148 builds the integer three decimal digits at a time.  For each group
19149 of three digits, Calc calls its 10-bit shuffling random number generator
19150 (which returns a value from 0 to 1023); if the random value is 1000
19151 or more, Calc throws it out and tries again until it gets a suitable
19152 value.
19154 To create a random floating-point number with precision @var{p}, Calc
19155 simply creates a random @var{p}-digit integer and multiplies by
19156 @texline @math{10^{-p}}.
19157 @infoline @expr{10^-p}.  
19158 The resulting random numbers should be very clean, but note
19159 that relatively small numbers will have few significant random digits.
19160 In other words, with a precision of 12, you will occasionally get
19161 numbers on the order of 
19162 @texline @math{10^{-9}}
19163 @infoline @expr{10^-9} 
19164 or 
19165 @texline @math{10^{-10}},
19166 @infoline @expr{10^-10}, 
19167 but those numbers will only have two or three random digits since they
19168 correspond to small integers times 
19169 @texline @math{10^{-12}}.
19170 @infoline @expr{10^-12}.
19172 To create a random integer in the interval @samp{[0 .. @var{m})}, Calc
19173 counts the digits in @var{m}, creates a random integer with three
19174 additional digits, then reduces modulo @var{m}.  Unless @var{m} is a
19175 power of ten the resulting values will be very slightly biased toward
19176 the lower numbers, but this bias will be less than 0.1%.  (For example,
19177 if @var{m} is 42, Calc will reduce a random integer less than 100000
19178 modulo 42 to get a result less than 42.  It is easy to show that the
19179 numbers 40 and 41 will be only 2380/2381 as likely to result from this
19180 modulo operation as numbers 39 and below.)  If @var{m} is a power of
19181 ten, however, the numbers should be completely unbiased.
19183 The Gaussian random numbers generated by @samp{random(0.0)} use the
19184 ``polar'' method described in Knuth section 3.4.1C.  This method
19185 generates a pair of Gaussian random numbers at a time, so only every
19186 other call to @samp{random(0.0)} will require significant calculations.
19188 @node Combinatorial Functions, Probability Distribution Functions, Random Numbers, Scientific Functions
19189 @section Combinatorial Functions
19191 @noindent
19192 Commands relating to combinatorics and number theory begin with the
19193 @kbd{k} key prefix.
19195 @kindex k g
19196 @pindex calc-gcd
19197 @tindex gcd
19198 The @kbd{k g} (@code{calc-gcd}) [@code{gcd}] command computes the
19199 Greatest Common Divisor of two integers.  It also accepts fractions;
19200 the GCD of two fractions is defined by taking the GCD of the
19201 numerators, and the LCM of the denominators.  This definition is
19202 consistent with the idea that @samp{a / gcd(a,x)} should yield an
19203 integer for any @samp{a} and @samp{x}.  For other types of arguments,
19204 the operation is left in symbolic form.
19206 @kindex k l
19207 @pindex calc-lcm
19208 @tindex lcm
19209 The @kbd{k l} (@code{calc-lcm}) [@code{lcm}] command computes the
19210 Least Common Multiple of two integers or fractions.  The product of
19211 the LCM and GCD of two numbers is equal to the product of the
19212 numbers.
19214 @kindex k E
19215 @pindex calc-extended-gcd
19216 @tindex egcd
19217 The @kbd{k E} (@code{calc-extended-gcd}) [@code{egcd}] command computes
19218 the GCD of two integers @expr{x} and @expr{y} and returns a vector
19219 @expr{[g, a, b]} where 
19220 @texline @math{g = \gcd(x,y) = a x + b y}.
19221 @infoline @expr{g = gcd(x,y) = a x + b y}.
19223 @kindex !
19224 @pindex calc-factorial
19225 @tindex fact
19226 @ignore
19227 @mindex @null
19228 @end ignore
19229 @tindex !
19230 The @kbd{!} (@code{calc-factorial}) [@code{fact}] command computes the
19231 factorial of the number at the top of the stack.  If the number is an
19232 integer, the result is an exact integer.  If the number is an
19233 integer-valued float, the result is a floating-point approximation.  If
19234 the number is a non-integral real number, the generalized factorial is used,
19235 as defined by the Euler Gamma function.  Please note that computation of
19236 large factorials can be slow; using floating-point format will help
19237 since fewer digits must be maintained.  The same is true of many of
19238 the commands in this section.
19240 @kindex k d
19241 @pindex calc-double-factorial
19242 @tindex dfact
19243 @ignore
19244 @mindex @null
19245 @end ignore
19246 @tindex !!
19247 The @kbd{k d} (@code{calc-double-factorial}) [@code{dfact}] command
19248 computes the ``double factorial'' of an integer.  For an even integer,
19249 this is the product of even integers from 2 to @expr{N}.  For an odd
19250 integer, this is the product of odd integers from 3 to @expr{N}.  If
19251 the argument is an integer-valued float, the result is a floating-point
19252 approximation.  This function is undefined for negative even integers.
19253 The notation @expr{N!!} is also recognized for double factorials.
19255 @kindex k c
19256 @pindex calc-choose
19257 @tindex choose
19258 The @kbd{k c} (@code{calc-choose}) [@code{choose}] command computes the
19259 binomial coefficient @expr{N}-choose-@expr{M}, where @expr{M} is the number
19260 on the top of the stack and @expr{N} is second-to-top.  If both arguments
19261 are integers, the result is an exact integer.  Otherwise, the result is a
19262 floating-point approximation.  The binomial coefficient is defined for all
19263 real numbers by
19264 @texline @math{N! \over M! (N-M)!\,}.
19265 @infoline @expr{N! / M! (N-M)!}.
19267 @kindex H k c
19268 @pindex calc-perm
19269 @tindex perm
19270 @ifinfo
19271 The @kbd{H k c} (@code{calc-perm}) [@code{perm}] command computes the
19272 number-of-permutations function @expr{N! / (N-M)!}.
19273 @end ifinfo
19274 @tex
19275 The \kbd{H k c} (\code{calc-perm}) [\code{perm}] command computes the
19276 number-of-perm\-utations function $N! \over (N-M)!\,$.
19277 @end tex
19279 @kindex k b
19280 @kindex H k b
19281 @pindex calc-bernoulli-number
19282 @tindex bern
19283 The @kbd{k b} (@code{calc-bernoulli-number}) [@code{bern}] command
19284 computes a given Bernoulli number.  The value at the top of the stack
19285 is a nonnegative integer @expr{n} that specifies which Bernoulli number
19286 is desired.  The @kbd{H k b} command computes a Bernoulli polynomial,
19287 taking @expr{n} from the second-to-top position and @expr{x} from the
19288 top of the stack.  If @expr{x} is a variable or formula the result is
19289 a polynomial in @expr{x}; if @expr{x} is a number the result is a number.
19291 @kindex k e
19292 @kindex H k e
19293 @pindex calc-euler-number
19294 @tindex euler
19295 The @kbd{k e} (@code{calc-euler-number}) [@code{euler}] command similarly
19296 computes an Euler number, and @w{@kbd{H k e}} computes an Euler polynomial.
19297 Bernoulli and Euler numbers occur in the Taylor expansions of several
19298 functions.
19300 @kindex k s
19301 @kindex H k s
19302 @pindex calc-stirling-number
19303 @tindex stir1
19304 @tindex stir2
19305 The @kbd{k s} (@code{calc-stirling-number}) [@code{stir1}] command
19306 computes a Stirling number of the first 
19307 @texline kind@tie{}@math{n \brack m},
19308 @infoline kind,
19309 given two integers @expr{n} and @expr{m} on the stack.  The @kbd{H k s}
19310 [@code{stir2}] command computes a Stirling number of the second 
19311 @texline kind@tie{}@math{n \brace m}.
19312 @infoline kind.
19313 These are the number of @expr{m}-cycle permutations of @expr{n} objects,
19314 and the number of ways to partition @expr{n} objects into @expr{m}
19315 non-empty sets, respectively.
19317 @kindex k p
19318 @pindex calc-prime-test
19319 @cindex Primes
19320 The @kbd{k p} (@code{calc-prime-test}) command checks if the integer on
19321 the top of the stack is prime.  For integers less than eight million, the
19322 answer is always exact and reasonably fast.  For larger integers, a
19323 probabilistic method is used (see Knuth vol. II, section 4.5.4, algorithm P).
19324 The number is first checked against small prime factors (up to 13).  Then,
19325 any number of iterations of the algorithm are performed.  Each step either
19326 discovers that the number is non-prime, or substantially increases the
19327 certainty that the number is prime.  After a few steps, the chance that
19328 a number was mistakenly described as prime will be less than one percent.
19329 (Indeed, this is a worst-case estimate of the probability; in practice
19330 even a single iteration is quite reliable.)  After the @kbd{k p} command,
19331 the number will be reported as definitely prime or non-prime if possible,
19332 or otherwise ``probably'' prime with a certain probability of error.
19334 @ignore
19335 @starindex
19336 @end ignore
19337 @tindex prime
19338 The normal @kbd{k p} command performs one iteration of the primality
19339 test.  Pressing @kbd{k p} repeatedly for the same integer will perform
19340 additional iterations.  Also, @kbd{k p} with a numeric prefix performs
19341 the specified number of iterations.  There is also an algebraic function
19342 @samp{prime(n)} or @samp{prime(n,iters)} which returns 1 if @expr{n}
19343 is (probably) prime and 0 if not.
19345 @kindex k f
19346 @pindex calc-prime-factors
19347 @tindex prfac
19348 The @kbd{k f} (@code{calc-prime-factors}) [@code{prfac}] command
19349 attempts to decompose an integer into its prime factors.  For numbers up
19350 to 25 million, the answer is exact although it may take some time.  The
19351 result is a vector of the prime factors in increasing order.  For larger
19352 inputs, prime factors above 5000 may not be found, in which case the
19353 last number in the vector will be an unfactored integer greater than 25
19354 million (with a warning message).  For negative integers, the first
19355 element of the list will be @mathit{-1}.  For inputs @mathit{-1}, @mathit{0}, and
19356 @mathit{1}, the result is a list of the same number.
19358 @kindex k n
19359 @pindex calc-next-prime
19360 @ignore
19361 @mindex nextpr@idots
19362 @end ignore
19363 @tindex nextprime
19364 The @kbd{k n} (@code{calc-next-prime}) [@code{nextprime}] command finds
19365 the next prime above a given number.  Essentially, it searches by calling
19366 @code{calc-prime-test} on successive integers until it finds one that
19367 passes the test.  This is quite fast for integers less than eight million,
19368 but once the probabilistic test comes into play the search may be rather
19369 slow.  Ordinarily this command stops for any prime that passes one iteration
19370 of the primality test.  With a numeric prefix argument, a number must pass
19371 the specified number of iterations before the search stops.  (This only
19372 matters when searching above eight million.)  You can always use additional
19373 @kbd{k p} commands to increase your certainty that the number is indeed
19374 prime.
19376 @kindex I k n
19377 @pindex calc-prev-prime
19378 @ignore
19379 @mindex prevpr@idots
19380 @end ignore
19381 @tindex prevprime
19382 The @kbd{I k n} (@code{calc-prev-prime}) [@code{prevprime}] command
19383 analogously finds the next prime less than a given number.
19385 @kindex k t
19386 @pindex calc-totient
19387 @tindex totient
19388 The @kbd{k t} (@code{calc-totient}) [@code{totient}] command computes the
19389 Euler ``totient'' 
19390 @texline function@tie{}@math{\phi(n)},
19391 @infoline function,
19392 the number of integers less than @expr{n} which
19393 are relatively prime to @expr{n}.
19395 @kindex k m
19396 @pindex calc-moebius
19397 @tindex moebius
19398 The @kbd{k m} (@code{calc-moebius}) [@code{moebius}] command computes the
19399 @texline M@"obius @math{\mu}
19400 @infoline Moebius ``mu''
19401 function.  If the input number is a product of @expr{k}
19402 distinct factors, this is @expr{(-1)^k}.  If the input number has any
19403 duplicate factors (i.e., can be divided by the same prime more than once),
19404 the result is zero.
19406 @node Probability Distribution Functions, , Combinatorial Functions, Scientific Functions
19407 @section Probability Distribution Functions
19409 @noindent
19410 The functions in this section compute various probability distributions.
19411 For continuous distributions, this is the integral of the probability
19412 density function from @expr{x} to infinity.  (These are the ``upper
19413 tail'' distribution functions; there are also corresponding ``lower
19414 tail'' functions which integrate from minus infinity to @expr{x}.)
19415 For discrete distributions, the upper tail function gives the sum
19416 from @expr{x} to infinity; the lower tail function gives the sum
19417 from minus infinity up to, but not including,@w{ }@expr{x}.
19419 To integrate from @expr{x} to @expr{y}, just use the distribution
19420 function twice and subtract.  For example, the probability that a
19421 Gaussian random variable with mean 2 and standard deviation 1 will
19422 lie in the range from 2.5 to 2.8 is @samp{utpn(2.5,2,1) - utpn(2.8,2,1)}
19423 (``the probability that it is greater than 2.5, but not greater than 2.8''),
19424 or equivalently @samp{ltpn(2.8,2,1) - ltpn(2.5,2,1)}.
19426 @kindex k B
19427 @kindex I k B
19428 @pindex calc-utpb
19429 @tindex utpb
19430 @tindex ltpb
19431 The @kbd{k B} (@code{calc-utpb}) [@code{utpb}] function uses the
19432 binomial distribution.  Push the parameters @var{n}, @var{p}, and
19433 then @var{x} onto the stack; the result (@samp{utpb(x,n,p)}) is the
19434 probability that an event will occur @var{x} or more times out
19435 of @var{n} trials, if its probability of occurring in any given
19436 trial is @var{p}.  The @kbd{I k B} [@code{ltpb}] function is
19437 the probability that the event will occur fewer than @var{x} times.
19439 The other probability distribution functions similarly take the
19440 form @kbd{k @var{X}} (@code{calc-utp@var{x}}) [@code{utp@var{x}}]
19441 and @kbd{I k @var{X}} [@code{ltp@var{x}}], for various letters
19442 @var{x}.  The arguments to the algebraic functions are the value of
19443 the random variable first, then whatever other parameters define the
19444 distribution.  Note these are among the few Calc functions where the
19445 order of the arguments in algebraic form differs from the order of
19446 arguments as found on the stack.  (The random variable comes last on
19447 the stack, so that you can type, e.g., @kbd{2 @key{RET} 1 @key{RET} 2.5
19448 k N M-@key{RET} @key{DEL} 2.8 k N -}, using @kbd{M-@key{RET} @key{DEL}} to
19449 recover the original arguments but substitute a new value for @expr{x}.)
19451 @kindex k C
19452 @pindex calc-utpc
19453 @tindex utpc
19454 @ignore
19455 @mindex @idots
19456 @end ignore
19457 @kindex I k C
19458 @ignore
19459 @mindex @null
19460 @end ignore
19461 @tindex ltpc
19462 The @samp{utpc(x,v)} function uses the chi-square distribution with
19463 @texline @math{\nu}
19464 @infoline @expr{v} 
19465 degrees of freedom.  It is the probability that a model is
19466 correct if its chi-square statistic is @expr{x}.
19468 @kindex k F
19469 @pindex calc-utpf
19470 @tindex utpf
19471 @ignore
19472 @mindex @idots
19473 @end ignore
19474 @kindex I k F
19475 @ignore
19476 @mindex @null
19477 @end ignore
19478 @tindex ltpf
19479 The @samp{utpf(F,v1,v2)} function uses the F distribution, used in
19480 various statistical tests.  The parameters 
19481 @texline @math{\nu_1}
19482 @infoline @expr{v1} 
19483 and 
19484 @texline @math{\nu_2}
19485 @infoline @expr{v2}
19486 are the degrees of freedom in the numerator and denominator,
19487 respectively, used in computing the statistic @expr{F}.
19489 @kindex k N
19490 @pindex calc-utpn
19491 @tindex utpn
19492 @ignore
19493 @mindex @idots
19494 @end ignore
19495 @kindex I k N
19496 @ignore
19497 @mindex @null
19498 @end ignore
19499 @tindex ltpn
19500 The @samp{utpn(x,m,s)} function uses a normal (Gaussian) distribution
19501 with mean @expr{m} and standard deviation 
19502 @texline @math{\sigma}.
19503 @infoline @expr{s}.  
19504 It is the probability that such a normal-distributed random variable
19505 would exceed @expr{x}.
19507 @kindex k P
19508 @pindex calc-utpp
19509 @tindex utpp
19510 @ignore
19511 @mindex @idots
19512 @end ignore
19513 @kindex I k P
19514 @ignore
19515 @mindex @null
19516 @end ignore
19517 @tindex ltpp
19518 The @samp{utpp(n,x)} function uses a Poisson distribution with
19519 mean @expr{x}.  It is the probability that @expr{n} or more such
19520 Poisson random events will occur.
19522 @kindex k T
19523 @pindex calc-ltpt
19524 @tindex utpt
19525 @ignore
19526 @mindex @idots
19527 @end ignore
19528 @kindex I k T
19529 @ignore
19530 @mindex @null
19531 @end ignore
19532 @tindex ltpt
19533 The @samp{utpt(t,v)} function uses the Student's ``t'' distribution
19534 with 
19535 @texline @math{\nu}
19536 @infoline @expr{v} 
19537 degrees of freedom.  It is the probability that a
19538 t-distributed random variable will be greater than @expr{t}.
19539 (Note:  This computes the distribution function 
19540 @texline @math{A(t|\nu)}
19541 @infoline @expr{A(t|v)}
19542 where 
19543 @texline @math{A(0|\nu) = 1}
19544 @infoline @expr{A(0|v) = 1} 
19545 and 
19546 @texline @math{A(\infty|\nu) \to 0}.
19547 @infoline @expr{A(inf|v) -> 0}.  
19548 The @code{UTPT} operation on the HP-48 uses a different definition which
19549 returns half of Calc's value:  @samp{UTPT(t,v) = .5*utpt(t,v)}.)
19551 While Calc does not provide inverses of the probability distribution
19552 functions, the @kbd{a R} command can be used to solve for the inverse.
19553 Since the distribution functions are monotonic, @kbd{a R} is guaranteed
19554 to be able to find a solution given any initial guess.
19555 @xref{Numerical Solutions}.
19557 @node Matrix Functions, Algebra, Scientific Functions, Top
19558 @chapter Vector/Matrix Functions
19560 @noindent
19561 Many of the commands described here begin with the @kbd{v} prefix.
19562 (For convenience, the shift-@kbd{V} prefix is equivalent to @kbd{v}.)
19563 The commands usually apply to both plain vectors and matrices; some
19564 apply only to matrices or only to square matrices.  If the argument
19565 has the wrong dimensions the operation is left in symbolic form.
19567 Vectors are entered and displayed using @samp{[a,b,c]} notation.
19568 Matrices are vectors of which all elements are vectors of equal length.
19569 (Though none of the standard Calc commands use this concept, a
19570 three-dimensional matrix or rank-3 tensor could be defined as a
19571 vector of matrices, and so on.)
19573 @menu
19574 * Packing and Unpacking::
19575 * Building Vectors::
19576 * Extracting Elements::
19577 * Manipulating Vectors::
19578 * Vector and Matrix Arithmetic::
19579 * Set Operations::
19580 * Statistical Operations::
19581 * Reducing and Mapping::
19582 * Vector and Matrix Formats::
19583 @end menu
19585 @node Packing and Unpacking, Building Vectors, Matrix Functions, Matrix Functions
19586 @section Packing and Unpacking
19588 @noindent
19589 Calc's ``pack'' and ``unpack'' commands collect stack entries to build
19590 composite objects such as vectors and complex numbers.  They are
19591 described in this chapter because they are most often used to build
19592 vectors.
19594 @kindex v p
19595 @pindex calc-pack
19596 The @kbd{v p} (@code{calc-pack}) [@code{pack}] command collects several
19597 elements from the stack into a matrix, complex number, HMS form, error
19598 form, etc.  It uses a numeric prefix argument to specify the kind of
19599 object to be built; this argument is referred to as the ``packing mode.''
19600 If the packing mode is a nonnegative integer, a vector of that
19601 length is created.  For example, @kbd{C-u 5 v p} will pop the top
19602 five stack elements and push back a single vector of those five
19603 elements.  (@kbd{C-u 0 v p} simply creates an empty vector.)
19605 The same effect can be had by pressing @kbd{[} to push an incomplete
19606 vector on the stack, using @key{TAB} (@code{calc-roll-down}) to sneak
19607 the incomplete object up past a certain number of elements, and
19608 then pressing @kbd{]} to complete the vector.
19610 Negative packing modes create other kinds of composite objects:
19612 @table @cite
19613 @item -1
19614 Two values are collected to build a complex number.  For example,
19615 @kbd{5 @key{RET} 7 C-u -1 v p} creates the complex number
19616 @expr{(5, 7)}.  The result is always a rectangular complex
19617 number.  The two input values must both be real numbers,
19618 i.e., integers, fractions, or floats.  If they are not, Calc
19619 will instead build a formula like @samp{a + (0, 1) b}.  (The
19620 other packing modes also create a symbolic answer if the
19621 components are not suitable.)
19623 @item -2
19624 Two values are collected to build a polar complex number.
19625 The first is the magnitude; the second is the phase expressed
19626 in either degrees or radians according to the current angular
19627 mode.
19629 @item -3
19630 Three values are collected into an HMS form.  The first
19631 two values (hours and minutes) must be integers or
19632 integer-valued floats.  The third value may be any real
19633 number.
19635 @item -4
19636 Two values are collected into an error form.  The inputs
19637 may be real numbers or formulas.
19639 @item -5
19640 Two values are collected into a modulo form.  The inputs
19641 must be real numbers.
19643 @item -6
19644 Two values are collected into the interval @samp{[a .. b]}.
19645 The inputs may be real numbers, HMS or date forms, or formulas.
19647 @item -7
19648 Two values are collected into the interval @samp{[a .. b)}.
19650 @item -8
19651 Two values are collected into the interval @samp{(a .. b]}.
19653 @item -9
19654 Two values are collected into the interval @samp{(a .. b)}.
19656 @item -10
19657 Two integer values are collected into a fraction.
19659 @item -11
19660 Two values are collected into a floating-point number.
19661 The first is the mantissa; the second, which must be an
19662 integer, is the exponent.  The result is the mantissa
19663 times ten to the power of the exponent.
19665 @item -12
19666 This is treated the same as @mathit{-11} by the @kbd{v p} command.
19667 When unpacking, @mathit{-12} specifies that a floating-point mantissa
19668 is desired.
19670 @item -13
19671 A real number is converted into a date form.
19673 @item -14
19674 Three numbers (year, month, day) are packed into a pure date form.
19676 @item -15
19677 Six numbers are packed into a date/time form.
19678 @end table
19680 With any of the two-input negative packing modes, either or both
19681 of the inputs may be vectors.  If both are vectors of the same
19682 length, the result is another vector made by packing corresponding
19683 elements of the input vectors.  If one input is a vector and the
19684 other is a plain number, the number is packed along with each vector
19685 element to produce a new vector.  For example, @kbd{C-u -4 v p}
19686 could be used to convert a vector of numbers and a vector of errors
19687 into a single vector of error forms; @kbd{C-u -5 v p} could convert
19688 a vector of numbers and a single number @var{M} into a vector of
19689 numbers modulo @var{M}.
19691 If you don't give a prefix argument to @kbd{v p}, it takes
19692 the packing mode from the top of the stack.  The elements to
19693 be packed then begin at stack level 2.  Thus
19694 @kbd{1 @key{RET} 2 @key{RET} 4 n v p} is another way to
19695 enter the error form @samp{1 +/- 2}.
19697 If the packing mode taken from the stack is a vector, the result is a
19698 matrix with the dimensions specified by the elements of the vector,
19699 which must each be integers.  For example, if the packing mode is
19700 @samp{[2, 3]}, then six numbers will be taken from the stack and
19701 returned in the form @samp{[@w{[a, b, c]}, [d, e, f]]}.
19703 If any elements of the vector are negative, other kinds of
19704 packing are done at that level as described above.  For
19705 example, @samp{[2, 3, -4]} takes 12 objects and creates a
19706 @texline @math{2\times3}
19707 @infoline 2x3
19708 matrix of error forms: @samp{[[a +/- b, c +/- d ... ]]}.
19709 Also, @samp{[-4, -10]} will convert four integers into an
19710 error form consisting of two fractions:  @samp{a:b +/- c:d}.
19712 @ignore
19713 @starindex
19714 @end ignore
19715 @tindex pack
19716 There is an equivalent algebraic function,
19717 @samp{pack(@var{mode}, @var{items})} where @var{mode} is a
19718 packing mode (an integer or a vector of integers) and @var{items}
19719 is a vector of objects to be packed (re-packed, really) according
19720 to that mode.  For example, @samp{pack([3, -4], [a,b,c,d,e,f])}
19721 yields @samp{[a +/- b, @w{c +/- d}, e +/- f]}.  The function is
19722 left in symbolic form if the packing mode is invalid, or if the
19723 number of data items does not match the number of items required
19724 by the mode.
19726 @kindex v u
19727 @pindex calc-unpack
19728 The @kbd{v u} (@code{calc-unpack}) command takes the vector, complex
19729 number, HMS form, or other composite object on the top of the stack and
19730 ``unpacks'' it, pushing each of its elements onto the stack as separate
19731 objects.  Thus, it is the ``inverse'' of @kbd{v p}.  If the value
19732 at the top of the stack is a formula, @kbd{v u} unpacks it by pushing
19733 each of the arguments of the top-level operator onto the stack.
19735 You can optionally give a numeric prefix argument to @kbd{v u}
19736 to specify an explicit (un)packing mode.  If the packing mode is
19737 negative and the input is actually a vector or matrix, the result
19738 will be two or more similar vectors or matrices of the elements.
19739 For example, given the vector @samp{[@w{a +/- b}, c^2, d +/- 7]},
19740 the result of @kbd{C-u -4 v u} will be the two vectors
19741 @samp{[a, c^2, d]} and @w{@samp{[b, 0, 7]}}.
19743 Note that the prefix argument can have an effect even when the input is
19744 not a vector.  For example, if the input is the number @mathit{-5}, then
19745 @kbd{c-u -1 v u} yields @mathit{-5} and 0 (the components of @mathit{-5}
19746 when viewed as a rectangular complex number); @kbd{C-u -2 v u} yields 5
19747 and 180 (assuming Degrees mode); and @kbd{C-u -10 v u} yields @mathit{-5}
19748 and 1 (the numerator and denominator of @mathit{-5}, viewed as a rational
19749 number).  Plain @kbd{v u} with this input would complain that the input
19750 is not a composite object.
19752 Unpacking mode @mathit{-11} converts a float into an integer mantissa and
19753 an integer exponent, where the mantissa is not divisible by 10
19754 (except that 0.0 is represented by a mantissa and exponent of 0).
19755 Unpacking mode @mathit{-12} converts a float into a floating-point mantissa
19756 and integer exponent, where the mantissa (for non-zero numbers)
19757 is guaranteed to lie in the range [1 .. 10).  In both cases,
19758 the mantissa is shifted left or right (and the exponent adjusted
19759 to compensate) in order to satisfy these constraints.
19761 Positive unpacking modes are treated differently than for @kbd{v p}.
19762 A mode of 1 is much like plain @kbd{v u} with no prefix argument,
19763 except that in addition to the components of the input object,
19764 a suitable packing mode to re-pack the object is also pushed.
19765 Thus, @kbd{C-u 1 v u} followed by @kbd{v p} will re-build the
19766 original object.
19768 A mode of 2 unpacks two levels of the object; the resulting
19769 re-packing mode will be a vector of length 2.  This might be used
19770 to unpack a matrix, say, or a vector of error forms.  Higher
19771 unpacking modes unpack the input even more deeply.
19773 @ignore
19774 @starindex
19775 @end ignore
19776 @tindex unpack
19777 There are two algebraic functions analogous to @kbd{v u}.
19778 The @samp{unpack(@var{mode}, @var{item})} function unpacks the
19779 @var{item} using the given @var{mode}, returning the result as
19780 a vector of components.  Here the @var{mode} must be an
19781 integer, not a vector.  For example, @samp{unpack(-4, a +/- b)}
19782 returns @samp{[a, b]}, as does @samp{unpack(1, a +/- b)}.
19784 @ignore
19785 @starindex
19786 @end ignore
19787 @tindex unpackt
19788 The @code{unpackt} function is like @code{unpack} but instead
19789 of returning a simple vector of items, it returns a vector of
19790 two things:  The mode, and the vector of items.  For example,
19791 @samp{unpackt(1, 2:3 +/- 1:4)} returns @samp{[-4, [2:3, 1:4]]},
19792 and @samp{unpackt(2, 2:3 +/- 1:4)} returns @samp{[[-4, -10], [2, 3, 1, 4]]}.
19793 The identity for re-building the original object is
19794 @samp{apply(pack, unpackt(@var{n}, @var{x})) = @var{x}}.  (The
19795 @code{apply} function builds a function call given the function
19796 name and a vector of arguments.)
19798 @cindex Numerator of a fraction, extracting
19799 Subscript notation is a useful way to extract a particular part
19800 of an object.  For example, to get the numerator of a rational
19801 number, you can use @samp{unpack(-10, @var{x})_1}.
19803 @node Building Vectors, Extracting Elements, Packing and Unpacking, Matrix Functions
19804 @section Building Vectors
19806 @noindent
19807 Vectors and matrices can be added,
19808 subtracted, multiplied, and divided; @pxref{Basic Arithmetic}.
19810 @kindex |
19811 @pindex calc-concat
19812 @ignore
19813 @mindex @null
19814 @end ignore
19815 @tindex |
19816 The @kbd{|} (@code{calc-concat}) [@code{vconcat}] command ``concatenates'' two vectors
19817 into one.  For example, after @kbd{@w{[ 1 , 2 ]} [ 3 , 4 ] |}, the stack
19818 will contain the single vector @samp{[1, 2, 3, 4]}.  If the arguments
19819 are matrices, the rows of the first matrix are concatenated with the
19820 rows of the second.  (In other words, two matrices are just two vectors
19821 of row-vectors as far as @kbd{|} is concerned.)
19823 If either argument to @kbd{|} is a scalar (a non-vector), it is treated
19824 like a one-element vector for purposes of concatenation:  @kbd{1 [ 2 , 3 ] |}
19825 produces the vector @samp{[1, 2, 3]}.  Likewise, if one argument is a
19826 matrix and the other is a plain vector, the vector is treated as a
19827 one-row matrix.
19829 @kindex H |
19830 @tindex append
19831 The @kbd{H |} (@code{calc-append}) [@code{append}] command concatenates
19832 two vectors without any special cases.  Both inputs must be vectors.
19833 Whether or not they are matrices is not taken into account.  If either
19834 argument is a scalar, the @code{append} function is left in symbolic form.
19835 See also @code{cons} and @code{rcons} below.
19837 @kindex I |
19838 @kindex H I |
19839 The @kbd{I |} and @kbd{H I |} commands are similar, but they use their
19840 two stack arguments in the opposite order.  Thus @kbd{I |} is equivalent
19841 to @kbd{@key{TAB} |}, but possibly more convenient and also a bit faster.
19843 @kindex v d
19844 @pindex calc-diag
19845 @tindex diag
19846 The @kbd{v d} (@code{calc-diag}) [@code{diag}] function builds a diagonal
19847 square matrix.  The optional numeric prefix gives the number of rows
19848 and columns in the matrix.  If the value at the top of the stack is a
19849 vector, the elements of the vector are used as the diagonal elements; the
19850 prefix, if specified, must match the size of the vector.  If the value on
19851 the stack is a scalar, it is used for each element on the diagonal, and
19852 the prefix argument is required.
19854 To build a constant square matrix, e.g., a 
19855 @texline @math{3\times3}
19856 @infoline 3x3
19857 matrix filled with ones, use @kbd{0 M-3 v d 1 +}, i.e., build a zero
19858 matrix first and then add a constant value to that matrix.  (Another
19859 alternative would be to use @kbd{v b} and @kbd{v a}; see below.)
19861 @kindex v i
19862 @pindex calc-ident
19863 @tindex idn
19864 The @kbd{v i} (@code{calc-ident}) [@code{idn}] function builds an identity
19865 matrix of the specified size.  It is a convenient form of @kbd{v d}
19866 where the diagonal element is always one.  If no prefix argument is given,
19867 this command prompts for one.
19869 In algebraic notation, @samp{idn(a,n)} acts much like @samp{diag(a,n)},
19870 except that @expr{a} is required to be a scalar (non-vector) quantity.
19871 If @expr{n} is omitted, @samp{idn(a)} represents @expr{a} times an
19872 identity matrix of unknown size.  Calc can operate algebraically on
19873 such generic identity matrices, and if one is combined with a matrix
19874 whose size is known, it is converted automatically to an identity
19875 matrix of a suitable matching size.  The @kbd{v i} command with an
19876 argument of zero creates a generic identity matrix, @samp{idn(1)}.
19877 Note that in dimensioned Matrix mode (@pxref{Matrix Mode}), generic
19878 identity matrices are immediately expanded to the current default
19879 dimensions.
19881 @kindex v x
19882 @pindex calc-index
19883 @tindex index
19884 The @kbd{v x} (@code{calc-index}) [@code{index}] function builds a vector
19885 of consecutive integers from 1 to @var{n}, where @var{n} is the numeric
19886 prefix argument.  If you do not provide a prefix argument, you will be
19887 prompted to enter a suitable number.  If @var{n} is negative, the result
19888 is a vector of negative integers from @var{n} to @mathit{-1}.
19890 With a prefix argument of just @kbd{C-u}, the @kbd{v x} command takes
19891 three values from the stack: @var{n}, @var{start}, and @var{incr} (with
19892 @var{incr} at top-of-stack).  Counting starts at @var{start} and increases
19893 by @var{incr} for successive vector elements.  If @var{start} or @var{n}
19894 is in floating-point format, the resulting vector elements will also be
19895 floats.  Note that @var{start} and @var{incr} may in fact be any kind
19896 of numbers or formulas.
19898 When @var{start} and @var{incr} are specified, a negative @var{n} has a
19899 different interpretation:  It causes a geometric instead of arithmetic
19900 sequence to be generated.  For example, @samp{index(-3, a, b)} produces
19901 @samp{[a, a b, a b^2]}.  If you omit @var{incr} in the algebraic form,
19902 @samp{index(@var{n}, @var{start})}, the default value for @var{incr}
19903 is one for positive @var{n} or two for negative @var{n}.
19905 @kindex v b
19906 @pindex calc-build-vector
19907 @tindex cvec
19908 The @kbd{v b} (@code{calc-build-vector}) [@code{cvec}] function builds a
19909 vector of @var{n} copies of the value on the top of the stack, where @var{n}
19910 is the numeric prefix argument.  In algebraic formulas, @samp{cvec(x,n,m)}
19911 can also be used to build an @var{n}-by-@var{m} matrix of copies of @var{x}.
19912 (Interactively, just use @kbd{v b} twice: once to build a row, then again
19913 to build a matrix of copies of that row.)
19915 @kindex v h
19916 @kindex I v h
19917 @pindex calc-head
19918 @pindex calc-tail
19919 @tindex head
19920 @tindex tail
19921 The @kbd{v h} (@code{calc-head}) [@code{head}] function returns the first
19922 element of a vector.  The @kbd{I v h} (@code{calc-tail}) [@code{tail}]
19923 function returns the vector with its first element removed.  In both
19924 cases, the argument must be a non-empty vector.
19926 @kindex v k
19927 @pindex calc-cons
19928 @tindex cons
19929 The @kbd{v k} (@code{calc-cons}) [@code{cons}] function takes a value @var{h}
19930 and a vector @var{t} from the stack, and produces the vector whose head is
19931 @var{h} and whose tail is @var{t}.  This is similar to @kbd{|}, except
19932 if @var{h} is itself a vector, @kbd{|} will concatenate the two vectors
19933 whereas @code{cons} will insert @var{h} at the front of the vector @var{t}.
19935 @kindex H v h
19936 @tindex rhead
19937 @ignore
19938 @mindex @idots
19939 @end ignore
19940 @kindex H I v h
19941 @ignore
19942 @mindex @null
19943 @end ignore
19944 @kindex H v k
19945 @ignore
19946 @mindex @null
19947 @end ignore
19948 @tindex rtail
19949 @ignore
19950 @mindex @null
19951 @end ignore
19952 @tindex rcons
19953 Each of these three functions also accepts the Hyperbolic flag [@code{rhead},
19954 @code{rtail}, @code{rcons}] in which case @var{t} instead represents
19955 the @emph{last} single element of the vector, with @var{h}
19956 representing the remainder of the vector.  Thus the vector
19957 @samp{[a, b, c, d] = cons(a, [b, c, d]) = rcons([a, b, c], d)}.
19958 Also, @samp{head([a, b, c, d]) = a}, @samp{tail([a, b, c, d]) = [b, c, d]},
19959 @samp{rhead([a, b, c, d]) = [a, b, c]}, and @samp{rtail([a, b, c, d]) = d}.
19961 @node Extracting Elements, Manipulating Vectors, Building Vectors, Matrix Functions
19962 @section Extracting Vector Elements
19964 @noindent
19965 @kindex v r
19966 @pindex calc-mrow
19967 @tindex mrow
19968 The @kbd{v r} (@code{calc-mrow}) [@code{mrow}] command extracts one row of
19969 the matrix on the top of the stack, or one element of the plain vector on
19970 the top of the stack.  The row or element is specified by the numeric
19971 prefix argument; the default is to prompt for the row or element number.
19972 The matrix or vector is replaced by the specified row or element in the
19973 form of a vector or scalar, respectively.
19975 @cindex Permutations, applying
19976 With a prefix argument of @kbd{C-u} only, @kbd{v r} takes the index of
19977 the element or row from the top of the stack, and the vector or matrix
19978 from the second-to-top position.  If the index is itself a vector of
19979 integers, the result is a vector of the corresponding elements of the
19980 input vector, or a matrix of the corresponding rows of the input matrix.
19981 This command can be used to obtain any permutation of a vector.
19983 With @kbd{C-u}, if the index is an interval form with integer components,
19984 it is interpreted as a range of indices and the corresponding subvector or
19985 submatrix is returned.
19987 @cindex Subscript notation
19988 @kindex a _
19989 @pindex calc-subscript
19990 @tindex subscr
19991 @tindex _
19992 Subscript notation in algebraic formulas (@samp{a_b}) stands for the
19993 Calc function @code{subscr}, which is synonymous with @code{mrow}.
19994 Thus, @samp{[x, y, z]_k} produces @expr{x}, @expr{y}, or @expr{z} if
19995 @expr{k} is one, two, or three, respectively.  A double subscript
19996 (@samp{M_i_j}, equivalent to @samp{subscr(subscr(M, i), j)}) will
19997 access the element at row @expr{i}, column @expr{j} of a matrix.
19998 The @kbd{a _} (@code{calc-subscript}) command creates a subscript
19999 formula @samp{a_b} out of two stack entries.  (It is on the @kbd{a}
20000 ``algebra'' prefix because subscripted variables are often used
20001 purely as an algebraic notation.)
20003 @tindex mrrow
20004 Given a negative prefix argument, @kbd{v r} instead deletes one row or
20005 element from the matrix or vector on the top of the stack.  Thus
20006 @kbd{C-u 2 v r} replaces a matrix with its second row, but @kbd{C-u -2 v r}
20007 replaces the matrix with the same matrix with its second row removed.
20008 In algebraic form this function is called @code{mrrow}.
20010 @tindex getdiag
20011 Given a prefix argument of zero, @kbd{v r} extracts the diagonal elements
20012 of a square matrix in the form of a vector.  In algebraic form this
20013 function is called @code{getdiag}.
20015 @kindex v c
20016 @pindex calc-mcol
20017 @tindex mcol
20018 @tindex mrcol
20019 The @kbd{v c} (@code{calc-mcol}) [@code{mcol} or @code{mrcol}] command is
20020 the analogous operation on columns of a matrix.  Given a plain vector
20021 it extracts (or removes) one element, just like @kbd{v r}.  If the
20022 index in @kbd{C-u v c} is an interval or vector and the argument is a
20023 matrix, the result is a submatrix with only the specified columns
20024 retained (and possibly permuted in the case of a vector index).
20026 To extract a matrix element at a given row and column, use @kbd{v r} to
20027 extract the row as a vector, then @kbd{v c} to extract the column element
20028 from that vector.  In algebraic formulas, it is often more convenient to
20029 use subscript notation:  @samp{m_i_j} gives row @expr{i}, column @expr{j}
20030 of matrix @expr{m}.
20032 @kindex v s
20033 @pindex calc-subvector
20034 @tindex subvec
20035 The @kbd{v s} (@code{calc-subvector}) [@code{subvec}] command extracts
20036 a subvector of a vector.  The arguments are the vector, the starting
20037 index, and the ending index, with the ending index in the top-of-stack
20038 position.  The starting index indicates the first element of the vector
20039 to take.  The ending index indicates the first element @emph{past} the
20040 range to be taken.  Thus, @samp{subvec([a, b, c, d, e], 2, 4)} produces
20041 the subvector @samp{[b, c]}.  You could get the same result using
20042 @samp{mrow([a, b, c, d, e], @w{[2 .. 4)})}.
20044 If either the start or the end index is zero or negative, it is
20045 interpreted as relative to the end of the vector.  Thus
20046 @samp{subvec([a, b, c, d, e], 2, -2)} also produces @samp{[b, c]}.  In
20047 the algebraic form, the end index can be omitted in which case it
20048 is taken as zero, i.e., elements from the starting element to the
20049 end of the vector are used.  The infinity symbol, @code{inf}, also
20050 has this effect when used as the ending index.
20052 @kindex I v s
20053 @tindex rsubvec
20054 With the Inverse flag, @kbd{I v s} [@code{rsubvec}] removes a subvector
20055 from a vector.  The arguments are interpreted the same as for the
20056 normal @kbd{v s} command.  Thus, @samp{rsubvec([a, b, c, d, e], 2, 4)}
20057 produces @samp{[a, d, e]}.  It is always true that @code{subvec} and
20058 @code{rsubvec} return complementary parts of the input vector.
20060 @xref{Selecting Subformulas}, for an alternative way to operate on
20061 vectors one element at a time.
20063 @node Manipulating Vectors, Vector and Matrix Arithmetic, Extracting Elements, Matrix Functions
20064 @section Manipulating Vectors
20066 @noindent
20067 @kindex v l
20068 @pindex calc-vlength
20069 @tindex vlen
20070 The @kbd{v l} (@code{calc-vlength}) [@code{vlen}] command computes the
20071 length of a vector.  The length of a non-vector is considered to be zero.
20072 Note that matrices are just vectors of vectors for the purposes of this
20073 command.
20075 @kindex H v l
20076 @tindex mdims
20077 With the Hyperbolic flag, @kbd{H v l} [@code{mdims}] computes a vector
20078 of the dimensions of a vector, matrix, or higher-order object.  For
20079 example, @samp{mdims([[a,b,c],[d,e,f]])} returns @samp{[2, 3]} since
20080 its argument is a 
20081 @texline @math{2\times3}
20082 @infoline 2x3
20083 matrix.
20085 @kindex v f
20086 @pindex calc-vector-find
20087 @tindex find
20088 The @kbd{v f} (@code{calc-vector-find}) [@code{find}] command searches
20089 along a vector for the first element equal to a given target.  The target
20090 is on the top of the stack; the vector is in the second-to-top position.
20091 If a match is found, the result is the index of the matching element.
20092 Otherwise, the result is zero.  The numeric prefix argument, if given,
20093 allows you to select any starting index for the search.
20095 @kindex v a
20096 @pindex calc-arrange-vector
20097 @tindex arrange
20098 @cindex Arranging a matrix
20099 @cindex Reshaping a matrix
20100 @cindex Flattening a matrix
20101 The @kbd{v a} (@code{calc-arrange-vector}) [@code{arrange}] command
20102 rearranges a vector to have a certain number of columns and rows.  The
20103 numeric prefix argument specifies the number of columns; if you do not
20104 provide an argument, you will be prompted for the number of columns.
20105 The vector or matrix on the top of the stack is @dfn{flattened} into a
20106 plain vector.  If the number of columns is nonzero, this vector is
20107 then formed into a matrix by taking successive groups of @var{n} elements.
20108 If the number of columns does not evenly divide the number of elements
20109 in the vector, the last row will be short and the result will not be
20110 suitable for use as a matrix.  For example, with the matrix
20111 @samp{[[1, 2], @w{[3, 4]}]} on the stack, @kbd{v a 4} produces
20112 @samp{[[1, 2, 3, 4]]} (a 
20113 @texline @math{1\times4}
20114 @infoline 1x4
20115 matrix), @kbd{v a 1} produces @samp{[[1], [2], [3], [4]]} (a 
20116 @texline @math{4\times1}
20117 @infoline 4x1
20118 matrix), @kbd{v a 2} produces @samp{[[1, 2], [3, 4]]} (the original 
20119 @texline @math{2\times2}
20120 @infoline 2x2
20121 matrix), @w{@kbd{v a 3}} produces @samp{[[1, 2, 3], [4]]} (not a
20122 matrix), and @kbd{v a 0} produces the flattened list 
20123 @samp{[1, 2, @w{3, 4}]}.
20125 @cindex Sorting data
20126 @kindex V S
20127 @kindex I V S
20128 @pindex calc-sort
20129 @tindex sort
20130 @tindex rsort
20131 The @kbd{V S} (@code{calc-sort}) [@code{sort}] command sorts the elements of
20132 a vector into increasing order.  Real numbers, real infinities, and
20133 constant interval forms come first in this ordering; next come other
20134 kinds of numbers, then variables (in alphabetical order), then finally
20135 come formulas and other kinds of objects; these are sorted according
20136 to a kind of lexicographic ordering with the useful property that
20137 one vector is less or greater than another if the first corresponding
20138 unequal elements are less or greater, respectively.  Since quoted strings
20139 are stored by Calc internally as vectors of ASCII character codes
20140 (@pxref{Strings}), this means vectors of strings are also sorted into
20141 alphabetical order by this command.
20143 The @kbd{I V S} [@code{rsort}] command sorts a vector into decreasing order.
20145 @cindex Permutation, inverse of
20146 @cindex Inverse of permutation
20147 @cindex Index tables
20148 @cindex Rank tables
20149 @kindex V G
20150 @kindex I V G
20151 @pindex calc-grade
20152 @tindex grade
20153 @tindex rgrade
20154 The @kbd{V G} (@code{calc-grade}) [@code{grade}, @code{rgrade}] command
20155 produces an index table or permutation vector which, if applied to the
20156 input vector (as the index of @kbd{C-u v r}, say), would sort the vector.
20157 A permutation vector is just a vector of integers from 1 to @var{n}, where
20158 each integer occurs exactly once.  One application of this is to sort a
20159 matrix of data rows using one column as the sort key; extract that column,
20160 grade it with @kbd{V G}, then use the result to reorder the original matrix
20161 with @kbd{C-u v r}.  Another interesting property of the @code{V G} command
20162 is that, if the input is itself a permutation vector, the result will
20163 be the inverse of the permutation.  The inverse of an index table is
20164 a rank table, whose @var{k}th element says where the @var{k}th original
20165 vector element will rest when the vector is sorted.  To get a rank
20166 table, just use @kbd{V G V G}.
20168 With the Inverse flag, @kbd{I V G} produces an index table that would
20169 sort the input into decreasing order.  Note that @kbd{V S} and @kbd{V G}
20170 use a ``stable'' sorting algorithm, i.e., any two elements which are equal
20171 will not be moved out of their original order.  Generally there is no way
20172 to tell with @kbd{V S}, since two elements which are equal look the same,
20173 but with @kbd{V G} this can be an important issue.  In the matrix-of-rows
20174 example, suppose you have names and telephone numbers as two columns and
20175 you wish to sort by phone number primarily, and by name when the numbers
20176 are equal.  You can sort the data matrix by names first, and then again
20177 by phone numbers.  Because the sort is stable, any two rows with equal
20178 phone numbers will remain sorted by name even after the second sort.
20180 @cindex Histograms
20181 @kindex V H
20182 @pindex calc-histogram
20183 @ignore
20184 @mindex histo@idots
20185 @end ignore
20186 @tindex histogram
20187 The @kbd{V H} (@code{calc-histogram}) [@code{histogram}] command builds a
20188 histogram of a vector of numbers.  Vector elements are assumed to be
20189 integers or real numbers in the range [0..@var{n}) for some ``number of
20190 bins'' @var{n}, which is the numeric prefix argument given to the
20191 command.  The result is a vector of @var{n} counts of how many times
20192 each value appeared in the original vector.  Non-integers in the input
20193 are rounded down to integers.  Any vector elements outside the specified
20194 range are ignored.  (You can tell if elements have been ignored by noting
20195 that the counts in the result vector don't add up to the length of the
20196 input vector.)
20198 @kindex H V H
20199 With the Hyperbolic flag, @kbd{H V H} pulls two vectors from the stack.
20200 The second-to-top vector is the list of numbers as before.  The top
20201 vector is an equal-sized list of ``weights'' to attach to the elements
20202 of the data vector.  For example, if the first data element is 4.2 and
20203 the first weight is 10, then 10 will be added to bin 4 of the result
20204 vector.  Without the hyperbolic flag, every element has a weight of one.
20206 @kindex v t
20207 @pindex calc-transpose
20208 @tindex trn
20209 The @kbd{v t} (@code{calc-transpose}) [@code{trn}] command computes
20210 the transpose of the matrix at the top of the stack.  If the argument
20211 is a plain vector, it is treated as a row vector and transposed into
20212 a one-column matrix.
20214 @kindex v v
20215 @pindex calc-reverse-vector
20216 @tindex rev
20217 The @kbd{v v} (@code{calc-reverse-vector}) [@code{rev}] command reverses
20218 a vector end-for-end.  Given a matrix, it reverses the order of the rows.
20219 (To reverse the columns instead, just use @kbd{v t v v v t}.  The same
20220 principle can be used to apply other vector commands to the columns of
20221 a matrix.)
20223 @kindex v m
20224 @pindex calc-mask-vector
20225 @tindex vmask
20226 The @kbd{v m} (@code{calc-mask-vector}) [@code{vmask}] command uses
20227 one vector as a mask to extract elements of another vector.  The mask
20228 is in the second-to-top position; the target vector is on the top of
20229 the stack.  These vectors must have the same length.  The result is
20230 the same as the target vector, but with all elements which correspond
20231 to zeros in the mask vector deleted.  Thus, for example,
20232 @samp{vmask([1, 0, 1, 0, 1], [a, b, c, d, e])} produces @samp{[a, c, e]}.
20233 @xref{Logical Operations}.
20235 @kindex v e
20236 @pindex calc-expand-vector
20237 @tindex vexp
20238 The @kbd{v e} (@code{calc-expand-vector}) [@code{vexp}] command
20239 expands a vector according to another mask vector.  The result is a
20240 vector the same length as the mask, but with nonzero elements replaced
20241 by successive elements from the target vector.  The length of the target
20242 vector is normally the number of nonzero elements in the mask.  If the
20243 target vector is longer, its last few elements are lost.  If the target
20244 vector is shorter, the last few nonzero mask elements are left
20245 unreplaced in the result.  Thus @samp{vexp([2, 0, 3, 0, 7], [a, b])}
20246 produces @samp{[a, 0, b, 0, 7]}.
20248 @kindex H v e
20249 With the Hyperbolic flag, @kbd{H v e} takes a filler value from the
20250 top of the stack; the mask and target vectors come from the third and
20251 second elements of the stack.  This filler is used where the mask is
20252 zero:  @samp{vexp([2, 0, 3, 0, 7], [a, b], z)} produces
20253 @samp{[a, z, c, z, 7]}.  If the filler value is itself a vector,
20254 then successive values are taken from it, so that the effect is to
20255 interleave two vectors according to the mask:
20256 @samp{vexp([2, 0, 3, 7, 0, 0], [a, b], [x, y])} produces
20257 @samp{[a, x, b, 7, y, 0]}.
20259 Another variation on the masking idea is to combine @samp{[a, b, c, d, e]}
20260 with the mask @samp{[1, 0, 1, 0, 1]} to produce @samp{[a, 0, c, 0, e]}.
20261 You can accomplish this with @kbd{V M a &}, mapping the logical ``and''
20262 operation across the two vectors.  @xref{Logical Operations}.  Note that
20263 the @code{? :} operation also discussed there allows other types of
20264 masking using vectors.
20266 @node Vector and Matrix Arithmetic, Set Operations, Manipulating Vectors, Matrix Functions
20267 @section Vector and Matrix Arithmetic
20269 @noindent
20270 Basic arithmetic operations like addition and multiplication are defined
20271 for vectors and matrices as well as for numbers.  Division of matrices, in
20272 the sense of multiplying by the inverse, is supported.  (Division by a
20273 matrix actually uses LU-decomposition for greater accuracy and speed.)
20274 @xref{Basic Arithmetic}.
20276 The following functions are applied element-wise if their arguments are
20277 vectors or matrices: @code{change-sign}, @code{conj}, @code{arg},
20278 @code{re}, @code{im}, @code{polar}, @code{rect}, @code{clean},
20279 @code{float}, @code{frac}.  @xref{Function Index}.
20281 @kindex V J
20282 @pindex calc-conj-transpose
20283 @tindex ctrn
20284 The @kbd{V J} (@code{calc-conj-transpose}) [@code{ctrn}] command computes
20285 the conjugate transpose of its argument, i.e., @samp{conj(trn(x))}.
20287 @ignore
20288 @mindex A
20289 @end ignore
20290 @kindex A (vectors)
20291 @pindex calc-abs (vectors)
20292 @ignore
20293 @mindex abs
20294 @end ignore
20295 @tindex abs (vectors)
20296 The @kbd{A} (@code{calc-abs}) [@code{abs}] command computes the
20297 Frobenius norm of a vector or matrix argument.  This is the square
20298 root of the sum of the squares of the absolute values of the
20299 elements of the vector or matrix.  If the vector is interpreted as
20300 a point in two- or three-dimensional space, this is the distance
20301 from that point to the origin.
20303 @kindex v n
20304 @pindex calc-rnorm
20305 @tindex rnorm
20306 The @kbd{v n} (@code{calc-rnorm}) [@code{rnorm}] command computes
20307 the row norm, or infinity-norm, of a vector or matrix.  For a plain
20308 vector, this is the maximum of the absolute values of the elements.
20309 For a matrix, this is the maximum of the row-absolute-value-sums,
20310 i.e., of the sums of the absolute values of the elements along the
20311 various rows.
20313 @kindex V N
20314 @pindex calc-cnorm
20315 @tindex cnorm
20316 The @kbd{V N} (@code{calc-cnorm}) [@code{cnorm}] command computes
20317 the column norm, or one-norm, of a vector or matrix.  For a plain
20318 vector, this is the sum of the absolute values of the elements.
20319 For a matrix, this is the maximum of the column-absolute-value-sums.
20320 General @expr{k}-norms for @expr{k} other than one or infinity are
20321 not provided.
20323 @kindex V C
20324 @pindex calc-cross
20325 @tindex cross
20326 The @kbd{V C} (@code{calc-cross}) [@code{cross}] command computes the
20327 right-handed cross product of two vectors, each of which must have
20328 exactly three elements.
20330 @ignore
20331 @mindex &
20332 @end ignore
20333 @kindex & (matrices)
20334 @pindex calc-inv (matrices)
20335 @ignore
20336 @mindex inv
20337 @end ignore
20338 @tindex inv (matrices)
20339 The @kbd{&} (@code{calc-inv}) [@code{inv}] command computes the
20340 inverse of a square matrix.  If the matrix is singular, the inverse
20341 operation is left in symbolic form.  Matrix inverses are recorded so
20342 that once an inverse (or determinant) of a particular matrix has been
20343 computed, the inverse and determinant of the matrix can be recomputed
20344 quickly in the future.
20346 If the argument to @kbd{&} is a plain number @expr{x}, this
20347 command simply computes @expr{1/x}.  This is okay, because the
20348 @samp{/} operator also does a matrix inversion when dividing one
20349 by a matrix.
20351 @kindex V D
20352 @pindex calc-mdet
20353 @tindex det
20354 The @kbd{V D} (@code{calc-mdet}) [@code{det}] command computes the
20355 determinant of a square matrix.
20357 @kindex V L
20358 @pindex calc-mlud
20359 @tindex lud
20360 The @kbd{V L} (@code{calc-mlud}) [@code{lud}] command computes the
20361 LU decomposition of a matrix.  The result is a list of three matrices
20362 which, when multiplied together left-to-right, form the original matrix.
20363 The first is a permutation matrix that arises from pivoting in the
20364 algorithm, the second is lower-triangular with ones on the diagonal,
20365 and the third is upper-triangular.
20367 @kindex V T
20368 @pindex calc-mtrace
20369 @tindex tr
20370 The @kbd{V T} (@code{calc-mtrace}) [@code{tr}] command computes the
20371 trace of a square matrix.  This is defined as the sum of the diagonal
20372 elements of the matrix.
20374 @node Set Operations, Statistical Operations, Vector and Matrix Arithmetic, Matrix Functions
20375 @section Set Operations using Vectors
20377 @noindent
20378 @cindex Sets, as vectors
20379 Calc includes several commands which interpret vectors as @dfn{sets} of
20380 objects.  A set is a collection of objects; any given object can appear
20381 only once in the set.  Calc stores sets as vectors of objects in
20382 sorted order.  Objects in a Calc set can be any of the usual things,
20383 such as numbers, variables, or formulas.  Two set elements are considered
20384 equal if they are identical, except that numerically equal numbers like
20385 the integer 4 and the float 4.0 are considered equal even though they
20386 are not ``identical.''  Variables are treated like plain symbols without
20387 attached values by the set operations; subtracting the set @samp{[b]}
20388 from @samp{[a, b]} always yields the set @samp{[a]} even though if
20389 the variables @samp{a} and @samp{b} both equaled 17, you might
20390 expect the answer @samp{[]}.
20392 If a set contains interval forms, then it is assumed to be a set of
20393 real numbers.  In this case, all set operations require the elements
20394 of the set to be only things that are allowed in intervals:  Real
20395 numbers, plus and minus infinity, HMS forms, and date forms.  If
20396 there are variables or other non-real objects present in a real set,
20397 all set operations on it will be left in unevaluated form.
20399 If the input to a set operation is a plain number or interval form
20400 @var{a}, it is treated like the one-element vector @samp{[@var{a}]}.
20401 The result is always a vector, except that if the set consists of a
20402 single interval, the interval itself is returned instead.
20404 @xref{Logical Operations}, for the @code{in} function which tests if
20405 a certain value is a member of a given set.  To test if the set @expr{A}
20406 is a subset of the set @expr{B}, use @samp{vdiff(A, B) = []}.
20408 @kindex V +
20409 @pindex calc-remove-duplicates
20410 @tindex rdup
20411 The @kbd{V +} (@code{calc-remove-duplicates}) [@code{rdup}] command
20412 converts an arbitrary vector into set notation.  It works by sorting
20413 the vector as if by @kbd{V S}, then removing duplicates.  (For example,
20414 @kbd{[a, 5, 4, a, 4.0]} is sorted to @samp{[4, 4.0, 5, a, a]} and then
20415 reduced to @samp{[4, 5, a]}).  Overlapping intervals are merged as
20416 necessary.  You rarely need to use @kbd{V +} explicitly, since all the
20417 other set-based commands apply @kbd{V +} to their inputs before using
20418 them.
20420 @kindex V V
20421 @pindex calc-set-union
20422 @tindex vunion
20423 The @kbd{V V} (@code{calc-set-union}) [@code{vunion}] command computes
20424 the union of two sets.  An object is in the union of two sets if and
20425 only if it is in either (or both) of the input sets.  (You could
20426 accomplish the same thing by concatenating the sets with @kbd{|},
20427 then using @kbd{V +}.)
20429 @kindex V ^
20430 @pindex calc-set-intersect
20431 @tindex vint
20432 The @kbd{V ^} (@code{calc-set-intersect}) [@code{vint}] command computes
20433 the intersection of two sets.  An object is in the intersection if
20434 and only if it is in both of the input sets.  Thus if the input
20435 sets are disjoint, i.e., if they share no common elements, the result
20436 will be the empty vector @samp{[]}.  Note that the characters @kbd{V}
20437 and @kbd{^} were chosen to be close to the conventional mathematical
20438 notation for set 
20439 @texline union@tie{}(@math{A \cup B})
20440 @infoline union
20441 and 
20442 @texline intersection@tie{}(@math{A \cap B}).
20443 @infoline intersection.
20445 @kindex V -
20446 @pindex calc-set-difference
20447 @tindex vdiff
20448 The @kbd{V -} (@code{calc-set-difference}) [@code{vdiff}] command computes
20449 the difference between two sets.  An object is in the difference
20450 @expr{A - B} if and only if it is in @expr{A} but not in @expr{B}.
20451 Thus subtracting @samp{[y,z]} from a set will remove the elements
20452 @samp{y} and @samp{z} if they are present.  You can also think of this
20453 as a general @dfn{set complement} operator; if @expr{A} is the set of
20454 all possible values, then @expr{A - B} is the ``complement'' of @expr{B}.
20455 Obviously this is only practical if the set of all possible values in
20456 your problem is small enough to list in a Calc vector (or simple
20457 enough to express in a few intervals).
20459 @kindex V X
20460 @pindex calc-set-xor
20461 @tindex vxor
20462 The @kbd{V X} (@code{calc-set-xor}) [@code{vxor}] command computes
20463 the ``exclusive-or,'' or ``symmetric difference'' of two sets.
20464 An object is in the symmetric difference of two sets if and only
20465 if it is in one, but @emph{not} both, of the sets.  Objects that
20466 occur in both sets ``cancel out.''
20468 @kindex V ~
20469 @pindex calc-set-complement
20470 @tindex vcompl
20471 The @kbd{V ~} (@code{calc-set-complement}) [@code{vcompl}] command
20472 computes the complement of a set with respect to the real numbers.
20473 Thus @samp{vcompl(x)} is equivalent to @samp{vdiff([-inf .. inf], x)}.
20474 For example, @samp{vcompl([2, (3 .. 4]])} evaluates to
20475 @samp{[[-inf .. 2), (2 .. 3], (4 .. inf]]}.
20477 @kindex V F
20478 @pindex calc-set-floor
20479 @tindex vfloor
20480 The @kbd{V F} (@code{calc-set-floor}) [@code{vfloor}] command
20481 reinterprets a set as a set of integers.  Any non-integer values,
20482 and intervals that do not enclose any integers, are removed.  Open
20483 intervals are converted to equivalent closed intervals.  Successive
20484 integers are converted into intervals of integers.  For example, the
20485 complement of the set @samp{[2, 6, 7, 8]} is messy, but if you wanted
20486 the complement with respect to the set of integers you could type
20487 @kbd{V ~ V F} to get @samp{[[-inf .. 1], [3 .. 5], [9 .. inf]]}.
20489 @kindex V E
20490 @pindex calc-set-enumerate
20491 @tindex venum
20492 The @kbd{V E} (@code{calc-set-enumerate}) [@code{venum}] command
20493 converts a set of integers into an explicit vector.  Intervals in
20494 the set are expanded out to lists of all integers encompassed by
20495 the intervals.  This only works for finite sets (i.e., sets which
20496 do not involve @samp{-inf} or @samp{inf}).
20498 @kindex V :
20499 @pindex calc-set-span
20500 @tindex vspan
20501 The @kbd{V :} (@code{calc-set-span}) [@code{vspan}] command converts any
20502 set of reals into an interval form that encompasses all its elements.
20503 The lower limit will be the smallest element in the set; the upper
20504 limit will be the largest element.  For an empty set, @samp{vspan([])}
20505 returns the empty interval @w{@samp{[0 .. 0)}}.
20507 @kindex V #
20508 @pindex calc-set-cardinality
20509 @tindex vcard
20510 The @kbd{V #} (@code{calc-set-cardinality}) [@code{vcard}] command counts
20511 the number of integers in a set.  The result is the length of the vector
20512 that would be produced by @kbd{V E}, although the computation is much
20513 more efficient than actually producing that vector.
20515 @cindex Sets, as binary numbers
20516 Another representation for sets that may be more appropriate in some
20517 cases is binary numbers.  If you are dealing with sets of integers
20518 in the range 0 to 49, you can use a 50-bit binary number where a
20519 particular bit is 1 if the corresponding element is in the set.
20520 @xref{Binary Functions}, for a list of commands that operate on
20521 binary numbers.  Note that many of the above set operations have
20522 direct equivalents in binary arithmetic:  @kbd{b o} (@code{calc-or}),
20523 @kbd{b a} (@code{calc-and}), @kbd{b d} (@code{calc-diff}),
20524 @kbd{b x} (@code{calc-xor}), and @kbd{b n} (@code{calc-not}),
20525 respectively.  You can use whatever representation for sets is most
20526 convenient to you.
20528 @kindex b p
20529 @kindex b u
20530 @pindex calc-pack-bits
20531 @pindex calc-unpack-bits
20532 @tindex vpack
20533 @tindex vunpack
20534 The @kbd{b u} (@code{calc-unpack-bits}) [@code{vunpack}] command
20535 converts an integer that represents a set in binary into a set
20536 in vector/interval notation.  For example, @samp{vunpack(67)}
20537 returns @samp{[[0 .. 1], 6]}.  If the input is negative, the set
20538 it represents is semi-infinite: @samp{vunpack(-4) = [2 .. inf)}.
20539 Use @kbd{V E} afterwards to expand intervals to individual
20540 values if you wish.  Note that this command uses the @kbd{b}
20541 (binary) prefix key.
20543 The @kbd{b p} (@code{calc-pack-bits}) [@code{vpack}] command
20544 converts the other way, from a vector or interval representing
20545 a set of nonnegative integers into a binary integer describing
20546 the same set.  The set may include positive infinity, but must
20547 not include any negative numbers.  The input is interpreted as a
20548 set of integers in the sense of @kbd{V F} (@code{vfloor}).  Beware
20549 that a simple input like @samp{[100]} can result in a huge integer
20550 representation 
20551 @texline (@math{2^{100}}, a 31-digit integer, in this case).
20552 @infoline (@expr{2^100}, a 31-digit integer, in this case).
20554 @node Statistical Operations, Reducing and Mapping, Set Operations, Matrix Functions
20555 @section Statistical Operations on Vectors
20557 @noindent
20558 @cindex Statistical functions
20559 The commands in this section take vectors as arguments and compute
20560 various statistical measures on the data stored in the vectors.  The
20561 references used in the definitions of these functions are Bevington's
20562 @emph{Data Reduction and Error Analysis for the Physical Sciences},
20563 and @emph{Numerical Recipes} by Press, Flannery, Teukolsky and
20564 Vetterling.
20566 The statistical commands use the @kbd{u} prefix key followed by
20567 a shifted letter or other character.
20569 @xref{Manipulating Vectors}, for a description of @kbd{V H}
20570 (@code{calc-histogram}).
20572 @xref{Curve Fitting}, for the @kbd{a F} command for doing
20573 least-squares fits to statistical data.
20575 @xref{Probability Distribution Functions}, for several common
20576 probability distribution functions.
20578 @menu
20579 * Single-Variable Statistics::
20580 * Paired-Sample Statistics::
20581 @end menu
20583 @node Single-Variable Statistics, Paired-Sample Statistics, Statistical Operations, Statistical Operations
20584 @subsection Single-Variable Statistics
20586 @noindent
20587 These functions do various statistical computations on single
20588 vectors.  Given a numeric prefix argument, they actually pop
20589 @var{n} objects from the stack and combine them into a data
20590 vector.  Each object may be either a number or a vector; if a
20591 vector, any sub-vectors inside it are ``flattened'' as if by
20592 @kbd{v a 0}; @pxref{Manipulating Vectors}.  By default one object
20593 is popped, which (in order to be useful) is usually a vector.
20595 If an argument is a variable name, and the value stored in that
20596 variable is a vector, then the stored vector is used.  This method
20597 has the advantage that if your data vector is large, you can avoid
20598 the slow process of manipulating it directly on the stack.
20600 These functions are left in symbolic form if any of their arguments
20601 are not numbers or vectors, e.g., if an argument is a formula, or
20602 a non-vector variable.  However, formulas embedded within vector
20603 arguments are accepted; the result is a symbolic representation
20604 of the computation, based on the assumption that the formula does
20605 not itself represent a vector.  All varieties of numbers such as
20606 error forms and interval forms are acceptable.
20608 Some of the functions in this section also accept a single error form
20609 or interval as an argument.  They then describe a property of the
20610 normal or uniform (respectively) statistical distribution described
20611 by the argument.  The arguments are interpreted in the same way as
20612 the @var{M} argument of the random number function @kbd{k r}.  In
20613 particular, an interval with integer limits is considered an integer
20614 distribution, so that @samp{[2 .. 6)} is the same as @samp{[2 .. 5]}.
20615 An interval with at least one floating-point limit is a continuous
20616 distribution:  @samp{[2.0 .. 6.0)} is @emph{not} the same as
20617 @samp{[2.0 .. 5.0]}!
20619 @kindex u #
20620 @pindex calc-vector-count
20621 @tindex vcount
20622 The @kbd{u #} (@code{calc-vector-count}) [@code{vcount}] command
20623 computes the number of data values represented by the inputs.
20624 For example, @samp{vcount(1, [2, 3], [[4, 5], [], x, y])} returns 7.
20625 If the argument is a single vector with no sub-vectors, this
20626 simply computes the length of the vector.
20628 @kindex u +
20629 @kindex u *
20630 @pindex calc-vector-sum
20631 @pindex calc-vector-prod
20632 @tindex vsum
20633 @tindex vprod
20634 @cindex Summations (statistical)
20635 The @kbd{u +} (@code{calc-vector-sum}) [@code{vsum}] command
20636 computes the sum of the data values.  The @kbd{u *}
20637 (@code{calc-vector-prod}) [@code{vprod}] command computes the
20638 product of the data values.  If the input is a single flat vector,
20639 these are the same as @kbd{V R +} and @kbd{V R *}
20640 (@pxref{Reducing and Mapping}).
20642 @kindex u X
20643 @kindex u N
20644 @pindex calc-vector-max
20645 @pindex calc-vector-min
20646 @tindex vmax
20647 @tindex vmin
20648 The @kbd{u X} (@code{calc-vector-max}) [@code{vmax}] command
20649 computes the maximum of the data values, and the @kbd{u N}
20650 (@code{calc-vector-min}) [@code{vmin}] command computes the minimum.
20651 If the argument is an interval, this finds the minimum or maximum
20652 value in the interval.  (Note that @samp{vmax([2..6)) = 5} as
20653 described above.)  If the argument is an error form, this returns
20654 plus or minus infinity.
20656 @kindex u M
20657 @pindex calc-vector-mean
20658 @tindex vmean
20659 @cindex Mean of data values
20660 The @kbd{u M} (@code{calc-vector-mean}) [@code{vmean}] command
20661 computes the average (arithmetic mean) of the data values.
20662 If the inputs are error forms 
20663 @texline @math{x \pm \sigma},
20664 @infoline @samp{x +/- s}, 
20665 this is the weighted mean of the @expr{x} values with weights 
20666 @texline @math{1 /\sigma^2}.
20667 @infoline @expr{1 / s^2}.
20668 @tex
20669 \turnoffactive
20670 $$ \mu = { \displaystyle \sum { x_i \over \sigma_i^2 } \over
20671            \displaystyle \sum { 1 \over \sigma_i^2 } } $$
20672 @end tex
20673 If the inputs are not error forms, this is simply the sum of the
20674 values divided by the count of the values.
20676 Note that a plain number can be considered an error form with
20677 error 
20678 @texline @math{\sigma = 0}.
20679 @infoline @expr{s = 0}.  
20680 If the input to @kbd{u M} is a mixture of
20681 plain numbers and error forms, the result is the mean of the
20682 plain numbers, ignoring all values with non-zero errors.  (By the
20683 above definitions it's clear that a plain number effectively
20684 has an infinite weight, next to which an error form with a finite
20685 weight is completely negligible.)
20687 This function also works for distributions (error forms or
20688 intervals).  The mean of an error form `@var{a} @tfn{+/-} @var{b}' is simply
20689 @expr{a}.  The mean of an interval is the mean of the minimum
20690 and maximum values of the interval.
20692 @kindex I u M
20693 @pindex calc-vector-mean-error
20694 @tindex vmeane
20695 The @kbd{I u M} (@code{calc-vector-mean-error}) [@code{vmeane}]
20696 command computes the mean of the data points expressed as an
20697 error form.  This includes the estimated error associated with
20698 the mean.  If the inputs are error forms, the error is the square
20699 root of the reciprocal of the sum of the reciprocals of the squares
20700 of the input errors.  (I.e., the variance is the reciprocal of the
20701 sum of the reciprocals of the variances.)
20702 @tex
20703 \turnoffactive
20704 $$ \sigma_\mu^2 = {1 \over \displaystyle \sum {1 \over \sigma_i^2}} $$
20705 @end tex
20706 If the inputs are plain
20707 numbers, the error is equal to the standard deviation of the values
20708 divided by the square root of the number of values.  (This works
20709 out to be equivalent to calculating the standard deviation and
20710 then assuming each value's error is equal to this standard
20711 deviation.)
20712 @tex
20713 \turnoffactive
20714 $$ \sigma_\mu^2 = {\sigma^2 \over N} $$
20715 @end tex
20717 @kindex H u M
20718 @pindex calc-vector-median
20719 @tindex vmedian
20720 @cindex Median of data values
20721 The @kbd{H u M} (@code{calc-vector-median}) [@code{vmedian}]
20722 command computes the median of the data values.  The values are
20723 first sorted into numerical order; the median is the middle
20724 value after sorting.  (If the number of data values is even,
20725 the median is taken to be the average of the two middle values.)
20726 The median function is different from the other functions in
20727 this section in that the arguments must all be real numbers;
20728 variables are not accepted even when nested inside vectors.
20729 (Otherwise it is not possible to sort the data values.)  If
20730 any of the input values are error forms, their error parts are
20731 ignored.
20733 The median function also accepts distributions.  For both normal
20734 (error form) and uniform (interval) distributions, the median is
20735 the same as the mean.
20737 @kindex H I u M
20738 @pindex calc-vector-harmonic-mean
20739 @tindex vhmean
20740 @cindex Harmonic mean
20741 The @kbd{H I u M} (@code{calc-vector-harmonic-mean}) [@code{vhmean}]
20742 command computes the harmonic mean of the data values.  This is
20743 defined as the reciprocal of the arithmetic mean of the reciprocals
20744 of the values.
20745 @tex
20746 \turnoffactive
20747 $$ { N \over \displaystyle \sum {1 \over x_i} } $$
20748 @end tex
20750 @kindex u G
20751 @pindex calc-vector-geometric-mean
20752 @tindex vgmean
20753 @cindex Geometric mean
20754 The @kbd{u G} (@code{calc-vector-geometric-mean}) [@code{vgmean}]
20755 command computes the geometric mean of the data values.  This
20756 is the @var{n}th root of the product of the values.  This is also
20757 equal to the @code{exp} of the arithmetic mean of the logarithms
20758 of the data values.
20759 @tex
20760 \turnoffactive
20761 $$ \exp \left ( \sum { \ln x_i } \right ) =
20762    \left ( \prod { x_i } \right)^{1 / N} $$
20763 @end tex
20765 @kindex H u G
20766 @tindex agmean
20767 The @kbd{H u G} [@code{agmean}] command computes the ``arithmetic-geometric
20768 mean'' of two numbers taken from the stack.  This is computed by
20769 replacing the two numbers with their arithmetic mean and geometric
20770 mean, then repeating until the two values converge.
20771 @tex
20772 \turnoffactive
20773 $$ a_{i+1} = { a_i + b_i \over 2 } , \qquad b_{i+1} = \sqrt{a_i b_i} $$
20774 @end tex
20776 @cindex Root-mean-square
20777 Another commonly used mean, the RMS (root-mean-square), can be computed
20778 for a vector of numbers simply by using the @kbd{A} command.
20780 @kindex u S
20781 @pindex calc-vector-sdev
20782 @tindex vsdev
20783 @cindex Standard deviation
20784 @cindex Sample statistics
20785 The @kbd{u S} (@code{calc-vector-sdev}) [@code{vsdev}] command
20786 computes the standard 
20787 @texline deviation@tie{}@math{\sigma}
20788 @infoline deviation
20789 of the data values.  If the values are error forms, the errors are used
20790 as weights just as for @kbd{u M}.  This is the @emph{sample} standard
20791 deviation, whose value is the square root of the sum of the squares of
20792 the differences between the values and the mean of the @expr{N} values,
20793 divided by @expr{N-1}.
20794 @tex
20795 \turnoffactive
20796 $$ \sigma^2 = {1 \over N - 1} \sum (x_i - \mu)^2 $$
20797 @end tex
20799 This function also applies to distributions.  The standard deviation
20800 of a single error form is simply the error part.  The standard deviation
20801 of a continuous interval happens to equal the difference between the
20802 limits, divided by 
20803 @texline @math{\sqrt{12}}.
20804 @infoline @expr{sqrt(12)}.  
20805 The standard deviation of an integer interval is the same as the
20806 standard deviation of a vector of those integers.
20808 @kindex I u S
20809 @pindex calc-vector-pop-sdev
20810 @tindex vpsdev
20811 @cindex Population statistics
20812 The @kbd{I u S} (@code{calc-vector-pop-sdev}) [@code{vpsdev}]
20813 command computes the @emph{population} standard deviation.
20814 It is defined by the same formula as above but dividing
20815 by @expr{N} instead of by @expr{N-1}.  The population standard
20816 deviation is used when the input represents the entire set of
20817 data values in the distribution; the sample standard deviation
20818 is used when the input represents a sample of the set of all
20819 data values, so that the mean computed from the input is itself
20820 only an estimate of the true mean.
20821 @tex
20822 \turnoffactive
20823 $$ \sigma^2 = {1 \over N} \sum (x_i - \mu)^2 $$
20824 @end tex
20826 For error forms and continuous intervals, @code{vpsdev} works
20827 exactly like @code{vsdev}.  For integer intervals, it computes the
20828 population standard deviation of the equivalent vector of integers.
20830 @kindex H u S
20831 @kindex H I u S
20832 @pindex calc-vector-variance
20833 @pindex calc-vector-pop-variance
20834 @tindex vvar
20835 @tindex vpvar
20836 @cindex Variance of data values
20837 The @kbd{H u S} (@code{calc-vector-variance}) [@code{vvar}] and
20838 @kbd{H I u S} (@code{calc-vector-pop-variance}) [@code{vpvar}]
20839 commands compute the variance of the data values.  The variance
20840 is the 
20841 @texline square@tie{}@math{\sigma^2}
20842 @infoline square
20843 of the standard deviation, i.e., the sum of the
20844 squares of the deviations of the data values from the mean.
20845 (This definition also applies when the argument is a distribution.)
20847 @ignore
20848 @starindex
20849 @end ignore
20850 @tindex vflat
20851 The @code{vflat} algebraic function returns a vector of its
20852 arguments, interpreted in the same way as the other functions
20853 in this section.  For example, @samp{vflat(1, [2, [3, 4]], 5)}
20854 returns @samp{[1, 2, 3, 4, 5]}.
20856 @node Paired-Sample Statistics, , Single-Variable Statistics, Statistical Operations
20857 @subsection Paired-Sample Statistics
20859 @noindent
20860 The functions in this section take two arguments, which must be
20861 vectors of equal size.  The vectors are each flattened in the same
20862 way as by the single-variable statistical functions.  Given a numeric
20863 prefix argument of 1, these functions instead take one object from
20864 the stack, which must be an 
20865 @texline @math{N\times2}
20866 @infoline Nx2
20867 matrix of data values.  Once again, variable names can be used in place
20868 of actual vectors and matrices.
20870 @kindex u C
20871 @pindex calc-vector-covariance
20872 @tindex vcov
20873 @cindex Covariance
20874 The @kbd{u C} (@code{calc-vector-covariance}) [@code{vcov}] command
20875 computes the sample covariance of two vectors.  The covariance
20876 of vectors @var{x} and @var{y} is the sum of the products of the
20877 differences between the elements of @var{x} and the mean of @var{x}
20878 times the differences between the corresponding elements of @var{y}
20879 and the mean of @var{y}, all divided by @expr{N-1}.  Note that
20880 the variance of a vector is just the covariance of the vector
20881 with itself.  Once again, if the inputs are error forms the
20882 errors are used as weight factors.  If both @var{x} and @var{y}
20883 are composed of error forms, the error for a given data point
20884 is taken as the square root of the sum of the squares of the two
20885 input errors.
20886 @tex
20887 \turnoffactive
20888 $$ \sigma_{x\!y}^2 = {1 \over N-1} \sum (x_i - \mu_x) (y_i - \mu_y) $$
20889 $$ \sigma_{x\!y}^2 =
20890     {\displaystyle {1 \over N-1}
20891                    \sum {(x_i - \mu_x) (y_i - \mu_y) \over \sigma_i^2}
20892      \over \displaystyle {1 \over N} \sum {1 \over \sigma_i^2}}
20894 @end tex
20896 @kindex I u C
20897 @pindex calc-vector-pop-covariance
20898 @tindex vpcov
20899 The @kbd{I u C} (@code{calc-vector-pop-covariance}) [@code{vpcov}]
20900 command computes the population covariance, which is the same as the
20901 sample covariance computed by @kbd{u C} except dividing by @expr{N}
20902 instead of @expr{N-1}.
20904 @kindex H u C
20905 @pindex calc-vector-correlation
20906 @tindex vcorr
20907 @cindex Correlation coefficient
20908 @cindex Linear correlation
20909 The @kbd{H u C} (@code{calc-vector-correlation}) [@code{vcorr}]
20910 command computes the linear correlation coefficient of two vectors.
20911 This is defined by the covariance of the vectors divided by the
20912 product of their standard deviations.  (There is no difference
20913 between sample or population statistics here.)
20914 @tex
20915 \turnoffactive
20916 $$ r_{x\!y} = { \sigma_{x\!y}^2 \over \sigma_x^2 \sigma_y^2 } $$
20917 @end tex
20919 @node Reducing and Mapping, Vector and Matrix Formats, Statistical Operations, Matrix Functions
20920 @section Reducing and Mapping Vectors
20922 @noindent
20923 The commands in this section allow for more general operations on the
20924 elements of vectors.
20926 @kindex V A
20927 @pindex calc-apply
20928 @tindex apply
20929 The simplest of these operations is @kbd{V A} (@code{calc-apply})
20930 [@code{apply}], which applies a given operator to the elements of a vector.
20931 For example, applying the hypothetical function @code{f} to the vector
20932 @w{@samp{[1, 2, 3]}} would produce the function call @samp{f(1, 2, 3)}.
20933 Applying the @code{+} function to the vector @samp{[a, b]} gives
20934 @samp{a + b}.  Applying @code{+} to the vector @samp{[a, b, c]} is an
20935 error, since the @code{+} function expects exactly two arguments.
20937 While @kbd{V A} is useful in some cases, you will usually find that either
20938 @kbd{V R} or @kbd{V M}, described below, is closer to what you want.
20940 @menu
20941 * Specifying Operators::
20942 * Mapping::
20943 * Reducing::
20944 * Nesting and Fixed Points::
20945 * Generalized Products::
20946 @end menu
20948 @node Specifying Operators, Mapping, Reducing and Mapping, Reducing and Mapping
20949 @subsection Specifying Operators
20951 @noindent
20952 Commands in this section (like @kbd{V A}) prompt you to press the key
20953 corresponding to the desired operator.  Press @kbd{?} for a partial
20954 list of the available operators.  Generally, an operator is any key or
20955 sequence of keys that would normally take one or more arguments from
20956 the stack and replace them with a result.  For example, @kbd{V A H C}
20957 uses the hyperbolic cosine operator, @code{cosh}.  (Since @code{cosh}
20958 expects one argument, @kbd{V A H C} requires a vector with a single
20959 element as its argument.)
20961 You can press @kbd{x} at the operator prompt to select any algebraic
20962 function by name to use as the operator.  This includes functions you
20963 have defined yourself using the @kbd{Z F} command.  (@xref{Algebraic
20964 Definitions}.)  If you give a name for which no function has been
20965 defined, the result is left in symbolic form, as in @samp{f(1, 2, 3)}.
20966 Calc will prompt for the number of arguments the function takes if it
20967 can't figure it out on its own (say, because you named a function that
20968 is currently undefined).  It is also possible to type a digit key before
20969 the function name to specify the number of arguments, e.g.,
20970 @kbd{V M 3 x f @key{RET}} calls @code{f} with three arguments even if it
20971 looks like it ought to have only two.  This technique may be necessary
20972 if the function allows a variable number of arguments.  For example,
20973 the @kbd{v e} [@code{vexp}] function accepts two or three arguments;
20974 if you want to map with the three-argument version, you will have to
20975 type @kbd{V M 3 v e}.
20977 It is also possible to apply any formula to a vector by treating that
20978 formula as a function.  When prompted for the operator to use, press
20979 @kbd{'} (the apostrophe) and type your formula as an algebraic entry.
20980 You will then be prompted for the argument list, which defaults to a
20981 list of all variables that appear in the formula, sorted into alphabetic
20982 order.  For example, suppose you enter the formula @w{@samp{x + 2y^x}}.
20983 The default argument list would be @samp{(x y)}, which means that if
20984 this function is applied to the arguments @samp{[3, 10]} the result will
20985 be @samp{3 + 2*10^3}.  (If you plan to use a certain formula in this
20986 way often, you might consider defining it as a function with @kbd{Z F}.)
20988 Another way to specify the arguments to the formula you enter is with
20989 @kbd{$}, @kbd{$$}, and so on.  For example, @kbd{V A ' $$ + 2$^$$}
20990 has the same effect as the previous example.  The argument list is
20991 automatically taken to be @samp{($$ $)}.  (The order of the arguments
20992 may seem backwards, but it is analogous to the way normal algebraic
20993 entry interacts with the stack.)
20995 If you press @kbd{$} at the operator prompt, the effect is similar to
20996 the apostrophe except that the relevant formula is taken from top-of-stack
20997 instead.  The actual vector arguments of the @kbd{V A $} or related command
20998 then start at the second-to-top stack position.  You will still be
20999 prompted for an argument list.
21001 @cindex Nameless functions
21002 @cindex Generic functions
21003 A function can be written without a name using the notation @samp{<#1 - #2>},
21004 which means ``a function of two arguments that computes the first
21005 argument minus the second argument.''  The symbols @samp{#1} and @samp{#2}
21006 are placeholders for the arguments.  You can use any names for these
21007 placeholders if you wish, by including an argument list followed by a
21008 colon:  @samp{<x, y : x - y>}.  When you type @kbd{V A ' $$ + 2$^$$ @key{RET}},
21009 Calc builds the nameless function @samp{<#1 + 2 #2^#1>} as the function
21010 to map across the vectors.  When you type @kbd{V A ' x + 2y^x @key{RET} @key{RET}},
21011 Calc builds the nameless function @w{@samp{<x, y : x + 2 y^x>}}.  In both
21012 cases, Calc also writes the nameless function to the Trail so that you
21013 can get it back later if you wish.
21015 If there is only one argument, you can write @samp{#} in place of @samp{#1}.
21016 (Note that @samp{< >} notation is also used for date forms.  Calc tells
21017 that @samp{<@var{stuff}>} is a nameless function by the presence of
21018 @samp{#} signs inside @var{stuff}, or by the fact that @var{stuff}
21019 begins with a list of variables followed by a colon.)
21021 You can type a nameless function directly to @kbd{V A '}, or put one on
21022 the stack and use it with @w{@kbd{V A $}}.  Calc will not prompt for an
21023 argument list in this case, since the nameless function specifies the
21024 argument list as well as the function itself.  In @kbd{V A '}, you can
21025 omit the @samp{< >} marks if you use @samp{#} notation for the arguments,
21026 so that @kbd{V A ' #1+#2 @key{RET}} is the same as @kbd{V A ' <#1+#2> @key{RET}},
21027 which in turn is the same as @kbd{V A ' $$+$ @key{RET}}.
21029 @cindex Lambda expressions
21030 @ignore
21031 @starindex
21032 @end ignore
21033 @tindex lambda
21034 The internal format for @samp{<x, y : x + y>} is @samp{lambda(x, y, x + y)}.
21035 (The word @code{lambda} derives from Lisp notation and the theory of
21036 functions.)  The internal format for @samp{<#1 + #2>} is @samp{lambda(ArgA,
21037 ArgB, ArgA + ArgB)}.  Note that there is no actual Calc function called
21038 @code{lambda}; the whole point is that the @code{lambda} expression is
21039 used in its symbolic form, not evaluated for an answer until it is applied
21040 to specific arguments by a command like @kbd{V A} or @kbd{V M}.
21042 (Actually, @code{lambda} does have one special property:  Its arguments
21043 are never evaluated; for example, putting @samp{<(2/3) #>} on the stack
21044 will not simplify the @samp{2/3} until the nameless function is actually
21045 called.)
21047 @tindex add
21048 @tindex sub
21049 @ignore
21050 @mindex @idots
21051 @end ignore
21052 @tindex mul
21053 @ignore
21054 @mindex @null
21055 @end ignore
21056 @tindex div
21057 @ignore
21058 @mindex @null
21059 @end ignore
21060 @tindex pow
21061 @ignore
21062 @mindex @null
21063 @end ignore
21064 @tindex neg
21065 @ignore
21066 @mindex @null
21067 @end ignore
21068 @tindex mod
21069 @ignore
21070 @mindex @null
21071 @end ignore
21072 @tindex vconcat
21073 As usual, commands like @kbd{V A} have algebraic function name equivalents.
21074 For example, @kbd{V A k g} with an argument of @samp{v} is equivalent to
21075 @samp{apply(gcd, v)}.  The first argument specifies the operator name,
21076 and is either a variable whose name is the same as the function name,
21077 or a nameless function like @samp{<#^3+1>}.  Operators that are normally
21078 written as algebraic symbols have the names @code{add}, @code{sub},
21079 @code{mul}, @code{div}, @code{pow}, @code{neg}, @code{mod}, and
21080 @code{vconcat}.
21082 @ignore
21083 @starindex
21084 @end ignore
21085 @tindex call
21086 The @code{call} function builds a function call out of several arguments:
21087 @samp{call(gcd, x, y)} is the same as @samp{apply(gcd, [x, y])}, which
21088 in turn is the same as @samp{gcd(x, y)}.  The first argument of @code{call},
21089 like the other functions described here, may be either a variable naming a
21090 function, or a nameless function (@samp{call(<#1+2#2>, x, y)} is the same
21091 as @samp{x + 2y}).
21093 (Experts will notice that it's not quite proper to use a variable to name
21094 a function, since the name @code{gcd} corresponds to the Lisp variable
21095 @code{var-gcd} but to the Lisp function @code{calcFunc-gcd}.  Calc
21096 automatically makes this translation, so you don't have to worry
21097 about it.)
21099 @node Mapping, Reducing, Specifying Operators, Reducing and Mapping
21100 @subsection Mapping
21102 @noindent
21103 @kindex V M
21104 @pindex calc-map
21105 @tindex map
21106 The @kbd{V M} (@code{calc-map}) [@code{map}] command applies a given
21107 operator elementwise to one or more vectors.  For example, mapping
21108 @code{A} [@code{abs}] produces a vector of the absolute values of the
21109 elements in the input vector.  Mapping @code{+} pops two vectors from
21110 the stack, which must be of equal length, and produces a vector of the
21111 pairwise sums of the elements.  If either argument is a non-vector, it
21112 is duplicated for each element of the other vector.  For example,
21113 @kbd{[1,2,3] 2 V M ^} squares the elements of the specified vector.
21114 With the 2 listed first, it would have computed a vector of powers of
21115 two.  Mapping a user-defined function pops as many arguments from the
21116 stack as the function requires.  If you give an undefined name, you will
21117 be prompted for the number of arguments to use.
21119 If any argument to @kbd{V M} is a matrix, the operator is normally mapped
21120 across all elements of the matrix.  For example, given the matrix
21121 @expr{[[1, -2, 3], [-4, 5, -6]]}, @kbd{V M A} takes six absolute values to
21122 produce another 
21123 @texline @math{3\times2}
21124 @infoline 3x2
21125 matrix, @expr{[[1, 2, 3], [4, 5, 6]]}.
21127 @tindex mapr
21128 The command @kbd{V M _} [@code{mapr}] (i.e., type an underscore at the
21129 operator prompt) maps by rows instead.  For example, @kbd{V M _ A} views
21130 the above matrix as a vector of two 3-element row vectors.  It produces
21131 a new vector which contains the absolute values of those row vectors,
21132 namely @expr{[3.74, 8.77]}.  (Recall, the absolute value of a vector is
21133 defined as the square root of the sum of the squares of the elements.)
21134 Some operators accept vectors and return new vectors; for example,
21135 @kbd{v v} reverses a vector, so @kbd{V M _ v v} would reverse each row
21136 of the matrix to get a new matrix, @expr{[[3, -2, 1], [-6, 5, -4]]}.
21138 Sometimes a vector of vectors (representing, say, strings, sets, or lists)
21139 happens to look like a matrix.  If so, remember to use @kbd{V M _} if you
21140 want to map a function across the whole strings or sets rather than across
21141 their individual elements.
21143 @tindex mapc
21144 The command @kbd{V M :} [@code{mapc}] maps by columns.  Basically, it
21145 transposes the input matrix, maps by rows, and then, if the result is a
21146 matrix, transposes again.  For example, @kbd{V M : A} takes the absolute
21147 values of the three columns of the matrix, treating each as a 2-vector,
21148 and @kbd{V M : v v} reverses the columns to get the matrix
21149 @expr{[[-4, 5, -6], [1, -2, 3]]}.
21151 (The symbols @kbd{_} and @kbd{:} were chosen because they had row-like
21152 and column-like appearances, and were not already taken by useful
21153 operators.  Also, they appear shifted on most keyboards so they are easy
21154 to type after @kbd{V M}.)
21156 The @kbd{_} and @kbd{:} modifiers have no effect on arguments that are
21157 not matrices (so if none of the arguments are matrices, they have no
21158 effect at all).  If some of the arguments are matrices and others are
21159 plain numbers, the plain numbers are held constant for all rows of the
21160 matrix (so that @kbd{2 V M _ ^} squares every row of a matrix; squaring
21161 a vector takes a dot product of the vector with itself).
21163 If some of the arguments are vectors with the same lengths as the
21164 rows (for @kbd{V M _}) or columns (for @kbd{V M :}) of the matrix
21165 arguments, those vectors are also held constant for every row or
21166 column.
21168 Sometimes it is useful to specify another mapping command as the operator
21169 to use with @kbd{V M}.  For example, @kbd{V M _ V A +} applies @kbd{V A +}
21170 to each row of the input matrix, which in turn adds the two values on that
21171 row.  If you give another vector-operator command as the operator for
21172 @kbd{V M}, it automatically uses map-by-rows mode if you don't specify
21173 otherwise; thus @kbd{V M V A +} is equivalent to @kbd{V M _ V A +}.  (If
21174 you really want to map-by-elements another mapping command, you can use
21175 a triple-nested mapping command:  @kbd{V M V M V A +} means to map
21176 @kbd{V M V A +} over the rows of the matrix; in turn, @kbd{V A +} is
21177 mapped over the elements of each row.)
21179 @tindex mapa
21180 @tindex mapd
21181 Previous versions of Calc had ``map across'' and ``map down'' modes
21182 that are now considered obsolete; the old ``map across'' is now simply
21183 @kbd{V M V A}, and ``map down'' is now @kbd{V M : V A}.  The algebraic
21184 functions @code{mapa} and @code{mapd} are still supported, though.
21185 Note also that, while the old mapping modes were persistent (once you
21186 set the mode, it would apply to later mapping commands until you reset
21187 it), the new @kbd{:} and @kbd{_} modifiers apply only to the current
21188 mapping command.  The default @kbd{V M} always means map-by-elements.
21190 @xref{Algebraic Manipulation}, for the @kbd{a M} command, which is like
21191 @kbd{V M} but for equations and inequalities instead of vectors.
21192 @xref{Storing Variables}, for the @kbd{s m} command which modifies a
21193 variable's stored value using a @kbd{V M}-like operator.
21195 @node Reducing, Nesting and Fixed Points, Mapping, Reducing and Mapping
21196 @subsection Reducing
21198 @noindent
21199 @kindex V R
21200 @pindex calc-reduce
21201 @tindex reduce
21202 The @kbd{V R} (@code{calc-reduce}) [@code{reduce}] command applies a given
21203 binary operator across all the elements of a vector.  A binary operator is
21204 a function such as @code{+} or @code{max} which takes two arguments.  For
21205 example, reducing @code{+} over a vector computes the sum of the elements
21206 of the vector.  Reducing @code{-} computes the first element minus each of
21207 the remaining elements.  Reducing @code{max} computes the maximum element
21208 and so on.  In general, reducing @code{f} over the vector @samp{[a, b, c, d]}
21209 produces @samp{f(f(f(a, b), c), d)}.
21211 @kindex I V R
21212 @tindex rreduce
21213 The @kbd{I V R} [@code{rreduce}] command is similar to @kbd{V R} except
21214 that works from right to left through the vector.  For example, plain
21215 @kbd{V R -} on the vector @samp{[a, b, c, d]} produces @samp{a - b - c - d}
21216 but @kbd{I V R -} on the same vector produces @samp{a - (b - (c - d))},
21217 or @samp{a - b + c - d}.  This ``alternating sum'' occurs frequently
21218 in power series expansions.
21220 @kindex V U
21221 @tindex accum
21222 The @kbd{V U} (@code{calc-accumulate}) [@code{accum}] command does an
21223 accumulation operation.  Here Calc does the corresponding reduction
21224 operation, but instead of producing only the final result, it produces
21225 a vector of all the intermediate results.  Accumulating @code{+} over
21226 the vector @samp{[a, b, c, d]} produces the vector
21227 @samp{[a, a + b, a + b + c, a + b + c + d]}.
21229 @kindex I V U
21230 @tindex raccum
21231 The @kbd{I V U} [@code{raccum}] command does a right-to-left accumulation.
21232 For example, @kbd{I V U -} on the vector @samp{[a, b, c, d]} produces the
21233 vector @samp{[a - b + c - d, b - c + d, c - d, d]}.
21235 @tindex reducea
21236 @tindex rreducea
21237 @tindex reduced
21238 @tindex rreduced
21239 As for @kbd{V M}, @kbd{V R} normally reduces a matrix elementwise.  For
21240 example, given the matrix @expr{[[a, b, c], [d, e, f]]}, @kbd{V R +} will
21241 compute @expr{a + b + c + d + e + f}.  You can type @kbd{V R _} or
21242 @kbd{V R :} to modify this behavior.  The @kbd{V R _} [@code{reducea}]
21243 command reduces ``across'' the matrix; it reduces each row of the matrix
21244 as a vector, then collects the results.  Thus @kbd{V R _ +} of this
21245 matrix would produce @expr{[a + b + c, d + e + f]}.  Similarly, @kbd{V R :}
21246 [@code{reduced}] reduces down; @kbd{V R : +} would produce @expr{[a + d,
21247 b + e, c + f]}.
21249 @tindex reducer
21250 @tindex rreducer
21251 There is a third ``by rows'' mode for reduction that is occasionally
21252 useful; @kbd{V R =} [@code{reducer}] simply reduces the operator over
21253 the rows of the matrix themselves.  Thus @kbd{V R = +} on the above
21254 matrix would get the same result as @kbd{V R : +}, since adding two
21255 row vectors is equivalent to adding their elements.  But @kbd{V R = *}
21256 would multiply the two rows (to get a single number, their dot product),
21257 while @kbd{V R : *} would produce a vector of the products of the columns.
21259 These three matrix reduction modes work with @kbd{V R} and @kbd{I V R},
21260 but they are not currently supported with @kbd{V U} or @kbd{I V U}.
21262 @tindex reducec
21263 @tindex rreducec
21264 The obsolete reduce-by-columns function, @code{reducec}, is still
21265 supported but there is no way to get it through the @kbd{V R} command.
21267 The commands @kbd{C-x * :} and @kbd{C-x * _} are equivalent to typing
21268 @kbd{C-x * r} to grab a rectangle of data into Calc, and then typing
21269 @kbd{V R : +} or @kbd{V R _ +}, respectively, to sum the columns or
21270 rows of the matrix.  @xref{Grabbing From Buffers}.
21272 @node Nesting and Fixed Points, Generalized Products, Reducing, Reducing and Mapping
21273 @subsection Nesting and Fixed Points
21275 @noindent
21276 @kindex H V R
21277 @tindex nest
21278 The @kbd{H V R} [@code{nest}] command applies a function to a given
21279 argument repeatedly.  It takes two values, @samp{a} and @samp{n}, from
21280 the stack, where @samp{n} must be an integer.  It then applies the
21281 function nested @samp{n} times; if the function is @samp{f} and @samp{n}
21282 is 3, the result is @samp{f(f(f(a)))}.  The number @samp{n} may be
21283 negative if Calc knows an inverse for the function @samp{f}; for
21284 example, @samp{nest(sin, a, -2)} returns @samp{arcsin(arcsin(a))}.
21286 @kindex H V U
21287 @tindex anest
21288 The @kbd{H V U} [@code{anest}] command is an accumulating version of
21289 @code{nest}:  It returns a vector of @samp{n+1} values, e.g.,
21290 @samp{[a, f(a), f(f(a)), f(f(f(a)))]}.  If @samp{n} is negative and
21291 @samp{F} is the inverse of @samp{f}, then the result is of the
21292 form @samp{[a, F(a), F(F(a)), F(F(F(a)))]}.
21294 @kindex H I V R
21295 @tindex fixp
21296 @cindex Fixed points
21297 The @kbd{H I V R} [@code{fixp}] command is like @kbd{H V R}, except
21298 that it takes only an @samp{a} value from the stack; the function is
21299 applied until it reaches a ``fixed point,'' i.e., until the result
21300 no longer changes.
21302 @kindex H I V U
21303 @tindex afixp
21304 The @kbd{H I V U} [@code{afixp}] command is an accumulating @code{fixp}.
21305 The first element of the return vector will be the initial value @samp{a};
21306 the last element will be the final result that would have been returned
21307 by @code{fixp}.
21309 For example, 0.739085 is a fixed point of the cosine function (in radians):
21310 @samp{cos(0.739085) = 0.739085}.  You can find this value by putting, say,
21311 1.0 on the stack and typing @kbd{H I V U C}.  (We use the accumulating
21312 version so we can see the intermediate results:  @samp{[1, 0.540302, 0.857553,
21313 0.65329, ...]}.  With a precision of six, this command will take 36 steps
21314 to converge to 0.739085.)
21316 Newton's method for finding roots is a classic example of iteration
21317 to a fixed point.  To find the square root of five starting with an
21318 initial guess, Newton's method would look for a fixed point of the
21319 function @samp{(x + 5/x) / 2}.  Putting a guess of 1 on the stack
21320 and typing @kbd{H I V R ' ($ + 5/$)/2 @key{RET}} quickly yields the result
21321 2.23607.  This is equivalent to using the @kbd{a R} (@code{calc-find-root})
21322 command to find a root of the equation @samp{x^2 = 5}.
21324 These examples used numbers for @samp{a} values.  Calc keeps applying
21325 the function until two successive results are equal to within the
21326 current precision.  For complex numbers, both the real parts and the
21327 imaginary parts must be equal to within the current precision.  If
21328 @samp{a} is a formula (say, a variable name), then the function is
21329 applied until two successive results are exactly the same formula.
21330 It is up to you to ensure that the function will eventually converge;
21331 if it doesn't, you may have to press @kbd{C-g} to stop the Calculator.
21333 The algebraic @code{fixp} function takes two optional arguments, @samp{n}
21334 and @samp{tol}.  The first is the maximum number of steps to be allowed,
21335 and must be either an integer or the symbol @samp{inf} (infinity, the
21336 default).  The second is a convergence tolerance.  If a tolerance is
21337 specified, all results during the calculation must be numbers, not
21338 formulas, and the iteration stops when the magnitude of the difference
21339 between two successive results is less than or equal to the tolerance.
21340 (This implies that a tolerance of zero iterates until the results are
21341 exactly equal.)
21343 Putting it all together, @samp{fixp(<(# + A/#)/2>, B, 20, 1e-10)}
21344 computes the square root of @samp{A} given the initial guess @samp{B},
21345 stopping when the result is correct within the specified tolerance, or
21346 when 20 steps have been taken, whichever is sooner.
21348 @node Generalized Products, , Nesting and Fixed Points, Reducing and Mapping
21349 @subsection Generalized Products
21351 @kindex V O
21352 @pindex calc-outer-product
21353 @tindex outer
21354 The @kbd{V O} (@code{calc-outer-product}) [@code{outer}] command applies
21355 a given binary operator to all possible pairs of elements from two
21356 vectors, to produce a matrix.  For example, @kbd{V O *} with @samp{[a, b]}
21357 and @samp{[x, y, z]} on the stack produces a multiplication table:
21358 @samp{[[a x, a y, a z], [b x, b y, b z]]}.  Element @var{r},@var{c} of
21359 the result matrix is obtained by applying the operator to element @var{r}
21360 of the lefthand vector and element @var{c} of the righthand vector.
21362 @kindex V I
21363 @pindex calc-inner-product
21364 @tindex inner
21365 The @kbd{V I} (@code{calc-inner-product}) [@code{inner}] command computes
21366 the generalized inner product of two vectors or matrices, given a
21367 ``multiplicative'' operator and an ``additive'' operator.  These can each
21368 actually be any binary operators; if they are @samp{*} and @samp{+},
21369 respectively, the result is a standard matrix multiplication.  Element
21370 @var{r},@var{c} of the result matrix is obtained by mapping the
21371 multiplicative operator across row @var{r} of the lefthand matrix and
21372 column @var{c} of the righthand matrix, and then reducing with the additive
21373 operator.  Just as for the standard @kbd{*} command, this can also do a
21374 vector-matrix or matrix-vector inner product, or a vector-vector
21375 generalized dot product.
21377 Since @kbd{V I} requires two operators, it prompts twice.  In each case,
21378 you can use any of the usual methods for entering the operator.  If you
21379 use @kbd{$} twice to take both operator formulas from the stack, the
21380 first (multiplicative) operator is taken from the top of the stack
21381 and the second (additive) operator is taken from second-to-top.
21383 @node Vector and Matrix Formats, , Reducing and Mapping, Matrix Functions
21384 @section Vector and Matrix Display Formats
21386 @noindent
21387 Commands for controlling vector and matrix display use the @kbd{v} prefix
21388 instead of the usual @kbd{d} prefix.  But they are display modes; in
21389 particular, they are influenced by the @kbd{I} and @kbd{H} prefix keys
21390 in the same way (@pxref{Display Modes}).  Matrix display is also
21391 influenced by the @kbd{d O} (@code{calc-flat-language}) mode;
21392 @pxref{Normal Language Modes}.
21394 @kindex V <
21395 @pindex calc-matrix-left-justify
21396 @kindex V =
21397 @pindex calc-matrix-center-justify
21398 @kindex V >
21399 @pindex calc-matrix-right-justify
21400 The commands @kbd{v <} (@code{calc-matrix-left-justify}), @kbd{v >}
21401 (@code{calc-matrix-right-justify}), and @w{@kbd{v =}}
21402 (@code{calc-matrix-center-justify}) control whether matrix elements
21403 are justified to the left, right, or center of their columns.
21405 @kindex V [
21406 @pindex calc-vector-brackets
21407 @kindex V @{
21408 @pindex calc-vector-braces
21409 @kindex V (
21410 @pindex calc-vector-parens
21411 The @kbd{v [} (@code{calc-vector-brackets}) command turns the square
21412 brackets that surround vectors and matrices displayed in the stack on
21413 and off.  The @kbd{v @{} (@code{calc-vector-braces}) and @kbd{v (}
21414 (@code{calc-vector-parens}) commands use curly braces or parentheses,
21415 respectively, instead of square brackets.  For example, @kbd{v @{} might
21416 be used in preparation for yanking a matrix into a buffer running
21417 Mathematica.  (In fact, the Mathematica language mode uses this mode;
21418 @pxref{Mathematica Language Mode}.)  Note that, regardless of the
21419 display mode, either brackets or braces may be used to enter vectors,
21420 and parentheses may never be used for this purpose.
21422 @kindex V ]
21423 @pindex calc-matrix-brackets
21424 The @kbd{v ]} (@code{calc-matrix-brackets}) command controls the
21425 ``big'' style display of matrices.  It prompts for a string of code
21426 letters; currently implemented letters are @code{R}, which enables
21427 brackets on each row of the matrix; @code{O}, which enables outer
21428 brackets in opposite corners of the matrix; and @code{C}, which
21429 enables commas or semicolons at the ends of all rows but the last.
21430 The default format is @samp{RO}.  (Before Calc 2.00, the format
21431 was fixed at @samp{ROC}.)  Here are some example matrices:
21433 @example
21434 @group
21435 [ [ 123,  0,   0  ]       [ [ 123,  0,   0  ],
21436   [  0,  123,  0  ]         [  0,  123,  0  ],
21437   [  0,   0,  123 ] ]       [  0,   0,  123 ] ]
21439          RO                        ROC
21441 @end group
21442 @end example
21443 @noindent
21444 @example
21445 @group
21446   [ 123,  0,   0            [ 123,  0,   0 ;
21447      0,  123,  0               0,  123,  0 ;
21448      0,   0,  123 ]            0,   0,  123 ]
21450           O                        OC
21452 @end group
21453 @end example
21454 @noindent
21455 @example
21456 @group
21457   [ 123,  0,   0  ]           123,  0,   0
21458   [  0,  123,  0  ]            0,  123,  0
21459   [  0,   0,  123 ]            0,   0,  123
21461           R                       @r{blank}
21462 @end group
21463 @end example
21465 @noindent
21466 Note that of the formats shown here, @samp{RO}, @samp{ROC}, and
21467 @samp{OC} are all recognized as matrices during reading, while
21468 the others are useful for display only.
21470 @kindex V ,
21471 @pindex calc-vector-commas
21472 The @kbd{v ,} (@code{calc-vector-commas}) command turns commas on and
21473 off in vector and matrix display.
21475 In vectors of length one, and in all vectors when commas have been
21476 turned off, Calc adds extra parentheses around formulas that might
21477 otherwise be ambiguous.  For example, @samp{[a b]} could be a vector
21478 of the one formula @samp{a b}, or it could be a vector of two
21479 variables with commas turned off.  Calc will display the former
21480 case as @samp{[(a b)]}.  You can disable these extra parentheses
21481 (to make the output less cluttered at the expense of allowing some
21482 ambiguity) by adding the letter @code{P} to the control string you
21483 give to @kbd{v ]} (as described above).
21485 @kindex V .
21486 @pindex calc-full-vectors
21487 The @kbd{v .} (@code{calc-full-vectors}) command turns abbreviated
21488 display of long vectors on and off.  In this mode, vectors of six
21489 or more elements, or matrices of six or more rows or columns, will
21490 be displayed in an abbreviated form that displays only the first
21491 three elements and the last element:  @samp{[a, b, c, ..., z]}.
21492 When very large vectors are involved this will substantially
21493 improve Calc's display speed.
21495 @kindex t .
21496 @pindex calc-full-trail-vectors
21497 The @kbd{t .} (@code{calc-full-trail-vectors}) command controls a
21498 similar mode for recording vectors in the Trail.  If you turn on
21499 this mode, vectors of six or more elements and matrices of six or
21500 more rows or columns will be abbreviated when they are put in the
21501 Trail.  The @kbd{t y} (@code{calc-trail-yank}) command will be
21502 unable to recover those vectors.  If you are working with very
21503 large vectors, this mode will improve the speed of all operations
21504 that involve the trail.
21506 @kindex V /
21507 @pindex calc-break-vectors
21508 The @kbd{v /} (@code{calc-break-vectors}) command turns multi-line
21509 vector display on and off.  Normally, matrices are displayed with one
21510 row per line but all other types of vectors are displayed in a single
21511 line.  This mode causes all vectors, whether matrices or not, to be
21512 displayed with a single element per line.  Sub-vectors within the
21513 vectors will still use the normal linear form.
21515 @node Algebra, Units, Matrix Functions, Top
21516 @chapter Algebra
21518 @noindent
21519 This section covers the Calc features that help you work with
21520 algebraic formulas.  First, the general sub-formula selection
21521 mechanism is described; this works in conjunction with any Calc
21522 commands.  Then, commands for specific algebraic operations are
21523 described.  Finally, the flexible @dfn{rewrite rule} mechanism
21524 is discussed.
21526 The algebraic commands use the @kbd{a} key prefix; selection
21527 commands use the @kbd{j} (for ``just a letter that wasn't used
21528 for anything else'') prefix.
21530 @xref{Editing Stack Entries}, to see how to manipulate formulas
21531 using regular Emacs editing commands.
21533 When doing algebraic work, you may find several of the Calculator's
21534 modes to be helpful, including Algebraic Simplification mode (@kbd{m A})
21535 or No-Simplification mode (@kbd{m O}),
21536 Algebraic entry mode (@kbd{m a}), Fraction mode (@kbd{m f}), and
21537 Symbolic mode (@kbd{m s}).  @xref{Mode Settings}, for discussions
21538 of these modes.  You may also wish to select Big display mode (@kbd{d B}).
21539 @xref{Normal Language Modes}.
21541 @menu
21542 * Selecting Subformulas::
21543 * Algebraic Manipulation::
21544 * Simplifying Formulas::
21545 * Polynomials::
21546 * Calculus::
21547 * Solving Equations::
21548 * Numerical Solutions::
21549 * Curve Fitting::
21550 * Summations::
21551 * Logical Operations::
21552 * Rewrite Rules::
21553 @end menu
21555 @node Selecting Subformulas, Algebraic Manipulation, Algebra, Algebra
21556 @section Selecting Sub-Formulas
21558 @noindent
21559 @cindex Selections
21560 @cindex Sub-formulas
21561 @cindex Parts of formulas
21562 When working with an algebraic formula it is often necessary to
21563 manipulate a portion of the formula rather than the formula as a
21564 whole.  Calc allows you to ``select'' a portion of any formula on
21565 the stack.  Commands which would normally operate on that stack
21566 entry will now operate only on the sub-formula, leaving the
21567 surrounding part of the stack entry alone.
21569 One common non-algebraic use for selection involves vectors.  To work
21570 on one element of a vector in-place, simply select that element as a
21571 ``sub-formula'' of the vector.
21573 @menu
21574 * Making Selections::
21575 * Changing Selections::
21576 * Displaying Selections::
21577 * Operating on Selections::
21578 * Rearranging with Selections::
21579 @end menu
21581 @node Making Selections, Changing Selections, Selecting Subformulas, Selecting Subformulas
21582 @subsection Making Selections
21584 @noindent
21585 @kindex j s
21586 @pindex calc-select-here
21587 To select a sub-formula, move the Emacs cursor to any character in that
21588 sub-formula, and press @w{@kbd{j s}} (@code{calc-select-here}).  Calc will
21589 highlight the smallest portion of the formula that contains that
21590 character.  By default the sub-formula is highlighted by blanking out
21591 all of the rest of the formula with dots.  Selection works in any
21592 display mode but is perhaps easiest in Big mode (@kbd{d B}).
21593 Suppose you enter the following formula:
21595 @smallexample
21596 @group
21597            3    ___
21598     (a + b)  + V c
21599 1:  ---------------
21600         2 x + 1
21601 @end group
21602 @end smallexample
21604 @noindent
21605 (by typing @kbd{' ((a+b)^3 + sqrt(c)) / (2x+1)}).  If you move the
21606 cursor to the letter @samp{b} and press @w{@kbd{j s}}, the display changes
21609 @smallexample
21610 @group
21611            .    ...
21612     .. . b.  . . .
21613 1*  ...............
21614         . . . .
21615 @end group
21616 @end smallexample
21618 @noindent
21619 Every character not part of the sub-formula @samp{b} has been changed
21620 to a dot.  The @samp{*} next to the line number is to remind you that
21621 the formula has a portion of it selected.  (In this case, it's very
21622 obvious, but it might not always be.  If Embedded mode is enabled,
21623 the word @samp{Sel} also appears in the mode line because the stack
21624 may not be visible.  @pxref{Embedded Mode}.)
21626 If you had instead placed the cursor on the parenthesis immediately to
21627 the right of the @samp{b}, the selection would have been:
21629 @smallexample
21630 @group
21631            .    ...
21632     (a + b)  . . .
21633 1*  ...............
21634         . . . .
21635 @end group
21636 @end smallexample
21638 @noindent
21639 The portion selected is always large enough to be considered a complete
21640 formula all by itself, so selecting the parenthesis selects the whole
21641 formula that it encloses.  Putting the cursor on the @samp{+} sign
21642 would have had the same effect.
21644 (Strictly speaking, the Emacs cursor is really the manifestation of
21645 the Emacs ``point,'' which is a position @emph{between} two characters
21646 in the buffer.  So purists would say that Calc selects the smallest
21647 sub-formula which contains the character to the right of ``point.'')
21649 If you supply a numeric prefix argument @var{n}, the selection is
21650 expanded to the @var{n}th enclosing sub-formula.  Thus, positioning
21651 the cursor on the @samp{b} and typing @kbd{C-u 1 j s} will select
21652 @samp{a + b}; typing @kbd{C-u 2 j s} will select @samp{(a + b)^3},
21653 and so on.
21655 If the cursor is not on any part of the formula, or if you give a
21656 numeric prefix that is too large, the entire formula is selected.
21658 If the cursor is on the @samp{.} line that marks the top of the stack
21659 (i.e., its normal ``rest position''), this command selects the entire
21660 formula at stack level 1.  Most selection commands similarly operate
21661 on the formula at the top of the stack if you haven't positioned the
21662 cursor on any stack entry.
21664 @kindex j a
21665 @pindex calc-select-additional
21666 The @kbd{j a} (@code{calc-select-additional}) command enlarges the
21667 current selection to encompass the cursor.  To select the smallest
21668 sub-formula defined by two different points, move to the first and
21669 press @kbd{j s}, then move to the other and press @kbd{j a}.  This
21670 is roughly analogous to using @kbd{C-@@} (@code{set-mark-command}) to
21671 select the two ends of a region of text during normal Emacs editing.
21673 @kindex j o
21674 @pindex calc-select-once
21675 The @kbd{j o} (@code{calc-select-once}) command selects a formula in
21676 exactly the same way as @kbd{j s}, except that the selection will
21677 last only as long as the next command that uses it.  For example,
21678 @kbd{j o 1 +} is a handy way to add one to the sub-formula indicated
21679 by the cursor.
21681 (A somewhat more precise definition: The @kbd{j o} command sets a flag
21682 such that the next command involving selected stack entries will clear
21683 the selections on those stack entries afterwards.  All other selection
21684 commands except @kbd{j a} and @kbd{j O} clear this flag.)
21686 @kindex j S
21687 @kindex j O
21688 @pindex calc-select-here-maybe
21689 @pindex calc-select-once-maybe
21690 The @kbd{j S} (@code{calc-select-here-maybe}) and @kbd{j O}
21691 (@code{calc-select-once-maybe}) commands are equivalent to @kbd{j s}
21692 and @kbd{j o}, respectively, except that if the formula already
21693 has a selection they have no effect.  This is analogous to the
21694 behavior of some commands such as @kbd{j r} (@code{calc-rewrite-selection};
21695 @pxref{Selections with Rewrite Rules}) and is mainly intended to be
21696 used in keyboard macros that implement your own selection-oriented
21697 commands.
21699 Selection of sub-formulas normally treats associative terms like
21700 @samp{a + b - c + d} and @samp{x * y * z} as single levels of the formula.
21701 If you place the cursor anywhere inside @samp{a + b - c + d} except
21702 on one of the variable names and use @kbd{j s}, you will select the
21703 entire four-term sum.
21705 @kindex j b
21706 @pindex calc-break-selections
21707 The @kbd{j b} (@code{calc-break-selections}) command controls a mode
21708 in which the ``deep structure'' of these associative formulas shows
21709 through.  Calc actually stores the above formulas as @samp{((a + b) - c) + d}
21710 and @samp{x * (y * z)}.  (Note that for certain obscure reasons, Calc
21711 treats multiplication as right-associative.)  Once you have enabled
21712 @kbd{j b} mode, selecting with the cursor on the @samp{-} sign would
21713 only select the @samp{a + b - c} portion, which makes sense when the
21714 deep structure of the sum is considered.  There is no way to select
21715 the @samp{b - c + d} portion; although this might initially look
21716 like just as legitimate a sub-formula as @samp{a + b - c}, the deep
21717 structure shows that it isn't.  The @kbd{d U} command can be used
21718 to view the deep structure of any formula (@pxref{Normal Language Modes}).
21720 When @kbd{j b} mode has not been enabled, the deep structure is
21721 generally hidden by the selection commands---what you see is what
21722 you get.
21724 @kindex j u
21725 @pindex calc-unselect
21726 The @kbd{j u} (@code{calc-unselect}) command unselects the formula
21727 that the cursor is on.  If there was no selection in the formula,
21728 this command has no effect.  With a numeric prefix argument, it
21729 unselects the @var{n}th stack element rather than using the cursor
21730 position.
21732 @kindex j c
21733 @pindex calc-clear-selections
21734 The @kbd{j c} (@code{calc-clear-selections}) command unselects all
21735 stack elements.
21737 @node Changing Selections, Displaying Selections, Making Selections, Selecting Subformulas
21738 @subsection Changing Selections
21740 @noindent
21741 @kindex j m
21742 @pindex calc-select-more
21743 Once you have selected a sub-formula, you can expand it using the
21744 @w{@kbd{j m}} (@code{calc-select-more}) command.  If @samp{a + b} is
21745 selected, pressing @w{@kbd{j m}} repeatedly works as follows:
21747 @smallexample
21748 @group
21749            3    ...                3    ___                3    ___
21750     (a + b)  . . .          (a + b)  + V c          (a + b)  + V c
21751 1*  ...............     1*  ...............     1*  ---------------
21752         . . . .                 . . . .                 2 x + 1
21753 @end group
21754 @end smallexample
21756 @noindent
21757 In the last example, the entire formula is selected.  This is roughly
21758 the same as having no selection at all, but because there are subtle
21759 differences the @samp{*} character is still there on the line number.
21761 With a numeric prefix argument @var{n}, @kbd{j m} expands @var{n}
21762 times (or until the entire formula is selected).  Note that @kbd{j s}
21763 with argument @var{n} is equivalent to plain @kbd{j s} followed by
21764 @kbd{j m} with argument @var{n}.  If @w{@kbd{j m}} is used when there
21765 is no current selection, it is equivalent to @w{@kbd{j s}}.
21767 Even though @kbd{j m} does not explicitly use the location of the
21768 cursor within the formula, it nevertheless uses the cursor to determine
21769 which stack element to operate on.  As usual, @kbd{j m} when the cursor
21770 is not on any stack element operates on the top stack element.
21772 @kindex j l
21773 @pindex calc-select-less
21774 The @kbd{j l} (@code{calc-select-less}) command reduces the current
21775 selection around the cursor position.  That is, it selects the
21776 immediate sub-formula of the current selection which contains the
21777 cursor, the opposite of @kbd{j m}.  If the cursor is not inside the
21778 current selection, the command de-selects the formula.
21780 @kindex j 1-9
21781 @pindex calc-select-part
21782 The @kbd{j 1} through @kbd{j 9} (@code{calc-select-part}) commands
21783 select the @var{n}th sub-formula of the current selection.  They are
21784 like @kbd{j l} (@code{calc-select-less}) except they use counting
21785 rather than the cursor position to decide which sub-formula to select.
21786 For example, if the current selection is @kbd{a + b + c} or
21787 @kbd{f(a, b, c)} or @kbd{[a, b, c]}, then @kbd{j 1} selects @samp{a},
21788 @kbd{j 2} selects @samp{b}, and @kbd{j 3} selects @samp{c}; in each of
21789 these cases, @kbd{j 4} through @kbd{j 9} would be errors.
21791 If there is no current selection, @kbd{j 1} through @kbd{j 9} select
21792 the @var{n}th top-level sub-formula.  (In other words, they act as if
21793 the entire stack entry were selected first.)  To select the @var{n}th
21794 sub-formula where @var{n} is greater than nine, you must instead invoke
21795 @w{@kbd{j 1}} with @var{n} as a numeric prefix argument.
21797 @kindex j n
21798 @kindex j p
21799 @pindex calc-select-next
21800 @pindex calc-select-previous
21801 The @kbd{j n} (@code{calc-select-next}) and @kbd{j p}
21802 (@code{calc-select-previous}) commands change the current selection
21803 to the next or previous sub-formula at the same level.  For example,
21804 if @samp{b} is selected in @w{@samp{2 + a*b*c + x}}, then @kbd{j n}
21805 selects @samp{c}.  Further @kbd{j n} commands would be in error because,
21806 even though there is something to the right of @samp{c} (namely, @samp{x}),
21807 it is not at the same level; in this case, it is not a term of the
21808 same product as @samp{b} and @samp{c}.  However, @kbd{j m} (to select
21809 the whole product @samp{a*b*c} as a term of the sum) followed by
21810 @w{@kbd{j n}} would successfully select the @samp{x}.
21812 Similarly, @kbd{j p} moves the selection from the @samp{b} in this
21813 sample formula to the @samp{a}.  Both commands accept numeric prefix
21814 arguments to move several steps at a time.
21816 It is interesting to compare Calc's selection commands with the
21817 Emacs Info system's commands for navigating through hierarchically
21818 organized documentation.  Calc's @kbd{j n} command is completely
21819 analogous to Info's @kbd{n} command.  Likewise, @kbd{j p} maps to
21820 @kbd{p}, @kbd{j 2} maps to @kbd{2}, and Info's @kbd{u} is like @kbd{j m}.
21821 (Note that @kbd{j u} stands for @code{calc-unselect}, not ``up''.)
21822 The Info @kbd{m} command is somewhat similar to Calc's @kbd{j s} and
21823 @kbd{j l}; in each case, you can jump directly to a sub-component
21824 of the hierarchy simply by pointing to it with the cursor.
21826 @node Displaying Selections, Operating on Selections, Changing Selections, Selecting Subformulas
21827 @subsection Displaying Selections
21829 @noindent
21830 @kindex j d
21831 @pindex calc-show-selections
21832 The @kbd{j d} (@code{calc-show-selections}) command controls how
21833 selected sub-formulas are displayed.  One of the alternatives is
21834 illustrated in the above examples; if we press @kbd{j d} we switch
21835 to the other style in which the selected portion itself is obscured
21836 by @samp{#} signs:
21838 @smallexample
21839 @group
21840            3    ...                  #    ___
21841     (a + b)  . . .            ## # ##  + V c
21842 1*  ...............       1*  ---------------
21843         . . . .                   2 x + 1
21844 @end group
21845 @end smallexample
21847 @node Operating on Selections, Rearranging with Selections, Displaying Selections, Selecting Subformulas
21848 @subsection Operating on Selections
21850 @noindent
21851 Once a selection is made, all Calc commands that manipulate items
21852 on the stack will operate on the selected portions of the items
21853 instead.  (Note that several stack elements may have selections
21854 at once, though there can be only one selection at a time in any
21855 given stack element.)
21857 @kindex j e
21858 @pindex calc-enable-selections
21859 The @kbd{j e} (@code{calc-enable-selections}) command disables the
21860 effect that selections have on Calc commands.  The current selections
21861 still exist, but Calc commands operate on whole stack elements anyway.
21862 This mode can be identified by the fact that the @samp{*} markers on
21863 the line numbers are gone, even though selections are visible.  To
21864 reactivate the selections, press @kbd{j e} again.
21866 To extract a sub-formula as a new formula, simply select the
21867 sub-formula and press @key{RET}.  This normally duplicates the top
21868 stack element; here it duplicates only the selected portion of that
21869 element.
21871 To replace a sub-formula with something different, you can enter the
21872 new value onto the stack and press @key{TAB}.  This normally exchanges
21873 the top two stack elements; here it swaps the value you entered into
21874 the selected portion of the formula, returning the old selected
21875 portion to the top of the stack.
21877 @smallexample
21878 @group
21879            3    ...                    ...                    ___
21880     (a + b)  . . .           17 x y . . .           17 x y + V c
21881 2*  ...............      2*  .............      2:  -------------
21882         . . . .                 . . . .                2 x + 1
21884                                     3                      3
21885 1:  17 x y               1:  (a + b)            1:  (a + b)
21886 @end group
21887 @end smallexample
21889 In this example we select a sub-formula of our original example,
21890 enter a new formula, @key{TAB} it into place, then deselect to see
21891 the complete, edited formula.
21893 If you want to swap whole formulas around even though they contain
21894 selections, just use @kbd{j e} before and after.
21896 @kindex j '
21897 @pindex calc-enter-selection
21898 The @kbd{j '} (@code{calc-enter-selection}) command is another way
21899 to replace a selected sub-formula.  This command does an algebraic
21900 entry just like the regular @kbd{'} key.  When you press @key{RET},
21901 the formula you type replaces the original selection.  You can use
21902 the @samp{$} symbol in the formula to refer to the original
21903 selection.  If there is no selection in the formula under the cursor,
21904 the cursor is used to make a temporary selection for the purposes of
21905 the command.  Thus, to change a term of a formula, all you have to
21906 do is move the Emacs cursor to that term and press @kbd{j '}.
21908 @kindex j `
21909 @pindex calc-edit-selection
21910 The @kbd{j `} (@code{calc-edit-selection}) command is a similar
21911 analogue of the @kbd{`} (@code{calc-edit}) command.  It edits the
21912 selected sub-formula in a separate buffer.  If there is no
21913 selection, it edits the sub-formula indicated by the cursor.
21915 To delete a sub-formula, press @key{DEL}.  This generally replaces
21916 the sub-formula with the constant zero, but in a few suitable contexts
21917 it uses the constant one instead.  The @key{DEL} key automatically
21918 deselects and re-simplifies the entire formula afterwards.  Thus:
21920 @smallexample
21921 @group
21922               ###
21923     17 x y + # #          17 x y         17 # y          17 y
21924 1*  -------------     1:  -------    1*  -------    1:  -------
21925        2 x + 1            2 x + 1        2 x + 1        2 x + 1
21926 @end group
21927 @end smallexample
21929 In this example, we first delete the @samp{sqrt(c)} term; Calc
21930 accomplishes this by replacing @samp{sqrt(c)} with zero and
21931 resimplifying.  We then delete the @kbd{x} in the numerator;
21932 since this is part of a product, Calc replaces it with @samp{1}
21933 and resimplifies.
21935 If you select an element of a vector and press @key{DEL}, that
21936 element is deleted from the vector.  If you delete one side of
21937 an equation or inequality, only the opposite side remains.
21939 @kindex j @key{DEL}
21940 @pindex calc-del-selection
21941 The @kbd{j @key{DEL}} (@code{calc-del-selection}) command is like
21942 @key{DEL} but with the auto-selecting behavior of @kbd{j '} and
21943 @kbd{j `}.  It deletes the selected portion of the formula
21944 indicated by the cursor, or, in the absence of a selection, it
21945 deletes the sub-formula indicated by the cursor position.
21947 @kindex j @key{RET}
21948 @pindex calc-grab-selection
21949 (There is also an auto-selecting @kbd{j @key{RET}} (@code{calc-copy-selection})
21950 command.)
21952 Normal arithmetic operations also apply to sub-formulas.  Here we
21953 select the denominator, press @kbd{5 -} to subtract five from the
21954 denominator, press @kbd{n} to negate the denominator, then
21955 press @kbd{Q} to take the square root.
21957 @smallexample
21958 @group
21959      .. .           .. .           .. .             .. .
21960 1*  .......    1*  .......    1*  .......    1*  ..........
21961     2 x + 1        2 x - 4        4 - 2 x         _________
21962                                                  V 4 - 2 x
21963 @end group
21964 @end smallexample
21966 Certain types of operations on selections are not allowed.  For
21967 example, for an arithmetic function like @kbd{-} no more than one of
21968 the arguments may be a selected sub-formula.  (As the above example
21969 shows, the result of the subtraction is spliced back into the argument
21970 which had the selection; if there were more than one selection involved,
21971 this would not be well-defined.)  If you try to subtract two selections,
21972 the command will abort with an error message.
21974 Operations on sub-formulas sometimes leave the formula as a whole
21975 in an ``un-natural'' state.  Consider negating the @samp{2 x} term
21976 of our sample formula by selecting it and pressing @kbd{n}
21977 (@code{calc-change-sign}).
21979 @smallexample
21980 @group
21981        .. .                .. .
21982 1*  ..........      1*  ...........
21983      .........           ..........
21984     . . . 2 x           . . . -2 x
21985 @end group
21986 @end smallexample
21988 Unselecting the sub-formula reveals that the minus sign, which would
21989 normally have cancelled out with the subtraction automatically, has
21990 not been able to do so because the subtraction was not part of the
21991 selected portion.  Pressing @kbd{=} (@code{calc-evaluate}) or doing
21992 any other mathematical operation on the whole formula will cause it
21993 to be simplified.
21995 @smallexample
21996 @group
21997        17 y                17 y
21998 1:  -----------     1:  ----------
21999      __________          _________
22000     V 4 - -2 x          V 4 + 2 x
22001 @end group
22002 @end smallexample
22004 @node Rearranging with Selections, , Operating on Selections, Selecting Subformulas
22005 @subsection Rearranging Formulas using Selections
22007 @noindent
22008 @kindex j R
22009 @pindex calc-commute-right
22010 The @kbd{j R} (@code{calc-commute-right}) command moves the selected
22011 sub-formula to the right in its surrounding formula.  Generally the
22012 selection is one term of a sum or product; the sum or product is
22013 rearranged according to the commutative laws of algebra.
22015 As with @kbd{j '} and @kbd{j @key{DEL}}, the term under the cursor is used
22016 if there is no selection in the current formula.  All commands described
22017 in this section share this property.  In this example, we place the
22018 cursor on the @samp{a} and type @kbd{j R}, then repeat.
22020 @smallexample
22021 1:  a + b - c          1:  b + a - c          1:  b - c + a
22022 @end smallexample
22024 @noindent
22025 Note that in the final step above, the @samp{a} is switched with
22026 the @samp{c} but the signs are adjusted accordingly.  When moving
22027 terms of sums and products, @kbd{j R} will never change the
22028 mathematical meaning of the formula.
22030 The selected term may also be an element of a vector or an argument
22031 of a function.  The term is exchanged with the one to its right.
22032 In this case, the ``meaning'' of the vector or function may of
22033 course be drastically changed.
22035 @smallexample
22036 1:  [a, b, c]          1:  [b, a, c]          1:  [b, c, a]
22038 1:  f(a, b, c)         1:  f(b, a, c)         1:  f(b, c, a)
22039 @end smallexample
22041 @kindex j L
22042 @pindex calc-commute-left
22043 The @kbd{j L} (@code{calc-commute-left}) command is like @kbd{j R}
22044 except that it swaps the selected term with the one to its left.
22046 With numeric prefix arguments, these commands move the selected
22047 term several steps at a time.  It is an error to try to move a
22048 term left or right past the end of its enclosing formula.
22049 With numeric prefix arguments of zero, these commands move the
22050 selected term as far as possible in the given direction.
22052 @kindex j D
22053 @pindex calc-sel-distribute
22054 The @kbd{j D} (@code{calc-sel-distribute}) command mixes the selected
22055 sum or product into the surrounding formula using the distributive
22056 law.  For example, in @samp{a * (b - c)} with the @samp{b - c}
22057 selected, the result is @samp{a b - a c}.  This also distributes
22058 products or quotients into surrounding powers, and can also do
22059 transformations like @samp{exp(a + b)} to @samp{exp(a) exp(b)},
22060 where @samp{a + b} is the selected term, and @samp{ln(a ^ b)}
22061 to @samp{ln(a) b}, where @samp{a ^ b} is the selected term.
22063 For multiple-term sums or products, @kbd{j D} takes off one term
22064 at a time:  @samp{a * (b + c - d)} goes to @samp{a * (c - d) + a b}
22065 with the @samp{c - d} selected so that you can type @kbd{j D}
22066 repeatedly to expand completely.  The @kbd{j D} command allows a
22067 numeric prefix argument which specifies the maximum number of
22068 times to expand at once; the default is one time only.
22070 @vindex DistribRules
22071 The @kbd{j D} command is implemented using rewrite rules.
22072 @xref{Selections with Rewrite Rules}.  The rules are stored in
22073 the Calc variable @code{DistribRules}.  A convenient way to view
22074 these rules is to use @kbd{s e} (@code{calc-edit-variable}) which
22075 displays and edits the stored value of a variable.  Press @kbd{C-c C-c}
22076 to return from editing mode; be careful not to make any actual changes
22077 or else you will affect the behavior of future @kbd{j D} commands!
22079 To extend @kbd{j D} to handle new cases, just edit @code{DistribRules}
22080 as described above.  You can then use the @kbd{s p} command to save
22081 this variable's value permanently for future Calc sessions.
22082 @xref{Operations on Variables}.
22084 @kindex j M
22085 @pindex calc-sel-merge
22086 @vindex MergeRules
22087 The @kbd{j M} (@code{calc-sel-merge}) command is the complement
22088 of @kbd{j D}; given @samp{a b - a c} with either @samp{a b} or
22089 @samp{a c} selected, the result is @samp{a * (b - c)}.  Once
22090 again, @kbd{j M} can also merge calls to functions like @code{exp}
22091 and @code{ln}; examine the variable @code{MergeRules} to see all
22092 the relevant rules.
22094 @kindex j C
22095 @pindex calc-sel-commute
22096 @vindex CommuteRules
22097 The @kbd{j C} (@code{calc-sel-commute}) command swaps the arguments
22098 of the selected sum, product, or equation.  It always behaves as
22099 if @kbd{j b} mode were in effect, i.e., the sum @samp{a + b + c} is
22100 treated as the nested sums @samp{(a + b) + c} by this command.
22101 If you put the cursor on the first @samp{+}, the result is
22102 @samp{(b + a) + c}; if you put the cursor on the second @samp{+}, the
22103 result is @samp{c + (a + b)} (which the default simplifications
22104 will rearrange to @samp{(c + a) + b}).  The relevant rules are stored
22105 in the variable @code{CommuteRules}.
22107 You may need to turn default simplifications off (with the @kbd{m O}
22108 command) in order to get the full benefit of @kbd{j C}.  For example,
22109 commuting @samp{a - b} produces @samp{-b + a}, but the default
22110 simplifications will ``simplify'' this right back to @samp{a - b} if
22111 you don't turn them off.  The same is true of some of the other
22112 manipulations described in this section.
22114 @kindex j N
22115 @pindex calc-sel-negate
22116 @vindex NegateRules
22117 The @kbd{j N} (@code{calc-sel-negate}) command replaces the selected
22118 term with the negative of that term, then adjusts the surrounding
22119 formula in order to preserve the meaning.  For example, given
22120 @samp{exp(a - b)} where @samp{a - b} is selected, the result is
22121 @samp{1 / exp(b - a)}.  By contrast, selecting a term and using the
22122 regular @kbd{n} (@code{calc-change-sign}) command negates the
22123 term without adjusting the surroundings, thus changing the meaning
22124 of the formula as a whole.  The rules variable is @code{NegateRules}.
22126 @kindex j &
22127 @pindex calc-sel-invert
22128 @vindex InvertRules
22129 The @kbd{j &} (@code{calc-sel-invert}) command is similar to @kbd{j N}
22130 except it takes the reciprocal of the selected term.  For example,
22131 given @samp{a - ln(b)} with @samp{b} selected, the result is
22132 @samp{a + ln(1/b)}.  The rules variable is @code{InvertRules}.
22134 @kindex j E
22135 @pindex calc-sel-jump-equals
22136 @vindex JumpRules
22137 The @kbd{j E} (@code{calc-sel-jump-equals}) command moves the
22138 selected term from one side of an equation to the other.  Given
22139 @samp{a + b = c + d} with @samp{c} selected, the result is
22140 @samp{a + b - c = d}.  This command also works if the selected
22141 term is part of a @samp{*}, @samp{/}, or @samp{^} formula.  The
22142 relevant rules variable is @code{JumpRules}.
22144 @kindex j I
22145 @kindex H j I
22146 @pindex calc-sel-isolate
22147 The @kbd{j I} (@code{calc-sel-isolate}) command isolates the
22148 selected term on its side of an equation.  It uses the @kbd{a S}
22149 (@code{calc-solve-for}) command to solve the equation, and the
22150 Hyperbolic flag affects it in the same way.  @xref{Solving Equations}.
22151 When it applies, @kbd{j I} is often easier to use than @kbd{j E}.
22152 It understands more rules of algebra, and works for inequalities
22153 as well as equations.
22155 @kindex j *
22156 @kindex j /
22157 @pindex calc-sel-mult-both-sides
22158 @pindex calc-sel-div-both-sides
22159 The @kbd{j *} (@code{calc-sel-mult-both-sides}) command prompts for a
22160 formula using algebraic entry, then multiplies both sides of the
22161 selected quotient or equation by that formula.  It simplifies each
22162 side with @kbd{a s} (@code{calc-simplify}) before re-forming the
22163 quotient or equation.  You can suppress this simplification by
22164 providing any numeric prefix argument.  There is also a @kbd{j /}
22165 (@code{calc-sel-div-both-sides}) which is similar to @kbd{j *} but
22166 dividing instead of multiplying by the factor you enter.
22168 As a special feature, if the numerator of the quotient is 1, then
22169 the denominator is expanded at the top level using the distributive
22170 law (i.e., using the @kbd{C-u -1 a x} command).  Suppose the
22171 formula on the stack is @samp{1 / (sqrt(a) + 1)}, and you wish
22172 to eliminate the square root in the denominator by multiplying both
22173 sides by @samp{sqrt(a) - 1}.  Calc's default simplifications would
22174 change the result @samp{(sqrt(a) - 1) / (sqrt(a) - 1) (sqrt(a) + 1)}
22175 right back to the original form by cancellation; Calc expands the
22176 denominator to @samp{sqrt(a) (sqrt(a) - 1) + sqrt(a) - 1} to prevent
22177 this.  (You would now want to use an @kbd{a x} command to expand
22178 the rest of the way, whereupon the denominator would cancel out to
22179 the desired form, @samp{a - 1}.)  When the numerator is not 1, this
22180 initial expansion is not necessary because Calc's default
22181 simplifications will not notice the potential cancellation.
22183 If the selection is an inequality, @kbd{j *} and @kbd{j /} will
22184 accept any factor, but will warn unless they can prove the factor
22185 is either positive or negative.  (In the latter case the direction
22186 of the inequality will be switched appropriately.)  @xref{Declarations},
22187 for ways to inform Calc that a given variable is positive or
22188 negative.  If Calc can't tell for sure what the sign of the factor
22189 will be, it will assume it is positive and display a warning
22190 message.
22192 For selections that are not quotients, equations, or inequalities,
22193 these commands pull out a multiplicative factor:  They divide (or
22194 multiply) by the entered formula, simplify, then multiply (or divide)
22195 back by the formula.
22197 @kindex j +
22198 @kindex j -
22199 @pindex calc-sel-add-both-sides
22200 @pindex calc-sel-sub-both-sides
22201 The @kbd{j +} (@code{calc-sel-add-both-sides}) and @kbd{j -}
22202 (@code{calc-sel-sub-both-sides}) commands analogously add to or
22203 subtract from both sides of an equation or inequality.  For other
22204 types of selections, they extract an additive factor.  A numeric
22205 prefix argument suppresses simplification of the intermediate
22206 results.
22208 @kindex j U
22209 @pindex calc-sel-unpack
22210 The @kbd{j U} (@code{calc-sel-unpack}) command replaces the
22211 selected function call with its argument.  For example, given
22212 @samp{a + sin(x^2)} with @samp{sin(x^2)} selected, the result
22213 is @samp{a + x^2}.  (The @samp{x^2} will remain selected; if you
22214 wanted to change the @code{sin} to @code{cos}, just press @kbd{C}
22215 now to take the cosine of the selected part.)
22217 @kindex j v
22218 @pindex calc-sel-evaluate
22219 The @kbd{j v} (@code{calc-sel-evaluate}) command performs the
22220 normal default simplifications on the selected sub-formula.
22221 These are the simplifications that are normally done automatically
22222 on all results, but which may have been partially inhibited by
22223 previous selection-related operations, or turned off altogether
22224 by the @kbd{m O} command.  This command is just an auto-selecting
22225 version of the @w{@kbd{a v}} command (@pxref{Algebraic Manipulation}).
22227 With a numeric prefix argument of 2, @kbd{C-u 2 j v} applies
22228 the @kbd{a s} (@code{calc-simplify}) command to the selected
22229 sub-formula.  With a prefix argument of 3 or more, e.g., @kbd{C-u j v}
22230 applies the @kbd{a e} (@code{calc-simplify-extended}) command.
22231 @xref{Simplifying Formulas}.  With a negative prefix argument
22232 it simplifies at the top level only, just as with @kbd{a v}.
22233 Here the ``top'' level refers to the top level of the selected
22234 sub-formula.
22236 @kindex j "
22237 @pindex calc-sel-expand-formula
22238 The @kbd{j "} (@code{calc-sel-expand-formula}) command is to @kbd{a "}
22239 (@pxref{Algebraic Manipulation}) what @kbd{j v} is to @kbd{a v}.
22241 You can use the @kbd{j r} (@code{calc-rewrite-selection}) command
22242 to define other algebraic operations on sub-formulas.  @xref{Rewrite Rules}.
22244 @node Algebraic Manipulation, Simplifying Formulas, Selecting Subformulas, Algebra
22245 @section Algebraic Manipulation
22247 @noindent
22248 The commands in this section perform general-purpose algebraic
22249 manipulations.  They work on the whole formula at the top of the
22250 stack (unless, of course, you have made a selection in that
22251 formula).
22253 Many algebra commands prompt for a variable name or formula.  If you
22254 answer the prompt with a blank line, the variable or formula is taken
22255 from top-of-stack, and the normal argument for the command is taken
22256 from the second-to-top stack level.
22258 @kindex a v
22259 @pindex calc-alg-evaluate
22260 The @kbd{a v} (@code{calc-alg-evaluate}) command performs the normal
22261 default simplifications on a formula; for example, @samp{a - -b} is
22262 changed to @samp{a + b}.  These simplifications are normally done
22263 automatically on all Calc results, so this command is useful only if
22264 you have turned default simplifications off with an @kbd{m O}
22265 command.  @xref{Simplification Modes}.
22267 It is often more convenient to type @kbd{=}, which is like @kbd{a v}
22268 but which also substitutes stored values for variables in the formula.
22269 Use @kbd{a v} if you want the variables to ignore their stored values.
22271 If you give a numeric prefix argument of 2 to @kbd{a v}, it simplifies
22272 as if in Algebraic Simplification mode.  This is equivalent to typing
22273 @kbd{a s}; @pxref{Simplifying Formulas}.  If you give a numeric prefix
22274 of 3 or more, it uses Extended Simplification mode (@kbd{a e}).
22276 If you give a negative prefix argument @mathit{-1}, @mathit{-2}, or @mathit{-3},
22277 it simplifies in the corresponding mode but only works on the top-level
22278 function call of the formula.  For example, @samp{(2 + 3) * (2 + 3)} will
22279 simplify to @samp{(2 + 3)^2}, without simplifying the sub-formulas
22280 @samp{2 + 3}.  As another example, typing @kbd{V R +} to sum the vector
22281 @samp{[1, 2, 3, 4]} produces the formula @samp{reduce(add, [1, 2, 3, 4])}
22282 in No-Simplify mode.  Using @kbd{a v} will evaluate this all the way to
22283 10; using @kbd{C-u - a v} will evaluate it only to @samp{1 + 2 + 3 + 4}.
22284 (@xref{Reducing and Mapping}.)
22286 @tindex evalv
22287 @tindex evalvn
22288 The @kbd{=} command corresponds to the @code{evalv} function, and
22289 the related @kbd{N} command, which is like @kbd{=} but temporarily
22290 disables Symbolic mode (@kbd{m s}) during the evaluation, corresponds
22291 to the @code{evalvn} function.  (These commands interpret their prefix
22292 arguments differently than @kbd{a v}; @kbd{=} treats the prefix as
22293 the number of stack elements to evaluate at once, and @kbd{N} treats
22294 it as a temporary different working precision.)
22296 The @code{evalvn} function can take an alternate working precision
22297 as an optional second argument.  This argument can be either an
22298 integer, to set the precision absolutely, or a vector containing
22299 a single integer, to adjust the precision relative to the current
22300 precision.  Note that @code{evalvn} with a larger than current
22301 precision will do the calculation at this higher precision, but the
22302 result will as usual be rounded back down to the current precision
22303 afterward.  For example, @samp{evalvn(pi - 3.1415)} at a precision
22304 of 12 will return @samp{9.265359e-5}; @samp{evalvn(pi - 3.1415, 30)}
22305 will return @samp{9.26535897932e-5} (computing a 25-digit result which
22306 is then rounded down to 12); and @samp{evalvn(pi - 3.1415, [-2])}
22307 will return @samp{9.2654e-5}.
22309 @kindex a "
22310 @pindex calc-expand-formula
22311 The @kbd{a "} (@code{calc-expand-formula}) command expands functions
22312 into their defining formulas wherever possible.  For example,
22313 @samp{deg(x^2)} is changed to @samp{180 x^2 / pi}.  Most functions,
22314 like @code{sin} and @code{gcd}, are not defined by simple formulas
22315 and so are unaffected by this command.  One important class of
22316 functions which @emph{can} be expanded is the user-defined functions
22317 created by the @kbd{Z F} command.  @xref{Algebraic Definitions}.
22318 Other functions which @kbd{a "} can expand include the probability
22319 distribution functions, most of the financial functions, and the
22320 hyperbolic and inverse hyperbolic functions.  A numeric prefix argument
22321 affects @kbd{a "} in the same way as it does @kbd{a v}:  A positive
22322 argument expands all functions in the formula and then simplifies in
22323 various ways; a negative argument expands and simplifies only the
22324 top-level function call.
22326 @kindex a M
22327 @pindex calc-map-equation
22328 @tindex mapeq
22329 The @kbd{a M} (@code{calc-map-equation}) [@code{mapeq}] command applies
22330 a given function or operator to one or more equations.  It is analogous
22331 to @kbd{V M}, which operates on vectors instead of equations.
22332 @pxref{Reducing and Mapping}.  For example, @kbd{a M S} changes
22333 @samp{x = y+1} to @samp{sin(x) = sin(y+1)}, and @kbd{a M +} with
22334 @samp{x = y+1} and @expr{6} on the stack produces @samp{x+6 = y+7}.
22335 With two equations on the stack, @kbd{a M +} would add the lefthand
22336 sides together and the righthand sides together to get the two
22337 respective sides of a new equation.
22339 Mapping also works on inequalities.  Mapping two similar inequalities
22340 produces another inequality of the same type.  Mapping an inequality
22341 with an equation produces an inequality of the same type.  Mapping a
22342 @samp{<=} with a @samp{<} or @samp{!=} (not-equal) produces a @samp{<}.
22343 If inequalities with opposite direction (e.g., @samp{<} and @samp{>})
22344 are mapped, the direction of the second inequality is reversed to
22345 match the first:  Using @kbd{a M +} on @samp{a < b} and @samp{a > 2}
22346 reverses the latter to get @samp{2 < a}, which then allows the
22347 combination @samp{a + 2 < b + a}, which the @kbd{a s} command can
22348 then simplify to get @samp{2 < b}.
22350 Using @kbd{a M *}, @kbd{a M /}, @kbd{a M n}, or @kbd{a M &} to negate
22351 or invert an inequality will reverse the direction of the inequality.
22352 Other adjustments to inequalities are @emph{not} done automatically;
22353 @kbd{a M S} will change @w{@samp{x < y}} to @samp{sin(x) < sin(y)} even
22354 though this is not true for all values of the variables.
22356 @kindex H a M
22357 @tindex mapeqp
22358 With the Hyperbolic flag, @kbd{H a M} [@code{mapeqp}] does a plain
22359 mapping operation without reversing the direction of any inequalities.
22360 Thus, @kbd{H a M &} would change @kbd{x > 2} to @kbd{1/x > 0.5}.
22361 (This change is mathematically incorrect, but perhaps you were
22362 fixing an inequality which was already incorrect.)
22364 @kindex I a M
22365 @tindex mapeqr
22366 With the Inverse flag, @kbd{I a M} [@code{mapeqr}] always reverses
22367 the direction of the inequality.  You might use @kbd{I a M C} to
22368 change @samp{x < y} to @samp{cos(x) > cos(y)} if you know you are
22369 working with small positive angles.
22371 @kindex a b
22372 @pindex calc-substitute
22373 @tindex subst
22374 The @kbd{a b} (@code{calc-substitute}) [@code{subst}] command substitutes
22375 all occurrences
22376 of some variable or sub-expression of an expression with a new
22377 sub-expression.  For example, substituting @samp{sin(x)} with @samp{cos(y)}
22378 in @samp{2 sin(x)^2 + x sin(x) + sin(2 x)} produces
22379 @samp{2 cos(y)^2 + x cos(y) + @w{sin(2 x)}}.
22380 Note that this is a purely structural substitution; the lone @samp{x} and
22381 the @samp{sin(2 x)} stayed the same because they did not look like
22382 @samp{sin(x)}.  @xref{Rewrite Rules}, for a more general method for
22383 doing substitutions.
22385 The @kbd{a b} command normally prompts for two formulas, the old
22386 one and the new one.  If you enter a blank line for the first
22387 prompt, all three arguments are taken from the stack (new, then old,
22388 then target expression).  If you type an old formula but then enter a
22389 blank line for the new one, the new formula is taken from top-of-stack
22390 and the target from second-to-top.  If you answer both prompts, the
22391 target is taken from top-of-stack as usual.
22393 Note that @kbd{a b} has no understanding of commutativity or
22394 associativity.  The pattern @samp{x+y} will not match the formula
22395 @samp{y+x}.  Also, @samp{y+z} will not match inside the formula @samp{x+y+z}
22396 because the @samp{+} operator is left-associative, so the ``deep
22397 structure'' of that formula is @samp{(x+y) + z}.  Use @kbd{d U}
22398 (@code{calc-unformatted-language}) mode to see the true structure of
22399 a formula.  The rewrite rule mechanism, discussed later, does not have
22400 these limitations.
22402 As an algebraic function, @code{subst} takes three arguments:
22403 Target expression, old, new.  Note that @code{subst} is always
22404 evaluated immediately, even if its arguments are variables, so if
22405 you wish to put a call to @code{subst} onto the stack you must
22406 turn the default simplifications off first (with @kbd{m O}).
22408 @node Simplifying Formulas, Polynomials, Algebraic Manipulation, Algebra
22409 @section Simplifying Formulas
22411 @noindent
22412 @kindex a s
22413 @pindex calc-simplify
22414 @tindex simplify
22415 The @kbd{a s} (@code{calc-simplify}) [@code{simplify}] command applies
22416 various algebraic rules to simplify a formula.  This includes rules which
22417 are not part of the default simplifications because they may be too slow
22418 to apply all the time, or may not be desirable all of the time.  For
22419 example, non-adjacent terms of sums are combined, as in @samp{a + b + 2 a}
22420 to @samp{b + 3 a}, and some formulas like @samp{sin(arcsin(x))} are
22421 simplified to @samp{x}.
22423 The sections below describe all the various kinds of algebraic
22424 simplifications Calc provides in full detail.  None of Calc's
22425 simplification commands are designed to pull rabbits out of hats;
22426 they simply apply certain specific rules to put formulas into
22427 less redundant or more pleasing forms.  Serious algebra in Calc
22428 must be done manually, usually with a combination of selections
22429 and rewrite rules.  @xref{Rearranging with Selections}.
22430 @xref{Rewrite Rules}.
22432 @xref{Simplification Modes}, for commands to control what level of
22433 simplification occurs automatically.  Normally only the ``default
22434 simplifications'' occur.
22436 @menu
22437 * Default Simplifications::
22438 * Algebraic Simplifications::
22439 * Unsafe Simplifications::
22440 * Simplification of Units::
22441 @end menu
22443 @node Default Simplifications, Algebraic Simplifications, Simplifying Formulas, Simplifying Formulas
22444 @subsection Default Simplifications
22446 @noindent
22447 @cindex Default simplifications
22448 This section describes the ``default simplifications,'' those which are
22449 normally applied to all results.  For example, if you enter the variable
22450 @expr{x} on the stack twice and push @kbd{+}, Calc's default
22451 simplifications automatically change @expr{x + x} to @expr{2 x}.
22453 The @kbd{m O} command turns off the default simplifications, so that
22454 @expr{x + x} will remain in this form unless you give an explicit
22455 ``simplify'' command like @kbd{=} or @kbd{a v}.  @xref{Algebraic
22456 Manipulation}.  The @kbd{m D} command turns the default simplifications
22457 back on.
22459 The most basic default simplification is the evaluation of functions.
22460 For example, @expr{2 + 3} is evaluated to @expr{5}, and @expr{@tfn{sqrt}(9)}
22461 is evaluated to @expr{3}.  Evaluation does not occur if the arguments
22462 to a function are somehow of the wrong type @expr{@tfn{tan}([2,3,4])}),
22463 range (@expr{@tfn{tan}(90)}), or number (@expr{@tfn{tan}(3,5)}), 
22464 or if the function name is not recognized (@expr{@tfn{f}(5)}), or if
22465 Symbolic mode (@pxref{Symbolic Mode}) prevents evaluation
22466 (@expr{@tfn{sqrt}(2)}).
22468 Calc simplifies (evaluates) the arguments to a function before it
22469 simplifies the function itself.  Thus @expr{@tfn{sqrt}(5+4)} is
22470 simplified to @expr{@tfn{sqrt}(9)} before the @code{sqrt} function
22471 itself is applied.  There are very few exceptions to this rule:
22472 @code{quote}, @code{lambda}, and @code{condition} (the @code{::}
22473 operator) do not evaluate their arguments, @code{if} (the @code{? :}
22474 operator) does not evaluate all of its arguments, and @code{evalto}
22475 does not evaluate its lefthand argument.
22477 Most commands apply the default simplifications to all arguments they
22478 take from the stack, perform a particular operation, then simplify
22479 the result before pushing it back on the stack.  In the common special
22480 case of regular arithmetic commands like @kbd{+} and @kbd{Q} [@code{sqrt}],
22481 the arguments are simply popped from the stack and collected into a
22482 suitable function call, which is then simplified (the arguments being
22483 simplified first as part of the process, as described above).
22485 The default simplifications are too numerous to describe completely
22486 here, but this section will describe the ones that apply to the
22487 major arithmetic operators.  This list will be rather technical in
22488 nature, and will probably be interesting to you only if you are
22489 a serious user of Calc's algebra facilities.
22491 @tex
22492 \bigskip
22493 @end tex
22495 As well as the simplifications described here, if you have stored
22496 any rewrite rules in the variable @code{EvalRules} then these rules
22497 will also be applied before any built-in default simplifications.
22498 @xref{Automatic Rewrites}, for details.
22500 @tex
22501 \bigskip
22502 @end tex
22504 And now, on with the default simplifications:
22506 Arithmetic operators like @kbd{+} and @kbd{*} always take two
22507 arguments in Calc's internal form.  Sums and products of three or
22508 more terms are arranged by the associative law of algebra into
22509 a left-associative form for sums, @expr{((a + b) + c) + d}, and
22510 a right-associative form for products, @expr{a * (b * (c * d))}.
22511 Formulas like @expr{(a + b) + (c + d)} are rearranged to
22512 left-associative form, though this rarely matters since Calc's
22513 algebra commands are designed to hide the inner structure of
22514 sums and products as much as possible.  Sums and products in
22515 their proper associative form will be written without parentheses
22516 in the examples below.
22518 Sums and products are @emph{not} rearranged according to the
22519 commutative law (@expr{a + b} to @expr{b + a}) except in a few
22520 special cases described below.  Some algebra programs always
22521 rearrange terms into a canonical order, which enables them to
22522 see that @expr{a b + b a} can be simplified to @expr{2 a b}.
22523 Calc assumes you have put the terms into the order you want
22524 and generally leaves that order alone, with the consequence
22525 that formulas like the above will only be simplified if you
22526 explicitly give the @kbd{a s} command.  @xref{Algebraic
22527 Simplifications}.
22529 Differences @expr{a - b} are treated like sums @expr{a + (-b)}
22530 for purposes of simplification; one of the default simplifications
22531 is to rewrite @expr{a + (-b)} or @expr{(-b) + a}, where @expr{-b}
22532 represents a ``negative-looking'' term, into @expr{a - b} form.
22533 ``Negative-looking'' means negative numbers, negated formulas like
22534 @expr{-x}, and products or quotients in which either term is
22535 negative-looking.
22537 Other simplifications involving negation are @expr{-(-x)} to @expr{x};
22538 @expr{-(a b)} or @expr{-(a/b)} where either @expr{a} or @expr{b} is
22539 negative-looking, simplified by negating that term, or else where
22540 @expr{a} or @expr{b} is any number, by negating that number;
22541 @expr{-(a + b)} to @expr{-a - b}, and @expr{-(b - a)} to @expr{a - b}.
22542 (This, and rewriting @expr{(-b) + a} to @expr{a - b}, are the only
22543 cases where the order of terms in a sum is changed by the default
22544 simplifications.)
22546 The distributive law is used to simplify sums in some cases:
22547 @expr{a x + b x} to @expr{(a + b) x}, where @expr{a} represents
22548 a number or an implicit 1 or @mathit{-1} (as in @expr{x} or @expr{-x})
22549 and similarly for @expr{b}.  Use the @kbd{a c}, @w{@kbd{a f}}, or
22550 @kbd{j M} commands to merge sums with non-numeric coefficients
22551 using the distributive law.
22553 The distributive law is only used for sums of two terms, or
22554 for adjacent terms in a larger sum.  Thus @expr{a + b + b + c}
22555 is simplified to @expr{a + 2 b + c}, but @expr{a + b + c + b}
22556 is not simplified.  The reason is that comparing all terms of a
22557 sum with one another would require time proportional to the
22558 square of the number of terms; Calc relegates potentially slow
22559 operations like this to commands that have to be invoked
22560 explicitly, like @kbd{a s}.
22562 Finally, @expr{a + 0} and @expr{0 + a} are simplified to @expr{a}.
22563 A consequence of the above rules is that @expr{0 - a} is simplified
22564 to @expr{-a}.
22566 @tex
22567 \bigskip
22568 @end tex
22570 The products @expr{1 a} and @expr{a 1} are simplified to @expr{a};
22571 @expr{(-1) a} and @expr{a (-1)} are simplified to @expr{-a};
22572 @expr{0 a} and @expr{a 0} are simplified to @expr{0}, except that
22573 in Matrix mode where @expr{a} is not provably scalar the result
22574 is the generic zero matrix @samp{idn(0)}, and that if @expr{a} is
22575 infinite the result is @samp{nan}.
22577 Also, @expr{(-a) b} and @expr{a (-b)} are simplified to @expr{-(a b)},
22578 where this occurs for negated formulas but not for regular negative
22579 numbers.
22581 Products are commuted only to move numbers to the front:
22582 @expr{a b 2} is commuted to @expr{2 a b}.
22584 The product @expr{a (b + c)} is distributed over the sum only if
22585 @expr{a} and at least one of @expr{b} and @expr{c} are numbers:
22586 @expr{2 (x + 3)} goes to @expr{2 x + 6}.  The formula
22587 @expr{(-a) (b - c)}, where @expr{-a} is a negative number, is
22588 rewritten to @expr{a (c - b)}.
22590 The distributive law of products and powers is used for adjacent
22591 terms of the product: @expr{x^a x^b} goes to 
22592 @texline @math{x^{a+b}}
22593 @infoline @expr{x^(a+b)}
22594 where @expr{a} is a number, or an implicit 1 (as in @expr{x}),
22595 or the implicit one-half of @expr{@tfn{sqrt}(x)}, and similarly for
22596 @expr{b}.  The result is written using @samp{sqrt} or @samp{1/sqrt}
22597 if the sum of the powers is @expr{1/2} or @expr{-1/2}, respectively.
22598 If the sum of the powers is zero, the product is simplified to
22599 @expr{1} or to @samp{idn(1)} if Matrix mode is enabled.
22601 The product of a negative power times anything but another negative
22602 power is changed to use division:  
22603 @texline @math{x^{-2} y}
22604 @infoline @expr{x^(-2) y} 
22605 goes to @expr{y / x^2} unless Matrix mode is
22606 in effect and neither @expr{x} nor @expr{y} are scalar (in which
22607 case it is considered unsafe to rearrange the order of the terms).
22609 Finally, @expr{a (b/c)} is rewritten to @expr{(a b)/c}, and also
22610 @expr{(a/b) c} is changed to @expr{(a c)/b} unless in Matrix mode.
22612 @tex
22613 \bigskip
22614 @end tex
22616 Simplifications for quotients are analogous to those for products.
22617 The quotient @expr{0 / x} is simplified to @expr{0}, with the same
22618 exceptions that were noted for @expr{0 x}.  Likewise, @expr{x / 1}
22619 and @expr{x / (-1)} are simplified to @expr{x} and @expr{-x},
22620 respectively.
22622 The quotient @expr{x / 0} is left unsimplified or changed to an
22623 infinite quantity, as directed by the current infinite mode.
22624 @xref{Infinite Mode}.
22626 The expression 
22627 @texline @math{a / b^{-c}}
22628 @infoline @expr{a / b^(-c)} 
22629 is changed to @expr{a b^c}, where @expr{-c} is any negative-looking
22630 power.  Also, @expr{1 / b^c} is changed to 
22631 @texline @math{b^{-c}}
22632 @infoline @expr{b^(-c)} 
22633 for any power @expr{c}.
22635 Also, @expr{(-a) / b} and @expr{a / (-b)} go to @expr{-(a/b)};
22636 @expr{(a/b) / c} goes to @expr{a / (b c)}; and @expr{a / (b/c)}
22637 goes to @expr{(a c) / b} unless Matrix mode prevents this
22638 rearrangement.  Similarly, @expr{a / (b:c)} is simplified to
22639 @expr{(c:b) a} for any fraction @expr{b:c}.
22641 The distributive law is applied to @expr{(a + b) / c} only if
22642 @expr{c} and at least one of @expr{a} and @expr{b} are numbers.
22643 Quotients of powers and square roots are distributed just as
22644 described for multiplication.
22646 Quotients of products cancel only in the leading terms of the
22647 numerator and denominator.  In other words, @expr{a x b / a y b}
22648 is cancelled to @expr{x b / y b} but not to @expr{x / y}.  Once
22649 again this is because full cancellation can be slow; use @kbd{a s}
22650 to cancel all terms of the quotient.
22652 Quotients of negative-looking values are simplified according
22653 to @expr{(-a) / (-b)} to @expr{a / b}, @expr{(-a) / (b - c)}
22654 to @expr{a / (c - b)}, and @expr{(a - b) / (-c)} to @expr{(b - a) / c}.
22656 @tex
22657 \bigskip
22658 @end tex
22660 The formula @expr{x^0} is simplified to @expr{1}, or to @samp{idn(1)}
22661 in Matrix mode.  The formula @expr{0^x} is simplified to @expr{0}
22662 unless @expr{x} is a negative number, complex number or zero.
22663 If @expr{x} is negative, complex or @expr{0.0}, @expr{0^x} is an
22664 infinity or an unsimplified formula according to the current infinite
22665 mode.  The expression @expr{0^0} is simplified to @expr{1}.
22667 Powers of products or quotients @expr{(a b)^c}, @expr{(a/b)^c}
22668 are distributed to @expr{a^c b^c}, @expr{a^c / b^c} only if @expr{c}
22669 is an integer, or if either @expr{a} or @expr{b} are nonnegative
22670 real numbers.  Powers of powers @expr{(a^b)^c} are simplified to
22671 @texline @math{a^{b c}}
22672 @infoline @expr{a^(b c)} 
22673 only when @expr{c} is an integer and @expr{b c} also
22674 evaluates to an integer.  Without these restrictions these simplifications
22675 would not be safe because of problems with principal values.
22676 (In other words, 
22677 @texline @math{((-3)^{1/2})^2}
22678 @infoline @expr{((-3)^1:2)^2} 
22679 is safe to simplify, but
22680 @texline @math{((-3)^2)^{1/2}}
22681 @infoline @expr{((-3)^2)^1:2} 
22682 is not.)  @xref{Declarations}, for ways to inform Calc that your
22683 variables satisfy these requirements.
22685 As a special case of this rule, @expr{@tfn{sqrt}(x)^n} is simplified to
22686 @texline @math{x^{n/2}}
22687 @infoline @expr{x^(n/2)} 
22688 only for even integers @expr{n}.
22690 If @expr{a} is known to be real, @expr{b} is an even integer, and
22691 @expr{c} is a half- or quarter-integer, then @expr{(a^b)^c} is
22692 simplified to @expr{@tfn{abs}(a^(b c))}.
22694 Also, @expr{(-a)^b} is simplified to @expr{a^b} if @expr{b} is an
22695 even integer, or to @expr{-(a^b)} if @expr{b} is an odd integer,
22696 for any negative-looking expression @expr{-a}.
22698 Square roots @expr{@tfn{sqrt}(x)} generally act like one-half powers
22699 @texline @math{x^{1:2}}
22700 @infoline @expr{x^1:2} 
22701 for the purposes of the above-listed simplifications.
22703 Also, note that 
22704 @texline @math{1 / x^{1:2}}
22705 @infoline @expr{1 / x^1:2} 
22706 is changed to 
22707 @texline @math{x^{-1:2}},
22708 @infoline @expr{x^(-1:2)},
22709 but @expr{1 / @tfn{sqrt}(x)} is left alone.
22711 @tex
22712 \bigskip
22713 @end tex
22715 Generic identity matrices (@pxref{Matrix Mode}) are simplified by the
22716 following rules:  @expr{@tfn{idn}(a) + b} to @expr{a + b} if @expr{b}
22717 is provably scalar, or expanded out if @expr{b} is a matrix;
22718 @expr{@tfn{idn}(a) + @tfn{idn}(b)} to @expr{@tfn{idn}(a + b)}; 
22719 @expr{-@tfn{idn}(a)} to @expr{@tfn{idn}(-a)}; @expr{a @tfn{idn}(b)} to 
22720 @expr{@tfn{idn}(a b)} if @expr{a} is provably scalar, or to @expr{a b} 
22721 if @expr{a} is provably non-scalar;  @expr{@tfn{idn}(a) @tfn{idn}(b)} to
22722 @expr{@tfn{idn}(a b)}; analogous simplifications for quotients involving
22723 @code{idn}; and @expr{@tfn{idn}(a)^n} to @expr{@tfn{idn}(a^n)} where
22724 @expr{n} is an integer.
22726 @tex
22727 \bigskip
22728 @end tex
22730 The @code{floor} function and other integer truncation functions
22731 vanish if the argument is provably integer-valued, so that
22732 @expr{@tfn{floor}(@tfn{round}(x))} simplifies to @expr{@tfn{round}(x)}.
22733 Also, combinations of @code{float}, @code{floor} and its friends,
22734 and @code{ffloor} and its friends, are simplified in appropriate
22735 ways.  @xref{Integer Truncation}.
22737 The expression @expr{@tfn{abs}(-x)} changes to @expr{@tfn{abs}(x)}.
22738 The expression @expr{@tfn{abs}(@tfn{abs}(x))} changes to
22739 @expr{@tfn{abs}(x)};  in fact, @expr{@tfn{abs}(x)} changes to @expr{x} or
22740 @expr{-x} if @expr{x} is provably nonnegative or nonpositive
22741 (@pxref{Declarations}). 
22743 While most functions do not recognize the variable @code{i} as an
22744 imaginary number, the @code{arg} function does handle the two cases
22745 @expr{@tfn{arg}(@tfn{i})} and @expr{@tfn{arg}(-@tfn{i})} just for convenience.
22747 The expression @expr{@tfn{conj}(@tfn{conj}(x))} simplifies to @expr{x}.
22748 Various other expressions involving @code{conj}, @code{re}, and
22749 @code{im} are simplified, especially if some of the arguments are
22750 provably real or involve the constant @code{i}.  For example,
22751 @expr{@tfn{conj}(a + b i)} is changed to 
22752 @expr{@tfn{conj}(a) - @tfn{conj}(b) i},  or to @expr{a - b i} if @expr{a}
22753 and @expr{b} are known to be real.
22755 Functions like @code{sin} and @code{arctan} generally don't have
22756 any default simplifications beyond simply evaluating the functions
22757 for suitable numeric arguments and infinity.  The @kbd{a s} command
22758 described in the next section does provide some simplifications for
22759 these functions, though.
22761 One important simplification that does occur is that
22762 @expr{@tfn{ln}(@tfn{e})} is simplified to 1, and @expr{@tfn{ln}(@tfn{e}^x)} is
22763 simplified to @expr{x} for any @expr{x}.  This occurs even if you have
22764 stored a different value in the Calc variable @samp{e}; but this would
22765 be a bad idea in any case if you were also using natural logarithms!
22767 Among the logical functions, @tfn{!(@var{a} <= @var{b})} changes to
22768 @tfn{@var{a} > @var{b}} and so on.  Equations and inequalities where both sides
22769 are either negative-looking or zero are simplified by negating both sides
22770 and reversing the inequality.  While it might seem reasonable to simplify
22771 @expr{!!x} to @expr{x}, this would not be valid in general because
22772 @expr{!!2} is 1, not 2.
22774 Most other Calc functions have few if any default simplifications
22775 defined, aside of course from evaluation when the arguments are
22776 suitable numbers.
22778 @node Algebraic Simplifications, Unsafe Simplifications, Default Simplifications, Simplifying Formulas
22779 @subsection Algebraic Simplifications
22781 @noindent
22782 @cindex Algebraic simplifications
22783 The @kbd{a s} command makes simplifications that may be too slow to
22784 do all the time, or that may not be desirable all of the time.
22785 If you find these simplifications are worthwhile, you can type
22786 @kbd{m A} to have Calc apply them automatically.
22788 This section describes all simplifications that are performed by
22789 the @kbd{a s} command.  Note that these occur in addition to the
22790 default simplifications; even if the default simplifications have
22791 been turned off by an @kbd{m O} command, @kbd{a s} will turn them
22792 back on temporarily while it simplifies the formula.
22794 There is a variable, @code{AlgSimpRules}, in which you can put rewrites
22795 to be applied by @kbd{a s}.  Its use is analogous to @code{EvalRules},
22796 but without the special restrictions.  Basically, the simplifier does
22797 @samp{@w{a r} AlgSimpRules} with an infinite repeat count on the whole
22798 expression being simplified, then it traverses the expression applying
22799 the built-in rules described below.  If the result is different from
22800 the original expression, the process repeats with the default
22801 simplifications (including @code{EvalRules}), then @code{AlgSimpRules},
22802 then the built-in simplifications, and so on.
22804 @tex
22805 \bigskip
22806 @end tex
22808 Sums are simplified in two ways.  Constant terms are commuted to the
22809 end of the sum, so that @expr{a + 2 + b} changes to @expr{a + b + 2}.
22810 The only exception is that a constant will not be commuted away
22811 from the first position of a difference, i.e., @expr{2 - x} is not
22812 commuted to @expr{-x + 2}.
22814 Also, terms of sums are combined by the distributive law, as in
22815 @expr{x + y + 2 x} to @expr{y + 3 x}.  This always occurs for
22816 adjacent terms, but @kbd{a s} compares all pairs of terms including
22817 non-adjacent ones.
22819 @tex
22820 \bigskip
22821 @end tex
22823 Products are sorted into a canonical order using the commutative
22824 law.  For example, @expr{b c a} is commuted to @expr{a b c}.
22825 This allows easier comparison of products; for example, the default
22826 simplifications will not change @expr{x y + y x} to @expr{2 x y},
22827 but @kbd{a s} will; it first rewrites the sum to @expr{x y + x y},
22828 and then the default simplifications are able to recognize a sum
22829 of identical terms.
22831 The canonical ordering used to sort terms of products has the
22832 property that real-valued numbers, interval forms and infinities
22833 come first, and are sorted into increasing order.  The @kbd{V S}
22834 command uses the same ordering when sorting a vector.
22836 Sorting of terms of products is inhibited when Matrix mode is
22837 turned on; in this case, Calc will never exchange the order of
22838 two terms unless it knows at least one of the terms is a scalar.
22840 Products of powers are distributed by comparing all pairs of
22841 terms, using the same method that the default simplifications
22842 use for adjacent terms of products.
22844 Even though sums are not sorted, the commutative law is still
22845 taken into account when terms of a product are being compared.
22846 Thus @expr{(x + y) (y + x)} will be simplified to @expr{(x + y)^2}.
22847 A subtle point is that @expr{(x - y) (y - x)} will @emph{not}
22848 be simplified to @expr{-(x - y)^2}; Calc does not notice that
22849 one term can be written as a constant times the other, even if
22850 that constant is @mathit{-1}.
22852 A fraction times any expression, @expr{(a:b) x}, is changed to
22853 a quotient involving integers:  @expr{a x / b}.  This is not
22854 done for floating-point numbers like @expr{0.5}, however.  This
22855 is one reason why you may find it convenient to turn Fraction mode
22856 on while doing algebra; @pxref{Fraction Mode}.
22858 @tex
22859 \bigskip
22860 @end tex
22862 Quotients are simplified by comparing all terms in the numerator
22863 with all terms in the denominator for possible cancellation using
22864 the distributive law.  For example, @expr{a x^2 b / c x^3 d} will
22865 cancel @expr{x^2} from the top and bottom to get @expr{a b / c x d}.
22866 (The terms in the denominator will then be rearranged to @expr{c d x}
22867 as described above.)  If there is any common integer or fractional
22868 factor in the numerator and denominator, it is cancelled out;
22869 for example, @expr{(4 x + 6) / 8 x} simplifies to @expr{(2 x + 3) / 4 x}.
22871 Non-constant common factors are not found even by @kbd{a s}.  To
22872 cancel the factor @expr{a} in @expr{(a x + a) / a^2} you could first
22873 use @kbd{j M} on the product @expr{a x} to Merge the numerator to
22874 @expr{a (1+x)}, which can then be simplified successfully.
22876 @tex
22877 \bigskip
22878 @end tex
22880 Integer powers of the variable @code{i} are simplified according
22881 to the identity @expr{i^2 = -1}.  If you store a new value other
22882 than the complex number @expr{(0,1)} in @code{i}, this simplification
22883 will no longer occur.  This is done by @kbd{a s} instead of by default
22884 in case someone (unwisely) uses the name @code{i} for a variable
22885 unrelated to complex numbers; it would be unfortunate if Calc
22886 quietly and automatically changed this formula for reasons the
22887 user might not have been thinking of.
22889 Square roots of integer or rational arguments are simplified in
22890 several ways.  (Note that these will be left unevaluated only in
22891 Symbolic mode.)  First, square integer or rational factors are
22892 pulled out so that @expr{@tfn{sqrt}(8)} is rewritten as
22893 @texline @math{2\,@tfn{sqrt}(2)}.
22894 @infoline @expr{2 sqrt(2)}.  
22895 Conceptually speaking this implies factoring the argument into primes
22896 and moving pairs of primes out of the square root, but for reasons of
22897 efficiency Calc only looks for primes up to 29.
22899 Square roots in the denominator of a quotient are moved to the
22900 numerator:  @expr{1 / @tfn{sqrt}(3)} changes to @expr{@tfn{sqrt}(3) / 3}.
22901 The same effect occurs for the square root of a fraction:
22902 @expr{@tfn{sqrt}(2:3)} changes to @expr{@tfn{sqrt}(6) / 3}.
22904 @tex
22905 \bigskip
22906 @end tex
22908 The @code{%} (modulo) operator is simplified in several ways
22909 when the modulus @expr{M} is a positive real number.  First, if
22910 the argument is of the form @expr{x + n} for some real number
22911 @expr{n}, then @expr{n} is itself reduced modulo @expr{M}.  For
22912 example, @samp{(x - 23) % 10} is simplified to @samp{(x + 7) % 10}.
22914 If the argument is multiplied by a constant, and this constant
22915 has a common integer divisor with the modulus, then this factor is
22916 cancelled out.  For example, @samp{12 x % 15} is changed to
22917 @samp{3 (4 x % 5)} by factoring out 3.  Also, @samp{(12 x + 1) % 15}
22918 is changed to @samp{3 ((4 x + 1:3) % 5)}.  While these forms may
22919 not seem ``simpler,'' they allow Calc to discover useful information
22920 about modulo forms in the presence of declarations.
22922 If the modulus is 1, then Calc can use @code{int} declarations to
22923 evaluate the expression.  For example, the idiom @samp{x % 2} is
22924 often used to check whether a number is odd or even.  As described
22925 above, @w{@samp{2 n % 2}} and @samp{(2 n + 1) % 2} are simplified to
22926 @samp{2 (n % 1)} and @samp{2 ((n + 1:2) % 1)}, respectively; Calc
22927 can simplify these to 0 and 1 (respectively) if @code{n} has been
22928 declared to be an integer.
22930 @tex
22931 \bigskip
22932 @end tex
22934 Trigonometric functions are simplified in several ways.  Whenever a
22935 products of two trigonometric functions can be replaced by a single
22936 function, the replacement is made; for example,
22937 @expr{@tfn{tan}(x) @tfn{cos}(x)} is simplified to @expr{@tfn{sin}(x)}. 
22938 Reciprocals of trigonometric functions are replaced by their reciprocal
22939 function; for example, @expr{1/@tfn{sec}(x)} is simplified to
22940 @expr{@tfn{cos}(x)}.  The corresponding simplifications for the
22941 hyperbolic functions are also handled.
22943 Trigonometric functions of their inverse functions are
22944 simplified. The expression @expr{@tfn{sin}(@tfn{arcsin}(x))} is
22945 simplified to @expr{x}, and similarly for @code{cos} and @code{tan}.  
22946 Trigonometric functions of inverses of different trigonometric
22947 functions can also be simplified, as in @expr{@tfn{sin}(@tfn{arccos}(x))}
22948 to @expr{@tfn{sqrt}(1 - x^2)}.
22950 If the argument to @code{sin} is negative-looking, it is simplified to
22951 @expr{-@tfn{sin}(x)}, and similarly for @code{cos} and @code{tan}.
22952 Finally, certain special values of the argument are recognized;
22953 @pxref{Trigonometric and Hyperbolic Functions}.
22955 Hyperbolic functions of their inverses and of negative-looking
22956 arguments are also handled, as are exponentials of inverse
22957 hyperbolic functions.
22959 No simplifications for inverse trigonometric and hyperbolic
22960 functions are known, except for negative arguments of @code{arcsin},
22961 @code{arctan}, @code{arcsinh}, and @code{arctanh}.  Note that
22962 @expr{@tfn{arcsin}(@tfn{sin}(x))} can @emph{not} safely change to
22963 @expr{x}, since this only correct within an integer multiple of 
22964 @texline @math{2 \pi}
22965 @infoline @expr{2 pi} 
22966 radians or 360 degrees.  However, @expr{@tfn{arcsinh}(@tfn{sinh}(x))} is
22967 simplified to @expr{x} if @expr{x} is known to be real.
22969 Several simplifications that apply to logarithms and exponentials
22970 are that @expr{@tfn{exp}(@tfn{ln}(x))}, 
22971 @texline @tfn{e}@math{^{\ln(x)}},
22972 @infoline @expr{e^@tfn{ln}(x)}, 
22974 @texline @math{10^{{\rm log10}(x)}}
22975 @infoline @expr{10^@tfn{log10}(x)} 
22976 all reduce to @expr{x}.  Also, @expr{@tfn{ln}(@tfn{exp}(x))}, etc., can
22977 reduce to @expr{x} if @expr{x} is provably real.  The form
22978 @expr{@tfn{exp}(x)^y} is simplified to @expr{@tfn{exp}(x y)}.  If @expr{x}
22979 is a suitable multiple of 
22980 @texline @math{\pi i} 
22981 @infoline @expr{pi i}
22982 (as described above for the trigonometric functions), then
22983 @expr{@tfn{exp}(x)} or @expr{e^x} will be expanded.  Finally,
22984 @expr{@tfn{ln}(x)} is simplified to a form involving @code{pi} and
22985 @code{i} where @expr{x} is provably negative, positive imaginary, or
22986 negative imaginary. 
22988 The error functions @code{erf} and @code{erfc} are simplified when
22989 their arguments are negative-looking or are calls to the @code{conj}
22990 function.
22992 @tex
22993 \bigskip
22994 @end tex
22996 Equations and inequalities are simplified by cancelling factors
22997 of products, quotients, or sums on both sides.  Inequalities
22998 change sign if a negative multiplicative factor is cancelled.
22999 Non-constant multiplicative factors as in @expr{a b = a c} are
23000 cancelled from equations only if they are provably nonzero (generally
23001 because they were declared so; @pxref{Declarations}).  Factors
23002 are cancelled from inequalities only if they are nonzero and their
23003 sign is known.
23005 Simplification also replaces an equation or inequality with
23006 1 or 0 (``true'' or ``false'') if it can through the use of
23007 declarations.  If @expr{x} is declared to be an integer greater
23008 than 5, then @expr{x < 3}, @expr{x = 3}, and @expr{x = 7.5} are
23009 all simplified to 0, but @expr{x > 3} is simplified to 1.
23010 By a similar analysis, @expr{abs(x) >= 0} is simplified to 1,
23011 as is @expr{x^2 >= 0} if @expr{x} is known to be real.
23013 @node Unsafe Simplifications, Simplification of Units, Algebraic Simplifications, Simplifying Formulas
23014 @subsection ``Unsafe'' Simplifications
23016 @noindent
23017 @cindex Unsafe simplifications
23018 @cindex Extended simplification
23019 @kindex a e
23020 @pindex calc-simplify-extended
23021 @ignore
23022 @mindex esimpl@idots
23023 @end ignore
23024 @tindex esimplify
23025 The @kbd{a e} (@code{calc-simplify-extended}) [@code{esimplify}] command
23026 is like @kbd{a s}
23027 except that it applies some additional simplifications which are not
23028 ``safe'' in all cases.  Use this only if you know the values in your
23029 formula lie in the restricted ranges for which these simplifications
23030 are valid.  The symbolic integrator uses @kbd{a e};
23031 one effect of this is that the integrator's results must be used with
23032 caution.  Where an integral table will often attach conditions like
23033 ``for positive @expr{a} only,'' Calc (like most other symbolic
23034 integration programs) will simply produce an unqualified result.
23036 Because @kbd{a e}'s simplifications are unsafe, it is sometimes better
23037 to type @kbd{C-u -3 a v}, which does extended simplification only
23038 on the top level of the formula without affecting the sub-formulas.
23039 In fact, @kbd{C-u -3 j v} allows you to target extended simplification
23040 to any specific part of a formula.
23042 The variable @code{ExtSimpRules} contains rewrites to be applied by
23043 the @kbd{a e} command.  These are applied in addition to
23044 @code{EvalRules} and @code{AlgSimpRules}.  (The @kbd{a r AlgSimpRules}
23045 step described above is simply followed by an @kbd{a r ExtSimpRules} step.)
23047 Following is a complete list of ``unsafe'' simplifications performed
23048 by @kbd{a e}.
23050 @tex
23051 \bigskip
23052 @end tex
23054 Inverse trigonometric or hyperbolic functions, called with their
23055 corresponding non-inverse functions as arguments, are simplified
23056 by @kbd{a e}.  For example, @expr{@tfn{arcsin}(@tfn{sin}(x))} changes
23057 to @expr{x}.  Also, @expr{@tfn{arcsin}(@tfn{cos}(x))} and
23058 @expr{@tfn{arccos}(@tfn{sin}(x))} both change to @expr{@tfn{pi}/2 - x}.
23059 These simplifications are unsafe because they are valid only for
23060 values of @expr{x} in a certain range; outside that range, values
23061 are folded down to the 360-degree range that the inverse trigonometric
23062 functions always produce.
23064 Powers of powers @expr{(x^a)^b} are simplified to 
23065 @texline @math{x^{a b}}
23066 @infoline @expr{x^(a b)}
23067 for all @expr{a} and @expr{b}.  These results will be valid only
23068 in a restricted range of @expr{x}; for example, in 
23069 @texline @math{(x^2)^{1:2}}
23070 @infoline @expr{(x^2)^1:2}
23071 the powers cancel to get @expr{x}, which is valid for positive values
23072 of @expr{x} but not for negative or complex values.
23074 Similarly, @expr{@tfn{sqrt}(x^a)} and @expr{@tfn{sqrt}(x)^a} are both
23075 simplified (possibly unsafely) to 
23076 @texline @math{x^{a/2}}.
23077 @infoline @expr{x^(a/2)}.
23079 Forms like @expr{@tfn{sqrt}(1 - sin(x)^2)} are simplified to, e.g.,
23080 @expr{@tfn{cos}(x)}.  Calc has identities of this sort for @code{sin},
23081 @code{cos}, @code{tan}, @code{sinh}, and @code{cosh}.
23083 Arguments of square roots are partially factored to look for
23084 squared terms that can be extracted.  For example,
23085 @expr{@tfn{sqrt}(a^2 b^3 + a^3 b^2)} simplifies to 
23086 @expr{a b @tfn{sqrt}(a+b)}.
23088 The simplifications of @expr{@tfn{ln}(@tfn{exp}(x))},
23089 @expr{@tfn{ln}(@tfn{e}^x)}, and @expr{@tfn{log10}(10^x)} to @expr{x} are also
23090 unsafe because of problems with principal values (although these
23091 simplifications are safe if @expr{x} is known to be real).
23093 Common factors are cancelled from products on both sides of an
23094 equation, even if those factors may be zero:  @expr{a x / b x}
23095 to @expr{a / b}.  Such factors are never cancelled from
23096 inequalities:  Even @kbd{a e} is not bold enough to reduce
23097 @expr{a x < b x} to @expr{a < b} (or @expr{a > b}, depending
23098 on whether you believe @expr{x} is positive or negative).
23099 The @kbd{a M /} command can be used to divide a factor out of
23100 both sides of an inequality.
23102 @node Simplification of Units, , Unsafe Simplifications, Simplifying Formulas
23103 @subsection Simplification of Units
23105 @noindent
23106 The simplifications described in this section are applied by the
23107 @kbd{u s} (@code{calc-simplify-units}) command.  These are in addition
23108 to the regular @kbd{a s} (but not @kbd{a e}) simplifications described
23109 earlier.  @xref{Basic Operations on Units}.
23111 The variable @code{UnitSimpRules} contains rewrites to be applied by
23112 the @kbd{u s} command.  These are applied in addition to @code{EvalRules}
23113 and @code{AlgSimpRules}.
23115 Scalar mode is automatically put into effect when simplifying units.
23116 @xref{Matrix Mode}.
23118 Sums @expr{a + b} involving units are simplified by extracting the
23119 units of @expr{a} as if by the @kbd{u x} command (call the result
23120 @expr{u_a}), then simplifying the expression @expr{b / u_a}
23121 using @kbd{u b} and @kbd{u s}.  If the result has units then the sum
23122 is inconsistent and is left alone.  Otherwise, it is rewritten
23123 in terms of the units @expr{u_a}.
23125 If units auto-ranging mode is enabled, products or quotients in
23126 which the first argument is a number which is out of range for the
23127 leading unit are modified accordingly.
23129 When cancelling and combining units in products and quotients,
23130 Calc accounts for unit names that differ only in the prefix letter.
23131 For example, @samp{2 km m} is simplified to @samp{2000 m^2}.
23132 However, compatible but different units like @code{ft} and @code{in}
23133 are not combined in this way.
23135 Quotients @expr{a / b} are simplified in three additional ways.  First,
23136 if @expr{b} is a number or a product beginning with a number, Calc
23137 computes the reciprocal of this number and moves it to the numerator.
23139 Second, for each pair of unit names from the numerator and denominator
23140 of a quotient, if the units are compatible (e.g., they are both
23141 units of area) then they are replaced by the ratio between those
23142 units.  For example, in @samp{3 s in N / kg cm} the units
23143 @samp{in / cm} will be replaced by @expr{2.54}.
23145 Third, if the units in the quotient exactly cancel out, so that
23146 a @kbd{u b} command on the quotient would produce a dimensionless
23147 number for an answer, then the quotient simplifies to that number.
23149 For powers and square roots, the ``unsafe'' simplifications
23150 @expr{(a b)^c} to @expr{a^c b^c}, @expr{(a/b)^c} to @expr{a^c / b^c},
23151 and @expr{(a^b)^c} to 
23152 @texline @math{a^{b c}}
23153 @infoline @expr{a^(b c)} 
23154 are done if the powers are real numbers.  (These are safe in the context
23155 of units because all numbers involved can reasonably be assumed to be
23156 real.)
23158 Also, if a unit name is raised to a fractional power, and the
23159 base units in that unit name all occur to powers which are a
23160 multiple of the denominator of the power, then the unit name
23161 is expanded out into its base units, which can then be simplified
23162 according to the previous paragraph.  For example, @samp{acre^1.5}
23163 is simplified by noting that @expr{1.5 = 3:2}, that @samp{acre}
23164 is defined in terms of @samp{m^2}, and that the 2 in the power of
23165 @code{m} is a multiple of 2 in @expr{3:2}.  Thus, @code{acre^1.5} is
23166 replaced by approximately 
23167 @texline @math{(4046 m^2)^{1.5}}
23168 @infoline @expr{(4046 m^2)^1.5}, 
23169 which is then changed to 
23170 @texline @math{4046^{1.5} \, (m^2)^{1.5}},
23171 @infoline @expr{4046^1.5 (m^2)^1.5}, 
23172 then to @expr{257440 m^3}.
23174 The functions @code{float}, @code{frac}, @code{clean}, @code{abs},
23175 as well as @code{floor} and the other integer truncation functions,
23176 applied to unit names or products or quotients involving units, are
23177 simplified.  For example, @samp{round(1.6 in)} is changed to
23178 @samp{round(1.6) round(in)}; the lefthand term evaluates to 2,
23179 and the righthand term simplifies to @code{in}.
23181 The functions @code{sin}, @code{cos}, and @code{tan} with arguments
23182 that have angular units like @code{rad} or @code{arcmin} are
23183 simplified by converting to base units (radians), then evaluating
23184 with the angular mode temporarily set to radians.
23186 @node Polynomials, Calculus, Simplifying Formulas, Algebra
23187 @section Polynomials
23189 A @dfn{polynomial} is a sum of terms which are coefficients times
23190 various powers of a ``base'' variable.  For example, @expr{2 x^2 + 3 x - 4}
23191 is a polynomial in @expr{x}.  Some formulas can be considered
23192 polynomials in several different variables:  @expr{1 + 2 x + 3 y + 4 x y^2}
23193 is a polynomial in both @expr{x} and @expr{y}.  Polynomial coefficients
23194 are often numbers, but they may in general be any formulas not
23195 involving the base variable.
23197 @kindex a f
23198 @pindex calc-factor
23199 @tindex factor
23200 The @kbd{a f} (@code{calc-factor}) [@code{factor}] command factors a
23201 polynomial into a product of terms.  For example, the polynomial
23202 @expr{x^3 + 2 x^2 + x} is factored into @samp{x*(x+1)^2}.  As another
23203 example, @expr{a c + b d + b c + a d} is factored into the product
23204 @expr{(a + b) (c + d)}.
23206 Calc currently has three algorithms for factoring.  Formulas which are
23207 linear in several variables, such as the second example above, are
23208 merged according to the distributive law.  Formulas which are
23209 polynomials in a single variable, with constant integer or fractional
23210 coefficients, are factored into irreducible linear and/or quadratic
23211 terms.  The first example above factors into three linear terms
23212 (@expr{x}, @expr{x+1}, and @expr{x+1} again).  Finally, formulas
23213 which do not fit the above criteria are handled by the algebraic
23214 rewrite mechanism.
23216 Calc's polynomial factorization algorithm works by using the general
23217 root-finding command (@w{@kbd{a P}}) to solve for the roots of the
23218 polynomial.  It then looks for roots which are rational numbers
23219 or complex-conjugate pairs, and converts these into linear and
23220 quadratic terms, respectively.  Because it uses floating-point
23221 arithmetic, it may be unable to find terms that involve large
23222 integers (whose number of digits approaches the current precision).
23223 Also, irreducible factors of degree higher than quadratic are not
23224 found, and polynomials in more than one variable are not treated.
23225 (A more robust factorization algorithm may be included in a future
23226 version of Calc.)
23228 @vindex FactorRules
23229 @ignore
23230 @starindex
23231 @end ignore
23232 @tindex thecoefs
23233 @ignore
23234 @starindex
23235 @end ignore
23236 @ignore
23237 @mindex @idots
23238 @end ignore
23239 @tindex thefactors
23240 The rewrite-based factorization method uses rules stored in the variable
23241 @code{FactorRules}.  @xref{Rewrite Rules}, for a discussion of the
23242 operation of rewrite rules.  The default @code{FactorRules} are able
23243 to factor quadratic forms symbolically into two linear terms,
23244 @expr{(a x + b) (c x + d)}.  You can edit these rules to include other
23245 cases if you wish.  To use the rules, Calc builds the formula
23246 @samp{thecoefs(x, [a, b, c, ...])} where @code{x} is the polynomial
23247 base variable and @code{a}, @code{b}, etc., are polynomial coefficients
23248 (which may be numbers or formulas).  The constant term is written first,
23249 i.e., in the @code{a} position.  When the rules complete, they should have
23250 changed the formula into the form @samp{thefactors(x, [f1, f2, f3, ...])}
23251 where each @code{fi} should be a factored term, e.g., @samp{x - ai}.
23252 Calc then multiplies these terms together to get the complete
23253 factored form of the polynomial.  If the rules do not change the
23254 @code{thecoefs} call to a @code{thefactors} call, @kbd{a f} leaves the
23255 polynomial alone on the assumption that it is unfactorable.  (Note that
23256 the function names @code{thecoefs} and @code{thefactors} are used only
23257 as placeholders; there are no actual Calc functions by those names.)
23259 @kindex H a f
23260 @tindex factors
23261 The @kbd{H a f} [@code{factors}] command also factors a polynomial,
23262 but it returns a list of factors instead of an expression which is the
23263 product of the factors.  Each factor is represented by a sub-vector
23264 of the factor, and the power with which it appears.  For example,
23265 @expr{x^5 + x^4 - 33 x^3 + 63 x^2} factors to @expr{(x + 7) x^2 (x - 3)^2}
23266 in @kbd{a f}, or to @expr{[ [x, 2], [x+7, 1], [x-3, 2] ]} in @kbd{H a f}.
23267 If there is an overall numeric factor, it always comes first in the list.
23268 The functions @code{factor} and @code{factors} allow a second argument
23269 when written in algebraic form; @samp{factor(x,v)} factors @expr{x} with
23270 respect to the specific variable @expr{v}.  The default is to factor with
23271 respect to all the variables that appear in @expr{x}.
23273 @kindex a c
23274 @pindex calc-collect
23275 @tindex collect
23276 The @kbd{a c} (@code{calc-collect}) [@code{collect}] command rearranges a
23277 formula as a
23278 polynomial in a given variable, ordered in decreasing powers of that
23279 variable.  For example, given @expr{1 + 2 x + 3 y + 4 x y^2} on
23280 the stack, @kbd{a c x} would produce @expr{(2 + 4 y^2) x + (1 + 3 y)},
23281 and @kbd{a c y} would produce @expr{(4 x) y^2 + 3 y + (1 + 2 x)}.
23282 The polynomial will be expanded out using the distributive law as
23283 necessary:  Collecting @expr{x} in @expr{(x - 1)^3} produces
23284 @expr{x^3 - 3 x^2 + 3 x - 1}.  Terms not involving @expr{x} will
23285 not be expanded.
23287 The ``variable'' you specify at the prompt can actually be any
23288 expression: @kbd{a c ln(x+1)} will collect together all terms multiplied
23289 by @samp{ln(x+1)} or integer powers thereof.  If @samp{x} also appears
23290 in the formula in a context other than @samp{ln(x+1)}, @kbd{a c} will
23291 treat those occurrences as unrelated to @samp{ln(x+1)}, i.e., as constants.
23293 @kindex a x
23294 @pindex calc-expand
23295 @tindex expand
23296 The @kbd{a x} (@code{calc-expand}) [@code{expand}] command expands an
23297 expression by applying the distributive law everywhere.  It applies to
23298 products, quotients, and powers involving sums.  By default, it fully
23299 distributes all parts of the expression.  With a numeric prefix argument,
23300 the distributive law is applied only the specified number of times, then
23301 the partially expanded expression is left on the stack.
23303 The @kbd{a x} and @kbd{j D} commands are somewhat redundant.  Use
23304 @kbd{a x} if you want to expand all products of sums in your formula.
23305 Use @kbd{j D} if you want to expand a particular specified term of
23306 the formula.  There is an exactly analogous correspondence between
23307 @kbd{a f} and @kbd{j M}.  (The @kbd{j D} and @kbd{j M} commands
23308 also know many other kinds of expansions, such as
23309 @samp{exp(a + b) = exp(a) exp(b)}, which @kbd{a x} and @kbd{a f}
23310 do not do.)
23312 Calc's automatic simplifications will sometimes reverse a partial
23313 expansion.  For example, the first step in expanding @expr{(x+1)^3} is
23314 to write @expr{(x+1) (x+1)^2}.  If @kbd{a x} stops there and tries
23315 to put this formula onto the stack, though, Calc will automatically
23316 simplify it back to @expr{(x+1)^3} form.  The solution is to turn
23317 simplification off first (@pxref{Simplification Modes}), or to run
23318 @kbd{a x} without a numeric prefix argument so that it expands all
23319 the way in one step.
23321 @kindex a a
23322 @pindex calc-apart
23323 @tindex apart
23324 The @kbd{a a} (@code{calc-apart}) [@code{apart}] command expands a
23325 rational function by partial fractions.  A rational function is the
23326 quotient of two polynomials; @code{apart} pulls this apart into a
23327 sum of rational functions with simple denominators.  In algebraic
23328 notation, the @code{apart} function allows a second argument that
23329 specifies which variable to use as the ``base''; by default, Calc
23330 chooses the base variable automatically.
23332 @kindex a n
23333 @pindex calc-normalize-rat
23334 @tindex nrat
23335 The @kbd{a n} (@code{calc-normalize-rat}) [@code{nrat}] command
23336 attempts to arrange a formula into a quotient of two polynomials.
23337 For example, given @expr{1 + (a + b/c) / d}, the result would be
23338 @expr{(b + a c + c d) / c d}.  The quotient is reduced, so that
23339 @kbd{a n} will simplify @expr{(x^2 + 2x + 1) / (x^2 - 1)} by dividing
23340 out the common factor @expr{x + 1}, yielding @expr{(x + 1) / (x - 1)}.
23342 @kindex a \
23343 @pindex calc-poly-div
23344 @tindex pdiv
23345 The @kbd{a \} (@code{calc-poly-div}) [@code{pdiv}] command divides
23346 two polynomials @expr{u} and @expr{v}, yielding a new polynomial
23347 @expr{q}.  If several variables occur in the inputs, the inputs are
23348 considered multivariate polynomials.  (Calc divides by the variable
23349 with the largest power in @expr{u} first, or, in the case of equal
23350 powers, chooses the variables in alphabetical order.)  For example,
23351 dividing @expr{x^2 + 3 x + 2} by @expr{x + 2} yields @expr{x + 1}.
23352 The remainder from the division, if any, is reported at the bottom
23353 of the screen and is also placed in the Trail along with the quotient.
23355 Using @code{pdiv} in algebraic notation, you can specify the particular
23356 variable to be used as the base: @code{pdiv(@var{a},@var{b},@var{x})}.
23357 If @code{pdiv} is given only two arguments (as is always the case with
23358 the @kbd{a \} command), then it does a multivariate division as outlined
23359 above.
23361 @kindex a %
23362 @pindex calc-poly-rem
23363 @tindex prem
23364 The @kbd{a %} (@code{calc-poly-rem}) [@code{prem}] command divides
23365 two polynomials and keeps the remainder @expr{r}.  The quotient
23366 @expr{q} is discarded.  For any formulas @expr{a} and @expr{b}, the
23367 results of @kbd{a \} and @kbd{a %} satisfy @expr{a = q b + r}.
23368 (This is analogous to plain @kbd{\} and @kbd{%}, which compute the
23369 integer quotient and remainder from dividing two numbers.)
23371 @kindex a /
23372 @kindex H a /
23373 @pindex calc-poly-div-rem
23374 @tindex pdivrem
23375 @tindex pdivide
23376 The @kbd{a /} (@code{calc-poly-div-rem}) [@code{pdivrem}] command
23377 divides two polynomials and reports both the quotient and the
23378 remainder as a vector @expr{[q, r]}.  The @kbd{H a /} [@code{pdivide}]
23379 command divides two polynomials and constructs the formula
23380 @expr{q + r/b} on the stack.  (Naturally if the remainder is zero,
23381 this will immediately simplify to @expr{q}.)
23383 @kindex a g
23384 @pindex calc-poly-gcd
23385 @tindex pgcd
23386 The @kbd{a g} (@code{calc-poly-gcd}) [@code{pgcd}] command computes
23387 the greatest common divisor of two polynomials.  (The GCD actually
23388 is unique only to within a constant multiplier; Calc attempts to
23389 choose a GCD which will be unsurprising.)  For example, the @kbd{a n}
23390 command uses @kbd{a g} to take the GCD of the numerator and denominator
23391 of a quotient, then divides each by the result using @kbd{a \}.  (The
23392 definition of GCD ensures that this division can take place without
23393 leaving a remainder.)
23395 While the polynomials used in operations like @kbd{a /} and @kbd{a g}
23396 often have integer coefficients, this is not required.  Calc can also
23397 deal with polynomials over the rationals or floating-point reals.
23398 Polynomials with modulo-form coefficients are also useful in many
23399 applications; if you enter @samp{(x^2 + 3 x - 1) mod 5}, Calc
23400 automatically transforms this into a polynomial over the field of
23401 integers mod 5:  @samp{(1 mod 5) x^2 + (3 mod 5) x + (4 mod 5)}.
23403 Congratulations and thanks go to Ove Ewerlid
23404 (@code{ewerlid@@mizar.DoCS.UU.SE}), who contributed many of the
23405 polynomial routines used in the above commands.
23407 @xref{Decomposing Polynomials}, for several useful functions for
23408 extracting the individual coefficients of a polynomial.
23410 @node Calculus, Solving Equations, Polynomials, Algebra
23411 @section Calculus
23413 @noindent
23414 The following calculus commands do not automatically simplify their
23415 inputs or outputs using @code{calc-simplify}.  You may find it helps
23416 to do this by hand by typing @kbd{a s} or @kbd{a e}.  It may also help
23417 to use @kbd{a x} and/or @kbd{a c} to arrange a result in the most
23418 readable way.
23420 @menu
23421 * Differentiation::
23422 * Integration::
23423 * Customizing the Integrator::
23424 * Numerical Integration::
23425 * Taylor Series::
23426 @end menu
23428 @node Differentiation, Integration, Calculus, Calculus
23429 @subsection Differentiation
23431 @noindent
23432 @kindex a d
23433 @kindex H a d
23434 @pindex calc-derivative
23435 @tindex deriv
23436 @tindex tderiv
23437 The @kbd{a d} (@code{calc-derivative}) [@code{deriv}] command computes
23438 the derivative of the expression on the top of the stack with respect to
23439 some variable, which it will prompt you to enter.  Normally, variables
23440 in the formula other than the specified differentiation variable are
23441 considered constant, i.e., @samp{deriv(y,x)} is reduced to zero.  With
23442 the Hyperbolic flag, the @code{tderiv} (total derivative) operation is used
23443 instead, in which derivatives of variables are not reduced to zero
23444 unless those variables are known to be ``constant,'' i.e., independent
23445 of any other variables.  (The built-in special variables like @code{pi}
23446 are considered constant, as are variables that have been declared
23447 @code{const}; @pxref{Declarations}.)
23449 With a numeric prefix argument @var{n}, this command computes the
23450 @var{n}th derivative.
23452 When working with trigonometric functions, it is best to switch to
23453 Radians mode first (with @w{@kbd{m r}}).  The derivative of @samp{sin(x)}
23454 in degrees is @samp{(pi/180) cos(x)}, probably not the expected
23455 answer!
23457 If you use the @code{deriv} function directly in an algebraic formula,
23458 you can write @samp{deriv(f,x,x0)} which represents the derivative
23459 of @expr{f} with respect to @expr{x}, evaluated at the point 
23460 @texline @math{x=x_0}.
23461 @infoline @expr{x=x0}.
23463 If the formula being differentiated contains functions which Calc does
23464 not know, the derivatives of those functions are produced by adding
23465 primes (apostrophe characters).  For example, @samp{deriv(f(2x), x)}
23466 produces @samp{2 f'(2 x)}, where the function @code{f'} represents the
23467 derivative of @code{f}.
23469 For functions you have defined with the @kbd{Z F} command, Calc expands
23470 the functions according to their defining formulas unless you have
23471 also defined @code{f'} suitably.  For example, suppose we define
23472 @samp{sinc(x) = sin(x)/x} using @kbd{Z F}.  If we then differentiate
23473 the formula @samp{sinc(2 x)}, the formula will be expanded to
23474 @samp{sin(2 x) / (2 x)} and differentiated.  However, if we also
23475 define @samp{sinc'(x) = dsinc(x)}, say, then Calc will write the
23476 result as @samp{2 dsinc(2 x)}.  @xref{Algebraic Definitions}.
23478 For multi-argument functions @samp{f(x,y,z)}, the derivative with respect
23479 to the first argument is written @samp{f'(x,y,z)}; derivatives with
23480 respect to the other arguments are @samp{f'2(x,y,z)} and @samp{f'3(x,y,z)}.
23481 Various higher-order derivatives can be formed in the obvious way, e.g.,
23482 @samp{f'@var{}'(x)} (the second derivative of @code{f}) or
23483 @samp{f'@var{}'2'3(x,y,z)} (@code{f} differentiated with respect to each
23484 argument once).
23486 @node Integration, Customizing the Integrator, Differentiation, Calculus
23487 @subsection Integration
23489 @noindent
23490 @kindex a i
23491 @pindex calc-integral
23492 @tindex integ
23493 The @kbd{a i} (@code{calc-integral}) [@code{integ}] command computes the
23494 indefinite integral of the expression on the top of the stack with
23495 respect to a prompted-for variable.  The integrator is not guaranteed to
23496 work for all integrable functions, but it is able to integrate several
23497 large classes of formulas.  In particular, any polynomial or rational
23498 function (a polynomial divided by a polynomial) is acceptable.
23499 (Rational functions don't have to be in explicit quotient form, however; 
23500 @texline @math{x/(1+x^{-2})}
23501 @infoline @expr{x/(1+x^-2)}
23502 is not strictly a quotient of polynomials, but it is equivalent to
23503 @expr{x^3/(x^2+1)}, which is.)  Also, square roots of terms involving
23504 @expr{x} and @expr{x^2} may appear in rational functions being
23505 integrated.  Finally, rational functions involving trigonometric or
23506 hyperbolic functions can be integrated.
23508 With an argument (@kbd{C-u a i}), this command will compute the definite
23509 integral of the expression on top of the stack.  In this case, the
23510 command will again prompt for an integration variable, then prompt for a
23511 lower limit and an upper limit.
23513 @ifinfo
23514 If you use the @code{integ} function directly in an algebraic formula,
23515 you can also write @samp{integ(f,x,v)} which expresses the resulting
23516 indefinite integral in terms of variable @code{v} instead of @code{x}.
23517 With four arguments, @samp{integ(f(x),x,a,b)} represents a definite
23518 integral from @code{a} to @code{b}.
23519 @end ifinfo
23520 @tex
23521 If you use the @code{integ} function directly in an algebraic formula,
23522 you can also write @samp{integ(f,x,v)} which expresses the resulting
23523 indefinite integral in terms of variable @code{v} instead of @code{x}.
23524 With four arguments, @samp{integ(f(x),x,a,b)} represents a definite
23525 integral $\int_a^b f(x) \, dx$.
23526 @end tex
23528 Please note that the current implementation of Calc's integrator sometimes
23529 produces results that are significantly more complex than they need to
23530 be.  For example, the integral Calc finds for 
23531 @texline @math{1/(x+\sqrt{x^2+1})}
23532 @infoline @expr{1/(x+sqrt(x^2+1))}
23533 is several times more complicated than the answer Mathematica
23534 returns for the same input, although the two forms are numerically
23535 equivalent.  Also, any indefinite integral should be considered to have
23536 an arbitrary constant of integration added to it, although Calc does not
23537 write an explicit constant of integration in its result.  For example,
23538 Calc's solution for 
23539 @texline @math{1/(1+\tan x)}
23540 @infoline @expr{1/(1+tan(x))} 
23541 differs from the solution given in the @emph{CRC Math Tables} by a
23542 constant factor of  
23543 @texline @math{\pi i / 2}
23544 @infoline @expr{pi i / 2},
23545 due to a different choice of constant of integration.
23547 The Calculator remembers all the integrals it has done.  If conditions
23548 change in a way that would invalidate the old integrals, say, a switch
23549 from Degrees to Radians mode, then they will be thrown out.  If you
23550 suspect this is not happening when it should, use the
23551 @code{calc-flush-caches} command; @pxref{Caches}.
23553 @vindex IntegLimit
23554 Calc normally will pursue integration by substitution or integration by
23555 parts up to 3 nested times before abandoning an approach as fruitless.
23556 If the integrator is taking too long, you can lower this limit by storing
23557 a number (like 2) in the variable @code{IntegLimit}.  (The @kbd{s I}
23558 command is a convenient way to edit @code{IntegLimit}.)  If this variable
23559 has no stored value or does not contain a nonnegative integer, a limit
23560 of 3 is used.  The lower this limit is, the greater the chance that Calc
23561 will be unable to integrate a function it could otherwise handle.  Raising
23562 this limit allows the Calculator to solve more integrals, though the time
23563 it takes may grow exponentially.  You can monitor the integrator's actions
23564 by creating an Emacs buffer called @code{*Trace*}.  If such a buffer
23565 exists, the @kbd{a i} command will write a log of its actions there.
23567 If you want to manipulate integrals in a purely symbolic way, you can
23568 set the integration nesting limit to 0 to prevent all but fast
23569 table-lookup solutions of integrals.  You might then wish to define
23570 rewrite rules for integration by parts, various kinds of substitutions,
23571 and so on.  @xref{Rewrite Rules}.
23573 @node Customizing the Integrator, Numerical Integration, Integration, Calculus
23574 @subsection Customizing the Integrator
23576 @noindent
23577 @vindex IntegRules
23578 Calc has two built-in rewrite rules called @code{IntegRules} and
23579 @code{IntegAfterRules} which you can edit to define new integration
23580 methods.  @xref{Rewrite Rules}.  At each step of the integration process,
23581 Calc wraps the current integrand in a call to the fictitious function
23582 @samp{integtry(@var{expr},@var{var})}, where @var{expr} is the
23583 integrand and @var{var} is the integration variable.  If your rules
23584 rewrite this to be a plain formula (not a call to @code{integtry}), then
23585 Calc will use this formula as the integral of @var{expr}.  For example,
23586 the rule @samp{integtry(mysin(x),x) := -mycos(x)} would define a rule to
23587 integrate a function @code{mysin} that acts like the sine function.
23588 Then, putting @samp{4 mysin(2y+1)} on the stack and typing @kbd{a i y}
23589 will produce the integral @samp{-2 mycos(2y+1)}.  Note that Calc has
23590 automatically made various transformations on the integral to allow it
23591 to use your rule; integral tables generally give rules for
23592 @samp{mysin(a x + b)}, but you don't need to use this much generality
23593 in your @code{IntegRules}.
23595 @cindex Exponential integral Ei(x)
23596 @ignore
23597 @starindex
23598 @end ignore
23599 @tindex Ei
23600 As a more serious example, the expression @samp{exp(x)/x} cannot be
23601 integrated in terms of the standard functions, so the ``exponential
23602 integral'' function 
23603 @texline @math{{\rm Ei}(x)}
23604 @infoline @expr{Ei(x)} 
23605 was invented to describe it.
23606 We can get Calc to do this integral in terms of a made-up @code{Ei}
23607 function by adding the rule @samp{[integtry(exp(x)/x, x) := Ei(x)]}
23608 to @code{IntegRules}.  Now entering @samp{exp(2x)/x} on the stack
23609 and typing @kbd{a i x} yields @samp{Ei(2 x)}.  This new rule will
23610 work with Calc's various built-in integration methods (such as
23611 integration by substitution) to solve a variety of other problems
23612 involving @code{Ei}:  For example, now Calc will also be able to
23613 integrate @samp{exp(exp(x))} and @samp{ln(ln(x))} (to get @samp{Ei(exp(x))}
23614 and @samp{x ln(ln(x)) - Ei(ln(x))}, respectively).
23616 Your rule may do further integration by calling @code{integ}.  For
23617 example, @samp{integtry(twice(u),x) := twice(integ(u))} allows Calc
23618 to integrate @samp{twice(sin(x))} to get @samp{twice(-cos(x))}.
23619 Note that @code{integ} was called with only one argument.  This notation
23620 is allowed only within @code{IntegRules}; it means ``integrate this
23621 with respect to the same integration variable.''  If Calc is unable
23622 to integrate @code{u}, the integration that invoked @code{IntegRules}
23623 also fails.  Thus integrating @samp{twice(f(x))} fails, returning the
23624 unevaluated integral @samp{integ(twice(f(x)), x)}.  It is still valid
23625 to call @code{integ} with two or more arguments, however; in this case,
23626 if @code{u} is not integrable, @code{twice} itself will still be
23627 integrated:  If the above rule is changed to @samp{... := twice(integ(u,x))},
23628 then integrating @samp{twice(f(x))} will yield @samp{twice(integ(f(x),x))}.
23630 If a rule instead produces the formula @samp{integsubst(@var{sexpr},
23631 @var{svar})}, either replacing the top-level @code{integtry} call or
23632 nested anywhere inside the expression, then Calc will apply the
23633 substitution @samp{@var{u} = @var{sexpr}(@var{svar})} to try to
23634 integrate the original @var{expr}.  For example, the rule
23635 @samp{sqrt(a) := integsubst(sqrt(x),x)} says that if Calc ever finds
23636 a square root in the integrand, it should attempt the substitution
23637 @samp{u = sqrt(x)}.  (This particular rule is unnecessary because
23638 Calc always tries ``obvious'' substitutions where @var{sexpr} actually
23639 appears in the integrand.)  The variable @var{svar} may be the same
23640 as the @var{var} that appeared in the call to @code{integtry}, but
23641 it need not be.
23643 When integrating according to an @code{integsubst}, Calc uses the
23644 equation solver to find the inverse of @var{sexpr} (if the integrand
23645 refers to @var{var} anywhere except in subexpressions that exactly
23646 match @var{sexpr}).  It uses the differentiator to find the derivative
23647 of @var{sexpr} and/or its inverse (it has two methods that use one
23648 derivative or the other).  You can also specify these items by adding
23649 extra arguments to the @code{integsubst} your rules construct; the
23650 general form is @samp{integsubst(@var{sexpr}, @var{svar}, @var{sinv},
23651 @var{sprime})}, where @var{sinv} is the inverse of @var{sexpr} (still
23652 written as a function of @var{svar}), and @var{sprime} is the
23653 derivative of @var{sexpr} with respect to @var{svar}.  If you don't
23654 specify these things, and Calc is not able to work them out on its
23655 own with the information it knows, then your substitution rule will
23656 work only in very specific, simple cases.
23658 Calc applies @code{IntegRules} as if by @kbd{C-u 1 a r IntegRules};
23659 in other words, Calc stops rewriting as soon as any rule in your rule
23660 set succeeds.  (If it weren't for this, the @samp{integsubst(sqrt(x),x)}
23661 example above would keep on adding layers of @code{integsubst} calls
23662 forever!)
23664 @vindex IntegSimpRules
23665 Another set of rules, stored in @code{IntegSimpRules}, are applied
23666 every time the integrator uses @kbd{a s} to simplify an intermediate
23667 result.  For example, putting the rule @samp{twice(x) := 2 x} into
23668 @code{IntegSimpRules} would tell Calc to convert the @code{twice}
23669 function into a form it knows whenever integration is attempted.
23671 One more way to influence the integrator is to define a function with
23672 the @kbd{Z F} command (@pxref{Algebraic Definitions}).  Calc's
23673 integrator automatically expands such functions according to their
23674 defining formulas, even if you originally asked for the function to
23675 be left unevaluated for symbolic arguments.  (Certain other Calc
23676 systems, such as the differentiator and the equation solver, also
23677 do this.)
23679 @vindex IntegAfterRules
23680 Sometimes Calc is able to find a solution to your integral, but it
23681 expresses the result in a way that is unnecessarily complicated.  If
23682 this happens, you can either use @code{integsubst} as described
23683 above to try to hint at a more direct path to the desired result, or
23684 you can use @code{IntegAfterRules}.  This is an extra rule set that
23685 runs after the main integrator returns its result; basically, Calc does
23686 an @kbd{a r IntegAfterRules} on the result before showing it to you.
23687 (It also does an @kbd{a s}, without @code{IntegSimpRules}, after that
23688 to further simplify the result.)  For example, Calc's integrator
23689 sometimes produces expressions of the form @samp{ln(1+x) - ln(1-x)};
23690 the default @code{IntegAfterRules} rewrite this into the more readable
23691 form @samp{2 arctanh(x)}.  Note that, unlike @code{IntegRules},
23692 @code{IntegSimpRules} and @code{IntegAfterRules} are applied any number
23693 of times until no further changes are possible.  Rewriting by
23694 @code{IntegAfterRules} occurs only after the main integrator has
23695 finished, not at every step as for @code{IntegRules} and
23696 @code{IntegSimpRules}.
23698 @node Numerical Integration, Taylor Series, Customizing the Integrator, Calculus
23699 @subsection Numerical Integration
23701 @noindent
23702 @kindex a I
23703 @pindex calc-num-integral
23704 @tindex ninteg
23705 If you want a purely numerical answer to an integration problem, you can
23706 use the @kbd{a I} (@code{calc-num-integral}) [@code{ninteg}] command.  This
23707 command prompts for an integration variable, a lower limit, and an
23708 upper limit.  Except for the integration variable, all other variables
23709 that appear in the integrand formula must have stored values.  (A stored
23710 value, if any, for the integration variable itself is ignored.)
23712 Numerical integration works by evaluating your formula at many points in
23713 the specified interval.  Calc uses an ``open Romberg'' method; this means
23714 that it does not evaluate the formula actually at the endpoints (so that
23715 it is safe to integrate @samp{sin(x)/x} from zero, for example).  Also,
23716 the Romberg method works especially well when the function being
23717 integrated is fairly smooth.  If the function is not smooth, Calc will
23718 have to evaluate it at quite a few points before it can accurately
23719 determine the value of the integral.
23721 Integration is much faster when the current precision is small.  It is
23722 best to set the precision to the smallest acceptable number of digits
23723 before you use @kbd{a I}.  If Calc appears to be taking too long, press
23724 @kbd{C-g} to halt it and try a lower precision.  If Calc still appears
23725 to need hundreds of evaluations, check to make sure your function is
23726 well-behaved in the specified interval.
23728 It is possible for the lower integration limit to be @samp{-inf} (minus
23729 infinity).  Likewise, the upper limit may be plus infinity.  Calc
23730 internally transforms the integral into an equivalent one with finite
23731 limits.  However, integration to or across singularities is not supported:
23732 The integral of @samp{1/sqrt(x)} from 0 to 1 exists (it can be found
23733 by Calc's symbolic integrator, for example), but @kbd{a I} will fail
23734 because the integrand goes to infinity at one of the endpoints.
23736 @node Taylor Series, , Numerical Integration, Calculus
23737 @subsection Taylor Series
23739 @noindent
23740 @kindex a t
23741 @pindex calc-taylor
23742 @tindex taylor
23743 The @kbd{a t} (@code{calc-taylor}) [@code{taylor}] command computes a
23744 power series expansion or Taylor series of a function.  You specify the
23745 variable and the desired number of terms.  You may give an expression of
23746 the form @samp{@var{var} = @var{a}} or @samp{@var{var} - @var{a}} instead
23747 of just a variable to produce a Taylor expansion about the point @var{a}.
23748 You may specify the number of terms with a numeric prefix argument;
23749 otherwise the command will prompt you for the number of terms.  Note that
23750 many series expansions have coefficients of zero for some terms, so you
23751 may appear to get fewer terms than you asked for.
23753 If the @kbd{a i} command is unable to find a symbolic integral for a
23754 function, you can get an approximation by integrating the function's
23755 Taylor series.
23757 @node Solving Equations, Numerical Solutions, Calculus, Algebra
23758 @section Solving Equations
23760 @noindent
23761 @kindex a S
23762 @pindex calc-solve-for
23763 @tindex solve
23764 @cindex Equations, solving
23765 @cindex Solving equations
23766 The @kbd{a S} (@code{calc-solve-for}) [@code{solve}] command rearranges
23767 an equation to solve for a specific variable.  An equation is an
23768 expression of the form @expr{L = R}.  For example, the command @kbd{a S x}
23769 will rearrange @expr{y = 3x + 6} to the form, @expr{x = y/3 - 2}.  If the
23770 input is not an equation, it is treated like an equation of the
23771 form @expr{X = 0}.
23773 This command also works for inequalities, as in @expr{y < 3x + 6}.
23774 Some inequalities cannot be solved where the analogous equation could
23775 be; for example, solving 
23776 @texline @math{a < b \, c}
23777 @infoline @expr{a < b c} 
23778 for @expr{b} is impossible
23779 without knowing the sign of @expr{c}.  In this case, @kbd{a S} will
23780 produce the result 
23781 @texline @math{b \mathbin{\hbox{\code{!=}}} a/c}
23782 @infoline @expr{b != a/c} 
23783 (using the not-equal-to operator) to signify that the direction of the
23784 inequality is now unknown.  The inequality 
23785 @texline @math{a \le b \, c}
23786 @infoline @expr{a <= b c} 
23787 is not even partially solved.  @xref{Declarations}, for a way to tell
23788 Calc that the signs of the variables in a formula are in fact known.
23790 Two useful commands for working with the result of @kbd{a S} are
23791 @kbd{a .} (@pxref{Logical Operations}), which converts @expr{x = y/3 - 2}
23792 to @expr{y/3 - 2}, and @kbd{s l} (@pxref{Let Command}) which evaluates
23793 another formula with @expr{x} set equal to @expr{y/3 - 2}.
23795 @menu
23796 * Multiple Solutions::
23797 * Solving Systems of Equations::
23798 * Decomposing Polynomials::
23799 @end menu
23801 @node Multiple Solutions, Solving Systems of Equations, Solving Equations, Solving Equations
23802 @subsection Multiple Solutions
23804 @noindent
23805 @kindex H a S
23806 @tindex fsolve
23807 Some equations have more than one solution.  The Hyperbolic flag
23808 (@code{H a S}) [@code{fsolve}] tells the solver to report the fully
23809 general family of solutions.  It will invent variables @code{n1},
23810 @code{n2}, @dots{}, which represent independent arbitrary integers, and
23811 @code{s1}, @code{s2}, @dots{}, which represent independent arbitrary
23812 signs (either @mathit{+1} or @mathit{-1}).  If you don't use the Hyperbolic
23813 flag, Calc will use zero in place of all arbitrary integers, and plus
23814 one in place of all arbitrary signs.  Note that variables like @code{n1}
23815 and @code{s1} are not given any special interpretation in Calc except by
23816 the equation solver itself.  As usual, you can use the @w{@kbd{s l}}
23817 (@code{calc-let}) command to obtain solutions for various actual values
23818 of these variables.
23820 For example, @kbd{' x^2 = y @key{RET} H a S x @key{RET}} solves to
23821 get @samp{x = s1 sqrt(y)}, indicating that the two solutions to the
23822 equation are @samp{sqrt(y)} and @samp{-sqrt(y)}.  Another way to
23823 think about it is that the square-root operation is really a
23824 two-valued function; since every Calc function must return a
23825 single result, @code{sqrt} chooses to return the positive result.
23826 Then @kbd{H a S} doctors this result using @code{s1} to indicate
23827 the full set of possible values of the mathematical square-root.
23829 There is a similar phenomenon going the other direction:  Suppose
23830 we solve @samp{sqrt(y) = x} for @code{y}.  Calc squares both sides
23831 to get @samp{y = x^2}.  This is correct, except that it introduces
23832 some dubious solutions.  Consider solving @samp{sqrt(y) = -3}:
23833 Calc will report @expr{y = 9} as a valid solution, which is true
23834 in the mathematical sense of square-root, but false (there is no
23835 solution) for the actual Calc positive-valued @code{sqrt}.  This
23836 happens for both @kbd{a S} and @kbd{H a S}.
23838 @cindex @code{GenCount} variable
23839 @vindex GenCount
23840 @ignore
23841 @starindex
23842 @end ignore
23843 @tindex an
23844 @ignore
23845 @starindex
23846 @end ignore
23847 @tindex as
23848 If you store a positive integer in the Calc variable @code{GenCount},
23849 then Calc will generate formulas of the form @samp{as(@var{n})} for
23850 arbitrary signs, and @samp{an(@var{n})} for arbitrary integers,
23851 where @var{n} represents successive values taken by incrementing
23852 @code{GenCount} by one.  While the normal arbitrary sign and
23853 integer symbols start over at @code{s1} and @code{n1} with each
23854 new Calc command, the @code{GenCount} approach will give each
23855 arbitrary value a name that is unique throughout the entire Calc
23856 session.  Also, the arbitrary values are function calls instead
23857 of variables, which is advantageous in some cases.  For example,
23858 you can make a rewrite rule that recognizes all arbitrary signs
23859 using a pattern like @samp{as(n)}.  The @kbd{s l} command only works
23860 on variables, but you can use the @kbd{a b} (@code{calc-substitute})
23861 command to substitute actual values for function calls like @samp{as(3)}.
23863 The @kbd{s G} (@code{calc-edit-GenCount}) command is a convenient
23864 way to create or edit this variable.  Press @kbd{C-c C-c} to finish.
23866 If you have not stored a value in @code{GenCount}, or if the value
23867 in that variable is not a positive integer, the regular
23868 @code{s1}/@code{n1} notation is used.
23870 @kindex I a S
23871 @kindex H I a S
23872 @tindex finv
23873 @tindex ffinv
23874 With the Inverse flag, @kbd{I a S} [@code{finv}] treats the expression
23875 on top of the stack as a function of the specified variable and solves
23876 to find the inverse function, written in terms of the same variable.
23877 For example, @kbd{I a S x} inverts @expr{2x + 6} to @expr{x/2 - 3}.
23878 You can use both Inverse and Hyperbolic [@code{ffinv}] to obtain a
23879 fully general inverse, as described above.
23881 @kindex a P
23882 @pindex calc-poly-roots
23883 @tindex roots
23884 Some equations, specifically polynomials, have a known, finite number
23885 of solutions.  The @kbd{a P} (@code{calc-poly-roots}) [@code{roots}]
23886 command uses @kbd{H a S} to solve an equation in general form, then, for
23887 all arbitrary-sign variables like @code{s1}, and all arbitrary-integer
23888 variables like @code{n1} for which @code{n1} only usefully varies over
23889 a finite range, it expands these variables out to all their possible
23890 values.  The results are collected into a vector, which is returned.
23891 For example, @samp{roots(x^4 = 1, x)} returns the four solutions
23892 @samp{[1, -1, (0, 1), (0, -1)]}.  Generally an @var{n}th degree
23893 polynomial will always have @var{n} roots on the complex plane.
23894 (If you have given a @code{real} declaration for the solution
23895 variable, then only the real-valued solutions, if any, will be
23896 reported; @pxref{Declarations}.)
23898 Note that because @kbd{a P} uses @kbd{H a S}, it is able to deliver
23899 symbolic solutions if the polynomial has symbolic coefficients.  Also
23900 note that Calc's solver is not able to get exact symbolic solutions
23901 to all polynomials.  Polynomials containing powers up to @expr{x^4}
23902 can always be solved exactly; polynomials of higher degree sometimes
23903 can be:  @expr{x^6 + x^3 + 1} is converted to @expr{(x^3)^2 + (x^3) + 1},
23904 which can be solved for @expr{x^3} using the quadratic equation, and then
23905 for @expr{x} by taking cube roots.  But in many cases, like
23906 @expr{x^6 + x + 1}, Calc does not know how to rewrite the polynomial
23907 into a form it can solve.  The @kbd{a P} command can still deliver a
23908 list of numerical roots, however, provided that Symbolic mode (@kbd{m s})
23909 is not turned on.  (If you work with Symbolic mode on, recall that the
23910 @kbd{N} (@code{calc-eval-num}) key is a handy way to reevaluate the
23911 formula on the stack with Symbolic mode temporarily off.)  Naturally,
23912 @kbd{a P} can only provide numerical roots if the polynomial coefficients
23913 are all numbers (real or complex).
23915 @node Solving Systems of Equations, Decomposing Polynomials, Multiple Solutions, Solving Equations
23916 @subsection Solving Systems of Equations
23918 @noindent
23919 @cindex Systems of equations, symbolic
23920 You can also use the commands described above to solve systems of
23921 simultaneous equations.  Just create a vector of equations, then
23922 specify a vector of variables for which to solve.  (You can omit
23923 the surrounding brackets when entering the vector of variables
23924 at the prompt.)
23926 For example, putting @samp{[x + y = a, x - y = b]} on the stack
23927 and typing @kbd{a S x,y @key{RET}} produces the vector of solutions
23928 @samp{[x = a - (a-b)/2, y = (a-b)/2]}.  The result vector will
23929 have the same length as the variables vector, and the variables
23930 will be listed in the same order there.  Note that the solutions
23931 are not always simplified as far as possible; the solution for
23932 @expr{x} here could be improved by an application of the @kbd{a n}
23933 command.
23935 Calc's algorithm works by trying to eliminate one variable at a
23936 time by solving one of the equations for that variable and then
23937 substituting into the other equations.  Calc will try all the
23938 possibilities, but you can speed things up by noting that Calc
23939 first tries to eliminate the first variable with the first
23940 equation, then the second variable with the second equation,
23941 and so on.  It also helps to put the simpler (e.g., more linear)
23942 equations toward the front of the list.  Calc's algorithm will
23943 solve any system of linear equations, and also many kinds of
23944 nonlinear systems.
23946 @ignore
23947 @starindex
23948 @end ignore
23949 @tindex elim
23950 Normally there will be as many variables as equations.  If you
23951 give fewer variables than equations (an ``over-determined'' system
23952 of equations), Calc will find a partial solution.  For example,
23953 typing @kbd{a S y @key{RET}} with the above system of equations
23954 would produce @samp{[y = a - x]}.  There are now several ways to
23955 express this solution in terms of the original variables; Calc uses
23956 the first one that it finds.  You can control the choice by adding
23957 variable specifiers of the form @samp{elim(@var{v})} to the
23958 variables list.  This says that @var{v} should be eliminated from
23959 the equations; the variable will not appear at all in the solution.
23960 For example, typing @kbd{a S y,elim(x)} would yield
23961 @samp{[y = a - (b+a)/2]}.
23963 If the variables list contains only @code{elim} specifiers,
23964 Calc simply eliminates those variables from the equations
23965 and then returns the resulting set of equations.  For example,
23966 @kbd{a S elim(x)} produces @samp{[a - 2 y = b]}.  Every variable
23967 eliminated will reduce the number of equations in the system
23968 by one.
23970 Again, @kbd{a S} gives you one solution to the system of
23971 equations.  If there are several solutions, you can use @kbd{H a S}
23972 to get a general family of solutions, or, if there is a finite
23973 number of solutions, you can use @kbd{a P} to get a list.  (In
23974 the latter case, the result will take the form of a matrix where
23975 the rows are different solutions and the columns correspond to the
23976 variables you requested.)
23978 Another way to deal with certain kinds of overdetermined systems of
23979 equations is the @kbd{a F} command, which does least-squares fitting
23980 to satisfy the equations.  @xref{Curve Fitting}.
23982 @node Decomposing Polynomials, , Solving Systems of Equations, Solving Equations
23983 @subsection Decomposing Polynomials
23985 @noindent
23986 @ignore
23987 @starindex
23988 @end ignore
23989 @tindex poly
23990 The @code{poly} function takes a polynomial and a variable as
23991 arguments, and returns a vector of polynomial coefficients (constant
23992 coefficient first).  For example, @samp{poly(x^3 + 2 x, x)} returns
23993 @expr{[0, 2, 0, 1]}.  If the input is not a polynomial in @expr{x},
23994 the call to @code{poly} is left in symbolic form.  If the input does
23995 not involve the variable @expr{x}, the input is returned in a list
23996 of length one, representing a polynomial with only a constant
23997 coefficient.  The call @samp{poly(x, x)} returns the vector @expr{[0, 1]}.
23998 The last element of the returned vector is guaranteed to be nonzero;
23999 note that @samp{poly(0, x)} returns the empty vector @expr{[]}.
24000 Note also that @expr{x} may actually be any formula; for example,
24001 @samp{poly(sin(x)^2 - sin(x) + 3, sin(x))} returns @expr{[3, -1, 1]}.
24003 @cindex Coefficients of polynomial
24004 @cindex Degree of polynomial
24005 To get the @expr{x^k} coefficient of polynomial @expr{p}, use
24006 @samp{poly(p, x)_(k+1)}.  To get the degree of polynomial @expr{p},
24007 use @samp{vlen(poly(p, x)) - 1}.  For example, @samp{poly((x+1)^4, x)}
24008 returns @samp{[1, 4, 6, 4, 1]}, so @samp{poly((x+1)^4, x)_(2+1)}
24009 gives the @expr{x^2} coefficient of this polynomial, 6.
24011 @ignore
24012 @starindex
24013 @end ignore
24014 @tindex gpoly
24015 One important feature of the solver is its ability to recognize
24016 formulas which are ``essentially'' polynomials.  This ability is
24017 made available to the user through the @code{gpoly} function, which
24018 is used just like @code{poly}:  @samp{gpoly(@var{expr}, @var{var})}.
24019 If @var{expr} is a polynomial in some term which includes @var{var}, then
24020 this function will return a vector @samp{[@var{x}, @var{c}, @var{a}]}
24021 where @var{x} is the term that depends on @var{var}, @var{c} is a
24022 vector of polynomial coefficients (like the one returned by @code{poly}),
24023 and @var{a} is a multiplier which is usually 1.  Basically,
24024 @samp{@var{expr} = @var{a}*(@var{c}_1 + @var{c}_2 @var{x} +
24025 @var{c}_3 @var{x}^2 + ...)}.  The last element of @var{c} is
24026 guaranteed to be non-zero, and @var{c} will not equal @samp{[1]}
24027 (i.e., the trivial decomposition @var{expr} = @var{x} is not
24028 considered a polynomial).  One side effect is that @samp{gpoly(x, x)}
24029 and @samp{gpoly(6, x)}, both of which might be expected to recognize
24030 their arguments as polynomials, will not because the decomposition
24031 is considered trivial.
24033 For example, @samp{gpoly((x-2)^2, x)} returns @samp{[x, [4, -4, 1], 1]},
24034 since the expanded form of this polynomial is @expr{4 - 4 x + x^2}.
24036 The term @var{x} may itself be a polynomial in @var{var}.  This is
24037 done to reduce the size of the @var{c} vector.  For example,
24038 @samp{gpoly(x^4 + x^2 - 1, x)} returns @samp{[x^2, [-1, 1, 1], 1]},
24039 since a quadratic polynomial in @expr{x^2} is easier to solve than
24040 a quartic polynomial in @expr{x}.
24042 A few more examples of the kinds of polynomials @code{gpoly} can
24043 discover:
24045 @smallexample
24046 sin(x) - 1               [sin(x), [-1, 1], 1]
24047 x + 1/x - 1              [x, [1, -1, 1], 1/x]
24048 x + 1/x                  [x^2, [1, 1], 1/x]
24049 x^3 + 2 x                [x^2, [2, 1], x]
24050 x + x^2:3 + sqrt(x)      [x^1:6, [1, 1, 0, 1], x^1:2]
24051 x^(2a) + 2 x^a + 5       [x^a, [5, 2, 1], 1]
24052 (exp(-x) + exp(x)) / 2   [e^(2 x), [0.5, 0.5], e^-x]
24053 @end smallexample
24055 The @code{poly} and @code{gpoly} functions accept a third integer argument
24056 which specifies the largest degree of polynomial that is acceptable.
24057 If this is @expr{n}, then only @var{c} vectors of length @expr{n+1}
24058 or less will be returned.  Otherwise, the @code{poly} or @code{gpoly}
24059 call will remain in symbolic form.  For example, the equation solver
24060 can handle quartics and smaller polynomials, so it calls
24061 @samp{gpoly(@var{expr}, @var{var}, 4)} to discover whether @var{expr}
24062 can be treated by its linear, quadratic, cubic, or quartic formulas.
24064 @ignore
24065 @starindex
24066 @end ignore
24067 @tindex pdeg
24068 The @code{pdeg} function computes the degree of a polynomial;
24069 @samp{pdeg(p,x)} is the highest power of @code{x} that appears in
24070 @code{p}.  This is the same as @samp{vlen(poly(p,x))-1}, but is
24071 much more efficient.  If @code{p} is constant with respect to @code{x},
24072 then @samp{pdeg(p,x) = 0}.  If @code{p} is not a polynomial in @code{x}
24073 (e.g., @samp{pdeg(2 cos(x), x)}, the function remains unevaluated.
24074 It is possible to omit the second argument @code{x}, in which case
24075 @samp{pdeg(p)} returns the highest total degree of any term of the
24076 polynomial, counting all variables that appear in @code{p}.  Note
24077 that @code{pdeg(c) = pdeg(c,x) = 0} for any nonzero constant @code{c};
24078 the degree of the constant zero is considered to be @code{-inf}
24079 (minus infinity).
24081 @ignore
24082 @starindex
24083 @end ignore
24084 @tindex plead
24085 The @code{plead} function finds the leading term of a polynomial.
24086 Thus @samp{plead(p,x)} is equivalent to @samp{poly(p,x)_vlen(poly(p,x))},
24087 though again more efficient.  In particular, @samp{plead((2x+1)^10, x)}
24088 returns 1024 without expanding out the list of coefficients.  The
24089 value of @code{plead(p,x)} will be zero only if @expr{p = 0}.
24091 @ignore
24092 @starindex
24093 @end ignore
24094 @tindex pcont
24095 The @code{pcont} function finds the @dfn{content} of a polynomial.  This
24096 is the greatest common divisor of all the coefficients of the polynomial.
24097 With two arguments, @code{pcont(p,x)} effectively uses @samp{poly(p,x)}
24098 to get a list of coefficients, then uses @code{pgcd} (the polynomial
24099 GCD function) to combine these into an answer.  For example,
24100 @samp{pcont(4 x y^2 + 6 x^2 y, x)} is @samp{2 y}.  The content is
24101 basically the ``biggest'' polynomial that can be divided into @code{p}
24102 exactly.  The sign of the content is the same as the sign of the leading
24103 coefficient.
24105 With only one argument, @samp{pcont(p)} computes the numerical
24106 content of the polynomial, i.e., the @code{gcd} of the numerical
24107 coefficients of all the terms in the formula.  Note that @code{gcd}
24108 is defined on rational numbers as well as integers; it computes
24109 the @code{gcd} of the numerators and the @code{lcm} of the
24110 denominators.  Thus @samp{pcont(4:3 x y^2 + 6 x^2 y)} returns 2:3.
24111 Dividing the polynomial by this number will clear all the
24112 denominators, as well as dividing by any common content in the
24113 numerators.  The numerical content of a polynomial is negative only
24114 if all the coefficients in the polynomial are negative.
24116 @ignore
24117 @starindex
24118 @end ignore
24119 @tindex pprim
24120 The @code{pprim} function finds the @dfn{primitive part} of a
24121 polynomial, which is simply the polynomial divided (using @code{pdiv}
24122 if necessary) by its content.  If the input polynomial has rational
24123 coefficients, the result will have integer coefficients in simplest
24124 terms.
24126 @node Numerical Solutions, Curve Fitting, Solving Equations, Algebra
24127 @section Numerical Solutions
24129 @noindent
24130 Not all equations can be solved symbolically.  The commands in this
24131 section use numerical algorithms that can find a solution to a specific
24132 instance of an equation to any desired accuracy.  Note that the
24133 numerical commands are slower than their algebraic cousins; it is a
24134 good idea to try @kbd{a S} before resorting to these commands.
24136 (@xref{Curve Fitting}, for some other, more specialized, operations
24137 on numerical data.)
24139 @menu
24140 * Root Finding::
24141 * Minimization::
24142 * Numerical Systems of Equations::
24143 @end menu
24145 @node Root Finding, Minimization, Numerical Solutions, Numerical Solutions
24146 @subsection Root Finding
24148 @noindent
24149 @kindex a R
24150 @pindex calc-find-root
24151 @tindex root
24152 @cindex Newton's method
24153 @cindex Roots of equations
24154 @cindex Numerical root-finding
24155 The @kbd{a R} (@code{calc-find-root}) [@code{root}] command finds a
24156 numerical solution (or @dfn{root}) of an equation.  (This command treats
24157 inequalities the same as equations.  If the input is any other kind
24158 of formula, it is interpreted as an equation of the form @expr{X = 0}.)
24160 The @kbd{a R} command requires an initial guess on the top of the
24161 stack, and a formula in the second-to-top position.  It prompts for a
24162 solution variable, which must appear in the formula.  All other variables
24163 that appear in the formula must have assigned values, i.e., when
24164 a value is assigned to the solution variable and the formula is
24165 evaluated with @kbd{=}, it should evaluate to a number.  Any assigned
24166 value for the solution variable itself is ignored and unaffected by
24167 this command.
24169 When the command completes, the initial guess is replaced on the stack
24170 by a vector of two numbers:  The value of the solution variable that
24171 solves the equation, and the difference between the lefthand and
24172 righthand sides of the equation at that value.  Ordinarily, the second
24173 number will be zero or very nearly zero.  (Note that Calc uses a
24174 slightly higher precision while finding the root, and thus the second
24175 number may be slightly different from the value you would compute from
24176 the equation yourself.)
24178 The @kbd{v h} (@code{calc-head}) command is a handy way to extract
24179 the first element of the result vector, discarding the error term.
24181 The initial guess can be a real number, in which case Calc searches
24182 for a real solution near that number, or a complex number, in which
24183 case Calc searches the whole complex plane near that number for a
24184 solution, or it can be an interval form which restricts the search
24185 to real numbers inside that interval.
24187 Calc tries to use @kbd{a d} to take the derivative of the equation.
24188 If this succeeds, it uses Newton's method.  If the equation is not
24189 differentiable Calc uses a bisection method.  (If Newton's method
24190 appears to be going astray, Calc switches over to bisection if it
24191 can, or otherwise gives up.  In this case it may help to try again
24192 with a slightly different initial guess.)  If the initial guess is a
24193 complex number, the function must be differentiable.
24195 If the formula (or the difference between the sides of an equation)
24196 is negative at one end of the interval you specify and positive at
24197 the other end, the root finder is guaranteed to find a root.
24198 Otherwise, Calc subdivides the interval into small parts looking for
24199 positive and negative values to bracket the root.  When your guess is
24200 an interval, Calc will not look outside that interval for a root.
24202 @kindex H a R
24203 @tindex wroot
24204 The @kbd{H a R} [@code{wroot}] command is similar to @kbd{a R}, except
24205 that if the initial guess is an interval for which the function has
24206 the same sign at both ends, then rather than subdividing the interval
24207 Calc attempts to widen it to enclose a root.  Use this mode if
24208 you are not sure if the function has a root in your interval.
24210 If the function is not differentiable, and you give a simple number
24211 instead of an interval as your initial guess, Calc uses this widening
24212 process even if you did not type the Hyperbolic flag.  (If the function
24213 @emph{is} differentiable, Calc uses Newton's method which does not
24214 require a bounding interval in order to work.)
24216 If Calc leaves the @code{root} or @code{wroot} function in symbolic
24217 form on the stack, it will normally display an explanation for why
24218 no root was found.  If you miss this explanation, press @kbd{w}
24219 (@code{calc-why}) to get it back.
24221 @node Minimization, Numerical Systems of Equations, Root Finding, Numerical Solutions
24222 @subsection Minimization
24224 @noindent
24225 @kindex a N
24226 @kindex H a N
24227 @kindex a X
24228 @kindex H a X
24229 @pindex calc-find-minimum
24230 @pindex calc-find-maximum
24231 @tindex minimize
24232 @tindex maximize
24233 @cindex Minimization, numerical
24234 The @kbd{a N} (@code{calc-find-minimum}) [@code{minimize}] command
24235 finds a minimum value for a formula.  It is very similar in operation
24236 to @kbd{a R} (@code{calc-find-root}):  You give the formula and an initial
24237 guess on the stack, and are prompted for the name of a variable.  The guess
24238 may be either a number near the desired minimum, or an interval enclosing
24239 the desired minimum.  The function returns a vector containing the
24240 value of the variable which minimizes the formula's value, along
24241 with the minimum value itself.
24243 Note that this command looks for a @emph{local} minimum.  Many functions
24244 have more than one minimum; some, like 
24245 @texline @math{x \sin x},
24246 @infoline @expr{x sin(x)}, 
24247 have infinitely many.  In fact, there is no easy way to define the
24248 ``global'' minimum of 
24249 @texline @math{x \sin x}
24250 @infoline @expr{x sin(x)} 
24251 but Calc can still locate any particular local minimum
24252 for you.  Calc basically goes downhill from the initial guess until it
24253 finds a point at which the function's value is greater both to the left
24254 and to the right.  Calc does not use derivatives when minimizing a function.
24256 If your initial guess is an interval and it looks like the minimum
24257 occurs at one or the other endpoint of the interval, Calc will return
24258 that endpoint only if that endpoint is closed; thus, minimizing @expr{17 x}
24259 over @expr{[2..3]} will return @expr{[2, 38]}, but minimizing over
24260 @expr{(2..3]} would report no minimum found.  In general, you should
24261 use closed intervals to find literally the minimum value in that
24262 range of @expr{x}, or open intervals to find the local minimum, if
24263 any, that happens to lie in that range.
24265 Most functions are smooth and flat near their minimum values.  Because
24266 of this flatness, if the current precision is, say, 12 digits, the
24267 variable can only be determined meaningfully to about six digits.  Thus
24268 you should set the precision to twice as many digits as you need in your
24269 answer.
24271 @ignore
24272 @mindex wmin@idots
24273 @end ignore
24274 @tindex wminimize
24275 @ignore
24276 @mindex wmax@idots
24277 @end ignore
24278 @tindex wmaximize
24279 The @kbd{H a N} [@code{wminimize}] command, analogously to @kbd{H a R},
24280 expands the guess interval to enclose a minimum rather than requiring
24281 that the minimum lie inside the interval you supply.
24283 The @kbd{a X} (@code{calc-find-maximum}) [@code{maximize}] and
24284 @kbd{H a X} [@code{wmaximize}] commands effectively minimize the
24285 negative of the formula you supply.
24287 The formula must evaluate to a real number at all points inside the
24288 interval (or near the initial guess if the guess is a number).  If
24289 the initial guess is a complex number the variable will be minimized
24290 over the complex numbers; if it is real or an interval it will
24291 be minimized over the reals.
24293 @node Numerical Systems of Equations, , Minimization, Numerical Solutions
24294 @subsection Systems of Equations
24296 @noindent
24297 @cindex Systems of equations, numerical
24298 The @kbd{a R} command can also solve systems of equations.  In this
24299 case, the equation should instead be a vector of equations, the
24300 guess should instead be a vector of numbers (intervals are not
24301 supported), and the variable should be a vector of variables.  You
24302 can omit the brackets while entering the list of variables.  Each
24303 equation must be differentiable by each variable for this mode to
24304 work.  The result will be a vector of two vectors:  The variable
24305 values that solved the system of equations, and the differences
24306 between the sides of the equations with those variable values.
24307 There must be the same number of equations as variables.  Since
24308 only plain numbers are allowed as guesses, the Hyperbolic flag has
24309 no effect when solving a system of equations.
24311 It is also possible to minimize over many variables with @kbd{a N}
24312 (or maximize with @kbd{a X}).  Once again the variable name should
24313 be replaced by a vector of variables, and the initial guess should
24314 be an equal-sized vector of initial guesses.  But, unlike the case of
24315 multidimensional @kbd{a R}, the formula being minimized should
24316 still be a single formula, @emph{not} a vector.  Beware that
24317 multidimensional minimization is currently @emph{very} slow.
24319 @node Curve Fitting, Summations, Numerical Solutions, Algebra
24320 @section Curve Fitting
24322 @noindent
24323 The @kbd{a F} command fits a set of data to a @dfn{model formula},
24324 such as @expr{y = m x + b} where @expr{m} and @expr{b} are parameters
24325 to be determined.  For a typical set of measured data there will be
24326 no single @expr{m} and @expr{b} that exactly fit the data; in this
24327 case, Calc chooses values of the parameters that provide the closest
24328 possible fit.
24330 @menu
24331 * Linear Fits::
24332 * Polynomial and Multilinear Fits::
24333 * Error Estimates for Fits::
24334 * Standard Nonlinear Models::
24335 * Curve Fitting Details::
24336 * Interpolation::
24337 @end menu
24339 @node Linear Fits, Polynomial and Multilinear Fits, Curve Fitting, Curve Fitting
24340 @subsection Linear Fits
24342 @noindent
24343 @kindex a F
24344 @pindex calc-curve-fit
24345 @tindex fit
24346 @cindex Linear regression
24347 @cindex Least-squares fits
24348 The @kbd{a F} (@code{calc-curve-fit}) [@code{fit}] command attempts
24349 to fit a set of data (@expr{x} and @expr{y} vectors of numbers) to a
24350 straight line, polynomial, or other function of @expr{x}.  For the
24351 moment we will consider only the case of fitting to a line, and we
24352 will ignore the issue of whether or not the model was in fact a good
24353 fit for the data.
24355 In a standard linear least-squares fit, we have a set of @expr{(x,y)}
24356 data points that we wish to fit to the model @expr{y = m x + b}
24357 by adjusting the parameters @expr{m} and @expr{b} to make the @expr{y}
24358 values calculated from the formula be as close as possible to the actual
24359 @expr{y} values in the data set.  (In a polynomial fit, the model is
24360 instead, say, @expr{y = a x^3 + b x^2 + c x + d}.  In a multilinear fit,
24361 we have data points of the form @expr{(x_1,x_2,x_3,y)} and our model is
24362 @expr{y = a x_1 + b x_2 + c x_3 + d}.  These will be discussed later.)
24364 In the model formula, variables like @expr{x} and @expr{x_2} are called
24365 the @dfn{independent variables}, and @expr{y} is the @dfn{dependent
24366 variable}.  Variables like @expr{m}, @expr{a}, and @expr{b} are called
24367 the @dfn{parameters} of the model.
24369 The @kbd{a F} command takes the data set to be fitted from the stack.
24370 By default, it expects the data in the form of a matrix.  For example,
24371 for a linear or polynomial fit, this would be a 
24372 @texline @math{2\times N}
24373 @infoline 2xN
24374 matrix where the first row is a list of @expr{x} values and the second
24375 row has the corresponding @expr{y} values.  For the multilinear fit
24376 shown above, the matrix would have four rows (@expr{x_1}, @expr{x_2},
24377 @expr{x_3}, and @expr{y}, respectively).
24379 If you happen to have an 
24380 @texline @math{N\times2}
24381 @infoline Nx2
24382 matrix instead of a 
24383 @texline @math{2\times N}
24384 @infoline 2xN
24385 matrix, just press @kbd{v t} first to transpose the matrix.
24387 After you type @kbd{a F}, Calc prompts you to select a model.  For a
24388 linear fit, press the digit @kbd{1}.
24390 Calc then prompts for you to name the variables.  By default it chooses
24391 high letters like @expr{x} and @expr{y} for independent variables and
24392 low letters like @expr{a} and @expr{b} for parameters.  (The dependent
24393 variable doesn't need a name.)  The two kinds of variables are separated
24394 by a semicolon.  Since you generally care more about the names of the
24395 independent variables than of the parameters, Calc also allows you to
24396 name only those and let the parameters use default names.
24398 For example, suppose the data matrix
24400 @ifinfo
24401 @example
24402 @group
24403 [ [ 1, 2, 3, 4,  5  ]
24404   [ 5, 7, 9, 11, 13 ] ]
24405 @end group
24406 @end example
24407 @end ifinfo
24408 @tex
24409 \turnoffactive
24410 \turnoffactive
24411 \beforedisplay
24412 $$ \pmatrix{ 1 & 2 & 3 & 4  & 5  \cr
24413              5 & 7 & 9 & 11 & 13 }
24415 \afterdisplay
24416 @end tex
24418 @noindent
24419 is on the stack and we wish to do a simple linear fit.  Type
24420 @kbd{a F}, then @kbd{1} for the model, then @key{RET} to use
24421 the default names.  The result will be the formula @expr{3 + 2 x}
24422 on the stack.  Calc has created the model expression @kbd{a + b x},
24423 then found the optimal values of @expr{a} and @expr{b} to fit the
24424 data.  (In this case, it was able to find an exact fit.)  Calc then
24425 substituted those values for @expr{a} and @expr{b} in the model
24426 formula.
24428 The @kbd{a F} command puts two entries in the trail.  One is, as
24429 always, a copy of the result that went to the stack; the other is
24430 a vector of the actual parameter values, written as equations:
24431 @expr{[a = 3, b = 2]}, in case you'd rather read them in a list
24432 than pick them out of the formula.  (You can type @kbd{t y}
24433 to move this vector to the stack; see @ref{Trail Commands}.
24435 Specifying a different independent variable name will affect the
24436 resulting formula: @kbd{a F 1 k @key{RET}} produces @kbd{3 + 2 k}.
24437 Changing the parameter names (say, @kbd{a F 1 k;b,m @key{RET}}) will affect
24438 the equations that go into the trail.
24440 @tex
24441 \bigskip
24442 @end tex
24444 To see what happens when the fit is not exact, we could change
24445 the number 13 in the data matrix to 14 and try the fit again.
24446 The result is:
24448 @example
24449 2.6 + 2.2 x
24450 @end example
24452 Evaluating this formula, say with @kbd{v x 5 @key{RET} @key{TAB} V M $ @key{RET}}, shows
24453 a reasonably close match to the y-values in the data.
24455 @example
24456 [4.8, 7., 9.2, 11.4, 13.6]
24457 @end example
24459 Since there is no line which passes through all the @var{n} data points,
24460 Calc has chosen a line that best approximates the data points using
24461 the method of least squares.  The idea is to define the @dfn{chi-square}
24462 error measure
24464 @ifinfo
24465 @example
24466 chi^2 = sum((y_i - (a + b x_i))^2, i, 1, N)
24467 @end example
24468 @end ifinfo
24469 @tex
24470 \turnoffactive
24471 \beforedisplay
24472 $$ \chi^2 = \sum_{i=1}^N (y_i - (a + b x_i))^2 $$
24473 \afterdisplay
24474 @end tex
24476 @noindent
24477 which is clearly zero if @expr{a + b x} exactly fits all data points,
24478 and increases as various @expr{a + b x_i} values fail to match the
24479 corresponding @expr{y_i} values.  There are several reasons why the
24480 summand is squared, one of them being to ensure that 
24481 @texline @math{\chi^2 \ge 0}.
24482 @infoline @expr{chi^2 >= 0}.
24483 Least-squares fitting simply chooses the values of @expr{a} and @expr{b}
24484 for which the error 
24485 @texline @math{\chi^2}
24486 @infoline @expr{chi^2} 
24487 is as small as possible.
24489 Other kinds of models do the same thing but with a different model
24490 formula in place of @expr{a + b x_i}.
24492 @tex
24493 \bigskip
24494 @end tex
24496 A numeric prefix argument causes the @kbd{a F} command to take the
24497 data in some other form than one big matrix.  A positive argument @var{n}
24498 will take @var{N} items from the stack, corresponding to the @var{n} rows
24499 of a data matrix.  In the linear case, @var{n} must be 2 since there
24500 is always one independent variable and one dependent variable.
24502 A prefix of zero or plain @kbd{C-u} is a compromise; Calc takes two
24503 items from the stack, an @var{n}-row matrix of @expr{x} values, and a
24504 vector of @expr{y} values.  If there is only one independent variable,
24505 the @expr{x} values can be either a one-row matrix or a plain vector,
24506 in which case the @kbd{C-u} prefix is the same as a @w{@kbd{C-u 2}} prefix.
24508 @node Polynomial and Multilinear Fits, Error Estimates for Fits, Linear Fits, Curve Fitting
24509 @subsection Polynomial and Multilinear Fits
24511 @noindent
24512 To fit the data to higher-order polynomials, just type one of the
24513 digits @kbd{2} through @kbd{9} when prompted for a model.  For example,
24514 we could fit the original data matrix from the previous section
24515 (with 13, not 14) to a parabola instead of a line by typing
24516 @kbd{a F 2 @key{RET}}.
24518 @example
24519 2.00000000001 x - 1.5e-12 x^2 + 2.99999999999
24520 @end example
24522 Note that since the constant and linear terms are enough to fit the
24523 data exactly, it's no surprise that Calc chose a tiny contribution
24524 for @expr{x^2}.  (The fact that it's not exactly zero is due only
24525 to roundoff error.  Since our data are exact integers, we could get
24526 an exact answer by typing @kbd{m f} first to get Fraction mode.
24527 Then the @expr{x^2} term would vanish altogether.  Usually, though,
24528 the data being fitted will be approximate floats so Fraction mode
24529 won't help.)
24531 Doing the @kbd{a F 2} fit on the data set with 14 instead of 13
24532 gives a much larger @expr{x^2} contribution, as Calc bends the
24533 line slightly to improve the fit.
24535 @example
24536 0.142857142855 x^2 + 1.34285714287 x + 3.59999999998
24537 @end example
24539 An important result from the theory of polynomial fitting is that it
24540 is always possible to fit @var{n} data points exactly using a polynomial
24541 of degree @mathit{@var{n}-1}, sometimes called an @dfn{interpolating polynomial}.
24542 Using the modified (14) data matrix, a model number of 4 gives
24543 a polynomial that exactly matches all five data points:
24545 @example
24546 0.04167 x^4 - 0.4167 x^3 + 1.458 x^2 - 0.08333 x + 4.
24547 @end example
24549 The actual coefficients we get with a precision of 12, like
24550 @expr{0.0416666663588}, clearly suffer from loss of precision.
24551 It is a good idea to increase the working precision to several
24552 digits beyond what you need when you do a fitting operation.
24553 Or, if your data are exact, use Fraction mode to get exact
24554 results.
24556 You can type @kbd{i} instead of a digit at the model prompt to fit
24557 the data exactly to a polynomial.  This just counts the number of
24558 columns of the data matrix to choose the degree of the polynomial
24559 automatically.
24561 Fitting data ``exactly'' to high-degree polynomials is not always
24562 a good idea, though.  High-degree polynomials have a tendency to
24563 wiggle uncontrollably in between the fitting data points.  Also,
24564 if the exact-fit polynomial is going to be used to interpolate or
24565 extrapolate the data, it is numerically better to use the @kbd{a p}
24566 command described below.  @xref{Interpolation}.
24568 @tex
24569 \bigskip
24570 @end tex
24572 Another generalization of the linear model is to assume the
24573 @expr{y} values are a sum of linear contributions from several
24574 @expr{x} values.  This is a @dfn{multilinear} fit, and it is also
24575 selected by the @kbd{1} digit key.  (Calc decides whether the fit
24576 is linear or multilinear by counting the rows in the data matrix.)
24578 Given the data matrix,
24580 @example
24581 @group
24582 [ [  1,   2,   3,    4,   5  ]
24583   [  7,   2,   3,    5,   2  ]
24584   [ 14.5, 15, 18.5, 22.5, 24 ] ]
24585 @end group
24586 @end example
24588 @noindent
24589 the command @kbd{a F 1 @key{RET}} will call the first row @expr{x} and the
24590 second row @expr{y}, and will fit the values in the third row to the
24591 model @expr{a + b x + c y}.
24593 @example
24594 8. + 3. x + 0.5 y
24595 @end example
24597 Calc can do multilinear fits with any number of independent variables
24598 (i.e., with any number of data rows).
24600 @tex
24601 \bigskip
24602 @end tex
24604 Yet another variation is @dfn{homogeneous} linear models, in which
24605 the constant term is known to be zero.  In the linear case, this
24606 means the model formula is simply @expr{a x}; in the multilinear
24607 case, the model might be @expr{a x + b y + c z}; and in the polynomial
24608 case, the model could be @expr{a x + b x^2 + c x^3}.  You can get
24609 a homogeneous linear or multilinear model by pressing the letter
24610 @kbd{h} followed by a regular model key, like @kbd{1} or @kbd{2}.
24612 It is certainly possible to have other constrained linear models,
24613 like @expr{2.3 + a x} or @expr{a - 4 x}.  While there is no single
24614 key to select models like these, a later section shows how to enter
24615 any desired model by hand.  In the first case, for example, you
24616 would enter @kbd{a F ' 2.3 + a x}.
24618 Another class of models that will work but must be entered by hand
24619 are multinomial fits, e.g., @expr{a + b x + c y + d x^2 + e y^2 + f x y}.
24621 @node Error Estimates for Fits, Standard Nonlinear Models, Polynomial and Multilinear Fits, Curve Fitting
24622 @subsection Error Estimates for Fits
24624 @noindent
24625 @kindex H a F
24626 @tindex efit
24627 With the Hyperbolic flag, @kbd{H a F} [@code{efit}] performs the same
24628 fitting operation as @kbd{a F}, but reports the coefficients as error
24629 forms instead of plain numbers.  Fitting our two data matrices (first
24630 with 13, then with 14) to a line with @kbd{H a F} gives the results,
24632 @example
24633 3. + 2. x
24634 2.6 +/- 0.382970843103 + 2.2 +/- 0.115470053838 x
24635 @end example
24637 In the first case the estimated errors are zero because the linear
24638 fit is perfect.  In the second case, the errors are nonzero but
24639 moderately small, because the data are still very close to linear.
24641 It is also possible for the @emph{input} to a fitting operation to
24642 contain error forms.  The data values must either all include errors
24643 or all be plain numbers.  Error forms can go anywhere but generally
24644 go on the numbers in the last row of the data matrix.  If the last
24645 row contains error forms
24646 @texline `@var{y_i}@w{ @tfn{+/-} }@math{\sigma_i}', 
24647 @infoline `@var{y_i}@w{ @tfn{+/-} }@var{sigma_i}', 
24648 then the 
24649 @texline @math{\chi^2}
24650 @infoline @expr{chi^2}
24651 statistic is now,
24653 @ifinfo
24654 @example
24655 chi^2 = sum(((y_i - (a + b x_i)) / sigma_i)^2, i, 1, N)
24656 @end example
24657 @end ifinfo
24658 @tex
24659 \turnoffactive
24660 \beforedisplay
24661 $$ \chi^2 = \sum_{i=1}^N \left(y_i - (a + b x_i) \over \sigma_i\right)^2 $$
24662 \afterdisplay
24663 @end tex
24665 @noindent
24666 so that data points with larger error estimates contribute less to
24667 the fitting operation.
24669 If there are error forms on other rows of the data matrix, all the
24670 errors for a given data point are combined; the square root of the
24671 sum of the squares of the errors forms the 
24672 @texline @math{\sigma_i}
24673 @infoline @expr{sigma_i} 
24674 used for the data point.
24676 Both @kbd{a F} and @kbd{H a F} can accept error forms in the input
24677 matrix, although if you are concerned about error analysis you will
24678 probably use @kbd{H a F} so that the output also contains error
24679 estimates.
24681 If the input contains error forms but all the 
24682 @texline @math{\sigma_i}
24683 @infoline @expr{sigma_i} 
24684 values are the same, it is easy to see that the resulting fitted model
24685 will be the same as if the input did not have error forms at all 
24686 @texline (@math{\chi^2}
24687 @infoline (@expr{chi^2}
24688 is simply scaled uniformly by 
24689 @texline @math{1 / \sigma^2},
24690 @infoline @expr{1 / sigma^2}, 
24691 which doesn't affect where it has a minimum).  But there @emph{will} be
24692 a difference in the estimated errors of the coefficients reported by
24693 @kbd{H a F}. 
24695 Consult any text on statistical modeling of data for a discussion
24696 of where these error estimates come from and how they should be
24697 interpreted.
24699 @tex
24700 \bigskip
24701 @end tex
24703 @kindex I a F
24704 @tindex xfit
24705 With the Inverse flag, @kbd{I a F} [@code{xfit}] produces even more
24706 information.  The result is a vector of six items:
24708 @enumerate
24709 @item
24710 The model formula with error forms for its coefficients or
24711 parameters.  This is the result that @kbd{H a F} would have
24712 produced.
24714 @item
24715 A vector of ``raw'' parameter values for the model.  These are the
24716 polynomial coefficients or other parameters as plain numbers, in the
24717 same order as the parameters appeared in the final prompt of the
24718 @kbd{I a F} command.  For polynomials of degree @expr{d}, this vector
24719 will have length @expr{M = d+1} with the constant term first.
24721 @item
24722 The covariance matrix @expr{C} computed from the fit.  This is
24723 an @var{m}x@var{m} symmetric matrix; the diagonal elements
24724 @texline @math{C_{jj}}
24725 @infoline @expr{C_j_j} 
24726 are the variances 
24727 @texline @math{\sigma_j^2}
24728 @infoline @expr{sigma_j^2} 
24729 of the parameters.  The other elements are covariances
24730 @texline @math{\sigma_{ij}^2} 
24731 @infoline @expr{sigma_i_j^2} 
24732 that describe the correlation between pairs of parameters.  (A related
24733 set of numbers, the @dfn{linear correlation coefficients} 
24734 @texline @math{r_{ij}},
24735 @infoline @expr{r_i_j},
24736 are defined as 
24737 @texline @math{\sigma_{ij}^2 / \sigma_i \, \sigma_j}.)
24738 @infoline @expr{sigma_i_j^2 / sigma_i sigma_j}.)
24740 @item
24741 A vector of @expr{M} ``parameter filter'' functions whose
24742 meanings are described below.  If no filters are necessary this
24743 will instead be an empty vector; this is always the case for the
24744 polynomial and multilinear fits described so far.
24746 @item
24747 The value of 
24748 @texline @math{\chi^2}
24749 @infoline @expr{chi^2} 
24750 for the fit, calculated by the formulas shown above.  This gives a
24751 measure of the quality of the fit; statisticians consider
24752 @texline @math{\chi^2 \approx N - M}
24753 @infoline @expr{chi^2 = N - M} 
24754 to indicate a moderately good fit (where again @expr{N} is the number of
24755 data points and @expr{M} is the number of parameters).
24757 @item
24758 A measure of goodness of fit expressed as a probability @expr{Q}.
24759 This is computed from the @code{utpc} probability distribution
24760 function using 
24761 @texline @math{\chi^2}
24762 @infoline @expr{chi^2} 
24763 with @expr{N - M} degrees of freedom.  A
24764 value of 0.5 implies a good fit; some texts recommend that often
24765 @expr{Q = 0.1} or even 0.001 can signify an acceptable fit.  In
24766 particular, 
24767 @texline @math{\chi^2}
24768 @infoline @expr{chi^2} 
24769 statistics assume the errors in your inputs
24770 follow a normal (Gaussian) distribution; if they don't, you may
24771 have to accept smaller values of @expr{Q}.
24773 The @expr{Q} value is computed only if the input included error
24774 estimates.  Otherwise, Calc will report the symbol @code{nan}
24775 for @expr{Q}.  The reason is that in this case the 
24776 @texline @math{\chi^2}
24777 @infoline @expr{chi^2}
24778 value has effectively been used to estimate the original errors
24779 in the input, and thus there is no redundant information left
24780 over to use for a confidence test.
24781 @end enumerate
24783 @node Standard Nonlinear Models, Curve Fitting Details, Error Estimates for Fits, Curve Fitting
24784 @subsection Standard Nonlinear Models
24786 @noindent
24787 The @kbd{a F} command also accepts other kinds of models besides
24788 lines and polynomials.  Some common models have quick single-key
24789 abbreviations; others must be entered by hand as algebraic formulas.
24791 Here is a complete list of the standard models recognized by @kbd{a F}:
24793 @table @kbd
24794 @item 1
24795 Linear or multilinear.  @mathit{a + b x + c y + d z}.
24796 @item 2-9
24797 Polynomials.  @mathit{a + b x + c x^2 + d x^3}.
24798 @item e
24799 Exponential.  @mathit{a} @tfn{exp}@mathit{(b x)} @tfn{exp}@mathit{(c y)}.
24800 @item E
24801 Base-10 exponential.  @mathit{a} @tfn{10^}@mathit{(b x)} @tfn{10^}@mathit{(c y)}.
24802 @item x
24803 Exponential (alternate notation).  @tfn{exp}@mathit{(a + b x + c y)}.
24804 @item X
24805 Base-10 exponential (alternate).  @tfn{10^}@mathit{(a + b x + c y)}.
24806 @item l
24807 Logarithmic.  @mathit{a + b} @tfn{ln}@mathit{(x) + c} @tfn{ln}@mathit{(y)}.
24808 @item L
24809 Base-10 logarithmic.  @mathit{a + b} @tfn{log10}@mathit{(x) + c} @tfn{log10}@mathit{(y)}.
24810 @item ^
24811 General exponential.  @mathit{a b^x c^y}.
24812 @item p
24813 Power law.  @mathit{a x^b y^c}.
24814 @item q
24815 Quadratic.  @mathit{a + b (x-c)^2 + d (x-e)^2}.
24816 @item g
24817 Gaussian.  
24818 @texline @math{{a \over b \sqrt{2 \pi}} \exp\left( -{1 \over 2} \left( x - c \over b \right)^2 \right)}.
24819 @infoline @mathit{(a / b sqrt(2 pi)) exp(-0.5*((x-c)/b)^2)}.
24820 @end table
24822 All of these models are used in the usual way; just press the appropriate
24823 letter at the model prompt, and choose variable names if you wish.  The
24824 result will be a formula as shown in the above table, with the best-fit
24825 values of the parameters substituted.  (You may find it easier to read
24826 the parameter values from the vector that is placed in the trail.)
24828 All models except Gaussian and polynomials can generalize as shown to any
24829 number of independent variables.  Also, all the built-in models have an
24830 additive or multiplicative parameter shown as @expr{a} in the above table
24831 which can be replaced by zero or one, as appropriate, by typing @kbd{h}
24832 before the model key.
24834 Note that many of these models are essentially equivalent, but express
24835 the parameters slightly differently.  For example, @expr{a b^x} and
24836 the other two exponential models are all algebraic rearrangements of
24837 each other.  Also, the ``quadratic'' model is just a degree-2 polynomial
24838 with the parameters expressed differently.  Use whichever form best
24839 matches the problem.
24841 The HP-28/48 calculators support four different models for curve
24842 fitting, called @code{LIN}, @code{LOG}, @code{EXP}, and @code{PWR}.
24843 These correspond to Calc models @samp{a + b x}, @samp{a + b ln(x)},
24844 @samp{a exp(b x)}, and @samp{a x^b}, respectively.  In each case,
24845 @expr{a} is what the HP-48 identifies as the ``intercept,'' and
24846 @expr{b} is what it calls the ``slope.''
24848 @tex
24849 \bigskip
24850 @end tex
24852 If the model you want doesn't appear on this list, press @kbd{'}
24853 (the apostrophe key) at the model prompt to enter any algebraic
24854 formula, such as @kbd{m x - b}, as the model.  (Not all models
24855 will work, though---see the next section for details.)
24857 The model can also be an equation like @expr{y = m x + b}.
24858 In this case, Calc thinks of all the rows of the data matrix on
24859 equal terms; this model effectively has two parameters
24860 (@expr{m} and @expr{b}) and two independent variables (@expr{x}
24861 and @expr{y}), with no ``dependent'' variables.  Model equations
24862 do not need to take this @expr{y =} form.  For example, the
24863 implicit line equation @expr{a x + b y = 1} works fine as a
24864 model.
24866 When you enter a model, Calc makes an alphabetical list of all
24867 the variables that appear in the model.  These are used for the
24868 default parameters, independent variables, and dependent variable
24869 (in that order).  If you enter a plain formula (not an equation),
24870 Calc assumes the dependent variable does not appear in the formula
24871 and thus does not need a name.
24873 For example, if the model formula has the variables @expr{a,mu,sigma,t,x},
24874 and the data matrix has three rows (meaning two independent variables),
24875 Calc will use @expr{a,mu,sigma} as the default parameters, and the
24876 data rows will be named @expr{t} and @expr{x}, respectively.  If you
24877 enter an equation instead of a plain formula, Calc will use @expr{a,mu}
24878 as the parameters, and @expr{sigma,t,x} as the three independent
24879 variables.
24881 You can, of course, override these choices by entering something
24882 different at the prompt.  If you leave some variables out of the list,
24883 those variables must have stored values and those stored values will
24884 be used as constants in the model.  (Stored values for the parameters
24885 and independent variables are ignored by the @kbd{a F} command.)
24886 If you list only independent variables, all the remaining variables
24887 in the model formula will become parameters.
24889 If there are @kbd{$} signs in the model you type, they will stand
24890 for parameters and all other variables (in alphabetical order)
24891 will be independent.  Use @kbd{$} for one parameter, @kbd{$$} for
24892 another, and so on.  Thus @kbd{$ x + $$} is another way to describe
24893 a linear model.
24895 If you type a @kbd{$} instead of @kbd{'} at the model prompt itself,
24896 Calc will take the model formula from the stack.  (The data must then
24897 appear at the second stack level.)  The same conventions are used to
24898 choose which variables in the formula are independent by default and
24899 which are parameters.
24901 Models taken from the stack can also be expressed as vectors of
24902 two or three elements, @expr{[@var{model}, @var{vars}]} or
24903 @expr{[@var{model}, @var{vars}, @var{params}]}.  Each of @var{vars}
24904 and @var{params} may be either a variable or a vector of variables.
24905 (If @var{params} is omitted, all variables in @var{model} except
24906 those listed as @var{vars} are parameters.)
24908 When you enter a model manually with @kbd{'}, Calc puts a 3-vector
24909 describing the model in the trail so you can get it back if you wish.
24911 @tex
24912 \bigskip
24913 @end tex
24915 @vindex Model1
24916 @vindex Model2
24917 Finally, you can store a model in one of the Calc variables
24918 @code{Model1} or @code{Model2}, then use this model by typing
24919 @kbd{a F u} or @kbd{a F U} (respectively).  The value stored in
24920 the variable can be any of the formats that @kbd{a F $} would
24921 accept for a model on the stack.
24923 @tex
24924 \bigskip
24925 @end tex
24927 Calc uses the principal values of inverse functions like @code{ln}
24928 and @code{arcsin} when doing fits.  For example, when you enter
24929 the model @samp{y = sin(a t + b)} Calc actually uses the easier
24930 form @samp{arcsin(y) = a t + b}.  The @code{arcsin} function always
24931 returns results in the range from @mathit{-90} to 90 degrees (or the
24932 equivalent range in radians).  Suppose you had data that you
24933 believed to represent roughly three oscillations of a sine wave,
24934 so that the argument of the sine might go from zero to 
24935 @texline @math{3\times360}
24936 @infoline @mathit{3*360} 
24937 degrees.
24938 The above model would appear to be a good way to determine the
24939 true frequency and phase of the sine wave, but in practice it
24940 would fail utterly.  The righthand side of the actual model
24941 @samp{arcsin(y) = a t + b} will grow smoothly with @expr{t}, but
24942 the lefthand side will bounce back and forth between @mathit{-90} and 90.
24943 No values of @expr{a} and @expr{b} can make the two sides match,
24944 even approximately.
24946 There is no good solution to this problem at present.  You could
24947 restrict your data to small enough ranges so that the above problem
24948 doesn't occur (i.e., not straddling any peaks in the sine wave).
24949 Or, in this case, you could use a totally different method such as
24950 Fourier analysis, which is beyond the scope of the @kbd{a F} command.
24951 (Unfortunately, Calc does not currently have any facilities for
24952 taking Fourier and related transforms.)
24954 @node Curve Fitting Details, Interpolation, Standard Nonlinear Models, Curve Fitting
24955 @subsection Curve Fitting Details
24957 @noindent
24958 Calc's internal least-squares fitter can only handle multilinear
24959 models.  More precisely, it can handle any model of the form
24960 @expr{a f(x,y,z) + b g(x,y,z) + c h(x,y,z)}, where @expr{a,b,c}
24961 are the parameters and @expr{x,y,z} are the independent variables
24962 (of course there can be any number of each, not just three).
24964 In a simple multilinear or polynomial fit, it is easy to see how
24965 to convert the model into this form.  For example, if the model
24966 is @expr{a + b x + c x^2}, then @expr{f(x) = 1}, @expr{g(x) = x},
24967 and @expr{h(x) = x^2} are suitable functions.
24969 For other models, Calc uses a variety of algebraic manipulations
24970 to try to put the problem into the form
24972 @smallexample
24973 Y(x,y,z) = A(a,b,c) F(x,y,z) + B(a,b,c) G(x,y,z) + C(a,b,c) H(x,y,z)
24974 @end smallexample
24976 @noindent
24977 where @expr{Y,A,B,C,F,G,H} are arbitrary functions.  It computes
24978 @expr{Y}, @expr{F}, @expr{G}, and @expr{H} for all the data points,
24979 does a standard linear fit to find the values of @expr{A}, @expr{B},
24980 and @expr{C}, then uses the equation solver to solve for @expr{a,b,c}
24981 in terms of @expr{A,B,C}.
24983 A remarkable number of models can be cast into this general form.
24984 We'll look at two examples here to see how it works.  The power-law
24985 model @expr{y = a x^b} with two independent variables and two parameters
24986 can be rewritten as follows:
24988 @example
24989 y = a x^b
24990 y = a exp(b ln(x))
24991 y = exp(ln(a) + b ln(x))
24992 ln(y) = ln(a) + b ln(x)
24993 @end example
24995 @noindent
24996 which matches the desired form with 
24997 @texline @math{Y = \ln(y)},
24998 @infoline @expr{Y = ln(y)}, 
24999 @texline @math{A = \ln(a)},
25000 @infoline @expr{A = ln(a)},
25001 @expr{F = 1}, @expr{B = b}, and 
25002 @texline @math{G = \ln(x)}.
25003 @infoline @expr{G = ln(x)}.  
25004 Calc thus computes the logarithms of your @expr{y} and @expr{x} values,
25005 does a linear fit for @expr{A} and @expr{B}, then solves to get 
25006 @texline @math{a = \exp(A)} 
25007 @infoline @expr{a = exp(A)} 
25008 and @expr{b = B}.
25010 Another interesting example is the ``quadratic'' model, which can
25011 be handled by expanding according to the distributive law.
25013 @example
25014 y = a + b*(x - c)^2
25015 y = a + b c^2 - 2 b c x + b x^2
25016 @end example
25018 @noindent
25019 which matches with @expr{Y = y}, @expr{A = a + b c^2}, @expr{F = 1},
25020 @expr{B = -2 b c}, @expr{G = x} (the @mathit{-2} factor could just as easily
25021 have been put into @expr{G} instead of @expr{B}), @expr{C = b}, and
25022 @expr{H = x^2}.
25024 The Gaussian model looks quite complicated, but a closer examination
25025 shows that it's actually similar to the quadratic model but with an
25026 exponential that can be brought to the top and moved into @expr{Y}.
25028 An example of a model that cannot be put into general linear
25029 form is a Gaussian with a constant background added on, i.e.,
25030 @expr{d} + the regular Gaussian formula.  If you have a model like
25031 this, your best bet is to replace enough of your parameters with
25032 constants to make the model linearizable, then adjust the constants
25033 manually by doing a series of fits.  You can compare the fits by
25034 graphing them, by examining the goodness-of-fit measures returned by
25035 @kbd{I a F}, or by some other method suitable to your application.
25036 Note that some models can be linearized in several ways.  The
25037 Gaussian-plus-@var{d} model can be linearized by setting @expr{d}
25038 (the background) to a constant, or by setting @expr{b} (the standard
25039 deviation) and @expr{c} (the mean) to constants.
25041 To fit a model with constants substituted for some parameters, just
25042 store suitable values in those parameter variables, then omit them
25043 from the list of parameters when you answer the variables prompt.
25045 @tex
25046 \bigskip
25047 @end tex
25049 A last desperate step would be to use the general-purpose
25050 @code{minimize} function rather than @code{fit}.  After all, both
25051 functions solve the problem of minimizing an expression (the 
25052 @texline @math{\chi^2}
25053 @infoline @expr{chi^2}
25054 sum) by adjusting certain parameters in the expression.  The @kbd{a F}
25055 command is able to use a vastly more efficient algorithm due to its
25056 special knowledge about linear chi-square sums, but the @kbd{a N}
25057 command can do the same thing by brute force.
25059 A compromise would be to pick out a few parameters without which the
25060 fit is linearizable, and use @code{minimize} on a call to @code{fit}
25061 which efficiently takes care of the rest of the parameters.  The thing
25062 to be minimized would be the value of 
25063 @texline @math{\chi^2}
25064 @infoline @expr{chi^2} 
25065 returned as the fifth result of the @code{xfit} function:
25067 @smallexample
25068 minimize(xfit(gaus(a,b,c,d,x), x, [a,b,c], data)_5, d, guess)
25069 @end smallexample
25071 @noindent
25072 where @code{gaus} represents the Gaussian model with background,
25073 @code{data} represents the data matrix, and @code{guess} represents
25074 the initial guess for @expr{d} that @code{minimize} requires.
25075 This operation will only be, shall we say, extraordinarily slow
25076 rather than astronomically slow (as would be the case if @code{minimize}
25077 were used by itself to solve the problem).
25079 @tex
25080 \bigskip
25081 @end tex
25083 The @kbd{I a F} [@code{xfit}] command is somewhat trickier when
25084 nonlinear models are used.  The second item in the result is the
25085 vector of ``raw'' parameters @expr{A}, @expr{B}, @expr{C}.  The
25086 covariance matrix is written in terms of those raw parameters.
25087 The fifth item is a vector of @dfn{filter} expressions.  This
25088 is the empty vector @samp{[]} if the raw parameters were the same
25089 as the requested parameters, i.e., if @expr{A = a}, @expr{B = b},
25090 and so on (which is always true if the model is already linear
25091 in the parameters as written, e.g., for polynomial fits).  If the
25092 parameters had to be rearranged, the fifth item is instead a vector
25093 of one formula per parameter in the original model.  The raw
25094 parameters are expressed in these ``filter'' formulas as
25095 @samp{fitdummy(1)} for @expr{A}, @samp{fitdummy(2)} for @expr{B},
25096 and so on.
25098 When Calc needs to modify the model to return the result, it replaces
25099 @samp{fitdummy(1)} in all the filters with the first item in the raw
25100 parameters list, and so on for the other raw parameters, then
25101 evaluates the resulting filter formulas to get the actual parameter
25102 values to be substituted into the original model.  In the case of
25103 @kbd{H a F} and @kbd{I a F} where the parameters must be error forms,
25104 Calc uses the square roots of the diagonal entries of the covariance
25105 matrix as error values for the raw parameters, then lets Calc's
25106 standard error-form arithmetic take it from there.
25108 If you use @kbd{I a F} with a nonlinear model, be sure to remember
25109 that the covariance matrix is in terms of the raw parameters,
25110 @emph{not} the actual requested parameters.  It's up to you to
25111 figure out how to interpret the covariances in the presence of
25112 nontrivial filter functions.
25114 Things are also complicated when the input contains error forms.
25115 Suppose there are three independent and dependent variables, @expr{x},
25116 @expr{y}, and @expr{z}, one or more of which are error forms in the
25117 data.  Calc combines all the error values by taking the square root
25118 of the sum of the squares of the errors.  It then changes @expr{x}
25119 and @expr{y} to be plain numbers, and makes @expr{z} into an error
25120 form with this combined error.  The @expr{Y(x,y,z)} part of the
25121 linearized model is evaluated, and the result should be an error
25122 form.  The error part of that result is used for 
25123 @texline @math{\sigma_i}
25124 @infoline @expr{sigma_i} 
25125 for the data point.  If for some reason @expr{Y(x,y,z)} does not return 
25126 an error form, the combined error from @expr{z} is used directly for 
25127 @texline @math{\sigma_i}.
25128 @infoline @expr{sigma_i}.  
25129 Finally, @expr{z} is also stripped of its error
25130 for use in computing @expr{F(x,y,z)}, @expr{G(x,y,z)} and so on;
25131 the righthand side of the linearized model is computed in regular
25132 arithmetic with no error forms.
25134 (While these rules may seem complicated, they are designed to do
25135 the most reasonable thing in the typical case that @expr{Y(x,y,z)}
25136 depends only on the dependent variable @expr{z}, and in fact is
25137 often simply equal to @expr{z}.  For common cases like polynomials
25138 and multilinear models, the combined error is simply used as the
25139 @texline @math{\sigma}
25140 @infoline @expr{sigma} 
25141 for the data point with no further ado.)
25143 @tex
25144 \bigskip
25145 @end tex
25147 @vindex FitRules
25148 It may be the case that the model you wish to use is linearizable,
25149 but Calc's built-in rules are unable to figure it out.  Calc uses
25150 its algebraic rewrite mechanism to linearize a model.  The rewrite
25151 rules are kept in the variable @code{FitRules}.  You can edit this
25152 variable using the @kbd{s e FitRules} command; in fact, there is
25153 a special @kbd{s F} command just for editing @code{FitRules}.
25154 @xref{Operations on Variables}.
25156 @xref{Rewrite Rules}, for a discussion of rewrite rules.
25158 @ignore
25159 @starindex
25160 @end ignore
25161 @tindex fitvar
25162 @ignore
25163 @starindex
25164 @end ignore
25165 @ignore
25166 @mindex @idots
25167 @end ignore
25168 @tindex fitparam
25169 @ignore
25170 @starindex
25171 @end ignore
25172 @ignore
25173 @mindex @null
25174 @end ignore
25175 @tindex fitmodel
25176 @ignore
25177 @starindex
25178 @end ignore
25179 @ignore
25180 @mindex @null
25181 @end ignore
25182 @tindex fitsystem
25183 @ignore
25184 @starindex
25185 @end ignore
25186 @ignore
25187 @mindex @null
25188 @end ignore
25189 @tindex fitdummy
25190 Calc uses @code{FitRules} as follows.  First, it converts the model
25191 to an equation if necessary and encloses the model equation in a
25192 call to the function @code{fitmodel} (which is not actually a defined
25193 function in Calc; it is only used as a placeholder by the rewrite rules).
25194 Parameter variables are renamed to function calls @samp{fitparam(1)},
25195 @samp{fitparam(2)}, and so on, and independent variables are renamed
25196 to @samp{fitvar(1)}, @samp{fitvar(2)}, etc.  The dependent variable
25197 is the highest-numbered @code{fitvar}.  For example, the power law
25198 model @expr{a x^b} is converted to @expr{y = a x^b}, then to
25200 @smallexample
25201 @group
25202 fitmodel(fitvar(2) = fitparam(1) fitvar(1)^fitparam(2))
25203 @end group
25204 @end smallexample
25206 Calc then applies the rewrites as if by @samp{C-u 0 a r FitRules}.
25207 (The zero prefix means that rewriting should continue until no further
25208 changes are possible.)
25210 When rewriting is complete, the @code{fitmodel} call should have
25211 been replaced by a @code{fitsystem} call that looks like this:
25213 @example
25214 fitsystem(@var{Y}, @var{FGH}, @var{abc})
25215 @end example
25217 @noindent
25218 where @var{Y} is a formula that describes the function @expr{Y(x,y,z)},
25219 @var{FGH} is the vector of formulas @expr{[F(x,y,z), G(x,y,z), H(x,y,z)]},
25220 and @var{abc} is the vector of parameter filters which refer to the
25221 raw parameters as @samp{fitdummy(1)} for @expr{A}, @samp{fitdummy(2)}
25222 for @expr{B}, etc.  While the number of raw parameters (the length of
25223 the @var{FGH} vector) is usually the same as the number of original
25224 parameters (the length of the @var{abc} vector), this is not required.
25226 The power law model eventually boils down to
25228 @smallexample
25229 @group
25230 fitsystem(ln(fitvar(2)),
25231           [1, ln(fitvar(1))],
25232           [exp(fitdummy(1)), fitdummy(2)])
25233 @end group
25234 @end smallexample
25236 The actual implementation of @code{FitRules} is complicated; it
25237 proceeds in four phases.  First, common rearrangements are done
25238 to try to bring linear terms together and to isolate functions like
25239 @code{exp} and @code{ln} either all the way ``out'' (so that they
25240 can be put into @var{Y}) or all the way ``in'' (so that they can
25241 be put into @var{abc} or @var{FGH}).  In particular, all
25242 non-constant powers are converted to logs-and-exponentials form,
25243 and the distributive law is used to expand products of sums.
25244 Quotients are rewritten to use the @samp{fitinv} function, where
25245 @samp{fitinv(x)} represents @expr{1/x} while the @code{FitRules}
25246 are operating.  (The use of @code{fitinv} makes recognition of
25247 linear-looking forms easier.)  If you modify @code{FitRules}, you
25248 will probably only need to modify the rules for this phase.
25250 Phase two, whose rules can actually also apply during phases one
25251 and three, first rewrites @code{fitmodel} to a two-argument
25252 form @samp{fitmodel(@var{Y}, @var{model})}, where @var{Y} is
25253 initially zero and @var{model} has been changed from @expr{a=b}
25254 to @expr{a-b} form.  It then tries to peel off invertible functions
25255 from the outside of @var{model} and put them into @var{Y} instead,
25256 calling the equation solver to invert the functions.  Finally, when
25257 this is no longer possible, the @code{fitmodel} is changed to a
25258 four-argument @code{fitsystem}, where the fourth argument is
25259 @var{model} and the @var{FGH} and @var{abc} vectors are initially
25260 empty.  (The last vector is really @var{ABC}, corresponding to
25261 raw parameters, for now.)
25263 Phase three converts a sum of items in the @var{model} to a sum
25264 of @samp{fitpart(@var{a}, @var{b}, @var{c})} terms which represent
25265 terms @samp{@var{a}*@var{b}*@var{c}} of the sum, where @var{a}
25266 is all factors that do not involve any variables, @var{b} is all
25267 factors that involve only parameters, and @var{c} is the factors
25268 that involve only independent variables.  (If this decomposition
25269 is not possible, the rule set will not complete and Calc will
25270 complain that the model is too complex.)  Then @code{fitpart}s
25271 with equal @var{b} or @var{c} components are merged back together
25272 using the distributive law in order to minimize the number of
25273 raw parameters needed.
25275 Phase four moves the @code{fitpart} terms into the @var{FGH} and
25276 @var{ABC} vectors.  Also, some of the algebraic expansions that
25277 were done in phase 1 are undone now to make the formulas more
25278 computationally efficient.  Finally, it calls the solver one more
25279 time to convert the @var{ABC} vector to an @var{abc} vector, and
25280 removes the fourth @var{model} argument (which by now will be zero)
25281 to obtain the three-argument @code{fitsystem} that the linear
25282 least-squares solver wants to see.
25284 @ignore
25285 @starindex
25286 @end ignore
25287 @ignore
25288 @mindex hasfit@idots
25289 @end ignore
25290 @tindex hasfitparams
25291 @ignore
25292 @starindex
25293 @end ignore
25294 @ignore
25295 @mindex @null
25296 @end ignore
25297 @tindex hasfitvars
25298 Two functions which are useful in connection with @code{FitRules}
25299 are @samp{hasfitparams(x)} and @samp{hasfitvars(x)}, which check
25300 whether @expr{x} refers to any parameters or independent variables,
25301 respectively.  Specifically, these functions return ``true'' if the
25302 argument contains any @code{fitparam} (or @code{fitvar}) function
25303 calls, and ``false'' otherwise.  (Recall that ``true'' means a
25304 nonzero number, and ``false'' means zero.  The actual nonzero number
25305 returned is the largest @var{n} from all the @samp{fitparam(@var{n})}s
25306 or @samp{fitvar(@var{n})}s, respectively, that appear in the formula.)
25308 @tex
25309 \bigskip
25310 @end tex
25312 The @code{fit} function in algebraic notation normally takes four
25313 arguments, @samp{fit(@var{model}, @var{vars}, @var{params}, @var{data})},
25314 where @var{model} is the model formula as it would be typed after
25315 @kbd{a F '}, @var{vars} is the independent variable or a vector of
25316 independent variables, @var{params} likewise gives the parameter(s),
25317 and @var{data} is the data matrix.  Note that the length of @var{vars}
25318 must be equal to the number of rows in @var{data} if @var{model} is
25319 an equation, or one less than the number of rows if @var{model} is
25320 a plain formula.  (Actually, a name for the dependent variable is
25321 allowed but will be ignored in the plain-formula case.)
25323 If @var{params} is omitted, the parameters are all variables in
25324 @var{model} except those that appear in @var{vars}.  If @var{vars}
25325 is also omitted, Calc sorts all the variables that appear in
25326 @var{model} alphabetically and uses the higher ones for @var{vars}
25327 and the lower ones for @var{params}.
25329 Alternatively, @samp{fit(@var{modelvec}, @var{data})} is allowed
25330 where @var{modelvec} is a 2- or 3-vector describing the model
25331 and variables, as discussed previously.
25333 If Calc is unable to do the fit, the @code{fit} function is left
25334 in symbolic form, ordinarily with an explanatory message.  The
25335 message will be ``Model expression is too complex'' if the
25336 linearizer was unable to put the model into the required form.
25338 The @code{efit} (corresponding to @kbd{H a F}) and @code{xfit}
25339 (for @kbd{I a F}) functions are completely analogous.
25341 @node Interpolation, ,  Curve Fitting Details, Curve Fitting
25342 @subsection Polynomial Interpolation
25344 @kindex a p
25345 @pindex calc-poly-interp
25346 @tindex polint
25347 The @kbd{a p} (@code{calc-poly-interp}) [@code{polint}] command does
25348 a polynomial interpolation at a particular @expr{x} value.  It takes
25349 two arguments from the stack:  A data matrix of the sort used by
25350 @kbd{a F}, and a single number which represents the desired @expr{x}
25351 value.  Calc effectively does an exact polynomial fit as if by @kbd{a F i},
25352 then substitutes the @expr{x} value into the result in order to get an
25353 approximate @expr{y} value based on the fit.  (Calc does not actually
25354 use @kbd{a F i}, however; it uses a direct method which is both more
25355 efficient and more numerically stable.)
25357 The result of @kbd{a p} is actually a vector of two values:  The @expr{y}
25358 value approximation, and an error measure @expr{dy} that reflects Calc's
25359 estimation of the probable error of the approximation at that value of
25360 @expr{x}.  If the input @expr{x} is equal to any of the @expr{x} values
25361 in the data matrix, the output @expr{y} will be the corresponding @expr{y}
25362 value from the matrix, and the output @expr{dy} will be exactly zero.
25364 A prefix argument of 2 causes @kbd{a p} to take separate x- and
25365 y-vectors from the stack instead of one data matrix.
25367 If @expr{x} is a vector of numbers, @kbd{a p} will return a matrix of
25368 interpolated results for each of those @expr{x} values.  (The matrix will
25369 have two columns, the @expr{y} values and the @expr{dy} values.)
25370 If @expr{x} is a formula instead of a number, the @code{polint} function
25371 remains in symbolic form; use the @kbd{a "} command to expand it out to
25372 a formula that describes the fit in symbolic terms.
25374 In all cases, the @kbd{a p} command leaves the data vectors or matrix
25375 on the stack.  Only the @expr{x} value is replaced by the result.
25377 @kindex H a p
25378 @tindex ratint
25379 The @kbd{H a p} [@code{ratint}] command does a rational function
25380 interpolation.  It is used exactly like @kbd{a p}, except that it
25381 uses as its model the quotient of two polynomials.  If there are
25382 @expr{N} data points, the numerator and denominator polynomials will
25383 each have degree @expr{N/2} (if @expr{N} is odd, the denominator will
25384 have degree one higher than the numerator).
25386 Rational approximations have the advantage that they can accurately
25387 describe functions that have poles (points at which the function's value
25388 goes to infinity, so that the denominator polynomial of the approximation
25389 goes to zero).  If @expr{x} corresponds to a pole of the fitted rational
25390 function, then the result will be a division by zero.  If Infinite mode
25391 is enabled, the result will be @samp{[uinf, uinf]}.
25393 There is no way to get the actual coefficients of the rational function
25394 used by @kbd{H a p}.  (The algorithm never generates these coefficients
25395 explicitly, and quotients of polynomials are beyond @w{@kbd{a F}}'s
25396 capabilities to fit.)
25398 @node Summations, Logical Operations, Curve Fitting, Algebra
25399 @section Summations
25401 @noindent
25402 @cindex Summation of a series
25403 @kindex a +
25404 @pindex calc-summation
25405 @tindex sum
25406 The @kbd{a +} (@code{calc-summation}) [@code{sum}] command computes
25407 the sum of a formula over a certain range of index values.  The formula
25408 is taken from the top of the stack; the command prompts for the
25409 name of the summation index variable, the lower limit of the
25410 sum (any formula), and the upper limit of the sum.  If you
25411 enter a blank line at any of these prompts, that prompt and
25412 any later ones are answered by reading additional elements from
25413 the stack.  Thus, @kbd{' k^2 @key{RET} ' k @key{RET} 1 @key{RET} 5 @key{RET} a + @key{RET}}
25414 produces the result 55.
25415 @tex
25416 \turnoffactive
25417 $$ \sum_{k=1}^5 k^2 = 55 $$
25418 @end tex
25420 The choice of index variable is arbitrary, but it's best not to
25421 use a variable with a stored value.  In particular, while
25422 @code{i} is often a favorite index variable, it should be avoided
25423 in Calc because @code{i} has the imaginary constant @expr{(0, 1)}
25424 as a value.  If you pressed @kbd{=} on a sum over @code{i}, it would
25425 be changed to a nonsensical sum over the ``variable'' @expr{(0, 1)}!
25426 If you really want to use @code{i} as an index variable, use
25427 @w{@kbd{s u i @key{RET}}} first to ``unstore'' this variable.
25428 (@xref{Storing Variables}.)
25430 A numeric prefix argument steps the index by that amount rather
25431 than by one.  Thus @kbd{' a_k @key{RET} C-u -2 a + k @key{RET} 10 @key{RET} 0 @key{RET}}
25432 yields @samp{a_10 + a_8 + a_6 + a_4 + a_2 + a_0}.  A prefix
25433 argument of plain @kbd{C-u} causes @kbd{a +} to prompt for the
25434 step value, in which case you can enter any formula or enter
25435 a blank line to take the step value from the stack.  With the
25436 @kbd{C-u} prefix, @kbd{a +} can take up to five arguments from
25437 the stack:  The formula, the variable, the lower limit, the
25438 upper limit, and (at the top of the stack), the step value.
25440 Calc knows how to do certain sums in closed form.  For example,
25441 @samp{sum(6 k^2, k, 1, n) = @w{2 n^3} + 3 n^2 + n}.  In particular,
25442 this is possible if the formula being summed is polynomial or
25443 exponential in the index variable.  Sums of logarithms are
25444 transformed into logarithms of products.  Sums of trigonometric
25445 and hyperbolic functions are transformed to sums of exponentials
25446 and then done in closed form.  Also, of course, sums in which the
25447 lower and upper limits are both numbers can always be evaluated
25448 just by grinding them out, although Calc will use closed forms
25449 whenever it can for the sake of efficiency.
25451 The notation for sums in algebraic formulas is
25452 @samp{sum(@var{expr}, @var{var}, @var{low}, @var{high}, @var{step})}.
25453 If @var{step} is omitted, it defaults to one.  If @var{high} is
25454 omitted, @var{low} is actually the upper limit and the lower limit
25455 is one.  If @var{low} is also omitted, the limits are @samp{-inf}
25456 and @samp{inf}, respectively.
25458 Infinite sums can sometimes be evaluated:  @samp{sum(.5^k, k, 1, inf)}
25459 returns @expr{1}.  This is done by evaluating the sum in closed
25460 form (to @samp{1. - 0.5^n} in this case), then evaluating this
25461 formula with @code{n} set to @code{inf}.  Calc's usual rules
25462 for ``infinite'' arithmetic can find the answer from there.  If
25463 infinite arithmetic yields a @samp{nan}, or if the sum cannot be
25464 solved in closed form, Calc leaves the @code{sum} function in
25465 symbolic form.  @xref{Infinities}.
25467 As a special feature, if the limits are infinite (or omitted, as
25468 described above) but the formula includes vectors subscripted by
25469 expressions that involve the iteration variable, Calc narrows
25470 the limits to include only the range of integers which result in
25471 valid subscripts for the vector.  For example, the sum
25472 @samp{sum(k [a,b,c,d,e,f,g]_(2k),k)} evaluates to @samp{b + 2 d + 3 f}.
25474 The limits of a sum do not need to be integers.  For example,
25475 @samp{sum(a_k, k, 0, 2 n, n)} produces @samp{a_0 + a_n + a_(2 n)}.
25476 Calc computes the number of iterations using the formula
25477 @samp{1 + (@var{high} - @var{low}) / @var{step}}, which must,
25478 after simplification as if by @kbd{a s}, evaluate to an integer.
25480 If the number of iterations according to the above formula does
25481 not come out to an integer, the sum is invalid and will be left
25482 in symbolic form.  However, closed forms are still supplied, and
25483 you are on your honor not to misuse the resulting formulas by
25484 substituting mismatched bounds into them.  For example,
25485 @samp{sum(k, k, 1, 10, 2)} is invalid, but Calc will go ahead and
25486 evaluate the closed form solution for the limits 1 and 10 to get
25487 the rather dubious answer, 29.25.
25489 If the lower limit is greater than the upper limit (assuming a
25490 positive step size), the result is generally zero.  However,
25491 Calc only guarantees a zero result when the upper limit is
25492 exactly one step less than the lower limit, i.e., if the number
25493 of iterations is @mathit{-1}.  Thus @samp{sum(f(k), k, n, n-1)} is zero
25494 but the sum from @samp{n} to @samp{n-2} may report a nonzero value
25495 if Calc used a closed form solution.
25497 Calc's logical predicates like @expr{a < b} return 1 for ``true''
25498 and 0 for ``false.''  @xref{Logical Operations}.  This can be
25499 used to advantage for building conditional sums.  For example,
25500 @samp{sum(prime(k)*k^2, k, 1, 20)} is the sum of the squares of all
25501 prime numbers from 1 to 20; the @code{prime} predicate returns 1 if
25502 its argument is prime and 0 otherwise.  You can read this expression
25503 as ``the sum of @expr{k^2}, where @expr{k} is prime.''  Indeed,
25504 @samp{sum(prime(k)*k^2, k)} would represent the sum of @emph{all} primes
25505 squared, since the limits default to plus and minus infinity, but
25506 there are no such sums that Calc's built-in rules can do in
25507 closed form.
25509 As another example, @samp{sum((k != k_0) * f(k), k, 1, n)} is the
25510 sum of @expr{f(k)} for all @expr{k} from 1 to @expr{n}, excluding
25511 one value @expr{k_0}.  Slightly more tricky is the summand
25512 @samp{(k != k_0) / (k - k_0)}, which is an attempt to describe
25513 the sum of all @expr{1/(k-k_0)} except at @expr{k = k_0}, where
25514 this would be a division by zero.  But at @expr{k = k_0}, this
25515 formula works out to the indeterminate form @expr{0 / 0}, which
25516 Calc will not assume is zero.  Better would be to use
25517 @samp{(k != k_0) ? 1/(k-k_0) : 0}; the @samp{? :} operator does
25518 an ``if-then-else'' test:  This expression says, ``if 
25519 @texline @math{k \ne k_0},
25520 @infoline @expr{k != k_0},
25521 then @expr{1/(k-k_0)}, else zero.''  Now the formula @expr{1/(k-k_0)}
25522 will not even be evaluated by Calc when @expr{k = k_0}.
25524 @cindex Alternating sums
25525 @kindex a -
25526 @pindex calc-alt-summation
25527 @tindex asum
25528 The @kbd{a -} (@code{calc-alt-summation}) [@code{asum}] command
25529 computes an alternating sum.  Successive terms of the sequence
25530 are given alternating signs, with the first term (corresponding
25531 to the lower index value) being positive.  Alternating sums
25532 are converted to normal sums with an extra term of the form
25533 @samp{(-1)^(k-@var{low})}.  This formula is adjusted appropriately
25534 if the step value is other than one.  For example, the Taylor
25535 series for the sine function is @samp{asum(x^k / k!, k, 1, inf, 2)}.
25536 (Calc cannot evaluate this infinite series, but it can approximate
25537 it if you replace @code{inf} with any particular odd number.)
25538 Calc converts this series to a regular sum with a step of one,
25539 namely @samp{sum((-1)^k x^(2k+1) / (2k+1)!, k, 0, inf)}.
25541 @cindex Product of a sequence
25542 @kindex a *
25543 @pindex calc-product
25544 @tindex prod
25545 The @kbd{a *} (@code{calc-product}) [@code{prod}] command is
25546 the analogous way to take a product of many terms.  Calc also knows
25547 some closed forms for products, such as @samp{prod(k, k, 1, n) = n!}.
25548 Conditional products can be written @samp{prod(k^prime(k), k, 1, n)}
25549 or @samp{prod(prime(k) ? k : 1, k, 1, n)}.
25551 @kindex a T
25552 @pindex calc-tabulate
25553 @tindex table
25554 The @kbd{a T} (@code{calc-tabulate}) [@code{table}] command
25555 evaluates a formula at a series of iterated index values, just
25556 like @code{sum} and @code{prod}, but its result is simply a
25557 vector of the results.  For example, @samp{table(a_i, i, 1, 7, 2)}
25558 produces @samp{[a_1, a_3, a_5, a_7]}.
25560 @node Logical Operations, Rewrite Rules, Summations, Algebra
25561 @section Logical Operations
25563 @noindent
25564 The following commands and algebraic functions return true/false values,
25565 where 1 represents ``true'' and 0 represents ``false.''  In cases where
25566 a truth value is required (such as for the condition part of a rewrite
25567 rule, or as the condition for a @w{@kbd{Z [ Z ]}} control structure), any
25568 nonzero value is accepted to mean ``true.''  (Specifically, anything
25569 for which @code{dnonzero} returns 1 is ``true,'' and anything for
25570 which @code{dnonzero} returns 0 or cannot decide is assumed ``false.''
25571 Note that this means that @w{@kbd{Z [ Z ]}} will execute the ``then''
25572 portion if its condition is provably true, but it will execute the
25573 ``else'' portion for any condition like @expr{a = b} that is not
25574 provably true, even if it might be true.  Algebraic functions that
25575 have conditions as arguments, like @code{? :} and @code{&&}, remain
25576 unevaluated if the condition is neither provably true nor provably
25577 false.  @xref{Declarations}.)
25579 @kindex a =
25580 @pindex calc-equal-to
25581 @tindex eq
25582 @tindex =
25583 @tindex ==
25584 The @kbd{a =} (@code{calc-equal-to}) command, or @samp{eq(a,b)} function
25585 (which can also be written @samp{a = b} or @samp{a == b} in an algebraic
25586 formula) is true if @expr{a} and @expr{b} are equal, either because they
25587 are identical expressions, or because they are numbers which are
25588 numerically equal.  (Thus the integer 1 is considered equal to the float
25589 1.0.)  If the equality of @expr{a} and @expr{b} cannot be determined,
25590 the comparison is left in symbolic form.  Note that as a command, this
25591 operation pops two values from the stack and pushes back either a 1 or
25592 a 0, or a formula @samp{a = b} if the values' equality cannot be determined.
25594 Many Calc commands use @samp{=} formulas to represent @dfn{equations}.
25595 For example, the @kbd{a S} (@code{calc-solve-for}) command rearranges
25596 an equation to solve for a given variable.  The @kbd{a M}
25597 (@code{calc-map-equation}) command can be used to apply any
25598 function to both sides of an equation; for example, @kbd{2 a M *}
25599 multiplies both sides of the equation by two.  Note that just
25600 @kbd{2 *} would not do the same thing; it would produce the formula
25601 @samp{2 (a = b)} which represents 2 if the equality is true or
25602 zero if not.
25604 The @code{eq} function with more than two arguments (e.g., @kbd{C-u 3 a =}
25605 or @samp{a = b = c}) tests if all of its arguments are equal.  In
25606 algebraic notation, the @samp{=} operator is unusual in that it is
25607 neither left- nor right-associative:  @samp{a = b = c} is not the
25608 same as @samp{(a = b) = c} or @samp{a = (b = c)} (which each compare
25609 one variable with the 1 or 0 that results from comparing two other
25610 variables).
25612 @kindex a #
25613 @pindex calc-not-equal-to
25614 @tindex neq
25615 @tindex !=
25616 The @kbd{a #} (@code{calc-not-equal-to}) command, or @samp{neq(a,b)} or
25617 @samp{a != b} function, is true if @expr{a} and @expr{b} are not equal.
25618 This also works with more than two arguments; @samp{a != b != c != d}
25619 tests that all four of @expr{a}, @expr{b}, @expr{c}, and @expr{d} are
25620 distinct numbers.
25622 @kindex a <
25623 @tindex lt
25624 @ignore
25625 @mindex @idots
25626 @end ignore
25627 @kindex a >
25628 @ignore
25629 @mindex @null
25630 @end ignore
25631 @kindex a [
25632 @ignore
25633 @mindex @null
25634 @end ignore
25635 @kindex a ]
25636 @pindex calc-less-than
25637 @pindex calc-greater-than
25638 @pindex calc-less-equal
25639 @pindex calc-greater-equal
25640 @ignore
25641 @mindex @null
25642 @end ignore
25643 @tindex gt
25644 @ignore
25645 @mindex @null
25646 @end ignore
25647 @tindex leq
25648 @ignore
25649 @mindex @null
25650 @end ignore
25651 @tindex geq
25652 @ignore
25653 @mindex @null
25654 @end ignore
25655 @tindex <
25656 @ignore
25657 @mindex @null
25658 @end ignore
25659 @tindex >
25660 @ignore
25661 @mindex @null
25662 @end ignore
25663 @tindex <=
25664 @ignore
25665 @mindex @null
25666 @end ignore
25667 @tindex >=
25668 The @kbd{a <} (@code{calc-less-than}) [@samp{lt(a,b)} or @samp{a < b}]
25669 operation is true if @expr{a} is less than @expr{b}.  Similar functions
25670 are @kbd{a >} (@code{calc-greater-than}) [@samp{gt(a,b)} or @samp{a > b}],
25671 @kbd{a [} (@code{calc-less-equal}) [@samp{leq(a,b)} or @samp{a <= b}], and
25672 @kbd{a ]} (@code{calc-greater-equal}) [@samp{geq(a,b)} or @samp{a >= b}].
25674 While the inequality functions like @code{lt} do not accept more
25675 than two arguments, the syntax @w{@samp{a <= b < c}} is translated to an
25676 equivalent expression involving intervals: @samp{b in [a .. c)}.
25677 (See the description of @code{in} below.)  All four combinations
25678 of @samp{<} and @samp{<=} are allowed, or any of the four combinations
25679 of @samp{>} and @samp{>=}.  Four-argument constructions like
25680 @samp{a < b < c < d}, and mixtures like @w{@samp{a < b = c}} that
25681 involve both equalities and inequalities, are not allowed.
25683 @kindex a .
25684 @pindex calc-remove-equal
25685 @tindex rmeq
25686 The @kbd{a .} (@code{calc-remove-equal}) [@code{rmeq}] command extracts
25687 the righthand side of the equation or inequality on the top of the
25688 stack.  It also works elementwise on vectors.  For example, if
25689 @samp{[x = 2.34, y = z / 2]} is on the stack, then @kbd{a .} produces
25690 @samp{[2.34, z / 2]}.  As a special case, if the righthand side is a
25691 variable and the lefthand side is a number (as in @samp{2.34 = x}), then
25692 Calc keeps the lefthand side instead.  Finally, this command works with
25693 assignments @samp{x := 2.34} as well as equations, always taking the
25694 righthand side, and for @samp{=>} (evaluates-to) operators, always
25695 taking the lefthand side.
25697 @kindex a &
25698 @pindex calc-logical-and
25699 @tindex land
25700 @tindex &&
25701 The @kbd{a &} (@code{calc-logical-and}) [@samp{land(a,b)} or @samp{a && b}]
25702 function is true if both of its arguments are true, i.e., are
25703 non-zero numbers.  In this case, the result will be either @expr{a} or
25704 @expr{b}, chosen arbitrarily.  If either argument is zero, the result is
25705 zero.  Otherwise, the formula is left in symbolic form.
25707 @kindex a |
25708 @pindex calc-logical-or
25709 @tindex lor
25710 @tindex ||
25711 The @kbd{a |} (@code{calc-logical-or}) [@samp{lor(a,b)} or @samp{a || b}]
25712 function is true if either or both of its arguments are true (nonzero).
25713 The result is whichever argument was nonzero, choosing arbitrarily if both
25714 are nonzero.  If both @expr{a} and @expr{b} are zero, the result is
25715 zero.
25717 @kindex a !
25718 @pindex calc-logical-not
25719 @tindex lnot
25720 @tindex !
25721 The @kbd{a !} (@code{calc-logical-not}) [@samp{lnot(a)} or @samp{!@: a}]
25722 function is true if @expr{a} is false (zero), or false if @expr{a} is
25723 true (nonzero).  It is left in symbolic form if @expr{a} is not a
25724 number.
25726 @kindex a :
25727 @pindex calc-logical-if
25728 @tindex if
25729 @ignore
25730 @mindex ? :
25731 @end ignore
25732 @tindex ?
25733 @ignore
25734 @mindex @null
25735 @end ignore
25736 @tindex :
25737 @cindex Arguments, not evaluated
25738 The @kbd{a :} (@code{calc-logical-if}) [@samp{if(a,b,c)} or @samp{a ? b :@: c}]
25739 function is equal to either @expr{b} or @expr{c} if @expr{a} is a nonzero
25740 number or zero, respectively.  If @expr{a} is not a number, the test is
25741 left in symbolic form and neither @expr{b} nor @expr{c} is evaluated in
25742 any way.  In algebraic formulas, this is one of the few Calc functions
25743 whose arguments are not automatically evaluated when the function itself
25744 is evaluated.  The others are @code{lambda}, @code{quote}, and
25745 @code{condition}.
25747 One minor surprise to watch out for is that the formula @samp{a?3:4}
25748 will not work because the @samp{3:4} is parsed as a fraction instead of
25749 as three separate symbols.  Type something like @samp{a ? 3 : 4} or
25750 @samp{a?(3):4} instead.
25752 As a special case, if @expr{a} evaluates to a vector, then both @expr{b}
25753 and @expr{c} are evaluated; the result is a vector of the same length
25754 as @expr{a} whose elements are chosen from corresponding elements of
25755 @expr{b} and @expr{c} according to whether each element of @expr{a}
25756 is zero or nonzero.  Each of @expr{b} and @expr{c} must be either a
25757 vector of the same length as @expr{a}, or a non-vector which is matched
25758 with all elements of @expr{a}.
25760 @kindex a @{
25761 @pindex calc-in-set
25762 @tindex in
25763 The @kbd{a @{} (@code{calc-in-set}) [@samp{in(a,b)}] function is true if
25764 the number @expr{a} is in the set of numbers represented by @expr{b}.
25765 If @expr{b} is an interval form, @expr{a} must be one of the values
25766 encompassed by the interval.  If @expr{b} is a vector, @expr{a} must be
25767 equal to one of the elements of the vector.  (If any vector elements are
25768 intervals, @expr{a} must be in any of the intervals.)  If @expr{b} is a
25769 plain number, @expr{a} must be numerically equal to @expr{b}.
25770 @xref{Set Operations}, for a group of commands that manipulate sets
25771 of this sort.
25773 @ignore
25774 @starindex
25775 @end ignore
25776 @tindex typeof
25777 The @samp{typeof(a)} function produces an integer or variable which
25778 characterizes @expr{a}.  If @expr{a} is a number, vector, or variable,
25779 the result will be one of the following numbers:
25781 @example
25782  1   Integer
25783  2   Fraction
25784  3   Floating-point number
25785  4   HMS form
25786  5   Rectangular complex number
25787  6   Polar complex number
25788  7   Error form
25789  8   Interval form
25790  9   Modulo form
25791 10   Date-only form
25792 11   Date/time form
25793 12   Infinity (inf, uinf, or nan)
25794 100  Variable
25795 101  Vector (but not a matrix)
25796 102  Matrix
25797 @end example
25799 Otherwise, @expr{a} is a formula, and the result is a variable which
25800 represents the name of the top-level function call.
25802 @ignore
25803 @starindex
25804 @end ignore
25805 @tindex integer
25806 @ignore
25807 @starindex
25808 @end ignore
25809 @tindex real
25810 @ignore
25811 @starindex
25812 @end ignore
25813 @tindex constant
25814 The @samp{integer(a)} function returns true if @expr{a} is an integer.
25815 The @samp{real(a)} function
25816 is true if @expr{a} is a real number, either integer, fraction, or
25817 float.  The @samp{constant(a)} function returns true if @expr{a} is
25818 any of the objects for which @code{typeof} would produce an integer
25819 code result except for variables, and provided that the components of
25820 an object like a vector or error form are themselves constant.
25821 Note that infinities do not satisfy any of these tests, nor do
25822 special constants like @code{pi} and @code{e}.
25824 @xref{Declarations}, for a set of similar functions that recognize
25825 formulas as well as actual numbers.  For example, @samp{dint(floor(x))}
25826 is true because @samp{floor(x)} is provably integer-valued, but
25827 @samp{integer(floor(x))} does not because @samp{floor(x)} is not
25828 literally an integer constant.
25830 @ignore
25831 @starindex
25832 @end ignore
25833 @tindex refers
25834 The @samp{refers(a,b)} function is true if the variable (or sub-expression)
25835 @expr{b} appears in @expr{a}, or false otherwise.  Unlike the other
25836 tests described here, this function returns a definite ``no'' answer
25837 even if its arguments are still in symbolic form.  The only case where
25838 @code{refers} will be left unevaluated is if @expr{a} is a plain
25839 variable (different from @expr{b}).
25841 @ignore
25842 @starindex
25843 @end ignore
25844 @tindex negative
25845 The @samp{negative(a)} function returns true if @expr{a} ``looks'' negative,
25846 because it is a negative number, because it is of the form @expr{-x},
25847 or because it is a product or quotient with a term that looks negative.
25848 This is most useful in rewrite rules.  Beware that @samp{negative(a)}
25849 evaluates to 1 or 0 for @emph{any} argument @expr{a}, so it can only
25850 be stored in a formula if the default simplifications are turned off
25851 first with @kbd{m O} (or if it appears in an unevaluated context such
25852 as a rewrite rule condition).
25854 @ignore
25855 @starindex
25856 @end ignore
25857 @tindex variable
25858 The @samp{variable(a)} function is true if @expr{a} is a variable,
25859 or false if not.  If @expr{a} is a function call, this test is left
25860 in symbolic form.  Built-in variables like @code{pi} and @code{inf}
25861 are considered variables like any others by this test.
25863 @ignore
25864 @starindex
25865 @end ignore
25866 @tindex nonvar
25867 The @samp{nonvar(a)} function is true if @expr{a} is a non-variable.
25868 If its argument is a variable it is left unsimplified; it never
25869 actually returns zero.  However, since Calc's condition-testing
25870 commands consider ``false'' anything not provably true, this is
25871 often good enough.
25873 @ignore
25874 @starindex
25875 @end ignore
25876 @tindex lin
25877 @ignore
25878 @starindex
25879 @end ignore
25880 @tindex linnt
25881 @ignore
25882 @starindex
25883 @end ignore
25884 @tindex islin
25885 @ignore
25886 @starindex
25887 @end ignore
25888 @tindex islinnt
25889 @cindex Linearity testing
25890 The functions @code{lin}, @code{linnt}, @code{islin}, and @code{islinnt}
25891 check if an expression is ``linear,'' i.e., can be written in the form
25892 @expr{a + b x} for some constants @expr{a} and @expr{b}, and some
25893 variable or subformula @expr{x}.  The function @samp{islin(f,x)} checks
25894 if formula @expr{f} is linear in @expr{x}, returning 1 if so.  For
25895 example, @samp{islin(x,x)}, @samp{islin(-x,x)}, @samp{islin(3,x)}, and
25896 @samp{islin(x y / 3 - 2, x)} all return 1.  The @samp{lin(f,x)} function
25897 is similar, except that instead of returning 1 it returns the vector
25898 @expr{[a, b, x]}.  For the above examples, this vector would be
25899 @expr{[0, 1, x]}, @expr{[0, -1, x]}, @expr{[3, 0, x]}, and
25900 @expr{[-2, y/3, x]}, respectively.  Both @code{lin} and @code{islin}
25901 generally remain unevaluated for expressions which are not linear,
25902 e.g., @samp{lin(2 x^2, x)} and @samp{lin(sin(x), x)}.  The second
25903 argument can also be a formula; @samp{islin(2 + 3 sin(x), sin(x))}
25904 returns true.
25906 The @code{linnt} and @code{islinnt} functions perform a similar check,
25907 but require a ``non-trivial'' linear form, which means that the
25908 @expr{b} coefficient must be non-zero.  For example, @samp{lin(2,x)}
25909 returns @expr{[2, 0, x]} and @samp{lin(y,x)} returns @expr{[y, 0, x]},
25910 but @samp{linnt(2,x)} and @samp{linnt(y,x)} are left unevaluated
25911 (in other words, these formulas are considered to be only ``trivially''
25912 linear in @expr{x}).
25914 All four linearity-testing functions allow you to omit the second
25915 argument, in which case the input may be linear in any non-constant
25916 formula.  Here, the @expr{a=0}, @expr{b=1} case is also considered
25917 trivial, and only constant values for @expr{a} and @expr{b} are
25918 recognized.  Thus, @samp{lin(2 x y)} returns @expr{[0, 2, x y]},
25919 @samp{lin(2 - x y)} returns @expr{[2, -1, x y]}, and @samp{lin(x y)}
25920 returns @expr{[0, 1, x y]}.  The @code{linnt} function would allow the
25921 first two cases but not the third.  Also, neither @code{lin} nor
25922 @code{linnt} accept plain constants as linear in the one-argument
25923 case: @samp{islin(2,x)} is true, but @samp{islin(2)} is false.
25925 @ignore
25926 @starindex
25927 @end ignore
25928 @tindex istrue
25929 The @samp{istrue(a)} function returns 1 if @expr{a} is a nonzero
25930 number or provably nonzero formula, or 0 if @expr{a} is anything else.
25931 Calls to @code{istrue} can only be manipulated if @kbd{m O} mode is
25932 used to make sure they are not evaluated prematurely.  (Note that
25933 declarations are used when deciding whether a formula is true;
25934 @code{istrue} returns 1 when @code{dnonzero} would return 1, and
25935 it returns 0 when @code{dnonzero} would return 0 or leave itself
25936 in symbolic form.)
25938 @node Rewrite Rules, , Logical Operations, Algebra
25939 @section Rewrite Rules
25941 @noindent
25942 @cindex Rewrite rules
25943 @cindex Transformations
25944 @cindex Pattern matching
25945 @kindex a r
25946 @pindex calc-rewrite
25947 @tindex rewrite
25948 The @kbd{a r} (@code{calc-rewrite}) [@code{rewrite}] command makes
25949 substitutions in a formula according to a specified pattern or patterns
25950 known as @dfn{rewrite rules}.  Whereas @kbd{a b} (@code{calc-substitute})
25951 matches literally, so that substituting @samp{sin(x)} with @samp{cos(x)}
25952 matches only the @code{sin} function applied to the variable @code{x},
25953 rewrite rules match general kinds of formulas; rewriting using the rule
25954 @samp{sin(x) := cos(x)} matches @code{sin} of any argument and replaces
25955 it with @code{cos} of that same argument.  The only significance of the
25956 name @code{x} is that the same name is used on both sides of the rule.
25958 Rewrite rules rearrange formulas already in Calc's memory.
25959 @xref{Syntax Tables}, to read about @dfn{syntax rules}, which are
25960 similar to algebraic rewrite rules but operate when new algebraic
25961 entries are being parsed, converting strings of characters into
25962 Calc formulas.
25964 @menu
25965 * Entering Rewrite Rules::
25966 * Basic Rewrite Rules::
25967 * Conditional Rewrite Rules::
25968 * Algebraic Properties of Rewrite Rules::
25969 * Other Features of Rewrite Rules::
25970 * Composing Patterns in Rewrite Rules::
25971 * Nested Formulas with Rewrite Rules::
25972 * Multi-Phase Rewrite Rules::
25973 * Selections with Rewrite Rules::
25974 * Matching Commands::
25975 * Automatic Rewrites::
25976 * Debugging Rewrites::
25977 * Examples of Rewrite Rules::
25978 @end menu
25980 @node Entering Rewrite Rules, Basic Rewrite Rules, Rewrite Rules, Rewrite Rules
25981 @subsection Entering Rewrite Rules
25983 @noindent
25984 Rewrite rules normally use the ``assignment'' operator
25985 @samp{@var{old} := @var{new}}.
25986 This operator is equivalent to the function call @samp{assign(old, new)}.
25987 The @code{assign} function is undefined by itself in Calc, so an
25988 assignment formula such as a rewrite rule will be left alone by ordinary
25989 Calc commands.  But certain commands, like the rewrite system, interpret
25990 assignments in special ways.
25992 For example, the rule @samp{sin(x)^2 := 1-cos(x)^2} says to replace
25993 every occurrence of the sine of something, squared, with one minus the
25994 square of the cosine of that same thing.  All by itself as a formula
25995 on the stack it does nothing, but when given to the @kbd{a r} command
25996 it turns that command into a sine-squared-to-cosine-squared converter.
25998 To specify a set of rules to be applied all at once, make a vector of
25999 rules.
26001 When @kbd{a r} prompts you to enter the rewrite rules, you can answer
26002 in several ways:
26004 @enumerate
26005 @item
26006 With a rule:  @kbd{f(x) := g(x) @key{RET}}.
26007 @item
26008 With a vector of rules:  @kbd{[f1(x) := g1(x), f2(x) := g2(x)] @key{RET}}.
26009 (You can omit the enclosing square brackets if you wish.)
26010 @item
26011 With the name of a variable that contains the rule or rules vector:
26012 @kbd{myrules @key{RET}}.
26013 @item
26014 With any formula except a rule, a vector, or a variable name; this
26015 will be interpreted as the @var{old} half of a rewrite rule,
26016 and you will be prompted a second time for the @var{new} half:
26017 @kbd{f(x) @key{RET} g(x) @key{RET}}.
26018 @item
26019 With a blank line, in which case the rule, rules vector, or variable
26020 will be taken from the top of the stack (and the formula to be
26021 rewritten will come from the second-to-top position).
26022 @end enumerate
26024 If you enter the rules directly (as opposed to using rules stored
26025 in a variable), those rules will be put into the Trail so that you
26026 can retrieve them later.  @xref{Trail Commands}.
26028 It is most convenient to store rules you use often in a variable and
26029 invoke them by giving the variable name.  The @kbd{s e}
26030 (@code{calc-edit-variable}) command is an easy way to create or edit a
26031 rule set stored in a variable.  You may also wish to use @kbd{s p}
26032 (@code{calc-permanent-variable}) to save your rules permanently;
26033 @pxref{Operations on Variables}.
26035 Rewrite rules are compiled into a special internal form for faster
26036 matching.  If you enter a rule set directly it must be recompiled
26037 every time.  If you store the rules in a variable and refer to them
26038 through that variable, they will be compiled once and saved away
26039 along with the variable for later reference.  This is another good
26040 reason to store your rules in a variable.
26042 Calc also accepts an obsolete notation for rules, as vectors
26043 @samp{[@var{old}, @var{new}]}.  But because it is easily confused with a
26044 vector of two rules, the use of this notation is no longer recommended.
26046 @node Basic Rewrite Rules, Conditional Rewrite Rules, Entering Rewrite Rules, Rewrite Rules
26047 @subsection Basic Rewrite Rules
26049 @noindent
26050 To match a particular formula @expr{x} with a particular rewrite rule
26051 @samp{@var{old} := @var{new}}, Calc compares the structure of @expr{x} with
26052 the structure of @var{old}.  Variables that appear in @var{old} are
26053 treated as @dfn{meta-variables}; the corresponding positions in @expr{x}
26054 may contain any sub-formulas.  For example, the pattern @samp{f(x,y)}
26055 would match the expression @samp{f(12, a+1)} with the meta-variable
26056 @samp{x} corresponding to 12 and with @samp{y} corresponding to
26057 @samp{a+1}.  However, this pattern would not match @samp{f(12)} or
26058 @samp{g(12, a+1)}, since there is no assignment of the meta-variables
26059 that will make the pattern match these expressions.  Notice that if
26060 the pattern is a single meta-variable, it will match any expression.
26062 If a given meta-variable appears more than once in @var{old}, the
26063 corresponding sub-formulas of @expr{x} must be identical.  Thus
26064 the pattern @samp{f(x,x)} would match @samp{f(12, 12)} and
26065 @samp{f(a+1, a+1)} but not @samp{f(12, a+1)} or @samp{f(a+b, b+a)}.
26066 (@xref{Conditional Rewrite Rules}, for a way to match the latter.)
26068 Things other than variables must match exactly between the pattern
26069 and the target formula.  To match a particular variable exactly, use
26070 the pseudo-function @samp{quote(v)} in the pattern.  For example, the
26071 pattern @samp{x+quote(y)} matches @samp{x+y}, @samp{2+y}, or
26072 @samp{sin(a)+y}.
26074 The special variable names @samp{e}, @samp{pi}, @samp{i}, @samp{phi},
26075 @samp{gamma}, @samp{inf}, @samp{uinf}, and @samp{nan} always match
26076 literally.  Thus the pattern @samp{sin(d + e + f)} acts exactly like
26077 @samp{sin(d + quote(e) + f)}.
26079 If the @var{old} pattern is found to match a given formula, that
26080 formula is replaced by @var{new}, where any occurrences in @var{new}
26081 of meta-variables from the pattern are replaced with the sub-formulas
26082 that they matched.  Thus, applying the rule @samp{f(x,y) := g(y+x,x)}
26083 to @samp{f(12, a+1)} would produce @samp{g(a+13, 12)}.
26085 The normal @kbd{a r} command applies rewrite rules over and over
26086 throughout the target formula until no further changes are possible
26087 (up to a limit of 100 times).  Use @kbd{C-u 1 a r} to make only one
26088 change at a time.
26090 @node Conditional Rewrite Rules, Algebraic Properties of Rewrite Rules, Basic Rewrite Rules, Rewrite Rules
26091 @subsection Conditional Rewrite Rules
26093 @noindent
26094 A rewrite rule can also be @dfn{conditional}, written in the form
26095 @samp{@var{old} := @var{new} :: @var{cond}}.  (There is also the obsolete
26096 form @samp{[@var{old}, @var{new}, @var{cond}]}.)  If a @var{cond} part
26097 is present in the
26098 rule, this is an additional condition that must be satisfied before
26099 the rule is accepted.  Once @var{old} has been successfully matched
26100 to the target expression, @var{cond} is evaluated (with all the
26101 meta-variables substituted for the values they matched) and simplified
26102 with @kbd{a s} (@code{calc-simplify}).  If the result is a nonzero
26103 number or any other object known to be nonzero (@pxref{Declarations}),
26104 the rule is accepted.  If the result is zero or if it is a symbolic
26105 formula that is not known to be nonzero, the rule is rejected.
26106 @xref{Logical Operations}, for a number of functions that return
26107 1 or 0 according to the results of various tests.
26109 For example, the formula @samp{n > 0} simplifies to 1 or 0 if @expr{n}
26110 is replaced by a positive or nonpositive number, respectively (or if
26111 @expr{n} has been declared to be positive or nonpositive).  Thus,
26112 the rule @samp{f(x,y) := g(y+x,x) :: x+y > 0} would apply to
26113 @samp{f(0, 4)} but not to @samp{f(-3, 2)} or @samp{f(12, a+1)}
26114 (assuming no outstanding declarations for @expr{a}).  In the case of
26115 @samp{f(-3, 2)}, the condition can be shown not to be satisfied; in
26116 the case of @samp{f(12, a+1)}, the condition merely cannot be shown
26117 to be satisfied, but that is enough to reject the rule.
26119 While Calc will use declarations to reason about variables in the
26120 formula being rewritten, declarations do not apply to meta-variables.
26121 For example, the rule @samp{f(a) := g(a+1)} will match for any values
26122 of @samp{a}, such as complex numbers, vectors, or formulas, even if
26123 @samp{a} has been declared to be real or scalar.  If you want the
26124 meta-variable @samp{a} to match only literal real numbers, use
26125 @samp{f(a) := g(a+1) :: real(a)}.  If you want @samp{a} to match only
26126 reals and formulas which are provably real, use @samp{dreal(a)} as
26127 the condition.
26129 The @samp{::} operator is a shorthand for the @code{condition}
26130 function; @samp{@var{old} := @var{new} :: @var{cond}} is equivalent to
26131 the formula @samp{condition(assign(@var{old}, @var{new}), @var{cond})}.
26133 If you have several conditions, you can use @samp{... :: c1 :: c2 :: c3}
26134 or @samp{... :: c1 && c2 && c3}.  The two are entirely equivalent.
26136 It is also possible to embed conditions inside the pattern:
26137 @samp{f(x :: x>0, y) := g(y+x, x)}.  This is purely a notational
26138 convenience, though; where a condition appears in a rule has no
26139 effect on when it is tested.  The rewrite-rule compiler automatically
26140 decides when it is best to test each condition while a rule is being
26141 matched.
26143 Certain conditions are handled as special cases by the rewrite rule
26144 system and are tested very efficiently:  Where @expr{x} is any
26145 meta-variable, these conditions are @samp{integer(x)}, @samp{real(x)},
26146 @samp{constant(x)}, @samp{negative(x)}, @samp{x >= y} where @expr{y}
26147 is either a constant or another meta-variable and @samp{>=} may be
26148 replaced by any of the six relational operators, and @samp{x % a = b}
26149 where @expr{a} and @expr{b} are constants.  Other conditions, like
26150 @samp{x >= y+1} or @samp{dreal(x)}, will be less efficient to check
26151 since Calc must bring the whole evaluator and simplifier into play.
26153 An interesting property of @samp{::} is that neither of its arguments
26154 will be touched by Calc's default simplifications.  This is important
26155 because conditions often are expressions that cannot safely be
26156 evaluated early.  For example, the @code{typeof} function never
26157 remains in symbolic form; entering @samp{typeof(a)} will put the
26158 number 100 (the type code for variables like @samp{a}) on the stack.
26159 But putting the condition @samp{... :: typeof(a) = 6} on the stack
26160 is safe since @samp{::} prevents the @code{typeof} from being
26161 evaluated until the condition is actually used by the rewrite system.
26163 Since @samp{::} protects its lefthand side, too, you can use a dummy
26164 condition to protect a rule that must itself not evaluate early.
26165 For example, it's not safe to put @samp{a(f,x) := apply(f, [x])} on
26166 the stack because it will immediately evaluate to @samp{a(f,x) := f(x)},
26167 where the meta-variable-ness of @code{f} on the righthand side has been
26168 lost.  But @samp{a(f,x) := apply(f, [x]) :: 1} is safe, and of course
26169 the condition @samp{1} is always true (nonzero) so it has no effect on
26170 the functioning of the rule.  (The rewrite compiler will ensure that
26171 it doesn't even impact the speed of matching the rule.)
26173 @node Algebraic Properties of Rewrite Rules, Other Features of Rewrite Rules, Conditional Rewrite Rules, Rewrite Rules
26174 @subsection Algebraic Properties of Rewrite Rules
26176 @noindent
26177 The rewrite mechanism understands the algebraic properties of functions
26178 like @samp{+} and @samp{*}.  In particular, pattern matching takes
26179 the associativity and commutativity of the following functions into
26180 account:
26182 @smallexample
26183 + - *  = !=  && ||  and or xor  vint vunion vxor  gcd lcm  max min  beta
26184 @end smallexample
26186 For example, the rewrite rule:
26188 @example
26189 a x + b x  :=  (a + b) x
26190 @end example
26192 @noindent
26193 will match formulas of the form,
26195 @example
26196 a x + b x,  x a + x b,  a x + x b,  x a + b x
26197 @end example
26199 Rewrites also understand the relationship between the @samp{+} and @samp{-}
26200 operators.  The above rewrite rule will also match the formulas,
26202 @example
26203 a x - b x,  x a - x b,  a x - x b,  x a - b x
26204 @end example
26206 @noindent
26207 by matching @samp{b} in the pattern to @samp{-b} from the formula.
26209 Applied to a sum of many terms like @samp{r + a x + s + b x + t}, this
26210 pattern will check all pairs of terms for possible matches.  The rewrite
26211 will take whichever suitable pair it discovers first.
26213 In general, a pattern using an associative operator like @samp{a + b}
26214 will try @var{2 n} different ways to match a sum of @var{n} terms
26215 like @samp{x + y + z - w}.  First, @samp{a} is matched against each
26216 of @samp{x}, @samp{y}, @samp{z}, and @samp{-w} in turn, with @samp{b}
26217 being matched to the remainders @samp{y + z - w}, @samp{x + z - w}, etc.
26218 If none of these succeed, then @samp{b} is matched against each of the
26219 four terms with @samp{a} matching the remainder.  Half-and-half matches,
26220 like @samp{(x + y) + (z - w)}, are not tried.
26222 Note that @samp{*} is not commutative when applied to matrices, but
26223 rewrite rules pretend that it is.  If you type @kbd{m v} to enable
26224 Matrix mode (@pxref{Matrix Mode}), rewrite rules will match @samp{*}
26225 literally, ignoring its usual commutativity property.  (In the
26226 current implementation, the associativity also vanishes---it is as
26227 if the pattern had been enclosed in a @code{plain} marker; see below.)
26228 If you are applying rewrites to formulas with matrices, it's best to
26229 enable Matrix mode first to prevent algebraically incorrect rewrites
26230 from occurring.
26232 The pattern @samp{-x} will actually match any expression.  For example,
26233 the rule
26235 @example
26236 f(-x)  :=  -f(x)
26237 @end example
26239 @noindent
26240 will rewrite @samp{f(a)} to @samp{-f(-a)}.  To avoid this, either use
26241 a @code{plain} marker as described below, or add a @samp{negative(x)}
26242 condition.  The @code{negative} function is true if its argument
26243 ``looks'' negative, for example, because it is a negative number or
26244 because it is a formula like @samp{-x}.  The new rule using this
26245 condition is:
26247 @example
26248 f(x)  :=  -f(-x)  :: negative(x)    @r{or, equivalently,}
26249 f(-x)  :=  -f(x)  :: negative(-x)
26250 @end example
26252 In the same way, the pattern @samp{x - y} will match the sum @samp{a + b}
26253 by matching @samp{y} to @samp{-b}.
26255 The pattern @samp{a b} will also match the formula @samp{x/y} if
26256 @samp{y} is a number.  Thus the rule @samp{a x + @w{b x} := (a+b) x}
26257 will also convert @samp{a x + x / 2} to @samp{(a + 0.5) x} (or
26258 @samp{(a + 1:2) x}, depending on the current fraction mode).
26260 Calc will @emph{not} take other liberties with @samp{*}, @samp{/}, and
26261 @samp{^}.  For example, the pattern @samp{f(a b)} will not match
26262 @samp{f(x^2)}, and @samp{f(a + b)} will not match @samp{f(2 x)}, even
26263 though conceivably these patterns could match with @samp{a = b = x}.
26264 Nor will @samp{f(a b)} match @samp{f(x / y)} if @samp{y} is not a
26265 constant, even though it could be considered to match with @samp{a = x}
26266 and @samp{b = 1/y}.  The reasons are partly for efficiency, and partly
26267 because while few mathematical operations are substantively different
26268 for addition and subtraction, often it is preferable to treat the cases
26269 of multiplication, division, and integer powers separately.
26271 Even more subtle is the rule set
26273 @example
26274 [ f(a) + f(b) := f(a + b),  -f(a) := f(-a) ]
26275 @end example
26277 @noindent
26278 attempting to match @samp{f(x) - f(y)}.  You might think that Calc
26279 will view this subtraction as @samp{f(x) + (-f(y))} and then apply
26280 the above two rules in turn, but actually this will not work because
26281 Calc only does this when considering rules for @samp{+} (like the
26282 first rule in this set).  So it will see first that @samp{f(x) + (-f(y))}
26283 does not match @samp{f(a) + f(b)} for any assignments of the
26284 meta-variables, and then it will see that @samp{f(x) - f(y)} does
26285 not match @samp{-f(a)} for any assignment of @samp{a}.  Because Calc
26286 tries only one rule at a time, it will not be able to rewrite
26287 @samp{f(x) - f(y)} with this rule set.  An explicit @samp{f(a) - f(b)}
26288 rule will have to be added.
26290 Another thing patterns will @emph{not} do is break up complex numbers.
26291 The pattern @samp{myconj(a + @w{b i)} := a - b i} will work for formulas
26292 involving the special constant @samp{i} (such as @samp{3 - 4 i}), but
26293 it will not match actual complex numbers like @samp{(3, -4)}.  A version
26294 of the above rule for complex numbers would be
26296 @example
26297 myconj(a)  :=  re(a) - im(a) (0,1)  :: im(a) != 0
26298 @end example
26300 @noindent
26301 (Because the @code{re} and @code{im} functions understand the properties
26302 of the special constant @samp{i}, this rule will also work for
26303 @samp{3 - 4 i}.  In fact, this particular rule would probably be better
26304 without the @samp{im(a) != 0} condition, since if @samp{im(a) = 0} the
26305 righthand side of the rule will still give the correct answer for the
26306 conjugate of a real number.)
26308 It is also possible to specify optional arguments in patterns.  The rule
26310 @example
26311 opt(a) x + opt(b) (x^opt(c) + opt(d))  :=  f(a, b, c, d)
26312 @end example
26314 @noindent
26315 will match the formula
26317 @example
26318 5 (x^2 - 4) + 3 x
26319 @end example
26321 @noindent
26322 in a fairly straightforward manner, but it will also match reduced
26323 formulas like
26325 @example
26326 x + x^2,    2(x + 1) - x,    x + x
26327 @end example
26329 @noindent
26330 producing, respectively,
26332 @example
26333 f(1, 1, 2, 0),   f(-1, 2, 1, 1),   f(1, 1, 1, 0)
26334 @end example
26336 (The latter two formulas can be entered only if default simplifications
26337 have been turned off with @kbd{m O}.)
26339 The default value for a term of a sum is zero.  The default value
26340 for a part of a product, for a power, or for the denominator of a
26341 quotient, is one.  Also, @samp{-x} matches the pattern @samp{opt(a) b}
26342 with @samp{a = -1}.
26344 In particular, the distributive-law rule can be refined to
26346 @example
26347 opt(a) x + opt(b) x  :=  (a + b) x
26348 @end example
26350 @noindent
26351 so that it will convert, e.g., @samp{a x - x}, to @samp{(a - 1) x}.
26353 The pattern @samp{opt(a) + opt(b) x} matches almost any formulas which
26354 are linear in @samp{x}.  You can also use the @code{lin} and @code{islin}
26355 functions with rewrite conditions to test for this; @pxref{Logical
26356 Operations}.  These functions are not as convenient to use in rewrite
26357 rules, but they recognize more kinds of formulas as linear:
26358 @samp{x/z} is considered linear with @expr{b = 1/z} by @code{lin},
26359 but it will not match the above pattern because that pattern calls
26360 for a multiplication, not a division.
26362 As another example, the obvious rule to replace @samp{sin(x)^2 + cos(x)^2}
26363 by 1,
26365 @example
26366 sin(x)^2 + cos(x)^2  :=  1
26367 @end example
26369 @noindent
26370 misses many cases because the sine and cosine may both be multiplied by
26371 an equal factor.  Here's a more successful rule:
26373 @example
26374 opt(a) sin(x)^2 + opt(a) cos(x)^2  :=  a
26375 @end example
26377 Note that this rule will @emph{not} match @samp{sin(x)^2 + 6 cos(x)^2}
26378 because one @expr{a} would have ``matched'' 1 while the other matched 6.
26380 Calc automatically converts a rule like
26382 @example
26383 f(x-1, x)  :=  g(x)
26384 @end example
26386 @noindent
26387 into the form
26389 @example
26390 f(temp, x)  :=  g(x)  :: temp = x-1
26391 @end example
26393 @noindent
26394 (where @code{temp} stands for a new, invented meta-variable that
26395 doesn't actually have a name).  This modified rule will successfully
26396 match @samp{f(6, 7)}, binding @samp{temp} and @samp{x} to 6 and 7,
26397 respectively, then verifying that they differ by one even though
26398 @samp{6} does not superficially look like @samp{x-1}.
26400 However, Calc does not solve equations to interpret a rule.  The
26401 following rule,
26403 @example
26404 f(x-1, x+1)  :=  g(x)
26405 @end example
26407 @noindent
26408 will not work.  That is, it will match @samp{f(a - 1 + b, a + 1 + b)}
26409 but not @samp{f(6, 8)}.  Calc always interprets at least one occurrence
26410 of a variable by literal matching.  If the variable appears ``isolated''
26411 then Calc is smart enough to use it for literal matching.  But in this
26412 last example, Calc is forced to rewrite the rule to @samp{f(x-1, temp)
26413 := g(x) :: temp = x+1} where the @samp{x-1} term must correspond to an
26414 actual ``something-minus-one'' in the target formula.
26416 A successful way to write this would be @samp{f(x, x+2) := g(x+1)}.
26417 You could make this resemble the original form more closely by using
26418 @code{let} notation, which is described in the next section:
26420 @example
26421 f(xm1, x+1)  :=  g(x)  :: let(x := xm1+1)
26422 @end example
26424 Calc does this rewriting or ``conditionalizing'' for any sub-pattern
26425 which involves only the functions in the following list, operating
26426 only on constants and meta-variables which have already been matched
26427 elsewhere in the pattern.  When matching a function call, Calc is
26428 careful to match arguments which are plain variables before arguments
26429 which are calls to any of the functions below, so that a pattern like
26430 @samp{f(x-1, x)} can be conditionalized even though the isolated
26431 @samp{x} comes after the @samp{x-1}.
26433 @smallexample
26434 + - * / \ % ^  abs sign  round rounde roundu trunc floor ceil
26435 max min  re im conj arg
26436 @end smallexample
26438 You can suppress all of the special treatments described in this
26439 section by surrounding a function call with a @code{plain} marker.
26440 This marker causes the function call which is its argument to be
26441 matched literally, without regard to commutativity, associativity,
26442 negation, or conditionalization.  When you use @code{plain}, the
26443 ``deep structure'' of the formula being matched can show through.
26444 For example,
26446 @example
26447 plain(a - a b)  :=  f(a, b)
26448 @end example
26450 @noindent
26451 will match only literal subtractions.  However, the @code{plain}
26452 marker does not affect its arguments' arguments.  In this case,
26453 commutativity and associativity is still considered while matching
26454 the @w{@samp{a b}} sub-pattern, so the whole pattern will match
26455 @samp{x - y x} as well as @samp{x - x y}.  We could go still
26456 further and use
26458 @example
26459 plain(a - plain(a b))  :=  f(a, b)
26460 @end example
26462 @noindent
26463 which would do a completely strict match for the pattern.
26465 By contrast, the @code{quote} marker means that not only the
26466 function name but also the arguments must be literally the same.
26467 The above pattern will match @samp{x - x y} but
26469 @example
26470 quote(a - a b)  :=  f(a, b)
26471 @end example
26473 @noindent
26474 will match only the single formula @samp{a - a b}.  Also,
26476 @example
26477 quote(a - quote(a b))  :=  f(a, b)
26478 @end example
26480 @noindent
26481 will match only @samp{a - quote(a b)}---probably not the desired
26482 effect!
26484 A certain amount of algebra is also done when substituting the
26485 meta-variables on the righthand side of a rule.  For example,
26486 in the rule
26488 @example
26489 a + f(b)  :=  f(a + b)
26490 @end example
26492 @noindent
26493 matching @samp{f(x) - y} would produce @samp{f((-y) + x)} if
26494 taken literally, but the rewrite mechanism will simplify the
26495 righthand side to @samp{f(x - y)} automatically.  (Of course,
26496 the default simplifications would do this anyway, so this
26497 special simplification is only noticeable if you have turned the
26498 default simplifications off.)  This rewriting is done only when
26499 a meta-variable expands to a ``negative-looking'' expression.
26500 If this simplification is not desirable, you can use a @code{plain}
26501 marker on the righthand side:
26503 @example
26504 a + f(b)  :=  f(plain(a + b))
26505 @end example
26507 @noindent
26508 In this example, we are still allowing the pattern-matcher to
26509 use all the algebra it can muster, but the righthand side will
26510 always simplify to a literal addition like @samp{f((-y) + x)}.
26512 @node Other Features of Rewrite Rules, Composing Patterns in Rewrite Rules, Algebraic Properties of Rewrite Rules, Rewrite Rules
26513 @subsection Other Features of Rewrite Rules
26515 @noindent
26516 Certain ``function names'' serve as markers in rewrite rules.
26517 Here is a complete list of these markers.  First are listed the
26518 markers that work inside a pattern; then come the markers that
26519 work in the righthand side of a rule.
26521 @ignore
26522 @starindex
26523 @end ignore
26524 @tindex import
26525 One kind of marker, @samp{import(x)}, takes the place of a whole
26526 rule.  Here @expr{x} is the name of a variable containing another
26527 rule set; those rules are ``spliced into'' the rule set that
26528 imports them.  For example, if @samp{[f(a+b) := f(a) + f(b),
26529 f(a b) := a f(b) :: real(a)]} is stored in variable @samp{linearF},
26530 then the rule set @samp{[f(0) := 0, import(linearF)]} will apply
26531 all three rules.  It is possible to modify the imported rules
26532 slightly:  @samp{import(x, v1, x1, v2, x2, @dots{})} imports
26533 the rule set @expr{x} with all occurrences of 
26534 @texline @math{v_1},
26535 @infoline @expr{v1}, 
26536 as either a variable name or a function name, replaced with 
26537 @texline @math{x_1}
26538 @infoline @expr{x1} 
26539 and so on.  (If 
26540 @texline @math{v_1}
26541 @infoline @expr{v1} 
26542 is used as a function name, then 
26543 @texline @math{x_1}
26544 @infoline @expr{x1}
26545 must be either a function name itself or a @w{@samp{< >}} nameless
26546 function; @pxref{Specifying Operators}.)  For example, @samp{[g(0) := 0,
26547 import(linearF, f, g)]} applies the linearity rules to the function
26548 @samp{g} instead of @samp{f}.  Imports can be nested, but the
26549 import-with-renaming feature may fail to rename sub-imports properly.
26551 The special functions allowed in patterns are:
26553 @table @samp
26554 @item quote(x)
26555 @ignore
26556 @starindex
26557 @end ignore
26558 @tindex quote
26559 This pattern matches exactly @expr{x}; variable names in @expr{x} are
26560 not interpreted as meta-variables.  The only flexibility is that
26561 numbers are compared for numeric equality, so that the pattern
26562 @samp{f(quote(12))} will match both @samp{f(12)} and @samp{f(12.0)}.
26563 (Numbers are always treated this way by the rewrite mechanism:
26564 The rule @samp{f(x,x) := g(x)} will match @samp{f(12, 12.0)}.
26565 The rewrite may produce either @samp{g(12)} or @samp{g(12.0)}
26566 as a result in this case.)
26568 @item plain(x)
26569 @ignore
26570 @starindex
26571 @end ignore
26572 @tindex plain
26573 Here @expr{x} must be a function call @samp{f(x1,x2,@dots{})}.  This
26574 pattern matches a call to function @expr{f} with the specified
26575 argument patterns.  No special knowledge of the properties of the
26576 function @expr{f} is used in this case; @samp{+} is not commutative or
26577 associative.  Unlike @code{quote}, the arguments @samp{x1,x2,@dots{}}
26578 are treated as patterns.  If you wish them to be treated ``plainly''
26579 as well, you must enclose them with more @code{plain} markers:
26580 @samp{plain(plain(@w{-a}) + plain(b c))}.
26582 @item opt(x,def)
26583 @ignore
26584 @starindex
26585 @end ignore
26586 @tindex opt
26587 Here @expr{x} must be a variable name.  This must appear as an
26588 argument to a function or an element of a vector; it specifies that
26589 the argument or element is optional.
26590 As an argument to @samp{+}, @samp{-}, @samp{*}, @samp{&&}, or @samp{||},
26591 or as the second argument to @samp{/} or @samp{^}, the value @var{def}
26592 may be omitted.  The pattern @samp{x + opt(y)} matches a sum by
26593 binding one summand to @expr{x} and the other to @expr{y}, and it
26594 matches anything else by binding the whole expression to @expr{x} and
26595 zero to @expr{y}.  The other operators above work similarly.
26597 For general miscellaneous functions, the default value @code{def}
26598 must be specified.  Optional arguments are dropped starting with
26599 the rightmost one during matching.  For example, the pattern
26600 @samp{f(opt(a,0), b, opt(c,b))} will match @samp{f(b)}, @samp{f(a,b)},
26601 or @samp{f(a,b,c)}.  Default values of zero and @expr{b} are
26602 supplied in this example for the omitted arguments.  Note that
26603 the literal variable @expr{b} will be the default in the latter
26604 case, @emph{not} the value that matched the meta-variable @expr{b}.
26605 In other words, the default @var{def} is effectively quoted.
26607 @item condition(x,c)
26608 @ignore
26609 @starindex
26610 @end ignore
26611 @tindex condition
26612 @tindex ::
26613 This matches the pattern @expr{x}, with the attached condition
26614 @expr{c}.  It is the same as @samp{x :: c}.
26616 @item pand(x,y)
26617 @ignore
26618 @starindex
26619 @end ignore
26620 @tindex pand
26621 @tindex &&&
26622 This matches anything that matches both pattern @expr{x} and
26623 pattern @expr{y}.  It is the same as @samp{x &&& y}.
26624 @pxref{Composing Patterns in Rewrite Rules}.
26626 @item por(x,y)
26627 @ignore
26628 @starindex
26629 @end ignore
26630 @tindex por
26631 @tindex |||
26632 This matches anything that matches either pattern @expr{x} or
26633 pattern @expr{y}.  It is the same as @w{@samp{x ||| y}}.
26635 @item pnot(x)
26636 @ignore
26637 @starindex
26638 @end ignore
26639 @tindex pnot
26640 @tindex !!!
26641 This matches anything that does not match pattern @expr{x}.
26642 It is the same as @samp{!!! x}.
26644 @item cons(h,t)
26645 @ignore
26646 @mindex cons
26647 @end ignore
26648 @tindex cons (rewrites)
26649 This matches any vector of one or more elements.  The first
26650 element is matched to @expr{h}; a vector of the remaining
26651 elements is matched to @expr{t}.  Note that vectors of fixed
26652 length can also be matched as actual vectors:  The rule
26653 @samp{cons(a,cons(b,[])) := cons(a+b,[])} is equivalent
26654 to the rule @samp{[a,b] := [a+b]}.
26656 @item rcons(t,h)
26657 @ignore
26658 @mindex rcons
26659 @end ignore
26660 @tindex rcons (rewrites)
26661 This is like @code{cons}, except that the @emph{last} element
26662 is matched to @expr{h}, with the remaining elements matched
26663 to @expr{t}.
26665 @item apply(f,args)
26666 @ignore
26667 @mindex apply
26668 @end ignore
26669 @tindex apply (rewrites)
26670 This matches any function call.  The name of the function, in
26671 the form of a variable, is matched to @expr{f}.  The arguments
26672 of the function, as a vector of zero or more objects, are
26673 matched to @samp{args}.  Constants, variables, and vectors
26674 do @emph{not} match an @code{apply} pattern.  For example,
26675 @samp{apply(f,x)} matches any function call, @samp{apply(quote(f),x)}
26676 matches any call to the function @samp{f}, @samp{apply(f,[a,b])}
26677 matches any function call with exactly two arguments, and
26678 @samp{apply(quote(f), cons(a,cons(b,x)))} matches any call
26679 to the function @samp{f} with two or more arguments.  Another
26680 way to implement the latter, if the rest of the rule does not
26681 need to refer to the first two arguments of @samp{f} by name,
26682 would be @samp{apply(quote(f), x :: vlen(x) >= 2)}.
26683 Here's a more interesting sample use of @code{apply}:
26685 @example
26686 apply(f,[x+n])  :=  n + apply(f,[x])
26687    :: in(f, [floor,ceil,round,trunc]) :: integer(n)
26688 @end example
26690 Note, however, that this will be slower to match than a rule
26691 set with four separate rules.  The reason is that Calc sorts
26692 the rules of a rule set according to top-level function name;
26693 if the top-level function is @code{apply}, Calc must try the
26694 rule for every single formula and sub-formula.  If the top-level
26695 function in the pattern is, say, @code{floor}, then Calc invokes
26696 the rule only for sub-formulas which are calls to @code{floor}.
26698 Formulas normally written with operators like @code{+} are still
26699 considered function calls:  @code{apply(f,x)} matches @samp{a+b}
26700 with @samp{f = add}, @samp{x = [a,b]}.
26702 You must use @code{apply} for meta-variables with function names
26703 on both sides of a rewrite rule:  @samp{apply(f, [x]) := f(x+1)}
26704 is @emph{not} correct, because it rewrites @samp{spam(6)} into
26705 @samp{f(7)}.  The righthand side should be @samp{apply(f, [x+1])}.
26706 Also note that you will have to use No-Simplify mode (@kbd{m O})
26707 when entering this rule so that the @code{apply} isn't
26708 evaluated immediately to get the new rule @samp{f(x) := f(x+1)}.
26709 Or, use @kbd{s e} to enter the rule without going through the stack,
26710 or enter the rule as @samp{apply(f, [x]) := apply(f, [x+1]) @w{:: 1}}.
26711 @xref{Conditional Rewrite Rules}.
26713 @item select(x)
26714 @ignore
26715 @starindex
26716 @end ignore
26717 @tindex select
26718 This is used for applying rules to formulas with selections;
26719 @pxref{Selections with Rewrite Rules}.
26720 @end table
26722 Special functions for the righthand sides of rules are:
26724 @table @samp
26725 @item quote(x)
26726 The notation @samp{quote(x)} is changed to @samp{x} when the
26727 righthand side is used.  As far as the rewrite rule is concerned,
26728 @code{quote} is invisible.  However, @code{quote} has the special
26729 property in Calc that its argument is not evaluated.  Thus,
26730 while it will not work to put the rule @samp{t(a) := typeof(a)}
26731 on the stack because @samp{typeof(a)} is evaluated immediately
26732 to produce @samp{t(a) := 100}, you can use @code{quote} to
26733 protect the righthand side:  @samp{t(a) := quote(typeof(a))}.
26734 (@xref{Conditional Rewrite Rules}, for another trick for
26735 protecting rules from evaluation.)
26737 @item plain(x)
26738 Special properties of and simplifications for the function call
26739 @expr{x} are not used.  One interesting case where @code{plain}
26740 is useful is the rule, @samp{q(x) := quote(x)}, trying to expand a
26741 shorthand notation for the @code{quote} function.  This rule will
26742 not work as shown; instead of replacing @samp{q(foo)} with
26743 @samp{quote(foo)}, it will replace it with @samp{foo}!  The correct
26744 rule would be @samp{q(x) := plain(quote(x))}.
26746 @item cons(h,t)
26747 Where @expr{t} is a vector, this is converted into an expanded
26748 vector during rewrite processing.  Note that @code{cons} is a regular
26749 Calc function which normally does this anyway; the only way @code{cons}
26750 is treated specially by rewrites is that @code{cons} on the righthand
26751 side of a rule will be evaluated even if default simplifications
26752 have been turned off.
26754 @item rcons(t,h)
26755 Analogous to @code{cons} except putting @expr{h} at the @emph{end} of
26756 the vector @expr{t}.
26758 @item apply(f,args)
26759 Where @expr{f} is a variable and @var{args} is a vector, this
26760 is converted to a function call.  Once again, note that @code{apply}
26761 is also a regular Calc function.
26763 @item eval(x)
26764 @ignore
26765 @starindex
26766 @end ignore
26767 @tindex eval
26768 The formula @expr{x} is handled in the usual way, then the
26769 default simplifications are applied to it even if they have
26770 been turned off normally.  This allows you to treat any function
26771 similarly to the way @code{cons} and @code{apply} are always
26772 treated.  However, there is a slight difference:  @samp{cons(2+3, [])}
26773 with default simplifications off will be converted to @samp{[2+3]},
26774 whereas @samp{eval(cons(2+3, []))} will be converted to @samp{[5]}.
26776 @item evalsimp(x)
26777 @ignore
26778 @starindex
26779 @end ignore
26780 @tindex evalsimp
26781 The formula @expr{x} has meta-variables substituted in the usual
26782 way, then algebraically simplified as if by the @kbd{a s} command.
26784 @item evalextsimp(x)
26785 @ignore
26786 @starindex
26787 @end ignore
26788 @tindex evalextsimp
26789 The formula @expr{x} has meta-variables substituted in the normal
26790 way, then ``extendedly'' simplified as if by the @kbd{a e} command.
26792 @item select(x)
26793 @xref{Selections with Rewrite Rules}.
26794 @end table
26796 There are also some special functions you can use in conditions.
26798 @table @samp
26799 @item let(v := x)
26800 @ignore
26801 @starindex
26802 @end ignore
26803 @tindex let
26804 The expression @expr{x} is evaluated with meta-variables substituted.
26805 The @kbd{a s} command's simplifications are @emph{not} applied by
26806 default, but @expr{x} can include calls to @code{evalsimp} or
26807 @code{evalextsimp} as described above to invoke higher levels
26808 of simplification.  The
26809 result of @expr{x} is then bound to the meta-variable @expr{v}.  As
26810 usual, if this meta-variable has already been matched to something
26811 else the two values must be equal; if the meta-variable is new then
26812 it is bound to the result of the expression.  This variable can then
26813 appear in later conditions, and on the righthand side of the rule.
26814 In fact, @expr{v} may be any pattern in which case the result of
26815 evaluating @expr{x} is matched to that pattern, binding any
26816 meta-variables that appear in that pattern.  Note that @code{let}
26817 can only appear by itself as a condition, or as one term of an
26818 @samp{&&} which is a whole condition:  It cannot be inside
26819 an @samp{||} term or otherwise buried.
26821 The alternate, equivalent form @samp{let(v, x)} is also recognized.
26822 Note that the use of @samp{:=} by @code{let}, while still being
26823 assignment-like in character, is unrelated to the use of @samp{:=}
26824 in the main part of a rewrite rule.
26826 As an example, @samp{f(a) := g(ia) :: let(ia := 1/a) :: constant(ia)}
26827 replaces @samp{f(a)} with @samp{g} of the inverse of @samp{a}, if
26828 that inverse exists and is constant.  For example, if @samp{a} is a
26829 singular matrix the operation @samp{1/a} is left unsimplified and
26830 @samp{constant(ia)} fails, but if @samp{a} is an invertible matrix
26831 then the rule succeeds.  Without @code{let} there would be no way
26832 to express this rule that didn't have to invert the matrix twice.
26833 Note that, because the meta-variable @samp{ia} is otherwise unbound
26834 in this rule, the @code{let} condition itself always ``succeeds''
26835 because no matter what @samp{1/a} evaluates to, it can successfully
26836 be bound to @code{ia}.
26838 Here's another example, for integrating cosines of linear
26839 terms:  @samp{myint(cos(y),x) := sin(y)/b :: let([a,b,x] := lin(y,x))}.
26840 The @code{lin} function returns a 3-vector if its argument is linear,
26841 or leaves itself unevaluated if not.  But an unevaluated @code{lin}
26842 call will not match the 3-vector on the lefthand side of the @code{let},
26843 so this @code{let} both verifies that @code{y} is linear, and binds
26844 the coefficients @code{a} and @code{b} for use elsewhere in the rule.
26845 (It would have been possible to use @samp{sin(a x + b)/b} for the
26846 righthand side instead, but using @samp{sin(y)/b} avoids gratuitous
26847 rearrangement of the argument of the sine.)
26849 @ignore
26850 @starindex
26851 @end ignore
26852 @tindex ierf
26853 Similarly, here is a rule that implements an inverse-@code{erf}
26854 function.  It uses @code{root} to search for a solution.  If
26855 @code{root} succeeds, it will return a vector of two numbers
26856 where the first number is the desired solution.  If no solution
26857 is found, @code{root} remains in symbolic form.  So we use
26858 @code{let} to check that the result was indeed a vector.
26860 @example
26861 ierf(x)  :=  y  :: let([y,z] := root(erf(a) = x, a, .5))
26862 @end example
26864 @item matches(v,p)
26865 The meta-variable @var{v}, which must already have been matched
26866 to something elsewhere in the rule, is compared against pattern
26867 @var{p}.  Since @code{matches} is a standard Calc function, it
26868 can appear anywhere in a condition.  But if it appears alone or
26869 as a term of a top-level @samp{&&}, then you get the special
26870 extra feature that meta-variables which are bound to things
26871 inside @var{p} can be used elsewhere in the surrounding rewrite
26872 rule.
26874 The only real difference between @samp{let(p := v)} and
26875 @samp{matches(v, p)} is that the former evaluates @samp{v} using
26876 the default simplifications, while the latter does not.
26878 @item remember
26879 @vindex remember
26880 This is actually a variable, not a function.  If @code{remember}
26881 appears as a condition in a rule, then when that rule succeeds
26882 the original expression and rewritten expression are added to the
26883 front of the rule set that contained the rule.  If the rule set
26884 was not stored in a variable, @code{remember} is ignored.  The
26885 lefthand side is enclosed in @code{quote} in the added rule if it
26886 contains any variables.
26888 For example, the rule @samp{f(n) := n f(n-1) :: remember} applied
26889 to @samp{f(7)} will add the rule @samp{f(7) := 7 f(6)} to the front
26890 of the rule set.  The rule set @code{EvalRules} works slightly
26891 differently:  There, the evaluation of @samp{f(6)} will complete before
26892 the result is added to the rule set, in this case as @samp{f(7) := 5040}.
26893 Thus @code{remember} is most useful inside @code{EvalRules}.
26895 It is up to you to ensure that the optimization performed by
26896 @code{remember} is safe.  For example, the rule @samp{foo(n) := n
26897 :: evalv(eatfoo) > 0 :: remember} is a bad idea (@code{evalv} is
26898 the function equivalent of the @kbd{=} command); if the variable
26899 @code{eatfoo} ever contains 1, rules like @samp{foo(7) := 7} will
26900 be added to the rule set and will continue to operate even if
26901 @code{eatfoo} is later changed to 0.
26903 @item remember(c)
26904 @ignore
26905 @starindex
26906 @end ignore
26907 @tindex remember
26908 Remember the match as described above, but only if condition @expr{c}
26909 is true.  For example, @samp{remember(n % 4 = 0)} in the above factorial
26910 rule remembers only every fourth result.  Note that @samp{remember(1)}
26911 is equivalent to @samp{remember}, and @samp{remember(0)} has no effect.
26912 @end table
26914 @node Composing Patterns in Rewrite Rules, Nested Formulas with Rewrite Rules, Other Features of Rewrite Rules, Rewrite Rules
26915 @subsection Composing Patterns in Rewrite Rules
26917 @noindent
26918 There are three operators, @samp{&&&}, @samp{|||}, and @samp{!!!},
26919 that combine rewrite patterns to make larger patterns.  The
26920 combinations are ``and,'' ``or,'' and ``not,'' respectively, and
26921 these operators are the pattern equivalents of @samp{&&}, @samp{||}
26922 and @samp{!} (which operate on zero-or-nonzero logical values).
26924 Note that @samp{&&&}, @samp{|||}, and @samp{!!!} are left in symbolic
26925 form by all regular Calc features; they have special meaning only in
26926 the context of rewrite rule patterns.
26928 The pattern @samp{@var{p1} &&& @var{p2}} matches anything that
26929 matches both @var{p1} and @var{p2}.  One especially useful case is
26930 when one of @var{p1} or @var{p2} is a meta-variable.  For example,
26931 here is a rule that operates on error forms:
26933 @example
26934 f(x &&& a +/- b, x)  :=  g(x)
26935 @end example
26937 This does the same thing, but is arguably simpler than, the rule
26939 @example
26940 f(a +/- b, a +/- b)  :=  g(a +/- b)
26941 @end example
26943 @ignore
26944 @starindex
26945 @end ignore
26946 @tindex ends
26947 Here's another interesting example:
26949 @example
26950 ends(cons(a, x) &&& rcons(y, b))  :=  [a, b]
26951 @end example
26953 @noindent
26954 which effectively clips out the middle of a vector leaving just
26955 the first and last elements.  This rule will change a one-element
26956 vector @samp{[a]} to @samp{[a, a]}.  The similar rule
26958 @example
26959 ends(cons(a, rcons(y, b)))  :=  [a, b]
26960 @end example
26962 @noindent
26963 would do the same thing except that it would fail to match a
26964 one-element vector.
26966 @tex
26967 \bigskip
26968 @end tex
26970 The pattern @samp{@var{p1} ||| @var{p2}} matches anything that
26971 matches either @var{p1} or @var{p2}.  Calc first tries matching
26972 against @var{p1}; if that fails, it goes on to try @var{p2}.
26974 @ignore
26975 @starindex
26976 @end ignore
26977 @tindex curve
26978 A simple example of @samp{|||} is
26980 @example
26981 curve(inf ||| -inf)  :=  0
26982 @end example
26984 @noindent
26985 which converts both @samp{curve(inf)} and @samp{curve(-inf)} to zero.
26987 Here is a larger example:
26989 @example
26990 log(a, b) ||| (ln(a) :: let(b := e))  :=  mylog(a, b)
26991 @end example
26993 This matches both generalized and natural logarithms in a single rule.
26994 Note that the @samp{::} term must be enclosed in parentheses because
26995 that operator has lower precedence than @samp{|||} or @samp{:=}.
26997 (In practice this rule would probably include a third alternative,
26998 omitted here for brevity, to take care of @code{log10}.)
27000 While Calc generally treats interior conditions exactly the same as
27001 conditions on the outside of a rule, it does guarantee that if all the
27002 variables in the condition are special names like @code{e}, or already
27003 bound in the pattern to which the condition is attached (say, if
27004 @samp{a} had appeared in this condition), then Calc will process this
27005 condition right after matching the pattern to the left of the @samp{::}.
27006 Thus, we know that @samp{b} will be bound to @samp{e} only if the
27007 @code{ln} branch of the @samp{|||} was taken.
27009 Note that this rule was careful to bind the same set of meta-variables
27010 on both sides of the @samp{|||}.  Calc does not check this, but if
27011 you bind a certain meta-variable only in one branch and then use that
27012 meta-variable elsewhere in the rule, results are unpredictable:
27014 @example
27015 f(a,b) ||| g(b)  :=  h(a,b)
27016 @end example
27018 Here if the pattern matches @samp{g(17)}, Calc makes no promises about
27019 the value that will be substituted for @samp{a} on the righthand side.
27021 @tex
27022 \bigskip
27023 @end tex
27025 The pattern @samp{!!! @var{pat}} matches anything that does not
27026 match @var{pat}.  Any meta-variables that are bound while matching
27027 @var{pat} remain unbound outside of @var{pat}.
27029 For example,
27031 @example
27032 f(x &&& !!! a +/- b, !!![])  :=  g(x)
27033 @end example
27035 @noindent
27036 converts @code{f} whose first argument is anything @emph{except} an
27037 error form, and whose second argument is not the empty vector, into
27038 a similar call to @code{g} (but without the second argument).
27040 If we know that the second argument will be a vector (empty or not),
27041 then an equivalent rule would be:
27043 @example
27044 f(x, y)  :=  g(x)  :: typeof(x) != 7 :: vlen(y) > 0
27045 @end example
27047 @noindent
27048 where of course 7 is the @code{typeof} code for error forms.
27049 Another final condition, that works for any kind of @samp{y},
27050 would be @samp{!istrue(y == [])}.  (The @code{istrue} function
27051 returns an explicit 0 if its argument was left in symbolic form;
27052 plain @samp{!(y == [])} or @samp{y != []} would not work to replace
27053 @samp{!!![]} since these would be left unsimplified, and thus cause
27054 the rule to fail, if @samp{y} was something like a variable name.)
27056 It is possible for a @samp{!!!} to refer to meta-variables bound
27057 elsewhere in the pattern.  For example,
27059 @example
27060 f(a, !!!a)  :=  g(a)
27061 @end example
27063 @noindent
27064 matches any call to @code{f} with different arguments, changing
27065 this to @code{g} with only the first argument.
27067 If a function call is to be matched and one of the argument patterns
27068 contains a @samp{!!!} somewhere inside it, that argument will be
27069 matched last.  Thus
27071 @example
27072 f(!!!a, a)  :=  g(a)
27073 @end example
27075 @noindent
27076 will be careful to bind @samp{a} to the second argument of @code{f}
27077 before testing the first argument.  If Calc had tried to match the
27078 first argument of @code{f} first, the results would have been
27079 disastrous: since @code{a} was unbound so far, the pattern @samp{a}
27080 would have matched anything at all, and the pattern @samp{!!!a}
27081 therefore would @emph{not} have matched anything at all!
27083 @node Nested Formulas with Rewrite Rules, Multi-Phase Rewrite Rules, Composing Patterns in Rewrite Rules, Rewrite Rules
27084 @subsection Nested Formulas with Rewrite Rules
27086 @noindent
27087 When @kbd{a r} (@code{calc-rewrite}) is used, it takes an expression from
27088 the top of the stack and attempts to match any of the specified rules
27089 to any part of the expression, starting with the whole expression
27090 and then, if that fails, trying deeper and deeper sub-expressions.
27091 For each part of the expression, the rules are tried in the order
27092 they appear in the rules vector.  The first rule to match the first
27093 sub-expression wins; it replaces the matched sub-expression according
27094 to the @var{new} part of the rule.
27096 Often, the rule set will match and change the formula several times.
27097 The top-level formula is first matched and substituted repeatedly until
27098 it no longer matches the pattern; then, sub-formulas are tried, and
27099 so on.  Once every part of the formula has gotten its chance, the
27100 rewrite mechanism starts over again with the top-level formula
27101 (in case a substitution of one of its arguments has caused it again
27102 to match).  This continues until no further matches can be made
27103 anywhere in the formula.
27105 It is possible for a rule set to get into an infinite loop.  The
27106 most obvious case, replacing a formula with itself, is not a problem
27107 because a rule is not considered to ``succeed'' unless the righthand
27108 side actually comes out to something different than the original
27109 formula or sub-formula that was matched.  But if you accidentally
27110 had both @samp{ln(a b) := ln(a) + ln(b)} and the reverse
27111 @samp{ln(a) + ln(b) := ln(a b)} in your rule set, Calc would
27112 run forever switching a formula back and forth between the two
27113 forms.
27115 To avoid disaster, Calc normally stops after 100 changes have been
27116 made to the formula.  This will be enough for most multiple rewrites,
27117 but it will keep an endless loop of rewrites from locking up the
27118 computer forever.  (On most systems, you can also type @kbd{C-g} to
27119 halt any Emacs command prematurely.)
27121 To change this limit, give a positive numeric prefix argument.
27122 In particular, @kbd{M-1 a r} applies only one rewrite at a time,
27123 useful when you are first testing your rule (or just if repeated
27124 rewriting is not what is called for by your application).
27126 @ignore
27127 @starindex
27128 @end ignore
27129 @ignore
27130 @mindex iter@idots
27131 @end ignore
27132 @tindex iterations
27133 You can also put a ``function call'' @samp{iterations(@var{n})}
27134 in place of a rule anywhere in your rules vector (but usually at
27135 the top).  Then, @var{n} will be used instead of 100 as the default
27136 number of iterations for this rule set.  You can use
27137 @samp{iterations(inf)} if you want no iteration limit by default.
27138 A prefix argument will override the @code{iterations} limit in the
27139 rule set.
27141 @example
27142 [ iterations(1),
27143   f(x) := f(x+1) ]
27144 @end example
27146 More precisely, the limit controls the number of ``iterations,''
27147 where each iteration is a successful matching of a rule pattern whose
27148 righthand side, after substituting meta-variables and applying the
27149 default simplifications, is different from the original sub-formula
27150 that was matched.
27152 A prefix argument of zero sets the limit to infinity.  Use with caution!
27154 Given a negative numeric prefix argument, @kbd{a r} will match and
27155 substitute the top-level expression up to that many times, but
27156 will not attempt to match the rules to any sub-expressions.
27158 In a formula, @code{rewrite(@var{expr}, @var{rules}, @var{n})}
27159 does a rewriting operation.  Here @var{expr} is the expression
27160 being rewritten, @var{rules} is the rule, vector of rules, or
27161 variable containing the rules, and @var{n} is the optional
27162 iteration limit, which may be a positive integer, a negative
27163 integer, or @samp{inf} or @samp{-inf}.  If @var{n} is omitted
27164 the @code{iterations} value from the rule set is used; if both
27165 are omitted, 100 is used.
27167 @node Multi-Phase Rewrite Rules, Selections with Rewrite Rules, Nested Formulas with Rewrite Rules, Rewrite Rules
27168 @subsection Multi-Phase Rewrite Rules
27170 @noindent
27171 It is possible to separate a rewrite rule set into several @dfn{phases}.
27172 During each phase, certain rules will be enabled while certain others
27173 will be disabled.  A @dfn{phase schedule} controls the order in which
27174 phases occur during the rewriting process.
27176 @ignore
27177 @starindex
27178 @end ignore
27179 @tindex phase
27180 @vindex all
27181 If a call to the marker function @code{phase} appears in the rules
27182 vector in place of a rule, all rules following that point will be
27183 members of the phase(s) identified in the arguments to @code{phase}.
27184 Phases are given integer numbers.  The markers @samp{phase()} and
27185 @samp{phase(all)} both mean the following rules belong to all phases;
27186 this is the default at the start of the rule set.
27188 If you do not explicitly schedule the phases, Calc sorts all phase
27189 numbers that appear in the rule set and executes the phases in
27190 ascending order.  For example, the rule set
27192 @example
27193 @group
27194 [ f0(x) := g0(x),
27195   phase(1),
27196   f1(x) := g1(x),
27197   phase(2),
27198   f2(x) := g2(x),
27199   phase(3),
27200   f3(x) := g3(x),
27201   phase(1,2),
27202   f4(x) := g4(x) ]
27203 @end group
27204 @end example
27206 @noindent
27207 has three phases, 1 through 3.  Phase 1 consists of the @code{f0},
27208 @code{f1}, and @code{f4} rules (in that order).  Phase 2 consists of
27209 @code{f0}, @code{f2}, and @code{f4}.  Phase 3 consists of @code{f0}
27210 and @code{f3}.
27212 When Calc rewrites a formula using this rule set, it first rewrites
27213 the formula using only the phase 1 rules until no further changes are
27214 possible.  Then it switches to the phase 2 rule set and continues
27215 until no further changes occur, then finally rewrites with phase 3.
27216 When no more phase 3 rules apply, rewriting finishes.  (This is
27217 assuming @kbd{a r} with a large enough prefix argument to allow the
27218 rewriting to run to completion; the sequence just described stops
27219 early if the number of iterations specified in the prefix argument,
27220 100 by default, is reached.)
27222 During each phase, Calc descends through the nested levels of the
27223 formula as described previously.  (@xref{Nested Formulas with Rewrite
27224 Rules}.)  Rewriting starts at the top of the formula, then works its
27225 way down to the parts, then goes back to the top and works down again.
27226 The phase 2 rules do not begin until no phase 1 rules apply anywhere
27227 in the formula.
27229 @ignore
27230 @starindex
27231 @end ignore
27232 @tindex schedule
27233 A @code{schedule} marker appearing in the rule set (anywhere, but
27234 conventionally at the top) changes the default schedule of phases.
27235 In the simplest case, @code{schedule} has a sequence of phase numbers
27236 for arguments; each phase number is invoked in turn until the
27237 arguments to @code{schedule} are exhausted.  Thus adding
27238 @samp{schedule(3,2,1)} at the top of the above rule set would
27239 reverse the order of the phases; @samp{schedule(1,2,3)} would have
27240 no effect since this is the default schedule; and @samp{schedule(1,2,1,3)}
27241 would give phase 1 a second chance after phase 2 has completed, before
27242 moving on to phase 3.
27244 Any argument to @code{schedule} can instead be a vector of phase
27245 numbers (or even of sub-vectors).  Then the sub-sequence of phases
27246 described by the vector are tried repeatedly until no change occurs
27247 in any phase in the sequence.  For example, @samp{schedule([1, 2], 3)}
27248 tries phase 1, then phase 2, then, if either phase made any changes
27249 to the formula, repeats these two phases until they can make no
27250 further progress.  Finally, it goes on to phase 3 for finishing
27251 touches.
27253 Also, items in @code{schedule} can be variable names as well as
27254 numbers.  A variable name is interpreted as the name of a function
27255 to call on the whole formula.  For example, @samp{schedule(1, simplify)}
27256 says to apply the phase-1 rules (presumably, all of them), then to
27257 call @code{simplify} which is the function name equivalent of @kbd{a s}.
27258 Likewise, @samp{schedule([1, simplify])} says to alternate between
27259 phase 1 and @kbd{a s} until no further changes occur.
27261 Phases can be used purely to improve efficiency; if it is known that
27262 a certain group of rules will apply only at the beginning of rewriting,
27263 and a certain other group will apply only at the end, then rewriting
27264 will be faster if these groups are identified as separate phases.
27265 Once the phase 1 rules are done, Calc can put them aside and no longer
27266 spend any time on them while it works on phase 2.
27268 There are also some problems that can only be solved with several
27269 rewrite phases.  For a real-world example of a multi-phase rule set,
27270 examine the set @code{FitRules}, which is used by the curve-fitting
27271 command to convert a model expression to linear form.
27272 @xref{Curve Fitting Details}.  This set is divided into four phases.
27273 The first phase rewrites certain kinds of expressions to be more
27274 easily linearizable, but less computationally efficient.  After the
27275 linear components have been picked out, the final phase includes the
27276 opposite rewrites to put each component back into an efficient form.
27277 If both sets of rules were included in one big phase, Calc could get
27278 into an infinite loop going back and forth between the two forms.
27280 Elsewhere in @code{FitRules}, the components are first isolated,
27281 then recombined where possible to reduce the complexity of the linear
27282 fit, then finally packaged one component at a time into vectors.
27283 If the packaging rules were allowed to begin before the recombining
27284 rules were finished, some components might be put away into vectors
27285 before they had a chance to recombine.  By putting these rules in
27286 two separate phases, this problem is neatly avoided.
27288 @node Selections with Rewrite Rules, Matching Commands, Multi-Phase Rewrite Rules, Rewrite Rules
27289 @subsection Selections with Rewrite Rules
27291 @noindent
27292 If a sub-formula of the current formula is selected (as by @kbd{j s};
27293 @pxref{Selecting Subformulas}), the @kbd{a r} (@code{calc-rewrite})
27294 command applies only to that sub-formula.  Together with a negative
27295 prefix argument, you can use this fact to apply a rewrite to one
27296 specific part of a formula without affecting any other parts.
27298 @kindex j r
27299 @pindex calc-rewrite-selection
27300 The @kbd{j r} (@code{calc-rewrite-selection}) command allows more
27301 sophisticated operations on selections.  This command prompts for
27302 the rules in the same way as @kbd{a r}, but it then applies those
27303 rules to the whole formula in question even though a sub-formula
27304 of it has been selected.  However, the selected sub-formula will
27305 first have been surrounded by a @samp{select( )} function call.
27306 (Calc's evaluator does not understand the function name @code{select};
27307 this is only a tag used by the @kbd{j r} command.)
27309 For example, suppose the formula on the stack is @samp{2 (a + b)^2}
27310 and the sub-formula @samp{a + b} is selected.  This formula will
27311 be rewritten to @samp{2 select(a + b)^2} and then the rewrite
27312 rules will be applied in the usual way.  The rewrite rules can
27313 include references to @code{select} to tell where in the pattern
27314 the selected sub-formula should appear.
27316 If there is still exactly one @samp{select( )} function call in
27317 the formula after rewriting is done, it indicates which part of
27318 the formula should be selected afterwards.  Otherwise, the
27319 formula will be unselected.
27321 You can make @kbd{j r} act much like @kbd{a r} by enclosing both parts
27322 of the rewrite rule with @samp{select()}.  However, @kbd{j r}
27323 allows you to use the current selection in more flexible ways.
27324 Suppose you wished to make a rule which removed the exponent from
27325 the selected term; the rule @samp{select(a)^x := select(a)} would
27326 work.  In the above example, it would rewrite @samp{2 select(a + b)^2}
27327 to @samp{2 select(a + b)}.  This would then be returned to the
27328 stack as @samp{2 (a + b)} with the @samp{a + b} selected.
27330 The @kbd{j r} command uses one iteration by default, unlike
27331 @kbd{a r} which defaults to 100 iterations.  A numeric prefix
27332 argument affects @kbd{j r} in the same way as @kbd{a r}.
27333 @xref{Nested Formulas with Rewrite Rules}.
27335 As with other selection commands, @kbd{j r} operates on the stack
27336 entry that contains the cursor.  (If the cursor is on the top-of-stack
27337 @samp{.} marker, it works as if the cursor were on the formula
27338 at stack level 1.)
27340 If you don't specify a set of rules, the rules are taken from the
27341 top of the stack, just as with @kbd{a r}.  In this case, the
27342 cursor must indicate stack entry 2 or above as the formula to be
27343 rewritten (otherwise the same formula would be used as both the
27344 target and the rewrite rules).
27346 If the indicated formula has no selection, the cursor position within
27347 the formula temporarily selects a sub-formula for the purposes of this
27348 command.  If the cursor is not on any sub-formula (e.g., it is in
27349 the line-number area to the left of the formula), the @samp{select( )}
27350 markers are ignored by the rewrite mechanism and the rules are allowed
27351 to apply anywhere in the formula.
27353 As a special feature, the normal @kbd{a r} command also ignores
27354 @samp{select( )} calls in rewrite rules.  For example, if you used the
27355 above rule @samp{select(a)^x := select(a)} with @kbd{a r}, it would apply
27356 the rule as if it were @samp{a^x := a}.  Thus, you can write general
27357 purpose rules with @samp{select( )} hints inside them so that they
27358 will ``do the right thing'' in both @kbd{a r} and @kbd{j r},
27359 both with and without selections.
27361 @node Matching Commands, Automatic Rewrites, Selections with Rewrite Rules, Rewrite Rules
27362 @subsection Matching Commands
27364 @noindent
27365 @kindex a m
27366 @pindex calc-match
27367 @tindex match
27368 The @kbd{a m} (@code{calc-match}) [@code{match}] function takes a
27369 vector of formulas and a rewrite-rule-style pattern, and produces
27370 a vector of all formulas which match the pattern.  The command
27371 prompts you to enter the pattern; as for @kbd{a r}, you can enter
27372 a single pattern (i.e., a formula with meta-variables), or a
27373 vector of patterns, or a variable which contains patterns, or
27374 you can give a blank response in which case the patterns are taken
27375 from the top of the stack.  The pattern set will be compiled once
27376 and saved if it is stored in a variable.  If there are several
27377 patterns in the set, vector elements are kept if they match any
27378 of the patterns.
27380 For example, @samp{match(a+b, [x, x+y, x-y, 7, x+y+z])}
27381 will return @samp{[x+y, x-y, x+y+z]}.
27383 The @code{import} mechanism is not available for pattern sets.
27385 The @kbd{a m} command can also be used to extract all vector elements
27386 which satisfy any condition:  The pattern @samp{x :: x>0} will select
27387 all the positive vector elements.
27389 @kindex I a m
27390 @tindex matchnot
27391 With the Inverse flag [@code{matchnot}], this command extracts all
27392 vector elements which do @emph{not} match the given pattern.
27394 @ignore
27395 @starindex
27396 @end ignore
27397 @tindex matches
27398 There is also a function @samp{matches(@var{x}, @var{p})} which
27399 evaluates to 1 if expression @var{x} matches pattern @var{p}, or
27400 to 0 otherwise.  This is sometimes useful for including into the
27401 conditional clauses of other rewrite rules.
27403 @ignore
27404 @starindex
27405 @end ignore
27406 @tindex vmatches
27407 The function @code{vmatches} is just like @code{matches}, except
27408 that if the match succeeds it returns a vector of assignments to
27409 the meta-variables instead of the number 1.  For example,
27410 @samp{vmatches(f(1,2), f(a,b))} returns @samp{[a := 1, b := 2]}.
27411 If the match fails, the function returns the number 0.
27413 @node Automatic Rewrites, Debugging Rewrites, Matching Commands, Rewrite Rules
27414 @subsection Automatic Rewrites
27416 @noindent
27417 @cindex @code{EvalRules} variable
27418 @vindex EvalRules
27419 It is possible to get Calc to apply a set of rewrite rules on all
27420 results, effectively adding to the built-in set of default
27421 simplifications.  To do this, simply store your rule set in the
27422 variable @code{EvalRules}.  There is a convenient @kbd{s E} command
27423 for editing @code{EvalRules}; @pxref{Operations on Variables}.
27425 For example, suppose you want @samp{sin(a + b)} to be expanded out
27426 to @samp{sin(b) cos(a) + cos(b) sin(a)} wherever it appears, and
27427 similarly for @samp{cos(a + b)}.  The corresponding rewrite rule
27428 set would be,
27430 @smallexample
27431 @group
27432 [ sin(a + b)  :=  cos(a) sin(b) + sin(a) cos(b),
27433   cos(a + b)  :=  cos(a) cos(b) - sin(a) sin(b) ]
27434 @end group
27435 @end smallexample
27437 To apply these manually, you could put them in a variable called
27438 @code{trigexp} and then use @kbd{a r trigexp} every time you wanted
27439 to expand trig functions.  But if instead you store them in the
27440 variable @code{EvalRules}, they will automatically be applied to all
27441 sines and cosines of sums.  Then, with @samp{2 x} and @samp{45} on
27442 the stack, typing @kbd{+ S} will (assuming Degrees mode) result in
27443 @samp{0.7071 sin(2 x) + 0.7071 cos(2 x)} automatically.
27445 As each level of a formula is evaluated, the rules from
27446 @code{EvalRules} are applied before the default simplifications.
27447 Rewriting continues until no further @code{EvalRules} apply.
27448 Note that this is different from the usual order of application of
27449 rewrite rules:  @code{EvalRules} works from the bottom up, simplifying
27450 the arguments to a function before the function itself, while @kbd{a r}
27451 applies rules from the top down.
27453 Because the @code{EvalRules} are tried first, you can use them to
27454 override the normal behavior of any built-in Calc function.
27456 It is important not to write a rule that will get into an infinite
27457 loop.  For example, the rule set @samp{[f(0) := 1, f(n) := n f(n-1)]}
27458 appears to be a good definition of a factorial function, but it is
27459 unsafe.  Imagine what happens if @samp{f(2.5)} is simplified.  Calc
27460 will continue to subtract 1 from this argument forever without reaching
27461 zero.  A safer second rule would be @samp{f(n) := n f(n-1) :: n>0}.
27462 Another dangerous rule is @samp{g(x, y) := g(y, x)}.  Rewriting
27463 @samp{g(2, 4)}, this would bounce back and forth between that and
27464 @samp{g(4, 2)} forever.  If an infinite loop in @code{EvalRules}
27465 occurs, Emacs will eventually stop with a ``Computation got stuck
27466 or ran too long'' message.
27468 Another subtle difference between @code{EvalRules} and regular rewrites
27469 concerns rules that rewrite a formula into an identical formula.  For
27470 example, @samp{f(n) := f(floor(n))} ``fails to match'' when @expr{n} is
27471 already an integer.  But in @code{EvalRules} this case is detected only
27472 if the righthand side literally becomes the original formula before any
27473 further simplification.  This means that @samp{f(n) := f(floor(n))} will
27474 get into an infinite loop if it occurs in @code{EvalRules}.  Calc will
27475 replace @samp{f(6)} with @samp{f(floor(6))}, which is different from
27476 @samp{f(6)}, so it will consider the rule to have matched and will
27477 continue simplifying that formula; first the argument is simplified
27478 to get @samp{f(6)}, then the rule matches again to get @samp{f(floor(6))}
27479 again, ad infinitum.  A much safer rule would check its argument first,
27480 say, with @samp{f(n) := f(floor(n)) :: !dint(n)}.
27482 (What really happens is that the rewrite mechanism substitutes the
27483 meta-variables in the righthand side of a rule, compares to see if the
27484 result is the same as the original formula and fails if so, then uses
27485 the default simplifications to simplify the result and compares again
27486 (and again fails if the formula has simplified back to its original
27487 form).  The only special wrinkle for the @code{EvalRules} is that the
27488 same rules will come back into play when the default simplifications
27489 are used.  What Calc wants to do is build @samp{f(floor(6))}, see that
27490 this is different from the original formula, simplify to @samp{f(6)},
27491 see that this is the same as the original formula, and thus halt the
27492 rewriting.  But while simplifying, @samp{f(6)} will again trigger
27493 the same @code{EvalRules} rule and Calc will get into a loop inside
27494 the rewrite mechanism itself.)
27496 The @code{phase}, @code{schedule}, and @code{iterations} markers do
27497 not work in @code{EvalRules}.  If the rule set is divided into phases,
27498 only the phase 1 rules are applied, and the schedule is ignored.
27499 The rules are always repeated as many times as possible.
27501 The @code{EvalRules} are applied to all function calls in a formula,
27502 but not to numbers (and other number-like objects like error forms),
27503 nor to vectors or individual variable names.  (Though they will apply
27504 to @emph{components} of vectors and error forms when appropriate.)  You
27505 might try to make a variable @code{phihat} which automatically expands
27506 to its definition without the need to press @kbd{=} by writing the
27507 rule @samp{quote(phihat) := (1-sqrt(5))/2}, but unfortunately this rule
27508 will not work as part of @code{EvalRules}.
27510 Finally, another limitation is that Calc sometimes calls its built-in
27511 functions directly rather than going through the default simplifications.
27512 When it does this, @code{EvalRules} will not be able to override those
27513 functions.  For example, when you take the absolute value of the complex
27514 number @expr{(2, 3)}, Calc computes @samp{sqrt(2*2 + 3*3)} by calling
27515 the multiplication, addition, and square root functions directly rather
27516 than applying the default simplifications to this formula.  So an
27517 @code{EvalRules} rule that (perversely) rewrites @samp{sqrt(13) := 6}
27518 would not apply.  (However, if you put Calc into Symbolic mode so that
27519 @samp{sqrt(13)} will be left in symbolic form by the built-in square
27520 root function, your rule will be able to apply.  But if the complex
27521 number were @expr{(3,4)}, so that @samp{sqrt(25)} must be calculated,
27522 then Symbolic mode will not help because @samp{sqrt(25)} can be
27523 evaluated exactly to 5.)
27525 One subtle restriction that normally only manifests itself with
27526 @code{EvalRules} is that while a given rewrite rule is in the process
27527 of being checked, that same rule cannot be recursively applied.  Calc
27528 effectively removes the rule from its rule set while checking the rule,
27529 then puts it back once the match succeeds or fails.  (The technical
27530 reason for this is that compiled pattern programs are not reentrant.)
27531 For example, consider the rule @samp{foo(x) := x :: foo(x/2) > 0}
27532 attempting to match @samp{foo(8)}.  This rule will be inactive while
27533 the condition @samp{foo(4) > 0} is checked, even though it might be
27534 an integral part of evaluating that condition.  Note that this is not
27535 a problem for the more usual recursive type of rule, such as
27536 @samp{foo(x) := foo(x/2)}, because there the rule has succeeded and
27537 been reactivated by the time the righthand side is evaluated.
27539 If @code{EvalRules} has no stored value (its default state), or if
27540 anything but a vector is stored in it, then it is ignored.
27542 Even though Calc's rewrite mechanism is designed to compare rewrite
27543 rules to formulas as quickly as possible, storing rules in
27544 @code{EvalRules} may make Calc run substantially slower.  This is
27545 particularly true of rules where the top-level call is a commonly used
27546 function, or is not fixed.  The rule @samp{f(n) := n f(n-1) :: n>0} will
27547 only activate the rewrite mechanism for calls to the function @code{f},
27548 but @samp{lg(n) + lg(m) := lg(n m)} will check every @samp{+} operator.
27550 @smallexample
27551 apply(f, [a*b]) := apply(f, [a]) + apply(f, [b]) :: in(f, [ln, log10])
27552 @end smallexample
27554 @noindent
27555 may seem more ``efficient'' than two separate rules for @code{ln} and
27556 @code{log10}, but actually it is vastly less efficient because rules
27557 with @code{apply} as the top-level pattern must be tested against
27558 @emph{every} function call that is simplified.
27560 @cindex @code{AlgSimpRules} variable
27561 @vindex AlgSimpRules
27562 Suppose you want @samp{sin(a + b)} to be expanded out not all the time,
27563 but only when @kbd{a s} is used to simplify the formula.  The variable
27564 @code{AlgSimpRules} holds rules for this purpose.  The @kbd{a s} command
27565 will apply @code{EvalRules} and @code{AlgSimpRules} to the formula, as
27566 well as all of its built-in simplifications.
27568 Most of the special limitations for @code{EvalRules} don't apply to
27569 @code{AlgSimpRules}.  Calc simply does an @kbd{a r AlgSimpRules}
27570 command with an infinite repeat count as the first step of @kbd{a s}.
27571 It then applies its own built-in simplifications throughout the
27572 formula, and then repeats these two steps (along with applying the
27573 default simplifications) until no further changes are possible.
27575 @cindex @code{ExtSimpRules} variable
27576 @cindex @code{UnitSimpRules} variable
27577 @vindex ExtSimpRules
27578 @vindex UnitSimpRules
27579 There are also @code{ExtSimpRules} and @code{UnitSimpRules} variables
27580 that are used by @kbd{a e} and @kbd{u s}, respectively; these commands
27581 also apply @code{EvalRules} and @code{AlgSimpRules}.  The variable
27582 @code{IntegSimpRules} contains simplification rules that are used
27583 only during integration by @kbd{a i}.
27585 @node Debugging Rewrites, Examples of Rewrite Rules, Automatic Rewrites, Rewrite Rules
27586 @subsection Debugging Rewrites
27588 @noindent
27589 If a buffer named @samp{*Trace*} exists, the rewrite mechanism will
27590 record some useful information there as it operates.  The original
27591 formula is written there, as is the result of each successful rewrite,
27592 and the final result of the rewriting.  All phase changes are also
27593 noted.
27595 Calc always appends to @samp{*Trace*}.  You must empty this buffer
27596 yourself periodically if it is in danger of growing unwieldy.
27598 Note that the rewriting mechanism is substantially slower when the
27599 @samp{*Trace*} buffer exists, even if the buffer is not visible on
27600 the screen.  Once you are done, you will probably want to kill this
27601 buffer (with @kbd{C-x k *Trace* @key{RET}}).  If you leave it in
27602 existence and forget about it, all your future rewrite commands will
27603 be needlessly slow.
27605 @node Examples of Rewrite Rules, , Debugging Rewrites, Rewrite Rules
27606 @subsection Examples of Rewrite Rules
27608 @noindent
27609 Returning to the example of substituting the pattern
27610 @samp{sin(x)^2 + cos(x)^2} with 1, we saw that the rule
27611 @samp{opt(a) sin(x)^2 + opt(a) cos(x)^2 := a} does a good job of
27612 finding suitable cases.  Another solution would be to use the rule
27613 @samp{cos(x)^2 := 1 - sin(x)^2}, followed by algebraic simplification
27614 if necessary.  This rule will be the most effective way to do the job,
27615 but at the expense of making some changes that you might not desire.
27617 Another algebraic rewrite rule is @samp{exp(x+y) := exp(x) exp(y)}.
27618 To make this work with the @w{@kbd{j r}} command so that it can be
27619 easily targeted to a particular exponential in a large formula,
27620 you might wish to write the rule as @samp{select(exp(x+y)) :=
27621 select(exp(x) exp(y))}.  The @samp{select} markers will be
27622 ignored by the regular @kbd{a r} command
27623 (@pxref{Selections with Rewrite Rules}).
27625 A surprisingly useful rewrite rule is @samp{a/(b-c) := a*(b+c)/(b^2-c^2)}.
27626 This will simplify the formula whenever @expr{b} and/or @expr{c} can
27627 be made simpler by squaring.  For example, applying this rule to
27628 @samp{2 / (sqrt(2) + 3)} yields @samp{6:7 - 2:7 sqrt(2)} (assuming
27629 Symbolic mode has been enabled to keep the square root from being
27630 evaluated to a floating-point approximation).  This rule is also
27631 useful when working with symbolic complex numbers, e.g.,
27632 @samp{(a + b i) / (c + d i)}.
27634 As another example, we could define our own ``triangular numbers'' function
27635 with the rules @samp{[tri(0) := 0, tri(n) := n + tri(n-1) :: n>0]}.  Enter
27636 this vector and store it in a variable:  @kbd{@w{s t} trirules}.  Now, given
27637 a suitable formula like @samp{tri(5)} on the stack, type @samp{a r trirules}
27638 to apply these rules repeatedly.  After six applications, @kbd{a r} will
27639 stop with 15 on the stack.  Once these rules are debugged, it would probably
27640 be most useful to add them to @code{EvalRules} so that Calc will evaluate
27641 the new @code{tri} function automatically.  We could then use @kbd{Z K} on
27642 the keyboard macro @kbd{' tri($) @key{RET}} to make a command that applies
27643 @code{tri} to the value on the top of the stack.  @xref{Programming}.
27645 @cindex Quaternions
27646 The following rule set, contributed by 
27647 @texline Fran\c cois
27648 @infoline Francois
27649 Pinard, implements @dfn{quaternions}, a generalization of the concept of
27650 complex numbers.  Quaternions have four components, and are here
27651 represented by function calls @samp{quat(@var{w}, [@var{x}, @var{y},
27652 @var{z}])} with ``real part'' @var{w} and the three ``imaginary'' parts
27653 collected into a vector.  Various arithmetical operations on quaternions
27654 are supported.  To use these rules, either add them to @code{EvalRules},
27655 or create a command based on @kbd{a r} for simplifying quaternion
27656 formulas.  A convenient way to enter quaternions would be a command
27657 defined by a keyboard macro containing: @kbd{' quat($$$$, [$$$, $$, $])
27658 @key{RET}}.
27660 @smallexample
27661 [ quat(w, x, y, z) := quat(w, [x, y, z]),
27662   quat(w, [0, 0, 0]) := w,
27663   abs(quat(w, v)) := hypot(w, v),
27664   -quat(w, v) := quat(-w, -v),
27665   r + quat(w, v) := quat(r + w, v) :: real(r),
27666   r - quat(w, v) := quat(r - w, -v) :: real(r),
27667   quat(w1, v1) + quat(w2, v2) := quat(w1 + w2, v1 + v2),
27668   r * quat(w, v) := quat(r * w, r * v) :: real(r),
27669   plain(quat(w1, v1) * quat(w2, v2))
27670      := quat(w1 * w2 - v1 * v2, w1 * v2 + w2 * v1 + cross(v1, v2)),
27671   quat(w1, v1) / r := quat(w1 / r, v1 / r) :: real(r),
27672   z / quat(w, v) := z * quatinv(quat(w, v)),
27673   quatinv(quat(w, v)) := quat(w, -v) / (w^2 + v^2),
27674   quatsqr(quat(w, v)) := quat(w^2 - v^2, 2 * w * v),
27675   quat(w, v)^k := quatsqr(quat(w, v)^(k / 2))
27676                :: integer(k) :: k > 0 :: k % 2 = 0,
27677   quat(w, v)^k := quatsqr(quat(w, v)^((k - 1) / 2)) * quat(w, v)
27678                :: integer(k) :: k > 2,
27679   quat(w, v)^-k := quatinv(quat(w, v)^k) :: integer(k) :: k > 0 ]
27680 @end smallexample
27682 Quaternions, like matrices, have non-commutative multiplication.
27683 In other words, @expr{q1 * q2 = q2 * q1} is not necessarily true if
27684 @expr{q1} and @expr{q2} are @code{quat} forms.  The @samp{quat*quat}
27685 rule above uses @code{plain} to prevent Calc from rearranging the
27686 product.  It may also be wise to add the line @samp{[quat(), matrix]}
27687 to the @code{Decls} matrix, to ensure that Calc's other algebraic
27688 operations will not rearrange a quaternion product.  @xref{Declarations}.
27690 These rules also accept a four-argument @code{quat} form, converting
27691 it to the preferred form in the first rule.  If you would rather see
27692 results in the four-argument form, just append the two items
27693 @samp{phase(2), quat(w, [x, y, z]) := quat(w, x, y, z)} to the end
27694 of the rule set.  (But remember that multi-phase rule sets don't work
27695 in @code{EvalRules}.)
27697 @node Units, Store and Recall, Algebra, Top
27698 @chapter Operating on Units
27700 @noindent
27701 One special interpretation of algebraic formulas is as numbers with units.
27702 For example, the formula @samp{5 m / s^2} can be read ``five meters
27703 per second squared.''  The commands in this chapter help you
27704 manipulate units expressions in this form.  Units-related commands
27705 begin with the @kbd{u} prefix key.
27707 @menu
27708 * Basic Operations on Units::
27709 * The Units Table::
27710 * Predefined Units::
27711 * User-Defined Units::
27712 @end menu
27714 @node Basic Operations on Units, The Units Table, Units, Units
27715 @section Basic Operations on Units
27717 @noindent
27718 A @dfn{units expression} is a formula which is basically a number
27719 multiplied and/or divided by one or more @dfn{unit names}, which may
27720 optionally be raised to integer powers.  Actually, the value part need not
27721 be a number; any product or quotient involving unit names is a units
27722 expression.  Many of the units commands will also accept any formula,
27723 where the command applies to all units expressions which appear in the
27724 formula.
27726 A unit name is a variable whose name appears in the @dfn{unit table},
27727 or a variable whose name is a prefix character like @samp{k} (for ``kilo'')
27728 or @samp{u} (for ``micro'') followed by a name in the unit table.
27729 A substantial table of built-in units is provided with Calc;
27730 @pxref{Predefined Units}.  You can also define your own unit names;
27731 @pxref{User-Defined Units}.
27733 Note that if the value part of a units expression is exactly @samp{1},
27734 it will be removed by the Calculator's automatic algebra routines:  The
27735 formula @samp{1 mm} is ``simplified'' to @samp{mm}.  This is only a
27736 display anomaly, however; @samp{mm} will work just fine as a
27737 representation of one millimeter.
27739 You may find that Algebraic mode (@pxref{Algebraic Entry}) makes working
27740 with units expressions easier.  Otherwise, you will have to remember
27741 to hit the apostrophe key every time you wish to enter units.
27743 @kindex u s
27744 @pindex calc-simplify-units
27745 @ignore
27746 @mindex usimpl@idots
27747 @end ignore
27748 @tindex usimplify
27749 The @kbd{u s} (@code{calc-simplify-units}) [@code{usimplify}] command
27750 simplifies a units
27751 expression.  It uses @kbd{a s} (@code{calc-simplify}) to simplify the
27752 expression first as a regular algebraic formula; it then looks for
27753 features that can be further simplified by converting one object's units
27754 to be compatible with another's.  For example, @samp{5 m + 23 mm} will
27755 simplify to @samp{5.023 m}.  When different but compatible units are
27756 added, the righthand term's units are converted to match those of the
27757 lefthand term.  @xref{Simplification Modes}, for a way to have this done
27758 automatically at all times.
27760 Units simplification also handles quotients of two units with the same
27761 dimensionality, as in @w{@samp{2 in s/L cm}} to @samp{5.08 s/L}; fractional
27762 powers of unit expressions, as in @samp{sqrt(9 mm^2)} to @samp{3 mm} and
27763 @samp{sqrt(9 acre)} to a quantity in meters; and @code{floor},
27764 @code{ceil}, @code{round}, @code{rounde}, @code{roundu}, @code{trunc},
27765 @code{float}, @code{frac}, @code{abs}, and @code{clean}
27766 applied to units expressions, in which case
27767 the operation in question is applied only to the numeric part of the
27768 expression.  Finally, trigonometric functions of quantities with units
27769 of angle are evaluated, regardless of the current angular mode.
27771 @kindex u c
27772 @pindex calc-convert-units
27773 The @kbd{u c} (@code{calc-convert-units}) command converts a units
27774 expression to new, compatible units.  For example, given the units
27775 expression @samp{55 mph}, typing @kbd{u c m/s @key{RET}} produces
27776 @samp{24.5872 m/s}.  If the units you request are inconsistent with
27777 the original units, the number will be converted into your units
27778 times whatever ``remainder'' units are left over.  For example,
27779 converting @samp{55 mph} into acres produces @samp{6.08e-3 acre / m s}.
27780 (Recall that multiplication binds more strongly than division in Calc
27781 formulas, so the units here are acres per meter-second.)  Remainder
27782 units are expressed in terms of ``fundamental'' units like @samp{m} and
27783 @samp{s}, regardless of the input units.
27785 One special exception is that if you specify a single unit name, and
27786 a compatible unit appears somewhere in the units expression, then
27787 that compatible unit will be converted to the new unit and the
27788 remaining units in the expression will be left alone.  For example,
27789 given the input @samp{980 cm/s^2}, the command @kbd{u c ms} will
27790 change the @samp{s} to @samp{ms} to get @samp{9.8e-4 cm/ms^2}.
27791 The ``remainder unit'' @samp{cm} is left alone rather than being
27792 changed to the base unit @samp{m}.
27794 You can use explicit unit conversion instead of the @kbd{u s} command
27795 to gain more control over the units of the result of an expression.
27796 For example, given @samp{5 m + 23 mm}, you can type @kbd{u c m} or
27797 @kbd{u c mm} to express the result in either meters or millimeters.
27798 (For that matter, you could type @kbd{u c fath} to express the result
27799 in fathoms, if you preferred!)
27801 In place of a specific set of units, you can also enter one of the
27802 units system names @code{si}, @code{mks} (equivalent), or @code{cgs}.
27803 For example, @kbd{u c si @key{RET}} converts the expression into
27804 International System of Units (SI) base units.  Also, @kbd{u c base}
27805 converts to Calc's base units, which are the same as @code{si} units
27806 except that @code{base} uses @samp{g} as the fundamental unit of mass
27807 whereas @code{si} uses @samp{kg}.
27809 @cindex Composite units
27810 The @kbd{u c} command also accepts @dfn{composite units}, which
27811 are expressed as the sum of several compatible unit names.  For
27812 example, converting @samp{30.5 in} to units @samp{mi+ft+in} (miles,
27813 feet, and inches) produces @samp{2 ft + 6.5 in}.  Calc first
27814 sorts the unit names into order of decreasing relative size.
27815 It then accounts for as much of the input quantity as it can
27816 using an integer number times the largest unit, then moves on
27817 to the next smaller unit, and so on.  Only the smallest unit
27818 may have a non-integer amount attached in the result.  A few
27819 standard unit names exist for common combinations, such as
27820 @code{mfi} for @samp{mi+ft+in}, and @code{tpo} for @samp{ton+lb+oz}.
27821 Composite units are expanded as if by @kbd{a x}, so that
27822 @samp{(ft+in)/hr} is first converted to @samp{ft/hr+in/hr}.
27824 If the value on the stack does not contain any units, @kbd{u c} will
27825 prompt first for the old units which this value should be considered
27826 to have, then for the new units.  Assuming the old and new units you
27827 give are consistent with each other, the result also will not contain
27828 any units.  For example, @kbd{@w{u c} cm @key{RET} in @key{RET}} converts the number
27829 2 on the stack to 5.08.
27831 @kindex u b
27832 @pindex calc-base-units
27833 The @kbd{u b} (@code{calc-base-units}) command is shorthand for
27834 @kbd{u c base}; it converts the units expression on the top of the
27835 stack into @code{base} units.  If @kbd{u s} does not simplify a
27836 units expression as far as you would like, try @kbd{u b}.
27838 The @kbd{u c} and @kbd{u b} commands treat temperature units (like
27839 @samp{degC} and @samp{K}) as relative temperatures.  For example,
27840 @kbd{u c} converts @samp{10 degC} to @samp{18 degF}: A change of 10
27841 degrees Celsius corresponds to a change of 18 degrees Fahrenheit.
27843 @kindex u t
27844 @pindex calc-convert-temperature
27845 @cindex Temperature conversion
27846 The @kbd{u t} (@code{calc-convert-temperature}) command converts
27847 absolute temperatures.  The value on the stack must be a simple units
27848 expression with units of temperature only.  This command would convert
27849 @samp{10 degC} to @samp{50 degF}, the equivalent temperature on the
27850 Fahrenheit scale.
27852 @kindex u r
27853 @pindex calc-remove-units
27854 @kindex u x
27855 @pindex calc-extract-units
27856 The @kbd{u r} (@code{calc-remove-units}) command removes units from the
27857 formula at the top of the stack.  The @kbd{u x}
27858 (@code{calc-extract-units}) command extracts only the units portion of a
27859 formula.  These commands essentially replace every term of the formula
27860 that does or doesn't (respectively) look like a unit name by the
27861 constant 1, then resimplify the formula.
27863 @kindex u a
27864 @pindex calc-autorange-units
27865 The @kbd{u a} (@code{calc-autorange-units}) command turns on and off a
27866 mode in which unit prefixes like @code{k} (``kilo'') are automatically
27867 applied to keep the numeric part of a units expression in a reasonable
27868 range.  This mode affects @kbd{u s} and all units conversion commands
27869 except @kbd{u b}.  For example, with autoranging on, @samp{12345 Hz}
27870 will be simplified to @samp{12.345 kHz}.  Autoranging is useful for
27871 some kinds of units (like @code{Hz} and @code{m}), but is probably
27872 undesirable for non-metric units like @code{ft} and @code{tbsp}.
27873 (Composite units are more appropriate for those; see above.)
27875 Autoranging always applies the prefix to the leftmost unit name.
27876 Calc chooses the largest prefix that causes the number to be greater
27877 than or equal to 1.0.  Thus an increasing sequence of adjusted times
27878 would be @samp{1 ms, 10 ms, 100 ms, 1 s, 10 s, 100 s, 1 ks}.
27879 Generally the rule of thumb is that the number will be adjusted
27880 to be in the interval @samp{[1 .. 1000)}, although there are several
27881 exceptions to this rule.  First, if the unit has a power then this
27882 is not possible; @samp{0.1 s^2} simplifies to @samp{100000 ms^2}.
27883 Second, the ``centi-'' prefix is allowed to form @code{cm} (centimeters),
27884 but will not apply to other units.  The ``deci-,'' ``deka-,'' and
27885 ``hecto-'' prefixes are never used.  Thus the allowable interval is
27886 @samp{[1 .. 10)} for millimeters and @samp{[1 .. 100)} for centimeters.
27887 Finally, a prefix will not be added to a unit if the resulting name
27888 is also the actual name of another unit; @samp{1e-15 t} would normally
27889 be considered a ``femto-ton,'' but it is written as @samp{1000 at}
27890 (1000 atto-tons) instead because @code{ft} would be confused with feet.
27892 @node The Units Table, Predefined Units, Basic Operations on Units, Units
27893 @section The Units Table
27895 @noindent
27896 @kindex u v
27897 @pindex calc-enter-units-table
27898 The @kbd{u v} (@code{calc-enter-units-table}) command displays the units table
27899 in another buffer called @code{*Units Table*}.  Each entry in this table
27900 gives the unit name as it would appear in an expression, the definition
27901 of the unit in terms of simpler units, and a full name or description of
27902 the unit.  Fundamental units are defined as themselves; these are the
27903 units produced by the @kbd{u b} command.  The fundamental units are
27904 meters, seconds, grams, kelvins, amperes, candelas, moles, radians,
27905 and steradians.
27907 The Units Table buffer also displays the Unit Prefix Table.  Note that
27908 two prefixes, ``kilo'' and ``hecto,'' accept either upper- or lower-case
27909 prefix letters.  @samp{Meg} is also accepted as a synonym for the @samp{M}
27910 prefix.  Whenever a unit name can be interpreted as either a built-in name
27911 or a prefix followed by another built-in name, the former interpretation
27912 wins.  For example, @samp{2 pt} means two pints, not two pico-tons.
27914 The Units Table buffer, once created, is not rebuilt unless you define
27915 new units.  To force the buffer to be rebuilt, give any numeric prefix
27916 argument to @kbd{u v}.
27918 @kindex u V
27919 @pindex calc-view-units-table
27920 The @kbd{u V} (@code{calc-view-units-table}) command is like @kbd{u v} except
27921 that the cursor is not moved into the Units Table buffer.  You can
27922 type @kbd{u V} again to remove the Units Table from the display.  To
27923 return from the Units Table buffer after a @kbd{u v}, type @kbd{C-x * c}
27924 again or use the regular Emacs @w{@kbd{C-x o}} (@code{other-window})
27925 command.  You can also kill the buffer with @kbd{C-x k} if you wish;
27926 the actual units table is safely stored inside the Calculator.
27928 @kindex u g
27929 @pindex calc-get-unit-definition
27930 The @kbd{u g} (@code{calc-get-unit-definition}) command retrieves a unit's
27931 defining expression and pushes it onto the Calculator stack.  For example,
27932 @kbd{u g in} will produce the expression @samp{2.54 cm}.  This is the
27933 same definition for the unit that would appear in the Units Table buffer.
27934 Note that this command works only for actual unit names; @kbd{u g km}
27935 will report that no such unit exists, for example, because @code{km} is
27936 really the unit @code{m} with a @code{k} (``kilo'') prefix.  To see a
27937 definition of a unit in terms of base units, it is easier to push the
27938 unit name on the stack and then reduce it to base units with @kbd{u b}.
27940 @kindex u e
27941 @pindex calc-explain-units
27942 The @kbd{u e} (@code{calc-explain-units}) command displays an English
27943 description of the units of the expression on the stack.  For example,
27944 for the expression @samp{62 km^2 g / s^2 mol K}, the description is
27945 ``Square-Kilometer Gram per (Second-squared Mole Degree-Kelvin).''  This
27946 command uses the English descriptions that appear in the righthand
27947 column of the Units Table.
27949 @node Predefined Units, User-Defined Units, The Units Table, Units
27950 @section Predefined Units
27952 @noindent
27953 Since the exact definitions of many kinds of units have evolved over the
27954 years, and since certain countries sometimes have local differences in
27955 their definitions, it is a good idea to examine Calc's definition of a
27956 unit before depending on its exact value.  For example, there are three
27957 different units for gallons, corresponding to the US (@code{gal}),
27958 Canadian (@code{galC}), and British (@code{galUK}) definitions.  Also,
27959 note that @code{oz} is a standard ounce of mass, @code{ozt} is a Troy
27960 ounce, and @code{ozfl} is a fluid ounce.
27962 The temperature units corresponding to degrees Kelvin and Centigrade
27963 (Celsius) are the same in this table, since most units commands treat
27964 temperatures as being relative.  The @code{calc-convert-temperature}
27965 command has special rules for handling the different absolute magnitudes
27966 of the various temperature scales.
27968 The unit of volume ``liters'' can be referred to by either the lower-case
27969 @code{l} or the upper-case @code{L}.
27971 The unit @code{A} stands for Amperes; the name @code{Ang} is used
27972 @tex
27973 for \AA ngstroms.
27974 @end tex
27975 @ifinfo
27976 for Angstroms.
27977 @end ifinfo
27979 The unit @code{pt} stands for pints; the name @code{point} stands for
27980 a typographical point, defined by @samp{72 point = 1 in}.  This is
27981 slightly different than the point defined by the American Typefounder's
27982 Association in 1886, but the point used by Calc has become standard
27983 largely due to its use by the PostScript page description language.
27984 There is also @code{texpt}, which stands for a printer's point as
27985 defined by the @TeX{} typesetting system:  @samp{72.27 texpt = 1 in}.
27986 Other units used by @TeX{} are available; they are @code{texpc} (a pica),
27987 @code{texbp} (a ``big point'', equal to a standard point which is larger
27988 than the point used by @TeX{}), @code{texdd} (a Didot point),
27989 @code{texcc} (a Cicero) and @code{texsp} (a scaled @TeX{} point, 
27990 all dimensions representable in @TeX{} are multiples of this value).
27992 The unit @code{e} stands for the elementary (electron) unit of charge;
27993 because algebra command could mistake this for the special constant
27994 @expr{e}, Calc provides the alternate unit name @code{ech} which is
27995 preferable to @code{e}.
27997 The name @code{g} stands for one gram of mass; there is also @code{gf},
27998 one gram of force.  (Likewise for @kbd{lb}, pounds, and @kbd{lbf}.)
27999 Meanwhile, one ``@expr{g}'' of acceleration is denoted @code{ga}.
28001 The unit @code{ton} is a U.S. ton of @samp{2000 lb}, and @code{t} is
28002 a metric ton of @samp{1000 kg}.
28004 The names @code{s} (or @code{sec}) and @code{min} refer to units of
28005 time; @code{arcsec} and @code{arcmin} are units of angle.
28007 Some ``units'' are really physical constants; for example, @code{c}
28008 represents the speed of light, and @code{h} represents Planck's
28009 constant.  You can use these just like other units: converting
28010 @samp{.5 c} to @samp{m/s} expresses one-half the speed of light in
28011 meters per second.  You can also use this merely as a handy reference;
28012 the @kbd{u g} command gets the definition of one of these constants
28013 in its normal terms, and @kbd{u b} expresses the definition in base
28014 units.
28016 Two units, @code{pi} and @code{alpha} (the fine structure constant,
28017 approximately @mathit{1/137}) are dimensionless.  The units simplification
28018 commands simply treat these names as equivalent to their corresponding
28019 values.  However you can, for example, use @kbd{u c} to convert a pure
28020 number into multiples of the fine structure constant, or @kbd{u b} to
28021 convert this back into a pure number.  (When @kbd{u c} prompts for the
28022 ``old units,'' just enter a blank line to signify that the value
28023 really is unitless.)
28025 @c Describe angular units, luminosity vs. steradians problem.
28027 @node User-Defined Units, , Predefined Units, Units
28028 @section User-Defined Units
28030 @noindent
28031 Calc provides ways to get quick access to your selected ``favorite''
28032 units, as well as ways to define your own new units.
28034 @kindex u 0-9
28035 @pindex calc-quick-units
28036 @vindex Units
28037 @cindex @code{Units} variable
28038 @cindex Quick units
28039 To select your favorite units, store a vector of unit names or
28040 expressions in the Calc variable @code{Units}.  The @kbd{u 1}
28041 through @kbd{u 9} commands (@code{calc-quick-units}) provide access
28042 to these units.  If the value on the top of the stack is a plain
28043 number (with no units attached), then @kbd{u 1} gives it the
28044 specified units.  (Basically, it multiplies the number by the
28045 first item in the @code{Units} vector.)  If the number on the
28046 stack @emph{does} have units, then @kbd{u 1} converts that number
28047 to the new units.  For example, suppose the vector @samp{[in, ft]}
28048 is stored in @code{Units}.  Then @kbd{30 u 1} will create the
28049 expression @samp{30 in}, and @kbd{u 2} will convert that expression
28050 to @samp{2.5 ft}.
28052 The @kbd{u 0} command accesses the tenth element of @code{Units}.
28053 Only ten quick units may be defined at a time.  If the @code{Units}
28054 variable has no stored value (the default), or if its value is not
28055 a vector, then the quick-units commands will not function.  The
28056 @kbd{s U} command is a convenient way to edit the @code{Units}
28057 variable; @pxref{Operations on Variables}.
28059 @kindex u d
28060 @pindex calc-define-unit
28061 @cindex User-defined units
28062 The @kbd{u d} (@code{calc-define-unit}) command records the units
28063 expression on the top of the stack as the definition for a new,
28064 user-defined unit.  For example, putting @samp{16.5 ft} on the stack and
28065 typing @kbd{u d rod} defines the new unit @samp{rod} to be equivalent to
28066 16.5 feet.  The unit conversion and simplification commands will now
28067 treat @code{rod} just like any other unit of length.  You will also be
28068 prompted for an optional English description of the unit, which will
28069 appear in the Units Table.
28071 @kindex u u
28072 @pindex calc-undefine-unit
28073 The @kbd{u u} (@code{calc-undefine-unit}) command removes a user-defined
28074 unit.  It is not possible to remove one of the predefined units,
28075 however.
28077 If you define a unit with an existing unit name, your new definition
28078 will replace the original definition of that unit.  If the unit was a
28079 predefined unit, the old definition will not be replaced, only
28080 ``shadowed.''  The built-in definition will reappear if you later use
28081 @kbd{u u} to remove the shadowing definition.
28083 To create a new fundamental unit, use either 1 or the unit name itself
28084 as the defining expression.  Otherwise the expression can involve any
28085 other units that you like (except for composite units like @samp{mfi}).
28086 You can create a new composite unit with a sum of other units as the
28087 defining expression.  The next unit operation like @kbd{u c} or @kbd{u v}
28088 will rebuild the internal unit table incorporating your modifications.
28089 Note that erroneous definitions (such as two units defined in terms of
28090 each other) will not be detected until the unit table is next rebuilt;
28091 @kbd{u v} is a convenient way to force this to happen.
28093 Temperature units are treated specially inside the Calculator; it is not
28094 possible to create user-defined temperature units.
28096 @kindex u p
28097 @pindex calc-permanent-units
28098 @cindex Calc init file, user-defined units
28099 The @kbd{u p} (@code{calc-permanent-units}) command stores the user-defined
28100 units in your Calc init file (the file given by the variable
28101 @code{calc-settings-file}, typically @file{~/.calc.el}), so that the
28102 units will still be available in subsequent Emacs sessions.  If there
28103 was already a set of user-defined units in your Calc init file, it
28104 is replaced by the new set.  (@xref{General Mode Commands}, for a way to
28105 tell Calc to use a different file for the Calc init file.)
28107 @node Store and Recall, Graphics, Units, Top
28108 @chapter Storing and Recalling
28110 @noindent
28111 Calculator variables are really just Lisp variables that contain numbers
28112 or formulas in a form that Calc can understand.  The commands in this
28113 section allow you to manipulate variables conveniently.  Commands related
28114 to variables use the @kbd{s} prefix key.
28116 @menu
28117 * Storing Variables::
28118 * Recalling Variables::
28119 * Operations on Variables::
28120 * Let Command::
28121 * Evaluates-To Operator::
28122 @end menu
28124 @node Storing Variables, Recalling Variables, Store and Recall, Store and Recall
28125 @section Storing Variables
28127 @noindent
28128 @kindex s s
28129 @pindex calc-store
28130 @cindex Storing variables
28131 @cindex Quick variables
28132 @vindex q0
28133 @vindex q9
28134 The @kbd{s s} (@code{calc-store}) command stores the value at the top of
28135 the stack into a specified variable.  It prompts you to enter the
28136 name of the variable.  If you press a single digit, the value is stored
28137 immediately in one of the ``quick'' variables @code{q0} through
28138 @code{q9}.  Or you can enter any variable name.  
28140 @kindex s t
28141 @pindex calc-store-into
28142 The @kbd{s s} command leaves the stored value on the stack.  There is
28143 also an @kbd{s t} (@code{calc-store-into}) command, which removes a
28144 value from the stack and stores it in a variable.
28146 If the top of stack value is an equation @samp{a = 7} or assignment
28147 @samp{a := 7} with a variable on the lefthand side, then Calc will
28148 assign that variable with that value by default, i.e., if you type
28149 @kbd{s s @key{RET}} or @kbd{s t @key{RET}}.  In this example, the
28150 value 7 would be stored in the variable @samp{a}.  (If you do type
28151 a variable name at the prompt, the top-of-stack value is stored in
28152 its entirety, even if it is an equation:  @samp{s s b @key{RET}}
28153 with @samp{a := 7} on the stack stores @samp{a := 7} in @code{b}.)
28155 In fact, the top of stack value can be a vector of equations or
28156 assignments with different variables on their lefthand sides; the
28157 default will be to store all the variables with their corresponding
28158 righthand sides simultaneously.
28160 It is also possible to type an equation or assignment directly at
28161 the prompt for the @kbd{s s} or @kbd{s t} command:  @kbd{s s foo = 7}.
28162 In this case the expression to the right of the @kbd{=} or @kbd{:=}
28163 symbol is evaluated as if by the @kbd{=} command, and that value is
28164 stored in the variable.  No value is taken from the stack; @kbd{s s}
28165 and @kbd{s t} are equivalent when used in this way.
28167 @kindex s 0-9
28168 @kindex t 0-9
28169 The prefix keys @kbd{s} and @kbd{t} may be followed immediately by a
28170 digit; @kbd{s 9} is equivalent to @kbd{s s 9}, and @kbd{t 9} is
28171 equivalent to @kbd{s t 9}.  (The @kbd{t} prefix is otherwise used
28172 for trail and time/date commands.)
28174 @kindex s +
28175 @kindex s -
28176 @ignore
28177 @mindex @idots
28178 @end ignore
28179 @kindex s *
28180 @ignore
28181 @mindex @null
28182 @end ignore
28183 @kindex s /
28184 @ignore
28185 @mindex @null
28186 @end ignore
28187 @kindex s ^
28188 @ignore
28189 @mindex @null
28190 @end ignore
28191 @kindex s |
28192 @ignore
28193 @mindex @null
28194 @end ignore
28195 @kindex s n
28196 @ignore
28197 @mindex @null
28198 @end ignore
28199 @kindex s &
28200 @ignore
28201 @mindex @null
28202 @end ignore
28203 @kindex s [
28204 @ignore
28205 @mindex @null
28206 @end ignore
28207 @kindex s ]
28208 @pindex calc-store-plus
28209 @pindex calc-store-minus
28210 @pindex calc-store-times
28211 @pindex calc-store-div
28212 @pindex calc-store-power
28213 @pindex calc-store-concat
28214 @pindex calc-store-neg
28215 @pindex calc-store-inv
28216 @pindex calc-store-decr
28217 @pindex calc-store-incr
28218 There are also several ``arithmetic store'' commands.  For example,
28219 @kbd{s +} removes a value from the stack and adds it to the specified
28220 variable.  The other arithmetic stores are @kbd{s -}, @kbd{s *}, @kbd{s /},
28221 @kbd{s ^}, and @w{@kbd{s |}} (vector concatenation), plus @kbd{s n} and
28222 @kbd{s &} which negate or invert the value in a variable, and @w{@kbd{s [}}
28223 and @kbd{s ]} which decrease or increase a variable by one.
28225 All the arithmetic stores accept the Inverse prefix to reverse the
28226 order of the operands.  If @expr{v} represents the contents of the
28227 variable, and @expr{a} is the value drawn from the stack, then regular
28228 @w{@kbd{s -}} assigns 
28229 @texline @math{v \coloneq v - a},
28230 @infoline @expr{v := v - a}, 
28231 but @kbd{I s -} assigns
28232 @texline @math{v \coloneq a - v}.
28233 @infoline @expr{v := a - v}.  
28234 While @kbd{I s *} might seem pointless, it is
28235 useful if matrix multiplication is involved.  Actually, all the
28236 arithmetic stores use formulas designed to behave usefully both
28237 forwards and backwards:
28239 @example
28240 @group
28241 s +        v := v + a          v := a + v
28242 s -        v := v - a          v := a - v
28243 s *        v := v * a          v := a * v
28244 s /        v := v / a          v := a / v
28245 s ^        v := v ^ a          v := a ^ v
28246 s |        v := v | a          v := a | v
28247 s n        v := v / (-1)       v := (-1) / v
28248 s &        v := v ^ (-1)       v := (-1) ^ v
28249 s [        v := v - 1          v := 1 - v
28250 s ]        v := v - (-1)       v := (-1) - v
28251 @end group
28252 @end example
28254 In the last four cases, a numeric prefix argument will be used in
28255 place of the number one.  (For example, @kbd{M-2 s ]} increases
28256 a variable by 2, and @kbd{M-2 I s ]} replaces a variable by
28257 minus-two minus the variable.
28259 The first six arithmetic stores can also be typed @kbd{s t +}, @kbd{s t -},
28260 etc.  The commands @kbd{s s +}, @kbd{s s -}, and so on are analogous
28261 arithmetic stores that don't remove the value @expr{a} from the stack.
28263 All arithmetic stores report the new value of the variable in the
28264 Trail for your information.  They signal an error if the variable
28265 previously had no stored value.  If default simplifications have been
28266 turned off, the arithmetic stores temporarily turn them on for numeric
28267 arguments only (i.e., they temporarily do an @kbd{m N} command).
28268 @xref{Simplification Modes}.  Large vectors put in the trail by
28269 these commands always use abbreviated (@kbd{t .}) mode.
28271 @kindex s m
28272 @pindex calc-store-map
28273 The @kbd{s m} command is a general way to adjust a variable's value
28274 using any Calc function.  It is a ``mapping'' command analogous to
28275 @kbd{V M}, @kbd{V R}, etc.  @xref{Reducing and Mapping}, to see
28276 how to specify a function for a mapping command.  Basically,
28277 all you do is type the Calc command key that would invoke that
28278 function normally.  For example, @kbd{s m n} applies the @kbd{n}
28279 key to negate the contents of the variable, so @kbd{s m n} is
28280 equivalent to @kbd{s n}.  Also, @kbd{s m Q} takes the square root
28281 of the value stored in a variable, @kbd{s m v v} uses @kbd{v v} to
28282 reverse the vector stored in the variable, and @kbd{s m H I S}
28283 takes the hyperbolic arcsine of the variable contents.
28285 If the mapping function takes two or more arguments, the additional
28286 arguments are taken from the stack; the old value of the variable
28287 is provided as the first argument.  Thus @kbd{s m -} with @expr{a}
28288 on the stack computes @expr{v - a}, just like @kbd{s -}.  With the
28289 Inverse prefix, the variable's original value becomes the @emph{last}
28290 argument instead of the first.  Thus @kbd{I s m -} is also
28291 equivalent to @kbd{I s -}.
28293 @kindex s x
28294 @pindex calc-store-exchange
28295 The @kbd{s x} (@code{calc-store-exchange}) command exchanges the value
28296 of a variable with the value on the top of the stack.  Naturally, the
28297 variable must already have a stored value for this to work.
28299 You can type an equation or assignment at the @kbd{s x} prompt.  The
28300 command @kbd{s x a=6} takes no values from the stack; instead, it
28301 pushes the old value of @samp{a} on the stack and stores @samp{a = 6}.
28303 @kindex s u
28304 @pindex calc-unstore
28305 @cindex Void variables
28306 @cindex Un-storing variables
28307 Until you store something in them, most variables are ``void,'' that is,
28308 they contain no value at all.  If they appear in an algebraic formula
28309 they will be left alone even if you press @kbd{=} (@code{calc-evaluate}).
28310 The @kbd{s u} (@code{calc-unstore}) command returns a variable to the
28311 void state.
28313 @kindex s c
28314 @pindex calc-copy-variable
28315 The @kbd{s c} (@code{calc-copy-variable}) command copies the stored
28316 value of one variable to another.  One way it differs from a simple
28317 @kbd{s r} followed by an @kbd{s t} (aside from saving keystrokes) is
28318 that the value never goes on the stack and thus is never rounded,
28319 evaluated, or simplified in any way; it is not even rounded down to the
28320 current precision.
28322 The only variables with predefined values are the ``special constants''
28323 @code{pi}, @code{e}, @code{i}, @code{phi}, and @code{gamma}.  You are free
28324 to unstore these variables or to store new values into them if you like,
28325 although some of the algebraic-manipulation functions may assume these
28326 variables represent their standard values.  Calc displays a warning if
28327 you change the value of one of these variables, or of one of the other
28328 special variables @code{inf}, @code{uinf}, and @code{nan} (which are
28329 normally void).
28331 Note that @code{pi} doesn't actually have 3.14159265359 stored in it,
28332 but rather a special magic value that evaluates to @cpi{} at the current
28333 precision.  Likewise @code{e}, @code{i}, and @code{phi} evaluate
28334 according to the current precision or polar mode.  If you recall a value
28335 from @code{pi} and store it back, this magic property will be lost.  The
28336 magic property is preserved, however, when a variable is copied with
28337 @kbd{s c}.
28339 @kindex s k
28340 @pindex calc-copy-special-constant
28341 If one of the ``special constants'' is redefined (or undefined) so that
28342 it no longer has its magic property, the property can be restored with 
28343 @kbd{s k} (@code{calc-copy-special-constant}).  This command will prompt
28344 for a special constant and a variable to store it in, and so a special
28345 constant can be stored in any variable.  Here, the special constant that
28346 you enter doesn't depend on the value of the corresponding variable;
28347 @code{pi} will represent 3.14159@dots{} regardless of what is currently
28348 stored in the Calc variable @code{pi}.  If one of the other special
28349 variables, @code{inf}, @code{uinf} or @code{nan}, is given a value, its
28350 original behavior can be restored by voiding it with @kbd{s u}.
28352 @node Recalling Variables, Operations on Variables, Storing Variables, Store and Recall
28353 @section Recalling Variables
28355 @noindent
28356 @kindex s r
28357 @pindex calc-recall
28358 @cindex Recalling variables
28359 The most straightforward way to extract the stored value from a variable
28360 is to use the @kbd{s r} (@code{calc-recall}) command.  This command prompts
28361 for a variable name (similarly to @code{calc-store}), looks up the value
28362 of the specified variable, and pushes that value onto the stack.  It is
28363 an error to try to recall a void variable.
28365 It is also possible to recall the value from a variable by evaluating a
28366 formula containing that variable.  For example, @kbd{' a @key{RET} =} is
28367 the same as @kbd{s r a @key{RET}} except that if the variable is void, the
28368 former will simply leave the formula @samp{a} on the stack whereas the
28369 latter will produce an error message.
28371 @kindex r 0-9
28372 The @kbd{r} prefix may be followed by a digit, so that @kbd{r 9} is
28373 equivalent to @kbd{s r 9}.  (The @kbd{r} prefix is otherwise unused
28374 in the current version of Calc.)
28376 @node Operations on Variables, Let Command, Recalling Variables, Store and Recall
28377 @section Other Operations on Variables
28379 @noindent
28380 @kindex s e
28381 @pindex calc-edit-variable
28382 The @kbd{s e} (@code{calc-edit-variable}) command edits the stored
28383 value of a variable without ever putting that value on the stack
28384 or simplifying or evaluating the value.  It prompts for the name of
28385 the variable to edit.  If the variable has no stored value, the
28386 editing buffer will start out empty.  If the editing buffer is
28387 empty when you press @kbd{C-c C-c} to finish, the variable will
28388 be made void.  @xref{Editing Stack Entries}, for a general
28389 description of editing.
28391 The @kbd{s e} command is especially useful for creating and editing
28392 rewrite rules which are stored in variables.  Sometimes these rules
28393 contain formulas which must not be evaluated until the rules are
28394 actually used.  (For example, they may refer to @samp{deriv(x,y)},
28395 where @code{x} will someday become some expression involving @code{y};
28396 if you let Calc evaluate the rule while you are defining it, Calc will
28397 replace @samp{deriv(x,y)} with 0 because the formula @code{x} does
28398 not itself refer to @code{y}.)  By contrast, recalling the variable,
28399 editing with @kbd{`}, and storing will evaluate the variable's value
28400 as a side effect of putting the value on the stack.
28402 @kindex s A
28403 @kindex s D
28404 @ignore
28405 @mindex @idots
28406 @end ignore
28407 @kindex s E
28408 @ignore
28409 @mindex @null
28410 @end ignore
28411 @kindex s F
28412 @ignore
28413 @mindex @null
28414 @end ignore
28415 @kindex s G
28416 @ignore
28417 @mindex @null
28418 @end ignore
28419 @kindex s H
28420 @ignore
28421 @mindex @null
28422 @end ignore
28423 @kindex s I
28424 @ignore
28425 @mindex @null
28426 @end ignore
28427 @kindex s L
28428 @ignore
28429 @mindex @null
28430 @end ignore
28431 @kindex s P
28432 @ignore
28433 @mindex @null
28434 @end ignore
28435 @kindex s R
28436 @ignore
28437 @mindex @null
28438 @end ignore
28439 @kindex s T
28440 @ignore
28441 @mindex @null
28442 @end ignore
28443 @kindex s U
28444 @ignore
28445 @mindex @null
28446 @end ignore
28447 @kindex s X
28448 @pindex calc-store-AlgSimpRules
28449 @pindex calc-store-Decls
28450 @pindex calc-store-EvalRules
28451 @pindex calc-store-FitRules
28452 @pindex calc-store-GenCount
28453 @pindex calc-store-Holidays
28454 @pindex calc-store-IntegLimit
28455 @pindex calc-store-LineStyles
28456 @pindex calc-store-PointStyles
28457 @pindex calc-store-PlotRejects
28458 @pindex calc-store-TimeZone
28459 @pindex calc-store-Units
28460 @pindex calc-store-ExtSimpRules
28461 There are several special-purpose variable-editing commands that
28462 use the @kbd{s} prefix followed by a shifted letter:
28464 @table @kbd
28465 @item s A
28466 Edit @code{AlgSimpRules}.  @xref{Algebraic Simplifications}.
28467 @item s D
28468 Edit @code{Decls}.  @xref{Declarations}.
28469 @item s E
28470 Edit @code{EvalRules}.  @xref{Default Simplifications}.
28471 @item s F
28472 Edit @code{FitRules}.  @xref{Curve Fitting}.
28473 @item s G
28474 Edit @code{GenCount}.  @xref{Solving Equations}.
28475 @item s H
28476 Edit @code{Holidays}.  @xref{Business Days}.
28477 @item s I
28478 Edit @code{IntegLimit}.  @xref{Calculus}.
28479 @item s L
28480 Edit @code{LineStyles}.  @xref{Graphics}.
28481 @item s P
28482 Edit @code{PointStyles}.  @xref{Graphics}.
28483 @item s R
28484 Edit @code{PlotRejects}.  @xref{Graphics}.
28485 @item s T
28486 Edit @code{TimeZone}.  @xref{Time Zones}.
28487 @item s U
28488 Edit @code{Units}.  @xref{User-Defined Units}.
28489 @item s X
28490 Edit @code{ExtSimpRules}.  @xref{Unsafe Simplifications}.
28491 @end table
28493 These commands are just versions of @kbd{s e} that use fixed variable
28494 names rather than prompting for the variable name.
28496 @kindex s p
28497 @pindex calc-permanent-variable
28498 @cindex Storing variables
28499 @cindex Permanent variables
28500 @cindex Calc init file, variables
28501 The @kbd{s p} (@code{calc-permanent-variable}) command saves a
28502 variable's value permanently in your Calc init file (the file given by
28503 the variable @code{calc-settings-file}, typically @file{~/.calc.el}), so
28504 that its value will still be available in future Emacs sessions.  You
28505 can re-execute @w{@kbd{s p}} later on to update the saved value, but the
28506 only way to remove a saved variable is to edit your calc init file
28507 by hand.  (@xref{General Mode Commands}, for a way to tell Calc to
28508 use a different file for the Calc init file.)
28510 If you do not specify the name of a variable to save (i.e.,
28511 @kbd{s p @key{RET}}), all Calc variables with defined values
28512 are saved except for the special constants @code{pi}, @code{e},
28513 @code{i}, @code{phi}, and @code{gamma}; the variables @code{TimeZone}
28514 and @code{PlotRejects};
28515 @code{FitRules}, @code{DistribRules}, and other built-in rewrite
28516 rules; and @code{PlotData@var{n}} variables generated
28517 by the graphics commands.  (You can still save these variables by
28518 explicitly naming them in an @kbd{s p} command.)
28520 @kindex s i
28521 @pindex calc-insert-variables
28522 The @kbd{s i} (@code{calc-insert-variables}) command writes
28523 the values of all Calc variables into a specified buffer.
28524 The variables are written with the prefix @code{var-} in the form of
28525 Lisp @code{setq} commands 
28526 which store the values in string form.  You can place these commands
28527 in your Calc init file (or @file{.emacs}) if you wish, though in this case it
28528 would be easier to use @kbd{s p @key{RET}}.  (Note that @kbd{s i}
28529 omits the same set of variables as @w{@kbd{s p @key{RET}}}; the difference
28530 is that @kbd{s i} will store the variables in any buffer, and it also
28531 stores in a more human-readable format.)
28533 @node Let Command, Evaluates-To Operator, Operations on Variables, Store and Recall
28534 @section The Let Command
28536 @noindent
28537 @kindex s l
28538 @pindex calc-let
28539 @cindex Variables, temporary assignment
28540 @cindex Temporary assignment to variables
28541 If you have an expression like @samp{a+b^2} on the stack and you wish to
28542 compute its value where @expr{b=3}, you can simply store 3 in @expr{b} and
28543 then press @kbd{=} to reevaluate the formula.  This has the side-effect
28544 of leaving the stored value of 3 in @expr{b} for future operations.
28546 The @kbd{s l} (@code{calc-let}) command evaluates a formula under a
28547 @emph{temporary} assignment of a variable.  It stores the value on the
28548 top of the stack into the specified variable, then evaluates the
28549 second-to-top stack entry, then restores the original value (or lack of one)
28550 in the variable.  Thus after @kbd{'@w{ }a+b^2 @key{RET} 3 s l b @key{RET}},
28551 the stack will contain the formula @samp{a + 9}.  The subsequent command
28552 @kbd{@w{5 s l a} @key{RET}} will replace this formula with the number 14.
28553 The variables @samp{a} and @samp{b} are not permanently affected in any way
28554 by these commands.
28556 The value on the top of the stack may be an equation or assignment, or
28557 a vector of equations or assignments, in which case the default will be
28558 analogous to the case of @kbd{s t @key{RET}}.  @xref{Storing Variables}.
28560 Also, you can answer the variable-name prompt with an equation or
28561 assignment:  @kbd{s l b=3 @key{RET}} is the same as storing 3 on the stack
28562 and typing @kbd{s l b @key{RET}}.
28564 The @kbd{a b} (@code{calc-substitute}) command is another way to substitute
28565 a variable with a value in a formula.  It does an actual substitution
28566 rather than temporarily assigning the variable and evaluating.  For
28567 example, letting @expr{n=2} in @samp{f(n pi)} with @kbd{a b} will
28568 produce @samp{f(2 pi)}, whereas @kbd{s l} would give @samp{f(6.28)}
28569 since the evaluation step will also evaluate @code{pi}.
28571 @node Evaluates-To Operator, , Let Command, Store and Recall
28572 @section The Evaluates-To Operator
28574 @noindent
28575 @tindex evalto
28576 @tindex =>
28577 @cindex Evaluates-to operator
28578 @cindex @samp{=>} operator
28579 The special algebraic symbol @samp{=>} is known as the @dfn{evaluates-to
28580 operator}.  (It will show up as an @code{evalto} function call in
28581 other language modes like Pascal and La@TeX{}.)  This is a binary
28582 operator, that is, it has a lefthand and a righthand argument,
28583 although it can be entered with the righthand argument omitted.
28585 A formula like @samp{@var{a} => @var{b}} is evaluated by Calc as
28586 follows:  First, @var{a} is not simplified or modified in any
28587 way.  The previous value of argument @var{b} is thrown away; the
28588 formula @var{a} is then copied and evaluated as if by the @kbd{=}
28589 command according to all current modes and stored variable values,
28590 and the result is installed as the new value of @var{b}.
28592 For example, suppose you enter the algebraic formula @samp{2 + 3 => 17}.
28593 The number 17 is ignored, and the lefthand argument is left in its
28594 unevaluated form; the result is the formula @samp{2 + 3 => 5}.
28596 @kindex s =
28597 @pindex calc-evalto
28598 You can enter an @samp{=>} formula either directly using algebraic
28599 entry (in which case the righthand side may be omitted since it is
28600 going to be replaced right away anyhow), or by using the @kbd{s =}
28601 (@code{calc-evalto}) command, which takes @var{a} from the stack
28602 and replaces it with @samp{@var{a} => @var{b}}.
28604 Calc keeps track of all @samp{=>} operators on the stack, and
28605 recomputes them whenever anything changes that might affect their
28606 values, i.e., a mode setting or variable value.  This occurs only
28607 if the @samp{=>} operator is at the top level of the formula, or
28608 if it is part of a top-level vector.  In other words, pushing
28609 @samp{2 + (a => 17)} will change the 17 to the actual value of
28610 @samp{a} when you enter the formula, but the result will not be
28611 dynamically updated when @samp{a} is changed later because the
28612 @samp{=>} operator is buried inside a sum.  However, a vector
28613 of @samp{=>} operators will be recomputed, since it is convenient
28614 to push a vector like @samp{[a =>, b =>, c =>]} on the stack to
28615 make a concise display of all the variables in your problem.
28616 (Another way to do this would be to use @samp{[a, b, c] =>},
28617 which provides a slightly different format of display.  You
28618 can use whichever you find easiest to read.)
28620 @kindex m C
28621 @pindex calc-auto-recompute
28622 The @kbd{m C} (@code{calc-auto-recompute}) command allows you to
28623 turn this automatic recomputation on or off.  If you turn
28624 recomputation off, you must explicitly recompute an @samp{=>}
28625 operator on the stack in one of the usual ways, such as by
28626 pressing @kbd{=}.  Turning recomputation off temporarily can save
28627 a lot of time if you will be changing several modes or variables
28628 before you look at the @samp{=>} entries again.
28630 Most commands are not especially useful with @samp{=>} operators
28631 as arguments.  For example, given @samp{x + 2 => 17}, it won't
28632 work to type @kbd{1 +} to get @samp{x + 3 => 18}.  If you want
28633 to operate on the lefthand side of the @samp{=>} operator on
28634 the top of the stack, type @kbd{j 1} (that's the digit ``one'')
28635 to select the lefthand side, execute your commands, then type
28636 @kbd{j u} to unselect.
28638 All current modes apply when an @samp{=>} operator is computed,
28639 including the current simplification mode.  Recall that the
28640 formula @samp{x + y + x} is not handled by Calc's default
28641 simplifications, but the @kbd{a s} command will reduce it to
28642 the simpler form @samp{y + 2 x}.  You can also type @kbd{m A}
28643 to enable an Algebraic Simplification mode in which the
28644 equivalent of @kbd{a s} is used on all of Calc's results.
28645 If you enter @samp{x + y + x =>} normally, the result will
28646 be @samp{x + y + x => x + y + x}.  If you change to
28647 Algebraic Simplification mode, the result will be
28648 @samp{x + y + x => y + 2 x}.  However, just pressing @kbd{a s}
28649 once will have no effect on @samp{x + y + x => x + y + x},
28650 because the righthand side depends only on the lefthand side
28651 and the current mode settings, and the lefthand side is not
28652 affected by commands like @kbd{a s}.
28654 The ``let'' command (@kbd{s l}) has an interesting interaction
28655 with the @samp{=>} operator.  The @kbd{s l} command evaluates the
28656 second-to-top stack entry with the top stack entry supplying
28657 a temporary value for a given variable.  As you might expect,
28658 if that stack entry is an @samp{=>} operator its righthand
28659 side will temporarily show this value for the variable.  In
28660 fact, all @samp{=>}s on the stack will be updated if they refer
28661 to that variable.  But this change is temporary in the sense
28662 that the next command that causes Calc to look at those stack
28663 entries will make them revert to the old variable value.
28665 @smallexample
28666 @group
28667 2:  a => a             2:  a => 17         2:  a => a
28668 1:  a + 1 => a + 1     1:  a + 1 => 18     1:  a + 1 => a + 1
28669     .                      .                   .
28671                            17 s l a @key{RET}        p 8 @key{RET}
28672 @end group
28673 @end smallexample
28675 Here the @kbd{p 8} command changes the current precision,
28676 thus causing the @samp{=>} forms to be recomputed after the
28677 influence of the ``let'' is gone.  The @kbd{d @key{SPC}} command
28678 (@code{calc-refresh}) is a handy way to force the @samp{=>}
28679 operators on the stack to be recomputed without any other
28680 side effects.
28682 @kindex s :
28683 @pindex calc-assign
28684 @tindex assign
28685 @tindex :=
28686 Embedded mode also uses @samp{=>} operators.  In Embedded mode,
28687 the lefthand side of an @samp{=>} operator can refer to variables
28688 assigned elsewhere in the file by @samp{:=} operators.  The
28689 assignment operator @samp{a := 17} does not actually do anything
28690 by itself.  But Embedded mode recognizes it and marks it as a sort
28691 of file-local definition of the variable.  You can enter @samp{:=}
28692 operators in Algebraic mode, or by using the @kbd{s :}
28693 (@code{calc-assign}) [@code{assign}] command which takes a variable
28694 and value from the stack and replaces them with an assignment.
28696 @xref{TeX and LaTeX Language Modes}, for the way @samp{=>} appears in
28697 @TeX{} language output.  The @dfn{eqn} mode gives similar
28698 treatment to @samp{=>}.
28700 @node Graphics, Kill and Yank, Store and Recall, Top
28701 @chapter Graphics
28703 @noindent
28704 The commands for graphing data begin with the @kbd{g} prefix key.  Calc
28705 uses GNUPLOT 2.0 or later to do graphics.  These commands will only work
28706 if GNUPLOT is available on your system.  (While GNUPLOT sounds like
28707 a relative of GNU Emacs, it is actually completely unrelated.
28708 However, it is free software.   It can be obtained from
28709 @samp{http://www.gnuplot.info}.)
28711 @vindex calc-gnuplot-name
28712 If you have GNUPLOT installed on your system but Calc is unable to
28713 find it, you may need to set the @code{calc-gnuplot-name} variable
28714 in your Calc init file or @file{.emacs}.  You may also need to set some Lisp
28715 variables to show Calc how to run GNUPLOT on your system; these
28716 are described under @kbd{g D} and @kbd{g O} below.  If you are
28717 using the X window system, Calc will configure GNUPLOT for you
28718 automatically.  If you have GNUPLOT 3.0 or later and you are not using X,
28719 Calc will configure GNUPLOT to display graphs using simple character
28720 graphics that will work on any terminal.
28722 @menu
28723 * Basic Graphics::
28724 * Three Dimensional Graphics::
28725 * Managing Curves::
28726 * Graphics Options::
28727 * Devices::
28728 @end menu
28730 @node Basic Graphics, Three Dimensional Graphics, Graphics, Graphics
28731 @section Basic Graphics
28733 @noindent
28734 @kindex g f
28735 @pindex calc-graph-fast
28736 The easiest graphics command is @kbd{g f} (@code{calc-graph-fast}).
28737 This command takes two vectors of equal length from the stack.
28738 The vector at the top of the stack represents the ``y'' values of
28739 the various data points.  The vector in the second-to-top position
28740 represents the corresponding ``x'' values.  This command runs
28741 GNUPLOT (if it has not already been started by previous graphing
28742 commands) and displays the set of data points.  The points will
28743 be connected by lines, and there will also be some kind of symbol
28744 to indicate the points themselves.
28746 The ``x'' entry may instead be an interval form, in which case suitable
28747 ``x'' values are interpolated between the minimum and maximum values of
28748 the interval (whether the interval is open or closed is ignored).
28750 The ``x'' entry may also be a number, in which case Calc uses the
28751 sequence of ``x'' values @expr{x}, @expr{x+1}, @expr{x+2}, etc.
28752 (Generally the number 0 or 1 would be used for @expr{x} in this case.)
28754 The ``y'' entry may be any formula instead of a vector.  Calc effectively
28755 uses @kbd{N} (@code{calc-eval-num}) to evaluate variables in the formula;
28756 the result of this must be a formula in a single (unassigned) variable.
28757 The formula is plotted with this variable taking on the various ``x''
28758 values.  Graphs of formulas by default use lines without symbols at the
28759 computed data points.  Note that if neither ``x'' nor ``y'' is a vector,
28760 Calc guesses at a reasonable number of data points to use.  See the
28761 @kbd{g N} command below.  (The ``x'' values must be either a vector
28762 or an interval if ``y'' is a formula.)
28764 @ignore
28765 @starindex
28766 @end ignore
28767 @tindex xy
28768 If ``y'' is (or evaluates to) a formula of the form
28769 @samp{xy(@var{x}, @var{y})} then the result is a
28770 parametric plot.  The two arguments of the fictitious @code{xy} function
28771 are used as the ``x'' and ``y'' coordinates of the curve, respectively.
28772 In this case the ``x'' vector or interval you specified is not directly
28773 visible in the graph.  For example, if ``x'' is the interval @samp{[0..360]}
28774 and ``y'' is the formula @samp{xy(sin(t), cos(t))}, the resulting graph
28775 will be a circle.
28777 Also, ``x'' and ``y'' may each be variable names, in which case Calc
28778 looks for suitable vectors, intervals, or formulas stored in those
28779 variables.
28781 The ``x'' and ``y'' values for the data points (as pulled from the vectors,
28782 calculated from the formulas, or interpolated from the intervals) should
28783 be real numbers (integers, fractions, or floats).  If either the ``x''
28784 value or the ``y'' value of a given data point is not a real number, that
28785 data point will be omitted from the graph.  The points on either side
28786 of the invalid point will @emph{not} be connected by a line.
28788 See the documentation for @kbd{g a} below for a description of the way
28789 numeric prefix arguments affect @kbd{g f}.
28791 @cindex @code{PlotRejects} variable
28792 @vindex PlotRejects
28793 If you store an empty vector in the variable @code{PlotRejects}
28794 (i.e., @kbd{[ ] s t PlotRejects}), Calc will append information to
28795 this vector for every data point which was rejected because its
28796 ``x'' or ``y'' values were not real numbers.  The result will be
28797 a matrix where each row holds the curve number, data point number,
28798 ``x'' value, and ``y'' value for a rejected data point.
28799 @xref{Evaluates-To Operator}, for a handy way to keep tabs on the
28800 current value of @code{PlotRejects}.  @xref{Operations on Variables},
28801 for the @kbd{s R} command which is another easy way to examine
28802 @code{PlotRejects}.
28804 @kindex g c
28805 @pindex calc-graph-clear
28806 To clear the graphics display, type @kbd{g c} (@code{calc-graph-clear}).
28807 If the GNUPLOT output device is an X window, the window will go away.
28808 Effects on other kinds of output devices will vary.  You don't need
28809 to use @kbd{g c} if you don't want to---if you give another @kbd{g f}
28810 or @kbd{g p} command later on, it will reuse the existing graphics
28811 window if there is one.
28813 @node Three Dimensional Graphics, Managing Curves, Basic Graphics, Graphics
28814 @section Three-Dimensional Graphics
28816 @kindex g F
28817 @pindex calc-graph-fast-3d
28818 The @kbd{g F} (@code{calc-graph-fast-3d}) command makes a three-dimensional
28819 graph.  It works only if you have GNUPLOT 3.0 or later; with GNUPLOT 2.0,
28820 you will see a GNUPLOT error message if you try this command.
28822 The @kbd{g F} command takes three values from the stack, called ``x'',
28823 ``y'', and ``z'', respectively.  As was the case for 2D graphs, there
28824 are several options for these values.
28826 In the first case, ``x'' and ``y'' are each vectors (not necessarily of
28827 the same length); either or both may instead be interval forms.  The
28828 ``z'' value must be a matrix with the same number of rows as elements
28829 in ``x'', and the same number of columns as elements in ``y''.  The
28830 result is a surface plot where 
28831 @texline @math{z_{ij}}
28832 @infoline @expr{z_ij} 
28833 is the height of the point
28834 at coordinate @expr{(x_i, y_j)} on the surface.  The 3D graph will
28835 be displayed from a certain default viewpoint; you can change this
28836 viewpoint by adding a @samp{set view} to the @samp{*Gnuplot Commands*}
28837 buffer as described later.  See the GNUPLOT documentation for a
28838 description of the @samp{set view} command.
28840 Each point in the matrix will be displayed as a dot in the graph,
28841 and these points will be connected by a grid of lines (@dfn{isolines}).
28843 In the second case, ``x'', ``y'', and ``z'' are all vectors of equal
28844 length.  The resulting graph displays a 3D line instead of a surface,
28845 where the coordinates of points along the line are successive triplets
28846 of values from the input vectors.
28848 In the third case, ``x'' and ``y'' are vectors or interval forms, and
28849 ``z'' is any formula involving two variables (not counting variables
28850 with assigned values).  These variables are sorted into alphabetical
28851 order; the first takes on values from ``x'' and the second takes on
28852 values from ``y'' to form a matrix of results that are graphed as a
28853 3D surface.
28855 @ignore
28856 @starindex
28857 @end ignore
28858 @tindex xyz
28859 If the ``z'' formula evaluates to a call to the fictitious function
28860 @samp{xyz(@var{x}, @var{y}, @var{z})}, then the result is a
28861 ``parametric surface.''  In this case, the axes of the graph are
28862 taken from the @var{x} and @var{y} values in these calls, and the
28863 ``x'' and ``y'' values from the input vectors or intervals are used only
28864 to specify the range of inputs to the formula.  For example, plotting
28865 @samp{[0..360], [0..180], xyz(sin(x)*sin(y), cos(x)*sin(y), cos(y))}
28866 will draw a sphere.  (Since the default resolution for 3D plots is
28867 5 steps in each of ``x'' and ``y'', this will draw a very crude
28868 sphere.  You could use the @kbd{g N} command, described below, to
28869 increase this resolution, or specify the ``x'' and ``y'' values as
28870 vectors with more than 5 elements.
28872 It is also possible to have a function in a regular @kbd{g f} plot
28873 evaluate to an @code{xyz} call.  Since @kbd{g f} plots a line, not
28874 a surface, the result will be a 3D parametric line.  For example,
28875 @samp{[[0..720], xyz(sin(x), cos(x), x)]} will plot two turns of a
28876 helix (a three-dimensional spiral).
28878 As for @kbd{g f}, each of ``x'', ``y'', and ``z'' may instead be
28879 variables containing the relevant data.
28881 @node Managing Curves, Graphics Options, Three Dimensional Graphics, Graphics
28882 @section Managing Curves
28884 @noindent
28885 The @kbd{g f} command is really shorthand for the following commands:
28886 @kbd{C-u g d  g a  g p}.  Likewise, @w{@kbd{g F}} is shorthand for
28887 @kbd{C-u g d  g A  g p}.  You can gain more control over your graph
28888 by using these commands directly.
28890 @kindex g a
28891 @pindex calc-graph-add
28892 The @kbd{g a} (@code{calc-graph-add}) command adds the ``curve''
28893 represented by the two values on the top of the stack to the current
28894 graph.  You can have any number of curves in the same graph.  When
28895 you give the @kbd{g p} command, all the curves will be drawn superimposed
28896 on the same axes.
28898 The @kbd{g a} command (and many others that affect the current graph)
28899 will cause a special buffer, @samp{*Gnuplot Commands*}, to be displayed
28900 in another window.  This buffer is a template of the commands that will
28901 be sent to GNUPLOT when it is time to draw the graph.  The first
28902 @kbd{g a} command adds a @code{plot} command to this buffer.  Succeeding
28903 @kbd{g a} commands add extra curves onto that @code{plot} command.
28904 Other graph-related commands put other GNUPLOT commands into this
28905 buffer.  In normal usage you never need to work with this buffer
28906 directly, but you can if you wish.  The only constraint is that there
28907 must be only one @code{plot} command, and it must be the last command
28908 in the buffer.  If you want to save and later restore a complete graph
28909 configuration, you can use regular Emacs commands to save and restore
28910 the contents of the @samp{*Gnuplot Commands*} buffer.
28912 @vindex PlotData1
28913 @vindex PlotData2
28914 If the values on the stack are not variable names, @kbd{g a} will invent
28915 variable names for them (of the form @samp{PlotData@var{n}}) and store
28916 the values in those variables.  The ``x'' and ``y'' variables are what
28917 go into the @code{plot} command in the template.  If you add a curve
28918 that uses a certain variable and then later change that variable, you
28919 can replot the graph without having to delete and re-add the curve.
28920 That's because the variable name, not the vector, interval or formula
28921 itself, is what was added by @kbd{g a}.
28923 A numeric prefix argument on @kbd{g a} or @kbd{g f} changes the way
28924 stack entries are interpreted as curves.  With a positive prefix
28925 argument @expr{n}, the top @expr{n} stack entries are ``y'' values
28926 for @expr{n} different curves which share a common ``x'' value in
28927 the @expr{n+1}st stack entry.  (Thus @kbd{g a} with no prefix
28928 argument is equivalent to @kbd{C-u 1 g a}.)
28930 A prefix of zero or plain @kbd{C-u} means to take two stack entries,
28931 ``x'' and ``y'' as usual, but to interpret ``y'' as a vector of
28932 ``y'' values for several curves that share a common ``x''.
28934 A negative prefix argument tells Calc to read @expr{n} vectors from
28935 the stack; each vector @expr{[x, y]} describes an independent curve.
28936 This is the only form of @kbd{g a} that creates several curves at once
28937 that don't have common ``x'' values.  (Of course, the range of ``x''
28938 values covered by all the curves ought to be roughly the same if
28939 they are to look nice on the same graph.)
28941 For example, to plot 
28942 @texline @math{\sin n x}
28943 @infoline @expr{sin(n x)} 
28944 for integers @expr{n}
28945 from 1 to 5, you could use @kbd{v x} to create a vector of integers
28946 (@expr{n}), then @kbd{V M '} or @kbd{V M $} to map @samp{sin(n x)}
28947 across this vector.  The resulting vector of formulas is suitable
28948 for use as the ``y'' argument to a @kbd{C-u g a} or @kbd{C-u g f}
28949 command.
28951 @kindex g A
28952 @pindex calc-graph-add-3d
28953 The @kbd{g A} (@code{calc-graph-add-3d}) command adds a 3D curve
28954 to the graph.  It is not valid to intermix 2D and 3D curves in a
28955 single graph.  This command takes three arguments, ``x'', ``y'',
28956 and ``z'', from the stack.  With a positive prefix @expr{n}, it
28957 takes @expr{n+2} arguments (common ``x'' and ``y'', plus @expr{n}
28958 separate ``z''s).  With a zero prefix, it takes three stack entries
28959 but the ``z'' entry is a vector of curve values.  With a negative
28960 prefix @expr{-n}, it takes @expr{n} vectors of the form @expr{[x, y, z]}.
28961 The @kbd{g A} command works by adding a @code{splot} (surface-plot)
28962 command to the @samp{*Gnuplot Commands*} buffer.
28964 (Although @kbd{g a} adds a 2D @code{plot} command to the
28965 @samp{*Gnuplot Commands*} buffer, Calc changes this to @code{splot}
28966 before sending it to GNUPLOT if it notices that the data points are
28967 evaluating to @code{xyz} calls.  It will not work to mix 2D and 3D
28968 @kbd{g a} curves in a single graph, although Calc does not currently
28969 check for this.)
28971 @kindex g d
28972 @pindex calc-graph-delete
28973 The @kbd{g d} (@code{calc-graph-delete}) command deletes the most
28974 recently added curve from the graph.  It has no effect if there are
28975 no curves in the graph.  With a numeric prefix argument of any kind,
28976 it deletes all of the curves from the graph.
28978 @kindex g H
28979 @pindex calc-graph-hide
28980 The @kbd{g H} (@code{calc-graph-hide}) command ``hides'' or ``unhides''
28981 the most recently added curve.  A hidden curve will not appear in
28982 the actual plot, but information about it such as its name and line and
28983 point styles will be retained.
28985 @kindex g j
28986 @pindex calc-graph-juggle
28987 The @kbd{g j} (@code{calc-graph-juggle}) command moves the curve
28988 at the end of the list (the ``most recently added curve'') to the
28989 front of the list.  The next-most-recent curve is thus exposed for
28990 @w{@kbd{g d}} or similar commands to use.  With @kbd{g j} you can work
28991 with any curve in the graph even though curve-related commands only
28992 affect the last curve in the list.
28994 @kindex g p
28995 @pindex calc-graph-plot
28996 The @kbd{g p} (@code{calc-graph-plot}) command uses GNUPLOT to draw
28997 the graph described in the @samp{*Gnuplot Commands*} buffer.  Any
28998 GNUPLOT parameters which are not defined by commands in this buffer
28999 are reset to their default values.  The variables named in the @code{plot}
29000 command are written to a temporary data file and the variable names
29001 are then replaced by the file name in the template.  The resulting
29002 plotting commands are fed to the GNUPLOT program.  See the documentation
29003 for the GNUPLOT program for more specific information.  All temporary
29004 files are removed when Emacs or GNUPLOT exits.
29006 If you give a formula for ``y'', Calc will remember all the values that
29007 it calculates for the formula so that later plots can reuse these values.
29008 Calc throws out these saved values when you change any circumstances
29009 that may affect the data, such as switching from Degrees to Radians
29010 mode, or changing the value of a parameter in the formula.  You can
29011 force Calc to recompute the data from scratch by giving a negative
29012 numeric prefix argument to @kbd{g p}.
29014 Calc uses a fairly rough step size when graphing formulas over intervals.
29015 This is to ensure quick response.  You can ``refine'' a plot by giving
29016 a positive numeric prefix argument to @kbd{g p}.  Calc goes through
29017 the data points it has computed and saved from previous plots of the
29018 function, and computes and inserts a new data point midway between
29019 each of the existing points.  You can refine a plot any number of times,
29020 but beware that the amount of calculation involved doubles each time.
29022 Calc does not remember computed values for 3D graphs.  This means the
29023 numerix prefix argument, if any, to @kbd{g p} is effectively ignored if
29024 the current graph is three-dimensional.
29026 @kindex g P
29027 @pindex calc-graph-print
29028 The @kbd{g P} (@code{calc-graph-print}) command is like @kbd{g p},
29029 except that it sends the output to a printer instead of to the
29030 screen.  More precisely, @kbd{g p} looks for @samp{set terminal}
29031 or @samp{set output} commands in the @samp{*Gnuplot Commands*} buffer;
29032 lacking these it uses the default settings.  However, @kbd{g P}
29033 ignores @samp{set terminal} and @samp{set output} commands and
29034 uses a different set of default values.  All of these values are
29035 controlled by the @kbd{g D} and @kbd{g O} commands discussed below.
29036 Provided everything is set up properly, @kbd{g p} will plot to
29037 the screen unless you have specified otherwise and @kbd{g P} will
29038 always plot to the printer.
29040 @node Graphics Options, Devices, Managing Curves, Graphics
29041 @section Graphics Options
29043 @noindent
29044 @kindex g g
29045 @pindex calc-graph-grid
29046 The @kbd{g g} (@code{calc-graph-grid}) command turns the ``grid''
29047 on and off.  It is off by default; tick marks appear only at the
29048 edges of the graph.  With the grid turned on, dotted lines appear
29049 across the graph at each tick mark.  Note that this command only
29050 changes the setting in @samp{*Gnuplot Commands*}; to see the effects
29051 of the change you must give another @kbd{g p} command.
29053 @kindex g b
29054 @pindex calc-graph-border
29055 The @kbd{g b} (@code{calc-graph-border}) command turns the border
29056 (the box that surrounds the graph) on and off.  It is on by default.
29057 This command will only work with GNUPLOT 3.0 and later versions.
29059 @kindex g k
29060 @pindex calc-graph-key
29061 The @kbd{g k} (@code{calc-graph-key}) command turns the ``key''
29062 on and off.  The key is a chart in the corner of the graph that
29063 shows the correspondence between curves and line styles.  It is
29064 off by default, and is only really useful if you have several
29065 curves on the same graph.
29067 @kindex g N
29068 @pindex calc-graph-num-points
29069 The @kbd{g N} (@code{calc-graph-num-points}) command allows you
29070 to select the number of data points in the graph.  This only affects
29071 curves where neither ``x'' nor ``y'' is specified as a vector.
29072 Enter a blank line to revert to the default value (initially 15).
29073 With no prefix argument, this command affects only the current graph.
29074 With a positive prefix argument this command changes or, if you enter
29075 a blank line, displays the default number of points used for all
29076 graphs created by @kbd{g a} that don't specify the resolution explicitly.
29077 With a negative prefix argument, this command changes or displays
29078 the default value (initially 5) used for 3D graphs created by @kbd{g A}.
29079 Note that a 3D setting of 5 means that a total of @expr{5^2 = 25} points
29080 will be computed for the surface.
29082 Data values in the graph of a function are normally computed to a
29083 precision of five digits, regardless of the current precision at the
29084 time. This is usually more than adequate, but there are cases where
29085 it will not be.  For example, plotting @expr{1 + x} with @expr{x} in the
29086 interval @samp{[0 ..@: 1e-6]} will round all the data points down
29087 to 1.0!  Putting the command @samp{set precision @var{n}} in the
29088 @samp{*Gnuplot Commands*} buffer will cause the data to be computed
29089 at precision @var{n} instead of 5.  Since this is such a rare case,
29090 there is no keystroke-based command to set the precision.
29092 @kindex g h
29093 @pindex calc-graph-header
29094 The @kbd{g h} (@code{calc-graph-header}) command sets the title
29095 for the graph.  This will show up centered above the graph.
29096 The default title is blank (no title).
29098 @kindex g n
29099 @pindex calc-graph-name
29100 The @kbd{g n} (@code{calc-graph-name}) command sets the title of an
29101 individual curve.  Like the other curve-manipulating commands, it
29102 affects the most recently added curve, i.e., the last curve on the
29103 list in the @samp{*Gnuplot Commands*} buffer.  To set the title of
29104 the other curves you must first juggle them to the end of the list
29105 with @kbd{g j}, or edit the @samp{*Gnuplot Commands*} buffer by hand.
29106 Curve titles appear in the key; if the key is turned off they are
29107 not used.
29109 @kindex g t
29110 @kindex g T
29111 @pindex calc-graph-title-x
29112 @pindex calc-graph-title-y
29113 The @kbd{g t} (@code{calc-graph-title-x}) and @kbd{g T}
29114 (@code{calc-graph-title-y}) commands set the titles on the ``x''
29115 and ``y'' axes, respectively.  These titles appear next to the
29116 tick marks on the left and bottom edges of the graph, respectively.
29117 Calc does not have commands to control the tick marks themselves,
29118 but you can edit them into the @samp{*Gnuplot Commands*} buffer if
29119 you wish.  See the GNUPLOT documentation for details.
29121 @kindex g r
29122 @kindex g R
29123 @pindex calc-graph-range-x
29124 @pindex calc-graph-range-y
29125 The @kbd{g r} (@code{calc-graph-range-x}) and @kbd{g R}
29126 (@code{calc-graph-range-y}) commands set the range of values on the
29127 ``x'' and ``y'' axes, respectively.  You are prompted to enter a
29128 suitable range.  This should be either a pair of numbers of the
29129 form, @samp{@var{min}:@var{max}}, or a blank line to revert to the
29130 default behavior of setting the range based on the range of values
29131 in the data, or @samp{$} to take the range from the top of the stack.
29132 Ranges on the stack can be represented as either interval forms or
29133 vectors:  @samp{[@var{min} ..@: @var{max}]} or @samp{[@var{min}, @var{max}]}.
29135 @kindex g l
29136 @kindex g L
29137 @pindex calc-graph-log-x
29138 @pindex calc-graph-log-y
29139 The @kbd{g l} (@code{calc-graph-log-x}) and @kbd{g L} (@code{calc-graph-log-y})
29140 commands allow you to set either or both of the axes of the graph to
29141 be logarithmic instead of linear.
29143 @kindex g C-l
29144 @kindex g C-r
29145 @kindex g C-t
29146 @pindex calc-graph-log-z
29147 @pindex calc-graph-range-z
29148 @pindex calc-graph-title-z
29149 For 3D plots, @kbd{g C-t}, @kbd{g C-r}, and @kbd{g C-l} (those are
29150 letters with the Control key held down) are the corresponding commands
29151 for the ``z'' axis.
29153 @kindex g z
29154 @kindex g Z
29155 @pindex calc-graph-zero-x
29156 @pindex calc-graph-zero-y
29157 The @kbd{g z} (@code{calc-graph-zero-x}) and @kbd{g Z}
29158 (@code{calc-graph-zero-y}) commands control whether a dotted line is
29159 drawn to indicate the ``x'' and/or ``y'' zero axes.  (These are the same
29160 dotted lines that would be drawn there anyway if you used @kbd{g g} to
29161 turn the ``grid'' feature on.)  Zero-axis lines are on by default, and
29162 may be turned off only in GNUPLOT 3.0 and later versions.  They are
29163 not available for 3D plots.
29165 @kindex g s
29166 @pindex calc-graph-line-style
29167 The @kbd{g s} (@code{calc-graph-line-style}) command turns the connecting
29168 lines on or off for the most recently added curve, and optionally selects
29169 the style of lines to be used for that curve.  Plain @kbd{g s} simply
29170 toggles the lines on and off.  With a numeric prefix argument, @kbd{g s}
29171 turns lines on and sets a particular line style.  Line style numbers
29172 start at one and their meanings vary depending on the output device.
29173 GNUPLOT guarantees that there will be at least six different line styles
29174 available for any device.
29176 @kindex g S
29177 @pindex calc-graph-point-style
29178 The @kbd{g S} (@code{calc-graph-point-style}) command similarly turns
29179 the symbols at the data points on or off, or sets the point style.
29180 If you turn both lines and points off, the data points will show as
29181 tiny dots.
29183 @cindex @code{LineStyles} variable
29184 @cindex @code{PointStyles} variable
29185 @vindex LineStyles
29186 @vindex PointStyles
29187 Another way to specify curve styles is with the @code{LineStyles} and
29188 @code{PointStyles} variables.  These variables initially have no stored
29189 values, but if you store a vector of integers in one of these variables,
29190 the @kbd{g a} and @kbd{g f} commands will use those style numbers
29191 instead of the defaults for new curves that are added to the graph.
29192 An entry should be a positive integer for a specific style, or 0 to let
29193 the style be chosen automatically, or @mathit{-1} to turn off lines or points
29194 altogether.  If there are more curves than elements in the vector, the
29195 last few curves will continue to have the default styles.  Of course,
29196 you can later use @kbd{g s} and @kbd{g S} to change any of these styles.
29198 For example, @kbd{'[2 -1 3] @key{RET} s t LineStyles} causes the first curve
29199 to have lines in style number 2, the second curve to have no connecting
29200 lines, and the third curve to have lines in style 3.  Point styles will
29201 still be assigned automatically, but you could store another vector in
29202 @code{PointStyles} to define them, too.
29204 @node Devices, , Graphics Options, Graphics
29205 @section Graphical Devices
29207 @noindent
29208 @kindex g D
29209 @pindex calc-graph-device
29210 The @kbd{g D} (@code{calc-graph-device}) command sets the device name
29211 (or ``terminal name'' in GNUPLOT lingo) to be used by @kbd{g p} commands
29212 on this graph.  It does not affect the permanent default device name.
29213 If you enter a blank name, the device name reverts to the default.
29214 Enter @samp{?} to see a list of supported devices.
29216 With a positive numeric prefix argument, @kbd{g D} instead sets
29217 the default device name, used by all plots in the future which do
29218 not override it with a plain @kbd{g D} command.  If you enter a
29219 blank line this command shows you the current default.  The special
29220 name @code{default} signifies that Calc should choose @code{x11} if
29221 the X window system is in use (as indicated by the presence of a
29222 @code{DISPLAY} environment variable), or otherwise @code{dumb} under
29223 GNUPLOT 3.0 and later, or @code{postscript} under GNUPLOT 2.0.
29224 This is the initial default value.
29226 The @code{dumb} device is an interface to ``dumb terminals,'' i.e.,
29227 terminals with no special graphics facilities.  It writes a crude
29228 picture of the graph composed of characters like @code{-} and @code{|}
29229 to a buffer called @samp{*Gnuplot Trail*}, which Calc then displays.
29230 The graph is made the same size as the Emacs screen, which on most
29231 dumb terminals will be 
29232 @texline @math{80\times24}
29233 @infoline 80x24
29234 characters.  The graph is displayed in
29235 an Emacs ``recursive edit''; type @kbd{q} or @kbd{C-c C-c} to exit
29236 the recursive edit and return to Calc.  Note that the @code{dumb}
29237 device is present only in GNUPLOT 3.0 and later versions.
29239 The word @code{dumb} may be followed by two numbers separated by
29240 spaces.  These are the desired width and height of the graph in
29241 characters.  Also, the device name @code{big} is like @code{dumb}
29242 but creates a graph four times the width and height of the Emacs
29243 screen.  You will then have to scroll around to view the entire
29244 graph.  In the @samp{*Gnuplot Trail*} buffer, @key{SPC}, @key{DEL},
29245 @kbd{<}, and @kbd{>} are defined to scroll by one screenful in each
29246 of the four directions.
29248 With a negative numeric prefix argument, @kbd{g D} sets or displays
29249 the device name used by @kbd{g P} (@code{calc-graph-print}).  This
29250 is initially @code{postscript}.  If you don't have a PostScript
29251 printer, you may decide once again to use @code{dumb} to create a
29252 plot on any text-only printer.
29254 @kindex g O
29255 @pindex calc-graph-output
29256 The @kbd{g O} (@code{calc-graph-output}) command sets the name of
29257 the output file used by GNUPLOT.  For some devices, notably @code{x11},
29258 there is no output file and this information is not used.  Many other
29259 ``devices'' are really file formats like @code{postscript}; in these
29260 cases the output in the desired format goes into the file you name
29261 with @kbd{g O}.  Type @kbd{g O stdout @key{RET}} to set GNUPLOT to write
29262 to its standard output stream, i.e., to @samp{*Gnuplot Trail*}.
29263 This is the default setting.
29265 Another special output name is @code{tty}, which means that GNUPLOT
29266 is going to write graphics commands directly to its standard output,
29267 which you wish Emacs to pass through to your terminal.  Tektronix
29268 graphics terminals, among other devices, operate this way.  Calc does
29269 this by telling GNUPLOT to write to a temporary file, then running a
29270 sub-shell executing the command @samp{cat tempfile >/dev/tty}.  On
29271 typical Unix systems, this will copy the temporary file directly to
29272 the terminal, bypassing Emacs entirely.  You will have to type @kbd{C-l}
29273 to Emacs afterwards to refresh the screen.
29275 Once again, @kbd{g O} with a positive or negative prefix argument
29276 sets the default or printer output file names, respectively.  In each
29277 case you can specify @code{auto}, which causes Calc to invent a temporary
29278 file name for each @kbd{g p} (or @kbd{g P}) command.  This temporary file
29279 will be deleted once it has been displayed or printed.  If the output file
29280 name is not @code{auto}, the file is not automatically deleted.
29282 The default and printer devices and output files can be saved
29283 permanently by the @kbd{m m} (@code{calc-save-modes}) command.  The
29284 default number of data points (see @kbd{g N}) and the X geometry
29285 (see @kbd{g X}) are also saved.  Other graph information is @emph{not}
29286 saved; you can save a graph's configuration simply by saving the contents
29287 of the @samp{*Gnuplot Commands*} buffer.
29289 @vindex calc-gnuplot-plot-command
29290 @vindex calc-gnuplot-default-device
29291 @vindex calc-gnuplot-default-output
29292 @vindex calc-gnuplot-print-command
29293 @vindex calc-gnuplot-print-device
29294 @vindex calc-gnuplot-print-output
29295 You may wish to configure the default and
29296 printer devices and output files for the whole system.  The relevant
29297 Lisp variables are @code{calc-gnuplot-default-device} and @code{-output},
29298 and @code{calc-gnuplot-print-device} and @code{-output}.  The output
29299 file names must be either strings as described above, or Lisp
29300 expressions which are evaluated on the fly to get the output file names.
29302 Other important Lisp variables are @code{calc-gnuplot-plot-command} and
29303 @code{calc-gnuplot-print-command}, which give the system commands to
29304 display or print the output of GNUPLOT, respectively.  These may be
29305 @code{nil} if no command is necessary, or strings which can include
29306 @samp{%s} to signify the name of the file to be displayed or printed.
29307 Or, these variables may contain Lisp expressions which are evaluated
29308 to display or print the output.  These variables are customizable
29309 (@pxref{Customizing Calc}).
29311 @kindex g x
29312 @pindex calc-graph-display
29313 The @kbd{g x} (@code{calc-graph-display}) command lets you specify
29314 on which X window system display your graphs should be drawn.  Enter
29315 a blank line to see the current display name.  This command has no
29316 effect unless the current device is @code{x11}.
29318 @kindex g X
29319 @pindex calc-graph-geometry
29320 The @kbd{g X} (@code{calc-graph-geometry}) command is a similar
29321 command for specifying the position and size of the X window.
29322 The normal value is @code{default}, which generally means your
29323 window manager will let you place the window interactively.
29324 Entering @samp{800x500+0+0} would create an 800-by-500 pixel
29325 window in the upper-left corner of the screen.
29327 The buffer called @samp{*Gnuplot Trail*} holds a transcript of the
29328 session with GNUPLOT.  This shows the commands Calc has ``typed'' to
29329 GNUPLOT and the responses it has received.  Calc tries to notice when an
29330 error message has appeared here and display the buffer for you when
29331 this happens.  You can check this buffer yourself if you suspect
29332 something has gone wrong.
29334 @kindex g C
29335 @pindex calc-graph-command
29336 The @kbd{g C} (@code{calc-graph-command}) command prompts you to
29337 enter any line of text, then simply sends that line to the current
29338 GNUPLOT process.  The @samp{*Gnuplot Trail*} buffer looks deceptively
29339 like a Shell buffer but you can't type commands in it yourself.
29340 Instead, you must use @kbd{g C} for this purpose.
29342 @kindex g v
29343 @kindex g V
29344 @pindex calc-graph-view-commands
29345 @pindex calc-graph-view-trail
29346 The @kbd{g v} (@code{calc-graph-view-commands}) and @kbd{g V}
29347 (@code{calc-graph-view-trail}) commands display the @samp{*Gnuplot Commands*}
29348 and @samp{*Gnuplot Trail*} buffers, respectively, in another window.
29349 This happens automatically when Calc thinks there is something you
29350 will want to see in either of these buffers.  If you type @kbd{g v}
29351 or @kbd{g V} when the relevant buffer is already displayed, the
29352 buffer is hidden again.
29354 One reason to use @kbd{g v} is to add your own commands to the
29355 @samp{*Gnuplot Commands*} buffer.  Press @kbd{g v}, then use
29356 @kbd{C-x o} to switch into that window.  For example, GNUPLOT has
29357 @samp{set label} and @samp{set arrow} commands that allow you to
29358 annotate your plots.  Since Calc doesn't understand these commands,
29359 you have to add them to the @samp{*Gnuplot Commands*} buffer
29360 yourself, then use @w{@kbd{g p}} to replot using these new commands.  Note
29361 that your commands must appear @emph{before} the @code{plot} command.
29362 To get help on any GNUPLOT feature, type, e.g., @kbd{g C help set label}.
29363 You may have to type @kbd{g C @key{RET}} a few times to clear the
29364 ``press return for more'' or ``subtopic of @dots{}'' requests.
29365 Note that Calc always sends commands (like @samp{set nolabel}) to
29366 reset all plotting parameters to the defaults before each plot, so
29367 to delete a label all you need to do is delete the @samp{set label}
29368 line you added (or comment it out with @samp{#}) and then replot
29369 with @kbd{g p}.
29371 @kindex g q
29372 @pindex calc-graph-quit
29373 You can use @kbd{g q} (@code{calc-graph-quit}) to kill the GNUPLOT
29374 process that is running.  The next graphing command you give will
29375 start a fresh GNUPLOT process.  The word @samp{Graph} appears in
29376 the Calc window's mode line whenever a GNUPLOT process is currently
29377 running.  The GNUPLOT process is automatically killed when you
29378 exit Emacs if you haven't killed it manually by then.
29380 @kindex g K
29381 @pindex calc-graph-kill
29382 The @kbd{g K} (@code{calc-graph-kill}) command is like @kbd{g q}
29383 except that it also views the @samp{*Gnuplot Trail*} buffer so that
29384 you can see the process being killed.  This is better if you are
29385 killing GNUPLOT because you think it has gotten stuck.
29387 @node Kill and Yank, Keypad Mode, Graphics, Top
29388 @chapter Kill and Yank Functions
29390 @noindent
29391 The commands in this chapter move information between the Calculator and
29392 other Emacs editing buffers.
29394 In many cases Embedded mode is an easier and more natural way to
29395 work with Calc from a regular editing buffer.  @xref{Embedded Mode}.
29397 @menu
29398 * Killing From Stack::
29399 * Yanking Into Stack::
29400 * Grabbing From Buffers::
29401 * Yanking Into Buffers::
29402 * X Cut and Paste::
29403 @end menu
29405 @node Killing From Stack, Yanking Into Stack, Kill and Yank, Kill and Yank
29406 @section Killing from the Stack
29408 @noindent
29409 @kindex C-k
29410 @pindex calc-kill
29411 @kindex M-k
29412 @pindex calc-copy-as-kill
29413 @kindex C-w
29414 @pindex calc-kill-region
29415 @kindex M-w
29416 @pindex calc-copy-region-as-kill
29417 @cindex Kill ring
29418 @dfn{Kill} commands are Emacs commands that insert text into the
29419 ``kill ring,'' from which it can later be ``yanked'' by a @kbd{C-y}
29420 command.  Three common kill commands in normal Emacs are @kbd{C-k}, which
29421 kills one line, @kbd{C-w}, which kills the region between mark and point,
29422 and @kbd{M-w}, which puts the region into the kill ring without actually
29423 deleting it.  All of these commands work in the Calculator, too.  Also,
29424 @kbd{M-k} has been provided to complete the set; it puts the current line
29425 into the kill ring without deleting anything.
29427 The kill commands are unusual in that they pay attention to the location
29428 of the cursor in the Calculator buffer.  If the cursor is on or below the
29429 bottom line, the kill commands operate on the top of the stack.  Otherwise,
29430 they operate on whatever stack element the cursor is on.  Calc's kill
29431 commands always operate on whole stack entries.  (They act the same as their
29432 standard Emacs cousins except they ``round up'' the specified region to
29433 encompass full lines.)  The text is copied into the kill ring exactly as
29434 it appears on the screen, including line numbers if they are enabled.
29436 A numeric prefix argument to @kbd{C-k} or @kbd{M-k} affects the number
29437 of lines killed.  A positive argument kills the current line and @expr{n-1}
29438 lines below it.  A negative argument kills the @expr{-n} lines above the
29439 current line.  Again this mirrors the behavior of the standard Emacs
29440 @kbd{C-k} command.  Although a whole line is always deleted, @kbd{C-k}
29441 with no argument copies only the number itself into the kill ring, whereas
29442 @kbd{C-k} with a prefix argument of 1 copies the number with its trailing
29443 newline.
29445 @node Yanking Into Stack, Grabbing From Buffers, Killing From Stack, Kill and Yank
29446 @section Yanking into the Stack
29448 @noindent
29449 @kindex C-y
29450 @pindex calc-yank
29451 The @kbd{C-y} command yanks the most recently killed text back into the
29452 Calculator.  It pushes this value onto the top of the stack regardless of
29453 the cursor position.  In general it re-parses the killed text as a number
29454 or formula (or a list of these separated by commas or newlines).  However if
29455 the thing being yanked is something that was just killed from the Calculator
29456 itself, its full internal structure is yanked.  For example, if you have
29457 set the floating-point display mode to show only four significant digits,
29458 then killing and re-yanking 3.14159 (which displays as 3.142) will yank the
29459 full 3.14159, even though yanking it into any other buffer would yank the
29460 number in its displayed form, 3.142.  (Since the default display modes
29461 show all objects to their full precision, this feature normally makes no
29462 difference.)
29464 @node Grabbing From Buffers, Yanking Into Buffers, Yanking Into Stack, Kill and Yank
29465 @section Grabbing from Other Buffers
29467 @noindent
29468 @kindex C-x * g
29469 @pindex calc-grab-region
29470 The @kbd{C-x * g} (@code{calc-grab-region}) command takes the text between
29471 point and mark in the current buffer and attempts to parse it as a
29472 vector of values.  Basically, it wraps the text in vector brackets
29473 @samp{[ ]} unless the text already is enclosed in vector brackets,
29474 then reads the text as if it were an algebraic entry.  The contents
29475 of the vector may be numbers, formulas, or any other Calc objects.
29476 If the @kbd{C-x * g} command works successfully, it does an automatic
29477 @kbd{C-x * c} to enter the Calculator buffer.
29479 A numeric prefix argument grabs the specified number of lines around
29480 point, ignoring the mark.  A positive prefix grabs from point to the
29481 @expr{n}th following newline (so that @kbd{M-1 C-x * g} grabs from point
29482 to the end of the current line); a negative prefix grabs from point
29483 back to the @expr{n+1}st preceding newline.  In these cases the text
29484 that is grabbed is exactly the same as the text that @kbd{C-k} would
29485 delete given that prefix argument.
29487 A prefix of zero grabs the current line; point may be anywhere on the
29488 line.
29490 A plain @kbd{C-u} prefix interprets the region between point and mark
29491 as a single number or formula rather than a vector.  For example,
29492 @kbd{C-x * g} on the text @samp{2 a b} produces the vector of three
29493 values @samp{[2, a, b]}, but @kbd{C-u C-x * g} on the same region
29494 reads a formula which is a product of three things:  @samp{2 a b}.
29495 (The text @samp{a + b}, on the other hand, will be grabbed as a
29496 vector of one element by plain @kbd{C-x * g} because the interpretation
29497 @samp{[a, +, b]} would be a syntax error.)
29499 If a different language has been specified (@pxref{Language Modes}),
29500 the grabbed text will be interpreted according to that language.
29502 @kindex C-x * r
29503 @pindex calc-grab-rectangle
29504 The @kbd{C-x * r} (@code{calc-grab-rectangle}) command takes the text between
29505 point and mark and attempts to parse it as a matrix.  If point and mark
29506 are both in the leftmost column, the lines in between are parsed in their
29507 entirety.  Otherwise, point and mark define the corners of a rectangle
29508 whose contents are parsed.
29510 Each line of the grabbed area becomes a row of the matrix.  The result
29511 will actually be a vector of vectors, which Calc will treat as a matrix
29512 only if every row contains the same number of values.
29514 If a line contains a portion surrounded by square brackets (or curly
29515 braces), that portion is interpreted as a vector which becomes a row
29516 of the matrix.  Any text surrounding the bracketed portion on the line
29517 is ignored.
29519 Otherwise, the entire line is interpreted as a row vector as if it
29520 were surrounded by square brackets.  Leading line numbers (in the
29521 format used in the Calc stack buffer) are ignored.  If you wish to
29522 force this interpretation (even if the line contains bracketed
29523 portions), give a negative numeric prefix argument to the
29524 @kbd{C-x * r} command.
29526 If you give a numeric prefix argument of zero or plain @kbd{C-u}, each
29527 line is instead interpreted as a single formula which is converted into
29528 a one-element vector.  Thus the result of @kbd{C-u C-x * r} will be a
29529 one-column matrix.  For example, suppose one line of the data is the
29530 expression @samp{2 a}.  A plain @w{@kbd{C-x * r}} will interpret this as
29531 @samp{[2 a]}, which in turn is read as a two-element vector that forms
29532 one row of the matrix.  But a @kbd{C-u C-x * r} will interpret this row
29533 as @samp{[2*a]}.
29535 If you give a positive numeric prefix argument @var{n}, then each line
29536 will be split up into columns of width @var{n}; each column is parsed
29537 separately as a matrix element.  If a line contained
29538 @w{@samp{2 +/- 3 4 +/- 5}}, then grabbing with a prefix argument of 8
29539 would correctly split the line into two error forms.
29541 @xref{Matrix Functions}, to see how to pull the matrix apart into its
29542 constituent rows and columns.  (If it is a 
29543 @texline @math{1\times1}
29544 @infoline 1x1
29545 matrix, just hit @kbd{v u} (@code{calc-unpack}) twice.)
29547 @kindex C-x * :
29548 @kindex C-x * _
29549 @pindex calc-grab-sum-across
29550 @pindex calc-grab-sum-down
29551 @cindex Summing rows and columns of data
29552 The @kbd{C-x * :} (@code{calc-grab-sum-down}) command is a handy way to
29553 grab a rectangle of data and sum its columns.  It is equivalent to
29554 typing @kbd{C-x * r}, followed by @kbd{V R : +} (the vector reduction
29555 command that sums the columns of a matrix; @pxref{Reducing}).  The
29556 result of the command will be a vector of numbers, one for each column
29557 in the input data.  The @kbd{C-x * _} (@code{calc-grab-sum-across}) command
29558 similarly grabs a rectangle and sums its rows by executing @w{@kbd{V R _ +}}.
29560 As well as being more convenient, @kbd{C-x * :} and @kbd{C-x * _} are also
29561 much faster because they don't actually place the grabbed vector on
29562 the stack.  In a @kbd{C-x * r V R : +} sequence, formatting the vector
29563 for display on the stack takes a large fraction of the total time
29564 (unless you have planned ahead and used @kbd{v .} and @kbd{t .} modes).
29566 For example, suppose we have a column of numbers in a file which we
29567 wish to sum.  Go to one corner of the column and press @kbd{C-@@} to
29568 set the mark; go to the other corner and type @kbd{C-x * :}.  Since there
29569 is only one column, the result will be a vector of one number, the sum.
29570 (You can type @kbd{v u} to unpack this vector into a plain number if
29571 you want to do further arithmetic with it.)
29573 To compute the product of the column of numbers, we would have to do
29574 it ``by hand'' since there's no special grab-and-multiply command.
29575 Use @kbd{C-x * r} to grab the column of numbers into the calculator in
29576 the form of a column matrix.  The statistics command @kbd{u *} is a
29577 handy way to find the product of a vector or matrix of numbers.
29578 @xref{Statistical Operations}.  Another approach would be to use
29579 an explicit column reduction command, @kbd{V R : *}.
29581 @node Yanking Into Buffers, X Cut and Paste, Grabbing From Buffers, Kill and Yank
29582 @section Yanking into Other Buffers
29584 @noindent
29585 @kindex y
29586 @pindex calc-copy-to-buffer
29587 The plain @kbd{y} (@code{calc-copy-to-buffer}) command inserts the number
29588 at the top of the stack into the most recently used normal editing buffer.
29589 (More specifically, this is the most recently used buffer which is displayed
29590 in a window and whose name does not begin with @samp{*}.  If there is no
29591 such buffer, this is the most recently used buffer except for Calculator
29592 and Calc Trail buffers.)  The number is inserted exactly as it appears and
29593 without a newline.  (If line-numbering is enabled, the line number is
29594 normally not included.)  The number is @emph{not} removed from the stack.
29596 With a prefix argument, @kbd{y} inserts several numbers, one per line.
29597 A positive argument inserts the specified number of values from the top
29598 of the stack.  A negative argument inserts the @expr{n}th value from the
29599 top of the stack.  An argument of zero inserts the entire stack.  Note
29600 that @kbd{y} with an argument of 1 is slightly different from @kbd{y}
29601 with no argument; the former always copies full lines, whereas the
29602 latter strips off the trailing newline.
29604 With a lone @kbd{C-u} as a prefix argument, @kbd{y} @emph{replaces} the
29605 region in the other buffer with the yanked text, then quits the
29606 Calculator, leaving you in that buffer.  A typical use would be to use
29607 @kbd{C-x * g} to read a region of data into the Calculator, operate on the
29608 data to produce a new matrix, then type @kbd{C-u y} to replace the
29609 original data with the new data.  One might wish to alter the matrix
29610 display style (@pxref{Vector and Matrix Formats}) or change the current
29611 display language (@pxref{Language Modes}) before doing this.  Also, note
29612 that this command replaces a linear region of text (as grabbed by
29613 @kbd{C-x * g}), not a rectangle (as grabbed by @kbd{C-x * r}).
29615 If the editing buffer is in overwrite (as opposed to insert) mode,
29616 and the @kbd{C-u} prefix was not used, then the yanked number will
29617 overwrite the characters following point rather than being inserted
29618 before those characters.  The usual conventions of overwrite mode
29619 are observed; for example, characters will be inserted at the end of
29620 a line rather than overflowing onto the next line.  Yanking a multi-line
29621 object such as a matrix in overwrite mode overwrites the next @var{n}
29622 lines in the buffer, lengthening or shortening each line as necessary.
29623 Finally, if the thing being yanked is a simple integer or floating-point
29624 number (like @samp{-1.2345e-3}) and the characters following point also
29625 make up such a number, then Calc will replace that number with the new
29626 number, lengthening or shortening as necessary.  The concept of
29627 ``overwrite mode'' has thus been generalized from overwriting characters
29628 to overwriting one complete number with another.
29630 @kindex C-x * y
29631 The @kbd{C-x * y} key sequence is equivalent to @kbd{y} except that
29632 it can be typed anywhere, not just in Calc.  This provides an easy
29633 way to guarantee that Calc knows which editing buffer you want to use!
29635 @node X Cut and Paste, , Yanking Into Buffers, Kill and Yank
29636 @section X Cut and Paste
29638 @noindent
29639 If you are using Emacs with the X window system, there is an easier
29640 way to move small amounts of data into and out of the calculator:
29641 Use the mouse-oriented cut and paste facilities of X.
29643 The default bindings for a three-button mouse cause the left button
29644 to move the Emacs cursor to the given place, the right button to
29645 select the text between the cursor and the clicked location, and
29646 the middle button to yank the selection into the buffer at the
29647 clicked location.  So, if you have a Calc window and an editing
29648 window on your Emacs screen, you can use left-click/right-click
29649 to select a number, vector, or formula from one window, then
29650 middle-click to paste that value into the other window.  When you
29651 paste text into the Calc window, Calc interprets it as an algebraic
29652 entry.  It doesn't matter where you click in the Calc window; the
29653 new value is always pushed onto the top of the stack.
29655 The @code{xterm} program that is typically used for general-purpose
29656 shell windows in X interprets the mouse buttons in the same way.
29657 So you can use the mouse to move data between Calc and any other
29658 Unix program.  One nice feature of @code{xterm} is that a double
29659 left-click selects one word, and a triple left-click selects a
29660 whole line.  So you can usually transfer a single number into Calc
29661 just by double-clicking on it in the shell, then middle-clicking
29662 in the Calc window.
29664 @node Keypad Mode, Embedded Mode, Kill and Yank, Top
29665 @chapter Keypad Mode
29667 @noindent
29668 @kindex C-x * k
29669 @pindex calc-keypad
29670 The @kbd{C-x * k} (@code{calc-keypad}) command starts the Calculator
29671 and displays a picture of a calculator-style keypad.  If you are using
29672 the X window system, you can click on any of the ``keys'' in the
29673 keypad using the left mouse button to operate the calculator.
29674 The original window remains the selected window; in Keypad mode
29675 you can type in your file while simultaneously performing
29676 calculations with the mouse.
29678 @pindex full-calc-keypad
29679 If you have used @kbd{C-x * b} first, @kbd{C-x * k} instead invokes
29680 the @code{full-calc-keypad} command, which takes over the whole
29681 Emacs screen and displays the keypad, the Calc stack, and the Calc
29682 trail all at once.  This mode would normally be used when running
29683 Calc standalone (@pxref{Standalone Operation}).
29685 If you aren't using the X window system, you must switch into
29686 the @samp{*Calc Keypad*} window, place the cursor on the desired
29687 ``key,'' and type @key{SPC} or @key{RET}.  If you think this
29688 is easier than using Calc normally, go right ahead.
29690 Calc commands are more or less the same in Keypad mode.  Certain
29691 keypad keys differ slightly from the corresponding normal Calc
29692 keystrokes; all such deviations are described below.
29694 Keypad mode includes many more commands than will fit on the keypad
29695 at once.  Click the right mouse button [@code{calc-keypad-menu}]
29696 to switch to the next menu.  The bottom five rows of the keypad
29697 stay the same; the top three rows change to a new set of commands.
29698 To return to earlier menus, click the middle mouse button
29699 [@code{calc-keypad-menu-back}] or simply advance through the menus
29700 until you wrap around.  Typing @key{TAB} inside the keypad window
29701 is equivalent to clicking the right mouse button there.
29703 You can always click the @key{EXEC} button and type any normal
29704 Calc key sequence.  This is equivalent to switching into the
29705 Calc buffer, typing the keys, then switching back to your
29706 original buffer.
29708 @menu
29709 * Keypad Main Menu::
29710 * Keypad Functions Menu::
29711 * Keypad Binary Menu::
29712 * Keypad Vectors Menu::
29713 * Keypad Modes Menu::
29714 @end menu
29716 @node Keypad Main Menu, Keypad Functions Menu, Keypad Mode, Keypad Mode
29717 @section Main Menu
29719 @smallexample
29720 @group
29721 |----+-----Calc 2.1------+----1
29722 |FLR |CEIL|RND |TRNC|CLN2|FLT |
29723 |----+----+----+----+----+----|
29724 | LN |EXP |    |ABS |IDIV|MOD |
29725 |----+----+----+----+----+----|
29726 |SIN |COS |TAN |SQRT|y^x |1/x |
29727 |----+----+----+----+----+----|
29728 |  ENTER  |+/- |EEX |UNDO| <- |
29729 |-----+---+-+--+--+-+---++----|
29730 | INV |  7  |  8  |  9  |  /  |
29731 |-----+-----+-----+-----+-----|
29732 | HYP |  4  |  5  |  6  |  *  |
29733 |-----+-----+-----+-----+-----|
29734 |EXEC |  1  |  2  |  3  |  -  |
29735 |-----+-----+-----+-----+-----|
29736 | OFF |  0  |  .  | PI  |  +  |
29737 |-----+-----+-----+-----+-----+
29738 @end group
29739 @end smallexample
29741 @noindent
29742 This is the menu that appears the first time you start Keypad mode.
29743 It will show up in a vertical window on the right side of your screen.
29744 Above this menu is the traditional Calc stack display.  On a 24-line
29745 screen you will be able to see the top three stack entries.
29747 The ten digit keys, decimal point, and @key{EEX} key are used for
29748 entering numbers in the obvious way.  @key{EEX} begins entry of an
29749 exponent in scientific notation.  Just as with regular Calc, the
29750 number is pushed onto the stack as soon as you press @key{ENTER}
29751 or any other function key.
29753 The @key{+/-} key corresponds to normal Calc's @kbd{n} key.  During
29754 numeric entry it changes the sign of the number or of the exponent.
29755 At other times it changes the sign of the number on the top of the
29756 stack.
29758 The @key{INV} and @key{HYP} keys modify other keys.  As well as
29759 having the effects described elsewhere in this manual, Keypad mode
29760 defines several other ``inverse'' operations.  These are described
29761 below and in the following sections.
29763 The @key{ENTER} key finishes the current numeric entry, or otherwise
29764 duplicates the top entry on the stack.
29766 The @key{UNDO} key undoes the most recent Calc operation.
29767 @kbd{INV UNDO} is the ``redo'' command, and @kbd{HYP UNDO} is
29768 ``last arguments'' (@kbd{M-@key{RET}}).
29770 The @key{<-} key acts as a ``backspace'' during numeric entry.
29771 At other times it removes the top stack entry.  @kbd{INV <-}
29772 clears the entire stack.  @kbd{HYP <-} takes an integer from
29773 the stack, then removes that many additional stack elements.
29775 The @key{EXEC} key prompts you to enter any keystroke sequence
29776 that would normally work in Calc mode.  This can include a
29777 numeric prefix if you wish.  It is also possible simply to
29778 switch into the Calc window and type commands in it; there is
29779 nothing ``magic'' about this window when Keypad mode is active.
29781 The other keys in this display perform their obvious calculator
29782 functions.  @key{CLN2} rounds the top-of-stack by temporarily
29783 reducing the precision by 2 digits.  @key{FLT} converts an
29784 integer or fraction on the top of the stack to floating-point.
29786 The @key{INV} and @key{HYP} keys combined with several of these keys
29787 give you access to some common functions even if the appropriate menu
29788 is not displayed.  Obviously you don't need to learn these keys
29789 unless you find yourself wasting time switching among the menus.
29791 @table @kbd
29792 @item INV +/-
29793 is the same as @key{1/x}.
29794 @item INV +
29795 is the same as @key{SQRT}.
29796 @item INV -
29797 is the same as @key{CONJ}.
29798 @item INV *
29799 is the same as @key{y^x}.
29800 @item INV /
29801 is the same as @key{INV y^x} (the @expr{x}th root of @expr{y}).
29802 @item HYP/INV 1
29803 are the same as @key{SIN} / @kbd{INV SIN}.
29804 @item HYP/INV 2
29805 are the same as @key{COS} / @kbd{INV COS}.
29806 @item HYP/INV 3
29807 are the same as @key{TAN} / @kbd{INV TAN}.
29808 @item INV/HYP 4
29809 are the same as @key{LN} / @kbd{HYP LN}.
29810 @item INV/HYP 5
29811 are the same as @key{EXP} / @kbd{HYP EXP}.
29812 @item INV 6
29813 is the same as @key{ABS}.
29814 @item INV 7
29815 is the same as @key{RND} (@code{calc-round}).
29816 @item INV 8
29817 is the same as @key{CLN2}.
29818 @item INV 9
29819 is the same as @key{FLT} (@code{calc-float}).
29820 @item INV 0
29821 is the same as @key{IMAG}.
29822 @item INV .
29823 is the same as @key{PREC}.
29824 @item INV ENTER
29825 is the same as @key{SWAP}.
29826 @item HYP ENTER
29827 is the same as @key{RLL3}.
29828 @item INV HYP ENTER
29829 is the same as @key{OVER}.
29830 @item HYP +/-
29831 packs the top two stack entries as an error form.
29832 @item HYP EEX
29833 packs the top two stack entries as a modulo form.
29834 @item INV EEX
29835 creates an interval form; this removes an integer which is one
29836 of 0 @samp{[]}, 1 @samp{[)}, 2 @samp{(]} or 3 @samp{()}, followed
29837 by the two limits of the interval.
29838 @end table
29840 The @kbd{OFF} key turns Calc off; typing @kbd{C-x * k} or @kbd{C-x * *}
29841 again has the same effect.  This is analogous to typing @kbd{q} or
29842 hitting @kbd{C-x * c} again in the normal calculator.  If Calc is
29843 running standalone (the @code{full-calc-keypad} command appeared in the
29844 command line that started Emacs), then @kbd{OFF} is replaced with
29845 @kbd{EXIT}; clicking on this actually exits Emacs itself.
29847 @node Keypad Functions Menu, Keypad Binary Menu, Keypad Main Menu, Keypad Mode
29848 @section Functions Menu
29850 @smallexample
29851 @group
29852 |----+----+----+----+----+----2
29853 |IGAM|BETA|IBET|ERF |BESJ|BESY|
29854 |----+----+----+----+----+----|
29855 |IMAG|CONJ| RE |ATN2|RAND|RAGN|
29856 |----+----+----+----+----+----|
29857 |GCD |FACT|DFCT|BNOM|PERM|NXTP|
29858 |----+----+----+----+----+----|
29859 @end group
29860 @end smallexample
29862 @noindent
29863 This menu provides various operations from the @kbd{f} and @kbd{k}
29864 prefix keys.
29866 @key{IMAG} multiplies the number on the stack by the imaginary
29867 number @expr{i = (0, 1)}.
29869 @key{RE} extracts the real part a complex number.  @kbd{INV RE}
29870 extracts the imaginary part.
29872 @key{RAND} takes a number from the top of the stack and computes
29873 a random number greater than or equal to zero but less than that
29874 number.  (@xref{Random Numbers}.)  @key{RAGN} is the ``random
29875 again'' command; it computes another random number using the
29876 same limit as last time.
29878 @key{INV GCD} computes the LCM (least common multiple) function.
29880 @key{INV FACT} is the gamma function.  
29881 @texline @math{\Gamma(x) = (x-1)!}.
29882 @infoline @expr{gamma(x) = (x-1)!}.
29884 @key{PERM} is the number-of-permutations function, which is on the
29885 @kbd{H k c} key in normal Calc.
29887 @key{NXTP} finds the next prime after a number.  @kbd{INV NXTP}
29888 finds the previous prime.
29890 @node Keypad Binary Menu, Keypad Vectors Menu, Keypad Functions Menu, Keypad Mode
29891 @section Binary Menu
29893 @smallexample
29894 @group
29895 |----+----+----+----+----+----3
29896 |AND | OR |XOR |NOT |LSH |RSH |
29897 |----+----+----+----+----+----|
29898 |DEC |HEX |OCT |BIN |WSIZ|ARSH|
29899 |----+----+----+----+----+----|
29900 | A  | B  | C  | D  | E  | F  |
29901 |----+----+----+----+----+----|
29902 @end group
29903 @end smallexample
29905 @noindent
29906 The keys in this menu perform operations on binary integers.
29907 Note that both logical and arithmetic right-shifts are provided.
29908 @key{INV LSH} rotates one bit to the left.
29910 The ``difference'' function (normally on @kbd{b d}) is on @key{INV AND}.
29911 The ``clip'' function (normally on @w{@kbd{b c}}) is on @key{INV NOT}.
29913 The @key{DEC}, @key{HEX}, @key{OCT}, and @key{BIN} keys select the
29914 current radix for display and entry of numbers:  Decimal, hexadecimal,
29915 octal, or binary.  The six letter keys @key{A} through @key{F} are used
29916 for entering hexadecimal numbers.
29918 The @key{WSIZ} key displays the current word size for binary operations
29919 and allows you to enter a new word size.  You can respond to the prompt
29920 using either the keyboard or the digits and @key{ENTER} from the keypad.
29921 The initial word size is 32 bits.
29923 @node Keypad Vectors Menu, Keypad Modes Menu, Keypad Binary Menu, Keypad Mode
29924 @section Vectors Menu
29926 @smallexample
29927 @group
29928 |----+----+----+----+----+----4
29929 |SUM |PROD|MAX |MAP*|MAP^|MAP$|
29930 |----+----+----+----+----+----|
29931 |MINV|MDET|MTRN|IDNT|CRSS|"x" |
29932 |----+----+----+----+----+----|
29933 |PACK|UNPK|INDX|BLD |LEN |... |
29934 |----+----+----+----+----+----|
29935 @end group
29936 @end smallexample
29938 @noindent
29939 The keys in this menu operate on vectors and matrices.
29941 @key{PACK} removes an integer @var{n} from the top of the stack;
29942 the next @var{n} stack elements are removed and packed into a vector,
29943 which is replaced onto the stack.  Thus the sequence
29944 @kbd{1 ENTER 3 ENTER 5 ENTER 3 PACK} enters the vector
29945 @samp{[1, 3, 5]} onto the stack.  To enter a matrix, build each row
29946 on the stack as a vector, then use a final @key{PACK} to collect the
29947 rows into a matrix.
29949 @key{UNPK} unpacks the vector on the stack, pushing each of its
29950 components separately.
29952 @key{INDX} removes an integer @var{n}, then builds a vector of
29953 integers from 1 to @var{n}.  @kbd{INV INDX} takes three numbers
29954 from the stack:  The vector size @var{n}, the starting number,
29955 and the increment.  @kbd{BLD} takes an integer @var{n} and any
29956 value @var{x} and builds a vector of @var{n} copies of @var{x}.
29958 @key{IDNT} removes an integer @var{n}, then builds an @var{n}-by-@var{n}
29959 identity matrix.
29961 @key{LEN} replaces a vector by its length, an integer.
29963 @key{...} turns on or off ``abbreviated'' display mode for large vectors.
29965 @key{MINV}, @key{MDET}, @key{MTRN}, and @key{CROSS} are the matrix
29966 inverse, determinant, and transpose, and vector cross product.
29968 @key{SUM} replaces a vector by the sum of its elements.  It is
29969 equivalent to @kbd{u +} in normal Calc (@pxref{Statistical Operations}).
29970 @key{PROD} computes the product of the elements of a vector, and
29971 @key{MAX} computes the maximum of all the elements of a vector.
29973 @key{INV SUM} computes the alternating sum of the first element
29974 minus the second, plus the third, minus the fourth, and so on.
29975 @key{INV MAX} computes the minimum of the vector elements.
29977 @key{HYP SUM} computes the mean of the vector elements.
29978 @key{HYP PROD} computes the sample standard deviation.
29979 @key{HYP MAX} computes the median.
29981 @key{MAP*} multiplies two vectors elementwise.  It is equivalent
29982 to the @kbd{V M *} command.  @key{MAP^} computes powers elementwise.
29983 The arguments must be vectors of equal length, or one must be a vector
29984 and the other must be a plain number.  For example, @kbd{2 MAP^} squares
29985 all the elements of a vector.
29987 @key{MAP$} maps the formula on the top of the stack across the
29988 vector in the second-to-top position.  If the formula contains
29989 several variables, Calc takes that many vectors starting at the
29990 second-to-top position and matches them to the variables in
29991 alphabetical order.  The result is a vector of the same size as
29992 the input vectors, whose elements are the formula evaluated with
29993 the variables set to the various sets of numbers in those vectors.
29994 For example, you could simulate @key{MAP^} using @key{MAP$} with
29995 the formula @samp{x^y}.
29997 The @kbd{"x"} key pushes the variable name @expr{x} onto the
29998 stack.  To build the formula @expr{x^2 + 6}, you would use the
29999 key sequence @kbd{"x" 2 y^x 6 +}.  This formula would then be
30000 suitable for use with the @key{MAP$} key described above.
30001 With @key{INV}, @key{HYP}, or @key{INV} and @key{HYP}, the
30002 @kbd{"x"} key pushes the variable names @expr{y}, @expr{z}, and
30003 @expr{t}, respectively.
30005 @node Keypad Modes Menu, , Keypad Vectors Menu, Keypad Mode
30006 @section Modes Menu
30008 @smallexample
30009 @group
30010 |----+----+----+----+----+----5
30011 |FLT |FIX |SCI |ENG |GRP |    |
30012 |----+----+----+----+----+----|
30013 |RAD |DEG |FRAC|POLR|SYMB|PREC|
30014 |----+----+----+----+----+----|
30015 |SWAP|RLL3|RLL4|OVER|STO |RCL |
30016 |----+----+----+----+----+----|
30017 @end group
30018 @end smallexample
30020 @noindent
30021 The keys in this menu manipulate modes, variables, and the stack.
30023 The @key{FLT}, @key{FIX}, @key{SCI}, and @key{ENG} keys select
30024 floating-point, fixed-point, scientific, or engineering notation.
30025 @key{FIX} displays two digits after the decimal by default; the
30026 others display full precision.  With the @key{INV} prefix, these
30027 keys pop a number-of-digits argument from the stack.
30029 The @key{GRP} key turns grouping of digits with commas on or off.
30030 @kbd{INV GRP} enables grouping to the right of the decimal point as
30031 well as to the left.
30033 The @key{RAD} and @key{DEG} keys switch between radians and degrees
30034 for trigonometric functions.
30036 The @key{FRAC} key turns Fraction mode on or off.  This affects
30037 whether commands like @kbd{/} with integer arguments produce
30038 fractional or floating-point results.
30040 The @key{POLR} key turns Polar mode on or off, determining whether
30041 polar or rectangular complex numbers are used by default.
30043 The @key{SYMB} key turns Symbolic mode on or off, in which
30044 operations that would produce inexact floating-point results
30045 are left unevaluated as algebraic formulas.
30047 The @key{PREC} key selects the current precision.  Answer with
30048 the keyboard or with the keypad digit and @key{ENTER} keys.
30050 The @key{SWAP} key exchanges the top two stack elements.
30051 The @key{RLL3} key rotates the top three stack elements upwards.
30052 The @key{RLL4} key rotates the top four stack elements upwards.
30053 The @key{OVER} key duplicates the second-to-top stack element.
30055 The @key{STO} and @key{RCL} keys are analogous to @kbd{s t} and
30056 @kbd{s r} in regular Calc.  @xref{Store and Recall}.  Click the
30057 @key{STO} or @key{RCL} key, then one of the ten digits.  (Named
30058 variables are not available in Keypad mode.)  You can also use,
30059 for example, @kbd{STO + 3} to add to register 3.
30061 @node Embedded Mode, Programming, Keypad Mode, Top
30062 @chapter Embedded Mode
30064 @noindent
30065 Embedded mode in Calc provides an alternative to copying numbers
30066 and formulas back and forth between editing buffers and the Calc
30067 stack.  In Embedded mode, your editing buffer becomes temporarily
30068 linked to the stack and this copying is taken care of automatically.
30070 @menu
30071 * Basic Embedded Mode::
30072 * More About Embedded Mode::
30073 * Assignments in Embedded Mode::
30074 * Mode Settings in Embedded Mode::
30075 * Customizing Embedded Mode::
30076 @end menu
30078 @node Basic Embedded Mode, More About Embedded Mode, Embedded Mode, Embedded Mode
30079 @section Basic Embedded Mode
30081 @noindent
30082 @kindex C-x * e
30083 @pindex calc-embedded
30084 To enter Embedded mode, position the Emacs point (cursor) on a
30085 formula in any buffer and press @kbd{C-x * e} (@code{calc-embedded}).
30086 Note that @kbd{C-x * e} is not to be used in the Calc stack buffer
30087 like most Calc commands, but rather in regular editing buffers that
30088 are visiting your own files.
30090 Calc will try to guess an appropriate language based on the major mode
30091 of the editing buffer. (@xref{Language Modes}.) If the current buffer is
30092 in @code{latex-mode}, for example, Calc will set its language to La@TeX{}.
30093 Similarly, Calc will use @TeX{} language for @code{tex-mode},
30094 @code{plain-tex-mode} and @code{context-mode}, C language for
30095 @code{c-mode} and @code{c++-mode}, FORTRAN language for
30096 @code{fortran-mode} and @code{f90-mode}, Pascal for @code{pascal-mode},
30097 and eqn for @code{nroff-mode} (@pxref{Customizing Calc}).  
30098 These can be overridden with Calc's mode
30099 changing commands (@pxref{Mode Settings in Embedded Mode}).  If no
30100 suitable language is available, Calc will continue with its current language.
30102 Calc normally scans backward and forward in the buffer for the
30103 nearest opening and closing @dfn{formula delimiters}.  The simplest
30104 delimiters are blank lines.  Other delimiters that Embedded mode
30105 understands are:
30107 @enumerate
30108 @item
30109 The @TeX{} and La@TeX{} math delimiters @samp{$ $}, @samp{$$ $$},
30110 @samp{\[ \]}, and @samp{\( \)};
30111 @item
30112 Lines beginning with @samp{\begin} and @samp{\end} (except matrix delimiters);
30113 @item
30114 Lines beginning with @samp{@@} (Texinfo delimiters).
30115 @item
30116 Lines beginning with @samp{.EQ} and @samp{.EN} (@dfn{eqn} delimiters);
30117 @item
30118 Lines containing a single @samp{%} or @samp{.\"} symbol and nothing else.
30119 @end enumerate
30121 @xref{Customizing Embedded Mode}, to see how to make Calc recognize
30122 your own favorite delimiters.  Delimiters like @samp{$ $} can appear
30123 on their own separate lines or in-line with the formula.
30125 If you give a positive or negative numeric prefix argument, Calc
30126 instead uses the current point as one end of the formula, and includes
30127 that many lines forward or backward (respectively, including the current
30128 line). Explicit delimiters are not necessary in this case.
30130 With a prefix argument of zero, Calc uses the current region (delimited
30131 by point and mark) instead of formula delimiters.  With a prefix
30132 argument of @kbd{C-u} only, Calc uses the current line as the formula.
30134 @kindex C-x * w
30135 @pindex calc-embedded-word
30136 The @kbd{C-x * w} (@code{calc-embedded-word}) command will start Embedded
30137 mode on the current ``word''; in this case Calc will scan for the first
30138 non-numeric character (i.e., the first character that is not a digit,
30139 sign, decimal point, or upper- or lower-case @samp{e}) forward and
30140 backward to delimit the formula.
30142 When you enable Embedded mode for a formula, Calc reads the text
30143 between the delimiters and tries to interpret it as a Calc formula.
30144 Calc can generally identify @TeX{} formulas and
30145 Big-style formulas even if the language mode is wrong.  If Calc
30146 can't make sense of the formula, it beeps and refuses to enter
30147 Embedded mode.  But if the current language is wrong, Calc can
30148 sometimes parse the formula successfully (but incorrectly);
30149 for example, the C expression @samp{atan(a[1])} can be parsed
30150 in Normal language mode, but the @code{atan} won't correspond to
30151 the built-in @code{arctan} function, and the @samp{a[1]} will be
30152 interpreted as @samp{a} times the vector @samp{[1]}!
30154 If you press @kbd{C-x * e} or @kbd{C-x * w} to activate an embedded
30155 formula which is blank, say with the cursor on the space between
30156 the two delimiters @samp{$ $}, Calc will immediately prompt for
30157 an algebraic entry.
30159 Only one formula in one buffer can be enabled at a time.  If you
30160 move to another area of the current buffer and give Calc commands,
30161 Calc turns Embedded mode off for the old formula and then tries
30162 to restart Embedded mode at the new position.  Other buffers are
30163 not affected by Embedded mode.
30165 When Embedded mode begins, Calc pushes the current formula onto
30166 the stack.  No Calc stack window is created; however, Calc copies
30167 the top-of-stack position into the original buffer at all times.
30168 You can create a Calc window by hand with @kbd{C-x * o} if you
30169 find you need to see the entire stack.
30171 For example, typing @kbd{C-x * e} while somewhere in the formula
30172 @samp{n>2} in the following line enables Embedded mode on that
30173 inequality:
30175 @example
30176 We define $F_n = F_(n-1)+F_(n-2)$ for all $n>2$.
30177 @end example
30179 @noindent
30180 The formula @expr{n>2} will be pushed onto the Calc stack, and
30181 the top of stack will be copied back into the editing buffer.
30182 This means that spaces will appear around the @samp{>} symbol
30183 to match Calc's usual display style:
30185 @example
30186 We define $F_n = F_(n-1)+F_(n-2)$ for all $n > 2$.
30187 @end example
30189 @noindent
30190 No spaces have appeared around the @samp{+} sign because it's
30191 in a different formula, one which we have not yet touched with
30192 Embedded mode.
30194 Now that Embedded mode is enabled, keys you type in this buffer
30195 are interpreted as Calc commands.  At this point we might use
30196 the ``commute'' command @kbd{j C} to reverse the inequality.
30197 This is a selection-based command for which we first need to
30198 move the cursor onto the operator (@samp{>} in this case) that
30199 needs to be commuted.
30201 @example
30202 We define $F_n = F_(n-1)+F_(n-2)$ for all $2 < n$.
30203 @end example
30205 The @kbd{C-x * o} command is a useful way to open a Calc window
30206 without actually selecting that window.  Giving this command
30207 verifies that @samp{2 < n} is also on the Calc stack.  Typing
30208 @kbd{17 @key{RET}} would produce:
30210 @example
30211 We define $F_n = F_(n-1)+F_(n-2)$ for all $17$.
30212 @end example
30214 @noindent
30215 with @samp{2 < n} and @samp{17} on the stack; typing @key{TAB}
30216 at this point will exchange the two stack values and restore
30217 @samp{2 < n} to the embedded formula.  Even though you can't
30218 normally see the stack in Embedded mode, it is still there and
30219 it still operates in the same way.  But, as with old-fashioned
30220 RPN calculators, you can only see the value at the top of the
30221 stack at any given time (unless you use @kbd{C-x * o}).
30223 Typing @kbd{C-x * e} again turns Embedded mode off.  The Calc
30224 window reveals that the formula @w{@samp{2 < n}} is automatically
30225 removed from the stack, but the @samp{17} is not.  Entering
30226 Embedded mode always pushes one thing onto the stack, and
30227 leaving Embedded mode always removes one thing.  Anything else
30228 that happens on the stack is entirely your business as far as
30229 Embedded mode is concerned.
30231 If you press @kbd{C-x * e} in the wrong place by accident, it is
30232 possible that Calc will be able to parse the nearby text as a
30233 formula and will mangle that text in an attempt to redisplay it
30234 ``properly'' in the current language mode.  If this happens,
30235 press @kbd{C-x * e} again to exit Embedded mode, then give the
30236 regular Emacs ``undo'' command (@kbd{C-_} or @kbd{C-x u}) to put
30237 the text back the way it was before Calc edited it.  Note that Calc's
30238 own Undo command (typed before you turn Embedded mode back off)
30239 will not do you any good, because as far as Calc is concerned
30240 you haven't done anything with this formula yet.
30242 @node More About Embedded Mode, Assignments in Embedded Mode, Basic Embedded Mode, Embedded Mode
30243 @section More About Embedded Mode
30245 @noindent
30246 When Embedded mode ``activates'' a formula, i.e., when it examines
30247 the formula for the first time since the buffer was created or
30248 loaded, Calc tries to sense the language in which the formula was
30249 written.  If the formula contains any La@TeX{}-like @samp{\} sequences,
30250 it is parsed (i.e., read) in La@TeX{} mode.  If the formula appears to
30251 be written in multi-line Big mode, it is parsed in Big mode.  Otherwise,
30252 it is parsed according to the current language mode.
30254 Note that Calc does not change the current language mode according
30255 the formula it reads in.  Even though it can read a La@TeX{} formula when
30256 not in La@TeX{} mode, it will immediately rewrite this formula using
30257 whatever language mode is in effect.
30259 @tex
30260 \bigskip
30261 @end tex
30263 @kindex d p
30264 @pindex calc-show-plain
30265 Calc's parser is unable to read certain kinds of formulas.  For
30266 example, with @kbd{v ]} (@code{calc-matrix-brackets}) you can
30267 specify matrix display styles which the parser is unable to
30268 recognize as matrices.  The @kbd{d p} (@code{calc-show-plain})
30269 command turns on a mode in which a ``plain'' version of a
30270 formula is placed in front of the fully-formatted version.
30271 When Calc reads a formula that has such a plain version in
30272 front, it reads the plain version and ignores the formatted
30273 version.
30275 Plain formulas are preceded and followed by @samp{%%%} signs
30276 by default.  This notation has the advantage that the @samp{%}
30277 character begins a comment in @TeX{} and La@TeX{}, so if your formula is 
30278 embedded in a @TeX{} or La@TeX{} document its plain version will be
30279 invisible in the final printed copy.  Certain major modes have different
30280 delimiters to ensure that the ``plain'' version will be 
30281 in a comment for those modes, also.  
30282 See @ref{Customizing Embedded Mode} to see how to change the ``plain''
30283 formula delimiters. 
30285 There are several notations which Calc's parser for ``big''
30286 formatted formulas can't yet recognize.  In particular, it can't
30287 read the large symbols for @code{sum}, @code{prod}, and @code{integ},
30288 and it can't handle @samp{=>} with the righthand argument omitted.
30289 Also, Calc won't recognize special formats you have defined with
30290 the @kbd{Z C} command (@pxref{User-Defined Compositions}).  In
30291 these cases it is important to use ``plain'' mode to make sure
30292 Calc will be able to read your formula later.
30294 Another example where ``plain'' mode is important is if you have
30295 specified a float mode with few digits of precision.  Normally
30296 any digits that are computed but not displayed will simply be
30297 lost when you save and re-load your embedded buffer, but ``plain''
30298 mode allows you to make sure that the complete number is present
30299 in the file as well as the rounded-down number.
30301 @tex
30302 \bigskip
30303 @end tex
30305 Embedded buffers remember active formulas for as long as they
30306 exist in Emacs memory.  Suppose you have an embedded formula
30307 which is @cpi{} to the normal 12 decimal places, and then
30308 type @w{@kbd{C-u 5 d n}} to display only five decimal places.
30309 If you then type @kbd{d n}, all 12 places reappear because the
30310 full number is still there on the Calc stack.  More surprisingly,
30311 even if you exit Embedded mode and later re-enter it for that
30312 formula, typing @kbd{d n} will restore all 12 places because
30313 each buffer remembers all its active formulas.  However, if you
30314 save the buffer in a file and reload it in a new Emacs session,
30315 all non-displayed digits will have been lost unless you used
30316 ``plain'' mode.
30318 @tex
30319 \bigskip
30320 @end tex
30322 In some applications of Embedded mode, you will want to have a
30323 sequence of copies of a formula that show its evolution as you
30324 work on it.  For example, you might want to have a sequence
30325 like this in your file (elaborating here on the example from
30326 the ``Getting Started'' chapter):
30328 @smallexample
30329 The derivative of
30331                               ln(ln(x))
30335                   @r{(the derivative of }ln(ln(x))@r{)}
30337 whose value at x = 2 is
30339                             @r{(the value)}
30341 and at x = 3 is
30343                             @r{(the value)}
30344 @end smallexample
30346 @kindex C-x * d
30347 @pindex calc-embedded-duplicate
30348 The @kbd{C-x * d} (@code{calc-embedded-duplicate}) command is a
30349 handy way to make sequences like this.  If you type @kbd{C-x * d},
30350 the formula under the cursor (which may or may not have Embedded
30351 mode enabled for it at the time) is copied immediately below and
30352 Embedded mode is then enabled for that copy.
30354 For this example, you would start with just
30356 @smallexample
30357 The derivative of
30359                               ln(ln(x))
30360 @end smallexample
30362 @noindent
30363 and press @kbd{C-x * d} with the cursor on this formula.  The result
30366 @smallexample
30367 The derivative of
30369                               ln(ln(x))
30372                               ln(ln(x))
30373 @end smallexample
30375 @noindent
30376 with the second copy of the formula enabled in Embedded mode.
30377 You can now press @kbd{a d x @key{RET}} to take the derivative, and
30378 @kbd{C-x * d C-x * d} to make two more copies of the derivative.
30379 To complete the computations, type @kbd{3 s l x @key{RET}} to evaluate
30380 the last formula, then move up to the second-to-last formula
30381 and type @kbd{2 s l x @key{RET}}.
30383 Finally, you would want to press @kbd{C-x * e} to exit Embedded
30384 mode, then go up and insert the necessary text in between the
30385 various formulas and numbers.
30387 @tex
30388 \bigskip
30389 @end tex
30391 @kindex C-x * f
30392 @kindex C-x * '
30393 @pindex calc-embedded-new-formula
30394 The @kbd{C-x * f} (@code{calc-embedded-new-formula}) command
30395 creates a new embedded formula at the current point.  It inserts
30396 some default delimiters, which are usually just blank lines,
30397 and then does an algebraic entry to get the formula (which is
30398 then enabled for Embedded mode).  This is just shorthand for
30399 typing the delimiters yourself, positioning the cursor between
30400 the new delimiters, and pressing @kbd{C-x * e}.  The key sequence
30401 @kbd{C-x * '} is equivalent to @kbd{C-x * f}.
30403 @kindex C-x * n
30404 @kindex C-x * p
30405 @pindex calc-embedded-next
30406 @pindex calc-embedded-previous
30407 The @kbd{C-x * n} (@code{calc-embedded-next}) and @kbd{C-x * p}
30408 (@code{calc-embedded-previous}) commands move the cursor to the
30409 next or previous active embedded formula in the buffer.  They
30410 can take positive or negative prefix arguments to move by several
30411 formulas.  Note that these commands do not actually examine the
30412 text of the buffer looking for formulas; they only see formulas
30413 which have previously been activated in Embedded mode.  In fact,
30414 @kbd{C-x * n} and @kbd{C-x * p} are a useful way to tell which
30415 embedded formulas are currently active.  Also, note that these
30416 commands do not enable Embedded mode on the next or previous
30417 formula, they just move the cursor.
30419 @kindex C-x * `
30420 @pindex calc-embedded-edit
30421 The @kbd{C-x * `} (@code{calc-embedded-edit}) command edits the
30422 embedded formula at the current point as if by @kbd{`} (@code{calc-edit}).
30423 Embedded mode does not have to be enabled for this to work.  Press
30424 @kbd{C-c C-c} to finish the edit, or @kbd{C-x k} to cancel.
30426 @node Assignments in Embedded Mode, Mode Settings in Embedded Mode, More About Embedded Mode, Embedded Mode
30427 @section Assignments in Embedded Mode
30429 @noindent
30430 The @samp{:=} (assignment) and @samp{=>} (``evaluates-to'') operators
30431 are especially useful in Embedded mode.  They allow you to make
30432 a definition in one formula, then refer to that definition in
30433 other formulas embedded in the same buffer.
30435 An embedded formula which is an assignment to a variable, as in
30437 @example
30438 foo := 5
30439 @end example
30441 @noindent
30442 records @expr{5} as the stored value of @code{foo} for the
30443 purposes of Embedded mode operations in the current buffer.  It
30444 does @emph{not} actually store @expr{5} as the ``global'' value
30445 of @code{foo}, however.  Regular Calc operations, and Embedded
30446 formulas in other buffers, will not see this assignment.
30448 One way to use this assigned value is simply to create an
30449 Embedded formula elsewhere that refers to @code{foo}, and to press
30450 @kbd{=} in that formula.  However, this permanently replaces the
30451 @code{foo} in the formula with its current value.  More interesting
30452 is to use @samp{=>} elsewhere:
30454 @example
30455 foo + 7 => 12
30456 @end example
30458 @xref{Evaluates-To Operator}, for a general discussion of @samp{=>}.
30460 If you move back and change the assignment to @code{foo}, any
30461 @samp{=>} formulas which refer to it are automatically updated.
30463 @example
30464 foo := 17
30466 foo + 7 => 24
30467 @end example
30469 The obvious question then is, @emph{how} can one easily change the
30470 assignment to @code{foo}?  If you simply select the formula in
30471 Embedded mode and type 17, the assignment itself will be replaced
30472 by the 17.  The effect on the other formula will be that the
30473 variable @code{foo} becomes unassigned:
30475 @example
30478 foo + 7 => foo + 7
30479 @end example
30481 The right thing to do is first to use a selection command (@kbd{j 2}
30482 will do the trick) to select the righthand side of the assignment.
30483 Then, @kbd{17 @key{TAB} @key{DEL}} will swap the 17 into place (@pxref{Selecting
30484 Subformulas}, to see how this works).
30486 @kindex C-x * j
30487 @pindex calc-embedded-select
30488 The @kbd{C-x * j} (@code{calc-embedded-select}) command provides an
30489 easy way to operate on assignments.  It is just like @kbd{C-x * e},
30490 except that if the enabled formula is an assignment, it uses
30491 @kbd{j 2} to select the righthand side.  If the enabled formula
30492 is an evaluates-to, it uses @kbd{j 1} to select the lefthand side.
30493 A formula can also be a combination of both:
30495 @example
30496 bar := foo + 3 => 20
30497 @end example
30499 @noindent
30500 in which case @kbd{C-x * j} will select the middle part (@samp{foo + 3}).
30502 The formula is automatically deselected when you leave Embedded
30503 mode.
30505 @kindex C-x * u
30506 @pindex calc-embedded-update-formula
30507 Another way to change the assignment to @code{foo} would simply be
30508 to edit the number using regular Emacs editing rather than Embedded
30509 mode.  Then, we have to find a way to get Embedded mode to notice
30510 the change.  The @kbd{C-x * u} (@code{calc-embedded-update-formula})
30511 command is a convenient way to do this.
30513 @example
30514 foo := 6
30516 foo + 7 => 13
30517 @end example
30519 Pressing @kbd{C-x * u} is much like pressing @kbd{C-x * e = C-x * e}, that
30520 is, temporarily enabling Embedded mode for the formula under the
30521 cursor and then evaluating it with @kbd{=}.  But @kbd{C-x * u} does
30522 not actually use @kbd{C-x * e}, and in fact another formula somewhere
30523 else can be enabled in Embedded mode while you use @kbd{C-x * u} and
30524 that formula will not be disturbed.
30526 With a numeric prefix argument, @kbd{C-x * u} updates all active
30527 @samp{=>} formulas in the buffer.  Formulas which have not yet
30528 been activated in Embedded mode, and formulas which do not have
30529 @samp{=>} as their top-level operator, are not affected by this.
30530 (This is useful only if you have used @kbd{m C}; see below.)
30532 With a plain @kbd{C-u} prefix, @kbd{C-u C-x * u} updates only in the
30533 region between mark and point rather than in the whole buffer.
30535 @kbd{C-x * u} is also a handy way to activate a formula, such as an
30536 @samp{=>} formula that has freshly been typed in or loaded from a
30537 file.
30539 @kindex C-x * a
30540 @pindex calc-embedded-activate
30541 The @kbd{C-x * a} (@code{calc-embedded-activate}) command scans
30542 through the current buffer and activates all embedded formulas
30543 that contain @samp{:=} or @samp{=>} symbols.  This does not mean
30544 that Embedded mode is actually turned on, but only that the
30545 formulas' positions are registered with Embedded mode so that
30546 the @samp{=>} values can be properly updated as assignments are
30547 changed.
30549 It is a good idea to type @kbd{C-x * a} right after loading a file
30550 that uses embedded @samp{=>} operators.  Emacs includes a nifty
30551 ``buffer-local variables'' feature that you can use to do this
30552 automatically.  The idea is to place near the end of your file
30553 a few lines that look like this:
30555 @example
30556 --- Local Variables: ---
30557 --- eval:(calc-embedded-activate) ---
30558 --- End: ---
30559 @end example
30561 @noindent
30562 where the leading and trailing @samp{---} can be replaced by
30563 any suitable strings (which must be the same on all three lines)
30564 or omitted altogether; in a @TeX{} or La@TeX{} file, @samp{%} would be a good
30565 leading string and no trailing string would be necessary.  In a
30566 C program, @samp{/*} and @samp{*/} would be good leading and
30567 trailing strings.
30569 When Emacs loads a file into memory, it checks for a Local Variables
30570 section like this one at the end of the file.  If it finds this
30571 section, it does the specified things (in this case, running
30572 @kbd{C-x * a} automatically) before editing of the file begins.
30573 The Local Variables section must be within 3000 characters of the
30574 end of the file for Emacs to find it, and it must be in the last
30575 page of the file if the file has any page separators.
30576 @xref{File Variables, , Local Variables in Files, emacs, the
30577 Emacs manual}.
30579 Note that @kbd{C-x * a} does not update the formulas it finds.
30580 To do this, type, say, @kbd{M-1 C-x * u} after @w{@kbd{C-x * a}}.
30581 Generally this should not be a problem, though, because the
30582 formulas will have been up-to-date already when the file was
30583 saved.
30585 Normally, @kbd{C-x * a} activates all the formulas it finds, but
30586 any previous active formulas remain active as well.  With a
30587 positive numeric prefix argument, @kbd{C-x * a} first deactivates
30588 all current active formulas, then actives the ones it finds in
30589 its scan of the buffer.  With a negative prefix argument,
30590 @kbd{C-x * a} simply deactivates all formulas.
30592 Embedded mode has two symbols, @samp{Active} and @samp{~Active},
30593 which it puts next to the major mode name in a buffer's mode line.
30594 It puts @samp{Active} if it has reason to believe that all
30595 formulas in the buffer are active, because you have typed @kbd{C-x * a}
30596 and Calc has not since had to deactivate any formulas (which can
30597 happen if Calc goes to update an @samp{=>} formula somewhere because
30598 a variable changed, and finds that the formula is no longer there
30599 due to some kind of editing outside of Embedded mode).  Calc puts
30600 @samp{~Active} in the mode line if some, but probably not all,
30601 formulas in the buffer are active.  This happens if you activate
30602 a few formulas one at a time but never use @kbd{C-x * a}, or if you
30603 used @kbd{C-x * a} but then Calc had to deactivate a formula
30604 because it lost track of it.  If neither of these symbols appears
30605 in the mode line, no embedded formulas are active in the buffer
30606 (e.g., before Embedded mode has been used, or after a @kbd{M-- C-x * a}).
30608 Embedded formulas can refer to assignments both before and after them
30609 in the buffer.  If there are several assignments to a variable, the
30610 nearest preceding assignment is used if there is one, otherwise the
30611 following assignment is used.
30613 @example
30614 x => 1
30616 x := 1
30618 x => 1
30620 x := 2
30622 x => 2
30623 @end example
30625 As well as simple variables, you can also assign to subscript
30626 expressions of the form @samp{@var{var}_@var{number}} (as in
30627 @code{x_0}), or @samp{@var{var}_@var{var}} (as in @code{x_max}).
30628 Assignments to other kinds of objects can be represented by Calc,
30629 but the automatic linkage between assignments and references works
30630 only for plain variables and these two kinds of subscript expressions.
30632 If there are no assignments to a given variable, the global
30633 stored value for the variable is used (@pxref{Storing Variables}),
30634 or, if no value is stored, the variable is left in symbolic form.
30635 Note that global stored values will be lost when the file is saved
30636 and loaded in a later Emacs session, unless you have used the
30637 @kbd{s p} (@code{calc-permanent-variable}) command to save them;
30638 @pxref{Operations on Variables}.
30640 The @kbd{m C} (@code{calc-auto-recompute}) command turns automatic
30641 recomputation of @samp{=>} forms on and off.  If you turn automatic
30642 recomputation off, you will have to use @kbd{C-x * u} to update these
30643 formulas manually after an assignment has been changed.  If you
30644 plan to change several assignments at once, it may be more efficient
30645 to type @kbd{m C}, change all the assignments, then use @kbd{M-1 C-x * u}
30646 to update the entire buffer afterwards.  The @kbd{m C} command also
30647 controls @samp{=>} formulas on the stack; @pxref{Evaluates-To
30648 Operator}.  When you turn automatic recomputation back on, the
30649 stack will be updated but the Embedded buffer will not; you must
30650 use @kbd{C-x * u} to update the buffer by hand.
30652 @node Mode Settings in Embedded Mode, Customizing Embedded Mode, Assignments in Embedded Mode, Embedded Mode
30653 @section Mode Settings in Embedded Mode
30655 @kindex m e
30656 @pindex calc-embedded-preserve-modes
30657 @noindent
30658 The mode settings can be changed while Calc is in embedded mode, but
30659 by default they will revert to their original values when embedded mode
30660 is ended. However, the modes saved when the mode-recording mode is
30661 @code{Save} (see below) and the modes in effect when the @kbd{m e}
30662 (@code{calc-embedded-preserve-modes}) command is given
30663 will be preserved when embedded mode is ended.
30665 Embedded mode has a rather complicated mechanism for handling mode
30666 settings in Embedded formulas.  It is possible to put annotations
30667 in the file that specify mode settings either global to the entire
30668 file or local to a particular formula or formulas.  In the latter
30669 case, different modes can be specified for use when a formula
30670 is the enabled Embedded mode formula.
30672 When you give any mode-setting command, like @kbd{m f} (for Fraction
30673 mode) or @kbd{d s} (for scientific notation), Embedded mode adds
30674 a line like the following one to the file just before the opening
30675 delimiter of the formula.
30677 @example
30678 % [calc-mode: fractions: t]
30679 % [calc-mode: float-format: (sci 0)]
30680 @end example
30682 When Calc interprets an embedded formula, it scans the text before
30683 the formula for mode-setting annotations like these and sets the
30684 Calc buffer to match these modes.  Modes not explicitly described
30685 in the file are not changed.  Calc scans all the way to the top of
30686 the file, or up to a line of the form
30688 @example
30689 % [calc-defaults]
30690 @end example
30692 @noindent
30693 which you can insert at strategic places in the file if this backward
30694 scan is getting too slow, or just to provide a barrier between one
30695 ``zone'' of mode settings and another.
30697 If the file contains several annotations for the same mode, the
30698 closest one before the formula is used.  Annotations after the
30699 formula are never used (except for global annotations, described
30700 below).
30702 The scan does not look for the leading @samp{% }, only for the
30703 square brackets and the text they enclose.  In fact, the leading
30704 characters are different for different major modes.  You can edit the
30705 mode annotations to a style that works better in context if you wish.
30706 @xref{Customizing Embedded Mode}, to see how to change the style
30707 that Calc uses when it generates the annotations.  You can write
30708 mode annotations into the file yourself if you know the syntax;
30709 the easiest way to find the syntax for a given mode is to let
30710 Calc write the annotation for it once and see what it does.
30712 If you give a mode-changing command for a mode that already has
30713 a suitable annotation just above the current formula, Calc will
30714 modify that annotation rather than generating a new, conflicting
30715 one.
30717 Mode annotations have three parts, separated by colons.  (Spaces
30718 after the colons are optional.)  The first identifies the kind
30719 of mode setting, the second is a name for the mode itself, and
30720 the third is the value in the form of a Lisp symbol, number,
30721 or list.  Annotations with unrecognizable text in the first or
30722 second parts are ignored.  The third part is not checked to make
30723 sure the value is of a valid type or range; if you write an
30724 annotation by hand, be sure to give a proper value or results
30725 will be unpredictable.  Mode-setting annotations are case-sensitive.
30727 While Embedded mode is enabled, the word @code{Local} appears in
30728 the mode line.  This is to show that mode setting commands generate
30729 annotations that are ``local'' to the current formula or set of
30730 formulas.  The @kbd{m R} (@code{calc-mode-record-mode}) command
30731 causes Calc to generate different kinds of annotations.  Pressing
30732 @kbd{m R} repeatedly cycles through the possible modes.
30734 @code{LocEdit} and @code{LocPerm} modes generate annotations
30735 that look like this, respectively:
30737 @example
30738 % [calc-edit-mode: float-format: (sci 0)]
30739 % [calc-perm-mode: float-format: (sci 5)]
30740 @end example
30742 The first kind of annotation will be used only while a formula
30743 is enabled in Embedded mode.  The second kind will be used only
30744 when the formula is @emph{not} enabled.  (Whether the formula
30745 is ``active'' or not, i.e., whether Calc has seen this formula
30746 yet, is not relevant here.)
30748 @code{Global} mode generates an annotation like this at the end
30749 of the file:
30751 @example
30752 % [calc-global-mode: fractions t]
30753 @end example
30755 Global mode annotations affect all formulas throughout the file,
30756 and may appear anywhere in the file.  This allows you to tuck your
30757 mode annotations somewhere out of the way, say, on a new page of
30758 the file, as long as those mode settings are suitable for all
30759 formulas in the file.
30761 Enabling a formula with @kbd{C-x * e} causes a fresh scan for local
30762 mode annotations; you will have to use this after adding annotations
30763 above a formula by hand to get the formula to notice them.  Updating
30764 a formula with @kbd{C-x * u} will also re-scan the local modes, but
30765 global modes are only re-scanned by @kbd{C-x * a}.
30767 Another way that modes can get out of date is if you add a local
30768 mode annotation to a formula that has another formula after it.
30769 In this example, we have used the @kbd{d s} command while the
30770 first of the two embedded formulas is active.  But the second
30771 formula has not changed its style to match, even though by the
30772 rules of reading annotations the @samp{(sci 0)} applies to it, too.
30774 @example
30775 % [calc-mode: float-format: (sci 0)]
30776 1.23e2
30778 456.
30779 @end example
30781 We would have to go down to the other formula and press @kbd{C-x * u}
30782 on it in order to get it to notice the new annotation.
30784 Two more mode-recording modes selectable by @kbd{m R} are available
30785 which are also available outside of Embedded mode.  
30786 (@pxref{General Mode Commands}.) They are @code{Save},  in which mode
30787 settings are recorded permanently in your Calc init file (the file given
30788 by the variable @code{calc-settings-file}, typically @file{~/.calc.el})
30789 rather than by annotating the current document, and no-recording
30790 mode (where there is no symbol like @code{Save} or @code{Local} in
30791 the mode line), in which mode-changing commands do not leave any
30792 annotations at all.
30794 When Embedded mode is not enabled, mode-recording modes except
30795 for @code{Save} have no effect.
30797 @node Customizing Embedded Mode, , Mode Settings in Embedded Mode, Embedded Mode
30798 @section Customizing Embedded Mode
30800 @noindent
30801 You can modify Embedded mode's behavior by setting various Lisp
30802 variables described here.  These variables are customizable 
30803 (@pxref{Customizing Calc}), or you can use @kbd{M-x set-variable}
30804 or @kbd{M-x edit-options} to adjust a variable on the fly.
30805 (Another possibility would be to use a file-local variable annotation at
30806 the end of the file; 
30807 @pxref{File Variables, , Local Variables in Files, emacs, the Emacs manual}.)
30808 Many of the variables given mentioned here can be set to depend on the
30809 major mode of the editing buffer (@pxref{Customizing Calc}).
30811 @vindex calc-embedded-open-formula
30812 The @code{calc-embedded-open-formula} variable holds a regular
30813 expression for the opening delimiter of a formula.  @xref{Regexp Search,
30814 , Regular Expression Search, emacs, the Emacs manual}, to see
30815 how regular expressions work.  Basically, a regular expression is a
30816 pattern that Calc can search for.  A regular expression that considers
30817 blank lines, @samp{$}, and @samp{$$} to be opening delimiters is
30818 @code{"\\`\\|^\n\\|\\$\\$?"}.  Just in case the meaning of this
30819 regular expression is not completely plain, let's go through it
30820 in detail.
30822 The surrounding @samp{" "} marks quote the text between them as a
30823 Lisp string.  If you left them off, @code{set-variable} or
30824 @code{edit-options} would try to read the regular expression as a
30825 Lisp program.
30827 The most obvious property of this regular expression is that it
30828 contains indecently many backslashes.  There are actually two levels
30829 of backslash usage going on here.  First, when Lisp reads a quoted
30830 string, all pairs of characters beginning with a backslash are
30831 interpreted as special characters.  Here, @code{\n} changes to a
30832 new-line character, and @code{\\} changes to a single backslash.
30833 So the actual regular expression seen by Calc is
30834 @samp{\`\|^ @r{(newline)} \|\$\$?}.
30836 Regular expressions also consider pairs beginning with backslash
30837 to have special meanings.  Sometimes the backslash is used to quote
30838 a character that otherwise would have a special meaning in a regular
30839 expression, like @samp{$}, which normally means ``end-of-line,''
30840 or @samp{?}, which means that the preceding item is optional.  So
30841 @samp{\$\$?} matches either one or two dollar signs.
30843 The other codes in this regular expression are @samp{^}, which matches
30844 ``beginning-of-line,'' @samp{\|}, which means ``or,'' and @samp{\`},
30845 which matches ``beginning-of-buffer.''  So the whole pattern means
30846 that a formula begins at the beginning of the buffer, or on a newline
30847 that occurs at the beginning of a line (i.e., a blank line), or at
30848 one or two dollar signs.
30850 The default value of @code{calc-embedded-open-formula} looks just
30851 like this example, with several more alternatives added on to
30852 recognize various other common kinds of delimiters.
30854 By the way, the reason to use @samp{^\n} rather than @samp{^$}
30855 or @samp{\n\n}, which also would appear to match blank lines,
30856 is that the former expression actually ``consumes'' only one
30857 newline character as @emph{part of} the delimiter, whereas the
30858 latter expressions consume zero or two newlines, respectively.
30859 The former choice gives the most natural behavior when Calc
30860 must operate on a whole formula including its delimiters.
30862 See the Emacs manual for complete details on regular expressions.
30863 But just for your convenience, here is a list of all characters
30864 which must be quoted with backslash (like @samp{\$}) to avoid
30865 some special interpretation:  @samp{. * + ? [ ] ^ $ \}.  (Note
30866 the backslash in this list; for example, to match @samp{\[} you
30867 must use @code{"\\\\\\["}.  An exercise for the reader is to
30868 account for each of these six backslashes!)
30870 @vindex calc-embedded-close-formula
30871 The @code{calc-embedded-close-formula} variable holds a regular
30872 expression for the closing delimiter of a formula.  A closing
30873 regular expression to match the above example would be
30874 @code{"\\'\\|\n$\\|\\$\\$?"}.  This is almost the same as the
30875 other one, except it now uses @samp{\'} (``end-of-buffer'') and
30876 @samp{\n$} (newline occurring at end of line, yet another way
30877 of describing a blank line that is more appropriate for this
30878 case).
30880 @vindex calc-embedded-open-word
30881 @vindex calc-embedded-close-word
30882 The @code{calc-embedded-open-word} and @code{calc-embedded-close-word}
30883 variables are similar expressions used when you type @kbd{C-x * w}
30884 instead of @kbd{C-x * e} to enable Embedded mode.
30886 @vindex calc-embedded-open-plain
30887 The @code{calc-embedded-open-plain} variable is a string which
30888 begins a ``plain'' formula written in front of the formatted
30889 formula when @kbd{d p} mode is turned on.  Note that this is an
30890 actual string, not a regular expression, because Calc must be able
30891 to write this string into a buffer as well as to recognize it.
30892 The default string is @code{"%%% "} (note the trailing space), but may
30893 be different for certain major modes.
30895 @vindex calc-embedded-close-plain
30896 The @code{calc-embedded-close-plain} variable is a string which
30897 ends a ``plain'' formula.  The default is @code{" %%%\n"}, but may be
30898 different for different major modes.  Without
30899 the trailing newline here, the first line of a Big mode formula
30900 that followed might be shifted over with respect to the other lines.
30902 @vindex calc-embedded-open-new-formula
30903 The @code{calc-embedded-open-new-formula} variable is a string
30904 which is inserted at the front of a new formula when you type
30905 @kbd{C-x * f}.  Its default value is @code{"\n\n"}.  If this
30906 string begins with a newline character and the @kbd{C-x * f} is
30907 typed at the beginning of a line, @kbd{C-x * f} will skip this
30908 first newline to avoid introducing unnecessary blank lines in
30909 the file.
30911 @vindex calc-embedded-close-new-formula
30912 The @code{calc-embedded-close-new-formula} variable is the corresponding
30913 string which is inserted at the end of a new formula.  Its default
30914 value is also @code{"\n\n"}.  The final newline is omitted by
30915 @w{@kbd{C-x * f}} if typed at the end of a line.  (It follows that if
30916 @kbd{C-x * f} is typed on a blank line, both a leading opening
30917 newline and a trailing closing newline are omitted.)
30919 @vindex calc-embedded-announce-formula
30920 The @code{calc-embedded-announce-formula} variable is a regular
30921 expression which is sure to be followed by an embedded formula.
30922 The @kbd{C-x * a} command searches for this pattern as well as for
30923 @samp{=>} and @samp{:=} operators.  Note that @kbd{C-x * a} will
30924 not activate just anything surrounded by formula delimiters; after
30925 all, blank lines are considered formula delimiters by default!
30926 But if your language includes a delimiter which can only occur
30927 actually in front of a formula, you can take advantage of it here.
30928 The default pattern is @code{"%Embed\n\\(% .*\n\\)*"}, but may be
30929 different for different major modes.
30930 This pattern will check for @samp{%Embed} followed by any number of
30931 lines beginning with @samp{%} and a space.  This last is important to
30932 make Calc consider mode annotations part of the pattern, so that the
30933 formula's opening delimiter really is sure to follow the pattern.
30935 @vindex calc-embedded-open-mode
30936 The @code{calc-embedded-open-mode} variable is a string (not a
30937 regular expression) which should precede a mode annotation.
30938 Calc never scans for this string; Calc always looks for the
30939 annotation itself.  But this is the string that is inserted before
30940 the opening bracket when Calc adds an annotation on its own.
30941 The default is @code{"% "}, but may be different for different major
30942 modes. 
30944 @vindex calc-embedded-close-mode
30945 The @code{calc-embedded-close-mode} variable is a string which
30946 follows a mode annotation written by Calc.  Its default value
30947 is simply a newline, @code{"\n"}, but may be different for different
30948 major modes.  If you change this, it is a good idea still to end with a
30949 newline so that mode annotations will appear on lines by themselves.
30951 @node Programming, Customizing Calc, Embedded Mode, Top
30952 @chapter Programming
30954 @noindent
30955 There are several ways to ``program'' the Emacs Calculator, depending
30956 on the nature of the problem you need to solve.
30958 @enumerate
30959 @item
30960 @dfn{Keyboard macros} allow you to record a sequence of keystrokes
30961 and play them back at a later time.  This is just the standard Emacs
30962 keyboard macro mechanism, dressed up with a few more features such
30963 as loops and conditionals.
30965 @item
30966 @dfn{Algebraic definitions} allow you to use any formula to define a
30967 new function.  This function can then be used in algebraic formulas or
30968 as an interactive command.
30970 @item
30971 @dfn{Rewrite rules} are discussed in the section on algebra commands.
30972 @xref{Rewrite Rules}.  If you put your rewrite rules in the variable
30973 @code{EvalRules}, they will be applied automatically to all Calc
30974 results in just the same way as an internal ``rule'' is applied to
30975 evaluate @samp{sqrt(9)} to 3 and so on.  @xref{Automatic Rewrites}.
30977 @item
30978 @dfn{Lisp} is the programming language that Calc (and most of Emacs)
30979 is written in.  If the above techniques aren't powerful enough, you
30980 can write Lisp functions to do anything that built-in Calc commands
30981 can do.  Lisp code is also somewhat faster than keyboard macros or
30982 rewrite rules.
30983 @end enumerate
30985 @kindex z
30986 Programming features are available through the @kbd{z} and @kbd{Z}
30987 prefix keys.  New commands that you define are two-key sequences
30988 beginning with @kbd{z}.  Commands for managing these definitions
30989 use the shift-@kbd{Z} prefix.  (The @kbd{Z T} (@code{calc-timing})
30990 command is described elsewhere; @pxref{Troubleshooting Commands}.
30991 The @kbd{Z C} (@code{calc-user-define-composition}) command is also
30992 described elsewhere; @pxref{User-Defined Compositions}.)
30994 @menu
30995 * Creating User Keys::
30996 * Keyboard Macros::
30997 * Invocation Macros::
30998 * Algebraic Definitions::
30999 * Lisp Definitions::
31000 @end menu
31002 @node Creating User Keys, Keyboard Macros, Programming, Programming
31003 @section Creating User Keys
31005 @noindent
31006 @kindex Z D
31007 @pindex calc-user-define
31008 Any Calculator command may be bound to a key using the @kbd{Z D}
31009 (@code{calc-user-define}) command.  Actually, it is bound to a two-key
31010 sequence beginning with the lower-case @kbd{z} prefix.
31012 The @kbd{Z D} command first prompts for the key to define.  For example,
31013 press @kbd{Z D a} to define the new key sequence @kbd{z a}.  You are then
31014 prompted for the name of the Calculator command that this key should
31015 run.  For example, the @code{calc-sincos} command is not normally
31016 available on a key.  Typing @kbd{Z D s sincos @key{RET}} programs the
31017 @kbd{z s} key sequence to run @code{calc-sincos}.  This definition will remain
31018 in effect for the rest of this Emacs session, or until you redefine
31019 @kbd{z s} to be something else.
31021 You can actually bind any Emacs command to a @kbd{z} key sequence by
31022 backspacing over the @samp{calc-} when you are prompted for the command name.
31024 As with any other prefix key, you can type @kbd{z ?} to see a list of
31025 all the two-key sequences you have defined that start with @kbd{z}.
31026 Initially, no @kbd{z} sequences (except @kbd{z ?} itself) are defined.
31028 User keys are typically letters, but may in fact be any key.
31029 (@key{META}-keys are not permitted, nor are a terminal's special
31030 function keys which generate multi-character sequences when pressed.)
31031 You can define different commands on the shifted and unshifted versions
31032 of a letter if you wish.
31034 @kindex Z U
31035 @pindex calc-user-undefine
31036 The @kbd{Z U} (@code{calc-user-undefine}) command unbinds a user key.
31037 For example, the key sequence @kbd{Z U s} will undefine the @code{sincos}
31038 key we defined above.
31040 @kindex Z P
31041 @pindex calc-user-define-permanent
31042 @cindex Storing user definitions
31043 @cindex Permanent user definitions
31044 @cindex Calc init file, user-defined commands
31045 The @kbd{Z P} (@code{calc-user-define-permanent}) command makes a key
31046 binding permanent so that it will remain in effect even in future Emacs
31047 sessions.  (It does this by adding a suitable bit of Lisp code into
31048 your Calc init file; that is, the file given by the variable
31049 @code{calc-settings-file}, typically @file{~/.calc.el}.)  For example,
31050 @kbd{Z P s} would register our @code{sincos} command permanently.  If
31051 you later wish to unregister this command you must edit your Calc init
31052 file by hand.  (@xref{General Mode Commands}, for a way to tell Calc to
31053 use a different file for the Calc init file.)
31055 The @kbd{Z P} command also saves the user definition, if any, for the
31056 command bound to the key.  After @kbd{Z F} and @kbd{Z C}, a given user
31057 key could invoke a command, which in turn calls an algebraic function,
31058 which might have one or more special display formats.  A single @kbd{Z P}
31059 command will save all of these definitions.
31060 To save an algebraic function, type @kbd{'} (the apostrophe)
31061 when prompted for a key, and type the function name.  To save a command
31062 without its key binding, type @kbd{M-x} and enter a function name.  (The
31063 @samp{calc-} prefix will automatically be inserted for you.)
31064 (If the command you give implies a function, the function will be saved,
31065 and if the function has any display formats, those will be saved, but
31066 not the other way around:  Saving a function will not save any commands
31067 or key bindings associated with the function.) 
31069 @kindex Z E
31070 @pindex calc-user-define-edit
31071 @cindex Editing user definitions
31072 The @kbd{Z E} (@code{calc-user-define-edit}) command edits the definition
31073 of a user key.  This works for keys that have been defined by either
31074 keyboard macros or formulas; further details are contained in the relevant
31075 following sections.
31077 @node Keyboard Macros, Invocation Macros, Creating User Keys, Programming
31078 @section Programming with Keyboard Macros
31080 @noindent
31081 @kindex X
31082 @cindex Programming with keyboard macros
31083 @cindex Keyboard macros
31084 The easiest way to ``program'' the Emacs Calculator is to use standard
31085 keyboard macros.  Press @w{@kbd{C-x (}} to begin recording a macro.  From
31086 this point on, keystrokes you type will be saved away as well as
31087 performing their usual functions.  Press @kbd{C-x )} to end recording.
31088 Press shift-@kbd{X} (or the standard Emacs key sequence @kbd{C-x e}) to
31089 execute your keyboard macro by replaying the recorded keystrokes.
31090 @xref{Keyboard Macros, , , emacs, the Emacs Manual}, for further
31091 information.
31093 When you use @kbd{X} to invoke a keyboard macro, the entire macro is
31094 treated as a single command by the undo and trail features.  The stack
31095 display buffer is not updated during macro execution, but is instead
31096 fixed up once the macro completes.  Thus, commands defined with keyboard
31097 macros are convenient and efficient.  The @kbd{C-x e} command, on the
31098 other hand, invokes the keyboard macro with no special treatment: Each
31099 command in the macro will record its own undo information and trail entry,
31100 and update the stack buffer accordingly.  If your macro uses features
31101 outside of Calc's control to operate on the contents of the Calc stack
31102 buffer, or if it includes Undo, Redo, or last-arguments commands, you
31103 must use @kbd{C-x e} to make sure the buffer and undo list are up-to-date
31104 at all times.  You could also consider using @kbd{K} (@code{calc-keep-args})
31105 instead of @kbd{M-@key{RET}} (@code{calc-last-args}).
31107 Calc extends the standard Emacs keyboard macros in several ways.
31108 Keyboard macros can be used to create user-defined commands.  Keyboard
31109 macros can include conditional and iteration structures, somewhat
31110 analogous to those provided by a traditional programmable calculator.
31112 @menu
31113 * Naming Keyboard Macros::
31114 * Conditionals in Macros::
31115 * Loops in Macros::
31116 * Local Values in Macros::
31117 * Queries in Macros::
31118 @end menu
31120 @node Naming Keyboard Macros, Conditionals in Macros, Keyboard Macros, Keyboard Macros
31121 @subsection Naming Keyboard Macros
31123 @noindent
31124 @kindex Z K
31125 @pindex calc-user-define-kbd-macro
31126 Once you have defined a keyboard macro, you can bind it to a @kbd{z}
31127 key sequence with the @kbd{Z K} (@code{calc-user-define-kbd-macro}) command.
31128 This command prompts first for a key, then for a command name.  For
31129 example, if you type @kbd{C-x ( n @key{TAB} n @key{TAB} C-x )} you will
31130 define a keyboard macro which negates the top two numbers on the stack
31131 (@key{TAB} swaps the top two stack elements).  Now you can type
31132 @kbd{Z K n @key{RET}} to define this keyboard macro onto the @kbd{z n} key
31133 sequence.  The default command name (if you answer the second prompt with
31134 just the @key{RET} key as in this example) will be something like
31135 @samp{calc-User-n}.  The keyboard macro will now be available as both
31136 @kbd{z n} and @kbd{M-x calc-User-n}.  You can backspace and enter a more
31137 descriptive command name if you wish.
31139 Macros defined by @kbd{Z K} act like single commands; they are executed
31140 in the same way as by the @kbd{X} key.  If you wish to define the macro
31141 as a standard no-frills Emacs macro (to be executed as if by @kbd{C-x e}),
31142 give a negative prefix argument to @kbd{Z K}.
31144 Once you have bound your keyboard macro to a key, you can use
31145 @kbd{Z P} to register it permanently with Emacs.  @xref{Creating User Keys}.
31147 @cindex Keyboard macros, editing
31148 The @kbd{Z E} (@code{calc-user-define-edit}) command on a key that has
31149 been defined by a keyboard macro tries to use the @code{edmacro} package
31150 edit the macro.  Type @kbd{C-c C-c} to finish editing and update 
31151 the definition stored on the key, or, to cancel the edit, kill the
31152 buffer with @kbd{C-x k}.
31153 The special characters @code{RET}, @code{LFD}, @code{TAB}, @code{SPC},
31154 @code{DEL}, and @code{NUL} must be entered as these three character
31155 sequences, written in all uppercase, as must the prefixes @code{C-} and
31156 @code{M-}.  Spaces and line breaks are ignored.  Other characters are
31157 copied verbatim into the keyboard macro.  Basically, the notation is the
31158 same as is used in all of this manual's examples, except that the manual
31159 takes some liberties with spaces: When we say @kbd{' [1 2 3] @key{RET}},
31160 we take it for granted that it is clear we really mean 
31161 @kbd{' [1 @key{SPC} 2 @key{SPC} 3] @key{RET}}.
31163 @kindex C-x * m
31164 @pindex read-kbd-macro
31165 The @kbd{C-x * m} (@code{read-kbd-macro}) command reads an Emacs ``region''
31166 of spelled-out keystrokes and defines it as the current keyboard macro.
31167 It is a convenient way to define a keyboard macro that has been stored
31168 in a file, or to define a macro without executing it at the same time.
31170 @node Conditionals in Macros, Loops in Macros, Naming Keyboard Macros, Keyboard Macros
31171 @subsection Conditionals in Keyboard Macros
31173 @noindent
31174 @kindex Z [
31175 @kindex Z ]
31176 @pindex calc-kbd-if
31177 @pindex calc-kbd-else
31178 @pindex calc-kbd-else-if
31179 @pindex calc-kbd-end-if
31180 @cindex Conditional structures
31181 The @kbd{Z [} (@code{calc-kbd-if}) and @kbd{Z ]} (@code{calc-kbd-end-if})
31182 commands allow you to put simple tests in a keyboard macro.  When Calc
31183 sees the @kbd{Z [}, it pops an object from the stack and, if the object is
31184 a non-zero value, continues executing keystrokes.  But if the object is
31185 zero, or if it is not provably nonzero, Calc skips ahead to the matching
31186 @kbd{Z ]} keystroke.  @xref{Logical Operations}, for a set of commands for
31187 performing tests which conveniently produce 1 for true and 0 for false.
31189 For example, @kbd{@key{RET} 0 a < Z [ n Z ]} implements an absolute-value
31190 function in the form of a keyboard macro.  This macro duplicates the
31191 number on the top of the stack, pushes zero and compares using @kbd{a <}
31192 (@code{calc-less-than}), then, if the number was less than zero,
31193 executes @kbd{n} (@code{calc-change-sign}).  Otherwise, the change-sign
31194 command is skipped.
31196 To program this macro, type @kbd{C-x (}, type the above sequence of
31197 keystrokes, then type @kbd{C-x )}.  Note that the keystrokes will be
31198 executed while you are making the definition as well as when you later
31199 re-execute the macro by typing @kbd{X}.  Thus you should make sure a
31200 suitable number is on the stack before defining the macro so that you
31201 don't get a stack-underflow error during the definition process.
31203 Conditionals can be nested arbitrarily.  However, there should be exactly
31204 one @kbd{Z ]} for each @kbd{Z [} in a keyboard macro.
31206 @kindex Z :
31207 The @kbd{Z :} (@code{calc-kbd-else}) command allows you to choose between
31208 two keystroke sequences.  The general format is @kbd{@var{cond} Z [
31209 @var{then-part} Z : @var{else-part} Z ]}.  If @var{cond} is true
31210 (i.e., if the top of stack contains a non-zero number after @var{cond}
31211 has been executed), the @var{then-part} will be executed and the
31212 @var{else-part} will be skipped.  Otherwise, the @var{then-part} will
31213 be skipped and the @var{else-part} will be executed.
31215 @kindex Z |
31216 The @kbd{Z |} (@code{calc-kbd-else-if}) command allows you to choose
31217 between any number of alternatives.  For example,
31218 @kbd{@var{cond1} Z [ @var{part1} Z : @var{cond2} Z | @var{part2} Z :
31219 @var{part3} Z ]} will execute @var{part1} if @var{cond1} is true,
31220 otherwise it will execute @var{part2} if @var{cond2} is true, otherwise
31221 it will execute @var{part3}.
31223 More precisely, @kbd{Z [} pops a number and conditionally skips to the
31224 next matching @kbd{Z :} or @kbd{Z ]} key.  @w{@kbd{Z ]}} has no effect when
31225 actually executed.  @kbd{Z :} skips to the next matching @kbd{Z ]}.
31226 @kbd{Z |} pops a number and conditionally skips to the next matching
31227 @kbd{Z :} or @kbd{Z ]}; thus, @kbd{Z [} and @kbd{Z |} are functionally
31228 equivalent except that @kbd{Z [} participates in nesting but @kbd{Z |}
31229 does not.
31231 Calc's conditional and looping constructs work by scanning the
31232 keyboard macro for occurrences of character sequences like @samp{Z:}
31233 and @samp{Z]}.  One side-effect of this is that if you use these
31234 constructs you must be careful that these character pairs do not
31235 occur by accident in other parts of the macros.  Since Calc rarely
31236 uses shift-@kbd{Z} for any purpose except as a prefix character, this
31237 is not likely to be a problem.  Another side-effect is that it will
31238 not work to define your own custom key bindings for these commands.
31239 Only the standard shift-@kbd{Z} bindings will work correctly.
31241 @kindex Z C-g
31242 If Calc gets stuck while skipping characters during the definition of a
31243 macro, type @kbd{Z C-g} to cancel the definition.  (Typing plain @kbd{C-g}
31244 actually adds a @kbd{C-g} keystroke to the macro.)
31246 @node Loops in Macros, Local Values in Macros, Conditionals in Macros, Keyboard Macros
31247 @subsection Loops in Keyboard Macros
31249 @noindent
31250 @kindex Z <
31251 @kindex Z >
31252 @pindex calc-kbd-repeat
31253 @pindex calc-kbd-end-repeat
31254 @cindex Looping structures
31255 @cindex Iterative structures
31256 The @kbd{Z <} (@code{calc-kbd-repeat}) and @kbd{Z >}
31257 (@code{calc-kbd-end-repeat}) commands pop a number from the stack,
31258 which must be an integer, then repeat the keystrokes between the brackets
31259 the specified number of times.  If the integer is zero or negative, the
31260 body is skipped altogether.  For example, @kbd{1 @key{TAB} Z < 2 * Z >}
31261 computes two to a nonnegative integer power.  First, we push 1 on the
31262 stack and then swap the integer argument back to the top.  The @kbd{Z <}
31263 pops that argument leaving the 1 back on top of the stack.  Then, we
31264 repeat a multiply-by-two step however many times.
31266 Once again, the keyboard macro is executed as it is being entered.
31267 In this case it is especially important to set up reasonable initial
31268 conditions before making the definition:  Suppose the integer 1000 just
31269 happened to be sitting on the stack before we typed the above definition!
31270 Another approach is to enter a harmless dummy definition for the macro,
31271 then go back and edit in the real one with a @kbd{Z E} command.  Yet
31272 another approach is to type the macro as written-out keystroke names
31273 in a buffer, then use @kbd{C-x * m} (@code{read-kbd-macro}) to read the
31274 macro.
31276 @kindex Z /
31277 @pindex calc-break
31278 The @kbd{Z /} (@code{calc-kbd-break}) command allows you to break out
31279 of a keyboard macro loop prematurely.  It pops an object from the stack;
31280 if that object is true (a non-zero number), control jumps out of the
31281 innermost enclosing @kbd{Z <} @dots{} @kbd{Z >} loop and continues
31282 after the @kbd{Z >}.  If the object is false, the @kbd{Z /} has no
31283 effect.  Thus @kbd{@var{cond} Z /} is similar to @samp{if (@var{cond}) break;}
31284 in the C language.
31286 @kindex Z (
31287 @kindex Z )
31288 @pindex calc-kbd-for
31289 @pindex calc-kbd-end-for
31290 The @kbd{Z (} (@code{calc-kbd-for}) and @kbd{Z )} (@code{calc-kbd-end-for})
31291 commands are similar to @kbd{Z <} and @kbd{Z >}, except that they make the
31292 value of the counter available inside the loop.  The general layout is
31293 @kbd{@var{init} @var{final} Z ( @var{body} @var{step} Z )}.  The @kbd{Z (}
31294 command pops initial and final values from the stack.  It then creates
31295 a temporary internal counter and initializes it with the value @var{init}.
31296 The @kbd{Z (} command then repeatedly pushes the counter value onto the
31297 stack and executes @var{body} and @var{step}, adding @var{step} to the
31298 counter each time until the loop finishes.
31300 @cindex Summations (by keyboard macros)
31301 By default, the loop finishes when the counter becomes greater than (or
31302 less than) @var{final}, assuming @var{initial} is less than (greater
31303 than) @var{final}.  If @var{initial} is equal to @var{final}, the body
31304 executes exactly once.  The body of the loop always executes at least
31305 once.  For example, @kbd{0 1 10 Z ( 2 ^ + 1 Z )} computes the sum of the
31306 squares of the integers from 1 to 10, in steps of 1.
31308 If you give a numeric prefix argument of 1 to @kbd{Z (}, the loop is
31309 forced to use upward-counting conventions.  In this case, if @var{initial}
31310 is greater than @var{final} the body will not be executed at all.
31311 Note that @var{step} may still be negative in this loop; the prefix
31312 argument merely constrains the loop-finished test.  Likewise, a prefix
31313 argument of @mathit{-1} forces downward-counting conventions.
31315 @kindex Z @{
31316 @kindex Z @}
31317 @pindex calc-kbd-loop
31318 @pindex calc-kbd-end-loop
31319 The @kbd{Z @{} (@code{calc-kbd-loop}) and @kbd{Z @}}
31320 (@code{calc-kbd-end-loop}) commands are similar to @kbd{Z <} and
31321 @kbd{Z >}, except that they do not pop a count from the stack---they
31322 effectively create an infinite loop.  Every @kbd{Z @{} @dots{} @kbd{Z @}}
31323 loop ought to include at least one @kbd{Z /} to make sure the loop
31324 doesn't run forever.  (If any error message occurs which causes Emacs
31325 to beep, the keyboard macro will also be halted; this is a standard
31326 feature of Emacs.  You can also generally press @kbd{C-g} to halt a
31327 running keyboard macro, although not all versions of Unix support
31328 this feature.)
31330 The conditional and looping constructs are not actually tied to
31331 keyboard macros, but they are most often used in that context.
31332 For example, the keystrokes @kbd{10 Z < 23 @key{RET} Z >} push
31333 ten copies of 23 onto the stack.  This can be typed ``live'' just
31334 as easily as in a macro definition.
31336 @xref{Conditionals in Macros}, for some additional notes about
31337 conditional and looping commands.
31339 @node Local Values in Macros, Queries in Macros, Loops in Macros, Keyboard Macros
31340 @subsection Local Values in Macros
31342 @noindent
31343 @cindex Local variables
31344 @cindex Restoring saved modes
31345 Keyboard macros sometimes want to operate under known conditions
31346 without affecting surrounding conditions.  For example, a keyboard
31347 macro may wish to turn on Fraction mode, or set a particular
31348 precision, independent of the user's normal setting for those
31349 modes.
31351 @kindex Z `
31352 @kindex Z '
31353 @pindex calc-kbd-push
31354 @pindex calc-kbd-pop
31355 Macros also sometimes need to use local variables.  Assignments to
31356 local variables inside the macro should not affect any variables
31357 outside the macro.  The @kbd{Z `} (@code{calc-kbd-push}) and @kbd{Z '}
31358 (@code{calc-kbd-pop}) commands give you both of these capabilities.
31360 When you type @kbd{Z `} (with a backquote or accent grave character),
31361 the values of various mode settings are saved away.  The ten ``quick''
31362 variables @code{q0} through @code{q9} are also saved.  When
31363 you type @w{@kbd{Z '}} (with an apostrophe), these values are restored.
31364 Pairs of @kbd{Z `} and @kbd{Z '} commands may be nested.
31366 If a keyboard macro halts due to an error in between a @kbd{Z `} and
31367 a @kbd{Z '}, the saved values will be restored correctly even though
31368 the macro never reaches the @kbd{Z '} command.  Thus you can use
31369 @kbd{Z `} and @kbd{Z '} without having to worry about what happens
31370 in exceptional conditions.
31372 If you type @kbd{Z `} ``live'' (not in a keyboard macro), Calc puts
31373 you into a ``recursive edit.''  You can tell you are in a recursive
31374 edit because there will be extra square brackets in the mode line,
31375 as in @samp{[(Calculator)]}.  These brackets will go away when you
31376 type the matching @kbd{Z '} command.  The modes and quick variables
31377 will be saved and restored in just the same way as if actual keyboard
31378 macros were involved.
31380 The modes saved by @kbd{Z `} and @kbd{Z '} are the current precision
31381 and binary word size, the angular mode (Deg, Rad, or HMS), the
31382 simplification mode, Algebraic mode, Symbolic mode, Infinite mode,
31383 Matrix or Scalar mode, Fraction mode, and the current complex mode
31384 (Polar or Rectangular).  The ten ``quick'' variables' values (or lack
31385 thereof) are also saved.
31387 Most mode-setting commands act as toggles, but with a numeric prefix
31388 they force the mode either on (positive prefix) or off (negative
31389 or zero prefix).  Since you don't know what the environment might
31390 be when you invoke your macro, it's best to use prefix arguments
31391 for all mode-setting commands inside the macro.
31393 In fact, @kbd{C-u Z `} is like @kbd{Z `} except that it sets the modes
31394 listed above to their default values.  As usual, the matching @kbd{Z '}
31395 will restore the modes to their settings from before the @kbd{C-u Z `}.
31396 Also, @w{@kbd{Z `}} with a negative prefix argument resets the algebraic mode
31397 to its default (off) but leaves the other modes the same as they were
31398 outside the construct.
31400 The contents of the stack and trail, values of non-quick variables, and
31401 other settings such as the language mode and the various display modes,
31402 are @emph{not} affected by @kbd{Z `} and @kbd{Z '}.
31404 @node Queries in Macros, , Local Values in Macros, Keyboard Macros
31405 @subsection Queries in Keyboard Macros
31407 @c @noindent
31408 @c @kindex Z =
31409 @c @pindex calc-kbd-report
31410 @c The @kbd{Z =} (@code{calc-kbd-report}) command displays an informative
31411 @c message including the value on the top of the stack.  You are prompted
31412 @c to enter a string.  That string, along with the top-of-stack value,
31413 @c is displayed unless @kbd{m w} (@code{calc-working}) has been used
31414 @c to turn such messages off.
31416 @noindent
31417 @kindex Z #
31418 @pindex calc-kbd-query
31419 The @kbd{Z #} (@code{calc-kbd-query}) command prompts for an algebraic
31420 entry which takes its input from the keyboard, even during macro
31421 execution.  All the normal conventions of algebraic input, including the
31422 use of @kbd{$} characters, are supported.  The prompt message itself is
31423 taken from the top of the stack, and so must be entered (as a string)
31424 before the @kbd{Z #} command.  (Recall, as a string it can be entered by
31425 pressing the @kbd{"} key and will appear as a vector when it is put on
31426 the stack.  The prompt message is only put on the stack to provide a
31427 prompt for the @kbd{Z #} command; it will not play any role in any
31428 subsequent calculations.)  This command allows your keyboard macros to
31429 accept numbers or formulas as interactive input.
31431 As an example, 
31432 @kbd{2 @key{RET} "Power: " @key{RET} Z # 3 @key{RET} ^} will prompt for
31433 input with ``Power: '' in the minibuffer, then return 2 to the provided
31434 power.  (The response to the prompt that's given, 3 in this example,
31435 will not be part of the macro.)
31437 @xref{Keyboard Macro Query, , , emacs, the Emacs Manual}, for a description of
31438 @kbd{C-x q} (@code{kbd-macro-query}), the standard Emacs way to accept
31439 keyboard input during a keyboard macro.  In particular, you can use
31440 @kbd{C-x q} to enter a recursive edit, which allows the user to perform
31441 any Calculator operations interactively before pressing @kbd{C-M-c} to
31442 return control to the keyboard macro.
31444 @node Invocation Macros, Algebraic Definitions, Keyboard Macros, Programming
31445 @section Invocation Macros
31447 @kindex C-x * z
31448 @kindex Z I
31449 @pindex calc-user-invocation
31450 @pindex calc-user-define-invocation
31451 Calc provides one special keyboard macro, called up by @kbd{C-x * z}
31452 (@code{calc-user-invocation}), that is intended to allow you to define
31453 your own special way of starting Calc.  To define this ``invocation
31454 macro,'' create the macro in the usual way with @kbd{C-x (} and
31455 @kbd{C-x )}, then type @kbd{Z I} (@code{calc-user-define-invocation}).
31456 There is only one invocation macro, so you don't need to type any
31457 additional letters after @kbd{Z I}.  From now on, you can type
31458 @kbd{C-x * z} at any time to execute your invocation macro.
31460 For example, suppose you find yourself often grabbing rectangles of
31461 numbers into Calc and multiplying their columns.  You can do this
31462 by typing @kbd{C-x * r} to grab, and @kbd{V R : *} to multiply columns.
31463 To make this into an invocation macro, just type @kbd{C-x ( C-x * r
31464 V R : * C-x )}, then @kbd{Z I}.  Then, to multiply a rectangle of data,
31465 just mark the data in its buffer in the usual way and type @kbd{C-x * z}.
31467 Invocation macros are treated like regular Emacs keyboard macros;
31468 all the special features described above for @kbd{Z K}-style macros
31469 do not apply.  @kbd{C-x * z} is just like @kbd{C-x e}, except that it
31470 uses the macro that was last stored by @kbd{Z I}.  (In fact, the
31471 macro does not even have to have anything to do with Calc!)
31473 The @kbd{m m} command saves the last invocation macro defined by
31474 @kbd{Z I} along with all the other Calc mode settings.
31475 @xref{General Mode Commands}.
31477 @node Algebraic Definitions, Lisp Definitions, Invocation Macros, Programming
31478 @section Programming with Formulas
31480 @noindent
31481 @kindex Z F
31482 @pindex calc-user-define-formula
31483 @cindex Programming with algebraic formulas
31484 Another way to create a new Calculator command uses algebraic formulas.
31485 The @kbd{Z F} (@code{calc-user-define-formula}) command stores the
31486 formula at the top of the stack as the definition for a key.  This
31487 command prompts for five things: The key, the command name, the function
31488 name, the argument list, and the behavior of the command when given
31489 non-numeric arguments.
31491 For example, suppose we type @kbd{' a+2b @key{RET}} to push the formula
31492 @samp{a + 2*b} onto the stack.  We now type @kbd{Z F m} to define this
31493 formula on the @kbd{z m} key sequence.  The next prompt is for a command
31494 name, beginning with @samp{calc-}, which should be the long (@kbd{M-x}) form
31495 for the new command.  If you simply press @key{RET}, a default name like
31496 @code{calc-User-m} will be constructed.  In our example, suppose we enter
31497 @kbd{spam @key{RET}} to define the new command as @code{calc-spam}.
31499 If you want to give the formula a long-style name only, you can press
31500 @key{SPC} or @key{RET} when asked which single key to use.  For example
31501 @kbd{Z F @key{RET} spam @key{RET}} defines the new command as
31502 @kbd{M-x calc-spam}, with no keyboard equivalent.
31504 The third prompt is for an algebraic function name.  The default is to
31505 use the same name as the command name but without the @samp{calc-}
31506 prefix.  (If this is of the form @samp{User-m}, the hyphen is removed so
31507 it won't be taken for a minus sign in algebraic formulas.)
31508 This is the name you will use if you want to enter your 
31509 new function in an algebraic formula.  Suppose we enter @kbd{yow @key{RET}}.
31510 Then the new function can be invoked by pushing two numbers on the
31511 stack and typing @kbd{z m} or @kbd{x spam}, or by entering the algebraic
31512 formula @samp{yow(x,y)}.
31514 The fourth prompt is for the function's argument list.  This is used to
31515 associate values on the stack with the variables that appear in the formula.
31516 The default is a list of all variables which appear in the formula, sorted
31517 into alphabetical order.  In our case, the default would be @samp{(a b)}.
31518 This means that, when the user types @kbd{z m}, the Calculator will remove
31519 two numbers from the stack, substitute these numbers for @samp{a} and
31520 @samp{b} (respectively) in the formula, then simplify the formula and
31521 push the result on the stack.  In other words, @kbd{10 @key{RET} 100 z m}
31522 would replace the 10 and 100 on the stack with the number 210, which is
31523 @expr{a + 2 b} with @expr{a=10} and @expr{b=100}.  Likewise, the formula
31524 @samp{yow(10, 100)} will be evaluated by substituting @expr{a=10} and
31525 @expr{b=100} in the definition.
31527 You can rearrange the order of the names before pressing @key{RET} to
31528 control which stack positions go to which variables in the formula.  If
31529 you remove a variable from the argument list, that variable will be left
31530 in symbolic form by the command.  Thus using an argument list of @samp{(b)}
31531 for our function would cause @kbd{10 z m} to replace the 10 on the stack
31532 with the formula @samp{a + 20}.  If we had used an argument list of
31533 @samp{(b a)}, the result with inputs 10 and 100 would have been 120.
31535 You can also put a nameless function on the stack instead of just a
31536 formula, as in @samp{<a, b : a + 2 b>}.  @xref{Specifying Operators}.
31537 In this example, the command will be defined by the formula @samp{a + 2 b}
31538 using the argument list @samp{(a b)}.
31540 The final prompt is a y-or-n question concerning what to do if symbolic
31541 arguments are given to your function.  If you answer @kbd{y}, then
31542 executing @kbd{z m} (using the original argument list @samp{(a b)}) with
31543 arguments @expr{10} and @expr{x} will leave the function in symbolic
31544 form, i.e., @samp{yow(10,x)}.  On the other hand, if you answer @kbd{n},
31545 then the formula will always be expanded, even for non-constant
31546 arguments: @samp{10 + 2 x}.  If you never plan to feed algebraic
31547 formulas to your new function, it doesn't matter how you answer this
31548 question.
31550 If you answered @kbd{y} to this question you can still cause a function
31551 call to be expanded by typing @kbd{a "} (@code{calc-expand-formula}).
31552 Also, Calc will expand the function if necessary when you take a
31553 derivative or integral or solve an equation involving the function.
31555 @kindex Z G
31556 @pindex calc-get-user-defn
31557 Once you have defined a formula on a key, you can retrieve this formula
31558 with the @kbd{Z G} (@code{calc-user-define-get-defn}) command.  Press a
31559 key, and this command pushes the formula that was used to define that
31560 key onto the stack.  Actually, it pushes a nameless function that
31561 specifies both the argument list and the defining formula.  You will get
31562 an error message if the key is undefined, or if the key was not defined
31563 by a @kbd{Z F} command.
31565 The @kbd{Z E} (@code{calc-user-define-edit}) command on a key that has
31566 been defined by a formula uses a variant of the @code{calc-edit} command
31567 to edit the defining formula.  Press @kbd{C-c C-c} to finish editing and
31568 store the new formula back in the definition, or kill the buffer with
31569 @kbd{C-x k} to
31570 cancel the edit.  (The argument list and other properties of the
31571 definition are unchanged; to adjust the argument list, you can use
31572 @kbd{Z G} to grab the function onto the stack, edit with @kbd{`}, and
31573 then re-execute the @kbd{Z F} command.)
31575 As usual, the @kbd{Z P} command records your definition permanently.
31576 In this case it will permanently record all three of the relevant
31577 definitions: the key, the command, and the function.
31579 You may find it useful to turn off the default simplifications with
31580 @kbd{m O} (@code{calc-no-simplify-mode}) when entering a formula to be
31581 used as a function definition.  For example, the formula @samp{deriv(a^2,v)}
31582 which might be used to define a new function @samp{dsqr(a,v)} will be
31583 ``simplified'' to 0 immediately upon entry since @code{deriv} considers
31584 @expr{a} to be constant with respect to @expr{v}.  Turning off
31585 default simplifications cures this problem:  The definition will be stored
31586 in symbolic form without ever activating the @code{deriv} function.  Press
31587 @kbd{m D} to turn the default simplifications back on afterwards.
31589 @node Lisp Definitions, , Algebraic Definitions, Programming
31590 @section Programming with Lisp
31592 @noindent
31593 The Calculator can be programmed quite extensively in Lisp.  All you
31594 do is write a normal Lisp function definition, but with @code{defmath}
31595 in place of @code{defun}.  This has the same form as @code{defun}, but it
31596 automagically replaces calls to standard Lisp functions like @code{+} and
31597 @code{zerop} with calls to the corresponding functions in Calc's own library.
31598 Thus you can write natural-looking Lisp code which operates on all of the
31599 standard Calculator data types.  You can then use @kbd{Z D} if you wish to
31600 bind your new command to a @kbd{z}-prefix key sequence.  The @kbd{Z E} command
31601 will not edit a Lisp-based definition.
31603 Emacs Lisp is described in the GNU Emacs Lisp Reference Manual.  This section
31604 assumes a familiarity with Lisp programming concepts; if you do not know
31605 Lisp, you may find keyboard macros or rewrite rules to be an easier way
31606 to program the Calculator.
31608 This section first discusses ways to write commands, functions, or
31609 small programs to be executed inside of Calc.  Then it discusses how
31610 your own separate programs are able to call Calc from the outside.
31611 Finally, there is a list of internal Calc functions and data structures
31612 for the true Lisp enthusiast.
31614 @menu
31615 * Defining Functions::
31616 * Defining Simple Commands::
31617 * Defining Stack Commands::
31618 * Argument Qualifiers::
31619 * Example Definitions::
31621 * Calling Calc from Your Programs::
31622 * Internals::
31623 @end menu
31625 @node Defining Functions, Defining Simple Commands, Lisp Definitions, Lisp Definitions
31626 @subsection Defining New Functions
31628 @noindent
31629 @findex defmath
31630 The @code{defmath} function (actually a Lisp macro) is like @code{defun}
31631 except that code in the body of the definition can make use of the full
31632 range of Calculator data types.  The prefix @samp{calcFunc-} is added
31633 to the specified name to get the actual Lisp function name.  As a simple
31634 example,
31636 @example
31637 (defmath myfact (n)
31638   (if (> n 0)
31639       (* n (myfact (1- n)))
31640     1))
31641 @end example
31643 @noindent
31644 This actually expands to the code,
31646 @example
31647 (defun calcFunc-myfact (n)
31648   (if (math-posp n)
31649       (math-mul n (calcFunc-myfact (math-add n -1)))
31650     1))
31651 @end example
31653 @noindent
31654 This function can be used in algebraic expressions, e.g., @samp{myfact(5)}.
31656 The @samp{myfact} function as it is defined above has the bug that an
31657 expression @samp{myfact(a+b)} will be simplified to 1 because the
31658 formula @samp{a+b} is not considered to be @code{posp}.  A robust
31659 factorial function would be written along the following lines:
31661 @smallexample
31662 (defmath myfact (n)
31663   (if (> n 0)
31664       (* n (myfact (1- n)))
31665     (if (= n 0)
31666         1
31667       nil)))    ; this could be simplified as: (and (= n 0) 1)
31668 @end smallexample
31670 If a function returns @code{nil}, it is left unsimplified by the Calculator
31671 (except that its arguments will be simplified).  Thus, @samp{myfact(a+1+2)}
31672 will be simplified to @samp{myfact(a+3)} but no further.  Beware that every
31673 time the Calculator reexamines this formula it will attempt to resimplify
31674 it, so your function ought to detect the returning-@code{nil} case as
31675 efficiently as possible.
31677 The following standard Lisp functions are treated by @code{defmath}:
31678 @code{+}, @code{-}, @code{*}, @code{/}, @code{%}, @code{^} or
31679 @code{expt}, @code{=}, @code{<}, @code{>}, @code{<=}, @code{>=},
31680 @code{/=}, @code{1+}, @code{1-}, @code{logand}, @code{logior}, @code{logxor},
31681 @code{logandc2}, @code{lognot}.  Also, @code{~=} is an abbreviation for
31682 @code{math-nearly-equal}, which is useful in implementing Taylor series.
31684 For other functions @var{func}, if a function by the name
31685 @samp{calcFunc-@var{func}} exists it is used, otherwise if a function by the
31686 name @samp{math-@var{func}} exists it is used, otherwise if @var{func} itself
31687 is defined as a function it is used, otherwise @samp{calcFunc-@var{func}} is
31688 used on the assumption that this is a to-be-defined math function.  Also, if
31689 the function name is quoted as in @samp{('integerp a)} the function name is
31690 always used exactly as written (but not quoted).
31692 Variable names have @samp{var-} prepended to them unless they appear in
31693 the function's argument list or in an enclosing @code{let}, @code{let*},
31694 @code{for}, or @code{foreach} form,
31695 or their names already contain a @samp{-} character.  Thus a reference to
31696 @samp{foo} is the same as a reference to @samp{var-foo}.
31698 A few other Lisp extensions are available in @code{defmath} definitions:
31700 @itemize @bullet
31701 @item
31702 The @code{elt} function accepts any number of index variables.
31703 Note that Calc vectors are stored as Lisp lists whose first
31704 element is the symbol @code{vec}; thus, @samp{(elt v 2)} yields
31705 the second element of vector @code{v}, and @samp{(elt m i j)}
31706 yields one element of a Calc matrix.
31708 @item
31709 The @code{setq} function has been extended to act like the Common
31710 Lisp @code{setf} function.  (The name @code{setf} is recognized as
31711 a synonym of @code{setq}.)  Specifically, the first argument of
31712 @code{setq} can be an @code{nth}, @code{elt}, @code{car}, or @code{cdr} form,
31713 in which case the effect is to store into the specified
31714 element of a list.  Thus, @samp{(setq (elt m i j) x)} stores @expr{x}
31715 into one element of a matrix.
31717 @item
31718 A @code{for} looping construct is available.  For example,
31719 @samp{(for ((i 0 10)) body)} executes @code{body} once for each
31720 binding of @expr{i} from zero to 10.  This is like a @code{let}
31721 form in that @expr{i} is temporarily bound to the loop count
31722 without disturbing its value outside the @code{for} construct.
31723 Nested loops, as in @samp{(for ((i 0 10) (j 0 (1- i) 2)) body)},
31724 are also available.  For each value of @expr{i} from zero to 10,
31725 @expr{j} counts from 0 to @expr{i-1} in steps of two.  Note that
31726 @code{for} has the same general outline as @code{let*}, except
31727 that each element of the header is a list of three or four
31728 things, not just two.
31730 @item
31731 The @code{foreach} construct loops over elements of a list.
31732 For example, @samp{(foreach ((x (cdr v))) body)} executes
31733 @code{body} with @expr{x} bound to each element of Calc vector
31734 @expr{v} in turn.  The purpose of @code{cdr} here is to skip over
31735 the initial @code{vec} symbol in the vector.
31737 @item
31738 The @code{break} function breaks out of the innermost enclosing
31739 @code{while}, @code{for}, or @code{foreach} loop.  If given a
31740 value, as in @samp{(break x)}, this value is returned by the
31741 loop.  (Lisp loops otherwise always return @code{nil}.)
31743 @item
31744 The @code{return} function prematurely returns from the enclosing
31745 function.  For example, @samp{(return (+ x y))} returns @expr{x+y}
31746 as the value of a function.  You can use @code{return} anywhere
31747 inside the body of the function.
31748 @end itemize
31750 Non-integer numbers (and extremely large integers) cannot be included
31751 directly into a @code{defmath} definition.  This is because the Lisp
31752 reader will fail to parse them long before @code{defmath} ever gets control.
31753 Instead, use the notation, @samp{:"3.1415"}.  In fact, any algebraic
31754 formula can go between the quotes.  For example,
31756 @smallexample
31757 (defmath sqexp (x)     ; sqexp(x) == sqrt(exp(x)) == exp(x*0.5)
31758   (and (numberp x)
31759        (exp :"x * 0.5")))
31760 @end smallexample
31762 expands to
31764 @smallexample
31765 (defun calcFunc-sqexp (x)
31766   (and (math-numberp x)
31767        (calcFunc-exp (math-mul x '(float 5 -1)))))
31768 @end smallexample
31770 Note the use of @code{numberp} as a guard to ensure that the argument is
31771 a number first, returning @code{nil} if not.  The exponential function
31772 could itself have been included in the expression, if we had preferred:
31773 @samp{:"exp(x * 0.5)"}.  As another example, the multiplication-and-recursion
31774 step of @code{myfact} could have been written
31776 @example
31777 :"n * myfact(n-1)"
31778 @end example
31780 A good place to put your @code{defmath} commands is your Calc init file
31781 (the file given by @code{calc-settings-file}, typically
31782 @file{~/.calc.el}), which will not be loaded until Calc starts.
31783 If a file named @file{.emacs} exists in your home directory, Emacs reads
31784 and executes the Lisp forms in this file as it starts up.  While it may
31785 seem reasonable to put your favorite @code{defmath} commands there,
31786 this has the unfortunate side-effect that parts of the Calculator must be
31787 loaded in to process the @code{defmath} commands whether or not you will
31788 actually use the Calculator!  If you want to put the @code{defmath}
31789 commands there (for example, if you redefine @code{calc-settings-file}
31790 to be @file{.emacs}), a better effect can be had by writing
31792 @example
31793 (put 'calc-define 'thing '(progn
31794  (defmath ... )
31795  (defmath ... )
31797 @end example
31799 @noindent
31800 @vindex calc-define
31801 The @code{put} function adds a @dfn{property} to a symbol.  Each Lisp
31802 symbol has a list of properties associated with it.  Here we add a
31803 property with a name of @code{thing} and a @samp{(progn ...)} form as
31804 its value.  When Calc starts up, and at the start of every Calc command,
31805 the property list for the symbol @code{calc-define} is checked and the
31806 values of any properties found are evaluated as Lisp forms.  The
31807 properties are removed as they are evaluated.  The property names
31808 (like @code{thing}) are not used; you should choose something like the
31809 name of your project so as not to conflict with other properties.
31811 The net effect is that you can put the above code in your @file{.emacs}
31812 file and it will not be executed until Calc is loaded.  Or, you can put
31813 that same code in another file which you load by hand either before or
31814 after Calc itself is loaded.
31816 The properties of @code{calc-define} are evaluated in the same order
31817 that they were added.  They can assume that the Calc modules @file{calc.el},
31818 @file{calc-ext.el}, and @file{calc-macs.el} have been fully loaded, and
31819 that the @samp{*Calculator*} buffer will be the current buffer.
31821 If your @code{calc-define} property only defines algebraic functions,
31822 you can be sure that it will have been evaluated before Calc tries to
31823 call your function, even if the file defining the property is loaded
31824 after Calc is loaded.  But if the property defines commands or key
31825 sequences, it may not be evaluated soon enough.  (Suppose it defines the
31826 new command @code{tweak-calc}; the user can load your file, then type
31827 @kbd{M-x tweak-calc} before Calc has had chance to do anything.)  To
31828 protect against this situation, you can put
31830 @example
31831 (run-hooks 'calc-check-defines)
31832 @end example
31834 @findex calc-check-defines
31835 @noindent
31836 at the end of your file.  The @code{calc-check-defines} function is what
31837 looks for and evaluates properties on @code{calc-define}; @code{run-hooks}
31838 has the advantage that it is quietly ignored if @code{calc-check-defines}
31839 is not yet defined because Calc has not yet been loaded.
31841 Examples of things that ought to be enclosed in a @code{calc-define}
31842 property are @code{defmath} calls, @code{define-key} calls that modify
31843 the Calc key map, and any calls that redefine things defined inside Calc.
31844 Ordinary @code{defun}s need not be enclosed with @code{calc-define}.
31846 @node Defining Simple Commands, Defining Stack Commands, Defining Functions, Lisp Definitions
31847 @subsection Defining New Simple Commands
31849 @noindent
31850 @findex interactive
31851 If a @code{defmath} form contains an @code{interactive} clause, it defines
31852 a Calculator command.  Actually such a @code{defmath} results in @emph{two}
31853 function definitions:  One, a @samp{calcFunc-} function as was just described,
31854 with the @code{interactive} clause removed.  Two, a @samp{calc-} function
31855 with a suitable @code{interactive} clause and some sort of wrapper to make
31856 the command work in the Calc environment.
31858 In the simple case, the @code{interactive} clause has the same form as
31859 for normal Emacs Lisp commands:
31861 @smallexample
31862 (defmath increase-precision (delta)
31863   "Increase precision by DELTA."     ; This is the "documentation string"
31864   (interactive "p")                  ; Register this as a M-x-able command
31865   (setq calc-internal-prec (+ calc-internal-prec delta)))
31866 @end smallexample
31868 This expands to the pair of definitions,
31870 @smallexample
31871 (defun calc-increase-precision (delta)
31872   "Increase precision by DELTA."
31873   (interactive "p")
31874   (calc-wrapper
31875    (setq calc-internal-prec (math-add calc-internal-prec delta))))
31877 (defun calcFunc-increase-precision (delta)
31878   "Increase precision by DELTA."
31879   (setq calc-internal-prec (math-add calc-internal-prec delta)))
31880 @end smallexample
31882 @noindent
31883 where in this case the latter function would never really be used!  Note
31884 that since the Calculator stores small integers as plain Lisp integers,
31885 the @code{math-add} function will work just as well as the native
31886 @code{+} even when the intent is to operate on native Lisp integers.
31888 @findex calc-wrapper
31889 The @samp{calc-wrapper} call invokes a macro which surrounds the body of
31890 the function with code that looks roughly like this:
31892 @smallexample
31893 (let ((calc-command-flags nil))
31894   (unwind-protect
31895       (save-excursion
31896         (calc-select-buffer)
31897         @emph{body of function}
31898         @emph{renumber stack}
31899         @emph{clear} Working @emph{message})
31900     @emph{realign cursor and window}
31901     @emph{clear Inverse, Hyperbolic, and Keep Args flags}
31902     @emph{update Emacs mode line}))
31903 @end smallexample
31905 @findex calc-select-buffer
31906 The @code{calc-select-buffer} function selects the @samp{*Calculator*}
31907 buffer if necessary, say, because the command was invoked from inside
31908 the @samp{*Calc Trail*} window.
31910 @findex calc-set-command-flag
31911 You can call, for example, @code{(calc-set-command-flag 'no-align)} to
31912 set the above-mentioned command flags.  Calc routines recognize the
31913 following command flags:
31915 @table @code
31916 @item renum-stack
31917 Stack line numbers @samp{1:}, @samp{2:}, and so on must be renumbered
31918 after this command completes.  This is set by routines like
31919 @code{calc-push}.
31921 @item clear-message
31922 Calc should call @samp{(message "")} if this command completes normally
31923 (to clear a ``Working@dots{}'' message out of the echo area).
31925 @item no-align
31926 Do not move the cursor back to the @samp{.} top-of-stack marker.
31928 @item position-point
31929 Use the variables @code{calc-position-point-line} and
31930 @code{calc-position-point-column} to position the cursor after
31931 this command finishes.
31933 @item keep-flags
31934 Do not clear @code{calc-inverse-flag}, @code{calc-hyperbolic-flag},
31935 and @code{calc-keep-args-flag} at the end of this command.
31937 @item do-edit
31938 Switch to buffer @samp{*Calc Edit*} after this command.
31940 @item hold-trail
31941 Do not move trail pointer to end of trail when something is recorded
31942 there.
31943 @end table
31945 @kindex Y
31946 @kindex Y ?
31947 @vindex calc-Y-help-msgs
31948 Calc reserves a special prefix key, shift-@kbd{Y}, for user-written
31949 extensions to Calc.  There are no built-in commands that work with
31950 this prefix key; you must call @code{define-key} from Lisp (probably
31951 from inside a @code{calc-define} property) to add to it.  Initially only
31952 @kbd{Y ?} is defined; it takes help messages from a list of strings
31953 (initially @code{nil}) in the variable @code{calc-Y-help-msgs}.  All
31954 other undefined keys except for @kbd{Y} are reserved for use by
31955 future versions of Calc.
31957 If you are writing a Calc enhancement which you expect to give to
31958 others, it is best to minimize the number of @kbd{Y}-key sequences
31959 you use.  In fact, if you have more than one key sequence you should
31960 consider defining three-key sequences with a @kbd{Y}, then a key that
31961 stands for your package, then a third key for the particular command
31962 within your package.
31964 Users may wish to install several Calc enhancements, and it is possible
31965 that several enhancements will choose to use the same key.  In the
31966 example below, a variable @code{inc-prec-base-key} has been defined
31967 to contain the key that identifies the @code{inc-prec} package.  Its
31968 value is initially @code{"P"}, but a user can change this variable
31969 if necessary without having to modify the file.
31971 Here is a complete file, @file{inc-prec.el}, which makes a @kbd{Y P I}
31972 command that increases the precision, and a @kbd{Y P D} command that
31973 decreases the precision.
31975 @smallexample
31976 ;;; Increase and decrease Calc precision.  Dave Gillespie, 5/31/91.
31977 ;;; (Include copyright or copyleft stuff here.)
31979 (defvar inc-prec-base-key "P"
31980   "Base key for inc-prec.el commands.")
31982 (put 'calc-define 'inc-prec '(progn
31984 (define-key calc-mode-map (format "Y%sI" inc-prec-base-key)
31985             'increase-precision)
31986 (define-key calc-mode-map (format "Y%sD" inc-prec-base-key)
31987             'decrease-precision)
31989 (setq calc-Y-help-msgs
31990       (cons (format "%s + Inc-prec, Dec-prec" inc-prec-base-key)
31991             calc-Y-help-msgs))
31993 (defmath increase-precision (delta)
31994   "Increase precision by DELTA."
31995   (interactive "p")
31996   (setq calc-internal-prec (+ calc-internal-prec delta)))
31998 (defmath decrease-precision (delta)
31999   "Decrease precision by DELTA."
32000   (interactive "p")
32001   (setq calc-internal-prec (- calc-internal-prec delta)))
32003 ))  ; end of calc-define property
32005 (run-hooks 'calc-check-defines)
32006 @end smallexample
32008 @node Defining Stack Commands, Argument Qualifiers, Defining Simple Commands, Lisp Definitions
32009 @subsection Defining New Stack-Based Commands
32011 @noindent
32012 To define a new computational command which takes and/or leaves arguments
32013 on the stack, a special form of @code{interactive} clause is used.
32015 @example
32016 (interactive @var{num} @var{tag})
32017 @end example
32019 @noindent
32020 where @var{num} is an integer, and @var{tag} is a string.  The effect is
32021 to pop @var{num} values off the stack, resimplify them by calling
32022 @code{calc-normalize}, and hand them to your function according to the
32023 function's argument list.  Your function may include @code{&optional} and
32024 @code{&rest} parameters, so long as calling the function with @var{num}
32025 parameters is valid.
32027 Your function must return either a number or a formula in a form
32028 acceptable to Calc, or a list of such numbers or formulas.  These value(s)
32029 are pushed onto the stack when the function completes.  They are also
32030 recorded in the Calc Trail buffer on a line beginning with @var{tag},
32031 a string of (normally) four characters or less.  If you omit @var{tag}
32032 or use @code{nil} as a tag, the result is not recorded in the trail.
32034 As an example, the definition
32036 @smallexample
32037 (defmath myfact (n)
32038   "Compute the factorial of the integer at the top of the stack."
32039   (interactive 1 "fact")
32040   (if (> n 0)
32041       (* n (myfact (1- n)))
32042     (and (= n 0) 1)))
32043 @end smallexample
32045 @noindent
32046 is a version of the factorial function shown previously which can be used
32047 as a command as well as an algebraic function.  It expands to
32049 @smallexample
32050 (defun calc-myfact ()
32051   "Compute the factorial of the integer at the top of the stack."
32052   (interactive)
32053   (calc-slow-wrapper
32054    (calc-enter-result 1 "fact"
32055      (cons 'calcFunc-myfact (calc-top-list-n 1)))))
32057 (defun calcFunc-myfact (n)
32058   "Compute the factorial of the integer at the top of the stack."
32059   (if (math-posp n)
32060       (math-mul n (calcFunc-myfact (math-add n -1)))
32061     (and (math-zerop n) 1)))
32062 @end smallexample
32064 @findex calc-slow-wrapper
32065 The @code{calc-slow-wrapper} function is a version of @code{calc-wrapper}
32066 that automatically puts up a @samp{Working...} message before the
32067 computation begins.  (This message can be turned off by the user
32068 with an @kbd{m w} (@code{calc-working}) command.)
32070 @findex calc-top-list-n
32071 The @code{calc-top-list-n} function returns a list of the specified number
32072 of values from the top of the stack.  It resimplifies each value by
32073 calling @code{calc-normalize}.  If its argument is zero it returns an
32074 empty list.  It does not actually remove these values from the stack.
32076 @findex calc-enter-result
32077 The @code{calc-enter-result} function takes an integer @var{num} and string
32078 @var{tag} as described above, plus a third argument which is either a
32079 Calculator data object or a list of such objects.  These objects are
32080 resimplified and pushed onto the stack after popping the specified number
32081 of values from the stack.  If @var{tag} is non-@code{nil}, the values
32082 being pushed are also recorded in the trail.
32084 Note that if @code{calcFunc-myfact} returns @code{nil} this represents
32085 ``leave the function in symbolic form.''  To return an actual empty list,
32086 in the sense that @code{calc-enter-result} will push zero elements back
32087 onto the stack, you should return the special value @samp{'(nil)}, a list
32088 containing the single symbol @code{nil}.
32090 The @code{interactive} declaration can actually contain a limited
32091 Emacs-style code string as well which comes just before @var{num} and
32092 @var{tag}.  Currently the only Emacs code supported is @samp{"p"}, as in
32094 @example
32095 (defmath foo (a b &optional c)
32096   (interactive "p" 2 "foo")
32097   @var{body})
32098 @end example
32100 In this example, the command @code{calc-foo} will evaluate the expression
32101 @samp{foo(a,b)} if executed with no argument, or @samp{foo(a,b,n)} if
32102 executed with a numeric prefix argument of @expr{n}.
32104 The other code string allowed is @samp{"m"} (unrelated to the usual @samp{"m"}
32105 code as used with @code{defun}).  It uses the numeric prefix argument as the
32106 number of objects to remove from the stack and pass to the function.
32107 In this case, the integer @var{num} serves as a default number of
32108 arguments to be used when no prefix is supplied.
32110 @node Argument Qualifiers, Example Definitions, Defining Stack Commands, Lisp Definitions
32111 @subsection Argument Qualifiers
32113 @noindent
32114 Anywhere a parameter name can appear in the parameter list you can also use
32115 an @dfn{argument qualifier}.  Thus the general form of a definition is:
32117 @example
32118 (defmath @var{name} (@var{param} @var{param...}
32119                &optional @var{param} @var{param...}
32120                &rest @var{param})
32121   @var{body})
32122 @end example
32124 @noindent
32125 where each @var{param} is either a symbol or a list of the form
32127 @example
32128 (@var{qual} @var{param})
32129 @end example
32131 The following qualifiers are recognized:
32133 @table @samp
32134 @item complete
32135 @findex complete
32136 The argument must not be an incomplete vector, interval, or complex number.
32137 (This is rarely needed since the Calculator itself will never call your
32138 function with an incomplete argument.  But there is nothing stopping your
32139 own Lisp code from calling your function with an incomplete argument.)
32141 @item integer
32142 @findex integer
32143 The argument must be an integer.  If it is an integer-valued float
32144 it will be accepted but converted to integer form.  Non-integers and
32145 formulas are rejected.
32147 @item natnum
32148 @findex natnum
32149 Like @samp{integer}, but the argument must be non-negative.
32151 @item fixnum
32152 @findex fixnum
32153 Like @samp{integer}, but the argument must fit into a native Lisp integer,
32154 which on most systems means less than 2^23 in absolute value.  The
32155 argument is converted into Lisp-integer form if necessary.
32157 @item float
32158 @findex float
32159 The argument is converted to floating-point format if it is a number or
32160 vector.  If it is a formula it is left alone.  (The argument is never
32161 actually rejected by this qualifier.)
32163 @item @var{pred}
32164 The argument must satisfy predicate @var{pred}, which is one of the
32165 standard Calculator predicates.  @xref{Predicates}.
32167 @item not-@var{pred}
32168 The argument must @emph{not} satisfy predicate @var{pred}.
32169 @end table
32171 For example,
32173 @example
32174 (defmath foo (a (constp (not-matrixp b)) &optional (float c)
32175               &rest (integer d))
32176   @var{body})
32177 @end example
32179 @noindent
32180 expands to
32182 @example
32183 (defun calcFunc-foo (a b &optional c &rest d)
32184   (and (math-matrixp b)
32185        (math-reject-arg b 'not-matrixp))
32186   (or (math-constp b)
32187       (math-reject-arg b 'constp))
32188   (and c (setq c (math-check-float c)))
32189   (setq d (mapcar 'math-check-integer d))
32190   @var{body})
32191 @end example
32193 @noindent
32194 which performs the necessary checks and conversions before executing the
32195 body of the function.
32197 @node Example Definitions, Calling Calc from Your Programs, Argument Qualifiers, Lisp Definitions
32198 @subsection Example Definitions
32200 @noindent
32201 This section includes some Lisp programming examples on a larger scale.
32202 These programs make use of some of the Calculator's internal functions;
32203 @pxref{Internals}.
32205 @menu
32206 * Bit Counting Example::
32207 * Sine Example::
32208 @end menu
32210 @node Bit Counting Example, Sine Example, Example Definitions, Example Definitions
32211 @subsubsection Bit-Counting
32213 @noindent
32214 @ignore
32215 @starindex
32216 @end ignore
32217 @tindex bcount
32218 Calc does not include a built-in function for counting the number of
32219 ``one'' bits in a binary integer.  It's easy to invent one using @kbd{b u}
32220 to convert the integer to a set, and @kbd{V #} to count the elements of
32221 that set; let's write a function that counts the bits without having to
32222 create an intermediate set.
32224 @smallexample
32225 (defmath bcount ((natnum n))
32226   (interactive 1 "bcnt")
32227   (let ((count 0))
32228     (while (> n 0)
32229       (if (oddp n)
32230           (setq count (1+ count)))
32231       (setq n (lsh n -1)))
32232     count))
32233 @end smallexample
32235 @noindent
32236 When this is expanded by @code{defmath}, it will become the following
32237 Emacs Lisp function:
32239 @smallexample
32240 (defun calcFunc-bcount (n)
32241   (setq n (math-check-natnum n))
32242   (let ((count 0))
32243     (while (math-posp n)
32244       (if (math-oddp n)
32245           (setq count (math-add count 1)))
32246       (setq n (calcFunc-lsh n -1)))
32247     count))
32248 @end smallexample
32250 If the input numbers are large, this function involves a fair amount
32251 of arithmetic.  A binary right shift is essentially a division by two;
32252 recall that Calc stores integers in decimal form so bit shifts must
32253 involve actual division.
32255 To gain a bit more efficiency, we could divide the integer into
32256 @var{n}-bit chunks, each of which can be handled quickly because
32257 they fit into Lisp integers.  It turns out that Calc's arithmetic
32258 routines are especially fast when dividing by an integer less than
32259 1000, so we can set @var{n = 9} bits and use repeated division by 512:
32261 @smallexample
32262 (defmath bcount ((natnum n))
32263   (interactive 1 "bcnt")
32264   (let ((count 0))
32265     (while (not (fixnump n))
32266       (let ((qr (idivmod n 512)))
32267         (setq count (+ count (bcount-fixnum (cdr qr)))
32268               n (car qr))))
32269     (+ count (bcount-fixnum n))))
32271 (defun bcount-fixnum (n)
32272   (let ((count 0))
32273     (while (> n 0)
32274       (setq count (+ count (logand n 1))
32275             n (lsh n -1)))
32276     count))
32277 @end smallexample
32279 @noindent
32280 Note that the second function uses @code{defun}, not @code{defmath}.
32281 Because this function deals only with native Lisp integers (``fixnums''),
32282 it can use the actual Emacs @code{+} and related functions rather
32283 than the slower but more general Calc equivalents which @code{defmath}
32284 uses.
32286 The @code{idivmod} function does an integer division, returning both
32287 the quotient and the remainder at once.  Again, note that while it
32288 might seem that @samp{(logand n 511)} and @samp{(lsh n -9)} are
32289 more efficient ways to split off the bottom nine bits of @code{n},
32290 actually they are less efficient because each operation is really
32291 a division by 512 in disguise; @code{idivmod} allows us to do the
32292 same thing with a single division by 512.
32294 @node Sine Example, , Bit Counting Example, Example Definitions
32295 @subsubsection The Sine Function
32297 @noindent
32298 @ignore
32299 @starindex
32300 @end ignore
32301 @tindex mysin
32302 A somewhat limited sine function could be defined as follows, using the
32303 well-known Taylor series expansion for 
32304 @texline @math{\sin x}:
32305 @infoline @samp{sin(x)}:
32307 @smallexample
32308 (defmath mysin ((float (anglep x)))
32309   (interactive 1 "mysn")
32310   (setq x (to-radians x))    ; Convert from current angular mode.
32311   (let ((sum x)              ; Initial term of Taylor expansion of sin.
32312         newsum
32313         (nfact 1)            ; "nfact" equals "n" factorial at all times.
32314         (xnegsqr :"-(x^2)")) ; "xnegsqr" equals -x^2.
32315     (for ((n 3 100 2))       ; Upper limit of 100 is a good precaution.
32316       (working "mysin" sum)  ; Display "Working" message, if enabled.
32317       (setq nfact (* nfact (1- n) n)
32318             x (* x xnegsqr)
32319             newsum (+ sum (/ x nfact)))
32320       (if (~= newsum sum)    ; If newsum is "nearly equal to" sum,
32321           (break))           ;  then we are done.
32322       (setq sum newsum))
32323     sum))
32324 @end smallexample
32326 The actual @code{sin} function in Calc works by first reducing the problem
32327 to a sine or cosine of a nonnegative number less than @cpiover{4}.  This
32328 ensures that the Taylor series will converge quickly.  Also, the calculation
32329 is carried out with two extra digits of precision to guard against cumulative
32330 round-off in @samp{sum}.  Finally, complex arguments are allowed and handled
32331 by a separate algorithm.
32333 @smallexample
32334 (defmath mysin ((float (scalarp x)))
32335   (interactive 1 "mysn")
32336   (setq x (to-radians x))    ; Convert from current angular mode.
32337   (with-extra-prec 2         ; Evaluate with extra precision.
32338     (cond ((complexp x)
32339            (mysin-complex x))
32340           ((< x 0)
32341            (- (mysin-raw (- x)))    ; Always call mysin-raw with x >= 0.
32342           (t (mysin-raw x))))))
32344 (defmath mysin-raw (x)
32345   (cond ((>= x 7)
32346          (mysin-raw (% x (two-pi))))     ; Now x < 7.
32347         ((> x (pi-over-2))
32348          (- (mysin-raw (- x (pi)))))     ; Now -pi/2 <= x <= pi/2.
32349         ((> x (pi-over-4))
32350          (mycos-raw (- x (pi-over-2))))  ; Now -pi/2 <= x <= pi/4.
32351         ((< x (- (pi-over-4)))
32352          (- (mycos-raw (+ x (pi-over-2)))))  ; Now -pi/4 <= x <= pi/4,
32353         (t (mysin-series x))))           ; so the series will be efficient.
32354 @end smallexample
32356 @noindent
32357 where @code{mysin-complex} is an appropriate function to handle complex
32358 numbers, @code{mysin-series} is the routine to compute the sine Taylor
32359 series as before, and @code{mycos-raw} is a function analogous to
32360 @code{mysin-raw} for cosines.
32362 The strategy is to ensure that @expr{x} is nonnegative before calling
32363 @code{mysin-raw}.  This function then recursively reduces its argument
32364 to a suitable range, namely, plus-or-minus @cpiover{4}.  Note that each
32365 test, and particularly the first comparison against 7, is designed so
32366 that small roundoff errors cannot produce an infinite loop.  (Suppose
32367 we compared with @samp{(two-pi)} instead; if due to roundoff problems
32368 the modulo operator ever returned @samp{(two-pi)} exactly, an infinite
32369 recursion could result!)  We use modulo only for arguments that will
32370 clearly get reduced, knowing that the next rule will catch any reductions
32371 that this rule misses.
32373 If a program is being written for general use, it is important to code
32374 it carefully as shown in this second example.  For quick-and-dirty programs,
32375 when you know that your own use of the sine function will never encounter
32376 a large argument, a simpler program like the first one shown is fine.
32378 @node Calling Calc from Your Programs, Internals, Example Definitions, Lisp Definitions
32379 @subsection Calling Calc from Your Lisp Programs
32381 @noindent
32382 A later section (@pxref{Internals}) gives a full description of
32383 Calc's internal Lisp functions.  It's not hard to call Calc from
32384 inside your programs, but the number of these functions can be daunting.
32385 So Calc provides one special ``programmer-friendly'' function called
32386 @code{calc-eval} that can be made to do just about everything you
32387 need.  It's not as fast as the low-level Calc functions, but it's
32388 much simpler to use!
32390 It may seem that @code{calc-eval} itself has a daunting number of
32391 options, but they all stem from one simple operation.
32393 In its simplest manifestation, @samp{(calc-eval "1+2")} parses the
32394 string @code{"1+2"} as if it were a Calc algebraic entry and returns
32395 the result formatted as a string: @code{"3"}.
32397 Since @code{calc-eval} is on the list of recommended @code{autoload}
32398 functions, you don't need to make any special preparations to load
32399 Calc before calling @code{calc-eval} the first time.  Calc will be
32400 loaded and initialized for you.
32402 All the Calc modes that are currently in effect will be used when
32403 evaluating the expression and formatting the result.
32405 @ifinfo
32406 @example
32408 @end example
32409 @end ifinfo
32410 @subsubsection Additional Arguments to @code{calc-eval}
32412 @noindent
32413 If the input string parses to a list of expressions, Calc returns
32414 the results separated by @code{", "}.  You can specify a different
32415 separator by giving a second string argument to @code{calc-eval}:
32416 @samp{(calc-eval "1+2,3+4" ";")} returns @code{"3;7"}.
32418 The ``separator'' can also be any of several Lisp symbols which
32419 request other behaviors from @code{calc-eval}.  These are discussed
32420 one by one below.
32422 You can give additional arguments to be substituted for
32423 @samp{$}, @samp{$$}, and so on in the main expression.  For
32424 example, @samp{(calc-eval "$/$$" nil "7" "1+1")} evaluates the
32425 expression @code{"7/(1+1)"} to yield the result @code{"3.5"}
32426 (assuming Fraction mode is not in effect).  Note the @code{nil}
32427 used as a placeholder for the item-separator argument.
32429 @ifinfo
32430 @example
32432 @end example
32433 @end ifinfo
32434 @subsubsection Error Handling
32436 @noindent
32437 If @code{calc-eval} encounters an error, it returns a list containing
32438 the character position of the error, plus a suitable message as a
32439 string.  Note that @samp{1 / 0} is @emph{not} an error by Calc's
32440 standards; it simply returns the string @code{"1 / 0"} which is the
32441 division left in symbolic form.  But @samp{(calc-eval "1/")} will
32442 return the list @samp{(2 "Expected a number")}.
32444 If you bind the variable @code{calc-eval-error} to @code{t}
32445 using a @code{let} form surrounding the call to @code{calc-eval},
32446 errors instead call the Emacs @code{error} function which aborts
32447 to the Emacs command loop with a beep and an error message.
32449 If you bind this variable to the symbol @code{string}, error messages
32450 are returned as strings instead of lists.  The character position is
32451 ignored.
32453 As a courtesy to other Lisp code which may be using Calc, be sure
32454 to bind @code{calc-eval-error} using @code{let} rather than changing
32455 it permanently with @code{setq}.
32457 @ifinfo
32458 @example
32460 @end example
32461 @end ifinfo
32462 @subsubsection Numbers Only
32464 @noindent
32465 Sometimes it is preferable to treat @samp{1 / 0} as an error
32466 rather than returning a symbolic result.  If you pass the symbol
32467 @code{num} as the second argument to @code{calc-eval}, results
32468 that are not constants are treated as errors.  The error message
32469 reported is the first @code{calc-why} message if there is one,
32470 or otherwise ``Number expected.''
32472 A result is ``constant'' if it is a number, vector, or other
32473 object that does not include variables or function calls.  If it
32474 is a vector, the components must themselves be constants.
32476 @ifinfo
32477 @example
32479 @end example
32480 @end ifinfo
32481 @subsubsection Default Modes
32483 @noindent
32484 If the first argument to @code{calc-eval} is a list whose first
32485 element is a formula string, then @code{calc-eval} sets all the
32486 various Calc modes to their default values while the formula is
32487 evaluated and formatted.  For example, the precision is set to 12
32488 digits, digit grouping is turned off, and the Normal language
32489 mode is used.
32491 This same principle applies to the other options discussed below.
32492 If the first argument would normally be @var{x}, then it can also
32493 be the list @samp{(@var{x})} to use the default mode settings.
32495 If there are other elements in the list, they are taken as
32496 variable-name/value pairs which override the default mode
32497 settings.  Look at the documentation at the front of the
32498 @file{calc.el} file to find the names of the Lisp variables for
32499 the various modes.  The mode settings are restored to their
32500 original values when @code{calc-eval} is done.
32502 For example, @samp{(calc-eval '("$+$$" calc-internal-prec 8) 'num a b)}
32503 computes the sum of two numbers, requiring a numeric result, and
32504 using default mode settings except that the precision is 8 instead
32505 of the default of 12.
32507 It's usually best to use this form of @code{calc-eval} unless your
32508 program actually considers the interaction with Calc's mode settings
32509 to be a feature.  This will avoid all sorts of potential ``gotchas'';
32510 consider what happens with @samp{(calc-eval "sqrt(2)" 'num)}
32511 when the user has left Calc in Symbolic mode or No-Simplify mode.
32513 As another example, @samp{(equal (calc-eval '("$<$$") nil a b) "1")}
32514 checks if the number in string @expr{a} is less than the one in
32515 string @expr{b}.  Without using a list, the integer 1 might
32516 come out in a variety of formats which would be hard to test for
32517 conveniently: @code{"1"}, @code{"8#1"}, @code{"00001"}.  (But
32518 see ``Predicates'' mode, below.)
32520 @ifinfo
32521 @example
32523 @end example
32524 @end ifinfo
32525 @subsubsection Raw Numbers
32527 @noindent
32528 Normally all input and output for @code{calc-eval} is done with strings.
32529 You can do arithmetic with, say, @samp{(calc-eval "$+$$" nil a b)}
32530 in place of @samp{(+ a b)}, but this is very inefficient since the
32531 numbers must be converted to and from string format as they are passed
32532 from one @code{calc-eval} to the next.
32534 If the separator is the symbol @code{raw}, the result will be returned
32535 as a raw Calc data structure rather than a string.  You can read about
32536 how these objects look in the following sections, but usually you can
32537 treat them as ``black box'' objects with no important internal
32538 structure.
32540 There is also a @code{rawnum} symbol, which is a combination of
32541 @code{raw} (returning a raw Calc object) and @code{num} (signaling
32542 an error if that object is not a constant).
32544 You can pass a raw Calc object to @code{calc-eval} in place of a
32545 string, either as the formula itself or as one of the @samp{$}
32546 arguments.  Thus @samp{(calc-eval "$+$$" 'raw a b)} is an
32547 addition function that operates on raw Calc objects.  Of course
32548 in this case it would be easier to call the low-level @code{math-add}
32549 function in Calc, if you can remember its name.
32551 In particular, note that a plain Lisp integer is acceptable to Calc
32552 as a raw object.  (All Lisp integers are accepted on input, but
32553 integers of more than six decimal digits are converted to ``big-integer''
32554 form for output.  @xref{Data Type Formats}.)
32556 When it comes time to display the object, just use @samp{(calc-eval a)}
32557 to format it as a string.
32559 It is an error if the input expression evaluates to a list of
32560 values.  The separator symbol @code{list} is like @code{raw}
32561 except that it returns a list of one or more raw Calc objects.
32563 Note that a Lisp string is not a valid Calc object, nor is a list
32564 containing a string.  Thus you can still safely distinguish all the
32565 various kinds of error returns discussed above.
32567 @ifinfo
32568 @example
32570 @end example
32571 @end ifinfo
32572 @subsubsection Predicates
32574 @noindent
32575 If the separator symbol is @code{pred}, the result of the formula is
32576 treated as a true/false value; @code{calc-eval} returns @code{t} or
32577 @code{nil}, respectively.  A value is considered ``true'' if it is a
32578 non-zero number, or false if it is zero or if it is not a number.
32580 For example, @samp{(calc-eval "$<$$" 'pred a b)} tests whether
32581 one value is less than another.
32583 As usual, it is also possible for @code{calc-eval} to return one of
32584 the error indicators described above.  Lisp will interpret such an
32585 indicator as ``true'' if you don't check for it explicitly.  If you
32586 wish to have an error register as ``false'', use something like
32587 @samp{(eq (calc-eval ...) t)}.
32589 @ifinfo
32590 @example
32592 @end example
32593 @end ifinfo
32594 @subsubsection Variable Values
32596 @noindent
32597 Variables in the formula passed to @code{calc-eval} are not normally
32598 replaced by their values.  If you wish this, you can use the
32599 @code{evalv} function (@pxref{Algebraic Manipulation}).  For example,
32600 if 4 is stored in Calc variable @code{a} (i.e., in Lisp variable
32601 @code{var-a}), then @samp{(calc-eval "a+pi")} will return the
32602 formula @code{"a + pi"}, but @samp{(calc-eval "evalv(a+pi)")}
32603 will return @code{"7.14159265359"}.
32605 To store in a Calc variable, just use @code{setq} to store in the
32606 corresponding Lisp variable.  (This is obtained by prepending
32607 @samp{var-} to the Calc variable name.)  Calc routines will
32608 understand either string or raw form values stored in variables,
32609 although raw data objects are much more efficient.  For example,
32610 to increment the Calc variable @code{a}:
32612 @example
32613 (setq var-a (calc-eval "evalv(a+1)" 'raw))
32614 @end example
32616 @ifinfo
32617 @example
32619 @end example
32620 @end ifinfo
32621 @subsubsection Stack Access
32623 @noindent
32624 If the separator symbol is @code{push}, the formula argument is
32625 evaluated (with possible @samp{$} expansions, as usual).  The
32626 result is pushed onto the Calc stack.  The return value is @code{nil}
32627 (unless there is an error from evaluating the formula, in which
32628 case the return value depends on @code{calc-eval-error} in the
32629 usual way).
32631 If the separator symbol is @code{pop}, the first argument to
32632 @code{calc-eval} must be an integer instead of a string.  That
32633 many values are popped from the stack and thrown away.  A negative
32634 argument deletes the entry at that stack level.  The return value
32635 is the number of elements remaining in the stack after popping;
32636 @samp{(calc-eval 0 'pop)} is a good way to measure the size of
32637 the stack.
32639 If the separator symbol is @code{top}, the first argument to
32640 @code{calc-eval} must again be an integer.  The value at that
32641 stack level is formatted as a string and returned.  Thus
32642 @samp{(calc-eval 1 'top)} returns the top-of-stack value.  If the
32643 integer is out of range, @code{nil} is returned.
32645 The separator symbol @code{rawtop} is just like @code{top} except
32646 that the stack entry is returned as a raw Calc object instead of
32647 as a string.
32649 In all of these cases the first argument can be made a list in
32650 order to force the default mode settings, as described above.
32651 Thus @samp{(calc-eval '(2 calc-number-radix 16) 'top)} returns the
32652 second-to-top stack entry, formatted as a string using the default
32653 instead of current display modes, except that the radix is
32654 hexadecimal instead of decimal.
32656 It is, of course, polite to put the Calc stack back the way you
32657 found it when you are done, unless the user of your program is
32658 actually expecting it to affect the stack.
32660 Note that you do not actually have to switch into the @samp{*Calculator*}
32661 buffer in order to use @code{calc-eval}; it temporarily switches into
32662 the stack buffer if necessary.
32664 @ifinfo
32665 @example
32667 @end example
32668 @end ifinfo
32669 @subsubsection Keyboard Macros
32671 @noindent
32672 If the separator symbol is @code{macro}, the first argument must be a
32673 string of characters which Calc can execute as a sequence of keystrokes.
32674 This switches into the Calc buffer for the duration of the macro.
32675 For example, @samp{(calc-eval "vx5\rVR+" 'macro)} pushes the
32676 vector @samp{[1,2,3,4,5]} on the stack and then replaces it
32677 with the sum of those numbers.  Note that @samp{\r} is the Lisp
32678 notation for the carriage-return, @key{RET}, character.
32680 If your keyboard macro wishes to pop the stack, @samp{\C-d} is
32681 safer than @samp{\177} (the @key{DEL} character) because some
32682 installations may have switched the meanings of @key{DEL} and
32683 @kbd{C-h}.  Calc always interprets @kbd{C-d} as a synonym for
32684 ``pop-stack'' regardless of key mapping.
32686 If you provide a third argument to @code{calc-eval}, evaluation
32687 of the keyboard macro will leave a record in the Trail using
32688 that argument as a tag string.  Normally the Trail is unaffected.
32690 The return value in this case is always @code{nil}.
32692 @ifinfo
32693 @example
32695 @end example
32696 @end ifinfo
32697 @subsubsection Lisp Evaluation
32699 @noindent
32700 Finally, if the separator symbol is @code{eval}, then the Lisp
32701 @code{eval} function is called on the first argument, which must
32702 be a Lisp expression rather than a Calc formula.  Remember to
32703 quote the expression so that it is not evaluated until inside
32704 @code{calc-eval}.
32706 The difference from plain @code{eval} is that @code{calc-eval}
32707 switches to the Calc buffer before evaluating the expression.
32708 For example, @samp{(calc-eval '(setq calc-internal-prec 17) 'eval)}
32709 will correctly affect the buffer-local Calc precision variable.
32711 An alternative would be @samp{(calc-eval '(calc-precision 17) 'eval)}.
32712 This is evaluating a call to the function that is normally invoked
32713 by the @kbd{p} key, giving it 17 as its ``numeric prefix argument.''
32714 Note that this function will leave a message in the echo area as
32715 a side effect.  Also, all Calc functions switch to the Calc buffer
32716 automatically if not invoked from there, so the above call is
32717 also equivalent to @samp{(calc-precision 17)} by itself.
32718 In all cases, Calc uses @code{save-excursion} to switch back to
32719 your original buffer when it is done.
32721 As usual the first argument can be a list that begins with a Lisp
32722 expression to use default instead of current mode settings.
32724 The result of @code{calc-eval} in this usage is just the result
32725 returned by the evaluated Lisp expression.
32727 @ifinfo
32728 @example
32730 @end example
32731 @end ifinfo
32732 @subsubsection Example
32734 @noindent
32735 @findex convert-temp
32736 Here is a sample Emacs command that uses @code{calc-eval}.  Suppose
32737 you have a document with lots of references to temperatures on the
32738 Fahrenheit scale, say ``98.6 F'', and you wish to convert these
32739 references to Centigrade.  The following command does this conversion.
32740 Place the Emacs cursor right after the letter ``F'' and invoke the
32741 command to change ``98.6 F'' to ``37 C''.  Or, if the temperature is
32742 already in Centigrade form, the command changes it back to Fahrenheit.
32744 @example
32745 (defun convert-temp ()
32746   (interactive)
32747   (save-excursion
32748     (re-search-backward "[^-.0-9]\\([-.0-9]+\\) *\\([FC]\\)")
32749     (let* ((top1 (match-beginning 1))
32750            (bot1 (match-end 1))
32751            (number (buffer-substring top1 bot1))
32752            (top2 (match-beginning 2))
32753            (bot2 (match-end 2))
32754            (type (buffer-substring top2 bot2)))
32755       (if (equal type "F")
32756           (setq type "C"
32757                 number (calc-eval "($ - 32)*5/9" nil number))
32758         (setq type "F"
32759               number (calc-eval "$*9/5 + 32" nil number)))
32760       (goto-char top2)
32761       (delete-region top2 bot2)
32762       (insert-before-markers type)
32763       (goto-char top1)
32764       (delete-region top1 bot1)
32765       (if (string-match "\\.$" number)   ; change "37." to "37"
32766           (setq number (substring number 0 -1)))
32767       (insert number))))
32768 @end example
32770 Note the use of @code{insert-before-markers} when changing between
32771 ``F'' and ``C'', so that the character winds up before the cursor
32772 instead of after it.
32774 @node Internals, , Calling Calc from Your Programs, Lisp Definitions
32775 @subsection Calculator Internals
32777 @noindent
32778 This section describes the Lisp functions defined by the Calculator that
32779 may be of use to user-written Calculator programs (as described in the
32780 rest of this chapter).  These functions are shown by their names as they
32781 conventionally appear in @code{defmath}.  Their full Lisp names are
32782 generally gotten by prepending @samp{calcFunc-} or @samp{math-} to their
32783 apparent names.  (Names that begin with @samp{calc-} are already in
32784 their full Lisp form.)  You can use the actual full names instead if you
32785 prefer them, or if you are calling these functions from regular Lisp.
32787 The functions described here are scattered throughout the various
32788 Calc component files.  Note that @file{calc.el} includes @code{autoload}s
32789 for only a few component files; when Calc wants to call an advanced
32790 function it calls @samp{(calc-extensions)} first; this function
32791 autoloads @file{calc-ext.el}, which in turn autoloads all the functions
32792 in the remaining component files.
32794 Because @code{defmath} itself uses the extensions, user-written code
32795 generally always executes with the extensions already loaded, so
32796 normally you can use any Calc function and be confident that it will
32797 be autoloaded for you when necessary.  If you are doing something
32798 special, check carefully to make sure each function you are using is
32799 from @file{calc.el} or its components, and call @samp{(calc-extensions)}
32800 before using any function based in @file{calc-ext.el} if you can't
32801 prove this file will already be loaded.
32803 @menu
32804 * Data Type Formats::
32805 * Interactive Lisp Functions::
32806 * Stack Lisp Functions::
32807 * Predicates::
32808 * Computational Lisp Functions::
32809 * Vector Lisp Functions::
32810 * Symbolic Lisp Functions::
32811 * Formatting Lisp Functions::
32812 * Hooks::
32813 @end menu
32815 @node Data Type Formats, Interactive Lisp Functions, Internals, Internals
32816 @subsubsection Data Type Formats
32818 @noindent
32819 Integers are stored in either of two ways, depending on their magnitude.
32820 Integers less than one million in absolute value are stored as standard
32821 Lisp integers.  This is the only storage format for Calc data objects
32822 which is not a Lisp list.
32824 Large integers are stored as lists of the form @samp{(bigpos @var{d0}
32825 @var{d1} @var{d2} @dots{})} for positive integers 1000000 or more, or
32826 @samp{(bigneg @var{d0} @var{d1} @var{d2} @dots{})} for negative integers
32827 @mathit{-1000000} or less.  Each @var{d} is a base-1000 ``digit,'' a Lisp integer
32828 from 0 to 999.  The least significant digit is @var{d0}; the last digit,
32829 @var{dn}, which is always nonzero, is the most significant digit.  For
32830 example, the integer @mathit{-12345678} is stored as @samp{(bigneg 678 345 12)}.
32832 The distinction between small and large integers is entirely hidden from
32833 the user.  In @code{defmath} definitions, the Lisp predicate @code{integerp}
32834 returns true for either kind of integer, and in general both big and small
32835 integers are accepted anywhere the word ``integer'' is used in this manual.
32836 If the distinction must be made, native Lisp integers are called @dfn{fixnums}
32837 and large integers are called @dfn{bignums}.
32839 Fractions are stored as a list of the form, @samp{(frac @var{n} @var{d})}
32840 where @var{n} is an integer (big or small) numerator, @var{d} is an
32841 integer denominator greater than one, and @var{n} and @var{d} are relatively
32842 prime.  Note that fractions where @var{d} is one are automatically converted
32843 to plain integers by all math routines; fractions where @var{d} is negative
32844 are normalized by negating the numerator and denominator.
32846 Floating-point numbers are stored in the form, @samp{(float @var{mant}
32847 @var{exp})}, where @var{mant} (the ``mantissa'') is an integer less than
32848 @samp{10^@var{p}} in absolute value (@var{p} represents the current
32849 precision), and @var{exp} (the ``exponent'') is a fixnum.  The value of
32850 the float is @samp{@var{mant} * 10^@var{exp}}.  For example, the number
32851 @mathit{-3.14} is stored as @samp{(float -314 -2) = -314*10^-2}.  Other constraints
32852 are that the number 0.0 is always stored as @samp{(float 0 0)}, and,
32853 except for the 0.0 case, the rightmost base-10 digit of @var{mant} is
32854 always nonzero.  (If the rightmost digit is zero, the number is
32855 rearranged by dividing @var{mant} by ten and incrementing @var{exp}.)
32857 Rectangular complex numbers are stored in the form @samp{(cplx @var{re}
32858 @var{im})}, where @var{re} and @var{im} are each real numbers, either
32859 integers, fractions, or floats.  The value is @samp{@var{re} + @var{im}i}.
32860 The @var{im} part is nonzero; complex numbers with zero imaginary
32861 components are converted to real numbers automatically.
32863 Polar complex numbers are stored in the form @samp{(polar @var{r}
32864 @var{theta})}, where @var{r} is a positive real value and @var{theta}
32865 is a real value or HMS form representing an angle.  This angle is
32866 usually normalized to lie in the interval @samp{(-180 ..@: 180)} degrees,
32867 or @samp{(-pi ..@: pi)} radians, according to the current angular mode.
32868 If the angle is 0 the value is converted to a real number automatically.
32869 (If the angle is 180 degrees, the value is usually also converted to a
32870 negative real number.)
32872 Hours-minutes-seconds forms are stored as @samp{(hms @var{h} @var{m}
32873 @var{s})}, where @var{h} is an integer or an integer-valued float (i.e.,
32874 a float with @samp{@var{exp} >= 0}), @var{m} is an integer or integer-valued
32875 float in the range @w{@samp{[0 ..@: 60)}}, and @var{s} is any real number
32876 in the range @samp{[0 ..@: 60)}.
32878 Date forms are stored as @samp{(date @var{n})}, where @var{n} is
32879 a real number that counts days since midnight on the morning of
32880 January 1, 1 AD.  If @var{n} is an integer, this is a pure date
32881 form.  If @var{n} is a fraction or float, this is a date/time form.
32883 Modulo forms are stored as @samp{(mod @var{n} @var{m})}, where @var{m} is a
32884 positive real number or HMS form, and @var{n} is a real number or HMS
32885 form in the range @samp{[0 ..@: @var{m})}.
32887 Error forms are stored as @samp{(sdev @var{x} @var{sigma})}, where @var{x}
32888 is the mean value and @var{sigma} is the standard deviation.  Each
32889 component is either a number, an HMS form, or a symbolic object
32890 (a variable or function call).  If @var{sigma} is zero, the value is
32891 converted to a plain real number.  If @var{sigma} is negative or
32892 complex, it is automatically normalized to be a positive real.
32894 Interval forms are stored as @samp{(intv @var{mask} @var{lo} @var{hi})},
32895 where @var{mask} is one of the integers 0, 1, 2, or 3, and @var{lo} and
32896 @var{hi} are real numbers, HMS forms, or symbolic objects.  The @var{mask}
32897 is a binary integer where 1 represents the fact that the interval is
32898 closed on the high end, and 2 represents the fact that it is closed on
32899 the low end.  (Thus 3 represents a fully closed interval.)  The interval
32900 @w{@samp{(intv 3 @var{x} @var{x})}} is converted to the plain number @var{x};
32901 intervals @samp{(intv @var{mask} @var{x} @var{x})} for any other @var{mask}
32902 represent empty intervals.  If @var{hi} is less than @var{lo}, the interval
32903 is converted to a standard empty interval by replacing @var{hi} with @var{lo}.
32905 Vectors are stored as @samp{(vec @var{v1} @var{v2} @dots{})}, where @var{v1}
32906 is the first element of the vector, @var{v2} is the second, and so on.
32907 An empty vector is stored as @samp{(vec)}.  A matrix is simply a vector
32908 where all @var{v}'s are themselves vectors of equal lengths.  Note that
32909 Calc vectors are unrelated to the Emacs Lisp ``vector'' type, which is
32910 generally unused by Calc data structures.
32912 Variables are stored as @samp{(var @var{name} @var{sym})}, where
32913 @var{name} is a Lisp symbol whose print name is used as the visible name
32914 of the variable, and @var{sym} is a Lisp symbol in which the variable's
32915 value is actually stored.  Thus, @samp{(var pi var-pi)} represents the
32916 special constant @samp{pi}.  Almost always, the form is @samp{(var
32917 @var{v} var-@var{v})}.  If the variable name was entered with @code{#}
32918 signs (which are converted to hyphens internally), the form is
32919 @samp{(var @var{u} @var{v})}, where @var{u} is a symbol whose name
32920 contains @code{#} characters, and @var{v} is a symbol that contains
32921 @code{-} characters instead.  The value of a variable is the Calc
32922 object stored in its @var{sym} symbol's value cell.  If the symbol's
32923 value cell is void or if it contains @code{nil}, the variable has no
32924 value.  Special constants have the form @samp{(special-const
32925 @var{value})} stored in their value cell, where @var{value} is a formula
32926 which is evaluated when the constant's value is requested.  Variables
32927 which represent units are not stored in any special way; they are units
32928 only because their names appear in the units table.  If the value
32929 cell contains a string, it is parsed to get the variable's value when
32930 the variable is used.
32932 A Lisp list with any other symbol as the first element is a function call.
32933 The symbols @code{+}, @code{-}, @code{*}, @code{/}, @code{%}, @code{^},
32934 and @code{|} represent special binary operators; these lists are always
32935 of the form @samp{(@var{op} @var{lhs} @var{rhs})} where @var{lhs} is the
32936 sub-formula on the lefthand side and @var{rhs} is the sub-formula on the
32937 right.  The symbol @code{neg} represents unary negation; this list is always
32938 of the form @samp{(neg @var{arg})}.  Any other symbol @var{func} represents a
32939 function that would be displayed in function-call notation; the symbol
32940 @var{func} is in general always of the form @samp{calcFunc-@var{name}}.
32941 The function cell of the symbol @var{func} should contain a Lisp function
32942 for evaluating a call to @var{func}.  This function is passed the remaining
32943 elements of the list (themselves already evaluated) as arguments; such
32944 functions should return @code{nil} or call @code{reject-arg} to signify
32945 that they should be left in symbolic form, or they should return a Calc
32946 object which represents their value, or a list of such objects if they
32947 wish to return multiple values.  (The latter case is allowed only for
32948 functions which are the outer-level call in an expression whose value is
32949 about to be pushed on the stack; this feature is considered obsolete
32950 and is not used by any built-in Calc functions.)
32952 @node Interactive Lisp Functions, Stack Lisp Functions, Data Type Formats, Internals
32953 @subsubsection Interactive Functions
32955 @noindent
32956 The functions described here are used in implementing interactive Calc
32957 commands.  Note that this list is not exhaustive!  If there is an
32958 existing command that behaves similarly to the one you want to define,
32959 you may find helpful tricks by checking the source code for that command.
32961 @defun calc-set-command-flag flag
32962 Set the command flag @var{flag}.  This is generally a Lisp symbol, but
32963 may in fact be anything.  The effect is to add @var{flag} to the list
32964 stored in the variable @code{calc-command-flags}, unless it is already
32965 there.  @xref{Defining Simple Commands}.
32966 @end defun
32968 @defun calc-clear-command-flag flag
32969 If @var{flag} appears among the list of currently-set command flags,
32970 remove it from that list.
32971 @end defun
32973 @defun calc-record-undo rec
32974 Add the ``undo record'' @var{rec} to the list of steps to take if the
32975 current operation should need to be undone.  Stack push and pop functions
32976 automatically call @code{calc-record-undo}, so the kinds of undo records
32977 you might need to create take the form @samp{(set @var{sym} @var{value})},
32978 which says that the Lisp variable @var{sym} was changed and had previously
32979 contained @var{value}; @samp{(store @var{var} @var{value})} which says that
32980 the Calc variable @var{var} (a string which is the name of the symbol that
32981 contains the variable's value) was stored and its previous value was
32982 @var{value} (either a Calc data object, or @code{nil} if the variable was
32983 previously void); or @samp{(eval @var{undo} @var{redo} @var{args} @dots{})},
32984 which means that to undo requires calling the function @samp{(@var{undo}
32985 @var{args} @dots{})} and, if the undo is later redone, calling
32986 @samp{(@var{redo} @var{args} @dots{})}.
32987 @end defun
32989 @defun calc-record-why msg args
32990 Record the error or warning message @var{msg}, which is normally a string.
32991 This message will be replayed if the user types @kbd{w} (@code{calc-why});
32992 if the message string begins with a @samp{*}, it is considered important
32993 enough to display even if the user doesn't type @kbd{w}.  If one or more
32994 @var{args} are present, the displayed message will be of the form,
32995 @samp{@var{msg}: @var{arg1}, @var{arg2}, @dots{}}, where the arguments are
32996 formatted on the assumption that they are either strings or Calc objects of
32997 some sort.  If @var{msg} is a symbol, it is the name of a Calc predicate
32998 (such as @code{integerp} or @code{numvecp}) which the arguments did not
32999 satisfy; it is expanded to a suitable string such as ``Expected an
33000 integer.''  The @code{reject-arg} function calls @code{calc-record-why}
33001 automatically; @pxref{Predicates}.
33002 @end defun
33004 @defun calc-is-inverse
33005 This predicate returns true if the current command is inverse,
33006 i.e., if the Inverse (@kbd{I} key) flag was set.
33007 @end defun
33009 @defun calc-is-hyperbolic
33010 This predicate is the analogous function for the @kbd{H} key.
33011 @end defun
33013 @node Stack Lisp Functions, Predicates, Interactive Lisp Functions, Internals
33014 @subsubsection Stack-Oriented Functions
33016 @noindent
33017 The functions described here perform various operations on the Calc
33018 stack and trail.  They are to be used in interactive Calc commands.
33020 @defun calc-push-list vals n
33021 Push the Calc objects in list @var{vals} onto the stack at stack level
33022 @var{n}.  If @var{n} is omitted it defaults to 1, so that the elements
33023 are pushed at the top of the stack.  If @var{n} is greater than 1, the
33024 elements will be inserted into the stack so that the last element will
33025 end up at level @var{n}, the next-to-last at level @var{n}+1, etc.
33026 The elements of @var{vals} are assumed to be valid Calc objects, and
33027 are not evaluated, rounded, or renormalized in any way.  If @var{vals}
33028 is an empty list, nothing happens.
33030 The stack elements are pushed without any sub-formula selections.
33031 You can give an optional third argument to this function, which must
33032 be a list the same size as @var{vals} of selections.  Each selection
33033 must be @code{eq} to some sub-formula of the corresponding formula
33034 in @var{vals}, or @code{nil} if that formula should have no selection.
33035 @end defun
33037 @defun calc-top-list n m
33038 Return a list of the @var{n} objects starting at level @var{m} of the
33039 stack.  If @var{m} is omitted it defaults to 1, so that the elements are
33040 taken from the top of the stack.  If @var{n} is omitted, it also
33041 defaults to 1, so that the top stack element (in the form of a
33042 one-element list) is returned.  If @var{m} is greater than 1, the
33043 @var{m}th stack element will be at the end of the list, the @var{m}+1st
33044 element will be next-to-last, etc.  If @var{n} or @var{m} are out of
33045 range, the command is aborted with a suitable error message.  If @var{n}
33046 is zero, the function returns an empty list.  The stack elements are not
33047 evaluated, rounded, or renormalized.
33049 If any stack elements contain selections, and selections have not
33050 been disabled by the @kbd{j e} (@code{calc-enable-selections}) command,
33051 this function returns the selected portions rather than the entire
33052 stack elements.  It can be given a third ``selection-mode'' argument
33053 which selects other behaviors.  If it is the symbol @code{t}, then
33054 a selection in any of the requested stack elements produces an
33055 ``invalid operation on selections'' error.  If it is the symbol @code{full},
33056 the whole stack entry is always returned regardless of selections.
33057 If it is the symbol @code{sel}, the selected portion is always returned,
33058 or @code{nil} if there is no selection.  (This mode ignores the @kbd{j e}
33059 command.)  If the symbol is @code{entry}, the complete stack entry in
33060 list form is returned; the first element of this list will be the whole
33061 formula, and the third element will be the selection (or @code{nil}).
33062 @end defun
33064 @defun calc-pop-stack n m
33065 Remove the specified elements from the stack.  The parameters @var{n}
33066 and @var{m} are defined the same as for @code{calc-top-list}.  The return
33067 value of @code{calc-pop-stack} is uninteresting.
33069 If there are any selected sub-formulas among the popped elements, and
33070 @kbd{j e} has not been used to disable selections, this produces an
33071 error without changing the stack.  If you supply an optional third
33072 argument of @code{t}, the stack elements are popped even if they
33073 contain selections.
33074 @end defun
33076 @defun calc-record-list vals tag
33077 This function records one or more results in the trail.  The @var{vals}
33078 are a list of strings or Calc objects.  The @var{tag} is the four-character
33079 tag string to identify the values.  If @var{tag} is omitted, a blank tag
33080 will be used.
33081 @end defun
33083 @defun calc-normalize n
33084 This function takes a Calc object and ``normalizes'' it.  At the very
33085 least this involves re-rounding floating-point values according to the
33086 current precision and other similar jobs.  Also, unless the user has
33087 selected No-Simplify mode (@pxref{Simplification Modes}), this involves
33088 actually evaluating a formula object by executing the function calls
33089 it contains, and possibly also doing algebraic simplification, etc.
33090 @end defun
33092 @defun calc-top-list-n n m
33093 This function is identical to @code{calc-top-list}, except that it calls
33094 @code{calc-normalize} on the values that it takes from the stack.  They
33095 are also passed through @code{check-complete}, so that incomplete
33096 objects will be rejected with an error message.  All computational
33097 commands should use this in preference to @code{calc-top-list}; the only
33098 standard Calc commands that operate on the stack without normalizing
33099 are stack management commands like @code{calc-enter} and @code{calc-roll-up}.
33100 This function accepts the same optional selection-mode argument as
33101 @code{calc-top-list}.
33102 @end defun
33104 @defun calc-top-n m
33105 This function is a convenient form of @code{calc-top-list-n} in which only
33106 a single element of the stack is taken and returned, rather than a list
33107 of elements.  This also accepts an optional selection-mode argument.
33108 @end defun
33110 @defun calc-enter-result n tag vals
33111 This function is a convenient interface to most of the above functions.
33112 The @var{vals} argument should be either a single Calc object, or a list
33113 of Calc objects; the object or objects are normalized, and the top @var{n}
33114 stack entries are replaced by the normalized objects.  If @var{tag} is
33115 non-@code{nil}, the normalized objects are also recorded in the trail.
33116 A typical stack-based computational command would take the form,
33118 @smallexample
33119 (calc-enter-result @var{n} @var{tag} (cons 'calcFunc-@var{func}
33120                                (calc-top-list-n @var{n})))
33121 @end smallexample
33123 If any of the @var{n} stack elements replaced contain sub-formula
33124 selections, and selections have not been disabled by @kbd{j e},
33125 this function takes one of two courses of action.  If @var{n} is
33126 equal to the number of elements in @var{vals}, then each element of
33127 @var{vals} is spliced into the corresponding selection; this is what
33128 happens when you use the @key{TAB} key, or when you use a unary
33129 arithmetic operation like @code{sqrt}.  If @var{vals} has only one
33130 element but @var{n} is greater than one, there must be only one
33131 selection among the top @var{n} stack elements; the element from
33132 @var{vals} is spliced into that selection.  This is what happens when
33133 you use a binary arithmetic operation like @kbd{+}.  Any other
33134 combination of @var{n} and @var{vals} is an error when selections
33135 are present.
33136 @end defun
33138 @defun calc-unary-op tag func arg
33139 This function implements a unary operator that allows a numeric prefix
33140 argument to apply the operator over many stack entries.  If the prefix
33141 argument @var{arg} is @code{nil}, this uses @code{calc-enter-result}
33142 as outlined above.  Otherwise, it maps the function over several stack
33143 elements; @pxref{Prefix Arguments}.  For example,
33145 @smallexample
33146 (defun calc-zeta (arg)
33147   (interactive "P")
33148   (calc-unary-op "zeta" 'calcFunc-zeta arg))
33149 @end smallexample
33150 @end defun
33152 @defun calc-binary-op tag func arg ident unary
33153 This function implements a binary operator, analogously to
33154 @code{calc-unary-op}.  The optional @var{ident} and @var{unary}
33155 arguments specify the behavior when the prefix argument is zero or
33156 one, respectively.  If the prefix is zero, the value @var{ident}
33157 is pushed onto the stack, if specified, otherwise an error message
33158 is displayed.  If the prefix is one, the unary function @var{unary}
33159 is applied to the top stack element, or, if @var{unary} is not
33160 specified, nothing happens.  When the argument is two or more,
33161 the binary function @var{func} is reduced across the top @var{arg}
33162 stack elements; when the argument is negative, the function is
33163 mapped between the next-to-top @mathit{-@var{arg}} stack elements and the
33164 top element.
33165 @end defun
33167 @defun calc-stack-size
33168 Return the number of elements on the stack as an integer.  This count
33169 does not include elements that have been temporarily hidden by stack
33170 truncation; @pxref{Truncating the Stack}.
33171 @end defun
33173 @defun calc-cursor-stack-index n
33174 Move the point to the @var{n}th stack entry.  If @var{n} is zero, this
33175 will be the @samp{.} line.  If @var{n} is from 1 to the current stack size,
33176 this will be the beginning of the first line of that stack entry's display.
33177 If line numbers are enabled, this will move to the first character of the
33178 line number, not the stack entry itself.
33179 @end defun
33181 @defun calc-substack-height n
33182 Return the number of lines between the beginning of the @var{n}th stack
33183 entry and the bottom of the buffer.  If @var{n} is zero, this
33184 will be one (assuming no stack truncation).  If all stack entries are
33185 one line long (i.e., no matrices are displayed), the return value will
33186 be equal @var{n}+1 as long as @var{n} is in range.  (Note that in Big
33187 mode, the return value includes the blank lines that separate stack
33188 entries.)
33189 @end defun
33191 @defun calc-refresh
33192 Erase the @code{*Calculator*} buffer and reformat its contents from memory.
33193 This must be called after changing any parameter, such as the current
33194 display radix, which might change the appearance of existing stack
33195 entries.  (During a keyboard macro invoked by the @kbd{X} key, refreshing
33196 is suppressed, but a flag is set so that the entire stack will be refreshed
33197 rather than just the top few elements when the macro finishes.)
33198 @end defun
33200 @node Predicates, Computational Lisp Functions, Stack Lisp Functions, Internals
33201 @subsubsection Predicates
33203 @noindent
33204 The functions described here are predicates, that is, they return a
33205 true/false value where @code{nil} means false and anything else means
33206 true.  These predicates are expanded by @code{defmath}, for example,
33207 from @code{zerop} to @code{math-zerop}.  In many cases they correspond
33208 to native Lisp functions by the same name, but are extended to cover
33209 the full range of Calc data types.
33211 @defun zerop x
33212 Returns true if @var{x} is numerically zero, in any of the Calc data
33213 types.  (Note that for some types, such as error forms and intervals,
33214 it never makes sense to return true.)  In @code{defmath}, the expression
33215 @samp{(= x 0)} will automatically be converted to @samp{(math-zerop x)},
33216 and @samp{(/= x 0)} will be converted to @samp{(not (math-zerop x))}.
33217 @end defun
33219 @defun negp x
33220 Returns true if @var{x} is negative.  This accepts negative real numbers
33221 of various types, negative HMS and date forms, and intervals in which
33222 all included values are negative.  In @code{defmath}, the expression
33223 @samp{(< x 0)} will automatically be converted to @samp{(math-negp x)},
33224 and @samp{(>= x 0)} will be converted to @samp{(not (math-negp x))}.
33225 @end defun
33227 @defun posp x
33228 Returns true if @var{x} is positive (and non-zero).  For complex
33229 numbers, none of these three predicates will return true.
33230 @end defun
33232 @defun looks-negp x
33233 Returns true if @var{x} is ``negative-looking.''  This returns true if
33234 @var{x} is a negative number, or a formula with a leading minus sign
33235 such as @samp{-a/b}.  In other words, this is an object which can be
33236 made simpler by calling @code{(- @var{x})}.
33237 @end defun
33239 @defun integerp x
33240 Returns true if @var{x} is an integer of any size.
33241 @end defun
33243 @defun fixnump x
33244 Returns true if @var{x} is a native Lisp integer.
33245 @end defun
33247 @defun natnump x
33248 Returns true if @var{x} is a nonnegative integer of any size.
33249 @end defun
33251 @defun fixnatnump x
33252 Returns true if @var{x} is a nonnegative Lisp integer.
33253 @end defun
33255 @defun num-integerp x
33256 Returns true if @var{x} is numerically an integer, i.e., either a
33257 true integer or a float with no significant digits to the right of
33258 the decimal point.
33259 @end defun
33261 @defun messy-integerp x
33262 Returns true if @var{x} is numerically, but not literally, an integer.
33263 A value is @code{num-integerp} if it is @code{integerp} or
33264 @code{messy-integerp} (but it is never both at once).
33265 @end defun
33267 @defun num-natnump x
33268 Returns true if @var{x} is numerically a nonnegative integer.
33269 @end defun
33271 @defun evenp x
33272 Returns true if @var{x} is an even integer.
33273 @end defun
33275 @defun looks-evenp x
33276 Returns true if @var{x} is an even integer, or a formula with a leading
33277 multiplicative coefficient which is an even integer.
33278 @end defun
33280 @defun oddp x
33281 Returns true if @var{x} is an odd integer.
33282 @end defun
33284 @defun ratp x
33285 Returns true if @var{x} is a rational number, i.e., an integer or a
33286 fraction.
33287 @end defun
33289 @defun realp x
33290 Returns true if @var{x} is a real number, i.e., an integer, fraction,
33291 or floating-point number.
33292 @end defun
33294 @defun anglep x
33295 Returns true if @var{x} is a real number or HMS form.
33296 @end defun
33298 @defun floatp x
33299 Returns true if @var{x} is a float, or a complex number, error form,
33300 interval, date form, or modulo form in which at least one component
33301 is a float.
33302 @end defun
33304 @defun complexp x
33305 Returns true if @var{x} is a rectangular or polar complex number
33306 (but not a real number).
33307 @end defun
33309 @defun rect-complexp x
33310 Returns true if @var{x} is a rectangular complex number.
33311 @end defun
33313 @defun polar-complexp x
33314 Returns true if @var{x} is a polar complex number.
33315 @end defun
33317 @defun numberp x
33318 Returns true if @var{x} is a real number or a complex number.
33319 @end defun
33321 @defun scalarp x
33322 Returns true if @var{x} is a real or complex number or an HMS form.
33323 @end defun
33325 @defun vectorp x
33326 Returns true if @var{x} is a vector (this simply checks if its argument
33327 is a list whose first element is the symbol @code{vec}).
33328 @end defun
33330 @defun numvecp x
33331 Returns true if @var{x} is a number or vector.
33332 @end defun
33334 @defun matrixp x
33335 Returns true if @var{x} is a matrix, i.e., a vector of one or more vectors,
33336 all of the same size.
33337 @end defun
33339 @defun square-matrixp x
33340 Returns true if @var{x} is a square matrix.
33341 @end defun
33343 @defun objectp x
33344 Returns true if @var{x} is any numeric Calc object, including real and
33345 complex numbers, HMS forms, date forms, error forms, intervals, and
33346 modulo forms.  (Note that error forms and intervals may include formulas
33347 as their components; see @code{constp} below.)
33348 @end defun
33350 @defun objvecp x
33351 Returns true if @var{x} is an object or a vector.  This also accepts
33352 incomplete objects, but it rejects variables and formulas (except as
33353 mentioned above for @code{objectp}).
33354 @end defun
33356 @defun primp x
33357 Returns true if @var{x} is a ``primitive'' or ``atomic'' Calc object,
33358 i.e., one whose components cannot be regarded as sub-formulas.  This
33359 includes variables, and all @code{objectp} types except error forms
33360 and intervals.
33361 @end defun
33363 @defun constp x
33364 Returns true if @var{x} is constant, i.e., a real or complex number,
33365 HMS form, date form, or error form, interval, or vector all of whose
33366 components are @code{constp}.
33367 @end defun
33369 @defun lessp x y
33370 Returns true if @var{x} is numerically less than @var{y}.  Returns false
33371 if @var{x} is greater than or equal to @var{y}, or if the order is
33372 undefined or cannot be determined.  Generally speaking, this works
33373 by checking whether @samp{@var{x} - @var{y}} is @code{negp}.  In
33374 @code{defmath}, the expression @samp{(< x y)} will automatically be
33375 converted to @samp{(lessp x y)}; expressions involving @code{>}, @code{<=},
33376 and @code{>=} are similarly converted in terms of @code{lessp}.
33377 @end defun
33379 @defun beforep x y
33380 Returns true if @var{x} comes before @var{y} in a canonical ordering
33381 of Calc objects.  If @var{x} and @var{y} are both real numbers, this
33382 will be the same as @code{lessp}.  But whereas @code{lessp} considers
33383 other types of objects to be unordered, @code{beforep} puts any two
33384 objects into a definite, consistent order.  The @code{beforep}
33385 function is used by the @kbd{V S} vector-sorting command, and also
33386 by @kbd{a s} to put the terms of a product into canonical order:
33387 This allows @samp{x y + y x} to be simplified easily to @samp{2 x y}.
33388 @end defun
33390 @defun equal x y
33391 This is the standard Lisp @code{equal} predicate; it returns true if
33392 @var{x} and @var{y} are structurally identical.  This is the usual way
33393 to compare numbers for equality, but note that @code{equal} will treat
33394 0 and 0.0 as different.
33395 @end defun
33397 @defun math-equal x y
33398 Returns true if @var{x} and @var{y} are numerically equal, either because
33399 they are @code{equal}, or because their difference is @code{zerop}.  In
33400 @code{defmath}, the expression @samp{(= x y)} will automatically be
33401 converted to @samp{(math-equal x y)}.
33402 @end defun
33404 @defun equal-int x n
33405 Returns true if @var{x} and @var{n} are numerically equal, where @var{n}
33406 is a fixnum which is not a multiple of 10.  This will automatically be
33407 used by @code{defmath} in place of the more general @code{math-equal}
33408 whenever possible.
33409 @end defun
33411 @defun nearly-equal x y
33412 Returns true if @var{x} and @var{y}, as floating-point numbers, are
33413 equal except possibly in the last decimal place.  For example,
33414 314.159 and 314.166 are considered nearly equal if the current
33415 precision is 6 (since they differ by 7 units), but not if the current
33416 precision is 7 (since they differ by 70 units).  Most functions which
33417 use series expansions use @code{with-extra-prec} to evaluate the
33418 series with 2 extra digits of precision, then use @code{nearly-equal}
33419 to decide when the series has converged; this guards against cumulative
33420 error in the series evaluation without doing extra work which would be
33421 lost when the result is rounded back down to the current precision.
33422 In @code{defmath}, this can be written @samp{(~= @var{x} @var{y})}.
33423 The @var{x} and @var{y} can be numbers of any kind, including complex.
33424 @end defun
33426 @defun nearly-zerop x y
33427 Returns true if @var{x} is nearly zero, compared to @var{y}.  This
33428 checks whether @var{x} plus @var{y} would by be @code{nearly-equal}
33429 to @var{y} itself, to within the current precision, in other words,
33430 if adding @var{x} to @var{y} would have a negligible effect on @var{y}
33431 due to roundoff error.  @var{X} may be a real or complex number, but
33432 @var{y} must be real.
33433 @end defun
33435 @defun is-true x
33436 Return true if the formula @var{x} represents a true value in
33437 Calc, not Lisp, terms.  It tests if @var{x} is a non-zero number
33438 or a provably non-zero formula.
33439 @end defun
33441 @defun reject-arg val pred
33442 Abort the current function evaluation due to unacceptable argument values.
33443 This calls @samp{(calc-record-why @var{pred} @var{val})}, then signals a
33444 Lisp error which @code{normalize} will trap.  The net effect is that the
33445 function call which led here will be left in symbolic form.
33446 @end defun
33448 @defun inexact-value
33449 If Symbolic mode is enabled, this will signal an error that causes
33450 @code{normalize} to leave the formula in symbolic form, with the message
33451 ``Inexact result.''  (This function has no effect when not in Symbolic mode.)
33452 Note that if your function calls @samp{(sin 5)} in Symbolic mode, the
33453 @code{sin} function will call @code{inexact-value}, which will cause your
33454 function to be left unsimplified.  You may instead wish to call
33455 @samp{(normalize (list 'calcFunc-sin 5))}, which in Symbolic mode will
33456 return the formula @samp{sin(5)} to your function.
33457 @end defun
33459 @defun overflow
33460 This signals an error that will be reported as a floating-point overflow.
33461 @end defun
33463 @defun underflow
33464 This signals a floating-point underflow.
33465 @end defun
33467 @node Computational Lisp Functions, Vector Lisp Functions, Predicates, Internals
33468 @subsubsection Computational Functions
33470 @noindent
33471 The functions described here do the actual computational work of the
33472 Calculator.  In addition to these, note that any function described in
33473 the main body of this manual may be called from Lisp; for example, if
33474 the documentation refers to the @code{calc-sqrt} [@code{sqrt}] command,
33475 this means @code{calc-sqrt} is an interactive stack-based square-root
33476 command and @code{sqrt} (which @code{defmath} expands to @code{calcFunc-sqrt})
33477 is the actual Lisp function for taking square roots.
33479 The functions @code{math-add}, @code{math-sub}, @code{math-mul},
33480 @code{math-div}, @code{math-mod}, and @code{math-neg} are not included
33481 in this list, since @code{defmath} allows you to write native Lisp
33482 @code{+}, @code{-}, @code{*}, @code{/}, @code{%}, and unary @code{-},
33483 respectively, instead.
33485 @defun normalize val
33486 (Full form: @code{math-normalize}.)
33487 Reduce the value @var{val} to standard form.  For example, if @var{val}
33488 is a fixnum, it will be converted to a bignum if it is too large, and
33489 if @var{val} is a bignum it will be normalized by clipping off trailing
33490 (i.e., most-significant) zero digits and converting to a fixnum if it is
33491 small.  All the various data types are similarly converted to their standard
33492 forms.  Variables are left alone, but function calls are actually evaluated
33493 in formulas.  For example, normalizing @samp{(+ 2 (calcFunc-abs -4))} will
33494 return 6.
33496 If a function call fails, because the function is void or has the wrong
33497 number of parameters, or because it returns @code{nil} or calls
33498 @code{reject-arg} or @code{inexact-result}, @code{normalize} returns
33499 the formula still in symbolic form.
33501 If the current simplification mode is ``none'' or ``numeric arguments
33502 only,'' @code{normalize} will act appropriately.  However, the more
33503 powerful simplification modes (like Algebraic Simplification) are
33504 not handled by @code{normalize}.  They are handled by @code{calc-normalize},
33505 which calls @code{normalize} and possibly some other routines, such
33506 as @code{simplify} or @code{simplify-units}.  Programs generally will
33507 never call @code{calc-normalize} except when popping or pushing values
33508 on the stack.
33509 @end defun
33511 @defun evaluate-expr expr
33512 Replace all variables in @var{expr} that have values with their values,
33513 then use @code{normalize} to simplify the result.  This is what happens
33514 when you press the @kbd{=} key interactively.
33515 @end defun
33517 @defmac with-extra-prec n body
33518 Evaluate the Lisp forms in @var{body} with precision increased by @var{n}
33519 digits.  This is a macro which expands to
33521 @smallexample
33522 (math-normalize
33523   (let ((calc-internal-prec (+ calc-internal-prec @var{n})))
33524     @var{body}))
33525 @end smallexample
33527 The surrounding call to @code{math-normalize} causes a floating-point
33528 result to be rounded down to the original precision afterwards.  This
33529 is important because some arithmetic operations assume a number's
33530 mantissa contains no more digits than the current precision allows.
33531 @end defmac
33533 @defun make-frac n d
33534 Build a fraction @samp{@var{n}:@var{d}}.  This is equivalent to calling
33535 @samp{(normalize (list 'frac @var{n} @var{d}))}, but more efficient.
33536 @end defun
33538 @defun make-float mant exp
33539 Build a floating-point value out of @var{mant} and @var{exp}, both
33540 of which are arbitrary integers.  This function will return a
33541 properly normalized float value, or signal an overflow or underflow
33542 if @var{exp} is out of range.
33543 @end defun
33545 @defun make-sdev x sigma
33546 Build an error form out of @var{x} and the absolute value of @var{sigma}.
33547 If @var{sigma} is zero, the result is the number @var{x} directly.
33548 If @var{sigma} is negative or complex, its absolute value is used.
33549 If @var{x} or @var{sigma} is not a valid type of object for use in
33550 error forms, this calls @code{reject-arg}.
33551 @end defun
33553 @defun make-intv mask lo hi
33554 Build an interval form out of @var{mask} (which is assumed to be an
33555 integer from 0 to 3), and the limits @var{lo} and @var{hi}.  If
33556 @var{lo} is greater than @var{hi}, an empty interval form is returned.
33557 This calls @code{reject-arg} if @var{lo} or @var{hi} is unsuitable.
33558 @end defun
33560 @defun sort-intv mask lo hi
33561 Build an interval form, similar to @code{make-intv}, except that if
33562 @var{lo} is less than @var{hi} they are simply exchanged, and the
33563 bits of @var{mask} are swapped accordingly.
33564 @end defun
33566 @defun make-mod n m
33567 Build a modulo form out of @var{n} and the modulus @var{m}.  Since modulo
33568 forms do not allow formulas as their components, if @var{n} or @var{m}
33569 is not a real number or HMS form the result will be a formula which
33570 is a call to @code{makemod}, the algebraic version of this function.
33571 @end defun
33573 @defun float x
33574 Convert @var{x} to floating-point form.  Integers and fractions are
33575 converted to numerically equivalent floats; components of complex
33576 numbers, vectors, HMS forms, date forms, error forms, intervals, and
33577 modulo forms are recursively floated.  If the argument is a variable
33578 or formula, this calls @code{reject-arg}.
33579 @end defun
33581 @defun compare x y
33582 Compare the numbers @var{x} and @var{y}, and return @mathit{-1} if
33583 @samp{(lessp @var{x} @var{y})}, 1 if @samp{(lessp @var{y} @var{x})},
33584 0 if @samp{(math-equal @var{x} @var{y})}, or 2 if the order is
33585 undefined or cannot be determined.
33586 @end defun
33588 @defun numdigs n
33589 Return the number of digits of integer @var{n}, effectively
33590 @samp{ceil(log10(@var{n}))}, but much more efficient.  Zero is
33591 considered to have zero digits.
33592 @end defun
33594 @defun scale-int x n
33595 Shift integer @var{x} left @var{n} decimal digits, or right @mathit{-@var{n}}
33596 digits with truncation toward zero.
33597 @end defun
33599 @defun scale-rounding x n
33600 Like @code{scale-int}, except that a right shift rounds to the nearest
33601 integer rather than truncating.
33602 @end defun
33604 @defun fixnum n
33605 Return the integer @var{n} as a fixnum, i.e., a native Lisp integer.
33606 If @var{n} is outside the permissible range for Lisp integers (usually
33607 24 binary bits) the result is undefined.
33608 @end defun
33610 @defun sqr x
33611 Compute the square of @var{x}; short for @samp{(* @var{x} @var{x})}.
33612 @end defun
33614 @defun quotient x y
33615 Divide integer @var{x} by integer @var{y}; return an integer quotient
33616 and discard the remainder.  If @var{x} or @var{y} is negative, the
33617 direction of rounding is undefined.
33618 @end defun
33620 @defun idiv x y
33621 Perform an integer division; if @var{x} and @var{y} are both nonnegative
33622 integers, this uses the @code{quotient} function, otherwise it computes
33623 @samp{floor(@var{x}/@var{y})}.  Thus the result is well-defined but
33624 slower than for @code{quotient}.
33625 @end defun
33627 @defun imod x y
33628 Divide integer @var{x} by integer @var{y}; return the integer remainder
33629 and discard the quotient.  Like @code{quotient}, this works only for
33630 integer arguments and is not well-defined for negative arguments.
33631 For a more well-defined result, use @samp{(% @var{x} @var{y})}.
33632 @end defun
33634 @defun idivmod x y
33635 Divide integer @var{x} by integer @var{y}; return a cons cell whose
33636 @code{car} is @samp{(quotient @var{x} @var{y})} and whose @code{cdr}
33637 is @samp{(imod @var{x} @var{y})}.
33638 @end defun
33640 @defun pow x y
33641 Compute @var{x} to the power @var{y}.  In @code{defmath} code, this can
33642 also be written @samp{(^ @var{x} @var{y})} or
33643 @w{@samp{(expt @var{x} @var{y})}}.
33644 @end defun
33646 @defun abs-approx x
33647 Compute a fast approximation to the absolute value of @var{x}.  For
33648 example, for a rectangular complex number the result is the sum of
33649 the absolute values of the components.
33650 @end defun
33652 @findex e
33653 @findex gamma-const
33654 @findex ln-2
33655 @findex ln-10
33656 @findex phi
33657 @findex pi-over-2
33658 @findex pi-over-4
33659 @findex pi-over-180
33660 @findex sqrt-two-pi
33661 @findex sqrt-e
33662 @findex two-pi
33663 @defun pi
33664 The function @samp{(pi)} computes @samp{pi} to the current precision.
33665 Other related constant-generating functions are @code{two-pi},
33666 @code{pi-over-2}, @code{pi-over-4}, @code{pi-over-180}, @code{sqrt-two-pi},
33667 @code{e}, @code{sqrt-e}, @code{ln-2}, @code{ln-10}, @code{phi} and
33668 @code{gamma-const}.  Each function returns a floating-point value in the
33669 current precision, and each uses caching so that all calls after the
33670 first are essentially free.
33671 @end defun
33673 @defmac math-defcache @var{func} @var{initial} @var{form}
33674 This macro, usually used as a top-level call like @code{defun} or
33675 @code{defvar}, defines a new cached constant analogous to @code{pi}, etc.
33676 It defines a function @code{func} which returns the requested value;
33677 if @var{initial} is non-@code{nil} it must be a @samp{(float @dots{})}
33678 form which serves as an initial value for the cache.  If @var{func}
33679 is called when the cache is empty or does not have enough digits to
33680 satisfy the current precision, the Lisp expression @var{form} is evaluated
33681 with the current precision increased by four, and the result minus its
33682 two least significant digits is stored in the cache.  For example,
33683 calling @samp{(pi)} with a precision of 30 computes @samp{pi} to 34
33684 digits, rounds it down to 32 digits for future use, then rounds it
33685 again to 30 digits for use in the present request.
33686 @end defmac
33688 @findex half-circle
33689 @findex quarter-circle
33690 @defun full-circle symb
33691 If the current angular mode is Degrees or HMS, this function returns the
33692 integer 360.  In Radians mode, this function returns either the
33693 corresponding value in radians to the current precision, or the formula
33694 @samp{2*pi}, depending on the Symbolic mode.  There are also similar
33695 function @code{half-circle} and @code{quarter-circle}.
33696 @end defun
33698 @defun power-of-2 n
33699 Compute two to the integer power @var{n}, as a (potentially very large)
33700 integer.  Powers of two are cached, so only the first call for a
33701 particular @var{n} is expensive.
33702 @end defun
33704 @defun integer-log2 n
33705 Compute the base-2 logarithm of @var{n}, which must be an integer which
33706 is a power of two.  If @var{n} is not a power of two, this function will
33707 return @code{nil}.
33708 @end defun
33710 @defun div-mod a b m
33711 Divide @var{a} by @var{b}, modulo @var{m}.  This returns @code{nil} if
33712 there is no solution, or if any of the arguments are not integers.
33713 @end defun
33715 @defun pow-mod a b m
33716 Compute @var{a} to the power @var{b}, modulo @var{m}.  If @var{a},
33717 @var{b}, and @var{m} are integers, this uses an especially efficient
33718 algorithm.  Otherwise, it simply computes @samp{(% (^ a b) m)}.
33719 @end defun
33721 @defun isqrt n
33722 Compute the integer square root of @var{n}.  This is the square root
33723 of @var{n} rounded down toward zero, i.e., @samp{floor(sqrt(@var{n}))}.
33724 If @var{n} is itself an integer, the computation is especially efficient.
33725 @end defun
33727 @defun to-hms a ang
33728 Convert the argument @var{a} into an HMS form.  If @var{ang} is specified,
33729 it is the angular mode in which to interpret @var{a}, either @code{deg}
33730 or @code{rad}.  Otherwise, the current angular mode is used.  If @var{a}
33731 is already an HMS form it is returned as-is.
33732 @end defun
33734 @defun from-hms a ang
33735 Convert the HMS form @var{a} into a real number.  If @var{ang} is specified,
33736 it is the angular mode in which to express the result, otherwise the
33737 current angular mode is used.  If @var{a} is already a real number, it
33738 is returned as-is.
33739 @end defun
33741 @defun to-radians a
33742 Convert the number or HMS form @var{a} to radians from the current
33743 angular mode.
33744 @end defun
33746 @defun from-radians a
33747 Convert the number @var{a} from radians to the current angular mode.
33748 If @var{a} is a formula, this returns the formula @samp{deg(@var{a})}.
33749 @end defun
33751 @defun to-radians-2 a
33752 Like @code{to-radians}, except that in Symbolic mode a degrees to
33753 radians conversion yields a formula like @samp{@var{a}*pi/180}.
33754 @end defun
33756 @defun from-radians-2 a
33757 Like @code{from-radians}, except that in Symbolic mode a radians to
33758 degrees conversion yields a formula like @samp{@var{a}*180/pi}.
33759 @end defun
33761 @defun random-digit
33762 Produce a random base-1000 digit in the range 0 to 999.
33763 @end defun
33765 @defun random-digits n
33766 Produce a random @var{n}-digit integer; this will be an integer
33767 in the interval @samp{[0, 10^@var{n})}.
33768 @end defun
33770 @defun random-float
33771 Produce a random float in the interval @samp{[0, 1)}.
33772 @end defun
33774 @defun prime-test n iters
33775 Determine whether the integer @var{n} is prime.  Return a list which has
33776 one of these forms: @samp{(nil @var{f})} means the number is non-prime
33777 because it was found to be divisible by @var{f}; @samp{(nil)} means it
33778 was found to be non-prime by table look-up (so no factors are known);
33779 @samp{(nil unknown)} means it is definitely non-prime but no factors
33780 are known because @var{n} was large enough that Fermat's probabilistic
33781 test had to be used; @samp{(t)} means the number is definitely prime;
33782 and @samp{(maybe @var{i} @var{p})} means that Fermat's test, after @var{i}
33783 iterations, is @var{p} percent sure that the number is prime.  The
33784 @var{iters} parameter is the number of Fermat iterations to use, in the
33785 case that this is necessary.  If @code{prime-test} returns ``maybe,''
33786 you can call it again with the same @var{n} to get a greater certainty;
33787 @code{prime-test} remembers where it left off.
33788 @end defun
33790 @defun to-simple-fraction f
33791 If @var{f} is a floating-point number which can be represented exactly
33792 as a small rational number. return that number, else return @var{f}.
33793 For example, 0.75 would be converted to 3:4.  This function is very
33794 fast.
33795 @end defun
33797 @defun to-fraction f tol
33798 Find a rational approximation to floating-point number @var{f} to within
33799 a specified tolerance @var{tol}; this corresponds to the algebraic
33800 function @code{frac}, and can be rather slow.
33801 @end defun
33803 @defun quarter-integer n
33804 If @var{n} is an integer or integer-valued float, this function
33805 returns zero.  If @var{n} is a half-integer (i.e., an integer plus
33806 @mathit{1:2} or 0.5), it returns 2.  If @var{n} is a quarter-integer,
33807 it returns 1 or 3.  If @var{n} is anything else, this function
33808 returns @code{nil}.
33809 @end defun
33811 @node Vector Lisp Functions, Symbolic Lisp Functions, Computational Lisp Functions, Internals
33812 @subsubsection Vector Functions
33814 @noindent
33815 The functions described here perform various operations on vectors and
33816 matrices.
33818 @defun math-concat x y
33819 Do a vector concatenation; this operation is written @samp{@var{x} | @var{y}}
33820 in a symbolic formula.  @xref{Building Vectors}.
33821 @end defun
33823 @defun vec-length v
33824 Return the length of vector @var{v}.  If @var{v} is not a vector, the
33825 result is zero.  If @var{v} is a matrix, this returns the number of
33826 rows in the matrix.
33827 @end defun
33829 @defun mat-dimens m
33830 Determine the dimensions of vector or matrix @var{m}.  If @var{m} is not
33831 a vector, the result is an empty list.  If @var{m} is a plain vector
33832 but not a matrix, the result is a one-element list containing the length
33833 of the vector.  If @var{m} is a matrix with @var{r} rows and @var{c} columns,
33834 the result is the list @samp{(@var{r} @var{c})}.  Higher-order tensors
33835 produce lists of more than two dimensions.  Note that the object
33836 @samp{[[1, 2, 3], [4, 5]]} is a vector of vectors not all the same size,
33837 and is treated by this and other Calc routines as a plain vector of two
33838 elements.
33839 @end defun
33841 @defun dimension-error
33842 Abort the current function with a message of ``Dimension error.''
33843 The Calculator will leave the function being evaluated in symbolic
33844 form; this is really just a special case of @code{reject-arg}.
33845 @end defun
33847 @defun build-vector args
33848 Return a Calc vector with @var{args} as elements.
33849 For example, @samp{(build-vector 1 2 3)} returns the Calc vector
33850 @samp{[1, 2, 3]}, stored internally as the list @samp{(vec 1 2 3)}.
33851 @end defun
33853 @defun make-vec obj dims
33854 Return a Calc vector or matrix all of whose elements are equal to
33855 @var{obj}.  For example, @samp{(make-vec 27 3 4)} returns a 3x4 matrix
33856 filled with 27's.
33857 @end defun
33859 @defun row-matrix v
33860 If @var{v} is a plain vector, convert it into a row matrix, i.e.,
33861 a matrix whose single row is @var{v}.  If @var{v} is already a matrix,
33862 leave it alone.
33863 @end defun
33865 @defun col-matrix v
33866 If @var{v} is a plain vector, convert it into a column matrix, i.e., a
33867 matrix with each element of @var{v} as a separate row.  If @var{v} is
33868 already a matrix, leave it alone.
33869 @end defun
33871 @defun map-vec f v
33872 Map the Lisp function @var{f} over the Calc vector @var{v}.  For example,
33873 @samp{(map-vec 'math-floor v)} returns a vector of the floored components
33874 of vector @var{v}.
33875 @end defun
33877 @defun map-vec-2 f a b
33878 Map the Lisp function @var{f} over the two vectors @var{a} and @var{b}.
33879 If @var{a} and @var{b} are vectors of equal length, the result is a
33880 vector of the results of calling @samp{(@var{f} @var{ai} @var{bi})}
33881 for each pair of elements @var{ai} and @var{bi}.  If either @var{a} or
33882 @var{b} is a scalar, it is matched with each value of the other vector.
33883 For example, @samp{(map-vec-2 'math-add v 1)} returns the vector @var{v}
33884 with each element increased by one.  Note that using @samp{'+} would not
33885 work here, since @code{defmath} does not expand function names everywhere,
33886 just where they are in the function position of a Lisp expression.
33887 @end defun
33889 @defun reduce-vec f v
33890 Reduce the function @var{f} over the vector @var{v}.  For example, if
33891 @var{v} is @samp{[10, 20, 30, 40]}, this calls @samp{(f (f (f 10 20) 30) 40)}.
33892 If @var{v} is a matrix, this reduces over the rows of @var{v}.
33893 @end defun
33895 @defun reduce-cols f m
33896 Reduce the function @var{f} over the columns of matrix @var{m}.  For
33897 example, if @var{m} is @samp{[[1, 2], [3, 4], [5, 6]]}, the result
33898 is a vector of the two elements @samp{(f (f 1 3) 5)} and @samp{(f (f 2 4) 6)}.
33899 @end defun
33901 @defun mat-row m n
33902 Return the @var{n}th row of matrix @var{m}.  This is equivalent to
33903 @samp{(elt m n)}.  For a slower but safer version, use @code{mrow}.
33904 (@xref{Extracting Elements}.)
33905 @end defun
33907 @defun mat-col m n
33908 Return the @var{n}th column of matrix @var{m}, in the form of a vector.
33909 The arguments are not checked for correctness.
33910 @end defun
33912 @defun mat-less-row m n
33913 Return a copy of matrix @var{m} with its @var{n}th row deleted.  The
33914 number @var{n} must be in range from 1 to the number of rows in @var{m}.
33915 @end defun
33917 @defun mat-less-col m n
33918 Return a copy of matrix @var{m} with its @var{n}th column deleted.
33919 @end defun
33921 @defun transpose m
33922 Return the transpose of matrix @var{m}.
33923 @end defun
33925 @defun flatten-vector v
33926 Flatten nested vector @var{v} into a vector of scalars.  For example,
33927 if @var{v} is @samp{[[1, 2, 3], [4, 5]]} the result is @samp{[1, 2, 3, 4, 5]}.
33928 @end defun
33930 @defun copy-matrix m
33931 If @var{m} is a matrix, return a copy of @var{m}.  This maps
33932 @code{copy-sequence} over the rows of @var{m}; in Lisp terms, each
33933 element of the result matrix will be @code{eq} to the corresponding
33934 element of @var{m}, but none of the @code{cons} cells that make up
33935 the structure of the matrix will be @code{eq}.  If @var{m} is a plain
33936 vector, this is the same as @code{copy-sequence}.
33937 @end defun
33939 @defun swap-rows m r1 r2
33940 Exchange rows @var{r1} and @var{r2} of matrix @var{m} in-place.  In
33941 other words, unlike most of the other functions described here, this
33942 function changes @var{m} itself rather than building up a new result
33943 matrix.  The return value is @var{m}, i.e., @samp{(eq (swap-rows m 1 2) m)}
33944 is true, with the side effect of exchanging the first two rows of
33945 @var{m}.
33946 @end defun
33948 @node Symbolic Lisp Functions, Formatting Lisp Functions, Vector Lisp Functions, Internals
33949 @subsubsection Symbolic Functions
33951 @noindent
33952 The functions described here operate on symbolic formulas in the
33953 Calculator.
33955 @defun calc-prepare-selection num
33956 Prepare a stack entry for selection operations.  If @var{num} is
33957 omitted, the stack entry containing the cursor is used; otherwise,
33958 it is the number of the stack entry to use.  This function stores
33959 useful information about the current stack entry into a set of
33960 variables.  @code{calc-selection-cache-num} contains the number of
33961 the stack entry involved (equal to @var{num} if you specified it);
33962 @code{calc-selection-cache-entry} contains the stack entry as a
33963 list (such as @code{calc-top-list} would return with @code{entry}
33964 as the selection mode); and @code{calc-selection-cache-comp} contains
33965 a special ``tagged'' composition (@pxref{Formatting Lisp Functions})
33966 which allows Calc to relate cursor positions in the buffer with
33967 their corresponding sub-formulas.
33969 A slight complication arises in the selection mechanism because
33970 formulas may contain small integers.  For example, in the vector
33971 @samp{[1, 2, 1]} the first and last elements are @code{eq} to each
33972 other; selections are recorded as the actual Lisp object that
33973 appears somewhere in the tree of the whole formula, but storing
33974 @code{1} would falsely select both @code{1}'s in the vector.  So
33975 @code{calc-prepare-selection} also checks the stack entry and
33976 replaces any plain integers with ``complex number'' lists of the form
33977 @samp{(cplx @var{n} 0)}.  This list will be displayed the same as a
33978 plain @var{n} and the change will be completely invisible to the
33979 user, but it will guarantee that no two sub-formulas of the stack
33980 entry will be @code{eq} to each other.  Next time the stack entry
33981 is involved in a computation, @code{calc-normalize} will replace
33982 these lists with plain numbers again, again invisibly to the user.
33983 @end defun
33985 @defun calc-encase-atoms x
33986 This modifies the formula @var{x} to ensure that each part of the
33987 formula is a unique atom, using the @samp{(cplx @var{n} 0)} trick
33988 described above.  This function may use @code{setcar} to modify
33989 the formula in-place.
33990 @end defun
33992 @defun calc-find-selected-part
33993 Find the smallest sub-formula of the current formula that contains
33994 the cursor.  This assumes @code{calc-prepare-selection} has been
33995 called already.  If the cursor is not actually on any part of the
33996 formula, this returns @code{nil}.
33997 @end defun
33999 @defun calc-change-current-selection selection
34000 Change the currently prepared stack element's selection to
34001 @var{selection}, which should be @code{eq} to some sub-formula
34002 of the stack element, or @code{nil} to unselect the formula.
34003 The stack element's appearance in the Calc buffer is adjusted
34004 to reflect the new selection.
34005 @end defun
34007 @defun calc-find-nth-part expr n
34008 Return the @var{n}th sub-formula of @var{expr}.  This function is used
34009 by the selection commands, and (unless @kbd{j b} has been used) treats
34010 sums and products as flat many-element formulas.  Thus if @var{expr}
34011 is @samp{((a + b) - c) + d}, calling @code{calc-find-nth-part} with
34012 @var{n} equal to four will return @samp{d}.
34013 @end defun
34015 @defun calc-find-parent-formula expr part
34016 Return the sub-formula of @var{expr} which immediately contains
34017 @var{part}.  If @var{expr} is @samp{a*b + (c+1)*d} and @var{part}
34018 is @code{eq} to the @samp{c+1} term of @var{expr}, then this function
34019 will return @samp{(c+1)*d}.  If @var{part} turns out not to be a
34020 sub-formula of @var{expr}, the function returns @code{nil}.  If
34021 @var{part} is @code{eq} to @var{expr}, the function returns @code{t}.
34022 This function does not take associativity into account.
34023 @end defun
34025 @defun calc-find-assoc-parent-formula expr part
34026 This is the same as @code{calc-find-parent-formula}, except that
34027 (unless @kbd{j b} has been used) it continues widening the selection
34028 to contain a complete level of the formula.  Given @samp{a} from
34029 @samp{((a + b) - c) + d}, @code{calc-find-parent-formula} will
34030 return @samp{a + b} but @code{calc-find-assoc-parent-formula} will
34031 return the whole expression.
34032 @end defun
34034 @defun calc-grow-assoc-formula expr part
34035 This expands sub-formula @var{part} of @var{expr} to encompass a
34036 complete level of the formula.  If @var{part} and its immediate
34037 parent are not compatible associative operators, or if @kbd{j b}
34038 has been used, this simply returns @var{part}.
34039 @end defun
34041 @defun calc-find-sub-formula expr part
34042 This finds the immediate sub-formula of @var{expr} which contains
34043 @var{part}.  It returns an index @var{n} such that
34044 @samp{(calc-find-nth-part @var{expr} @var{n})} would return @var{part}.
34045 If @var{part} is not a sub-formula of @var{expr}, it returns @code{nil}.
34046 If @var{part} is @code{eq} to @var{expr}, it returns @code{t}.  This
34047 function does not take associativity into account.
34048 @end defun
34050 @defun calc-replace-sub-formula expr old new
34051 This function returns a copy of formula @var{expr}, with the
34052 sub-formula that is @code{eq} to @var{old} replaced by @var{new}.
34053 @end defun
34055 @defun simplify expr
34056 Simplify the expression @var{expr} by applying various algebraic rules.
34057 This is what the @w{@kbd{a s}} (@code{calc-simplify}) command uses.  This
34058 always returns a copy of the expression; the structure @var{expr} points
34059 to remains unchanged in memory.
34061 More precisely, here is what @code{simplify} does:  The expression is
34062 first normalized and evaluated by calling @code{normalize}.  If any
34063 @code{AlgSimpRules} have been defined, they are then applied.  Then
34064 the expression is traversed in a depth-first, bottom-up fashion; at
34065 each level, any simplifications that can be made are made until no
34066 further changes are possible.  Once the entire formula has been
34067 traversed in this way, it is compared with the original formula (from
34068 before the call to @code{normalize}) and, if it has changed,
34069 the entire procedure is repeated (starting with @code{normalize})
34070 until no further changes occur.  Usually only two iterations are
34071 needed:@: one to simplify the formula, and another to verify that no
34072 further simplifications were possible.
34073 @end defun
34075 @defun simplify-extended expr
34076 Simplify the expression @var{expr}, with additional rules enabled that
34077 help do a more thorough job, while not being entirely ``safe'' in all
34078 circumstances.  (For example, this mode will simplify @samp{sqrt(x^2)}
34079 to @samp{x}, which is only valid when @var{x} is positive.)  This is
34080 implemented by temporarily binding the variable @code{math-living-dangerously}
34081 to @code{t} (using a @code{let} form) and calling @code{simplify}.
34082 Dangerous simplification rules are written to check this variable
34083 before taking any action.
34084 @end defun
34086 @defun simplify-units expr
34087 Simplify the expression @var{expr}, treating variable names as units
34088 whenever possible.  This works by binding the variable
34089 @code{math-simplifying-units} to @code{t} while calling @code{simplify}.
34090 @end defun
34092 @defmac math-defsimplify funcs body
34093 Register a new simplification rule; this is normally called as a top-level
34094 form, like @code{defun} or @code{defmath}.  If @var{funcs} is a symbol
34095 (like @code{+} or @code{calcFunc-sqrt}), this simplification rule is
34096 applied to the formulas which are calls to the specified function.  Or,
34097 @var{funcs} can be a list of such symbols; the rule applies to all
34098 functions on the list.  The @var{body} is written like the body of a
34099 function with a single argument called @code{expr}.  The body will be
34100 executed with @code{expr} bound to a formula which is a call to one of
34101 the functions @var{funcs}.  If the function body returns @code{nil}, or
34102 if it returns a result @code{equal} to the original @code{expr}, it is
34103 ignored and Calc goes on to try the next simplification rule that applies.
34104 If the function body returns something different, that new formula is
34105 substituted for @var{expr} in the original formula.
34107 At each point in the formula, rules are tried in the order of the
34108 original calls to @code{math-defsimplify}; the search stops after the
34109 first rule that makes a change.  Thus later rules for that same
34110 function will not have a chance to trigger until the next iteration
34111 of the main @code{simplify} loop.
34113 Note that, since @code{defmath} is not being used here, @var{body} must
34114 be written in true Lisp code without the conveniences that @code{defmath}
34115 provides.  If you prefer, you can have @var{body} simply call another
34116 function (defined with @code{defmath}) which does the real work.
34118 The arguments of a function call will already have been simplified
34119 before any rules for the call itself are invoked.  Since a new argument
34120 list is consed up when this happens, this means that the rule's body is
34121 allowed to rearrange the function's arguments destructively if that is
34122 convenient.  Here is a typical example of a simplification rule:
34124 @smallexample
34125 (math-defsimplify calcFunc-arcsinh
34126   (or (and (math-looks-negp (nth 1 expr))
34127            (math-neg (list 'calcFunc-arcsinh
34128                            (math-neg (nth 1 expr)))))
34129       (and (eq (car-safe (nth 1 expr)) 'calcFunc-sinh)
34130            (or math-living-dangerously
34131                (math-known-realp (nth 1 (nth 1 expr))))
34132            (nth 1 (nth 1 expr)))))
34133 @end smallexample
34135 This is really a pair of rules written with one @code{math-defsimplify}
34136 for convenience; the first replaces @samp{arcsinh(-x)} with
34137 @samp{-arcsinh(x)}, and the second, which is safe only for real @samp{x},
34138 replaces @samp{arcsinh(sinh(x))} with @samp{x}.
34139 @end defmac
34141 @defun common-constant-factor expr
34142 Check @var{expr} to see if it is a sum of terms all multiplied by the
34143 same rational value.  If so, return this value.  If not, return @code{nil}.
34144 For example, if called on @samp{6x + 9y + 12z}, it would return 3, since
34145 3 is a common factor of all the terms.
34146 @end defun
34148 @defun cancel-common-factor expr factor
34149 Assuming @var{expr} is a sum with @var{factor} as a common factor,
34150 divide each term of the sum by @var{factor}.  This is done by
34151 destructively modifying parts of @var{expr}, on the assumption that
34152 it is being used by a simplification rule (where such things are
34153 allowed; see above).  For example, consider this built-in rule for
34154 square roots:
34156 @smallexample
34157 (math-defsimplify calcFunc-sqrt
34158   (let ((fac (math-common-constant-factor (nth 1 expr))))
34159     (and fac (not (eq fac 1))
34160          (math-mul (math-normalize (list 'calcFunc-sqrt fac))
34161                    (math-normalize
34162                     (list 'calcFunc-sqrt
34163                           (math-cancel-common-factor
34164                            (nth 1 expr) fac)))))))
34165 @end smallexample
34166 @end defun
34168 @defun frac-gcd a b
34169 Compute a ``rational GCD'' of @var{a} and @var{b}, which must both be
34170 rational numbers.  This is the fraction composed of the GCD of the
34171 numerators of @var{a} and @var{b}, over the GCD of the denominators.
34172 It is used by @code{common-constant-factor}.  Note that the standard
34173 @code{gcd} function uses the LCM to combine the denominators.
34174 @end defun
34176 @defun map-tree func expr many
34177 Try applying Lisp function @var{func} to various sub-expressions of
34178 @var{expr}.  Initially, call @var{func} with @var{expr} itself as an
34179 argument.  If this returns an expression which is not @code{equal} to
34180 @var{expr}, apply @var{func} again until eventually it does return
34181 @var{expr} with no changes.  Then, if @var{expr} is a function call,
34182 recursively apply @var{func} to each of the arguments.  This keeps going
34183 until no changes occur anywhere in the expression; this final expression
34184 is returned by @code{map-tree}.  Note that, unlike simplification rules,
34185 @var{func} functions may @emph{not} make destructive changes to
34186 @var{expr}.  If a third argument @var{many} is provided, it is an
34187 integer which says how many times @var{func} may be applied; the
34188 default, as described above, is infinitely many times.
34189 @end defun
34191 @defun compile-rewrites rules
34192 Compile the rewrite rule set specified by @var{rules}, which should
34193 be a formula that is either a vector or a variable name.  If the latter,
34194 the compiled rules are saved so that later @code{compile-rules} calls
34195 for that same variable can return immediately.  If there are problems
34196 with the rules, this function calls @code{error} with a suitable
34197 message.
34198 @end defun
34200 @defun apply-rewrites expr crules heads
34201 Apply the compiled rewrite rule set @var{crules} to the expression
34202 @var{expr}.  This will make only one rewrite and only checks at the
34203 top level of the expression.  The result @code{nil} if no rules
34204 matched, or if the only rules that matched did not actually change
34205 the expression.  The @var{heads} argument is optional; if is given,
34206 it should be a list of all function names that (may) appear in
34207 @var{expr}.  The rewrite compiler tags each rule with the
34208 rarest-looking function name in the rule; if you specify @var{heads},
34209 @code{apply-rewrites} can use this information to narrow its search
34210 down to just a few rules in the rule set.
34211 @end defun
34213 @defun rewrite-heads expr
34214 Compute a @var{heads} list for @var{expr} suitable for use with
34215 @code{apply-rewrites}, as discussed above.
34216 @end defun
34218 @defun rewrite expr rules many
34219 This is an all-in-one rewrite function.  It compiles the rule set
34220 specified by @var{rules}, then uses @code{map-tree} to apply the
34221 rules throughout @var{expr} up to @var{many} (default infinity)
34222 times.
34223 @end defun
34225 @defun match-patterns pat vec not-flag
34226 Given a Calc vector @var{vec} and an uncompiled pattern set or
34227 pattern set variable @var{pat}, this function returns a new vector
34228 of all elements of @var{vec} which do (or don't, if @var{not-flag} is
34229 non-@code{nil}) match any of the patterns in @var{pat}.
34230 @end defun
34232 @defun deriv expr var value symb
34233 Compute the derivative of @var{expr} with respect to variable @var{var}
34234 (which may actually be any sub-expression).  If @var{value} is specified,
34235 the derivative is evaluated at the value of @var{var}; otherwise, the
34236 derivative is left in terms of @var{var}.  If the expression contains
34237 functions for which no derivative formula is known, new derivative
34238 functions are invented by adding primes to the names; @pxref{Calculus}.
34239 However, if @var{symb} is non-@code{nil}, the presence of undifferentiable
34240 functions in @var{expr} instead cancels the whole differentiation, and
34241 @code{deriv} returns @code{nil} instead.
34243 Derivatives of an @var{n}-argument function can be defined by
34244 adding a @code{math-derivative-@var{n}} property to the property list
34245 of the symbol for the function's derivative, which will be the
34246 function name followed by an apostrophe.  The value of the property
34247 should be a Lisp function; it is called with the same arguments as the
34248 original function call that is being differentiated.  It should return
34249 a formula for the derivative.  For example, the derivative of @code{ln}
34250 is defined by
34252 @smallexample
34253 (put 'calcFunc-ln\' 'math-derivative-1
34254      (function (lambda (u) (math-div 1 u))))
34255 @end smallexample
34257 The two-argument @code{log} function has two derivatives,
34258 @smallexample
34259 (put 'calcFunc-log\' 'math-derivative-2     ; d(log(x,b)) / dx
34260      (function (lambda (x b) ... )))
34261 (put 'calcFunc-log\'2 'math-derivative-2    ; d(log(x,b)) / db
34262      (function (lambda (x b) ... )))
34263 @end smallexample
34264 @end defun
34266 @defun tderiv expr var value symb
34267 Compute the total derivative of @var{expr}.  This is the same as
34268 @code{deriv}, except that variables other than @var{var} are not
34269 assumed to be constant with respect to @var{var}.
34270 @end defun
34272 @defun integ expr var low high
34273 Compute the integral of @var{expr} with respect to @var{var}.
34274 @xref{Calculus}, for further details.
34275 @end defun
34277 @defmac math-defintegral funcs body
34278 Define a rule for integrating a function or functions of one argument;
34279 this macro is very similar in format to @code{math-defsimplify}.
34280 The main difference is that here @var{body} is the body of a function
34281 with a single argument @code{u} which is bound to the argument to the
34282 function being integrated, not the function call itself.  Also, the
34283 variable of integration is available as @code{math-integ-var}.  If
34284 evaluation of the integral requires doing further integrals, the body
34285 should call @samp{(math-integral @var{x})} to find the integral of
34286 @var{x} with respect to @code{math-integ-var}; this function returns
34287 @code{nil} if the integral could not be done.  Some examples:
34289 @smallexample
34290 (math-defintegral calcFunc-conj
34291   (let ((int (math-integral u)))
34292     (and int
34293          (list 'calcFunc-conj int))))
34295 (math-defintegral calcFunc-cos
34296   (and (equal u math-integ-var)
34297        (math-from-radians-2 (list 'calcFunc-sin u))))
34298 @end smallexample
34300 In the @code{cos} example, we define only the integral of @samp{cos(x) dx},
34301 relying on the general integration-by-substitution facility to handle
34302 cosines of more complicated arguments.  An integration rule should return
34303 @code{nil} if it can't do the integral; if several rules are defined for
34304 the same function, they are tried in order until one returns a non-@code{nil}
34305 result.
34306 @end defmac
34308 @defmac math-defintegral-2 funcs body
34309 Define a rule for integrating a function or functions of two arguments.
34310 This is exactly analogous to @code{math-defintegral}, except that @var{body}
34311 is written as the body of a function with two arguments, @var{u} and
34312 @var{v}.
34313 @end defmac
34315 @defun solve-for lhs rhs var full
34316 Attempt to solve the equation @samp{@var{lhs} = @var{rhs}} by isolating
34317 the variable @var{var} on the lefthand side; return the resulting righthand
34318 side, or @code{nil} if the equation cannot be solved.  The variable
34319 @var{var} must appear at least once in @var{lhs} or @var{rhs}.  Note that
34320 the return value is a formula which does not contain @var{var}; this is
34321 different from the user-level @code{solve} and @code{finv} functions,
34322 which return a rearranged equation or a functional inverse, respectively.
34323 If @var{full} is non-@code{nil}, a full solution including dummy signs
34324 and dummy integers will be produced.  User-defined inverses are provided
34325 as properties in a manner similar to derivatives:
34327 @smallexample
34328 (put 'calcFunc-ln 'math-inverse
34329      (function (lambda (x) (list 'calcFunc-exp x))))
34330 @end smallexample
34332 This function can call @samp{(math-solve-get-sign @var{x})} to create
34333 a new arbitrary sign variable, returning @var{x} times that sign, and
34334 @samp{(math-solve-get-int @var{x})} to create a new arbitrary integer
34335 variable multiplied by @var{x}.  These functions simply return @var{x}
34336 if the caller requested a non-``full'' solution.
34337 @end defun
34339 @defun solve-eqn expr var full
34340 This version of @code{solve-for} takes an expression which will
34341 typically be an equation or inequality.  (If it is not, it will be
34342 interpreted as the equation @samp{@var{expr} = 0}.)  It returns an
34343 equation or inequality, or @code{nil} if no solution could be found.
34344 @end defun
34346 @defun solve-system exprs vars full
34347 This function solves a system of equations.  Generally, @var{exprs}
34348 and @var{vars} will be vectors of equal length.
34349 @xref{Solving Systems of Equations}, for other options.
34350 @end defun
34352 @defun expr-contains expr var
34353 Returns a non-@code{nil} value if @var{var} occurs as a subexpression
34354 of @var{expr}.
34356 This function might seem at first to be identical to
34357 @code{calc-find-sub-formula}.  The key difference is that
34358 @code{expr-contains} uses @code{equal} to test for matches, whereas
34359 @code{calc-find-sub-formula} uses @code{eq}.  In the formula
34360 @samp{f(a, a)}, the two @samp{a}s will be @code{equal} but not
34361 @code{eq} to each other.
34362 @end defun
34364 @defun expr-contains-count expr var
34365 Returns the number of occurrences of @var{var} as a subexpression
34366 of @var{expr}, or @code{nil} if there are no occurrences.
34367 @end defun
34369 @defun expr-depends expr var
34370 Returns true if @var{expr} refers to any variable the occurs in @var{var}.
34371 In other words, it checks if @var{expr} and @var{var} have any variables
34372 in common.
34373 @end defun
34375 @defun expr-contains-vars expr
34376 Return true if @var{expr} contains any variables, or @code{nil} if @var{expr}
34377 contains only constants and functions with constant arguments.
34378 @end defun
34380 @defun expr-subst expr old new
34381 Returns a copy of @var{expr}, with all occurrences of @var{old} replaced
34382 by @var{new}.  This treats @code{lambda} forms specially with respect
34383 to the dummy argument variables, so that the effect is always to return
34384 @var{expr} evaluated at @var{old} = @var{new}.
34385 @end defun
34387 @defun multi-subst expr old new
34388 This is like @code{expr-subst}, except that @var{old} and @var{new}
34389 are lists of expressions to be substituted simultaneously.  If one
34390 list is shorter than the other, trailing elements of the longer list
34391 are ignored.
34392 @end defun
34394 @defun expr-weight expr
34395 Returns the ``weight'' of @var{expr}, basically a count of the total
34396 number of objects and function calls that appear in @var{expr}.  For
34397 ``primitive'' objects, this will be one.
34398 @end defun
34400 @defun expr-height expr
34401 Returns the ``height'' of @var{expr}, which is the deepest level to
34402 which function calls are nested.  (Note that @samp{@var{a} + @var{b}}
34403 counts as a function call.)  For primitive objects, this returns zero.
34404 @end defun
34406 @defun polynomial-p expr var
34407 Check if @var{expr} is a polynomial in variable (or sub-expression)
34408 @var{var}.  If so, return the degree of the polynomial, that is, the
34409 highest power of @var{var} that appears in @var{expr}.  For example,
34410 for @samp{(x^2 + 3)^3 + 4} this would return 6.  This function returns
34411 @code{nil} unless @var{expr}, when expanded out by @kbd{a x}
34412 (@code{calc-expand}), would consist of a sum of terms in which @var{var}
34413 appears only raised to nonnegative integer powers.  Note that if
34414 @var{var} does not occur in @var{expr}, then @var{expr} is considered
34415 a polynomial of degree 0.
34416 @end defun
34418 @defun is-polynomial expr var degree loose
34419 Check if @var{expr} is a polynomial in variable or sub-expression
34420 @var{var}, and, if so, return a list representation of the polynomial
34421 where the elements of the list are coefficients of successive powers of
34422 @var{var}: @samp{@var{a} + @var{b} x + @var{c} x^3} would produce the
34423 list @samp{(@var{a} @var{b} 0 @var{c})}, and @samp{(x + 1)^2} would
34424 produce the list @samp{(1 2 1)}.  The highest element of the list will
34425 be non-zero, with the special exception that if @var{expr} is the
34426 constant zero, the returned value will be @samp{(0)}.  Return @code{nil}
34427 if @var{expr} is not a polynomial in @var{var}.  If @var{degree} is
34428 specified, this will not consider polynomials of degree higher than that
34429 value.  This is a good precaution because otherwise an input of
34430 @samp{(x+1)^1000} will cause a huge coefficient list to be built.  If
34431 @var{loose} is non-@code{nil}, then a looser definition of a polynomial
34432 is used in which coefficients are no longer required not to depend on
34433 @var{var}, but are only required not to take the form of polynomials
34434 themselves.  For example, @samp{sin(x) x^2 + cos(x)} is a loose
34435 polynomial with coefficients @samp{((calcFunc-cos x) 0 (calcFunc-sin
34436 x))}.  The result will never be @code{nil} in loose mode, since any
34437 expression can be interpreted as a ``constant'' loose polynomial.
34438 @end defun
34440 @defun polynomial-base expr pred
34441 Check if @var{expr} is a polynomial in any variable that occurs in it;
34442 if so, return that variable.  (If @var{expr} is a multivariate polynomial,
34443 this chooses one variable arbitrarily.)  If @var{pred} is specified, it should
34444 be a Lisp function which is called as @samp{(@var{pred} @var{subexpr})},
34445 and which should return true if @code{mpb-top-expr} (a global name for
34446 the original @var{expr}) is a suitable polynomial in @var{subexpr}.
34447 The default predicate uses @samp{(polynomial-p mpb-top-expr @var{subexpr})};
34448 you can use @var{pred} to specify additional conditions.  Or, you could
34449 have @var{pred} build up a list of every suitable @var{subexpr} that
34450 is found.
34451 @end defun
34453 @defun poly-simplify poly
34454 Simplify polynomial coefficient list @var{poly} by (destructively)
34455 clipping off trailing zeros.
34456 @end defun
34458 @defun poly-mix a ac b bc
34459 Mix two polynomial lists @var{a} and @var{b} (in the form returned by
34460 @code{is-polynomial}) in a linear combination with coefficient expressions
34461 @var{ac} and @var{bc}.  The result is a (not necessarily simplified)
34462 polynomial list representing @samp{@var{ac} @var{a} + @var{bc} @var{b}}.
34463 @end defun
34465 @defun poly-mul a b
34466 Multiply two polynomial coefficient lists @var{a} and @var{b}.  The
34467 result will be in simplified form if the inputs were simplified.
34468 @end defun
34470 @defun build-polynomial-expr poly var
34471 Construct a Calc formula which represents the polynomial coefficient
34472 list @var{poly} applied to variable @var{var}.  The @kbd{a c}
34473 (@code{calc-collect}) command uses @code{is-polynomial} to turn an
34474 expression into a coefficient list, then @code{build-polynomial-expr}
34475 to turn the list back into an expression in regular form.
34476 @end defun
34478 @defun check-unit-name var
34479 Check if @var{var} is a variable which can be interpreted as a unit
34480 name.  If so, return the units table entry for that unit.  This
34481 will be a list whose first element is the unit name (not counting
34482 prefix characters) as a symbol and whose second element is the
34483 Calc expression which defines the unit.  (Refer to the Calc sources
34484 for details on the remaining elements of this list.)  If @var{var}
34485 is not a variable or is not a unit name, return @code{nil}.
34486 @end defun
34488 @defun units-in-expr-p expr sub-exprs
34489 Return true if @var{expr} contains any variables which can be
34490 interpreted as units.  If @var{sub-exprs} is @code{t}, the entire
34491 expression is searched.  If @var{sub-exprs} is @code{nil}, this
34492 checks whether @var{expr} is directly a units expression.
34493 @end defun
34495 @defun single-units-in-expr-p expr
34496 Check whether @var{expr} contains exactly one units variable.  If so,
34497 return the units table entry for the variable.  If @var{expr} does
34498 not contain any units, return @code{nil}.  If @var{expr} contains
34499 two or more units, return the symbol @code{wrong}.
34500 @end defun
34502 @defun to-standard-units expr which
34503 Convert units expression @var{expr} to base units.  If @var{which}
34504 is @code{nil}, use Calc's native base units.  Otherwise, @var{which}
34505 can specify a units system, which is a list of two-element lists,
34506 where the first element is a Calc base symbol name and the second
34507 is an expression to substitute for it.
34508 @end defun
34510 @defun remove-units expr
34511 Return a copy of @var{expr} with all units variables replaced by ones.
34512 This expression is generally normalized before use.
34513 @end defun
34515 @defun extract-units expr
34516 Return a copy of @var{expr} with everything but units variables replaced
34517 by ones.
34518 @end defun
34520 @node Formatting Lisp Functions, Hooks, Symbolic Lisp Functions, Internals
34521 @subsubsection I/O and Formatting Functions
34523 @noindent
34524 The functions described here are responsible for parsing and formatting
34525 Calc numbers and formulas.
34527 @defun calc-eval str sep arg1 arg2 @dots{}
34528 This is the simplest interface to the Calculator from another Lisp program.
34529 @xref{Calling Calc from Your Programs}.
34530 @end defun
34532 @defun read-number str
34533 If string @var{str} contains a valid Calc number, either integer,
34534 fraction, float, or HMS form, this function parses and returns that
34535 number.  Otherwise, it returns @code{nil}.
34536 @end defun
34538 @defun read-expr str
34539 Read an algebraic expression from string @var{str}.  If @var{str} does
34540 not have the form of a valid expression, return a list of the form
34541 @samp{(error @var{pos} @var{msg})} where @var{pos} is an integer index
34542 into @var{str} of the general location of the error, and @var{msg} is
34543 a string describing the problem.
34544 @end defun
34546 @defun read-exprs str
34547 Read a list of expressions separated by commas, and return it as a
34548 Lisp list.  If an error occurs in any expressions, an error list as
34549 shown above is returned instead.
34550 @end defun
34552 @defun calc-do-alg-entry initial prompt no-norm
34553 Read an algebraic formula or formulas using the minibuffer.  All
34554 conventions of regular algebraic entry are observed.  The return value
34555 is a list of Calc formulas; there will be more than one if the user
34556 entered a list of values separated by commas.  The result is @code{nil}
34557 if the user presses Return with a blank line.  If @var{initial} is
34558 given, it is a string which the minibuffer will initially contain.
34559 If @var{prompt} is given, it is the prompt string to use; the default
34560 is ``Algebraic:''.  If @var{no-norm} is @code{t}, the formulas will
34561 be returned exactly as parsed; otherwise, they will be passed through
34562 @code{calc-normalize} first.
34564 To support the use of @kbd{$} characters in the algebraic entry, use
34565 @code{let} to bind @code{calc-dollar-values} to a list of the values
34566 to be substituted for @kbd{$}, @kbd{$$}, and so on, and bind
34567 @code{calc-dollar-used} to 0.  Upon return, @code{calc-dollar-used}
34568 will have been changed to the highest number of consecutive @kbd{$}s
34569 that actually appeared in the input.
34570 @end defun
34572 @defun format-number a
34573 Convert the real or complex number or HMS form @var{a} to string form.
34574 @end defun
34576 @defun format-flat-expr a prec
34577 Convert the arbitrary Calc number or formula @var{a} to string form,
34578 in the style used by the trail buffer and the @code{calc-edit} command.
34579 This is a simple format designed
34580 mostly to guarantee the string is of a form that can be re-parsed by
34581 @code{read-expr}.  Most formatting modes, such as digit grouping,
34582 complex number format, and point character, are ignored to ensure the
34583 result will be re-readable.  The @var{prec} parameter is normally 0; if
34584 you pass a large integer like 1000 instead, the expression will be
34585 surrounded by parentheses unless it is a plain number or variable name.
34586 @end defun
34588 @defun format-nice-expr a width
34589 This is like @code{format-flat-expr} (with @var{prec} equal to 0),
34590 except that newlines will be inserted to keep lines down to the
34591 specified @var{width}, and vectors that look like matrices or rewrite
34592 rules are written in a pseudo-matrix format.  The @code{calc-edit}
34593 command uses this when only one stack entry is being edited.
34594 @end defun
34596 @defun format-value a width
34597 Convert the Calc number or formula @var{a} to string form, using the
34598 format seen in the stack buffer.  Beware the string returned may
34599 not be re-readable by @code{read-expr}, for example, because of digit
34600 grouping.  Multi-line objects like matrices produce strings that
34601 contain newline characters to separate the lines.  The @var{w}
34602 parameter, if given, is the target window size for which to format
34603 the expressions.  If @var{w} is omitted, the width of the Calculator
34604 window is used.
34605 @end defun
34607 @defun compose-expr a prec
34608 Format the Calc number or formula @var{a} according to the current
34609 language mode, returning a ``composition.''  To learn about the
34610 structure of compositions, see the comments in the Calc source code.
34611 You can specify the format of a given type of function call by putting
34612 a @code{math-compose-@var{lang}} property on the function's symbol,
34613 whose value is a Lisp function that takes @var{a} and @var{prec} as
34614 arguments and returns a composition.  Here @var{lang} is a language
34615 mode name, one of @code{normal}, @code{big}, @code{c}, @code{pascal},
34616 @code{fortran}, @code{tex}, @code{eqn}, @code{math}, or @code{maple}.
34617 In Big mode, Calc actually tries @code{math-compose-big} first, then
34618 tries @code{math-compose-normal}.  If this property does not exist,
34619 or if the function returns @code{nil}, the function is written in the
34620 normal function-call notation for that language.
34621 @end defun
34623 @defun composition-to-string c w
34624 Convert a composition structure returned by @code{compose-expr} into
34625 a string.  Multi-line compositions convert to strings containing
34626 newline characters.  The target window size is given by @var{w}.
34627 The @code{format-value} function basically calls @code{compose-expr}
34628 followed by @code{composition-to-string}.
34629 @end defun
34631 @defun comp-width c
34632 Compute the width in characters of composition @var{c}.
34633 @end defun
34635 @defun comp-height c
34636 Compute the height in lines of composition @var{c}.
34637 @end defun
34639 @defun comp-ascent c
34640 Compute the portion of the height of composition @var{c} which is on or
34641 above the baseline.  For a one-line composition, this will be one.
34642 @end defun
34644 @defun comp-descent c
34645 Compute the portion of the height of composition @var{c} which is below
34646 the baseline.  For a one-line composition, this will be zero.
34647 @end defun
34649 @defun comp-first-char c
34650 If composition @var{c} is a ``flat'' composition, return the first
34651 (leftmost) character of the composition as an integer.  Otherwise,
34652 return @code{nil}.
34653 @end defun
34655 @defun comp-last-char c
34656 If composition @var{c} is a ``flat'' composition, return the last
34657 (rightmost) character, otherwise return @code{nil}.
34658 @end defun
34660 @comment @node Lisp Variables, Hooks, Formatting Lisp Functions, Internals
34661 @comment @subsubsection Lisp Variables
34662 @comment
34663 @comment @noindent
34664 @comment (This section is currently unfinished.)
34666 @node Hooks, , Formatting Lisp Functions, Internals
34667 @subsubsection Hooks
34669 @noindent
34670 Hooks are variables which contain Lisp functions (or lists of functions)
34671 which are called at various times.  Calc defines a number of hooks
34672 that help you to customize it in various ways.  Calc uses the Lisp
34673 function @code{run-hooks} to invoke the hooks shown below.  Several
34674 other customization-related variables are also described here.
34676 @defvar calc-load-hook
34677 This hook is called at the end of @file{calc.el}, after the file has
34678 been loaded, before any functions in it have been called, but after
34679 @code{calc-mode-map} and similar variables have been set up.
34680 @end defvar
34682 @defvar calc-ext-load-hook
34683 This hook is called at the end of @file{calc-ext.el}.
34684 @end defvar
34686 @defvar calc-start-hook
34687 This hook is called as the last step in a @kbd{M-x calc} command.
34688 At this point, the Calc buffer has been created and initialized if
34689 necessary, the Calc window and trail window have been created,
34690 and the ``Welcome to Calc'' message has been displayed.
34691 @end defvar
34693 @defvar calc-mode-hook
34694 This hook is called when the Calc buffer is being created.  Usually
34695 this will only happen once per Emacs session.  The hook is called
34696 after Emacs has switched to the new buffer, the mode-settings file
34697 has been read if necessary, and all other buffer-local variables
34698 have been set up.  After this hook returns, Calc will perform a
34699 @code{calc-refresh} operation, set up the mode line display, then
34700 evaluate any deferred @code{calc-define} properties that have not
34701 been evaluated yet.
34702 @end defvar
34704 @defvar calc-trail-mode-hook
34705 This hook is called when the Calc Trail buffer is being created.
34706 It is called as the very last step of setting up the Trail buffer.
34707 Like @code{calc-mode-hook}, this will normally happen only once
34708 per Emacs session.
34709 @end defvar
34711 @defvar calc-end-hook
34712 This hook is called by @code{calc-quit}, generally because the user
34713 presses @kbd{q} or @kbd{C-x * c} while in Calc.  The Calc buffer will
34714 be the current buffer.  The hook is called as the very first
34715 step, before the Calc window is destroyed.
34716 @end defvar
34718 @defvar calc-window-hook
34719 If this hook is non-@code{nil}, it is called to create the Calc window.
34720 Upon return, this new Calc window should be the current window.
34721 (The Calc buffer will already be the current buffer when the
34722 hook is called.)  If the hook is not defined, Calc will
34723 generally use @code{split-window}, @code{set-window-buffer},
34724 and @code{select-window} to create the Calc window.
34725 @end defvar
34727 @defvar calc-trail-window-hook
34728 If this hook is non-@code{nil}, it is called to create the Calc Trail
34729 window.  The variable @code{calc-trail-buffer} will contain the buffer
34730 which the window should use.  Unlike @code{calc-window-hook}, this hook
34731 must @emph{not} switch into the new window.
34732 @end defvar
34734 @defvar calc-embedded-mode-hook
34735 This hook is called the first time that Embedded mode is entered.
34736 @end defvar
34738 @defvar calc-embedded-new-buffer-hook
34739 This hook is called each time that Embedded mode is entered in a
34740 new buffer.
34741 @end defvar
34743 @defvar calc-embedded-new-formula-hook
34744 This hook is called each time that Embedded mode is enabled for a
34745 new formula.
34746 @end defvar
34748 @defvar calc-edit-mode-hook
34749 This hook is called by @code{calc-edit} (and the other ``edit''
34750 commands) when the temporary editing buffer is being created.
34751 The buffer will have been selected and set up to be in
34752 @code{calc-edit-mode}, but will not yet have been filled with
34753 text.  (In fact it may still have leftover text from a previous
34754 @code{calc-edit} command.)
34755 @end defvar
34757 @defvar calc-mode-save-hook
34758 This hook is called by the @code{calc-save-modes} command,
34759 after Calc's own mode features have been inserted into the
34760 Calc init file and just before the ``End of mode settings''
34761 message is inserted.
34762 @end defvar
34764 @defvar calc-reset-hook
34765 This hook is called after @kbd{C-x * 0} (@code{calc-reset}) has
34766 reset all modes.  The Calc buffer will be the current buffer.
34767 @end defvar
34769 @defvar calc-other-modes
34770 This variable contains a list of strings.  The strings are
34771 concatenated at the end of the modes portion of the Calc
34772 mode line (after standard modes such as ``Deg'', ``Inv'' and
34773 ``Hyp'').  Each string should be a short, single word followed
34774 by a space.  The variable is @code{nil} by default.
34775 @end defvar
34777 @defvar calc-mode-map
34778 This is the keymap that is used by Calc mode.  The best time
34779 to adjust it is probably in a @code{calc-mode-hook}.  If the
34780 Calc extensions package (@file{calc-ext.el}) has not yet been
34781 loaded, many of these keys will be bound to @code{calc-missing-key},
34782 which is a command that loads the extensions package and
34783 ``retypes'' the key.  If your @code{calc-mode-hook} rebinds
34784 one of these keys, it will probably be overridden when the
34785 extensions are loaded.
34786 @end defvar
34788 @defvar calc-digit-map
34789 This is the keymap that is used during numeric entry.  Numeric
34790 entry uses the minibuffer, but this map binds every non-numeric
34791 key to @code{calcDigit-nondigit} which generally calls
34792 @code{exit-minibuffer} and ``retypes'' the key.
34793 @end defvar
34795 @defvar calc-alg-ent-map
34796 This is the keymap that is used during algebraic entry.  This is
34797 mostly a copy of @code{minibuffer-local-map}.
34798 @end defvar
34800 @defvar calc-store-var-map
34801 This is the keymap that is used during entry of variable names for
34802 commands like @code{calc-store} and @code{calc-recall}.  This is
34803 mostly a copy of @code{minibuffer-local-completion-map}.
34804 @end defvar
34806 @defvar calc-edit-mode-map
34807 This is the (sparse) keymap used by @code{calc-edit} and other
34808 temporary editing commands.  It binds @key{RET}, @key{LFD},
34809 and @kbd{C-c C-c} to @code{calc-edit-finish}.
34810 @end defvar
34812 @defvar calc-mode-var-list
34813 This is a list of variables which are saved by @code{calc-save-modes}.
34814 Each entry is a list of two items, the variable (as a Lisp symbol)
34815 and its default value.  When modes are being saved, each variable
34816 is compared with its default value (using @code{equal}) and any
34817 non-default variables are written out.
34818 @end defvar
34820 @defvar calc-local-var-list
34821 This is a list of variables which should be buffer-local to the
34822 Calc buffer.  Each entry is a variable name (as a Lisp symbol).
34823 These variables also have their default values manipulated by
34824 the @code{calc} and @code{calc-quit} commands; @pxref{Multiple Calculators}.
34825 Since @code{calc-mode-hook} is called after this list has been
34826 used the first time, your hook should add a variable to the
34827 list and also call @code{make-local-variable} itself.
34828 @end defvar
34830 @node Customizing Calc, Reporting Bugs, Programming, Top
34831 @appendix Customizing Calc
34833 The usual prefix for Calc is the key sequence @kbd{C-x *}.  If you wish
34834 to use a different prefix, you can put
34836 @example
34837 (global-set-key "NEWPREFIX" 'calc-dispatch)
34838 @end example
34840 @noindent
34841 in your .emacs file.  
34842 (@xref{Key Bindings,,Customizing Key Bindings,emacs,
34843 The GNU Emacs Manual}, for more information on binding keys.)
34844 A convenient way to start Calc is with @kbd{C-x * *}; to make it equally
34845 convenient for users who use a different prefix, the prefix can be
34846 followed by  @kbd{=}, @kbd{&}, @kbd{#}, @kbd{\}, @kbd{/}, @kbd{+} or
34847 @kbd{-} as well as @kbd{*} to start Calc, and so in many cases the last
34848 character of the prefix can simply be typed twice.
34850 Calc is controlled by many variables, most of which can be reset
34851 from within Calc.  Some variables are less involved with actual
34852 calculation, and can be set outside of Calc using Emacs's
34853 customization facilities.  These variables are listed below.
34854 Typing @kbd{M-x customize-variable RET @var{variable-name} RET}
34855 will bring up a buffer in which the variable's value can be redefined.
34856 Typing @kbd{M-x customize-group RET calc RET} will bring up a buffer which
34857 contains all of Calc's customizable variables.  (These variables can
34858 also be reset by putting the appropriate lines in your .emacs file;
34859 @xref{Init File, ,Init File, emacs, The GNU Emacs Manual}.)
34861 Some of the customizable variables are regular expressions.  A regular
34862 expression is basically a pattern that Calc can search for.
34863 See @ref{Regexp Search,, Regular Expression Search, emacs, The GNU Emacs Manual}
34864 to see how regular expressions work.
34866 @defvar calc-settings-file
34867 The variable @code{calc-settings-file} holds the file name in
34868 which commands like @kbd{m m} and @kbd{Z P} store ``permanent''
34869 definitions.  
34870 If @code{calc-settings-file} is not your user init file (typically
34871 @file{~/.emacs}) and if the variable @code{calc-loaded-settings-file} is
34872 @code{nil}, then Calc will automatically load your settings file (if it
34873 exists) the first time Calc is invoked.
34875 The default value for this variable is @code{"~/.calc.el"}.
34876 @end defvar
34878 @defvar calc-gnuplot-name
34879 See @ref{Graphics}.@*
34880 The variable @code{calc-gnuplot-name} should be the name of the
34881 GNUPLOT program (a string).  If you have GNUPLOT installed on your
34882 system but Calc is unable to find it, you may need to set this
34883 variable.  (@pxref{Customizing Calc})
34884 You may also need to set some Lisp variables to show Calc how to run
34885 GNUPLOT on your system, see @ref{Devices, ,Graphical Devices} .  The default value
34886 of @code{calc-gnuplot-name} is @code{"gnuplot"}.
34887 @end defvar
34889 @defvar  calc-gnuplot-plot-command
34890 @defvarx calc-gnuplot-print-command
34891 See @ref{Devices, ,Graphical Devices}.@*
34892 The variables @code{calc-gnuplot-plot-command} and
34893 @code{calc-gnuplot-print-command} represent system commands to
34894 display and print the output of GNUPLOT, respectively.  These may be
34895 @code{nil} if no command is necessary, or strings which can include
34896 @samp{%s} to signify the name of the file to be displayed or printed.
34897 Or, these variables may contain Lisp expressions which are evaluated
34898 to display or print the output.
34900 The default value of @code{calc-gnuplot-plot-command} is @code{nil},
34901 and the default value of @code{calc-gnuplot-print-command} is
34902 @code{"lp %s"}.
34903 @end defvar
34905 @defvar calc-language-alist
34906 See @ref{Basic Embedded Mode}.@*
34907 The variable @code{calc-language-alist} controls the languages that
34908 Calc will associate with major modes.  When Calc embedded mode is
34909 enabled, it will try to use the current major mode to
34910 determine what language should be used.  (This can be overridden using
34911 Calc's mode changing commands, @xref{Mode Settings in Embedded Mode}.)
34912 The variable @code{calc-language-alist} consists of a list of pairs of
34913 the form  @code{(@var{MAJOR-MODE} . @var{LANGUAGE})}; for example, 
34914 @code{(latex-mode . latex)} is one such pair.  If Calc embedded is
34915 activated in a buffer whose major mode is @var{MAJOR-MODE}, it will set itself
34916 to use the language @var{LANGUAGE}.
34918 The default value of @code{calc-language-alist} is
34919 @example
34920    ((latex-mode . latex)
34921     (tex-mode   . tex)
34922     (plain-tex-mode . tex)
34923     (context-mode . tex)
34924     (nroff-mode . eqn)
34925     (pascal-mode . pascal)
34926     (c-mode . c)
34927     (c++-mode . c)
34928     (fortran-mode . fortran)
34929     (f90-mode . fortran))
34930 @end example
34931 @end defvar
34933 @defvar calc-embedded-announce-formula
34934 @defvarx calc-embedded-announce-formula-alist
34935 See @ref{Customizing Embedded Mode}.@*
34936 The variable @code{calc-embedded-announce-formula} helps determine
34937 what formulas @kbd{C-x * a} will activate in a buffer.  It is a
34938 regular expression, and when activating embedded formulas with
34939 @kbd{C-x * a}, it will tell Calc that what follows is a formula to be
34940 activated.  (Calc also uses other patterns to find formulas, such as
34941 @samp{=>} and @samp{:=}.)  
34943 The default pattern is @code{"%Embed\n\\(% .*\n\\)*"}, which checks
34944 for @samp{%Embed} followed by any number of lines beginning with
34945 @samp{%} and a space.
34947 The variable @code{calc-embedded-announce-formula-alist} is used to
34948 set @code{calc-embedded-announce-formula} to different regular
34949 expressions depending on the major mode of the editing buffer.
34950 It consists of a list of pairs of the form @code{(@var{MAJOR-MODE} .
34951 @var{REGEXP})}, and its default value is
34952 @example
34953    ((c++-mode     . "//Embed\n\\(// .*\n\\)*")
34954     (c-mode       . "/\\*Embed\\*/\n\\(/\\* .*\\*/\n\\)*")
34955     (f90-mode     . "!Embed\n\\(! .*\n\\)*")
34956     (fortran-mode . "C Embed\n\\(C .*\n\\)*")
34957     (html-helper-mode . "<!-- Embed -->\n\\(<!-- .* -->\n\\)*")
34958     (html-mode    . "<!-- Embed -->\n\\(<!-- .* -->\n\\)*")
34959     (nroff-mode   . "\\\\\"Embed\n\\(\\\\\" .*\n\\)*")
34960     (pascal-mode  . "@{Embed@}\n\\(@{.*@}\n\\)*")
34961     (sgml-mode    . "<!-- Embed -->\n\\(<!-- .* -->\n\\)*")
34962     (xml-mode     . "<!-- Embed -->\n\\(<!-- .* -->\n\\)*")
34963     (texinfo-mode . "@@c Embed\n\\(@@c .*\n\\)*"))
34964 @end example
34965 Any major modes added to @code{calc-embedded-announce-formula-alist}
34966 should also be added to @code{calc-embedded-open-close-plain-alist} 
34967 and @code{calc-embedded-open-close-mode-alist}.
34968 @end defvar
34970 @defvar  calc-embedded-open-formula
34971 @defvarx calc-embedded-close-formula
34972 @defvarx calc-embedded-open-close-formula-alist
34973 See @ref{Customizing Embedded Mode}.@*
34974 The variables @code{calc-embedded-open-formula} and
34975 @code{calc-embedded-open-formula} control the region that Calc will
34976 activate as a formula when Embedded mode is entered with @kbd{C-x * e}.
34977 They are regular expressions; 
34978 Calc normally scans backward and forward in the buffer for the
34979 nearest text matching these regular expressions to be the ``formula
34980 delimiters''.
34982 The simplest delimiters are blank lines.  Other delimiters that
34983 Embedded mode understands by default are:
34984 @enumerate
34985 @item
34986 The @TeX{} and La@TeX{} math delimiters @samp{$ $}, @samp{$$ $$},
34987 @samp{\[ \]}, and @samp{\( \)};
34988 @item
34989 Lines beginning with @samp{\begin} and @samp{\end} (except matrix delimiters);
34990 @item
34991 Lines beginning with @samp{@@} (Texinfo delimiters).
34992 @item
34993 Lines beginning with @samp{.EQ} and @samp{.EN} (@dfn{eqn} delimiters);
34994 @item
34995 Lines containing a single @samp{%} or @samp{.\"} symbol and nothing else.
34996 @end enumerate
34998 The variable @code{calc-embedded-open-close-formula-alist} is used to
34999 set @code{calc-embedded-open-formula} and
35000 @code{calc-embedded-close-formula} to different regular
35001 expressions depending on the major mode of the editing buffer.
35002 It consists of a list of lists of the form 
35003 @code{(@var{MAJOR-MODE}  @var{OPEN-FORMULA-REGEXP}
35004 @var{CLOSE-FORMULA-REGEXP})}, and its default value is
35005 @code{nil}.
35006 @end defvar
35008 @defvar  calc-embedded-open-word
35009 @defvarx calc-embedded-close-word
35010 @defvarx calc-embedded-open-close-word-alist
35011 See @ref{Customizing Embedded Mode}.@*
35012 The variables @code{calc-embedded-open-word} and
35013 @code{calc-embedded-close-word} control the region that Calc will
35014 activate when Embedded mode is entered with @kbd{C-x * w}.  They are
35015 regular expressions.
35017 The default values of @code{calc-embedded-open-word} and
35018 @code{calc-embedded-close-word} are @code{"^\\|[^-+0-9.eE]"} and 
35019 @code{"$\\|[^-+0-9.eE]"} respectively.
35021 The variable @code{calc-embedded-open-close-word-alist} is used to
35022 set @code{calc-embedded-open-word} and
35023 @code{calc-embedded-close-word} to different regular
35024 expressions depending on the major mode of the editing buffer.
35025 It consists of a list of lists of the form 
35026 @code{(@var{MAJOR-MODE}  @var{OPEN-WORD-REGEXP}
35027 @var{CLOSE-WORD-REGEXP})}, and its default value is
35028 @code{nil}.
35029 @end defvar
35031 @defvar  calc-embedded-open-plain
35032 @defvarx calc-embedded-close-plain
35033 @defvarx calc-embedded-open-close-plain-alist
35034 See @ref{Customizing Embedded Mode}.@*
35035 The variables @code{calc-embedded-open-plain} and
35036 @code{calc-embedded-open-plain} are used to delimit ``plain''
35037 formulas.  Note that these are actual strings, not regular
35038 expressions, because Calc must be able to write these string into a
35039 buffer as well as to recognize them.
35041 The default string for @code{calc-embedded-open-plain} is 
35042 @code{"%%% "}, note the trailing space.  The default string for 
35043 @code{calc-embedded-close-plain} is @code{" %%%\n"}, without
35044 the trailing newline here, the first line of a Big mode formula
35045 that followed might be shifted over with respect to the other lines.
35047 The variable @code{calc-embedded-open-close-plain-alist} is used to
35048 set @code{calc-embedded-open-plain} and
35049 @code{calc-embedded-close-plain} to different strings
35050 depending on the major mode of the editing buffer.
35051 It consists of a list of lists of the form 
35052 @code{(@var{MAJOR-MODE}  @var{OPEN-PLAIN-STRING}
35053 @var{CLOSE-PLAIN-STRING})}, and its default value is
35054 @example
35055    ((c++-mode     "// %% "   " %%\n")
35056     (c-mode       "/* %% "   " %% */\n")
35057     (f90-mode     "! %% "    " %%\n")
35058     (fortran-mode "C %% "    " %%\n")
35059     (html-helper-mode "<!-- %% " " %% -->\n")
35060     (html-mode "<!-- %% " " %% -->\n")
35061     (nroff-mode   "\\\" %% " " %%\n")
35062     (pascal-mode  "@{%% "    " %%@}\n")
35063     (sgml-mode     "<!-- %% " " %% -->\n")
35064     (xml-mode     "<!-- %% " " %% -->\n")
35065     (texinfo-mode "@@c %% "   " %%\n"))
35066 @end example
35067 Any major modes added to @code{calc-embedded-open-close-plain-alist}
35068 should also be added to @code{calc-embedded-announce-formula-alist}
35069 and @code{calc-embedded-open-close-mode-alist}.
35070 @end defvar
35072 @defvar  calc-embedded-open-new-formula
35073 @defvarx calc-embedded-close-new-formula
35074 @defvarx calc-embedded-open-close-new-formula-alist
35075 See @ref{Customizing Embedded Mode}.@*
35076 The variables @code{calc-embedded-open-new-formula} and
35077 @code{calc-embedded-close-new-formula} are strings which are
35078 inserted before and after a new formula when you type @kbd{C-x * f}.
35080 The default value of @code{calc-embedded-open-new-formula} is
35081 @code{"\n\n"}.  If this string begins with a newline character and the
35082 @kbd{C-x * f} is typed at the beginning of a line, @kbd{C-x * f} will skip
35083 this first newline to avoid introducing unnecessary blank lines in the
35084 file.  The default value of @code{calc-embedded-close-new-formula} is
35085 also @code{"\n\n"}.  The final newline is omitted by @w{@kbd{C-x * f}}
35086 if typed at the end of a line.  (It follows that if @kbd{C-x * f} is
35087 typed on a blank line, both a leading opening newline and a trailing
35088 closing newline are omitted.)
35090 The variable @code{calc-embedded-open-close-new-formula-alist} is used to
35091 set @code{calc-embedded-open-new-formula} and
35092 @code{calc-embedded-close-new-formula} to different strings
35093 depending on the major mode of the editing buffer.
35094 It consists of a list of lists of the form 
35095 @code{(@var{MAJOR-MODE}  @var{OPEN-NEW-FORMULA-STRING}
35096 @var{CLOSE-NEW-FORMULA-STRING})}, and its default value is
35097 @code{nil}.
35098 @end defvar
35100 @defvar  calc-embedded-open-mode
35101 @defvarx calc-embedded-close-mode
35102 @defvarx calc-embedded-open-close-mode-alist
35103 See @ref{Customizing Embedded Mode}.@*
35104 The variables @code{calc-embedded-open-mode} and
35105 @code{calc-embedded-close-mode} are strings which Calc will place before
35106 and after any mode annotations that it inserts.  Calc never scans for
35107 these strings; Calc always looks for the annotation itself, so it is not
35108 necessary to add them to user-written annotations.
35110 The default value of @code{calc-embedded-open-mode} is @code{"% "}
35111 and the default value of @code{calc-embedded-close-mode} is
35112 @code{"\n"}.  
35113 If you change the value of @code{calc-embedded-close-mode}, it is a good
35114 idea still to end with a newline so that mode annotations will appear on
35115 lines by themselves.
35117 The variable @code{calc-embedded-open-close-mode-alist} is used to
35118 set @code{calc-embedded-open-mode} and
35119 @code{calc-embedded-close-mode} to different strings
35120 expressions depending on the major mode of the editing buffer.
35121 It consists of a list of lists of the form 
35122 @code{(@var{MAJOR-MODE}  @var{OPEN-MODE-STRING}
35123 @var{CLOSE-MODE-STRING})}, and its default value is
35124 @example
35125    ((c++-mode     "// "   "\n")
35126     (c-mode       "/* "   " */\n")
35127     (f90-mode     "! "    "\n")
35128     (fortran-mode "C "    "\n")
35129     (html-helper-mode "<!-- " " -->\n")
35130     (html-mode    "<!-- " " -->\n")
35131     (nroff-mode   "\\\" " "\n")
35132     (pascal-mode  "@{ "    " @}\n")
35133     (sgml-mode    "<!-- " " -->\n")
35134     (xml-mode     "<!-- " " -->\n")
35135     (texinfo-mode "@@c "   "\n"))
35136 @end example
35137 Any major modes added to @code{calc-embedded-open-close-mode-alist}
35138 should also be added to @code{calc-embedded-announce-formula-alist}
35139 and @code{calc-embedded-open-close-plain-alist}.
35140 @end defvar
35142 @node Reporting Bugs, Summary, Customizing Calc, Top
35143 @appendix Reporting Bugs
35145 @noindent
35146 If you find a bug in Calc, send e-mail to Jay Belanger,
35148 @example
35149 belanger@@truman.edu
35150 @end example
35152 @noindent
35153 There is an automatic command @kbd{M-x report-calc-bug} which helps
35154 you to report bugs.  This command prompts you for a brief subject
35155 line, then leaves you in a mail editing buffer.  Type @kbd{C-c C-c} to
35156 send your mail.  Make sure your subject line indicates that you are
35157 reporting a Calc bug; this command sends mail to the maintainer's
35158 regular mailbox.
35160 If you have suggestions for additional features for Calc, please send
35161 them.  Some have dared to suggest that Calc is already top-heavy with
35162 features; this obviously cannot be the case, so if you have ideas, send
35163 them right in.
35165 At the front of the source file, @file{calc.el}, is a list of ideas for
35166 future work.  If any enthusiastic souls wish to take it upon themselves
35167 to work on these, please send a message (using @kbd{M-x report-calc-bug})
35168 so any efforts can be coordinated.
35170 The latest version of Calc is available from Savannah, in the Emacs
35171 CVS tree.  See @uref{http://savannah.gnu.org/projects/emacs}.
35173 @c [summary]
35174 @node Summary, Key Index, Reporting Bugs, Top
35175 @appendix Calc Summary
35177 @noindent
35178 This section includes a complete list of Calc 2.1 keystroke commands.
35179 Each line lists the stack entries used by the command (top-of-stack
35180 last), the keystrokes themselves, the prompts asked by the command,
35181 and the result of the command (also with top-of-stack last).
35182 The result is expressed using the equivalent algebraic function.
35183 Commands which put no results on the stack show the full @kbd{M-x}
35184 command name in that position.  Numbers preceding the result or
35185 command name refer to notes at the end.
35187 Algebraic functions and @kbd{M-x} commands that don't have corresponding
35188 keystrokes are not listed in this summary.
35189 @xref{Command Index}.  @xref{Function Index}.
35191 @iftex
35192 @begingroup
35193 @tex
35194 \vskip-2\baselineskip \null
35195 \gdef\sumrow#1{\sumrowx#1\relax}%
35196 \gdef\sumrowx#1\:#2\:#3\:#4\:#5\:#6\relax{%
35197 \leavevmode%
35198 {\smallfonts
35199 \hbox to5em{\sl\hss#1}%
35200 \hbox to5em{\tt#2\hss}%
35201 \hbox to4em{\sl#3\hss}%
35202 \hbox to5em{\rm\hss#4}%
35203 \thinspace%
35204 {\tt#5}%
35205 {\sl#6}%
35207 \gdef\sumlpar{{\rm(}}%
35208 \gdef\sumrpar{{\rm)}}%
35209 \gdef\sumcomma{{\rm,\thinspace}}%
35210 \gdef\sumexcl{{\rm!}}%
35211 \gdef\sumbreak{\vskip-2.5\baselineskip\goodbreak}%
35212 \gdef\minus#1{{\tt-}}%
35213 @end tex
35214 @let@:=@sumsep
35215 @let@r=@sumrow
35216 @catcode`@(=@active @let(=@sumlpar
35217 @catcode`@)=@active @let)=@sumrpar
35218 @catcode`@,=@active @let,=@sumcomma
35219 @catcode`@!=@active @let!=@sumexcl
35220 @end iftex
35221 @format
35222 @iftex
35223 @advance@baselineskip-2.5pt
35224 @let@c@sumbreak
35225 @end iftex
35226 @r{       @:     C-x * a  @:             @:    33  @:calc-embedded-activate@:}
35227 @r{       @:     C-x * b  @:             @:        @:calc-big-or-small@:}
35228 @r{       @:     C-x * c  @:             @:        @:calc@:}
35229 @r{       @:     C-x * d  @:             @:        @:calc-embedded-duplicate@:}
35230 @r{       @:     C-x * e  @:             @:    34  @:calc-embedded@:}
35231 @r{       @:     C-x * f  @:formula      @:        @:calc-embedded-new-formula@:}
35232 @r{       @:     C-x * g  @:             @:    35  @:calc-grab-region@:}
35233 @r{       @:     C-x * i  @:             @:        @:calc-info@:}
35234 @r{       @:     C-x * j  @:             @:        @:calc-embedded-select@:}
35235 @r{       @:     C-x * k  @:             @:        @:calc-keypad@:}
35236 @r{       @:     C-x * l  @:             @:        @:calc-load-everything@:}
35237 @r{       @:     C-x * m  @:             @:        @:read-kbd-macro@:}
35238 @r{       @:     C-x * n  @:             @:     4  @:calc-embedded-next@:}
35239 @r{       @:     C-x * o  @:             @:        @:calc-other-window@:}
35240 @r{       @:     C-x * p  @:             @:     4  @:calc-embedded-previous@:}
35241 @r{       @:     C-x * q  @:formula      @:        @:quick-calc@:}
35242 @r{       @:     C-x * r  @:             @:    36  @:calc-grab-rectangle@:}
35243 @r{       @:     C-x * s  @:             @:        @:calc-info-summary@:}
35244 @r{       @:     C-x * t  @:             @:        @:calc-tutorial@:}
35245 @r{       @:     C-x * u  @:             @:        @:calc-embedded-update-formula@:}
35246 @r{       @:     C-x * w  @:             @:        @:calc-embedded-word@:}
35247 @r{       @:     C-x * x  @:             @:        @:calc-quit@:}
35248 @r{       @:     C-x * y  @:            @:1,28,49  @:calc-copy-to-buffer@:}
35249 @r{       @:     C-x * z  @:             @:        @:calc-user-invocation@:}
35250 @r{       @:     C-x * :  @:             @:    36  @:calc-grab-sum-down@:}
35251 @r{       @:     C-x * _  @:             @:    36  @:calc-grab-sum-across@:}
35252 @r{       @:     C-x * `  @:editing      @:    30  @:calc-embedded-edit@:}
35253 @r{       @:     C-x * 0  @:(zero)       @:        @:calc-reset@:}
35256 @r{       @:      0-9   @:number       @:        @:@:number}
35257 @r{       @:      .     @:number       @:        @:@:0.number}
35258 @r{       @:      _     @:number       @:        @:-@:number}
35259 @r{       @:      e     @:number       @:        @:@:1e number}
35260 @r{       @:      #     @:number       @:        @:@:current-radix@tfn{#}number}
35261 @r{       @:      P     @:(in number)  @:        @:+/-@:}
35262 @r{       @:      M     @:(in number)  @:        @:mod@:}
35263 @r{       @:      @@ ' " @:  (in number)@:        @:@:HMS form}
35264 @r{       @:      h m s @:  (in number)@:        @:@:HMS form}
35267 @r{       @:      '     @:formula      @: 37,46  @:@:formula}
35268 @r{       @:      $     @:formula      @: 37,46  @:$@:formula}
35269 @r{       @:      "     @:string       @: 37,46  @:@:string}
35272 @r{    a b@:      +     @:             @:     2  @:add@:(a,b)  a+b}
35273 @r{    a b@:      -     @:             @:     2  @:sub@:(a,b)  a@minus{}b}
35274 @r{    a b@:      *     @:             @:     2  @:mul@:(a,b)  a b, a*b}
35275 @r{    a b@:      /     @:             @:     2  @:div@:(a,b)  a/b}
35276 @r{    a b@:      ^     @:             @:     2  @:pow@:(a,b)  a^b}
35277 @r{    a b@:    I ^     @:             @:     2  @:nroot@:(a,b)  a^(1/b)}
35278 @r{    a b@:      %     @:             @:     2  @:mod@:(a,b)  a%b}
35279 @r{    a b@:      \     @:             @:     2  @:idiv@:(a,b)  a\b}
35280 @r{    a b@:      :     @:             @:     2  @:fdiv@:(a,b)}
35281 @r{    a b@:      |     @:             @:     2  @:vconcat@:(a,b)  a|b}
35282 @r{    a b@:    I |     @:             @:        @:vconcat@:(b,a)  b|a}
35283 @r{    a b@:    H |     @:             @:     2  @:append@:(a,b)}
35284 @r{    a b@:  I H |     @:             @:        @:append@:(b,a)}
35285 @r{      a@:      &     @:             @:     1  @:inv@:(a)  1/a}
35286 @r{      a@:      !     @:             @:     1  @:fact@:(a)  a!}
35287 @r{      a@:      =     @:             @:     1  @:evalv@:(a)}
35288 @r{      a@:      M-%   @:             @:        @:percent@:(a)  a%}
35291 @r{  ... a@:      @key{RET}   @:             @:     1  @:@:... a a}
35292 @r{  ... a@:      @key{SPC}   @:             @:     1  @:@:... a a}
35293 @r{... a b@:      @key{TAB}   @:             @:     3  @:@:... b a}
35294 @r{. a b c@:      M-@key{TAB} @:             @:     3  @:@:... b c a}
35295 @r{... a b@:      @key{LFD}   @:             @:     1  @:@:... a b a}
35296 @r{  ... a@:      @key{DEL}   @:             @:     1  @:@:...}
35297 @r{... a b@:      M-@key{DEL} @:             @:     1  @:@:... b}
35298 @r{       @:      M-@key{RET} @:             @:     4  @:calc-last-args@:}
35299 @r{      a@:      `     @:editing      @:  1,30  @:calc-edit@:}
35302 @r{  ... a@:      C-d   @:             @:     1  @:@:...}
35303 @r{       @:      C-k   @:             @:    27  @:calc-kill@:}
35304 @r{       @:      C-w   @:             @:    27  @:calc-kill-region@:}
35305 @r{       @:      C-y   @:             @:        @:calc-yank@:}
35306 @r{       @:      C-_   @:             @:     4  @:calc-undo@:}
35307 @r{       @:      M-k   @:             @:    27  @:calc-copy-as-kill@:}
35308 @r{       @:      M-w   @:             @:    27  @:calc-copy-region-as-kill@:}
35311 @r{       @:      [     @:             @:        @:@:[...}
35312 @r{[.. a b@:      ]     @:             @:        @:@:[a,b]}
35313 @r{       @:      (     @:             @:        @:@:(...}
35314 @r{(.. a b@:      )     @:             @:        @:@:(a,b)}
35315 @r{       @:      ,     @:             @:        @:@:vector or rect complex}
35316 @r{       @:      ;     @:             @:        @:@:matrix or polar complex}
35317 @r{       @:      ..    @:             @:        @:@:interval}
35320 @r{       @:      ~     @:             @:        @:calc-num-prefix@:}
35321 @r{       @:      <     @:             @:     4  @:calc-scroll-left@:}
35322 @r{       @:      >     @:             @:     4  @:calc-scroll-right@:}
35323 @r{       @:      @{     @:             @:     4  @:calc-scroll-down@:}
35324 @r{       @:      @}     @:             @:     4  @:calc-scroll-up@:}
35325 @r{       @:      ?     @:             @:        @:calc-help@:}
35328 @r{      a@:      n     @:             @:     1  @:neg@:(a)  @minus{}a}
35329 @r{       @:      o     @:             @:     4  @:calc-realign@:}
35330 @r{       @:      p     @:precision    @:    31  @:calc-precision@:}
35331 @r{       @:      q     @:             @:        @:calc-quit@:}
35332 @r{       @:      w     @:             @:        @:calc-why@:}
35333 @r{       @:      x     @:command      @:        @:M-x calc-@:command}
35334 @r{      a@:      y     @:            @:1,28,49  @:calc-copy-to-buffer@:}
35337 @r{      a@:      A     @:             @:     1  @:abs@:(a)}
35338 @r{    a b@:      B     @:             @:     2  @:log@:(a,b)}
35339 @r{    a b@:    I B     @:             @:     2  @:alog@:(a,b)  b^a}
35340 @r{      a@:      C     @:             @:     1  @:cos@:(a)}
35341 @r{      a@:    I C     @:             @:     1  @:arccos@:(a)}
35342 @r{      a@:    H C     @:             @:     1  @:cosh@:(a)}
35343 @r{      a@:  I H C     @:             @:     1  @:arccosh@:(a)}
35344 @r{       @:      D     @:             @:     4  @:calc-redo@:}
35345 @r{      a@:      E     @:             @:     1  @:exp@:(a)}
35346 @r{      a@:    H E     @:             @:     1  @:exp10@:(a)  10.^a}
35347 @r{      a@:      F     @:             @:  1,11  @:floor@:(a,d)}
35348 @r{      a@:    I F     @:             @:  1,11  @:ceil@:(a,d)}
35349 @r{      a@:    H F     @:             @:  1,11  @:ffloor@:(a,d)}
35350 @r{      a@:  I H F     @:             @:  1,11  @:fceil@:(a,d)}
35351 @r{      a@:      G     @:             @:     1  @:arg@:(a)}
35352 @r{       @:      H     @:command      @:    32  @:@:Hyperbolic}
35353 @r{       @:      I     @:command      @:    32  @:@:Inverse}
35354 @r{      a@:      J     @:             @:     1  @:conj@:(a)}
35355 @r{       @:      K     @:command      @:    32  @:@:Keep-args}
35356 @r{      a@:      L     @:             @:     1  @:ln@:(a)}
35357 @r{      a@:    H L     @:             @:     1  @:log10@:(a)}
35358 @r{       @:      M     @:             @:        @:calc-more-recursion-depth@:}
35359 @r{       @:    I M     @:             @:        @:calc-less-recursion-depth@:}
35360 @r{      a@:      N     @:             @:     5  @:evalvn@:(a)}
35361 @r{       @:      P     @:             @:        @:@:pi}
35362 @r{       @:    I P     @:             @:        @:@:gamma}
35363 @r{       @:    H P     @:             @:        @:@:e}
35364 @r{       @:  I H P     @:             @:        @:@:phi}
35365 @r{      a@:      Q     @:             @:     1  @:sqrt@:(a)}
35366 @r{      a@:    I Q     @:             @:     1  @:sqr@:(a)  a^2}
35367 @r{      a@:      R     @:             @:  1,11  @:round@:(a,d)}
35368 @r{      a@:    I R     @:             @:  1,11  @:trunc@:(a,d)}
35369 @r{      a@:    H R     @:             @:  1,11  @:fround@:(a,d)}
35370 @r{      a@:  I H R     @:             @:  1,11  @:ftrunc@:(a,d)}
35371 @r{      a@:      S     @:             @:     1  @:sin@:(a)}
35372 @r{      a@:    I S     @:             @:     1  @:arcsin@:(a)}
35373 @r{      a@:    H S     @:             @:     1  @:sinh@:(a)}
35374 @r{      a@:  I H S     @:             @:     1  @:arcsinh@:(a)}
35375 @r{      a@:      T     @:             @:     1  @:tan@:(a)}
35376 @r{      a@:    I T     @:             @:     1  @:arctan@:(a)}
35377 @r{      a@:    H T     @:             @:     1  @:tanh@:(a)}
35378 @r{      a@:  I H T     @:             @:     1  @:arctanh@:(a)}
35379 @r{       @:      U     @:             @:     4  @:calc-undo@:}
35380 @r{       @:      X     @:             @:     4  @:calc-call-last-kbd-macro@:}
35383 @r{    a b@:      a =   @:             @:     2  @:eq@:(a,b)  a=b}
35384 @r{    a b@:      a #   @:             @:     2  @:neq@:(a,b)  a!=b}
35385 @r{    a b@:      a <   @:             @:     2  @:lt@:(a,b)  a<b}
35386 @r{    a b@:      a >   @:             @:     2  @:gt@:(a,b)  a>b}
35387 @r{    a b@:      a [   @:             @:     2  @:leq@:(a,b)  a<=b}
35388 @r{    a b@:      a ]   @:             @:     2  @:geq@:(a,b)  a>=b}
35389 @r{    a b@:      a @{   @:             @:     2  @:in@:(a,b)}
35390 @r{    a b@:      a &   @:             @:  2,45  @:land@:(a,b)  a&&b}
35391 @r{    a b@:      a |   @:             @:  2,45  @:lor@:(a,b)  a||b}
35392 @r{      a@:      a !   @:             @:  1,45  @:lnot@:(a)  !a}
35393 @r{  a b c@:      a :   @:             @:    45  @:if@:(a,b,c)  a?b:c}
35394 @r{      a@:      a .   @:             @:     1  @:rmeq@:(a)}
35395 @r{      a@:      a "   @:             @:   7,8  @:calc-expand-formula@:}
35398 @r{      a@:      a +   @:i, l, h      @:  6,38  @:sum@:(a,i,l,h)}
35399 @r{      a@:      a -   @:i, l, h      @:  6,38  @:asum@:(a,i,l,h)}
35400 @r{      a@:      a *   @:i, l, h      @:  6,38  @:prod@:(a,i,l,h)}
35401 @r{    a b@:      a _   @:             @:     2  @:subscr@:(a,b)  a_b}
35404 @r{    a b@:      a \   @:             @:     2  @:pdiv@:(a,b)}
35405 @r{    a b@:      a %   @:             @:     2  @:prem@:(a,b)}
35406 @r{    a b@:      a /   @:             @:     2  @:pdivrem@:(a,b)  [q,r]}
35407 @r{    a b@:    H a /   @:             @:     2  @:pdivide@:(a,b)  q+r/b}
35410 @r{      a@:      a a   @:             @:     1  @:apart@:(a)}
35411 @r{      a@:      a b   @:old, new     @:    38  @:subst@:(a,old,new)}
35412 @r{      a@:      a c   @:v            @:    38  @:collect@:(a,v)}
35413 @r{      a@:      a d   @:v            @:  4,38  @:deriv@:(a,v)}
35414 @r{      a@:    H a d   @:v            @:  4,38  @:tderiv@:(a,v)}
35415 @r{      a@:      a e   @:             @:        @:esimplify@:(a)}
35416 @r{      a@:      a f   @:             @:     1  @:factor@:(a)}
35417 @r{      a@:    H a f   @:             @:     1  @:factors@:(a)}
35418 @r{    a b@:      a g   @:             @:     2  @:pgcd@:(a,b)}
35419 @r{      a@:      a i   @:v            @:    38  @:integ@:(a,v)}
35420 @r{      a@:      a m   @:pats         @:    38  @:match@:(a,pats)}
35421 @r{      a@:    I a m   @:pats         @:    38  @:matchnot@:(a,pats)}
35422 @r{ data x@:      a p   @:             @:    28  @:polint@:(data,x)}
35423 @r{ data x@:    H a p   @:             @:    28  @:ratint@:(data,x)}
35424 @r{      a@:      a n   @:             @:     1  @:nrat@:(a)}
35425 @r{      a@:      a r   @:rules        @:4,8,38  @:rewrite@:(a,rules,n)}
35426 @r{      a@:      a s   @:             @:        @:simplify@:(a)}
35427 @r{      a@:      a t   @:v, n         @: 31,39  @:taylor@:(a,v,n)}
35428 @r{      a@:      a v   @:             @:   7,8  @:calc-alg-evaluate@:}
35429 @r{      a@:      a x   @:             @:   4,8  @:expand@:(a)}
35432 @r{   data@:      a F   @:model, vars  @:    48  @:fit@:(m,iv,pv,data)}
35433 @r{   data@:    I a F   @:model, vars  @:    48  @:xfit@:(m,iv,pv,data)}
35434 @r{   data@:    H a F   @:model, vars  @:    48  @:efit@:(m,iv,pv,data)}
35435 @r{      a@:      a I   @:v, l, h      @:    38  @:ninteg@:(a,v,l,h)}
35436 @r{    a b@:      a M   @:op           @:    22  @:mapeq@:(op,a,b)}
35437 @r{    a b@:    I a M   @:op           @:    22  @:mapeqr@:(op,a,b)}
35438 @r{    a b@:    H a M   @:op           @:    22  @:mapeqp@:(op,a,b)}
35439 @r{    a g@:      a N   @:v            @:    38  @:minimize@:(a,v,g)}
35440 @r{    a g@:    H a N   @:v            @:    38  @:wminimize@:(a,v,g)}
35441 @r{      a@:      a P   @:v            @:    38  @:roots@:(a,v)}
35442 @r{    a g@:      a R   @:v            @:    38  @:root@:(a,v,g)}
35443 @r{    a g@:    H a R   @:v            @:    38  @:wroot@:(a,v,g)}
35444 @r{      a@:      a S   @:v            @:    38  @:solve@:(a,v)}
35445 @r{      a@:    I a S   @:v            @:    38  @:finv@:(a,v)}
35446 @r{      a@:    H a S   @:v            @:    38  @:fsolve@:(a,v)}
35447 @r{      a@:  I H a S   @:v            @:    38  @:ffinv@:(a,v)}
35448 @r{      a@:      a T   @:i, l, h      @:  6,38  @:table@:(a,i,l,h)}
35449 @r{    a g@:      a X   @:v            @:    38  @:maximize@:(a,v,g)}
35450 @r{    a g@:    H a X   @:v            @:    38  @:wmaximize@:(a,v,g)}
35453 @r{    a b@:      b a   @:             @:     9  @:and@:(a,b,w)}
35454 @r{      a@:      b c   @:             @:     9  @:clip@:(a,w)}
35455 @r{    a b@:      b d   @:             @:     9  @:diff@:(a,b,w)}
35456 @r{      a@:      b l   @:             @:    10  @:lsh@:(a,n,w)}
35457 @r{    a n@:    H b l   @:             @:     9  @:lsh@:(a,n,w)}
35458 @r{      a@:      b n   @:             @:     9  @:not@:(a,w)}
35459 @r{    a b@:      b o   @:             @:     9  @:or@:(a,b,w)}
35460 @r{      v@:      b p   @:             @:     1  @:vpack@:(v)}
35461 @r{      a@:      b r   @:             @:    10  @:rsh@:(a,n,w)}
35462 @r{    a n@:    H b r   @:             @:     9  @:rsh@:(a,n,w)}
35463 @r{      a@:      b t   @:             @:    10  @:rot@:(a,n,w)}
35464 @r{    a n@:    H b t   @:             @:     9  @:rot@:(a,n,w)}
35465 @r{      a@:      b u   @:             @:     1  @:vunpack@:(a)}
35466 @r{       @:      b w   @:w            @:  9,50  @:calc-word-size@:}
35467 @r{    a b@:      b x   @:             @:     9  @:xor@:(a,b,w)}
35470 @r{c s l p@:      b D   @:             @:        @:ddb@:(c,s,l,p)}
35471 @r{  r n p@:      b F   @:             @:        @:fv@:(r,n,p)}
35472 @r{  r n p@:    I b F   @:             @:        @:fvb@:(r,n,p)}
35473 @r{  r n p@:    H b F   @:             @:        @:fvl@:(r,n,p)}
35474 @r{      v@:      b I   @:             @:    19  @:irr@:(v)}
35475 @r{      v@:    I b I   @:             @:    19  @:irrb@:(v)}
35476 @r{      a@:      b L   @:             @:    10  @:ash@:(a,n,w)}
35477 @r{    a n@:    H b L   @:             @:     9  @:ash@:(a,n,w)}
35478 @r{  r n a@:      b M   @:             @:        @:pmt@:(r,n,a)}
35479 @r{  r n a@:    I b M   @:             @:        @:pmtb@:(r,n,a)}
35480 @r{  r n a@:    H b M   @:             @:        @:pmtl@:(r,n,a)}
35481 @r{    r v@:      b N   @:             @:    19  @:npv@:(r,v)}
35482 @r{    r v@:    I b N   @:             @:    19  @:npvb@:(r,v)}
35483 @r{  r n p@:      b P   @:             @:        @:pv@:(r,n,p)}
35484 @r{  r n p@:    I b P   @:             @:        @:pvb@:(r,n,p)}
35485 @r{  r n p@:    H b P   @:             @:        @:pvl@:(r,n,p)}
35486 @r{      a@:      b R   @:             @:    10  @:rash@:(a,n,w)}
35487 @r{    a n@:    H b R   @:             @:     9  @:rash@:(a,n,w)}
35488 @r{  c s l@:      b S   @:             @:        @:sln@:(c,s,l)}
35489 @r{  n p a@:      b T   @:             @:        @:rate@:(n,p,a)}
35490 @r{  n p a@:    I b T   @:             @:        @:rateb@:(n,p,a)}
35491 @r{  n p a@:    H b T   @:             @:        @:ratel@:(n,p,a)}
35492 @r{c s l p@:      b Y   @:             @:        @:syd@:(c,s,l,p)}
35494 @r{  r p a@:      b #   @:             @:        @:nper@:(r,p,a)}
35495 @r{  r p a@:    I b #   @:             @:        @:nperb@:(r,p,a)}
35496 @r{  r p a@:    H b #   @:             @:        @:nperl@:(r,p,a)}
35497 @r{    a b@:      b %   @:             @:        @:relch@:(a,b)}
35500 @r{      a@:      c c   @:             @:     5  @:pclean@:(a,p)}
35501 @r{      a@:      c 0-9 @:             @:        @:pclean@:(a,p)}
35502 @r{      a@:    H c c   @:             @:     5  @:clean@:(a,p)}
35503 @r{      a@:    H c 0-9 @:             @:        @:clean@:(a,p)}
35504 @r{      a@:      c d   @:             @:     1  @:deg@:(a)}
35505 @r{      a@:      c f   @:             @:     1  @:pfloat@:(a)}
35506 @r{      a@:    H c f   @:             @:     1  @:float@:(a)}
35507 @r{      a@:      c h   @:             @:     1  @:hms@:(a)}
35508 @r{      a@:      c p   @:             @:        @:polar@:(a)}
35509 @r{      a@:    I c p   @:             @:        @:rect@:(a)}
35510 @r{      a@:      c r   @:             @:     1  @:rad@:(a)}
35513 @r{      a@:      c F   @:             @:     5  @:pfrac@:(a,p)}
35514 @r{      a@:    H c F   @:             @:     5  @:frac@:(a,p)}
35517 @r{      a@:      c %   @:             @:        @:percent@:(a*100)}
35520 @r{       @:      d .   @:char         @:    50  @:calc-point-char@:}
35521 @r{       @:      d ,   @:char         @:    50  @:calc-group-char@:}
35522 @r{       @:      d <   @:             @: 13,50  @:calc-left-justify@:}
35523 @r{       @:      d =   @:             @: 13,50  @:calc-center-justify@:}
35524 @r{       @:      d >   @:             @: 13,50  @:calc-right-justify@:}
35525 @r{       @:      d @{   @:label        @:    50  @:calc-left-label@:}
35526 @r{       @:      d @}   @:label        @:    50  @:calc-right-label@:}
35527 @r{       @:      d [   @:             @:     4  @:calc-truncate-up@:}
35528 @r{       @:      d ]   @:             @:     4  @:calc-truncate-down@:}
35529 @r{       @:      d "   @:             @: 12,50  @:calc-display-strings@:}
35530 @r{       @:      d @key{SPC} @:             @:        @:calc-refresh@:}
35531 @r{       @:      d @key{RET} @:             @:     1  @:calc-refresh-top@:}
35534 @r{       @:      d 0   @:             @:    50  @:calc-decimal-radix@:}
35535 @r{       @:      d 2   @:             @:    50  @:calc-binary-radix@:}
35536 @r{       @:      d 6   @:             @:    50  @:calc-hex-radix@:}
35537 @r{       @:      d 8   @:             @:    50  @:calc-octal-radix@:}
35540 @r{       @:      d b   @:           @:12,13,50  @:calc-line-breaking@:}
35541 @r{       @:      d c   @:             @:    50  @:calc-complex-notation@:}
35542 @r{       @:      d d   @:format       @:    50  @:calc-date-notation@:}
35543 @r{       @:      d e   @:             @:  5,50  @:calc-eng-notation@:}
35544 @r{       @:      d f   @:num          @: 31,50  @:calc-fix-notation@:}
35545 @r{       @:      d g   @:           @:12,13,50  @:calc-group-digits@:}
35546 @r{       @:      d h   @:format       @:    50  @:calc-hms-notation@:}
35547 @r{       @:      d i   @:             @:    50  @:calc-i-notation@:}
35548 @r{       @:      d j   @:             @:    50  @:calc-j-notation@:}
35549 @r{       @:      d l   @:             @: 12,50  @:calc-line-numbering@:}
35550 @r{       @:      d n   @:             @:  5,50  @:calc-normal-notation@:}
35551 @r{       @:      d o   @:format       @:    50  @:calc-over-notation@:}
35552 @r{       @:      d p   @:             @: 12,50  @:calc-show-plain@:}
35553 @r{       @:      d r   @:radix        @: 31,50  @:calc-radix@:}
35554 @r{       @:      d s   @:             @:  5,50  @:calc-sci-notation@:}
35555 @r{       @:      d t   @:             @:    27  @:calc-truncate-stack@:}
35556 @r{       @:      d w   @:             @: 12,13  @:calc-auto-why@:}
35557 @r{       @:      d z   @:             @: 12,50  @:calc-leading-zeros@:}
35560 @r{       @:      d B   @:             @:    50  @:calc-big-language@:}
35561 @r{       @:      d C   @:             @:    50  @:calc-c-language@:}
35562 @r{       @:      d E   @:             @:    50  @:calc-eqn-language@:}
35563 @r{       @:      d F   @:             @:    50  @:calc-fortran-language@:}
35564 @r{       @:      d M   @:             @:    50  @:calc-mathematica-language@:}
35565 @r{       @:      d N   @:             @:    50  @:calc-normal-language@:}
35566 @r{       @:      d O   @:             @:    50  @:calc-flat-language@:}
35567 @r{       @:      d P   @:             @:    50  @:calc-pascal-language@:}
35568 @r{       @:      d T   @:             @:    50  @:calc-tex-language@:}
35569 @r{       @:      d L   @:             @:    50  @:calc-latex-language@:}
35570 @r{       @:      d U   @:             @:    50  @:calc-unformatted-language@:}
35571 @r{       @:      d W   @:             @:    50  @:calc-maple-language@:}
35574 @r{      a@:      f [   @:             @:     4  @:decr@:(a,n)}
35575 @r{      a@:      f ]   @:             @:     4  @:incr@:(a,n)}
35578 @r{    a b@:      f b   @:             @:     2  @:beta@:(a,b)}
35579 @r{      a@:      f e   @:             @:     1  @:erf@:(a)}
35580 @r{      a@:    I f e   @:             @:     1  @:erfc@:(a)}
35581 @r{      a@:      f g   @:             @:     1  @:gamma@:(a)}
35582 @r{    a b@:      f h   @:             @:     2  @:hypot@:(a,b)}
35583 @r{      a@:      f i   @:             @:     1  @:im@:(a)}
35584 @r{    n a@:      f j   @:             @:     2  @:besJ@:(n,a)}
35585 @r{    a b@:      f n   @:             @:     2  @:min@:(a,b)}
35586 @r{      a@:      f r   @:             @:     1  @:re@:(a)}
35587 @r{      a@:      f s   @:             @:     1  @:sign@:(a)}
35588 @r{    a b@:      f x   @:             @:     2  @:max@:(a,b)}
35589 @r{    n a@:      f y   @:             @:     2  @:besY@:(n,a)}
35592 @r{      a@:      f A   @:             @:     1  @:abssqr@:(a)}
35593 @r{  x a b@:      f B   @:             @:        @:betaI@:(x,a,b)}
35594 @r{  x a b@:    H f B   @:             @:        @:betaB@:(x,a,b)}
35595 @r{      a@:      f E   @:             @:     1  @:expm1@:(a)}
35596 @r{    a x@:      f G   @:             @:     2  @:gammaP@:(a,x)}
35597 @r{    a x@:    I f G   @:             @:     2  @:gammaQ@:(a,x)}
35598 @r{    a x@:    H f G   @:             @:     2  @:gammag@:(a,x)}
35599 @r{    a x@:  I H f G   @:             @:     2  @:gammaG@:(a,x)}
35600 @r{    a b@:      f I   @:             @:     2  @:ilog@:(a,b)}
35601 @r{    a b@:    I f I   @:             @:     2  @:alog@:(a,b)  b^a}
35602 @r{      a@:      f L   @:             @:     1  @:lnp1@:(a)}
35603 @r{      a@:      f M   @:             @:     1  @:mant@:(a)}
35604 @r{      a@:      f Q   @:             @:     1  @:isqrt@:(a)}
35605 @r{      a@:    I f Q   @:             @:     1  @:sqr@:(a)  a^2}
35606 @r{    a n@:      f S   @:             @:     2  @:scf@:(a,n)}
35607 @r{    y x@:      f T   @:             @:        @:arctan2@:(y,x)}
35608 @r{      a@:      f X   @:             @:     1  @:xpon@:(a)}
35611 @r{    x y@:      g a   @:             @: 28,40  @:calc-graph-add@:}
35612 @r{       @:      g b   @:             @:    12  @:calc-graph-border@:}
35613 @r{       @:      g c   @:             @:        @:calc-graph-clear@:}
35614 @r{       @:      g d   @:             @:    41  @:calc-graph-delete@:}
35615 @r{    x y@:      g f   @:             @: 28,40  @:calc-graph-fast@:}
35616 @r{       @:      g g   @:             @:    12  @:calc-graph-grid@:}
35617 @r{       @:      g h   @:title        @:        @:calc-graph-header@:}
35618 @r{       @:      g j   @:             @:     4  @:calc-graph-juggle@:}
35619 @r{       @:      g k   @:             @:    12  @:calc-graph-key@:}
35620 @r{       @:      g l   @:             @:    12  @:calc-graph-log-x@:}
35621 @r{       @:      g n   @:name         @:        @:calc-graph-name@:}
35622 @r{       @:      g p   @:             @:    42  @:calc-graph-plot@:}
35623 @r{       @:      g q   @:             @:        @:calc-graph-quit@:}
35624 @r{       @:      g r   @:range        @:        @:calc-graph-range-x@:}
35625 @r{       @:      g s   @:             @: 12,13  @:calc-graph-line-style@:}
35626 @r{       @:      g t   @:title        @:        @:calc-graph-title-x@:}
35627 @r{       @:      g v   @:             @:        @:calc-graph-view-commands@:}
35628 @r{       @:      g x   @:display      @:        @:calc-graph-display@:}
35629 @r{       @:      g z   @:             @:    12  @:calc-graph-zero-x@:}
35632 @r{  x y z@:      g A   @:             @: 28,40  @:calc-graph-add-3d@:}
35633 @r{       @:      g C   @:command      @:        @:calc-graph-command@:}
35634 @r{       @:      g D   @:device       @: 43,44  @:calc-graph-device@:}
35635 @r{  x y z@:      g F   @:             @: 28,40  @:calc-graph-fast-3d@:}
35636 @r{       @:      g H   @:             @:    12  @:calc-graph-hide@:}
35637 @r{       @:      g K   @:             @:        @:calc-graph-kill@:}
35638 @r{       @:      g L   @:             @:    12  @:calc-graph-log-y@:}
35639 @r{       @:      g N   @:number       @: 43,51  @:calc-graph-num-points@:}
35640 @r{       @:      g O   @:filename     @: 43,44  @:calc-graph-output@:}
35641 @r{       @:      g P   @:             @:    42  @:calc-graph-print@:}
35642 @r{       @:      g R   @:range        @:        @:calc-graph-range-y@:}
35643 @r{       @:      g S   @:             @: 12,13  @:calc-graph-point-style@:}
35644 @r{       @:      g T   @:title        @:        @:calc-graph-title-y@:}
35645 @r{       @:      g V   @:             @:        @:calc-graph-view-trail@:}
35646 @r{       @:      g X   @:format       @:        @:calc-graph-geometry@:}
35647 @r{       @:      g Z   @:             @:    12  @:calc-graph-zero-y@:}
35650 @r{       @:      g C-l @:             @:    12  @:calc-graph-log-z@:}
35651 @r{       @:      g C-r @:range        @:        @:calc-graph-range-z@:}
35652 @r{       @:      g C-t @:title        @:        @:calc-graph-title-z@:}
35655 @r{       @:      h b   @:             @:        @:calc-describe-bindings@:}
35656 @r{       @:      h c   @:key          @:        @:calc-describe-key-briefly@:}
35657 @r{       @:      h f   @:function     @:        @:calc-describe-function@:}
35658 @r{       @:      h h   @:             @:        @:calc-full-help@:}
35659 @r{       @:      h i   @:             @:        @:calc-info@:}
35660 @r{       @:      h k   @:key          @:        @:calc-describe-key@:}
35661 @r{       @:      h n   @:             @:        @:calc-view-news@:}
35662 @r{       @:      h s   @:             @:        @:calc-info-summary@:}
35663 @r{       @:      h t   @:             @:        @:calc-tutorial@:}
35664 @r{       @:      h v   @:var          @:        @:calc-describe-variable@:}
35667 @r{       @:      j 1-9 @:             @:        @:calc-select-part@:}
35668 @r{       @:      j @key{RET} @:             @:    27  @:calc-copy-selection@:}
35669 @r{       @:      j @key{DEL} @:             @:    27  @:calc-del-selection@:}
35670 @r{       @:      j '   @:formula      @:    27  @:calc-enter-selection@:}
35671 @r{       @:      j `   @:editing      @: 27,30  @:calc-edit-selection@:}
35672 @r{       @:      j "   @:             @:  7,27  @:calc-sel-expand-formula@:}
35675 @r{       @:      j +   @:formula      @:    27  @:calc-sel-add-both-sides@:}
35676 @r{       @:      j -   @:formula      @:    27  @:calc-sel-sub-both-sides@:}
35677 @r{       @:      j *   @:formula      @:    27  @:calc-sel-mul-both-sides@:}
35678 @r{       @:      j /   @:formula      @:    27  @:calc-sel-div-both-sides@:}
35679 @r{       @:      j &   @:             @:    27  @:calc-sel-invert@:}
35682 @r{       @:      j a   @:             @:    27  @:calc-select-additional@:}
35683 @r{       @:      j b   @:             @:    12  @:calc-break-selections@:}
35684 @r{       @:      j c   @:             @:        @:calc-clear-selections@:}
35685 @r{       @:      j d   @:             @: 12,50  @:calc-show-selections@:}
35686 @r{       @:      j e   @:             @:    12  @:calc-enable-selections@:}
35687 @r{       @:      j l   @:             @:  4,27  @:calc-select-less@:}
35688 @r{       @:      j m   @:             @:  4,27  @:calc-select-more@:}
35689 @r{       @:      j n   @:             @:     4  @:calc-select-next@:}
35690 @r{       @:      j o   @:             @:  4,27  @:calc-select-once@:}
35691 @r{       @:      j p   @:             @:     4  @:calc-select-previous@:}
35692 @r{       @:      j r   @:rules        @:4,8,27  @:calc-rewrite-selection@:}
35693 @r{       @:      j s   @:             @:  4,27  @:calc-select-here@:}
35694 @r{       @:      j u   @:             @:    27  @:calc-unselect@:}
35695 @r{       @:      j v   @:             @:  7,27  @:calc-sel-evaluate@:}
35698 @r{       @:      j C   @:             @:    27  @:calc-sel-commute@:}
35699 @r{       @:      j D   @:             @:  4,27  @:calc-sel-distribute@:}
35700 @r{       @:      j E   @:             @:    27  @:calc-sel-jump-equals@:}
35701 @r{       @:      j I   @:             @:    27  @:calc-sel-isolate@:}
35702 @r{       @:    H j I   @:             @:    27  @:calc-sel-isolate@: (full)}
35703 @r{       @:      j L   @:             @:  4,27  @:calc-commute-left@:}
35704 @r{       @:      j M   @:             @:    27  @:calc-sel-merge@:}
35705 @r{       @:      j N   @:             @:    27  @:calc-sel-negate@:}
35706 @r{       @:      j O   @:             @:  4,27  @:calc-select-once-maybe@:}
35707 @r{       @:      j R   @:             @:  4,27  @:calc-commute-right@:}
35708 @r{       @:      j S   @:             @:  4,27  @:calc-select-here-maybe@:}
35709 @r{       @:      j U   @:             @:    27  @:calc-sel-unpack@:}
35712 @r{       @:      k a   @:             @:        @:calc-random-again@:}
35713 @r{      n@:      k b   @:             @:     1  @:bern@:(n)}
35714 @r{    n x@:    H k b   @:             @:     2  @:bern@:(n,x)}
35715 @r{    n m@:      k c   @:             @:     2  @:choose@:(n,m)}
35716 @r{    n m@:    H k c   @:             @:     2  @:perm@:(n,m)}
35717 @r{      n@:      k d   @:             @:     1  @:dfact@:(n)  n!!}
35718 @r{      n@:      k e   @:             @:     1  @:euler@:(n)}
35719 @r{    n x@:    H k e   @:             @:     2  @:euler@:(n,x)}
35720 @r{      n@:      k f   @:             @:     4  @:prfac@:(n)}
35721 @r{    n m@:      k g   @:             @:     2  @:gcd@:(n,m)}
35722 @r{    m n@:      k h   @:             @:    14  @:shuffle@:(n,m)}
35723 @r{    n m@:      k l   @:             @:     2  @:lcm@:(n,m)}
35724 @r{      n@:      k m   @:             @:     1  @:moebius@:(n)}
35725 @r{      n@:      k n   @:             @:     4  @:nextprime@:(n)}
35726 @r{      n@:    I k n   @:             @:     4  @:prevprime@:(n)}
35727 @r{      n@:      k p   @:             @:  4,28  @:calc-prime-test@:}
35728 @r{      m@:      k r   @:             @:    14  @:random@:(m)}
35729 @r{    n m@:      k s   @:             @:     2  @:stir1@:(n,m)}
35730 @r{    n m@:    H k s   @:             @:     2  @:stir2@:(n,m)}
35731 @r{      n@:      k t   @:             @:     1  @:totient@:(n)}
35734 @r{  n p x@:      k B   @:             @:        @:utpb@:(x,n,p)}
35735 @r{  n p x@:    I k B   @:             @:        @:ltpb@:(x,n,p)}
35736 @r{    v x@:      k C   @:             @:        @:utpc@:(x,v)}
35737 @r{    v x@:    I k C   @:             @:        @:ltpc@:(x,v)}
35738 @r{    n m@:      k E   @:             @:        @:egcd@:(n,m)}
35739 @r{v1 v2 x@:      k F   @:             @:        @:utpf@:(x,v1,v2)}
35740 @r{v1 v2 x@:    I k F   @:             @:        @:ltpf@:(x,v1,v2)}
35741 @r{  m s x@:      k N   @:             @:        @:utpn@:(x,m,s)}
35742 @r{  m s x@:    I k N   @:             @:        @:ltpn@:(x,m,s)}
35743 @r{    m x@:      k P   @:             @:        @:utpp@:(x,m)}
35744 @r{    m x@:    I k P   @:             @:        @:ltpp@:(x,m)}
35745 @r{    v x@:      k T   @:             @:        @:utpt@:(x,v)}
35746 @r{    v x@:    I k T   @:             @:        @:ltpt@:(x,v)}
35749 @r{       @:      m a   @:             @: 12,13  @:calc-algebraic-mode@:}
35750 @r{       @:      m d   @:             @:        @:calc-degrees-mode@:}
35751 @r{       @:      m e   @:             @:        @:calc-embedded-preserve-modes@:}
35752 @r{       @:      m f   @:             @:    12  @:calc-frac-mode@:}
35753 @r{       @:      m g   @:             @:    52  @:calc-get-modes@:}
35754 @r{       @:      m h   @:             @:        @:calc-hms-mode@:}
35755 @r{       @:      m i   @:             @: 12,13  @:calc-infinite-mode@:}
35756 @r{       @:      m m   @:             @:        @:calc-save-modes@:}
35757 @r{       @:      m p   @:             @:    12  @:calc-polar-mode@:}
35758 @r{       @:      m r   @:             @:        @:calc-radians-mode@:}
35759 @r{       @:      m s   @:             @:    12  @:calc-symbolic-mode@:}
35760 @r{       @:      m t   @:             @:    12  @:calc-total-algebraic-mode@:}
35761 @r{       @:      m v   @:             @: 12,13  @:calc-matrix-mode@:}
35762 @r{       @:      m w   @:             @:    13  @:calc-working@:}
35763 @r{       @:      m x   @:             @:        @:calc-always-load-extensions@:}
35766 @r{       @:      m A   @:             @:    12  @:calc-alg-simplify-mode@:}
35767 @r{       @:      m B   @:             @:    12  @:calc-bin-simplify-mode@:}
35768 @r{       @:      m C   @:             @:    12  @:calc-auto-recompute@:}
35769 @r{       @:      m D   @:             @:        @:calc-default-simplify-mode@:}
35770 @r{       @:      m E   @:             @:    12  @:calc-ext-simplify-mode@:}
35771 @r{       @:      m F   @:filename     @:    13  @:calc-settings-file-name@:}
35772 @r{       @:      m N   @:             @:    12  @:calc-num-simplify-mode@:}
35773 @r{       @:      m O   @:             @:    12  @:calc-no-simplify-mode@:}
35774 @r{       @:      m R   @:             @: 12,13  @:calc-mode-record-mode@:}
35775 @r{       @:      m S   @:             @:    12  @:calc-shift-prefix@:}
35776 @r{       @:      m U   @:             @:    12  @:calc-units-simplify-mode@:}
35779 @r{       @:      s c   @:var1, var2   @:    29  @:calc-copy-variable@:}
35780 @r{       @:      s d   @:var, decl    @:        @:calc-declare-variable@:}
35781 @r{       @:      s e   @:var, editing @: 29,30  @:calc-edit-variable@:}
35782 @r{       @:      s i   @:buffer       @:        @:calc-insert-variables@:}
35783 @r{       @:      s k   @:const, var   @:    29  @:calc-copy-special-constant@:}
35784 @r{    a b@:      s l   @:var          @:    29  @:@:a  (letting var=b)}
35785 @r{  a ...@:      s m   @:op, var      @: 22,29  @:calc-store-map@:}
35786 @r{       @:      s n   @:var          @: 29,47  @:calc-store-neg@:  (v/-1)}
35787 @r{       @:      s p   @:var          @:    29  @:calc-permanent-variable@:}
35788 @r{       @:      s r   @:var          @:    29  @:@:v  (recalled value)}
35789 @r{       @:      r 0-9 @:             @:        @:calc-recall-quick@:}
35790 @r{      a@:      s s   @:var          @: 28,29  @:calc-store@:}
35791 @r{      a@:      s 0-9 @:             @:        @:calc-store-quick@:}
35792 @r{      a@:      s t   @:var          @:    29  @:calc-store-into@:}
35793 @r{      a@:      t 0-9 @:             @:        @:calc-store-into-quick@:}
35794 @r{       @:      s u   @:var          @:    29  @:calc-unstore@:}
35795 @r{      a@:      s x   @:var          @:    29  @:calc-store-exchange@:}
35798 @r{       @:      s A   @:editing      @:    30  @:calc-edit-AlgSimpRules@:}
35799 @r{       @:      s D   @:editing      @:    30  @:calc-edit-Decls@:}
35800 @r{       @:      s E   @:editing      @:    30  @:calc-edit-EvalRules@:}
35801 @r{       @:      s F   @:editing      @:    30  @:calc-edit-FitRules@:}
35802 @r{       @:      s G   @:editing      @:    30  @:calc-edit-GenCount@:}
35803 @r{       @:      s H   @:editing      @:    30  @:calc-edit-Holidays@:}
35804 @r{       @:      s I   @:editing      @:    30  @:calc-edit-IntegLimit@:}
35805 @r{       @:      s L   @:editing      @:    30  @:calc-edit-LineStyles@:}
35806 @r{       @:      s P   @:editing      @:    30  @:calc-edit-PointStyles@:}
35807 @r{       @:      s R   @:editing      @:    30  @:calc-edit-PlotRejects@:}
35808 @r{       @:      s T   @:editing      @:    30  @:calc-edit-TimeZone@:}
35809 @r{       @:      s U   @:editing      @:    30  @:calc-edit-Units@:}
35810 @r{       @:      s X   @:editing      @:    30  @:calc-edit-ExtSimpRules@:}
35813 @r{      a@:      s +   @:var          @: 29,47  @:calc-store-plus@:  (v+a)}
35814 @r{      a@:      s -   @:var          @: 29,47  @:calc-store-minus@:  (v-a)}
35815 @r{      a@:      s *   @:var          @: 29,47  @:calc-store-times@:  (v*a)}
35816 @r{      a@:      s /   @:var          @: 29,47  @:calc-store-div@:  (v/a)}
35817 @r{      a@:      s ^   @:var          @: 29,47  @:calc-store-power@:  (v^a)}
35818 @r{      a@:      s |   @:var          @: 29,47  @:calc-store-concat@:  (v|a)}
35819 @r{       @:      s &   @:var          @: 29,47  @:calc-store-inv@:  (v^-1)}
35820 @r{       @:      s [   @:var          @: 29,47  @:calc-store-decr@:  (v-1)}
35821 @r{       @:      s ]   @:var          @: 29,47  @:calc-store-incr@:  (v-(-1))}
35822 @r{    a b@:      s :   @:             @:     2  @:assign@:(a,b)  a @tfn{:=} b}
35823 @r{      a@:      s =   @:             @:     1  @:evalto@:(a,b)  a @tfn{=>}}
35826 @r{       @:      t [   @:             @:     4  @:calc-trail-first@:}
35827 @r{       @:      t ]   @:             @:     4  @:calc-trail-last@:}
35828 @r{       @:      t <   @:             @:     4  @:calc-trail-scroll-left@:}
35829 @r{       @:      t >   @:             @:     4  @:calc-trail-scroll-right@:}
35830 @r{       @:      t .   @:             @:    12  @:calc-full-trail-vectors@:}
35833 @r{       @:      t b   @:             @:     4  @:calc-trail-backward@:}
35834 @r{       @:      t d   @:             @: 12,50  @:calc-trail-display@:}
35835 @r{       @:      t f   @:             @:     4  @:calc-trail-forward@:}
35836 @r{       @:      t h   @:             @:        @:calc-trail-here@:}
35837 @r{       @:      t i   @:             @:        @:calc-trail-in@:}
35838 @r{       @:      t k   @:             @:     4  @:calc-trail-kill@:}
35839 @r{       @:      t m   @:string       @:        @:calc-trail-marker@:}
35840 @r{       @:      t n   @:             @:     4  @:calc-trail-next@:}
35841 @r{       @:      t o   @:             @:        @:calc-trail-out@:}
35842 @r{       @:      t p   @:             @:     4  @:calc-trail-previous@:}
35843 @r{       @:      t r   @:string       @:        @:calc-trail-isearch-backward@:}
35844 @r{       @:      t s   @:string       @:        @:calc-trail-isearch-forward@:}
35845 @r{       @:      t y   @:             @:     4  @:calc-trail-yank@:}
35848 @r{      d@:      t C   @:oz, nz       @:        @:tzconv@:(d,oz,nz)}
35849 @r{d oz nz@:      t C   @:$            @:        @:tzconv@:(d,oz,nz)}
35850 @r{      d@:      t D   @:             @:    15  @:date@:(d)}
35851 @r{      d@:      t I   @:             @:     4  @:incmonth@:(d,n)}
35852 @r{      d@:      t J   @:             @:    16  @:julian@:(d,z)}
35853 @r{      d@:      t M   @:             @:    17  @:newmonth@:(d,n)}
35854 @r{       @:      t N   @:             @:    16  @:now@:(z)}
35855 @r{      d@:      t P   @:1            @:    31  @:year@:(d)}
35856 @r{      d@:      t P   @:2            @:    31  @:month@:(d)}
35857 @r{      d@:      t P   @:3            @:    31  @:day@:(d)}
35858 @r{      d@:      t P   @:4            @:    31  @:hour@:(d)}
35859 @r{      d@:      t P   @:5            @:    31  @:minute@:(d)}
35860 @r{      d@:      t P   @:6            @:    31  @:second@:(d)}
35861 @r{      d@:      t P   @:7            @:    31  @:weekday@:(d)}
35862 @r{      d@:      t P   @:8            @:    31  @:yearday@:(d)}
35863 @r{      d@:      t P   @:9            @:    31  @:time@:(d)}
35864 @r{      d@:      t U   @:             @:    16  @:unixtime@:(d,z)}
35865 @r{      d@:      t W   @:             @:    17  @:newweek@:(d,w)}
35866 @r{      d@:      t Y   @:             @:    17  @:newyear@:(d,n)}
35869 @r{    a b@:      t +   @:             @:     2  @:badd@:(a,b)}
35870 @r{    a b@:      t -   @:             @:     2  @:bsub@:(a,b)}
35873 @r{       @:      u a   @:             @:    12  @:calc-autorange-units@:}
35874 @r{      a@:      u b   @:             @:        @:calc-base-units@:}
35875 @r{      a@:      u c   @:units        @:    18  @:calc-convert-units@:}
35876 @r{   defn@:      u d   @:unit, descr  @:        @:calc-define-unit@:}
35877 @r{       @:      u e   @:             @:        @:calc-explain-units@:}
35878 @r{       @:      u g   @:unit         @:        @:calc-get-unit-definition@:}
35879 @r{       @:      u p   @:             @:        @:calc-permanent-units@:}
35880 @r{      a@:      u r   @:             @:        @:calc-remove-units@:}
35881 @r{      a@:      u s   @:             @:        @:usimplify@:(a)}
35882 @r{      a@:      u t   @:units        @:    18  @:calc-convert-temperature@:}
35883 @r{       @:      u u   @:unit         @:        @:calc-undefine-unit@:}
35884 @r{       @:      u v   @:             @:        @:calc-enter-units-table@:}
35885 @r{      a@:      u x   @:             @:        @:calc-extract-units@:}
35886 @r{      a@:      u 0-9 @:             @:        @:calc-quick-units@:}
35889 @r{  v1 v2@:      u C   @:             @:    20  @:vcov@:(v1,v2)}
35890 @r{  v1 v2@:    I u C   @:             @:    20  @:vpcov@:(v1,v2)}
35891 @r{  v1 v2@:    H u C   @:             @:    20  @:vcorr@:(v1,v2)}
35892 @r{      v@:      u G   @:             @:    19  @:vgmean@:(v)}
35893 @r{    a b@:    H u G   @:             @:     2  @:agmean@:(a,b)}
35894 @r{      v@:      u M   @:             @:    19  @:vmean@:(v)}
35895 @r{      v@:    I u M   @:             @:    19  @:vmeane@:(v)}
35896 @r{      v@:    H u M   @:             @:    19  @:vmedian@:(v)}
35897 @r{      v@:  I H u M   @:             @:    19  @:vhmean@:(v)}
35898 @r{      v@:      u N   @:             @:    19  @:vmin@:(v)}
35899 @r{      v@:      u S   @:             @:    19  @:vsdev@:(v)}
35900 @r{      v@:    I u S   @:             @:    19  @:vpsdev@:(v)}
35901 @r{      v@:    H u S   @:             @:    19  @:vvar@:(v)}
35902 @r{      v@:  I H u S   @:             @:    19  @:vpvar@:(v)}
35903 @r{       @:      u V   @:             @:        @:calc-view-units-table@:}
35904 @r{      v@:      u X   @:             @:    19  @:vmax@:(v)}
35907 @r{      v@:      u +   @:             @:    19  @:vsum@:(v)}
35908 @r{      v@:      u *   @:             @:    19  @:vprod@:(v)}
35909 @r{      v@:      u #   @:             @:    19  @:vcount@:(v)}
35912 @r{       @:      V (   @:             @:    50  @:calc-vector-parens@:}
35913 @r{       @:      V @{   @:             @:    50  @:calc-vector-braces@:}
35914 @r{       @:      V [   @:             @:    50  @:calc-vector-brackets@:}
35915 @r{       @:      V ]   @:ROCP         @:    50  @:calc-matrix-brackets@:}
35916 @r{       @:      V ,   @:             @:    50  @:calc-vector-commas@:}
35917 @r{       @:      V <   @:             @:    50  @:calc-matrix-left-justify@:}
35918 @r{       @:      V =   @:             @:    50  @:calc-matrix-center-justify@:}
35919 @r{       @:      V >   @:             @:    50  @:calc-matrix-right-justify@:}
35920 @r{       @:      V /   @:             @: 12,50  @:calc-break-vectors@:}
35921 @r{       @:      V .   @:             @: 12,50  @:calc-full-vectors@:}
35924 @r{    s t@:      V ^   @:             @:     2  @:vint@:(s,t)}
35925 @r{    s t@:      V -   @:             @:     2  @:vdiff@:(s,t)}
35926 @r{      s@:      V ~   @:             @:     1  @:vcompl@:(s)}
35927 @r{      s@:      V #   @:             @:     1  @:vcard@:(s)}
35928 @r{      s@:      V :   @:             @:     1  @:vspan@:(s)}
35929 @r{      s@:      V +   @:             @:     1  @:rdup@:(s)}
35932 @r{      m@:      V &   @:             @:     1  @:inv@:(m)  1/m}
35935 @r{      v@:      v a   @:n            @:        @:arrange@:(v,n)}
35936 @r{      a@:      v b   @:n            @:        @:cvec@:(a,n)}
35937 @r{      v@:      v c   @:n >0         @: 21,31  @:mcol@:(v,n)}
35938 @r{      v@:      v c   @:n <0         @:    31  @:mrcol@:(v,-n)}
35939 @r{      m@:      v c   @:0            @:    31  @:getdiag@:(m)}
35940 @r{      v@:      v d   @:             @:    25  @:diag@:(v,n)}
35941 @r{    v m@:      v e   @:             @:     2  @:vexp@:(v,m)}
35942 @r{  v m f@:    H v e   @:             @:     2  @:vexp@:(v,m,f)}
35943 @r{    v a@:      v f   @:             @:    26  @:find@:(v,a,n)}
35944 @r{      v@:      v h   @:             @:     1  @:head@:(v)}
35945 @r{      v@:    I v h   @:             @:     1  @:tail@:(v)}
35946 @r{      v@:    H v h   @:             @:     1  @:rhead@:(v)}
35947 @r{      v@:  I H v h   @:             @:     1  @:rtail@:(v)}
35948 @r{       @:      v i   @:n            @:    31  @:idn@:(1,n)}
35949 @r{       @:      v i   @:0            @:    31  @:idn@:(1)}
35950 @r{    h t@:      v k   @:             @:     2  @:cons@:(h,t)}
35951 @r{    h t@:    H v k   @:             @:     2  @:rcons@:(h,t)}
35952 @r{      v@:      v l   @:             @:     1  @:vlen@:(v)}
35953 @r{      v@:    H v l   @:             @:     1  @:mdims@:(v)}
35954 @r{    v m@:      v m   @:             @:     2  @:vmask@:(v,m)}
35955 @r{      v@:      v n   @:             @:     1  @:rnorm@:(v)}
35956 @r{  a b c@:      v p   @:             @:    24  @:calc-pack@:}
35957 @r{      v@:      v r   @:n >0         @: 21,31  @:mrow@:(v,n)}
35958 @r{      v@:      v r   @:n <0         @:    31  @:mrrow@:(v,-n)}
35959 @r{      m@:      v r   @:0            @:    31  @:getdiag@:(m)}
35960 @r{  v i j@:      v s   @:             @:        @:subvec@:(v,i,j)}
35961 @r{  v i j@:    I v s   @:             @:        @:rsubvec@:(v,i,j)}
35962 @r{      m@:      v t   @:             @:     1  @:trn@:(m)}
35963 @r{      v@:      v u   @:             @:    24  @:calc-unpack@:}
35964 @r{      v@:      v v   @:             @:     1  @:rev@:(v)}
35965 @r{       @:      v x   @:n            @:    31  @:index@:(n)}
35966 @r{  n s i@:  C-u v x   @:             @:        @:index@:(n,s,i)}
35969 @r{      v@:      V A   @:op           @:    22  @:apply@:(op,v)}
35970 @r{  v1 v2@:      V C   @:             @:     2  @:cross@:(v1,v2)}
35971 @r{      m@:      V D   @:             @:     1  @:det@:(m)}
35972 @r{      s@:      V E   @:             @:     1  @:venum@:(s)}
35973 @r{      s@:      V F   @:             @:     1  @:vfloor@:(s)}
35974 @r{      v@:      V G   @:             @:        @:grade@:(v)}
35975 @r{      v@:    I V G   @:             @:        @:rgrade@:(v)}
35976 @r{      v@:      V H   @:n            @:    31  @:histogram@:(v,n)}
35977 @r{    v w@:    H V H   @:n            @:    31  @:histogram@:(v,w,n)}
35978 @r{  v1 v2@:      V I   @:mop aop      @:    22  @:inner@:(mop,aop,v1,v2)}
35979 @r{      m@:      V J   @:             @:     1  @:ctrn@:(m)}
35980 @r{      m@:      V L   @:             @:     1  @:lud@:(m)}
35981 @r{      v@:      V M   @:op           @: 22,23  @:map@:(op,v)}
35982 @r{      v@:      V N   @:             @:     1  @:cnorm@:(v)}
35983 @r{  v1 v2@:      V O   @:op           @:    22  @:outer@:(op,v1,v2)}
35984 @r{      v@:      V R   @:op           @: 22,23  @:reduce@:(op,v)}
35985 @r{      v@:    I V R   @:op           @: 22,23  @:rreduce@:(op,v)}
35986 @r{    a n@:    H V R   @:op           @:    22  @:nest@:(op,a,n)}
35987 @r{      a@:  I H V R   @:op           @:    22  @:fixp@:(op,a)}
35988 @r{      v@:      V S   @:             @:        @:sort@:(v)}
35989 @r{      v@:    I V S   @:             @:        @:rsort@:(v)}
35990 @r{      m@:      V T   @:             @:     1  @:tr@:(m)}
35991 @r{      v@:      V U   @:op           @:    22  @:accum@:(op,v)}
35992 @r{      v@:    I V U   @:op           @:    22  @:raccum@:(op,v)}
35993 @r{    a n@:    H V U   @:op           @:    22  @:anest@:(op,a,n)}
35994 @r{      a@:  I H V U   @:op           @:    22  @:afixp@:(op,a)}
35995 @r{    s t@:      V V   @:             @:     2  @:vunion@:(s,t)}
35996 @r{    s t@:      V X   @:             @:     2  @:vxor@:(s,t)}
35999 @r{       @:      Y     @:             @:        @:@:user commands}
36002 @r{       @:      z     @:             @:        @:@:user commands}
36005 @r{      c@:      Z [   @:             @:    45  @:calc-kbd-if@:}
36006 @r{      c@:      Z |   @:             @:    45  @:calc-kbd-else-if@:}
36007 @r{       @:      Z :   @:             @:        @:calc-kbd-else@:}
36008 @r{       @:      Z ]   @:             @:        @:calc-kbd-end-if@:}
36011 @r{       @:      Z @{   @:             @:     4  @:calc-kbd-loop@:}
36012 @r{      c@:      Z /   @:             @:    45  @:calc-kbd-break@:}
36013 @r{       @:      Z @}   @:             @:        @:calc-kbd-end-loop@:}
36014 @r{      n@:      Z <   @:             @:        @:calc-kbd-repeat@:}
36015 @r{       @:      Z >   @:             @:        @:calc-kbd-end-repeat@:}
36016 @r{    n m@:      Z (   @:             @:        @:calc-kbd-for@:}
36017 @r{      s@:      Z )   @:             @:        @:calc-kbd-end-for@:}
36020 @r{       @:      Z C-g @:             @:        @:@:cancel if/loop command}
36023 @r{       @:      Z `   @:             @:        @:calc-kbd-push@:}
36024 @r{       @:      Z '   @:             @:        @:calc-kbd-pop@:}
36025 @r{       @:      Z #   @:             @:        @:calc-kbd-query@:}
36028 @r{   comp@:      Z C   @:func, args   @:    50  @:calc-user-define-composition@:}
36029 @r{       @:      Z D   @:key, command @:        @:calc-user-define@:}
36030 @r{       @:      Z E   @:key, editing @:    30  @:calc-user-define-edit@:}
36031 @r{   defn@:      Z F   @:k, c, f, a, n@:    28  @:calc-user-define-formula@:}
36032 @r{       @:      Z G   @:key          @:        @:calc-get-user-defn@:}
36033 @r{       @:      Z I   @:             @:        @:calc-user-define-invocation@:}
36034 @r{       @:      Z K   @:key, command @:        @:calc-user-define-kbd-macro@:}
36035 @r{       @:      Z P   @:key          @:        @:calc-user-define-permanent@:}
36036 @r{       @:      Z S   @:             @:    30  @:calc-edit-user-syntax@:}
36037 @r{       @:      Z T   @:             @:    12  @:calc-timing@:}
36038 @r{       @:      Z U   @:key          @:        @:calc-user-undefine@:}
36040 @end format
36042 @noindent
36043 NOTES
36045 @enumerate
36046 @c 1
36047 @item
36048 Positive prefix arguments apply to @expr{n} stack entries.
36049 Negative prefix arguments apply to the @expr{-n}th stack entry.
36050 A prefix of zero applies to the entire stack.  (For @key{LFD} and
36051 @kbd{M-@key{DEL}}, the meaning of the sign is reversed.)
36053 @c 2
36054 @item
36055 Positive prefix arguments apply to @expr{n} stack entries.
36056 Negative prefix arguments apply to the top stack entry
36057 and the next @expr{-n} stack entries.
36059 @c 3
36060 @item
36061 Positive prefix arguments rotate top @expr{n} stack entries by one.
36062 Negative prefix arguments rotate the entire stack by @expr{-n}.
36063 A prefix of zero reverses the entire stack.
36065 @c 4
36066 @item
36067 Prefix argument specifies a repeat count or distance.
36069 @c 5
36070 @item
36071 Positive prefix arguments specify a precision @expr{p}.
36072 Negative prefix arguments reduce the current precision by @expr{-p}.
36074 @c 6
36075 @item
36076 A prefix argument is interpreted as an additional step-size parameter.
36077 A plain @kbd{C-u} prefix means to prompt for the step size.
36079 @c 7
36080 @item
36081 A prefix argument specifies simplification level and depth.
36082 1=Default, 2=like @kbd{a s}, 3=like @kbd{a e}.
36084 @c 8
36085 @item
36086 A negative prefix operates only on the top level of the input formula.
36088 @c 9
36089 @item
36090 Positive prefix arguments specify a word size of @expr{w} bits, unsigned.
36091 Negative prefix arguments specify a word size of @expr{w} bits, signed.
36093 @c 10
36094 @item
36095 Prefix arguments specify the shift amount @expr{n}.  The @expr{w} argument
36096 cannot be specified in the keyboard version of this command.
36098 @c 11
36099 @item
36100 From the keyboard, @expr{d} is omitted and defaults to zero.
36102 @c 12
36103 @item
36104 Mode is toggled; a positive prefix always sets the mode, and a negative
36105 prefix always clears the mode.
36107 @c 13
36108 @item
36109 Some prefix argument values provide special variations of the mode.
36111 @c 14
36112 @item
36113 A prefix argument, if any, is used for @expr{m} instead of taking
36114 @expr{m} from the stack.  @expr{M} may take any of these values:
36115 @iftex
36116 {@advance@tableindent10pt
36117 @end iftex
36118 @table @asis
36119 @item Integer
36120 Random integer in the interval @expr{[0 .. m)}.
36121 @item Float
36122 Random floating-point number in the interval @expr{[0 .. m)}.
36123 @item 0.0
36124 Gaussian with mean 1 and standard deviation 0.
36125 @item Error form
36126 Gaussian with specified mean and standard deviation.
36127 @item Interval
36128 Random integer or floating-point number in that interval.
36129 @item Vector
36130 Random element from the vector.
36131 @end table
36132 @iftex
36134 @end iftex
36136 @c 15
36137 @item
36138 A prefix argument from 1 to 6 specifies number of date components
36139 to remove from the stack.  @xref{Date Conversions}.
36141 @c 16
36142 @item
36143 A prefix argument specifies a time zone; @kbd{C-u} says to take the
36144 time zone number or name from the top of the stack.  @xref{Time Zones}.
36146 @c 17
36147 @item
36148 A prefix argument specifies a day number (0-6, 0-31, or 0-366).
36150 @c 18
36151 @item
36152 If the input has no units, you will be prompted for both the old and
36153 the new units.
36155 @c 19
36156 @item
36157 With a prefix argument, collect that many stack entries to form the
36158 input data set.  Each entry may be a single value or a vector of values.
36160 @c 20
36161 @item
36162 With a prefix argument of 1, take a single 
36163 @texline @var{n}@math{\times2}
36164 @infoline @mathit{@var{N}x2} 
36165 matrix from the stack instead of two separate data vectors.
36167 @c 21
36168 @item
36169 The row or column number @expr{n} may be given as a numeric prefix
36170 argument instead.  A plain @kbd{C-u} prefix says to take @expr{n}
36171 from the top of the stack.  If @expr{n} is a vector or interval,
36172 a subvector/submatrix of the input is created.
36174 @c 22
36175 @item
36176 The @expr{op} prompt can be answered with the key sequence for the
36177 desired function, or with @kbd{x} or @kbd{z} followed by a function name,
36178 or with @kbd{$} to take a formula from the top of the stack, or with
36179 @kbd{'} and a typed formula.  In the last two cases, the formula may
36180 be a nameless function like @samp{<#1+#2>} or @samp{<x, y : x+y>}, or it
36181 may include @kbd{$}, @kbd{$$}, etc. (where @kbd{$} will correspond to the
36182 last argument of the created function), or otherwise you will be
36183 prompted for an argument list.  The number of vectors popped from the
36184 stack by @kbd{V M} depends on the number of arguments of the function.
36186 @c 23
36187 @item
36188 One of the mapping direction keys @kbd{_} (horizontal, i.e., map
36189 by rows or reduce across), @kbd{:} (vertical, i.e., map by columns or
36190 reduce down), or @kbd{=} (map or reduce by rows) may be used before
36191 entering @expr{op}; these modify the function name by adding the letter
36192 @code{r} for ``rows,'' @code{c} for ``columns,'' @code{a} for ``across,''
36193 or @code{d} for ``down.''
36195 @c 24
36196 @item
36197 The prefix argument specifies a packing mode.  A nonnegative mode
36198 is the number of items (for @kbd{v p}) or the number of levels
36199 (for @kbd{v u}).  A negative mode is as described below.  With no
36200 prefix argument, the mode is taken from the top of the stack and
36201 may be an integer or a vector of integers.
36202 @iftex
36203 {@advance@tableindent-20pt
36204 @end iftex
36205 @table @cite
36206 @item -1
36207 (@var{2})  Rectangular complex number.
36208 @item -2
36209 (@var{2})  Polar complex number.
36210 @item -3
36211 (@var{3})  HMS form.
36212 @item -4
36213 (@var{2})  Error form.
36214 @item -5
36215 (@var{2})  Modulo form.
36216 @item -6
36217 (@var{2})  Closed interval.
36218 @item -7
36219 (@var{2})  Closed .. open interval.
36220 @item -8
36221 (@var{2})  Open .. closed interval.
36222 @item -9
36223 (@var{2})  Open interval.
36224 @item -10
36225 (@var{2})  Fraction.
36226 @item -11
36227 (@var{2})  Float with integer mantissa.
36228 @item -12
36229 (@var{2})  Float with mantissa in @expr{[1 .. 10)}.
36230 @item -13
36231 (@var{1})  Date form (using date numbers).
36232 @item -14
36233 (@var{3})  Date form (using year, month, day).
36234 @item -15
36235 (@var{6})  Date form (using year, month, day, hour, minute, second).
36236 @end table
36237 @iftex
36239 @end iftex
36241 @c 25
36242 @item
36243 A prefix argument specifies the size @expr{n} of the matrix.  With no
36244 prefix argument, @expr{n} is omitted and the size is inferred from
36245 the input vector.
36247 @c 26
36248 @item
36249 The prefix argument specifies the starting position @expr{n} (default 1).
36251 @c 27
36252 @item
36253 Cursor position within stack buffer affects this command.
36255 @c 28
36256 @item
36257 Arguments are not actually removed from the stack by this command.
36259 @c 29
36260 @item
36261 Variable name may be a single digit or a full name.
36263 @c 30
36264 @item
36265 Editing occurs in a separate buffer.  Press @kbd{C-c C-c} (or 
36266 @key{LFD}, or in some cases @key{RET}) to finish the edit, or kill the
36267 buffer with @kbd{C-x k} to cancel the edit.  The @key{LFD} key prevents evaluation
36268 of the result of the edit.
36270 @c 31
36271 @item
36272 The number prompted for can also be provided as a prefix argument.
36274 @c 32
36275 @item
36276 Press this key a second time to cancel the prefix.
36278 @c 33
36279 @item
36280 With a negative prefix, deactivate all formulas.  With a positive
36281 prefix, deactivate and then reactivate from scratch.
36283 @c 34
36284 @item
36285 Default is to scan for nearest formula delimiter symbols.  With a
36286 prefix of zero, formula is delimited by mark and point.  With a
36287 non-zero prefix, formula is delimited by scanning forward or
36288 backward by that many lines.
36290 @c 35
36291 @item
36292 Parse the region between point and mark as a vector.  A nonzero prefix
36293 parses @var{n} lines before or after point as a vector.  A zero prefix
36294 parses the current line as a vector.  A @kbd{C-u} prefix parses the
36295 region between point and mark as a single formula.
36297 @c 36
36298 @item
36299 Parse the rectangle defined by point and mark as a matrix.  A positive
36300 prefix @var{n} divides the rectangle into columns of width @var{n}.
36301 A zero or @kbd{C-u} prefix parses each line as one formula.  A negative
36302 prefix suppresses special treatment of bracketed portions of a line.
36304 @c 37
36305 @item
36306 A numeric prefix causes the current language mode to be ignored.
36308 @c 38
36309 @item
36310 Responding to a prompt with a blank line answers that and all
36311 later prompts by popping additional stack entries.
36313 @c 39
36314 @item
36315 Answer for @expr{v} may also be of the form @expr{v = v_0} or
36316 @expr{v - v_0}.
36318 @c 40
36319 @item
36320 With a positive prefix argument, stack contains many @expr{y}'s and one
36321 common @expr{x}.  With a zero prefix, stack contains a vector of
36322 @expr{y}s and a common @expr{x}.  With a negative prefix, stack
36323 contains many @expr{[x,y]} vectors.  (For 3D plots, substitute
36324 @expr{z} for @expr{y} and @expr{x,y} for @expr{x}.)
36326 @c 41
36327 @item
36328 With any prefix argument, all curves in the graph are deleted.
36330 @c 42
36331 @item
36332 With a positive prefix, refines an existing plot with more data points.
36333 With a negative prefix, forces recomputation of the plot data.
36335 @c 43
36336 @item
36337 With any prefix argument, set the default value instead of the
36338 value for this graph.
36340 @c 44
36341 @item
36342 With a negative prefix argument, set the value for the printer.
36344 @c 45
36345 @item
36346 Condition is considered ``true'' if it is a nonzero real or complex
36347 number, or a formula whose value is known to be nonzero; it is ``false''
36348 otherwise.
36350 @c 46
36351 @item
36352 Several formulas separated by commas are pushed as multiple stack
36353 entries.  Trailing @kbd{)}, @kbd{]}, @kbd{@}}, @kbd{>}, and @kbd{"}
36354 delimiters may be omitted.  The notation @kbd{$$$} refers to the value
36355 in stack level three, and causes the formula to replace the top three
36356 stack levels.  The notation @kbd{$3} refers to stack level three without
36357 causing that value to be removed from the stack.  Use @key{LFD} in place
36358 of @key{RET} to prevent evaluation; use @kbd{M-=} in place of @key{RET}
36359 to evaluate variables.
36361 @c 47
36362 @item
36363 The variable is replaced by the formula shown on the right.  The
36364 Inverse flag reverses the order of the operands, e.g., @kbd{I s - x}
36365 assigns 
36366 @texline @math{x \coloneq a-x}.
36367 @infoline @expr{x := a-x}.
36369 @c 48
36370 @item
36371 Press @kbd{?} repeatedly to see how to choose a model.  Answer the
36372 variables prompt with @expr{iv} or @expr{iv;pv} to specify
36373 independent and parameter variables.  A positive prefix argument
36374 takes @mathit{@var{n}+1} vectors from the stack; a zero prefix takes a matrix
36375 and a vector from the stack.
36377 @c 49
36378 @item
36379 With a plain @kbd{C-u} prefix, replace the current region of the
36380 destination buffer with the yanked text instead of inserting.
36382 @c 50
36383 @item
36384 All stack entries are reformatted; the @kbd{H} prefix inhibits this.
36385 The @kbd{I} prefix sets the mode temporarily, redraws the top stack
36386 entry, then restores the original setting of the mode.
36388 @c 51
36389 @item
36390 A negative prefix sets the default 3D resolution instead of the
36391 default 2D resolution.
36393 @c 52
36394 @item
36395 This grabs a vector of the form [@var{prec}, @var{wsize}, @var{ssize},
36396 @var{radix}, @var{flfmt}, @var{ang}, @var{frac}, @var{symb}, @var{polar},
36397 @var{matrix}, @var{simp}, @var{inf}].  A prefix argument from 1 to 12
36398 grabs the @var{n}th mode value only.
36399 @end enumerate
36401 @iftex
36402 (Space is provided below for you to keep your own written notes.)
36403 @page
36404 @endgroup
36405 @end iftex
36408 @c [end-summary]
36410 @node Key Index, Command Index, Summary, Top
36411 @unnumbered Index of Key Sequences
36413 @printindex ky
36415 @node Command Index, Function Index, Key Index, Top
36416 @unnumbered Index of Calculator Commands
36418 Since all Calculator commands begin with the prefix @samp{calc-}, the
36419 @kbd{x} key has been provided as a variant of @kbd{M-x} which automatically
36420 types @samp{calc-} for you.  Thus, @kbd{x last-args} is short for
36421 @kbd{M-x calc-last-args}.
36423 @printindex pg
36425 @node Function Index, Concept Index, Command Index, Top
36426 @unnumbered Index of Algebraic Functions
36428 This is a list of built-in functions and operators usable in algebraic
36429 expressions.  Their full Lisp names are derived by adding the prefix
36430 @samp{calcFunc-}, as in @code{calcFunc-sqrt}.
36431 @iftex
36432 All functions except those noted with ``*'' have corresponding
36433 Calc keystrokes and can also be found in the Calc Summary.
36434 @end iftex
36436 @printindex tp
36438 @node Concept Index, Variable Index, Function Index, Top
36439 @unnumbered Concept Index
36441 @printindex cp
36443 @node Variable Index, Lisp Function Index, Concept Index, Top
36444 @unnumbered Index of Variables
36446 The variables in this list that do not contain dashes are accessible
36447 as Calc variables.  Add a @samp{var-} prefix to get the name of the
36448 corresponding Lisp variable.
36450 The remaining variables are Lisp variables suitable for @code{setq}ing
36451 in your Calc init file or @file{.emacs} file.
36453 @printindex vr
36455 @node Lisp Function Index, , Variable Index, Top
36456 @unnumbered Index of Lisp Math Functions
36458 The following functions are meant to be used with @code{defmath}, not
36459 @code{defun} definitions.  For names that do not start with @samp{calc-},
36460 the corresponding full Lisp name is derived by adding a prefix of
36461 @samp{math-}.
36463 @printindex fn
36465 @summarycontents
36467 @c [end]
36469 @contents
36470 @bye
36473 @ignore
36474    arch-tag: 77a71809-fa4d-40be-b2cc-da3e8fb137c0
36475 @end ignore