* vc/diff-mode.el (diff-fixup-modifs): Remove stray ')' (Bug#8672).
[emacs.git] / lib / intprops.h
bloba84bd6af53174b369dbdf9986b32fb25680ab757
1 /* intprops.h -- properties of integer types
3 Copyright (C) 2001-2005, 2009-2011 Free Software Foundation, Inc.
5 This program is free software: you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18 /* Written by Paul Eggert. */
20 #ifndef _GL_INTPROPS_H
21 #define _GL_INTPROPS_H
23 #include <limits.h>
25 /* Return a integer value, converted to the same type as the integer
26 expression E after integer type promotion. V is the unconverted value.
27 E should not have side effects. */
28 #define _GL_INT_CONVERT(e, v) ((e) - (e) + (v))
30 /* The extra casts in the following macros work around compiler bugs,
31 e.g., in Cray C 5.0.3.0. */
33 /* True if the arithmetic type T is an integer type. bool counts as
34 an integer. */
35 #define TYPE_IS_INTEGER(t) ((t) 1.5 == 1)
37 /* True if negative values of the signed integer type T use two's
38 complement, ones' complement, or signed magnitude representation,
39 respectively. Much GNU code assumes two's complement, but some
40 people like to be portable to all possible C hosts. */
41 #define TYPE_TWOS_COMPLEMENT(t) ((t) ~ (t) 0 == (t) -1)
42 #define TYPE_ONES_COMPLEMENT(t) ((t) ~ (t) 0 == 0)
43 #define TYPE_SIGNED_MAGNITUDE(t) ((t) ~ (t) 0 < (t) -1)
45 /* True if the signed integer expression E uses two's complement. */
46 #define _GL_INT_TWOS_COMPLEMENT(e) (~ _GL_INT_CONVERT (e, 0) == -1)
48 /* True if the arithmetic type T is signed. */
49 #define TYPE_SIGNED(t) (! ((t) 0 < (t) -1))
51 /* Return 1 if the integer expression E, after integer promotion, has
52 a signed type. E should not have side effects. */
53 #define _GL_INT_SIGNED(e) (_GL_INT_CONVERT (e, -1) < 0)
56 /* Minimum and maximum values for integer types and expressions. These
57 macros have undefined behavior if T is signed and has padding bits.
58 If this is a problem for you, please let us know how to fix it for
59 your host. */
61 /* The maximum and minimum values for the integer type T. */
62 #define TYPE_MINIMUM(t) \
63 ((t) (! TYPE_SIGNED (t) \
64 ? (t) 0 \
65 : TYPE_SIGNED_MAGNITUDE (t) \
66 ? ~ (t) 0 \
67 : ~ TYPE_MAXIMUM (t)))
68 #define TYPE_MAXIMUM(t) \
69 ((t) (! TYPE_SIGNED (t) \
70 ? (t) -1 \
71 : ((((t) 1 << (sizeof (t) * CHAR_BIT - 2)) - 1) * 2 + 1)))
73 /* The maximum and minimum values for the type of the expression E,
74 after integer promotion. E should not have side effects. */
75 #define _GL_INT_MINIMUM(e) \
76 (_GL_INT_SIGNED (e) \
77 ? - _GL_INT_TWOS_COMPLEMENT (e) - _GL_SIGNED_INT_MAXIMUM (e) \
78 : _GL_INT_CONVERT (e, 0))
79 #define _GL_INT_MAXIMUM(e) \
80 (_GL_INT_SIGNED (e) \
81 ? _GL_SIGNED_INT_MAXIMUM (e) \
82 : _GL_INT_CONVERT (e, -1))
83 #define _GL_SIGNED_INT_MAXIMUM(e) \
84 (((_GL_INT_CONVERT (e, 1) << (sizeof ((e) + 0) * CHAR_BIT - 2)) - 1) * 2 + 1)
87 /* Return 1 if the __typeof__ keyword works. This could be done by
88 'configure', but for now it's easier to do it by hand. */
89 #if 2 <= __GNUC__ || 0x5110 <= __SUNPRO_C
90 # define _GL_HAVE___TYPEOF__ 1
91 #else
92 # define _GL_HAVE___TYPEOF__ 0
93 #endif
95 /* Return 1 if the integer type or expression T might be signed. Return 0
96 if it is definitely unsigned. This macro does not evaluate its argument,
97 and expands to an integer constant expression. */
98 #if _GL_HAVE___TYPEOF__
99 # define _GL_SIGNED_TYPE_OR_EXPR(t) TYPE_SIGNED (__typeof__ (t))
100 #else
101 # define _GL_SIGNED_TYPE_OR_EXPR(t) 1
102 #endif
104 /* Bound on length of the string representing an unsigned integer
105 value representable in B bits. log10 (2.0) < 146/485. The
106 smallest value of B where this bound is not tight is 2621. */
107 #define INT_BITS_STRLEN_BOUND(b) (((b) * 146 + 484) / 485)
109 /* Bound on length of the string representing an integer type or expression T.
110 Subtract 1 for the sign bit if T is signed, and then add 1 more for
111 a minus sign if needed.
113 Because _GL_SIGNED_TYPE_OR_EXPR sometimes returns 0 when its argument is
114 signed, this macro may overestimate the true bound by one byte when
115 applied to unsigned types of size 2, 4, 16, ... bytes. */
116 #define INT_STRLEN_BOUND(t) \
117 (INT_BITS_STRLEN_BOUND (sizeof (t) * CHAR_BIT \
118 - _GL_SIGNED_TYPE_OR_EXPR (t)) \
119 + _GL_SIGNED_TYPE_OR_EXPR (t))
121 /* Bound on buffer size needed to represent an integer type or expression T,
122 including the terminating null. */
123 #define INT_BUFSIZE_BOUND(t) (INT_STRLEN_BOUND (t) + 1)
126 /* Range overflow checks.
128 The INT_<op>_RANGE_OVERFLOW macros return 1 if the corresponding C
129 operators might not yield numerically correct answers due to
130 arithmetic overflow. They do not rely on undefined or
131 implementation-defined behavior. Their implementations are simple
132 and straightforward, but they are a bit harder to use than the
133 INT_<op>_OVERFLOW macros described below.
135 Example usage:
137 long int i = ...;
138 long int j = ...;
139 if (INT_MULTIPLY_RANGE_OVERFLOW (i, j, LONG_MIN, LONG_MAX))
140 printf ("multiply would overflow");
141 else
142 printf ("product is %ld", i * j);
144 Restrictions on *_RANGE_OVERFLOW macros:
146 These macros do not check for all possible numerical problems or
147 undefined or unspecified behavior: they do not check for division
148 by zero, for bad shift counts, or for shifting negative numbers.
150 These macros may evaluate their arguments zero or multiple times,
151 so the arguments should not have side effects. The arithmetic
152 arguments (including the MIN and MAX arguments) must be of the same
153 integer type after the usual arithmetic conversions, and the type
154 must have minimum value MIN and maximum MAX. Unsigned types should
155 use a zero MIN of the proper type.
157 These macros are tuned for constant MIN and MAX. For commutative
158 operations such as A + B, they are also tuned for constant B. */
160 /* Return 1 if A + B would overflow in [MIN,MAX] arithmetic.
161 See above for restrictions. */
162 #define INT_ADD_RANGE_OVERFLOW(a, b, min, max) \
163 ((b) < 0 \
164 ? (a) < (min) - (b) \
165 : (max) - (b) < (a))
167 /* Return 1 if A - B would overflow in [MIN,MAX] arithmetic.
168 See above for restrictions. */
169 #define INT_SUBTRACT_RANGE_OVERFLOW(a, b, min, max) \
170 ((b) < 0 \
171 ? (max) + (b) < (a) \
172 : (a) < (min) + (b))
174 /* Return 1 if - A would overflow in [MIN,MAX] arithmetic.
175 See above for restrictions. */
176 #define INT_NEGATE_RANGE_OVERFLOW(a, min, max) \
177 ((min) < 0 \
178 ? (a) < - (max) \
179 : 0 < (a))
181 /* Return 1 if A * B would overflow in [MIN,MAX] arithmetic.
182 See above for restrictions. */
183 #define INT_MULTIPLY_RANGE_OVERFLOW(a, b, min, max) \
184 ((b) < 0 \
185 ? ((a) < 0 \
186 ? (a) < (max) / (b) \
187 : (b) < -1 && (min) / (b) < (a)) \
188 : (0 < (b) \
189 && ((a) < 0 \
190 ? (a) < (min) / (b) \
191 : (max) / (b) < (a))))
193 /* Return 1 if A / B would overflow in [MIN,MAX] arithmetic.
194 See above for restrictions. Do not check for division by zero. */
195 #define INT_DIVIDE_RANGE_OVERFLOW(a, b, min, max) \
196 ((min) < 0 && (b) == -1 && (a) < - (max))
198 /* Return 1 if A % B would overflow in [MIN,MAX] arithmetic.
199 See above for restrictions. Do not check for division by zero.
200 Mathematically, % should never overflow, but on x86-like hosts
201 INT_MIN % -1 traps, and the C standard permits this, so treat this
202 as an overflow too. */
203 #define INT_REMAINDER_RANGE_OVERFLOW(a, b, min, max) \
204 INT_DIVIDE_RANGE_OVERFLOW (a, b, min, max)
206 /* Return 1 if A << B would overflow in [MIN,MAX] arithmetic.
207 See above for restrictions. Here, MIN and MAX are for A only, and B need
208 not be of the same type as the other arguments. The C standard says that
209 behavior is undefined for shifts unless 0 <= B < wordwidth, and that when
210 A is negative then A << B has undefined behavior and A >> B has
211 implementation-defined behavior, but do not check these other
212 restrictions. */
213 #define INT_LEFT_SHIFT_RANGE_OVERFLOW(a, b, min, max) \
214 ((a) < 0 \
215 ? (a) < (min) >> (b) \
216 : (max) >> (b) < (a))
219 /* The _GL*_OVERFLOW macros have the same restrictions as the
220 *_RANGE_OVERFLOW macros, except that they do not assume that operands
221 (e.g., A and B) have the same type as MIN and MAX. Instead, they assume
222 that the result (e.g., A + B) has that type. */
223 #define _GL_ADD_OVERFLOW(a, b, min, max) \
224 ((min) < 0 ? INT_ADD_RANGE_OVERFLOW (a, b, min, max) \
225 : (a) < 0 ? (b) <= (a) + (b) \
226 : (b) < 0 ? (a) <= (a) + (b) \
227 : (a) + (b) < (b))
228 #define _GL_SUBTRACT_OVERFLOW(a, b, min, max) \
229 ((min) < 0 ? INT_SUBTRACT_RANGE_OVERFLOW (a, b, min, max) \
230 : (a) < 0 ? 1 \
231 : (b) < 0 ? (a) - (b) <= (a) \
232 : (a) < (b))
233 #define _GL_MULTIPLY_OVERFLOW(a, b, min, max) \
234 (((min) == 0 && (((a) < 0 && 0 < (b)) || ((b) < 0 && 0 < (a)))) \
235 || INT_MULTIPLY_RANGE_OVERFLOW (a, b, min, max))
236 #define _GL_DIVIDE_OVERFLOW(a, b, min, max) \
237 ((min) < 0 ? (b) == _GL_INT_CONVERT (min, -1) && (a) < - (max) \
238 : (a) < 0 ? (b) <= (a) + (b) - 1 \
239 : (b) < 0 && (a) + (b) <= (a))
240 #define _GL_REMAINDER_OVERFLOW(a, b, min, max) \
241 ((min) < 0 ? (b) == _GL_INT_CONVERT (min, -1) && (a) < - (max) \
242 : (a) < 0 ? (a) % (b) != ((max) - (b) + 1) % (b) \
243 : (b) < 0 && ! _GL_UNSIGNED_NEG_MULTIPLE (a, b, max))
245 /* Return a nonzero value if A is a mathematical multiple of B, where
246 A is unsigned, B is negative, and MAX is the maximum value of A's
247 type. A's type must be the same as (A % B)'s type. Normally (A %
248 -B == 0) suffices, but things get tricky if -B would overflow. */
249 #define _GL_UNSIGNED_NEG_MULTIPLE(a, b, max) \
250 (((b) < -_GL_SIGNED_INT_MAXIMUM (b) \
251 ? (_GL_SIGNED_INT_MAXIMUM (b) == (max) \
252 ? (a) \
253 : (a) % (_GL_INT_CONVERT (a, _GL_SIGNED_INT_MAXIMUM (b)) + 1)) \
254 : (a) % - (b)) \
255 == 0)
258 /* Integer overflow checks.
260 The INT_<op>_OVERFLOW macros return 1 if the corresponding C operators
261 might not yield numerically correct answers due to arithmetic overflow.
262 They work correctly on all known practical hosts, and do not rely
263 on undefined behavior due to signed arithmetic overflow.
265 Example usage:
267 long int i = ...;
268 long int j = ...;
269 if (INT_MULTIPLY_OVERFLOW (i, j))
270 printf ("multiply would overflow");
271 else
272 printf ("product is %ld", i * j);
274 These macros do not check for all possible numerical problems or
275 undefined or unspecified behavior: they do not check for division
276 by zero, for bad shift counts, or for shifting negative numbers.
278 These macros may evaluate their arguments zero or multiple times, so the
279 arguments should not have side effects.
281 These macros are tuned for their last argument being a constant.
283 Return 1 if the integer expressions A * B, A - B, -A, A * B, A / B,
284 A % B, and A << B would overflow, respectively. */
286 #define INT_ADD_OVERFLOW(a, b) \
287 _GL_BINARY_OP_OVERFLOW (a, b, _GL_ADD_OVERFLOW)
288 #define INT_SUBTRACT_OVERFLOW(a, b) \
289 _GL_BINARY_OP_OVERFLOW (a, b, _GL_SUBTRACT_OVERFLOW)
290 #define INT_NEGATE_OVERFLOW(a) \
291 INT_NEGATE_RANGE_OVERFLOW (a, _GL_INT_MINIMUM (a), _GL_INT_MAXIMUM (a))
292 #define INT_MULTIPLY_OVERFLOW(a, b) \
293 _GL_BINARY_OP_OVERFLOW (a, b, _GL_MULTIPLY_OVERFLOW)
294 #define INT_DIVIDE_OVERFLOW(a, b) \
295 _GL_BINARY_OP_OVERFLOW (a, b, _GL_DIVIDE_OVERFLOW)
296 #define INT_REMAINDER_OVERFLOW(a, b) \
297 _GL_BINARY_OP_OVERFLOW (a, b, _GL_REMAINDER_OVERFLOW)
298 #define INT_LEFT_SHIFT_OVERFLOW(a, b) \
299 INT_LEFT_SHIFT_RANGE_OVERFLOW (a, b, \
300 _GL_INT_MINIMUM (a), _GL_INT_MAXIMUM (a))
302 /* Return 1 if the expression A <op> B would overflow,
303 where OP_RESULT_OVERFLOW (A, B, MIN, MAX) does the actual test,
304 assuming MIN and MAX are the minimum and maximum for the result type.
306 This macro assumes that A | B is a valid integer if both A and B are,
307 which is true of all known practical hosts. If this is a problem
308 for you, please let us know how to fix it for your host. */
309 #define _GL_BINARY_OP_OVERFLOW(a, b, op_result_overflow) \
310 op_result_overflow (a, b, \
311 _GL_INT_MINIMUM ((a) | (b)), \
312 _GL_INT_MAXIMUM ((a) | (b)))
314 #endif /* _GL_INTPROPS_H */