* net/tramp-adb.el (tramp-adb-handle-process-file): Do not raise
[emacs.git] / doc / lispref / numbers.texi
blob8fcd77c009aa2c842d6c8726879e609b711dd548
1 @c -*-texinfo-*-
2 @c This is part of the GNU Emacs Lisp Reference Manual.
3 @c Copyright (C) 1990-1995, 1998-1999, 2001-2014 Free Software
4 @c Foundation, Inc.
5 @c See the file elisp.texi for copying conditions.
6 @node Numbers
7 @chapter Numbers
8 @cindex integers
9 @cindex numbers
11   GNU Emacs supports two numeric data types: @dfn{integers} and
12 @dfn{floating-point numbers}.  Integers are whole numbers such as
13 @minus{}3, 0, 7, 13, and 511.  Floating-point numbers are numbers with
14 fractional parts, such as @minus{}4.5, 0.0, and 2.71828.  They can
15 also be expressed in exponential notation: @samp{1.5e2} is the same as
16 @samp{150.0}; here, @samp{e2} stands for ten to the second power, and
17 that is multiplied by 1.5.  Integer computations are exact, though
18 they may overflow.  Floating-point computations often involve rounding
19 errors, as the numbers have a fixed amount of precision.
21 @menu
22 * Integer Basics::            Representation and range of integers.
23 * Float Basics::              Representation and range of floating point.
24 * Predicates on Numbers::     Testing for numbers.
25 * Comparison of Numbers::     Equality and inequality predicates.
26 * Numeric Conversions::       Converting float to integer and vice versa.
27 * Arithmetic Operations::     How to add, subtract, multiply and divide.
28 * Rounding Operations::       Explicitly rounding floating-point numbers.
29 * Bitwise Operations::        Logical and, or, not, shifting.
30 * Math Functions::            Trig, exponential and logarithmic functions.
31 * Random Numbers::            Obtaining random integers, predictable or not.
32 @end menu
34 @node Integer Basics
35 @section Integer Basics
37   The range of values for an integer depends on the machine.  The
38 minimum range is @minus{}536,870,912 to 536,870,911 (30 bits; i.e.,
39 @ifnottex
40 @minus{}2**29
41 @end ifnottex
42 @tex
43 @math{-2^{29}}
44 @end tex
46 @ifnottex
47 2**29 @minus{} 1),
48 @end ifnottex
49 @tex
50 @math{2^{29}-1}),
51 @end tex
52 but many machines provide a wider range.  Many examples in this
53 chapter assume the minimum integer width of 30 bits.
54 @cindex overflow
56   The Lisp reader reads an integer as a sequence of digits with optional
57 initial sign and optional final period.  An integer that is out of the
58 Emacs range is treated as a floating-point number.
60 @example
61  1               ; @r{The integer 1.}
62  1.              ; @r{The integer 1.}
63 +1               ; @r{Also the integer 1.}
64 -1               ; @r{The integer @minus{}1.}
65  9000000000000000000
66                  ; @r{The floating-point number 9e18.}
67  0               ; @r{The integer 0.}
68 -0               ; @r{The integer 0.}
69 @end example
71 @cindex integers in specific radix
72 @cindex radix for reading an integer
73 @cindex base for reading an integer
74 @cindex hex numbers
75 @cindex octal numbers
76 @cindex reading numbers in hex, octal, and binary
77   The syntax for integers in bases other than 10 uses @samp{#}
78 followed by a letter that specifies the radix: @samp{b} for binary,
79 @samp{o} for octal, @samp{x} for hex, or @samp{@var{radix}r} to
80 specify radix @var{radix}.  Case is not significant for the letter
81 that specifies the radix.  Thus, @samp{#b@var{integer}} reads
82 @var{integer} in binary, and @samp{#@var{radix}r@var{integer}} reads
83 @var{integer} in radix @var{radix}.  Allowed values of @var{radix} run
84 from 2 to 36.  For example:
86 @example
87 #b101100 @result{} 44
88 #o54 @result{} 44
89 #x2c @result{} 44
90 #24r1k @result{} 44
91 @end example
93   To understand how various functions work on integers, especially the
94 bitwise operators (@pxref{Bitwise Operations}), it is often helpful to
95 view the numbers in their binary form.
97   In 30-bit binary, the decimal integer 5 looks like this:
99 @example
100 0000...000101 (30 bits total)
101 @end example
103 @noindent
104 (The @samp{...} stands for enough bits to fill out a 30-bit word; in
105 this case, @samp{...} stands for twenty 0 bits.  Later examples also
106 use the @samp{...} notation to make binary integers easier to read.)
108   The integer @minus{}1 looks like this:
110 @example
111 1111...111111 (30 bits total)
112 @end example
114 @noindent
115 @cindex two's complement
116 @minus{}1 is represented as 30 ones.  (This is called @dfn{two's
117 complement} notation.)
119   Subtracting 4 from @minus{}1 returns the negative integer @minus{}5.
120 In binary, the decimal integer 4 is 100.  Consequently,
121 @minus{}5 looks like this:
123 @example
124 1111...111011 (30 bits total)
125 @end example
127   In this implementation, the largest 30-bit binary integer is
128 536,870,911 in decimal.  In binary, it looks like this:
130 @example
131 0111...111111 (30 bits total)
132 @end example
134   Since the arithmetic functions do not check whether integers go
135 outside their range, when you add 1 to 536,870,911, the value is the
136 negative integer @minus{}536,870,912:
138 @example
139 (+ 1 536870911)
140      @result{} -536870912
141      @result{} 1000...000000 (30 bits total)
142 @end example
144   Many of the functions described in this chapter accept markers for
145 arguments in place of numbers.  (@xref{Markers}.)  Since the actual
146 arguments to such functions may be either numbers or markers, we often
147 give these arguments the name @var{number-or-marker}.  When the argument
148 value is a marker, its position value is used and its buffer is ignored.
150 @cindex largest Lisp integer
151 @cindex maximum Lisp integer
152 @defvar most-positive-fixnum
153 The value of this variable is the largest integer that Emacs Lisp can
154 handle.  Typical values are
155 @ifnottex
156 2**29 @minus{} 1
157 @end ifnottex
158 @tex
159 @math{2^{29}-1}
160 @end tex
161 on 32-bit and
162 @ifnottex
163 2**61 @minus{} 1
164 @end ifnottex
165 @tex
166 @math{2^{61}-1}
167 @end tex
168 on 64-bit platforms.
169 @end defvar
171 @cindex smallest Lisp integer
172 @cindex minimum Lisp integer
173 @defvar most-negative-fixnum
174 The value of this variable is the smallest integer that Emacs Lisp can
175 handle.  It is negative.  Typical values are
176 @ifnottex
177 @minus{}2**29
178 @end ifnottex
179 @tex
180 @math{-2^{29}}
181 @end tex
182 on 32-bit and
183 @ifnottex
184 @minus{}2**61
185 @end ifnottex
186 @tex
187 @math{-2^{61}}
188 @end tex
189 on 64-bit platforms.
190 @end defvar
192   In Emacs Lisp, text characters are represented by integers.  Any
193 integer between zero and the value of @code{(max-char)}, inclusive, is
194 considered to be valid as a character.  @xref{Character Codes}.
196 @node Float Basics
197 @section Floating-Point Basics
199 @cindex @acronym{IEEE} floating point
200   Floating-point numbers are useful for representing numbers that are
201 not integral.  The range of floating-point numbers is
202 the same as the range of the C data type @code{double} on the machine
203 you are using.  On all computers currently supported by Emacs, this is
204 double-precision @acronym{IEEE} floating point.
206   The read syntax for floating-point numbers requires either a decimal
207 point, an exponent, or both.  Optional signs (@samp{+} or @samp{-})
208 precede the number and its exponent.  For example, @samp{1500.0},
209 @samp{+15e2}, @samp{15.0e+2}, @samp{+1500000e-3}, and @samp{.15e4} are
210 five ways of writing a floating-point number whose value is 1500.
211 They are all equivalent.  Like Common Lisp, Emacs Lisp requires at
212 least one digit after any decimal point in a floating-point number;
213 @samp{1500.} is an integer, not a floating-point number.
215   Emacs Lisp treats @code{-0.0} as numerically equal to ordinary zero
216 with respect to @code{equal} and @code{=}.  This follows the
217 @acronym{IEEE} floating-point standard, which says @code{-0.0} and
218 @code{0.0} are numerically equal even though other operations can
219 distinguish them.
221 @cindex positive infinity
222 @cindex negative infinity
223 @cindex infinity
224 @cindex NaN
225   The @acronym{IEEE} floating-point standard supports positive
226 infinity and negative infinity as floating-point values.  It also
227 provides for a class of values called NaN or ``not-a-number'';
228 numerical functions return such values in cases where there is no
229 correct answer.  For example, @code{(/ 0.0 0.0)} returns a NaN@.
230 Although NaN values carry a sign, for practical purposes there is no other
231 significant difference between different NaN values in Emacs Lisp.
233 Here are read syntaxes for these special floating-point values:
235 @table @asis
236 @item infinity
237 @samp{1.0e+INF} and @samp{-1.0e+INF}
238 @item not-a-number
239 @samp{0.0e+NaN} and @samp{-0.0e+NaN}
240 @end table
242   The following functions are specialized for handling floating-point
243 numbers:
245 @defun isnan x
246 This predicate returns @code{t} if its floating-point argument is a NaN,
247 @code{nil} otherwise.
248 @end defun
250 @defun frexp x
251 This function returns a cons cell @code{(@var{s} . @var{e})},
252 where @var{s} and @var{e} are respectively the significand and
253 exponent of the floating-point number @var{x}.
255 If @var{x} is finite, then @var{s} is a floating-point number between 0.5
256 (inclusive) and 1.0 (exclusive), @var{e} is an integer, and
257 @ifnottex
258 @var{x} = @var{s} * 2**@var{e}.
259 @end ifnottex
260 @tex
261 @math{x = s 2^e}.
262 @end tex
263 If @var{x} is zero or infinity, then @var{s} is the same as @var{x}.
264 If @var{x} is a NaN, then @var{s} is also a NaN.
265 If @var{x} is zero, then @var{e} is 0.
266 @end defun
268 @defun ldexp sig &optional exp
269 This function returns a floating-point number corresponding to the
270 significand @var{sig} and exponent @var{exp}.
271 @end defun
273 @defun copysign x1 x2
274 This function copies the sign of @var{x2} to the value of @var{x1},
275 and returns the result.  @var{x1} and @var{x2} must be floating point.
276 @end defun
278 @defun logb x
279 This function returns the binary exponent of @var{x}.  More
280 precisely, the value is the logarithm base 2 of @math{|x|}, rounded
281 down to an integer.
283 @example
284 (logb 10)
285      @result{} 3
286 (logb 10.0e20)
287      @result{} 69
288 @end example
289 @end defun
291 @node Predicates on Numbers
292 @section Type Predicates for Numbers
293 @cindex predicates for numbers
295   The functions in this section test for numbers, or for a specific
296 type of number.  The functions @code{integerp} and @code{floatp} can
297 take any type of Lisp object as argument (they would not be of much
298 use otherwise), but the @code{zerop} predicate requires a number as
299 its argument.  See also @code{integer-or-marker-p} and
300 @code{number-or-marker-p}, in @ref{Predicates on Markers}.
302 @defun floatp object
303 This predicate tests whether its argument is floating point
304 and returns @code{t} if so, @code{nil} otherwise.
305 @end defun
307 @defun integerp object
308 This predicate tests whether its argument is an integer, and returns
309 @code{t} if so, @code{nil} otherwise.
310 @end defun
312 @defun numberp object
313 This predicate tests whether its argument is a number (either integer or
314 floating point), and returns @code{t} if so, @code{nil} otherwise.
315 @end defun
317 @defun natnump object
318 @cindex natural numbers
319 This predicate (whose name comes from the phrase ``natural number'')
320 tests to see whether its argument is a nonnegative integer, and
321 returns @code{t} if so, @code{nil} otherwise.  0 is considered
322 non-negative.
324 @findex wholenump
325 @code{wholenump} is a synonym for @code{natnump}.
326 @end defun
328 @defun zerop number
329 This predicate tests whether its argument is zero, and returns @code{t}
330 if so, @code{nil} otherwise.  The argument must be a number.
332 @code{(zerop x)} is equivalent to @code{(= x 0)}.
333 @end defun
335 @node Comparison of Numbers
336 @section Comparison of Numbers
337 @cindex number comparison
338 @cindex comparing numbers
340   To test numbers for numerical equality, you should normally use
341 @code{=}, not @code{eq}.  There can be many distinct floating-point
342 objects with the same numeric value.  If you use @code{eq} to
343 compare them, then you test whether two values are the same
344 @emph{object}.  By contrast, @code{=} compares only the numeric values
345 of the objects.
347   In Emacs Lisp, each integer is a unique Lisp object.
348 Therefore, @code{eq} is equivalent to @code{=} where integers are
349 concerned.  It is sometimes convenient to use @code{eq} for comparing
350 an unknown value with an integer, because @code{eq} does not report an
351 error if the unknown value is not a number---it accepts arguments of
352 any type.  By contrast, @code{=} signals an error if the arguments are
353 not numbers or markers.  However, it is better programming practice to
354 use @code{=} if you can, even for comparing integers.
356   Sometimes it is useful to compare numbers with @code{equal}, which
357 treats two numbers as equal if they have the same data type (both
358 integers, or both floating point) and the same value.  By contrast,
359 @code{=} can treat an integer and a floating-point number as equal.
360 @xref{Equality Predicates}.
362   There is another wrinkle: because floating-point arithmetic is not
363 exact, it is often a bad idea to check for equality of floating-point
364 values.  Usually it is better to test for approximate equality.
365 Here's a function to do this:
367 @example
368 (defvar fuzz-factor 1.0e-6)
369 (defun approx-equal (x y)
370   (or (= x y)
371       (< (/ (abs (- x y))
372             (max (abs x) (abs y)))
373          fuzz-factor)))
374 @end example
376 @cindex CL note---integers vrs @code{eq}
377 @quotation
378 @b{Common Lisp note:} Comparing numbers in Common Lisp always requires
379 @code{=} because Common Lisp implements multi-word integers, and two
380 distinct integer objects can have the same numeric value.  Emacs Lisp
381 can have just one integer object for any given value because it has a
382 limited range of integers.
383 @end quotation
385 @defun = number-or-marker &rest number-or-markers
386 This function tests whether all its arguments are numerically equal,
387 and returns @code{t} if so, @code{nil} otherwise.
388 @end defun
390 @defun eql value1 value2
391 This function acts like @code{eq} except when both arguments are
392 numbers.  It compares numbers by type and numeric value, so that
393 @code{(eql 1.0 1)} returns @code{nil}, but @code{(eql 1.0 1.0)} and
394 @code{(eql 1 1)} both return @code{t}.
395 @end defun
397 @defun /= number-or-marker1 number-or-marker2
398 This function tests whether its arguments are numerically equal, and
399 returns @code{t} if they are not, and @code{nil} if they are.
400 @end defun
402 @defun <  number-or-marker &rest number-or-markers
403 This function tests whether each argument is strictly less than the
404 following argument.  It returns @code{t} if so, @code{nil} otherwise.
405 @end defun
407 @defun <= number-or-marker &rest number-or-markers
408 This function tests whether each argument is less than or equal to
409 the following argument.  It returns @code{t} if so, @code{nil} otherwise.
410 @end defun
412 @defun > number-or-marker &rest number-or-markers
413 This function tests whether each argument is strictly greater than
414 the following argument.  It returns @code{t} if so, @code{nil} otherwise.
415 @end defun
417 @defun >= number-or-marker &rest number-or-markers
418 This function tests whether each argument is greater than or equal to
419 the following argument.  It returns @code{t} if so, @code{nil} otherwise.
420 @end defun
422 @defun max number-or-marker &rest numbers-or-markers
423 This function returns the largest of its arguments.
424 If any of the arguments is floating point, the value is returned
425 as floating point, even if it was given as an integer.
427 @example
428 (max 20)
429      @result{} 20
430 (max 1 2.5)
431      @result{} 2.5
432 (max 1 3 2.5)
433      @result{} 3.0
434 @end example
435 @end defun
437 @defun min number-or-marker &rest numbers-or-markers
438 This function returns the smallest of its arguments.
439 If any of the arguments is floating point, the value is returned
440 as floating point, even if it was given as an integer.
442 @example
443 (min -4 1)
444      @result{} -4
445 @end example
446 @end defun
448 @defun abs number
449 This function returns the absolute value of @var{number}.
450 @end defun
452 @node Numeric Conversions
453 @section Numeric Conversions
454 @cindex rounding in conversions
455 @cindex number conversions
456 @cindex converting numbers
458 To convert an integer to floating point, use the function @code{float}.
460 @defun float number
461 This returns @var{number} converted to floating point.
462 If @var{number} is already floating point, @code{float} returns
463 it unchanged.
464 @end defun
466   There are four functions to convert floating-point numbers to
467 integers; they differ in how they round.  All accept an argument
468 @var{number} and an optional argument @var{divisor}.  Both arguments
469 may be integers or floating-point numbers.  @var{divisor} may also be
470 @code{nil}.  If @var{divisor} is @code{nil} or omitted, these
471 functions convert @var{number} to an integer, or return it unchanged
472 if it already is an integer.  If @var{divisor} is non-@code{nil}, they
473 divide @var{number} by @var{divisor} and convert the result to an
474 integer.  If @var{divisor} is zero (whether integer or
475 floating point), Emacs signals an @code{arith-error} error.
477 @defun truncate number &optional divisor
478 This returns @var{number}, converted to an integer by rounding towards
479 zero.
481 @example
482 (truncate 1.2)
483      @result{} 1
484 (truncate 1.7)
485      @result{} 1
486 (truncate -1.2)
487      @result{} -1
488 (truncate -1.7)
489      @result{} -1
490 @end example
491 @end defun
493 @defun floor number &optional divisor
494 This returns @var{number}, converted to an integer by rounding downward
495 (towards negative infinity).
497 If @var{divisor} is specified, this uses the kind of division
498 operation that corresponds to @code{mod}, rounding downward.
500 @example
501 (floor 1.2)
502      @result{} 1
503 (floor 1.7)
504      @result{} 1
505 (floor -1.2)
506      @result{} -2
507 (floor -1.7)
508      @result{} -2
509 (floor 5.99 3)
510      @result{} 1
511 @end example
512 @end defun
514 @defun ceiling number &optional divisor
515 This returns @var{number}, converted to an integer by rounding upward
516 (towards positive infinity).
518 @example
519 (ceiling 1.2)
520      @result{} 2
521 (ceiling 1.7)
522      @result{} 2
523 (ceiling -1.2)
524      @result{} -1
525 (ceiling -1.7)
526      @result{} -1
527 @end example
528 @end defun
530 @defun round number &optional divisor
531 This returns @var{number}, converted to an integer by rounding towards the
532 nearest integer.  Rounding a value equidistant between two integers
533 returns the even integer.
535 @example
536 (round 1.2)
537      @result{} 1
538 (round 1.7)
539      @result{} 2
540 (round -1.2)
541      @result{} -1
542 (round -1.7)
543      @result{} -2
544 @end example
545 @end defun
547 @node Arithmetic Operations
548 @section Arithmetic Operations
549 @cindex arithmetic operations
551   Emacs Lisp provides the traditional four arithmetic operations
552 (addition, subtraction, multiplication, and division), as well as
553 remainder and modulus functions, and functions to add or subtract 1.
554 Except for @code{%}, each of these functions accepts both integer and
555 floating-point arguments, and returns a floating-point number if any
556 argument is floating point.
558   Emacs Lisp arithmetic functions do not check for integer overflow.
559 Thus @code{(1+ 536870911)} may evaluate to
560 @minus{}536870912, depending on your hardware.
562 @defun 1+ number-or-marker
563 This function returns @var{number-or-marker} plus 1.
564 For example,
566 @example
567 (setq foo 4)
568      @result{} 4
569 (1+ foo)
570      @result{} 5
571 @end example
573 This function is not analogous to the C operator @code{++}---it does not
574 increment a variable.  It just computes a sum.  Thus, if we continue,
576 @example
578      @result{} 4
579 @end example
581 If you want to increment the variable, you must use @code{setq},
582 like this:
584 @example
585 (setq foo (1+ foo))
586      @result{} 5
587 @end example
588 @end defun
590 @defun 1- number-or-marker
591 This function returns @var{number-or-marker} minus 1.
592 @end defun
594 @defun + &rest numbers-or-markers
595 This function adds its arguments together.  When given no arguments,
596 @code{+} returns 0.
598 @example
600      @result{} 0
601 (+ 1)
602      @result{} 1
603 (+ 1 2 3 4)
604      @result{} 10
605 @end example
606 @end defun
608 @defun - &optional number-or-marker &rest more-numbers-or-markers
609 The @code{-} function serves two purposes: negation and subtraction.
610 When @code{-} has a single argument, the value is the negative of the
611 argument.  When there are multiple arguments, @code{-} subtracts each of
612 the @var{more-numbers-or-markers} from @var{number-or-marker},
613 cumulatively.  If there are no arguments, the result is 0.
615 @example
616 (- 10 1 2 3 4)
617      @result{} 0
618 (- 10)
619      @result{} -10
621      @result{} 0
622 @end example
623 @end defun
625 @defun * &rest numbers-or-markers
626 This function multiplies its arguments together, and returns the
627 product.  When given no arguments, @code{*} returns 1.
629 @example
631      @result{} 1
632 (* 1)
633      @result{} 1
634 (* 1 2 3 4)
635      @result{} 24
636 @end example
637 @end defun
639 @defun / dividend divisor &rest divisors
640 This function divides @var{dividend} by @var{divisor} and returns the
641 quotient.  If there are additional arguments @var{divisors}, then it
642 divides @var{dividend} by each divisor in turn.  Each argument may be a
643 number or a marker.
645 If all the arguments are integers, the result is an integer, obtained
646 by rounding the quotient towards zero after each division.
648 @example
649 @group
650 (/ 6 2)
651      @result{} 3
652 @end group
653 @group
654 (/ 5 2)
655      @result{} 2
656 @end group
657 @group
658 (/ 5.0 2)
659      @result{} 2.5
660 @end group
661 @group
662 (/ 5 2.0)
663      @result{} 2.5
664 @end group
665 @group
666 (/ 5.0 2.0)
667      @result{} 2.5
668 @end group
669 @group
670 (/ 25 3 2)
671      @result{} 4
672 @end group
673 @group
674 (/ -17 6)
675      @result{} -2
676 @end group
677 @end example
679 @cindex @code{arith-error} in division
680 If you divide an integer by the integer 0, Emacs signals an
681 @code{arith-error} error (@pxref{Errors}).  Floating-point division of
682 a nonzero number by zero yields either positive or negative infinity
683 (@pxref{Float Basics}).
684 @end defun
686 @defun % dividend divisor
687 @cindex remainder
688 This function returns the integer remainder after division of @var{dividend}
689 by @var{divisor}.  The arguments must be integers or markers.
691 For any two integers @var{dividend} and @var{divisor},
693 @example
694 @group
695 (+ (% @var{dividend} @var{divisor})
696    (* (/ @var{dividend} @var{divisor}) @var{divisor}))
697 @end group
698 @end example
700 @noindent
701 always equals @var{dividend} if @var{divisor} is nonzero.
703 @example
704 (% 9 4)
705      @result{} 1
706 (% -9 4)
707      @result{} -1
708 (% 9 -4)
709      @result{} 1
710 (% -9 -4)
711      @result{} -1
712 @end example
713 @end defun
715 @defun mod dividend divisor
716 @cindex modulus
717 This function returns the value of @var{dividend} modulo @var{divisor};
718 in other words, the remainder after division of @var{dividend}
719 by @var{divisor}, but with the same sign as @var{divisor}.
720 The arguments must be numbers or markers.
722 Unlike @code{%}, @code{mod} permits floating-point arguments; it
723 rounds the quotient downward (towards minus infinity) to an integer,
724 and uses that quotient to compute the remainder.
726 If @var{divisor} is zero, @code{mod} signals an @code{arith-error}
727 error if both arguments are integers, and returns a NaN otherwise.
729 @example
730 @group
731 (mod 9 4)
732      @result{} 1
733 @end group
734 @group
735 (mod -9 4)
736      @result{} 3
737 @end group
738 @group
739 (mod 9 -4)
740      @result{} -3
741 @end group
742 @group
743 (mod -9 -4)
744      @result{} -1
745 @end group
746 @group
747 (mod 5.5 2.5)
748      @result{} .5
749 @end group
750 @end example
752 For any two numbers @var{dividend} and @var{divisor},
754 @example
755 @group
756 (+ (mod @var{dividend} @var{divisor})
757    (* (floor @var{dividend} @var{divisor}) @var{divisor}))
758 @end group
759 @end example
761 @noindent
762 always equals @var{dividend}, subject to rounding error if either
763 argument is floating point and to an @code{arith-error} if @var{dividend} is an
764 integer and @var{divisor} is 0.  For @code{floor}, see @ref{Numeric
765 Conversions}.
766 @end defun
768 @node Rounding Operations
769 @section Rounding Operations
770 @cindex rounding without conversion
772 The functions @code{ffloor}, @code{fceiling}, @code{fround}, and
773 @code{ftruncate} take a floating-point argument and return a floating-point
774 result whose value is a nearby integer.  @code{ffloor} returns the
775 nearest integer below; @code{fceiling}, the nearest integer above;
776 @code{ftruncate}, the nearest integer in the direction towards zero;
777 @code{fround}, the nearest integer.
779 @defun ffloor float
780 This function rounds @var{float} to the next lower integral value, and
781 returns that value as a floating-point number.
782 @end defun
784 @defun fceiling float
785 This function rounds @var{float} to the next higher integral value, and
786 returns that value as a floating-point number.
787 @end defun
789 @defun ftruncate float
790 This function rounds @var{float} towards zero to an integral value, and
791 returns that value as a floating-point number.
792 @end defun
794 @defun fround float
795 This function rounds @var{float} to the nearest integral value,
796 and returns that value as a floating-point number.
797 Rounding a value equidistant between two integers returns the even integer.
798 @end defun
800 @node Bitwise Operations
801 @section Bitwise Operations on Integers
802 @cindex bitwise arithmetic
803 @cindex logical arithmetic
805   In a computer, an integer is represented as a binary number, a
806 sequence of @dfn{bits} (digits which are either zero or one).  A bitwise
807 operation acts on the individual bits of such a sequence.  For example,
808 @dfn{shifting} moves the whole sequence left or right one or more places,
809 reproducing the same pattern ``moved over''.
811   The bitwise operations in Emacs Lisp apply only to integers.
813 @defun lsh integer1 count
814 @cindex logical shift
815 @code{lsh}, which is an abbreviation for @dfn{logical shift}, shifts the
816 bits in @var{integer1} to the left @var{count} places, or to the right
817 if @var{count} is negative, bringing zeros into the vacated bits.  If
818 @var{count} is negative, @code{lsh} shifts zeros into the leftmost
819 (most-significant) bit, producing a positive result even if
820 @var{integer1} is negative.  Contrast this with @code{ash}, below.
822 Here are two examples of @code{lsh}, shifting a pattern of bits one
823 place to the left.  We show only the low-order eight bits of the binary
824 pattern; the rest are all zero.
826 @example
827 @group
828 (lsh 5 1)
829      @result{} 10
830 ;; @r{Decimal 5 becomes decimal 10.}
831 00000101 @result{} 00001010
833 (lsh 7 1)
834      @result{} 14
835 ;; @r{Decimal 7 becomes decimal 14.}
836 00000111 @result{} 00001110
837 @end group
838 @end example
840 @noindent
841 As the examples illustrate, shifting the pattern of bits one place to
842 the left produces a number that is twice the value of the previous
843 number.
845 Shifting a pattern of bits two places to the left produces results
846 like this (with 8-bit binary numbers):
848 @example
849 @group
850 (lsh 3 2)
851      @result{} 12
852 ;; @r{Decimal 3 becomes decimal 12.}
853 00000011 @result{} 00001100
854 @end group
855 @end example
857 On the other hand, shifting one place to the right looks like this:
859 @example
860 @group
861 (lsh 6 -1)
862      @result{} 3
863 ;; @r{Decimal 6 becomes decimal 3.}
864 00000110 @result{} 00000011
865 @end group
867 @group
868 (lsh 5 -1)
869      @result{} 2
870 ;; @r{Decimal 5 becomes decimal 2.}
871 00000101 @result{} 00000010
872 @end group
873 @end example
875 @noindent
876 As the example illustrates, shifting one place to the right divides the
877 value of a positive integer by two, rounding downward.
879 The function @code{lsh}, like all Emacs Lisp arithmetic functions, does
880 not check for overflow, so shifting left can discard significant bits
881 and change the sign of the number.  For example, left shifting
882 536,870,911 produces @minus{}2 in the 30-bit implementation:
884 @example
885 (lsh 536870911 1)          ; @r{left shift}
886      @result{} -2
887 @end example
889 In binary, the argument looks like this:
891 @example
892 @group
893 ;; @r{Decimal 536,870,911}
894 0111...111111 (30 bits total)
895 @end group
896 @end example
898 @noindent
899 which becomes the following when left shifted:
901 @example
902 @group
903 ;; @r{Decimal @minus{}2}
904 1111...111110 (30 bits total)
905 @end group
906 @end example
907 @end defun
909 @defun ash integer1 count
910 @cindex arithmetic shift
911 @code{ash} (@dfn{arithmetic shift}) shifts the bits in @var{integer1}
912 to the left @var{count} places, or to the right if @var{count}
913 is negative.
915 @code{ash} gives the same results as @code{lsh} except when
916 @var{integer1} and @var{count} are both negative.  In that case,
917 @code{ash} puts ones in the empty bit positions on the left, while
918 @code{lsh} puts zeros in those bit positions.
920 Thus, with @code{ash}, shifting the pattern of bits one place to the right
921 looks like this:
923 @example
924 @group
925 (ash -6 -1) @result{} -3
926 ;; @r{Decimal @minus{}6 becomes decimal @minus{}3.}
927 1111...111010 (30 bits total)
928      @result{}
929 1111...111101 (30 bits total)
930 @end group
931 @end example
933 In contrast, shifting the pattern of bits one place to the right with
934 @code{lsh} looks like this:
936 @example
937 @group
938 (lsh -6 -1) @result{} 536870909
939 ;; @r{Decimal @minus{}6 becomes decimal 536,870,909.}
940 1111...111010 (30 bits total)
941      @result{}
942 0111...111101 (30 bits total)
943 @end group
944 @end example
946 Here are other examples:
948 @c !!! Check if lined up in smallbook format!  XDVI shows problem
949 @c     with smallbook but not with regular book! --rjc 16mar92
950 @smallexample
951 @group
952                    ;  @r{       30-bit binary values}
954 (lsh 5 2)          ;   5  =  @r{0000...000101}
955      @result{} 20         ;      =  @r{0000...010100}
956 @end group
957 @group
958 (ash 5 2)
959      @result{} 20
960 (lsh -5 2)         ;  -5  =  @r{1111...111011}
961      @result{} -20        ;      =  @r{1111...101100}
962 (ash -5 2)
963      @result{} -20
964 @end group
965 @group
966 (lsh 5 -2)         ;   5  =  @r{0000...000101}
967      @result{} 1          ;      =  @r{0000...000001}
968 @end group
969 @group
970 (ash 5 -2)
971      @result{} 1
972 @end group
973 @group
974 (lsh -5 -2)        ;  -5  =  @r{1111...111011}
975      @result{} 268435454
976                    ;      =  @r{0011...111110}
977 @end group
978 @group
979 (ash -5 -2)        ;  -5  =  @r{1111...111011}
980      @result{} -2         ;      =  @r{1111...111110}
981 @end group
982 @end smallexample
983 @end defun
985 @defun logand &rest ints-or-markers
986 This function returns the ``logical and'' of the arguments: the
987 @var{n}th bit is set in the result if, and only if, the @var{n}th bit is
988 set in all the arguments.  (``Set'' means that the value of the bit is 1
989 rather than 0.)
991 For example, using 4-bit binary numbers, the ``logical and'' of 13 and
992 12 is 12: 1101 combined with 1100 produces 1100.
993 In both the binary numbers, the leftmost two bits are set (i.e., they
994 are 1's), so the leftmost two bits of the returned value are set.
995 However, for the rightmost two bits, each is zero in at least one of
996 the arguments, so the rightmost two bits of the returned value are 0's.
998 @noindent
999 Therefore,
1001 @example
1002 @group
1003 (logand 13 12)
1004      @result{} 12
1005 @end group
1006 @end example
1008 If @code{logand} is not passed any argument, it returns a value of
1009 @minus{}1.  This number is an identity element for @code{logand}
1010 because its binary representation consists entirely of ones.  If
1011 @code{logand} is passed just one argument, it returns that argument.
1013 @smallexample
1014 @group
1015                    ; @r{       30-bit binary values}
1017 (logand 14 13)     ; 14  =  @r{0000...001110}
1018                    ; 13  =  @r{0000...001101}
1019      @result{} 12         ; 12  =  @r{0000...001100}
1020 @end group
1022 @group
1023 (logand 14 13 4)   ; 14  =  @r{0000...001110}
1024                    ; 13  =  @r{0000...001101}
1025                    ;  4  =  @r{0000...000100}
1026      @result{} 4          ;  4  =  @r{0000...000100}
1027 @end group
1029 @group
1030 (logand)
1031      @result{} -1         ; -1  =  @r{1111...111111}
1032 @end group
1033 @end smallexample
1034 @end defun
1036 @defun logior &rest ints-or-markers
1037 This function returns the ``inclusive or'' of its arguments: the @var{n}th bit
1038 is set in the result if, and only if, the @var{n}th bit is set in at least
1039 one of the arguments.  If there are no arguments, the result is zero,
1040 which is an identity element for this operation.  If @code{logior} is
1041 passed just one argument, it returns that argument.
1043 @smallexample
1044 @group
1045                    ; @r{       30-bit binary values}
1047 (logior 12 5)      ; 12  =  @r{0000...001100}
1048                    ;  5  =  @r{0000...000101}
1049      @result{} 13         ; 13  =  @r{0000...001101}
1050 @end group
1052 @group
1053 (logior 12 5 7)    ; 12  =  @r{0000...001100}
1054                    ;  5  =  @r{0000...000101}
1055                    ;  7  =  @r{0000...000111}
1056      @result{} 15         ; 15  =  @r{0000...001111}
1057 @end group
1058 @end smallexample
1059 @end defun
1061 @defun logxor &rest ints-or-markers
1062 This function returns the ``exclusive or'' of its arguments: the
1063 @var{n}th bit is set in the result if, and only if, the @var{n}th bit is
1064 set in an odd number of the arguments.  If there are no arguments, the
1065 result is 0, which is an identity element for this operation.  If
1066 @code{logxor} is passed just one argument, it returns that argument.
1068 @smallexample
1069 @group
1070                    ; @r{       30-bit binary values}
1072 (logxor 12 5)      ; 12  =  @r{0000...001100}
1073                    ;  5  =  @r{0000...000101}
1074      @result{} 9          ;  9  =  @r{0000...001001}
1075 @end group
1077 @group
1078 (logxor 12 5 7)    ; 12  =  @r{0000...001100}
1079                    ;  5  =  @r{0000...000101}
1080                    ;  7  =  @r{0000...000111}
1081      @result{} 14         ; 14  =  @r{0000...001110}
1082 @end group
1083 @end smallexample
1084 @end defun
1086 @defun lognot integer
1087 This function returns the logical complement of its argument: the @var{n}th
1088 bit is one in the result if, and only if, the @var{n}th bit is zero in
1089 @var{integer}, and vice-versa.
1091 @example
1092 (lognot 5)
1093      @result{} -6
1094 ;;  5  =  @r{0000...000101} (30 bits total)
1095 ;; @r{becomes}
1096 ;; -6  =  @r{1111...111010} (30 bits total)
1097 @end example
1098 @end defun
1100 @node Math Functions
1101 @section Standard Mathematical Functions
1102 @cindex transcendental functions
1103 @cindex mathematical functions
1104 @cindex floating-point functions
1106   These mathematical functions allow integers as well as floating-point
1107 numbers as arguments.
1109 @defun sin arg
1110 @defunx cos arg
1111 @defunx tan arg
1112 These are the basic trigonometric functions, with argument @var{arg}
1113 measured in radians.
1114 @end defun
1116 @defun asin arg
1117 The value of @code{(asin @var{arg})} is a number between
1118 @ifnottex
1119 @minus{}pi/2
1120 @end ifnottex
1121 @tex
1122 @math{-\pi/2}
1123 @end tex
1125 @ifnottex
1126 pi/2
1127 @end ifnottex
1128 @tex
1129 @math{\pi/2}
1130 @end tex
1131 (inclusive) whose sine is @var{arg}.  If @var{arg} is out of range
1132 (outside [@minus{}1, 1]), @code{asin} returns a NaN.
1133 @end defun
1135 @defun acos arg
1136 The value of @code{(acos @var{arg})} is a number between 0 and
1137 @ifnottex
1139 @end ifnottex
1140 @tex
1141 @math{\pi}
1142 @end tex
1143 (inclusive) whose cosine is @var{arg}.  If @var{arg} is out of range
1144 (outside [@minus{}1, 1]), @code{acos} returns a NaN.
1145 @end defun
1147 @defun atan y &optional x
1148 The value of @code{(atan @var{y})} is a number between
1149 @ifnottex
1150 @minus{}pi/2
1151 @end ifnottex
1152 @tex
1153 @math{-\pi/2}
1154 @end tex
1156 @ifnottex
1157 pi/2
1158 @end ifnottex
1159 @tex
1160 @math{\pi/2}
1161 @end tex
1162 (exclusive) whose tangent is @var{y}.  If the optional second
1163 argument @var{x} is given, the value of @code{(atan y x)} is the
1164 angle in radians between the vector @code{[@var{x}, @var{y}]} and the
1165 @code{X} axis.
1166 @end defun
1168 @defun exp arg
1169 This is the exponential function; it returns @math{e} to the power
1170 @var{arg}.
1171 @end defun
1173 @defun log arg &optional base
1174 This function returns the logarithm of @var{arg}, with base
1175 @var{base}.  If you don't specify @var{base}, the natural base
1176 @math{e} is used.  If @var{arg} or @var{base} is negative, @code{log}
1177 returns a NaN.
1178 @end defun
1180 @defun expt x y
1181 This function returns @var{x} raised to power @var{y}.  If both
1182 arguments are integers and @var{y} is positive, the result is an
1183 integer; in this case, overflow causes truncation, so watch out.
1184 If @var{x} is a finite negative number and @var{y} is a finite
1185 non-integer, @code{expt} returns a NaN.
1186 @end defun
1188 @defun sqrt arg
1189 This returns the square root of @var{arg}.  If @var{arg} is finite
1190 and less than zero, @code{sqrt} returns a NaN.
1191 @end defun
1193 In addition, Emacs defines the following common mathematical
1194 constants:
1196 @defvar float-e
1197 The mathematical constant @math{e} (2.71828@dots{}).
1198 @end defvar
1200 @defvar float-pi
1201 The mathematical constant @math{pi} (3.14159@dots{}).
1202 @end defvar
1204 @node Random Numbers
1205 @section Random Numbers
1206 @cindex random numbers
1208   A deterministic computer program cannot generate true random
1209 numbers.  For most purposes, @dfn{pseudo-random numbers} suffice.  A
1210 series of pseudo-random numbers is generated in a deterministic
1211 fashion.  The numbers are not truly random, but they have certain
1212 properties that mimic a random series.  For example, all possible
1213 values occur equally often in a pseudo-random series.
1215   Pseudo-random numbers are generated from a ``seed''.  Starting from
1216 any given seed, the @code{random} function always generates the same
1217 sequence of numbers.  By default, Emacs initializes the random seed at
1218 startup, in such a way that the sequence of values of @code{random}
1219 (with overwhelming likelihood) differs in each Emacs run.
1221   Sometimes you want the random number sequence to be repeatable.  For
1222 example, when debugging a program whose behavior depends on the random
1223 number sequence, it is helpful to get the same behavior in each
1224 program run.  To make the sequence repeat, execute @code{(random "")}.
1225 This sets the seed to a constant value for your particular Emacs
1226 executable (though it may differ for other Emacs builds).  You can use
1227 other strings to choose various seed values.
1229 @defun random &optional limit
1230 This function returns a pseudo-random integer.  Repeated calls return a
1231 series of pseudo-random integers.
1233 If @var{limit} is a positive integer, the value is chosen to be
1234 nonnegative and less than @var{limit}.  Otherwise, the value might be
1235 any integer representable in Lisp, i.e., an integer between
1236 @code{most-negative-fixnum} and @code{most-positive-fixnum}
1237 (@pxref{Integer Basics}).
1239 If @var{limit} is @code{t}, it means to choose a new seed as if Emacs
1240 were restarting.
1242 If @var{limit} is a string, it means to choose a new seed based on the
1243 string's contents.
1245 @end defun