* lisp/emulation/cua-base.el (cua-selection-mode): Make it toggle again.
[emacs.git] / src / alloc.c
blob412527b41a0a0910e361406a32407b6892b26ba2
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2011
3 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20 #include <config.h>
21 #include <stdio.h>
22 #include <limits.h> /* For CHAR_BIT. */
23 #include <setjmp.h>
25 #ifdef ALLOC_DEBUG
26 #undef INLINE
27 #endif
29 #include <signal.h>
31 #ifdef HAVE_GTK_AND_PTHREAD
32 #include <pthread.h>
33 #endif
35 /* This file is part of the core Lisp implementation, and thus must
36 deal with the real data structures. If the Lisp implementation is
37 replaced, this file likely will not be used. */
39 #undef HIDE_LISP_IMPLEMENTATION
40 #include "lisp.h"
41 #include "process.h"
42 #include "intervals.h"
43 #include "puresize.h"
44 #include "buffer.h"
45 #include "window.h"
46 #include "keyboard.h"
47 #include "frame.h"
48 #include "blockinput.h"
49 #include "character.h"
50 #include "syssignal.h"
51 #include "termhooks.h" /* For struct terminal. */
52 #include <setjmp.h>
54 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
55 memory. Can do this only if using gmalloc.c. */
57 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
58 #undef GC_MALLOC_CHECK
59 #endif
61 #include <unistd.h>
62 #ifndef HAVE_UNISTD_H
63 extern POINTER_TYPE *sbrk ();
64 #endif
66 #include <fcntl.h>
68 #ifdef WINDOWSNT
69 #include "w32.h"
70 #endif
72 #ifdef DOUG_LEA_MALLOC
74 #include <malloc.h>
75 /* malloc.h #defines this as size_t, at least in glibc2. */
76 #ifndef __malloc_size_t
77 #define __malloc_size_t int
78 #endif
80 /* Specify maximum number of areas to mmap. It would be nice to use a
81 value that explicitly means "no limit". */
83 #define MMAP_MAX_AREAS 100000000
85 #else /* not DOUG_LEA_MALLOC */
87 /* The following come from gmalloc.c. */
89 #define __malloc_size_t size_t
90 extern __malloc_size_t _bytes_used;
91 extern __malloc_size_t __malloc_extra_blocks;
93 #endif /* not DOUG_LEA_MALLOC */
95 #if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
96 #ifdef HAVE_GTK_AND_PTHREAD
98 /* When GTK uses the file chooser dialog, different backends can be loaded
99 dynamically. One such a backend is the Gnome VFS backend that gets loaded
100 if you run Gnome. That backend creates several threads and also allocates
101 memory with malloc.
103 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
104 functions below are called from malloc, there is a chance that one
105 of these threads preempts the Emacs main thread and the hook variables
106 end up in an inconsistent state. So we have a mutex to prevent that (note
107 that the backend handles concurrent access to malloc within its own threads
108 but Emacs code running in the main thread is not included in that control).
110 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
111 happens in one of the backend threads we will have two threads that tries
112 to run Emacs code at once, and the code is not prepared for that.
113 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
115 static pthread_mutex_t alloc_mutex;
117 #define BLOCK_INPUT_ALLOC \
118 do \
120 if (pthread_equal (pthread_self (), main_thread)) \
121 BLOCK_INPUT; \
122 pthread_mutex_lock (&alloc_mutex); \
124 while (0)
125 #define UNBLOCK_INPUT_ALLOC \
126 do \
128 pthread_mutex_unlock (&alloc_mutex); \
129 if (pthread_equal (pthread_self (), main_thread)) \
130 UNBLOCK_INPUT; \
132 while (0)
134 #else /* ! defined HAVE_GTK_AND_PTHREAD */
136 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
137 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
139 #endif /* ! defined HAVE_GTK_AND_PTHREAD */
140 #endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
142 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
143 to a struct Lisp_String. */
145 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
146 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
147 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
149 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
150 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
151 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
153 /* Value is the number of bytes of S, a pointer to a struct Lisp_String.
154 Be careful during GC, because S->size contains the mark bit for
155 strings. */
157 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
159 /* Global variables. */
160 struct emacs_globals globals;
162 /* Number of bytes of consing done since the last gc. */
164 int consing_since_gc;
166 /* Similar minimum, computed from Vgc_cons_percentage. */
168 EMACS_INT gc_relative_threshold;
170 /* Minimum number of bytes of consing since GC before next GC,
171 when memory is full. */
173 EMACS_INT memory_full_cons_threshold;
175 /* Nonzero during GC. */
177 int gc_in_progress;
179 /* Nonzero means abort if try to GC.
180 This is for code which is written on the assumption that
181 no GC will happen, so as to verify that assumption. */
183 int abort_on_gc;
185 /* Number of live and free conses etc. */
187 static int total_conses, total_markers, total_symbols, total_vector_size;
188 static int total_free_conses, total_free_markers, total_free_symbols;
189 static int total_free_floats, total_floats;
191 /* Points to memory space allocated as "spare", to be freed if we run
192 out of memory. We keep one large block, four cons-blocks, and
193 two string blocks. */
195 static char *spare_memory[7];
197 #ifndef SYSTEM_MALLOC
198 /* Amount of spare memory to keep in large reserve block. */
200 #define SPARE_MEMORY (1 << 14)
201 #endif
203 /* Number of extra blocks malloc should get when it needs more core. */
205 static int malloc_hysteresis;
207 /* Initialize it to a nonzero value to force it into data space
208 (rather than bss space). That way unexec will remap it into text
209 space (pure), on some systems. We have not implemented the
210 remapping on more recent systems because this is less important
211 nowadays than in the days of small memories and timesharing. */
213 #ifndef VIRT_ADDR_VARIES
214 static
215 #endif
216 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
217 #define PUREBEG (char *) pure
219 /* Pointer to the pure area, and its size. */
221 static char *purebeg;
222 static size_t pure_size;
224 /* Number of bytes of pure storage used before pure storage overflowed.
225 If this is non-zero, this implies that an overflow occurred. */
227 static size_t pure_bytes_used_before_overflow;
229 /* Value is non-zero if P points into pure space. */
231 #define PURE_POINTER_P(P) \
232 (((PNTR_COMPARISON_TYPE) (P) \
233 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
234 && ((PNTR_COMPARISON_TYPE) (P) \
235 >= (PNTR_COMPARISON_TYPE) purebeg))
237 /* Index in pure at which next pure Lisp object will be allocated.. */
239 static EMACS_INT pure_bytes_used_lisp;
241 /* Number of bytes allocated for non-Lisp objects in pure storage. */
243 static EMACS_INT pure_bytes_used_non_lisp;
245 /* If nonzero, this is a warning delivered by malloc and not yet
246 displayed. */
248 const char *pending_malloc_warning;
250 /* Maximum amount of C stack to save when a GC happens. */
252 #ifndef MAX_SAVE_STACK
253 #define MAX_SAVE_STACK 16000
254 #endif
256 /* Buffer in which we save a copy of the C stack at each GC. */
258 #if MAX_SAVE_STACK > 0
259 static char *stack_copy;
260 static size_t stack_copy_size;
261 #endif
263 /* Non-zero means ignore malloc warnings. Set during initialization.
264 Currently not used. */
266 static int ignore_warnings;
268 static Lisp_Object Qgc_cons_threshold;
269 Lisp_Object Qchar_table_extra_slots;
271 /* Hook run after GC has finished. */
273 static Lisp_Object Qpost_gc_hook;
275 static void mark_buffer (Lisp_Object);
276 static void mark_terminals (void);
277 static void gc_sweep (void);
278 static void mark_glyph_matrix (struct glyph_matrix *);
279 static void mark_face_cache (struct face_cache *);
281 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
282 static void refill_memory_reserve (void);
283 #endif
284 static struct Lisp_String *allocate_string (void);
285 static void compact_small_strings (void);
286 static void free_large_strings (void);
287 static void sweep_strings (void);
288 static void free_misc (Lisp_Object);
290 /* When scanning the C stack for live Lisp objects, Emacs keeps track
291 of what memory allocated via lisp_malloc is intended for what
292 purpose. This enumeration specifies the type of memory. */
294 enum mem_type
296 MEM_TYPE_NON_LISP,
297 MEM_TYPE_BUFFER,
298 MEM_TYPE_CONS,
299 MEM_TYPE_STRING,
300 MEM_TYPE_MISC,
301 MEM_TYPE_SYMBOL,
302 MEM_TYPE_FLOAT,
303 /* We used to keep separate mem_types for subtypes of vectors such as
304 process, hash_table, frame, terminal, and window, but we never made
305 use of the distinction, so it only caused source-code complexity
306 and runtime slowdown. Minor but pointless. */
307 MEM_TYPE_VECTORLIKE
310 static POINTER_TYPE *lisp_align_malloc (size_t, enum mem_type);
311 static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
314 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
316 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
317 #include <stdio.h> /* For fprintf. */
318 #endif
320 /* A unique object in pure space used to make some Lisp objects
321 on free lists recognizable in O(1). */
323 static Lisp_Object Vdead;
325 #ifdef GC_MALLOC_CHECK
327 enum mem_type allocated_mem_type;
328 static int dont_register_blocks;
330 #endif /* GC_MALLOC_CHECK */
332 /* A node in the red-black tree describing allocated memory containing
333 Lisp data. Each such block is recorded with its start and end
334 address when it is allocated, and removed from the tree when it
335 is freed.
337 A red-black tree is a balanced binary tree with the following
338 properties:
340 1. Every node is either red or black.
341 2. Every leaf is black.
342 3. If a node is red, then both of its children are black.
343 4. Every simple path from a node to a descendant leaf contains
344 the same number of black nodes.
345 5. The root is always black.
347 When nodes are inserted into the tree, or deleted from the tree,
348 the tree is "fixed" so that these properties are always true.
350 A red-black tree with N internal nodes has height at most 2
351 log(N+1). Searches, insertions and deletions are done in O(log N).
352 Please see a text book about data structures for a detailed
353 description of red-black trees. Any book worth its salt should
354 describe them. */
356 struct mem_node
358 /* Children of this node. These pointers are never NULL. When there
359 is no child, the value is MEM_NIL, which points to a dummy node. */
360 struct mem_node *left, *right;
362 /* The parent of this node. In the root node, this is NULL. */
363 struct mem_node *parent;
365 /* Start and end of allocated region. */
366 void *start, *end;
368 /* Node color. */
369 enum {MEM_BLACK, MEM_RED} color;
371 /* Memory type. */
372 enum mem_type type;
375 /* Base address of stack. Set in main. */
377 Lisp_Object *stack_base;
379 /* Root of the tree describing allocated Lisp memory. */
381 static struct mem_node *mem_root;
383 /* Lowest and highest known address in the heap. */
385 static void *min_heap_address, *max_heap_address;
387 /* Sentinel node of the tree. */
389 static struct mem_node mem_z;
390 #define MEM_NIL &mem_z
392 static struct Lisp_Vector *allocate_vectorlike (EMACS_INT);
393 static void lisp_free (POINTER_TYPE *);
394 static void mark_stack (void);
395 static int live_vector_p (struct mem_node *, void *);
396 static int live_buffer_p (struct mem_node *, void *);
397 static int live_string_p (struct mem_node *, void *);
398 static int live_cons_p (struct mem_node *, void *);
399 static int live_symbol_p (struct mem_node *, void *);
400 static int live_float_p (struct mem_node *, void *);
401 static int live_misc_p (struct mem_node *, void *);
402 static void mark_maybe_object (Lisp_Object);
403 static void mark_memory (void *, void *, int);
404 static void mem_init (void);
405 static struct mem_node *mem_insert (void *, void *, enum mem_type);
406 static void mem_insert_fixup (struct mem_node *);
407 static void mem_rotate_left (struct mem_node *);
408 static void mem_rotate_right (struct mem_node *);
409 static void mem_delete (struct mem_node *);
410 static void mem_delete_fixup (struct mem_node *);
411 static INLINE struct mem_node *mem_find (void *);
414 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
415 static void check_gcpros (void);
416 #endif
418 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
420 /* Recording what needs to be marked for gc. */
422 struct gcpro *gcprolist;
424 /* Addresses of staticpro'd variables. Initialize it to a nonzero
425 value; otherwise some compilers put it into BSS. */
427 #define NSTATICS 0x640
428 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
430 /* Index of next unused slot in staticvec. */
432 static int staticidx = 0;
434 static POINTER_TYPE *pure_alloc (size_t, int);
437 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
438 ALIGNMENT must be a power of 2. */
440 #define ALIGN(ptr, ALIGNMENT) \
441 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
442 & ~((ALIGNMENT) - 1)))
446 /************************************************************************
447 Malloc
448 ************************************************************************/
450 /* Function malloc calls this if it finds we are near exhausting storage. */
452 void
453 malloc_warning (const char *str)
455 pending_malloc_warning = str;
459 /* Display an already-pending malloc warning. */
461 void
462 display_malloc_warning (void)
464 call3 (intern ("display-warning"),
465 intern ("alloc"),
466 build_string (pending_malloc_warning),
467 intern ("emergency"));
468 pending_malloc_warning = 0;
471 /* Called if we can't allocate relocatable space for a buffer. */
473 void
474 buffer_memory_full (void)
476 /* If buffers use the relocating allocator, no need to free
477 spare_memory, because we may have plenty of malloc space left
478 that we could get, and if we don't, the malloc that fails will
479 itself cause spare_memory to be freed. If buffers don't use the
480 relocating allocator, treat this like any other failing
481 malloc. */
483 #ifndef REL_ALLOC
484 memory_full ();
485 #endif
487 /* This used to call error, but if we've run out of memory, we could
488 get infinite recursion trying to build the string. */
489 xsignal (Qnil, Vmemory_signal_data);
493 #ifdef XMALLOC_OVERRUN_CHECK
495 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
496 and a 16 byte trailer around each block.
498 The header consists of 12 fixed bytes + a 4 byte integer contaning the
499 original block size, while the trailer consists of 16 fixed bytes.
501 The header is used to detect whether this block has been allocated
502 through these functions -- as it seems that some low-level libc
503 functions may bypass the malloc hooks.
507 #define XMALLOC_OVERRUN_CHECK_SIZE 16
509 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
510 { 0x9a, 0x9b, 0xae, 0xaf,
511 0xbf, 0xbe, 0xce, 0xcf,
512 0xea, 0xeb, 0xec, 0xed };
514 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
515 { 0xaa, 0xab, 0xac, 0xad,
516 0xba, 0xbb, 0xbc, 0xbd,
517 0xca, 0xcb, 0xcc, 0xcd,
518 0xda, 0xdb, 0xdc, 0xdd };
520 /* Macros to insert and extract the block size in the header. */
522 #define XMALLOC_PUT_SIZE(ptr, size) \
523 (ptr[-1] = (size & 0xff), \
524 ptr[-2] = ((size >> 8) & 0xff), \
525 ptr[-3] = ((size >> 16) & 0xff), \
526 ptr[-4] = ((size >> 24) & 0xff))
528 #define XMALLOC_GET_SIZE(ptr) \
529 (size_t)((unsigned)(ptr[-1]) | \
530 ((unsigned)(ptr[-2]) << 8) | \
531 ((unsigned)(ptr[-3]) << 16) | \
532 ((unsigned)(ptr[-4]) << 24))
535 /* The call depth in overrun_check functions. For example, this might happen:
536 xmalloc()
537 overrun_check_malloc()
538 -> malloc -> (via hook)_-> emacs_blocked_malloc
539 -> overrun_check_malloc
540 call malloc (hooks are NULL, so real malloc is called).
541 malloc returns 10000.
542 add overhead, return 10016.
543 <- (back in overrun_check_malloc)
544 add overhead again, return 10032
545 xmalloc returns 10032.
547 (time passes).
549 xfree(10032)
550 overrun_check_free(10032)
551 decrease overhed
552 free(10016) <- crash, because 10000 is the original pointer. */
554 static int check_depth;
556 /* Like malloc, but wraps allocated block with header and trailer. */
558 POINTER_TYPE *
559 overrun_check_malloc (size_t size)
561 register unsigned char *val;
562 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
564 val = (unsigned char *) malloc (size + overhead);
565 if (val && check_depth == 1)
567 memcpy (val, xmalloc_overrun_check_header,
568 XMALLOC_OVERRUN_CHECK_SIZE - 4);
569 val += XMALLOC_OVERRUN_CHECK_SIZE;
570 XMALLOC_PUT_SIZE(val, size);
571 memcpy (val + size, xmalloc_overrun_check_trailer,
572 XMALLOC_OVERRUN_CHECK_SIZE);
574 --check_depth;
575 return (POINTER_TYPE *)val;
579 /* Like realloc, but checks old block for overrun, and wraps new block
580 with header and trailer. */
582 POINTER_TYPE *
583 overrun_check_realloc (POINTER_TYPE *block, size_t size)
585 register unsigned char *val = (unsigned char *) block;
586 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
588 if (val
589 && check_depth == 1
590 && memcmp (xmalloc_overrun_check_header,
591 val - XMALLOC_OVERRUN_CHECK_SIZE,
592 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
594 size_t osize = XMALLOC_GET_SIZE (val);
595 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
596 XMALLOC_OVERRUN_CHECK_SIZE))
597 abort ();
598 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
599 val -= XMALLOC_OVERRUN_CHECK_SIZE;
600 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
603 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
605 if (val && check_depth == 1)
607 memcpy (val, xmalloc_overrun_check_header,
608 XMALLOC_OVERRUN_CHECK_SIZE - 4);
609 val += XMALLOC_OVERRUN_CHECK_SIZE;
610 XMALLOC_PUT_SIZE(val, size);
611 memcpy (val + size, xmalloc_overrun_check_trailer,
612 XMALLOC_OVERRUN_CHECK_SIZE);
614 --check_depth;
615 return (POINTER_TYPE *)val;
618 /* Like free, but checks block for overrun. */
620 void
621 overrun_check_free (POINTER_TYPE *block)
623 unsigned char *val = (unsigned char *) block;
625 ++check_depth;
626 if (val
627 && check_depth == 1
628 && memcmp (xmalloc_overrun_check_header,
629 val - XMALLOC_OVERRUN_CHECK_SIZE,
630 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
632 size_t osize = XMALLOC_GET_SIZE (val);
633 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
634 XMALLOC_OVERRUN_CHECK_SIZE))
635 abort ();
636 #ifdef XMALLOC_CLEAR_FREE_MEMORY
637 val -= XMALLOC_OVERRUN_CHECK_SIZE;
638 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
639 #else
640 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
641 val -= XMALLOC_OVERRUN_CHECK_SIZE;
642 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
643 #endif
646 free (val);
647 --check_depth;
650 #undef malloc
651 #undef realloc
652 #undef free
653 #define malloc overrun_check_malloc
654 #define realloc overrun_check_realloc
655 #define free overrun_check_free
656 #endif
658 #ifdef SYNC_INPUT
659 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
660 there's no need to block input around malloc. */
661 #define MALLOC_BLOCK_INPUT ((void)0)
662 #define MALLOC_UNBLOCK_INPUT ((void)0)
663 #else
664 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
665 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
666 #endif
668 /* Like malloc but check for no memory and block interrupt input.. */
670 POINTER_TYPE *
671 xmalloc (size_t size)
673 register POINTER_TYPE *val;
675 MALLOC_BLOCK_INPUT;
676 val = (POINTER_TYPE *) malloc (size);
677 MALLOC_UNBLOCK_INPUT;
679 if (!val && size)
680 memory_full ();
681 return val;
685 /* Like realloc but check for no memory and block interrupt input.. */
687 POINTER_TYPE *
688 xrealloc (POINTER_TYPE *block, size_t size)
690 register POINTER_TYPE *val;
692 MALLOC_BLOCK_INPUT;
693 /* We must call malloc explicitly when BLOCK is 0, since some
694 reallocs don't do this. */
695 if (! block)
696 val = (POINTER_TYPE *) malloc (size);
697 else
698 val = (POINTER_TYPE *) realloc (block, size);
699 MALLOC_UNBLOCK_INPUT;
701 if (!val && size) memory_full ();
702 return val;
706 /* Like free but block interrupt input. */
708 void
709 xfree (POINTER_TYPE *block)
711 if (!block)
712 return;
713 MALLOC_BLOCK_INPUT;
714 free (block);
715 MALLOC_UNBLOCK_INPUT;
716 /* We don't call refill_memory_reserve here
717 because that duplicates doing so in emacs_blocked_free
718 and the criterion should go there. */
722 /* Like strdup, but uses xmalloc. */
724 char *
725 xstrdup (const char *s)
727 size_t len = strlen (s) + 1;
728 char *p = (char *) xmalloc (len);
729 memcpy (p, s, len);
730 return p;
734 /* Unwind for SAFE_ALLOCA */
736 Lisp_Object
737 safe_alloca_unwind (Lisp_Object arg)
739 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
741 p->dogc = 0;
742 xfree (p->pointer);
743 p->pointer = 0;
744 free_misc (arg);
745 return Qnil;
749 /* Like malloc but used for allocating Lisp data. NBYTES is the
750 number of bytes to allocate, TYPE describes the intended use of the
751 allcated memory block (for strings, for conses, ...). */
753 #ifndef USE_LSB_TAG
754 static void *lisp_malloc_loser;
755 #endif
757 static POINTER_TYPE *
758 lisp_malloc (size_t nbytes, enum mem_type type)
760 register void *val;
762 MALLOC_BLOCK_INPUT;
764 #ifdef GC_MALLOC_CHECK
765 allocated_mem_type = type;
766 #endif
768 val = (void *) malloc (nbytes);
770 #ifndef USE_LSB_TAG
771 /* If the memory just allocated cannot be addressed thru a Lisp
772 object's pointer, and it needs to be,
773 that's equivalent to running out of memory. */
774 if (val && type != MEM_TYPE_NON_LISP)
776 Lisp_Object tem;
777 XSETCONS (tem, (char *) val + nbytes - 1);
778 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
780 lisp_malloc_loser = val;
781 free (val);
782 val = 0;
785 #endif
787 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
788 if (val && type != MEM_TYPE_NON_LISP)
789 mem_insert (val, (char *) val + nbytes, type);
790 #endif
792 MALLOC_UNBLOCK_INPUT;
793 if (!val && nbytes)
794 memory_full ();
795 return val;
798 /* Free BLOCK. This must be called to free memory allocated with a
799 call to lisp_malloc. */
801 static void
802 lisp_free (POINTER_TYPE *block)
804 MALLOC_BLOCK_INPUT;
805 free (block);
806 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
807 mem_delete (mem_find (block));
808 #endif
809 MALLOC_UNBLOCK_INPUT;
812 /* Allocation of aligned blocks of memory to store Lisp data. */
813 /* The entry point is lisp_align_malloc which returns blocks of at most */
814 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
816 /* Use posix_memalloc if the system has it and we're using the system's
817 malloc (because our gmalloc.c routines don't have posix_memalign although
818 its memalloc could be used). */
819 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
820 #define USE_POSIX_MEMALIGN 1
821 #endif
823 /* BLOCK_ALIGN has to be a power of 2. */
824 #define BLOCK_ALIGN (1 << 10)
826 /* Padding to leave at the end of a malloc'd block. This is to give
827 malloc a chance to minimize the amount of memory wasted to alignment.
828 It should be tuned to the particular malloc library used.
829 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
830 posix_memalign on the other hand would ideally prefer a value of 4
831 because otherwise, there's 1020 bytes wasted between each ablocks.
832 In Emacs, testing shows that those 1020 can most of the time be
833 efficiently used by malloc to place other objects, so a value of 0 can
834 still preferable unless you have a lot of aligned blocks and virtually
835 nothing else. */
836 #define BLOCK_PADDING 0
837 #define BLOCK_BYTES \
838 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
840 /* Internal data structures and constants. */
842 #define ABLOCKS_SIZE 16
844 /* An aligned block of memory. */
845 struct ablock
847 union
849 char payload[BLOCK_BYTES];
850 struct ablock *next_free;
851 } x;
852 /* `abase' is the aligned base of the ablocks. */
853 /* It is overloaded to hold the virtual `busy' field that counts
854 the number of used ablock in the parent ablocks.
855 The first ablock has the `busy' field, the others have the `abase'
856 field. To tell the difference, we assume that pointers will have
857 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
858 is used to tell whether the real base of the parent ablocks is `abase'
859 (if not, the word before the first ablock holds a pointer to the
860 real base). */
861 struct ablocks *abase;
862 /* The padding of all but the last ablock is unused. The padding of
863 the last ablock in an ablocks is not allocated. */
864 #if BLOCK_PADDING
865 char padding[BLOCK_PADDING];
866 #endif
869 /* A bunch of consecutive aligned blocks. */
870 struct ablocks
872 struct ablock blocks[ABLOCKS_SIZE];
875 /* Size of the block requested from malloc or memalign. */
876 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
878 #define ABLOCK_ABASE(block) \
879 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
880 ? (struct ablocks *)(block) \
881 : (block)->abase)
883 /* Virtual `busy' field. */
884 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
886 /* Pointer to the (not necessarily aligned) malloc block. */
887 #ifdef USE_POSIX_MEMALIGN
888 #define ABLOCKS_BASE(abase) (abase)
889 #else
890 #define ABLOCKS_BASE(abase) \
891 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
892 #endif
894 /* The list of free ablock. */
895 static struct ablock *free_ablock;
897 /* Allocate an aligned block of nbytes.
898 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
899 smaller or equal to BLOCK_BYTES. */
900 static POINTER_TYPE *
901 lisp_align_malloc (size_t nbytes, enum mem_type type)
903 void *base, *val;
904 struct ablocks *abase;
906 eassert (nbytes <= BLOCK_BYTES);
908 MALLOC_BLOCK_INPUT;
910 #ifdef GC_MALLOC_CHECK
911 allocated_mem_type = type;
912 #endif
914 if (!free_ablock)
916 int i;
917 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
919 #ifdef DOUG_LEA_MALLOC
920 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
921 because mapped region contents are not preserved in
922 a dumped Emacs. */
923 mallopt (M_MMAP_MAX, 0);
924 #endif
926 #ifdef USE_POSIX_MEMALIGN
928 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
929 if (err)
930 base = NULL;
931 abase = base;
933 #else
934 base = malloc (ABLOCKS_BYTES);
935 abase = ALIGN (base, BLOCK_ALIGN);
936 #endif
938 if (base == 0)
940 MALLOC_UNBLOCK_INPUT;
941 memory_full ();
944 aligned = (base == abase);
945 if (!aligned)
946 ((void**)abase)[-1] = base;
948 #ifdef DOUG_LEA_MALLOC
949 /* Back to a reasonable maximum of mmap'ed areas. */
950 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
951 #endif
953 #ifndef USE_LSB_TAG
954 /* If the memory just allocated cannot be addressed thru a Lisp
955 object's pointer, and it needs to be, that's equivalent to
956 running out of memory. */
957 if (type != MEM_TYPE_NON_LISP)
959 Lisp_Object tem;
960 char *end = (char *) base + ABLOCKS_BYTES - 1;
961 XSETCONS (tem, end);
962 if ((char *) XCONS (tem) != end)
964 lisp_malloc_loser = base;
965 free (base);
966 MALLOC_UNBLOCK_INPUT;
967 memory_full ();
970 #endif
972 /* Initialize the blocks and put them on the free list.
973 Is `base' was not properly aligned, we can't use the last block. */
974 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
976 abase->blocks[i].abase = abase;
977 abase->blocks[i].x.next_free = free_ablock;
978 free_ablock = &abase->blocks[i];
980 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
982 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
983 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
984 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
985 eassert (ABLOCKS_BASE (abase) == base);
986 eassert (aligned == (long) ABLOCKS_BUSY (abase));
989 abase = ABLOCK_ABASE (free_ablock);
990 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
991 val = free_ablock;
992 free_ablock = free_ablock->x.next_free;
994 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
995 if (val && type != MEM_TYPE_NON_LISP)
996 mem_insert (val, (char *) val + nbytes, type);
997 #endif
999 MALLOC_UNBLOCK_INPUT;
1000 if (!val && nbytes)
1001 memory_full ();
1003 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1004 return val;
1007 static void
1008 lisp_align_free (POINTER_TYPE *block)
1010 struct ablock *ablock = block;
1011 struct ablocks *abase = ABLOCK_ABASE (ablock);
1013 MALLOC_BLOCK_INPUT;
1014 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1015 mem_delete (mem_find (block));
1016 #endif
1017 /* Put on free list. */
1018 ablock->x.next_free = free_ablock;
1019 free_ablock = ablock;
1020 /* Update busy count. */
1021 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1023 if (2 > (long) ABLOCKS_BUSY (abase))
1024 { /* All the blocks are free. */
1025 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1026 struct ablock **tem = &free_ablock;
1027 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1029 while (*tem)
1031 if (*tem >= (struct ablock *) abase && *tem < atop)
1033 i++;
1034 *tem = (*tem)->x.next_free;
1036 else
1037 tem = &(*tem)->x.next_free;
1039 eassert ((aligned & 1) == aligned);
1040 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1041 #ifdef USE_POSIX_MEMALIGN
1042 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1043 #endif
1044 free (ABLOCKS_BASE (abase));
1046 MALLOC_UNBLOCK_INPUT;
1049 /* Return a new buffer structure allocated from the heap with
1050 a call to lisp_malloc. */
1052 struct buffer *
1053 allocate_buffer (void)
1055 struct buffer *b
1056 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1057 MEM_TYPE_BUFFER);
1058 b->size = sizeof (struct buffer) / sizeof (EMACS_INT);
1059 XSETPVECTYPE (b, PVEC_BUFFER);
1060 return b;
1064 #ifndef SYSTEM_MALLOC
1066 /* Arranging to disable input signals while we're in malloc.
1068 This only works with GNU malloc. To help out systems which can't
1069 use GNU malloc, all the calls to malloc, realloc, and free
1070 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1071 pair; unfortunately, we have no idea what C library functions
1072 might call malloc, so we can't really protect them unless you're
1073 using GNU malloc. Fortunately, most of the major operating systems
1074 can use GNU malloc. */
1076 #ifndef SYNC_INPUT
1077 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1078 there's no need to block input around malloc. */
1080 #ifndef DOUG_LEA_MALLOC
1081 extern void * (*__malloc_hook) (size_t, const void *);
1082 extern void * (*__realloc_hook) (void *, size_t, const void *);
1083 extern void (*__free_hook) (void *, const void *);
1084 /* Else declared in malloc.h, perhaps with an extra arg. */
1085 #endif /* DOUG_LEA_MALLOC */
1086 static void * (*old_malloc_hook) (size_t, const void *);
1087 static void * (*old_realloc_hook) (void *, size_t, const void*);
1088 static void (*old_free_hook) (void*, const void*);
1090 #ifdef DOUG_LEA_MALLOC
1091 # define BYTES_USED (mallinfo ().uordblks)
1092 #else
1093 # define BYTES_USED _bytes_used
1094 #endif
1096 static __malloc_size_t bytes_used_when_reconsidered;
1098 /* Value of _bytes_used, when spare_memory was freed. */
1100 static __malloc_size_t bytes_used_when_full;
1102 /* This function is used as the hook for free to call. */
1104 static void
1105 emacs_blocked_free (void *ptr, const void *ptr2)
1107 BLOCK_INPUT_ALLOC;
1109 #ifdef GC_MALLOC_CHECK
1110 if (ptr)
1112 struct mem_node *m;
1114 m = mem_find (ptr);
1115 if (m == MEM_NIL || m->start != ptr)
1117 fprintf (stderr,
1118 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1119 abort ();
1121 else
1123 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1124 mem_delete (m);
1127 #endif /* GC_MALLOC_CHECK */
1129 __free_hook = old_free_hook;
1130 free (ptr);
1132 /* If we released our reserve (due to running out of memory),
1133 and we have a fair amount free once again,
1134 try to set aside another reserve in case we run out once more. */
1135 if (! NILP (Vmemory_full)
1136 /* Verify there is enough space that even with the malloc
1137 hysteresis this call won't run out again.
1138 The code here is correct as long as SPARE_MEMORY
1139 is substantially larger than the block size malloc uses. */
1140 && (bytes_used_when_full
1141 > ((bytes_used_when_reconsidered = BYTES_USED)
1142 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1143 refill_memory_reserve ();
1145 __free_hook = emacs_blocked_free;
1146 UNBLOCK_INPUT_ALLOC;
1150 /* This function is the malloc hook that Emacs uses. */
1152 static void *
1153 emacs_blocked_malloc (size_t size, const void *ptr)
1155 void *value;
1157 BLOCK_INPUT_ALLOC;
1158 __malloc_hook = old_malloc_hook;
1159 #ifdef DOUG_LEA_MALLOC
1160 /* Segfaults on my system. --lorentey */
1161 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1162 #else
1163 __malloc_extra_blocks = malloc_hysteresis;
1164 #endif
1166 value = (void *) malloc (size);
1168 #ifdef GC_MALLOC_CHECK
1170 struct mem_node *m = mem_find (value);
1171 if (m != MEM_NIL)
1173 fprintf (stderr, "Malloc returned %p which is already in use\n",
1174 value);
1175 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1176 m->start, m->end, (char *) m->end - (char *) m->start,
1177 m->type);
1178 abort ();
1181 if (!dont_register_blocks)
1183 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1184 allocated_mem_type = MEM_TYPE_NON_LISP;
1187 #endif /* GC_MALLOC_CHECK */
1189 __malloc_hook = emacs_blocked_malloc;
1190 UNBLOCK_INPUT_ALLOC;
1192 /* fprintf (stderr, "%p malloc\n", value); */
1193 return value;
1197 /* This function is the realloc hook that Emacs uses. */
1199 static void *
1200 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1202 void *value;
1204 BLOCK_INPUT_ALLOC;
1205 __realloc_hook = old_realloc_hook;
1207 #ifdef GC_MALLOC_CHECK
1208 if (ptr)
1210 struct mem_node *m = mem_find (ptr);
1211 if (m == MEM_NIL || m->start != ptr)
1213 fprintf (stderr,
1214 "Realloc of %p which wasn't allocated with malloc\n",
1215 ptr);
1216 abort ();
1219 mem_delete (m);
1222 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1224 /* Prevent malloc from registering blocks. */
1225 dont_register_blocks = 1;
1226 #endif /* GC_MALLOC_CHECK */
1228 value = (void *) realloc (ptr, size);
1230 #ifdef GC_MALLOC_CHECK
1231 dont_register_blocks = 0;
1234 struct mem_node *m = mem_find (value);
1235 if (m != MEM_NIL)
1237 fprintf (stderr, "Realloc returns memory that is already in use\n");
1238 abort ();
1241 /* Can't handle zero size regions in the red-black tree. */
1242 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1245 /* fprintf (stderr, "%p <- realloc\n", value); */
1246 #endif /* GC_MALLOC_CHECK */
1248 __realloc_hook = emacs_blocked_realloc;
1249 UNBLOCK_INPUT_ALLOC;
1251 return value;
1255 #ifdef HAVE_GTK_AND_PTHREAD
1256 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1257 normal malloc. Some thread implementations need this as they call
1258 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1259 calls malloc because it is the first call, and we have an endless loop. */
1261 void
1262 reset_malloc_hooks ()
1264 __free_hook = old_free_hook;
1265 __malloc_hook = old_malloc_hook;
1266 __realloc_hook = old_realloc_hook;
1268 #endif /* HAVE_GTK_AND_PTHREAD */
1271 /* Called from main to set up malloc to use our hooks. */
1273 void
1274 uninterrupt_malloc (void)
1276 #ifdef HAVE_GTK_AND_PTHREAD
1277 #ifdef DOUG_LEA_MALLOC
1278 pthread_mutexattr_t attr;
1280 /* GLIBC has a faster way to do this, but lets keep it portable.
1281 This is according to the Single UNIX Specification. */
1282 pthread_mutexattr_init (&attr);
1283 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1284 pthread_mutex_init (&alloc_mutex, &attr);
1285 #else /* !DOUG_LEA_MALLOC */
1286 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1287 and the bundled gmalloc.c doesn't require it. */
1288 pthread_mutex_init (&alloc_mutex, NULL);
1289 #endif /* !DOUG_LEA_MALLOC */
1290 #endif /* HAVE_GTK_AND_PTHREAD */
1292 if (__free_hook != emacs_blocked_free)
1293 old_free_hook = __free_hook;
1294 __free_hook = emacs_blocked_free;
1296 if (__malloc_hook != emacs_blocked_malloc)
1297 old_malloc_hook = __malloc_hook;
1298 __malloc_hook = emacs_blocked_malloc;
1300 if (__realloc_hook != emacs_blocked_realloc)
1301 old_realloc_hook = __realloc_hook;
1302 __realloc_hook = emacs_blocked_realloc;
1305 #endif /* not SYNC_INPUT */
1306 #endif /* not SYSTEM_MALLOC */
1310 /***********************************************************************
1311 Interval Allocation
1312 ***********************************************************************/
1314 /* Number of intervals allocated in an interval_block structure.
1315 The 1020 is 1024 minus malloc overhead. */
1317 #define INTERVAL_BLOCK_SIZE \
1318 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1320 /* Intervals are allocated in chunks in form of an interval_block
1321 structure. */
1323 struct interval_block
1325 /* Place `intervals' first, to preserve alignment. */
1326 struct interval intervals[INTERVAL_BLOCK_SIZE];
1327 struct interval_block *next;
1330 /* Current interval block. Its `next' pointer points to older
1331 blocks. */
1333 static struct interval_block *interval_block;
1335 /* Index in interval_block above of the next unused interval
1336 structure. */
1338 static int interval_block_index;
1340 /* Number of free and live intervals. */
1342 static int total_free_intervals, total_intervals;
1344 /* List of free intervals. */
1346 static INTERVAL interval_free_list;
1348 /* Total number of interval blocks now in use. */
1350 static int n_interval_blocks;
1353 /* Initialize interval allocation. */
1355 static void
1356 init_intervals (void)
1358 interval_block = NULL;
1359 interval_block_index = INTERVAL_BLOCK_SIZE;
1360 interval_free_list = 0;
1361 n_interval_blocks = 0;
1365 /* Return a new interval. */
1367 INTERVAL
1368 make_interval (void)
1370 INTERVAL val;
1372 /* eassert (!handling_signal); */
1374 MALLOC_BLOCK_INPUT;
1376 if (interval_free_list)
1378 val = interval_free_list;
1379 interval_free_list = INTERVAL_PARENT (interval_free_list);
1381 else
1383 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1385 register struct interval_block *newi;
1387 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1388 MEM_TYPE_NON_LISP);
1390 newi->next = interval_block;
1391 interval_block = newi;
1392 interval_block_index = 0;
1393 n_interval_blocks++;
1395 val = &interval_block->intervals[interval_block_index++];
1398 MALLOC_UNBLOCK_INPUT;
1400 consing_since_gc += sizeof (struct interval);
1401 intervals_consed++;
1402 RESET_INTERVAL (val);
1403 val->gcmarkbit = 0;
1404 return val;
1408 /* Mark Lisp objects in interval I. */
1410 static void
1411 mark_interval (register INTERVAL i, Lisp_Object dummy)
1413 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1414 i->gcmarkbit = 1;
1415 mark_object (i->plist);
1419 /* Mark the interval tree rooted in TREE. Don't call this directly;
1420 use the macro MARK_INTERVAL_TREE instead. */
1422 static void
1423 mark_interval_tree (register INTERVAL tree)
1425 /* No need to test if this tree has been marked already; this
1426 function is always called through the MARK_INTERVAL_TREE macro,
1427 which takes care of that. */
1429 traverse_intervals_noorder (tree, mark_interval, Qnil);
1433 /* Mark the interval tree rooted in I. */
1435 #define MARK_INTERVAL_TREE(i) \
1436 do { \
1437 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1438 mark_interval_tree (i); \
1439 } while (0)
1442 #define UNMARK_BALANCE_INTERVALS(i) \
1443 do { \
1444 if (! NULL_INTERVAL_P (i)) \
1445 (i) = balance_intervals (i); \
1446 } while (0)
1449 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1450 can't create number objects in macros. */
1451 #ifndef make_number
1452 Lisp_Object
1453 make_number (EMACS_INT n)
1455 Lisp_Object obj;
1456 obj.s.val = n;
1457 obj.s.type = Lisp_Int;
1458 return obj;
1460 #endif
1462 /***********************************************************************
1463 String Allocation
1464 ***********************************************************************/
1466 /* Lisp_Strings are allocated in string_block structures. When a new
1467 string_block is allocated, all the Lisp_Strings it contains are
1468 added to a free-list string_free_list. When a new Lisp_String is
1469 needed, it is taken from that list. During the sweep phase of GC,
1470 string_blocks that are entirely free are freed, except two which
1471 we keep.
1473 String data is allocated from sblock structures. Strings larger
1474 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1475 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1477 Sblocks consist internally of sdata structures, one for each
1478 Lisp_String. The sdata structure points to the Lisp_String it
1479 belongs to. The Lisp_String points back to the `u.data' member of
1480 its sdata structure.
1482 When a Lisp_String is freed during GC, it is put back on
1483 string_free_list, and its `data' member and its sdata's `string'
1484 pointer is set to null. The size of the string is recorded in the
1485 `u.nbytes' member of the sdata. So, sdata structures that are no
1486 longer used, can be easily recognized, and it's easy to compact the
1487 sblocks of small strings which we do in compact_small_strings. */
1489 /* Size in bytes of an sblock structure used for small strings. This
1490 is 8192 minus malloc overhead. */
1492 #define SBLOCK_SIZE 8188
1494 /* Strings larger than this are considered large strings. String data
1495 for large strings is allocated from individual sblocks. */
1497 #define LARGE_STRING_BYTES 1024
1499 /* Structure describing string memory sub-allocated from an sblock.
1500 This is where the contents of Lisp strings are stored. */
1502 struct sdata
1504 /* Back-pointer to the string this sdata belongs to. If null, this
1505 structure is free, and the NBYTES member of the union below
1506 contains the string's byte size (the same value that STRING_BYTES
1507 would return if STRING were non-null). If non-null, STRING_BYTES
1508 (STRING) is the size of the data, and DATA contains the string's
1509 contents. */
1510 struct Lisp_String *string;
1512 #ifdef GC_CHECK_STRING_BYTES
1514 EMACS_INT nbytes;
1515 unsigned char data[1];
1517 #define SDATA_NBYTES(S) (S)->nbytes
1518 #define SDATA_DATA(S) (S)->data
1520 #else /* not GC_CHECK_STRING_BYTES */
1522 union
1524 /* When STRING in non-null. */
1525 unsigned char data[1];
1527 /* When STRING is null. */
1528 EMACS_INT nbytes;
1529 } u;
1532 #define SDATA_NBYTES(S) (S)->u.nbytes
1533 #define SDATA_DATA(S) (S)->u.data
1535 #endif /* not GC_CHECK_STRING_BYTES */
1539 /* Structure describing a block of memory which is sub-allocated to
1540 obtain string data memory for strings. Blocks for small strings
1541 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1542 as large as needed. */
1544 struct sblock
1546 /* Next in list. */
1547 struct sblock *next;
1549 /* Pointer to the next free sdata block. This points past the end
1550 of the sblock if there isn't any space left in this block. */
1551 struct sdata *next_free;
1553 /* Start of data. */
1554 struct sdata first_data;
1557 /* Number of Lisp strings in a string_block structure. The 1020 is
1558 1024 minus malloc overhead. */
1560 #define STRING_BLOCK_SIZE \
1561 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1563 /* Structure describing a block from which Lisp_String structures
1564 are allocated. */
1566 struct string_block
1568 /* Place `strings' first, to preserve alignment. */
1569 struct Lisp_String strings[STRING_BLOCK_SIZE];
1570 struct string_block *next;
1573 /* Head and tail of the list of sblock structures holding Lisp string
1574 data. We always allocate from current_sblock. The NEXT pointers
1575 in the sblock structures go from oldest_sblock to current_sblock. */
1577 static struct sblock *oldest_sblock, *current_sblock;
1579 /* List of sblocks for large strings. */
1581 static struct sblock *large_sblocks;
1583 /* List of string_block structures, and how many there are. */
1585 static struct string_block *string_blocks;
1586 static int n_string_blocks;
1588 /* Free-list of Lisp_Strings. */
1590 static struct Lisp_String *string_free_list;
1592 /* Number of live and free Lisp_Strings. */
1594 static int total_strings, total_free_strings;
1596 /* Number of bytes used by live strings. */
1598 static EMACS_INT total_string_size;
1600 /* Given a pointer to a Lisp_String S which is on the free-list
1601 string_free_list, return a pointer to its successor in the
1602 free-list. */
1604 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1606 /* Return a pointer to the sdata structure belonging to Lisp string S.
1607 S must be live, i.e. S->data must not be null. S->data is actually
1608 a pointer to the `u.data' member of its sdata structure; the
1609 structure starts at a constant offset in front of that. */
1611 #ifdef GC_CHECK_STRING_BYTES
1613 #define SDATA_OF_STRING(S) \
1614 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1615 - sizeof (EMACS_INT)))
1617 #else /* not GC_CHECK_STRING_BYTES */
1619 #define SDATA_OF_STRING(S) \
1620 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1622 #endif /* not GC_CHECK_STRING_BYTES */
1625 #ifdef GC_CHECK_STRING_OVERRUN
1627 /* We check for overrun in string data blocks by appending a small
1628 "cookie" after each allocated string data block, and check for the
1629 presence of this cookie during GC. */
1631 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1632 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1633 { 0xde, 0xad, 0xbe, 0xef };
1635 #else
1636 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1637 #endif
1639 /* Value is the size of an sdata structure large enough to hold NBYTES
1640 bytes of string data. The value returned includes a terminating
1641 NUL byte, the size of the sdata structure, and padding. */
1643 #ifdef GC_CHECK_STRING_BYTES
1645 #define SDATA_SIZE(NBYTES) \
1646 ((sizeof (struct Lisp_String *) \
1647 + (NBYTES) + 1 \
1648 + sizeof (EMACS_INT) \
1649 + sizeof (EMACS_INT) - 1) \
1650 & ~(sizeof (EMACS_INT) - 1))
1652 #else /* not GC_CHECK_STRING_BYTES */
1654 #define SDATA_SIZE(NBYTES) \
1655 ((sizeof (struct Lisp_String *) \
1656 + (NBYTES) + 1 \
1657 + sizeof (EMACS_INT) - 1) \
1658 & ~(sizeof (EMACS_INT) - 1))
1660 #endif /* not GC_CHECK_STRING_BYTES */
1662 /* Extra bytes to allocate for each string. */
1664 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1666 /* Initialize string allocation. Called from init_alloc_once. */
1668 static void
1669 init_strings (void)
1671 total_strings = total_free_strings = total_string_size = 0;
1672 oldest_sblock = current_sblock = large_sblocks = NULL;
1673 string_blocks = NULL;
1674 n_string_blocks = 0;
1675 string_free_list = NULL;
1676 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1677 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1681 #ifdef GC_CHECK_STRING_BYTES
1683 static int check_string_bytes_count;
1685 static void check_string_bytes (int);
1686 static void check_sblock (struct sblock *);
1688 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1691 /* Like GC_STRING_BYTES, but with debugging check. */
1693 EMACS_INT
1694 string_bytes (struct Lisp_String *s)
1696 EMACS_INT nbytes =
1697 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1699 if (!PURE_POINTER_P (s)
1700 && s->data
1701 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1702 abort ();
1703 return nbytes;
1706 /* Check validity of Lisp strings' string_bytes member in B. */
1708 static void
1709 check_sblock (b)
1710 struct sblock *b;
1712 struct sdata *from, *end, *from_end;
1714 end = b->next_free;
1716 for (from = &b->first_data; from < end; from = from_end)
1718 /* Compute the next FROM here because copying below may
1719 overwrite data we need to compute it. */
1720 EMACS_INT nbytes;
1722 /* Check that the string size recorded in the string is the
1723 same as the one recorded in the sdata structure. */
1724 if (from->string)
1725 CHECK_STRING_BYTES (from->string);
1727 if (from->string)
1728 nbytes = GC_STRING_BYTES (from->string);
1729 else
1730 nbytes = SDATA_NBYTES (from);
1732 nbytes = SDATA_SIZE (nbytes);
1733 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1738 /* Check validity of Lisp strings' string_bytes member. ALL_P
1739 non-zero means check all strings, otherwise check only most
1740 recently allocated strings. Used for hunting a bug. */
1742 static void
1743 check_string_bytes (all_p)
1744 int all_p;
1746 if (all_p)
1748 struct sblock *b;
1750 for (b = large_sblocks; b; b = b->next)
1752 struct Lisp_String *s = b->first_data.string;
1753 if (s)
1754 CHECK_STRING_BYTES (s);
1757 for (b = oldest_sblock; b; b = b->next)
1758 check_sblock (b);
1760 else
1761 check_sblock (current_sblock);
1764 #endif /* GC_CHECK_STRING_BYTES */
1766 #ifdef GC_CHECK_STRING_FREE_LIST
1768 /* Walk through the string free list looking for bogus next pointers.
1769 This may catch buffer overrun from a previous string. */
1771 static void
1772 check_string_free_list ()
1774 struct Lisp_String *s;
1776 /* Pop a Lisp_String off the free-list. */
1777 s = string_free_list;
1778 while (s != NULL)
1780 if ((unsigned long)s < 1024)
1781 abort();
1782 s = NEXT_FREE_LISP_STRING (s);
1785 #else
1786 #define check_string_free_list()
1787 #endif
1789 /* Return a new Lisp_String. */
1791 static struct Lisp_String *
1792 allocate_string (void)
1794 struct Lisp_String *s;
1796 /* eassert (!handling_signal); */
1798 MALLOC_BLOCK_INPUT;
1800 /* If the free-list is empty, allocate a new string_block, and
1801 add all the Lisp_Strings in it to the free-list. */
1802 if (string_free_list == NULL)
1804 struct string_block *b;
1805 int i;
1807 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1808 memset (b, 0, sizeof *b);
1809 b->next = string_blocks;
1810 string_blocks = b;
1811 ++n_string_blocks;
1813 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1815 s = b->strings + i;
1816 NEXT_FREE_LISP_STRING (s) = string_free_list;
1817 string_free_list = s;
1820 total_free_strings += STRING_BLOCK_SIZE;
1823 check_string_free_list ();
1825 /* Pop a Lisp_String off the free-list. */
1826 s = string_free_list;
1827 string_free_list = NEXT_FREE_LISP_STRING (s);
1829 MALLOC_UNBLOCK_INPUT;
1831 /* Probably not strictly necessary, but play it safe. */
1832 memset (s, 0, sizeof *s);
1834 --total_free_strings;
1835 ++total_strings;
1836 ++strings_consed;
1837 consing_since_gc += sizeof *s;
1839 #ifdef GC_CHECK_STRING_BYTES
1840 if (!noninteractive)
1842 if (++check_string_bytes_count == 200)
1844 check_string_bytes_count = 0;
1845 check_string_bytes (1);
1847 else
1848 check_string_bytes (0);
1850 #endif /* GC_CHECK_STRING_BYTES */
1852 return s;
1856 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1857 plus a NUL byte at the end. Allocate an sdata structure for S, and
1858 set S->data to its `u.data' member. Store a NUL byte at the end of
1859 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1860 S->data if it was initially non-null. */
1862 void
1863 allocate_string_data (struct Lisp_String *s,
1864 EMACS_INT nchars, EMACS_INT nbytes)
1866 struct sdata *data, *old_data;
1867 struct sblock *b;
1868 EMACS_INT needed, old_nbytes;
1870 /* Determine the number of bytes needed to store NBYTES bytes
1871 of string data. */
1872 needed = SDATA_SIZE (nbytes);
1873 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1874 old_nbytes = GC_STRING_BYTES (s);
1876 MALLOC_BLOCK_INPUT;
1878 if (nbytes > LARGE_STRING_BYTES)
1880 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1882 #ifdef DOUG_LEA_MALLOC
1883 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1884 because mapped region contents are not preserved in
1885 a dumped Emacs.
1887 In case you think of allowing it in a dumped Emacs at the
1888 cost of not being able to re-dump, there's another reason:
1889 mmap'ed data typically have an address towards the top of the
1890 address space, which won't fit into an EMACS_INT (at least on
1891 32-bit systems with the current tagging scheme). --fx */
1892 mallopt (M_MMAP_MAX, 0);
1893 #endif
1895 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1897 #ifdef DOUG_LEA_MALLOC
1898 /* Back to a reasonable maximum of mmap'ed areas. */
1899 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1900 #endif
1902 b->next_free = &b->first_data;
1903 b->first_data.string = NULL;
1904 b->next = large_sblocks;
1905 large_sblocks = b;
1907 else if (current_sblock == NULL
1908 || (((char *) current_sblock + SBLOCK_SIZE
1909 - (char *) current_sblock->next_free)
1910 < (needed + GC_STRING_EXTRA)))
1912 /* Not enough room in the current sblock. */
1913 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1914 b->next_free = &b->first_data;
1915 b->first_data.string = NULL;
1916 b->next = NULL;
1918 if (current_sblock)
1919 current_sblock->next = b;
1920 else
1921 oldest_sblock = b;
1922 current_sblock = b;
1924 else
1925 b = current_sblock;
1927 data = b->next_free;
1928 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1930 MALLOC_UNBLOCK_INPUT;
1932 data->string = s;
1933 s->data = SDATA_DATA (data);
1934 #ifdef GC_CHECK_STRING_BYTES
1935 SDATA_NBYTES (data) = nbytes;
1936 #endif
1937 s->size = nchars;
1938 s->size_byte = nbytes;
1939 s->data[nbytes] = '\0';
1940 #ifdef GC_CHECK_STRING_OVERRUN
1941 memcpy (data + needed, string_overrun_cookie, GC_STRING_OVERRUN_COOKIE_SIZE);
1942 #endif
1944 /* If S had already data assigned, mark that as free by setting its
1945 string back-pointer to null, and recording the size of the data
1946 in it. */
1947 if (old_data)
1949 SDATA_NBYTES (old_data) = old_nbytes;
1950 old_data->string = NULL;
1953 consing_since_gc += needed;
1957 /* Sweep and compact strings. */
1959 static void
1960 sweep_strings (void)
1962 struct string_block *b, *next;
1963 struct string_block *live_blocks = NULL;
1965 string_free_list = NULL;
1966 total_strings = total_free_strings = 0;
1967 total_string_size = 0;
1969 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1970 for (b = string_blocks; b; b = next)
1972 int i, nfree = 0;
1973 struct Lisp_String *free_list_before = string_free_list;
1975 next = b->next;
1977 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1979 struct Lisp_String *s = b->strings + i;
1981 if (s->data)
1983 /* String was not on free-list before. */
1984 if (STRING_MARKED_P (s))
1986 /* String is live; unmark it and its intervals. */
1987 UNMARK_STRING (s);
1989 if (!NULL_INTERVAL_P (s->intervals))
1990 UNMARK_BALANCE_INTERVALS (s->intervals);
1992 ++total_strings;
1993 total_string_size += STRING_BYTES (s);
1995 else
1997 /* String is dead. Put it on the free-list. */
1998 struct sdata *data = SDATA_OF_STRING (s);
2000 /* Save the size of S in its sdata so that we know
2001 how large that is. Reset the sdata's string
2002 back-pointer so that we know it's free. */
2003 #ifdef GC_CHECK_STRING_BYTES
2004 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2005 abort ();
2006 #else
2007 data->u.nbytes = GC_STRING_BYTES (s);
2008 #endif
2009 data->string = NULL;
2011 /* Reset the strings's `data' member so that we
2012 know it's free. */
2013 s->data = NULL;
2015 /* Put the string on the free-list. */
2016 NEXT_FREE_LISP_STRING (s) = string_free_list;
2017 string_free_list = s;
2018 ++nfree;
2021 else
2023 /* S was on the free-list before. Put it there again. */
2024 NEXT_FREE_LISP_STRING (s) = string_free_list;
2025 string_free_list = s;
2026 ++nfree;
2030 /* Free blocks that contain free Lisp_Strings only, except
2031 the first two of them. */
2032 if (nfree == STRING_BLOCK_SIZE
2033 && total_free_strings > STRING_BLOCK_SIZE)
2035 lisp_free (b);
2036 --n_string_blocks;
2037 string_free_list = free_list_before;
2039 else
2041 total_free_strings += nfree;
2042 b->next = live_blocks;
2043 live_blocks = b;
2047 check_string_free_list ();
2049 string_blocks = live_blocks;
2050 free_large_strings ();
2051 compact_small_strings ();
2053 check_string_free_list ();
2057 /* Free dead large strings. */
2059 static void
2060 free_large_strings (void)
2062 struct sblock *b, *next;
2063 struct sblock *live_blocks = NULL;
2065 for (b = large_sblocks; b; b = next)
2067 next = b->next;
2069 if (b->first_data.string == NULL)
2070 lisp_free (b);
2071 else
2073 b->next = live_blocks;
2074 live_blocks = b;
2078 large_sblocks = live_blocks;
2082 /* Compact data of small strings. Free sblocks that don't contain
2083 data of live strings after compaction. */
2085 static void
2086 compact_small_strings (void)
2088 struct sblock *b, *tb, *next;
2089 struct sdata *from, *to, *end, *tb_end;
2090 struct sdata *to_end, *from_end;
2092 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2093 to, and TB_END is the end of TB. */
2094 tb = oldest_sblock;
2095 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2096 to = &tb->first_data;
2098 /* Step through the blocks from the oldest to the youngest. We
2099 expect that old blocks will stabilize over time, so that less
2100 copying will happen this way. */
2101 for (b = oldest_sblock; b; b = b->next)
2103 end = b->next_free;
2104 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2106 for (from = &b->first_data; from < end; from = from_end)
2108 /* Compute the next FROM here because copying below may
2109 overwrite data we need to compute it. */
2110 EMACS_INT nbytes;
2112 #ifdef GC_CHECK_STRING_BYTES
2113 /* Check that the string size recorded in the string is the
2114 same as the one recorded in the sdata structure. */
2115 if (from->string
2116 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2117 abort ();
2118 #endif /* GC_CHECK_STRING_BYTES */
2120 if (from->string)
2121 nbytes = GC_STRING_BYTES (from->string);
2122 else
2123 nbytes = SDATA_NBYTES (from);
2125 if (nbytes > LARGE_STRING_BYTES)
2126 abort ();
2128 nbytes = SDATA_SIZE (nbytes);
2129 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2131 #ifdef GC_CHECK_STRING_OVERRUN
2132 if (memcmp (string_overrun_cookie,
2133 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2134 GC_STRING_OVERRUN_COOKIE_SIZE))
2135 abort ();
2136 #endif
2138 /* FROM->string non-null means it's alive. Copy its data. */
2139 if (from->string)
2141 /* If TB is full, proceed with the next sblock. */
2142 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2143 if (to_end > tb_end)
2145 tb->next_free = to;
2146 tb = tb->next;
2147 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2148 to = &tb->first_data;
2149 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2152 /* Copy, and update the string's `data' pointer. */
2153 if (from != to)
2155 xassert (tb != b || to <= from);
2156 memmove (to, from, nbytes + GC_STRING_EXTRA);
2157 to->string->data = SDATA_DATA (to);
2160 /* Advance past the sdata we copied to. */
2161 to = to_end;
2166 /* The rest of the sblocks following TB don't contain live data, so
2167 we can free them. */
2168 for (b = tb->next; b; b = next)
2170 next = b->next;
2171 lisp_free (b);
2174 tb->next_free = to;
2175 tb->next = NULL;
2176 current_sblock = tb;
2180 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2181 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2182 LENGTH must be an integer.
2183 INIT must be an integer that represents a character. */)
2184 (Lisp_Object length, Lisp_Object init)
2186 register Lisp_Object val;
2187 register unsigned char *p, *end;
2188 int c;
2189 EMACS_INT nbytes;
2191 CHECK_NATNUM (length);
2192 CHECK_NUMBER (init);
2194 c = XINT (init);
2195 if (ASCII_CHAR_P (c))
2197 nbytes = XINT (length);
2198 val = make_uninit_string (nbytes);
2199 p = SDATA (val);
2200 end = p + SCHARS (val);
2201 while (p != end)
2202 *p++ = c;
2204 else
2206 unsigned char str[MAX_MULTIBYTE_LENGTH];
2207 int len = CHAR_STRING (c, str);
2208 EMACS_INT string_len = XINT (length);
2210 if (string_len > MOST_POSITIVE_FIXNUM / len)
2211 error ("Maximum string size exceeded");
2212 nbytes = len * string_len;
2213 val = make_uninit_multibyte_string (string_len, nbytes);
2214 p = SDATA (val);
2215 end = p + nbytes;
2216 while (p != end)
2218 memcpy (p, str, len);
2219 p += len;
2223 *p = 0;
2224 return val;
2228 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2229 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2230 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2231 (Lisp_Object length, Lisp_Object init)
2233 register Lisp_Object val;
2234 struct Lisp_Bool_Vector *p;
2235 int real_init, i;
2236 EMACS_INT length_in_chars, length_in_elts;
2237 int bits_per_value;
2239 CHECK_NATNUM (length);
2241 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2243 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2244 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2245 / BOOL_VECTOR_BITS_PER_CHAR);
2247 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2248 slot `size' of the struct Lisp_Bool_Vector. */
2249 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2251 /* Get rid of any bits that would cause confusion. */
2252 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
2253 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
2254 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2256 p = XBOOL_VECTOR (val);
2257 p->size = XFASTINT (length);
2259 real_init = (NILP (init) ? 0 : -1);
2260 for (i = 0; i < length_in_chars ; i++)
2261 p->data[i] = real_init;
2263 /* Clear the extraneous bits in the last byte. */
2264 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2265 p->data[length_in_chars - 1]
2266 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2268 return val;
2272 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2273 of characters from the contents. This string may be unibyte or
2274 multibyte, depending on the contents. */
2276 Lisp_Object
2277 make_string (const char *contents, EMACS_INT nbytes)
2279 register Lisp_Object val;
2280 EMACS_INT nchars, multibyte_nbytes;
2282 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2283 &nchars, &multibyte_nbytes);
2284 if (nbytes == nchars || nbytes != multibyte_nbytes)
2285 /* CONTENTS contains no multibyte sequences or contains an invalid
2286 multibyte sequence. We must make unibyte string. */
2287 val = make_unibyte_string (contents, nbytes);
2288 else
2289 val = make_multibyte_string (contents, nchars, nbytes);
2290 return val;
2294 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2296 Lisp_Object
2297 make_unibyte_string (const char *contents, EMACS_INT length)
2299 register Lisp_Object val;
2300 val = make_uninit_string (length);
2301 memcpy (SDATA (val), contents, length);
2302 return val;
2306 /* Make a multibyte string from NCHARS characters occupying NBYTES
2307 bytes at CONTENTS. */
2309 Lisp_Object
2310 make_multibyte_string (const char *contents,
2311 EMACS_INT nchars, EMACS_INT nbytes)
2313 register Lisp_Object val;
2314 val = make_uninit_multibyte_string (nchars, nbytes);
2315 memcpy (SDATA (val), contents, nbytes);
2316 return val;
2320 /* Make a string from NCHARS characters occupying NBYTES bytes at
2321 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2323 Lisp_Object
2324 make_string_from_bytes (const char *contents,
2325 EMACS_INT nchars, EMACS_INT nbytes)
2327 register Lisp_Object val;
2328 val = make_uninit_multibyte_string (nchars, nbytes);
2329 memcpy (SDATA (val), contents, nbytes);
2330 if (SBYTES (val) == SCHARS (val))
2331 STRING_SET_UNIBYTE (val);
2332 return val;
2336 /* Make a string from NCHARS characters occupying NBYTES bytes at
2337 CONTENTS. The argument MULTIBYTE controls whether to label the
2338 string as multibyte. If NCHARS is negative, it counts the number of
2339 characters by itself. */
2341 Lisp_Object
2342 make_specified_string (const char *contents,
2343 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
2345 register Lisp_Object val;
2347 if (nchars < 0)
2349 if (multibyte)
2350 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2351 nbytes);
2352 else
2353 nchars = nbytes;
2355 val = make_uninit_multibyte_string (nchars, nbytes);
2356 memcpy (SDATA (val), contents, nbytes);
2357 if (!multibyte)
2358 STRING_SET_UNIBYTE (val);
2359 return val;
2363 /* Make a string from the data at STR, treating it as multibyte if the
2364 data warrants. */
2366 Lisp_Object
2367 build_string (const char *str)
2369 return make_string (str, strlen (str));
2373 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2374 occupying LENGTH bytes. */
2376 Lisp_Object
2377 make_uninit_string (EMACS_INT length)
2379 Lisp_Object val;
2381 if (!length)
2382 return empty_unibyte_string;
2383 val = make_uninit_multibyte_string (length, length);
2384 STRING_SET_UNIBYTE (val);
2385 return val;
2389 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2390 which occupy NBYTES bytes. */
2392 Lisp_Object
2393 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2395 Lisp_Object string;
2396 struct Lisp_String *s;
2398 if (nchars < 0)
2399 abort ();
2400 if (!nbytes)
2401 return empty_multibyte_string;
2403 s = allocate_string ();
2404 allocate_string_data (s, nchars, nbytes);
2405 XSETSTRING (string, s);
2406 string_chars_consed += nbytes;
2407 return string;
2412 /***********************************************************************
2413 Float Allocation
2414 ***********************************************************************/
2416 /* We store float cells inside of float_blocks, allocating a new
2417 float_block with malloc whenever necessary. Float cells reclaimed
2418 by GC are put on a free list to be reallocated before allocating
2419 any new float cells from the latest float_block. */
2421 #define FLOAT_BLOCK_SIZE \
2422 (((BLOCK_BYTES - sizeof (struct float_block *) \
2423 /* The compiler might add padding at the end. */ \
2424 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2425 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2427 #define GETMARKBIT(block,n) \
2428 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2429 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2430 & 1)
2432 #define SETMARKBIT(block,n) \
2433 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2434 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2436 #define UNSETMARKBIT(block,n) \
2437 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2438 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2440 #define FLOAT_BLOCK(fptr) \
2441 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2443 #define FLOAT_INDEX(fptr) \
2444 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2446 struct float_block
2448 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2449 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2450 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2451 struct float_block *next;
2454 #define FLOAT_MARKED_P(fptr) \
2455 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2457 #define FLOAT_MARK(fptr) \
2458 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2460 #define FLOAT_UNMARK(fptr) \
2461 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2463 /* Current float_block. */
2465 static struct float_block *float_block;
2467 /* Index of first unused Lisp_Float in the current float_block. */
2469 static int float_block_index;
2471 /* Total number of float blocks now in use. */
2473 static int n_float_blocks;
2475 /* Free-list of Lisp_Floats. */
2477 static struct Lisp_Float *float_free_list;
2480 /* Initialize float allocation. */
2482 static void
2483 init_float (void)
2485 float_block = NULL;
2486 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2487 float_free_list = 0;
2488 n_float_blocks = 0;
2492 /* Return a new float object with value FLOAT_VALUE. */
2494 Lisp_Object
2495 make_float (double float_value)
2497 register Lisp_Object val;
2499 /* eassert (!handling_signal); */
2501 MALLOC_BLOCK_INPUT;
2503 if (float_free_list)
2505 /* We use the data field for chaining the free list
2506 so that we won't use the same field that has the mark bit. */
2507 XSETFLOAT (val, float_free_list);
2508 float_free_list = float_free_list->u.chain;
2510 else
2512 if (float_block_index == FLOAT_BLOCK_SIZE)
2514 register struct float_block *new;
2516 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2517 MEM_TYPE_FLOAT);
2518 new->next = float_block;
2519 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2520 float_block = new;
2521 float_block_index = 0;
2522 n_float_blocks++;
2524 XSETFLOAT (val, &float_block->floats[float_block_index]);
2525 float_block_index++;
2528 MALLOC_UNBLOCK_INPUT;
2530 XFLOAT_INIT (val, float_value);
2531 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2532 consing_since_gc += sizeof (struct Lisp_Float);
2533 floats_consed++;
2534 return val;
2539 /***********************************************************************
2540 Cons Allocation
2541 ***********************************************************************/
2543 /* We store cons cells inside of cons_blocks, allocating a new
2544 cons_block with malloc whenever necessary. Cons cells reclaimed by
2545 GC are put on a free list to be reallocated before allocating
2546 any new cons cells from the latest cons_block. */
2548 #define CONS_BLOCK_SIZE \
2549 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2550 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2552 #define CONS_BLOCK(fptr) \
2553 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2555 #define CONS_INDEX(fptr) \
2556 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2558 struct cons_block
2560 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2561 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2562 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2563 struct cons_block *next;
2566 #define CONS_MARKED_P(fptr) \
2567 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2569 #define CONS_MARK(fptr) \
2570 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2572 #define CONS_UNMARK(fptr) \
2573 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2575 /* Current cons_block. */
2577 static struct cons_block *cons_block;
2579 /* Index of first unused Lisp_Cons in the current block. */
2581 static int cons_block_index;
2583 /* Free-list of Lisp_Cons structures. */
2585 static struct Lisp_Cons *cons_free_list;
2587 /* Total number of cons blocks now in use. */
2589 static int n_cons_blocks;
2592 /* Initialize cons allocation. */
2594 static void
2595 init_cons (void)
2597 cons_block = NULL;
2598 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2599 cons_free_list = 0;
2600 n_cons_blocks = 0;
2604 /* Explicitly free a cons cell by putting it on the free-list. */
2606 void
2607 free_cons (struct Lisp_Cons *ptr)
2609 ptr->u.chain = cons_free_list;
2610 #if GC_MARK_STACK
2611 ptr->car = Vdead;
2612 #endif
2613 cons_free_list = ptr;
2616 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2617 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2618 (Lisp_Object car, Lisp_Object cdr)
2620 register Lisp_Object val;
2622 /* eassert (!handling_signal); */
2624 MALLOC_BLOCK_INPUT;
2626 if (cons_free_list)
2628 /* We use the cdr for chaining the free list
2629 so that we won't use the same field that has the mark bit. */
2630 XSETCONS (val, cons_free_list);
2631 cons_free_list = cons_free_list->u.chain;
2633 else
2635 if (cons_block_index == CONS_BLOCK_SIZE)
2637 register struct cons_block *new;
2638 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2639 MEM_TYPE_CONS);
2640 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2641 new->next = cons_block;
2642 cons_block = new;
2643 cons_block_index = 0;
2644 n_cons_blocks++;
2646 XSETCONS (val, &cons_block->conses[cons_block_index]);
2647 cons_block_index++;
2650 MALLOC_UNBLOCK_INPUT;
2652 XSETCAR (val, car);
2653 XSETCDR (val, cdr);
2654 eassert (!CONS_MARKED_P (XCONS (val)));
2655 consing_since_gc += sizeof (struct Lisp_Cons);
2656 cons_cells_consed++;
2657 return val;
2660 #ifdef GC_CHECK_CONS_LIST
2661 /* Get an error now if there's any junk in the cons free list. */
2662 void
2663 check_cons_list (void)
2665 struct Lisp_Cons *tail = cons_free_list;
2667 while (tail)
2668 tail = tail->u.chain;
2670 #endif
2672 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2674 Lisp_Object
2675 list1 (Lisp_Object arg1)
2677 return Fcons (arg1, Qnil);
2680 Lisp_Object
2681 list2 (Lisp_Object arg1, Lisp_Object arg2)
2683 return Fcons (arg1, Fcons (arg2, Qnil));
2687 Lisp_Object
2688 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2690 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2694 Lisp_Object
2695 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2697 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2701 Lisp_Object
2702 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2704 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2705 Fcons (arg5, Qnil)))));
2709 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2710 doc: /* Return a newly created list with specified arguments as elements.
2711 Any number of arguments, even zero arguments, are allowed.
2712 usage: (list &rest OBJECTS) */)
2713 (size_t nargs, register Lisp_Object *args)
2715 register Lisp_Object val;
2716 val = Qnil;
2718 while (nargs > 0)
2720 nargs--;
2721 val = Fcons (args[nargs], val);
2723 return val;
2727 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2728 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2729 (register Lisp_Object length, Lisp_Object init)
2731 register Lisp_Object val;
2732 register EMACS_INT size;
2734 CHECK_NATNUM (length);
2735 size = XFASTINT (length);
2737 val = Qnil;
2738 while (size > 0)
2740 val = Fcons (init, val);
2741 --size;
2743 if (size > 0)
2745 val = Fcons (init, val);
2746 --size;
2748 if (size > 0)
2750 val = Fcons (init, val);
2751 --size;
2753 if (size > 0)
2755 val = Fcons (init, val);
2756 --size;
2758 if (size > 0)
2760 val = Fcons (init, val);
2761 --size;
2767 QUIT;
2770 return val;
2775 /***********************************************************************
2776 Vector Allocation
2777 ***********************************************************************/
2779 /* Singly-linked list of all vectors. */
2781 static struct Lisp_Vector *all_vectors;
2783 /* Total number of vector-like objects now in use. */
2785 static int n_vectors;
2788 /* Value is a pointer to a newly allocated Lisp_Vector structure
2789 with room for LEN Lisp_Objects. */
2791 static struct Lisp_Vector *
2792 allocate_vectorlike (EMACS_INT len)
2794 struct Lisp_Vector *p;
2795 size_t nbytes;
2797 MALLOC_BLOCK_INPUT;
2799 #ifdef DOUG_LEA_MALLOC
2800 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2801 because mapped region contents are not preserved in
2802 a dumped Emacs. */
2803 mallopt (M_MMAP_MAX, 0);
2804 #endif
2806 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2807 /* eassert (!handling_signal); */
2809 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2810 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2812 #ifdef DOUG_LEA_MALLOC
2813 /* Back to a reasonable maximum of mmap'ed areas. */
2814 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2815 #endif
2817 consing_since_gc += nbytes;
2818 vector_cells_consed += len;
2820 p->next = all_vectors;
2821 all_vectors = p;
2823 MALLOC_UNBLOCK_INPUT;
2825 ++n_vectors;
2826 return p;
2830 /* Allocate a vector with NSLOTS slots. */
2832 struct Lisp_Vector *
2833 allocate_vector (EMACS_INT nslots)
2835 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2836 v->size = nslots;
2837 return v;
2841 /* Allocate other vector-like structures. */
2843 struct Lisp_Vector *
2844 allocate_pseudovector (int memlen, int lisplen, EMACS_INT tag)
2846 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2847 EMACS_INT i;
2849 /* Only the first lisplen slots will be traced normally by the GC. */
2850 v->size = lisplen;
2851 for (i = 0; i < lisplen; ++i)
2852 v->contents[i] = Qnil;
2854 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2855 return v;
2858 struct Lisp_Hash_Table *
2859 allocate_hash_table (void)
2861 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2865 struct window *
2866 allocate_window (void)
2868 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
2872 struct terminal *
2873 allocate_terminal (void)
2875 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
2876 next_terminal, PVEC_TERMINAL);
2877 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2878 memset (&t->next_terminal, 0,
2879 (char*) (t + 1) - (char*) &t->next_terminal);
2881 return t;
2884 struct frame *
2885 allocate_frame (void)
2887 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
2888 face_cache, PVEC_FRAME);
2889 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2890 memset (&f->face_cache, 0,
2891 (char *) (f + 1) - (char *) &f->face_cache);
2892 return f;
2896 struct Lisp_Process *
2897 allocate_process (void)
2899 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
2903 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2904 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2905 See also the function `vector'. */)
2906 (register Lisp_Object length, Lisp_Object init)
2908 Lisp_Object vector;
2909 register EMACS_INT sizei;
2910 register EMACS_INT i;
2911 register struct Lisp_Vector *p;
2913 CHECK_NATNUM (length);
2914 sizei = XFASTINT (length);
2916 p = allocate_vector (sizei);
2917 for (i = 0; i < sizei; i++)
2918 p->contents[i] = init;
2920 XSETVECTOR (vector, p);
2921 return vector;
2925 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2926 doc: /* Return a newly created vector with specified arguments as elements.
2927 Any number of arguments, even zero arguments, are allowed.
2928 usage: (vector &rest OBJECTS) */)
2929 (register size_t nargs, Lisp_Object *args)
2931 register Lisp_Object len, val;
2932 register size_t i;
2933 register struct Lisp_Vector *p;
2935 XSETFASTINT (len, nargs);
2936 val = Fmake_vector (len, Qnil);
2937 p = XVECTOR (val);
2938 for (i = 0; i < nargs; i++)
2939 p->contents[i] = args[i];
2940 return val;
2944 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2945 doc: /* Create a byte-code object with specified arguments as elements.
2946 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
2947 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
2948 and (optional) INTERACTIVE-SPEC.
2949 The first four arguments are required; at most six have any
2950 significance.
2951 The ARGLIST can be either like the one of `lambda', in which case the arguments
2952 will be dynamically bound before executing the byte code, or it can be an
2953 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
2954 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
2955 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
2956 argument to catch the left-over arguments. If such an integer is used, the
2957 arguments will not be dynamically bound but will be instead pushed on the
2958 stack before executing the byte-code.
2959 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2960 (register size_t nargs, Lisp_Object *args)
2962 register Lisp_Object len, val;
2963 register size_t i;
2964 register struct Lisp_Vector *p;
2966 XSETFASTINT (len, nargs);
2967 if (!NILP (Vpurify_flag))
2968 val = make_pure_vector ((EMACS_INT) nargs);
2969 else
2970 val = Fmake_vector (len, Qnil);
2972 if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2973 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2974 earlier because they produced a raw 8-bit string for byte-code
2975 and now such a byte-code string is loaded as multibyte while
2976 raw 8-bit characters converted to multibyte form. Thus, now we
2977 must convert them back to the original unibyte form. */
2978 args[1] = Fstring_as_unibyte (args[1]);
2980 p = XVECTOR (val);
2981 for (i = 0; i < nargs; i++)
2983 if (!NILP (Vpurify_flag))
2984 args[i] = Fpurecopy (args[i]);
2985 p->contents[i] = args[i];
2987 XSETPVECTYPE (p, PVEC_COMPILED);
2988 XSETCOMPILED (val, p);
2989 return val;
2994 /***********************************************************************
2995 Symbol Allocation
2996 ***********************************************************************/
2998 /* Each symbol_block is just under 1020 bytes long, since malloc
2999 really allocates in units of powers of two and uses 4 bytes for its
3000 own overhead. */
3002 #define SYMBOL_BLOCK_SIZE \
3003 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3005 struct symbol_block
3007 /* Place `symbols' first, to preserve alignment. */
3008 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3009 struct symbol_block *next;
3012 /* Current symbol block and index of first unused Lisp_Symbol
3013 structure in it. */
3015 static struct symbol_block *symbol_block;
3016 static int symbol_block_index;
3018 /* List of free symbols. */
3020 static struct Lisp_Symbol *symbol_free_list;
3022 /* Total number of symbol blocks now in use. */
3024 static int n_symbol_blocks;
3027 /* Initialize symbol allocation. */
3029 static void
3030 init_symbol (void)
3032 symbol_block = NULL;
3033 symbol_block_index = SYMBOL_BLOCK_SIZE;
3034 symbol_free_list = 0;
3035 n_symbol_blocks = 0;
3039 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3040 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3041 Its value and function definition are void, and its property list is nil. */)
3042 (Lisp_Object name)
3044 register Lisp_Object val;
3045 register struct Lisp_Symbol *p;
3047 CHECK_STRING (name);
3049 /* eassert (!handling_signal); */
3051 MALLOC_BLOCK_INPUT;
3053 if (symbol_free_list)
3055 XSETSYMBOL (val, symbol_free_list);
3056 symbol_free_list = symbol_free_list->next;
3058 else
3060 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3062 struct symbol_block *new;
3063 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3064 MEM_TYPE_SYMBOL);
3065 new->next = symbol_block;
3066 symbol_block = new;
3067 symbol_block_index = 0;
3068 n_symbol_blocks++;
3070 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3071 symbol_block_index++;
3074 MALLOC_UNBLOCK_INPUT;
3076 p = XSYMBOL (val);
3077 p->xname = name;
3078 p->plist = Qnil;
3079 p->redirect = SYMBOL_PLAINVAL;
3080 SET_SYMBOL_VAL (p, Qunbound);
3081 p->function = Qunbound;
3082 p->next = NULL;
3083 p->gcmarkbit = 0;
3084 p->interned = SYMBOL_UNINTERNED;
3085 p->constant = 0;
3086 p->declared_special = 0;
3087 consing_since_gc += sizeof (struct Lisp_Symbol);
3088 symbols_consed++;
3089 return val;
3094 /***********************************************************************
3095 Marker (Misc) Allocation
3096 ***********************************************************************/
3098 /* Allocation of markers and other objects that share that structure.
3099 Works like allocation of conses. */
3101 #define MARKER_BLOCK_SIZE \
3102 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3104 struct marker_block
3106 /* Place `markers' first, to preserve alignment. */
3107 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3108 struct marker_block *next;
3111 static struct marker_block *marker_block;
3112 static int marker_block_index;
3114 static union Lisp_Misc *marker_free_list;
3116 /* Total number of marker blocks now in use. */
3118 static int n_marker_blocks;
3120 static void
3121 init_marker (void)
3123 marker_block = NULL;
3124 marker_block_index = MARKER_BLOCK_SIZE;
3125 marker_free_list = 0;
3126 n_marker_blocks = 0;
3129 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3131 Lisp_Object
3132 allocate_misc (void)
3134 Lisp_Object val;
3136 /* eassert (!handling_signal); */
3138 MALLOC_BLOCK_INPUT;
3140 if (marker_free_list)
3142 XSETMISC (val, marker_free_list);
3143 marker_free_list = marker_free_list->u_free.chain;
3145 else
3147 if (marker_block_index == MARKER_BLOCK_SIZE)
3149 struct marker_block *new;
3150 new = (struct marker_block *) lisp_malloc (sizeof *new,
3151 MEM_TYPE_MISC);
3152 new->next = marker_block;
3153 marker_block = new;
3154 marker_block_index = 0;
3155 n_marker_blocks++;
3156 total_free_markers += MARKER_BLOCK_SIZE;
3158 XSETMISC (val, &marker_block->markers[marker_block_index]);
3159 marker_block_index++;
3162 MALLOC_UNBLOCK_INPUT;
3164 --total_free_markers;
3165 consing_since_gc += sizeof (union Lisp_Misc);
3166 misc_objects_consed++;
3167 XMISCANY (val)->gcmarkbit = 0;
3168 return val;
3171 /* Free a Lisp_Misc object */
3173 static void
3174 free_misc (Lisp_Object misc)
3176 XMISCTYPE (misc) = Lisp_Misc_Free;
3177 XMISC (misc)->u_free.chain = marker_free_list;
3178 marker_free_list = XMISC (misc);
3180 total_free_markers++;
3183 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3184 INTEGER. This is used to package C values to call record_unwind_protect.
3185 The unwind function can get the C values back using XSAVE_VALUE. */
3187 Lisp_Object
3188 make_save_value (void *pointer, int integer)
3190 register Lisp_Object val;
3191 register struct Lisp_Save_Value *p;
3193 val = allocate_misc ();
3194 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3195 p = XSAVE_VALUE (val);
3196 p->pointer = pointer;
3197 p->integer = integer;
3198 p->dogc = 0;
3199 return val;
3202 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3203 doc: /* Return a newly allocated marker which does not point at any place. */)
3204 (void)
3206 register Lisp_Object val;
3207 register struct Lisp_Marker *p;
3209 val = allocate_misc ();
3210 XMISCTYPE (val) = Lisp_Misc_Marker;
3211 p = XMARKER (val);
3212 p->buffer = 0;
3213 p->bytepos = 0;
3214 p->charpos = 0;
3215 p->next = NULL;
3216 p->insertion_type = 0;
3217 return val;
3220 /* Put MARKER back on the free list after using it temporarily. */
3222 void
3223 free_marker (Lisp_Object marker)
3225 unchain_marker (XMARKER (marker));
3226 free_misc (marker);
3230 /* Return a newly created vector or string with specified arguments as
3231 elements. If all the arguments are characters that can fit
3232 in a string of events, make a string; otherwise, make a vector.
3234 Any number of arguments, even zero arguments, are allowed. */
3236 Lisp_Object
3237 make_event_array (register int nargs, Lisp_Object *args)
3239 int i;
3241 for (i = 0; i < nargs; i++)
3242 /* The things that fit in a string
3243 are characters that are in 0...127,
3244 after discarding the meta bit and all the bits above it. */
3245 if (!INTEGERP (args[i])
3246 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3247 return Fvector (nargs, args);
3249 /* Since the loop exited, we know that all the things in it are
3250 characters, so we can make a string. */
3252 Lisp_Object result;
3254 result = Fmake_string (make_number (nargs), make_number (0));
3255 for (i = 0; i < nargs; i++)
3257 SSET (result, i, XINT (args[i]));
3258 /* Move the meta bit to the right place for a string char. */
3259 if (XINT (args[i]) & CHAR_META)
3260 SSET (result, i, SREF (result, i) | 0x80);
3263 return result;
3269 /************************************************************************
3270 Memory Full Handling
3271 ************************************************************************/
3274 /* Called if malloc returns zero. */
3276 void
3277 memory_full (void)
3279 int i;
3281 Vmemory_full = Qt;
3283 memory_full_cons_threshold = sizeof (struct cons_block);
3285 /* The first time we get here, free the spare memory. */
3286 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3287 if (spare_memory[i])
3289 if (i == 0)
3290 free (spare_memory[i]);
3291 else if (i >= 1 && i <= 4)
3292 lisp_align_free (spare_memory[i]);
3293 else
3294 lisp_free (spare_memory[i]);
3295 spare_memory[i] = 0;
3298 /* Record the space now used. When it decreases substantially,
3299 we can refill the memory reserve. */
3300 #if !defined SYSTEM_MALLOC && !defined SYNC_INPUT
3301 bytes_used_when_full = BYTES_USED;
3302 #endif
3304 /* This used to call error, but if we've run out of memory, we could
3305 get infinite recursion trying to build the string. */
3306 xsignal (Qnil, Vmemory_signal_data);
3309 /* If we released our reserve (due to running out of memory),
3310 and we have a fair amount free once again,
3311 try to set aside another reserve in case we run out once more.
3313 This is called when a relocatable block is freed in ralloc.c,
3314 and also directly from this file, in case we're not using ralloc.c. */
3316 void
3317 refill_memory_reserve (void)
3319 #ifndef SYSTEM_MALLOC
3320 if (spare_memory[0] == 0)
3321 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3322 if (spare_memory[1] == 0)
3323 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3324 MEM_TYPE_CONS);
3325 if (spare_memory[2] == 0)
3326 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3327 MEM_TYPE_CONS);
3328 if (spare_memory[3] == 0)
3329 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3330 MEM_TYPE_CONS);
3331 if (spare_memory[4] == 0)
3332 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3333 MEM_TYPE_CONS);
3334 if (spare_memory[5] == 0)
3335 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3336 MEM_TYPE_STRING);
3337 if (spare_memory[6] == 0)
3338 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3339 MEM_TYPE_STRING);
3340 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3341 Vmemory_full = Qnil;
3342 #endif
3345 /************************************************************************
3346 C Stack Marking
3347 ************************************************************************/
3349 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3351 /* Conservative C stack marking requires a method to identify possibly
3352 live Lisp objects given a pointer value. We do this by keeping
3353 track of blocks of Lisp data that are allocated in a red-black tree
3354 (see also the comment of mem_node which is the type of nodes in
3355 that tree). Function lisp_malloc adds information for an allocated
3356 block to the red-black tree with calls to mem_insert, and function
3357 lisp_free removes it with mem_delete. Functions live_string_p etc
3358 call mem_find to lookup information about a given pointer in the
3359 tree, and use that to determine if the pointer points to a Lisp
3360 object or not. */
3362 /* Initialize this part of alloc.c. */
3364 static void
3365 mem_init (void)
3367 mem_z.left = mem_z.right = MEM_NIL;
3368 mem_z.parent = NULL;
3369 mem_z.color = MEM_BLACK;
3370 mem_z.start = mem_z.end = NULL;
3371 mem_root = MEM_NIL;
3375 /* Value is a pointer to the mem_node containing START. Value is
3376 MEM_NIL if there is no node in the tree containing START. */
3378 static INLINE struct mem_node *
3379 mem_find (void *start)
3381 struct mem_node *p;
3383 if (start < min_heap_address || start > max_heap_address)
3384 return MEM_NIL;
3386 /* Make the search always successful to speed up the loop below. */
3387 mem_z.start = start;
3388 mem_z.end = (char *) start + 1;
3390 p = mem_root;
3391 while (start < p->start || start >= p->end)
3392 p = start < p->start ? p->left : p->right;
3393 return p;
3397 /* Insert a new node into the tree for a block of memory with start
3398 address START, end address END, and type TYPE. Value is a
3399 pointer to the node that was inserted. */
3401 static struct mem_node *
3402 mem_insert (void *start, void *end, enum mem_type type)
3404 struct mem_node *c, *parent, *x;
3406 if (min_heap_address == NULL || start < min_heap_address)
3407 min_heap_address = start;
3408 if (max_heap_address == NULL || end > max_heap_address)
3409 max_heap_address = end;
3411 /* See where in the tree a node for START belongs. In this
3412 particular application, it shouldn't happen that a node is already
3413 present. For debugging purposes, let's check that. */
3414 c = mem_root;
3415 parent = NULL;
3417 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3419 while (c != MEM_NIL)
3421 if (start >= c->start && start < c->end)
3422 abort ();
3423 parent = c;
3424 c = start < c->start ? c->left : c->right;
3427 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3429 while (c != MEM_NIL)
3431 parent = c;
3432 c = start < c->start ? c->left : c->right;
3435 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3437 /* Create a new node. */
3438 #ifdef GC_MALLOC_CHECK
3439 x = (struct mem_node *) _malloc_internal (sizeof *x);
3440 if (x == NULL)
3441 abort ();
3442 #else
3443 x = (struct mem_node *) xmalloc (sizeof *x);
3444 #endif
3445 x->start = start;
3446 x->end = end;
3447 x->type = type;
3448 x->parent = parent;
3449 x->left = x->right = MEM_NIL;
3450 x->color = MEM_RED;
3452 /* Insert it as child of PARENT or install it as root. */
3453 if (parent)
3455 if (start < parent->start)
3456 parent->left = x;
3457 else
3458 parent->right = x;
3460 else
3461 mem_root = x;
3463 /* Re-establish red-black tree properties. */
3464 mem_insert_fixup (x);
3466 return x;
3470 /* Re-establish the red-black properties of the tree, and thereby
3471 balance the tree, after node X has been inserted; X is always red. */
3473 static void
3474 mem_insert_fixup (struct mem_node *x)
3476 while (x != mem_root && x->parent->color == MEM_RED)
3478 /* X is red and its parent is red. This is a violation of
3479 red-black tree property #3. */
3481 if (x->parent == x->parent->parent->left)
3483 /* We're on the left side of our grandparent, and Y is our
3484 "uncle". */
3485 struct mem_node *y = x->parent->parent->right;
3487 if (y->color == MEM_RED)
3489 /* Uncle and parent are red but should be black because
3490 X is red. Change the colors accordingly and proceed
3491 with the grandparent. */
3492 x->parent->color = MEM_BLACK;
3493 y->color = MEM_BLACK;
3494 x->parent->parent->color = MEM_RED;
3495 x = x->parent->parent;
3497 else
3499 /* Parent and uncle have different colors; parent is
3500 red, uncle is black. */
3501 if (x == x->parent->right)
3503 x = x->parent;
3504 mem_rotate_left (x);
3507 x->parent->color = MEM_BLACK;
3508 x->parent->parent->color = MEM_RED;
3509 mem_rotate_right (x->parent->parent);
3512 else
3514 /* This is the symmetrical case of above. */
3515 struct mem_node *y = x->parent->parent->left;
3517 if (y->color == MEM_RED)
3519 x->parent->color = MEM_BLACK;
3520 y->color = MEM_BLACK;
3521 x->parent->parent->color = MEM_RED;
3522 x = x->parent->parent;
3524 else
3526 if (x == x->parent->left)
3528 x = x->parent;
3529 mem_rotate_right (x);
3532 x->parent->color = MEM_BLACK;
3533 x->parent->parent->color = MEM_RED;
3534 mem_rotate_left (x->parent->parent);
3539 /* The root may have been changed to red due to the algorithm. Set
3540 it to black so that property #5 is satisfied. */
3541 mem_root->color = MEM_BLACK;
3545 /* (x) (y)
3546 / \ / \
3547 a (y) ===> (x) c
3548 / \ / \
3549 b c a b */
3551 static void
3552 mem_rotate_left (struct mem_node *x)
3554 struct mem_node *y;
3556 /* Turn y's left sub-tree into x's right sub-tree. */
3557 y = x->right;
3558 x->right = y->left;
3559 if (y->left != MEM_NIL)
3560 y->left->parent = x;
3562 /* Y's parent was x's parent. */
3563 if (y != MEM_NIL)
3564 y->parent = x->parent;
3566 /* Get the parent to point to y instead of x. */
3567 if (x->parent)
3569 if (x == x->parent->left)
3570 x->parent->left = y;
3571 else
3572 x->parent->right = y;
3574 else
3575 mem_root = y;
3577 /* Put x on y's left. */
3578 y->left = x;
3579 if (x != MEM_NIL)
3580 x->parent = y;
3584 /* (x) (Y)
3585 / \ / \
3586 (y) c ===> a (x)
3587 / \ / \
3588 a b b c */
3590 static void
3591 mem_rotate_right (struct mem_node *x)
3593 struct mem_node *y = x->left;
3595 x->left = y->right;
3596 if (y->right != MEM_NIL)
3597 y->right->parent = x;
3599 if (y != MEM_NIL)
3600 y->parent = x->parent;
3601 if (x->parent)
3603 if (x == x->parent->right)
3604 x->parent->right = y;
3605 else
3606 x->parent->left = y;
3608 else
3609 mem_root = y;
3611 y->right = x;
3612 if (x != MEM_NIL)
3613 x->parent = y;
3617 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3619 static void
3620 mem_delete (struct mem_node *z)
3622 struct mem_node *x, *y;
3624 if (!z || z == MEM_NIL)
3625 return;
3627 if (z->left == MEM_NIL || z->right == MEM_NIL)
3628 y = z;
3629 else
3631 y = z->right;
3632 while (y->left != MEM_NIL)
3633 y = y->left;
3636 if (y->left != MEM_NIL)
3637 x = y->left;
3638 else
3639 x = y->right;
3641 x->parent = y->parent;
3642 if (y->parent)
3644 if (y == y->parent->left)
3645 y->parent->left = x;
3646 else
3647 y->parent->right = x;
3649 else
3650 mem_root = x;
3652 if (y != z)
3654 z->start = y->start;
3655 z->end = y->end;
3656 z->type = y->type;
3659 if (y->color == MEM_BLACK)
3660 mem_delete_fixup (x);
3662 #ifdef GC_MALLOC_CHECK
3663 _free_internal (y);
3664 #else
3665 xfree (y);
3666 #endif
3670 /* Re-establish the red-black properties of the tree, after a
3671 deletion. */
3673 static void
3674 mem_delete_fixup (struct mem_node *x)
3676 while (x != mem_root && x->color == MEM_BLACK)
3678 if (x == x->parent->left)
3680 struct mem_node *w = x->parent->right;
3682 if (w->color == MEM_RED)
3684 w->color = MEM_BLACK;
3685 x->parent->color = MEM_RED;
3686 mem_rotate_left (x->parent);
3687 w = x->parent->right;
3690 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3692 w->color = MEM_RED;
3693 x = x->parent;
3695 else
3697 if (w->right->color == MEM_BLACK)
3699 w->left->color = MEM_BLACK;
3700 w->color = MEM_RED;
3701 mem_rotate_right (w);
3702 w = x->parent->right;
3704 w->color = x->parent->color;
3705 x->parent->color = MEM_BLACK;
3706 w->right->color = MEM_BLACK;
3707 mem_rotate_left (x->parent);
3708 x = mem_root;
3711 else
3713 struct mem_node *w = x->parent->left;
3715 if (w->color == MEM_RED)
3717 w->color = MEM_BLACK;
3718 x->parent->color = MEM_RED;
3719 mem_rotate_right (x->parent);
3720 w = x->parent->left;
3723 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3725 w->color = MEM_RED;
3726 x = x->parent;
3728 else
3730 if (w->left->color == MEM_BLACK)
3732 w->right->color = MEM_BLACK;
3733 w->color = MEM_RED;
3734 mem_rotate_left (w);
3735 w = x->parent->left;
3738 w->color = x->parent->color;
3739 x->parent->color = MEM_BLACK;
3740 w->left->color = MEM_BLACK;
3741 mem_rotate_right (x->parent);
3742 x = mem_root;
3747 x->color = MEM_BLACK;
3751 /* Value is non-zero if P is a pointer to a live Lisp string on
3752 the heap. M is a pointer to the mem_block for P. */
3754 static INLINE int
3755 live_string_p (struct mem_node *m, void *p)
3757 if (m->type == MEM_TYPE_STRING)
3759 struct string_block *b = (struct string_block *) m->start;
3760 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
3762 /* P must point to the start of a Lisp_String structure, and it
3763 must not be on the free-list. */
3764 return (offset >= 0
3765 && offset % sizeof b->strings[0] == 0
3766 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3767 && ((struct Lisp_String *) p)->data != NULL);
3769 else
3770 return 0;
3774 /* Value is non-zero if P is a pointer to a live Lisp cons on
3775 the heap. M is a pointer to the mem_block for P. */
3777 static INLINE int
3778 live_cons_p (struct mem_node *m, void *p)
3780 if (m->type == MEM_TYPE_CONS)
3782 struct cons_block *b = (struct cons_block *) m->start;
3783 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
3785 /* P must point to the start of a Lisp_Cons, not be
3786 one of the unused cells in the current cons block,
3787 and not be on the free-list. */
3788 return (offset >= 0
3789 && offset % sizeof b->conses[0] == 0
3790 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3791 && (b != cons_block
3792 || offset / sizeof b->conses[0] < cons_block_index)
3793 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3795 else
3796 return 0;
3800 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3801 the heap. M is a pointer to the mem_block for P. */
3803 static INLINE int
3804 live_symbol_p (struct mem_node *m, void *p)
3806 if (m->type == MEM_TYPE_SYMBOL)
3808 struct symbol_block *b = (struct symbol_block *) m->start;
3809 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
3811 /* P must point to the start of a Lisp_Symbol, not be
3812 one of the unused cells in the current symbol block,
3813 and not be on the free-list. */
3814 return (offset >= 0
3815 && offset % sizeof b->symbols[0] == 0
3816 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3817 && (b != symbol_block
3818 || offset / sizeof b->symbols[0] < symbol_block_index)
3819 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3821 else
3822 return 0;
3826 /* Value is non-zero if P is a pointer to a live Lisp float on
3827 the heap. M is a pointer to the mem_block for P. */
3829 static INLINE int
3830 live_float_p (struct mem_node *m, void *p)
3832 if (m->type == MEM_TYPE_FLOAT)
3834 struct float_block *b = (struct float_block *) m->start;
3835 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
3837 /* P must point to the start of a Lisp_Float and not be
3838 one of the unused cells in the current float block. */
3839 return (offset >= 0
3840 && offset % sizeof b->floats[0] == 0
3841 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3842 && (b != float_block
3843 || offset / sizeof b->floats[0] < float_block_index));
3845 else
3846 return 0;
3850 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3851 the heap. M is a pointer to the mem_block for P. */
3853 static INLINE int
3854 live_misc_p (struct mem_node *m, void *p)
3856 if (m->type == MEM_TYPE_MISC)
3858 struct marker_block *b = (struct marker_block *) m->start;
3859 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
3861 /* P must point to the start of a Lisp_Misc, not be
3862 one of the unused cells in the current misc block,
3863 and not be on the free-list. */
3864 return (offset >= 0
3865 && offset % sizeof b->markers[0] == 0
3866 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3867 && (b != marker_block
3868 || offset / sizeof b->markers[0] < marker_block_index)
3869 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
3871 else
3872 return 0;
3876 /* Value is non-zero if P is a pointer to a live vector-like object.
3877 M is a pointer to the mem_block for P. */
3879 static INLINE int
3880 live_vector_p (struct mem_node *m, void *p)
3882 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
3886 /* Value is non-zero if P is a pointer to a live buffer. M is a
3887 pointer to the mem_block for P. */
3889 static INLINE int
3890 live_buffer_p (struct mem_node *m, void *p)
3892 /* P must point to the start of the block, and the buffer
3893 must not have been killed. */
3894 return (m->type == MEM_TYPE_BUFFER
3895 && p == m->start
3896 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
3899 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3901 #if GC_MARK_STACK
3903 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3905 /* Array of objects that are kept alive because the C stack contains
3906 a pattern that looks like a reference to them . */
3908 #define MAX_ZOMBIES 10
3909 static Lisp_Object zombies[MAX_ZOMBIES];
3911 /* Number of zombie objects. */
3913 static int nzombies;
3915 /* Number of garbage collections. */
3917 static int ngcs;
3919 /* Average percentage of zombies per collection. */
3921 static double avg_zombies;
3923 /* Max. number of live and zombie objects. */
3925 static int max_live, max_zombies;
3927 /* Average number of live objects per GC. */
3929 static double avg_live;
3931 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3932 doc: /* Show information about live and zombie objects. */)
3933 (void)
3935 Lisp_Object args[8], zombie_list = Qnil;
3936 int i;
3937 for (i = 0; i < nzombies; i++)
3938 zombie_list = Fcons (zombies[i], zombie_list);
3939 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3940 args[1] = make_number (ngcs);
3941 args[2] = make_float (avg_live);
3942 args[3] = make_float (avg_zombies);
3943 args[4] = make_float (avg_zombies / avg_live / 100);
3944 args[5] = make_number (max_live);
3945 args[6] = make_number (max_zombies);
3946 args[7] = zombie_list;
3947 return Fmessage (8, args);
3950 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3953 /* Mark OBJ if we can prove it's a Lisp_Object. */
3955 static INLINE void
3956 mark_maybe_object (Lisp_Object obj)
3958 void *po;
3959 struct mem_node *m;
3961 if (INTEGERP (obj))
3962 return;
3964 po = (void *) XPNTR (obj);
3965 m = mem_find (po);
3967 if (m != MEM_NIL)
3969 int mark_p = 0;
3971 switch (XTYPE (obj))
3973 case Lisp_String:
3974 mark_p = (live_string_p (m, po)
3975 && !STRING_MARKED_P ((struct Lisp_String *) po));
3976 break;
3978 case Lisp_Cons:
3979 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
3980 break;
3982 case Lisp_Symbol:
3983 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
3984 break;
3986 case Lisp_Float:
3987 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
3988 break;
3990 case Lisp_Vectorlike:
3991 /* Note: can't check BUFFERP before we know it's a
3992 buffer because checking that dereferences the pointer
3993 PO which might point anywhere. */
3994 if (live_vector_p (m, po))
3995 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
3996 else if (live_buffer_p (m, po))
3997 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
3998 break;
4000 case Lisp_Misc:
4001 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4002 break;
4004 default:
4005 break;
4008 if (mark_p)
4010 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4011 if (nzombies < MAX_ZOMBIES)
4012 zombies[nzombies] = obj;
4013 ++nzombies;
4014 #endif
4015 mark_object (obj);
4021 /* If P points to Lisp data, mark that as live if it isn't already
4022 marked. */
4024 static INLINE void
4025 mark_maybe_pointer (void *p)
4027 struct mem_node *m;
4029 /* Quickly rule out some values which can't point to Lisp data. */
4030 if ((EMACS_INT) p %
4031 #ifdef USE_LSB_TAG
4032 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4033 #else
4034 2 /* We assume that Lisp data is aligned on even addresses. */
4035 #endif
4037 return;
4039 m = mem_find (p);
4040 if (m != MEM_NIL)
4042 Lisp_Object obj = Qnil;
4044 switch (m->type)
4046 case MEM_TYPE_NON_LISP:
4047 /* Nothing to do; not a pointer to Lisp memory. */
4048 break;
4050 case MEM_TYPE_BUFFER:
4051 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4052 XSETVECTOR (obj, p);
4053 break;
4055 case MEM_TYPE_CONS:
4056 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4057 XSETCONS (obj, p);
4058 break;
4060 case MEM_TYPE_STRING:
4061 if (live_string_p (m, p)
4062 && !STRING_MARKED_P ((struct Lisp_String *) p))
4063 XSETSTRING (obj, p);
4064 break;
4066 case MEM_TYPE_MISC:
4067 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4068 XSETMISC (obj, p);
4069 break;
4071 case MEM_TYPE_SYMBOL:
4072 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4073 XSETSYMBOL (obj, p);
4074 break;
4076 case MEM_TYPE_FLOAT:
4077 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4078 XSETFLOAT (obj, p);
4079 break;
4081 case MEM_TYPE_VECTORLIKE:
4082 if (live_vector_p (m, p))
4084 Lisp_Object tem;
4085 XSETVECTOR (tem, p);
4086 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4087 obj = tem;
4089 break;
4091 default:
4092 abort ();
4095 if (!NILP (obj))
4096 mark_object (obj);
4101 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4102 or END+OFFSET..START. */
4104 static void
4105 mark_memory (void *start, void *end, int offset)
4107 Lisp_Object *p;
4108 void **pp;
4110 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4111 nzombies = 0;
4112 #endif
4114 /* Make START the pointer to the start of the memory region,
4115 if it isn't already. */
4116 if (end < start)
4118 void *tem = start;
4119 start = end;
4120 end = tem;
4123 /* Mark Lisp_Objects. */
4124 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4125 mark_maybe_object (*p);
4127 /* Mark Lisp data pointed to. This is necessary because, in some
4128 situations, the C compiler optimizes Lisp objects away, so that
4129 only a pointer to them remains. Example:
4131 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4134 Lisp_Object obj = build_string ("test");
4135 struct Lisp_String *s = XSTRING (obj);
4136 Fgarbage_collect ();
4137 fprintf (stderr, "test `%s'\n", s->data);
4138 return Qnil;
4141 Here, `obj' isn't really used, and the compiler optimizes it
4142 away. The only reference to the life string is through the
4143 pointer `s'. */
4145 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4146 mark_maybe_pointer (*pp);
4149 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4150 the GCC system configuration. In gcc 3.2, the only systems for
4151 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4152 by others?) and ns32k-pc532-min. */
4154 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4156 static int setjmp_tested_p, longjmps_done;
4158 #define SETJMP_WILL_LIKELY_WORK "\
4160 Emacs garbage collector has been changed to use conservative stack\n\
4161 marking. Emacs has determined that the method it uses to do the\n\
4162 marking will likely work on your system, but this isn't sure.\n\
4164 If you are a system-programmer, or can get the help of a local wizard\n\
4165 who is, please take a look at the function mark_stack in alloc.c, and\n\
4166 verify that the methods used are appropriate for your system.\n\
4168 Please mail the result to <emacs-devel@gnu.org>.\n\
4171 #define SETJMP_WILL_NOT_WORK "\
4173 Emacs garbage collector has been changed to use conservative stack\n\
4174 marking. Emacs has determined that the default method it uses to do the\n\
4175 marking will not work on your system. We will need a system-dependent\n\
4176 solution for your system.\n\
4178 Please take a look at the function mark_stack in alloc.c, and\n\
4179 try to find a way to make it work on your system.\n\
4181 Note that you may get false negatives, depending on the compiler.\n\
4182 In particular, you need to use -O with GCC for this test.\n\
4184 Please mail the result to <emacs-devel@gnu.org>.\n\
4188 /* Perform a quick check if it looks like setjmp saves registers in a
4189 jmp_buf. Print a message to stderr saying so. When this test
4190 succeeds, this is _not_ a proof that setjmp is sufficient for
4191 conservative stack marking. Only the sources or a disassembly
4192 can prove that. */
4194 static void
4195 test_setjmp (void)
4197 char buf[10];
4198 register int x;
4199 jmp_buf jbuf;
4200 int result = 0;
4202 /* Arrange for X to be put in a register. */
4203 sprintf (buf, "1");
4204 x = strlen (buf);
4205 x = 2 * x - 1;
4207 setjmp (jbuf);
4208 if (longjmps_done == 1)
4210 /* Came here after the longjmp at the end of the function.
4212 If x == 1, the longjmp has restored the register to its
4213 value before the setjmp, and we can hope that setjmp
4214 saves all such registers in the jmp_buf, although that
4215 isn't sure.
4217 For other values of X, either something really strange is
4218 taking place, or the setjmp just didn't save the register. */
4220 if (x == 1)
4221 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4222 else
4224 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4225 exit (1);
4229 ++longjmps_done;
4230 x = 2;
4231 if (longjmps_done == 1)
4232 longjmp (jbuf, 1);
4235 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4238 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4240 /* Abort if anything GCPRO'd doesn't survive the GC. */
4242 static void
4243 check_gcpros (void)
4245 struct gcpro *p;
4246 size_t i;
4248 for (p = gcprolist; p; p = p->next)
4249 for (i = 0; i < p->nvars; ++i)
4250 if (!survives_gc_p (p->var[i]))
4251 /* FIXME: It's not necessarily a bug. It might just be that the
4252 GCPRO is unnecessary or should release the object sooner. */
4253 abort ();
4256 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4258 static void
4259 dump_zombies (void)
4261 int i;
4263 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4264 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4266 fprintf (stderr, " %d = ", i);
4267 debug_print (zombies[i]);
4271 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4274 /* Mark live Lisp objects on the C stack.
4276 There are several system-dependent problems to consider when
4277 porting this to new architectures:
4279 Processor Registers
4281 We have to mark Lisp objects in CPU registers that can hold local
4282 variables or are used to pass parameters.
4284 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4285 something that either saves relevant registers on the stack, or
4286 calls mark_maybe_object passing it each register's contents.
4288 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4289 implementation assumes that calling setjmp saves registers we need
4290 to see in a jmp_buf which itself lies on the stack. This doesn't
4291 have to be true! It must be verified for each system, possibly
4292 by taking a look at the source code of setjmp.
4294 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4295 can use it as a machine independent method to store all registers
4296 to the stack. In this case the macros described in the previous
4297 two paragraphs are not used.
4299 Stack Layout
4301 Architectures differ in the way their processor stack is organized.
4302 For example, the stack might look like this
4304 +----------------+
4305 | Lisp_Object | size = 4
4306 +----------------+
4307 | something else | size = 2
4308 +----------------+
4309 | Lisp_Object | size = 4
4310 +----------------+
4311 | ... |
4313 In such a case, not every Lisp_Object will be aligned equally. To
4314 find all Lisp_Object on the stack it won't be sufficient to walk
4315 the stack in steps of 4 bytes. Instead, two passes will be
4316 necessary, one starting at the start of the stack, and a second
4317 pass starting at the start of the stack + 2. Likewise, if the
4318 minimal alignment of Lisp_Objects on the stack is 1, four passes
4319 would be necessary, each one starting with one byte more offset
4320 from the stack start.
4322 The current code assumes by default that Lisp_Objects are aligned
4323 equally on the stack. */
4325 static void
4326 mark_stack (void)
4328 int i;
4329 void *end;
4331 #ifdef HAVE___BUILTIN_UNWIND_INIT
4332 /* Force callee-saved registers and register windows onto the stack.
4333 This is the preferred method if available, obviating the need for
4334 machine dependent methods. */
4335 __builtin_unwind_init ();
4336 end = &end;
4337 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4338 #ifndef GC_SAVE_REGISTERS_ON_STACK
4339 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4340 union aligned_jmpbuf {
4341 Lisp_Object o;
4342 jmp_buf j;
4343 } j;
4344 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4345 #endif
4346 /* This trick flushes the register windows so that all the state of
4347 the process is contained in the stack. */
4348 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4349 needed on ia64 too. See mach_dep.c, where it also says inline
4350 assembler doesn't work with relevant proprietary compilers. */
4351 #ifdef __sparc__
4352 #if defined (__sparc64__) && defined (__FreeBSD__)
4353 /* FreeBSD does not have a ta 3 handler. */
4354 asm ("flushw");
4355 #else
4356 asm ("ta 3");
4357 #endif
4358 #endif
4360 /* Save registers that we need to see on the stack. We need to see
4361 registers used to hold register variables and registers used to
4362 pass parameters. */
4363 #ifdef GC_SAVE_REGISTERS_ON_STACK
4364 GC_SAVE_REGISTERS_ON_STACK (end);
4365 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4367 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4368 setjmp will definitely work, test it
4369 and print a message with the result
4370 of the test. */
4371 if (!setjmp_tested_p)
4373 setjmp_tested_p = 1;
4374 test_setjmp ();
4376 #endif /* GC_SETJMP_WORKS */
4378 setjmp (j.j);
4379 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4380 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4381 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4383 /* This assumes that the stack is a contiguous region in memory. If
4384 that's not the case, something has to be done here to iterate
4385 over the stack segments. */
4386 #ifndef GC_LISP_OBJECT_ALIGNMENT
4387 #ifdef __GNUC__
4388 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4389 #else
4390 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4391 #endif
4392 #endif
4393 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4394 mark_memory (stack_base, end, i);
4395 /* Allow for marking a secondary stack, like the register stack on the
4396 ia64. */
4397 #ifdef GC_MARK_SECONDARY_STACK
4398 GC_MARK_SECONDARY_STACK ();
4399 #endif
4401 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4402 check_gcpros ();
4403 #endif
4406 #endif /* GC_MARK_STACK != 0 */
4409 /* Determine whether it is safe to access memory at address P. */
4410 static int
4411 valid_pointer_p (void *p)
4413 #ifdef WINDOWSNT
4414 return w32_valid_pointer_p (p, 16);
4415 #else
4416 int fd;
4418 /* Obviously, we cannot just access it (we would SEGV trying), so we
4419 trick the o/s to tell us whether p is a valid pointer.
4420 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4421 not validate p in that case. */
4423 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4425 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4426 emacs_close (fd);
4427 unlink ("__Valid__Lisp__Object__");
4428 return valid;
4431 return -1;
4432 #endif
4435 /* Return 1 if OBJ is a valid lisp object.
4436 Return 0 if OBJ is NOT a valid lisp object.
4437 Return -1 if we cannot validate OBJ.
4438 This function can be quite slow,
4439 so it should only be used in code for manual debugging. */
4442 valid_lisp_object_p (Lisp_Object obj)
4444 void *p;
4445 #if GC_MARK_STACK
4446 struct mem_node *m;
4447 #endif
4449 if (INTEGERP (obj))
4450 return 1;
4452 p = (void *) XPNTR (obj);
4453 if (PURE_POINTER_P (p))
4454 return 1;
4456 #if !GC_MARK_STACK
4457 return valid_pointer_p (p);
4458 #else
4460 m = mem_find (p);
4462 if (m == MEM_NIL)
4464 int valid = valid_pointer_p (p);
4465 if (valid <= 0)
4466 return valid;
4468 if (SUBRP (obj))
4469 return 1;
4471 return 0;
4474 switch (m->type)
4476 case MEM_TYPE_NON_LISP:
4477 return 0;
4479 case MEM_TYPE_BUFFER:
4480 return live_buffer_p (m, p);
4482 case MEM_TYPE_CONS:
4483 return live_cons_p (m, p);
4485 case MEM_TYPE_STRING:
4486 return live_string_p (m, p);
4488 case MEM_TYPE_MISC:
4489 return live_misc_p (m, p);
4491 case MEM_TYPE_SYMBOL:
4492 return live_symbol_p (m, p);
4494 case MEM_TYPE_FLOAT:
4495 return live_float_p (m, p);
4497 case MEM_TYPE_VECTORLIKE:
4498 return live_vector_p (m, p);
4500 default:
4501 break;
4504 return 0;
4505 #endif
4511 /***********************************************************************
4512 Pure Storage Management
4513 ***********************************************************************/
4515 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4516 pointer to it. TYPE is the Lisp type for which the memory is
4517 allocated. TYPE < 0 means it's not used for a Lisp object. */
4519 static POINTER_TYPE *
4520 pure_alloc (size_t size, int type)
4522 POINTER_TYPE *result;
4523 #ifdef USE_LSB_TAG
4524 size_t alignment = (1 << GCTYPEBITS);
4525 #else
4526 size_t alignment = sizeof (EMACS_INT);
4528 /* Give Lisp_Floats an extra alignment. */
4529 if (type == Lisp_Float)
4531 #if defined __GNUC__ && __GNUC__ >= 2
4532 alignment = __alignof (struct Lisp_Float);
4533 #else
4534 alignment = sizeof (struct Lisp_Float);
4535 #endif
4537 #endif
4539 again:
4540 if (type >= 0)
4542 /* Allocate space for a Lisp object from the beginning of the free
4543 space with taking account of alignment. */
4544 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4545 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4547 else
4549 /* Allocate space for a non-Lisp object from the end of the free
4550 space. */
4551 pure_bytes_used_non_lisp += size;
4552 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4554 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4556 if (pure_bytes_used <= pure_size)
4557 return result;
4559 /* Don't allocate a large amount here,
4560 because it might get mmap'd and then its address
4561 might not be usable. */
4562 purebeg = (char *) xmalloc (10000);
4563 pure_size = 10000;
4564 pure_bytes_used_before_overflow += pure_bytes_used - size;
4565 pure_bytes_used = 0;
4566 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4567 goto again;
4571 /* Print a warning if PURESIZE is too small. */
4573 void
4574 check_pure_size (void)
4576 if (pure_bytes_used_before_overflow)
4577 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4578 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4582 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4583 the non-Lisp data pool of the pure storage, and return its start
4584 address. Return NULL if not found. */
4586 static char *
4587 find_string_data_in_pure (const char *data, EMACS_INT nbytes)
4589 int i;
4590 EMACS_INT skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4591 const unsigned char *p;
4592 char *non_lisp_beg;
4594 if (pure_bytes_used_non_lisp < nbytes + 1)
4595 return NULL;
4597 /* Set up the Boyer-Moore table. */
4598 skip = nbytes + 1;
4599 for (i = 0; i < 256; i++)
4600 bm_skip[i] = skip;
4602 p = (const unsigned char *) data;
4603 while (--skip > 0)
4604 bm_skip[*p++] = skip;
4606 last_char_skip = bm_skip['\0'];
4608 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4609 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4611 /* See the comments in the function `boyer_moore' (search.c) for the
4612 use of `infinity'. */
4613 infinity = pure_bytes_used_non_lisp + 1;
4614 bm_skip['\0'] = infinity;
4616 p = (const unsigned char *) non_lisp_beg + nbytes;
4617 start = 0;
4620 /* Check the last character (== '\0'). */
4623 start += bm_skip[*(p + start)];
4625 while (start <= start_max);
4627 if (start < infinity)
4628 /* Couldn't find the last character. */
4629 return NULL;
4631 /* No less than `infinity' means we could find the last
4632 character at `p[start - infinity]'. */
4633 start -= infinity;
4635 /* Check the remaining characters. */
4636 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4637 /* Found. */
4638 return non_lisp_beg + start;
4640 start += last_char_skip;
4642 while (start <= start_max);
4644 return NULL;
4648 /* Return a string allocated in pure space. DATA is a buffer holding
4649 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4650 non-zero means make the result string multibyte.
4652 Must get an error if pure storage is full, since if it cannot hold
4653 a large string it may be able to hold conses that point to that
4654 string; then the string is not protected from gc. */
4656 Lisp_Object
4657 make_pure_string (const char *data,
4658 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
4660 Lisp_Object string;
4661 struct Lisp_String *s;
4663 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4664 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
4665 if (s->data == NULL)
4667 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4668 memcpy (s->data, data, nbytes);
4669 s->data[nbytes] = '\0';
4671 s->size = nchars;
4672 s->size_byte = multibyte ? nbytes : -1;
4673 s->intervals = NULL_INTERVAL;
4674 XSETSTRING (string, s);
4675 return string;
4678 /* Return a string a string allocated in pure space. Do not allocate
4679 the string data, just point to DATA. */
4681 Lisp_Object
4682 make_pure_c_string (const char *data)
4684 Lisp_Object string;
4685 struct Lisp_String *s;
4686 EMACS_INT nchars = strlen (data);
4688 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4689 s->size = nchars;
4690 s->size_byte = -1;
4691 s->data = (unsigned char *) data;
4692 s->intervals = NULL_INTERVAL;
4693 XSETSTRING (string, s);
4694 return string;
4697 /* Return a cons allocated from pure space. Give it pure copies
4698 of CAR as car and CDR as cdr. */
4700 Lisp_Object
4701 pure_cons (Lisp_Object car, Lisp_Object cdr)
4703 register Lisp_Object new;
4704 struct Lisp_Cons *p;
4706 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4707 XSETCONS (new, p);
4708 XSETCAR (new, Fpurecopy (car));
4709 XSETCDR (new, Fpurecopy (cdr));
4710 return new;
4714 /* Value is a float object with value NUM allocated from pure space. */
4716 static Lisp_Object
4717 make_pure_float (double num)
4719 register Lisp_Object new;
4720 struct Lisp_Float *p;
4722 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4723 XSETFLOAT (new, p);
4724 XFLOAT_INIT (new, num);
4725 return new;
4729 /* Return a vector with room for LEN Lisp_Objects allocated from
4730 pure space. */
4732 Lisp_Object
4733 make_pure_vector (EMACS_INT len)
4735 Lisp_Object new;
4736 struct Lisp_Vector *p;
4737 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4739 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4740 XSETVECTOR (new, p);
4741 XVECTOR (new)->size = len;
4742 return new;
4746 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4747 doc: /* Make a copy of object OBJ in pure storage.
4748 Recursively copies contents of vectors and cons cells.
4749 Does not copy symbols. Copies strings without text properties. */)
4750 (register Lisp_Object obj)
4752 if (NILP (Vpurify_flag))
4753 return obj;
4755 if (PURE_POINTER_P (XPNTR (obj)))
4756 return obj;
4758 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4760 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4761 if (!NILP (tmp))
4762 return tmp;
4765 if (CONSP (obj))
4766 obj = pure_cons (XCAR (obj), XCDR (obj));
4767 else if (FLOATP (obj))
4768 obj = make_pure_float (XFLOAT_DATA (obj));
4769 else if (STRINGP (obj))
4770 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
4771 SBYTES (obj),
4772 STRING_MULTIBYTE (obj));
4773 else if (COMPILEDP (obj) || VECTORP (obj))
4775 register struct Lisp_Vector *vec;
4776 register EMACS_INT i;
4777 EMACS_INT size;
4779 size = XVECTOR (obj)->size;
4780 if (size & PSEUDOVECTOR_FLAG)
4781 size &= PSEUDOVECTOR_SIZE_MASK;
4782 vec = XVECTOR (make_pure_vector (size));
4783 for (i = 0; i < size; i++)
4784 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4785 if (COMPILEDP (obj))
4787 XSETPVECTYPE (vec, PVEC_COMPILED);
4788 XSETCOMPILED (obj, vec);
4790 else
4791 XSETVECTOR (obj, vec);
4793 else if (MARKERP (obj))
4794 error ("Attempt to copy a marker to pure storage");
4795 else
4796 /* Not purified, don't hash-cons. */
4797 return obj;
4799 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4800 Fputhash (obj, obj, Vpurify_flag);
4802 return obj;
4807 /***********************************************************************
4808 Protection from GC
4809 ***********************************************************************/
4811 /* Put an entry in staticvec, pointing at the variable with address
4812 VARADDRESS. */
4814 void
4815 staticpro (Lisp_Object *varaddress)
4817 staticvec[staticidx++] = varaddress;
4818 if (staticidx >= NSTATICS)
4819 abort ();
4823 /***********************************************************************
4824 Protection from GC
4825 ***********************************************************************/
4827 /* Temporarily prevent garbage collection. */
4830 inhibit_garbage_collection (void)
4832 int count = SPECPDL_INDEX ();
4833 int nbits = min (VALBITS, BITS_PER_INT);
4835 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4836 return count;
4840 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4841 doc: /* Reclaim storage for Lisp objects no longer needed.
4842 Garbage collection happens automatically if you cons more than
4843 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4844 `garbage-collect' normally returns a list with info on amount of space in use:
4845 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4846 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4847 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4848 (USED-STRINGS . FREE-STRINGS))
4849 However, if there was overflow in pure space, `garbage-collect'
4850 returns nil, because real GC can't be done. */)
4851 (void)
4853 register struct specbinding *bind;
4854 char stack_top_variable;
4855 register size_t i;
4856 int message_p;
4857 Lisp_Object total[8];
4858 int count = SPECPDL_INDEX ();
4859 EMACS_TIME t1, t2, t3;
4861 if (abort_on_gc)
4862 abort ();
4864 /* Can't GC if pure storage overflowed because we can't determine
4865 if something is a pure object or not. */
4866 if (pure_bytes_used_before_overflow)
4867 return Qnil;
4869 CHECK_CONS_LIST ();
4871 /* Don't keep undo information around forever.
4872 Do this early on, so it is no problem if the user quits. */
4874 register struct buffer *nextb = all_buffers;
4876 while (nextb)
4878 /* If a buffer's undo list is Qt, that means that undo is
4879 turned off in that buffer. Calling truncate_undo_list on
4880 Qt tends to return NULL, which effectively turns undo back on.
4881 So don't call truncate_undo_list if undo_list is Qt. */
4882 if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name)) && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
4883 truncate_undo_list (nextb);
4885 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4886 if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
4887 && ! nextb->text->inhibit_shrinking)
4889 /* If a buffer's gap size is more than 10% of the buffer
4890 size, or larger than 2000 bytes, then shrink it
4891 accordingly. Keep a minimum size of 20 bytes. */
4892 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4894 if (nextb->text->gap_size > size)
4896 struct buffer *save_current = current_buffer;
4897 current_buffer = nextb;
4898 make_gap (-(nextb->text->gap_size - size));
4899 current_buffer = save_current;
4903 nextb = nextb->next;
4907 EMACS_GET_TIME (t1);
4909 /* In case user calls debug_print during GC,
4910 don't let that cause a recursive GC. */
4911 consing_since_gc = 0;
4913 /* Save what's currently displayed in the echo area. */
4914 message_p = push_message ();
4915 record_unwind_protect (pop_message_unwind, Qnil);
4917 /* Save a copy of the contents of the stack, for debugging. */
4918 #if MAX_SAVE_STACK > 0
4919 if (NILP (Vpurify_flag))
4921 char *stack;
4922 size_t stack_size;
4923 if (&stack_top_variable < stack_bottom)
4925 stack = &stack_top_variable;
4926 stack_size = stack_bottom - &stack_top_variable;
4928 else
4930 stack = stack_bottom;
4931 stack_size = &stack_top_variable - stack_bottom;
4933 if (stack_size <= MAX_SAVE_STACK)
4935 if (stack_copy_size < stack_size)
4937 stack_copy = (char *) xrealloc (stack_copy, stack_size);
4938 stack_copy_size = stack_size;
4940 memcpy (stack_copy, stack, stack_size);
4943 #endif /* MAX_SAVE_STACK > 0 */
4945 if (garbage_collection_messages)
4946 message1_nolog ("Garbage collecting...");
4948 BLOCK_INPUT;
4950 shrink_regexp_cache ();
4952 gc_in_progress = 1;
4954 /* clear_marks (); */
4956 /* Mark all the special slots that serve as the roots of accessibility. */
4958 for (i = 0; i < staticidx; i++)
4959 mark_object (*staticvec[i]);
4961 for (bind = specpdl; bind != specpdl_ptr; bind++)
4963 mark_object (bind->symbol);
4964 mark_object (bind->old_value);
4966 mark_terminals ();
4967 mark_kboards ();
4968 mark_ttys ();
4970 #ifdef USE_GTK
4972 extern void xg_mark_data (void);
4973 xg_mark_data ();
4975 #endif
4977 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4978 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4979 mark_stack ();
4980 #else
4982 register struct gcpro *tail;
4983 for (tail = gcprolist; tail; tail = tail->next)
4984 for (i = 0; i < tail->nvars; i++)
4985 mark_object (tail->var[i]);
4987 mark_byte_stack ();
4989 struct catchtag *catch;
4990 struct handler *handler;
4992 for (catch = catchlist; catch; catch = catch->next)
4994 mark_object (catch->tag);
4995 mark_object (catch->val);
4997 for (handler = handlerlist; handler; handler = handler->next)
4999 mark_object (handler->handler);
5000 mark_object (handler->var);
5003 mark_backtrace ();
5004 #endif
5006 #ifdef HAVE_WINDOW_SYSTEM
5007 mark_fringe_data ();
5008 #endif
5010 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5011 mark_stack ();
5012 #endif
5014 /* Everything is now marked, except for the things that require special
5015 finalization, i.e. the undo_list.
5016 Look thru every buffer's undo list
5017 for elements that update markers that were not marked,
5018 and delete them. */
5020 register struct buffer *nextb = all_buffers;
5022 while (nextb)
5024 /* If a buffer's undo list is Qt, that means that undo is
5025 turned off in that buffer. Calling truncate_undo_list on
5026 Qt tends to return NULL, which effectively turns undo back on.
5027 So don't call truncate_undo_list if undo_list is Qt. */
5028 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5030 Lisp_Object tail, prev;
5031 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
5032 prev = Qnil;
5033 while (CONSP (tail))
5035 if (CONSP (XCAR (tail))
5036 && MARKERP (XCAR (XCAR (tail)))
5037 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5039 if (NILP (prev))
5040 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5041 else
5043 tail = XCDR (tail);
5044 XSETCDR (prev, tail);
5047 else
5049 prev = tail;
5050 tail = XCDR (tail);
5054 /* Now that we have stripped the elements that need not be in the
5055 undo_list any more, we can finally mark the list. */
5056 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
5058 nextb = nextb->next;
5062 gc_sweep ();
5064 /* Clear the mark bits that we set in certain root slots. */
5066 unmark_byte_stack ();
5067 VECTOR_UNMARK (&buffer_defaults);
5068 VECTOR_UNMARK (&buffer_local_symbols);
5070 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5071 dump_zombies ();
5072 #endif
5074 UNBLOCK_INPUT;
5076 CHECK_CONS_LIST ();
5078 /* clear_marks (); */
5079 gc_in_progress = 0;
5081 consing_since_gc = 0;
5082 if (gc_cons_threshold < 10000)
5083 gc_cons_threshold = 10000;
5085 if (FLOATP (Vgc_cons_percentage))
5086 { /* Set gc_cons_combined_threshold. */
5087 EMACS_INT tot = 0;
5089 tot += total_conses * sizeof (struct Lisp_Cons);
5090 tot += total_symbols * sizeof (struct Lisp_Symbol);
5091 tot += total_markers * sizeof (union Lisp_Misc);
5092 tot += total_string_size;
5093 tot += total_vector_size * sizeof (Lisp_Object);
5094 tot += total_floats * sizeof (struct Lisp_Float);
5095 tot += total_intervals * sizeof (struct interval);
5096 tot += total_strings * sizeof (struct Lisp_String);
5098 gc_relative_threshold = tot * XFLOAT_DATA (Vgc_cons_percentage);
5100 else
5101 gc_relative_threshold = 0;
5103 if (garbage_collection_messages)
5105 if (message_p || minibuf_level > 0)
5106 restore_message ();
5107 else
5108 message1_nolog ("Garbage collecting...done");
5111 unbind_to (count, Qnil);
5113 total[0] = Fcons (make_number (total_conses),
5114 make_number (total_free_conses));
5115 total[1] = Fcons (make_number (total_symbols),
5116 make_number (total_free_symbols));
5117 total[2] = Fcons (make_number (total_markers),
5118 make_number (total_free_markers));
5119 total[3] = make_number (total_string_size);
5120 total[4] = make_number (total_vector_size);
5121 total[5] = Fcons (make_number (total_floats),
5122 make_number (total_free_floats));
5123 total[6] = Fcons (make_number (total_intervals),
5124 make_number (total_free_intervals));
5125 total[7] = Fcons (make_number (total_strings),
5126 make_number (total_free_strings));
5128 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5130 /* Compute average percentage of zombies. */
5131 double nlive = 0;
5133 for (i = 0; i < 7; ++i)
5134 if (CONSP (total[i]))
5135 nlive += XFASTINT (XCAR (total[i]));
5137 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5138 max_live = max (nlive, max_live);
5139 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5140 max_zombies = max (nzombies, max_zombies);
5141 ++ngcs;
5143 #endif
5145 if (!NILP (Vpost_gc_hook))
5147 int gc_count = inhibit_garbage_collection ();
5148 safe_run_hooks (Qpost_gc_hook);
5149 unbind_to (gc_count, Qnil);
5152 /* Accumulate statistics. */
5153 EMACS_GET_TIME (t2);
5154 EMACS_SUB_TIME (t3, t2, t1);
5155 if (FLOATP (Vgc_elapsed))
5156 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5157 EMACS_SECS (t3) +
5158 EMACS_USECS (t3) * 1.0e-6);
5159 gcs_done++;
5161 return Flist (sizeof total / sizeof *total, total);
5165 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5166 only interesting objects referenced from glyphs are strings. */
5168 static void
5169 mark_glyph_matrix (struct glyph_matrix *matrix)
5171 struct glyph_row *row = matrix->rows;
5172 struct glyph_row *end = row + matrix->nrows;
5174 for (; row < end; ++row)
5175 if (row->enabled_p)
5177 int area;
5178 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5180 struct glyph *glyph = row->glyphs[area];
5181 struct glyph *end_glyph = glyph + row->used[area];
5183 for (; glyph < end_glyph; ++glyph)
5184 if (STRINGP (glyph->object)
5185 && !STRING_MARKED_P (XSTRING (glyph->object)))
5186 mark_object (glyph->object);
5192 /* Mark Lisp faces in the face cache C. */
5194 static void
5195 mark_face_cache (struct face_cache *c)
5197 if (c)
5199 int i, j;
5200 for (i = 0; i < c->used; ++i)
5202 struct face *face = FACE_FROM_ID (c->f, i);
5204 if (face)
5206 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5207 mark_object (face->lface[j]);
5215 /* Mark reference to a Lisp_Object.
5216 If the object referred to has not been seen yet, recursively mark
5217 all the references contained in it. */
5219 #define LAST_MARKED_SIZE 500
5220 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5221 static int last_marked_index;
5223 /* For debugging--call abort when we cdr down this many
5224 links of a list, in mark_object. In debugging,
5225 the call to abort will hit a breakpoint.
5226 Normally this is zero and the check never goes off. */
5227 static size_t mark_object_loop_halt;
5229 static void
5230 mark_vectorlike (struct Lisp_Vector *ptr)
5232 register EMACS_UINT size = ptr->size;
5233 register EMACS_UINT i;
5235 eassert (!VECTOR_MARKED_P (ptr));
5236 VECTOR_MARK (ptr); /* Else mark it */
5237 if (size & PSEUDOVECTOR_FLAG)
5238 size &= PSEUDOVECTOR_SIZE_MASK;
5240 /* Note that this size is not the memory-footprint size, but only
5241 the number of Lisp_Object fields that we should trace.
5242 The distinction is used e.g. by Lisp_Process which places extra
5243 non-Lisp_Object fields at the end of the structure. */
5244 for (i = 0; i < size; i++) /* and then mark its elements */
5245 mark_object (ptr->contents[i]);
5248 /* Like mark_vectorlike but optimized for char-tables (and
5249 sub-char-tables) assuming that the contents are mostly integers or
5250 symbols. */
5252 static void
5253 mark_char_table (struct Lisp_Vector *ptr)
5255 register EMACS_UINT size = ptr->size & PSEUDOVECTOR_SIZE_MASK;
5256 register EMACS_UINT i;
5258 eassert (!VECTOR_MARKED_P (ptr));
5259 VECTOR_MARK (ptr);
5260 for (i = 0; i < size; i++)
5262 Lisp_Object val = ptr->contents[i];
5264 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5265 continue;
5266 if (SUB_CHAR_TABLE_P (val))
5268 if (! VECTOR_MARKED_P (XVECTOR (val)))
5269 mark_char_table (XVECTOR (val));
5271 else
5272 mark_object (val);
5276 void
5277 mark_object (Lisp_Object arg)
5279 register Lisp_Object obj = arg;
5280 #ifdef GC_CHECK_MARKED_OBJECTS
5281 void *po;
5282 struct mem_node *m;
5283 #endif
5284 size_t cdr_count = 0;
5286 loop:
5288 if (PURE_POINTER_P (XPNTR (obj)))
5289 return;
5291 last_marked[last_marked_index++] = obj;
5292 if (last_marked_index == LAST_MARKED_SIZE)
5293 last_marked_index = 0;
5295 /* Perform some sanity checks on the objects marked here. Abort if
5296 we encounter an object we know is bogus. This increases GC time
5297 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5298 #ifdef GC_CHECK_MARKED_OBJECTS
5300 po = (void *) XPNTR (obj);
5302 /* Check that the object pointed to by PO is known to be a Lisp
5303 structure allocated from the heap. */
5304 #define CHECK_ALLOCATED() \
5305 do { \
5306 m = mem_find (po); \
5307 if (m == MEM_NIL) \
5308 abort (); \
5309 } while (0)
5311 /* Check that the object pointed to by PO is live, using predicate
5312 function LIVEP. */
5313 #define CHECK_LIVE(LIVEP) \
5314 do { \
5315 if (!LIVEP (m, po)) \
5316 abort (); \
5317 } while (0)
5319 /* Check both of the above conditions. */
5320 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5321 do { \
5322 CHECK_ALLOCATED (); \
5323 CHECK_LIVE (LIVEP); \
5324 } while (0) \
5326 #else /* not GC_CHECK_MARKED_OBJECTS */
5328 #define CHECK_LIVE(LIVEP) (void) 0
5329 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5331 #endif /* not GC_CHECK_MARKED_OBJECTS */
5333 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5335 case Lisp_String:
5337 register struct Lisp_String *ptr = XSTRING (obj);
5338 if (STRING_MARKED_P (ptr))
5339 break;
5340 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5341 MARK_INTERVAL_TREE (ptr->intervals);
5342 MARK_STRING (ptr);
5343 #ifdef GC_CHECK_STRING_BYTES
5344 /* Check that the string size recorded in the string is the
5345 same as the one recorded in the sdata structure. */
5346 CHECK_STRING_BYTES (ptr);
5347 #endif /* GC_CHECK_STRING_BYTES */
5349 break;
5351 case Lisp_Vectorlike:
5352 if (VECTOR_MARKED_P (XVECTOR (obj)))
5353 break;
5354 #ifdef GC_CHECK_MARKED_OBJECTS
5355 m = mem_find (po);
5356 if (m == MEM_NIL && !SUBRP (obj)
5357 && po != &buffer_defaults
5358 && po != &buffer_local_symbols)
5359 abort ();
5360 #endif /* GC_CHECK_MARKED_OBJECTS */
5362 if (BUFFERP (obj))
5364 #ifdef GC_CHECK_MARKED_OBJECTS
5365 if (po != &buffer_defaults && po != &buffer_local_symbols)
5367 struct buffer *b;
5368 for (b = all_buffers; b && b != po; b = b->next)
5370 if (b == NULL)
5371 abort ();
5373 #endif /* GC_CHECK_MARKED_OBJECTS */
5374 mark_buffer (obj);
5376 else if (SUBRP (obj))
5377 break;
5378 else if (COMPILEDP (obj))
5379 /* We could treat this just like a vector, but it is better to
5380 save the COMPILED_CONSTANTS element for last and avoid
5381 recursion there. */
5383 register struct Lisp_Vector *ptr = XVECTOR (obj);
5384 register EMACS_UINT size = ptr->size;
5385 register EMACS_UINT i;
5387 CHECK_LIVE (live_vector_p);
5388 VECTOR_MARK (ptr); /* Else mark it */
5389 size &= PSEUDOVECTOR_SIZE_MASK;
5390 for (i = 0; i < size; i++) /* and then mark its elements */
5392 if (i != COMPILED_CONSTANTS)
5393 mark_object (ptr->contents[i]);
5395 obj = ptr->contents[COMPILED_CONSTANTS];
5396 goto loop;
5398 else if (FRAMEP (obj))
5400 register struct frame *ptr = XFRAME (obj);
5401 mark_vectorlike (XVECTOR (obj));
5402 mark_face_cache (ptr->face_cache);
5404 else if (WINDOWP (obj))
5406 register struct Lisp_Vector *ptr = XVECTOR (obj);
5407 struct window *w = XWINDOW (obj);
5408 mark_vectorlike (ptr);
5409 /* Mark glyphs for leaf windows. Marking window matrices is
5410 sufficient because frame matrices use the same glyph
5411 memory. */
5412 if (NILP (w->hchild)
5413 && NILP (w->vchild)
5414 && w->current_matrix)
5416 mark_glyph_matrix (w->current_matrix);
5417 mark_glyph_matrix (w->desired_matrix);
5420 else if (HASH_TABLE_P (obj))
5422 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5423 mark_vectorlike ((struct Lisp_Vector *)h);
5424 /* If hash table is not weak, mark all keys and values.
5425 For weak tables, mark only the vector. */
5426 if (NILP (h->weak))
5427 mark_object (h->key_and_value);
5428 else
5429 VECTOR_MARK (XVECTOR (h->key_and_value));
5431 else if (CHAR_TABLE_P (obj))
5432 mark_char_table (XVECTOR (obj));
5433 else
5434 mark_vectorlike (XVECTOR (obj));
5435 break;
5437 case Lisp_Symbol:
5439 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5440 struct Lisp_Symbol *ptrx;
5442 if (ptr->gcmarkbit)
5443 break;
5444 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5445 ptr->gcmarkbit = 1;
5446 mark_object (ptr->function);
5447 mark_object (ptr->plist);
5448 switch (ptr->redirect)
5450 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5451 case SYMBOL_VARALIAS:
5453 Lisp_Object tem;
5454 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5455 mark_object (tem);
5456 break;
5458 case SYMBOL_LOCALIZED:
5460 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5461 /* If the value is forwarded to a buffer or keyboard field,
5462 these are marked when we see the corresponding object.
5463 And if it's forwarded to a C variable, either it's not
5464 a Lisp_Object var, or it's staticpro'd already. */
5465 mark_object (blv->where);
5466 mark_object (blv->valcell);
5467 mark_object (blv->defcell);
5468 break;
5470 case SYMBOL_FORWARDED:
5471 /* If the value is forwarded to a buffer or keyboard field,
5472 these are marked when we see the corresponding object.
5473 And if it's forwarded to a C variable, either it's not
5474 a Lisp_Object var, or it's staticpro'd already. */
5475 break;
5476 default: abort ();
5478 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5479 MARK_STRING (XSTRING (ptr->xname));
5480 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5482 ptr = ptr->next;
5483 if (ptr)
5485 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5486 XSETSYMBOL (obj, ptrx);
5487 goto loop;
5490 break;
5492 case Lisp_Misc:
5493 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5494 if (XMISCANY (obj)->gcmarkbit)
5495 break;
5496 XMISCANY (obj)->gcmarkbit = 1;
5498 switch (XMISCTYPE (obj))
5501 case Lisp_Misc_Marker:
5502 /* DO NOT mark thru the marker's chain.
5503 The buffer's markers chain does not preserve markers from gc;
5504 instead, markers are removed from the chain when freed by gc. */
5505 break;
5507 case Lisp_Misc_Save_Value:
5508 #if GC_MARK_STACK
5510 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5511 /* If DOGC is set, POINTER is the address of a memory
5512 area containing INTEGER potential Lisp_Objects. */
5513 if (ptr->dogc)
5515 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5516 int nelt;
5517 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5518 mark_maybe_object (*p);
5521 #endif
5522 break;
5524 case Lisp_Misc_Overlay:
5526 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5527 mark_object (ptr->start);
5528 mark_object (ptr->end);
5529 mark_object (ptr->plist);
5530 if (ptr->next)
5532 XSETMISC (obj, ptr->next);
5533 goto loop;
5536 break;
5538 default:
5539 abort ();
5541 break;
5543 case Lisp_Cons:
5545 register struct Lisp_Cons *ptr = XCONS (obj);
5546 if (CONS_MARKED_P (ptr))
5547 break;
5548 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5549 CONS_MARK (ptr);
5550 /* If the cdr is nil, avoid recursion for the car. */
5551 if (EQ (ptr->u.cdr, Qnil))
5553 obj = ptr->car;
5554 cdr_count = 0;
5555 goto loop;
5557 mark_object (ptr->car);
5558 obj = ptr->u.cdr;
5559 cdr_count++;
5560 if (cdr_count == mark_object_loop_halt)
5561 abort ();
5562 goto loop;
5565 case Lisp_Float:
5566 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5567 FLOAT_MARK (XFLOAT (obj));
5568 break;
5570 case_Lisp_Int:
5571 break;
5573 default:
5574 abort ();
5577 #undef CHECK_LIVE
5578 #undef CHECK_ALLOCATED
5579 #undef CHECK_ALLOCATED_AND_LIVE
5582 /* Mark the pointers in a buffer structure. */
5584 static void
5585 mark_buffer (Lisp_Object buf)
5587 register struct buffer *buffer = XBUFFER (buf);
5588 register Lisp_Object *ptr, tmp;
5589 Lisp_Object base_buffer;
5591 eassert (!VECTOR_MARKED_P (buffer));
5592 VECTOR_MARK (buffer);
5594 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5596 /* For now, we just don't mark the undo_list. It's done later in
5597 a special way just before the sweep phase, and after stripping
5598 some of its elements that are not needed any more. */
5600 if (buffer->overlays_before)
5602 XSETMISC (tmp, buffer->overlays_before);
5603 mark_object (tmp);
5605 if (buffer->overlays_after)
5607 XSETMISC (tmp, buffer->overlays_after);
5608 mark_object (tmp);
5611 /* buffer-local Lisp variables start at `undo_list',
5612 tho only the ones from `name' on are GC'd normally. */
5613 for (ptr = &buffer->BUFFER_INTERNAL_FIELD (name);
5614 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5615 ptr++)
5616 mark_object (*ptr);
5618 /* If this is an indirect buffer, mark its base buffer. */
5619 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5621 XSETBUFFER (base_buffer, buffer->base_buffer);
5622 mark_buffer (base_buffer);
5626 /* Mark the Lisp pointers in the terminal objects.
5627 Called by the Fgarbage_collector. */
5629 static void
5630 mark_terminals (void)
5632 struct terminal *t;
5633 for (t = terminal_list; t; t = t->next_terminal)
5635 eassert (t->name != NULL);
5636 #ifdef HAVE_WINDOW_SYSTEM
5637 /* If a terminal object is reachable from a stacpro'ed object,
5638 it might have been marked already. Make sure the image cache
5639 gets marked. */
5640 mark_image_cache (t->image_cache);
5641 #endif /* HAVE_WINDOW_SYSTEM */
5642 if (!VECTOR_MARKED_P (t))
5643 mark_vectorlike ((struct Lisp_Vector *)t);
5649 /* Value is non-zero if OBJ will survive the current GC because it's
5650 either marked or does not need to be marked to survive. */
5653 survives_gc_p (Lisp_Object obj)
5655 int survives_p;
5657 switch (XTYPE (obj))
5659 case_Lisp_Int:
5660 survives_p = 1;
5661 break;
5663 case Lisp_Symbol:
5664 survives_p = XSYMBOL (obj)->gcmarkbit;
5665 break;
5667 case Lisp_Misc:
5668 survives_p = XMISCANY (obj)->gcmarkbit;
5669 break;
5671 case Lisp_String:
5672 survives_p = STRING_MARKED_P (XSTRING (obj));
5673 break;
5675 case Lisp_Vectorlike:
5676 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5677 break;
5679 case Lisp_Cons:
5680 survives_p = CONS_MARKED_P (XCONS (obj));
5681 break;
5683 case Lisp_Float:
5684 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5685 break;
5687 default:
5688 abort ();
5691 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5696 /* Sweep: find all structures not marked, and free them. */
5698 static void
5699 gc_sweep (void)
5701 /* Remove or mark entries in weak hash tables.
5702 This must be done before any object is unmarked. */
5703 sweep_weak_hash_tables ();
5705 sweep_strings ();
5706 #ifdef GC_CHECK_STRING_BYTES
5707 if (!noninteractive)
5708 check_string_bytes (1);
5709 #endif
5711 /* Put all unmarked conses on free list */
5713 register struct cons_block *cblk;
5714 struct cons_block **cprev = &cons_block;
5715 register int lim = cons_block_index;
5716 register int num_free = 0, num_used = 0;
5718 cons_free_list = 0;
5720 for (cblk = cons_block; cblk; cblk = *cprev)
5722 register int i = 0;
5723 int this_free = 0;
5724 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5726 /* Scan the mark bits an int at a time. */
5727 for (i = 0; i <= ilim; i++)
5729 if (cblk->gcmarkbits[i] == -1)
5731 /* Fast path - all cons cells for this int are marked. */
5732 cblk->gcmarkbits[i] = 0;
5733 num_used += BITS_PER_INT;
5735 else
5737 /* Some cons cells for this int are not marked.
5738 Find which ones, and free them. */
5739 int start, pos, stop;
5741 start = i * BITS_PER_INT;
5742 stop = lim - start;
5743 if (stop > BITS_PER_INT)
5744 stop = BITS_PER_INT;
5745 stop += start;
5747 for (pos = start; pos < stop; pos++)
5749 if (!CONS_MARKED_P (&cblk->conses[pos]))
5751 this_free++;
5752 cblk->conses[pos].u.chain = cons_free_list;
5753 cons_free_list = &cblk->conses[pos];
5754 #if GC_MARK_STACK
5755 cons_free_list->car = Vdead;
5756 #endif
5758 else
5760 num_used++;
5761 CONS_UNMARK (&cblk->conses[pos]);
5767 lim = CONS_BLOCK_SIZE;
5768 /* If this block contains only free conses and we have already
5769 seen more than two blocks worth of free conses then deallocate
5770 this block. */
5771 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5773 *cprev = cblk->next;
5774 /* Unhook from the free list. */
5775 cons_free_list = cblk->conses[0].u.chain;
5776 lisp_align_free (cblk);
5777 n_cons_blocks--;
5779 else
5781 num_free += this_free;
5782 cprev = &cblk->next;
5785 total_conses = num_used;
5786 total_free_conses = num_free;
5789 /* Put all unmarked floats on free list */
5791 register struct float_block *fblk;
5792 struct float_block **fprev = &float_block;
5793 register int lim = float_block_index;
5794 register int num_free = 0, num_used = 0;
5796 float_free_list = 0;
5798 for (fblk = float_block; fblk; fblk = *fprev)
5800 register int i;
5801 int this_free = 0;
5802 for (i = 0; i < lim; i++)
5803 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5805 this_free++;
5806 fblk->floats[i].u.chain = float_free_list;
5807 float_free_list = &fblk->floats[i];
5809 else
5811 num_used++;
5812 FLOAT_UNMARK (&fblk->floats[i]);
5814 lim = FLOAT_BLOCK_SIZE;
5815 /* If this block contains only free floats and we have already
5816 seen more than two blocks worth of free floats then deallocate
5817 this block. */
5818 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5820 *fprev = fblk->next;
5821 /* Unhook from the free list. */
5822 float_free_list = fblk->floats[0].u.chain;
5823 lisp_align_free (fblk);
5824 n_float_blocks--;
5826 else
5828 num_free += this_free;
5829 fprev = &fblk->next;
5832 total_floats = num_used;
5833 total_free_floats = num_free;
5836 /* Put all unmarked intervals on free list */
5838 register struct interval_block *iblk;
5839 struct interval_block **iprev = &interval_block;
5840 register int lim = interval_block_index;
5841 register int num_free = 0, num_used = 0;
5843 interval_free_list = 0;
5845 for (iblk = interval_block; iblk; iblk = *iprev)
5847 register int i;
5848 int this_free = 0;
5850 for (i = 0; i < lim; i++)
5852 if (!iblk->intervals[i].gcmarkbit)
5854 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5855 interval_free_list = &iblk->intervals[i];
5856 this_free++;
5858 else
5860 num_used++;
5861 iblk->intervals[i].gcmarkbit = 0;
5864 lim = INTERVAL_BLOCK_SIZE;
5865 /* If this block contains only free intervals and we have already
5866 seen more than two blocks worth of free intervals then
5867 deallocate this block. */
5868 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5870 *iprev = iblk->next;
5871 /* Unhook from the free list. */
5872 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5873 lisp_free (iblk);
5874 n_interval_blocks--;
5876 else
5878 num_free += this_free;
5879 iprev = &iblk->next;
5882 total_intervals = num_used;
5883 total_free_intervals = num_free;
5886 /* Put all unmarked symbols on free list */
5888 register struct symbol_block *sblk;
5889 struct symbol_block **sprev = &symbol_block;
5890 register int lim = symbol_block_index;
5891 register int num_free = 0, num_used = 0;
5893 symbol_free_list = NULL;
5895 for (sblk = symbol_block; sblk; sblk = *sprev)
5897 int this_free = 0;
5898 struct Lisp_Symbol *sym = sblk->symbols;
5899 struct Lisp_Symbol *end = sym + lim;
5901 for (; sym < end; ++sym)
5903 /* Check if the symbol was created during loadup. In such a case
5904 it might be pointed to by pure bytecode which we don't trace,
5905 so we conservatively assume that it is live. */
5906 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5908 if (!sym->gcmarkbit && !pure_p)
5910 if (sym->redirect == SYMBOL_LOCALIZED)
5911 xfree (SYMBOL_BLV (sym));
5912 sym->next = symbol_free_list;
5913 symbol_free_list = sym;
5914 #if GC_MARK_STACK
5915 symbol_free_list->function = Vdead;
5916 #endif
5917 ++this_free;
5919 else
5921 ++num_used;
5922 if (!pure_p)
5923 UNMARK_STRING (XSTRING (sym->xname));
5924 sym->gcmarkbit = 0;
5928 lim = SYMBOL_BLOCK_SIZE;
5929 /* If this block contains only free symbols and we have already
5930 seen more than two blocks worth of free symbols then deallocate
5931 this block. */
5932 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5934 *sprev = sblk->next;
5935 /* Unhook from the free list. */
5936 symbol_free_list = sblk->symbols[0].next;
5937 lisp_free (sblk);
5938 n_symbol_blocks--;
5940 else
5942 num_free += this_free;
5943 sprev = &sblk->next;
5946 total_symbols = num_used;
5947 total_free_symbols = num_free;
5950 /* Put all unmarked misc's on free list.
5951 For a marker, first unchain it from the buffer it points into. */
5953 register struct marker_block *mblk;
5954 struct marker_block **mprev = &marker_block;
5955 register int lim = marker_block_index;
5956 register int num_free = 0, num_used = 0;
5958 marker_free_list = 0;
5960 for (mblk = marker_block; mblk; mblk = *mprev)
5962 register int i;
5963 int this_free = 0;
5965 for (i = 0; i < lim; i++)
5967 if (!mblk->markers[i].u_any.gcmarkbit)
5969 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
5970 unchain_marker (&mblk->markers[i].u_marker);
5971 /* Set the type of the freed object to Lisp_Misc_Free.
5972 We could leave the type alone, since nobody checks it,
5973 but this might catch bugs faster. */
5974 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5975 mblk->markers[i].u_free.chain = marker_free_list;
5976 marker_free_list = &mblk->markers[i];
5977 this_free++;
5979 else
5981 num_used++;
5982 mblk->markers[i].u_any.gcmarkbit = 0;
5985 lim = MARKER_BLOCK_SIZE;
5986 /* If this block contains only free markers and we have already
5987 seen more than two blocks worth of free markers then deallocate
5988 this block. */
5989 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5991 *mprev = mblk->next;
5992 /* Unhook from the free list. */
5993 marker_free_list = mblk->markers[0].u_free.chain;
5994 lisp_free (mblk);
5995 n_marker_blocks--;
5997 else
5999 num_free += this_free;
6000 mprev = &mblk->next;
6004 total_markers = num_used;
6005 total_free_markers = num_free;
6008 /* Free all unmarked buffers */
6010 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6012 while (buffer)
6013 if (!VECTOR_MARKED_P (buffer))
6015 if (prev)
6016 prev->next = buffer->next;
6017 else
6018 all_buffers = buffer->next;
6019 next = buffer->next;
6020 lisp_free (buffer);
6021 buffer = next;
6023 else
6025 VECTOR_UNMARK (buffer);
6026 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6027 prev = buffer, buffer = buffer->next;
6031 /* Free all unmarked vectors */
6033 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6034 total_vector_size = 0;
6036 while (vector)
6037 if (!VECTOR_MARKED_P (vector))
6039 if (prev)
6040 prev->next = vector->next;
6041 else
6042 all_vectors = vector->next;
6043 next = vector->next;
6044 lisp_free (vector);
6045 n_vectors--;
6046 vector = next;
6049 else
6051 VECTOR_UNMARK (vector);
6052 if (vector->size & PSEUDOVECTOR_FLAG)
6053 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6054 else
6055 total_vector_size += vector->size;
6056 prev = vector, vector = vector->next;
6060 #ifdef GC_CHECK_STRING_BYTES
6061 if (!noninteractive)
6062 check_string_bytes (1);
6063 #endif
6069 /* Debugging aids. */
6071 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6072 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6073 This may be helpful in debugging Emacs's memory usage.
6074 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6075 (void)
6077 Lisp_Object end;
6079 XSETINT (end, (EMACS_INT) (char *) sbrk (0) / 1024);
6081 return end;
6084 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6085 doc: /* Return a list of counters that measure how much consing there has been.
6086 Each of these counters increments for a certain kind of object.
6087 The counters wrap around from the largest positive integer to zero.
6088 Garbage collection does not decrease them.
6089 The elements of the value are as follows:
6090 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6091 All are in units of 1 = one object consed
6092 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6093 objects consed.
6094 MISCS include overlays, markers, and some internal types.
6095 Frames, windows, buffers, and subprocesses count as vectors
6096 (but the contents of a buffer's text do not count here). */)
6097 (void)
6099 Lisp_Object consed[8];
6101 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6102 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6103 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6104 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6105 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6106 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6107 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6108 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6110 return Flist (8, consed);
6113 #ifdef ENABLE_CHECKING
6114 int suppress_checking;
6116 void
6117 die (const char *msg, const char *file, int line)
6119 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6120 file, line, msg);
6121 abort ();
6123 #endif
6125 /* Initialization */
6127 void
6128 init_alloc_once (void)
6130 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6131 purebeg = PUREBEG;
6132 pure_size = PURESIZE;
6133 pure_bytes_used = 0;
6134 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6135 pure_bytes_used_before_overflow = 0;
6137 /* Initialize the list of free aligned blocks. */
6138 free_ablock = NULL;
6140 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6141 mem_init ();
6142 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6143 #endif
6145 all_vectors = 0;
6146 ignore_warnings = 1;
6147 #ifdef DOUG_LEA_MALLOC
6148 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6149 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6150 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6151 #endif
6152 init_strings ();
6153 init_cons ();
6154 init_symbol ();
6155 init_marker ();
6156 init_float ();
6157 init_intervals ();
6158 init_weak_hash_tables ();
6160 #ifdef REL_ALLOC
6161 malloc_hysteresis = 32;
6162 #else
6163 malloc_hysteresis = 0;
6164 #endif
6166 refill_memory_reserve ();
6168 ignore_warnings = 0;
6169 gcprolist = 0;
6170 byte_stack_list = 0;
6171 staticidx = 0;
6172 consing_since_gc = 0;
6173 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6174 gc_relative_threshold = 0;
6177 void
6178 init_alloc (void)
6180 gcprolist = 0;
6181 byte_stack_list = 0;
6182 #if GC_MARK_STACK
6183 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6184 setjmp_tested_p = longjmps_done = 0;
6185 #endif
6186 #endif
6187 Vgc_elapsed = make_float (0.0);
6188 gcs_done = 0;
6191 void
6192 syms_of_alloc (void)
6194 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6195 doc: /* *Number of bytes of consing between garbage collections.
6196 Garbage collection can happen automatically once this many bytes have been
6197 allocated since the last garbage collection. All data types count.
6199 Garbage collection happens automatically only when `eval' is called.
6201 By binding this temporarily to a large number, you can effectively
6202 prevent garbage collection during a part of the program.
6203 See also `gc-cons-percentage'. */);
6205 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6206 doc: /* *Portion of the heap used for allocation.
6207 Garbage collection can happen automatically once this portion of the heap
6208 has been allocated since the last garbage collection.
6209 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6210 Vgc_cons_percentage = make_float (0.1);
6212 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6213 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6215 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6216 doc: /* Number of cons cells that have been consed so far. */);
6218 DEFVAR_INT ("floats-consed", floats_consed,
6219 doc: /* Number of floats that have been consed so far. */);
6221 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6222 doc: /* Number of vector cells that have been consed so far. */);
6224 DEFVAR_INT ("symbols-consed", symbols_consed,
6225 doc: /* Number of symbols that have been consed so far. */);
6227 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6228 doc: /* Number of string characters that have been consed so far. */);
6230 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6231 doc: /* Number of miscellaneous objects that have been consed so far. */);
6233 DEFVAR_INT ("intervals-consed", intervals_consed,
6234 doc: /* Number of intervals that have been consed so far. */);
6236 DEFVAR_INT ("strings-consed", strings_consed,
6237 doc: /* Number of strings that have been consed so far. */);
6239 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6240 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6241 This means that certain objects should be allocated in shared (pure) space.
6242 It can also be set to a hash-table, in which case this table is used to
6243 do hash-consing of the objects allocated to pure space. */);
6245 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6246 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6247 garbage_collection_messages = 0;
6249 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6250 doc: /* Hook run after garbage collection has finished. */);
6251 Vpost_gc_hook = Qnil;
6252 Qpost_gc_hook = intern_c_string ("post-gc-hook");
6253 staticpro (&Qpost_gc_hook);
6255 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6256 doc: /* Precomputed `signal' argument for memory-full error. */);
6257 /* We build this in advance because if we wait until we need it, we might
6258 not be able to allocate the memory to hold it. */
6259 Vmemory_signal_data
6260 = pure_cons (Qerror,
6261 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6263 DEFVAR_LISP ("memory-full", Vmemory_full,
6264 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6265 Vmemory_full = Qnil;
6267 staticpro (&Qgc_cons_threshold);
6268 Qgc_cons_threshold = intern_c_string ("gc-cons-threshold");
6270 staticpro (&Qchar_table_extra_slots);
6271 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
6273 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6274 doc: /* Accumulated time elapsed in garbage collections.
6275 The time is in seconds as a floating point value. */);
6276 DEFVAR_INT ("gcs-done", gcs_done,
6277 doc: /* Accumulated number of garbage collections done. */);
6279 defsubr (&Scons);
6280 defsubr (&Slist);
6281 defsubr (&Svector);
6282 defsubr (&Smake_byte_code);
6283 defsubr (&Smake_list);
6284 defsubr (&Smake_vector);
6285 defsubr (&Smake_string);
6286 defsubr (&Smake_bool_vector);
6287 defsubr (&Smake_symbol);
6288 defsubr (&Smake_marker);
6289 defsubr (&Spurecopy);
6290 defsubr (&Sgarbage_collect);
6291 defsubr (&Smemory_limit);
6292 defsubr (&Smemory_use_counts);
6294 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6295 defsubr (&Sgc_status);
6296 #endif