(calendar-absolute-from-julian): Declare as a function.
[emacs.git] / src / search.c
blob29def81c3ebe0dea2e136deea1f83698068d11fe
1 /* String search routines for GNU Emacs.
2 Copyright (C) 1985, 1986, 1987, 1993, 1994, 1997, 1998, 1999, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
23 #include <config.h>
24 #include "lisp.h"
25 #include "syntax.h"
26 #include "category.h"
27 #include "buffer.h"
28 #include "charset.h"
29 #include "region-cache.h"
30 #include "commands.h"
31 #include "blockinput.h"
32 #include "intervals.h"
34 #include <sys/types.h>
35 #include "regex.h"
37 #define REGEXP_CACHE_SIZE 20
39 /* If the regexp is non-nil, then the buffer contains the compiled form
40 of that regexp, suitable for searching. */
41 struct regexp_cache
43 struct regexp_cache *next;
44 Lisp_Object regexp, whitespace_regexp;
45 /* Syntax table for which the regexp applies. We need this because
46 of character classes. If this is t, then the compiled pattern is valid
47 for any syntax-table. */
48 Lisp_Object syntax_table;
49 struct re_pattern_buffer buf;
50 char fastmap[0400];
51 /* Nonzero means regexp was compiled to do full POSIX backtracking. */
52 char posix;
55 /* The instances of that struct. */
56 struct regexp_cache searchbufs[REGEXP_CACHE_SIZE];
58 /* The head of the linked list; points to the most recently used buffer. */
59 struct regexp_cache *searchbuf_head;
62 /* Every call to re_match, etc., must pass &search_regs as the regs
63 argument unless you can show it is unnecessary (i.e., if re_match
64 is certainly going to be called again before region-around-match
65 can be called).
67 Since the registers are now dynamically allocated, we need to make
68 sure not to refer to the Nth register before checking that it has
69 been allocated by checking search_regs.num_regs.
71 The regex code keeps track of whether it has allocated the search
72 buffer using bits in the re_pattern_buffer. This means that whenever
73 you compile a new pattern, it completely forgets whether it has
74 allocated any registers, and will allocate new registers the next
75 time you call a searching or matching function. Therefore, we need
76 to call re_set_registers after compiling a new pattern or after
77 setting the match registers, so that the regex functions will be
78 able to free or re-allocate it properly. */
79 static struct re_registers search_regs;
81 /* The buffer in which the last search was performed, or
82 Qt if the last search was done in a string;
83 Qnil if no searching has been done yet. */
84 static Lisp_Object last_thing_searched;
86 /* error condition signaled when regexp compile_pattern fails */
88 Lisp_Object Qinvalid_regexp;
90 /* Error condition used for failing searches */
91 Lisp_Object Qsearch_failed;
93 Lisp_Object Vsearch_spaces_regexp;
95 /* If non-nil, the match data will not be changed during call to
96 searching or matching functions. This variable is for internal use
97 only. */
98 Lisp_Object Vinhibit_changing_match_data;
100 static void set_search_regs ();
101 static void save_search_regs ();
102 static int simple_search ();
103 static int boyer_moore ();
104 static int search_buffer ();
105 static void matcher_overflow () NO_RETURN;
107 static void
108 matcher_overflow ()
110 error ("Stack overflow in regexp matcher");
113 /* Compile a regexp and signal a Lisp error if anything goes wrong.
114 PATTERN is the pattern to compile.
115 CP is the place to put the result.
116 TRANSLATE is a translation table for ignoring case, or nil for none.
117 REGP is the structure that says where to store the "register"
118 values that will result from matching this pattern.
119 If it is 0, we should compile the pattern not to record any
120 subexpression bounds.
121 POSIX is nonzero if we want full backtracking (POSIX style)
122 for this pattern. 0 means backtrack only enough to get a valid match.
123 MULTIBYTE is nonzero if we want to handle multibyte characters in
124 PATTERN. 0 means all multibyte characters are recognized just as
125 sequences of binary data.
127 The behavior also depends on Vsearch_spaces_regexp. */
129 static void
130 compile_pattern_1 (cp, pattern, translate, regp, posix, multibyte)
131 struct regexp_cache *cp;
132 Lisp_Object pattern;
133 Lisp_Object translate;
134 struct re_registers *regp;
135 int posix;
136 int multibyte;
138 unsigned char *raw_pattern;
139 int raw_pattern_size;
140 char *val;
141 reg_syntax_t old;
143 /* MULTIBYTE says whether the text to be searched is multibyte.
144 We must convert PATTERN to match that, or we will not really
145 find things right. */
147 if (multibyte == STRING_MULTIBYTE (pattern))
149 raw_pattern = (unsigned char *) SDATA (pattern);
150 raw_pattern_size = SBYTES (pattern);
152 else if (multibyte)
154 raw_pattern_size = count_size_as_multibyte (SDATA (pattern),
155 SCHARS (pattern));
156 raw_pattern = (unsigned char *) alloca (raw_pattern_size + 1);
157 copy_text (SDATA (pattern), raw_pattern,
158 SCHARS (pattern), 0, 1);
160 else
162 /* Converting multibyte to single-byte.
164 ??? Perhaps this conversion should be done in a special way
165 by subtracting nonascii-insert-offset from each non-ASCII char,
166 so that only the multibyte chars which really correspond to
167 the chosen single-byte character set can possibly match. */
168 raw_pattern_size = SCHARS (pattern);
169 raw_pattern = (unsigned char *) alloca (raw_pattern_size + 1);
170 copy_text (SDATA (pattern), raw_pattern,
171 SBYTES (pattern), 1, 0);
174 cp->regexp = Qnil;
175 cp->buf.translate = (! NILP (translate) ? translate : make_number (0));
176 cp->posix = posix;
177 cp->buf.multibyte = multibyte;
178 cp->whitespace_regexp = Vsearch_spaces_regexp;
179 /* rms: I think BLOCK_INPUT is not needed here any more,
180 because regex.c defines malloc to call xmalloc.
181 Using BLOCK_INPUT here means the debugger won't run if an error occurs.
182 So let's turn it off. */
183 /* BLOCK_INPUT; */
184 old = re_set_syntax (RE_SYNTAX_EMACS
185 | (posix ? 0 : RE_NO_POSIX_BACKTRACKING));
187 re_set_whitespace_regexp (NILP (Vsearch_spaces_regexp) ? NULL
188 : SDATA (Vsearch_spaces_regexp));
190 val = (char *) re_compile_pattern ((char *)raw_pattern,
191 raw_pattern_size, &cp->buf);
193 /* If the compiled pattern hard codes some of the contents of the
194 syntax-table, it can only be reused with *this* syntax table. */
195 cp->syntax_table = cp->buf.used_syntax ? current_buffer->syntax_table : Qt;
197 re_set_whitespace_regexp (NULL);
199 re_set_syntax (old);
200 /* UNBLOCK_INPUT; */
201 if (val)
202 xsignal1 (Qinvalid_regexp, build_string (val));
204 cp->regexp = Fcopy_sequence (pattern);
207 /* Shrink each compiled regexp buffer in the cache
208 to the size actually used right now.
209 This is called from garbage collection. */
211 void
212 shrink_regexp_cache ()
214 struct regexp_cache *cp;
216 for (cp = searchbuf_head; cp != 0; cp = cp->next)
218 cp->buf.allocated = cp->buf.used;
219 cp->buf.buffer
220 = (unsigned char *) xrealloc (cp->buf.buffer, cp->buf.used);
224 /* Clear the regexp cache w.r.t. a particular syntax table,
225 because it was changed.
226 There is no danger of memory leak here because re_compile_pattern
227 automagically manages the memory in each re_pattern_buffer struct,
228 based on its `allocated' and `buffer' values. */
229 void
230 clear_regexp_cache ()
232 int i;
234 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
235 /* It's tempting to compare with the syntax-table we've actually changd,
236 but it's not sufficient because char-table inheritance mewans that
237 modifying one syntax-table can change others at the same time. */
238 if (!EQ (searchbufs[i].syntax_table, Qt))
239 searchbufs[i].regexp = Qnil;
242 /* Compile a regexp if necessary, but first check to see if there's one in
243 the cache.
244 PATTERN is the pattern to compile.
245 TRANSLATE is a translation table for ignoring case, or nil for none.
246 REGP is the structure that says where to store the "register"
247 values that will result from matching this pattern.
248 If it is 0, we should compile the pattern not to record any
249 subexpression bounds.
250 POSIX is nonzero if we want full backtracking (POSIX style)
251 for this pattern. 0 means backtrack only enough to get a valid match. */
253 struct re_pattern_buffer *
254 compile_pattern (pattern, regp, translate, posix, multibyte)
255 Lisp_Object pattern;
256 struct re_registers *regp;
257 Lisp_Object translate;
258 int posix, multibyte;
260 struct regexp_cache *cp, **cpp;
262 for (cpp = &searchbuf_head; ; cpp = &cp->next)
264 cp = *cpp;
265 /* Entries are initialized to nil, and may be set to nil by
266 compile_pattern_1 if the pattern isn't valid. Don't apply
267 string accessors in those cases. However, compile_pattern_1
268 is only applied to the cache entry we pick here to reuse. So
269 nil should never appear before a non-nil entry. */
270 if (NILP (cp->regexp))
271 goto compile_it;
272 if (SCHARS (cp->regexp) == SCHARS (pattern)
273 && STRING_MULTIBYTE (cp->regexp) == STRING_MULTIBYTE (pattern)
274 && !NILP (Fstring_equal (cp->regexp, pattern))
275 && EQ (cp->buf.translate, (! NILP (translate) ? translate : make_number (0)))
276 && cp->posix == posix
277 && cp->buf.multibyte == multibyte
278 && (EQ (cp->syntax_table, Qt)
279 || EQ (cp->syntax_table, current_buffer->syntax_table))
280 && !NILP (Fequal (cp->whitespace_regexp, Vsearch_spaces_regexp)))
281 break;
283 /* If we're at the end of the cache, compile into the nil cell
284 we found, or the last (least recently used) cell with a
285 string value. */
286 if (cp->next == 0)
288 compile_it:
289 compile_pattern_1 (cp, pattern, translate, regp, posix, multibyte);
290 break;
294 /* When we get here, cp (aka *cpp) contains the compiled pattern,
295 either because we found it in the cache or because we just compiled it.
296 Move it to the front of the queue to mark it as most recently used. */
297 *cpp = cp->next;
298 cp->next = searchbuf_head;
299 searchbuf_head = cp;
301 /* Advise the searching functions about the space we have allocated
302 for register data. */
303 if (regp)
304 re_set_registers (&cp->buf, regp, regp->num_regs, regp->start, regp->end);
306 return &cp->buf;
310 static Lisp_Object
311 looking_at_1 (string, posix)
312 Lisp_Object string;
313 int posix;
315 Lisp_Object val;
316 unsigned char *p1, *p2;
317 int s1, s2;
318 register int i;
319 struct re_pattern_buffer *bufp;
321 if (running_asynch_code)
322 save_search_regs ();
324 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
325 XCHAR_TABLE (current_buffer->case_canon_table)->extras[2]
326 = current_buffer->case_eqv_table;
328 CHECK_STRING (string);
329 bufp = compile_pattern (string,
330 (NILP (Vinhibit_changing_match_data)
331 ? &search_regs : NULL),
332 (!NILP (current_buffer->case_fold_search)
333 ? current_buffer->case_canon_table : Qnil),
334 posix,
335 !NILP (current_buffer->enable_multibyte_characters));
337 immediate_quit = 1;
338 QUIT; /* Do a pending quit right away, to avoid paradoxical behavior */
340 /* Get pointers and sizes of the two strings
341 that make up the visible portion of the buffer. */
343 p1 = BEGV_ADDR;
344 s1 = GPT_BYTE - BEGV_BYTE;
345 p2 = GAP_END_ADDR;
346 s2 = ZV_BYTE - GPT_BYTE;
347 if (s1 < 0)
349 p2 = p1;
350 s2 = ZV_BYTE - BEGV_BYTE;
351 s1 = 0;
353 if (s2 < 0)
355 s1 = ZV_BYTE - BEGV_BYTE;
356 s2 = 0;
359 re_match_object = Qnil;
361 i = re_match_2 (bufp, (char *) p1, s1, (char *) p2, s2,
362 PT_BYTE - BEGV_BYTE,
363 (NILP (Vinhibit_changing_match_data)
364 ? &search_regs : NULL),
365 ZV_BYTE - BEGV_BYTE);
366 immediate_quit = 0;
368 if (i == -2)
369 matcher_overflow ();
371 val = (0 <= i ? Qt : Qnil);
372 if (NILP (Vinhibit_changing_match_data) && i >= 0)
373 for (i = 0; i < search_regs.num_regs; i++)
374 if (search_regs.start[i] >= 0)
376 search_regs.start[i]
377 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
378 search_regs.end[i]
379 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
382 /* Set last_thing_searched only when match data is changed. */
383 if (NILP (Vinhibit_changing_match_data))
384 XSETBUFFER (last_thing_searched, current_buffer);
386 return val;
389 DEFUN ("looking-at", Flooking_at, Slooking_at, 1, 1, 0,
390 doc: /* Return t if text after point matches regular expression REGEXP.
391 This function modifies the match data that `match-beginning',
392 `match-end' and `match-data' access; save and restore the match
393 data if you want to preserve them. */)
394 (regexp)
395 Lisp_Object regexp;
397 return looking_at_1 (regexp, 0);
400 DEFUN ("posix-looking-at", Fposix_looking_at, Sposix_looking_at, 1, 1, 0,
401 doc: /* Return t if text after point matches regular expression REGEXP.
402 Find the longest match, in accord with Posix regular expression rules.
403 This function modifies the match data that `match-beginning',
404 `match-end' and `match-data' access; save and restore the match
405 data if you want to preserve them. */)
406 (regexp)
407 Lisp_Object regexp;
409 return looking_at_1 (regexp, 1);
412 static Lisp_Object
413 string_match_1 (regexp, string, start, posix)
414 Lisp_Object regexp, string, start;
415 int posix;
417 int val;
418 struct re_pattern_buffer *bufp;
419 int pos, pos_byte;
420 int i;
422 if (running_asynch_code)
423 save_search_regs ();
425 CHECK_STRING (regexp);
426 CHECK_STRING (string);
428 if (NILP (start))
429 pos = 0, pos_byte = 0;
430 else
432 int len = SCHARS (string);
434 CHECK_NUMBER (start);
435 pos = XINT (start);
436 if (pos < 0 && -pos <= len)
437 pos = len + pos;
438 else if (0 > pos || pos > len)
439 args_out_of_range (string, start);
440 pos_byte = string_char_to_byte (string, pos);
443 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
444 XCHAR_TABLE (current_buffer->case_canon_table)->extras[2]
445 = current_buffer->case_eqv_table;
447 bufp = compile_pattern (regexp,
448 (NILP (Vinhibit_changing_match_data)
449 ? &search_regs : NULL),
450 (!NILP (current_buffer->case_fold_search)
451 ? current_buffer->case_canon_table : Qnil),
452 posix,
453 STRING_MULTIBYTE (string));
454 immediate_quit = 1;
455 re_match_object = string;
457 val = re_search (bufp, (char *) SDATA (string),
458 SBYTES (string), pos_byte,
459 SBYTES (string) - pos_byte,
460 (NILP (Vinhibit_changing_match_data)
461 ? &search_regs : NULL));
462 immediate_quit = 0;
464 /* Set last_thing_searched only when match data is changed. */
465 if (NILP (Vinhibit_changing_match_data))
466 last_thing_searched = Qt;
468 if (val == -2)
469 matcher_overflow ();
470 if (val < 0) return Qnil;
472 if (NILP (Vinhibit_changing_match_data))
473 for (i = 0; i < search_regs.num_regs; i++)
474 if (search_regs.start[i] >= 0)
476 search_regs.start[i]
477 = string_byte_to_char (string, search_regs.start[i]);
478 search_regs.end[i]
479 = string_byte_to_char (string, search_regs.end[i]);
482 return make_number (string_byte_to_char (string, val));
485 DEFUN ("string-match", Fstring_match, Sstring_match, 2, 3, 0,
486 doc: /* Return index of start of first match for REGEXP in STRING, or nil.
487 Matching ignores case if `case-fold-search' is non-nil.
488 If third arg START is non-nil, start search at that index in STRING.
489 For index of first char beyond the match, do (match-end 0).
490 `match-end' and `match-beginning' also give indices of substrings
491 matched by parenthesis constructs in the pattern.
493 You can use the function `match-string' to extract the substrings
494 matched by the parenthesis constructions in REGEXP. */)
495 (regexp, string, start)
496 Lisp_Object regexp, string, start;
498 return string_match_1 (regexp, string, start, 0);
501 DEFUN ("posix-string-match", Fposix_string_match, Sposix_string_match, 2, 3, 0,
502 doc: /* Return index of start of first match for REGEXP in STRING, or nil.
503 Find the longest match, in accord with Posix regular expression rules.
504 Case is ignored if `case-fold-search' is non-nil in the current buffer.
505 If third arg START is non-nil, start search at that index in STRING.
506 For index of first char beyond the match, do (match-end 0).
507 `match-end' and `match-beginning' also give indices of substrings
508 matched by parenthesis constructs in the pattern. */)
509 (regexp, string, start)
510 Lisp_Object regexp, string, start;
512 return string_match_1 (regexp, string, start, 1);
515 /* Match REGEXP against STRING, searching all of STRING,
516 and return the index of the match, or negative on failure.
517 This does not clobber the match data. */
520 fast_string_match (regexp, string)
521 Lisp_Object regexp, string;
523 int val;
524 struct re_pattern_buffer *bufp;
526 bufp = compile_pattern (regexp, 0, Qnil,
527 0, STRING_MULTIBYTE (string));
528 immediate_quit = 1;
529 re_match_object = string;
531 val = re_search (bufp, (char *) SDATA (string),
532 SBYTES (string), 0,
533 SBYTES (string), 0);
534 immediate_quit = 0;
535 return val;
538 /* Match REGEXP against STRING, searching all of STRING ignoring case,
539 and return the index of the match, or negative on failure.
540 This does not clobber the match data.
541 We assume that STRING contains single-byte characters. */
543 extern Lisp_Object Vascii_downcase_table;
546 fast_c_string_match_ignore_case (regexp, string)
547 Lisp_Object regexp;
548 const char *string;
550 int val;
551 struct re_pattern_buffer *bufp;
552 int len = strlen (string);
554 regexp = string_make_unibyte (regexp);
555 re_match_object = Qt;
556 bufp = compile_pattern (regexp, 0,
557 Vascii_canon_table, 0,
559 immediate_quit = 1;
560 val = re_search (bufp, string, len, 0, len, 0);
561 immediate_quit = 0;
562 return val;
565 /* Like fast_string_match but ignore case. */
568 fast_string_match_ignore_case (regexp, string)
569 Lisp_Object regexp, string;
571 int val;
572 struct re_pattern_buffer *bufp;
574 bufp = compile_pattern (regexp, 0, Vascii_canon_table,
575 0, STRING_MULTIBYTE (string));
576 immediate_quit = 1;
577 re_match_object = string;
579 val = re_search (bufp, (char *) SDATA (string),
580 SBYTES (string), 0,
581 SBYTES (string), 0);
582 immediate_quit = 0;
583 return val;
586 /* The newline cache: remembering which sections of text have no newlines. */
588 /* If the user has requested newline caching, make sure it's on.
589 Otherwise, make sure it's off.
590 This is our cheezy way of associating an action with the change of
591 state of a buffer-local variable. */
592 static void
593 newline_cache_on_off (buf)
594 struct buffer *buf;
596 if (NILP (buf->cache_long_line_scans))
598 /* It should be off. */
599 if (buf->newline_cache)
601 free_region_cache (buf->newline_cache);
602 buf->newline_cache = 0;
605 else
607 /* It should be on. */
608 if (buf->newline_cache == 0)
609 buf->newline_cache = new_region_cache ();
614 /* Search for COUNT instances of the character TARGET between START and END.
616 If COUNT is positive, search forwards; END must be >= START.
617 If COUNT is negative, search backwards for the -COUNTth instance;
618 END must be <= START.
619 If COUNT is zero, do anything you please; run rogue, for all I care.
621 If END is zero, use BEGV or ZV instead, as appropriate for the
622 direction indicated by COUNT.
624 If we find COUNT instances, set *SHORTAGE to zero, and return the
625 position past the COUNTth match. Note that for reverse motion
626 this is not the same as the usual convention for Emacs motion commands.
628 If we don't find COUNT instances before reaching END, set *SHORTAGE
629 to the number of TARGETs left unfound, and return END.
631 If ALLOW_QUIT is non-zero, set immediate_quit. That's good to do
632 except when inside redisplay. */
635 scan_buffer (target, start, end, count, shortage, allow_quit)
636 register int target;
637 int start, end;
638 int count;
639 int *shortage;
640 int allow_quit;
642 struct region_cache *newline_cache;
643 int direction;
645 if (count > 0)
647 direction = 1;
648 if (! end) end = ZV;
650 else
652 direction = -1;
653 if (! end) end = BEGV;
656 newline_cache_on_off (current_buffer);
657 newline_cache = current_buffer->newline_cache;
659 if (shortage != 0)
660 *shortage = 0;
662 immediate_quit = allow_quit;
664 if (count > 0)
665 while (start != end)
667 /* Our innermost scanning loop is very simple; it doesn't know
668 about gaps, buffer ends, or the newline cache. ceiling is
669 the position of the last character before the next such
670 obstacle --- the last character the dumb search loop should
671 examine. */
672 int ceiling_byte = CHAR_TO_BYTE (end) - 1;
673 int start_byte = CHAR_TO_BYTE (start);
674 int tem;
676 /* If we're looking for a newline, consult the newline cache
677 to see where we can avoid some scanning. */
678 if (target == '\n' && newline_cache)
680 int next_change;
681 immediate_quit = 0;
682 while (region_cache_forward
683 (current_buffer, newline_cache, start_byte, &next_change))
684 start_byte = next_change;
685 immediate_quit = allow_quit;
687 /* START should never be after END. */
688 if (start_byte > ceiling_byte)
689 start_byte = ceiling_byte;
691 /* Now the text after start is an unknown region, and
692 next_change is the position of the next known region. */
693 ceiling_byte = min (next_change - 1, ceiling_byte);
696 /* The dumb loop can only scan text stored in contiguous
697 bytes. BUFFER_CEILING_OF returns the last character
698 position that is contiguous, so the ceiling is the
699 position after that. */
700 tem = BUFFER_CEILING_OF (start_byte);
701 ceiling_byte = min (tem, ceiling_byte);
704 /* The termination address of the dumb loop. */
705 register unsigned char *ceiling_addr
706 = BYTE_POS_ADDR (ceiling_byte) + 1;
707 register unsigned char *cursor
708 = BYTE_POS_ADDR (start_byte);
709 unsigned char *base = cursor;
711 while (cursor < ceiling_addr)
713 unsigned char *scan_start = cursor;
715 /* The dumb loop. */
716 while (*cursor != target && ++cursor < ceiling_addr)
719 /* If we're looking for newlines, cache the fact that
720 the region from start to cursor is free of them. */
721 if (target == '\n' && newline_cache)
722 know_region_cache (current_buffer, newline_cache,
723 start_byte + scan_start - base,
724 start_byte + cursor - base);
726 /* Did we find the target character? */
727 if (cursor < ceiling_addr)
729 if (--count == 0)
731 immediate_quit = 0;
732 return BYTE_TO_CHAR (start_byte + cursor - base + 1);
734 cursor++;
738 start = BYTE_TO_CHAR (start_byte + cursor - base);
741 else
742 while (start > end)
744 /* The last character to check before the next obstacle. */
745 int ceiling_byte = CHAR_TO_BYTE (end);
746 int start_byte = CHAR_TO_BYTE (start);
747 int tem;
749 /* Consult the newline cache, if appropriate. */
750 if (target == '\n' && newline_cache)
752 int next_change;
753 immediate_quit = 0;
754 while (region_cache_backward
755 (current_buffer, newline_cache, start_byte, &next_change))
756 start_byte = next_change;
757 immediate_quit = allow_quit;
759 /* Start should never be at or before end. */
760 if (start_byte <= ceiling_byte)
761 start_byte = ceiling_byte + 1;
763 /* Now the text before start is an unknown region, and
764 next_change is the position of the next known region. */
765 ceiling_byte = max (next_change, ceiling_byte);
768 /* Stop scanning before the gap. */
769 tem = BUFFER_FLOOR_OF (start_byte - 1);
770 ceiling_byte = max (tem, ceiling_byte);
773 /* The termination address of the dumb loop. */
774 register unsigned char *ceiling_addr = BYTE_POS_ADDR (ceiling_byte);
775 register unsigned char *cursor = BYTE_POS_ADDR (start_byte - 1);
776 unsigned char *base = cursor;
778 while (cursor >= ceiling_addr)
780 unsigned char *scan_start = cursor;
782 while (*cursor != target && --cursor >= ceiling_addr)
785 /* If we're looking for newlines, cache the fact that
786 the region from after the cursor to start is free of them. */
787 if (target == '\n' && newline_cache)
788 know_region_cache (current_buffer, newline_cache,
789 start_byte + cursor - base,
790 start_byte + scan_start - base);
792 /* Did we find the target character? */
793 if (cursor >= ceiling_addr)
795 if (++count >= 0)
797 immediate_quit = 0;
798 return BYTE_TO_CHAR (start_byte + cursor - base);
800 cursor--;
804 start = BYTE_TO_CHAR (start_byte + cursor - base);
808 immediate_quit = 0;
809 if (shortage != 0)
810 *shortage = count * direction;
811 return start;
814 /* Search for COUNT instances of a line boundary, which means either a
815 newline or (if selective display enabled) a carriage return.
816 Start at START. If COUNT is negative, search backwards.
818 We report the resulting position by calling TEMP_SET_PT_BOTH.
820 If we find COUNT instances. we position after (always after,
821 even if scanning backwards) the COUNTth match, and return 0.
823 If we don't find COUNT instances before reaching the end of the
824 buffer (or the beginning, if scanning backwards), we return
825 the number of line boundaries left unfound, and position at
826 the limit we bumped up against.
828 If ALLOW_QUIT is non-zero, set immediate_quit. That's good to do
829 except in special cases. */
832 scan_newline (start, start_byte, limit, limit_byte, count, allow_quit)
833 int start, start_byte;
834 int limit, limit_byte;
835 register int count;
836 int allow_quit;
838 int direction = ((count > 0) ? 1 : -1);
840 register unsigned char *cursor;
841 unsigned char *base;
843 register int ceiling;
844 register unsigned char *ceiling_addr;
846 int old_immediate_quit = immediate_quit;
848 /* The code that follows is like scan_buffer
849 but checks for either newline or carriage return. */
851 if (allow_quit)
852 immediate_quit++;
854 start_byte = CHAR_TO_BYTE (start);
856 if (count > 0)
858 while (start_byte < limit_byte)
860 ceiling = BUFFER_CEILING_OF (start_byte);
861 ceiling = min (limit_byte - 1, ceiling);
862 ceiling_addr = BYTE_POS_ADDR (ceiling) + 1;
863 base = (cursor = BYTE_POS_ADDR (start_byte));
864 while (1)
866 while (*cursor != '\n' && ++cursor != ceiling_addr)
869 if (cursor != ceiling_addr)
871 if (--count == 0)
873 immediate_quit = old_immediate_quit;
874 start_byte = start_byte + cursor - base + 1;
875 start = BYTE_TO_CHAR (start_byte);
876 TEMP_SET_PT_BOTH (start, start_byte);
877 return 0;
879 else
880 if (++cursor == ceiling_addr)
881 break;
883 else
884 break;
886 start_byte += cursor - base;
889 else
891 while (start_byte > limit_byte)
893 ceiling = BUFFER_FLOOR_OF (start_byte - 1);
894 ceiling = max (limit_byte, ceiling);
895 ceiling_addr = BYTE_POS_ADDR (ceiling) - 1;
896 base = (cursor = BYTE_POS_ADDR (start_byte - 1) + 1);
897 while (1)
899 while (--cursor != ceiling_addr && *cursor != '\n')
902 if (cursor != ceiling_addr)
904 if (++count == 0)
906 immediate_quit = old_immediate_quit;
907 /* Return the position AFTER the match we found. */
908 start_byte = start_byte + cursor - base + 1;
909 start = BYTE_TO_CHAR (start_byte);
910 TEMP_SET_PT_BOTH (start, start_byte);
911 return 0;
914 else
915 break;
917 /* Here we add 1 to compensate for the last decrement
918 of CURSOR, which took it past the valid range. */
919 start_byte += cursor - base + 1;
923 TEMP_SET_PT_BOTH (limit, limit_byte);
924 immediate_quit = old_immediate_quit;
926 return count * direction;
930 find_next_newline_no_quit (from, cnt)
931 register int from, cnt;
933 return scan_buffer ('\n', from, 0, cnt, (int *) 0, 0);
936 /* Like find_next_newline, but returns position before the newline,
937 not after, and only search up to TO. This isn't just
938 find_next_newline (...)-1, because you might hit TO. */
941 find_before_next_newline (from, to, cnt)
942 int from, to, cnt;
944 int shortage;
945 int pos = scan_buffer ('\n', from, to, cnt, &shortage, 1);
947 if (shortage == 0)
948 pos--;
950 return pos;
953 /* Subroutines of Lisp buffer search functions. */
955 static Lisp_Object
956 search_command (string, bound, noerror, count, direction, RE, posix)
957 Lisp_Object string, bound, noerror, count;
958 int direction;
959 int RE;
960 int posix;
962 register int np;
963 int lim, lim_byte;
964 int n = direction;
966 if (!NILP (count))
968 CHECK_NUMBER (count);
969 n *= XINT (count);
972 CHECK_STRING (string);
973 if (NILP (bound))
975 if (n > 0)
976 lim = ZV, lim_byte = ZV_BYTE;
977 else
978 lim = BEGV, lim_byte = BEGV_BYTE;
980 else
982 CHECK_NUMBER_COERCE_MARKER (bound);
983 lim = XINT (bound);
984 if (n > 0 ? lim < PT : lim > PT)
985 error ("Invalid search bound (wrong side of point)");
986 if (lim > ZV)
987 lim = ZV, lim_byte = ZV_BYTE;
988 else if (lim < BEGV)
989 lim = BEGV, lim_byte = BEGV_BYTE;
990 else
991 lim_byte = CHAR_TO_BYTE (lim);
994 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
995 XCHAR_TABLE (current_buffer->case_canon_table)->extras[2]
996 = current_buffer->case_eqv_table;
998 np = search_buffer (string, PT, PT_BYTE, lim, lim_byte, n, RE,
999 (!NILP (current_buffer->case_fold_search)
1000 ? current_buffer->case_canon_table
1001 : Qnil),
1002 (!NILP (current_buffer->case_fold_search)
1003 ? current_buffer->case_eqv_table
1004 : Qnil),
1005 posix);
1006 if (np <= 0)
1008 if (NILP (noerror))
1009 xsignal1 (Qsearch_failed, string);
1011 if (!EQ (noerror, Qt))
1013 if (lim < BEGV || lim > ZV)
1014 abort ();
1015 SET_PT_BOTH (lim, lim_byte);
1016 return Qnil;
1017 #if 0 /* This would be clean, but maybe programs depend on
1018 a value of nil here. */
1019 np = lim;
1020 #endif
1022 else
1023 return Qnil;
1026 if (np < BEGV || np > ZV)
1027 abort ();
1029 SET_PT (np);
1031 return make_number (np);
1034 /* Return 1 if REGEXP it matches just one constant string. */
1036 static int
1037 trivial_regexp_p (regexp)
1038 Lisp_Object regexp;
1040 int len = SBYTES (regexp);
1041 unsigned char *s = SDATA (regexp);
1042 while (--len >= 0)
1044 switch (*s++)
1046 case '.': case '*': case '+': case '?': case '[': case '^': case '$':
1047 return 0;
1048 case '\\':
1049 if (--len < 0)
1050 return 0;
1051 switch (*s++)
1053 case '|': case '(': case ')': case '`': case '\'': case 'b':
1054 case 'B': case '<': case '>': case 'w': case 'W': case 's':
1055 case 'S': case '=': case '{': case '}': case '_':
1056 case 'c': case 'C': /* for categoryspec and notcategoryspec */
1057 case '1': case '2': case '3': case '4': case '5':
1058 case '6': case '7': case '8': case '9':
1059 return 0;
1063 return 1;
1066 /* Search for the n'th occurrence of STRING in the current buffer,
1067 starting at position POS and stopping at position LIM,
1068 treating STRING as a literal string if RE is false or as
1069 a regular expression if RE is true.
1071 If N is positive, searching is forward and LIM must be greater than POS.
1072 If N is negative, searching is backward and LIM must be less than POS.
1074 Returns -x if x occurrences remain to be found (x > 0),
1075 or else the position at the beginning of the Nth occurrence
1076 (if searching backward) or the end (if searching forward).
1078 POSIX is nonzero if we want full backtracking (POSIX style)
1079 for this pattern. 0 means backtrack only enough to get a valid match. */
1081 #define TRANSLATE(out, trt, d) \
1082 do \
1084 if (! NILP (trt)) \
1086 Lisp_Object temp; \
1087 temp = Faref (trt, make_number (d)); \
1088 if (INTEGERP (temp)) \
1089 out = XINT (temp); \
1090 else \
1091 out = d; \
1093 else \
1094 out = d; \
1096 while (0)
1098 /* Only used in search_buffer, to record the end position of the match
1099 when searching regexps and SEARCH_REGS should not be changed
1100 (i.e. Vinhibit_changing_match_data is non-nil). */
1101 static struct re_registers search_regs_1;
1103 static int
1104 search_buffer (string, pos, pos_byte, lim, lim_byte, n,
1105 RE, trt, inverse_trt, posix)
1106 Lisp_Object string;
1107 int pos;
1108 int pos_byte;
1109 int lim;
1110 int lim_byte;
1111 int n;
1112 int RE;
1113 Lisp_Object trt;
1114 Lisp_Object inverse_trt;
1115 int posix;
1117 int len = SCHARS (string);
1118 int len_byte = SBYTES (string);
1119 register int i;
1121 if (running_asynch_code)
1122 save_search_regs ();
1124 /* Searching 0 times means don't move. */
1125 /* Null string is found at starting position. */
1126 if (len == 0 || n == 0)
1128 set_search_regs (pos_byte, 0);
1129 return pos;
1132 if (RE && !(trivial_regexp_p (string) && NILP (Vsearch_spaces_regexp)))
1134 unsigned char *p1, *p2;
1135 int s1, s2;
1136 struct re_pattern_buffer *bufp;
1138 bufp = compile_pattern (string,
1139 (NILP (Vinhibit_changing_match_data)
1140 ? &search_regs : &search_regs_1),
1141 trt, posix,
1142 !NILP (current_buffer->enable_multibyte_characters));
1144 immediate_quit = 1; /* Quit immediately if user types ^G,
1145 because letting this function finish
1146 can take too long. */
1147 QUIT; /* Do a pending quit right away,
1148 to avoid paradoxical behavior */
1149 /* Get pointers and sizes of the two strings
1150 that make up the visible portion of the buffer. */
1152 p1 = BEGV_ADDR;
1153 s1 = GPT_BYTE - BEGV_BYTE;
1154 p2 = GAP_END_ADDR;
1155 s2 = ZV_BYTE - GPT_BYTE;
1156 if (s1 < 0)
1158 p2 = p1;
1159 s2 = ZV_BYTE - BEGV_BYTE;
1160 s1 = 0;
1162 if (s2 < 0)
1164 s1 = ZV_BYTE - BEGV_BYTE;
1165 s2 = 0;
1167 re_match_object = Qnil;
1169 while (n < 0)
1171 int val;
1172 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1173 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1174 (NILP (Vinhibit_changing_match_data)
1175 ? &search_regs : &search_regs_1),
1176 /* Don't allow match past current point */
1177 pos_byte - BEGV_BYTE);
1178 if (val == -2)
1180 matcher_overflow ();
1182 if (val >= 0)
1184 if (NILP (Vinhibit_changing_match_data))
1186 pos_byte = search_regs.start[0] + BEGV_BYTE;
1187 for (i = 0; i < search_regs.num_regs; i++)
1188 if (search_regs.start[i] >= 0)
1190 search_regs.start[i]
1191 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1192 search_regs.end[i]
1193 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1195 XSETBUFFER (last_thing_searched, current_buffer);
1196 /* Set pos to the new position. */
1197 pos = search_regs.start[0];
1199 else
1201 pos_byte = search_regs_1.start[0] + BEGV_BYTE;
1202 /* Set pos to the new position. */
1203 pos = BYTE_TO_CHAR (search_regs_1.start[0] + BEGV_BYTE);
1206 else
1208 immediate_quit = 0;
1209 return (n);
1211 n++;
1213 while (n > 0)
1215 int val;
1216 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1217 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1218 (NILP (Vinhibit_changing_match_data)
1219 ? &search_regs : &search_regs_1),
1220 lim_byte - BEGV_BYTE);
1221 if (val == -2)
1223 matcher_overflow ();
1225 if (val >= 0)
1227 if (NILP (Vinhibit_changing_match_data))
1229 pos_byte = search_regs.end[0] + BEGV_BYTE;
1230 for (i = 0; i < search_regs.num_regs; i++)
1231 if (search_regs.start[i] >= 0)
1233 search_regs.start[i]
1234 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1235 search_regs.end[i]
1236 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1238 XSETBUFFER (last_thing_searched, current_buffer);
1239 pos = search_regs.end[0];
1241 else
1243 pos_byte = search_regs_1.end[0] + BEGV_BYTE;
1244 pos = BYTE_TO_CHAR (search_regs_1.end[0] + BEGV_BYTE);
1247 else
1249 immediate_quit = 0;
1250 return (0 - n);
1252 n--;
1254 immediate_quit = 0;
1255 return (pos);
1257 else /* non-RE case */
1259 unsigned char *raw_pattern, *pat;
1260 int raw_pattern_size;
1261 int raw_pattern_size_byte;
1262 unsigned char *patbuf;
1263 int multibyte = !NILP (current_buffer->enable_multibyte_characters);
1264 unsigned char *base_pat;
1265 /* Set to positive if we find a non-ASCII char that need
1266 translation. Otherwise set to zero later. */
1267 int charset_base = -1;
1268 int boyer_moore_ok = 1;
1270 /* MULTIBYTE says whether the text to be searched is multibyte.
1271 We must convert PATTERN to match that, or we will not really
1272 find things right. */
1274 if (multibyte == STRING_MULTIBYTE (string))
1276 raw_pattern = (unsigned char *) SDATA (string);
1277 raw_pattern_size = SCHARS (string);
1278 raw_pattern_size_byte = SBYTES (string);
1280 else if (multibyte)
1282 raw_pattern_size = SCHARS (string);
1283 raw_pattern_size_byte
1284 = count_size_as_multibyte (SDATA (string),
1285 raw_pattern_size);
1286 raw_pattern = (unsigned char *) alloca (raw_pattern_size_byte + 1);
1287 copy_text (SDATA (string), raw_pattern,
1288 SCHARS (string), 0, 1);
1290 else
1292 /* Converting multibyte to single-byte.
1294 ??? Perhaps this conversion should be done in a special way
1295 by subtracting nonascii-insert-offset from each non-ASCII char,
1296 so that only the multibyte chars which really correspond to
1297 the chosen single-byte character set can possibly match. */
1298 raw_pattern_size = SCHARS (string);
1299 raw_pattern_size_byte = SCHARS (string);
1300 raw_pattern = (unsigned char *) alloca (raw_pattern_size + 1);
1301 copy_text (SDATA (string), raw_pattern,
1302 SBYTES (string), 1, 0);
1305 /* Copy and optionally translate the pattern. */
1306 len = raw_pattern_size;
1307 len_byte = raw_pattern_size_byte;
1308 patbuf = (unsigned char *) alloca (len_byte);
1309 pat = patbuf;
1310 base_pat = raw_pattern;
1311 if (multibyte)
1313 /* Fill patbuf by translated characters in STRING while
1314 checking if we can use boyer-moore search. If TRT is
1315 non-nil, we can use boyer-moore search only if TRT can be
1316 represented by the byte array of 256 elements. For that,
1317 all non-ASCII case-equivalents of all case-senstive
1318 characters in STRING must belong to the same charset and
1319 row. */
1321 while (--len >= 0)
1323 unsigned char str_base[MAX_MULTIBYTE_LENGTH], *str;
1324 int c, translated, inverse;
1325 int in_charlen, charlen;
1327 /* If we got here and the RE flag is set, it's because we're
1328 dealing with a regexp known to be trivial, so the backslash
1329 just quotes the next character. */
1330 if (RE && *base_pat == '\\')
1332 len--;
1333 raw_pattern_size--;
1334 len_byte--;
1335 base_pat++;
1338 c = STRING_CHAR_AND_LENGTH (base_pat, len_byte, in_charlen);
1340 if (NILP (trt))
1342 str = base_pat;
1343 charlen = in_charlen;
1345 else
1347 /* Translate the character. */
1348 TRANSLATE (translated, trt, c);
1349 charlen = CHAR_STRING (translated, str_base);
1350 str = str_base;
1352 /* Check if C has any other case-equivalents. */
1353 TRANSLATE (inverse, inverse_trt, c);
1354 /* If so, check if we can use boyer-moore. */
1355 if (c != inverse && boyer_moore_ok)
1357 /* Check if all equivalents belong to the same
1358 charset & row. Note that the check of C
1359 itself is done by the last iteration. Note
1360 also that we don't have to check ASCII
1361 characters because boyer-moore search can
1362 always handle their translation. */
1363 while (1)
1365 if (ASCII_BYTE_P (inverse))
1367 if (charset_base > 0)
1369 boyer_moore_ok = 0;
1370 break;
1372 charset_base = 0;
1374 else if (SINGLE_BYTE_CHAR_P (inverse))
1376 /* Boyer-moore search can't handle a
1377 translation of an eight-bit
1378 character. */
1379 boyer_moore_ok = 0;
1380 break;
1382 else if (charset_base < 0)
1383 charset_base = inverse & ~CHAR_FIELD3_MASK;
1384 else if ((inverse & ~CHAR_FIELD3_MASK)
1385 != charset_base)
1387 boyer_moore_ok = 0;
1388 break;
1390 if (c == inverse)
1391 break;
1392 TRANSLATE (inverse, inverse_trt, inverse);
1396 if (charset_base < 0)
1397 charset_base = 0;
1399 /* Store this character into the translated pattern. */
1400 bcopy (str, pat, charlen);
1401 pat += charlen;
1402 base_pat += in_charlen;
1403 len_byte -= in_charlen;
1406 else
1408 /* Unibyte buffer. */
1409 charset_base = 0;
1410 while (--len >= 0)
1412 int c, translated;
1414 /* If we got here and the RE flag is set, it's because we're
1415 dealing with a regexp known to be trivial, so the backslash
1416 just quotes the next character. */
1417 if (RE && *base_pat == '\\')
1419 len--;
1420 raw_pattern_size--;
1421 base_pat++;
1423 c = *base_pat++;
1424 TRANSLATE (translated, trt, c);
1425 *pat++ = translated;
1429 len_byte = pat - patbuf;
1430 len = raw_pattern_size;
1431 pat = base_pat = patbuf;
1433 if (boyer_moore_ok)
1434 return boyer_moore (n, pat, len, len_byte, trt, inverse_trt,
1435 pos, pos_byte, lim, lim_byte,
1436 charset_base);
1437 else
1438 return simple_search (n, pat, len, len_byte, trt,
1439 pos, pos_byte, lim, lim_byte);
1443 /* Do a simple string search N times for the string PAT,
1444 whose length is LEN/LEN_BYTE,
1445 from buffer position POS/POS_BYTE until LIM/LIM_BYTE.
1446 TRT is the translation table.
1448 Return the character position where the match is found.
1449 Otherwise, if M matches remained to be found, return -M.
1451 This kind of search works regardless of what is in PAT and
1452 regardless of what is in TRT. It is used in cases where
1453 boyer_moore cannot work. */
1455 static int
1456 simple_search (n, pat, len, len_byte, trt, pos, pos_byte, lim, lim_byte)
1457 int n;
1458 unsigned char *pat;
1459 int len, len_byte;
1460 Lisp_Object trt;
1461 int pos, pos_byte;
1462 int lim, lim_byte;
1464 int multibyte = ! NILP (current_buffer->enable_multibyte_characters);
1465 int forward = n > 0;
1467 if (lim > pos && multibyte)
1468 while (n > 0)
1470 while (1)
1472 /* Try matching at position POS. */
1473 int this_pos = pos;
1474 int this_pos_byte = pos_byte;
1475 int this_len = len;
1476 int this_len_byte = len_byte;
1477 unsigned char *p = pat;
1478 if (pos + len > lim)
1479 goto stop;
1481 while (this_len > 0)
1483 int charlen, buf_charlen;
1484 int pat_ch, buf_ch;
1486 pat_ch = STRING_CHAR_AND_LENGTH (p, this_len_byte, charlen);
1487 buf_ch = STRING_CHAR_AND_LENGTH (BYTE_POS_ADDR (this_pos_byte),
1488 ZV_BYTE - this_pos_byte,
1489 buf_charlen);
1490 TRANSLATE (buf_ch, trt, buf_ch);
1492 if (buf_ch != pat_ch)
1493 break;
1495 this_len_byte -= charlen;
1496 this_len--;
1497 p += charlen;
1499 this_pos_byte += buf_charlen;
1500 this_pos++;
1503 if (this_len == 0)
1505 pos += len;
1506 pos_byte += len_byte;
1507 break;
1510 INC_BOTH (pos, pos_byte);
1513 n--;
1515 else if (lim > pos)
1516 while (n > 0)
1518 while (1)
1520 /* Try matching at position POS. */
1521 int this_pos = pos;
1522 int this_len = len;
1523 unsigned char *p = pat;
1525 if (pos + len > lim)
1526 goto stop;
1528 while (this_len > 0)
1530 int pat_ch = *p++;
1531 int buf_ch = FETCH_BYTE (this_pos);
1532 TRANSLATE (buf_ch, trt, buf_ch);
1534 if (buf_ch != pat_ch)
1535 break;
1537 this_len--;
1538 this_pos++;
1541 if (this_len == 0)
1543 pos += len;
1544 break;
1547 pos++;
1550 n--;
1552 /* Backwards search. */
1553 else if (lim < pos && multibyte)
1554 while (n < 0)
1556 while (1)
1558 /* Try matching at position POS. */
1559 int this_pos = pos - len;
1560 int this_pos_byte = pos_byte - len_byte;
1561 int this_len = len;
1562 int this_len_byte = len_byte;
1563 unsigned char *p = pat;
1565 if (this_pos < lim || this_pos_byte < lim_byte)
1566 goto stop;
1568 while (this_len > 0)
1570 int charlen, buf_charlen;
1571 int pat_ch, buf_ch;
1573 pat_ch = STRING_CHAR_AND_LENGTH (p, this_len_byte, charlen);
1574 buf_ch = STRING_CHAR_AND_LENGTH (BYTE_POS_ADDR (this_pos_byte),
1575 ZV_BYTE - this_pos_byte,
1576 buf_charlen);
1577 TRANSLATE (buf_ch, trt, buf_ch);
1579 if (buf_ch != pat_ch)
1580 break;
1582 this_len_byte -= charlen;
1583 this_len--;
1584 p += charlen;
1585 this_pos_byte += buf_charlen;
1586 this_pos++;
1589 if (this_len == 0)
1591 pos -= len;
1592 pos_byte -= len_byte;
1593 break;
1596 DEC_BOTH (pos, pos_byte);
1599 n++;
1601 else if (lim < pos)
1602 while (n < 0)
1604 while (1)
1606 /* Try matching at position POS. */
1607 int this_pos = pos - len;
1608 int this_len = len;
1609 unsigned char *p = pat;
1611 if (pos - len < lim)
1612 goto stop;
1614 while (this_len > 0)
1616 int pat_ch = *p++;
1617 int buf_ch = FETCH_BYTE (this_pos);
1618 TRANSLATE (buf_ch, trt, buf_ch);
1620 if (buf_ch != pat_ch)
1621 break;
1622 this_len--;
1623 this_pos++;
1626 if (this_len == 0)
1628 pos -= len;
1629 break;
1632 pos--;
1635 n++;
1638 stop:
1639 if (n == 0)
1641 if (forward)
1642 set_search_regs ((multibyte ? pos_byte : pos) - len_byte, len_byte);
1643 else
1644 set_search_regs (multibyte ? pos_byte : pos, len_byte);
1646 return pos;
1648 else if (n > 0)
1649 return -n;
1650 else
1651 return n;
1654 /* Do Boyer-Moore search N times for the string BASE_PAT,
1655 whose length is LEN/LEN_BYTE,
1656 from buffer position POS/POS_BYTE until LIM/LIM_BYTE.
1657 DIRECTION says which direction we search in.
1658 TRT and INVERSE_TRT are translation tables.
1659 Characters in PAT are already translated by TRT.
1661 This kind of search works if all the characters in BASE_PAT that
1662 have nontrivial translation are the same aside from the last byte.
1663 This makes it possible to translate just the last byte of a
1664 character, and do so after just a simple test of the context.
1665 CHARSET_BASE is nonzero if there is such a non-ASCII character.
1667 If that criterion is not satisfied, do not call this function. */
1669 static int
1670 boyer_moore (n, base_pat, len, len_byte, trt, inverse_trt,
1671 pos, pos_byte, lim, lim_byte, charset_base)
1672 int n;
1673 unsigned char *base_pat;
1674 int len, len_byte;
1675 Lisp_Object trt;
1676 Lisp_Object inverse_trt;
1677 int pos, pos_byte;
1678 int lim, lim_byte;
1679 int charset_base;
1681 int direction = ((n > 0) ? 1 : -1);
1682 register int dirlen;
1683 int infinity, limit, stride_for_teases = 0;
1684 register int *BM_tab;
1685 int *BM_tab_base;
1686 register unsigned char *cursor, *p_limit;
1687 register int i, j;
1688 unsigned char *pat, *pat_end;
1689 int multibyte = ! NILP (current_buffer->enable_multibyte_characters);
1691 unsigned char simple_translate[0400];
1692 /* These are set to the preceding bytes of a byte to be translated
1693 if charset_base is nonzero. As the maximum byte length of a
1694 multibyte character is 4, we have to check at most three previous
1695 bytes. */
1696 int translate_prev_byte1 = 0;
1697 int translate_prev_byte2 = 0;
1698 int translate_prev_byte3 = 0;
1700 BM_tab = (int *) alloca (0400 * sizeof (int));
1702 /* The general approach is that we are going to maintain that we know */
1703 /* the first (closest to the present position, in whatever direction */
1704 /* we're searching) character that could possibly be the last */
1705 /* (furthest from present position) character of a valid match. We */
1706 /* advance the state of our knowledge by looking at that character */
1707 /* and seeing whether it indeed matches the last character of the */
1708 /* pattern. If it does, we take a closer look. If it does not, we */
1709 /* move our pointer (to putative last characters) as far as is */
1710 /* logically possible. This amount of movement, which I call a */
1711 /* stride, will be the length of the pattern if the actual character */
1712 /* appears nowhere in the pattern, otherwise it will be the distance */
1713 /* from the last occurrence of that character to the end of the */
1714 /* pattern. */
1715 /* As a coding trick, an enormous stride is coded into the table for */
1716 /* characters that match the last character. This allows use of only */
1717 /* a single test, a test for having gone past the end of the */
1718 /* permissible match region, to test for both possible matches (when */
1719 /* the stride goes past the end immediately) and failure to */
1720 /* match (where you get nudged past the end one stride at a time). */
1722 /* Here we make a "mickey mouse" BM table. The stride of the search */
1723 /* is determined only by the last character of the putative match. */
1724 /* If that character does not match, we will stride the proper */
1725 /* distance to propose a match that superimposes it on the last */
1726 /* instance of a character that matches it (per trt), or misses */
1727 /* it entirely if there is none. */
1729 dirlen = len_byte * direction;
1730 infinity = dirlen - (lim_byte + pos_byte + len_byte + len_byte) * direction;
1732 /* Record position after the end of the pattern. */
1733 pat_end = base_pat + len_byte;
1734 /* BASE_PAT points to a character that we start scanning from.
1735 It is the first character in a forward search,
1736 the last character in a backward search. */
1737 if (direction < 0)
1738 base_pat = pat_end - 1;
1740 BM_tab_base = BM_tab;
1741 BM_tab += 0400;
1742 j = dirlen; /* to get it in a register */
1743 /* A character that does not appear in the pattern induces a */
1744 /* stride equal to the pattern length. */
1745 while (BM_tab_base != BM_tab)
1747 *--BM_tab = j;
1748 *--BM_tab = j;
1749 *--BM_tab = j;
1750 *--BM_tab = j;
1753 /* We use this for translation, instead of TRT itself.
1754 We fill this in to handle the characters that actually
1755 occur in the pattern. Others don't matter anyway! */
1756 bzero (simple_translate, sizeof simple_translate);
1757 for (i = 0; i < 0400; i++)
1758 simple_translate[i] = i;
1760 if (charset_base)
1762 /* Setup translate_prev_byte1/2/3 from CHARSET_BASE. Only a
1763 byte following them are the target of translation. */
1764 int sample_char = charset_base | 0x20;
1765 unsigned char str[MAX_MULTIBYTE_LENGTH];
1766 int len = CHAR_STRING (sample_char, str);
1768 translate_prev_byte1 = str[len - 2];
1769 if (len > 2)
1771 translate_prev_byte2 = str[len - 3];
1772 if (len > 3)
1773 translate_prev_byte3 = str[len - 4];
1777 i = 0;
1778 while (i != infinity)
1780 unsigned char *ptr = base_pat + i;
1781 i += direction;
1782 if (i == dirlen)
1783 i = infinity;
1784 if (! NILP (trt))
1786 /* If the byte currently looking at is the last of a
1787 character to check case-equivalents, set CH to that
1788 character. An ASCII character and a non-ASCII character
1789 matching with CHARSET_BASE are to be checked. */
1790 int ch = -1;
1792 if (ASCII_BYTE_P (*ptr) || ! multibyte)
1793 ch = *ptr;
1794 else if (charset_base
1795 && ((pat_end - ptr) == 1 || CHAR_HEAD_P (ptr[1])))
1797 unsigned char *charstart = ptr - 1;
1799 while (! (CHAR_HEAD_P (*charstart)))
1800 charstart--;
1801 ch = STRING_CHAR (charstart, ptr - charstart + 1);
1802 if (charset_base != (ch & ~CHAR_FIELD3_MASK))
1803 ch = -1;
1806 if (ch >= 0400)
1807 j = ((unsigned char) ch) | 0200;
1808 else
1809 j = *ptr;
1811 if (i == infinity)
1812 stride_for_teases = BM_tab[j];
1814 BM_tab[j] = dirlen - i;
1815 /* A translation table is accompanied by its inverse -- see */
1816 /* comment following downcase_table for details */
1817 if (ch >= 0)
1819 int starting_ch = ch;
1820 int starting_j = j;
1822 while (1)
1824 TRANSLATE (ch, inverse_trt, ch);
1825 if (ch >= 0400)
1826 j = ((unsigned char) ch) | 0200;
1827 else
1828 j = (unsigned char) ch;
1830 /* For all the characters that map into CH,
1831 set up simple_translate to map the last byte
1832 into STARTING_J. */
1833 simple_translate[j] = starting_j;
1834 if (ch == starting_ch)
1835 break;
1836 BM_tab[j] = dirlen - i;
1840 else
1842 j = *ptr;
1844 if (i == infinity)
1845 stride_for_teases = BM_tab[j];
1846 BM_tab[j] = dirlen - i;
1848 /* stride_for_teases tells how much to stride if we get a */
1849 /* match on the far character but are subsequently */
1850 /* disappointed, by recording what the stride would have been */
1851 /* for that character if the last character had been */
1852 /* different. */
1854 infinity = dirlen - infinity;
1855 pos_byte += dirlen - ((direction > 0) ? direction : 0);
1856 /* loop invariant - POS_BYTE points at where last char (first
1857 char if reverse) of pattern would align in a possible match. */
1858 while (n != 0)
1860 int tail_end;
1861 unsigned char *tail_end_ptr;
1863 /* It's been reported that some (broken) compiler thinks that
1864 Boolean expressions in an arithmetic context are unsigned.
1865 Using an explicit ?1:0 prevents this. */
1866 if ((lim_byte - pos_byte - ((direction > 0) ? 1 : 0)) * direction
1867 < 0)
1868 return (n * (0 - direction));
1869 /* First we do the part we can by pointers (maybe nothing) */
1870 QUIT;
1871 pat = base_pat;
1872 limit = pos_byte - dirlen + direction;
1873 if (direction > 0)
1875 limit = BUFFER_CEILING_OF (limit);
1876 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1877 can take on without hitting edge of buffer or the gap. */
1878 limit = min (limit, pos_byte + 20000);
1879 limit = min (limit, lim_byte - 1);
1881 else
1883 limit = BUFFER_FLOOR_OF (limit);
1884 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1885 can take on without hitting edge of buffer or the gap. */
1886 limit = max (limit, pos_byte - 20000);
1887 limit = max (limit, lim_byte);
1889 tail_end = BUFFER_CEILING_OF (pos_byte) + 1;
1890 tail_end_ptr = BYTE_POS_ADDR (tail_end);
1892 if ((limit - pos_byte) * direction > 20)
1894 unsigned char *p2;
1896 p_limit = BYTE_POS_ADDR (limit);
1897 p2 = (cursor = BYTE_POS_ADDR (pos_byte));
1898 /* In this loop, pos + cursor - p2 is the surrogate for pos */
1899 while (1) /* use one cursor setting as long as i can */
1901 if (direction > 0) /* worth duplicating */
1903 /* Use signed comparison if appropriate
1904 to make cursor+infinity sure to be > p_limit.
1905 Assuming that the buffer lies in a range of addresses
1906 that are all "positive" (as ints) or all "negative",
1907 either kind of comparison will work as long
1908 as we don't step by infinity. So pick the kind
1909 that works when we do step by infinity. */
1910 if ((EMACS_INT) (p_limit + infinity) > (EMACS_INT) p_limit)
1911 while ((EMACS_INT) cursor <= (EMACS_INT) p_limit)
1912 cursor += BM_tab[*cursor];
1913 else
1914 while ((EMACS_UINT) cursor <= (EMACS_UINT) p_limit)
1915 cursor += BM_tab[*cursor];
1917 else
1919 if ((EMACS_INT) (p_limit + infinity) < (EMACS_INT) p_limit)
1920 while ((EMACS_INT) cursor >= (EMACS_INT) p_limit)
1921 cursor += BM_tab[*cursor];
1922 else
1923 while ((EMACS_UINT) cursor >= (EMACS_UINT) p_limit)
1924 cursor += BM_tab[*cursor];
1926 /* If you are here, cursor is beyond the end of the searched region. */
1927 /* This can happen if you match on the far character of the pattern, */
1928 /* because the "stride" of that character is infinity, a number able */
1929 /* to throw you well beyond the end of the search. It can also */
1930 /* happen if you fail to match within the permitted region and would */
1931 /* otherwise try a character beyond that region */
1932 if ((cursor - p_limit) * direction <= len_byte)
1933 break; /* a small overrun is genuine */
1934 cursor -= infinity; /* large overrun = hit */
1935 i = dirlen - direction;
1936 if (! NILP (trt))
1938 while ((i -= direction) + direction != 0)
1940 int ch;
1941 cursor -= direction;
1942 /* Translate only the last byte of a character. */
1943 if (! multibyte
1944 || ((cursor == tail_end_ptr
1945 || CHAR_HEAD_P (cursor[1]))
1946 && (CHAR_HEAD_P (cursor[0])
1947 /* Check if this is the last byte of
1948 a translable character. */
1949 || (translate_prev_byte1 == cursor[-1]
1950 && (CHAR_HEAD_P (translate_prev_byte1)
1951 || (translate_prev_byte2 == cursor[-2]
1952 && (CHAR_HEAD_P (translate_prev_byte2)
1953 || (translate_prev_byte3 == cursor[-3]))))))))
1954 ch = simple_translate[*cursor];
1955 else
1956 ch = *cursor;
1957 if (pat[i] != ch)
1958 break;
1961 else
1963 while ((i -= direction) + direction != 0)
1965 cursor -= direction;
1966 if (pat[i] != *cursor)
1967 break;
1970 cursor += dirlen - i - direction; /* fix cursor */
1971 if (i + direction == 0)
1973 int position, start, end;
1975 cursor -= direction;
1977 position = pos_byte + cursor - p2 + ((direction > 0)
1978 ? 1 - len_byte : 0);
1979 set_search_regs (position, len_byte);
1981 if (NILP (Vinhibit_changing_match_data))
1983 start = search_regs.start[0];
1984 end = search_regs.end[0];
1986 else
1987 /* If Vinhibit_changing_match_data is non-nil,
1988 search_regs will not be changed. So let's
1989 compute start and end here. */
1991 start = BYTE_TO_CHAR (position);
1992 end = BYTE_TO_CHAR (position + len_byte);
1995 if ((n -= direction) != 0)
1996 cursor += dirlen; /* to resume search */
1997 else
1998 return direction > 0 ? end : start;
2000 else
2001 cursor += stride_for_teases; /* <sigh> we lose - */
2003 pos_byte += cursor - p2;
2005 else
2006 /* Now we'll pick up a clump that has to be done the hard */
2007 /* way because it covers a discontinuity */
2009 limit = ((direction > 0)
2010 ? BUFFER_CEILING_OF (pos_byte - dirlen + 1)
2011 : BUFFER_FLOOR_OF (pos_byte - dirlen - 1));
2012 limit = ((direction > 0)
2013 ? min (limit + len_byte, lim_byte - 1)
2014 : max (limit - len_byte, lim_byte));
2015 /* LIMIT is now the last value POS_BYTE can have
2016 and still be valid for a possible match. */
2017 while (1)
2019 /* This loop can be coded for space rather than */
2020 /* speed because it will usually run only once. */
2021 /* (the reach is at most len + 21, and typically */
2022 /* does not exceed len) */
2023 while ((limit - pos_byte) * direction >= 0)
2024 pos_byte += BM_tab[FETCH_BYTE (pos_byte)];
2025 /* now run the same tests to distinguish going off the */
2026 /* end, a match or a phony match. */
2027 if ((pos_byte - limit) * direction <= len_byte)
2028 break; /* ran off the end */
2029 /* Found what might be a match.
2030 Set POS_BYTE back to last (first if reverse) pos. */
2031 pos_byte -= infinity;
2032 i = dirlen - direction;
2033 while ((i -= direction) + direction != 0)
2035 int ch;
2036 unsigned char *ptr;
2037 pos_byte -= direction;
2038 ptr = BYTE_POS_ADDR (pos_byte);
2039 /* Translate only the last byte of a character. */
2040 if (! multibyte
2041 || ((ptr == tail_end_ptr
2042 || CHAR_HEAD_P (ptr[1]))
2043 && (CHAR_HEAD_P (ptr[0])
2044 /* Check if this is the last byte of a
2045 translable character. */
2046 || (translate_prev_byte1 == ptr[-1]
2047 && (CHAR_HEAD_P (translate_prev_byte1)
2048 || (translate_prev_byte2 == ptr[-2]
2049 && (CHAR_HEAD_P (translate_prev_byte2)
2050 || translate_prev_byte3 == ptr[-3])))))))
2051 ch = simple_translate[*ptr];
2052 else
2053 ch = *ptr;
2054 if (pat[i] != ch)
2055 break;
2057 /* Above loop has moved POS_BYTE part or all the way
2058 back to the first pos (last pos if reverse).
2059 Set it once again at the last (first if reverse) char. */
2060 pos_byte += dirlen - i- direction;
2061 if (i + direction == 0)
2063 int position, start, end;
2064 pos_byte -= direction;
2066 position = pos_byte + ((direction > 0) ? 1 - len_byte : 0);
2067 set_search_regs (position, len_byte);
2069 if (NILP (Vinhibit_changing_match_data))
2071 start = search_regs.start[0];
2072 end = search_regs.end[0];
2074 else
2075 /* If Vinhibit_changing_match_data is non-nil,
2076 search_regs will not be changed. So let's
2077 compute start and end here. */
2079 start = BYTE_TO_CHAR (position);
2080 end = BYTE_TO_CHAR (position + len_byte);
2083 if ((n -= direction) != 0)
2084 pos_byte += dirlen; /* to resume search */
2085 else
2086 return direction > 0 ? end : start;
2088 else
2089 pos_byte += stride_for_teases;
2092 /* We have done one clump. Can we continue? */
2093 if ((lim_byte - pos_byte) * direction < 0)
2094 return ((0 - n) * direction);
2096 return BYTE_TO_CHAR (pos_byte);
2099 /* Record beginning BEG_BYTE and end BEG_BYTE + NBYTES
2100 for the overall match just found in the current buffer.
2101 Also clear out the match data for registers 1 and up. */
2103 static void
2104 set_search_regs (beg_byte, nbytes)
2105 int beg_byte, nbytes;
2107 int i;
2109 if (!NILP (Vinhibit_changing_match_data))
2110 return;
2112 /* Make sure we have registers in which to store
2113 the match position. */
2114 if (search_regs.num_regs == 0)
2116 search_regs.start = (regoff_t *) xmalloc (2 * sizeof (regoff_t));
2117 search_regs.end = (regoff_t *) xmalloc (2 * sizeof (regoff_t));
2118 search_regs.num_regs = 2;
2121 /* Clear out the other registers. */
2122 for (i = 1; i < search_regs.num_regs; i++)
2124 search_regs.start[i] = -1;
2125 search_regs.end[i] = -1;
2128 search_regs.start[0] = BYTE_TO_CHAR (beg_byte);
2129 search_regs.end[0] = BYTE_TO_CHAR (beg_byte + nbytes);
2130 XSETBUFFER (last_thing_searched, current_buffer);
2133 /* Given a string of words separated by word delimiters,
2134 compute a regexp that matches those exact words
2135 separated by arbitrary punctuation. */
2137 static Lisp_Object
2138 wordify (string)
2139 Lisp_Object string;
2141 register unsigned char *p, *o;
2142 register int i, i_byte, len, punct_count = 0, word_count = 0;
2143 Lisp_Object val;
2144 int prev_c = 0;
2145 int adjust;
2147 CHECK_STRING (string);
2148 p = SDATA (string);
2149 len = SCHARS (string);
2151 for (i = 0, i_byte = 0; i < len; )
2153 int c;
2155 FETCH_STRING_CHAR_ADVANCE (c, string, i, i_byte);
2157 if (SYNTAX (c) != Sword)
2159 punct_count++;
2160 if (i > 0 && SYNTAX (prev_c) == Sword)
2161 word_count++;
2164 prev_c = c;
2167 if (SYNTAX (prev_c) == Sword)
2168 word_count++;
2169 if (!word_count)
2170 return empty_unibyte_string;
2172 adjust = - punct_count + 5 * (word_count - 1) + 4;
2173 if (STRING_MULTIBYTE (string))
2174 val = make_uninit_multibyte_string (len + adjust,
2175 SBYTES (string)
2176 + adjust);
2177 else
2178 val = make_uninit_string (len + adjust);
2180 o = SDATA (val);
2181 *o++ = '\\';
2182 *o++ = 'b';
2183 prev_c = 0;
2185 for (i = 0, i_byte = 0; i < len; )
2187 int c;
2188 int i_byte_orig = i_byte;
2190 FETCH_STRING_CHAR_ADVANCE (c, string, i, i_byte);
2192 if (SYNTAX (c) == Sword)
2194 bcopy (SDATA (string) + i_byte_orig, o,
2195 i_byte - i_byte_orig);
2196 o += i_byte - i_byte_orig;
2198 else if (i > 0 && SYNTAX (prev_c) == Sword && --word_count)
2200 *o++ = '\\';
2201 *o++ = 'W';
2202 *o++ = '\\';
2203 *o++ = 'W';
2204 *o++ = '*';
2207 prev_c = c;
2210 *o++ = '\\';
2211 *o++ = 'b';
2213 return val;
2216 DEFUN ("search-backward", Fsearch_backward, Ssearch_backward, 1, 4,
2217 "MSearch backward: ",
2218 doc: /* Search backward from point for STRING.
2219 Set point to the beginning of the occurrence found, and return point.
2220 An optional second argument bounds the search; it is a buffer position.
2221 The match found must not extend before that position.
2222 Optional third argument, if t, means if fail just return nil (no error).
2223 If not nil and not t, position at limit of search and return nil.
2224 Optional fourth argument is repeat count--search for successive occurrences.
2226 Search case-sensitivity is determined by the value of the variable
2227 `case-fold-search', which see.
2229 See also the functions `match-beginning', `match-end' and `replace-match'. */)
2230 (string, bound, noerror, count)
2231 Lisp_Object string, bound, noerror, count;
2233 return search_command (string, bound, noerror, count, -1, 0, 0);
2236 DEFUN ("search-forward", Fsearch_forward, Ssearch_forward, 1, 4, "MSearch: ",
2237 doc: /* Search forward from point for STRING.
2238 Set point to the end of the occurrence found, and return point.
2239 An optional second argument bounds the search; it is a buffer position.
2240 The match found must not extend after that position. A value of nil is
2241 equivalent to (point-max).
2242 Optional third argument, if t, means if fail just return nil (no error).
2243 If not nil and not t, move to limit of search and return nil.
2244 Optional fourth argument is repeat count--search for successive occurrences.
2246 Search case-sensitivity is determined by the value of the variable
2247 `case-fold-search', which see.
2249 See also the functions `match-beginning', `match-end' and `replace-match'. */)
2250 (string, bound, noerror, count)
2251 Lisp_Object string, bound, noerror, count;
2253 return search_command (string, bound, noerror, count, 1, 0, 0);
2256 DEFUN ("word-search-backward", Fword_search_backward, Sword_search_backward, 1, 4,
2257 "sWord search backward: ",
2258 doc: /* Search backward from point for STRING, ignoring differences in punctuation.
2259 Set point to the beginning of the occurrence found, and return point.
2260 An optional second argument bounds the search; it is a buffer position.
2261 The match found must not extend before that position.
2262 Optional third argument, if t, means if fail just return nil (no error).
2263 If not nil and not t, move to limit of search and return nil.
2264 Optional fourth argument is repeat count--search for successive occurrences. */)
2265 (string, bound, noerror, count)
2266 Lisp_Object string, bound, noerror, count;
2268 return search_command (wordify (string), bound, noerror, count, -1, 1, 0);
2271 DEFUN ("word-search-forward", Fword_search_forward, Sword_search_forward, 1, 4,
2272 "sWord search: ",
2273 doc: /* Search forward from point for STRING, ignoring differences in punctuation.
2274 Set point to the end of the occurrence found, and return point.
2275 An optional second argument bounds the search; it is a buffer position.
2276 The match found must not extend after that position.
2277 Optional third argument, if t, means if fail just return nil (no error).
2278 If not nil and not t, move to limit of search and return nil.
2279 Optional fourth argument is repeat count--search for successive occurrences. */)
2280 (string, bound, noerror, count)
2281 Lisp_Object string, bound, noerror, count;
2283 return search_command (wordify (string), bound, noerror, count, 1, 1, 0);
2286 DEFUN ("re-search-backward", Fre_search_backward, Sre_search_backward, 1, 4,
2287 "sRE search backward: ",
2288 doc: /* Search backward from point for match for regular expression REGEXP.
2289 Set point to the beginning of the match, and return point.
2290 The match found is the one starting last in the buffer
2291 and yet ending before the origin of the search.
2292 An optional second argument bounds the search; it is a buffer position.
2293 The match found must start at or after that position.
2294 Optional third argument, if t, means if fail just return nil (no error).
2295 If not nil and not t, move to limit of search and return nil.
2296 Optional fourth argument is repeat count--search for successive occurrences.
2297 See also the functions `match-beginning', `match-end', `match-string',
2298 and `replace-match'. */)
2299 (regexp, bound, noerror, count)
2300 Lisp_Object regexp, bound, noerror, count;
2302 return search_command (regexp, bound, noerror, count, -1, 1, 0);
2305 DEFUN ("re-search-forward", Fre_search_forward, Sre_search_forward, 1, 4,
2306 "sRE search: ",
2307 doc: /* Search forward from point for regular expression REGEXP.
2308 Set point to the end of the occurrence found, and return point.
2309 An optional second argument bounds the search; it is a buffer position.
2310 The match found must not extend after that position.
2311 Optional third argument, if t, means if fail just return nil (no error).
2312 If not nil and not t, move to limit of search and return nil.
2313 Optional fourth argument is repeat count--search for successive occurrences.
2314 See also the functions `match-beginning', `match-end', `match-string',
2315 and `replace-match'. */)
2316 (regexp, bound, noerror, count)
2317 Lisp_Object regexp, bound, noerror, count;
2319 return search_command (regexp, bound, noerror, count, 1, 1, 0);
2322 DEFUN ("posix-search-backward", Fposix_search_backward, Sposix_search_backward, 1, 4,
2323 "sPosix search backward: ",
2324 doc: /* Search backward from point for match for regular expression REGEXP.
2325 Find the longest match in accord with Posix regular expression rules.
2326 Set point to the beginning of the match, and return point.
2327 The match found is the one starting last in the buffer
2328 and yet ending before the origin of the search.
2329 An optional second argument bounds the search; it is a buffer position.
2330 The match found must start at or after that position.
2331 Optional third argument, if t, means if fail just return nil (no error).
2332 If not nil and not t, move to limit of search and return nil.
2333 Optional fourth argument is repeat count--search for successive occurrences.
2334 See also the functions `match-beginning', `match-end', `match-string',
2335 and `replace-match'. */)
2336 (regexp, bound, noerror, count)
2337 Lisp_Object regexp, bound, noerror, count;
2339 return search_command (regexp, bound, noerror, count, -1, 1, 1);
2342 DEFUN ("posix-search-forward", Fposix_search_forward, Sposix_search_forward, 1, 4,
2343 "sPosix search: ",
2344 doc: /* Search forward from point for regular expression REGEXP.
2345 Find the longest match in accord with Posix regular expression rules.
2346 Set point to the end of the occurrence found, and return point.
2347 An optional second argument bounds the search; it is a buffer position.
2348 The match found must not extend after that position.
2349 Optional third argument, if t, means if fail just return nil (no error).
2350 If not nil and not t, move to limit of search and return nil.
2351 Optional fourth argument is repeat count--search for successive occurrences.
2352 See also the functions `match-beginning', `match-end', `match-string',
2353 and `replace-match'. */)
2354 (regexp, bound, noerror, count)
2355 Lisp_Object regexp, bound, noerror, count;
2357 return search_command (regexp, bound, noerror, count, 1, 1, 1);
2360 DEFUN ("replace-match", Freplace_match, Sreplace_match, 1, 5, 0,
2361 doc: /* Replace text matched by last search with NEWTEXT.
2362 Leave point at the end of the replacement text.
2364 If second arg FIXEDCASE is non-nil, do not alter case of replacement text.
2365 Otherwise maybe capitalize the whole text, or maybe just word initials,
2366 based on the replaced text.
2367 If the replaced text has only capital letters
2368 and has at least one multiletter word, convert NEWTEXT to all caps.
2369 Otherwise if all words are capitalized in the replaced text,
2370 capitalize each word in NEWTEXT.
2372 If third arg LITERAL is non-nil, insert NEWTEXT literally.
2373 Otherwise treat `\\' as special:
2374 `\\&' in NEWTEXT means substitute original matched text.
2375 `\\N' means substitute what matched the Nth `\\(...\\)'.
2376 If Nth parens didn't match, substitute nothing.
2377 `\\\\' means insert one `\\'.
2378 Case conversion does not apply to these substitutions.
2380 FIXEDCASE and LITERAL are optional arguments.
2382 The optional fourth argument STRING can be a string to modify.
2383 This is meaningful when the previous match was done against STRING,
2384 using `string-match'. When used this way, `replace-match'
2385 creates and returns a new string made by copying STRING and replacing
2386 the part of STRING that was matched.
2388 The optional fifth argument SUBEXP specifies a subexpression;
2389 it says to replace just that subexpression with NEWTEXT,
2390 rather than replacing the entire matched text.
2391 This is, in a vague sense, the inverse of using `\\N' in NEWTEXT;
2392 `\\N' copies subexp N into NEWTEXT, but using N as SUBEXP puts
2393 NEWTEXT in place of subexp N.
2394 This is useful only after a regular expression search or match,
2395 since only regular expressions have distinguished subexpressions. */)
2396 (newtext, fixedcase, literal, string, subexp)
2397 Lisp_Object newtext, fixedcase, literal, string, subexp;
2399 enum { nochange, all_caps, cap_initial } case_action;
2400 register int pos, pos_byte;
2401 int some_multiletter_word;
2402 int some_lowercase;
2403 int some_uppercase;
2404 int some_nonuppercase_initial;
2405 register int c, prevc;
2406 int sub;
2407 int opoint, newpoint;
2409 CHECK_STRING (newtext);
2411 if (! NILP (string))
2412 CHECK_STRING (string);
2414 case_action = nochange; /* We tried an initialization */
2415 /* but some C compilers blew it */
2417 if (search_regs.num_regs <= 0)
2418 error ("`replace-match' called before any match found");
2420 if (NILP (subexp))
2421 sub = 0;
2422 else
2424 CHECK_NUMBER (subexp);
2425 sub = XINT (subexp);
2426 if (sub < 0 || sub >= search_regs.num_regs)
2427 args_out_of_range (subexp, make_number (search_regs.num_regs));
2430 if (NILP (string))
2432 if (search_regs.start[sub] < BEGV
2433 || search_regs.start[sub] > search_regs.end[sub]
2434 || search_regs.end[sub] > ZV)
2435 args_out_of_range (make_number (search_regs.start[sub]),
2436 make_number (search_regs.end[sub]));
2438 else
2440 if (search_regs.start[sub] < 0
2441 || search_regs.start[sub] > search_regs.end[sub]
2442 || search_regs.end[sub] > SCHARS (string))
2443 args_out_of_range (make_number (search_regs.start[sub]),
2444 make_number (search_regs.end[sub]));
2447 if (NILP (fixedcase))
2449 /* Decide how to casify by examining the matched text. */
2450 int last;
2452 pos = search_regs.start[sub];
2453 last = search_regs.end[sub];
2455 if (NILP (string))
2456 pos_byte = CHAR_TO_BYTE (pos);
2457 else
2458 pos_byte = string_char_to_byte (string, pos);
2460 prevc = '\n';
2461 case_action = all_caps;
2463 /* some_multiletter_word is set nonzero if any original word
2464 is more than one letter long. */
2465 some_multiletter_word = 0;
2466 some_lowercase = 0;
2467 some_nonuppercase_initial = 0;
2468 some_uppercase = 0;
2470 while (pos < last)
2472 if (NILP (string))
2474 c = FETCH_CHAR (pos_byte);
2475 INC_BOTH (pos, pos_byte);
2477 else
2478 FETCH_STRING_CHAR_ADVANCE (c, string, pos, pos_byte);
2480 if (LOWERCASEP (c))
2482 /* Cannot be all caps if any original char is lower case */
2484 some_lowercase = 1;
2485 if (SYNTAX (prevc) != Sword)
2486 some_nonuppercase_initial = 1;
2487 else
2488 some_multiletter_word = 1;
2490 else if (UPPERCASEP (c))
2492 some_uppercase = 1;
2493 if (SYNTAX (prevc) != Sword)
2495 else
2496 some_multiletter_word = 1;
2498 else
2500 /* If the initial is a caseless word constituent,
2501 treat that like a lowercase initial. */
2502 if (SYNTAX (prevc) != Sword)
2503 some_nonuppercase_initial = 1;
2506 prevc = c;
2509 /* Convert to all caps if the old text is all caps
2510 and has at least one multiletter word. */
2511 if (! some_lowercase && some_multiletter_word)
2512 case_action = all_caps;
2513 /* Capitalize each word, if the old text has all capitalized words. */
2514 else if (!some_nonuppercase_initial && some_multiletter_word)
2515 case_action = cap_initial;
2516 else if (!some_nonuppercase_initial && some_uppercase)
2517 /* Should x -> yz, operating on X, give Yz or YZ?
2518 We'll assume the latter. */
2519 case_action = all_caps;
2520 else
2521 case_action = nochange;
2524 /* Do replacement in a string. */
2525 if (!NILP (string))
2527 Lisp_Object before, after;
2529 before = Fsubstring (string, make_number (0),
2530 make_number (search_regs.start[sub]));
2531 after = Fsubstring (string, make_number (search_regs.end[sub]), Qnil);
2533 /* Substitute parts of the match into NEWTEXT
2534 if desired. */
2535 if (NILP (literal))
2537 int lastpos = 0;
2538 int lastpos_byte = 0;
2539 /* We build up the substituted string in ACCUM. */
2540 Lisp_Object accum;
2541 Lisp_Object middle;
2542 int length = SBYTES (newtext);
2544 accum = Qnil;
2546 for (pos_byte = 0, pos = 0; pos_byte < length;)
2548 int substart = -1;
2549 int subend = 0;
2550 int delbackslash = 0;
2552 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2554 if (c == '\\')
2556 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2558 if (c == '&')
2560 substart = search_regs.start[sub];
2561 subend = search_regs.end[sub];
2563 else if (c >= '1' && c <= '9')
2565 if (search_regs.start[c - '0'] >= 0
2566 && c <= search_regs.num_regs + '0')
2568 substart = search_regs.start[c - '0'];
2569 subend = search_regs.end[c - '0'];
2571 else
2573 /* If that subexp did not match,
2574 replace \\N with nothing. */
2575 substart = 0;
2576 subend = 0;
2579 else if (c == '\\')
2580 delbackslash = 1;
2581 else
2582 error ("Invalid use of `\\' in replacement text");
2584 if (substart >= 0)
2586 if (pos - 2 != lastpos)
2587 middle = substring_both (newtext, lastpos,
2588 lastpos_byte,
2589 pos - 2, pos_byte - 2);
2590 else
2591 middle = Qnil;
2592 accum = concat3 (accum, middle,
2593 Fsubstring (string,
2594 make_number (substart),
2595 make_number (subend)));
2596 lastpos = pos;
2597 lastpos_byte = pos_byte;
2599 else if (delbackslash)
2601 middle = substring_both (newtext, lastpos,
2602 lastpos_byte,
2603 pos - 1, pos_byte - 1);
2605 accum = concat2 (accum, middle);
2606 lastpos = pos;
2607 lastpos_byte = pos_byte;
2611 if (pos != lastpos)
2612 middle = substring_both (newtext, lastpos,
2613 lastpos_byte,
2614 pos, pos_byte);
2615 else
2616 middle = Qnil;
2618 newtext = concat2 (accum, middle);
2621 /* Do case substitution in NEWTEXT if desired. */
2622 if (case_action == all_caps)
2623 newtext = Fupcase (newtext);
2624 else if (case_action == cap_initial)
2625 newtext = Fupcase_initials (newtext);
2627 return concat3 (before, newtext, after);
2630 /* Record point, then move (quietly) to the start of the match. */
2631 if (PT >= search_regs.end[sub])
2632 opoint = PT - ZV;
2633 else if (PT > search_regs.start[sub])
2634 opoint = search_regs.end[sub] - ZV;
2635 else
2636 opoint = PT;
2638 /* If we want non-literal replacement,
2639 perform substitution on the replacement string. */
2640 if (NILP (literal))
2642 int length = SBYTES (newtext);
2643 unsigned char *substed;
2644 int substed_alloc_size, substed_len;
2645 int buf_multibyte = !NILP (current_buffer->enable_multibyte_characters);
2646 int str_multibyte = STRING_MULTIBYTE (newtext);
2647 Lisp_Object rev_tbl;
2648 int really_changed = 0;
2650 rev_tbl= (!buf_multibyte && CHAR_TABLE_P (Vnonascii_translation_table)
2651 ? Fchar_table_extra_slot (Vnonascii_translation_table,
2652 make_number (0))
2653 : Qnil);
2655 substed_alloc_size = length * 2 + 100;
2656 substed = (unsigned char *) xmalloc (substed_alloc_size + 1);
2657 substed_len = 0;
2659 /* Go thru NEWTEXT, producing the actual text to insert in
2660 SUBSTED while adjusting multibyteness to that of the current
2661 buffer. */
2663 for (pos_byte = 0, pos = 0; pos_byte < length;)
2665 unsigned char str[MAX_MULTIBYTE_LENGTH];
2666 unsigned char *add_stuff = NULL;
2667 int add_len = 0;
2668 int idx = -1;
2670 if (str_multibyte)
2672 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, newtext, pos, pos_byte);
2673 if (!buf_multibyte)
2674 c = multibyte_char_to_unibyte (c, rev_tbl);
2676 else
2678 /* Note that we don't have to increment POS. */
2679 c = SREF (newtext, pos_byte++);
2680 if (buf_multibyte)
2681 c = unibyte_char_to_multibyte (c);
2684 /* Either set ADD_STUFF and ADD_LEN to the text to put in SUBSTED,
2685 or set IDX to a match index, which means put that part
2686 of the buffer text into SUBSTED. */
2688 if (c == '\\')
2690 really_changed = 1;
2692 if (str_multibyte)
2694 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, newtext,
2695 pos, pos_byte);
2696 if (!buf_multibyte && !SINGLE_BYTE_CHAR_P (c))
2697 c = multibyte_char_to_unibyte (c, rev_tbl);
2699 else
2701 c = SREF (newtext, pos_byte++);
2702 if (buf_multibyte)
2703 c = unibyte_char_to_multibyte (c);
2706 if (c == '&')
2707 idx = sub;
2708 else if (c >= '1' && c <= '9' && c <= search_regs.num_regs + '0')
2710 if (search_regs.start[c - '0'] >= 1)
2711 idx = c - '0';
2713 else if (c == '\\')
2714 add_len = 1, add_stuff = "\\";
2715 else
2717 xfree (substed);
2718 error ("Invalid use of `\\' in replacement text");
2721 else
2723 add_len = CHAR_STRING (c, str);
2724 add_stuff = str;
2727 /* If we want to copy part of a previous match,
2728 set up ADD_STUFF and ADD_LEN to point to it. */
2729 if (idx >= 0)
2731 int begbyte = CHAR_TO_BYTE (search_regs.start[idx]);
2732 add_len = CHAR_TO_BYTE (search_regs.end[idx]) - begbyte;
2733 if (search_regs.start[idx] < GPT && GPT < search_regs.end[idx])
2734 move_gap (search_regs.start[idx]);
2735 add_stuff = BYTE_POS_ADDR (begbyte);
2738 /* Now the stuff we want to add to SUBSTED
2739 is invariably ADD_LEN bytes starting at ADD_STUFF. */
2741 /* Make sure SUBSTED is big enough. */
2742 if (substed_len + add_len >= substed_alloc_size)
2744 substed_alloc_size = substed_len + add_len + 500;
2745 substed = (unsigned char *) xrealloc (substed,
2746 substed_alloc_size + 1);
2749 /* Now add to the end of SUBSTED. */
2750 if (add_stuff)
2752 bcopy (add_stuff, substed + substed_len, add_len);
2753 substed_len += add_len;
2757 if (really_changed)
2759 if (buf_multibyte)
2761 int nchars = multibyte_chars_in_text (substed, substed_len);
2763 newtext = make_multibyte_string (substed, nchars, substed_len);
2765 else
2766 newtext = make_unibyte_string (substed, substed_len);
2768 xfree (substed);
2771 /* Replace the old text with the new in the cleanest possible way. */
2772 replace_range (search_regs.start[sub], search_regs.end[sub],
2773 newtext, 1, 0, 1);
2774 newpoint = search_regs.start[sub] + SCHARS (newtext);
2776 if (case_action == all_caps)
2777 Fupcase_region (make_number (search_regs.start[sub]),
2778 make_number (newpoint));
2779 else if (case_action == cap_initial)
2780 Fupcase_initials_region (make_number (search_regs.start[sub]),
2781 make_number (newpoint));
2783 /* Adjust search data for this change. */
2785 int oldend = search_regs.end[sub];
2786 int oldstart = search_regs.start[sub];
2787 int change = newpoint - search_regs.end[sub];
2788 int i;
2790 for (i = 0; i < search_regs.num_regs; i++)
2792 if (search_regs.start[i] >= oldend)
2793 search_regs.start[i] += change;
2794 else if (search_regs.start[i] > oldstart)
2795 search_regs.start[i] = oldstart;
2796 if (search_regs.end[i] >= oldend)
2797 search_regs.end[i] += change;
2798 else if (search_regs.end[i] > oldstart)
2799 search_regs.end[i] = oldstart;
2803 /* Put point back where it was in the text. */
2804 if (opoint <= 0)
2805 TEMP_SET_PT (opoint + ZV);
2806 else
2807 TEMP_SET_PT (opoint);
2809 /* Now move point "officially" to the start of the inserted replacement. */
2810 move_if_not_intangible (newpoint);
2812 return Qnil;
2815 static Lisp_Object
2816 match_limit (num, beginningp)
2817 Lisp_Object num;
2818 int beginningp;
2820 register int n;
2822 CHECK_NUMBER (num);
2823 n = XINT (num);
2824 if (n < 0)
2825 args_out_of_range (num, make_number (0));
2826 if (search_regs.num_regs <= 0)
2827 error ("No match data, because no search succeeded");
2828 if (n >= search_regs.num_regs
2829 || search_regs.start[n] < 0)
2830 return Qnil;
2831 return (make_number ((beginningp) ? search_regs.start[n]
2832 : search_regs.end[n]));
2835 DEFUN ("match-beginning", Fmatch_beginning, Smatch_beginning, 1, 1, 0,
2836 doc: /* Return position of start of text matched by last search.
2837 SUBEXP, a number, specifies which parenthesized expression in the last
2838 regexp.
2839 Value is nil if SUBEXPth pair didn't match, or there were less than
2840 SUBEXP pairs.
2841 Zero means the entire text matched by the whole regexp or whole string. */)
2842 (subexp)
2843 Lisp_Object subexp;
2845 return match_limit (subexp, 1);
2848 DEFUN ("match-end", Fmatch_end, Smatch_end, 1, 1, 0,
2849 doc: /* Return position of end of text matched by last search.
2850 SUBEXP, a number, specifies which parenthesized expression in the last
2851 regexp.
2852 Value is nil if SUBEXPth pair didn't match, or there were less than
2853 SUBEXP pairs.
2854 Zero means the entire text matched by the whole regexp or whole string. */)
2855 (subexp)
2856 Lisp_Object subexp;
2858 return match_limit (subexp, 0);
2861 DEFUN ("match-data", Fmatch_data, Smatch_data, 0, 3, 0,
2862 doc: /* Return a list containing all info on what the last search matched.
2863 Element 2N is `(match-beginning N)'; element 2N + 1 is `(match-end N)'.
2864 All the elements are markers or nil (nil if the Nth pair didn't match)
2865 if the last match was on a buffer; integers or nil if a string was matched.
2866 Use `store-match-data' to reinstate the data in this list.
2868 If INTEGERS (the optional first argument) is non-nil, always use
2869 integers \(rather than markers) to represent buffer positions. In
2870 this case, and if the last match was in a buffer, the buffer will get
2871 stored as one additional element at the end of the list.
2873 If REUSE is a list, reuse it as part of the value. If REUSE is long
2874 enough to hold all the values, and if INTEGERS is non-nil, no consing
2875 is done.
2877 If optional third arg RESEAT is non-nil, any previous markers on the
2878 REUSE list will be modified to point to nowhere.
2880 Return value is undefined if the last search failed. */)
2881 (integers, reuse, reseat)
2882 Lisp_Object integers, reuse, reseat;
2884 Lisp_Object tail, prev;
2885 Lisp_Object *data;
2886 int i, len;
2888 if (!NILP (reseat))
2889 for (tail = reuse; CONSP (tail); tail = XCDR (tail))
2890 if (MARKERP (XCAR (tail)))
2892 unchain_marker (XMARKER (XCAR (tail)));
2893 XSETCAR (tail, Qnil);
2896 if (NILP (last_thing_searched))
2897 return Qnil;
2899 prev = Qnil;
2901 data = (Lisp_Object *) alloca ((2 * search_regs.num_regs + 1)
2902 * sizeof (Lisp_Object));
2904 len = 0;
2905 for (i = 0; i < search_regs.num_regs; i++)
2907 int start = search_regs.start[i];
2908 if (start >= 0)
2910 if (EQ (last_thing_searched, Qt)
2911 || ! NILP (integers))
2913 XSETFASTINT (data[2 * i], start);
2914 XSETFASTINT (data[2 * i + 1], search_regs.end[i]);
2916 else if (BUFFERP (last_thing_searched))
2918 data[2 * i] = Fmake_marker ();
2919 Fset_marker (data[2 * i],
2920 make_number (start),
2921 last_thing_searched);
2922 data[2 * i + 1] = Fmake_marker ();
2923 Fset_marker (data[2 * i + 1],
2924 make_number (search_regs.end[i]),
2925 last_thing_searched);
2927 else
2928 /* last_thing_searched must always be Qt, a buffer, or Qnil. */
2929 abort ();
2931 len = 2 * i + 2;
2933 else
2934 data[2 * i] = data[2 * i + 1] = Qnil;
2937 if (BUFFERP (last_thing_searched) && !NILP (integers))
2939 data[len] = last_thing_searched;
2940 len++;
2943 /* If REUSE is not usable, cons up the values and return them. */
2944 if (! CONSP (reuse))
2945 return Flist (len, data);
2947 /* If REUSE is a list, store as many value elements as will fit
2948 into the elements of REUSE. */
2949 for (i = 0, tail = reuse; CONSP (tail);
2950 i++, tail = XCDR (tail))
2952 if (i < len)
2953 XSETCAR (tail, data[i]);
2954 else
2955 XSETCAR (tail, Qnil);
2956 prev = tail;
2959 /* If we couldn't fit all value elements into REUSE,
2960 cons up the rest of them and add them to the end of REUSE. */
2961 if (i < len)
2962 XSETCDR (prev, Flist (len - i, data + i));
2964 return reuse;
2967 /* We used to have an internal use variant of `reseat' described as:
2969 If RESEAT is `evaporate', put the markers back on the free list
2970 immediately. No other references to the markers must exist in this
2971 case, so it is used only internally on the unwind stack and
2972 save-match-data from Lisp.
2974 But it was ill-conceived: those supposedly-internal markers get exposed via
2975 the undo-list, so freeing them here is unsafe. */
2977 DEFUN ("set-match-data", Fset_match_data, Sset_match_data, 1, 2, 0,
2978 doc: /* Set internal data on last search match from elements of LIST.
2979 LIST should have been created by calling `match-data' previously.
2981 If optional arg RESEAT is non-nil, make markers on LIST point nowhere. */)
2982 (list, reseat)
2983 register Lisp_Object list, reseat;
2985 register int i;
2986 register Lisp_Object marker;
2988 if (running_asynch_code)
2989 save_search_regs ();
2991 CHECK_LIST (list);
2993 /* Unless we find a marker with a buffer or an explicit buffer
2994 in LIST, assume that this match data came from a string. */
2995 last_thing_searched = Qt;
2997 /* Allocate registers if they don't already exist. */
2999 int length = XFASTINT (Flength (list)) / 2;
3001 if (length > search_regs.num_regs)
3003 if (search_regs.num_regs == 0)
3005 search_regs.start
3006 = (regoff_t *) xmalloc (length * sizeof (regoff_t));
3007 search_regs.end
3008 = (regoff_t *) xmalloc (length * sizeof (regoff_t));
3010 else
3012 search_regs.start
3013 = (regoff_t *) xrealloc (search_regs.start,
3014 length * sizeof (regoff_t));
3015 search_regs.end
3016 = (regoff_t *) xrealloc (search_regs.end,
3017 length * sizeof (regoff_t));
3020 for (i = search_regs.num_regs; i < length; i++)
3021 search_regs.start[i] = -1;
3023 search_regs.num_regs = length;
3026 for (i = 0; CONSP (list); i++)
3028 marker = XCAR (list);
3029 if (BUFFERP (marker))
3031 last_thing_searched = marker;
3032 break;
3034 if (i >= length)
3035 break;
3036 if (NILP (marker))
3038 search_regs.start[i] = -1;
3039 list = XCDR (list);
3041 else
3043 int from;
3044 Lisp_Object m;
3046 m = marker;
3047 if (MARKERP (marker))
3049 if (XMARKER (marker)->buffer == 0)
3050 XSETFASTINT (marker, 0);
3051 else
3052 XSETBUFFER (last_thing_searched, XMARKER (marker)->buffer);
3055 CHECK_NUMBER_COERCE_MARKER (marker);
3056 from = XINT (marker);
3058 if (!NILP (reseat) && MARKERP (m))
3060 unchain_marker (XMARKER (m));
3061 XSETCAR (list, Qnil);
3064 if ((list = XCDR (list), !CONSP (list)))
3065 break;
3067 m = marker = XCAR (list);
3069 if (MARKERP (marker) && XMARKER (marker)->buffer == 0)
3070 XSETFASTINT (marker, 0);
3072 CHECK_NUMBER_COERCE_MARKER (marker);
3073 search_regs.start[i] = from;
3074 search_regs.end[i] = XINT (marker);
3076 if (!NILP (reseat) && MARKERP (m))
3078 unchain_marker (XMARKER (m));
3079 XSETCAR (list, Qnil);
3082 list = XCDR (list);
3085 for (; i < search_regs.num_regs; i++)
3086 search_regs.start[i] = -1;
3089 return Qnil;
3092 /* If non-zero the match data have been saved in saved_search_regs
3093 during the execution of a sentinel or filter. */
3094 static int search_regs_saved;
3095 static struct re_registers saved_search_regs;
3096 static Lisp_Object saved_last_thing_searched;
3098 /* Called from Flooking_at, Fstring_match, search_buffer, Fstore_match_data
3099 if asynchronous code (filter or sentinel) is running. */
3100 static void
3101 save_search_regs ()
3103 if (!search_regs_saved)
3105 saved_search_regs.num_regs = search_regs.num_regs;
3106 saved_search_regs.start = search_regs.start;
3107 saved_search_regs.end = search_regs.end;
3108 saved_last_thing_searched = last_thing_searched;
3109 last_thing_searched = Qnil;
3110 search_regs.num_regs = 0;
3111 search_regs.start = 0;
3112 search_regs.end = 0;
3114 search_regs_saved = 1;
3118 /* Called upon exit from filters and sentinels. */
3119 void
3120 restore_search_regs ()
3122 if (search_regs_saved)
3124 if (search_regs.num_regs > 0)
3126 xfree (search_regs.start);
3127 xfree (search_regs.end);
3129 search_regs.num_regs = saved_search_regs.num_regs;
3130 search_regs.start = saved_search_regs.start;
3131 search_regs.end = saved_search_regs.end;
3132 last_thing_searched = saved_last_thing_searched;
3133 saved_last_thing_searched = Qnil;
3134 search_regs_saved = 0;
3138 static Lisp_Object
3139 unwind_set_match_data (list)
3140 Lisp_Object list;
3142 /* It is NOT ALWAYS safe to free (evaporate) the markers immediately. */
3143 return Fset_match_data (list, Qt);
3146 /* Called to unwind protect the match data. */
3147 void
3148 record_unwind_save_match_data ()
3150 record_unwind_protect (unwind_set_match_data,
3151 Fmatch_data (Qnil, Qnil, Qnil));
3154 /* Quote a string to inactivate reg-expr chars */
3156 DEFUN ("regexp-quote", Fregexp_quote, Sregexp_quote, 1, 1, 0,
3157 doc: /* Return a regexp string which matches exactly STRING and nothing else. */)
3158 (string)
3159 Lisp_Object string;
3161 register unsigned char *in, *out, *end;
3162 register unsigned char *temp;
3163 int backslashes_added = 0;
3165 CHECK_STRING (string);
3167 temp = (unsigned char *) alloca (SBYTES (string) * 2);
3169 /* Now copy the data into the new string, inserting escapes. */
3171 in = SDATA (string);
3172 end = in + SBYTES (string);
3173 out = temp;
3175 for (; in != end; in++)
3177 if (*in == '['
3178 || *in == '*' || *in == '.' || *in == '\\'
3179 || *in == '?' || *in == '+'
3180 || *in == '^' || *in == '$')
3181 *out++ = '\\', backslashes_added++;
3182 *out++ = *in;
3185 return make_specified_string (temp,
3186 SCHARS (string) + backslashes_added,
3187 out - temp,
3188 STRING_MULTIBYTE (string));
3191 void
3192 syms_of_search ()
3194 register int i;
3196 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
3198 searchbufs[i].buf.allocated = 100;
3199 searchbufs[i].buf.buffer = (unsigned char *) xmalloc (100);
3200 searchbufs[i].buf.fastmap = searchbufs[i].fastmap;
3201 searchbufs[i].regexp = Qnil;
3202 searchbufs[i].whitespace_regexp = Qnil;
3203 searchbufs[i].syntax_table = Qnil;
3204 staticpro (&searchbufs[i].regexp);
3205 staticpro (&searchbufs[i].whitespace_regexp);
3206 staticpro (&searchbufs[i].syntax_table);
3207 searchbufs[i].next = (i == REGEXP_CACHE_SIZE-1 ? 0 : &searchbufs[i+1]);
3209 searchbuf_head = &searchbufs[0];
3211 Qsearch_failed = intern ("search-failed");
3212 staticpro (&Qsearch_failed);
3213 Qinvalid_regexp = intern ("invalid-regexp");
3214 staticpro (&Qinvalid_regexp);
3216 Fput (Qsearch_failed, Qerror_conditions,
3217 Fcons (Qsearch_failed, Fcons (Qerror, Qnil)));
3218 Fput (Qsearch_failed, Qerror_message,
3219 build_string ("Search failed"));
3221 Fput (Qinvalid_regexp, Qerror_conditions,
3222 Fcons (Qinvalid_regexp, Fcons (Qerror, Qnil)));
3223 Fput (Qinvalid_regexp, Qerror_message,
3224 build_string ("Invalid regexp"));
3226 last_thing_searched = Qnil;
3227 staticpro (&last_thing_searched);
3229 saved_last_thing_searched = Qnil;
3230 staticpro (&saved_last_thing_searched);
3232 DEFVAR_LISP ("search-spaces-regexp", &Vsearch_spaces_regexp,
3233 doc: /* Regexp to substitute for bunches of spaces in regexp search.
3234 Some commands use this for user-specified regexps.
3235 Spaces that occur inside character classes or repetition operators
3236 or other such regexp constructs are not replaced with this.
3237 A value of nil (which is the normal value) means treat spaces literally. */);
3238 Vsearch_spaces_regexp = Qnil;
3240 DEFVAR_LISP ("inhibit-changing-match-data", &Vinhibit_changing_match_data,
3241 doc: /* Internal use only.
3242 If non-nil, the match data will not be changed during call to searching or
3243 matching functions, such as `looking-at', `string-match', `re-search-forward'
3244 etc. */);
3245 Vinhibit_changing_match_data = Qnil;
3247 defsubr (&Slooking_at);
3248 defsubr (&Sposix_looking_at);
3249 defsubr (&Sstring_match);
3250 defsubr (&Sposix_string_match);
3251 defsubr (&Ssearch_forward);
3252 defsubr (&Ssearch_backward);
3253 defsubr (&Sword_search_forward);
3254 defsubr (&Sword_search_backward);
3255 defsubr (&Sre_search_forward);
3256 defsubr (&Sre_search_backward);
3257 defsubr (&Sposix_search_forward);
3258 defsubr (&Sposix_search_backward);
3259 defsubr (&Sreplace_match);
3260 defsubr (&Smatch_beginning);
3261 defsubr (&Smatch_end);
3262 defsubr (&Smatch_data);
3263 defsubr (&Sset_match_data);
3264 defsubr (&Sregexp_quote);
3267 /* arch-tag: a6059d79-0552-4f14-a2cb-d379a4e3c78f
3268 (do not change this comment) */